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PREFACE

If you are viewing this document, you should know that this is a book-in-progress.
Early drafts are released for the purpose teaching my classes and gaining formative
feedback from a host of stakeholders. The document was last updated on 07 Aug
2024. Emerging volumes on other statistics are posted on the ReCentering Psych Stats page at
my research team’s website.
Screencasted Lecture Link
To center a variable in regression means to set its value at zero and interpret all other values in
relation to this reference point. Regarding race and gender, researchers often center male and White
at zero. Further, it is typical that research vignettes in statistics textbooks are similarly seated
in a White, Western (frequently U.S.), heteronormative, framework. The purpose of this project
is to create a set of open educational resources (OER) appropriate for doctoral and post-doctoral
training that contribute to a socially responsive pedagogy – that is, it contributes to justice, equity,
diversity, and inclusion.
Statistics training in doctoral programs are frequently taught with fee-for-use programs (e.g.,
SPSS/AMOS, SAS, MPlus) that may not be readily available to the post-doctoral professional.
In recent years, there has been an increase and improvement in R packages (e.g., psych, lavaan)
used for analyses common to psychological research. Correspondingly, many graduate programs are
transitioning to statistics training in R (free and open source). This is a challenge for post-doctoral
psychologists who were trained with other software. This OER will offer statistics training with
R and be freely available (specifically in a GitHub repository and posted through GitHub Pages)
under a Creative Commons Attribution - Non Commercial - Share Alike license [CC BY-NC-SA
4.0].
Training models for doctoral programs in health service psychology are commonly scholar-
practitioner, scientist-practitioner, or clinical-scientist. An emerging model, the scientist-
practitioner-advocacy training model, incorporates social justice advocacy so that graduates are
equipped to recognize and address the sociocultural context of oppression and unjust distribution
of resources and opportunities [Mallinckrodt et al., 2014]. In statistics textbooks, the use of
research vignettes engages the learner around a tangible scenario for identifying independent
variables, dependent variables, covariates, and potential mechanisms of change. Many students
recall examples in Field’s [2012] popular statistics text: Viagra to teach one-way ANOVA, beer
goggles for two-way ANOVA, and bushtucker for repeated measures. What if the research vignettes
were more socially responsive?
In this OER, research vignettes will be from recently published articles where:

• the author’s identity is from a group where scholarship is historically marginalized (e.g.,
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BIPOC, LGBTQ+, LMIC[low-middle income countries]),
• the research is responsive to issues of justice, equity, inclusion, diversity,
• the lesson’s statistic is used in the article, and
• there is sufficient information in the article to simulate the data for the chapter example(s)

and practice problem(s); or it is publicly available.

In training for multicultural competence, the saying, “A fish doesn’t know that it’s wet” is often
used to convey the notion that we are often unaware of our own cultural characteristics. In recent
months and years, there has been an increased awakening to institutional and systemic factors that
contribute to discrimination as a function of race, gender, nationality, class, and so forth. Queuing
from the water metaphor, I am hopeful that a text that is recentered in the ways I have described
can contribute to changing the water in higher education and in the profession of psychology.

Copyright with Open Access

Copyright © 2023 by Lynette Bikos Seattle Pacific University Library, Seattle, WA

ISBN-13: 979-8-9868768-2-5 (Ebook - online); ISBN-13: 979-8-9868768-3-2 (Ebook - PDF); ISBN-
13: 979-8-9868768-4-9 (Print)

This book is published under a a Creative Commons Attribution-NonCommercial-ShareAlike 4.0
International License. This means that this book can be reused, remixed, retained, revised and
redistributed (including commercially) as long as appropriate credit is given to the authors. If you
remix, or modify the original version of this open textbook, you must redistribute all versions of
this open textbook under the same license: CC BY-SA 4.0.

A GitHub open-source repository contains all of the text and source code for the book, including
data and images.

https://github.com/lhbikos/ReCenterPsychStats
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Chapter 1

Introduction

Screencasted Lecture Link

1.1 What to expect in each chapter

This textbook is intended as applied, in that a primary goal is to help the scientist-practitioner-
advocate use a variety of statistics in research problems and writing them up for a program evalua-
tion, dissertation, or journal article. In support of that goal, I try to provide just enough conceptual
information so that the researcher can select the appropriate statistic (i.e., distinguishing between
when ANOVA is appropriate and when regression is appropriate) and assign variables to their
proper role (e.g., covariate, moderator, mediator).

This conceptual approach does include hand-calculations (using R to do the math for us) to provide
a visceral feeling of what is happening within the statistical algorithm that may be invisible to the
researcher. Additionally, the conceptual review includes a review of the assumptions about the
characteristics of the data and research design that are required for the statistic.

Statistics can be daunting, so I have worked hard to establish a workflow through each analysis.
When possible, I include a flowchart that is referenced frequently in each chapter and assists the
researcher keep track of their place in the many steps and choices that accompany even the simplest
of analyses.

As with many statistics texts, each chapter includes a research vignette. Somewhat unique to this
resource is that the vignettes are selected from recently published articles. Each vignette is chosen
with the intent to meet as many of the following criteria as possible:

• the statistic that is the focus of the chapter was properly used in the article,
• the author’s identity is from a group where scholarship is historically marginalized (e.g.,

BIPOC, LGBTQ+, LMIC [low middle income countries]),
• the research has a justice, equity, inclusion, diversity, and social responsivity focus and will

contribute positively to a social justice pedagogy, and
• there is sufficient information in the article to simulate the data for the chapter example(s)

and practice problem(s); or the data is available in a repository.
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Each chapter features functions and code from R packages that will efficiently calculate the statistic
and the dashboard of metrics (e.g., effect sizes, confidence intervals) that are typically reported in
psychological science. Each worked example concludes with an APA style results section that is
intended to be used as a model or recipe that is appropriate for many empirical manuscripts. Where
possible, hints are provided that will make the production of tables and figures straightforward.

The practice problems are suggestions for homework. Most chapters include suggestions for both
working the problem with R and R packages as well as hand calculations. The suggestions for
homework are designed to met you where you are. If you are feeling less confident about your
ability (or, perhaps short on time), you can choose the easiest options (e.g., changing the random
seed and reworking the problem which should be nearly identical to the worked example); with more
confidence or time you might choose to work the problem with another variable; with abundant
confident (or perhaps a need to do so) you might choose to your own data, data that is available
to you, or simulated data from another source. Repetition and practice might mean that you do
each of these options.

Finally, many lessons concludes with a homeworked example. This section provides a streamlined
working of the problem with R or R packages. When the ANOVA models become more complex,
there are often a myriad of ways to approach a problem. I have tried to select one that is sensible
to me. The homeworked examples draw from a project associated with a recently published project
of my own [Bikos et al., 2024], focused on teaching statistics in a socially responsible way. The
associated dataset is available on the OER’s GitHub site as well as in a pre-registered repository on
the Open Science Framework (OSF). An explanation of this study and codebook for the variables
is provided at the end of the this lesson.

1.2 Strategies for Accessing and Using this OER

There are a number of ways you can access this resource. You may wish to try several strategies
and then select which works best for you. I demonstrate these in the screencast that accompanies
this chapter.

1. Simply follow along in your preferred format of the book (html, PDF, or ebook) and then

• open a fresh .rmd file of your own, copying (or retyping) the script and running it

2. Locate the original documents at the GitHub repository. You can

• open them to simply take note of the “behind the scenes” script
• copy/download individual documents that are of interest to you
• clone a copy of the entire project to your own GitHub site and further download it (in

its entirety) to your personal workspace. The GitHub Desktop app makes this easy!

3. Listen to the accompanying lectures (I think sound best when the speed is 1.75). The lectures
are being recorded in Panopto and should include the closed captioning.

4. Each time the book is updated, new .docx (Microsoft Word), PDF (Adobe Acrobat), and
ebook(EPUB File) versions are also created. You can access these in the “docs” folder at the
GitHub repository.

https://github.com/lhbikos/ReCenterPsychStats/blob/main/Worked_Examples/ReC.rds
https://osf.io/z84kh/
https://github.com/lhbikos/ReCenterPsychStats
https://desktop.github.com/
https://github.com/lhbikos/ReCenterPsychStats
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5. Provide feedback to me! If you fork a copy to your own GitHub repository, you can

• open up an editing tool and mark up the document with your edits,
• start a discussion by leaving comments/questions, and then
• sending them back to me by committing and saving. I get an e-mail notifying me of this

action. I can then review (accepting or rejecting) them and, if a discussion is appropriate,
reply back to you.

• I am also seeking peer-review feedback at this Qualtrics-hosted survey. You are welcome
to complete only the portions that are relevant to you.

1.3 If You are New to R

R can be oveRwhelming. Jumping right into advanced statistics might not be the easiest way
to start. The Ready_Set_R lesson of this volume provides an introduction and the Preliminary
Analyses lesson walks through simple data preparation and descriptive statistics.

In the remaining lessons, I have attempted to provide complete code for every step of the process,
starting with uploading the data. To help explain what R script is doing, I sometimes write it
in the chapter text; sometimes leave hashtagged-comments in the chunks; and, particularly in the
accompanying screencasted lectures, try to take time to narrate what the R script is doing.

I’ve found that, somewhere on the internet, there’s almost always a solution to what I’m trying
to do. I am frequently stuck and stumped and have spent hours searching the internet for even
the tiniest of tasks. When you watch my videos, you may notice that in my R studio, there is a
“scRiptuRe” file. I take notes on the solutions and scripts here – using keywords that are meaningful
to me so that when I need to repeat the task, I can hopefully search my own prior solutions and
find a fix or a hint. You may also find it useful to create a working document of your own tips and
tricks.

1.4 When Code Fails

R code changes frequently and without notice. We generally discover changes in packages and code,
every few months, when we update R Studio, R, and R packages. As soon as feasible, we jump
into the ReCentering OERs to test and fix code. This means that you may encounter code failures
before we discover or fix them.

Updating the screencasted lectures often occurs much later. If there is a discrepancy between the
screencasted lectures and the code, the code is more current.

If you discover errors, please e-mail them to recenterpsychstats@gmail.com.

1.5 Introduction to the Data Set Used for Homeworked Examples

Screencast Link

Each lesson concludes with streamlined example of working the primary statistic from each lesson.
This section is intended to be helpful in two ways:

https://spupsych.az1.qualtrics.com/jfe/form/SV_0OnBLfut3VIOIS2
https://lhbikos.github.io/ReCenterPsychStats/Ready.html
https://lhbikos.github.io/ReCenterPsychStats/preliminaries.html
https://lhbikos.github.io/ReCenterPsychStats/preliminaries.html
mailto:recenterpsychstats@gmail.com
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• The worked example focuses on the operations and interpretations and more closely mimics
“how you would work a problem in real life.”

• The grading rubric from the end of each lesson serves as the outline for the process.
• This dataset could be used for the practice problems. For homework that you submit for

grading, please choose different variables than the ones worked in the examples.

1.5.1 The Data Set

The dataset used in the “homeworked” examples is from my own research. Along long with the
pre-registration and codebooks, it is publicly available in a pre-registered repository on the Open
Science Framework (OSF). I have also provided a copy of it in the GitHub repository that hosts
the ReCentering Psych Stats OER.

This data is from an IRB-approved study. The informed consent of the IRB specified that the data
could be used in research as well as in teaching demonstrations and would be made available to the
general public. You may notice there are student- and teacher- IDs. These numbers are *not** the
institution’s identification numbers. Rather, they have been further anonymized.

The purpose of the research project was to evaluate efforts to recenter – in a socially responsive
way – courses in the statistics and research methods sequence in scientist-practitioner psychology
(PhD) programs. The recentering occurred in two phases: (a) a transition from SPSS to R and (b)
an explicit recentering. Data were from end-of-course evaluations three courses I taught: Research
Methods I: Analysis of Variance [ANOVA], Research Methods III: Multivariate Modeling [multi-
variate], and Research Methods IV: Psychometrics/Theory of Test Construction [psychometrics])
that were offered 2017 through 2022.

Because students could contribute up to three course evaluations, each, multilevel modeling was
used for the primary analyses. The nature of the data, though, allows me to demonstrate all of
the statistics utilized the OER with this data. For each analysis, I have tried to derive a sensible
question that could be answered by the data. In-so-doing, I try to point out when the alignment of
research question and statistic is less than ideal.

The data file is titled ReC.rds and can be retrieved with this code:

dfReC <- readRDS("ReC.rds")

The following can serve as a codebook:

Variable Definition or Description Scaling
deID Anonymized identification for each student Each

student could contribute up to three course
evaluations

Nominal/factor

CourseID Unique number for each course taught (i.e., ANOVA
has unique numbers across department and year).

Nominal/factor

Dept CPY (Clinical Psychology), ORG (Industrial
Organizational Psychology)

Nominal/factor

https://osf.io/z84kh/
https://github.com/lhbikos/ReCenterPsychStats/blob/main/Worked_Examples/ReC.rds
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Variable Definition or Description Scaling
Course ANOVA (analysis of variance), Multivariate

(multivariate modeling), Psychometrics
(psychometrics/theory of test construction), taught
in that order

Nominal/factor

StatsPkg SPSS, R Nominal/factor
Centering Pre (before explicit recentering), Re (included

explicit recentering)
Nominal/factor

Year Calendar year in which the course was taught Calendrical time
Quarter Academic term in which course was taught (fall,

winter, spring)
Nominal/factor

ProgramYear A potential confound to the study. During the
changes from SPSS to R and the explicit
recentering, the program was also moving the stats
sequence from the second to the first year of the
doctoral program. First = course taken during first
year; Second = course taken during second year;
Transition = course taken during the transition
period.

Nominal/factor

SPFC.Decolonize.Opt.OutStudents were given the opportunity to exclude
their data from analysis. Such data was removed
prior to any analysis and not included in this set.

Character

COURSE EVALUATION ITEMS; 5-point Likert scaling from 1(strongly disagree) to 5(strongly
agree). Higher scores are more favorable evaluations.

Variable Complete Item
IncrInterest My interest in the subject matter increased over the span of the course.
IncrUnderstanding My understanding of the subject matter increased over the span of the

course.
ValObjectives This course has objectives that are valuable in furthering my education.
ApprAssignments This course has had an appropriate workload, given the course objectives.
EffectiveAnswers The instructor has effectively answered student questions.
Respectful The instructor has shown respect to students.
ClearResponsibilitiesThe instructor has made student responsibilities clear.
Feedback The instructor has provided feedback to me about my learning progress.
OvInstructor My overall rating of this instructor for this course is:
MultPerspectives The instructor has helped students consider issues from multiple

perspectives, where applicable.
OvCourse My overall rating of the course content is:
InclsvClssrm The instructor has been intentional in fostering an inclusive classroom for

students with diverse backgrounds and abilities.
DEIintegration The instructor has, when appropriate, discussed the relationships between

race/ethnicity/culture and course content.
ClearPresentation The instructor has presented course material clearly.
ApprWorkload This course has had an appropriate workload, given the course objectives.
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Variable Complete Item
MyContribution My overall rating of my contribution in this course is:
InspiredInterest The instructor has inspired student interest in the subject matter of this

course.
Faith The instructor has, when appropriate, discussed the relationship between the

Christian faith and course content.
EquitableEval The instructor used methods of evaluating student course work that were

equitable.
ClearOrganization This course has had a clear overall organization.
RegPrepare I regularly read, reviewed, visited/logged on, or completed assigned readings

and tasks.
EffectiveLearning This course has consisted of course activities/tasks that were effective in

helping me learn (e.g., discussions, readings, assignments, labs, or other
activities).

AccessibleInstructor The instructor has been accessible (e.g., discussion sessions, virtual office
hours, phone, chat, email, online forum or conference, etc.).

From these variables, I created three scales to assess valued by the student (Valued), traditional
pedagogy (TradPed), and socially responsive pedagogy (SRped). I will use these in the demonstra-
tions.

• Valued by the student includes the items: ValObjectives, IncrUnderstanding, IncrInterest

• Traditional pedagogy includes the items: ClearResponsibilities, EffectiveAnswers, Feed-
back, ClearOrganization, ClearPresentation

• Socially responsive pedagogy includes the items: InclusvClassrm, EquitableEval, Mult-
Perspectives, DEIintegration

In the examples where the scale scores are used, I provide code for calculating the means.

Here’s how to import the data:

ReCdf <- readRDS("ReC.rds")



Chapter 2

Ready_Set_R

Screencasted Lecture Link

With the goal of creating a common, system-wide approach to using the platform, this lesson was
originally created for Clinical and Industrial-Organizational doctoral students who are entering the
“stats sequence.” I hope it will be useful for others (e.g., faculty, post-doctoral researchers, and
practitioners) who are also making the transition to R.

2.1 Navigating this Lesson

There is about 45 minutes of lecture.

While the majority of R objects and data you will need are created within the R script that sources
the chapter, occasionally there are some that cannot be created from within the R framework.
Additionally, sometimes links fail. All original materials are provided at the Github site that hosts
the book. More detailed guidelines for ways to access all these materials are provided in the OER’s
introduction

2.1.1 Learning Objectives

Learning objectives from this lecture include the following:

• Downloading/installing R’s parts and pieces.
• Using R-Markdown as the interface for running R analyses and saving the script.
• Recognizing and adopting best practices for “R hygiene.”
• Identifying effective strategies for troubleshooting R hiccups.

2.2 downloading and installing R

2.2.1 So many paRts and pieces

Before we download R, it may be helpful to review some of R’s many parts and pieces.

33

https://youtube.com/playlist?list=PLtz5cFLQl4KPVmAkrTNyX_3VuVlPP1cXB
https://github.com/lhbikos/ReCenterPsychStats
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The base software is free and is available here
Because R is already on my machine (and because the instructions are sufficient), I will not walk
through the demo, but I will point out a few things.

• The “cran” (I think “cranium”) is the Comprehensive R Archive Network. In order for R to
run on your computer, you have to choose a location – and it should be geographically “close
to you.”

– Follow the instructions for your operating system (Mac, Windows, Linux)
– You will see the results of this download on your desktop (or elsewhere if you chose to

not have it appear there) but you won’t ever use R through this platform.

• R Studio is the way in which we operate R. It’s a separate download. Choose the free,
desktop, option that is appropriate for your operating system:

• R Markdown is the way that many analysts write script, conduct analyses, and even write
up results. These are saved as .rmd files.

– In R Studio, open an R Markdown document through File/New File/R Markdown
– Specify the details of your document (title, author, desired ouput)
– In a separate step, SAVE this document (File/Save] into a NEW FILE FOLDER that

will contain anything else you need for your project (e.g., the data).
– Packages are at the heart of working in R. Installing and activating packages require

writing script.

Note If you are working on an enterprise-owned machine (e.g,. in my specific context, if you are
a faculty/staff or have a lab with institution-issued laptops) there can be complications caused by
how documents are stored. In recent years we have found that letting the computer choose where
to load base R, R Studio, and the packages generally works. The trick is to save R projects (i.e.,
folder with .rmd files and data) into the OneDrive folder that syncs to your computer. If you have
difficulty knitting that is unrelated to code/script (which you can evaluate by having a classmate
or colleague successfully knit on their machine), it is likely because you have saved the files to the
local hard drive and not OneDrive. If you continue to have problems I recommend consulting with
your computer and technology support office.

2.2.2 oRienting to R Studio (focusing only on the things we will be using first
and most often)

R Studio is organized around four panes. These can be re-sized and rearranged to suit your personal
preferences.

• Upper right window

– Environment: lists the objects that are available to you (e.g., dataframes)

• Lower right window

– Files: Displays the file structure in your computer’s environment. Make it a practice
to (a) organize your work in small folders and (b) navigate to that small folder that is
holding your project when you are working on it.

https://www.r-project.org/
https://www.rstudio.com/products/RStudio/
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– Packages: Lists the packages that have been installed. If you navigate to a specific
package, you will know if it is “on” because its box is checked. You can also access
information about the package (e.g., available functions, examples of script used with
the package) in this menu. This information opens in the “Help” window.

– The Viewer and Plots tabs will be useful, later, in some advanced statistics when we can
simultaneously examine output and script in windows that are side-by-side.

• Upper left window

– If you are using R Markdown, that file lives here and is composed of open space and
chunks.

• Lower left window

– R Studio runs in the Console (the background). Very occasionally, I can find useful
troubleshooting information here.

– More commonly, I open my R Markdown document so that it takes up the whole screen.

2.3 best pRactices

Many initial problems in R can be solved with good R hygiene. Here are some suggestions for basic
practices. It can be tempting to “skip this.” However, in the first few weeks of class, these are the
solutions I am presenting (and repeating, ad nauseum) to my students.

2.3.1 Everything is documented in the .rmd file

Although others do it differently, I put everything in my .rmd file. That is, my R script includes
code for importing data and opening packages. Additionally, I make notes about the choices I am
making. Relatedly, I keep a “bug log” – noting what worked and what did not work. I will also
begin my APA style results section directly in the .rmd file.

Why do I do all this? Because when I return to my project hours or years later, I have a permanent
record of very critical things like (a) where my data is located, (b) what version I was using, and
(c) what package was associated with the functions.

2.3.2 Setting up the file

File organization is a critical key to success. In your computing environment:

• Create a project file folder.
• Put the data file in it.
• Open an R Markdown file.
• Save it in the same file folder as the data.
• When your data and .rmd files are in the same folder (not your desktop, but a specific folder)

the data can be pulled into the .rmd file without creating a working directory.
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2.3.3 Script in chunks and everything else in the “inline text” sections

The R Markdown document is an incredible tool for integrating text, tables, and analyses. This
entire OER is written in R Markdown. A central feature of this is “chunks.”

The only thing in the chunks should be script for running R. You can also hashtag comments so
they won’t run (but you can also write anything you want between chunks without using hashtags).

Syntax for simple formatting in the text (i.e., non-chunk) areas (e.g., using italics, making headings,
bold) is found here: https://rmarkdown.rstudio.com/authoring_basics.html

“Chunks” start and end with three tic marks and will show up in a shaded box. Chunks have three
symbols in their upper right. Those controls will disappear (and your script will not run) if you
have replaced them with double or single quotation marks or one or more of the tics are missing.

The easiest way to insert a chunk is to use the INSERT/R command at the top of this editor box.
You can also insert a chunk with the keyboard shortcut: CTRL/ALT/i

#hashtags let me write comments to remind myself what I did
#here I am simply demonstrating arithmetic (but I would normally be running code)
2021 - 1966

[1] 55

2.3.4 Managing packages

As scientist-practitioners (and not coders), we will rely on packages to do much of the work. At first
you may feel overwhelmed about the large number of packages that are available. Soon, though,
you will become accustomed to the ones most applicable to our work (e.g., psych, tidyverse, rstatix,
apaTables).

Researchers treat packages differently. In these lectures, I list all the packages we will use in an
opening chunk at the beginning of the lecture. When the hashtags are removed, the script will ask
R to check to see if the package is installed on your machine. If it is, installation is skipped. If it
is not, R installs it. Simply remove the hashtag to run the code the first time, then hashtag them
back out so R is not always re-checking.

#will install the package if not already installed
#if(!require(psych)){install.packages("psych")}

To make a package operable, you need to open it. There are two primary ways to do this. The
first is to use the library function.

#install.packages ("psych")
library (psych)

The second way is to place a double colon between the package and function. This second method
has become my preferred practice because it helps me remember what package goes with each
function. It can also prevent R hiccups when there are identical function names and R does not

https://rmarkdown.rstudio.com/authoring_basics.html
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know which package to use. Below is an example where I might ask for descriptives from the psych
package. Because I have not yet uploaded data, I have hashtagged it out, making the command
inoperable.

#psych::describe(mydata)

There are exceptions. One is the tidyverse package. Some of my script uses pipes (%>%) and pipes
require tidyverse to be activated. This is why you will often see me call the tidyverse package with
the library() function (as demonstrated above.)

2.3.5 Upload the data

When imported (or simulated) properly, data will appear as an object in the global environment.

In the context of this OER, I will be simulating data in each lesson for immediate use in the lesson.
This makes this web-based OER more portable. This also means that when working the problems
in the chapter we do notneed to (a) write the data to a file or (b) import data from files. Because
these are essential skills, I will demonstrate this process here – starting with simulating data.

At this point, simulating data is beyond the learning goals I have established for the chapter. I
do need to include the code so that we get some data. The data I am simulating is used in the
one-way ANOVA lesson. The data is from the Tran and Lee [2014] random clinical trial.

In this simulation, I am simply creating an ID number, a condition (High, Low, Control), and a
score on the dependent variable, “Accurate.” More information about this study is included in the
one-way ANOVA chapter.

#Note, this simulation results in a different datset than is in the OnewayANOVA lesson
#sets a random seed so that we get the same results each time
set.seed(2021)
#sample size, M and SD for each group
Accurate <- c(rnorm(30, mean=1.18, sd=0.80), rnorm(30, mean=1.83, sd = 0.58), rnorm(30, mean = 1.76, sd = 0.56))
#set upper bound for DV
Accurate[Accurate>3]<-3
#set lower bound for DV
Accurate[Accurate<0]<-0
#IDs for participants
ID<-factor(seq(1,90))
#name factors and identify how many in each group; should be in same order as first row of script
COND<-c(rep("High", 30), rep("Low", 30), rep("Control", 30))
#groups the 3 variables into a single df: ID, DV, condition
Acc_sim30 <-data.frame(ID, COND, Accurate)

At this point, this data lives only in this .rmd file after the above code is run. Although there are
numerous ways to export and import data, I have a preference for two.
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2.3.5.1 To and from .csv files

The first is to write the data to a .csv file. In your computer’s environment (outside of R), these
files are easily manipulated in Excel. I think of them as being “Excel lite” because although Excel
can operate them, they lack some of the more advanced features of an Excel spreadsheet.

In the code below, I identify the R object “Acc_sim30” and give it a file name, “to_CSV.csv”. This
file name must have the .csv extension. I also indicate that it should preserve the column names
(but ignore row names; since we don’t have row names).

This file will save in the same folder as wherever you are using this .rmd file.

#to write it to an outfile as a .csv
write.table(Acc_sim30, file="to_CSV.csv", sep=",", col.names=TRUE, row.names=FALSE)

Importing this object back into the R environment can be accomplished with some simple code.
For the sake of demonstration,

#to save the df as an .csv (think "Excel lite") file on your computer; it should save in the same file as the .rmd file you are working with
from_CSV <- read.csv ("to_CSV.csv", header = TRUE)

The advantage of working with .csv files is that it is then easy to inspect and manipulate them
outside of the R environment. The disadvantage of .csv files is that each time they are imported
they lose any formatting you may have meticulously assigned to them.

2.3.5.2 To and from .rds files

While it is easy enough to rerun the code (or copy it from data prep .rmd and paste it into an
.rmd you are using for advanced analysis), there is a better way! Saving the data as an R object
preserves all of its characteristics.

#to save the df as an .rds file on your computer; it should save in the same file as the .rmd file you are working with
saveRDS(Acc_sim30, "to_Robject.rds")

This file will save to your computer (and you can send it to colleagues). However, it is not easy to
“just open it” in Excel. To open an .rds file and use it (whether you created it or it is sent to you
by a colleague), use the following code:

from_rds <- readRDS("to_Robject.rds")

If you are the recipient of an R object, but want to view it as a .csv, simply import the .rds then
use the above code to export it as a .csv.
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2.3.5.3 From SPSS files

Your data may come to you in a variety of ways. One of the most common is SPSS. The foreign
package is popular for importing SPSS data. Below is code which would import an SPSS file if I
had created one. You’ll see that this script is hashtagged out because I rarely use SPSS and do not
have a handy file to demo.

#opening an SPSS file requires the foreign package which I opened earlier
#from_SPSS <- foreign::read.spss ("SPSSdata.sav", use.value.labels = TRUE, to.data.frame = TRUE)

2.4 quick demonstRation

Let’s run some simple descriptives. In the script below, I am using the psych package. Descriptive
statistics will appear for all the data in the dataframe and the output will be rounded to three
spaces. Note that rather than opening the psych package with the library function, I have used the
double colon convention.

round(psych::describe(Acc_sim30),3)

vars n mean sd median trimmed mad min max range skew kurtosis
ID* 1 90 45.50 26.12 45.50 45.50 33.36 1 90 89 0.00 -1.24
COND* 2 90 2.00 0.82 2.00 2.00 1.48 1 3 2 0.00 -1.53
Accurate 3 90 1.52 0.68 1.55 1.54 0.70 0 3 3 -0.19 -0.34

se
ID* 2.75
COND* 0.09
Accurate 0.07

Because “ID” is the case ID and COND is the factor (high, low, control), the only variable for
which this data is sensible is “Accurate.” Nonetheless, this provides an example of how to apply a
package’s function to a dataset. As we progress through the text we will learn how to manage the
data so that we get the specific output we are seeking.

2.5 the knitted file

One of the coolest things about R Markdown is its capacity to knit to HTML, PPT, or WORD.

• In this OER, I am writing the lessons in R markdown (.rmd files), with the package bookdown
as a helper, and knitting the files to .html, .doc, .pdf, and .epub formats.

• The package papaja is designed to prepare APA manuscripts where the writing, statistics,
and references are all accomplished in a single file. This process contributes to replicability
and reproducibility.

• More detailed instructions for knitting to these formats are provided in the extRas mini-
volume of ReCentering Psych Stats.

https://lhbikos.github.io/extRas/
https://lhbikos.github.io/BikosRVT/ReCenter.html
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2.6 tRoubleshooting in R maRkdown

Hiccups are normal. Here are some ideas that I have found useful in getting unstuck.

• In a given set of operations, you must run/execute each piece of code in order: every, single,
time. That is, all the packages have to be in your library and activated.

– If you open an .rmd file, you cannot just scroll down to make a boxplot. You need to
run any prerequisite script (like loading files, putting the data in the global environment,
etc.)

– Lost? Clear your global environment (broom icon in the upper right) and start over.
Fresh starts are good.

• Your .rmd file and your data need to be stored in the same file folder. Make unique folders
for each project (even if each contains only a few files).

• If you have tried what seems apparent to you and cannot solve your challenge, do not wait
long before typing warnings into a search engine. Odds are, you’ll get some useful hints in a
manner of seconds. Especially at first, these are common errors:

– The package isn’t loaded.
– The .rmd file hasn’t been saved yet, or isn’t saved in the same folder as the data.
– There are errors in punctuation or spelling.

• Restart R (it’s quick – not like restarting your computer). I frequently restart and clear my
output and environment so that I can better track my order of operations.

• If you receive an error indicating that a function isn’t working or recognized, and you have
loaded the package, type the name of the package in front of the function with two colons
(e.g., psych::describe(df)). If multiple packages are loaded with functions that have the same
name, R can get confused.

2.7 just why have we tRansitioned to R?

• It is (or at least it appears to be) the futuRe.
• SPSS individual and site licenses are increasingly expensive and limited; that is, Mplus,

AMOS, HLM, or R tools may also be needed. As package development for R is exploding,
we have tools to “do just about anything.”

• Most graduate psychology programs are scientist/practitioner in nature and include training
in “high end” statistics. Yet, many of your employing organizations will not have SPSS. R is
a free, universally accessible program, that our graduates can use anywhere.

2.8 stRategies for success

• Engage with R, but don’t let it overwhelm you.

– The mechanical is also the conceptual. Especially while it’s simpler, do try to retype the
script into your own .rmd file and run it. Track down the errors you are making and fix
them.
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– If this stresses you out, move to simply copying the code into the .rmd file and running
it. If you continue to have errors, you may have violated one of the best practices above
(ask, “Is the package activated?” “Are the data and .rmd files in the same place?” “Is
all the prerequisite script run?”).

– Still overwhelmed? Keep moving forward by (retrieving the original .rmd file from the
GitHub repository) opening a copy of the .rmd file and just “run it along” with the
lecture. Spend your mental power trying to understand what each piece does so you can
translate it for any homework assignments. My suggestions for practice are intended to
be parallel to the lecture with no sneaky trix.

• Copy script that works elsewhere and replace it with your datafile, variables, and so forth.
• The leaRning curve is steep, but not impossible. Gladwell [2008] taught us that it takes

about 10,000 hours to get great at something (2,000 to get reasonably competent). Practice.
Practice. Practice.

• Updates to R, R Studio, and the packages are necessary, but can also be problematic. Some-
times updates cause programs/script to fail (e.g., “X has been deprecated for version X.XX”).
My personal practice is to update R, R Studio, and the packages a week or two before each
academic term. I expect that

– prior scripts may need to be updated or revised with package updates, and
– there will be incongruencies between base R, R Studio, and the packages.

• Embrace your downward dog. And square breathing. Also, walk away, then come back.

2.9 Resources for getting staRted

R for Data Science: https://r4ds.had.co.nz/

R Cookbook: http://shop.oreilly.com/product/9780596809164.do

R Markdown homepage with tutorials: https://rmarkdown.rstudio.com/index.html

R has cheatsheets for everything, here’s the one for R Markdown: https://www.rstudio.com/wp-
content/uploads/2015/02/rmarkdown-cheatsheet.pdf

R Markdown Reference guide: https://www.rstudio.com/wp-content/uploads/2015/03/
rmarkdown-reference.pdf

Using R Markdown for writing reproducible scientific papers: https://libscie.github.io/rmarkdown-
workshop/handout.html

Script for all of Field’s text: https://studysites.uk.sagepub.com/dsur/study/scriptfi.htm

LaTeX equation editor: https://www.codecogs.com/latex/eqneditor.php

2.10 Practice Problems

The suggestions for practice in this lesson are foundational for starting work in R. If you struggle
with any of these steps, I encourage you to get consultation from a peer, instructor, or a tutor.

https://r4ds.had.co.nz/
http://shop.oreilly.com/product/9780596809164.do
https://rmarkdown.rstudio.com/index.html
https://www.rstudio.com/wp-content/uploads/2015/02/rmarkdown-cheatsheet.pdf
https://www.rstudio.com/wp-content/uploads/2015/02/rmarkdown-cheatsheet.pdf
https://www.rstudio.com/wp-content/uploads/2015/03/rmarkdown-reference.pdf
https://www.rstudio.com/wp-content/uploads/2015/03/rmarkdown-reference.pdf
https://libscie.github.io/rmarkdown-workshop/handout.html
https://libscie.github.io/rmarkdown-workshop/handout.html
https://studysites.uk.sagepub.com/dsur/study/scriptfi.htm
https://www.codecogs.com/latex/eqneditor.php
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Assignment Component Points Possible Points Earned
1. Download base R and R Studio 5 _____
2. Open and save an .rmd (R Markdown) file in a
“sensible location” on your computer

5 _____

3. In the .rmd file, open a chunk and perform a
simple mathematical operation of your choice (e.g.,
subtract your birth year from this year)

5 _____

4. Install at least three packages; we will
commonly use psych, tidyverse, dplyr, knitr,
ggplot2, ggpubr)

5 _____

5. Copy the simulation in this lesson to your .rmd
file. Change the random seed and run the
simulation. Save the resulting data as a .csv or
.rds file in the same file as you saved the .rmd file.

5 _____

6. Clear your environment (broom in upper right).
Open the simulated file that you saved.

5 _____

7. Run the describe() function from the psych
package with your simulated data that you
imported from your local drive.

5 _____

8. Demonstration/discussion with a grader. 5 _____
Totals 40 _____

2.11 Homeworked Example

Screencast Link
Several elements of the practice problems (i.e., download base R and R studio) are not easily
demonstrated and not replicated here. These are skipped.
If you wanted to use this example and dataset as a basis for a homework assignment, you could
simply change the seed – again. For a greater challenge, you could adjust the simulation to have
different sample sizes, means, or standard deviations.

Perform a simple mathematical operation:

In the .rmd file, open a chunk and perform a simple mathematical operation of your choice (e.g.,
subtract your birth year from this year).

2023 - 1966

[1] 57

Install at least three packages we will commonly use

Below is code for installing three packages. Because continuous reinstallation can be problematic,
I have hashtagged them so that they will not re-run.

https://youtu.be/ZrQUt9lidCM
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#install.packages("tidyverse")
#install.packages("ggpubr")
#install.packages("psych")

Copy the simulation in this lesson to your .rmd file. Change the random seed and run
the simulation

set.seed(2023)
# sample size, M and SD for each group
Accurate <- c(rnorm(30, mean = 1.18, sd = 0.8), rnorm(30, mean = 1.83,

sd = 0.58), rnorm(30, mean = 1.76, sd = 0.56))
# set upper bound for DV
Accurate[Accurate > 3] <- 3
# set lower bound for DV
Accurate[Accurate < 0] <- 0
# IDs for participants
ID <- factor(seq(1, 90))
# name factors and identify how many in each group; should be in same
# order as first row of script
COND <- c(rep("High", 30), rep("Low", 30), rep("Control", 30))
# groups the 3 variables into a single df: ID, DV, condition
Acc_sim30B <- data.frame(ID, COND, Accurate)

Save the resulting data as a .csv or .rds file in the same file as you saved the .rmd file

You only need to save it as a .csv or .rds file. I have demonstrated both.

Saving as a .csv file

write.table(Acc_sim30B, file = "to_CSVb.csv", sep = ",", col.names = TRUE,
row.names = FALSE)

Saving as an .rds file

saveRDS(Acc_sim30B, "to_RobjectB.rds")

Clear your environment (broom in upper right)

You only need to import the .csv or .rds file; I have demonstrated both. Open the .csv file from
my local drive.

from_CSV <- read.csv("to_CSVb.csv", header = TRUE)

Open the .rds file from my local drive.
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from_rds <- readRDS("to_RobjectB.rds")

Run the describe() function from the psych package with your simulated data that
you imported from your local drive

You only need to retrieve descriptives from the .csv or .rds file; I have demonstrated both.

psych::describe(from_CSV)

vars n mean sd median trimmed mad min max range skew kurtosis
ID 1 90 45.50 26.12 45.5 45.50 33.36 1 90 89 0.00 -1.24
COND* 2 90 2.00 0.82 2.0 2.00 1.48 1 3 2 0.00 -1.53
Accurate 3 90 1.65 0.67 1.7 1.67 0.68 0 3 3 -0.29 -0.42

se
ID 2.75
COND* 0.09
Accurate 0.07

psych::describe(from_rds)

vars n mean sd median trimmed mad min max range skew kurtosis
ID* 1 90 45.50 26.12 45.5 45.50 33.36 1 90 89 0.00 -1.24
COND* 2 90 2.00 0.82 2.0 2.00 1.48 1 3 2 0.00 -1.53
Accurate 3 90 1.65 0.67 1.7 1.67 0.68 0 3 3 -0.29 -0.42

se
ID* 2.75
COND* 0.09
Accurate 0.07



Chapter 3

Preliminary Analyses

Screencasted Lecture Link

The beginning of any data analysis means familiarizing yourself with the data. Among other
things, this includes producing and interpreting its distributional characteristics. In this lesson we
mix common R operations for formatting, preparing, and analyzing the data with foundational
statistical concepts in statistics.

3.1 Navigating this Lesson

There is just less than two hours of lecture. If you work through the lesson with me, I would plan
for an additional three hours.

While the majority of R objects and data you will need are created within the R script that sources
the lesson, occasionally there are some that cannot be created from within the R framework.
Additionally, sometimes links fail. All original materials are provided at the Github site that hosts
the book. More detailed guidelines for ways to access all these materials are provided in the OER’s
introduction

3.1.1 Learning Objectives

Learning objectives from this lecture include the following:

• Determine the appropriate scale of measurement for variables and format them properly in
R

• Produce and interpret measures of central tendency
• Analyze the distributional characteristics of data
• Describe the steps in calculating a standard deviation.
• Describe the steps in calculating a bivariate correlation coefficient (i.e., Pearson r).
• Create an APA Style table and results section that includes means, standard deviations, and

correlations and addresses skew and kurtosis.
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https://youtube.com/playlist?list=PLtz5cFLQl4KOoTRizMIyRU0ioiuSM1tWg
https://github.com/lhbikos/ReCenterPsychStats
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3.1.2 Planning for Practice

The practice assignment at the end of the lesson is designed as a “get (or ‘get back’) into it”
assignment. You will essentially work through this very same lecture, using the same dataframe;
you will simply use a different set of continuous variables.

3.1.3 Readings & Resources

In preparing this chapter, I drew heavily from the following resource(s). Other resources are cited
(when possible, linked) in the text with complete citations in the reference list.

• Revelle, W. (2021). An introduction to the psych package: Part I: data entry and data
description. 60.

– Revelle is the author/creator of the psych package. His tutorial provides both technical
and interpretive information. Read pages 1-17.

• Lui, P. P. (2020). Racial microaggression, overt discrimination, and distress: (In)Direct
associations with psychological adjustment. The Counseling Psychologist, 32.

– This is the research vignette from which I simulate data that we can use in the lesson
and practice problem.

3.2 Research Vignette

We will use data that has been simulated data from Lui [2020] as the research vignette. Controlling
for overt discrimination, and neuroticism, Lui examined the degree to which racial microaggressions
contributed to negative affect, alcohol consumption, and drinking problems in African American,
Asian American, and Latinx American college students (N = 713).
Using the means, standard deviations, correlation matrix, and group sizes (n) I simulated the data.
Although I provide some narration of what I did, process of simulation is beyond the learning goals
of this lesson, so you are welcome to skip it. Simulating data within each chapter makes the lesson
more “portable.”

set.seed(210807)#sets the random seed so that we consistently get the same results
#for practice, you could change (or remove) the random seed and try to interpret the results (they should be similar)
#There are probably more efficient ways to simulate data. Given the information available in the manuscript, my approach was to first create separate datasets for each of the racial ethnic groups and then bind them together.

#First, the data for the students who identified as Asian American
Asian_mu <- c(1.52, 1.72, 2.69, 1.71, 2.14, 2.35, 2.42) #creating an object containing the means
Asian_stddev <- c(2.52, 2.04, 0.47, 0.70, 0.80, 2.41, 3.36) # creating an object containing thestandard deviations
Asian_corMat <- matrix(c(1.00, 0.69, 0.19, 0.28, 0.32, 0.08, 0.23,

0.69, 1.00, 0.20, 0.29, 0.33, 0.13, 0.25,
0.19, 0.20, 1.00, 0.50, 0.50, -0.04, 0.09,
0.28, 0.29, 0.50, 1.00, 0.76, 0.04, 0.18,
0.32, 0.33, 0.50, 0.76, 1.00, 0.10, 0.21,
0.08, 0.13, -0.04, 0.04, 0.10, 1.00, 0.42,
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0.23, 0.25, 0.09, 0.18, 0.21, 0.42, 1.00),
ncol=7) # creating an object containing the correlation matrix

Asian_covMat <- Asian_stddev %*% t(Asian_stddev) * Asian_corMat #creating a covariance matrix from the above objects

Asian_dat <- MASS::mvrnorm(n = 398, mu = Asian_mu, Sigma = Asian_covMat, empirical = TRUE) #creating the dataset
Asian_df <- as.data.frame(Asian_dat) #formatting the dataset as a data frame

library(tidyverse)
#renaming the variables
Asian_df <- rename(Asian_df, OvDisc = V1, mAggr = V2, Neuro = V3, nAff = V4, psyDist = V5, Alcohol = V6, drProb = V7)

#set upper and lower bound for each variable
Asian_df$OvDisc[Asian_df$OvDisc > 16] <- 16
Asian_df$OvDisc[Asian_df$OvDisc < 0] <- 0

Asian_df$mAggr[Asian_df$mAggr > 16] <- 16
Asian_df$mAggr[Asian_df$mAggr < 0] <- 0

Asian_df$Neuro[Asian_df$Neuro > 5] <- 5
Asian_df$Neuro[Asian_df$Neuro < 1] <- 1

Asian_df$nAff[Asian_df$nAff > 4] <- 4
Asian_df$nAff[Asian_df$nAff < 1] <- 1

Asian_df$psyDist[Asian_df$psyDist > 5] <- 5
Asian_df$psyDist[Asian_df$psyDist < 1] <- 1

Asian_df$Alcohol[Asian_df$Alcohol > 12] <- 12
Asian_df$Alcohol[Asian_df$Alcohol < 0] <- 0

Asian_df$drProb[Asian_df$drProb > 12] <- 12
Asian_df$drProb[Asian_df$drProb < 0] <- 0

Asian_df$RacEth <- "Asian"

#Second, the data for the students who identified as Black/African American
Black_mu <- c(4.45, 3.84, 2.60, 1.84, 2.10, 2.81, 2.14)
Black_stddev <- c(4.22, 3.08, 0.89, 0.80, 0.81, 2.49, 3.24)
Black_corMat <- matrix(c( 1.00, 0.81, 0.17, 0.15, 0.09, 0.05, -0.16,

0.81, 1.00, 0.17, 0.21, 0.11, 0.09, -0.01,
0.17, 0.17, 1.00, 0.59, 0.54, 0.05, 0.24,
0.15, 0.21, 0.59, 1.00, 0.72, 0.12, 0.22,
0.09, 0.11, 0.54, 0.72, 1.00, 0.21, 0.40,
0.05, 0.09, 0.05, 0.12, 0.21, 1.00, 0.65,
-0.16,-0.01, 0.24, 0.22, 0.40, 0.65, 1.00),

ncol = 7)
Black_covMat <- Black_stddev %*% t(Black_stddev) * Black_corMat
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Black_dat <- MASS::mvrnorm(n = 133, mu = Black_mu, Sigma = Black_covMat, empirical = TRUE)
Black_df <- as.data.frame(Black_dat)
Black_df <- rename(Black_df, OvDisc = V1, mAggr = V2, Neuro = V3, nAff = V4, psyDist = V5, Alcohol = V6, drProb = V7)

#set upper and lower bound for each variable
Black_df$OvDisc[Black_df$OvDisc > 16] <- 16
Black_df$OvDisc[Black_df$OvDisc < 0] <- 0

Black_df$mAggr[Black_df$mAggr > 16] <- 16
Black_df$mAggr[Black_df$mAggr < 0] <- 0

Black_df$Neuro[Black_df$Neuro > 5] <- 5
Black_df$Neuro[Black_df$Neuro < 1] <- 1

Black_df$nAff[Black_df$nAff > 4] <- 4
Black_df$nAff[Black_df$nAff < 1] <- 1

Black_df$psyDist[Black_df$psyDist > 5] <- 5
Black_df$psyDist[Black_df$psyDist < 1] <- 1

Black_df$Alcohol[Black_df$Alcohol > 12] <- 12
Black_df$Alcohol[Black_df$Alcohol < 0] <- 0

Black_df$drProb[Black_df$drProb > 12] <- 12
Black_df$drProb[Black_df$drProb < 0] <- 0

Black_df$RacEth <- "Black"

#Third, the data for the students who identified as Latinx American
Latinx_mu <- c(1.56, 2.34, 2.69, 1.81, 2.17, 3.47, 2.69)
Latinx_stddev <- c(2.46, 2.49, 0.86, 0.71, 0.78, 2.59, 3.76)
Latinx_corMat <- matrix(c( 1.00, 0.78, 0.27, 0.36, 0.42, -0.06, 0.08,

0.78, 1.00, 0.33, 0.26, 0.35, -0.11, -0.02,
0.27, 0.33, 1.00, 0.62, 0.64, -0.04, 0.15,
0.36, 0.26, 0.62, 1.00, 0.81, -0.08, 0.17,
0.42, 0.35, 0.64, 0.81, 1.00, -0.06, 0.15,
-0.06,-0.11, -0.04, -0.08, -0.06, 1.00, 0.60,
0.08, -0.02, 0.15, 0.17, 0.15, 0.60, 1.00),

ncol = 7)
Latinx_covMat <- Latinx_stddev %*% t(Latinx_stddev) * Latinx_corMat
Latinx_dat <- MASS::mvrnorm(n = 182, mu = Latinx_mu, Sigma = Latinx_covMat, empirical = TRUE)
Latinx_df <- as.data.frame(Latinx_dat)
Latinx_df <- rename(Latinx_df, OvDisc = V1, mAggr = V2, Neuro = V3, nAff = V4, psyDist = V5, Alcohol = V6, drProb = V7)

Latinx_df$OvDisc[Latinx_df$OvDisc > 16] <- 16
Latinx_df$OvDisc[Latinx_df$OvDisc < 0] <- 0
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Latinx_df$mAggr[Latinx_df$mAggr > 16] <- 16
Latinx_df$mAggr[Latinx_df$mAggr < 0] <- 0

Latinx_df$Neuro[Latinx_df$Neuro > 5] <- 5
Latinx_df$Neuro[Latinx_df$Neuro < 1] <- 1

Latinx_df$nAff[Latinx_df$nAff > 4] <- 4
Latinx_df$nAff[Latinx_df$nAff < 1] <- 1

Latinx_df$psyDist[Latinx_df$psyDist > 5] <- 5
Latinx_df$psyDist[Latinx_df$psyDist < 1] <- 1

Latinx_df$Alcohol[Latinx_df$Alcohol > 12] <- 12
Latinx_df$Alcohol[Latinx_df$Alcohol < 0] <- 0

Latinx_df$drProb[Latinx_df$drProb > 12] <- 12
Latinx_df$drProb[Latinx_df$drProb < 0] <- 0

Latinx_df$RacEth <- "Latinx"

#binding the datasets together
Lui_sim_df <-bind_rows(Asian_df, Black_df, Latinx_df)

If you have simulated the data, you can continue using the the “Lui_sim_df” object that we created.
In your own research you will likely work with a datafile stored on your computer. Although I will
hashtag the code out (making it inoperable until the hashtags are removed), here is script to
save the simulated data both .csv (think “Excel lite”) and .rds (it retains all the properties we
specified in R) files and then bring/import them back into R. For more complete instructions see
the Ready_Set_R lesson.

#write the simulated data as a .csv
#write.table(Lui_sim_df, file="Lui_CSV.csv", sep=",", col.names=TRUE, row.names=FALSE)
#bring back the simulated dat from a .csv file
#df <- read.csv ("Lui_CSV.csv", header = TRUE)

#to save the df as an .rds (think "R object") file on your computer;
#it should save in the same file as the .rmd file you are working with
#saveRDS(Lui_sim_df, "Lui_RDS.rds")
#bring back the simulated dat from an .rds file
#df <- readRDS("Lui_RDS.rds")

You may have noticed a couple of things in each of these operations

• First, I named the data object to include a “df” (i.e., dataframe).

– It is a common (but not required) practice for researchers to simply use “df” or “dat”
as the name of the object that holds their data. This practice has advantages (e.g., as
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making the re-use of code quite easy across datasets) and disadvantages (e.g., it is easy
to get confused about what data is being used).

• Second, when you run the code, any updating replaces the prior object.

– While this is irrelevant today (we are saving the same data with different names), it
points out the importance of creating a sensible and systematic order of operations in
your .rmd files and then knowing where you are in the process.

Because the data is simulated, I can simply use the data I created in the simulation, however, I
will go ahead and use the convention of renaming it, “df”, which (in this case) stands for dataframe
and is the common term for a dataset for users of R. A quick note: in statistics “df” is also an
abbreviation for “degrees of freedom.”

df <- Lui_sim_df

3.3 Variable Types (Scale of Measurement)

When working with raw data, we begin by inspecting and preparing it for the planned analyses.
The type of variables we have influences what statistics we will utilize. Further, the data must be
formatted as that type in order for the statistic to properly execute. Variable types (or formats)
are directly connected to the statistical concept of measurement scale (or scale of measurement).
Researchers often think of the categorical versus continuous distinction, but it’s even more nuanced
than that.

3.3.1 Measurement Scale

Categorical variables name discrete or distinct entities where the categorization has no inherent
value or order. When there are two categories, the variable type is binary (e.g., pregnant or not,
treatment and control conditions). When there are more than two categories, the variable type is
nominal (e.g., teacher, student, or parent; Republican, Democrat, or Independent).

Ordinal variables are also categorical variables where the score reflects a logical order or relative
rank (e.g., the order of finishing in a race). A challenge with the ordinal scale is the inability to
determine the distance between rankings. The percentile rank is a (sometimes surprising) example
of the ordinal scale. Technically, Likert type scaling (e.g., providing ratings on a 1-to-5 scale) is
ordinal because it is uncertain that the distance between each of the anchors is equal. Practically,
though, most researchers treat the Likert type scale as interval. This is facilitated, in part, because
most Likert-type scales have multiple items which are averaged into a single score. Navarro[2020a]
uses the term, quasi-interval to describe Likert-type scaling.

Continuous variables can take on any value in the measurement scale that is being used. Interval
level data has equal distances between each unit on the scale. Two classic examples of interval level
data are temperature and year. Whether using Fahrenheit or Celsius, the rating of 0 does not mean
there is an absence of temperature, rather, it is simply a number along a continuum of temperature.
Another interval example is calendrical time. In longitudinal research, we frequently note the date
or year (e.g., 2019) of an event. It is highly unlikely that the value zero will appear in our research
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and if it did, it would not represent the absence of time. A researcher can feel confident that a
variable is on the interval scale if the values can be meaningfully added and subtracted.

Ratio level data also has equal distances between each unit on the scale, plus it has a true zero
point where the zero indicates absence. Examples are behavioral counts (e.g., cigarettes smoked)
and time-on-task (e.g., 90 seconds). Ratio data offers more manipulative power because researchers
can add, subtract, multiply, and divide ratio level data.

3.3.2 Corresponding Variable Structure in R

With these definitions in mind, we will see if R is reading our variables correctly. R will provide
the following designations of variables:

Abbreviation UnabbreviatedUsed for Scale of Measurement
num numerical numbers that allow decimals or

fractional values
quasi-interval, interval, or
ratio

int integer whole numbers (no decimals) quasi-interval, interval, or
ratio

chr character sometimes termed “string”
variables, these are interpreted as
words

NA

Factor factor two or more categories; R imposes
an alphabetical order; the user can
re-specify the order based on the
logic of the design

nominal

Looking back at the Lui [2020] article we can determine what the scale of measurement is for each
variable and what the corresponding R format for that variable should be:

Name Variable How assessed Scale of measurement R format
OvDis Overt racial

discrimination
9 items, 1-to-4 Likert scaling
for frequency and
stressfulness assessed
separately, then multiplied

quasi-interval numerical

mAggr Racial and ethnic
microaggressions

28 items, 1-to-4 Likert scaling
for frequency and
stressfulness assessed
separately, then multiplied

quasi-interval numerical

Neuro Neuroticism 4 items, 1-to-5 Likert scaling quasi-interval numerical
nAff Negative affect 6 items, 1-to-4 Likert scaling quasi-interval numerical
psyDist Psychological

distress
6 items, 1-to-5 Likert scaling quasi-interval numerical

Alcohol Hazardous alcohol
use

10 items, 0-to-4 Likert scaling quasi-interval numerical

drProb Drinking problems 10 items, 0-to-4 Likert scaling quasi-interval numerical
RacEth Race Ethnicity 3 categories nominal factor



52 CHAPTER 3. PRELIMINARY ANALYSES

We can examine the accuracy with which R interpreted the type of data with the structure()
command.

str(df)

'data.frame': 713 obs. of 8 variables:
$ OvDisc : num 1.62 0 2.08 0 0 ...
$ mAggr : num 2.78 0 2.8 0 0 ...
$ Neuro : num 3.24 2.59 2.79 2.53 1.34 ...
$ nAff : num 1.11 1 1.08 1 1.03 ...
$ psyDist: num 2.07 1 1.06 1.82 1.36 ...
$ Alcohol: num 1.63 0 3.2 2.52 2.43 ...
$ drProb : num 2.4073 5.3177 0.6424 1.1671 0.0774 ...
$ RacEth : chr "Asian" "Asian" "Asian" "Asian" ...

Only Race/Ethnicity needs to be transformed from a character (“chr) variable to a factor. I will
use the mutate() function in the dplyr package to convert the RacEth variable to be a factor with
three levels.

library(tidyverse)
df <- df %>%

dplyr::mutate(
RacEth = as.factor(RacEth))

Let’s check the structure again. Below we see that the RacEth variable is now a factor. R has
imposed an alphabetical order: Asian, Black, Latinx.

#checking the structure of the data
str(df)

'data.frame': 713 obs. of 8 variables:
$ OvDisc : num 1.62 0 2.08 0 0 ...
$ mAggr : num 2.78 0 2.8 0 0 ...
$ Neuro : num 3.24 2.59 2.79 2.53 1.34 ...
$ nAff : num 1.11 1 1.08 1 1.03 ...
$ psyDist: num 2.07 1 1.06 1.82 1.36 ...
$ Alcohol: num 1.63 0 3.2 2.52 2.43 ...
$ drProb : num 2.4073 5.3177 0.6424 1.1671 0.0774 ...
$ RacEth : Factor w/ 3 levels "Asian","Black",..: 1 1 1 1 1 1 1 1 1 1 ...

3.4 Descriptive Statistics

While the majority of this OER (and statistics training in general) concerns the ability to make
predictions or inferences (hence inferential statistics) from data, we almost always begin data
analysis by describing it (hence, descriptive statistics).
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Our research vignette contains a number of variables. Lui [2020] was interested in predicting
negative affect, alcohol consumption, and drinking problems from overt discrimination, microag-
gressions, neuroticism, through psychological distress. This research model is a mediation model
(or model of indirect effects) and is beyond the learning objectives of today’s instruction. In demon-
strating descriptive statistics, we will focus on one of the dependent variables: negative affect.

As we begin to explore the descriptive and distributional characteristics of this variable, it may be
helpful to visualize it through a histogram.

ggpubr::gghistogram(df$nAff, xlab="Negative Affect", ylab = "Frequency", add = "mean", rug=TRUE, color = "#00AFBB", title = "Frequencies of Negative Affect")
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3.4.1 Measures of Central Tendency

Describing data almost always begins with measures of central tendency: the mean, median, and
mode.
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3.4.1.1 Mean

The mean is simply a mathematical average of the non-missing data. The mathematical formula
is frequently expressed this way:

�̄� = 𝑋1 + 𝑋2 + 𝑋3... + 𝑋𝑁
𝑁

Because this formula is clumsy to write, there is statistical shorthand to help us convey it more
efficiently (not necessarily, more easily).

Placing information below (where to start), above (where to stop), and to the right (what data to
use) of the summation operator (∑), provides information about the nature of the data. In the
formula below, we learn from the notation to the right that we use the individual data in the vector
X. We start with the first piece of data (i = 1) and stop with the Nth (or last) case.

𝑁
∑
𝑖=1

𝑋𝑖

The 1
𝑁 notation to the left tells us that we are calculating the mean.

�̄� = 1
𝑁

𝑁
∑
𝑖=1

𝑋𝑖

R is an incredible tool in that we can type out mathematical operations, use functions from base
R, and use packages to do the work for us. If we had the following toy dataset (2, 3, 2, 1, 5, NA)
we could calculate the mean by typing it out:

(2 + 3 + 2 + 1 + 5)/5

[1] 2.6

Alternatively we could use the built-in functions in base R to do the work for us. Let me add a
little complexity by creating a single variable (a vector of data) and introducing a little missingness
(i.e., the “NA”).

toy <- c(2, 3, 2, 1, 5, NA)
toy<-as.data.frame(toy)

I can use the base R function mean(). Inside the parentheses I point to the data. The function
automatically sums the values. When there is missingness, adding na.rm=TRUE tells the function
to exclude the missing variables from the count (i.e., the denominator would still be 5).

mean(toy$toy, na.rm=TRUE)

[1] 2.6
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In my simulation of the research vignette, we have no missing values, none-the-less, it is, perhaps
a good habit to include the na.rm=TRUE specification in our code. Because we have an entire
dataframe, we just point to the dataframe and the specific variable (i.e., negative affect).

mean(df$nAff, na.rm=TRUE)

[1] 1.813748

3.4.1.2 Median

The middle value in a set of values is the median. The easiest way to calculate the median is to
sort the numbers:

Unsorted Sorted
2, 3, 2, 1, 5, 1, 2, 2, 3, 5

And select the middle value. Because we have an odd number of values (N = 5), our median is 2.
If we had an even number of values, we would take the average of the middle two numbers.

We can use a base R function to calculate the median for us. Let’s do it first with the toy data:

median(toy$toy, na.rm=TRUE)

[1] 2

Let’s also calculate it for the negative affect variable from the research vignette.

median(df$nAff, na.rm=TRUE)

[1] 1.765367

3.4.1.3 Mode

The mode is the score that occurs most frequently. When a histogram is available, spotting the
mode is easy because it will have the tallest bar. Determining the mode can be made complicated if
there are ties for high frequencies of values. A common occurrence of this happens in the bimodal
distribution.

Unfortunately, there is no base R function that will call a mode. In response, Navarro developed and
included a function in the lsr package that accompanies her [2020a] textbook. Once the package
is installed, you can include two colons, the function name, and then the dataset to retrieve the
mode.
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lsr::modeOf(toy$toy)

[1] 2

From our toy data, we the modeOf() function returns a 2.

Let’s retrieve the mode from the negative affect variable in our research vignette.

lsr::modeOf(df$nAff)

[1] 1

The value is a 1.0 and is likely an artifact of how I simulated the data. Specifically, to ensure that
the values fell within the 1-to-4 range, I rounded up to 1.0 any negative values and rounded down
to 4.0 any values that were higher than 4.0.

3.4.1.4 Relationship between mean, median, and mode

Many inferential statistics rely on manipulations of the mean. The mean, though, can be misleading
when it is influenced by outliers. Therefore, as we engage in preliminary exploration, it can be quite
useful to calculate all three measures of central tendency, as well as exploring other distributional
characteristics.

As a bit of an advanced cognitive organizer, it may be helpful to know that in a normal distribu-
tion, the mean, median, and mode are the same number (or quite close). In a positively skewed
distribution, the mean is higher than the median which is higher than the mode. In a negatively
skewed distribution, the mean is lower than the median, which is lower than the mode.

mean(df$nAff, na.rm=TRUE)

[1] 1.813748

median(df$nAff, na.rm=TRUE)

[1] 1.765367

lsr::modeOf(df$nAff, na.rm=TRUE)

[1] 1

In our research vignette, the mean (1.81) is higher than the median (1.75) is higher than the mode
(1.0). This would suggest a positive skew. Here is a reminder of our histogram:
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ggpubr::gghistogram(df$nAff, xlab="Negative Affect", ylab = "Frequency", add = "mean", rug=TRUE, color = "#00AFBB", title = "Frequencies of Negative Affect")
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3.5 Variability

Researchers are critically interested in the spread or dispersion of the scores.

3.5.1 Range

The range is the simplest assessment of variability and is calculated by identifying the highest
and lowest scores and subtracting the lowest from the highest. In our toy dataset, arranged from
low-to-high (1, 2, 2, 3, 5 ) we see that the low is 1 and high is 5; 4 is the range. We can retrieve
this data with three base R functions that ask for the minimum score, the maximum score, or both
together – the range:
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min(toy$toy, na.rm=TRUE)

[1] 1

max(toy$toy, na.rm=TRUE)

[1] 5

range(toy$toy, na.rm=TRUE)

[1] 1 5

The negative affect variable from our research vignette has the following range:

min(df$nAff)

[1] 1

max(df$nAff)

[1] 4

range(df$nAff)

[1] 1 4

With a low of 1 and high of 4, the range of negative affect is 3. This is consistent with the description
of the negative affect measure.
One limitation of the range is that it is easily influenced by extreme scores.

3.5.2 Percentiles, Quantiles, Interquartile Range

The interquartile range is middle 50% of data, or the scores that fall between 25th and 75th
percentiles. Before calculating that, let’s first define quantiles and percentiles. Quantiles are
values that split a data into equal portions. Percentiles divide the data into 100 equal parts.
Percentiles are commonly used in testing and assessment. You may have encountered them in
standardized tests such as the SAT and GRE where both the score obtained and its associated
percentile are reported. When graduate programs evaluate GRE scores, depending on their criteria
and degree of competitiveness they may set a threshold based on percentiles (e.g., using a cut of of
the 50th, 75th, or higher percentile for the verbal or quantitative GRE scores).
We have already learned the value of the median. The median is also the 50th percentile. We can
now use the quantile() function and indicate we want the value at the 50% percentile.
Let’s first examine the toy dataset:
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median(toy$toy, na.rm=TRUE)

[1] 2

quantile(toy$toy, probs = .50, na.rm=TRUE )

50%
2

As shown by our calculation, the value at the median and the 50th percentile is 2.0. Let’s look at
those values for the research vignette:

median (df$nAff, na.rm=TRUE)

[1] 1.765367

quantile(df$nAff, probs = .50, na.rm=TRUE )

50%
1.765367

Again, we see the same result. Half of the values for negative affect are below 1.76; half are above.
The quantile() function is extremely useful. We can retrieve the raw score at any percentile, and
we could ask for as many as we desired. Here’s an example.

quantile(df$nAff, probs=c(.10, .20, .30, .40, .50, .60, .70, .80, .90))

10% 20% 30% 40% 50% 60% 70% 80%
1.000000 1.142097 1.376633 1.582701 1.765367 1.943260 2.143177 2.360980

90%
2.682303

Quartiles divide the data into four equal parts. The interquartile range is the spread of data
between the 25th and 75th percentiles (or quartiles). We calculate the interquartile range by first
obtaining those values, and then subtracting the lower from the higher.

quantile(df$nAff, probs = c(.25,.75) )

25% 75%
1.271045 2.240372

We see that a score of 1.29 is at the 25th percentile and a score of 2.24 is at the 75th percentile. If
we subtract 1.29 from 2.24…
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2.24 - 1.29

[1] 0.95

…we learn that the interquartile range is 0.95. We could also obtain this value by using the IQR()
function in base R.

IQR(df$nAff, na.rm=TRUE)

[1] 0.9693262

You may be asking, “When would we use the interquartile range?” When data are influenced by
outliers (i.e., extreme scores), using a more truncated range (the middle 50%, 75%, 90%) may be
an option (if the dataset it large enough). At this point, though, the goal of this lesson is simply
to introduce different ways of examining the variability in a dataset. Ultimately, we are working
our way to the standard deviation. The next logical step is the mean deviation.

3.5.3 Deviations around the Mean

Nearly all statistics include assessments of variability in their calculation and most are based on
deviations around the mean. In fact it might be good to pause for a moment and consider as
the lessons in this OER (and those that follow) continue, we will be engaged in mathematical and
statistical modeling. In a featured article in the American Psychologist, Rodgers [2010] described
models as a representation of reality that has two features:

• the model describes reality in some important ways, and
• the model is simpler than reality.

Albeit one of the simplest, the mean is a statistical model. Rodgers noted this when he wrote,
“The mean and variance have done yeoman service to psychology and other behavioral sciences,”
[2010, p. 4]. These next statistical operations will walk through the use of the mean, particularly in
its role in understanding variance. In later lessons, means and variances are used in understanding
relations and differences.

A first step in understanding mean deviation is to ask, “How far does each individual score deviates
from the mean of scores?” We can demonstrate this with our toy dataset. I am taking more steps
than necessary to (a) make clear how the mean deviation (abbreviated, mdev) is calculated and
(b) practice using R.

First, I will create a variable representing the mean:

#Dissecting the script,
#each variable is referenced by df_nameDOLLARSIGNvariable_name
toy$mean <- mean(toy$toy, na.rm=TRUE)
head(toy)#displays the first 6 rows of the data
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toy mean
1 2 2.6
2 3 2.6
3 2 2.6
4 1 2.6
5 5 2.6
6 NA 2.6

Next, I will subtract the mean from each individual score. The result

toy$mdev <- toy$toy - toy$mean
head(toy)#displays the first 6 rows of the data

toy mean mdev
1 2 2.6 -0.6
2 3 2.6 0.4
3 2 2.6 -0.6
4 1 2.6 -1.6
5 5 2.6 2.4
6 NA 2.6 NA

The variable, mdev (short for “mean deviation”) lets us know how far the individual score is from
the mean. Unfortunately, it does not provide an overall estimate of variation. Further, summing
and averaging these values all result in zero. Take a look:

#Dissecting the script,
#Wrapping the sum and mean script in "round" and following with the desired decimal places, provides a rounde result.
round(sum(toy$mdev, na.rm=TRUE),3)

[1] 0

round(mean(toy$mdev, na.rm=TRUE),3)

[1] 0

One solution is to create the mean absolute deviation. We first transform the mean deviation score
to their absolute values, and then sum them.

toy$abslt_m <- abs(toy$mdev)
head(toy)

toy mean mdev abslt_m
1 2 2.6 -0.6 0.6
2 3 2.6 0.4 0.4
3 2 2.6 -0.6 0.6
4 1 2.6 -1.6 1.6
5 5 2.6 2.4 2.4
6 NA 2.6 NA NA
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And now to average them:

round(mean(toy$abslt_m, na.rm=TRUE),3)

[1] 1.12

This value tells how far individual observations are from the mean, “on average.” In our toy dataset,
the average distance from the mean is 1.12.

So that we can keep statistical notation in our mind, this is the formula calculating the absolute
mean deviation:

𝑛
∑
𝑖=1

|𝑋𝑖 − �̄�|

Let’s quickly repeat the process with the negative affect variable in our research vignette. So that
we can more clearly see the relationship of the new variables to negative affect, let me create a df
containing only nAff:

library(tidyverse)
df_nAff <- df%>%dplyr::select(nAff)

df_nAff$mdevNA <- df_nAff$nAff - mean(df_nAff$nAff, na.rm=TRUE)
df_nAff$abNAmdev <- abs(df_nAff$mdevNA)
head(df_nAff)

nAff mdevNA abNAmdev
1 1.109882 -0.7038658 0.7038658
2 1.000000 -0.8137481 0.8137481
3 1.075573 -0.7381750 0.7381750
4 1.000000 -0.8137481 0.8137481
5 1.025246 -0.7885020 0.7885020
6 1.920559 0.1068111 0.1068111

round(mean(df_nAff$abNAmdev, na.rm=TRUE),3)

[1] 0.523

Thus, the absolute mean deviation for the negative affect variable in our research vignette is 0.521.

Although relatively intuitive, the absolute mean deviation is not all that useful. Most statistics texts
include it because it is one of the steps toward variance, and ultimately, the standard deviation.
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3.5.4 Variance

Variance is considered to be an average dispersion calculated by summing the squared deviations
and dividing by the number of observations (minus 1; more on that in later lessons).

Our next step is to square the mean deviations. This value is also called the sum of squared errors,
sum of squared deviations around the mean, or sums of squares and is abbreviated as SS. Below
are common statistical representations:

𝑆𝑆 =
𝑛

∑
𝑖=1

(𝑋𝑖 − �̄�)2

Let’s do it with our toy data.

toy$mdev2 <- (toy$mdev)*(toy$mdev)
sum(toy$mdev2, na.rm=TRUE)#sum of squared deviations

[1] 9.2

head(toy)

toy mean mdev abslt_m mdev2
1 2 2.6 -0.6 0.6 0.36
2 3 2.6 0.4 0.4 0.16
3 2 2.6 -0.6 0.6 0.36
4 1 2.6 -1.6 1.6 2.56
5 5 2.6 2.4 2.4 5.76
6 NA 2.6 NA NA NA

Thus, our SS (sums of squares or sums of squared errors) is 9.2.

To obtain the variance we divide by N (or N - 1; described in later lessons). Here are the updated
formulas:

𝑠2 = 𝑆𝑆
𝑁 − 1 = ∑𝑛

𝑖=1(𝑋𝑖 − �̄�)2

𝑁 − 1
Let’s do this with the toy data:

9.2/(5-1)#calculated with the previously obtained values

[1] 2.3

#to obtain the "correct" calculation by using each of these individual R commands, we need to have non-missing data
toy <- na.omit(toy)
sum(toy$mdev2, na.rm=TRUE)/((nrow(toy)-1))#variance
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[1] 2.3

Of course R also has a function that will do all the steps for us:

mean(toy$toy, na.rm=TRUE)

[1] 2.6

var(toy$toy, na.rm=TRUE)

[1] 2.3

The variance around the mean (2.6) of our toy data is 2.3.

Let’s quickly repeat this process with the negative affect variable from the research vignette. In
prior steps we had calculated the mean deviations by subtracting the mean from each individual
score. Next we square the mean deviations….

df_nAff$NAmd2 <- (df_nAff$mdevNA)*(df_nAff$mdevNA)
head(df_nAff)

nAff mdevNA abNAmdev NAmd2
1 1.109882 -0.7038658 0.7038658 0.49542700
2 1.000000 -0.8137481 0.8137481 0.66218597
3 1.075573 -0.7381750 0.7381750 0.54490233
4 1.000000 -0.8137481 0.8137481 0.66218597
5 1.025246 -0.7885020 0.7885020 0.62173547
6 1.920559 0.1068111 0.1068111 0.01140861

… and sum them.

sum(df_nAff$NAmd2, na.rm=TRUE)#sum of squared deviations

[1] 283.8923

Our sums of squared deviations around the mean is 283.44. When we divide it by N - 1, we obtain
the variance. We can check our work with (a) the values we calculated at each step, (b) the steps
written in separate R code, and (c) the var() function.

283.44/(713-1)# calculating with the individual pre-calculated values

[1] 0.3980899



3.5. VARIABILITY 65

sum(df_nAff$NAmd2, na.rm=TRUE)/((nrow(df_nAff)-1))#calculated with steps from separate R code

[1] 0.3987252

var(df_nAff$nAff) #calculated using the base R function

[1] 0.3987252

Unfortunately, because the mean deviations were squared, this doesn’t interpret well. Hence, we
move to the standard deviation.

3.5.5 Standard Deviation

The standard deviation is simply the square root of the variance. Stated another way, it is an
estimate of the average spread of data, presented in the same metric as the data.

Calculating the standard deviation requires earlier steps:

1. Calculating the mean.
2. Calculating mean deviations by subtracting the mean from each individual score.
3. Squaring the mean deviations.
4. Summing the mean deviations to create the SS, or sums of squares.
5. Dividing the SS by N - 1; this results in the variance around the mean.

The 6th step is to take the square root of variance. It is represented in the formula, below:

𝑠 = √ 𝑆𝑆
𝑁 − 1 = √∑𝑛

𝑖=1(𝑋𝑖 − �̄�)2

𝑁 − 1
Repeated below are each of the six steps for the toy data:

#six steps wrapped into 1
toy$mdev <- toy$toy - mean(toy$toy, na.rm=TRUE)
toy$mdev2 <- (toy$mdev)*(toy$mdev)
#I can save the variance calculation as an object for later use
toy_var <- sum(toy$mdev2)/(nrow(toy)-1)
#checking work with the variance function
var(toy$toy)

[1] 2.3

The seventh step is to take the square root of variance.
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#grabbing the mean for quick reference
mean(toy$toy)

[1] 2.6

#below the "toy_var" object was created in the prior step
sqrt(toy_var)

[1] 1.516575

#checking work with the R function to calculate standard deviation
sd(toy$toy)

[1] 1.516575

It is common to report means and standard deviations for continuous variables in our datasets. For
the toy data our mean is 2.6 with a standard deviation of 1.52.

Let’s repeat the process for the negative affect variable in the research vignette. First the six steps
to calculate variance.

#six steps wrapped into 1
df_nAff$mdevNA <- df_nAff$nAff - mean(df_nAff$nAff, na.rm=TRUE)
df_nAff$NAmd2 <- (df_nAff$mdevNA)*(df_nAff$mdevNA)
#I can save the variance calculation as an object for later use
nAff_var <- sum(df_nAff$NAmd2)/(nrow(df)-1)
#checking work with the variance function
var(df_nAff$nAff)

[1] 0.3987252

The seventh step is to take the square root of variance.

#grabbing the mean for quick reference
mean(df_nAff$nAff)

[1] 1.813748

#below the "toy_var" object was created in the prior step
sqrt(nAff_var)

[1] 0.6314469
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#checking work with the R function to calculate standard deviation
sd(df_nAff$nAff)

[1] 0.6314469

In APA Style we use M and SD as abbreviations for mean and standard deviation, respectively. In
APA Style, non-Greek statistical symbols such as these are italicized. Thus we would write M =
1.81(SD = 0.63) in a statistical string of results.

We can examine the standard deviation in relation to its mean to understand how narrowly or
broadly the data is distributed. Relative to a same-sized mean, a small standard deviation means
that the mean represents the data well. A larger standard deviation, conveys that there is greater
variability and the mean, alone, is a less valid representation of the score.

In later lessons we will explore the standard deviation in more detail – learning how we can use it
in the determination of the significance and magnitude of relations and differences.

3.6 Are the Variables Normally Distributed?

Statistics that we use are accompanied by assumptions about the nature of variables in the dataset.
A common assumption is that the data are normally distributed. That is, the data presumes a
standard normal curve.

For a streamlined presentation, let me create a df with three, continuously scaled, variables of
interest.

#I have opened the tidyverse library so that I can use the pipe
library(tidyverse)
df_3vars <- df%>%dplyr::select(nAff, mAggr, drProb)

3.6.1 Skew and Kurtosis

Skew and kurtosis are indicators of non-normality. Skew refers to the degree to which the data is
symmetrical. In the figure below, the symmetrical distribution in the center (the black line) has
no apparent evidence of skew. In contrast, the red figure whose curve (representing a majority of
observations) in the left-most part of the graph (with the tail pulling to the right) is positively
skewed; the blue figure whose curve (representing a majority of cases) is in the right-most part of
the graph (with the tail pulling to the left) is negatively skewed.
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normal
positive skew
negative skew

Positive, Normal, and Negative Skew

Kurtosis refers to the degree to which the distribution of data is flat or peaked. Mesokurtic
distributions are considered to be closest to normal. Leptokurtic distributions are peaked and
platykurtic distributions are flat. As we will learn as we progress, visual observation of data is a
legitimate component in evaluating skew and kurtosis.
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leptokurtic
mesokurtic
platykurtic

Kurtosis: Platykurtic, Mesokurtic, Leptokurtic

There have been numerous approaches to calculating and interpreting skew and kurtosis. Conse-
quently, different statistics packages calculate skew and kurtosis differently. The psych package (a
go-to-for a variety of tasks) offers three different options for calculating skew and kurtosis. These
are specified in the script as “type=#” (i.e., 1, 2, or 3 [the default]). Revelle [2021] refers readers
to Joanes and Gill’s [1998] article for detailed information about each. A very helpful resource to
understand skew, kurtosis, and its interpretation is found in chapter four (Data Preparation and
Psychometrics Review) of Kline’s [2016a] SEM text is helpful in the interpretation of skew and
kurtosis. Summarizing by simulation studies for structural equation modeling (i.e., multivariate
statistics that are generally characterized as large sample studies using maximum likelihood
estimation), Kline suggested that type=1 skew values greater than the absolute value of 3.0 are
“severely” skewed. Regarding type=1 kurtosis, Kline noted the literature has suggested that values
from 8.0 to 20.0 have been described as severely kurtotic. As an interpretive framework, Kline
suggested that absolute values greater than 10.0 are problematic and values greater than 20 are
serious. He added that this rule-of-thumb errs on the conservative side.

The psych::describe specification of “type=1” results in the skew index and kurtosis index. For
simplicity sake, I will refer to this specific variation of skew and kutosis as “type=1.” This is a very
quick way to obtain initial values.
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psych::describe(df_3vars, type=1)

vars n mean sd median trimmed mad min max range skew kurtosis
nAff 1 713 1.81 0.63 1.77 1.76 0.72 1 4.00 3.00 0.51 -0.42
mAggr 2 713 2.49 2.19 2.17 2.24 2.43 0 11.42 11.42 0.91 0.65
drProb 3 713 2.92 2.78 2.33 2.58 3.45 0 11.90 11.90 0.78 -0.21

se
nAff 0.02
mAggr 0.08
drProb 0.10

Using Kline’s [2016a] guidelines for evaluation, a quick review of the type=1 output indicates that no
skew value exceeded the absolute value of 3.0. That is, across the nAff, mAggr, and drProb variables
the highest type=1 skew value was 0.93 Regarding kurtosis, no value had a greater magnitude then
.59 and all fell below the absolute value of 10. A limitation of the type=1 output and Kline’s
interpretative guidelines is that the simulation studies that led to the interpretive guidelines were
based on structural equation modeling. These statistics are multivariate in nature, they typically
use maximum likelihood estimators, and are based on large samples.

An alternative tool for identifying distributions that are severely skewed or kurtotic is the
“skew.2SE” and “kurt.2SE” output from pastecs::stat.desc.

These values represent the type=1 skew (or kurtosis) value divided by two-times its respective
standard error (i.e., the standard error of the skew or kurtosis distribution, not the se value asso-
ciated with the variable). The result is a standardized value that, on its own, indicates statistical
significance. In the case of skew.2SE and kurt2SE, values of 1 (p < .05), 1.29 (p < .01), and 1.65 (p
< .001) represent statistically significant departures from symmetry (skew) and normal peakedness
(kurtosis). Unfortunately, this tool is not without criticism.

𝑠𝑘𝑒𝑤.2𝑆𝐸 = 𝑆−0
2∗𝑆𝐸𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠

and 𝑘𝑢𝑟𝑡.2𝑆𝐸 = 𝑆−0
2∗𝑆𝐸𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠

The skew.2SE and kurt.2SE values can be obtained with pastecs::stat.desc by adding the “norm =
TRUE” statement.

pastecs::stat.desc(df_3vars, norm=TRUE)

nAff mAggr
nbr.val 713.000000000000000000000 713.0000000000000000000000000
nbr.null 0.000000000000000000000 119.0000000000000000000000000
nbr.na 0.000000000000000000000 0.0000000000000000000000000
min 1.000000000000000000000 0.0000000000000000000000000
max 4.000000000000000000000 11.4193472349555946721011424
range 3.000000000000000000000 11.4193472349555946721011424
sum 1293.202396986186386129702 1772.9047547268992275348864496
median 1.765366956719612634430 2.1702325413588674507536780
mean 1.813748102364917569318 2.4865424329970537975498246
SE.mean 0.023647871456839671123 0.0821091579065054283370628
CI.mean.0.95 0.046427899159900164194 0.1612050247458937379807509
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var 0.398725160825158464473 4.8069845480383106561816930
std.dev 0.631446878862472860128 2.1924836482943974580450686
coef.var 0.348144749559841981679 0.8817398887706796584140534
skewness 0.509847355388719059022 0.9072670817943200294308781
skew.2SE 2.784775604496557477319 4.9554738480840363479273947
kurtosis -0.431370013354647863224 0.6446009591155026363651359
kurt.2SE -1.179701916057721344799 1.7628415583352459172772342
normtest.W 0.947747894960070169645 0.9160358300310347257067178
normtest.p 0.000000000000003548014 0.0000000000000000001931087

drProb
nbr.val 713.000000000000000000000000000
nbr.null 176.000000000000000000000000000
nbr.na 0.000000000000000000000000000
min 0.000000000000000000000000000
max 11.897269669625735843965230742
range 11.897269669625735843965230742
sum 2080.674335793011778150685131550
median 2.327140791884810600009814152
mean 2.918196824394126309698549449
SE.mean 0.104209937080375195095349738
CI.mean.0.95 0.204595515459292415227920969
var 7.742973933228873839595962636
std.dev 2.782619976430284136625914471
coef.var 0.953540882907378706256906753
skewness 0.777725776691185588518351324
skew.2SE 4.247921945709618896103165753
kurtosis -0.215619970410508621228018455
kurt.2SE -0.589673098172588727727827518
normtest.W 0.898257151085984917315840903
normtest.p 0.000000000000000000002486005

Statisticians have noted that these standardized values are quite sensitive to sample size [Field, 2012,
Kline, 2016a]. In large samples even minor deviations from normality may appear as statistically
significant. In contrast, small samples with lower power may be severely non-normal, but skew and
kurtosis could go undetected. When sample sizes are smaller, using the 1.96 (or “2”) criteria is
acceptable in determining a significant skew or kurtosis, however, as the sample size increases, the
probability of rejecting the hypothesis that skew (or kurtosis) also zero increases. Field [2012] noted
that in such cases it is appropriate to relax the standard and evaluate skew or kurtosis against the
1.29 (p < .01) criteria. Further, when samples are larger than 200, it may be more appropriate
to abandon the interpretation of the z-values and, instead, examine the shape of the distribution
rather than to interpret these standardized values.

Comparing the skewness and kurtosis type=1 values to the skew.2SE and kurt.2SE values, we can
see the interpretive challenges.

Variable skewness skew.2SE kurtosis kurt.2SE
nAff 0.575 3.141*** -0.176 -0.481
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Variable skewness skew.2SE kurtosis kurt.2SE
mAggr 0.926 5.059*** 0.575 1.572**
drProb 0.783 4.278*** -0.168 -0.460

Values in the “skewness” column are concerning when they are exceed the absolute value of 3.0;
none are. Values in the “skew.2SE” column are statistically significant at 𝑝 < .001 when they
exceed 1.65. Here, the two approaches to interpreting skew both suggest positive skew (i.e., heavy
distribution in the left with a long tail to the right), but only the “skew.2SE” results suggest that
the degree of skewness is significant/concerning.

Regarding kurtosis, values in the “kurtosis” column become concerning when they exceed the
absolute value of 10; none are. Values in the “kurt.2SE” become statistically significant when they
exceed 1.0. The mAggr variable’s value of 1.572 is statistically significant at 𝑝 < .01.

So how do we think about skewness and kurtosis in our data? First, I simulated a dataset with
more than 700 cases. This far exceeds the “large” sample size of 200. Therefore, interpreting the
type 1 skewness and kurtosis values according to Kline’s [2016a] criteria of less than the absolute
values of 3 and 10, respectively, is probably most appropriate. Further, skewness and kurtosis are
only two dimensions of assessing whether or not a distribution is normally distributed. Thus, I will
keep these results in mind as I examine additional metrics (especially when we look at histograms
with superimposed curve).

In this OER, I will predominantly use the type=1 output from the psych::describe package and
use Kline’s [2016a] interpretive criteria. I do think the “skew.2SE” and “kurt.2SE” metrics can be
useful when sample sizes are smaller (perhaps 𝑁 = 100 or less) and ordinary least squares (such as
used in ANOVA and regression models) statistics will be utilized. In any case, if I have significant
concerns about normality, I always return to more extensive and authoritative sources to make my
decisions about preparing my data for analysis.

3.6.2 Shapiro-Wilk Test of Normality

In addition to skew and kurtosis, there are formal statistical tests that evaluate whether or not our
data is statistically significantly different than a normal distribution. One of those is the Shapiro-
Wilk test of normality. The output we obtained from pastecs::stat.desc included the Shapiro-Wilk
test value and the associated p value. When 𝑝 < .05, our data is statistically significantly different
from a normal distribution.

In our simulated data, all variables were statistically significantly different than a normal distribu-
tion (𝑛𝐴𝑓𝑓 ∶ 𝑊 = 0.948, 𝑝 < .001; 𝑚𝐴𝑔𝑔𝑟 ∶ 𝑊 = 0.913, 𝑝 < .001; 𝑑𝑟𝑃𝑟𝑜𝑏 ∶ 𝑊 = 0.900, 𝑝 < .001).

Just because data is skewed, kurtotic, or non-normally distributed does not (necessarily) mean
that we cannot use it. As we move through the lessons in this OER we will evaluate the quality of
the data according to the statistical assumptions associated with the statistic we are using. Often
there are tools that we can use (e.g., variations of the statistic that are robust to violations of
assumptions, deleting univariate or multivariate outliers) in spite of our data characteristics.
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3.7 Relations between Variables

Preliminary investigation of data almost always includes a report of their bivariate relations. Cor-
relation coefficients express the magnitude of relationships on a scale ranging from -1 to +1. A
correlation coefficient of

• -1.0 implies a 1:1 inverse relationship, such that for every unit of increase in variable A, there
is a similar decrease in variable B,

• 0.0 implies no correspondence between two variables,
• 1.0 implies that as A increases by one unit, so does B.

Correlation coefficients are commonly represented in two formulas. In a manner that echoes the
calculation of variance, the first part of the calculation estimates the covariation (i.e., covariance)
of the two variables of interest.

Cov(𝑋, 𝑌 ) = 1
𝑁 − 1

𝑁
∑
𝑖=1

(𝑋𝑖 − �̄�) (𝑌𝑖 − ̄𝑌 )

The problem is that the result is unstandardized and difficult to interpret. Therefore, the second
part of the calculation of the correlation coefficient results in the standardization of the metric in
the -1 to +1 scale.

𝑟𝑋𝑌 = Cov(𝑋, 𝑌 )
�̂�𝑋 �̂�𝑌

Covariation and correlation matrices are central to many of our statistics therefore, those of who
teach statistics believe that it is important to take a look “under the hood.” From our research
vignette, let’s calculate the relationship between negative affect and psychological distress.

Examining the first formula, some parts should look familiar:

• (𝑋𝑖 −�̄�): We can see that we need to subtract the mean from the first(X) variable in involved
in the correlation; we saw this when we calculated mean deviations.

• (𝑌𝑖 − ̄𝑌 ): We repeat the mean deviation process for the second (Y) variable.

Let’s work step-by-step through the calculation of a correlation coefficient. So that we can more
easily see what we are doing with the variables, I will create a super tiny dataframe with the two
variables of interest (negative affect and microaggressions):

#just in case it turned off, I'm reopening tidyverse so that I can use the pipe
library(tidyverse)
#using the dplyr package to select the two variables in this tiny df
df4corr <- df%>%dplyr::select(nAff, mAggr)
#displaying the first 6 rows of df4corr ("dataframe for correlations" -- I made this up)
head(df4corr)

nAff mAggr
1 1.109882 2.779103
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2 1.000000 0.000000
3 1.075573 2.798700
4 1.000000 0.000000
5 1.025246 0.000000
6 1.920559 1.857067

First we calculate the mean deviations for negative affect and microaggressions.

#calculating the mean deviation for negative affect
df4corr$MDnAff <- df4corr$nAff - mean(df4corr$nAff)
#calculating the mean deviation for microaggressions
df4corr$MDmAggr <- df4corr$mAggr - mean(df4corr$mAggr)
#displaying the first 6 rows of df4corr
head(df4corr)

nAff mAggr MDnAff MDmAggr
1 1.109882 2.779103 -0.7038658 0.2925610
2 1.000000 0.000000 -0.8137481 -2.4865424
3 1.075573 2.798700 -0.7381750 0.3121577
4 1.000000 0.000000 -0.8137481 -2.4865424
5 1.025246 0.000000 -0.7885020 -2.4865424
6 1.920559 1.857067 0.1068111 -0.6294752

The next part of the formula ∑𝑁
𝑖=1 (𝑋𝑖 − �̄�) (𝑌𝑖 − ̄𝑌 ) suggests that we sum the cross-products of

these mean deviations. Here we multiply the mean deviations to create the “cross-product.”

#Creating a crossproduct variabl by multiplying negative affect by psych distress
df4corr$crossproductXY <- df4corr$MDnAff * df4corr$MDmAggr
#displaying the first 6 rows of df4corr
head(df4corr)

nAff mAggr MDnAff MDmAggr crossproductXY
1 1.109882 2.779103 -0.7038658 0.2925610 -0.20592370
2 1.000000 0.000000 -0.8137481 -2.4865424 2.02341919
3 1.075573 2.798700 -0.7381750 0.3121577 -0.23042700
4 1.000000 0.000000 -0.8137481 -2.4865424 2.02341919
5 1.025246 0.000000 -0.7885020 -2.4865424 1.96064379
6 1.920559 1.857067 0.1068111 -0.6294752 -0.06723494

Next, we sum the column of cross-products.

sum(df4corr$crossproductXY)

[1] 236.0952
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To obtain the covariance, the next part of the formula suggests that we multiply the sum of cross-
products by 1

𝑁−1 . I will do this in one step.

#I have created the object "cov" so I can use it in a calculation, later
#The "nrow" function will count the number of rows and use that value
cov <- 1/(nrow(df4corr) - 1)* sum(df4corr$crossproductXY)
#Because I created an object, R markdown won't automatically display it; I have to request it by listing it
cov

[1] 0.3315944

The covariance between negative affect and psychological distress is 0.373.
We now move to the second part of the formula to create the interpretable, standardized, correlation
coefficient.

𝑟𝑋𝑌 = Cov(𝑋, 𝑌 )
�̂�𝑋 �̂�𝑌

We will use our covariance value in the numerator. The denominator involves the multiplication
of the standard deviations of X and Y. Because we have already learned how to calculate standard
deviation in a step-by-step manner, I will use code to simplify that process:

cov/(sd(df4corr$nAff)*sd(df4corr$mAggr))

[1] 0.2395157

Our results suggest that the relationship between negative affect and psychological distress is posi-
tive, as one increases so does the other. Is it strong? This really depends on your field of scholarship.
The traditional values of .10, .30, and .50 are interpreted as small, medium, and large [Cohen et al.,
2003]. Hence, when r = 0.27, we can say that it is (more-or-less) medium.
Is it statistically significant? Because this is an introductory chapter, we will not calculate this in
a stepwise manner, but use the cor.test() function in base R to check our prior math and retrieve
the p value associated with the correlation coefficient.

cor.test(df4corr$nAff, df4corr$mAggr)

Pearson's product-moment correlation

data: df4corr$nAff and df4corr$mAggr
t = 6.5781, df = 711, p-value = 0.00000000009241
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.1690651 0.3075312
sample estimates:

cor
0.2395157



76 CHAPTER 3. PRELIMINARY ANALYSES

In a statistical string we would report the result of this Pearson correlation coefficient as: r = 0.27
(p < .001).

3.8 Shortcuts to Preliminary Analyses

Unless you teach statistics (or take another statistics class), you may never need to work through
all those individual steps again. Rather, a number of R packages make retrieval of these values
relatively simple and efficient.

3.8.1 SPLOM

The pairs.panels() function in the psych package produces a SPLOM (i.e., scatterplot matrix) which
includes:

• histograms of each individual variable within the dataframe with a curve superimposed (lo-
cated on the diagonal),

• scatterplots of each bivariate combination of variables (located below the diagonal), and
• corrrelation coefficients of each bivariate combination of variables (located above the diago-

nal).

To provide a simple demonstration this, I will use our df with the three continuously scaled variables
of interest:

#in the code below, psych points to the package
#pairs.panels points to the function
#we simply add the name of the df; if you want fewer variables than that are in the df, you may wish to create a smaller df
#adding the pch command is optional and produces a finer resolution
psych::pairs.panels(df_3vars, pch = ".")
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What do we observe?

• There is a more-or-less moderate correlation between negative affect and microaggressions
(𝑟 = 0.27)

• There is a small-to-moderate correlation between negative affect and drinking problems (𝑟 =
0.18)

• There is a small correlation between microaggressions and drinking problems (𝑟 = 0.09)
• All variables have a positive skew (with pile-up of scores on the lower end and tail pulling to

the right); this is consistent with the values we calculated earlier
• The scatterplots can provide clues to relations that are not necessarily linear.

– Look at the relationship between negative affect and drinking problems. As negative
affect hits around 2.75, there is a change in the relationship, such that drinking problems
increase.

– Taking time to look at plots such as these can inform subsequent analyses.
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3.8.2 apaTables

Writing up an APA style results section frequently involves tables. A helpful package for doing this
is apaTables. An instructional article notes the contributions of tools like this to the reproducibility
of science by reducing errors made when the author or analyst retypes or copies text from output to
the manuscript. When the R script is shared through an open science framework, reproducibility
is further enhanced [Stanley and Spence, 2018].
We pass the desired df to the apaTables::apa.cor.table. Commands allow us to specify what is
included in the table and whether it should be displayed in the console or saved as a document to
the project’s folder.

#the apa.cor.table function removes any categorical variables that might be in the df
Table1_Cor <- apaTables::apa.cor.table(df_3vars, filename = "Table1_Cor.doc", table.number = 1, show.conf.interval = FALSE, landscape = TRUE)

The ability to suppress reporting of reporting confidence intervals has been deprecated in this version.
The function argument show.conf.interval will be removed in a later version.

#swap in this command to see it in the R Markdown file
print(Table1_Cor)

Table 1

Means, standard deviations, and correlations with confidence intervals

Variable M SD 1 2
1. nAff 1.81 0.63

2. mAggr 2.49 2.19 .24**
[.17, .31]

3. drProb 2.92 2.78 .17** .10*
[.10, .24] [.02, .17]

Note. M and SD are used to represent mean and standard deviation, respectively.
Values in square brackets indicate the 95% confidence interval.
The confidence interval is a plausible range of population correlations
that could have caused the sample correlation (Cumming, 2014).
* indicates p < .05. ** indicates p < .01.

Because I added: filename = “Table1_Cor.doc”, a word version of the table will appear in the same
file folder as the .rmd file and data. It is easily manipulated with tools in your word processing
package.
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3.9 An APA Style Writeup

The statistics used in this lesson are often presented in the preliminary results portion of an empiri-
cal manuscript. Some of the results are written in text and some are presented in tables. APA Style
recommends that the narration of results not duplicate what is presented in the tables. Rather,
the write-up only highlights and clarifies what is presented in the table(s).
At the outset, let me note that a primary purpose of the Lui [2020] article was to compare the
relations of variables between three racial/ethic groups in the U.S. identified as Asian American,
Black, and Latinx. Because we did not run separate analyses for each of the groups, my write-up
does not make these distinctions. I highly recommend that you examine the write-up of results
and the accompanying tables in Lui’s article. The presentation is clear and efficient (i.e., it conveys
maximal information in as little space as possible).
Below is an example of how I might write up these preliminary results:
Preliminary Results

Our sample included 713 participants who self-identified as Asian American,
Black/African American, and Latinx American. Inspection of the characteris-
tics of the three variables of interest (negative affect, microaggressions, drinking
problems) indicated that all variables were positively skewed, however the val-
ues of skew and kurtosis did not exceed commonly used thressholds of concern
[Kline, 2016a]. In contrast, Shapiro-Wilk tests of normality suggested that the
distribution of all three variables were statistically significantly different than a
normal distribution (𝑛𝐴𝑓𝑓 ∶ 𝑊 = 0.948, 𝑝 < .001; 𝑚𝐴𝑔𝑔𝑟 ∶ 𝑊 = 0.913, 𝑝 < .001;
𝑑𝑟𝑃𝑟𝑜𝑏 ∶ 𝑊 = 0.900, 𝑝 < .001). Means, standard deviations, and a correlation matrix
are presented in Table 1. We noted that the correlation between negative affect and
microaggressions was moderate (𝑟 = 0.27); correlations between remaining variables
were smaller.

3.10 Practice Problems

The three exercises described below are designed to “meet you where you are” and allow you to
challenge your skills depending on your goals as well as your comfort with statistics and R.
Regardless which you choose, work one or more of the problems with R packages:

• Create a smaller df from a larger df selecting a minimum of three continuously scaled variables
• Calculate and interpret descriptive statistics
• Create the SPLOM (pairs.panels)
• Use the apaTables package to make an APA style table with means, standard deviations, and

correlations
• Write an APA Style results section for these preliminary analyses

Additionally, please complete at least one set of hand calculations, that is using the code demon-
strated in the chapter to work through the formulas that compute the descriptive statistics that
are the focus of this lesson. At this stage in your learning, you may ignore any missingness in your
dataset by excluding all rows with missing data in your variables of interest.



80 CHAPTER 3. PRELIMINARY ANALYSES

3.10.1 Problem #1: Change the Random Seed

If this topic feels a bit overwhelming, simply change the random seed in the data simulation (at
the very top), then rework the lesson exactly as written. This should provide minor changes to the
data (maybe in the second or third decimal point), but the results will likely be very similar.

3.10.2 Problem #2: Swap Variables in the Simulation

Use the simulated data from the Lui [2020] study. However, select three continuous variables (2
must be different from mine) and then conduct the analyses. Be sure to select from the variables
that are considered to be continuous (and not categorical).

3.10.3 Problem #3: Use (or Simulate) Your Own Data

Use data for which you have permission and access. This could be IRB approved data you have
collected or from your lab; data you simulate from a published article; data from an open science
repository; or data from other chapters in this OER.

3.10.4 Grading Rubrics

Regardless which option(s) you chose, use the elements in the grading rubrics to guide you through
the practice. Worked examples are provided in the Appendix.

Working the problem with R and R packages Points Poss Points Earned
1. Create a df with 3 continuously scaled variables of
interest

3 _______

2. Produce descriptive statistics 3 _______
3. Produce SPLOM/pairs.panels 3 _______
4. Produce an apaTables matrix 3 _______
5. Produce an APA Style write-up of the preliminary
analyses

5 _______

6. Explanation/discussion with a grader 5 _______
**Totals 22 _______

Hand Calculations Points Possible Points Earned
1. Create a variable that represents the mean. 2 _______
2. Create a variable that represents the mean
deviation.

2 _______

3. What is the value of the sum of mean deviations? 2 _______
4. Create a variable that represents the absolute
mean deviation. What is the sum of the absolute
mean deviation? What is the value of the mean of
the absolute mean deviation? What does this value
tell you?

4 _______
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Hand Calculations Points Possible Points Earned
5. Create a variable that represents the mean
deviation squared.

2 _______

6. What are the values of the sum of squared
deviations around the mean 𝑆𝑆, variance 𝑠2, and
standard deviation (𝑠)?

3 _______

7. Using the same general approach, calculate the
mean deviation and standard deviation for a second,
continuously scaled variable.

5 _______

8. Create a variable that represents the
cross-product (of the mean deviations). What is the
sum of these cross-products?

2 _______

9. Calculate the value of their covariance. 2 _______
8. Calculate value of correlation coefficient. 2 _______
Totals 26 _______

3.11 Homeworked Example

Screencast Link

For more information about the data used in this homeworked example, please refer to the descrip-
tion and codebook located at the end of the introduction.

Preliminary analyses often consist of means, standard deviations, and correlations. These can be
helpful in determining whether or not data are normally distribution. Correlations and pairs.panels
also assess the relatedness of the variables.

If you wanted to use this example and dataset as a basis for a homework assignment, you could (a)
select a different course (i.e., Multivariate or Psychometrics) and/or (b) different variables.

3.11.1 Working the Problem with R and R Packages

Create a df with 3 continuously scaled variables of interest

The ReC.rds is the entire dataset. Let’s first open it.

ReCdf <- readRDS("ReC.rds")

Recall that students (represented by the deID variable) could contribute up to three course evalu-
ations (i.e., ANOVA, psychometrics, multivariate) each. In many statistics, repeated observations
creates dependencies that need to be accounted for statistically.

To avoid this dependency and to practice an R skill, let’s first filter the data, selecting only those
students who took ANOVA.

https://youtu.be/_IiZ8MbtbVs
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JustANOVA <- subset(ReCdf, Course == "ANOVA")

Create a df with 3 continuously scaled variables of interest

The assignment requires that we downsize to three variables. We could pick any three.

library(tidyverse)
tiny3 <- JustANOVA %>%

dplyr::select (OvInstructor, OvCourse, MyContribution)

Produce descriptive statistics

psych::describe(tiny3)

vars n mean sd median trimmed mad min max range skew
OvInstructor 1 113 4.19 1.01 5 4.34 0.00 1 5 4 -0.98
OvCourse 2 113 3.93 1.12 4 4.07 1.48 1 5 4 -0.72
MyContribution 3 113 3.96 0.83 4 4.01 1.48 2 5 3 -0.39

kurtosis se
OvInstructor -0.07 0.10
OvCourse -0.49 0.11
MyContribution -0.55 0.08

Produce SPLOM/pairs.panels

psych::pairs.panels(tiny3)
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Produce an apaTables matrix

apaTables::apa.cor.table(tiny3)

Means, standard deviations, and correlations with confidence intervals

Variable M SD 1 2
1. OvInstructor 4.19 1.01

2. OvCourse 3.93 1.12 .83**
[.76, .88]
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3. MyContribution 3.96 0.83 .49** .60**
[.34, .62] [.46, .70]

Note. M and SD are used to represent mean and standard deviation, respectively.
Values in square brackets indicate the 95% confidence interval.
The confidence interval is a plausible range of population correlations
that could have caused the sample correlation (Cumming, 2014).
* indicates p < .05. ** indicates p < .01.

Produce an APA Style write-up of the preliminary analyses

Our sample included 113 doctoral students in Clinical and Industrial-Organizational
psychology (PhD) programs who were completing a statistics class focused on analysis of
variance. Visual inspection of three dimensions of course evaluation (overall instructor,
overall course, my contributions) combined with formal evaluation of skewness and
kurtosis suggested that their distributions did not violate the assumption of univariate
normality. That is, skew values all fell below the absolute value of 3 and kurtosis values
all fell below the absolute value of 10 [Kline, 2016a]. Means, standard deviations, and
a correlation matrix are presented in Table 1. All three correlations were strong and
statistically significant. We noted that the correlation between the overall instructor
and overall course was especially high (𝑟 = .83, 𝑝 < .001)

3.11.2 Hand Calculations

Although these are termed “hand calculations,” you may use the code demonstrated in the chapter
to work these problems.

I am going to continue with the tiny3 dataset I used when I worked the problem with R and R
packages.

If you need to reimport data, here is a quick recap of the code explained earlier.

ReCdf <- readRDS("ReC.rds")
JustANOVA <- subset(ReCdf, Course == "ANOVA")

library(tidyverse)
tiny3 <- JustANOVA %>%

dplyr::select (OvInstructor, OvCourse, MyContribution)

To avoid problems in the code we are used that is caused by missingness, we will eliminate any
rows with missing data.

tiny3 <- na.omit(tiny3)



3.11. HOMEWORKED EXAMPLE 85

Create a variable that represents the mean

I will start with the OvInstructor variable. Inspect the dataframe to see that this new variable
exists.

tiny3$M_OvI <- mean(tiny3$OvInstructor, na.rm=TRUE)

Create a variable that represents the mean deviation

tiny3$Mdev_OvI <- (tiny3$OvInstructor-tiny3$M_OvI)
head(tiny3)

OvInstructor OvCourse MyContribution M_OvI Mdev_OvI
1 5 3 4 4.185841 0.8141593
2 4 4 4 4.185841 -0.1858407
3 4 4 4 4.185841 -0.1858407
4 3 3 4 4.185841 -1.1858407
5 5 5 5 4.185841 0.8141593
6 3 3 4 4.185841 -1.1858407

Inspect the dataframe to see that this new variable exists. Note that this functions to “center” the
mean around zero.

What is the value of the sum of mean deviations?

round(sum(tiny3$Mdev_OvI, na.rm = TRUE), 3)

[1] 0

Yes, zero!

Create a variable that represents the absolute mean deviation

tiny3$abslt_mOvI <- abs(tiny3$Mdev_OvI)
head(tiny3)

OvInstructor OvCourse MyContribution M_OvI Mdev_OvI abslt_mOvI
1 5 3 4 4.185841 0.8141593 0.8141593
2 4 4 4 4.185841 -0.1858407 0.1858407
3 4 4 4 4.185841 -0.1858407 0.1858407
4 3 3 4 4.185841 -1.1858407 1.1858407
5 5 5 5 4.185841 0.8141593 0.8141593
6 3 3 4 4.185841 -1.1858407 1.1858407
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Inspect the dataframe to see that this new variable no longer has negative values.

What is the value of the sum of the absolute mean deviation?

round(sum(tiny3$abslt_mOvI, na.rm = TRUE), 3)

[1] 96.071

What is the value of the mean of the absolute mean deviation?

round(mean(tiny3$abslt_mOvI, na.rm = TRUE), 3)

[1] 0.85

What does this value tell you?

Average distance of each value from the mean.

Create a variable that represents the mean deviation squared

tiny3$mdev2_OvI <- (tiny3$Mdev_OvI * tiny3$Mdev_OvI)
head(tiny3)

OvInstructor OvCourse MyContribution M_OvI Mdev_OvI abslt_mOvI
1 5 3 4 4.185841 0.8141593 0.8141593
2 4 4 4 4.185841 -0.1858407 0.1858407
3 4 4 4 4.185841 -0.1858407 0.1858407
4 3 3 4 4.185841 -1.1858407 1.1858407
5 5 5 5 4.185841 0.8141593 0.8141593
6 3 3 4 4.185841 -1.1858407 1.1858407

mdev2_OvI
1 0.66285535
2 0.03453677
3 0.03453677
4 1.40621818
5 0.66285535
6 1.40621818

What is the value of the sum of squared deviations around the mean (also known as
sums of squares; sometimes abbreviated as 𝑆𝑆)?

sum(tiny3$mdev2_OvI, na.rm = TRUE)

[1] 115.0973
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What is the value of the variance (𝑠2)?
There are at least two ways to do this with basic code (and then we can check our work).
Here’s how to do it with “more code.”

var_OvI <- sum(tiny3$mdev2_OvI/((nrow(tiny3) - 1)))
var_OvI

[1] 1.027655

Here’s how to do it with the numbers that I calculated:

115.0973/(113-1)

[1] 1.027654

Checking my work with the var function from base R. If it’s wrong, I need to rework some of the
previous steps.

var(tiny3$OvInstructor, na.rm = TRUE) #checking my work

[1] 1.027655

What is the value of the standard deviation (𝑠)?
There are two ways to calculate it with basic code; and then we can check it with more code from
base R.

sd_OvI <- sqrt(var_OvI)#calculating with the object I created
sd_OvI

[1] 1.013733

sqrt (1.027655)#calculated with the actual numbers

[1] 1.013733

sd(tiny3$OvInstructor)#checking my work with the code from baseR

[1] 1.013733

Using the same general approach, calculate the mean deviation and standard deviation
for a second, continuously scaled variable

My second variable is MyContribution
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#first the mean
tiny3$M_MyC <- mean(tiny3$MyContribution, na.rm=TRUE)
#second the mean deviation
tiny3$Mdev_MyC <- (tiny3$MyContribution-tiny3$M_MyC)
#third the mean deviation squared
tiny3$mdev2_MyC <- (tiny3$Mdev_MyC * tiny3$Mdev_MyC)
head(tiny3)

OvInstructor OvCourse MyContribution M_OvI Mdev_OvI abslt_mOvI
1 5 3 4 4.185841 0.8141593 0.8141593
2 4 4 4 4.185841 -0.1858407 0.1858407
3 4 4 4 4.185841 -0.1858407 0.1858407
4 3 3 4 4.185841 -1.1858407 1.1858407
5 5 5 5 4.185841 0.8141593 0.8141593
6 3 3 4 4.185841 -1.1858407 1.1858407

mdev2_OvI M_MyC Mdev_MyC mdev2_MyC
1 0.66285535 3.964602 0.03539823 0.001253035
2 0.03453677 3.964602 0.03539823 0.001253035
3 0.03453677 3.964602 0.03539823 0.001253035
4 1.40621818 3.964602 0.03539823 0.001253035
5 0.66285535 3.964602 1.03539823 1.072049495
6 1.40621818 3.964602 0.03539823 0.001253035

#fourth the variance
var_MyC <- sum(tiny3$mdev2_MyC/((nrow(tiny3) - 1)))
var_MyC

[1] 0.6951643

#finally the standard deviation
sd_MyC <- sqrt(var_MyC)
sd_MyC#checking my work

[1] 0.8337652

sd(tiny3$MyContribution)#checking my work

[1] 0.8337652

Create a variable that represents the cross-product (of the mean deviations). What is
the sum of these cross-products?
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tiny3$crossproduct <- (tiny3$Mdev_OvI * tiny3$Mdev_MyC)
head(tiny3)

OvInstructor OvCourse MyContribution M_OvI Mdev_OvI abslt_mOvI
1 5 3 4 4.185841 0.8141593 0.8141593
2 4 4 4 4.185841 -0.1858407 0.1858407
3 4 4 4 4.185841 -0.1858407 0.1858407
4 3 3 4 4.185841 -1.1858407 1.1858407
5 5 5 5 4.185841 0.8141593 0.8141593
6 3 3 4 4.185841 -1.1858407 1.1858407

mdev2_OvI M_MyC Mdev_MyC mdev2_MyC crossproduct
1 0.66285535 3.964602 0.03539823 0.001253035 0.028819798
2 0.03453677 3.964602 0.03539823 0.001253035 -0.006578432
3 0.03453677 3.964602 0.03539823 0.001253035 -0.006578432
4 1.40621818 3.964602 0.03539823 0.001253035 -0.041976662
5 0.66285535 3.964602 1.03539823 1.072049495 0.842979090
6 1.40621818 3.964602 0.03539823 0.001253035 -0.041976662

The sum of the crossproduct is:

xp_sum <- sum(tiny3$crossproduct)
xp_sum

[1] 46.74336

Calculate the value of their covariance

cov <- (1/(113-1)) * 46.74336
cov

[1] 0.4173514

Calculate value of correlation coefficient

0.4173514/(1.013733*0.8338)

[1] 0.4937606

And now I can check my work with a function from base R.
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cor.test(tiny3$OvInstructor, tiny3$MyContribution)

Pearson's product-moment correlation

data: tiny3$OvInstructor and tiny3$MyContribution
t = 5.9825, df = 111, p-value = 0.00000002737
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.3400714 0.6217934
sample estimates:

cor
0.4937812

The correlation between ratings of overall instructor and my contribution is 0.493, 𝑝 < .001.



T-TESTS

The lessons offered in the t-tests section introduce inferential statistics. In the prior chapters, our
use of measures of central tendency (i.e., mean, median, mode) and variance (i.e., range, variance,
standard deviation) serve to describe a sample.

As we move into inferential statistics we evaluate data from a sample and try to determine whether
or not we can use it to draw conclusions (i.e, predict or make inferences) about a larger, defined,
population.

The t-test lessons begin with an explanation of the z-score and progress through one sample,
independent samples, and paired samples t-tests. Each lesson is centered around a research vignette
that was focused on physicians’ communication with patients who were critically and terminally ill
and in the intensive care unit at a hospial [Elliott et al., 2016].

In addition to a conceptual presentation of of each statistic, each lesson includes:

• a workflow that guides researchers through decision-points in each statistic,
• the presentation of formulas and R code for “hand-calculating” each component of the formula,
• script for efficiently computing the statistic with R packages,
• an “recipe” for an APA style presentation of the results,
• a discussion of power in that particular statistic with R script for calculating sample sizes

sufficient to reject the null hypothesis, if in fact, it is appropriate to do so, and
• suggestions for practice that vary in degree of challenge.
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Chapter 4

One Sample t-tests

Screencasted Lecture Link

options(scipen=999)#eliminates scientific notation

Researchers and program evaluators, may wish to know if their data differs from an external
standard. In today’s research vignette, we will ask if the time physicians spent with their patients
differed from an external benchmark. The one sample t-test is an appropriate tool for this type
of analysis. As we work toward the one sample t-test we take some time to explore the standard
normal curve and z-scores, particularly as they related to probability.

4.1 Navigating this Lesson

There is just over one hour of lecture. If you work through the materials with me, plan for an
additional hour-and-a-half.

While the majority of R objects and data you will need are created within the R script that sources
the chapter, occasionally there are some that cannot be created from within the R framework.
Additionally, sometimes links fail. All original materials are provided at the Github site that hosts
the book. More detailed guidelines for ways to access all these materials are provided in the OER’s
introduction

4.1.1 Learning Objectives

Learning objectives from this lecture include the following:

• Convert raw scores to z-scores (and back again).
• Using the z table, determine the probability of an occurence.
• Recognize the research questions for which utilization of a one sample t-test would be appro-

priate.
• Narrate the steps in conducting a one-sample t-test, beginning with testing the statistical

assumptions through writing up an APA style results section.
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https://github.com/lhbikos/ReCenterPsychStats
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• Calculate a one-sample t-test in R (including effect sizes).
• Interpret a 95% confidence interval around a mean difference score.
• Produce an APA style results section for a one-sample t-test .
• Determine a sample size that (given a set of parameters) would likely result in a statistically

significant effect, if there was one.

4.1.2 Planning for Practice

The suggestions for homework vary in degree of complexity. The more complete descriptions at the
end of the chapter follow these suggestions.

• Rework the one-sample t-test in the lesson by changing the random seed in the code that
simulates the data. This should provide minor changes to the data, but the results will likely
be very similar.

• Rework the one-sample t-test in the lesson by changing something else about the simulation.
For example, if you are interested in power, consider changing the sample size.

• Conduct a one sample t-test with data to which you have access and permission to use. This
could include data you simulate on your own or from a published article.

4.1.3 Readings & Resources

In preparing this chapter, I drew heavily from the following resource(s). Other resources are cited
(when possible, linked) in the text with complete citations in the reference list.

• How To Do a One-Sample T-test in R: Best Tutorial You Need. (n.d.). Datanovia. Re-
trieved May 24, 2023, from https://www.datanovia.com/en/lessons/how-to-do-a-t-test-in-r-
calculation-and-reporting/how-to-do-a-one-sample-t-test-in-r/

– The primary R code we use is from the rstatix/Datanovia tutorial. *Navarro, D.
(2020). Chapter 13: Comparing two means. In Learning Statistics with R - A tutorial
for Psychology Students and other Beginners. Retrieved from https://stats.libretexts.
org/Bookshelves/Applied_Statistics/Book%3A_Learning_Statistics_with_R_-
_A_tutorial_for_Psychology_Students_and_other_Beginners_(Navarro)

– Navarro’s OER includes a good mix of conceptual information about t-tests as well as R
code. My lesson integrates her approach as well as considering information from Field’s
[2012] and Green and Salkind’s [2017c] texts.

• Elliott, A. M., Alexander, S. C., Mescher, C. A., Mohan, D., & Barnato, A. E. (2016).
Differences in Physicians’ Verbal and Nonverbal Communication With Black and White Pa-
tients at the End of Life. Journal of Pain and Symptom Management, 51(1), 1–8. https:
//doi.org/10.1016/j.jpainsymman.2015.07.008

– The source of our research vignette.

4.1.4 Packages

The script below will (a) check to see if the following packages are installed on your computer and,
if not (b) install them. Remove the hashtags for the code to work.

https://www.datanovia.com/en/lessons/how-to-do-a-t-test-in-r-calculation-and-reporting/how-to-do-a-one-sample-t-test-in-r/
https://www.datanovia.com/en/lessons/how-to-do-a-t-test-in-r-calculation-and-reporting/how-to-do-a-one-sample-t-test-in-r/
https://learningstatisticswithr.com/
https://learningstatisticswithr.com/
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Book%3A_Learning_Statistics_with_R_-_A_tutorial_for_Psychology_Students_and_other_Beginners_(Navarro)
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Book%3A_Learning_Statistics_with_R_-_A_tutorial_for_Psychology_Students_and_other_Beginners_(Navarro)
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Book%3A_Learning_Statistics_with_R_-_A_tutorial_for_Psychology_Students_and_other_Beginners_(Navarro)
https://doi.org/10.1016/j.jpainsymman.2015.07.008
https://doi.org/10.1016/j.jpainsymman.2015.07.008
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#will install the package if not already installed
#if(!require(psych)){install.packages("psych")}
#if(!require(tidyverse)){install.packages("tidyverse")}
#if(!require(dplyr)){install.packages("dplyr")}
#if(!require(ggpubr)){install.packages("ggpubr")}
#if(!require(knitr)){install.packages("knitr")}
#if(!require(apaTables)){install.packages("apaTables")}
#if(!require(pwr)){install.packages("pwr")}
#if(!require(pastecs)){install.packages("pastecs")}
#if(!require(rstatix)){install.packages("rstatix")}

4.2 z before t

Probability density functions are mathematical formula that specifies idealized versions of
known distributions. The equations that define these distributions allow us to calculate the prob-
ability of obtaining a given score. This is a powerful tool.

As students progress through statistics, they become familiar with a variety of these distributions
including the t-distribution (commonly used in t-tests), F-distribution (commonly used in analysis
of variance [ANOVA]), and Chi-square (𝑋2) distributions (used in a variety of statistics, including
structural equation modeling). The z distribution is the most well-known of these distributions.

The z distribution is also known as the normal distribution, the bell curve, or the standard normal
curve. Its mean is always 0.00 and its standard deviation is always 1.00. Regardless of the actual
mean and standard deviation:

• 68.3% of the area falls within 1 standard deviation of the mean
• 95.4% of the distribution falls within 2 standard deviations of the mean
• 99.7% of the distribution falls within 3 standard deviations of the mean
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Properties of the Normal Distribution

z-scores are transformations of raw scores, in standard deviation units. Using the following formula,
so long as the mean and standard deviation are known, any set of continuously scaled scores can
be transformed to a z-scores equivalent:

𝑧 = 𝑋 − �̄�
𝑠

We can rearrange the formula to find what raw score corresponds with the z-score.

𝑋 = �̄� + 𝑧(𝑠)

The properties of the z-score and the standard normal curve allow us to make inferences about the
data.

4.2.1 Simulating a Mini Research Vignette

Later in this larger section on t-tests we introduce a research vignette that focuses on time physicians
spend with patients. Because working with the z-test requires a minimum sample size of 120 (and
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the research vignette has a sample size of 33), I will quickly create normally distributed sample of
200 with a mean of 10 minutes and a standard deviation of 2 minutes per patient. This will allow
us to ask some important questions of the data.

#https://r-charts.com/distribution/histogram-curves/
set.seed(220821)
PhysTime <- data.frame(minutes = rnorm(200, mean=10, sd=2))

Using the describe() function from the psych package, we can see the resulting descriptive statistics.

psych::describe(PhysTime$minutes)

vars n mean sd median trimmed mad min max range skew kurtosis se
X1 1 200 9.9 2 9.98 9.93 2 3.68 15.15 11.47 -0.2 0.03 0.14

Specifically, in this sample size of 200, our mean is 9.9 with a standard deviation of 2.0.

4.2.2 Raw Scores, z-scores, and Proportions

With data in hand, let’s ask, “What is the range of time that physicians spend with patients that
fall within 1 standard deviation of the mean?” We would answer this question by applying the raw
score formula (𝑋 = �̄� + 𝑧(𝑠)) to +1 and -1 standard deviation.

9.9 - 1*(2)

[1] 7.9

9.9 + 1*(2)

[1] 11.9

Because ±1𝑆𝐷 covers 68% of the distribution, we now know that 68% of patients have physician
visits that are between 7.9 and 11.9 minutes long.

What about ±2𝑆𝐷𝑠? Similarly, we would apply the raw score formula, using 2 for the standard
deviation.

9.9 - 2*(2)

[1] 5.9

9.9 + 2*(2)

[1] 13.9
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Two standard deviations around the mean captures 94.5% of patients; patients in this range receive
between visits that range between 5.9 and 13.9 minutes.

And what about ±3𝑆𝐷𝑠? This time we use 3 to represent the standard deviation.

9.9 - 3*(2)

[1] 3.9

9.9 + 3*(2)

[1] 15.9

Three standard deviations around the mean captures 99.7% of patients; patients in this range
receive between visits that range between 3.9 and 15.9 minutes.

4.2.3 Determining Probabilities

We can also ask questions of probability. For example, what is the probability that a physician
spends at least 9.9 minutes with a patient? To answer this question we first calculate the z-score
associated with 9.9 minutes.

𝑧 = 𝑋 − �̄�
𝑠

(9.9-9.9)/2 #for 9.9 minutes

[1] 0

We learn that 9.9 minutes (the mean of the distribution of raw scores) corresponds with 0 (the
mean of the distribution of z-scores).

Next, we examine a table of critical z values where we see that a score of 0.0 corresponds to an
area (probability) of .50. The directionality of our table is such that fewer minutes spent with
patients are represented on the left (the shaded portion) and more minutes spent with patients are
represented on the right (the unshaded portion). Our question asks, what is the probability that
a physician spends at least 9.9 minutes with a patient (i.e., 9.9 or more minutes) means that we
should use the area on the right. Thus, the probability that a physician spends at least 9.9 minutes
with a patient is 50%. In this case it is also true that the probability that a physician spends 9.9
minutes or less is also 50%. This 50/50 result helps make the point that the area under the curve
is equal to 1.0.

https://www.statology.org/z-table/
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We can also obtain the probability value with the pnorm() function. We enter the score, the mean,
and the standard deviation. As shown below, we can enter them in z score formula or from the
raw scores.

pnorm(0, mean=0, sd=1)

[1] 0.5

pnorm(9.9, mean=9.9, sd=2)

[1] 0.5

Next, let’s ask a question that requires careful inspection of the asymmetry of the curve. What is
the probability that a physician spends less than 5 minutes with a patient? First, we calculate the
corresponding z-score:
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#calculating the z-score
(5-9.9)/2 #for 5 minutes

[1] -2.45

Second we locate the corresponding area under the normal curve. Examining the table of critical
z-values we see that a z-score of -2.45 corresponds with an area of 0.0071. We can check this with
the pnorm() function:

pnorm(-2.45, mean=0, sd=1) #using SD or standardized units

[1] 0.007142811

pnorm(5, mean=9.9, sd=2) #using raw data units

[1] 0.007142811
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There is a .7% (that is less than 1%) probability that physicians spend less than 5 minutes with
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a patient. The inverse (1 - .7) indicates that we can be 99% confident that patients receive 5 or
more minutes with the ICU physician.
What about operations at the other end of the curve? What is the probability that a patient
receives less than 12 minutes with a physician? Again, we start with the calculation of the z-score.

(12-9.9)/2 #for 12 minutes

[1] 1.05

The 12 minute mark is 1.05 SD above the mean. Checking the z table lets us know that an area of
0.8531 corresponds with a z-score of 1.05.

1-.8531

[1] 0.1469
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The probability of a physician spending 12 minutes or less with a patient is 85%; the probability
of a physician spending 12 minutes or more with a patient is 15%.
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4.2.4 Percentiles

The same values that we just collected are often interpreted as percentiles. Our prior calculations
taught us that a physician/patient visit that lasted 9.9 minutes (z = 0), is ranked at the 50th
percentile. That is, a 9.9 minute visit is longer than 50% of patient/physician visits.

A visit lasting 5 minutes (z = -2.45) is ranked at the .07th percentile. That is fewer than 1% of
patient/physician visits are shorter than 5 minutes.

Finally, a visit lasting 12 minutes (z = 1.05) is ranked at the 85th percentile. That is, it is longer
than 85% of patient visits.

While this seems redundant, this something of a prelude to the importance of z scores and the
standard normal curve in assessment, evaluation, and psychometrics.

4.2.5 Transforming Variables to Standard Scores

At this point, we have hand-calculated each score. It is easy to transform a set of scores into a
column of z-scores:

PhysTime$zMinutes <- (PhysTime$minutes - mean(PhysTime$minutes))/sd(PhysTime$minutes)

head(PhysTime)

minutes zMinutes
1 10.300602 0.20226980
2 10.143081 0.12370440
3 9.785452 -0.05466684
4 13.162710 1.62977447
5 6.120944 -1.88237678
6 11.793346 0.94679063

The transformation of scores is considered to be linear. That is, this 1:1 relationship would result
in a correlation of 1.00. Further, the z-version of the variable could be used in analyses, just as the
original raw score. Choices to do this are made carefully and usually done to optimize interpretation.
I will demonstrate this with set of descriptive statistics produced by the apa.cor.table() function
from the apaTables package.

apaTables::apa.cor.table(PhysTime)

Means, standard deviations, and correlations with confidence intervals

Variable M SD 1
1. minutes 9.90 2.00
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2. zMinutes 0.00 1.00 1.00**
[1.00, 1.00]

Note. M and SD are used to represent mean and standard deviation, respectively.
Values in square brackets indicate the 95% confidence interval.
The confidence interval is a plausible range of population correlations
that could have caused the sample correlation (Cumming, 2014).
* indicates p < .05. ** indicates p < .01.

4.2.6 The One-Sample z test

The one-sample z test is a common entry point to hypothesis testing. Let’s imagine that we have
reason to believe that an optimal physician/patient interaction in the ICU is 10.5 minutes. We
want to use this value as a contrast to our own data and ask if the physician/patient interactions
in our ICU are statistically significantly different. To test this hypothesis, we first set up null
(𝐻0) and alternative (𝐻𝐴) hypotheses. Our null hypothesis states that the population mean for
physician/patient visits is equal to 10.5; the alternative hypothesis states that it is unequal to 10.5.

As written, this question is two-tailed. That is, the external mean could be larger or smaller, we
are just curious to see if it is different.

𝐻0 ∶ 𝜇 = 10.5
𝐻𝐴 ∶ 𝜇 ≠ 10.5

Alternatively, we could ask a one-sided question. That is, we might hypothesize that our sample
mean is smaller than the external mean.

𝐻0 ∶ 𝜇 = 10.5
𝐻𝐴 ∶ 𝜇 < 10.5

Whether the test is one- or two- sided makes a difference in the strictness with which we interpret
the results and can impact whether or not the result is statistically significant. We will reject the
𝐻0 in favor of the alternative (𝐻𝐴) if the resulting test statistic (a z score) falls into the region of
rejection (but that region shifts, depending on whether our test is one- or two- tailed).

Statistician, Sir Ronald Fisher, popularized 5% as the region of rejection. Specifically, if a proba-
bility value associated with a z-score (or similar) falls into the tails of a distribution that represent
5%, then the 𝐻0 is rejected, in favor of the 𝐻𝐴.

Stated another way

• p is the probability that the 𝐻0 is true

– p > 0.05 suggests that there is a 95% chance or greater that the 𝐻0 is true

• 1 minus the p value is the probability that the alternative hypothesis is true.
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– A statistically significant test result (p < 0.05) means that the test hypothesis is false
or should be rejected.

– A p value greater than 0.05 means that no effect was observed.

If our hypothesis is two-sided, then we can spread the 5% across both tails of the test. In-
specting a table of z values shows that ±1.96 would be the region of rejection of 𝐻0. In
contrast, if the hypothesis is directionless (two-tailed), 1.64 would serve as the boundary
for the region of rejection and the corresponding z-test would require the same sign (+
or -) as the hypothesized tail of the distribution. So long as the hypothesis is consistent
with the data, a one-sided test can be more powerful, that is, there is greater proba-
bility (defined as area under the curve) for rejecting the 𝐻0, if it is should be rejected.
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The formula for a one-sample z-test is as follows:

𝑧�̄� = �̄� − 𝜇0
𝜎/

√
𝑁

We have already calculated these values. But let’s calculate some of them again as a reminder:
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psych::describe(PhysTime$minutes)

vars n mean sd median trimmed mad min max range skew kurtosis se
X1 1 200 9.9 2 9.98 9.93 2 3.68 15.15 11.47 -0.2 0.03 0.14

• Sample mean is 9.9
• Population mean (the one we’re comparing to) is 10.5
• Standard deviation is 2
• N is 200

(9.9 - 10.5)/(2/sqrt(200))

[1] -4.242641

The resulting value, 𝑧 = −4.242 is our test value. Because this far exceeds ±1.96 we know (from
memory) that there is a statistically significant effect. Just to be certain, let’s use the pnorm()
function to obtain the p value.

pnorm(-4.24, mean=9.9, sd=2)

[1] 0.0000000000007746685

Simply with these hand-calculations, we can claim that there was a statistically significant difference
between the physician/patient visit times in our simulated sample data and external benchmark
criteria: 𝑧(200) = −4.24, 𝑝 < .001.
The one sample z-test is rarely sighted in the published literature. However, a close inspection of
a table of critical t-values, reveals that the very bottom row (i.e., when sample sizes are 120 or
greater) is, in fact, the z criteria. Thus, it is time to learn about the one sample t-test.

4.3 Introducing the One-Sample t-test

The one-sample t-test is used to evaluate whether the mean of a sample differs from another value
that, symbolically, is represented as the population mean. Green and Salkind [2017c] noted that
this value is often the midpoint of set of scores, the average value of the test variable based on past
research, or a test value as the chance level of performance.

Figure 4.1: An image of a row with two boxes labeled Condition A (in light blue) and the population
mean (in dark blue) to which it is being compared. This represents the use of a one-sample t-test.

This comparison is evident in the numerator of the formula for the t-test that shows the population
mean 𝜇 being subtracted from the sample mean�̄�.
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𝑡 = �̄� − 𝜇
�̂�/

√
𝑁

Although this statistic is straightforward, it is quite limited. If the researcher wants to compare
an outcome variable across two groups of people, they should consider the independent samples
t-test. If the participant wants to evaluate an outcome variable with two observations from the
same group of people, they should consider the paired samples t-test

4.3.1 Workflow for the One-Sample t-test

The following is a proposed workflow for conducting a one-sample t-test.

Figure 4.2: A colorful image of a workflow for the one sample t-test
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If the data meets the assumptions associated with the research design (e.g., independence of ob-
servations and a continuously scaled metric), these are the steps for the analysis of a one-sample
t-test:

1. Prepare (upload) data.
2. Explore data with

• graphs
• descriptive statistics

3. Assess normality via skew and kurtosis
4. Select the comparison (i.e., test, population) value
5. Compute the one sample t-test
6. Compute an effect size (frequently the d statistic)
7. Manage Type I error
8. Sample size/power analysis (which you should think about first, but in the context of teaching

statistics, it’s more pedagogically sensible, here).

4.4 Research Vignette

Empirically published articles where t-tests are the primary statistic are difficult to locate. Having
exhausted the psychology archives, I located this article in an interdisciplinary journal focused on
palliative medicine. The research vignette for this lesson examined differences in physician’s verbal
and nonverbal communication with Black and White patients at the end of life [Elliott et al., 2016].

Elliott and colleagues [2016] were curious to know if hospital-based physicians (56% White, 26%
Asian, 7.4% each Black and Hispanic) engaged in verbal and nonverbal communication differently
with Black and White patients. Black and White patient participants were matched on character-
istics deemed important to the researchers (e.g., critically and terminally ill, prognostically similar,
expressed similar treatment preferences). Interactions in the intensive care unit were audio and
video recorded and then coded on dimensions of verbal and nonverbal communication.

Because each physician saw a pair of patients (i.e., one Black patient and one White patient), the
researchers utilized a paired samples, or dependent t-test. This statistical choice was consistent
with the element of the research design that controlled for physician effects through matching (and
one we will work in a later lesson). Below are the primary findings of the study.

Black Patients White Patients
Category Mean(SD) Mean(SD) p-value
Verbal skill score (range 0 - 27) 8.37(3.36) 8.41(3.21) 0.958
Nonverbal skill score (range 0 - 5) 2.68(.84) 2.93(.77) 0.014

In the research vignette Elliott et al. [2016] indicated that physician/patient visits lasted between
3 minutes and 40 seconds to 20 minutes and 13 seconds. For the purpose of demonstrating the one
sample t-test, we might want to ask whether the length of patient visits in this research study were
statistically significantly different than patient in the ICU or in palliative care, more broadly. Elliott
et al.[2016] did not indicate a measure of central tendency (i.e., mean, mode, median) therefore,
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I will simulate the data by randomly generating 33 numbers with a mean of 8 and a standard
deviation of 2.5. I will use random selection with replacement, which allows the same number to be
selected more than once.

4.4.1 Data Simulation

I re-simulated (what may seem like identical data from above)to be consistent with the journal
article’s research sample of 33.

#Setting the "random" seed ensures that everyone gets the same result, every time they rerun the analysis.
#My personal practice is to create a random seed that represents the day I write up the problem (in this case August, 15, 2022)
#When the Suggestions for Practice invite you to "change the random seed," simply change this number to anything you like (maybe your birthday or today's date)
set.seed(220822)
dfOneSample <- data.frame(PhysMins = rnorm(33, mean=10, sd=2.5))

head(dfOneSample)

PhysMins
1 9.097343
2 11.385558
3 8.424395
4 8.640534
5 12.583856
6 8.949883

A warning: this particularly analysis (the whole lesson, in fact) is “more simulated than usual” and
does not represent reality. However, this research vignette lends itself for this type of question.

With our data in hand, let’s examine its structure. The variable representing physician minutes
represents the ratio scale of measurement and therefore should be noted as num (numerical) in R.

str(dfOneSample)

'data.frame': 33 obs. of 1 variable:
$ PhysMins: num 9.1 11.39 8.42 8.64 12.58 ...

Below is code for saving the data to your computer (and then re-importing) as .csv or .rds files. I
make choices about saving data based on what I wish to do with the data. If I want to manipulate
the data outside of R, I will save it as a .csv file. It is easy to open .csv files in Excel. A limitation
of the .csv format is that it does not save any restructuring or reformatting of variables. For this
lesson, this is not an issue.

Although you do not need to save nor re-import the data for this lesson, here is code for saving
the data as a .csv and then reading it back into R. I have hashtagged these out, so you will need
to remove the hashtags if you wish to run any of these operations.
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#writing the simulated data as a .csv
#write.table(dfOneSample, file = "dfOneSample.csv", sep = ',', col.names=TRUE, row.names=FALSE)
#at this point you could clear your environment and then bring the data back in as a .csv
#reading the data back in as a .csv file
#dfOneSample<- read.csv ('dfOneSample.csv', header = TRUE)

The .rds form of saving variables preserves any formatting (e.g., creating ordered factors) of the
data. A limitation is that these files are not easily opened in Excel. Again, you do not need to save
nor re-import the data for this lesson. However, if you would like to do so, here is the hashtagged
code (remove hashtags if you wish to do this) for writing (and then reading) this data as an .rds
file.

#saveRDS(dfOneSample, 'dfOneSample.rds')
#dfOneSample <- readRDS('dfOneSample.rds')

4.4.2 Quick Peek at the Data

Plotting the data is best practice to any data analysis. Further, visualizing the data can help us
with a conceptual notion of the statistic we are utilizing. The ggpubr package is one of my go-
to-tools for quick and easy plots of data. Below, I have plotted the time-with-patient (Physician
Seconds) variable and added the mean. As with most plotting packages, ggpubr will “bin” (or
cluster) the data for plotting; this is especially true for data with a large number of units (a range
from 220 to 1213 is quite large). The “rug = TRUE” command added a lower row of the table to
identify where each of the datapoint follows.

ggpubr::gghistogram(dfOneSample, x = "PhysMins", add = "mean", rug = TRUE, color = "#993366")

Warning: Using `bins = 30` by default. Pick better value with the argument
`bins`.

Warning: `geom_vline()`: Ignoring `mapping` because `xintercept` was provided.

Warning: `geom_vline()`: Ignoring `data` because `xintercept` was provided.
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Although the histogram is not perfectly normal, we can see at least the suggestion of a normal
distribution. With only a sample of 33, I’m encouraged.

Another view of our data is with a boxplot. The box captures the middle 50% of data with the
horizontal bar at the median. The whiskers extend three standard deviations around the mean
with dots beyond the whiskers representing outliers. I personally like the add=“jitter” statement
because it shows where each case falls.

ggpubr::ggboxplot(dfOneSample$PhysMins,
ylab = "Minutes with Patient", xlab = FALSE, add="jitter"
)
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We can further evaluate normality by obtaining the descriptive statistics with the describe()
function from the psych package.

psych::describe(dfOneSample$PhysMins)

vars n mean sd median trimmed mad min max range skew kurtosis se
X1 1 33 10.01 2.7 9.78 9.96 2.44 4.92 17.41 12.49 0.36 0.04 0.47

Here we see that our minutes range from 4.92 to 17.41 with a mean of 10.01 and a standard deviation
of 2.7. We’re ready to calculate the one sample t-test.

4.5 Working the One Sample t-test (by hand)

4.5.1 Stating the Hypothesis

A quick scan of the literature suggests that health care workers’ visits to patients in the ICU are
typically quite brief. Specifically, the average duration of a physician visit in a 2018 study was 73.5
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seconds or 1.23 minutes [Butler et al., 2018]. A one-sample t-test is appropriate for comparing the
visit lengths from our sample to this external metric.

As noted in the symbolic presentation below, our null hypothesis (𝐻0) states that our data will be
equal to the test value of 1.23 minutes. In contrast, the alternative hypothesis (𝐻𝐴) states that
these values will not be equal.

𝐻0 ∶ 𝜇 = 1.23
𝐻𝐴 ∶ 𝜇 ≠ 1.23

4.5.2 Calculating the t-test

In learning the statistic, hand-calculations can help understand what the statistic is doing. Here’s
the formula again:

𝑡 = �̄� − 𝜇
�̂�/

√
𝑁

The numerator of the formula below subtracts the test value from the sample mean. The denom-
inator involves multiplying the standard deviation by the square root of the sample size. The
descriptive statistics provided the values we need to complete the analysis:

(10.01 - 1.23)/(2.7/sqrt(33))

[1] 18.68047

4.5.2.1 Statistical Significance

If we ask about statistical significance then we are engaged in null hypothesis significance testing
(NHST). In the case of a one sample test, we construct our hypothesis with a null and an alternative
that are relatively straightforward. Specifically, we are interested in knowing if our sample mean
(10.01) is statistically, significantly different from the test value of 1.23. We can write the hypotheses
in this way:

𝐻0 ∶ 𝜇 = 1.23
𝐻𝐴 ∶ 𝜇 ≠ 1.23

In two parts, our null hypothesis (𝐻0) states that the population mean (𝐻0) for physician visits
with palliative care patients is 1.23; the alternative 𝜇 ≠ states that it is not 1.23.

When we calculated the t-test, we obtained a t value. We can check the statistical significance by
determining the test critical value from a table of critical values for the t distribution. There are
many freely available on the internet. If our t value exceeds the value(s) in the table of critical
values, then we can claim that our sample mean is statistically significantly different from the
hypothesized value.

Heading to the table of critical values we do the following:

https://www.statology.org/t-distribution-table/
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• For the one-sample t-test, the degrees of freedom (DF) is equal to N - 1 (32). The closest
value in our table is 30, so we will use that row.

• A priorily, we did not specify if we thought the difference would be greater, or lower. There-
fore, we will use a column that indicates two-tails.

• A p value of .05 is customary (but it will be split between two tails).
• Thus, if our t-value is lower than -2.042 or higher than 2.042 we know we have a statistically

significant difference.

In our case, the t value of 18.68 far exceeded the test critical value of 2.042. We would write the
statistical string this way: t(32) = 18.68, p < .05.

In base R, the qt() function will look up a test critical value. For the one-sample t-test, degrees
of freedom (df) is equal to 𝑁 − 1. We “divide the p value by 2” when we want a two-tailed test.
Finally, the “lower.tail” command results in positive or negative values in the tail.

qt(p=.05/2, df=32,lower.tail=FALSE)

[1] 2.036933

Not surprisingly, this value is quite similar to the value we saw in the table. The qt() function is
more accurate because it used df = 32 (not rounded down to 30).

4.5.2.2 Confidence Intervals

How confident are we in our result? With the one sample t-test, it is common to report an interval
in which we are 95% confident that that our sample mean exists. Below is the formula, which
involves:

• �̄� is the sample mean; in our case this is 10.01
• 𝑡𝑐𝑣 the test critical value for a two-tailed model (even if the hypothesis was one-tailed) where

𝛼 = .05 and the degrees of freedom are 𝑁 − 1
• 𝑠√𝑛 was the denominator of the test statistic it involves the standard deviation of our sample

(2.7) and the square root of our sample size (33)

�̄� ± 𝑡𝑐𝑣( 𝑠√𝑛)

Let’s calculate it:

First, let’s calculate the proper t critical value. Even though these are identical to the one above, I
am including them again. Why? Because if the original hypothesis had been one-tailed, we would
need to calculate a two-tailed confidence interval; this is a placeholder to remind us.

qt(p=.05/2, df=32,lower.tail=FALSE)

[1] 2.036933
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Using the values from above, we can specify both the lower and upper bound of our confidence
interval.

(10.01) - ((2.0369)*(2.7/sqrt(33)))

[1] 9.052637

(10.01) + ((2.0369)*(2.7/sqrt(33)))

[1] 10.96736

The resulting interval is the 95% confidence interval around our sample mean. Stated another way,
we are 95% certain that the true mean of time with patients in our sample ranges between 9.05
and 10.97 minutes.

4.5.2.3 Effect size

If you have heard someone say something like, “I see there is statistical significance, but is the
difference clinically significant,” the person is probably asking about effect sizes. Effect sizes
provide an indication of the magnitude of the difference.

The d statistic is commonly used with t-tests; d assesses the degree that the mean on the test
variable differs from the test value. Conveniently, d represents standard deviation units. A d value
of 0 indicates that the mean of the sample equals the mean of the test value. As d moves away from
0 (in either direction), we can interpret the effect size to be stronger. Conventionally, the absolute
values of .2, .5, and .8, represent small, medium, and large effect sizes, respectfully.

Calculating the d statistic is easy. Here are two equivalent formulas:

𝑑 = 𝑀𝑒𝑎𝑛𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒
𝑆𝐷 = 𝑡√

𝑁

#First formula
(10.01 - 1.23)/2.7

[1] 3.251852

#Second formula
18.68047/sqrt(33)

[1] 3.251852

The value of 3.25 indicates that the test value is approximately more than three standard deviations
away from the sample mean. This is a very large difference.
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4.6 Working the One-Sample t-test with R Packages

4.6.1 Evaluating the Statistical Assumptions

Let’s rework the problem in R. We start at the top of the flowchart, evaluating the statistical
assumptions.

All sta-
tistical tests have some assumptions about the data. The one-sample t-test has three.

• The scores on the test variable as independent of each other. This is a research design issue
and the one-sample t-test is not robust to violating this assumption.

– If physicians were contributing more than one data point, this vignette potentially vi-
olated this assumption. For the sake of simplicity, let’s presume that each physician
contributed visit length (minutes) for only one patient. If the research scenario was
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such that physicians contributed multiple datapoints a potential analytic choice that is
robust to such a violation is multilevel modeling.

• The test variable should be continuously scaled. This is also a matter of research design and
no statistical analysis is required.

– Our test variable is measured in minutes; this is continuously scaled and has the prop-
erties of ratio-level data.

• The test variable is normally distributed. We can check this several ways:

– visually with histograms (perhaps with superimposed curves) and boxplots,
– calculation of skew and kurtosis values,
– calculation of the Shapiro-Wilk test of normality

4.6.1.1 Is the Test Variable Normally Distributed?

Thus, we need only to assess whether the test variable is normally distributed. The
pastecs::stat.desc() function will provide all of this information in one test. We need only
add the specification, “norm=TRUE”.

#pastecs is the package, stat.desc is the function
#we point it to the data and then add the norm=TRUE command
pastecs::stat.desc(dfOneSample, norm=TRUE)

PhysMins
nbr.val 33.00000000
nbr.null 0.00000000
nbr.na 0.00000000
min 4.92123791
max 17.40834882
range 12.48711091
sum 330.26971365
median 9.77737813
mean 10.00817314
SE.mean 0.47011645
CI.mean.0.95 0.95759588
var 7.29331287
std.dev 2.70061342
coef.var 0.26984080
skewness 0.35985466
skew.2SE 0.44031259
kurtosis 0.03511647
kurt.2SE 0.02199140
normtest.W 0.97666915
normtest.p 0.68198838

Recall from the lesson on Preliminary Results that there are multiple ways to assess severity of
skew and kurtosis. Values greater than the absolute value of 3.0 are concerning for the “skewness”

https://lhbikos.github.io/MultilevelModeling/
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output. The PhysMins skewness values of 0.36 is well below that threshold. Values greater than
the absolute value of 10 are concerning for the “kurtosis” output. The PhysMins skewness value of
0.035 is well below that thresshold. The “skew.2SE” and “kurt.2SE” values are standardized. The
“2” in the “skew.2SE” is a helpful reminder that, in smaller sample sizes”, using the 1.96 (or “2”)
criteria is acceptable in determining problematic skew or kurtosis. The PhysMins values of 0.44
and 0.022 fall well below those areas of concern.

Regarding a formal assessment of normality, the pastecs::stat.descr() output includes the Shapiro-
Wilk value (normtest.W) and statistical significance (normtest.p). Non-significant results indicate
that the distribution of the PhysMins variable is not statistically significantly different from a
normal distribution. In the case of PhysMins, 𝑊 = 0.977, 𝑝 = 0.682.
Considering skewness, kurtosis, and normality estimates together, we are confident that we have
not violated the assumption of normality.

4.6.2 Computing the t-test

Now we are ready to calculate the t-test, itself.

Calculating a one sample t-test is possible through base R and a number of packages. Kassambara’s
[b] rstatix package is one we can use for the t-test and ANOVA problems that we will work. I like
it for several reasons. First, it was designed to be “pipe-friendly” in a manner that is consistent
with the tidyverse approach to working in R and there are numerous tutorials. Additionally, rstatix
objects work well with ggpubr, one of my favorite packages for graphing data and results.

In the script below:

• the first element points to the dataframe
• the second element provides a “formula”

– we are predicting “PhysMins” from “1” which represent an invariant/constant hypoth-
esized mean

• the third element identifies the population/comparison mean
• specifying “detailed = TRUE” will produce the 95% confidence interval around the mean

(i.e., in this case the average amount of time that physicians in our sample spent with their
patients)

rstatix::t_test(dfOneSample, PhysMins ~ 1, mu = 1.23, detailed = TRUE)

# A tibble: 1 x 12
estimate .y. group1 group2 n statistic p df conf.low conf.high

* <dbl> <chr> <chr> <chr> <int> <dbl> <dbl> <dbl> <dbl> <dbl>
1 10.0 Phys~ 1 null ~ 33 18.7 9.07e-19 32 9.05 11.0
# i 2 more variables: method <chr>, alternative <chr>

The results we obtained are identical to those we hand-calculated. The rstatix output also includes
confidence intervals. In the case of the one-sample t-test, this represent the 95% confidence interval
around the mean. That is, we are 95% confident that the true mean of the minutes that physicians
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Figure 4.3: The workflow for the one sample t-test highlighting the evaluation of assumptions
section
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in our sample spent with patients falls between 9.05 and 10.97. I appreciate that the rstatix output
reminds us that we are using a t-test and that it is a two-sided hypothesis.

Knowing what the confidence interval is “around” can be tricky. Whatever the “topic” of the
confidence interval will be exactly in the middle of (most) confidence intervals. We can check
ourselves by adding the two ends of the confidence interval and dividing by two.

(9.050577 + 10.96577)/2

[1] 10.00817

As we see, 10.008 is the reported as the “estimate.” We know from our earlier analysis of the
descriptive statistics that this is the value of the mean. If we are uncertain, we can check:

mean(dfOneSample$PhysMins)

[1] 10.00817

From these results, we can begin to create our t string: 𝑡(32) = 18.67, 𝑝 < .001, 𝐶𝐼95(9.05, 10.97)
With a separate command, we can use the rstatix package to obtain the effect size, d. With the
exception of including the “ref.group = NULL” statement, the script is quite similar.

rstatix::cohens_d(dfOneSample, PhysMins ~ 1, ref.group = NULL, mu = 1.23)

# A tibble: 1 x 6
.y. group1 group2 effsize n magnitude

* <chr> <chr> <chr> <dbl> <int> <ord>
1 PhysMins 1 null model 3.25 33 large

From these results, we can begin to complete our t string: 𝑡(32) = 18.672, 𝑝 < .001, 𝐶𝐼95(9.05, 10.97), 𝑑 =
3.25

4.7 APA Style Results

Let’s write up the results. In-so-doing, I would include the boxplot we produced during our initial
exploration of the data.

Preliminary inspection of the data indicated that we did not violate the assumption
of normality. Specifically, our skew (0.36) and kurtosis (0.035) values fell below that
absolute values (3.0, 10.0, respectively) that are concerning [Kline, 2016a]. Further, the
Shapiro-Wilk test of normality suggested that the distribution of our sample data did
not differ significantly from a normal distribution (𝑊 = 0.977, 𝑝 = 0.682)



120 CHAPTER 4. ONE SAMPLE T-TESTS

A one-sample t-test was used to evaluate whether average amount of time that
a sample of physicians (palliative care physicians in the ICU) enrolled in a re-
search study on patient communication was statistically significantly different from
the amount of time that ICU physicians spend with their patients, in general.
The sample mean 10.008 (SD = 2.7016) was significantly different from 1.23,
𝑡(32) = 18.672, 𝑝 < .001., 𝐶𝐼95(9.05, 10.97), 𝑑 = 3.25. The effect size, (d) indicates a
very large effect. Figure 1 illustrates the distribution of time physicians in the research
study spent with their patients. The results support the conclusion that physicians in
the research study spent more time with their patients than ICU physicians in general.

ggpubr::ggboxplot(dfOneSample$PhysMins,
ylab = "Physician Minutes", xlab = FALSE, add="jitter", title = "Figure 1. Physician Time with Patients (in minutes)"
)
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Figure 1. Physician Time with Patients (in minutes)

Reflecting on these results, I must remind readers that this simulated data that is even further
extrapolated. Although “data” informed both the amount of time spent by the physicians in the
research study and data used as the test value, there are probably many reasons that the test value
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was not a good choice. For example, even though both contexts were ICU, palliative physicians
may have a different standard of care than ICU physicians “in general.”

4.8 Power in One-Sample t-tests

Researchers often use power analysis packages to estimate the sample size needed to detect a
statistically significant effect, if, in fact, there is one. Utilized another way, these tools allows us to
determine the probability of detecting an effect of a given size with a given level of confidence. If
the probability is unacceptably low, we may want to revise or stop. A helpful overview of power
as well as guidelines for how to use the pwr package can be found at a Quick-R website [Kabacoff,
2017].
In Champely’s pwr package, we can conduct a power analysis for a variety of designs, including
the one sample t-test that we worked in this lesson. There are a number of interrelating elements
of power:

• Sample size, n refers to the number of observations; our vignette had 33
• d refers to the difference between means divided by the pooled standard deviation; ours was

(10.01-1.23)/2.7; we can use the results from Cohen’s d.
• power refers to the power of a statistical test; conventionally it is set at .80
• sig.level refers to our desired alpha level; conventionally it is set at .05
• type indicates the type of test we ran; this was “one.sample”
• alternative refers to whether the hypothesis is non-directional/two-tailed (“two.sided”) or

directional/one-tailed(“less” or “greater”)

In this script, we must specify all-but-one parameter; the remaining parameter must be defined as
NULL. R will calculate the value for the missing parameter.
When we conduct a “power analysis” (i.e., the likelihood of a hypothesis test detecting an effect if
there is one), we specify, “power=NULL”. Using the data from our results, we learn from this first
run, that our statistical power was 1.00. That is, given the value of the mean difference relative to
the pooled standard deviation we had a 100% chance of detecting a statistically significant effect if
there was one.

pwr::pwr.t.test(d= 3.25,n = 33, power=NULL,sig.level=0.05,type="one.sample",alternative="two.sided")

One-sample t test power calculation

n = 33
d = 3.25

sig.level = 0.05
power = 1

alternative = two.sided

Researchers frequently use these tools to estimate the sample size required to obtain a statistically
significant effect. In these scenarios we set n to NULL.

https://www.statmethods.net/stats/power.html
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pwr::pwr.t.test(d= 3.25, n = NULL, power=0.8,sig.level=0.05,type="one.sample",alternative="two.sided")

One-sample t test power calculation

n = 3.006908
d = 3.25

sig.level = 0.05
power = 0.8

alternative = two.sided

Shockingly, this suggests that a sample size of 3 could result in a statistically significant result.
Let’s see if this is true. Below I will re-simulate the data for the verbal scores, changing only the
sample size:

set.seed(220822)
rdfOneSample <- data.frame(rPhysMins = rnorm(3, mean=10, sd=2.5))

head(rdfOneSample)

rPhysMins
1 9.097343
2 11.385558
3 8.424395

With the newly simulated data, I will run the one-sample t-test:

rstatix::t_test(rdfOneSample, rPhysMins ~ 1, mu = 1.23, detailed = TRUE)

# A tibble: 1 x 12
estimate .y. group1 group2 n statistic p df conf.low conf.high

* <dbl> <chr> <chr> <chr> <int> <dbl> <dbl> <dbl> <dbl> <dbl>
1 9.64 rPhysM~ 1 null ~ 3 9.38 0.0112 2 5.78 13.5
# i 2 more variables: method <chr>, alternative <chr>

rstatix::cohens_d(rdfOneSample, rPhysMins ~ 1, ref.group = NULL, mu = 1.23)

# A tibble: 1 x 6
.y. group1 group2 effsize n magnitude

* <chr> <chr> <chr> <dbl> <int> <ord>
1 rPhysMins 1 null model 5.42 3 large

In this case our difference between the sample data and the external data is so huge, that a
sample of three still nets a statistically significant result. This is unusual. Here’s the t string:
𝑡(2) = 9.379, 𝑝 = 0.011, 𝑑 = 5.415, 𝐶𝐼95[5.780, 13.492].
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4.9 Practice Problems

The suggestions for homework differ in degree of complexity. I encourage you to start with a
problem that feels “do-able” and then try at least one more problem that challenges you in some
way. Regardless, your choices should meet you where you are (e.g., in terms of your self-efficacy
for statistics, your learning goals, and competing life demands). Using R packages, complete a
one-sample t-test.

Additionally, please complete at least one set of hand calculations, that is using the code demon-
strated in the chapter to work through the formulas that compute the one-sample t-test. At this
stage in your learning, you may ignore any missingness in your dataset by excluding all rows with
missing data in your variables of interest.

4.9.1 Problem #1: Rework the research vignette as demonstrated, but change
the random seed

If this topic feels a bit overwhelming, simply change the random seed in the data simulation of the
research vignette, then rework the problem. This should provide minor changes to the data but the
results will likely be very similar. That said, don’t be alarmed if what was non-significant in my
working of the problem becomes significant. Our selection of p < .05 (and the corresponding 95%
confidence interval) means that 5% of the time there could be a difference in statistical significance.

4.9.2 Problem #2: Rework the research vignette, but change something about
the simulation

Rework the one sample t-test in the lesson by changing something else about the simulation.
Perhaps estimate another comparative number. The 1.23 was a dramatic difference from the mean
of the research participants. Perhaps suggest (and, ideally, support with a reference) a different
value. Alternatively, if you are interested in issues of power, specify a different sample size.

4.9.3 Problem #3: Use other data that is available to you

Using data for which you have permission and access (e.g., IRB approved data you have collected
or from your lab; data you simulate from a published article; data from an open science repository;
data from other chapters in this OER), complete an independent samples t test.

4.9.4 Grading Rubric

Regardless which option(s) you chose, use the elements in the grading rubric to guide you through
the practice.

Working the problem with R and R packages Points Possible Points Earned
1. Narrate the research vignette, describing the
variables and their role in the analysis

5 _____

2. Simulate (or import) and format data 5 _____
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Working the problem with R and R packages Points Possible Points Earned
3. Evaluate statistical assumptions 5 _____
4. Conduct a one sample t-test (with an effect size) 5 _____
5. APA style results with table(s) and figure 5 _____
6. Conduct power analyses to determine the power
of the current study and a recommended sample size

5 _____

7. Explanation to grader 5 _____
Totals 35 _____

Hand Calculations Points Possible Points Earned
1. Using traditional NHST (null hypothesis testing
language), state your null and alternative hypotheses

2 _____

2. Calculate the mean of your sample; identify the
mean of your benchmarking sample

2 _____

3. Using the steps from the previous lesson, calculate
the standard deviation of your sample. This should
involve variables representing the mean, mean
deviation, and mean deviation squared

6 _____

4. Calculate the one-sample t-test 4 _____
5. Identify the degrees of freedom associated with
your t-test

2 _____

6. Locate the test critical value for your test 2 _____
7. Is the t-test statistically significant? Why or why
not?

2 _____

8. Calculate the confidence interval around your
sample mean

2 _____

9. Calculate the effect size (i.e., Cohen’s d associated
with your t-test

2 _____

Totals 24 _____

4.10 Homeworked Example

Screencast Link

For more information about the data used in this homeworked example, please refer to the descrip-
tion and codebook located at the end of the introduction.

The one-sample test comes in handy when you want to compare your dataset to an external
benchmark or standard. It can be a real helper in program evaluation

https://youtu.be/qtA-tkDma3Q


4.10. HOMEWORKED EXAMPLE 125

4.10.1 Working the Problem with R and R Packages

Narrate the research vignette, describing the variables and their role in the analysis

From my course evaluation data, I want to ask the question, “Are ratings for the Overall Instruc-
tor for the ANOVA course evals statistically significantly different from the overall departmental
averages for that same item?” In CPY the overall average for that specific item is 4.4.

If you wanted to use this example and dataset as a basis for a homework assignment, you could
select a different course (i.e., Multivariate or Psychometrics) and/or compare the mean for the
ORG department (𝑀 = 4.1).

Simulate (or import) and format data

First I will open the entire dataset.

ReCdf <- readRDS("ReC.rds")

Let’s first trim it to just students who took ANOVA

JustANOVA <- subset(ReCdf, Course == "ANOVA")

And further trim to our variable of interest

library(tidyverse)

-- Attaching core tidyverse packages ------------------------ tidyverse 2.0.0 --
v dplyr 1.1.4 v readr 2.1.5
v forcats 1.0.0 v stringr 1.5.1
v ggplot2 3.5.1 v tibble 3.2.1
v lubridate 1.9.3 v tidyr 1.3.1
v purrr 1.0.2
-- Conflicts ------------------------------------------ tidyverse_conflicts() --
x dplyr::filter() masks stats::filter()
x dplyr::lag() masks stats::lag()
i Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors

tiny1 <- JustANOVA %>%
dplyr::select (OvInstructor)

And further trim to non-missing data

tiny1 <- na.omit(tiny1)

• Is the sample variable on a continuous scale of measurement and formatted as num or int in
R?
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• Is the external score evaluated on the same continuous scale?

str(tiny1$OvInstructor)

int [1:113] 5 4 4 3 5 3 5 4 3 5 ...

Yes. The format for the OvInstructor variable is integer (which is numerical); the overall course
evaluation is on an equivalent (1 to 5) scale.

Evaluate statistical assumptions

• Are the skew and kurtosis values within the range expected?
• Does the distribution of the variable differ significantly from a normal distribution?

pastecs::stat.desc(tiny1$OvInstructor, norm=TRUE)

nbr.val nbr.null nbr.na
113.000000000000000000 0.000000000000000000 0.000000000000000000

min max range
1.000000000000000000 5.000000000000000000 4.000000000000000000

sum median mean
473.000000000000000000 5.000000000000000000 4.185840707964601393

SE.mean CI.mean.0.95 var
0.095363991425895162 0.188951524765374329 1.027654867256637239

std.dev coef.var skewness
1.013733134141642456 0.242181488706142922 -0.984495621273390964

skew.2SE kurtosis kurt.2SE
-2.164227168444894378 -0.074100280830601939 -0.082121112321619227

normtest.W normtest.p
0.772806906937811733 0.000000000006195409

The skew value is -.0984 is well below the absolute value of 3. The skew.2SE of -2.164 (larger than
the absolute value of 2.0) is a bit discrepant and suggests a negative skew. Thus, we want to remain
open to the possibility of skew.

The kurtosis value is -0.074 and is below the absolute value of 10. The kurt.2SE value is -0.082
which is below the absolute value of 2.0. The data does not appear to be kurtotic.

The Shapiro Wilk test value is 0.7728 (p < 0.001). This significant value suggests a distribution
that is not normally distributed.

Conduct a one sample t test (with an effect size)

We will compare the overall instructor from the data to the CPY average of 4.4.
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rstatix::t_test(tiny1, OvInstructor ~ 1, mu = 4.4, detailed = TRUE)

# A tibble: 1 x 12
estimate .y. group1 group2 n statistic p df conf.low conf.high

* <dbl> <chr> <chr> <chr> <int> <dbl> <dbl> <dbl> <dbl> <dbl>
1 4.19 OvInst~ 1 null ~ 113 -2.25 0.0267 112 4.00 4.37
# i 2 more variables: method <chr>, alternative <chr>

We can begin to create our t string:

𝑡(112) = −2.246, 𝑝 = 0.027, 𝐶𝐼95(3.997, 4.374)
Let’s interpret the results. With 112 degrees of freedom, our t value is -2.245. Because the p value
is less than .05, this is statistically significant. This means that my course evaluations in ANOVA
were statistically significantly lower than the average for CPY. We are 95% confident that the true
course evaluation mean (for my courses) fell between 3.997 and 4.374.

Let’s calculate the effect size. We will use a Cohen’s d which is interpreted in standard deviation
units.

rstatix::cohens_d(tiny1, OvInstructor ~ 1, ref.group = NULL, mu = 4.4)

# A tibble: 1 x 6
.y. group1 group2 effsize n magnitude

* <chr> <chr> <chr> <dbl> <int> <ord>
1 OvInstructor 1 null model -0.211 113 small

Cohen’s d was 0.211. This is a small effect. We can add it to the t string.

𝑡(112) = −2.246, 𝑝 = 0.027, 𝐶𝐼95(3.997, 4.374), 𝑑 = −0.211

APA style results with table(s) and figure

• t-test results should include t, df, p, d-or-eta, and CI95%
• Table
• Figure
• Grammar/style

A one-sample t-test was used to evaluate whether the overall instructor course evalu-
ation ratings from the ANOVA courses were statistically significant different from the
departmental averages for the Clinical (CPY; M = 4.4) department. The sample mean
for the ANOVA course evaluations was 4.186 (SD = 1.013). Although this mean was
statistically significantly different from the average CPY course evaluation ratings of
the same item, 𝑡(112) = −2.246, 𝑝 = 0.027, 𝐶𝐼95(3.997, 4.374), the effect size was quite
small (𝑑 = −0.211). A distribution of the ANOVA course ratings is found in Figure 1.
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ggpubr::ggboxplot(tiny1$OvInstructor, ylab = "Course Evaluation Ratings", xlab = FALSE, add = "jitter", title = "Figure 1. Overall Instructor Ratings for ANOVA")
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Figure 1. Overall Instructor Ratings for ANOVA

Conduct power analyses to determine the power of the current study and a recom-
mended sample size

A quick reminder that the d in the power analysis is the difference between the means divided by
the pooled standard deviation. This is the same as Cohen’s d that we just calculated.

pwr::pwr.t.test(d = -0.211 , n = 113, power = NULL, sig.level = 0.05, type = "one.sample", alternative = "two.sided")

One-sample t test power calculation

n = 113
d = 0.211
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sig.level = 0.05
power = 0.604022

alternative = two.sided

For the comparison to the CPY departmental average, power was 60%. That is, given the value of
the mean difference relative to the pooled standard deviation we had a 60% chance of detecting a
statistically significant effect if there was one.

pwr::pwr.t.test(d = -0.211, n = NULL, power = 0.8, sig.level = 0.05, type = "one.sample", alternative = "two.sided")

One-sample t test power calculation

n = 178.226
d = 0.211

sig.level = 0.05
power = 0.8

alternative = two.sided

For the CPY departmental comparison, the recommended sample size would be 178. This means
there would need to be 178 individuals to find a statistically significant difference, if one existed
(at a power of 80%).

4.10.2 Hand Calculations

Using traditional NHST (null hypothesis testing language), state your null and alter-
native hypotheses

𝐻0 ∶ 𝜇 = 4.4
𝐻𝐴 ∶ 𝜇 ≠ 4.4

Calculate the mean of your sample; identify the mean of your benchmarking sample

I will continue with the tiny1 dataset and calculate the mean of the OvInstructor variable from my
ANOVA course evaluations.

mean(tiny1$OvInstructor, na.rm=TRUE)

[1] 4.185841

The mean of my benchmarking sample is 4.4. This number is a “departmental standard” and did
not need to be calculated by me for this purpose.
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Using the steps from the previous lesson, hand-calculate the standard deviation of
your sample. This should involve variables representing the mean, mean deviation,
and mean deviation squared

#first the mean
tiny1$M_OvInst <- mean(tiny1$OvInstructor, na.rm=TRUE)
#second the mean deviation
tiny1$Mdev_OvInst <- (tiny1$OvInstructor-tiny1$M_OvInst)
#third the mean deviation squared
tiny1$mdev2_OvInst <- (tiny1$Mdev_OvInst * tiny1$Mdev_OvInst)
#fourth the variance
var_OvInst <- sum(tiny1$mdev2_OvInst /((nrow(tiny1) - 1)))
var_OvInst

[1] 1.027655

#finally the standard deviation
sd_OvInst <- sqrt(var_OvInst)
sd_OvInst

[1] 1.013733

head(tiny1)

OvInstructor M_OvInst Mdev_OvInst mdev2_OvInst
1 5 4.185841 0.8141593 0.66285535
2 4 4.185841 -0.1858407 0.03453677
3 4 4.185841 -0.1858407 0.03453677
4 3 4.185841 -1.1858407 1.40621818
5 5 4.185841 0.8141593 0.66285535
6 3 4.185841 -1.1858407 1.40621818

The variance is 1.028; the standard deviation is 1.014.

sd(tiny1$OvInstructor)#checking my work

[1] 1.013733

Calculate the one-sample t-test

Here’s the formula:

𝑡 = �̄� − 𝜇
�̂�/

√
𝑁
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(4.185841 - 4.4)/(1.013733/sqrt(113))

[1] -2.245701

Identify the degrees of freedom associated with your t-test

For the one-sample t-test, 𝑑𝑓 = 𝑁 − 1. In our case

113 - 1

[1] 112

Locate the test critical value for your test

We can use a table of critical values for the one sample t-test: https://www.statology.org/t-
distribution-table/
A 2-tail test, when p - .05, with ~120 individuals is 1.98
Or, this code:

qt(p = 0.05/2, df = 112, lower.tail = FALSE)

[1] 1.981372

Is the t-test statistically significant? Why or why not?

Yes t = -2.245701 exceeds the (absolute) test critical value of 1.98.

What is the confidence interval around your sample mean?

Here is a reminder of the formula:

�̄� ± 𝑡𝑐𝑣( 𝑠√𝑛)

(4.185841) - ((1.98118)*(1.013733/sqrt(113)))

[1] 3.996908

(4.185841) + ((1.98118)*(1.013733/sqrt(113)))

[1] 4.374774

We are 95% confident that the sample mean for the students in the ANOVA classes is between
3.997, 4.375.

https://www.statology.org/t-distribution-table/
https://www.statology.org/t-distribution-table/
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Calculate the effect size (i.e., Cohen’s d associated with your t-test

A reminder of the two formula:

𝑑 = 𝑀𝑒𝑎𝑛𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒
𝑆𝐷 = 𝑡√

𝑁
#First formula
(4.185841 - 4.4)/1.013733

[1] -0.2112578

#Second formula
-2.245701/sqrt(113)

[1] -0.2112578
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Independent Samples t-test

Screencasted Lecture Link

options(scipen=999)#eliminates scientific notation

Researchers may wish to know if there are differences on a given outcome variable as a result of a
dichotomous grouping variable. For example, during the COVID-19 pandemic, my research team
asked if there were differences in the percentage of time that individuals wore facemasks as a result
of 2020 Presidential voting trends (Republican or Democratic) of their county of residence. In these
simple designs, the independent samples t-test could be used to test the researchers’ hypotheses.

5.1 Navigating this Lesson

There is just less than one hour of lecture. If you work through the materials with me, plan for an
additional hour

While the majority of R objects and data you will need are created within the R script that sources
the chapter, occasionally there are some that cannot be created from within the R framework.
Additionally, sometimes links fail. All original materials are provided at the Github site that hosts
the book. More detailed guidelines for ways to access all these materials are provided in the OER’s
introduction

5.1.1 Learning Objectives

Learning objectives from this lecture include the following:

• Recognize the research questions for which utilization of the independent samples t-test would
be appropriate.

• Narrate the steps in conducting an independent samples t-test, beginning with testing the
statistical assumptions through writing up an APA style results section.

• Calculate an independent samples t-test in R (including effect sizes and 95%CIs).
• Interpret a 95% confidence interval around a mean difference score.
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https://youtube.com/playlist?list=PLtz5cFLQl4KPx0VxnBTx9Y3_K6VFwtM1I
https://github.com/lhbikos/ReCenterPsychStats
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• Produce an APA style results section for an independent samples t-test.
• Determine a sample size that (given a set of parameters) would likely result in a statistically

significant effect, if there was one.

5.1.2 Planning for Practice

The suggestions for homework vary in degree of complexity. The more complete descriptions at the
end of the chapter follow these suggestions.

• Rework the independent samples t-test in the lesson by changing the random seed in the code
that simulates the data. This should provide minor changes to the data, but the results will
likely be very similar.

• Rework the independent samples t-test in the lesson by changing something else about the
simulation. For example, if you are interested in power, consider changing the sample size.

• Use the simulated data that is provided, but use the nonverbal variable, instead.
• Conduct an independent samples t-test with data to which you have access and permission

to use. This could include data you simulate on your own or from a published article.

5.1.3 Readings & Resources

In preparing this chapter, I drew heavily from the following resource(s). Other resources are cited
(when possible, linked) in the text with complete citations in the reference list.

• Navarro, D. (2020). Chapter 13: Comparing two means. In Learning Statistics with R
- A tutorial for Psychology Students and other Beginners. Retrieved from https://stats.
libretexts.org/Bookshelves/Applied_Statistics/Book%3A_Learning_Statistics_with_R_-
_A_tutorial_for_Psychology_Students_and_other_Beginners_(Navarro)

– Navarro’s OER includes a good mix of conceptual information about t-tests as well as R
code. My lesson integrates her approach as well as considering information from Field’s
[2012] and Green and Salkind’s [Green and Salkind, 2017c] texts (as well as searching
around on the internet).

• Elliott, A. M., Alexander, S. C., Mescher, C. A., Mohan, D., & Barnato, A. E. (2016).
Differences in Physicians’ Verbal and Nonverbal Communication With Black and White Pa-
tients at the End of Life. Journal of Pain and Symptom Management, 51(1), 1–8. https:
//doi.org/10.1016/j.jpainsymman.2015.07.008

– The source of our research vignette.

5.1.4 Packages

The script below will (a) check to see if the following packages are installed on your computer and,
if not (b) install them.

https://learningstatisticswithr.com/
https://learningstatisticswithr.com/
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Book%3A_Learning_Statistics_with_R_-_A_tutorial_for_Psychology_Students_and_other_Beginners_(Navarro)
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Book%3A_Learning_Statistics_with_R_-_A_tutorial_for_Psychology_Students_and_other_Beginners_(Navarro)
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Book%3A_Learning_Statistics_with_R_-_A_tutorial_for_Psychology_Students_and_other_Beginners_(Navarro)
https://doi.org/10.1016/j.jpainsymman.2015.07.008
https://doi.org/10.1016/j.jpainsymman.2015.07.008
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#will install the package if not already installed
#if(!require(psych)){install.packages("psych")}
#if(!require(tidyverse)){install.packages("tidyverse")}
#if(!require(dplyr)){install.packages("dplyr")}
#if(!require(ggpubr)){install.packages("ggpubr")}
#if(!require(pwr)){install.packages("pwr")}
#if(!require(apaTables)){install.packages("apaTables")}
#if(!require(knitr)){install.packages("knitr")}
#if(!require(rstatix)){install.packages("rstatix")}

5.2 Introducing the Independent Samples t-Test

The independent samples t-test assesses whether the population mean of the test variable for one
group differs from the population mean of the test variable for a second group. This t-test can
only accommodate two levels of a grouping variable (e.g., teachers/students, volunteers/employees,
treatment/control) and the participants must be different in each group.

Figure 5.1: An image of a row with two boxes labeled Condition A (in light blue) and Condition
B (in dark blue). This represents the use of an independent samples t-test to compare across
conditions.

The comparison of two means is especially evident in the numerator of the formula. In the denom-
inator we can see that the mean difference is adjusted by the standard error. At the outset, you
should know that the formula in the denominator gets messy, but the formula, alone, provides an
important conceptual map.

𝑡 = �̄�1 − �̄�2
SE

If the researcher is interested in comparing the same participants’ experiences across time or in
different groups, they should consider using a paired samples t-test. Further, the independent
samples t-test is limited to a grouping variable with only two levels. If the researcher is interested
in three or more levels, they should consider using a one-way ANOVA.

5.2.1 Workflow for Independent Samples t-Test

The following is a proposed workflow for conducting a independent samples t-test.
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If the data meets the assumptions
associated with the research design (e.g., independence of observations and a continuously scaled
metric), these are the steps for the analysis of an independent samples t-test:

1. Prepare (upload) data.
2. Explore data with

• graphs
• descriptive statistics

3. Assess normality via skew, kurtosis, and the Shapiro-Wilk test of normality
4. Consider the homogeneity of variance assumption and decide whether to use the Student’s or

Welch’s formulation.
5. Compute the independent samples t-test
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6. Compute an effect size (frequently the d or eta statistic)
7. Manage Type I error
8. Sample size/power analysis (which you should think about first, but in the context of teaching

statistics, it’s more pedagogically sensible, here).

5.3 Research Vignette

Empirically published articles where t-tests are the primary statistic are difficult to locate. Having
exhausted the psychology archives, I located this article in an interdisciplinary journal focused on
palliative medicine. The research vignette for this lesson examined differences in physician’s verbal
and nonverbal communication with Black and White patients at the end of life [Elliott et al., 2016].

Elliott and colleagues [2016] were curious to know if hospital-based physicians (56% White, 26%
Asian, 7.4% each Black and Hispanic) engaged in verbal and nonverbal communication differently
with Black and White patients. Black and White patient participants were matched on character-
istics deemed important to the researchers (e.g., critically and terminally ill, prognostically similar,
expressed similar treatment preferences). Interactions in the intensive care unit were audio and
video recorded and then coded on dimensions of verbal and nonverbal communication.

Because each physician saw a pair of patients (i.e., one Black patient and one White patient), the
researchers utilized a paired samples, or dependent t-test. This statistical choice was consistent
with the element of the research design that controlled for physician effects through matching.
Below are the primary findings of the study.

Black Patients White Patients
Category Mean(SD) Mean(SD) p-value
Verbal skill score (range 0 - 27) 8.37(3.36) 8.41(3.21) 0.958
Nonverbal skill score (range 0 - 5) 2.68(.84) 2.93(.77) 0.014

Although their design was more sophisticated (and, therefore, required the paired samples t-test),
Elliott et al. [2016] could have simply compared the outcome variables (e.g., verbal and nonverbal
communication) as a function of their dichotomous variable, patient race (Black, White).

5.3.1 Data Simulation

In the data below, I have simulated the verbal and non-verbal communication variables using the
means and standard deviations listed in the article. Further, I truncated them to fit within the
assigned range. I created 33 sets each and assigned them to the Black or White level of the grouping
variable.

set.seed(220815)
#sample size, M, and SD for Black then White patients
Verbal <- c(rnorm(33, mean=8.37, sd=3.36), rnorm(33, mean = 8.41, sd=3.21))
#set upper bound
Verbal[Verbal>27]<-27
#set lower bound
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Verbal[Verbal<0]<-0
#sample size, M, and SD for Black then White patients
Nonverbal <- c(rnorm(33, mean=2.68, sd=.84), rnorm(33, mean = 2.93, sd=.77))
#set upper bound
Nonverbal[Nonverbal>5]<-5
#set lower bound
Nonverbal[Nonverbal<0]<-0

ID<-factor(seq(1,66))
#name factors and identify how many in each group; should be in same order as first row of script
PatientRace<-c(rep("Black", 33), rep("White", 33))
#groups the 3 variables into a single df: ID#, DV, condition
dfIndSamples <-data.frame(ID, PatientRace, Verbal, Nonverbal)

With our data in hand, let’s inspect its structure (i.e., the measurement scales for the variables) to
see if they are appropriate.

str(dfIndSamples)

'data.frame': 66 obs. of 4 variables:
$ ID : Factor w/ 66 levels "1","2","3","4",..: 1 2 3 4 5 6 7 8 9 10 ...
$ PatientRace: chr "Black" "Black" "Black" "Black" ...
$ Verbal : num 2.76 5.73 6.81 8.68 9.1 ...
$ Nonverbal : num 3.41 4.02 1.62 2.52 2.11 ...

The verbal and nonverbal variables are quasi-interval scale variables. Therefore, the numerical
scale is correctly assigned by R. In contrast, patient race is a nominal variable and should be a
factor. In their article, Elliot et al. [2016] assigned Black as the baseline variable and White as the
comparison variable. Because R orders factors alphabetically, and “Black” precedes “White”, this
would happen automatically. Because creating ordered factors is a useful skill, I will write out the
full code.

dfIndSamples$PatientRace <- factor(dfIndSamples$PatientRace, levels = c("Black", "White"))

Let’s again check the formatting of the variables:

str(dfIndSamples)

'data.frame': 66 obs. of 4 variables:
$ ID : Factor w/ 66 levels "1","2","3","4",..: 1 2 3 4 5 6 7 8 9 10 ...
$ PatientRace: Factor w/ 2 levels "Black","White": 1 1 1 1 1 1 1 1 1 1 ...
$ Verbal : num 2.76 5.73 6.81 8.68 9.1 ...
$ Nonverbal : num 3.41 4.02 1.62 2.52 2.11 ...
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The four variables of interest are now correctly formatted as num and factor.

Below is code for saving (and then importing) the data in .csv or .rds files. I make choices about
saving data based on what I wish to do with the data. If I want to manipulate the data outside of
R, I will save it as a .csv file. It is easy to open .csv files in Excel. A limitation of the .csv format
is that it does not save any restructuring or reformatting of variables. For this lesson, this is not
an issue.

Here is code for saving the data as a .csv and then reading it back into R. I have hashtagged these
out, so you will need to remove the hashtags if you wish to run any of these operations. If you have
simulated the data (above), you do not need to save and then re-import the data.

#writing the simulated data as a .csv
#write.table(dfIndSamples, file = "dfIndSamples.csv", sep = ',', col.names=TRUE, row.names=FALSE)
#at this point you could clear your environment and then bring the data back in as a .csv
#reading the data back in as a .csv file
#dfIndSamples<- read.csv ('dfIndSamples.csv', header = TRUE)

The .rds form of saving variables preserves any formatting (e.g., creating ordered factors) of the
data. A limitation is that these files are not easily opened in Excel. Here is the hashtagged code
(remove hashtags if you wish to do this) for writing (and then reading) this data as an .rds file.

#saveRDS(dfIndSamples, 'dfIndSamples.rds')
#dfIndSamples <- readRDS('dfIndSamples.rds')
#str(dfIndSamples)

5.3.2 Quick Peek at the Data

Plotting the data is a helpful early step in any data analysis. Further, visualizing the data can
help us with a conceptual notion of the statistic we are utilizing. The ggpubr package is one of
my go-to-tools for quick and easy plots of data. Boxplots are terrific for data that is grouped. A
helpful tutorial for boxplots (and related plots) can be found at datanovia.

In the code below I introduced the colors by identifying the grouping variable and assigning colors.
Those color codes are the “Hex” codes you find in the custom color palette in your word processing
program.

I am also fond of plotting each case with the command, add = “jitter”. To increase your comfort
and confidence in creating figures (and with other tools) try deleting and adding back in different
commands. This is how to distinguish between the essential and the elective elements of the code.

ggpubr::ggboxplot(dfIndSamples, x = "PatientRace", y = "Verbal", color = "PatientRace", palette =c("#00AFBB", "#FC4E07"), add = "jitter")

https://rpkgs.datanovia.com/ggpubr/
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The box of the boxplot covers the middle 50% (the interquartile range). The horizontal line is the
median. The whiskers represent three standard deviations above and below the mean. Any dots
are outliers.

5.4 Working the Independent Samples t-Test (by hand)

5.4.1 Stating the Hypothesis

In this lesson, I will focus on differences in the verbal communication variable. Specifically, I
hypothesize that physician verbal communication scores for Black and White patients will differ. In
the hypotheses below, the null hypothesis (𝐻0) states that the two means are equal; the alternative
hypothesis (𝐻𝐴) states that the two means are not equal.

𝐻0 ∶ 𝜇1 = 𝜇2
𝐻𝐴 ∶ 𝜇1 ≠ 𝜇2
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5.4.2 Calculating the t-Test

Earlier I presented a formula for the independent samples t-test.

𝑡 = �̄�1 − �̄�2
SE

There are actually two formulations of the t-test. Student’s version can be used when there is no
violation of the homogeneity of variance assumption; Welch’s can be used when the homogeneity of
variance assumption is violated. For the hand-calculation demonstration, I will only demonstrate
the formula in the most ideal of circumstances, that is: there is no violation of the homogeneity of
variance assumption and sample sizes are equal.

Even so, while the formula seems straightforward enough, calculating the SE in the denominator
gets a little spicy:

𝑡 =
̄𝑋1 − ̄𝑋2

√ 𝑠2
1

𝑁1
+ 𝑠2

2
𝑁2

Let’s first calculate the SE – the value of the denominator. For this, we need the standard deviations
for the dependent variable (verbal) for both levels of patient race. We obtained these earlier when
we used the describeBy() function in the psych package.

The standard deviation of the verbal variable for the levels in the patient race group were 2.99
for Black patients and 3.20 for White patients; the N in both our groups is 33. We can do the
denominator math right in an R chunk:

sqrt((2.985^2/33) + (3.203^2/33))

[1] 0.7621627

Our SE = 0.762

With the simplification of the denominator, we can easily calculate the independent sample t-test.

𝑡 =
̄𝑋1 − ̄𝑋2
𝑆𝐸

(7.615 - 8.891)/0.762

[1] -1.674541

Hopefully, this hand-calculation provided an indication of how the means, standard deviation, and
sample sizes contribute to the estimate of this t-test value. Now we ask, “But it is statistically
significant?”
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5.4.2.1 Statistical Significance

The question of statistical significance testing invokes NHST (null hypothesis significance testing).
In the case of the independent samples t-test, the null hypothesis is that the two means are equal;
the alternative is that they are not equal. Our test is of the null hypothesis. When the probability
(p) is less than the value we specify (usually .05), we are 95% certain that the two means are not
equal. Thus, we reject the null hypothesis (the one we tested) in favor of the alternative (that the
means are not equal).

𝐻0 ∶ 𝜇1 = 𝜇2
𝐻𝐴 ∶ 𝜇1 ≠ 𝜇2

Although still used, NHST has its critiques. Among the critiques are the layers of logic and
confusing language as we interpret the results.

Our t-value was -1.675. We compare this value to the test critical value in a table of t critical
values. In-so-doing we must know our degrees of freedom. In the test that involves two levels of
a grouping value, we will use 𝑁 − 1 as the value for degrees of freedom. We must also specify
the p value (in our case .05) and whether-or-not our hypothesis is unidirectional or bi-directional.
Our question only asked, “Are the verbal communication levels different?” In this case, the test is
two-tailed, or bi-directional.

Let’s return to the table of critical values for the t distribution to compare our t-value (-1.675) to
the column that is appropriate for our:

• Degrees of freedom (in this case 𝑁 − 2 or 64)

– We have two levels of a grouping value; for each our df is 𝑁 − 1
• Alpha, as represented by 𝑝 < .05
• Specification as a one-tailed or two-tailed test

– Our alternative hypothesis made no prediction about the direction of the difference;
therefore we will use a two-tailed test

In the above linked table of critical values, when the degrees of freedom reaches 30, there larger
intervals. We will use the row representing degrees of freedom of 60. If our t-test value is lower
than an absolute value of -2 or greater than the absolute value of 2, then our means are statistically
significantly different from each other. In our case, we have not achieved statistical significance and
we cannot say that the means are different. The t string would look like this: 𝑡(64) = −1.675, 𝑝 > .05
We can also use the qt() function in base R. In the script below, I have indicated an alpha of .05. The
“2” that follows indicates I want a two-tailed test. The 64 represents my degrees of freedom (𝑁 −2).
In a two-tailed test, the regions of rejection will be below the lowerbound (lower.tail=TRUE) and
above the upperbound (lower.tail=FALSE).

qt(.05/2, 64, lower.tail=TRUE)

[1] -1.99773

https://www.statology.org/t-distribution-table/
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qt(.05/2, 64, lower.tail=FALSE)

[1] 1.99773

Given the large intervals, it makes sense that this test critical value is slightly different than the
one from the table.

5.4.2.2 Confidence Intervals

How confident are we in our result? With independent samples t-tests, it is common to report an
interval in which we are 95% confident that our true mean difference exists. Below is the formula,
which involves:

• ̄𝑋1 − ̄𝑋2 the difference in the means
• 𝑡𝑐𝑣 the test critical value for a two-tailed model (even if the hypothesis was one-tailed) where

𝛼 = .05 and the degrees of freedom are 𝑁 − 2
• 𝑆𝐸 the standard error used in the denominator of the test statistic

( ̄𝑋1 − ̄𝑋2) ± 𝑡𝑐𝑣(𝑆𝐸)
Let’s calculate it:
First, let’s get the proper t critical value. Even though these are identical to the one above, I am
including them again. Why? Because if the original hypothesis had been one-tailed, we would need
to calculate a two-tailed confidence interval; this is a placeholder to remind us.

qt(.05/2, 64, lower.tail=TRUE)

[1] -1.99773

qt(.05/2, 64, lower.tail=FALSE)

[1] 1.99773

With this in hand, let’s calculate the confidence intervals.

(7.614-8.891)- (1.99773*0.762)

[1] -2.79927

(7.614-8.891)+(1.99773*0.762)

[1] 0.2452703

These values indicate the range of scores in which we are 95% confident that our true mean difference
( ̄𝑋1 − ̄𝑋2) lies. Stated another way, we are 95% confident that the true mean difference lies between
-2.80 and 0.25 Because this interval crosses zero, we cannot rule out that the true mean difference
is 0.00. This result is consistent with our non-significant p value. For these types of statistics, the
95% confidence interval and p value will always be yoked together.
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5.4.2.3 Effect Size

Whereas p values address statistical significance, effect sizes address the magnitude of difference.
There are two common effect sizes that are used with the independent samples t-test. The first is
the d statistic, which measures, in standard deviation units, the distance between the two means.
The simplest formula involves the t value and sample sizes:

𝑑 = 𝑡√𝑁1 + 𝑁2
𝑁1𝑁2

With a t value of -1.675 and sample sizes at 33 each, we can easily calculate this. Small, medium,
and large sizes for the d statistic are .2, .5, and .8, respectively (irrespective of sign).

-1.675*(sqrt((33+33)/(33*33)))

[1] -0.4123565

Our value, -0.412 suggests a small-to-medium effect size. We might wonder why it wasn’t sta-
tistically significant? Later we will discuss power and the relationship between sample size, one
vs. two-tailed hypotheses, and effect sizes.

Eta square, 𝜂2 is the proportion of variance of a test variable that is a function of the grouping
variable. A value of 0 indicates that the difference in the mean scores is equal to 0, where a value
of 1 indicates that the sample means differ, and the test scores do not differ within each group.
The following equation can be used to compute 𝜂2. Conventionally, values of .01, .06, and .14 are
considered to be small, medium, and large effect sizes, respectively.

𝜂2 = 𝑡2

𝑡2 + (𝑁1 + 𝑁2 − 2)
Let’s calculate it:

(-1.6745*-1.6745)/((-1.6745*-1.6745)+(33 + 33 -2))

[1] 0.04197282

Similarly, the 𝜂2 is small-to-medium.

5.5 Working the Independent Samples t-Test with R Packages

Let’s rework the problem in R. We start at the top of the flowchart, evaluating the statistical
assumptions.
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Figure 5.2: The workflow for the one sample t-test highlighting the evaluation of assumptions
section
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5.5.1 Evaluating the Statistical Assumptions

With an eye on our data, we can begin to explore the statistical assumptions associated with the
independent samples t-test. Here’s where we are in the workflow:

All statistical tests have some assumptions about the data. The independent-samples t-test has
four:

• The scores on the test variable as independent of each other. This is a research design issue
and the independent-samples t-test is not robust to violating this assumption.

– If physicians’ verbal communication was evaluated and reported for more than one pa-
tient, this vignette would violate the assumption of the independent samples t-test. For
the sake of simplicity, let’s presume that each was evaluated on verbal communication
for only one patient. If the research scenario was such that physicians contributed multi-
ple datapoints a potential analytic choice that is robust to such a violation is multilevel
modeling.

• The test variable should be continuously scaled. This is also a matter of research design and
no statistical analysis is required.

– Our test variable is an evaluation of verbal interactions; this is continuously scaled and
has the properties of interval-level data.

• The test variable is normally distributed. We can check this several ways:

– visually with histograms (perhaps with superimposed curves) and boxplots,
– calculation of skew and kurtosis values,
– calculation of the Shapiro-Wilk test of normality

• The variances of the normally distributed test variable for both levels of the grouping factor
are equal. This is called the homogeneity of variance test and is easily calculated with a
Levene’s test of homogeneity of variance.

5.5.1.1 Is the dependent variable normally distributed at each level of the grouping
variable?

We can begin to evaluate the assumption of normality by obtaining the descriptive statistics with
the describe() function from the psych package.

psych::describe(dfIndSamples$Verbal, type=1) #type=1 produces the type of skew and kurtosis associated with Kline's interpretive guidelines

vars n mean sd median trimmed mad min max range skew kurtosis se
X1 1 66 8.25 3.14 7.93 8.2 3.08 0.35 19.31 18.96 0.44 1.34 0.39

From this, we learn that the overall verbal mean is 8.25 with a standard deviation of 3.14. The
values for skew (0.44) and kurtosis (1.34) fall below the areas of concern (below the absolute value
of 3 for skew; below the absolute values of 10 for kurtosis) identified by Kline [2016a].

https://lhbikos.github.io/MultilevelModeling/
https://lhbikos.github.io/MultilevelModeling/
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Recall that one of the assumptions for independent samples t-test is that the variable of interest is
normally distributed within each level of the grouping variable. The describeBy() function in the
psych package allows us to obtain these skew and kurtosis at both levels of the grouping variable.
If we feed the function the entire df, it will give us results for each level of PatientRace for each
variable, including variables for which such disaggregation is nonsensible (i.e., ID, PatientRace). If
we had a large df, we might want to create a tiny df that only includes our variable(s) of interest.
For now, it is not problematic to include all the variables.

psych::describeBy(dfIndSamples ~ PatientRace, mat=TRUE, type=1)

item group1 vars n mean sd median trimmed
ID1 1 Black 1 33 17.000000 9.6695398 17.000000 17.000000
ID2 2 White 1 33 50.000000 9.6695398 50.000000 50.000000
PatientRace1 3 Black 2 33 1.000000 0.0000000 1.000000 1.000000
PatientRace2 4 White 2 33 2.000000 0.0000000 2.000000 2.000000
Verbal1 5 Black 3 33 7.614884 2.9854116 7.693516 7.733412
Verbal2 6 White 3 33 8.891483 3.2032222 7.979546 8.606615
Nonverbal1 7 Black 4 33 2.943125 0.9251164 2.885724 2.931841
Nonverbal2 8 White 4 33 2.965472 0.7001442 2.936787 2.995131

mad min max range skew kurtosis
ID1 11.8608000 1.0000000 33.000000 32.000000 0.0000000 -1.2022059
ID2 11.8608000 34.0000000 66.000000 32.000000 0.0000000 -1.2022059
PatientRace1 0.0000000 1.0000000 1.000000 0.000000 NaN NaN
PatientRace2 0.0000000 2.0000000 2.000000 0.000000 NaN NaN
Verbal1 2.9075794 0.3507447 13.011100 12.660355 -0.3705014 -0.1377654
Verbal2 3.2861809 4.5891699 19.311207 14.722037 1.0651306 1.5382575
Nonverbal1 0.9185825 0.8333731 5.000000 4.166627 0.1204796 0.1380025
Nonverbal2 0.5560620 1.1311619 4.350886 3.219724 -0.4338806 0.3937160

se
ID1 1.6832508
ID2 1.6832508
PatientRace1 0.0000000
PatientRace2 0.0000000
Verbal1 0.5196935
Verbal2 0.5576094
Nonverbal1 0.1610421
Nonverbal2 0.1218795

In this analysis we are interested in the verbal variable. We see that patients who are Black
received verbal interactions from physicians that were quantified by a mean score of 7.61 (SD =
2.99); physicians’ scores for White patients were 8.89 (SD = 3.20). Skew and kurtosis values for
the verbal ratings with Black patients were -.37 and -.14, respectively. They were 1.07 and 1.54 for
White patients. As before, these fall well below the absolute values of 3 (skew) and 10 (kurtosis)
that are considered to be concerning.
Beyond skew and kurtosis, we can formally test for deviations from normality with a Shapiro-Wilk.
The script below first groups the data by PatientRace and then applies the rstatix::shapiro_test().
We want the results to be non-significant.
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library(tidyverse)#opening this package so I can use the pipes

-- Attaching core tidyverse packages ------------------------ tidyverse 2.0.0 --
v dplyr 1.1.4 v readr 2.1.5
v forcats 1.0.0 v stringr 1.5.1
v ggplot2 3.5.1 v tibble 3.2.1
v lubridate 1.9.3 v tidyr 1.3.1
v purrr 1.0.2
-- Conflicts ------------------------------------------ tidyverse_conflicts() --
x dplyr::filter() masks stats::filter()
x dplyr::lag() masks stats::lag()
i Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors

shapiro <- dfIndSamples %>%
group_by(PatientRace) %>%
rstatix::shapiro_test(Verbal)

shapiro

# A tibble: 2 x 4
PatientRace variable statistic p
<fct> <chr> <dbl> <dbl>

1 Black Verbal 0.977 0.677
2 White Verbal 0.922 0.0204

The Shapiro-Wilk test of normality indicated that the dependent variable, evaluation of verbal
interaction with the patient was normally distributed within Black patients (𝑊 = 0.977, 𝑝 =
0.677), but not within White patients (𝑊 = 0.922, 𝑝 = 0.020. That is, the distribution of verbal
communication scores for physicians attending to White patients was statistically significantly
different from a normal distribution.

Should we be concerned? A general rule of thumb is that when cell sizes are larger than 15 the
independent t-test should be relatively robust to violations of normality [Green and Salkind, 2017c].

5.5.1.2 Are the variances of the dependent variable similar across the levels of the
grouping factor?

One of the assumptions of the independent samples t-test is that the variances of the dependent
variable (verbal communication) are similar for both levels of the PatientRace factor. We can use
the Levene’s test to do this. We want this value to be non-significant (𝑝 > .05). If violated, we we
can use the Welch’s test because it is robust to the violation of the homogeneity of variance.

Using rstatix::levene_test(), we simply need to point to the data, provide a “formula” in the form of
“dependent variable by grouping variable,” and specify about how to center the data. The median
is a commonly used because it provides a more robust test.
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rstatix::levene_test(dfIndSamples, Verbal ~ PatientRace, center=median)

# A tibble: 1 x 4
df1 df2 statistic p

<int> <int> <dbl> <dbl>
1 1 64 0.0398 0.843

The results of the Levene’s test are presented as an F statistic. We’ll get to F distributions in the
next chapter. For now, it is just important to know how to report and interpret them:

• Degrees of freedom are 1 and 64
• The value of the F statistic is 0.039
• The p value is 0.843 (i.e., greater than .05)

Happily, our Levene’s result is (𝐹 [1, 64] = 0.039, 𝑝 = 0.843) not significant. Because p is greater
than .05, we have not violated the homogeneity of variance assumption. That is to say, the variance
in the patient race groups is not statistically significantly different from each other. We can use
the regular (Student’s) formulation of the t-test for independent samples.

5.5.1.3 APA style write-up of testing the assumptions

My practice is to create APA style drafts of the different sections of the analysis as I work along.
Here’s how I might capture our evaluation of the statistical assumptions:

We began by analyzing the data to see if it met the statistical assumptions for analysis
with an independent samples t-test. One assumption is that the dependent variable
be normally distributed within the both levels of the grouping variable. We evaluated
skew and kurtosis using Kline’s [2016a] guidelines of the absolute values of 3 (skew)
and 10 (kurtosis). Our results were well-within these boundary conditions. Specifically,
the verbal ratings of physicians with Black patients were -.37 and -.14 for skew and
kurtosis, respectively; they were 1.07 and 1.54 for White patients. The Shapiro-Wilk
test of normality indicated that the dependent variable was normally distributed within
Black patients (𝑊 = 0.977, 𝑝 = 0.677), but not within White patients (𝑊 = 0.922, 𝑝 =
0.020). That is, the distribution of verbal communication scores for physicians attending
to White patients was statistically significantly different from a normal distribution.
Results of Levene’s homogeneity of variance test suggested that the variance in each
of the patient race groups was not statistically significantly different from each other
(𝐹 [1, 64] = 0.039, 𝑝 = 0.843). Because the independent samples t-test is relatively
robust to violations of normality when samples sizes have at least 15 participants per
cell [Green and Salkind, 2017c] and there was no violation of the homogeneity of variance
assumption we proceded with the Student’s formulation of the t-test for independent
samples.

Odds are, owing to space limitations in journals, you would not provide this much detail about an
independent samples t-test in an empirical manuscript. I am encouraging you to do so as you work
through these chapters because it is good practice for thinking through the logic and sequencing of
statistics as well as writing results in APA style.
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5.5.2 Computing the Independent Samples t-Test

We are ready to compute the independent samples t-test.

Calculating an independent samples t-test is possible through base R and a number of packages.
Kassambara’s [b] rstatix package is one we can use for all of the t-test and ANOVA problems that
we will work. I like it for several reasons. First, it was designed to be “pipe-friendly” in a manner
that is consistent with the tidyverse approach to working in R and there are numerous tutorials.
Additionally, rstatix objects work well with ggpubr, one of my favorite packages for graphing data
and results.

In the script below:

• the first element points to the dataframe
• the second element provides a “formula”

– we are predicting “Verbal” from “PatientRace”

• the third element, “var.equal=TRUE” means that we are using Student’s formulation (be-
cause we did not violate the homogeneity of variance assumption)

• specifying “detailed = TRUE” will produce the 95% confidence interval around the difference
in the two means

rstatix::t_test(dfIndSamples, Verbal~PatientRace, var.equal=TRUE, detailed=TRUE)

# A tibble: 1 x 15
estimate estimate1 estimate2 .y. group1 group2 n1 n2 statistic p

* <dbl> <dbl> <dbl> <chr> <chr> <chr> <int> <int> <dbl> <dbl>
1 -1.28 7.61 8.89 Verbal Black White 33 33 -1.67 0.0989
# i 5 more variables: df <dbl>, conf.low <dbl>, conf.high <dbl>, method <chr>,
# alternative <chr>

From this output we can start to draft our t string: 𝑡(64) = −1.675, 𝑝 = 0.099, 𝐶𝐼95(−2.80, 0.25).
Separately, we must request the effect size. Earlier in the lesson we calculated both Cohen’s d and
eta-squared. Unfortunately, the rstatix package only offers the Cohen’s d for t-tests. If you wanted
an eta-squared, it would be easy enough to hand-calculate (or obtain from another R package).

rstatix::cohens_d(dfIndSamples, Verbal ~ PatientRace, var.equal = TRUE)

# A tibble: 1 x 7
.y. group1 group2 effsize n1 n2 magnitude

* <chr> <chr> <chr> <dbl> <int> <int> <ord>
1 Verbal Black White -0.412 33 33 small

We can update our t string to include the effect size: 𝑡(64) = −1.675, 𝑝 = 0.099, 𝐶𝐼95(−2.80, 0.25), 𝑑 =
−0.412
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Figure 5.3: A colorful image of a workflow for the paired samples t-test focusing on the computation
of the t-test
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What does this mean? Our result is not-significant. Our estimate of the difference in verbal
communication ratings when physicians interacted with Black and White patients was -1.675. We
are 95% confident that that true mean difference is as low as -2.80 or as high as 0.25. Because
the confidence interval crosses zero, we cannot be certain that the true difference is zero. This is
consistent with the non-significant p value and effect size. Our output even tells us that the d of
-0.41 is small.

5.5.3 What if we had violated the homogeneity of variance assumption?

Earlier we used the Levene’s test to examine the homogeneity of variance assumption. If we had
violated it, the Welch’s formulation of the independent sample t-test is available to us. The rstatix
package makes this easy. We simply change the var.equal to FALSE. This will produce the Welch’s
alternative, which takes into consideration violations of the homogeneity of variance assumption.
Conveniently, “Student’s” or “Welch’s” will serve as the first row of the output.

rstatix::t_test(dfIndSamples, Verbal~PatientRace, var.equal=FALSE, detailed=TRUE)

# A tibble: 1 x 15
estimate estimate1 estimate2 .y. group1 group2 n1 n2 statistic p

* <dbl> <dbl> <dbl> <chr> <chr> <chr> <int> <int> <dbl> <dbl>
1 -1.28 7.61 8.89 Verbal Black White 33 33 -1.67 0.0989
# i 5 more variables: df <dbl>, conf.low <dbl>, conf.high <dbl>, method <chr>,
# alternative <chr>

Likely because of the similarity of the standard deviations associated with each level of patient
race and our equal cell sizes, this changes nothing about our conclusion. Note that the degrees of
freedom in the Student’s t-test analysis (the first one) was 64; in the Welch’s version, the degrees of
freedom is 63.685. It is this change that, when the homogeneity of variance assumption is violated,
can make the Welch’s results more conservative (i.e., less likely to have a statistically significant
result).

5.6 APA Style Results

Putting it altogether, here is an APA Style results section:

An independent samples t-test was conducted to evaluate the hypothesis that there
would be differences between the quality of physicians’ verbal communication depending
on whether the patient’s race (Black, White).

We began by analyzing the data to see if it met the statistical assumptions for analysis
with an independent samples t-test. One assumption is that the dependent variable
be normally distributed within the both levels of the grouping variable. We evaluated
skew and kurtosis using Kline’s [2016a] guidelines of the absolute values of 3 (skew)
and 10 (kurtosis). Our results were well-within these boundary conditions. Specifically,
the verbal ratings of physicians with Black patients were -.37 and -.14 for skew and
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kurtosis, respectively; they were 1.07 and 1.54 for White patients. The Shapiro-Wilk
test of normality indicated that the dependent variable was normally distributed within
Black patients (𝑊 = 0.977, 𝑝 = 0.677), but not within White patients (𝑊 = 0.922, 𝑝 =
0.020. That is, the distribution of verbal communication scores for physicians attending
to White patients was statistically significantly different from a normal distribution.
Results of Levene’s homogeneity of variance test suggested that the variance in each
of the patient race groups was not statistically significantly different from each other
(𝐹 [1, 64] = 0.039, 𝑝 = 0.843). Because the independent samples t-test is relatively
robust to violations of normality when samples sizes have at least 15 participants per
cell [Green and Salkind, 2017c] and there was no violation of the homogeneity of variance
assumption we proceded with the Student’s formulation of the t-test for independent
samples.

Results of the independent samples t-test was nonsignificant, 𝑡(64) = −1.675, 𝑝 =
.099, 𝑑 = 0.412. The 95% confidence interval for the difference in means ranged from
-2.799 to 0.246. Means and standard deviations are presented in Table 1; the results
are illustrated in Figure 1.

apaTables::apa.1way.table(PatientRace, Verbal, dfIndSamples)

Descriptive statistics for Verbal as a function of PatientRace.

PatientRace M SD
Black 7.61 2.99
White 8.89 3.20

Note. M and SD represent mean and standard deviation, respectively.

The figure we created earlier in the lesson would be sufficient for a journal article. However, using
rstatix in combination with ggpubbr can be quite powerful. The result can be a figure that includes
the t-test results and “significance bars.” To do this, we first need to re-run the rstatix::t_test, but
adding to it by

• including “add_significance()” script after the pipe, and
• saving it as an object, which I’m naming “pair.test.”

We could have done this in the initial run (but I didn’t want to make the test-statistic unnecessarily
confusing).

ind.test <- rstatix::t_test(dfIndSamples, Verbal~PatientRace, var.equal=TRUE, detailed=TRUE) %>%
rstatix::add_significance()

ind.test
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# A tibble: 1 x 16
estimate estimate1 estimate2 .y. group1 group2 n1 n2 statistic p

<dbl> <dbl> <dbl> <chr> <chr> <chr> <int> <int> <dbl> <dbl>
1 -1.28 7.61 8.89 Verbal Black White 33 33 -1.67 0.0989
# i 6 more variables: df <dbl>, conf.low <dbl>, conf.high <dbl>, method <chr>,
# alternative <chr>, p.signif <chr>

Next, we update the earlier boxplot code with the results from our statistical analyses:

ind.box <- ggpubr::ggboxplot(dfIndSamples, x = "PatientRace", y = "Verbal", color = "PatientRace", palette=c("#00AFBB", "#FC4E07"), add = "jitter", title = "Figure 1. Physician Verbal Engagement as a Function of Patient Race")
ind.test <- ind.test %>% rstatix::add_xy_position(x = "PatientRace") #autocomputes p-value labels positions
ind.box <- ind.box +

ggpubr::stat_pvalue_manual(ind.test, label = "p.signif", tip.length=.02, hide.ns = FALSE, y.position = c(18)) +
labs(subtitle = rstatix::get_test_label(ind.test, detailed=TRUE)) #adds t-test results

ind.box
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T test, t (64) = −1.67, p = 0.099, n = 66

Figure 1. Physician Verbal Engagement as a Function of Patient Race

Between the rstatix and ggpubr tools, there is a great deal of flexibility in creating figures. Deter-
mining which figure is best will likely depend on your outlet, your audience, your goals, and your
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personal preferences. For example, a print journal might prefer a black-and-white figure (with
no fill in the boxes). This is accomplished easily enough by removing (or, hashtagging out) the
“color” and “palette” arguments.

5.7 Power in Independent Samples t-tests

Researchers often use power analysis packages to estimate the sample size needed to detect a
statistically significant effect, if, in fact, there is one. Utilized another way, these tools allows us to
determine the probability of detecting an effect of a given size with a given level of confidence. If
the probability is unacceptably low, we may want to revise or stop. A helpful overview of power
as well as guidelines for how to use the pwr package can be found at a Quick-R website [Kabacoff,
2017].

In Champely’s pwr package, we can conduct a power analysis for a variety of designs, including
the independent samples t-test that we worked in this lesson. There are a number of interrelating
elements of power:

• Sample size, n refers to the number of observations in each group; our vignette had 33
• d refers to the difference between means divided by the pooled standard deviation; we can

use the value of Cohen’s d for this
• power refers to the power of a statistical test; conventionally it is set at .80
• sig.level refers to our desired alpha level; conventionally it is set at .05
• type indicates the type of test we ran; this was “two.sample”
• alternative refers to whether the hypothesis is non-directional/two-tailed (“two.sided”) or

directional/one-tailed(“less” or “greater”)

In this script, we must specify all-but-one parameter; the remaining parameter must be defined as
NULL. R will calculate the value for the missing parameter.

When we conduct a “power analysis” (i.e., the likelihood of a hypothesis test detecting an effect if
there is one), we specify, “power=NULL”. Using the data from our results, we learn from this first
run, that our statistical power was 0.38. That is, given the value of the mean difference (1.276) we
had a 38% chance of detecting a statistically significant effect if there was one. This is consistent
with our non-significant result.

pwr::pwr.t.test(d= -0.412,n = 33, power=NULL,sig.level=0.05,type="two.sample",alternative="two.sided")

Two-sample t test power calculation

n = 33
d = 0.412

sig.level = 0.05
power = 0.3778572

alternative = two.sided

NOTE: n is number in *each* group

https://www.statmethods.net/stats/power.html
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Researchers frequently use these tools to estimate the sample size required to obtain a statistically
significant effect. In these scenarios we set n to NULL. Using the results from the simulation of
our research vignette, you can see that we would have needed 93 individuals (per group; 186 total)
for the p value to be < .05.

pwr::pwr.t.test(d= -0.412,n = NULL, power=0.8,sig.level=0.05,type="two.sample",alternative="two.sided")

Two-sample t test power calculation

n = 93.44893
d = 0.412

sig.level = 0.05
power = 0.8

alternative = two.sided

NOTE: n is number in *each* group

Given that we had a non-significant result, this is not surprising. None-the-less, let’s try it again.
Below I will re-simulate the data for the verbal scores and change only the sample size:

set.seed(230525)
#sample size, M, and SD for Black then White patients
rVerbal <- c(rnorm(93, mean=8.37, sd=3.36), rnorm(93, mean = 8.41, sd=3.21))
#set upper bound
rVerbal[rVerbal>27]<-3
#set lower bound
rVerbal[rVerbal<0]<-0
#sample size, M, and SD for Black then White patients
rNonverbal <- c(rnorm(93, mean=2.68, sd=.84), rnorm(93, mean = 2.93, sd=.77))
#set upper bound
rNonverbal[rNonverbal>5]<-5
#set lower bound
rNonverbal[rNonverbal<0]<-0

rID<-factor(seq(1,186))
#name factors and identify how many in each group; should be in same order as first row of script
rPatientRace<-c(rep("Black", 93), rep("White", 93))
#groups the 3 variables into a single df: ID#, DV, condition
rdfIndSamples <-data.frame(rID, rPatientRace, rVerbal, rNonverbal)

rdfIndSamples$rPatientRace <- factor(rdfIndSamples$rPatientRace, levels = c("Black", "White"))

rstatix::t_test(rdfIndSamples, rVerbal~rPatientRace, var.equal=TRUE, detailed=TRUE)

# A tibble: 1 x 15
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estimate estimate1 estimate2 .y. group1 group2 n1 n2 statistic p
* <dbl> <dbl> <dbl> <chr> <chr> <chr> <int> <int> <dbl> <dbl>
1 0.852 9.02 8.17 rVerb~ Black White 93 93 1.71 0.0884
# i 5 more variables: df <dbl>, conf.low <dbl>, conf.high <dbl>, method <chr>,
# alternative <chr>

rstatix::cohens_d(rdfIndSamples, rVerbal~rPatientRace, var.equal = TRUE)

# A tibble: 1 x 7
.y. group1 group2 effsize n1 n2 magnitude

* <chr> <chr> <chr> <dbl> <int> <int> <ord>
1 rVerbal Black White 0.251 93 93 small

Curiously, our result is still not statistically significant: 𝑡(184) = 1.713, 𝑝 = 0.088, 𝑑 =
0.251, 𝐶𝐼95[−0.129, 1.832]. Given the closeness of our means (9.025, 8.173), this makes sense to
me. Additionally, it does show us, though, how power is influenced by sample size. Holding all
else equal, the larger the sample, the more likely we are to have a statistically significant result.

5.8 Practice Problems

The suggestions for homework differ in degree of complexity. I encourage you to start with a
problem that feels “do-able” and then try at least one more problem that challenges you in some
way. Regardless, your choices should meet you where you are (e.g., in terms of your self-efficacy
for statistics, your learning goals, and competing life demands).

Additionally, please complete at least one set of hand calculations, that is using the code demon-
strated in the chapter to work through the formulas that compute the independent samples t-test.
At this stage in your learning, you may ignore any missingness in your dataset by excluding all
rows with missing data in your variables of interest.

5.8.1 Problem #1: Rework the research vignette as demonstrated, but change
the random seed

If this topic feels a bit overwhelming, simply change the random seed in the data simulation of the
research vignette, then rework the problem. This should provide minor changes to the data (maybe
even in the second or third decimal point), but the results will likely be very similar. That said,
don’t be alarmed if what was non-significant in my working of the problem becomes significant.
Our selection of p < .05 (and the corresponding 95% confidence interval) means that 5% of the
time there could be a difference in statistical significance.

5.8.2 Problem #2: Rework the research vignette, but change something about
the simulation

Rework the independent samples t-test in the lesson by changing something else about the simu-
lation. You might have noticed that my re-simulation of a smaller sample size did not produce a
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statistically significant result. You may wish to pick a value in between the primary lecture N and
the re-simulation to see what it takes to achieve statistical significance. Alternatively, you could
specify different means and/or standard deviations.

5.8.3 Problem #3: Rework the research vignette, but swap one or more vari-
ables

Use the simulated data, but select the nonverbal communication variables that were evaluated in
the Elliott et al. [2016]study. Compare your results to those reported in the mansucript.

5.8.4 Problem #4: Use other data that is available to you

Using data for which you have permission and access (e.g., IRB approved data you have collected
or from your lab; data you simulate from a published article; data from an open science repository;
data from other chapters in this OER), complete an independent samples t-test.

5.8.5 Grading Rubric

Regardless which option(s) you chose, use the elements in the grading rubric to guide you through
the practice.

Assignment Component Points Possible Points Earned
1. Narrate the research vignette, describing the
variables and their role in the analysis

5 _____

2. Simulate (or import) and format data 5 _____
3. Evaluate statistical assumptions 5 _____
4. Conduct an independent samples t-test (with an
effect size and 95%CIs)

5 _____

5. APA style results with table(s) and figure 5 _____
6. Conduct power analyses to determine the power
of the current study and a recommended sample
size

5 _____

7. Explanation to grader 5 _____
Totals 35 _____

Hand Calculations Points Possible Points Earned
1. Using traditional NHST (null hypothesis testing
language), state your null and alternative hypotheses

2 _____

2. Using an R package or functions in base R,
calculate the means and standard deviations for both
levels of the dependent variable

4 _____

3. Calculate the SE used in the denominator of the
t-test

4 _____

4. Calculate the independent samples t-test 4 _____
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Hand Calculations Points Possible Points Earned
5. Identify the degrees of freedom associated with
your t-test

2 _____

6. Locate the test critical value for your test 2 _____
7. Is the t-test statistically significant? Why or why
not?

2 _____

8. What is the confidence interval around the
difference in sample means?

4 _____

9.Calculate the effect size (i.e., Cohen’s d associated
with your t-test

4 _____

10. Assemble the results into a statistical string 4 _____
Totals 32 _____

5.9 Homeworked Example

Screencast Link

For more information about the data used in this homeworked example, please refer to the descrip-
tion and codebook located at the end of the introduction.

The independent-samples t-test is useful when you want to compare means across two different
groups. That is, the people in the comparison groups must be different from each other.

5.9.1 Working the Problem with R and R Packages

Narrate the research vignette, describing the variables and their role in the analysis

I want to ask the question, “Do the course evaluation ratings for the traditional pedagogy subscale
differ for CPY and ORG students in the ANOVA class?”

I will use the mean rating for the traditional pedagogy subscale. As a mean, it retains its continuous,
Likert scaling, ranging from 1 to 5 (with higher scores being more positive).

My predictor variable will be department. It has two levels: CPY and ORG.

If you wanted to use this example and dataset as a basis for a homework assignment, you could
change the course (i.e., Multivariate or Psychometrics) and/or change the dependent variable to
one of the other scales.

Simulate (or import) and format data

First, bring in the dataset.

big <- readRDS("ReC.rds")

To avoid “dependency” in the data, I will just use data from the ANOVA course. Let’s first trim
it to just students who took ANOVA

https://youtu.be/slmvZaXXEU8
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JustANOVA <- subset(big, Course == "ANOVA")

I will create a mean score of completed items from the traditional pedagogy scale.

#This code was recently updated and likely differs from the screencasted lecture

#Calculates a mean if at least 75% of the items are non-missing; adjusts the calculating when there is missingness
JustANOVA$TradPed <- datawizard::row_means(JustANOVA, select = c('ClearResponsibilities', 'EffectiveAnswers','Feedback', 'ClearOrganization','ClearPresentation'), min_valid = .75)

To make it easier for teaching, I will make a super tiny df with just the predictor and continuous
variable.

IndT_df <-(dplyr::select(JustANOVA, Dept, TradPed))

And further trim to non-missing data

IndT_df <- na.omit(IndT_df)

Are the structures of the variables as follows: * Grouping variable: factor * Dependent variable:
numerical or integer

In our case we want Department to be a factor with two levels and the SCRPed variable to be
integer or numerical.

str(IndT_df)

Classes 'data.table' and 'data.frame': 112 obs. of 2 variables:
$ Dept : chr "CPY" "CPY" "CPY" "CPY" ...
$ TradPed: num 4.4 3.8 4 3 4.8 3.5 4.6 3.8 3.6 4.6 ...
- attr(*, "na.action")= 'omit' Named int [1:2] 74 84
..- attr(*, "names")= chr [1:2] "202" "234"

Since the Department is a character variable, we need to change it to be a factor.

IndT_df$Dept <- factor(IndT_df$Dept)
str(IndT_df$Dept)

Factor w/ 2 levels "CPY","ORG": 1 1 1 1 1 1 1 1 1 1 ...

Without further coding, R will order the factors alphabetically. This is fine. CPY will be the
base/intercept and ORG will be the comparison (this becomes more important in regression).
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Evaluate statistical assumptions

• Evaluate and report skew and kurtosis
• Evaluate and correctly interpret homogeneity of variance (if Levene’s < .05; use Welch’s

formulation)

psych::describeBy(IndT_df ~ Dept, type =1, mat=TRUE)

item group1 vars n mean sd median trimmed mad min max
Dept1 1 CPY 1 81 1.000000 0.0000000 1.0 1.000000 0.00000 1.0 1
Dept2 2 ORG 1 31 2.000000 0.0000000 2.0 2.000000 0.00000 2.0 2
TradPed1 3 CPY 2 81 4.129630 0.7547259 4.2 4.210769 0.88956 1.8 5
TradPed2 4 ORG 2 31 3.870968 1.0948953 4.0 4.040000 1.18608 1.0 5

range skew kurtosis se
Dept1 0.0 NaN NaN 0.00000000
Dept2 0.0 NaN NaN 0.00000000
TradPed1 3.2 -0.7630015 0.1555318 0.08385843
TradPed2 4.0 -1.1832786 0.5826528 0.19664900

Although I included Dept in the descriptives, it is a factor and therefore the values around distri-
bution are rather senseless.
TradPed, though, is a continuously scored variable:
Skew = -0.763 (CPY) and -1.183 (ORG) falls below the |3.0| threshold of concern (Klein, 2016)
Kurtosis = 0.156 (CPY) and 0.583 (ORG) falls below the |10.0| threshold of concern (Klein, 2016)
We can use the Shapiro Wilk test for a formal test of normality

library(tidyverse)#opening this package so I can use the pipes
shapiro <- IndT_df%>%

group_by(Dept) %>%
rstatix::shapiro_test(TradPed)

shapiro

# A tibble: 2 x 4
Dept variable statistic p
<fct> <chr> <dbl> <dbl>

1 CPY TradPed 0.918 0.0000731
2 ORG TradPed 0.851 0.000544

The Shapiro-Wilk test of normality indicated that the dependent variable, traditional pedagogy,
differed significantly from a normal distribution for both CPY students (𝑊 = 0.918, 𝑝 < 0.001)
and ORG students(𝑊 = 0.851, 𝑝 < 0.001).
Should we be concerned? A general rule of thumb is that when cell sizes are larger than 15 the
independent t-test should be relatively robust to violations of normality [Green and Salkind, 2017c].
Although there are more CPY than ORG students, we are well-powered.
For fun (not required), let’s produce a pairs.panels.
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psych::pairs.panels(IndT_df)

Dept
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We can see that we’ll have more CPY students than ORG students. Although our kurtosis was
below |10| our distribution looks negatively skewed, with the majority of the scores being on the
high end of the scale.
And now for homogeneity of variance:

rstatix::levene_test(IndT_df, TradPed ~ Dept, center=median)

# A tibble: 1 x 4
df1 df2 statistic p

<int> <int> <dbl> <dbl>
1 1 110 2.46 0.120

Levene’s test for homogeneity of variance indicated that we did not violate the assumption of
homogeneity of variance (𝐹 [1, 110] = 2.460, 𝑝 = 0.120). That is to say, the variance in each of
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the departments is not statistically significantly different from each other. We can use the regular
(Student’s) formulation of the t-test for independent samples.

Conduct an independent samples t-test (with an effect size and 95%CIs)

Conduct the independent samples t-test (with an effect size)

indT.test <- rstatix::t_test(IndT_df, TradPed~Dept, var.equal=TRUE, detailed=TRUE) %>%
rstatix::add_significance()

indT.test

# A tibble: 1 x 16
estimate estimate1 estimate2 .y. group1 group2 n1 n2 statistic p

<dbl> <dbl> <dbl> <chr> <chr> <chr> <int> <int> <dbl> <dbl>
1 0.259 4.13 3.87 TradPed CPY ORG 81 31 1.42 0.158
# i 6 more variables: df <dbl>, conf.low <dbl>, conf.high <dbl>, method <chr>,
# alternative <chr>, p.signif <chr>

From this output we learn that the value of the t-test is 1.423 and is non-significant p = 0.148. We
are 95% confident that the mean diference falls between -0.102 and 0.618. Because this threshold
crosses zero, we cannot be certain that the true difference in means is not zero. Here’s how I would
represent these results in a statistical string: 𝑡(110) = 1.423, 𝑝 = 0.158, 𝐶𝐼95(0.102, 0.619).
Calculating the Cohen’s d as the effect size.

rstatix::cohens_d(IndT_df, TradPed ~ Dept, var.equal = TRUE)

# A tibble: 1 x 7
.y. group1 group2 effsize n1 n2 magnitude

* <chr> <chr> <chr> <dbl> <int> <int> <ord>
1 TradPed CPY ORG 0.300 81 31 small

The value of Cohen’s d statistic (interpreted in standard deviation units) is 0.300 and is small. We
can add this value to the statistical string: 𝑡(110) = 1.423, 𝑝 = 0.158, 𝐶𝐼95(0.102, 0.619), 𝑑 = 0.300.

APA style results with table(s) and figure

• Complete content of results (including t, df, p, d-or-eta, CI95%)
• Table
• Figure
• Grammar/formatting

An independent samples t-test was conducted to evaluate the hypothesis that there
would be differences in course evaluation ratings of traditional pedagogy between aca-
demic departments (CPY, ORG).
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We began by analyzing the data to see if it met the statistical assumptions for analysis
with an independent samples t-test. One assumption is that the dependent variable
be normally distributed within the both levels of the grouping variable. We evaluated
skew and kurtosis using Kline’s [2016a] guidelines of the absolute values of 3 (skew)
and 10 (kurtosis). Our results were well-within these boundary conditions. Specifically,
the traditional pedagogy ratings for CPY were -0.763 and 0.156 for skew and kurtosis,
respectively; they were -1.183 and 0.583 for ORG. The Shapiro-Wilk test of normality
indicated that the dependent variable, traditional pedagogy, differed significantly from
a normal distribution for both CPY students (𝑊 = 0.918, 𝑝 < 0.001) and ORG students
(𝑊 = 0.851, 𝑝 < 0.001). Levene’s test for homogeneity of variance indicated that we did
not violate the assumption of homogeneity of variance (𝐹 [1, 110] = 2.460, 𝑝 = 0.120).
That is to say, the variance in each of the departments is not statistically significantly
different from each other. Because the independent samples t-test is relatively robust
to violations of normality when samples sizes have at least 15 participants per cell
[Green and Salkind, 2017c] and there was no violation of the homogeneity of variance
assumption we proceded with the Student’s formulation of the t-test for independent
samples.

The independent samples t-test was nonsignificant, 𝑡(110) = 1.423, 𝑝 = 0.158, the effect
size (d = 0.300) was small. The 95% confidence interval for the difference in means
ranged from -0.102 to 0.619. Means and standard deviations are presented in Table 1;
the results are illustrated in Figure 1.

We can use the apaTables package to create a table of means and standard deviations.

apaTables::apa.1way.table(Dept, TradPed, IndT_df)

Descriptive statistics for TradPed as a function of Dept.

Dept M SD
CPY 4.13 0.75
ORG 3.87 1.09

Note. M and SD represent mean and standard deviation, respectively.

And now a figure.

indT.box <- ggpubr::ggboxplot(IndT_df, x = "Dept", y = "TradPed", color = "Dept", palette=c("#00AFBB", "#FC4E07"), add = "jitter", title = "Figure 1. Traditional Pedagogy as a Function of Academic Department")
ind.testT <- indT.test %>% rstatix::add_xy_position(x = "Dept") #autocomputes p-value labels positions
indT.box <- indT.box +

ggpubr::stat_pvalue_manual(ind.testT, label = "p.signif", tip.length=.02, hide.ns = FALSE, y.position = c(5.5)) +
labs(subtitle = rstatix::get_test_label(indT.test, detailed=TRUE)) #adds t-test results

indT.box
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Figure 1. Traditional Pedagogy as a Function of Academic Department

Conduct power analyses to determine the power of the current study and a recom-
mended sample size

We can use Cohen’s d in this specification of d.

pwr::pwr.t.test(d = 0.30, n = 112, power = NULL, sig.level = 0.05,type = "two.sample", alternative = "two.sided")

Two-sample t test power calculation

n = 112
d = 0.3

sig.level = 0.05
power = 0.6084749

alternative = two.sided
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NOTE: n is number in *each* group

We were at 61% power. That is, given the value of the mean difference (), we had a 61% chance of
detecting a statistically significant effect if there was one. How big of a sample would it take?

pwr::pwr.t.test(d = 0.3, n = NULL, power = 0.8, sig.level = 0.05, type = "two.sample", alternative = "two.sided")

Two-sample t test power calculation

n = 175.3847
d = 0.3

sig.level = 0.05
power = 0.8

alternative = two.sided

NOTE: n is number in *each* group

To find a statistically significant difference, we would need 175 per group. This large size is consis-
tent with the small effect – that there isn’t really a difference between the two groups.

5.9.2 Hand Calculations

I will use the same example (and same dataset) for hand calculations. Before we continue:

You may notice that the results from the hand calculation are slightly different from the
results I will obtain with the R packages. This is because the formula we have used for
the hand-calculations presumes that we have a balanced design (i.e., that the cell sizes
are equal). When cell sizes are unequal (i.e., an unbalanced design) the rstatix::t_test
will produce different results.

Should we be concerned? No (and yes). My purpose in teaching hand calculations is
for creating a conceptual overview of what is occurring in these statistics. If this lesson
was a deeper exploration into the inner workings of t-tests, we would take more time to
understand what is occurring.

Using traditional NHST (null hypothesis testing language), state your null and alter-
native hypotheses

𝐻0 ∶ 𝜇1 = 𝜇2

𝐻𝐴 ∶ 𝜇1 ≠ 𝜇2

Using an R package or functions in base R, calculate the means and standard deviations
for both levels of the dependent variable
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psych::describeBy(IndT_df ~ Dept, type =1, mat=TRUE)

item group1 vars n mean sd median trimmed mad min max
Dept1 1 CPY 1 81 1.000000 0.0000000 1.0 1.000000 0.00000 1.0 1
Dept2 2 ORG 1 31 2.000000 0.0000000 2.0 2.000000 0.00000 2.0 2
TradPed1 3 CPY 2 81 4.129630 0.7547259 4.2 4.210769 0.88956 1.8 5
TradPed2 4 ORG 2 31 3.870968 1.0948953 4.0 4.040000 1.18608 1.0 5

range skew kurtosis se
Dept1 0.0 NaN NaN 0.00000000
Dept2 0.0 NaN NaN 0.00000000
TradPed1 3.2 -0.7630015 0.1555318 0.08385843
TradPed2 4.0 -1.1832786 0.5826528 0.19664900

CPY: M = 4.130, SD = 0.755 ORG: M = 3.871, SD = 1.095

Calulate the SE used in the denominator of the t-test

Just as a reminder, the SE is the denominator in the t-test formula:

𝑡 =
̄𝑋1 − ̄𝑋2

√ 𝑠2
1

𝑁1
+ 𝑠2

2
𝑁2

sqrt((0.7547259^2/81) + (1.0948953^2/31))

[1] 0.2137828

The SE = 0.214

Calculate the independent samples t-test

(4.129630 - 3.870968)/0.2137828

[1] 1.209929

I note that this hand calculation differs from the worked in R. I believe this is likely due to an
unbalanced design with unequal cell sizes (81 and 31).

Identify the degrees of freedom associated with your t-test

𝑁 − 2 is the degrees of freedom: 112-2, df = 110
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Locate the test critical value for your test

We can look at a table of critical values

For a two-tailed test, with alpha of 0.05, and a sample size of 120 (close enough), the t-statistic
must be greater than 1.98.

We could also obtain a t critical value with this code:

qt(0.05/2, 112, lower.tail = TRUE)

[1] -1.981372

qt(0.05/2, 112, lower.tail = FALSE)

[1] 1.981372

Is the t-test statistically significant? Why or why not?

In a two-tailed test, if the t-statistic falls outside the boundaries of -1.98 and 1.98 the means of the
two groups are statistically significantly different from each other.

My t value of 1.209929 does not exceed these boundaries and therefore is not statistically significant.

Calculate the confidence interval around the difference in sample means

Calculating a confidence interval around the difference in sample means requires the two-tailed test
critical values. We can insert them into this formula:

( ̄𝑋1 − ̄𝑋2) ± 𝑡𝑐𝑣(𝑆𝐸)

(4.129630 - 3.870968) - (1.209929 * 0.2137828)

[1] -0.0000000094212

(4.129630 - 3.870968) + (1.209929 * 0.2137828)

[1] 0.517324

We are 95% confident that the mean difference falls between -0.000 and 0.517. Because this interval
passes through zero, we cannot be certain that the difference is 0. This is consistent with the non-
significant p value.

https://www.statology.org/t-distribution-table/
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Calculate the effect size (i.e., Cohen’s d associated with your t-test

Here is the formula for Cohen’s d:

𝑑 = 𝑡√𝑁1 + 𝑁2
𝑁1𝑁2

1.209929 * (sqrt((81 + 31)/(81 * 31)))

[1] 0.2555321

Assemble the results into a statistical string

𝑡(110) = 1.210, 𝑝 > 0.05, 𝐶𝐼95(−0.000, 0.517), 𝑑 = 0.256
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Chapter 6

Paired Samples t-test

Screencasted Lecture Link

Researchers are often interested in knowing if participants score differently on some outcome vari-
able (like affective well-being) across two conditions. These conditions could be before and after
an intervention; they could also be interventionless exposures such as scary versus funny movies.
In these simple designs, the paired t-test can be used to test the researchers’ hypotheses.

6.1 Navigating this Lesson

There is about 45 minutes of lecture. If you work through the materials with me it would be plan
for an additional hour

While the majority of R objects and data you will need are created within the R script that sources
the chapter, occasionally there are some that cannot be created from within the R framework.
Additionally, sometimes links fail. All original materials are provided at the Github site that hosts
the book. More detailed guidelines for ways to access all these materials are provided in the OER’s
introduction

6.1.1 Learning Objectives

Learning objectives from this lecture include the following:

• Recognize the research questions for which utilization of paired sample t-tests would be ap-
propriate.

• Narrate the steps in conducting a paired samples t-test, beginning with testing the statistical
assumptions through writing up an APA style results section.

• Calculate a paired samples t-test in R (including effect sizes).
• Interpret a 95% confidence interval around a mean difference score.
• Produce an APA style results for a paired-samples t-test.
• Determine a sample size that (given a set of parameters) would likely result in a statistically

significant effect, if there was one.
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https://youtube.com/playlist?list=PLtz5cFLQl4KNYvBQJnO_VFpoS5gJJOTJ8
https://github.com/lhbikos/ReCenterPsychStats
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6.1.2 Planning for Practice

The suggestions for homework vary in degree of complexity. The more complete descriptions at the
end of the chapter follow these suggestions.

• Rework the paired samples t-test in the lesson by changing the random seed in the code that
simulates the data. This should provide minor changes to the data, but the results will likely
be very similar.

• Rework the paired samples t-test in the lesson by changing something else about the simula-
tion. For example, if you are interested in power, consider changing the sample size.

• Use the simulated data that is provided, but use the nonverbal variable, instead.
• Conduct paired t-test with data to which you have access and permission to use. This could

include data you simulate on your own or from a published article.

6.1.3 Readings & Resources

In preparing this chapter, I drew heavily from the following resource(s). Other resources are cited
(when possible, linked) in the text with complete citations in the reference list.

• How to Do Paired T-test in R: The Best Tutorial You Will Love. (n.d.). Datanovia. Re-
trieved May 25, 2023, from https://www.datanovia.com/en/lessons/how-to-do-a-t-test-in-r-
calculation-and-reporting/how-to-do-paired-t-test-in-r/

– This tutorial provides a demonstration of the paired sampes t-test using the rstatix
package.

• Navarro, D. (2020). Chapter 13: Comparing two means. In Learning Statistics with R
- A tutorial for Psychology Students and other Beginners. Retrieved from https://stats.
libretexts.org/Bookshelves/Applied_Statistics/Book%3A_Learning_Statistics_with_R_-
_A_tutorial_for_Psychology_Students_and_other_Beginners_(Navarro)

– Navarro’s OER includes a good mix of conceptual information about t-tests as well as R
code. My lesson integrates her approach as well as considering information from Field’s
[2012] and Green and Salkind’s [Green and Salkind, 2017c] texts (as well as searching
around on the internet).

• Elliott, A. M., Alexander, S. C., Mescher, C. A., Mohan, D., & Barnato, A. E. (2016).
Differences in Physicians’ Verbal and Nonverbal Communication With Black and White Pa-
tients at the End of Life. Journal of Pain and Symptom Management, 51(1), 1–8. https:
//doi.org/10.1016/j.jpainsymman.2015.07.008

– The source of our research vignette.

6.1.4 Packages

The script below will (a) check to see if the following packages are installed on your computer and,
if not (b) install them.

https://www.datanovia.com/en/lessons/how-to-do-a-t-test-in-r-calculation-and-reporting/how-to-do-paired-t-test-in-r/
https://www.datanovia.com/en/lessons/how-to-do-a-t-test-in-r-calculation-and-reporting/how-to-do-paired-t-test-in-r/
https://learningstatisticswithr.com/
https://learningstatisticswithr.com/
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Book%3A_Learning_Statistics_with_R_-_A_tutorial_for_Psychology_Students_and_other_Beginners_(Navarro)
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Book%3A_Learning_Statistics_with_R_-_A_tutorial_for_Psychology_Students_and_other_Beginners_(Navarro)
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Book%3A_Learning_Statistics_with_R_-_A_tutorial_for_Psychology_Students_and_other_Beginners_(Navarro)
https://doi.org/10.1016/j.jpainsymman.2015.07.008
https://doi.org/10.1016/j.jpainsymman.2015.07.008
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#will install the package if not already installed
#if(!require(psych)){install.packages("psych")}
#if(!require(faux)){install.packages("faux")}
#if(!require(tidyverse)){install.packages("tidyverse")}
#if(!require(dplyr)){install.packages("dplyr")}
#if(!require(ggpubr)){install.packages("ggpubr")}
#if(!require(pwr)){install.packages("pwr")}
#if(!require(apaTables)){install.packages("apaTables")}
#if(!require(knitr)){install.packages("knitr")}
#if(!require(rstatix)){install.packages("rstatix")}

6.2 Introducing the Paired Samples t-test

There are a couple of typical use cases for the paired samples t-test. Repeated measures or change-
over-time is a very common use. In this case, the research participant may take a pre-test, be
exposed to an intervention or other type of stimulus, then take a post-test. Owing to the limitations
of the statistics, all participants must be exposed to the same intervention/stimulus.

Figure 6.1: An image of a row with three boxes: pre-test (in blue), intervention or exposure to
stimulus (in light red), post-test (in blue) representing the use of a paired samples t-test in a
repeated measures design

A second common use is the assessment of a research participant in two competing conditions. An
example might be the galvanic skin response ratings when a participant’s hand is submerged in
ice versus the GSR ratings when the hand is not exposed in ice. A strength of this design is the
within-subjects’ control of the participant.

Figure 6.2: An image of a row with two boxes labeled Condition A in light blue) and Condition B
(in dark blue). This represents the use of a paired samples t-test to compare across conditions

In the formula for the paired samples t-test we see a �̄� in the numerator. This represents the
difference between the continuously scaled scores in the two conditions. The denominator involves
a standard deviation of the difference scores (�̂�𝐷) and the square root of the sample size.

𝑡 = �̄�
�̂�𝐷/

√
𝑁

Although these types of research design and analyses are quite handy, they have some limitations.
First, the paired samples t-test cannot establish causality because it lacks elements such as com-
paring conditions (e.g., treatment vs. control) and random assignment to those conditions. If a



174 CHAPTER 6. PAIRED SAMPLES T-TEST

research wants to compare pre-post change as a result of participating in more-than-one condi-
tion, a mixed design ANOVA would be a better option. Second, the paired samples t-test cannot
accommodate more than two comparison conditions. If the researcher wants to compare three
or or more time periods or conditions, they will want to consider repeated measures ANOVA or
multilevel/hierarchical linear modeling.

6.2.1 Workflow for Paired Samples t-test

The following is a proposed workflow for conducting the paired samples t-test.

Figure 6.3: A colorful image of a workflow for the paired samples t-test

If the data meets the assumptions associated with the research design (e.g., independence of differ-
ence scores and a continuously scaled metric for that difference score), these are the steps for the
analysis of an independent samples t-test:

1. Prepare (upload) data.
2. Explore data with

• graphs
• descriptive statistics

3. Assess normality of the difference scores via skew and kurtosis

https://lhbikos.github.io/MultilevelModeling/
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4. Compute the paired samples t-test
5. Compute an effect size (frequently the d or eta statistic)
6. Manage Type I error
7. Sample size/power analysis (which you should think about first, but in the context of teaching

statistics, it’s more pedagogically sensible, here).

6.3 Research Vignette

Empirically published articles where t-tests are the primary statistic are difficult to locate. Having
exhausted the psychology archives, I located this article in an interdisciplinary journal focused on
palliative medicine. The research vignette for this lesson examined differences in physician’s verbal
and nonverbal communication with Black and White patients at the end of life [Elliott et al., 2016].

Elliott and colleagues [2016] were curious to know if hospital-based physicians (56% White, 26%
Asian, 7.4% each Black and Hispanic) engaged in verbal and nonverbal communication differently
with Black and White patients. Black and White patient participants were matched on characteris-
tics deemed important to the researchers (e.g., critically and terminally ill, prognostically similar).
Interactions in the intensive care unit were audio and video recorded and then coded on dimensions
of verbal and nonverbal communication.

Because each physician saw a pair of patients (i.e., one Black patient and one White patient), the
researchers utilized a paired samples, or dependent t-test. This statistical choice was consistent with
the element of the research design that controlled for physician effects through matching patients
on critical characteristics. Below are the primary findings of the study.

Black Patients White Patients
Category Mean(SD) Mean(SD) p-value
Verbal skill score (range 0 - 27) 8.37(3.36) 8.41(3.21) 0.958
Nonverbal skill score (range 0 - 5) 2.68(.84) 2.93(.77) 0.014

The primary analysis utilized by Elliott and colleagues [2016] was the paired samples t-test. We
will replicate that exact analysis with simulated data.

6.3.1 Simulating Data for the Paired Samples t-test

Below is the code I used to simulate the data. The following code assumes 33 physician participants
who had separate interactions with critically ill, end-of-life stage patients, who were identified as
Black and White. The Elliott et al. [2016] manuscript describe the process for coding verbal and
nonverbal communication for video/audio recordings of the physician/patient interactions. Using
that data, I simulate verbal and nonverbal communication scores for 33 physicians who rate patients
who identify as Black and White, respectively. This creates four variables.

In the lesson, we will compare verbal communication scores. The nonverbal communication score
is available as an option for practice.
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library(tidyverse)

-- Attaching core tidyverse packages ------------------------ tidyverse 2.0.0 --
v dplyr 1.1.4 v readr 2.1.5
v forcats 1.0.0 v stringr 1.5.1
v ggplot2 3.5.1 v tibble 3.2.1
v lubridate 1.9.3 v tidyr 1.3.1
v purrr 1.0.2
-- Conflicts ------------------------------------------ tidyverse_conflicts() --
x dplyr::filter() masks stats::filter()
x dplyr::lag() masks stats::lag()
i Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors

#Setting the seed. If you choose this practice option, change the number below to something different.
set.seed(220817)
#These define the characteristics of the verbal variable. It is essential that the object names (e.g., A_mean) are not changed because they will be fed to the function in the faux package.
sub_n <- 33
A_mean <- 8.37
B_mean <- 8.41
A_sd <- 3.36
B_sd <- 3.21
AB_r <- 0.3

#the faux package can simulate a variety of data. This function within the faux package will use the objects above to simulate paired samples data
paired_V <- faux::rnorm_multi(

n = sub_n,
vars = 2,
r = AB_r,
mu = c(A_mean, B_mean),
sd = c(A_sd, B_sd),
varnames = c("Verbal_BL", "Verbal_WH")

)

paired_V <- paired_V %>% dplyr::mutate(PhysID = row_number())

#Here, I repeated the process for the nonverbal variable.
sub_n <- 33
A_mean <- 2.68
B_mean <- 2.93
A_sd <- .84
B_sd <- .77
AB_r <- 0.9

paired_NV <- faux::rnorm_multi(
n = sub_n,
vars = 2,
r = AB_r,
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mu = c(A_mean, B_mean),
sd = c(A_sd, B_sd),
varnames = c("NVerb_BL", "NVerb_WH")

)

#This code produced an ID number for each physician
paired_NV <- paired_NV %>% dplyr::mutate(PhysID = row_number())

#This data joined the two sets of data.
#Note, I did not write any code that assumed tha the verbal and nonverbal data came from the same physician. Full confession: I'm not quite sure how to do that just yet.
dfPairedSamples <- dplyr::full_join(paired_V, paired_NV, by = c("PhysID"))
dfPairedSamples <- dfPairedSamples%>%dplyr::select(PhysID, everything())

Before beginning our analysis, let’s check the format of the variables to see if they are consistent with
the scale of measurement of the variables. In our case, we expect to see four variables representing
the verbal and nonverbal communication of the physicians with the patients who are identified as
Black and White. Each of the variables should be continuously scaled and, therefore, should be
formatted as num (numerical).

str(dfPairedSamples)

'data.frame': 33 obs. of 5 variables:
$ PhysID : int 1 2 3 4 5 6 7 8 9 10 ...
$ Verbal_BL: num 8.19 3.3 6.18 4.85 6.91 ...
$ Verbal_WH: num 4.63 12.85 13.47 6.49 12.27 ...
$ NVerb_BL : num 3.099 4.234 0.429 1.835 3.704 ...
$ NVerb_WH : num 2.74 5.02 1.34 2.38 2.91 ...

The four variables of interest are correctly formatted as num. Because PhysID (physician ID) will
not be used in our analysis, its structure is irrelevant.
Below is code for saving (and then importing) the data in .csv or .rds files. I make choices about
saving data based on what I wish to do with the data. If I want to manipulate the data outside of
R, I will save it as a .csv file. It is easy to open .csv files in Excel. A limitation of the .csv format
is that it does not save any restructuring or reformatting of variables. For this lesson, this is not
an issue.
Here is code for saving the data as a .csv and then reading it back into R. I have hashtagged these
out, so you will need to remove the hashtags if you wish to run any of these operations.

#writing the simulated data as a .csv
#write.table(dfPairedSamples, file = "dfPairedSamples.csv", sep = ',', col.names=TRUE, row.names=FALSE)
#at this point you could clear your environment and then bring the data back in as a .csv
#reading the data back in as a .csv file
#dfPairedSamples<- read.csv ('dfPairedSamples.csv', header = TRUE)

The .rds form of saving variables preserves any formatting (e.g., creating ordered factors) of the
data. A limitation is that these files are not easily opened in Excel. Here is the hashtagged code
(remove hashtags if you wish to do this) for writing (and then reading) this data as an .rds file.
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#saveRDS(dfPairedSamples, 'dfPairedSamples.rds')
#dfPairedSamples <- readRDS('dfPairedSamples.rds')

6.3.2 Quick Peek at the Data

Plotting the data is a helpful early step in any data analysis. Further, visualizing the data can
help us with a conceptual notion of the statistic we are utilizing. The ggpubr package is one of my
go-to-tools for quick and easy plots of data. The ggpaired() function is especially appropriate for
paired data. A tutorial is available at datanovia.

Especially unique about this function is that the lines connect the scores of each person across time
or conditions. In this research scenario, the lines present the amount of time the physicians spent
with each of the two patients they treated.

ggpubr::ggpaired(dfPairedSamples, cond1 = "Verbal_BL", cond2 ="Verbal_WH", color = "condition", line.color = "gray", palette =c("npg"), xlab = "Patient Race", ylab = "Verbal Communication Rating")
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The box of the boxplot covers the middle 50% (the interquartile range). The horizontal line is the

https://rpkgs.datanovia.com/ggpubr/reference/ggpaired.html
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median. The whiskers represent three standard deviations above and below the mean. Any dots
beyond the whiskers are outliers.

6.4 Working the Paired Samples t-Test (by hand)

6.4.1 Stating the Hypothesis

In this lesson, I will focus on differences in the verbal communication variable. Specifically, I
hypothesize that physician verbal communication scores for Black and White patients will differ.
In the hypotheses below, the null hypothesis (𝜇𝐷) states that the difference score is zero; the
alternative hypothesis (𝜇𝐷) states that the difference score is different from zero.

𝐻𝑂 ∶ 𝜇𝐷 = 0
𝐻𝐴 ∶ 𝜇𝐷 ≠ 0

Notice the focus on a difference score. Even though the R package we will use does not require one
for calculation, creating one in our df will be useful for preliminary exploration.

#Creating the Verbal_D variable within the dfPairedSamples df
#Doing the "math" that informs that variable
dfPairedSamples$Verbal_D <- (dfPairedSamples$Verbal_BL - dfPairedSamples$Verbal_WH)
#Displaying the first six rows of the df to show that the difference score now exists
head(dfPairedSamples)

PhysID Verbal_BL Verbal_WH NVerb_BL NVerb_WH Verbal_D
1 1 8.190342 4.625680 3.0991101 2.742055 3.564663
2 2 3.297486 12.851362 4.2338398 5.024047 -9.553876
3 3 6.176386 13.466880 0.4288566 1.337259 -7.290495
4 4 4.851426 6.488762 1.8347393 2.379431 -1.637336
5 5 6.911155 12.266646 3.7035910 2.914445 -5.355491
6 6 11.965831 6.259292 1.5369696 1.598493 5.706540

Examining this new variable, because we subtracted the verbal communication ratings of physicians
with White patients from those of Black patients a negative score means that physicians had lower
verbal engagement with Black patients; a positive score means that physicians had more verbal
engagement with White patients.

6.4.2 Calculating the Paired Samples t-Test

Let’s take another look at the formula for calculating paired samples t-test.

𝑡 = �̄�
�̂�𝐷/

√
𝑁

We can use the data from our preliminary exploration in the calculation.
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psych::describe(dfPairedSamples$Verbal_D)

vars n mean sd median trimmed mad min max range skew kurtosis se
X1 1 33 0.08 4.14 0.61 0.27 4.11 -9.55 7.61 17.17 -0.41 -0.69 0.72

• The mean difference was .08
• The standard deviation of that difference was 4.14
• The sample size is 33

.08/(4.14/sqrt(33))

[1] 0.111006

The resultant t value is 0.111.
Hopefully, this hand-calculation provided an indication of how the means, standard deviation, and
sample sizes contribute to the estimate of this t-test value. Now we ask, “But it is statistically
significant?”

6.4.2.1 Statistical Significance

Our t-value was 0.111. We compare this value to the test critical value in a table of t critical values.
In-so-doing we must know our degrees of freedom. Because the numerator in a paired samples t-test
is a single difference score �̄�, the associated degrees of freedom is 𝑁 − 1. We must also specify
the p value (in our case .05) and whether-or-not our hypothesis is unidirectional or bi-directional.
Our question only asked, “Are the verbal communication levels different?” In this case, the test is
two-tailed, or bi-directional.
Let’s return to the table of critical values for the t distribution to compare our t-value (0.111) to
the column that is appropriate for our:

• Degrees of freedom (in this case 𝑁 − 1 or 32)
• Alpha, as represented by 𝑝 < .05
• Specification as a one-tailed or two-tailed test

– Our alternative hypothesis made no prediction about the direction of the difference;
therefore we will use a two-tailed test

In the linked table, when the degrees of freedom reaches 30, there larger intervals. We will use
the row representing degrees of freedom of 30. If our t-test value is lower than an absolute value
of -2.042 or greater than the absolute value of 2.042, then our means are statistically significantly
different from each other. In our case, we have not achieved statistical significance and we cannot
say that the means are different. The t string would look like this: 𝑡(32) = 0.111, 𝑝 > .05
We can also use the qt() function in base R. In the script below, I have indicated an alpha of .05. The
“2” that follows indicates I want a two-tailed test. The 32 represents my degrees of freedom (𝑁 −1).
In a two-tailed test, the regions of rejection will be below the lowerbound (lower.tail=TRUE) and
above the upperbound (lower.tail=FALSE).

https://www.statology.org/t-distribution-table/
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qt(.05/2, 32, lower.tail=TRUE)

[1] -2.036933

qt(.05/2, 32, lower.tail=FALSE)

[1] 2.036933

If our t value is below the lowerbound (-2.04) or above the upper bound (2.04), then we have rejected
the null hypothesis in favor of the alternative. As we demonstrated in the hand-calculations, we
have not. The ratings of physicians’ verbal engagement with patients who are racially identified as
Black and White are not statistically significant.

6.4.2.2 Confidence Intervals

How confident are we in our result? With paired samples t-tests, it is common to report an interval
in which we are 95% confident that our true mean difference exists. Below is the formula, which
involves:

• �̄� the mean difference score
• 𝑡𝑐𝑣 the test critical value for a two-tailed model (even if the hypothesis was one-tailed) where

𝛼 = .05 and the degrees of freedom are 𝑁 − 1
• 𝑠𝑑 the standard deviation of �̄�
• 𝑁 sample size

�̄� ± 𝑡𝑐𝑣(𝑠𝑑/√𝑛)
Let’s calculate it:
First, let’s get the proper t critical value:

qt(.05/2, 32, lower.tail=TRUE)

[1] -2.036933

qt(.05/2, 32, lower.tail=FALSE)

[1] 2.036933

.08-(2.037*((4.14/(sqrt(33)))))

[1] -1.388028
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.08+(2.037*((4.14/sqrt(33))))

[1] 1.548028

These values indicate the range of scores in which we are 95% confident that our true �̄� lies.
Stated another way, we are 95% confident that the true mean difference lies between -1.39 and
1.55. Because this interval crosses zero, we cannot rule out that the true mean difference is 0.00.
This result is consistent with our non-significant p value. For these types of statistics, the 95%
confidence interval and p value will always be yoked together.

6.4.2.3 Effect Size

Effect sizes address the magnitude of difference. There are two common effect sizes that are used
with the paired samples t-test. The first is the d statistic, which measures, in standard deviation
units, the distance between the two means. Regardless of sign, values of .2, .5, and .8 are considered
to be small, medium, and large, respectively.
Because the paired samples t-test used the difference score in the numerator, there are two easy
options for calculating this effect:

𝑑 = �̄�
�̂�𝐷

= 𝑡√
𝑁

The first is to use the mean and standard deviation associated with the difference score:

.08/4.14

[1] 0.01932367

The formula uses the t value and N.

0.111/(sqrt(33))

[1] 0.01932262

Within rounding error, both calculations result in a value (𝑑 = 0.02) that is quite small.
Eta squared, 𝜂2 is the proportion of variance of a test variable that is a function of the grouping
variable. A value of 0 indicates that mean of the difference scores is equal to 0, where a value of 1
indicates that the difference scores in the sample are all the same nonzero value, and the test scores
do not differ within each group. The following equation can be used to compute 𝜂2. Conventionally,
values of .01, .06, and .14 are considered to be small, medium, and large effect sizes, respectively.

𝜂2 = 𝑁(�̄�2)
𝑁(�̄�2 + (𝑁 − 1)(�̂�2

𝐷) = 𝑡2

𝑡2 + (𝑁1 − 1)
The first calculation option uses the N and the mean difference score:
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(33*(.08^2))/((33*(.08^2)) + ((33-1)*(4.14^2)))

[1] 0.0003849249

The second calculation option uses the t values and sample size:

(0.111^2)/((0.111^2)+(33-1))

[1] 0.0003848831

Within rounding errors, and similar to our d statistic, the 𝜂2 value (0.0004) is quite small.

6.5 Working the Paired Samples t-Test with R Packages

Let’s rework the problem in R. We start at the top of the flowchart, evaluating the statistical
assumptions.

6.5.1 Evaluating the Statistical Assumptions

With an eye on our data, we can begin to explore the statistical assumptions associated with the
paired samples t-test. Here’s where we are in the workflow:

All statistical tests have some as-
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sumptions about the data. The paired-samples t-test has three:

• The difference scores (i.e., the difference on the outcome across time or conditions) on the
test variable are independent of each other. This is a matter of research design and no further
statistical evaluation is required.

• The test variable should be continuously scaled. This is also a matter of research design and
no statistical analysis is required.

– Our test variable is measured in minutes; this is continuously scaled and has the prop-
erties of interval-level data.

• The difference scores of the test variable are normally distributed. We can check this several
ways:

– visually with histograms (perhaps with superimposed curves) and boxplots,
– calculation of skew and kurtosis values,
– calculation of the Shapiro-Wilk test of normality

6.5.1.1 Are the difference scores of the test variable normally distributed?

We can begin to evaluate normality by obtaining the descriptive statistics with the describe()
function from the psych package.

psych::describe(dfPairedSamples, type=1)

vars n mean sd median trimmed mad min max range skew
PhysID 1 33 17.00 9.67 17.00 17.00 11.86 1.00 33.00 32.00 0.00
Verbal_BL 2 33 8.70 2.80 9.09 8.80 3.10 1.94 13.34 11.40 -0.35
Verbal_WH 3 33 8.62 3.08 8.57 8.65 3.44 1.59 13.47 11.88 -0.15
NVerb_BL 4 33 2.73 1.00 2.63 2.78 1.26 0.43 4.23 3.80 -0.37
NVerb_WH 5 33 2.89 0.85 2.94 2.87 0.64 1.34 5.02 3.69 0.25
Verbal_D 6 33 0.08 4.14 0.61 0.27 4.11 -9.55 7.61 17.17 -0.42

kurtosis se
PhysID -1.20 1.68
Verbal_BL -0.31 0.49
Verbal_WH -0.75 0.54
NVerb_BL -0.71 0.17
NVerb_WH -0.02 0.15
Verbal_D -0.54 0.72

We observe that the skew and kurtosis values for Verbal_BL and Verbal_WH are well below the
areas of concern (below the absolute value of 3 for skew; below the absolute values of 10 for kurtosis)
identified by Kline [2016a].
Recall, though that the normality assumption for the paired samples t-test concerns the difference
score (Verbal_D). We see that the mean difference is 0.08 (SD = 4.14). Its skew (-0.42) and kurtosis
(-0.54) are also well-below the thresholds of concern.
Beyond skew and kurtosis, we can formally test for deviations from normality with a Shapiro-Wilk.
We want the results to be non-significant.
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rstatix::shapiro_test(dfPairedSamples, Verbal_D)

# A tibble: 1 x 3
variable statistic p
<chr> <dbl> <dbl>

1 Verbal_D 0.973 0.572

Results of the Shapiro-Wilk test of normality are not statistically significant (𝑊 = 0.97, 𝑝 = 0.57).
This means that the distribution of difference scores is not statistically significantly different from
a normal distribution.

6.5.1.2 APA style write-up of testing the assumptions

My practice is to create APA style drafts of the different sections of the analysis as I work along.
Here’s how I might capture our evaluation of the statistical assumptions:

We began by analyzing the data to see if it met the statistical assumptions for analysis
with a paired samples t-test. One assumption is that the difference scores of depen-
dent variable are normally distributed. We evaluated skew and kurtosis using Kline’s
[2016a] guidelines of the absolute values of 3 (skew) and 10 (kurtosis). Our results were
well-within these boundary conditions. Further, a non-significant Shapiro-Wilk test
of normality suggested that the distribution of difference scores was not statistically
significant from a normal distribution (𝑊 = 0.97, 𝑝 = 0.57).

6.5.2 Computing the Paired Samples t-Test

We are ready to compute the paired samples t-test.

Calculating a paired samples t-test is possible through base R and a number of packages. Kassam-
bara’s [b] rstatix package is one we can use for all of the t-test and ANOVA problems that we will
work.

A challenge in evaluating within-persons data is the shape of the data. The simulation resulted in
a wide (also termed person-level or multivariate) format, where each of the 33 physicians has the
verbal and non-verbal communication scores with Black and White patients. We need to reshape
the data to a long (also termed person-period or univariate) format. Although it may seem a bit
tricky at first, this is a skill you will return to in many longitudinal or repeated measures analyses.

In the script below we are using the melt() and setDT functions from the data.table package. We put
stable (i.e., time-invarient, “one-per-person”) variables in a concatonated variable list of “id.vars.”
We create separate lists of the variables that change over time. In this case, each physician saw
one Black patient and one White patient. Therefore, every physician will have two rows of data.
For each variable collected at both points, we create concatonated lists.

df_long <- data.table::melt(data.table::setDT(dfPairedSamples), id.vars=c("PhysID"), measure.vars=list(c("Verbal_BL", "Verbal_WH"), c("NVerb_BL", "NVerb_WH")))
head(df_long)
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Figure 6.4: A colorful image of a workflow for the paired samples t-test
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PhysID variable value1 value2
<int> <fctr> <num> <num>

1: 1 1 8.190342 3.0991101
2: 2 1 3.297486 4.2338398
3: 3 1 6.176386 0.4288566
4: 4 1 4.851426 1.8347393
5: 5 1 6.911155 3.7035910
6: 6 1 11.965831 1.5369696

While that code performed the magic, it did not name the variables. We must provide that in
separate code.

df_long <- rename(df_long, PatientRace = variable, Verbal = value1, Nonverbal = value2 )

After the reshaping, let’s recheck the structure of our data:

str(df_long)

Classes 'data.table' and 'data.frame': 66 obs. of 4 variables:
$ PhysID : int 1 2 3 4 5 6 7 8 9 10 ...
$ PatientRace: Factor w/ 2 levels "1","2": 1 1 1 1 1 1 1 1 1 1 ...
$ Verbal : num 8.19 3.3 6.18 4.85 6.91 ...
$ Nonverbal : num 3.099 4.234 0.429 1.835 3.704 ...
- attr(*, ".internal.selfref")=<externalptr>

The dependent variables Verbal and Nonverbal are continuously scaled, so the num designation
is appropriate. Similarly, PatientRace is categorical, so Factor is appropriate. Because labels
(instead of numbers) can minimize misinterpretation (or forgetting), I would prefer to use “Black”
and “White” as opposed to “1” and “2”. To further reduce the possibility of error, it is easy enough
to create a second, parallel, variable.

df_long$PtRace <- plyr::mapvalues(df_long$PatientRace, from = c(1, 2), to = c("Black", "White"))

We are now ready to perform the paired samples t-test. In the script below:

• the first element points to the dataframe
• the second element provides a “formula”

– we are predicting “Verbal” from “PtRace”

• specifying “detailed = TRUE” will produce the 95% confidence interval around the difference

rstatix::t_test(df_long, Verbal ~ PtRace, paired=TRUE, detailed=TRUE)
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# A tibble: 1 x 13
estimate .y. group1 group2 n1 n2 statistic p df conf.low

* <dbl> <chr> <chr> <chr> <int> <int> <dbl> <dbl> <dbl> <dbl>
1 0.0813 Verbal Black White 33 33 0.113 0.911 32 -1.39
# i 3 more variables: conf.high <dbl>, method <chr>, alternative <chr>

This output provides information to get us started in drafting the APA style results. Identical to
all the information we hand-calculated, we would write the t string this way: 𝑡(32) = 0.113, 𝑝 =
.911, 𝐶𝐼95(−1.39, 1.55). Our results show that the mean difference in physician verbal communi-
cation scores with Black and White patients was 0.081. Taking a look at the confidence interval,
we are 95% confident that the true difference in means falls between the values of -1.386 and 1.549.
What is critically important is that this confidence interval crosses zero. There is an important
link between the CI95% and statistical significance. When the CI95% includes zero, p will not be
lower than 0.05.

We still need to calculate the effect size.

rstatix::cohens_d(df_long, Verbal ~ PtRace, paired=TRUE)

# A tibble: 1 x 7
.y. group1 group2 effsize n1 n2 magnitude

* <chr> <chr> <chr> <dbl> <int> <int> <ord>
1 Verbal Black White 0.0196 33 33 negligible

Keeping in mind the interpretive criteria of .2, .5, and .8, as small, medium, and large effect
sizes, we see that 𝑑 = 0.020 is quite small. We can add it to our t-string and draft the results:
𝑡(32) = 0.113, 𝑝 = .911, 𝑑 = 0.020, 𝐶𝐼95(−1.39, 1.55).

6.6 APA Style Results

Putting it altogether we can assemble an APA style results section. Code for a table of means,
standard deviations, and correlation follow the write-up of results. For inclusion in a manuscript,
I would rework the export of the table to delete the difference score (i.e., Verbal_D). I might also
exclude the rows of confidence intervals around the correlations.

We began by analyzing the data to see if it met the statistical assumptions for analysis
with a paired samples t-test. One assumption is that the difference scores of depen-
dent variable are normally distributed. We evaluated skew and kurtosis using Kline’s
[2016a] guidelines of the absolute values of 3 (skew) and 10 (kurtosis). Our results were
well-within these boundary conditions. Further, a non-significant Shapiro-Wilk test
of normality suggested that the distribution of difference scores was not statistically
significant from a normal distribution (𝑊 = 0.97, 𝑝 = 0.57).

A paired samples t-test was conducted to evaluate the hypothesis that there would be
differences in the degree of physicians’ verbal engagement as a function of the patient’s
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race (Black, White). The paired samples t-test was nonsignificant, t(32) = 0.133, p
= .911. The small magnitude of the effect size (d = 0.02) was consistent with the
nonsignificant result. The 95% confidence interval for the difference in means was
quite wide and included the value of zero (95%CI[-1.386, 1.549]). Means and standard
deviations are presented in Table 1; the results are illustrated in Figure 1.

library(tidyverse)#needed to use the pipe
#Creating a smaller df to include only the variables I want in the table
PairedDescripts <- dfPairedSamples%>%

select(Verbal_BL, Verbal_WH, Verbal_D)
#using the apa.cor.table function for means, standard deviations, and correlations
#the filename command will write the table as a word document to your file
apaTables::apa.cor.table(PairedDescripts, table.number=1, filename="Tab1_PairedV.doc")

Table 1

Means, standard deviations, and correlations with confidence intervals

Variable M SD 1 2
1. Verbal_BL 8.70 2.80

2. Verbal_WH 8.62 3.08 .01
[-.33, .35]

3. Verbal_D 0.08 4.14 .67** -.74**
[.42, .82] [-.86, -.53]

Note. M and SD are used to represent mean and standard deviation, respectively.
Values in square brackets indicate the 95% confidence interval.
The confidence interval is a plausible range of population correlations
that could have caused the sample correlation (Cumming, 2014).
* indicates p < .05. ** indicates p < .01.

The figure we created earlier in the lesson would be sufficient for a journal article. However, using
rstatix in combination with ggpubbr can be quite powerful. The result can be a figure that includes
the t-test results and “significance bars.” To do this, we first need to re-run the rstatix::t_test, but
adding to it by

• including “add_significance()” script after the pipe, and
• saving it as an object, which I’m naming “pair.test.”

We could have done this in the initial run (but I didn’t want to make the test-statistic unnecessarily
confusing).
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library(tidyverse)
pair.test <- rstatix::t_test(df_long, Verbal ~ PtRace, paired=TRUE, detailed=TRUE) %>%

rstatix::add_significance()
pair.test

# A tibble: 1 x 14
estimate .y. group1 group2 n1 n2 statistic p df conf.low

<dbl> <chr> <chr> <chr> <int> <int> <dbl> <dbl> <dbl> <dbl>
1 0.0813 Verbal Black White 33 33 0.113 0.911 32 -1.39
# i 4 more variables: conf.high <dbl>, method <chr>, alternative <chr>,
# p.signif <chr>

Next, we create boxplot code with the long form of our data:

pair.box <- ggpubr::ggpaired(df_long, x = "PtRace", y = "Verbal", order = c("Black", "White"), line.color = "gray", palette =c("npg"), color = "PtRace", ylab = "Verbal Communication Rating", xlab = "Patient Race", title = "Figure 1. Physician Verbal Engagement as a Function of Patient Race")

pair.test <- pair.test %>% rstatix::add_xy_position(x = "PtRace") #autocomputes p-value labels positions

pair.box <- pair.box +
ggpubr::stat_pvalue_manual(pair.test, tip.length=.01, y.position = c(15) ) +
labs(subtitle = rstatix::get_test_label(pair.test, detailed=TRUE))

pair.box
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T test, t (32) = 0.11, p = 0.91, n = 33

Figure 1. Physician Verbal Engagement as a Function of Patient Race

The tools available offer a great deal of flexibility. Determining which figure is best will likely
depend on your outlet, your audience, and your personal preferences. For example, a print journal
might prefer a black-and-white figure (with no fill in the boxes). This is accomplished easily
enough by removing (or, hashtagging out) the “fill = PtRace” argument.

6.7 Power in Paired Samples t-Tests

Researchers often use power analysis packages to estimate the sample size needed to detect a
statistically significant effect, if, in fact, there is one. Utilized another way, these tools allows us to
determine the probability of detecting an effect of a given size with a given level of confidence. If
the probability is unacceptably low, we may want to revise or stop. A helpful overview of power
as well as guidelines for how to use the pwr package can be found at a Quick-R website [Kabacoff,
2017].

In Champely’s pwr package, we can conduct a power analysis for a variety of designs, including
the paired t-test that we worked in this chapter. There are a number of interrelating elements of
power:

https://www.statmethods.net/stats/power.html
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• Sample size, n refers to the number of pairs; our vignette had 33
• d refers to the difference between means divided by the pooled standard deviation; we can

use the value of Cohen’s d for this
• power refers to the power of a statistical test; conventionally it is set at .80
• sig.level refers to our desired alpha level; conventionally it is set at .05
• type indicates the type of test we ran; ours was “paired”
• alternative refers to whether the hypothesis is non-directional/two-tailed (“two.sided”) or

directional/one-tailed(“less” or “greater”)

In this script, we must specify all-but-one parameter; the remaining parameter must be defined as
NULL. R will calculate the value for the missing parameter.
When we conduct a “power analysis” (i.e., the likelihood of a hypothesis test detecting an effect
if there is one), we specify, “power=NULL”. Using the data from our results, we learn from this
first run, that our statistical power was at 5%. That is, given the low value of the mean difference
(.08) and the relatively large standard deviation (4.14), we had only a 5% chance of detecting a
statistically significant effect if there was one.

pwr::pwr.t.test(d=0.02,n = 33, power=NULL,sig.level=0.05,type="paired",alternative="two.sided")

Paired t test power calculation

n = 33
d = 0.02

sig.level = 0.05
power = 0.05142498

alternative = two.sided

NOTE: n is number of *pairs*

The results indicate that we were powered at 5%. That is, we had a 5% chance of finding a
statistically significant difference, if in fact there was one.
Researchers frequently use these tools to estimate the sample size required to obtain a statistically
significant effect. In these scenarios we set n to NULL.

pwr::pwr.t.test(d=0.02,n = NULL, power=0.8,sig.level=0.05,type="paired",alternative="two.sided")

Paired t test power calculation

n = 19624.07
d = 0.02

sig.level = 0.05
power = 0.8

alternative = two.sided

NOTE: n is number of *pairs*
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Using the results from the simulation of our research vignette, you can see that we would have
needed 19624 individuals for the p value to be < .05, if, in fact there were a significant difference.
Let’s see if this is true. Below I will re-simulate the data for the verbal scores, changing only the
sample size:

set.seed(220820)
#These define the characteristics of the verbal variable. It is essential that the object names (e.g., A_mean) are not changed because they will be fed to the function in the faux package.
sub_n <- 19624
A_mean <- 8.37
B_mean <- 8.41
A_sd <- 3.36
B_sd <- 3.21
AB_r <- 0.3

#the faux package can simulate a variety of data. This function within the faux package will use the objects above to simulate paired samples data
paired_V2 <- faux::rnorm_multi(

n = sub_n,
vars = 2,
r = AB_r,
mu = c(A_mean, B_mean),
sd = c(A_sd, B_sd),
varnames = c("Verbal_BL", "Verbal_WH")

)

paired_V2 <- paired_V2 %>% dplyr::mutate(PhysID = row_number())

#restructuring data to the long form
df_longV2 <- data.table::melt(data.table::setDT(paired_V2), id.vars=c("PhysID"), measure.vars=list(c("Verbal_BL", "Verbal_WH")))
df_longV2 <- rename(df_longV2, PatientRace = variable, Verbal = value)
df_longV2$PtRace <- plyr::mapvalues(df_longV2$PatientRace, from = c("Verbal_BL", "Verbal_WH"), to = c("Black", "White"))

Now I will conduct the paired samples t-test and corresponding effect size.

rstatix::t_test(df_longV2, Verbal ~ PtRace, paired=TRUE, detailed=TRUE)

# A tibble: 1 x 13
estimate .y. group1 group2 n1 n2 statistic p df conf.low

* <dbl> <chr> <chr> <chr> <int> <int> <dbl> <dbl> <dbl> <dbl>
1 -0.0343 Verbal Black White 19624 19624 -1.24 0.214 19623 -0.0885
# i 3 more variables: conf.high <dbl>, method <chr>, alternative <chr>

rstatix::cohens_d(df_longV2, Verbal ~ PtRace, paired=TRUE)

# A tibble: 1 x 7
.y. group1 group2 effsize n1 n2 magnitude

* <chr> <chr> <chr> <dbl> <int> <int> <ord>
1 Verbal Black White -0.00887 19624 19624 negligible
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The new results remain non-significant: 𝑡(19623) = −1.243, 𝑝 = 0.241, 𝑑 = −0.009, 95𝐶𝐼(−0.088, 0.020).
This tells me these means are quite similar and this is not a function of being under powered.

Conducting power analyses requires that researchers speculate about their values. In this case, in
order to estimate sample size, the researcher would need to make some guesses about the difference
scores means and standard deviations. These values could be estimated from prior literature or a
pilot study.

6.8 Practice Problems

The suggestions for homework differ in degree of complexity. I encourage you to start with a
problem that feels “do-able” and then try at least one more problem that challenges you in some
way. Regardless, your choices should meet you where you are (e.g., in terms of your self-efficacy
for statistics, your learning goals, and competing life demands).

Additionally, please complete at least one set of hand calculations, that is use the code demonstrated
in the chapter to work through the formulas that compute the paired samples t-test. At this stage
in your learning, you may ignore any missingness in your dataset by excluding all rows with missing
data in your variables of interest.

6.8.1 Problem #1: Rework the research vignette as demonstrated, but change
the random seed

If this topic feels a bit overwhelming, simply change the random seed in the data simulation of the
research vignette, then rework the problem. This should provide minor changes to the data (maybe
even in the second or third decimal point), but the results will likely be very similar. That said,
don’t be alarmed if what was non-significant in my working of the problem becomes significant.
Our selection of p < .05 (and the corresponding 95% confidence interval) means that 5% of the
time there could be a difference in statistical significance.

6.8.2 Problem #2: Rework the research vignette, but change something about
the simulation

Rework the paired samples t-test in the lesson by changing something else about the simulation. For
example, if you are interested in understanding more about power, consider changing the sample
size. Alternatively, you could specify different means and/or standard deviations.

6.8.3 Problem #3: Rework the research vignette, but swap one or more vari-
ables

Use the simulated data, but select the nonverbal communication variables that were evaluated in
the Elliott et al. [2016] study. Compare your results to those reported in the mansucript.
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6.8.4 Problem #4: Use other data that is available to you

Using data for which you have permission and access (e.g., IRB approved data you have collected
or from your lab; data you simulate from a published article; data from an open science repository;
data from other chapters in this OER), complete a paired samples t-test.

6.8.5 Grading Rubric

Regardless which option(s) you chose, use the elements in the grading rubric to guide you through
the practice.

Assignment Component Points Possible Points Earned
1. Narrate the research vignette, describing the
variables and their role in the analysis

5 _____

2. Simulate (or import) and format data 5 _____
3. Evaluate statistical assumptions 5 _____
4. Conduct a paired samples t-test (with an effect
size & 95%CIs)

5 _____

5. APA style results with table(s) and figure 5 _____
6. Conduct power analyses to determine the power
of the current study and a recommended sample
size

5 _____

7. Explanation to grader 5 _____
Totals 35 _____

Hand Calculations Points Poss Points Earned
1. Using traditional NHST (null hypothesis testing
language), state your null and alternative hypotheses

2

2. Using an R package or functions in base R (and
with data in the “wide” format), calculate the
difference score between the two observations of the
dependent variable

2

3. Obtain the mean and standard deviation of the
difference score

2

4. Calculate the paired samples t-test 4
5. Identify the degrees of freedom associated with
your paired samples t-test

2

6. Locate the test critical value for your paired
samples t-test

2

7. Is the paired samples t-test statistically significant?
Why or why not?

2

8. What is the confidence interval around the mean
difference?

4

9. Calculate the effect size (i.e., Cohen’s d associated
with your paired samples t-test

4
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Hand Calculations Points Poss Points Earned
10. Assemble the results into a statistical string 4
Totals* 28

6.9 Homeworked Example

Screencast Link

For more information about the data used in this homeworked example, please refer to the descrip-
tion and codebook located at the end of the introduction.

6.9.1 Working the Problem with R and R Packages

Narrate the research vignette, describing the variables and their role in the analysis

I want to ask the question, “Do students’ evaluations of traditional pedagogy (TradPed) change
from ANOVA (the first course in the series) to Multivariate (the second course in the series)?.”
Unlike the independent samples t-test where we compared students in two different departments,
we are comparing the same students across two different conditions. In this particular analysis,
there is also an element of time. That is the ANOVA class always precedes the multivariate class
(with a regression class, taught by a different instructor) in the intervening academic quarter.

This research design has some clear limitations. Threats to internal validity are caused by issues
like history and maturation. None-the-less, for the purpose of a statistical demonstration, this
dataset works.

If you wanted to use this example and dataset as a basis for a homework assignment, you could
compare a different combination of courses and/or score one of the other course evaluation subscales
(e.g., socially responsive pedagogy or valued-by-me).

Like most data, some manipulation is required before we can begin the analyses.

Simulate (or import) and format data

Let’s import the larger dataset.

larger <- readRDS("ReC.rds")

The TradPed (traditional pedagogy) variable is an average of the items on that scale. I will first
create that variable.

#This code was recently updated and likely differs from the screencasted lecture

#Calculates a mean if at least 75% of the items are non-missing; adjusts the calculating when there is missingness
larger$TradPed <- datawizard::row_means(larger, select = c('ClearResponsibilities', 'EffectiveAnswers','Feedback', 'ClearOrganization','ClearPresentation'), min_valid = .75)

https://youtu.be/9pJtCXceht4
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From the “larger” data, let’s select only the variable we will use in the analysis. I have included
“long” in the filename because the structure of the dataset is that course evaluation by each student
is in its own row. That is, each student could have up to three rows of data.
We need both “long” and “wide” forms to conduct the analyses required for both testing the
statistical assumptions and performing the paired samples t-test.

paired_long <-(dplyr::select (larger, deID, Course, TradPed))

From that reduced variable set, let’s create a subset with students only from those two courses.

paired_long <- subset(paired_long, Course == "ANOVA" | Course == "Multivariate")

Regarding the structure of the data, we want the conditions (ANOVA, multivariate) to be factors
and the TradPed variable to be continuously scaled. The format of the deID variable can be any
numerical or categorical format – just not a “chr” (character) variable.

str(paired_long)

Classes 'data.table' and 'data.frame': 198 obs. of 3 variables:
$ deID : int 1 2 3 4 5 6 7 8 9 10 ...
$ Course : Factor w/ 3 levels "Psychometrics",..: 2 2 2 2 2 2 2 2 2 2 ...
$ TradPed: num 4.4 3.8 4 3 4.8 3.5 4.6 3.8 3.6 4.6 ...
- attr(*, ".internal.selfref")=<externalptr>

R correctly interpreted our variables.
For analyzing the assumptions associated with the paired-samples t-test, the format needs to be
“wide” form (where each student has both observations on one row). Our data is presently in
“long” form (where each observation is listed in each row). Here’s how to reshape the data.

paired_wide <- reshape2::dcast(data = paired_long, formula =deID ~ Course, value.var = "TradPed")

Let’s recheck the structure.

str(paired_wide)

'data.frame': 119 obs. of 3 variables:
$ deID : int 1 2 3 4 5 6 7 8 9 10 ...
$ ANOVA : num 4.4 3.8 4 3 4.8 3.5 4.6 3.8 3.6 4.6 ...
$ Multivariate: num NA NA NA NA NA NA NA NA NA NA ...

You will notice that there is a good deal of missingness in the Multivariate condition. This is
caused because the most recent cohort of students had not yet taken the course. While managing
missingness is more complex than this, for the sake of simplicity, I will create a dataframe with
non-missing data.
Doing so should also help with the hand-calculations later in the worked example.
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paired_wide <- na.omit(paired_wide)

Evaluate statistical assumptions

We need to evaluate the distribution of the difference score in terms of skew and kurtosis. We want
this distribution of difference scores to be normally distributed.

This means we need to create a difference score:

paired_wide$DIFF <- paired_wide$ANOVA - paired_wide$Multivariate

We can use the psych::describe() function to obtain skew and kurtosis.

psych::describe(paired_wide)

vars n mean sd median trimmed mad min max range skew
deID 1 77 62.27 35.43 60.0 59.54 34.10 11.0 142.0 131.0 0.63
ANOVA 2 77 4.21 0.73 4.2 4.29 0.89 2.2 5.0 2.8 -0.79
Multivariate 3 77 4.33 0.73 4.4 4.45 0.59 1.2 5.0 3.8 -1.90
DIFF 4 77 -0.12 0.80 -0.2 -0.13 0.59 -2.4 3.2 5.6 0.56

kurtosis se
deID -0.40 4.04
ANOVA -0.19 0.08
Multivariate 5.00 0.08
DIFF 3.15 0.09

Regarding the DIFF score, the skew (0.56) and kurtosis (3.15) values were well below the thresh-
holds of concern identified by Klein (2016).

We can formally test for deviations from normality with a Shapiro-Wilk. We want the results to
be non-significant.

rstatix::shapiro_test(paired_wide, DIFF)

# A tibble: 1 x 3
variable statistic p
<chr> <dbl> <dbl>

1 DIFF 0.943 0.00187

Results of the Shapiro-Wilk test of normality are statistically significant (𝑊 = 0.943, 𝑝 = 0.002).
This means that the distribution of difference scores are statistically significantly different from a
normal distribution.

Although not required in the formal test of instructions, a pairs panel of correlations and distribu-
tions can be useful in undersatnding our data.
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psych::pairs.panels(paired_wide)
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Visual inspection of the distributions of the specific course variables were negatively skewed, with
values clustered at the high end of the course evaluation ratings. However, the distribution for the
DIFF variable seems relatively normal (although maybe a bit leptokurtic). This is consistent with
the statistically significant Shapiro-Wilk test.

Before moving forward, I want to capture my analysis of assumptions:

We began by analyzing the data to see if it met the statistical assumptions for analysis
with a paired samples t-test. Regarding the assumption of normality, the skew (0.56)
and kurtosis (3.15) values associated with the difference between conditions (ANOVA
and multivariate) were below the threshholds of concern identified by Klein (2016). In
contrast, results of the Shapiro-Wilk test of normality suggested that the distribution
of difference scores was statistically significantly different than a normal distribution
(𝑊 = 0.943, 𝑝 = 0.002).
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Conduct a paired samples t-test (with an effect size & 95% CIs)

So this may be a bit tricky, but our original “long” form of the data has more ANOVA evaluations
(students who had taken ANOVA had not yet taken multivariate) than multivariate. The paired
samples t test requires the design to be balanced. When we used the na.omit() function with the
wide case, we effectively balanced the design, eliminating students who lacked observations across
both courses. Let’s restructure that wide format back to long format so that the design will be
balanced.

paired_long2 <- data.table::melt(data.table::setDT(paired_wide), id.vars = c("deID"), measure.vars = list(c("ANOVA", "Multivariate")))

paired_long2 <- dplyr::rename(paired_long2, Course = variable, TradPed = value)

head(paired_long2)

deID Course TradPed
<int> <fctr> <num>

1: 11 ANOVA 4.0
2: 12 ANOVA 4.2
3: 13 ANOVA 3.6
4: 14 ANOVA 3.6
5: 15 ANOVA 3.4
6: 16 ANOVA 2.2

rstatix::t_test(paired_long2, TradPed ~ Course, paired = TRUE, detailed = TRUE)

# A tibble: 1 x 13
estimate .y. group1 group2 n1 n2 statistic p df conf.low

* <dbl> <chr> <chr> <chr> <int> <int> <dbl> <dbl> <dbl> <dbl>
1 -0.123 TradPed ANOVA Multivaria~ 77 77 -1.34 0.184 76 -0.305
# i 3 more variables: conf.high <dbl>, method <chr>, alternative <chr>

I’ll begin the t string with this output: 𝑡(76) = −1.341, 𝑝 = 0.184, 𝐶𝐼95(−0.305, 0.069). The
difference in course evaluations is not statistically significantly difference. We are 955 confident
that the true difference in means is as low as -0.301 or as high as 0.060.
We calculate the Cohen’s d (the effect size) this way:

rstatix::cohens_d(paired_long2, TradPed ~ Course, paired = TRUE)

# A tibble: 1 x 7
.y. group1 group2 effsize n1 n2 magnitude

* <chr> <chr> <chr> <dbl> <int> <int> <ord>
1 TradPed ANOVA Multivariate -0.153 77 77 negligible

The value of -0.153 is quite small. We can add this value to our statistical string: 𝑡(76) =
−1.341, 𝑝 = 0.184, 𝐶𝐼95(−0.305, 0.069), 𝑑 = −0.153



6.9. HOMEWORKED EXAMPLE 201

APA style results with table(s) and figure

A paired samples t-test was conducted to evaluate the hypohtesis that there would
be statistically significant differences in students’ course evaluations of ANOVA and
multivariate statistics classses.

We began by analyzing the data to see if it met the statistical assumptions for analysis
with a paired samples t-test. Regarding the assumption of normality, the skew (0.56)
and kurtosis (3.15) values associated with the difference between conditions (ANOVA
and multivariate) were below the threshholds of concern identified by Klein (2016). In
contrast, results of the Shapiro-Wilk test of normality suggested that the distribution
of difference scores was statistically significantly different than a normal distribution
$(W=0.943, p = 0.002)

Results of the paired samples t-test suggested nonsignificant differences 𝑡(76) =
−1.341, 𝑝 = 0.184, 𝑑 = −0.153. The 95% confidence interval crossed zero, ranging from
-0.305 to 0.069. Means and standard deviations are presented in Table 1 and illustrated
in Figure 1.

library(tidyverse) #needed to use the pipe
# Creating a smaller df to include only the variables I want in the
# table
Descripts_paired <- paired_wide %>%

select(ANOVA, Multivariate, DIFF)
# using the apa.cor.table function for means, standard deviations,
# and correlations the filename command will write the table as a
# word document to your file
apaTables::apa.cor.table(Descripts_paired, table.number = 1, filename = "Tab1_PairedT.doc")

Table 1

Means, standard deviations, and correlations with confidence intervals

Variable M SD 1 2
1. ANOVA 4.21 0.73

2. Multivariate 4.33 0.73 .39**
[.18, .56]

3. DIFF -0.12 0.80 .55** -.55**
[.38, .69] [-.69, -.37]

Note. M and SD are used to represent mean and standard deviation, respectively.
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Values in square brackets indicate the 95% confidence interval.
The confidence interval is a plausible range of population correlations
that could have caused the sample correlation (Cumming, 2014).
* indicates p < .05. ** indicates p < .01.

For the figure, let’s re-run the paired samples t test, save it as an object, and use the
“add_significance” function so that we can add it to our figure.

paired_T <- rstatix::t_test(paired_long2, TradPed ~ Course, paired = TRUE, detailed = TRUE)%>%
rstatix::add_significance()

paired_T

# A tibble: 1 x 14
estimate .y. group1 group2 n1 n2 statistic p df conf.low

<dbl> <chr> <chr> <chr> <int> <int> <dbl> <dbl> <dbl> <dbl>
1 -0.123 TradPed ANOVA Multivaria~ 77 77 -1.34 0.184 76 -0.305
# i 4 more variables: conf.high <dbl>, method <chr>, alternative <chr>,
# p.signif <chr>

Next, we create boxplot:

pairT.box <- ggpubr::ggpaired(paired_long2, x = "Course", y = "TradPed", order = c("ANOVA",
"Multivariate"), line.color = "gray", palette = c("npg"), color = "Course",
ylab = "Traditional Pedagogy", xlab = "Statistics Course", title = "Figure 1. Evaluation of Traditional Pedagogy as a Function of Course")

paired_T <- paired_T %>%
rstatix::add_xy_position(x = "Course") #autocomputes p-value labels positions

pairT.box <- pairT.box + ggpubr::stat_pvalue_manual(paired_T, tip.length = 0.02, y.position = c(5.5)) + labs(subtitle = rstatix::get_test_label(paired_T, detailed = TRUE))

pairT.box
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T test, t (76) = −1.34, p = 0.18, n = 77

Figure 1. Evaluation of Traditional Pedagogy as a Function of Course

Conduct power analyses to determine the power of the current study and a recom-
mended sample size

Script for estimating current power:

• d is Cohen’s d
• n is number of pairs, but set to NULL if we want to estimate sample size
• power is conventionally set at .80, but left at NULL when we want to estimate power
• sig.level is conventionlaly set at 0.05
• type indicates the type of t-test; in this example it is “paired”
• alternative indicates one or two.sided

pwr::pwr.t.test(d=-0.153, n = 77, power=NULL, sig.level=0.05, type="paired", alternative="two.sided")
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Paired t test power calculation

n = 77
d = 0.153

sig.level = 0.05
power = 0.2634404

alternative = two.sided

NOTE: n is number of *pairs*

We had a 26% chance of finding a statistically significant result if, in fact, one existed.

pwr::pwr.t.test(d=-0.153,n = NULL, power=.80,sig.level=0.05,type="paired",alternative="two.sided")

Paired t test power calculation

n = 337.2182
d = 0.153

sig.level = 0.05
power = 0.8

alternative = two.sided

NOTE: n is number of *pairs*

If we presumed power were at 80%, we would need a sample size of 337.

6.9.2 Hand Calculations

For these hand calculations I will used the “paired_wide” dataframe that we had prepared for the
homework assignment intended for R and R packages.

Using traditional NHST (null hypothesis testing language), state your null and alter-
native hypotheses

The null hypotheses states that the true difference in means is zero. 𝐻𝑂 ∶ 𝜇𝐷 = 0
The alternative hypothesis states that the true difference in means is not zero. 𝐻𝐴 ∶ 𝜇𝐷 ≠ 0

Using an R package or functions in base R (and with data in the “wide” format),
calculate the difference score between the two observations of the dependent variable

We had already calculated a difference score in the earlier assignment. Here it is again.
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paired_wide$DIFF <- paired_wide$ANOVA - paired_wide$Multivariate

Obtain the mean and standard deviation of the difference score

We can obtain the mean and standard deviation for the difference score with this script.

psych::describe(paired_wide$DIFF)

vars n mean sd median trimmed mad min max range skew kurtosis se
X1 1 77 -0.12 0.8 -0.2 -0.13 0.59 -2.4 3.2 5.6 0.56 3.15 0.09

The mean difference (�̄�) is -0.12; the standard deviation (�̂�𝐷) of the difference score is 0.8.

Calculate the paired samples t-test

Here is the formula for the paired samples t-test:

𝑡 = �̄�
�̂�𝐷/

√
𝑁

Using the values we located we can calculate the value of the t statistic.

-0.12/(0.8/sqrt(77))

[1] -1.316245

The value we calculated with the rstatix::t_test() function was -1.34. Considering rounding error,
I think we got it!

Identify the degrees of freedom associated with your paired samples t-test

We have 77 pairs. The degrees of freedom for the paired samples t-test is 𝑁 − 1. Therefore, df =
76.

Locate the test critical value for your paired samples t-test

I could look at the table of critical values for the t-distribution. Because I have non-directional
hypotheses, I would use the column for a p-value of .05 for a two-tailed test. I roll down to the
closest sample size (I’ll pick 60). This suggests that my t-test statistic would need to be greater
than 2.0 in order to be statistically significant.
I can also use the qt() function in base R. This function requires that I specify the alpha level (0.05),
whether the test is one- or two-tailed (2), and my degrees of freedom (76). Specifying “TRUE” and
“FALSE” after the lower.tail command gives the positive and negative regions of rejection.

https://www.statology.org/t-distribution-table/
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qt(0.05/2, 76, lower.tail = TRUE)

[1] -1.991673

qt(0.05/2, 76, lower.tail = FALSE)

[1] 1.991673

It is not surprising that these values are a smidge lower than 2.0. Why? Because in the table we
stopped at df of 60, when it is actually 76.

Is the paired samples t-test statistically significant? Why or why not?

The paired samples t-test is not statistically significant because the t-value of -1.316245 does not
exceed -1.992.

What is the confidence interval around the mean difference?

Here is the formula for hand-calculating the confidence interval.

�̄� ± 𝑡𝑐𝑣(𝑠𝑑/√𝑛)

• �̄� the mean difference score
• 𝑡𝑐𝑣 the test critical value for a two-tailed model (even if the hypothesis was one-tailed) where

𝛼 = .05 and the degrees of freedom are 𝑁 − 1
• 𝑠𝑑 the standard deviation of �̄�
• 𝑁 sample size

Let’s calculate it:

-0.12-(-1.991673*((0.8/(sqrt(77)))))

[1] 0.06157776

-0.12+(-1.991673*((0.8/sqrt(77))))

[1] -0.3015778

These values indicate the range of scores in which we are 95% confident that our true �̄� lies. Stated
another way, we are 95% confident that the true mean difference lies between -0.302 and 0.062.
Because this interval crosses zero, we cannot rule out that the true mean difference is 0.00. This
result is consistent with our non-significant p value. For these types of statistics, the 95% confidence
interval and p value will always be yoked together.
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Calculate the effect size (i.e., Cohen’s d associated with your paired samples t-test

Cohen’s d measures, in standard deviation units, the distance between the two means. Regardless
of sign, values of .2, .5, and .8 are considered to be small, medium, and large, respectively.

Because the paired samples t-test used the difference score in the numerator, there are two easy
options for calculating this effect:

𝑑 = �̄�
�̂�𝐷

= 𝑡√
𝑁

Here’s a demonstration of both:

-0.12/.8

[1] -0.15

-1.316245/sqrt(77)

[1] -0.15

Assemble the results into a statistical string

𝑡(76) = −1.316, 𝑝 > .05, 𝐶𝐼95(−0.302, 0.062), 𝑑 = −0.15
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Chapter 7

One-way ANOVA

Screencasted Lecture Link
One-way ANOVA allows the researcher to analyze mean differences between two or more groups on
a between-subjects factor. For the one-way ANOVA, each case (i.e., individual, participant) must
have scores on two variables: a factor and a dependent variable.
The factor must be categorical in nature, dividing the cases into two or more groups or levels. These
levels could be ordered (e.g., placebo, low dose, high dose) or unordered (e.g., cognitive-behavioral,
existential, psychodynamic). The dependent variable must be assessed on a quantitative, continuous
dimension. The ANOVA F test evaluates whether population means on the dependent variable
differ across the levels of the factor.
One-way ANOVA can be used in experimental, quasi-experimental, and field studies. As we work
through the chapter, we will examine some some of the requirements (assumptions) of the statistic
in greater detail.

7.1 Navigating this Lesson

There is about 2 hours of lecture. If you work through the materials with me, plan for another two
hours of study.

7.1.1 Learning Objectives

Learning objectives from this lecture include the following:

• Evaluate the statistical assumptions associated with one-way analysis of variance (ANOVA).
• Describe the relationship between model/between-subjects and residual/within-subjects vari-

ance.
• Narrate the steps in conducting a formal one-way ANOVA beginning with testing the statis-

tical assumptions through writing up an APA style results section.
• Conduct a one-way ANOVA in R (including calculation of effect sizes and follow-up to the

omnibus).
• Conduct a power analysis for a one-way ANOVA.
• Produce an APA style results section for one-way ANOVA.

211

https://youtube.com/playlist?list=PLtz5cFLQl4KMQZGTX3LI6O4wzJrbZwMnk
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7.1.2 Planning for Practice

In each of these lessons I provide suggestions for practice that allow you to select one or more
problems that are graded in difficulty. The least complex is to change the random seed and rework
the problem demonstrated in the lesson. The results should map onto the ones obtained in the
lecture.

The second option comes from the research vignette. The Tran et al. [2014] vignette has two
variables where the authors have conducted one-way ANOVAs. I will demonstrate one (Accurate)
in this lecture; the second is available as one of the homework options.

As a third option, you are welcome to use data to which you have access and is suitable for two-way
ANOVA. In either case the practice options suggest that you:

• test the statistical assumptions
• conduct a one-way ANOVA, including

– omnibus test and effect size
– follow-up (pairwise, planned comparisons, polynomial trends)

• write a results section to include a figure and tables

7.1.3 Readings & Resources

In preparing this chapter, I drew heavily from the following resource(s) that are freely available on
the internet. Other resources are cited (when possible, linked) in the text with complete citations
in the reference list.

• Crump, M. J. C. (2018). Chapter 5.5.2, Simulating data for one-way between subjects design
with 3 levels. In Programming for Psychologists: Data Creation and Analysis. Retrieved
from https://crumplab.github.io/programmingforpsych/simulating-and-analyzing-data-in-r.
html#single-factor-anovas-data-simulation-and-analysis

– Although this reference is on simulating data, the process of simulation can provide
another perspective on one-way ANOVA.

• Kassambara, A. (n.d.). ANOVA in R: The Ultimate Guide. Datanovia. Retrieved December
28, 2022, from https://www.datanovia.com/en/lessons/anova-in-r/

– In order to streamline the learning process, I have chosen to use rstatix package for the
majority of ANOVA lessons. There are a number of tutorials about this package as
well as its integration with ggpubr for creating relatively easy creation of attractive and
informative figures. This tutorial is especially helpful.

• Navarro, D. (2020). Chapter 14: Comparing Several Means (one-Way ANOVA). In Learning
Statistics with R - A tutorial for Psychology Students and other Beginners. Retrieved
from https://stats.libretexts.org/Bookshelves/Applied_Statistics/Book%3A_Learning_
Statistics_with_R_-_A_tutorial_for_Psychology_Students_and_other_Beginners_
(Navarro)

https://crumplab.github.io/programmingforpsych/simulating-and-analyzing-data-in-r.html#single-factor-anovas-data-simulation-and-analysis
https://crumplab.github.io/programmingforpsych/simulating-and-analyzing-data-in-r.html#single-factor-anovas-data-simulation-and-analysis
https://crumplab.github.io/programmingforpsych/simulating-and-analyzing-data-in-r.html#single-factor-anovas-data-simulation-and-analysis
https://www.datanovia.com/en/lessons/anova-in-r/
https://learningstatisticswithr.com/
https://learningstatisticswithr.com/
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Book%3A_Learning_Statistics_with_R_-_A_tutorial_for_Psychology_Students_and_other_Beginners_(Navarro)
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Book%3A_Learning_Statistics_with_R_-_A_tutorial_for_Psychology_Students_and_other_Beginners_(Navarro)
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Book%3A_Learning_Statistics_with_R_-_A_tutorial_for_Psychology_Students_and_other_Beginners_(Navarro)
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– Navarro’s OER includes a good mix of conceptual information about one-way ANOVA
as well as R code. My code/approach is a mix of Green and Salkind’s [2017c], Field’s
[2012], Navarro’s [2020b] chapters as well as other techniques I have found on the internet
and learned from my students.

• Tran, A. G. T. T., & Lee, R. M. (2014). You speak English well! Asian Americans’ reactions
to an exceptionalizing stereotype. Journal of Counseling Psychology, 61(3), 484–490. https:
//doi.org/10.1037/cou0000034

– The source of our research vignette.

7.1.4 Packages

The packages used in this lesson are embedded in this code. When the hashtags are removed, the
script below will (a) check to see if the following packages are installed on your computer and, if
not (b) install them.

#will install the package if not already installed #easy plotting for simple ANOVA
#if(!require(knitr)){install.packages("knitr")} #not needed for conducting the statistics, but necessary for knitting the document (if desired)
#if(!require(tidyverse)){install.packages("tidyverse")} #a specific part of the tidyverse with useful tools for manipulating data
#if(!require(dplyr)){install.packages("dplyr")} #for descriptive statistics and writing them as csv files
#if(!require(psych)){install.packages("psych")} #a number of wrappers for ANOVA models; today for evaluating the Shapiro
#if(!require(ggpubr)){install.packages("ggpubr")} #the package we will use to create figures
#if(!require(rstatix)){install.packages("rstatix")} #the package we will use for the majority of the ANOVA computations
#if(!require(apaTAbles)){install.packages("apaTables")} #helps with formats like decimals and percentages for inline code
#if(!require(effectsize)){install.packages("effectsize")}
#if(!require(pwr)){install.packages("pwr")} #produces an APA style table for ANOVAs and other models
#if(!require(car)){install.packages("car")}#although we don't call this package directly, there are rstatix functions that are a wrapper for it and therefore it needs to be installed

7.2 Workflow for One-Way ANOVA

The following is a proposed workflow for conducting a one-way ANOVA.

https://doi.org/10.1037/cou0000034
https://doi.org/10.1037/cou0000034
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Utilizing one-way
ANOVA involves the following steps:

1. Prepare (upload) data.
2. Explore data

• graphs
• descriptive statistics

3. Checking distributional assumptions

• assessing normality via skew, kurtosis, Shapiro-Wilks
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• checking for violation of homogeneity of variance assumption with Levene’s test; if we
violate this we can use Welch’s omnibus ANOVA

4. Compute the omnibus ANOVA (remember to use Welch’s if Levene’s p < .05)
5. Compute post hoc comparisons, planned contrasts, or polynomial trends
6. Managing Type I error
7. Sample size/power analysis (which you should think about first – but in the context of teaching

ANOVA, it’s more pedagogically sensible, here)

7.3 Research Vignette

The exceptionalizing racial stereotype is microaggression framed as interpersonally complimentary,
but perpetuates negative stereotypical views of a racial/ethnic group. We are using data that is
simulated from a random clinical trial (RCT) conducted by Tran and Lee [2014].

The one-way ANOVA examples we are simulating represent the post-only design which investigated
three levels of the exceptionalizing stereotype in a sample of Asian American participants. This
experimental design involved a confederate (posing as a peer) whose parting comment fell into the
low racial loading, high racial loading, or control conditions.

COND Assignment Manipulation Post-test Observation
Low racial loading
condition (n = 22)

Random Yes: “Nice talking to
you. You speak English
well.”

Accurate

High racial loading
(n = 23)

Random Yes: “Nice talking to
you. You speak English
well for an Asian.”

Accurate

Control (n = 23) Random No: “Nice talking to
you.”

Accurate

In the article, the one-way ANOVA is a relatively smaller focus. In fact, Tran and Lee [2014]
reported results from two ANOVAs and 4 ANCOVAs, using a pre-test as a covariate. A preprint of
their article is available here. If you are interested in this topic, I highly encourage you to review
the more complex analyses and their results.

• Accurate is the DV we will be exploring in this lesson. Participants rated how accurate they
believed their partner’s impression of them was (0 = very inaccurate, 3 = very accurate).

• moreTalk is the DV suggested as a practice problem. Participants rated how much longer
they would continue the interaction with their partner compared to their interactions in
general (-2 = much less than average, 0 = average, 2 = much more than average).

7.3.1 Data Simulation

Simulating data for a one-way ANOVA requires the sample size (listed first), mean (mean=), and
standard deviation (sd=) for each of the groups [Crump, 2018]. In creating this simulation, I used
the data from Table 1 in the Tran and Lee [2014] article. Having worked the problem several times,

https://pdfs.semanticscholar.org/4146/b528961c041de317c6a4c699f12fc5a4bc22.pdf?_ga=2.179078439.2028716028.1610939782-1660125104.1610939782
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I made one change. The group sizes in the original study were 23, 22, and 23. To increase the
probability that we would have statistically significant results in our worked example, I increased
the sample sizes to 30 for each group. In this way we have a perfectly balanced (equal cell sizes)
design.

#Note, this script results in a different simulation than is in the ReadySetR lesson
#sets a random seed so that we get the same results each time
set.seed(210820)
#sample size, M and SD for each group
Accurate <- c(rnorm(30, mean=1.18, sd=0.80), rnorm(30, mean=1.83, sd = 0.58), rnorm(30, mean = 1.76, sd = 0.56))
#set upper bound for DV
Accurate[Accurate>3]<-3
#set lower bound for DV
Accurate[Accurate<0]<-0
#sample size, M and SD for each group
moreTalk <- c(rnorm(30, mean=-.82, sd=0.91), rnorm(30, mean=-0.39, sd = 0.66), rnorm(30, mean = -0.04, sd = 0.71))
#set upper bound for DV
moreTalk[moreTalk>2]<- 2
#set lower bound for DV
moreTalk[moreTalk<-2]<- -2
#IDs for participants
ID<-factor(seq(1,90))
#name factors and identify how many in each group; should be in same order as first row of script
COND<-c(rep("High", 30), rep("Low", 30), rep("Control", 30))
#groups the 3 variables into a single df: ID#, DV, condition
accSIM30 <-data.frame(ID, COND, Accurate, moreTalk)

Examining the data is important for several reasons. First, we can begin our inspection for anoma-
lies. Second, if we are confused about what statistic we wish to apply, understanding the charac-
teristics of the data can provide clues.
We can see the entire dataframe by clicking open the dataframe object found in the Environment
window of R studio. This will open a tab that allows scrolling up/down and left/right through the
entire dataframe. It is also possible to sort by variables.
Alternatively the head() function from base R displays a static view of the first six rows of data.

head(accSIM30)

ID COND Accurate moreTalk
1 1 High 0.4203896 -0.6398265
2 2 High 1.1226505 -2.0000000
3 3 High 0.8852238 -0.2497750
4 4 High 1.5689439 0.1455637
5 5 High 1.8307196 -0.9960413
6 6 High 1.8874431 -1.0692978

Yet another option is to use the str() function from base R. This provides a list of variables and
provides detail about their formats.
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str(accSIM30)

'data.frame': 90 obs. of 4 variables:
$ ID : Factor w/ 90 levels "1","2","3","4",..: 1 2 3 4 5 6 7 8 9 10 ...
$ COND : chr "High" "High" "High" "High" ...
$ Accurate: num 0.42 1.123 0.885 1.569 1.831 ...
$ moreTalk: num -0.64 -2 -0.25 0.146 -0.996 ...

If we look at this simple dataset, we see that we see that

• COND is a grouping variable) with 3 levels (high, low, control)

– it is presently in “chr” (character) format, it needs to be changed to be a factor.

• Accurate is a continuous variable

– it is presently in “num” (numerical) format, this is an appropriate format.

• moreTalk is a continuous variable

– it is presently in “num” (numerical) format, this is an appropriate format

There are many ways to convert variables to factors; here is one of the simplest.

#convert variable to factor
accSIM30$COND <- factor(accSIM30$COND)

Let’s recheck the structure

str(accSIM30)

'data.frame': 90 obs. of 4 variables:
$ ID : Factor w/ 90 levels "1","2","3","4",..: 1 2 3 4 5 6 7 8 9 10 ...
$ COND : Factor w/ 3 levels "Control","High",..: 2 2 2 2 2 2 2 2 2 2 ...
$ Accurate: num 0.42 1.123 0.885 1.569 1.831 ...
$ moreTalk: num -0.64 -2 -0.25 0.146 -0.996 ...

By default, R orders factors alphabetically. This means, analyses will assume that “Control” (C)
is the lowest condition, then “High,” then “Low.” Since these have theoretically ordered values, we
want them in the order of “Control,” “Low,” “High.”
Here is the script to create an ordered factor. The order in which the variables are entered in the
concatenated list (“c”) establishes the order (e.g., levels).

#ordering the factor
accSIM30$COND <- factor(accSIM30$COND, levels = c("Control", "Low", "High"))

Again, we can check our work.



218 CHAPTER 7. ONE-WAY ANOVA

#another structure check
str(accSIM30)

'data.frame': 90 obs. of 4 variables:
$ ID : Factor w/ 90 levels "1","2","3","4",..: 1 2 3 4 5 6 7 8 9 10 ...
$ COND : Factor w/ 3 levels "Control","Low",..: 3 3 3 3 3 3 3 3 3 3 ...
$ Accurate: num 0.42 1.123 0.885 1.569 1.831 ...
$ moreTalk: num -0.64 -2 -0.25 0.146 -0.996 ...

Now our variables are suitable for analysis.

Although you may continue working with the simulated data, at this point, you may wish to export
and/or import the data as a .csv (think “Excel lite”) or .rds (R object that preserves the information
about the variables – such changing COND to an ordered factor). Here is the code to do so. The
data should save in the same folder as the .rmd file. Therefore, it is really important (think, “good
R hygiene”) to have organized your folders so that your .rmd and data files are co-located.

I have hashtagged out the code. If you wish to use it, delete the hashtags. Although I show the .csv
code first, my personal preference is to save R data as .rds files. While they aren’t easy to “see” as
an independent file, they retain the formatting of the variables. For a demonstration, refer back to
the Ready_Set_R lesson.

#write the simulated data as a .csv
#write.table(accSIM30, file="accSIM.csv", sep=",", col.names=TRUE, row.names=FALSE)
#bring back the simulated dat from a .csv file
#acc_csv <- read.csv("accSIM.csv", header = TRUE)

If you have cleared the environment and then imported the .csv file, examining the structure of
the .csv file shows that the prior formatting is lost. This is demonstrated in the accompanying
screencast.

#a quick demo to show that the .csv format loses the variable formatting
#str(acc_csv)

Below is the code to write and then import the data as an .rds file.

#to save the df as an .rds (think "R object") file on your computer; it should save in the same file as the .rmd file you are working with
#saveRDS(accSIM30, "accSIM.rds")
#bring back the simulated dat from an .rds file
#acc_RDS <- readRDS("accSIM.rds")

By examining the structure of the .rds file we can see that the .rds file preserves the variable
formatting. This is demonstrated in the accompanying screencast.

#a quick demo to show that the .rds format preserves the variable formatting
#str(acc_RDS)
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Note that I renamed each of these data objects to reflect the form in whic I saved them (i.e.,
“acc_csv”, “acc_RDS”). If you have followed this step, you will want to rename the file before
continuing with the rest of the chapter. Alternatively, you can start from scratch, re-run the code
to simulate the data, and skip this portion on importing/exporting data.

#accSIM30 <- acc_RDS
#or
#accSIM30 <- acc_csv

7.3.2 Quick Peek at the Data

This lesson’s exploration of the data is designed to introduce multiple tools for doing so. In this
first demonstration I will quickly produce a mean and standard deviation using functions from base
R.

The aggregate() function lets R know we want output by a grouping variable. We then list the
variable of interest, a tilda (I think of the word “by”), and then the grouping variable (I think
“Accurate by COND”). Finally we list the dataframe and the statistic (e.g., mean or standard
deviation). R is case sensitive – so check your capitalization if your code fails to execute.

aggregate(Accurate ~ COND, accSIM30, mean)

COND Accurate
1 Control 1.756195
2 Low 1.900116
3 High 1.152815

aggregate(Accurate ~ COND, accSIM30, sd)

COND Accurate
1 Control 0.4603964
2 Low 0.6301138
3 High 0.6587486

Inspection of the means and standard deviations shows that the racially loaded high condition has
the lowest accuracy score (𝑀 = 1.153) and the largest variability (𝑆𝐷 = 0.659).
Graphing data is a best practice for early exploration and inspection of the data. In ANOVA
models the boxplot is especially useful. The ggpubr package offers terrific options. After calling
ggpubr::ggboxplot(), we list the data frame and name the x and y variables. That would be sufficient
to produce a simple boxplot. The “add = jitter” command will plot each individual case, but “jitter”
them to the right and left such that they are not overlapping and we can see all scores. For fun I
added some color.

ggpubr::ggboxplot(accSIM30, x = "COND", y = "Accurate", add = "jitter", color = "COND",)
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In boxplots the center value is the median. The box spans the interquartile range and ranges from
the 25th to the 75th percentile. The whiskers cover 1.5 times the interquartile range. When this
does not capture the entire range, outliers are represented with dots.

From both the boxplot and the linegraph with error bars, we can see that participants in the low
racial loading condition have the highest accuracy ratings. This is followed by the control and then
high racial loading conditions. Are these differences statistically significant? This is why we need
the one-way ANOVA.

7.4 Working the Oneway ANOVA (by hand)

ANOVA was developed by Sir Ronald Fisher in the early 20th century. The name is a bit of a
misnomer – rather than analyzing variances, we are investigating differences in means (but the
formula does take variances into consideration…stay tuned).

ANOVA falls squarely within the tradition of null hypothesis significance testing (NHST). As
such, a formal, traditional, ANOVA begins with statements of the null and alternate hypotheses.



7.4. WORKING THE ONEWAY ANOVA (BY HAND) 221

Note. In their article, Tran and Lee [2014] do not list such. This is farly common in present-day
journal articles.

In our example, we would hypothesize that the population means (i.e., Asian or Asian American
individuals in the U.S.) are equal:

𝐻𝑂 ∶ 𝜇1 = 𝜇2 = 𝜇3

There are an number of ways that the 𝐻𝑂 could be false. Here are a few:

𝐻𝑎1 ∶ 𝜇1 ≠ 𝜇2 ≠ 𝜇3

𝐻𝑎2 ∶ 𝜇1 = 𝜇2 > 𝜇3

𝐻𝑎3 ∶ 𝜇1 > 𝜇2 > 𝜇3

The bottom line is that if we have a statistically significant omnibus ANOVA (i.e., the test of the
overall significance of the model) and the 𝐻𝑂 is false, somewhere between the three levels of the
grouping factor, the means are statistically significantly different from each other.

In evaluating the differences between means, one-way ANOVA compares:

• systematic variance to unsystematic variance
• explained to unexplained variation
• experimental effect to the individual differences
• model variance to residual variance
• between group variance to within group variance

The ratio of these variances is the F-ratio.

Navarro [2020a] offers a set of useful figures to compare between- and within-group variation.

When between-group variance (i.e,. model variance) is greater than within-group variance (i.e.,
residual variance) there may be support to suggest that there are statistically significant differences
between groups.

Let’s examine how variance is partitioned by hand-calculating sums of squares total, model, and
residual. Along the way we will use some basic R skills to manipulate the data.

7.4.1 Sums of Squares Total

Sums of squares total represents the total amount of variance within our data. Examining the
formula(s; there are variants of each) can help us gain a conceptual understanding of this.

In this first version of the formula we can see that the grand (or overall) mean is subtracted from
each individual score, squared, and then summed. This makes sense: sums of squares, total.

𝑆𝑆𝑇 = ∑(𝑥𝑖 − ̄𝑥𝑔𝑟𝑎𝑛𝑑)2

In the next version of the formula we see that the sums of square total is the addition of the sums
of squares model and residual.

𝑆𝑆𝑇 = 𝑆𝑆𝑀 + 𝑆𝑆𝑅
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group 1 group 2 group 3

Between−group variation
(i.e., differences among group means)

Figure 7.1: Graphical illustration of “between groups” variation
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group 1 group 2 group 3

Figure 7.2: Graphical illustration of “within groups” variation
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“Between” and “within” are another way to understand “model” and “residual.” This is reflected
in the next formula.

𝑆𝑆𝑇 = 𝑆𝑆𝐵 + 𝑆𝑆𝑊

Finally, think of the sums of squares total as the grand variance multiplied by the overall degrees
of freedom (N - 1).

𝑆𝑆𝑇 = 𝑠2
𝑔𝑟𝑎𝑛𝑑(𝑛 − 1)

Let’s take a moment to hand-calculate 𝑆𝑆𝑇 . Not to worry – we’ll get R to do the math for us!

Our grand (i.e., overall) mean is

GrandMean <- mean(accSIM30$Accurate)
GrandMean

[1] 1.603042

Subtracting the grand mean from each Accurate rating yields a mean difference. In the script below
I have used the mutate() function from the dplyr package (a part of the tidyverse) to created a new
variable (” m_dev”) in the dataframe. The tidyverse package is one of the few exceptions that I
will open via the library. This is because we need it if we are going to use the pipe (%>%) to string
parts of our script together.

library(tidyverse)

accSIM30 <- accSIM30 %>%
dplyr::mutate(m_dev = Accurate-mean(Accurate))

head(accSIM30)

ID COND Accurate moreTalk m_dev
1 1 High 0.4203896 -0.6398265 -1.18265259
2 2 High 1.1226505 -2.0000000 -0.48039170
3 3 High 0.8852238 -0.2497750 -0.71781837
4 4 High 1.5689439 0.1455637 -0.03409829
5 5 High 1.8307196 -0.9960413 0.22767748
6 6 High 1.8874431 -1.0692978 0.28440098

Pop quiz: What’s the sum of our new m_dev variable? Let’s check.

mean(accSIM30$m_dev)

[1] 0.00000000000000003830065
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Unless you run the script at the top of this document (“options(scipen=999)”), R will (seemingly
selectively) use scientific e notation to report your results. The proper value is one where the
base number (before the “e”) is multiplied by 10, raised to the power shown: 3.830065∗1017 Another
way to think of it is to move the decimal 17 places to the left. In any case, this number is essentially
zero.

Back to the point of sums of squares total, the sum of deviations around the grand mean will always
be zero. To make them useful, we must square them:

accSIM30 <- accSIM30 %>%
dplyr::mutate(m_devSQ = m_dev^2)

head(accSIM30)

ID COND Accurate moreTalk m_dev m_devSQ
1 1 High 0.4203896 -0.6398265 -1.18265259 1.398667144
2 2 High 1.1226505 -2.0000000 -0.48039170 0.230776185
3 3 High 0.8852238 -0.2497750 -0.71781837 0.515263216
4 4 High 1.5689439 0.1455637 -0.03409829 0.001162694
5 5 High 1.8307196 -0.9960413 0.22767748 0.051837034
6 6 High 1.8874431 -1.0692978 0.28440098 0.080883915

If we sum the squared mean deviations we will obtain the total variance (sums of squares total):

SST <- sum(accSIM30$m_devSQ)
SST

[1] 39.67818

This value, the sum of squared deviations around the grand mean, is our 𝑆𝑆𝑇 . The associated
degrees of freedom is 𝑁 − 1; in our case this is 90-1 = 89.

In one-way ANOVA, we divide 𝑆𝑆𝑇 intomodel/between sums of squares and residual/within
sums of squares.
The model generally represents the notion that the means are different than each other. We want
the variation between our means to be greater than the variation within each of the groups from
which our means are calculated.

7.4.2 Sums of Squares for the Model (or Between)

We just determined that the total amount of variation within the data is 39.678 units. From this
we can estimate how much of this variation our model can explain. 𝑆𝑆𝑀 tells us how much of the
total variation can be explained by the fact that different data points come from different groups.

We see this reflected in the formula below, where

• the grand mean is subtracted from each group mean
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• this value is squared and multiplied by the number of cases in each group
• these values are summed

𝑆𝑆𝑀 = ∑ 𝑛𝑘( ̄𝑥𝑘 − ̄𝑥𝑔𝑟𝑎𝑛𝑑)2

To calculate this, we start with the grand mean (previously calculated): 1.603.
We also estimate the group means. The script below provides the formula, the dataset, and the
particular statistic (mean) that we want calculated.

GroupMeans <- aggregate(Accurate ~ COND, accSIM30, mean)
GroupMeans

COND Accurate
1 Control 1.756195
2 Low 1.900116
3 High 1.152815

This script is used to extract the specific means so that I can demonstrate the formulas with the
words/terms as well as the numbers.

ControlMean <- (GroupMeans$Accurate[1])
ControlMean

[1] 1.756195

LowMean <- (GroupMeans$Accurate[2])
LowMean

[1] 1.900116

HighMean <- (GroupMeans$Accurate[3])
HighMean

[1] 1.152815

nGroup <- accSIM30 %>% count(COND)
nGroup

COND n
1 Control 30
2 Low 30
3 High 30
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nControl <- nGroup$n[1]
nControl

[1] 30

nLow <- nGroup$n[2]
nLow

[1] 30

nHigh<- nGroup$n[3]
nHigh

[1] 30

This formula occurs in three chunks, representing the control, low, and high racial loading condi-
tions. In each of the chunks we have the 𝑛, group mean, and grand mean.

#Calculated by using object names from our calculations
SSM <- nControl*(ControlMean - GrandMean)^2 + nLow*(LowMean - GrandMean)^2 + nHigh*(HighMean - GrandMean)^2
SSM

[1] 9.432402

#calculated by specifying the actual values from our calculations
30*(1.756 - 1.603)^2 + 30*(1.900 - 1.603)^2 + 30*(1.153 - 1.603)^2

[1] 9.42354

#Both result in the same

This value, 𝑆𝑆𝑀 is the amount of variance accounted for by the model; that is, the the amount
of variance accounted for by the grouping variable/factor, COND. Degrees of freedom for 𝑆𝑆𝑀 is
always one less than the number of elements (e.g., groups) used in its calculation (𝑘 − 1). Because
we have three groups, our degrees of freedom for the model is two.

7.4.3 Sums of Squares Residual (or within)

To recap, we know there are 39.678 units of variation to be explained in our data. Our model
explains 9.432 of these units. Sums of squares residual tells us how much of the variation cannot
be explained by the model. This value is influenced by extraneous factors; some will refer to it as
“noise.”
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Looking at the formula can assist us in with a conceptual formula. In 𝑆𝑆𝑅 we subtract the group
mean from each individual member of the group and then square it.

𝑆𝑆𝑅 = ∑(𝑥𝑖𝑘 − ̄𝑥𝑘)2

Below is another approach to calculating𝑆𝑆𝑅. In this one the variance for each group is multiplied
by its respective degrees of freedom, then summed.

𝑆𝑆𝑅 = 𝑠2
𝑔𝑟𝑜𝑢𝑝1(𝑛 − 1) + 𝑠2

𝑔𝑟𝑜𝑢𝑝2(𝑛 − 1) + 𝑠2
𝑔𝑟𝑜𝑢𝑝3(𝑛 − 1))

Again, the formula is in three chunks – but this time the calculations are within-group. We need
the variance (the standard deviation squared) for the calculation.

SDs <- aggregate (Accurate ~ COND, accSIM30, sd)
SDs

COND Accurate
1 Control 0.4603964
2 Low 0.6301138
3 High 0.6587486

This script is used to create objects for each of the SDs associated with the grouping level. I created
this so that I could demonstrate the formulas with words/terms as well as with numbers.

sdControl <- (SDs$Accurate[1])
sdControl

[1] 0.4603964

sdLow <- (SDs$Accurate[2])
sdLow

[1] 0.6301138

sdHigh <- (SDs$Accurate[3])
sdHigh

[1] 0.6587486

7.4.3.1 On the relationship between standard deviation and variance

Early in statistics training the difference between standard deviation (s or 𝜎𝑛−1) and variance(𝑠2 or
𝜎2) can be confusing. This calculation demonstrates the relationship between standard deviation
and variance. Variance is the standard deviation, squared.
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#when squared, the standard deviation of the control group,
#hould equal the variance reported in the next chunk
sdControl^2

[1] 0.2119648

VARs <- aggregate (Accurate ~ COND, accSIM30, var)
VARs

COND Accurate
1 Control 0.2119648
2 Low 0.3970434
3 High 0.4339497

This script is used to extract the variances for each level of the grouping variable. I created them
to be able to demonstrate the later formulas with words/terms as well as numbers.

varControl <- (VARs$Accurate[1])
varControl

[1] 0.2119648

varLow <- (VARs$Accurate[2])
varLow

[1] 0.3970434

varHigh <- (VARs$Accurate[3])
varHigh

[1] 0.4339497

We will use the second formula to calculate 𝑆𝑆𝑅. For each of the groups, we multiply the variance
by the respective degrees of freedom for the group (n - 1).

#Calculated by using object names from our calculations
SSR <- varControl*(nControl-1) + varLow*(nLow-1) + varHigh*(nHigh-1)

#Re-calculated by specifying the actual values from our calculations
SSR

[1] 30.24578
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0.212*(30-1) + 0.397*(30-1) + 0.434*(30-1)

[1] 30.247

#Both result in the same

The value for our 𝑆𝑆𝑅 is 30.246. Degrees of freedom for the residual is 𝑑𝑓𝑇 − 𝑑𝑓𝑀 .

• 𝑑𝑓𝑇 was 𝑁 − 1: 90 - 1 = 89
• 𝑑𝑓𝑀 was 𝑘 − 1: 3 - 1 = 2
• Therefore, 𝑑𝑓𝑅: is 89 - 2 = 87

7.4.4 Relationship between 𝑆𝑆𝑇 , 𝑆𝑆𝑀 , and 𝑆𝑆𝑅.

In case it is not clear:
𝑆𝑆𝑇 = 9.432 + 30.246

#calculated with object names
SSM + SSR

[1] 39.67818

#Re-calculated with the actual values
9.432 + 30.247

[1] 39.679

#Both result in the same

Our SST, calculated from above was 39.678.

7.4.5 Mean Squares Model & Residual

Our estimates of variation were sums of squares and are influenced by the number of scores that
were summed. We can correct this bias by calculating their average – the mean squares or 𝑀𝑆.
We will use these in the calculation of the 𝐹 ratio – the statistic that tests if there are significant
differences between groups.
Like the constellation of sums of squares, we calculate mean squares for the model (𝑀𝑆𝑀) and
residual(𝑀𝑆𝑅). Each formula simply divides the corresponding sums of squares by their respective
degrees of freedom.

𝑀𝑆𝑀 = 𝑆𝑆𝑀
𝑑𝑓𝑀

Regarding the calculation of our model mean squares:
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• 𝑆𝑆𝑀 was 9.432
• 𝑑𝑓𝑀 was 2
• Therefore, 𝑀𝑆𝑀 =is:

#mean squares for the model
#calculated with object names
MSM <- SSM/dfM
MSM

[1] 4.716201

#Re-calculated with actual values
9.432/2

[1] 4.716

#Both result in the same

𝑀𝑆𝑅 = 𝑆𝑆𝑅
𝑑𝑓𝑅

Regarding the calculation of our model residual squares:

• 𝑆𝑆𝑅 was 30.247
• 𝑑𝑓𝑅 was 87
• Therefore, 𝑀𝑆𝑅 is:

#mean squares for the residual
#calculated with object names
MSR <- SSR/ dfR
MSR

[1] 0.3476526

#calculated with actual values
30.247/87

[1] 0.3476667

#Both result in the same
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7.4.6 Calculating the F Statistic

The F statistic (or F ratio) assesses the ratio (as its name implies) of variation explained by the
model to unsystematic factors (i.e., the residual). Earlier we used “between” and “within” language.
Especially when we think of our example – where the model is composed of three groups, we can
think of the F statistic as assessing the ratio of variation explained by between-subjects differences
to within-subjects differences. Navarro’s [2020b] figures (earlier in the chapter) illustrate this well.

𝐹 = 𝑀𝑆𝑀
𝑀𝑆𝑅

Regarding the calculation of our F-ratio:

• 𝑀𝑆𝑀 was 4.716
• 𝑀𝑆𝑅 was 0.348
• Therefore, 𝐹 is:

#calculated with object names
Fratio <- MSM / MSR
Fratio

[1] 13.56584

#calculated with actual values
#Both result in the same
4.716/0.348

[1] 13.55172

7.4.7 Source Table Games

These last few calculations are actually less complicated than this presentation makes them seem.
To better understand the relation between sums of squares, degrees of freedom, and mean squares,
let’s play a couple of rounds of Source Table Games!

Rules of the game:

• In each case, mean squares are determined by dividing the sums of squares by its respective
degrees of freedom.

• The F statistic is determined by dividing 𝑀𝑆𝑀 by 𝑀𝑆𝑅

Knowing only two of the values, challenge yourself to complete the rest of the table. Before looking
at the answers (below), try to the fill in the blanks based in the table based on what we have
learned so far.



7.5. WORKING THE ONE-WAY ANOVA WITH R PACKAGES 233

Game Total (df, N - 1) Model (df, k -1) Residual (df, 𝑑𝑓𝑇 − 𝑑𝑓𝑀)
SS 39.678(89) 9.432(2) ______
MS NA ______ ______

𝐹 = 𝑀𝑆𝑀/𝑀𝑆𝑅 = ______

DON’T PEEK! TRY TO DO THE CALCULATIONS IN THE “SOURCE TABLE
GAMES” EXERCISE BEFORE LOOKING AT THESE ANSWERS

Answers Total (df, N - 1) Model (df, k -1) Residual (df, 𝑑𝑓𝑇 − 𝑑𝑓𝑀)
SS 39.678(89) 9.432(2) 30.247(87)
MS NA 4.716‘ 0.348

𝐹 = 𝑀𝑆𝑀/𝑀𝑆𝑅 = 13.566

To determine whether or not it is statistically significant, we can check a table of critical values
[Zach, 2019] for the F test.

Our example has 2 (numerator) and 87 (denominator) degrees of freedom. Rolling down to the
table where 𝛼 = .05, we can see that any 𝐹 value > 3.11 (a value somewhere between 3.07 and
3.15) will be statistically significant. Our 𝐹 = 13.566, so we have clearly exceeded the threshold.
This is our omnibus F test.

We can also use a look-up function, which follows this general form: qf(p, df1, df2.
lower.tail=FALSE)

qf(.05, 2, 87, lower.tail=FALSE)

[1] 3.101296

Significance at this level lets us know that there is at least 1 statistically significant difference
between our control, low, and high racially loaded conditions. While it is important to follow-up
to see where these significant differences lie, we will not do these by hand. Rather, let’s rework the
problem in R.

7.5 Working the One-Way ANOVA with R Packages

Let’s rework the problem in R. We start at the top of the flowchart, evaluating the statistical
assumptions.

7.5.1 Evaluating the Statistical Assumptions

All statistical tests have some assumptions about the data. The one-way ANOVA has four assump-
tions:

https://www.statology.org/how-to-read-the-f-distribution-table/
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Figure 7.3: An image of the workflow for one-way ANOVA, showing that we are at the beginning:
evaluating the potential violation of the assumptions.



7.5. WORKING THE ONE-WAY ANOVA WITH R PACKAGES 235

• The dependent variable is normally distributed for each of the populations as defined by the
different levels of the factor. We will examine this by

– evaluating skew and kurtosis
– visually inspecting the distribution
– conducting Shapiro-Wilk tests of normality
– examing a QQ plot

• The variances of the dependent variable are the same for all populations. This is often termed
the homogeneity of variance assumption. We will examine this with

– Levene’s Test

• The cases represent random samples from the populations and scores on the test variable
are independent of each other. That is, comparing related cases (e.g., parent/child, man-
ager/employee, time1/time2) violates this assumption and this question would need to be
evaluated by a different statistic such as repeated measures ANOVA or dyadic data analysis.

– Independence in observations is a research design issue. ANOVA is not robust to violat-
ing this assumption. When observations are correlated/dependent there is a dramatic
increase in Type I error.

• The dependent variable is measured on an interval scale.

– If the dependent variable is categorical, another statistic (such as logistic regression)
should be chosen.

7.5.1.1 Is the dependent variable normally distributed across levels of the factor?

From the psych package, the describe() function can be used to provide descriptive statistics (or,
“descriptives”) of continuously scaled variables (i.e., variables measured on the interval or ratio
scale). In this simple example, we can specify the specific continuous, DV.

#we name the function
#in parentheses we list data source
psych::describe(accSIM30$Accurate, type=1) #the type=1 argument provides the specific skew and kurtosis values for which Kline's recommendations are intended

vars n mean sd median trimmed mad min max range skew kurtosis se
X1 1 90 1.6 0.67 1.73 1.62 0.68 0 3 3 -0.29 -0.43 0.07

If we want descriptives for each level of the grouping variable (factor), we can use the describeBy()
function of the psych package. The order of entry within the script is the DV followed by the
grouping variable (IV). In our research vignette below, I mentally interpret the Accurate ~ COND
formula as, “Accurate by condition.”

#It is unnecessary to create an object, but an object allows you to do cool stuff, like write it to a .csv file and use that as a basis for APA style tables
#In this script we can think "Accurate by COND" meaning that the descriptives for accuracy will be grouped by COND which is a categorical variable
#mat = TRUE presents the output in matrix (table) form
#digits = 3 rounds the output to 3 decimal places
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#data = accSIM30 is a different (I think easier) way to identify the object that holds the dataframe
des.mat <- psych::describeBy (Accurate ~ COND, mat=TRUE, digits=3, data=accSIM30, type=1)
#Note. Recently my students and I have been having intermittent struggles with the describeBy function in the psych package. We have noticed that it is problematic when using .rds files and when using data directly imported from Qualtrics. If you are having similar difficulties, try uploading the .csv file and making the appropriate formatting changes.
#displays the matrix object that we just created
des.mat

item group1 vars n mean sd median trimmed mad min max
Accurate1 1 Control 1 30 1.756 0.460 1.893 1.767 0.392 0.781 2.745
Accurate2 2 Low 1 30 1.900 0.630 2.007 1.918 0.458 0.655 3.000
Accurate3 3 High 1 30 1.153 0.659 1.131 1.128 0.743 0.000 2.669

range skew kurtosis se
Accurate1 1.964 -0.289 -0.364 0.084
Accurate2 2.345 -0.398 -0.288 0.115
Accurate3 2.669 0.218 -0.528 0.120

#optional to write it to a .csv file for further manipulation and formatting for a paper or presentation
write.csv(des.mat, file="Table1.csv")

Skew and kurtosis are one way to evaluate whether or not data are normally distributed. When we
use the “type=1” argument, the skew and kurtosis indices in the psych package can be interpreted
according to Kline’s [2016a] guidelines. Regarding skew, values greater than the absolute value of
3.0 are generally considered “severely skewed.” Regarding kurtosis, “severely kurtotic” is argued to
be anywhere greater 8 to 20. Kline recommended using a conservative threshold of the absolute
value of 10.

The Shapiro-Wilk test evaluates the hypothesis that the distribution of the data deviates from
a comparable normal distribution. If the test is non-significant (p >.05) the distribution of the
sample is not significantly different from a normal distribution. If, however, the test is significant
(p < .05), then the sample distribution is significantly different from a normal distribution. The
rstatix package can conduct this test for us.

library(tidyverse)
shapiro <- accSIM30 %>%

group_by(COND) %>%
rstatix::shapiro_test(Accurate)

shapiro

# A tibble: 3 x 4
COND variable statistic p
<fct> <chr> <dbl> <dbl>

1 Control Accurate 0.954 0.215
2 Low Accurate 0.944 0.115
3 High Accurate 0.980 0.831

The 𝑝 values for the distributions of the dependent variable (accurate) in each of the three conditions
are all well above .05. This tells us that the Accurate variable does not deviate from a statistically
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significant distribution at any level (Control, W = 0.954, p = 0.215; Low, W = 0.944, p = 0.115‘;
High, W = 0.980, p = 0.831).

Especially in the more simple “ANOVA’s” I like this form of the Shapiro-Wilk test because it makes
it clear that we expect normality within each of the grouping levels. This approach, however, is
only appropriate when there are a low number of levels/groupings and there are many data points
per group. As models become more complex, researchers should use the model-based option for
assessing normality. To do this, we first create an object that tests our research model.

Although that model (a regression model) has information about our primary statistic, we are using
it to carefully investigate the assumption of normality. One product of the analysis is residuals.
Residuals are the unexplained variance in the outcome (or dependent) variable after accounting for
the predictor (or independent) variable. When we plot these “leftovers” against the values of x, we
can visualize the fit of the model in a QQ plot. The dots represent the residuals. When they are
relatively close to the line they not only suggest good fit of the model, but we know they are small
and evenly distributed around zero (i.e., normally distributed).

res_model <- lm(Accurate ~ COND, data = accSIM30)
ggpubr::ggqqplot(residuals(res_model))
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We can also use the model in a Shapiro-Wilk test. As before, we want a non-significant result.

rstatix::shapiro_test(residuals(res_model))

# A tibble: 1 x 3
variable statistic p.value
<chr> <dbl> <dbl>

1 residuals(res_model) 0.979 0.150

These results parallel what we have already learned. That is, the non-significant p value associated
with the model-based Shapiro-Wilk test of normality indicates that our distribution of residuals
does not differ from a normal distribution (𝑊 = 0.979, 𝑝 = 0.15). Given the space restrictions
in journal articles and the greater interest in results of the primary analyses, I am more likely to
report model-level results than the results from the cell-based Shapiro-Wilk tests.

There are limitations to the Shapiro-Wilk test. As the dataset being evaluated gets larger, the
Shapiro-Wilk test becomes more sensitive to small deviations; this leads to a greater probability of
rejecting the null hypothesis (null hypothesis being the values come from a normal distribution).



7.5. WORKING THE ONE-WAY ANOVA WITH R PACKAGES 239

Green and Salkind [2017c] advised that ANOVA is relatively robust to violations of normality if
there are at least 15 cases per cell and the design is reasonably balanced (i.e., equal cell sizes).

7.5.1.2 Should we consider removing outliers?

If our data pointed to significant violations of normality, we could consider identifying and removing
outliers. Removing data is a serious consideration that should not be made lightly. If needed,
though, here is a tool to inspect the data and then, if necessary, remove it.

We can think of outlier identification in a couple of ways. First, we might look at dependent variable
across the entire dataset. That is, without regard to the levels of the grouping variable. We can
point rstatix::identify_outliers() to the data.

accSIM30%>%
rstatix::identify_outliers(Accurate)

[1] ID COND Accurate moreTalk m_dev m_devSQ is.outlier
[8] is.extreme
<0 rows> (or 0-length row.names)

The output “0 rows” is not an error. It means if we consider the distribution of the Accurate
variable as a whole, there are no outliers. Let’s re-run the code, this time requiring it to look
within each of the grouping levels of the condition variable.

accSIM30%>%
group_by(COND)%>%
rstatix::identify_outliers(Accurate)

# A tibble: 2 x 8
COND ID Accurate moreTalk m_dev m_devSQ is.outlier is.extreme
<fct> <fct> <dbl> <dbl> <dbl> <dbl> <lgl> <lgl>

1 Low 31 0.663 -1.10 -0.940 0.884 TRUE FALSE
2 Low 39 0.655 -0.201 -0.948 0.899 TRUE FALSE

This output tells us that in the low-racial loading condition there are two cases that are identified as
outliers (denoted as TRUE) but not as extreme outliers (denoted as FALSE). Handily, the function
returns information (i.e., the values of the Accurate and moreTalk variables, the ID number) that
would help us delete it.

Let’s say that, after very careful consideration, we decided to remove the case with ID = 31. We
could use dplyr::filter() to do so. In this code, the filter() function locates all the cases where ID
= 31. The exclamation point that precedes the equal sign indicates that the purpose is to remove
the case.

#accSIM30 <- dplyr::filter (accSIM30, ID != "31")
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Once executed, we can see that this case is no longer in the dataframe. Although I demonstrated
this in the accompanying lecture, I have hashtagged out the command because I would not delete
the case. If you already deleted the case, you can return the hashtag and re-run all the code up to
this point.

7.5.1.3 Are the variances of the dependent variable similar across the levels of the
grouping factor?

The Levene’s test evaluates the ANOVA assumption that variances of the dependent variable for
each level of the independent variable are similarly distributed. We want this to be non-significant
(𝑝 > .05). If violated, we need to use an ANOVA test that is “robust to the violation of the
homogeneity of variance” (e.g., Welch’s oneway).

rstatix::levene_test(accSIM30, Accurate ~ COND)

# A tibble: 1 x 4
df1 df2 statistic p

<int> <int> <dbl> <dbl>
1 2 87 1.70 0.190

We write the result of the Levene’s as 𝐹(2, 87) = 1.695, 𝑝 = 0.190. Because 𝑝 > .05, we know that
the result is nonsignficant – that the variances of the three groups are not statistically significantly
different from each other. If the results had been statistically significantly different, we would have
needed to use a Welch’s 𝐹 or robust version of ANOVA.

7.5.1.4 Summarizing results from the analysis of assumptions

It is common for an APA style results section to begin with a review of the evaluation of the
statistical assumptions. As we have just finished these analyses, I will document what we have
learned so far:

Regarding the assumption of normality, skew and kurtosis values at each of the levels
of the condition value fell well below the thresholds that Kline [2016a] identified as
concerning (i.e., below |3| for skew and |10| for kurtosis). Similarly, no extreme outliers
were identified and results of a model-based Shapiro-Wilk test of normality, indicated
that the model residuals did not did differ from a normal distribution (𝑊 = 0.979, 𝑝 =
0.15). Finally, Levene’s homogeneity of variance test indicated no violation of the
homogeneity of variance assumption (𝐹[2, 87] = 1.695, 𝑝 = 0.190).

7.5.2 Computing the Omnibus ANOVA

Having met all the assumptions, we are now ready to calculate the omnibus 𝐹 test. Omnibus is
the term applied to the first F test that evaluates if all groups have the same mean [Chen et al.,
2018]. If this test is not significant there is no evidence in the data to reject the null; that is, there
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Figure 7.4: An image of the workflow for one-way ANOVA, showing that we are at the stage of
computing the omnibus ANOVA.
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is no evidence to suggest that group means are different. If it is significant – and there are three
or more groups – follow-up testing will be needed to determine where the differences lie.

We will use rstatix::anova_test to calculate the omnibus. In script we must point to the data and
provide the formula (Accurate ~ COND). By specifying “detailed=TRUE” we get can view our
sums of squares values. When we run this test, we will save all of the results in an object. We can
name this object anything – I will call it omnibus1w. When we create objects, we have to re-type
the name of the object below our formula in order for the results to display. Objects are incredibly
useful because we can later use them in follow-up tests, in creating figures, and in exporting results
that we can use outside of R (e.g., to create tables for papers or presentations).

omnibus1w <- rstatix::anova_test(accSIM30, Accurate ~ COND, detailed=FALSE)
omnibus1w

ANOVA Table (type II tests)

Effect DFn DFd F p p<.05 ges
1 COND 2 87 13.566 0.00000745 * 0.238

The values we see map onto those we calculated by hand. Our 𝑆𝑆𝑀 (9.432) plus 𝑆𝑆𝑅 (30.246) sum
to equal the 𝑆𝑆𝑇 (39.678). Dividing the two sums of squares by their respective degrees of freedom
produces the means squared. Then, dividing the 𝑀𝑆𝑀 (COND) by 𝑀𝑆𝑅 (4.716/0.348) provides
the F ratio. By using a table of F critical values, we already knew that our F value exceeded the
value in the table of critical values. Here we see that p < .001.

The “F string” for an APA style results section should be written like this: 𝐹(2, 87) = 13.566, 𝑝 <
.001.

7.5.2.1 Effect size for the one-way ANOVA

Eta squared is one of the most commonly used measures of effect. It refers to the proportion of
variability in the dependent variable/outcome that can be explained in terms of the independent
variable/predictor. Conventionally, values of .01, .06, and .14 are considered to be small, medium,
and large effect sizes, respectively.

You may see different values (.02, .13, .26) suggested as small, medium, and large effects – these
values are used when multiple regression is used. A useful summary of effect sizes, guide to inter-
preting their magnitudes, and common usage can be found here [Watson, 2020].

The formula for 𝜂2 is straightforward. If we think back to our hand-calculations of all the sums of
squares, we can see that this is the proportion of variance that is accounted for by the model.

𝜂2 = 𝑆𝑆𝑀
𝑆𝑆𝑇

Hand calculation, then, is straightforward.:

9.432/(9.432 + 30.246)

https://imaging.mrc-cbu.cam.ac.uk/statswiki/FAQ/effectSize
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[1] 0.2377136

Luckily, rstatix::anova_test() has provided the 𝜂2 for us; it is found in the column, ges. Using the
interpretive criteria suggests that our effect is rather large. We can update our F string this way:
𝐹(2, 87) = 13.566, 𝑝 < .001, 𝜂2 = 0.238. An APA style write-up of the omnibus might read like
this:

Results of the omnibus ANOVA indicated a significant effect of COND on accuracy
perception (𝐹 [2, 87] = 13.566, 𝑝 < .001, 𝜂2 = 0.238).

7.5.3 Follow-up to the Omnibus F

The F-test associated with the one-way ANOVA is the omnibus – giving the result for the overall
test. Looking at the workflow for the one-way ANOVA we see that if we had had we had a
non-significant 𝐹 , we would have stopped our analysis.

However, if the omnibus 𝐹 is significant, we know that there is at least one pair of cells where there is
a statistically significant difference. We have several ways (each with its own strengths/limitations)
to figure out where these differences lie.

7.5.3.1 Planning for the management of Type I Error

Type I error is the concern about false positives – that we would incorrectly reject a true null
hypothesis (i.e., claiming a statistically significant difference when there is not one). In ANOVA, we
become increasingly concerned about Type I error as the number of pairwise or post hoc comparison
increases. In ANOVA, we generally begin controlling for Type I error when follow-up to a significant
omnibus test.

The traditional Bonferroni is, perhaps, the most well-known approach to managing Type I error.
Although the lessons in this OER will frequently suggest alternative approaches to managing Type
I error, I will quickly review it now because it is relatively straightforward and intuitive. We start
by establishing the 𝛼𝑓𝑎𝑚𝑖𝑙𝑦; this is traditionally 𝑝 = .05.
Next, we determine how many pairwise comparisons that we are going to conduct. If we want
to conduct all possible comparisons, we could use this formula to determing the number: 𝑁𝑝𝑐 =
𝑁𝑔(𝑁𝑔−1)

2 , where

• 𝑁𝑝𝑐 is the number of pairwise comparisons, and
• 𝑁𝑔 is the number of groups.

In the current research vignette, the COND factor had three levels: control, low, high. Thus, if we
wanted to conduct all possible comparisons we would determine 𝑁𝑝𝑐 this way:

3*(3-1)/2

[1] 3
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Subsequently, we would compute a new alpha that would be used for each comparison with this
formula: 𝛼𝑝𝑐 = 𝛼𝑓𝑎𝑚𝑖𝑙𝑦

𝑁𝑝𝑐
.

In the current research vignette we would calculate it this way:

.05/3

[1] 0.01666667

If we were to use the traditional Bonferroni to manage Type I error, the resultant 𝑝 value would
need to be < .017 in order for statistical significance to be claimed.

Luckily, the traditional Bonferroni (and other approaches to managing Type I error) has been
reverse-engineered so that we do not have to determine the more conservative alpha levels. Rather,
when we specify these options in the R script, the p value is adjusted and we can continue to use
the customary criteria of 𝑝 < .05, 𝑝 < .01, and 𝑝 < .001. In the case of the traditional Bonferonni,
the p value has been adjusted upward by multiplying it (i.e., the raw p values) by the number
of comparisons being completed. This holds the total Type I error rate across these tests to be
𝛼 = 0.05.
Although the traditional Bonferroni is easy-to-understand and compute, it has been criticized as
being too restrictive. That is, it increases the risk of making a Type II error (i.e., failing to reject
the null hypothesis when it is false). Therefore, as we work through each option for follow-up
testing for the ANOVA models, I will introduce one or more methods for managing Type I error
that are commonly used with that follow-up. Descriptions of all the methods for managing Type I
error that are used in this OER are described in an appendix

7.5.3.2 OPTION #1: Post hoc, pairwise, comparisons

A very common follow-up to the omnibus test from a one-way ANOVA is to conduct post hoc,
pairwise comparisons, of all possible combinations of pairs.

Post hoc, pairwise comparisons are:

• used for exploratory work when no firm hypotheses were articulated a priori,
• used to compare the means of all combinations of pairs of an experimental condition,
• less powerful than planned comparisons because more strict criterion for significance should

be used.

By specifying the formula of the ANOVA, the rstatix::t_test() function will provide comparisons of
all possible combinations. The arguments in the code mirror those we used for the omnibus. Note
that I am saving the results as an object. We will use this object (“ttest”) later when we create an
accompanying figure.

We will request the traditional Bonferroni using the p.adjust.method. The rstatix::t_test() offers
multiple options for adjusting the p values.
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Figure 7.5: An image of the workflow for one-way ANOVA, showing that we are at the stage of
following a statistically significant omnibus F test and are now conducting post hoc comparisons.
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ttest <- rstatix::t_test(accSIM30, Accurate ~ COND, p.adjust.method="bonferroni", detailed=TRUE)
ttest

# A tibble: 3 x 17
estimate estimate1 estimate2 .y. group1 group2 n1 n2 statistic p

* <dbl> <dbl> <dbl> <chr> <chr> <chr> <int> <int> <dbl> <dbl>
1 -0.144 1.76 1.90 Accu~ Contr~ Low 30 30 -1.01 3.17e-1
2 0.603 1.76 1.15 Accu~ Contr~ High 30 30 4.11 1.4 e-4
3 0.747 1.90 1.15 Accu~ Low High 30 30 4.49 3.45e-5
# i 7 more variables: df <dbl>, conf.low <dbl>, conf.high <dbl>, method <chr>,
# alternative <chr>, p.adj <dbl>, p.adj.signif <chr>

The estimate column provide the mean difference between the two levels of the independent dif-
ferent. The estimate1/group1 and estimate2/group2 columns provide those means and identify the
group levels. The statistic column provides the value of the t-test.
The p value is the unadjusted p-value, it will usually be “more significant” (i.e., a lower value) than
the p.adj value that we specified in our code. The column p.adj.signif provides symbolic notation
associated with the “p.adj” value. In this specific case we specified the traditional Bonferroni as
the adjusted p value.
An APA style results section of this follow-up might read like this:

We followed up the significant omnibus with a series of post hoc, pairwise comparisons.
We controlled for Type I error with the traditional Bonferroni adjustment. Results
suggested that there were statistically significant differences between the control and
high (𝑀𝑑𝑖𝑓𝑓 = 0.601, 𝑝 < .001) and low and high (𝑀𝑑𝑖𝑓𝑓 = 0.75, 𝑝 < 0.001) condi-
tions, but not control and low conditions (𝑀𝑑𝑖𝑓𝑓 = −.14, 𝑝 = 0.951). Consequently, it
appeared that only the highest degree of racial loading (e.g., “You speak English well
for an Asian”) resulted in the decreased perceptions of accuracy of impressions from
the confederate. Means and standard deviations are presented in Table 1 and complete
ANOVA results are presented in Table 2. Figure 1 provides an illustration of the results.

Below is an augmentation of the figure that appeared at the beginning of the chapter. We can
use the objects from the omnibus tests (named, “omnibus1w”) and post hoc pairwise comparisons
(“ttest”) to add the ANOVA string and significance bars to the figure. Although they may not be
appropriate in every circumstance, such detail can assist the figure in conveying maximal amounts
of information.

#updates the ttest object so that it will auto-compute p-value positions in the graph
ttest <- ttest %>% rstatix::add_xy_position(x = "COND")

#our original plot
Fig1 <- ggpubr::ggboxplot(accSIM30, x = "COND", y = "Accurate", add = "jitter", color = "COND", title = "Figure 1. Accuracy Perception as a Function of Racial Loading Condition") +
ggpubr::stat_pvalue_manual(ttest, label = "p.adj.signif", tip.length = 0.02, hide.ns = TRUE, y.position = c(3.25, 3.75))
#tip.length instructs how long to make the dropped edges of the significance bar; hide.ns will suppress or display non-significant bars; step.increase will separate the bars from each other so that they do not overlap

Fig1
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Figure 1. Accuracy Perception as a Function of Racial Loading Condition

Although it would not make a difference in this research vignette, the LSD (least significant differ-
ences) method is commonly used for controlling Type I error in the follow-up to a one-way ANOVA.
The LSD method is appropriate in the one-way ANOVA scenario when there are only three levels
in the factor. In this case, Green and Salkind [2017c] have suggested that alpha could be retained
at the alpha level for the “family” (𝛼𝑓𝑎𝑚𝑖𝑙𝑦), which is conventionally 𝑝 = .05 and used both to
evaluate the omnibus and, so long as they don’t exceed three in number, the planned or pairwise
comparisons that follow.

7.5.3.3 OPTION #2: Non-orthogonal planned contrast

Another option for follow-up to a significant omnibus test is to evaluate planned comparisons.
These can either be orthogonal (i.e., a complete partitioning of variance) or non-orthogonal (i.e.,
allowing for overlapping variance). We will start with a non-orthogonal example.

Planned comparisons are

• theory-driven comparisons constructed prior to data collection,
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Figure 7.6: An image of the workflow for one-way ANOVA, showing that we are at the following
up to a significant omnibus F by conducting planned comparisons
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• based on the idea of partitioning the variance created by the overall effect of group differences
into gradually smaller portions of variance, and

• more powerful than post hoc tests.

Planned contrasts involve further considerations regarding the partitioning of variance.

• There will always be 𝑘 − 1 contrasts; in our case this means we will have two contrasts
• Each contrast must involve only two chunks of variance.

If the researcher chooses this route, they must decide which two comparisons will best tell the story
of the data as it relates to the hypotheses and a priori theory. I will compare differences between
the no and low racial loading conditions, and then between low and high racial loading conditions.
I have chosen to not adjust the p values. In the results write-up, I will reference the LSD method
as my rationale for this approach.

contr2 <- rstatix::pairwise_t_test(accSIM30, Accurate ~ COND, comparison = list(c("Control", "Low"), c("Low", "High")), p.adjust.method="none", detailed=TRUE)
contr2

# A tibble: 2 x 10
.y. group1 group2 n1 n2 p method p.adj p.signif p.adj.signif

* <chr> <chr> <chr> <int> <int> <dbl> <chr> <dbl> <chr> <chr>
1 Accura~ Contr~ Low 30 30 3.47e-1 T-test 3.47e-1 ns ns
2 Accura~ Low High 30 30 4.25e-6 T-test 4.25e-6 **** ****

The format of the output is quite similar to the preceding examples. One difference is that this
function does not provide mean differences nor confidence intervals. If I wanted them, I would need
to calculate them.
An APA style results section of this follow-up might read like this:

We followed up the significant omnibus with two, non-orthogonal, planned comparisons.
Because we had fewer than three comparisons, we chose to retain alpha at .05. This
is consistent with the LSD method for control of Type I error [Green and Salkind,
2017c]. Results suggested a statistically significant difference between the low and high
(𝑀𝑑𝑖𝑓𝑓 = 0.75, 𝑝 < .001) conditions, but not between the control and low conditions
(𝑀𝑑𝑖𝑓𝑓 = −.14, 𝑝 = 0.347). Consequently, it appeared that only the highest degree of
racial loading (e.g., “You speak English well for an Asian”) resulted in the decreased
perceptions of accuracy of impressions from the confederate. Means and standard de-
viations are presented in Table 1 and complete ANOVA results are presented in Table
2. Figure 2 provides an illustration of the results.

Below is an augmentation of the figure that appeared at the beginning of the chapter. We can
use the previously created objects from the omnibus test (“omnibus1w”) and post hoc pairwise
comparisons (“ttest”) to add the ANOVA string and significance bars to the figure. Although
they may not be appropriate in every circumstance, such detail can assist the figure in conveying
maximal amounts of information.
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#updates the ttest object so that it will autocompute p-value positions in the graph
contr2 <- contr2 %>% rstatix::add_xy_position(x = "COND")

#our original plot
ggpubr::ggboxplot(accSIM30, x = "COND", y = "Accurate", add = "jitter", color = "COND", title = "Figure 2. Accuracy Perception as a Function of Racial Loading Condition") +

#retrieves information from the contr2 object; label tells the figure to use the "p.adj.signif" column in the contr2 output
ggpubr::stat_pvalue_manual(contr2, label = "p.adj.signif", tip.length = 0.01, hide.ns = TRUE, y.position = c(3.3)) #tip.length instructs how long to make the drop edges of the significance bar; hide.ns will suppress or display non-significant bars; step.increase will separate the bars from each other so that they do not overlap

****
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Figure 2. Accuracy Perception as a Function of Racial Loading Condition

In this particular research vignette, I probably would not compute nor report the non-orthogonal
option. The statistically significant difference pattern from the post hoc pairwise comparisons
(Option 1) was straightforward. Using the non-orthogonal planned comparisons to aid in the
control of Type I error way (a) does not change the result (i.e., does not increase the power) and
(b) provides a less complete picture of the results.
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7.5.3.4 OPTION #3: Orthogonal planned contrasts

Orthogonal contrasts are even more sophisticated. Essential to conducting an orthogonal contrast
is the requirement that if a group is singled out in one comparison it should be excluded from
subsequent contrasts. The typical, orthogonal scenario with three ordered groups has only two
contrasts:

1. Control versus the combined low and high conditions

• because control was excluded, it should not reappear in the next contrast

2. Low versus high

Especially in scenarios where there are no, low and high dose (or exposure) conditions, this is an
elegant comparison. Unfortunately, at the time of this writing, the rstatix package does not offer
a function to make these computations. We can, however, use functions from base R. Given that
rstatix is a wrapper for the aov() function in base R, the code should feel somewhat familiar.

To work toward our orthogonal contrasts, we first need to create an object (“omnibus1w_b”) from
a one-way ANOVA test using the base R, aov() function. You can see that the script involves the
same elements as in rstatix. We can view the results byusing the summary() function.

omnibus1w_b <- aov(Accurate ~ COND, data = accSIM30)
summary(omnibus1w_b)

Df Sum Sq Mean Sq F value Pr(>F)
COND 2 9.432 4.716 13.57 0.00000745 ***
Residuals 87 30.246 0.348
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

This foray into orthogonal contrasts gives us a peek into multiple regression. Let’s take a peek at
“regression results” from our ANOVA model.

summary.lm(omnibus1w_b)

Call:
aov(formula = Accurate ~ COND, data = accSIM30)

Residuals:
Min 1Q Median 3Q Max

-1.24533 -0.32092 0.08642 0.30101 1.51646

Coefficients:
Estimate Std. Error t value Pr(>|t|)
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(Intercept) 1.7562 0.1076 16.314 < 0.0000000000000002 ***
CONDLow 0.1439 0.1522 0.945 0.347095
CONDHigh -0.6034 0.1522 -3.963 0.000151 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.5896 on 87 degrees of freedom
Multiple R-squared: 0.2377, Adjusted R-squared: 0.2202
F-statistic: 13.57 on 2 and 87 DF, p-value: 0.000007446

The values on the row labeled intercept are the values of the baseline or comparison group. Since
CONDLow and CONDHigh follow, we know the three groups are sensibly ordered as control (0),
low (1), and high (2).
While we are here, we observe that the control mean is 1.76 and that this value is statistically
significantly different than zero. The CONDLow row represents the low level of the condition
variable. The mean for “low” is 0.14 units bigger than the control group and this is not a statistically
significant difference (𝑝 = 0.347). The third row is the high level of the condition variable. This
value is 0.60 units lower than the control condition and is statistically significantly different than
zero (𝑝 < .001). This information is consistent with what we have already learned.
To move forward with the orthogonal contrasts we must first specify our contrasts.

• Specifying the contrasts means you know their order within the factor
• Early in the data preparation, we created an ordered factor with Control, Low, High as the

order.
• We want orthogonal contrasts, this means there will be

– k - 1 contrasts; with three groups we will have two contrasts
– once we single out a condition for comparison, we cannot use it again.

In contrast1 we compare the control condition to the combined low and high conditions. In contrast2
we discard the control condition (it was already singled out) and we compare the low and high
conditions.
This is sensible because we likely hypothesize that any degree of racially loaded stereotypes may
have a deleterious outcome, so we first compare control to the two conditions with any degree of
racial loading. Subsequently, we compare the low and high levels of the factor.
In the second step we must bind the contrasts together and check the output to ensure that we’ve
mapped them correctly.

#Contrast1 compares Control against the combined effects of Low and High.
contrast1 <- c(-2,1,1)

#Contrast2 excludes Control; compares Low to High.
contrast2 <- c(0,-1,1)

#binding the contrasts together
contrasts(accSIM30$COND)<-cbind(contrast1, contrast2)
accSIM30$COND
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[1] High High High High High High High High High
[10] High High High High High High High High High
[19] High High High High High High High High High
[28] High High High Low Low Low Low Low Low
[37] Low Low Low Low Low Low Low Low Low
[46] Low Low Low Low Low Low Low Low Low
[55] Low Low Low Low Low Low Control Control Control
[64] Control Control Control Control Control Control Control Control Control
[73] Control Control Control Control Control Control Control Control Control
[82] Control Control Control Control Control Control Control Control Control
attr(,"contrasts")

contrast1 contrast2
Control -2 0
Low 1 -1
High 1 1
Levels: Control Low High

Thinking back to the hand-calculations and contrast mapping, the table of weights that R just
produced confirms that

• Contrast 1 compares the Control condition against the levels with any racial loading.

• Contrast 2 compares the Low and High loadings.

Finally, we create a new aov() model and apply the contrasts.

#create a new objects
accPlanned <- aov(Accurate ~ COND, data = accSIM30)
summary.lm(accPlanned)

Call:
aov(formula = Accurate ~ COND, data = accSIM30)

Residuals:
Min 1Q Median 3Q Max

-1.24533 -0.32092 0.08642 0.30101 1.51646

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.60304 0.06215 25.793 < 0.0000000000000002 ***
CONDcontrast1 -0.07658 0.04395 -1.742 0.085 .
CONDcontrast2 -0.37365 0.07612 -4.909 0.00000425 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Residual standard error: 0.5896 on 87 degrees of freedom
Multiple R-squared: 0.2377, Adjusted R-squared: 0.2202
F-statistic: 13.57 on 2 and 87 DF, p-value: 0.000007446

These planned contrasts show that when the control condition is compared to the combined low
and high racial loading conditions, there is not a statistically significant difference, t(87) = -1.742,
p = 0.085. However, when the low and high racial loading conditions are compared, there is a
statistically significant difference, t(87) = -4.909, p < 0.001. An APA style results write-up might
look like this:

We followed the significant omnibus test with a pair of orthogonal contrasts. The first
compared the control condition to the combined low and high racial loading condi-
tions. The result was non-significant (𝑡[87] = −1.742, 𝑝 = 0.085). The second con-
trast compared the low and high racial loading conditions. In this contrast, accu-
racy ratings were statistically significantly lower for the high racial loading condition
(𝑡[87] = −4.909, 𝑝 < 0.001).

At this point, I do not have script that would update the ggpubr graph with these results. If I were
to use this follow-up in my APA style results, I would likely use the boxplot we produced at the
beginning of the lesson.

7.5.3.5 OPTION #4: Trend (polynomial) analysis

Polynomial contrasts let us see if there is a linear (or curvilinear) pattern to the data. To detect
a trend, the data must be coded in an ascending order…and it needs to be a sensible comparison.
Here’s where this would fall in our workflow.

To detect a trend, the data must be coded in an ascending order and the comparison needs to be
sensible and theoretically defensible. Our data has a theoretically ordered effect (control/none, low,
and high racially loaded conditions). Recall that we created an ordered factor when we imported
the data. However, we can use use the contrasts() function from base R to verify the order.

contrasts(accSIM30$COND)

contrast1 contrast2
Control -2 0
Low 1 -1
High 1 1

In a polynomial analysis, the statistical analysis looks across the ordered means to see if they fit
a linear or curvilinear shape that is one fewer than the number of levels (i.e., 𝑘 − 1). Because the
COND factor has three levels, the polynomial contrast checks for linear (.L) and quadratic (one
change in direction) trends (.Q). If we had four levels, contr.poly() could also check for cubic change
(two changes in direction). Conventionally, when more than one trend is significant, we interpret
the most complex one (i.e., quadratic over linear).
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Figure 7.7: An image of the workflow for one-way ANOVA, showing that we are at the following
up to a significant omnibus F by assessing for a polynomial trend
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To the best of my knowledge, rstatix does not offer these contrasts. We can fairly easily make
these calculations in base R by creating a set of polynomial contrasts. In the prior example we
specified our contrasts through coding. Here we can the contr.poly(3) function. The “3” lets R
know that there are three levels in COND. The aov() function will automatically test for quadratic
(one hump) and linear (straight line) trends.

contrasts(accSIM30$COND)<-contr.poly(3)
accTrend<-aov(Accurate ~ COND, data = accSIM30)
summary.lm(accTrend)

Call:
aov(formula = Accurate ~ COND, data = accSIM30)

Residuals:
Min 1Q Median 3Q Max

-1.24533 -0.32092 0.08642 0.30101 1.51646

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.60304 0.06215 25.793 < 0.0000000000000002 ***
COND.L -0.42665 0.10765 -3.963 0.000151 ***
COND.Q -0.36384 0.10765 -3.380 0.001087 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.5896 on 87 degrees of freedom
Multiple R-squared: 0.2377, Adjusted R-squared: 0.2202
F-statistic: 13.57 on 2 and 87 DF, p-value: 0.000007446

Results of our polynomial contrast suggested statistically significant results for both linear 𝑡(87) =
−3.963, 𝑝 < .001 and quadratic 𝑡(87) = −3.380, 𝑝 = .001 trends. A quick peek back at any of our
boxplots illustrates the quadratic trend (an small increase in accuracy from control to low; a larger
decrease in accuracy from low to high) that was supported by this analysis.

Given that our earlier analyses did not support statistically significant differences between control
and low racial loading conditions, I am disinclined to include this information. That said, there
are times when I will include results of a polynomial trend along with the results of posthoc or
planned pairwise comparisons. I will do this when the overall trend in the data helps clarify the
results. For example, if in a circumstance where there was a clear linear trend between no, low, and
high dose conditions and the pairwise results were consistent with that (i.e., statistically significant
differences between no and low, no and high, low and high), I would likely add the results of the
polynomial, after presenting the results of the posthoc or planned comparisons:

Additionally, results of a polynomial constrasted suggested a statistically significant
linear trend across the three conditions, 𝑡(87) = −3.963, 𝑝 < .001.
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At this point, I do not have script that would update the ggpubr figure in a manner that would
clearly convey these results. If I were to use this follow-up in my APA style results, I would likely
use the simple boxplot we produced at the beginning of the lesson.

7.5.3.6 Which set of follow-up tests do we report?

It depends! Here are some things to consider.

• If the post hoc comparisons are robustly statistically significant (and controlling Type I error
is not going to change that significance), I would lean toward reporting those.

• If p values are hovering around 0.05, an orthogonal contrast will offer more power because

– a k - 1 comparison will be more powerful and
– (when the research design allows) the contrast of no dose/exposure to any exposure

followed by a contrast between low and high doses/exposures is compelling.

• The polynomial can be a useful descriptive addition if there is a linear or quadratic relationship
that is sensible or interesting.

Although I would report either the post hoc or planned contrasts, I will sometimes add a poly-
nomial if it clarifies the result (i.e., there is a meaningful linear or curvilinear pattern essential to
understanding the data).

7.5.4 What if we Violated the Homogeneity of Variance test?

The rstatix::welch_anova_test produces Welch’s F – a test that is robust to violation of the ho-
mogeneity of variance assumption. The Welch’s approach adjusts the residual degrees of freedom
used to produce the Welch’s F-ratio. The format of the argument is quite similar to what we have
been doing all along.

omnibus_w <- rstatix::welch_anova_test(accSIM30, Accurate ~ COND)
omnibus_w

# A tibble: 1 x 7
.y. n statistic DFn DFd p method

* <chr> <int> <dbl> <dbl> <dbl> <dbl> <chr>
1 Accurate 90 11.6 2 56.3 0.0000617 Welch ANOVA

Note that the denominator df is now 56.34 (not 87) and p value is a little larger (it was 0.00000745).
With its design intended to avoid making a Type I error, the Welch’s F is more restrictive. While
it wouldn’t alter the conclusions in our research vignette, it could if the p value was closer to 0.05.
These are some of the tradeoffs we must consider in order to have confidence in the results. At this
time the rstatix::welch_anova_test() function does not offer an effect size. The omega squared is
an effect size that is commonly reported with the Welch’s F. It would either need to be calculated
by hand or with another R package.
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In terms of follow-up to the omnibus test, rstatix includes Games-Howell pairwise comparisons
and pairwise t-tests. Neither of these follow-up options requires the assumption of equal variance.
Consequently either could be used as a follow-up. Here’s an example from the Games-Howell test.

gw_pwc <- rstatix::games_howell_test(accSIM30, Accurate ~ COND, conf.level = 0.95, detailed=TRUE)
gw_pwc

# A tibble: 3 x 14
.y. group1 group2 n1 n2 estimate conf.low conf.high se statistic

* <chr> <chr> <chr> <int> <int> <dbl> <dbl> <dbl> <dbl> <dbl>
1 Accurate Contr~ Low 30 30 0.144 -0.200 0.487 0.101 1.01
2 Accurate Contr~ High 30 30 -0.603 -0.957 -0.249 0.104 4.11
3 Accurate Low High 30 30 -0.747 -1.15 -0.347 0.118 4.49
# i 4 more variables: df <dbl>, p.adj <dbl>, p.adj.signif <chr>, method <chr>

Another common correction for evaluating the omnibus test when there is a violation of the homo-
geneity of variance assumption is the Brown and Forsythe F-ratio. The rstatix package does not
include this option (but other packages do).

7.6 APA Style Results

All that’s left to do to decide which set of follow-up tests to report and assemble the write-up. APA
style results sections in empirical manuscripts are typically accompanied by tables and figures. APA
style discourages redundancy in information (i.e., if information is clearly presented in a table, do
not repeat it verbatim in written text) and encourages reducing the cognitive load of the reader.
For this example, I suggest two tables – (a) one with means and standard deviations the dependent
variable (disaggregated by level)and (b) a second that reports the output from the one-way ANOVA.

The package apaTables can produce journal-ready tables. Deciding what to report in text and table
is important. First, I create Table 1 with means and standard deviations (plus a 95% confidence
interval around each mean).

#table.number = 1 assigns a table number to the top of the table
#filename = "Table1.doc" writes the table to Microsoft Word and puts it in your project folder
apaTables::apa.1way.table(iv=COND, dv=Accurate, show.conf.interval = TRUE, data=accSIM30, table.number = 1, filename = "Table1.doc")

Table 1

Descriptive statistics for Accurate as a function of COND.

COND M M_95%_CI SD
Control 1.76 [1.58, 1.93] 0.46

Low 1.90 [1.66, 2.14] 0.63
High 1.15 [0.91, 1.40] 0.66
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Note. M and SD represent mean and standard deviation, respectively.
LL and UL indicate the lower and upper limits of the 95% confidence interval
for the mean, respectively.
The confidence interval is a plausible range of population means that could
have caused a sample mean (Cumming, 2014).

Next, I create Table 2 with source table for the one-way ANOVA. The result can be edited in
Microsoft Word for the paper or presentation (e.g., I would replace the partial-eta squared with
𝜂2). One trick about apaTables::aov is that it requires an object from the base R’s aov function.
Recall that we used this in our contrasts. None-the-less, I will repeat it in this code.

omnibus1w_b <- aov(Accurate ~ COND, data = accSIM30)
apaTables::apa.aov.table (omnibus1w_b, table.number = 2, filename = "Table2.doc")

Table 2

ANOVA results using Accurate as the dependent variable

Predictor SS df MS F p partial_eta2 CI_90_partial_eta2
(Intercept) 231.28 1 231.28 665.25 .000

COND 9.43 2 4.71 13.57 .000 .24 [.11, .34]
Error 30.25 87 0.35

Note: Values in square brackets indicate the bounds of the 90% confidence interval for partial eta-squared

Regarding figures, I would use the one I created with the set of follow-up results.

With table and figure at hand, here is how I would write up these results:

A one-way analysis of variance was conducted to evaluate the relationship between
degree of racial loading of an exceptionalizing microaggression and the perceived accu-
racy of a research confederate’s impression of the Asian or Asian American participant.
The independent variable, condition, included three levels: control/none, low, and high
levels of racial loading.

Regarding the assumption of normality, skew and kurtosis values at each of the levels
of the condition value fell well below the thresholds that Kline [2016a] identified as
concerning (i.e., below |3| for skew and |10| for kurtosis). Similarly, no extreme outliers
were identified and results of a model-based Shapiro-Wilk test of normality, indicated
that the model residuals did not did differ from a normal distribution (𝑊 = 0.979, 𝑝 =
0.15). Finally, Levene’s homogeneity of variance test indicated no violation of the
homogeneity of variance assumption (𝐹[2, 87] = 1.695, 𝑝 = 0.190).
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Results of the omnibus ANOVA indicated a significant effect of COND on accuracy
perception (𝐹 [2, 87] = 13.566, 𝑝 < .001, 𝜂2 = 0.238). We followed up the significant
omnibus with a series of post hoc, pairwise comparisons. We controlled for Type I
error with the traditional Bonferroni adjustment. Results suggested that there were
statistically significant differences between the control and high (𝑀𝑑𝑖𝑓𝑓 = 0.601, 𝑝 <
.001) and low and high (𝑀𝑑𝑖𝑓𝑓 = 0.75, 𝑝 < 0.001) conditions, but not control and
low conditions (𝑀𝑑𝑖𝑓𝑓 = −.14, 𝑝 = 0.951). Consequently, it appeared that only the
highest degree of racial loading (e.g., “You speak English well for an Asian”) resulted
in the decreased perceptions of accuracy of impressions from the confederate. Means
and standard deviations are presented in Table 1 and complete ANOVA results are
presented in Table 2. Figure 1 provides an illustration of the results.

Fig1
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Figure 1. Accuracy Perception as a Function of Racial Loading Condition
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7.7 Power Analysis

Power analysis allows us to determine the sample size required to detect an effect of a given size
with a given degree of confidence. Utilized another way, it allows us to determine the probability of
detecting an effect of a given size with a given level of confidence. If the probability is unacceptably
low, we may want to revise or stop. A helpful overview of power as well as guidelines for how to
use the pwr package can be found at a Quick-R website [Kabacoff, 2017].

There are four interrelating elements of power:

1. Sample size, N
2. Effect size,

• For one-way ANOVAs, Cohen suggests that f values of 0.1, 0.25, and 0.4 represent small,
medium, and large effect sizes, respectively.

3. Significance level = P(Type I error),

• Recall that Type I error is the rejection of a true null hypothesis (a false positive).
• Stated another way, Type I error is the probability of finding an effect that is not there.

4. Power = 1 - P(Type II error),

• Recall that Type II error is the non-rejection of a false null hypothesis (a false negative).
• Power is the probability of finding an effect that is there.

If we have any three of these values, we can calculate the fourth.

In Champely’s pwr package, we can conduct a power analysis for a variety of designs, including the
balanced one-way ANOVA (i.e., roughly equal cell sizes) design that we worked in this chapter.

The pwr.anova.test() has five parameters:

• k = # groups
• n = sample size
• f = effect sizes, where 0.1/small, 0.25/medium, and 0.4/large

– In the absence from an estimate from our own data, we make a guess about the expected
effect size value based on our knowledge of the literature

• sig.level = p value that you will use
• power = .80 is the standard value

In the script below, we simply add our values. So long as we have four values, the fifth will be
calculated for us.

Because this calculator requires the effect size in the metric of Cohen’s f (this is not the same as
the F ratio), we need to convert it. The effectsize package has a series of converters. We can use
the eta2_to_f() function.

https://www.statmethods.net/stats/power.html
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effectsize::eta2_to_f(.238)

[1] 0.5588703

We simply plug this value into the “f =”.

pwr::pwr.anova.test (k = 3, f = .5589, sig.level = .05, power = .80)

Balanced one-way analysis of variance power calculation

k = 3
n = 11.3421
f = 0.5589

sig.level = 0.05
power = 0.8

NOTE: n is number in each group

This result suggested that we would need 11 people per group.

If we were unsure about what to expect in terms of our results, we could take a guess. I like to be
on the safe(r) side and go with a smaller effect. What would happen if we had a Cohen’s f that
represented a small effect?

pwr::pwr.anova.test (k = 3, f = .1, sig.level = .05, power = .80)

Balanced one-way analysis of variance power calculation

k = 3
n = 322.157
f = 0.1

sig.level = 0.05
power = 0.8

NOTE: n is number in each group

Yikes! We would need over 300 per group!

If effect sizes are new to you, play around with this effect size converter hosted at Psychometrica.de.
For examples like this one, use the option labeled, “Transformation of the effect sizes d, r, f, Odds
Ratio, 𝜂2, and Common Language Effect Size (CLES).”

https://www.psychometrica.de/effect_size.html
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7.8 A Conversation with Dr. Tran

Doctoral student (and student in one of my classes) Emi Ichimura and I were able to interview the
first author (Alisia Tran, PhD) about the article and what it means. Here’s a direct link to that
interview.

Among others, we asked:

• What were unexpected challenges to the research method or statistical analysis?
• What were the experiences of the confederates as they offered the statements in the racial

loading conditions? And in the debriefings, did the research participants share anything more
anecdotally in their experiences as research participants?

• What are your current ideas about interventions or methods for mitigating the harm caused
by racial microaggressions?

• How do you expect the article to change science, practice, and/or advocacy?

7.9 Practice Problems

The suggestions for homework differ in degree of complexity. I encourage you to start with a
problem that feels “do-able” and then try at least one more problem that challenges you in some
way. The data for each vignette should have at least three levels in the independent variable.
Further, at least one of the problems you work should have a significant omnibus test so that
follow-up is required.

Regardless, your choices should meet you where you are (e.g., in terms of your self-efficacy for
statistics, your learning goals, and competing life demands). Whichever you choose, you will focus
on these larger steps in one-way ANOVA, including:

• testing the statistical assumptions
• conducting a one-way ANOVA, including

– omnibus test and effect size
– follow-up (pairwise, planned comparisons, polynomial trends)

• writing a results section to include a figure and tables

Additionally, please complete at least one set of hand calculations, that is use the code demonstrated
in the chapter to work through the formulas that compute the one-way ANOVA. At this stage in
your learning, you may ignore any missingness in your dataset by excluding all rows with missing
data in your variables of interest.

7.9.1 Problem #1: Play around with this simulation.

If one-way ANOVA is new to you, perhaps you just change the number in “set.seed(2021)” from
2021 to something else. Your results should parallel those obtained in the lecture, making it easier
for you to check your work as you go.

https://spu.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=643f8a1e-bb6d-4ceb-a860-aeba01522528
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There are other ways to change the dataset. For example, if you are interested in power, change the
sample size to something larger or smaller. If you are interested in variability (i.e., the homogeneity
of variance assumption), perhaps you change the standard deviations in a way that violates the
assumption.

7.9.2 Problem #2: Conduct a one-way ANOVA with the moreTalk dependent
variable.

In their study, Tran and Lee [2014] included an outcome variable where participants rated how
much longer they would continue the interaction with their partner compared to their interactions
in general. The scale ranged from -2 (much less than average) through 0 (average) to 2 (much more
than average). This variable is available in the original simulation and is an option for a slightly
more challenging analysis.

7.9.3 Problem #3: Try something entirely new.

Using data for which you have permission and access (e.g., IRB approved data you have collected
or from your lab; data you simulate from a published article; data from an open science repository;
data from other chapters in this OER), complete a one-way ANOVA. Please have at least 3 levels
for the predictor variable.

7.9.4 Grading Rubric

Regardless which option(s) you chose, use the elements in the grading rubric to guide you through
the practice.

Assignment Component Points Possible Points Earned
1. Narrate the research vignette, describing the IV
and DV. The data you analyze should have at least
3 levels in the independent variable; at least one of
the attempted problems should have a significant
omnibus test so that follow-up is required).

5 _____

2. Simulate (or import) and format data. 5 _____
3. Evaluate statistical assumptions. 5 _____
4. Conduct omnibus ANOVA (w effect size). 5 _____
5. Conduct one set of follow-up tests; narrate your
choice.

5 _____

6. Describe approach for managing Type I error. 5 _____
7. APA style results with table(s) and figure. 5 _____
8. Conduct power analyses to determine the power
of the current study and a recommended sample
size.

5 _____

9. Explanation to grader. 5 _____
Totals 40 _____
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Hand Calculations Points Possible Points Earned
1. Using traditional NHST (null hypothesis testing
language), state your null and alternative hypotheses.

2 _____

2. Calculate sums of squares total (SST). Steps in
this calculation must include calculating a grand
mean and creating variables representing the mean
deviation and mean deviation squared.

4 _____

3. Calculate the sums of squares for the model
(SSM). A necessary step in this equation is to
calculate group means.

4 _____

4. Calculate the sums of squares residual (SSR). A
necessary step in this equation is to calculate the
variance for each group.

4 _____

5. Calculate the mean square model, mean square
residual, and F-test.

2 _____

6. What are the degrees of freedom for your
numerator and denominator?

2 _____

7. Locate the test critical value for your one-way
ANOVA.

2 _____

8. Is the F-test statistically significant? Why or why
not?

2 _____

9. Calculate and interpret the 𝜂2 effect size 2 _____
10. Assemble the results into a statistical string. 4 _____
Totals 28 _____

7.10 Homeworked Example

Screencast Link

For more information about the data used in this homeworked example, please refer to the descrip-
tion and codebook located at the end of the introduction.

7.10.1 Working the Problem with R and R Packages

Narrate the research vignette, describing the IV and DV. The data you analyze should
have at least 3 levels in the independent variable; at least one of the attempted prob-
lems should have a significant omnibus test so that follow-up is required)

I want to ask the question, do course evaluation ratings for traditional pedagogy differ for stu-
dents as we enacted a substantive revision to our statistics series. The evaluative focus is on the
ANOVA course and we will compare ratings from the stable, transition, and resettled stages of the
transitional period. The variable (Stage) of interest will have three levels:

• STABLE: 2017 represents the last year of “stability during the old way” when we taught with
SPSS and during the 2nd year of the doctoral programs.

https://youtu.be/rLyN9GspdWU
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• TRANSITION: 2018 & 2019 represent the transition to R, when the classes were 30% larger
because each of the IOP and CPY departments were transitioning to the 1st year (they did
it separately, so as not to double the classes)

• RESETTLED: 2020 & 2021 represent the “resettled” phase where the transition to R was
fairly complete and the class size returned to normal because the classes were offered in the
first year.

This is not a variable that was included in the dataset posted to the OSF repository, so we will
need to create it.
If you wanted to use this example and dataset as a basis for a homework assignment, you could
create a different subset of data. I worked the example for students taking the ANOVA class. You
could choose multivariate or psychometrics. You could also choose a different dependent variable.
I chose the traditional pedagogy subscale. Two other subscales include socially responsive pedagogy
and valued by the student.

Simulate (or import) and format data

big <- readRDS("ReC.rds")

This df includes course evaluations from ANOVA, multivariate, and psychometrics. To include up
to three evaluations per student would violate the assumption of independence, therefore, I will
only select the students in ANOVA course.

big <- subset(big, Course == "ANOVA")

Let’s first create the “Stage” variable that represents the three levels of transition.
The ProgramYear variable contains the information I need, but the factor labels are not intuitive.
Let me remap them.

big$Stage <- plyr::mapvalues(big$ProgramYear, from = c("Second", "Transition", "First"), to = c("Stable", "Transition", "Resettled"))

Let’s check the structure:

str(big$Stage)

Factor w/ 3 levels "Stable","Transition",..: 3 3 3 3 3 3 3 3 3 3 ...

The TradPed (traditional pedagogy) variable is an average of the items on that scale. I will first
create that variable.

#This code was recently updated and likely differs from the screencasted lecture

#Calculates a mean if at least 75% of the items are non-missing; adjusts the calculating when there is missingness
big$TradPed <- datawizard::row_means(big, select = c('ClearResponsibilities', 'EffectiveAnswers','Feedback', 'ClearOrganization','ClearPresentation'), min_valid = .75)
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With our variables properly formatted, let’s trim it to just the variables we need.

OneWay_df <-(dplyr::select (big, Stage, TradPed))

Although we would handle missing data more carefully in a “real study,” I will delete all cases with
any missingness. This will prevent problems in the hand-calculations section, later (and keep the
two sets of results more similar).

OneWay_df <- na.omit(OneWay_df)

Although the assignment doesn’t require it, I will make a quick plot to provide a visualizaiton of
our analysis.

ggpubr::ggboxplot(OneWay_df, x = "Stage", y = "TradPed", add = "jitter",
color = "Stage", title = "Figure 1. Evaluations of Traditional Pedagogy as a Result of Transition") #
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Figure 1. Evaluations of Traditional Pedagogy as a Result of Transition
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Evaluate statistical assumptions

Is the dependent variable normally distributed across levels of the factor?

psych::describeBy(TradPed ~ Stage, mat = TRUE, digits = 3, data = OneWay_df, type = 1)

item group1 vars n mean sd median trimmed mad min max range
TradPed1 1 Stable 1 50 4.348 0.658 4.4 4.440 0.890 2.6 5 2.4
TradPed2 2 Transition 1 41 3.693 1.057 4.0 3.812 1.186 1.0 5 4.0
TradPed3 3 Resettled 1 21 4.081 0.610 4.0 4.124 0.593 2.8 5 2.2

skew kurtosis se
TradPed1 -0.881 0.082 0.093
TradPed2 -0.817 -0.068 0.165
TradPed3 -0.289 -0.629 0.133

We’ll use Kline’s (2016) threshholds of the absolute values of 3 (skew) and 10 (kurtosis). The
highest absolute value of skew is -0.881; the highest absolute value of kurtosis is -0.629. These are
well below the areas of concern.

the Shapiro-wilk test is a formal assessment of normality. It is a 2-part test that begins with
creating an ANOVA model from which we can extract residuals, then testing the residuals.

TradPed_res <- lm(TradPed ~ Stage, data = OneWay_df)
#TradPed_res
rstatix::shapiro_test(residuals(TradPed_res))

# A tibble: 1 x 3
variable statistic p.value
<chr> <dbl> <dbl>

1 residuals(TradPed_res) 0.941 0.0000965

The Shapiro-Wilk test suggests that the our distribution of residuals is statistically significantly
different from a normal distribution (𝑊 = 0.941, 𝑝 < .001).

It is possible to plot the residuals to see how and where they deviate from the line.

ggpubr::ggqqplot(residuals(TradPed_res))
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Ooof! at the ends of the distribution they really deviate.
Should we remove outliers?
The rstatix::identify_outliers() function identifies outliers and extreme outliers.

library(tidyverse)
OneWay_df %>%

rstatix::identify_outliers(TradPed)

Stage TradPed is.outlier is.extreme
1 Transition 1.8 TRUE FALSE
2 Transition 1.0 TRUE FALSE
3 Transition 1.4 TRUE FALSE
4 Transition 1.6 TRUE FALSE

There are 4 cases identified with outliers; none of those is extreme. I also notice that these outliers
are low course evaluations. It seems only fair to retain the data from individuals who were not
satisfied with the course.
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Are the variances of the dependent variable similar across the levels of the grouping
factor?
We want the results of the Levene’s homogeneity of variance test to be non-significant. This would
support the notion that the TradPed variance is equivalent across the three stages of the transition.

rstatix::levene_test(OneWay_df, TradPed ~ Stage)

# A tibble: 1 x 4
df1 df2 statistic p

<int> <int> <dbl> <dbl>
1 2 109 4.52 0.0130

The significant p value suggests that the variances are statistically significantly different across
stages: 𝐹(2, 109) = 4.523, 𝑝 = 0.013.
Before moving on, I will capture our findings in an APA style write-up of the testing of assumptions:

Regarding the assumption of normality, skew and kurtosis values at each of the levels of
program year fell well below the thresholds that Kline (2016a) identified as concerning
(i.e., below |3| for skew and |10| for kurtosis). In contrast, results of a model-based
Shapiro-Wilk test of normality, indicated that the model residuals differed from a normal
distribution (𝑊 = 0.941, 𝑝 < .001). Although 4 outliers were identified none were
extreme, thus we retained all cases. Finally, Levene’s homogeneity of variance test
indicated a violation of the homogeneity of variance assumption 𝐹(2, 109) = 4.523, 𝑝 =
0.013. ANOVA is relatively robust to this violation when there are at least 15 cases per
cell and the design is balanced (i.e., equivalent cell sizes). While we have at least 15
cases per cell, we have a rather unbalanced design. We will need to keep this limitation
in mind as we interpret the results.

Conduct omnibus ANOVA (w effect size)

The rstatix::anova_test() function calculates the one-way ANOVA and includes the effect size, 𝜂2

in the column, ges.

omnibus1w <- rstatix::anova_test(OneWay_df, TradPed ~ Stage, detailed = FALSE)
omnibus1w

ANOVA Table (type II tests)

Effect DFn DFd F p p<.05 ges
1 Stage 2 109 7.199 0.001 * 0.117

The one-way ANOVA is statistically significant. This means that there should be at least one
statistically significant difference between levels of the design. Before moving on, I will capture the
F string: 𝐹(2, 109) = 7.199, 𝑝 = 0.001, 𝜂2 = 0.117. Regarding the effect size, values of .01, .07, and
.14 are considered to be small, medium, and large. The value of .11 would be medium-to-large.
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Conduct one set of follow-up tests; narrate your choice

I will simply calculate post-hoc comparisons. That is, all possible pairwise comparisons. I will
specify the traditional Bonferroni as the approach to managing Type I error.

phoc <- rstatix::t_test(OneWay_df, TradPed ~ Stage, p.adjust.method = "bonferroni", detailed = TRUE)
phoc

# A tibble: 3 x 17
estimate estimate1 estimate2 .y. group1 group2 n1 n2 statistic p

* <dbl> <dbl> <dbl> <chr> <chr> <chr> <int> <int> <dbl> <dbl>
1 0.655 4.35 3.69 Trad~ Stable Trans~ 50 41 3.46 9.73e-4
2 0.267 4.35 4.08 Trad~ Stable Reset~ 50 21 1.65 1.08e-1
3 -0.388 3.69 4.08 Trad~ Trans~ Reset~ 41 21 -1.83 7.2 e-2
# i 7 more variables: df <dbl>, conf.low <dbl>, conf.high <dbl>, method <chr>,
# alternative <chr>, p.adj <dbl>, p.adj.signif <chr>

The post hoc tests suggested statistically significant differences between the stable transition re-
settled stages, favoring the stable period of time (i.e., using SPSS and taught in the second year).

Describe approach for managing Type I error

We used the Bonferroni. The Bonferroni divides the overall alpha (.05) by the number of compar-
isons (3). In this case, a p value woul dhave to be lower than 0.017 to be statistically significant.
The calulation reverse-engineers this so that we can interpret the p values by the traditional. 0.05.
In the output, it is possible to see the higher threshholds necessary to claim statistical significance.

APA style results with table(s) and figure

A one-way analysis of variance was conducted to evaluate the effects of significant
transitions (e.g., from SPSS to R; to the second to the first year in a doctoral program)
on students ratings of traditional pedagogy. The independent variable, stage, included
three levels: stable (with SPSS and taught in the second year of a doctoral program),
transitioning (with R and students moving from second to first year), and resettled
(with R and in the first year of the program).

Regarding the assumption of normality, skew and kurtosis values at each of the levels of
program year fell well below the thresholds that Kline (2016a) identified as concerning
(i.e., below |3| for skew and |10| for kurtosis). In contrast, results of a model-based
Shapiro-Wilk test of normality, indicated that the model residuals differed from a normal
distribution (𝑊 = 0.941, 𝑝 < .001). Although 4 outliers were identified none were
extreme, thus we retained all cases. Finally, Levene’s homogeneity of variance test
indicated a violation of the homogeneity of variance assumption 𝐹(2, 109) = 4.523, 𝑝 =
0.013. ANOVA is relatively robust to this violation when there are at least 15 cases per
cell and the design is balanced (i.e., equivalent cell sizes). While we have at least 15
cases per cell, we have a rather unbalanced design. We will need to keep this limitation
in mind as we interpret the results.
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Results of the omnibus ANOVA indicated a statistically significant effect of stage on
students assessments of traditional pedagogy, 𝐹(2, 109) = 7.199, 𝑝 = 0.001, 𝜂2 = 0.117.
The effect size was medium-to-large. We followed up the significant omnibus with all
possible pairwise comparisons. We controlled for Type I error with the traditional
Bonferroni adjustment. Results suggested that there were statistically significant dif-
ferences between the stable and transition stages (𝑀𝑑𝑖𝑓𝑓 = 0.655, 𝑝 = 0.003), but not
between stable and resettled (𝑀𝑑𝑖𝑓𝑓 = 0.267, 𝑝 = 0.324) or transition and resettled
(𝑀𝑑𝑖𝑓𝑓 = −0.388, 𝑝 = 0.217) stages. Given that the doctoral programs are unlikely to
transition back to SPSS or into the second year, the instructor(s) are advised to consider
ways that could result in greater student satisfaction. Means and standard deviations
are presented in Table 1 and complete ANOVA results are presented in Table 2. Figure
1 provides an illustration of the results.

apaTables::apa.1way.table(iv = Stage, dv = TradPed, show.conf.interval = TRUE, data = OneWay_df, table.number = 1, filename = "1wayHWTable.doc")

Table 1

Descriptive statistics for TradPed as a function of Stage.

Stage M M_95%_CI SD
Stable 4.35 [4.16, 4.53] 0.66

Transition 3.69 [3.36, 4.03] 1.06
Resettled 4.08 [3.80, 4.36] 0.61

Note. M and SD represent mean and standard deviation, respectively.
LL and UL indicate the lower and upper limits of the 95% confidence interval
for the mean, respectively.
The confidence interval is a plausible range of population means that could
have caused a sample mean (Cumming, 2014).

omnibus1wHW_b <- aov(TradPed ~ Stage, data = OneWay_df)
apaTables::apa.aov.table(omnibus1wHW_b, table.number = 2, filename = "1wayHWTable2.doc")

Table 2

ANOVA results using TradPed as the dependent variable

Predictor SS df MS F p partial_eta2 CI_90_partial_eta2
(Intercept) 945.26 1 945.26 1404.77 .000

Stage 9.69 2 4.84 7.20 .001 .12 [.03, .21]
Error 73.34 109 0.67
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Note: Values in square brackets indicate the bounds of the 90% confidence interval for partial eta-squared

phoc <- phoc %>%
rstatix::add_xy_position(x = "Stage")

ggpubr::ggboxplot(OneWay_df, x = "Stage", y = "TradPed", add = "jitter",
color = "Stage", title = "Figure 1. Evaluations of Traditional Pedagogy as a Result of Transition") +
ggpubr::stat_pvalue_manual(phoc, label = "p.adj.signif", tip.length = 0.02,

hide.ns = TRUE, y.position = c(5.5))
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Figure 1. Evaluations of Traditional Pedagogy as a Result of Transition

Conduct power analyses to determine the power of the current study and a recom-
mended sample size

The pwr.anova.test() has five parameters:

• k = # groups
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• n = sample size per group
• f = effect sizes, where 0.1/small, 0.25/medium, and 0.4/large

– In the absence from an estimate from our own data, we make a guess about the expected
effect size value based on our knowledge of the literature

• sig.level = p value that you will use
• power = .80 is the standard value

In the script below, we simply add our values. So long as we have four values, the fifth will be
calculated for us.

Because this calculator requires the effect size in the metric of Cohen’s f (this is not the same as
the F ratio), we need to convert it. The effectsize package has a series of converters. We can use
the eta2_to_f() function.

effectsize::eta2_to_f(.117)

[1] 0.3640094

We simply plug this value into the “f =”.

First let’s ask what our level of power was? Our goal would be 80%.

Given that our design was unbalanced (21, 44, 47 across the three stages), I used 38 (114/3).

pwr::pwr.anova.test (k = 3, f = .3640094, sig.level = .05, n = 38)

Balanced one-way analysis of variance power calculation

k = 3
n = 38
f = 0.3640094

sig.level = 0.05
power = 0.9395967

NOTE: n is number in each group

Our power was 0.94. That is, we had 94% chance to find a statistically significant result if one
existed. In the next power analysis, let’s see what sample size is recommended.

pwr::pwr.anova.test (k = 3, f = .3640094, sig.level = .05, power = .80)

Balanced one-way analysis of variance power calculation

k = 3
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n = 25.26354
f = 0.3640094

sig.level = 0.05
power = 0.8

NOTE: n is number in each group

In order to be at 80% power to find a statistically significant result if there is one, we would need
only 25 people per group. We currently had an unbalanced design of 50, 41, 21.

7.10.2 Hand Calculations

Before we continue:

You may notice that the results from the hand calculation are slightly different from
the results I will obtain with the R packages. This is because the formula we have used
for the hand-calculations utilizes an approach to calculating the sums of squares that
presumes that we have a balanced design (i.e., that the cell sizes are equal). When cell
sizes are unequal (i.e., an unbalanced design) the Type II package in rstatix::anova_test
may produce different result.

Should we be concerned? No (and yes). My purpose in teaching hand calculations
is for creating a conceptual overview of what is occurring in ANOVA models. If this
lesson was a deeper exploration into the inner workings of ANOVA, we would take
more time to understand what is occurring. My goal is to provide you with enough of
an introduction to ANOVA that you would be able to explore further which sums of
squares type would be most appropriate for your unique ANOVA model.

Using traditional NHST (null hypothesis testing language), state your null and alter-
native hypotheses

Regarding the evaluation of traditional pedgagoy across three stages of transitions to a doctoral
ANOVA course, the null hypothesis predicts no differences between the three levels of the dependent
variable:

𝐻𝑂 ∶ 𝜇1 = 𝜇2 = 𝜇3

In contrast, the alternative hypothesis suggests there will be differences. Apriorily, I did not make
any specific predictions.

𝐻𝑎1 ∶ 𝜇1 ≠ 𝜇2 ≠ 𝜇3
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Calculate sums of squares total (SST). Steps in this calculation must include calculat-
ing a grand mean and creating variables representing the mean deviation and mean
deviation squared

I will use this approach to calculating sums of squares total:

𝑆𝑆𝑇 = ∑(𝑥𝑖 − ̄𝑥𝑔𝑟𝑎𝑛𝑑)2

I will use the psych::describe() function to obtain the overall mean:

psych::describe(OneWay_df)

vars n mean sd median trimmed mad min max range skew kurtosis
Stage* 1 112 1.74 0.76 2.0 1.68 1.48 1 3 2 0.46 -1.14
TradPed 2 112 4.06 0.86 4.2 4.17 0.89 1 5 4 -1.14 1.25

se
Stage* 0.07
TradPed 0.08

Next, I will subtract this value from each person’s TradPed value. This will create a mean deviation.

OneWay_df$mdevTP <- OneWay_df$TradPed - 4.06
#I could also calculate it by using the "mean" function
#I had to include an na.rm=TRUE; this appears to be connected to missingness
OneWay_df$mdevTPb <- OneWay_df$TradPed - mean(OneWay_df$TradPed, na.rm=TRUE)
head(OneWay_df)

Stage TradPed mdevTP mdevTPb
1 Resettled 4.4 0.34 0.34196429
2 Resettled 3.8 -0.26 -0.25803571
3 Resettled 4.0 -0.06 -0.05803571
4 Resettled 3.0 -1.06 -1.05803571
5 Resettled 4.8 0.74 0.74196429
6 Resettled 3.5 -0.56 -0.55803571

library(tidyverse)
OneWay_df <- OneWay_df %>%

dplyr::mutate(m_devSQTP = mdevTP^2)

#so we can see this in the textbook
head(OneWay_df)

Stage TradPed mdevTP mdevTPb m_devSQTP
1 Resettled 4.4 0.34 0.34196429 0.1156
2 Resettled 3.8 -0.26 -0.25803571 0.0676
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3 Resettled 4.0 -0.06 -0.05803571 0.0036
4 Resettled 3.0 -1.06 -1.05803571 1.1236
5 Resettled 4.8 0.74 0.74196429 0.5476
6 Resettled 3.5 -0.56 -0.55803571 0.3136

I will ask for a sum of the mean deviation squared column. The function was not running, sometimes
this occurs when there is missing data. While I didn’t think that was true, adding “na.rm = TRUE”
solved the problem.

SST <- sum(OneWay_df$m_devSQTP, na.rm = TRUE)
SST

[1] 83.0332

SST = 83.0332

Calculate the sums of squares for the model (SSM). A necessary step in this equation
is to calculate group means

The formula for SSM is
𝑆𝑆𝑀 = ∑ 𝑛𝑘( ̄𝑥𝑘 − ̄𝑥𝑔𝑟𝑎𝑛𝑑)2

We will need:

• n for each group,
• Grand mean (earlier we learned it was 4.06),
• Group means

We can obtain the group means several ways. I think the psych::describeBy() function is one of the
easiest.

psych::describeBy(TradPed ~ Stage, mat = TRUE, digits = 3, data = OneWay_df, type = 1)

item group1 vars n mean sd median trimmed mad min max range
TradPed1 1 Stable 1 50 4.348 0.658 4.4 4.440 0.890 2.6 5 2.4
TradPed2 2 Transition 1 41 3.693 1.057 4.0 3.812 1.186 1.0 5 4.0
TradPed3 3 Resettled 1 21 4.081 0.610 4.0 4.124 0.593 2.8 5 2.2

skew kurtosis se
TradPed1 -0.881 0.082 0.093
TradPed2 -0.817 -0.068 0.165
TradPed3 -0.289 -0.629 0.133

Now we can pop these values into the formula.
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SSM <- 50 * (4.348 -4.06)^2 + 41 * (3.693 - 4.06)^2 + 21 * (4.081 - 4.06)^2
SSM

[1] 9.67871

SSM = 9.67871

Calculate the sums of squares residual (SSR). A necessary step in this equation is to
calculate the variance for each group

The formula for I will use to calculate SSR is

𝑆𝑆𝑅 = 𝑠2
𝑔𝑟𝑜𝑢𝑝1(𝑛 − 1) + 𝑠2

𝑔𝑟𝑜𝑢𝑝2(𝑛 − 1) + 𝑠2
𝑔𝑟𝑜𝑢𝑝3(𝑛 − 1))

We will need:

• n for each group,
• variance (standard deviation, squared) for each group

We can obtain these values from the previous run of the psych::describeBy() function.

SSR <- (0.658^2)*(50 - 1) + (1.057^2)*(41 - 1) + (0.610^2)*(21-1)
SSR

[1] 73.3472

SSR = 73.3472

Calculate the mean square model, mean square residual, and F-test

The formula for mean square model is

𝑀𝑆𝑀 = 𝑆𝑆𝑀
𝑑𝑓𝑀

• 𝑆𝑆𝑀 was 9.67871
• 𝑑𝑓𝑀 is k - 1 (where k is number of groups/levels)

MSM <- 9.67871/2
MSM

[1] 4.839355
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MSM is 4.839

The formula for mean square residual is

𝑀𝑆𝑅 = 𝑆𝑆𝑅
𝑑𝑓𝑅

• 𝑆𝑆𝑅 was 79.292
• 𝑑𝑓𝑅 is 𝑁 − 𝑘 (112 - 3 = 109)

MSR = 73.3472/109
MSR

[1] 0.6729101

The formula for the F ratio is
𝐹 = 𝑀𝑆𝑀

𝑀𝑆𝑅

F <- 4.839/0.6729101
F

[1] 7.191154

F = 7.191154

What are the degrees of freedom for your numerator and denominator?

Numerator or 𝑑𝑓𝑀 : 2 Denominator or 𝑑𝑓𝑅: 109

Locate the test critical value for your one-way ANOVA

We could use use a table of critical values for the F distribution.

The closest N in the table I am using is 120. If we set alpha at 0.05, our test value would need to
exceed the absolute value of 3.0718.

We can also use a look-up function, which follows this general form: qf(p, df1, df2.
lower.tail=FALSE)

qf(.05, 2, 109, lower.tail=FALSE)

[1] 3.079596

Not surprisingly the values are quite similar.

https://www.statology.org/how-to-read-the-f-distribution-table/
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Is the F-test statistically significant? Why or why not?

Because the value of the F test (7.191) exceeded the absolute value of the critical value (3.080),
the F test is statistically significant.

Calculate and interpret the 𝜂2 effect size

The formula to calculate the effect size is

𝜂2 = 𝑆𝑆𝑀
𝑆𝑆𝑇

• 𝑆𝑆𝑀 was 9.679
• 𝑆𝑆𝑇 was 83.0332

etaSQ <- 9.679/83.0332
etaSQ

[1] 0.1165678

Eta square is 0.117. Values of .01, .06, and .14 are interpreted as small, medium, and large. Our
value of 0.12 is medium-to-large.

Assemble the results into a statistical string

𝐹(2, 109) = 7.191, 𝑝 < .05, 𝜂2 = 0.117



Chapter 8

Factorial (Between-Subjects) ANOVA

Screencasted Lecture Link

In this (somewhat long and complex) lesson we conduct a 3X2 ANOVA. We will

• Work an actual example from the literature.

– “by hand”, and
– with R packages

• I will also demonstrate

– several options for exploring interaction effects, and
– several options for exploring main effects.

• Exploring these options will allow us to:

– Gain familiarity with the concepts central to multi-factor ANOVAs.
– Explore tools for analyzing the complexity in designs.

The complexity is that not all of these things need to be conducted for every analysis. The two-way
ANOVA Workflow is provided to help you map a way through your own analyses. I will periodically
refer to this map so that we can more easily keep track of where we are in the process.

8.1 Navigating this Lesson

There is about 1 hour and 30 minutes hours of lecture. If you work through the materials with me
plan for another two hours of study.

While the majority of R objects and data you will need are created within the R script that sources
the chapter, occasionally there are some that cannot be created from within the R framework.
Additionally, sometimes links fail. All original materials are provided at the Github site that hosts
the book. More detailed guidelines for ways to access all these materials are provided in the OER’s
introduction
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https://youtube.com/playlist?list=PLtz5cFLQl4KPJjNqPwoLABFNlNErmOlsk
https://github.com/lhbikos/ReCenterPsychStats
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8.1.1 Learning Objectives

Learning objectives from this lecture include the following:

• Define, locate, and interpret all the effects associated with two-way ANOVA:

– main
– interaction (introducing the concept, moderator)
– simple main effects

• Identify which means belong with which effects. Then compare and interpret them.

– marginal means
– individual cell means
– comparing them

• Map a process/workflow for investigating a factorial ANOVA
• Manage Type I error
• Conduct a power analysis to determine sample size

8.1.2 Planning for Practice

In each of these lessons I provide suggestions for practice that allow you to select from options that
vary in degree of difficulty The least complex is to change the random seed and rework the problem
demonstrated in the lesson. The results should map onto the ones obtained in the lecture.
The second option comes from the research vignette. The Ramdhani et al. [2018] article has
two dependent variables (DVs; negative and positive evaluation) which are suitable for two-way
ANOVAs. I will demonstrate a simulation of one of their 3X2 ANOVAs (negative) in this lecturette.
The second dependent variable (positive) is suggested for the moderate level of difficulty.
As a third option, you are welcome to use data to which you have access and is suitable for two-way
ANOVA. In either case the practice options suggest that you:

• test the statistical assumptions
• conduct a two-way ANOVA, including

– omnibus test and effect size
– report main and interaction effects
– conduct follow-up testing of simple main effects

• write a results section to include a figure and tables

8.1.3 Readings & Resources

In preparing this chapter, I drew heavily from the following resource(s) that are freely available on
the internet. Other resources are cited (when possible, linked) in the text with complete citations
in the reference list.

• Kassambara, A. (n.d.). ANOVA in R: The Ultimate Guide. Datanovia. Retrieved December
28, 2022, from https://www.datanovia.com/en/lessons/anova-in-r/

https://www.datanovia.com/en/lessons/anova-in-r/
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– In order to streamline the learning process, I have chosen to use rstatix package for the
majority of ANOVA lessons. There are a number of tutorials about this package as
well as its integration with ggpubr for creating relatively easy creation of attractive and
informative figures. This tutorial is especially helpful.

• Navarro, D. (2020). Chapter 16: Factorial ANOVA. In Learning Statistics with R -
A tutorial for Psychology Students and other Beginners. Retrieved from https://stats.
libretexts.org/Bookshelves/Applied_Statistics/Book%3A_Learning_Statistics_with_R_-
_A_tutorial_for_Psychology_Students_and_other_Beginners_(Navarro)

– Navarro’s OER includes a good mix of conceptual information about one-way ANOVA
as well as R code. My code/approach is a mix of Green and Salkind’s [2017c], Field’s
[2012], Navarro’s [2020b], and other techniques I have found on the internet and learned
from my students.

• Ramdhani, N., Thontowi, H. B., & Ancok, D. (2018). Affective Reactions Among Students
Belonging to Ethnic Groups Engaged in Prior Conflict. Journal of Pacific Rim Psychology,
12, e2. https://doi.org/10.1017/prp.2017.22

– The source of our research vignette.

8.1.4 Packages

The packages used in this lesson are embedded in this code. When the hashtags are removed, the
script below will (a) check to see if the following packages are installed on your computer and, if
not (b) install them.

#will install the package if not already installed
#if(!require(knitr)){install.packages("knitr")}
#if(!require(psych)){install.packages("psych")}
#if(!require(tidyverse)){install.packages("tidyverse")}
#if(!require(dplyr)){install.packages("dplyr")}
#if(!require(ggpubr)){install.packages("ggpubr")}
#if(!require(rstatix)){install.packages("rstatix")}
#if(!require(effectsize)){install.packages("effectsize")}
#if(!require(pwr2)){install.packages("pwr2")}
#if(!require(apaTables)){install.packages("apaTables")}
#if(!require(emmeans)){install.packages("emmeans")}#although we don't call this package directly, there are rstatix functions that are a wrapper for it and therefore it needs to be installed
#if(!require(car)){install.packages("car")}#although we don't call this package directly, there are rstatix functions that are a wrapper for it and therefore it needs to be installed

8.2 Introducing Factorial ANOVA

My approach to teaching is to address the conceptual as we work problems. That said, there are
some critical ideas we should address first.

ANOVA is for experiments (or arguably closely related designs). As we learn about the
assumptions you’ll see that ANOVA has some rather restrictive ones (e.g., there should be an

https://learningstatisticswithr.com/
https://learningstatisticswithr.com/
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Book%3A_Learning_Statistics_with_R_-_A_tutorial_for_Psychology_Students_and_other_Beginners_(Navarro)
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Book%3A_Learning_Statistics_with_R_-_A_tutorial_for_Psychology_Students_and_other_Beginners_(Navarro)
https://stats.libretexts.org/Bookshelves/Applied_Statistics/Book%3A_Learning_Statistics_with_R_-_A_tutorial_for_Psychology_Students_and_other_Beginners_(Navarro)
https://doi.org/10.1017/prp.2017.22
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equal/equivalent number of cases per cell). To the degree that we violate these assumptions, we
should locate alternative statistical approaches where these assumptions are relaxed.
Factorial: a term used when there are two or more independent variables (IVs; the factors). The
factors could be between-groups, within-groups, repeated measures, or a combination of between
and within.

• Independent factorial design: several IVs (predictors/factors) and each has been measured
using different participants (between groups).

• Related factorial design: several IVs (factors/predictors) have been measured, but the
same participants have been used in all conditions (repeated measures or within-subjects).

• Mixed design: several IVs (factors/predictors) have been measured. One or more factors
uses different participants (between-subjects) and one or more factors uses the same partic-
ipants (within-subjects). Thus, there is a cobination of independent (between) and related
(within or repated) designs.

“Naming” the ANOVA model follows a number/levels convention. The example in this lesson is a
3X2 ANOVA. We know there are two factors that have three and two levels, respectively:

• rater ethnicity has three levels representing the two ethnic groups that were in prior conflict
(Marudese, Dayaknese) and a third group who was uninvolved in the conflict (Javanese);

• photo stimulus has two levels representing members of the two ethnic groups that were in
prior conflict (Madurese, Dayaknese);

Moderator is what creates an interaction. Below are traditional representations of the statistical
and conceptual figures of interaction effects. We will say that Factor B, moderates the relationship
between Factor A (the IV) and the DV.
In a later lesson we work an ANCOVA – where we will distinguish between a moderator and a
covariate. In lessons on regression models, you will likely be introduced to the notion of mediator.

Figure 8.1: Graphic representations of a moderated relationship?

8.2.1 Workflow for Two-Way ANOVA

The following is a proposed workflow for conducting a two-way ANOVA.
Steps of the workflow include:
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Figure 8.2: An image of a workflow for the two-way ANOVA
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1. Enter data

• predictors should formatted as as factors (ordered or unordered); the dependent variable
should be continuously scaled

• understanding the format of data can often provide clues as to which ANOVA/statistic
to use

2. Explore data

• graph the data
• compute descriptive statistics
• evaluate distributional assumptions
• assess the homogeneity of variance assumption with Levene’s test

• assess the nomality assumption with the Shapiro Wilk test
• determine if their are outliers; if appropriate, delete

3. Compute the omnibus ANOVA

• depending on what you found in the data exploration phase, you may need to run a robust
version of the test

4. Follow-up testing based on significant main or interaction effects

• significant interactions require test of simple main effects which could be further explored
with contrasts, posthoc comparisons, and/or polynomials

• the exact methods you choose will depend upon the tests of assumptions during data
exploration

5. Managing Type I error

8.3 Research Vignette

The research vignette for this example was located in Kalimantan, Indonesia and focused on bias
in young people from three ethnic groups. The Madurese and Dayaknese groups were engaged
in ethnic conflict that spanned 1996 to 2001. The last incidence of mass violence was in 2001
where approximately 500 people (mostly from the Madurese ethnic group) were expelled from the
province. Ramdhani et al.’s [2018] research hypotheses were based on the roles of the three ethnic
groups in the study. According to the author, the Madurese were viewed as the transgressors
when they occupied lands and took employment and business opportunities from the Dayaknese.
Ramdhani et al. also included a third group who were not involved in the conflict (Javanese). The
research participants were students studying in Yogyakara who were not involved in the conflict.
They included 39 Madurese, 35 Dyaknese, and 37 Javanese; 83 were male and 28 were female.

In the study [Ramdhani et al., 2018], participants viewed facial pictures of three men and three
women (in traditional dress) from each ethnic group (6 photos per ethnic group). Participant were
asked, “How do you feel when you see this photo? Please indicate your answers based on your
actual feelings.” Participants responded on a 7-point Likert scale ranging from 1 (strongly disagree)
to 7 (strongly agree). Higher scores indicated ratings of higher intensity on that scale. The two
scales included the following words:
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• Positive: friendly, kind, helpful, happy
• Negative: disgusting, suspicious, hateful, angry

8.3.1 Data Simulation

Below is script to simulate data for the negative reactions variable from the information available
from the manuscript [Ramdhani et al., 2018].

library(tidyverse)
set.seed(210731)
#sample size, M and SD for each cell; this will put it in a long file
Negative<-round(c(rnorm(17,mean=1.91,sd=0.73),rnorm(18,mean=3.16,sd=0.19),rnorm(19, mean=3.3, sd=1.05), rnorm(20, mean=3.00, sd=1.07), rnorm(18, mean=2.64, sd=0.95), rnorm(19, mean=2.99, sd=0.80)),3)
#sample size, M and SD for each cell; this will put it in a long file
Positive<-round(c(rnorm(17,mean=4.99,sd=1.38),rnorm(18,mean=3.83,sd=1.13),rnorm(19, mean=4.2, sd=0.82), rnorm(20, mean=4.19, sd=0.91), rnorm(18, mean=4.17, sd=0.60), rnorm(19, mean=3.26, sd=0.94)),3)
ID <- factor(seq(1,111))
Rater <- c(rep("Dayaknese",35), rep("Madurese", 39), rep ("Javanese", 37))
Photo <- c(rep("Dayaknese", 17), rep("Madurese", 18), rep("Dayaknese", 19), rep("Madurese", 20), rep("Dayaknese", 18), rep("Madurese", 19))
#groups the 3 variables into a single df: ID#, DV, condition
Ramdhani_df<- data.frame(ID, Negative, Positive, Rater, Photo)

For two-way ANOVA our variables need to be properly formatted. In our case:

• Negative is a continuously scaled DV and should be num
• Positive is a continuously scaled DV and should be num
• Rater should be an unordered factor
• Photo should be an unordered facor

str(Ramdhani_df)

## 'data.frame': 111 obs. of 5 variables:
## $ ID : Factor w/ 111 levels "1","2","3","4",..: 1 2 3 4 5 6 7 8 9 10 ...
## $ Negative: num 2.768 1.811 0.869 1.857 2.087 ...
## $ Positive: num 5.91 5.23 3.54 5.63 5.44 ...
## $ Rater : chr "Dayaknese" "Dayaknese" "Dayaknese" "Dayaknese" ...
## $ Photo : chr "Dayaknese" "Dayaknese" "Dayaknese" "Dayaknese" ...

Our Negative variable is correctly formatted. Let’s reformat Rater and Photo to be factors and
re-evaluate the structure. R’s default is to order the factors alphabetically. In this case this is fine.
If we had ordered factors such as dosage (placebo, lo, hi) we would want to respecify the order.

Ramdhani_df[,'Rater'] <- as.factor(Ramdhani_df[,'Rater'])
Ramdhani_df[,'Photo'] <- as.factor(Ramdhani_df[,'Photo'])
str(Ramdhani_df)
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## 'data.frame': 111 obs. of 5 variables:
## $ ID : Factor w/ 111 levels "1","2","3","4",..: 1 2 3 4 5 6 7 8 9 10 ...
## $ Negative: num 2.768 1.811 0.869 1.857 2.087 ...
## $ Positive: num 5.91 5.23 3.54 5.63 5.44 ...
## $ Rater : Factor w/ 3 levels "Dayaknese","Javanese",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ Photo : Factor w/ 2 levels "Dayaknese","Madurese": 1 1 1 1 1 1 1 1 1 1 ...

If you want to export this data as a file to your computer, remove the hashtags to save it (and
re-import it) as a .csv (“Excel lite”) or .rds (R object) file. This is not a necessary step.

The code for .csv will likely lose the formatting (i.e., making the Rater and Photo variables factors),
but it is easy to view in Excel.

#write the simulated data as a .csv
#write.table(Ramdhani_df, file="RamdhaniCSV.csv", sep=",", col.names=TRUE, row.names=FALSE)
#bring back the simulated dat from a .csv file
#Ramdhani_df <- read.csv ("RamdhaniCSV.csv", header = TRUE)
#str(Ramdhani_df)

The code for the .rds file will retain the formatting of the variables, but is not easy to view outside
of R.

#to save the df as an .rds (think "R object") file on your computer; it should save in the same file as the .rmd file you are working with
#saveRDS(Ramdhani_df, "Ramdhani_RDS.rds")
#bring back the simulated dat from an .rds file
#Ramdhani_df <- readRDS("Ramdhani_RDS.rds")
#str(Ramdhani_RDS)

8.3.2 Quick peek at the data

Let’s first examine the descriptive statistics (e.g., means of the variable, Negative) by group. We
can use the describeBy() function from the psych package.

negative.descripts <- psych::describeBy(Negative ~ Rater + Photo, mat = TRUE, data = Ramdhani_df, digits = 3) #digits allows us to round the output
negative.descripts

## item group1 group2 vars n mean sd median trimmed mad
## Negative1 1 Dayaknese Dayaknese 1 17 1.818 0.768 1.692 1.783 0.694
## Negative2 2 Javanese Dayaknese 1 18 2.524 0.742 2.391 2.460 0.569
## Negative3 3 Madurese Dayaknese 1 19 3.301 1.030 3.314 3.321 1.294
## Negative4 4 Dayaknese Madurese 1 18 3.129 0.156 3.160 3.136 0.104
## Negative5 5 Javanese Madurese 1 19 3.465 0.637 3.430 3.456 0.767
## Negative6 6 Madurese Madurese 1 20 3.297 1.332 2.958 3.254 1.615
## min max range skew kurtosis se
## Negative1 0.706 3.453 2.747 0.513 -0.881 0.186
## Negative2 1.406 4.664 3.258 1.205 1.475 0.175
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## Negative3 1.406 4.854 3.448 -0.126 -1.267 0.236
## Negative4 2.732 3.423 0.691 -0.623 0.481 0.037
## Negative5 2.456 4.631 2.175 -0.010 -1.307 0.146
## Negative6 1.211 5.641 4.430 0.215 -1.238 0.298

The write.table() function can be a helpful way to export output to .csv files so that you can
manipulate it into tables.

write.table(negative.descripts, file="NegativeDescripts.csv", sep=",", col.names=TRUE, row.names=FALSE)

At this stage, it would be useful to plot our data. Figures can assist in the conceptualization of the
analysis.

ggpubr::ggboxplot(Ramdhani_df, x = "Rater", y = "Negative", color = "Photo",xlab = "Ethnicity of Rater", ylab = "Negative Reaction", add = "jitter", title = "Boxplots Clustered by Rater Ethnicity")
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Narrating results is sometimes made easier if variables are switched. There is usually not a right
or wrong answer. Here is another view, switching the Rater and Photo predictors.
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ggpubr::ggboxplot(Ramdhani_df, x = "Photo", y = "Negative", color = "Rater", xlab = "Photo Stimulus",
ylab = "Negative Reaction", add = "jitter", title = "Boxplots Clustered by Ethnicity Represented in Photo Stimulus")
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Yet another option plots the raw data as bubbles, the means as lines, and denotes differences in
the moderator with color.

ggpubr::ggline(Ramdhani_df, x = "Rater", y = "Negative", color = "Photo", xlab = "Ethnicity of Rater",
ylab = "Negative Reaction", add = c("mean_se", "dotplot"), title = "Lineplot Clustered by Rater Ethnicity")
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#add this for a different color palette: palette = c("#00AFBB", "#E7B800")

We can reverse this to see if it assists with our conceptualization.

ggpubr::ggline(Ramdhani_df, x = "Photo", y = "Negative", color = "Rater", xlab = "Photo Stimulus",
ylab = "Negative Reaction", add = c("mean_se", "dotplot"), title = "Lineplots Custered by Ethnicity in Photo Stimulus")

## Bin width defaults to 1/30 of the range of the data. Pick better value with
## `binwidth`.

## Warning: Computation failed in `stat_summary()`.
## Caused by error in `get()`:
## ! object 'mean_se_' of mode 'function' was not found
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8.4 Working the Factorial ANOVA (by hand)

Before we work an ANOVA let’s take a moment to consider what we are doing and how it informs
our decision-making. This figure (which already contains “the answers”) may help conceptualize
how variance is partitioned.

As in one-way ANOVA, we partition variance into total, model, and residual. However, we now
further divide the 𝑆𝑆𝑀 into its respective factors A(column), B(row,) and their a x b product.

In this, we begin to talk about main effects and interactions.

8.4.1 Sums of Squares Total

Our formula is the same as it was for one-way ANOVA:

𝑆𝑆𝑇 = ∑(𝑥𝑖 − ̄𝑥𝑔𝑟𝑎𝑛𝑑)2
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Figure 8.3: Image of a flowchart that partitions variance from sums of squares totals to its compo-
nent pieces

Let’s calculate it for the Ramdhani et al. [2018] data. Our grand (i.e., overall) mean is

mean(Ramdhani_df$Negative)

## [1] 2.947369

Subtracting the grand mean from each Negative rating yields a mean difference.

library(tidyverse)
Ramdhani_df <- Ramdhani_df %>%

mutate(m_dev = Negative-mean(Negative))
head(Ramdhani_df)

## ID Negative Positive Rater Photo m_dev
## 1 1 2.768 5.907 Dayaknese Dayaknese -0.1793694
## 2 2 1.811 5.234 Dayaknese Dayaknese -1.1363694
## 3 3 0.869 3.544 Dayaknese Dayaknese -2.0783694
## 4 4 1.857 5.628 Dayaknese Dayaknese -1.0903694
## 5 5 2.087 5.438 Dayaknese Dayaknese -0.8603694
## 6 6 0.706 5.833 Dayaknese Dayaknese -2.2413694

Pop quiz: What’s the sum of our new m_dev variable?

Let’s find out!
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sum(Ramdhani_df$m_dev)

## [1] -0.000000000000007549517

Of course! The sum of squared deviations around the mean is zero. Next we square those mean
deviations.

Ramdhani_df <- Ramdhani_df %>%
mutate(m_devSQ = m_dev^2)

head(Ramdhani_df)

## ID Negative Positive Rater Photo m_dev m_devSQ
## 1 1 2.768 5.907 Dayaknese Dayaknese -0.1793694 0.03217337
## 2 2 1.811 5.234 Dayaknese Dayaknese -1.1363694 1.29133534
## 3 3 0.869 3.544 Dayaknese Dayaknese -2.0783694 4.31961924
## 4 4 1.857 5.628 Dayaknese Dayaknese -1.0903694 1.18890536
## 5 5 2.087 5.438 Dayaknese Dayaknese -0.8603694 0.74023545
## 6 6 0.706 5.833 Dayaknese Dayaknese -2.2413694 5.02373665

Then we sum the squared mean deviations.

sum(Ramdhani_df$m_devSQ)

## [1] 114.7746

This value, 114.775, the sum of squared deviations around the grand mean, is our 𝑆𝑆𝑇 ; the asso-
ciated degrees of freedom is 𝑁 - 1.
In factorial ANOVA, we divide 𝑆𝑆𝑇 into model/between sums of squares and residual/within
sums of squares.

8.4.2 Sums of Squares for the Model

𝑆𝑆𝑀 = ∑ 𝑛𝑘( ̄𝑥𝑘 − ̄𝑥𝑔𝑟𝑎𝑛𝑑)2

The model generally represents the notion that the means are different than each other. We want
the variation between our means to be greater than the variation within each of the groups from
which our means are calculated.
In factorial ANOVA, we need means for each of the combinations of the factors. We have a 3 x 2
model:

• Rater with three levels: Dayaknese, Madurese, Javanese
• Photo with two levels: Dayaknese, Madurese

Let’s repeat some code we used before to obtain the cell-level means and cell sizes.
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psych::describeBy(Negative ~ Rater + Photo, mat = TRUE, data = Ramdhani_df, digits = 3)

## item group1 group2 vars n mean sd median trimmed mad
## Negative1 1 Dayaknese Dayaknese 1 17 1.818 0.768 1.692 1.783 0.694
## Negative2 2 Javanese Dayaknese 1 18 2.524 0.742 2.391 2.460 0.569
## Negative3 3 Madurese Dayaknese 1 19 3.301 1.030 3.314 3.321 1.294
## Negative4 4 Dayaknese Madurese 1 18 3.129 0.156 3.160 3.136 0.104
## Negative5 5 Javanese Madurese 1 19 3.465 0.637 3.430 3.456 0.767
## Negative6 6 Madurese Madurese 1 20 3.297 1.332 2.958 3.254 1.615
## min max range skew kurtosis se
## Negative1 0.706 3.453 2.747 0.513 -0.881 0.186
## Negative2 1.406 4.664 3.258 1.205 1.475 0.175
## Negative3 1.406 4.854 3.448 -0.126 -1.267 0.236
## Negative4 2.732 3.423 0.691 -0.623 0.481 0.037
## Negative5 2.456 4.631 2.175 -0.010 -1.307 0.146
## Negative6 1.211 5.641 4.430 0.215 -1.238 0.298

#Note. Recently my students and I have been having intermittent struggles with the describeBy function in the psych package. We have noticed that it is problematic when using .rds files and when using data directly imported from Qualtrics. If you are having similar difficulties, try uploading the .csv file and making the appropriate formatting changes.

We also need the grand mean (i.e., the mean that disregards [or “collapses across”] the factors).

mean(Ramdhani_df$Negative)

## [1] 2.947369

This formula occurs in six chunks, representing the six cells of our designed. In each of the chunks
we have the 𝑛, group mean, and grand mean.

17*(1.818 - 2.947)^2 + 18*(2.524 - 2.947)^2 + 19*(3.301 - 2.947)^2 + 18*(3.129 - 2.947)^2 + 19*(3.465 - 2.947)^2 + 20*(3.297 - 2.947)^2

## [1] 35.41501

This value, 35.415, 𝑆𝑆𝑀 is the value accounted for by the model. That is, the amount of variance
accounted for by the grouping variable/factors, Rater and Photo.

8.4.3 Sums of Squares Residual (or within)

𝑆𝑆𝑅 is error associated with within group variability. If people are randomly assigned to conditions
there should be no other confounding variable. Thus, all 𝑆𝑆𝑅 variability is uninteresting for the
research and treated as noise.

𝑆𝑆𝑅 = ∑(𝑥𝑖𝑘 − ̄𝑥𝑘)2

Here’s another configuration of the same:
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𝑆𝑆𝑅 = 𝑠2
𝑔𝑟𝑜𝑢𝑝1(𝑛−1)+𝑠2

𝑔𝑟𝑜𝑢𝑝2(𝑛−1)+𝑠2
𝑔𝑟𝑜𝑢𝑝3(𝑛−1)+𝑠2

𝑔𝑟𝑜𝑢𝑝4(𝑛−1)+𝑠2
𝑔𝑟𝑜𝑢𝑝5(𝑛−1)+𝑠2

𝑔𝑟𝑜𝑢𝑝6(𝑛−1))

Again, the formula is in six chunks – but this time the calculations are within-group. We need
the variance (the standard deviation squared) for the calculation. We can retrieve these from the
descriptive statistics.

psych::describeBy(Negative ~ Rater + Photo, mat = TRUE, data = Ramdhani_df, digits = 3)

## item group1 group2 vars n mean sd median trimmed mad
## Negative1 1 Dayaknese Dayaknese 1 17 1.818 0.768 1.692 1.783 0.694
## Negative2 2 Javanese Dayaknese 1 18 2.524 0.742 2.391 2.460 0.569
## Negative3 3 Madurese Dayaknese 1 19 3.301 1.030 3.314 3.321 1.294
## Negative4 4 Dayaknese Madurese 1 18 3.129 0.156 3.160 3.136 0.104
## Negative5 5 Javanese Madurese 1 19 3.465 0.637 3.430 3.456 0.767
## Negative6 6 Madurese Madurese 1 20 3.297 1.332 2.958 3.254 1.615
## min max range skew kurtosis se
## Negative1 0.706 3.453 2.747 0.513 -0.881 0.186
## Negative2 1.406 4.664 3.258 1.205 1.475 0.175
## Negative3 1.406 4.854 3.448 -0.126 -1.267 0.236
## Negative4 2.732 3.423 0.691 -0.623 0.481 0.037
## Negative5 2.456 4.631 2.175 -0.010 -1.307 0.146
## Negative6 1.211 5.641 4.430 0.215 -1.238 0.298

Calculating 𝑆𝑆𝑅

((.768^2)*(17-1))+ ((.742^2)*(18-1)) + ((1.030^2)*(19-1)) + ((.156^2)*(18-1)) + ((.637^2)*(19-1)) + ((1.332^2)*(20-1))

## [1] 79.32078

The value for our 𝑆𝑆𝑅 is 79.321. Its degrees of freedom is 𝑁 − 𝑘. That is, the total 𝑁 minus the
number of groups:

111 - 6

## [1] 105

8.4.4 A Recap on the Relationship between 𝑆𝑆𝑇 , 𝑆𝑆𝑀 , and 𝑆𝑆𝑅

𝑆𝑆𝑇 = 𝑆𝑆𝑀 + 𝑆𝑆𝑅 In our case:

• 𝑆𝑆𝑇 was 114.775
• 𝑆𝑆𝑀 was 35.415
• 𝑆𝑆𝑅 was 79.321

Considering rounding error, we were successful!
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35.415 + 79.321

## [1] 114.736

8.4.5 Calculating SS for Each Factor and Their Products

8.4.5.1 Rater Main Effect

𝑆𝑆𝑎 ∶ 𝑅𝑎𝑡𝑒𝑟 is calculated the same way as 𝑆𝑆𝑀 for one-way ANOVA. Simply collapse across Photo
and calculate the marginal means for Negative as a function of the Rater’s ethnicity.
Reminder of the formula: 𝑆𝑆𝑎∶𝑅𝑎𝑡𝑒𝑟 = ∑ 𝑛𝑘( ̄𝑥𝑘 − ̄𝑥𝑔𝑟𝑎𝑛𝑑)2

There are three cells involved in the calculation of 𝑆𝑆𝑎 ∶ 𝑅𝑎𝑡𝑒𝑟.

psych::describeBy(Negative ~ Rater, mat = TRUE, data = Ramdhani_df, digits = 3)

## item group1 vars n mean sd median trimmed mad min max
## Negative1 1 Dayaknese 1 35 2.492 0.856 2.900 2.561 0.480 0.706 3.453
## Negative2 2 Javanese 1 37 3.007 0.831 2.913 2.986 0.984 1.406 4.664
## Negative3 3 Madurese 1 39 3.299 1.179 3.116 3.288 1.588 1.211 5.641
## range skew kurtosis se
## Negative1 2.747 -0.682 -1.132 0.145
## Negative2 3.258 0.239 -0.923 0.137
## Negative3 4.430 0.117 -1.036 0.189

Again, we need the grand mean.

mean(Ramdhani_df$Negative)

## [1] 2.947369

Now to calculate the Rater main effect.

35*(2.491 - 2.947)^2 + 37*(3.007 - 2.947)^2 +39*(3.299 - 2.947)^2

## [1] 12.24322

8.4.5.2 Photo Main Effect

𝑆𝑆𝑏 ∶ 𝑃 ℎ𝑜𝑡𝑜 is calculated the same way as 𝑆𝑆𝑀 for one-way ANOVA. Simply collapse across Rater
and calculate the marginal means for Negative as a function of the ethnicity reflected in the Photo
stimulus:
Reminder of the formula: 𝑆𝑆𝑎∶𝑃ℎ𝑜𝑡𝑜 = ∑ 𝑛𝑘( ̄𝑥𝑘 − ̄𝑥𝑔𝑟𝑎𝑛𝑑)2.
With Photo, we have only two cells.
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psych::describeBy(Negative ~ Photo, mat = TRUE, data = Ramdhani_df, digits = 3)

## item group1 vars n mean sd median trimmed mad min max
## Negative1 1 Dayaknese 1 54 2.575 1.043 2.449 2.516 0.921 0.706 4.854
## Negative2 2 Madurese 1 57 3.300 0.871 3.166 3.280 0.667 1.211 5.641
## range skew kurtosis se
## Negative1 4.148 0.47 -0.555 0.142
## Negative2 4.430 0.35 0.581 0.115

Again, we need the grand mean.

mean(Ramdhani_df$Negative)

## [1] 2.947369

54*(2.575 - 2.947)^2 + 57*(3.300 - 2.947)^2

## [1] 14.57545

8.4.5.3 Interaction effect

The interaction term is simply the 𝑆𝑆𝑀 remaining after subtracting the SS from the main effects.

𝑆𝑆𝑎𝑥𝑏 = 𝑆𝑆𝑀 − (𝑆𝑆𝑎 + 𝑆𝑆𝑏)

35.415 - (12.243 + 14.575)

## [1] 8.597

Let’s revisit the figure I showed at the beginning of this section to see, again, how variance is
partitioned.

8.4.6 Source Table Games!

As in the lesson for one-way ANOVA, we can use the information in this source table to determine
if we have statistically significance in the model. There is enough information in the source table to
be able to calculate all the elements. The formulas in the table provide some hints. Before scrolling
onto the answers, try to complete it yourself.

Summary ANOVA for Negative Reaction
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Figure 8.4: Image of a flowchart that partitions variance from sums of squares totals to its compo-
nent pieces

Source SS df 𝑀𝑆 = 𝑆𝑆
𝑑𝑓

𝐹 =
𝑀𝑆𝑠𝑜𝑢𝑟𝑐𝑒
𝑀𝑆𝑟𝑒𝑠𝑖𝑑

𝐹𝐶𝑉

Model 𝑘 − 1
a 𝑘𝑎 − 1
b 𝑘𝑏 − 1
aXb (𝑑𝑓𝑎)(𝑑𝑓𝑏)
Residual 𝑛 − 𝑘
Total

#hand-calculating the MS values
35.415/5 #Model

## [1] 7.083

12.243/2 #a: Rater

## [1] 6.1215

14.575/1 #b: Photo

## [1] 14.575
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8.597/2 #axb interaction term

## [1] 4.2985

79.321/105 #residual

## [1] 0.7554381

#hand-calculating the F values
7.083/.755 #Model

## [1] 9.381457

6.122/.755 #a: Rater

## [1] 8.108609

14.575/.755 #b: Photo

## [1] 19.30464

4.299/.755 #axb interaction term

## [1] 5.69404

To find the 𝐹𝐶𝑉 we can use an F distribution table.

Or use a look-up function, which follows this general form: qf(p, df1, df2. lower.tail=FALSE)

#looking up the F critical values
qf(.05, 5, 105, lower.tail=FALSE)#Model F critical value

## [1] 2.300888

qf(.05, 2, 105, lower.tail=FALSE)#a and axb F critical value

## [1] 3.082852

qf(.05, 1, 105, lower.tail=FALSE)#b F critical value

## [1] 3.931556

https://www.statology.org/f-distribution-table/
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When the 𝐹 value exceeds the 𝐹𝐶𝑉 , the effect is statistically significant.

Summary ANOVA for Negative Reaction

Source SS df 𝑀𝑆 = 𝑆𝑆
𝑑𝑓

𝐹 =
𝑀𝑆𝑠𝑜𝑢𝑟𝑐𝑒
𝑀𝑆𝑟𝑒𝑠𝑖𝑑

𝐹𝐶𝑉

Model 35.415 5 7.083 9.381 2.301
a 12.243 2 6.122 8.109 3.083
b 14.575 1 14.575 19.305 3.932
aXb 8.597 2 4.299 5.694 3.083
Residual 79.321 105 0.755
Total 114.775

8.4.7 Interpreting the results

What have we learned?

• there is a main effect for Rater
• there is a main effect for Photo
• there is a significant interaction effect

In the face of this significant interaction effect, we would follow-up by investigating the interaction
effect. Why? The significant interaction effect means that findings (e.g., the story of the results)
are more complex than group identity or photo stimulus, alone, can explain.

You may notice that the results from the hand calculation are slightly different from
the results I will obtain with the R packages. This is because the formula we have used
for the hand-calculations utilizes an approach to calculating the sums of squares that
presumes that we have a balanced design (i.e., that the cell sizes are equal). When cell
sizes are unequal (i.e., an unbalanced design) the Type II package in rstatix::anova_test
will produce different result.

Should we be concerned? No (and yes). My purpose in teaching hand calculations
is for creating a conceptual overview of what is occurring in ANOVA models. If this
lesson was a deeper exploration into the inner workings of ANOVA, we would take
more time to understand what is occurring. My goal is to provide you with enough of
an introduction to ANOVA that you would be able to explore further which sums of
squares type would be most appropriate for your unique ANOVA model.
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8.5 Working the Factorial ANOVA with R Packages

8.5.1 Evaluating the statistical assumptions

All statistical tests have some assumptions about the data. I have marked our Two-Way ANOVA
Workflow with a yellow box outlined in red to let us know that we are just beginning the process
of analyzing our data with an evaluation of the statistical assumptions.

Figure 8.5: Image of a flowchart showing that we are on the “Evaluating assumptions” portion of
the workflow

The are four critical assumptions in factorial ANOVA:

• Cases represent random samples from the populations

– This is an issue of research design
– Although we see ANOVA used (often incorrectly) in other settings, ANOVA was really

designed for the random clinical trial (RCT).

• Scores on the DV are independent of each other.

– This is an issue of research design
– With correlated observations, there is a dramatic increase of Type I error
– There are alternative statistics designed for analyzing data that has dependencies (e.g.,

repeated measures ANOVA, dyadic data analysis, multilevel modeling)
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• The DV is normally distributed for each of the populations

– that is, data for each cell (representing the combinations of each factor) is normally
distributed

• Population variances of the DV are the same for all cells

– When cell sizes are not equal, ANOVA not robust to this violation and cannot trust F
ratio

Even though we position the evaluation of assumptions first – some of the best tests of the assump-
tions use the resulting ANOVA model. Because of this, I will quickly run the model now. I will
not explain the results until after we evaluate the assumptions.

TwoWay_neg<-aov(Negative~Rater*Photo, Ramdhani_df)
summary(TwoWay_neg)

## Df Sum Sq Mean Sq F value Pr(>F)
## Rater 2 12.21 6.103 8.077 0.000546 ***
## Photo 1 14.62 14.619 19.346 0.0000262 ***
## Rater:Photo 2 8.61 4.304 5.696 0.004480 **
## Residuals 105 79.34 0.756
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

model.tables(TwoWay_neg,"means")

## Tables of means
## Grand mean
##
## 2.947369
##
## Rater
## Dayaknese Javanese Madurese
## 2.492 3.007 3.299
## rep 35.000 37.000 39.000
##
## Photo
## Dayaknese Madurese
## 2.575 3.301
## rep 54.000 57.000
##
## Rater:Photo
## Photo
## Rater Dayaknese Madurese
## Dayaknese 1.818 3.129
## rep 17.000 18.000
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## Javanese 2.524 3.465
## rep 18.000 19.000
## Madurese 3.301 3.298
## rep 19.000 20.000

8.5.1.1 Is the dependent variable normally distributed?

8.5.1.1.1 Is there evidence of skew or kurtosis? Let’s start by analyzing skew and
kurtosis. Skew and kurtosis are one way to evaluate whether or not data are normally distributed.
When we use the “type=1” argument, the skew and kurtosis indices in psych:describe (or
psych::describeBy) can be interpreted according to Kline’s [2016a] guidelines. Regarding skew,
values greater than the absolute value of 3.0 are generally considered “severely skewed.” Regarding
kurtosis, “severely kurtotic” is argued to be anywhere greater the absolute values of 8 to 20. Kline
recommended using a conservative threshold of the absolute value of 10.

psych::describeBy(Negative ~ Rater + Photo, mat = TRUE, data = Ramdhani_df, digits = 3, type = 1)

## item group1 group2 vars n mean sd median trimmed mad
## Negative1 1 Dayaknese Dayaknese 1 17 1.818 0.768 1.692 1.783 0.694
## Negative2 2 Javanese Dayaknese 1 18 2.524 0.742 2.391 2.460 0.569
## Negative3 3 Madurese Dayaknese 1 19 3.301 1.030 3.314 3.321 1.294
## Negative4 4 Dayaknese Madurese 1 18 3.129 0.156 3.160 3.136 0.104
## Negative5 5 Javanese Madurese 1 19 3.465 0.637 3.430 3.456 0.767
## Negative6 6 Madurese Madurese 1 20 3.297 1.332 2.958 3.254 1.615
## min max range skew kurtosis se
## Negative1 0.706 3.453 2.747 0.562 -0.608 0.186
## Negative2 1.406 4.664 3.258 1.313 2.017 0.175
## Negative3 1.406 4.854 3.448 -0.137 -1.069 0.236
## Negative4 2.732 3.423 0.691 -0.679 0.903 0.037
## Negative5 2.456 4.631 2.175 -0.010 -1.114 0.146
## Negative6 1.211 5.641 4.430 0.232 -1.048 0.298

Using guidelines from Kline [2016b] our values for skewness fall below |3.0| and our values for
kurtosis fall below |10|.

8.5.1.1.2 Are the model residuals normally distributed? We can further investigate nor-
mality with the Shapiro-Wilk test. The assumption requires that the distribution be normal in each
of the levels of each factor. In the case of multiple factors (such as is the case in factorial ANOVA),
the assumption requires a normal distribution in each combination of these levels (e.g., Javanese
rater of Dyaknese photo). In this lesson’s 3 x 2 ANOVA, there are six such combinations. This
cell-level analysis has been demonstrated in one-way ANOVA and independent t-test lessons. To
the degree that there are many factorial combinations (and therefore, cells), this approach becomes
unwieldy to calculate, interpret, and report. The cell-level analysis of normality is also only appro-
priate when there are a low number of levels/groupings and there are many data points per group.
Thus, as models become more complex, researchers turn to the model-based option for assessing
normality. To do this, we first create an object that tests our research model.
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Just a paragraph or two earlier, I ran the factorial ANOVA and saved the results in an object.
Among the information contained in that object are residuals. Residuals are the unexplained
variance in the outcome (or dependent) variable after accounting for the predictor (or independent)
variable. In the code below we extract the residuals (i.e., that which is left-over/unexplained) from
the model. We can examine their distribution with a plot.

#creates object of residuals
resid_neg<- residuals(TwoWay_neg)

Next, we can take a “look” them with a couple of plots.

hist(resid_neg)

Histogram of resid_neg
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So far so good – our distribution of residuals (i.e., what is leftover after the model is applied)
resembles a normal distribution.
The Q-Q plot provides another view. The dots represent the residuals. When they are relatively
close to the line they not only suggest good fit of the model, but we know they are small and evenly
distributed around zero (i.e., normally distributed).
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qqnorm(resid_neg)
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Additionally, we can formally test the distribution of the residuals with a Shapiro test. We want
the associated p value to be greater than 0.05.

shapiro.test(resid_neg)

##
## Shapiro-Wilk normality test
##
## data: resid_neg
## W = 0.98464, p-value = 0.2344

Whooo hoo! 𝑝 > 0.05. This means that our distribution of residuals is not statistically significantly
different from a normal distribution (𝑊 = 0.985, 𝑝 = 0.234).
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8.5.1.1.3 Are there outliers? If our data pointed to significant violations of normality, we
could consider identifying and removing outliers. Removing data is a serious consideration that
should not be made lightly. If needed, though, here is a tool to inspect the data and then, if
necessary, remove it.

We can think of outlier identification in a couple of ways. First, we might look at dependent variable
across the entire dataset. That is, without regard to the levels of the grouping variable. We can
point rstatix::identify_outliers() to the data.

Ramdhani_df%>%
rstatix::identify_outliers(Negative)

## ID Negative Positive Rater Photo m_dev m_devSQ is.outlier
## 1 73 5.641 4.813 Madurese Madurese 2.693631 7.255646 TRUE
## is.extreme
## 1 FALSE

Our results indicate that one case (ID = 73) had an outlier (TRUE), but it was not extreme
(FALSE).

Let’s re-run the code, this time requiring it to look within each of the grouping levels of the condition
variable.

Ramdhani_df%>%
group_by(Rater, Photo)%>%
rstatix::identify_outliers(Negative)

## # A tibble: 3 x 9
## Rater Photo ID Negative Positive m_dev m_devSQ is.outlier is.extreme
## <fct> <fct> <fct> <dbl> <dbl> <dbl> <dbl> <lgl> <lgl>
## 1 Dayaknese Madure~ 18 2.73 5.22 -0.215 0.0464 TRUE FALSE
## 2 Dayaknese Madure~ 19 3.42 3.17 0.476 0.226 TRUE FALSE
## 3 Javanese Dayakn~ 87 4.66 3.54 1.72 2.95 TRUE FALSE

This time there are three cases where there are outliers (TRUE), but they are not extreme (FALSE).
Handily, the function returns information about each row of data. We can use such information to
help us delete it.

Let’s say that, after very careful consideration, we decided to remove the case with ID = 18. We
could use dplyr::filter() to do so. In this code, the filter() function locates all the cases where ID
= 18. The exclamation point that precedes the equal sign indicates that the purpose is to remove
the case.

#Ramdhani_df <- dplyr::filter(Ramdhani_df, ID != "18")

Once executed, we can see that this case is no longer in the dataframe. Although I demonstrated
this in the accompanying lecture, I have hashtagged out the command because I would not delete
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the case. If you already deleted the case, you can return the hashtag and re-run all the code up to
this point.

Here’s how I would summarize our data in terms of normality:

Factorial ANOVA assumes that the dependent variable is normally is distributed for
all cells in the design. Skew and kurtosis values for each factorial combinations fell
below the guidelines recommended by Kline [2016a]. That is, they were below the
absolute values of 3 for skew and 10 for kurtosis. Similarly, no extreme outliers were
identified and results of the Shapiro-Wilk normality test (applied to the residuals from
the factorial ANOVA model) suggested that model residuals did not differ significantly
from a normal distribution (𝑊 = 0.9846, 𝑝 = 0.234).

8.5.1.2 Are the variances of the dependent variable similar across the levels of the
grouping factors?

We can evaluate the homogeneity of variance test with the Levene’s test for the equality of error vari-
ances. Levene’s requires a fully saturated model. This means that the prediction model requires an
interaction effect (not just two, non-interacting predictors). We can use the rstatix::levene_test().
Within the function we point to the dataset, then specify the formula of the factorial ANOVA.
That is, predicting Negative from the Rater and Photo factors. The asterisk indicates that they
will also be added as an interaction term.

rstatix::levene_test(Ramdhani_df, Negative ~ Rater*Photo)

## # A tibble: 1 x 4
## df1 df2 statistic p
## <int> <int> <dbl> <dbl>
## 1 5 105 8.63 0.000000700

Levene’s test, itself, is an F-test. Thus, its reporting assumes the form of an F-string. Our result
has indicated a violation of the homogeneity of variance assumption (𝐹[5, 105] = 8.634, 𝑝 < .001).
This is not surprising as the boxplots displayed some widely varying variances.

Should we be concerned? Addressing violations of homogeneity of variance in factorial ANOVA is
complex. The following have been suggested:

• One approach is to use different error variances in follow-up to the omnibus. Kassambara [a]
suggested that separate one-way ANOVAs for the analysis of simple main effects will provide
these separate error terms.

• Green and Salkind [2017c] indicated that we should become more concerned about the trust-
worthiness of the p values from the omnibus two-way ANOVA when this assumption is violated
and the cell sizes are unequal. In today’s research vignette, our design is balanced (i.e., the
cell sizes are quite similar).
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8.5.1.3 Summarizing results from the analysis of assumptions

It is common for an APA style results section to begin with a review of the evaluation of the
statistical assumptions. As we have just finished these analyses, I will document what we have
learned so far:

Factorial ANOVA assumes that the dependent variable is normally is distributed for all
cells in the design. Skew and kurtosis values for each factorial combinations fell below
the guidelines recommended by Kline [2016a]. That is, they were below the absolute
values of 3 for skew and 10 for kurtosis. Similarly, no extreme outliers were identified and
results of the Shapiro-Wilk normality test (applied to the residuals from the factorial
ANOVA model) suggested that model residuals did not differ significantly from a normal
distribution (𝑊 = 0.9846, 𝑝 = 0.234). Results of Levene’s test for equality of error
variances indicated a violation of the homogeneity of variance assumption, (𝐹[5, 105] =
8.834, 𝑝 < .001). Given that cell sample sizes were roughly equal and greater than 15,
each [Green and Salkind, 2017c] we proceded with the two-way ANOVA.

8.5.2 Evaluating the Omnibus ANOVA

The F-tests associated with the two-way ANOVA are the omnibus – providing the result for the
main and interaction effects.
Here’s where we are in the workflow.
When we run the two-way ANOVA we will be looking for several effects:

• main effects for each predictor, and
• the interaction effect.

It is possible that all effects will be significant, none will be significant, or some will be significant.
The interaction effect always takes precedence over the main effect because it lets us know there is
a more nuanced/complex result.
In the code below, the type argument is used to specify the type of sums of squares that are used.
Type II is the rstatix::anova_test()’s default and is what I will use in this demonstration. It will
yield identical results as type=1 when data are balanced (i.e., cell sizes are equal). In specifying
the ANOVA, order of entry matters if you choose type=1. In that case, if there are distinctions
between independent variable and moderator, enter the independent variable first because it will
claim the most variance. I provide more information on these options related to types of sums of
squares calculations near the end of the chapter.

omnibus2w <- rstatix::anova_test(Ramdhani_df, Negative ~ Rater*Photo, type="2", detailed=TRUE)
omnibus2w

## ANOVA Table (type II tests)
##
## Effect SSn SSd DFn DFd F p p<.05 ges
## 1 Rater 12.238 79.341 2 105 8.098 0.0005360 * 0.134
## 2 Photo 14.619 79.341 1 105 19.346 0.0000262 * 0.156
## 3 Rater:Photo 8.609 79.341 2 105 5.696 0.0040000 * 0.098
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Figure 8.6: Image of our place in the Two-Way ANOVA Workflow.
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Let’s write the F strings from the above table.

• Rater main effect: 𝐹[2, 105] = 8.098, 𝑝 < 0.001, 𝜂2 = 0.134
• Photo stimulus main effect: 𝐹[1, 105] = 19.346, 𝑝 < 0.001, 𝜂2 = 0.156
• Interaction effect: 𝐹[2, 105] = 5.696, 𝑝 = 0.004, 𝜂2 = 0.098

Eta squared (represented in the “ges” column of ouput) is one of the most commonly used
measures of effect. It refers to the proportion of variability in the DV/outcome variable that can be
explained in terms of the IVs/predictors. Conventionally, values of .01, .06, and .14 are considered
to be small, medium, and large effect sizes, respectively.

You may see different values (.02, .13, .26) offered as small, medium, and large – these values are
used when multiple regression is used. A useful summary of effect sizes, guide to interpreting their
magnitudes, and common usage can be found here [Watson, 2020].

The formula for 𝜂2 is straightforward:

𝜂2 = 𝑆𝑆𝑀
𝑆𝑆𝑇

Before moving to follow-up, an APA style write-up of the omnibus might read like this:

8.5.2.1 APA write-up of the omnibus results

A 3 X 2 ANOVA was conducted to evaluate the effects of rater ethnicity (3 levels,
Dayaknese, Madurese, Javanese) and photo stimulus (2 levels, Dayaknese on Madurese,)
on negative reactions to the photo stimuli.

Computing sums of squares with a Type II approach, the results for the ANOVA
indicated a significant main effect for ethnicity of the rater (𝐹[2, 105] = 8.098, 𝑝 <
0.001, 𝜂2 = 0.134), a significant main effect for photo stimulus, (𝐹[1, 105] = 19.346, 𝑝 <
0.001, 𝜂2 = 0.156), and a significant interaction effect (𝐹[2, 105] = 5.696, 𝑝 = 0.004, 𝜂2 =
0.098).

8.5.3 Follow-up to a Significant Interaction Effect

In factorial ANOVA we are interested in main effects and interaction effects. When the result is
explained by a main effect, then there is a consistent trend as a function of a factor (e.g., Madurese
raters had consistently higher Negative evaluations, irrespective of stimulus). In an interaction
effect, the results are more complex (e.g., the ratings across the stimulus differed for the three
groups of raters).

There are a variety of strategies to follow-up a significant interaction effect. In this lesson, I
demonstrate the two I believe to be the most useful in the context of psychologists operating
within the scientist-practitioner-advocacy context. I provide additional examples in the appendix.

When an interaction effect is significant (irrespective of the significance of one or more main effects),
examination of simple main effects is a common statistical/explanatory approached that is used.

https://imaging.mrc-cbu.cam.ac.uk/statswiki/FAQ/effectSize
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The Two-Way ANOVA Workflow shows where we are in this process. Our research vignette is a 3
x 2 ANOVA. The first factor, ethnicity, has three levels (Dayaknes, Javanese, Madurese) and the
second factor, photo stimulus, has two levels (Dayaknese, Madurese). When we conduct simple
main effects, we evaluate one factor within the levels of the other factor. The number of levels in
each factor changes the number of steps (i.e., the complexity) in the analysis.

When I am analyzing the simple main effect of photo stimulus (two levels) within ethnicity of the
rater (three levels), I only need a one-step procedure that will conduct pairwise comparisons of
the negative evaluating of the photo stimulus for the Dayaknese, Javanese, and Madurese raters,
separately (while controlling for Type I error). Traditionally, researchers will follow with three,
separate, one-way ANOVAs. However, any procedure (e.g., t-tests, pairwise comparisons) that will
make these pairwise comparisons is sufficient.

When I am analyzing the simple main effect of ethnicity of the rater (three levels) within photo
stimulus (two levels), I will need a two-step process. The first step will require the one-way ANOVA
to determine, first, if there were statistically significant differences within the photo stimulus (e.g.,
Were there differences between Dayaknese, Javanese, and Madurese raters when viewing the Dayak-
nese photos?). If there were statistically significant differences, we follow up with an analysis of
pairwise comparisons.

Although I will demonstrate both rater ethnicity within photo stimulus and photo stimulus within
rater ethnicity in this lesson, we will choose only one for the write-up of results.

8.5.3.1 Planning for the management of Type I Error

Controlling for Type I error can depend, in part, on the design of the follow-up tests that are
planned, and the number of pairwise comparisons that follow.

In the first option, the examination of the simple main effect of photo stimulus within ethnicity of
rater results in only three pairwise comparisons. In this case, I will use the traditional Bonferroni.
Why? Because there are only three post omnibus analyses, its more restrictive control is less likely
to be problematic.

In the second option, the examination of the simple main effect of ethnicity of the rater within photo
stimulus results in the potential comparison of six pairwise comparisons. If we used a traditional
Bonferroni and divided .05/6, the p value for each comparison would need to be less than 0.008.
Most would agree that this is too restrictive.

.05/6

## [1] 0.008333333

The Holm’s sequential Bonferroni [Green and Salkind, 2017c] offers a middle-of-the-road approach
(not as strict as .05/6 with the traditional Bonferroni; not as lenient as “none”) to managing Type
I error.

If we were to hand-calculate the Holms, we would rank order the p values associated with the six
comparisons in order from lowest (e.g., 0.000001448891) to highest (e.g., 1.000). The first p value is
evaluated with the most strict criterion (.05/6; the traditional Bonferonni approach). Then, each
successive comparison calculates the p value by using the number of remaining comparisons as the
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denominator (e.g., .05/5, .05/4, .05/3). As the p values increase and the alpha levels relax, there
will be a cut-point where remaining comparisons are not statistically significant. Luckily, most
R packages offer the Holm’s sequential Bonferroni as an option. The algorithm in the package
rearranges the mathematical formula and produces a p value that we can interpret according to
the traditional values of 𝑝 < .05, 𝑝 < .01 and 𝑝 < .001. I will demonstrate use of Holm’s in the
examination of the simple main effect of ethnicity of rater within photo stimulus.

8.5.3.2 Option #1 the simple main effect of photo stimulus within ethnicity of the
rater

In the examination of the simple main effect of photo stimulus within ethnicity of the rater our
goal is to compare the:

• Dayaknese raters’ negative evaluation of the Dayaknese and Madurese photos,
• Javanese raters’ negative evaluation fo the Dayaknese and Madurese photos, and
• Madurese raters’ negative evaluation of the Dayaknese and Madurese photos.

Thus, we only need three, pairwise comparisons. I will demonstrate two ways to conduct these
analyses. Here’s where we are in the two-way ANOVA workflow

Figure 8.7: Image our place in the Two-Way ANOVA Workflow – analysis of simple main effects
of factor A within levels of factor B.

Separate one-way ANOVAs are a traditional option for this evaluation. Using dplyr::group_by()
we can efficiently calculate the three ANOVAs by the grouping variable, Rater. One advantage of
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separate one-way ANOVAs is that they each have their own error term and that this can help mit-
igate problems associated with violation of the homogeneity of variance assumption [Kassambara,
a].

Note that in this method there is no option for controlling Type I error. Thus, we would need to do
it manually. The traditional Bonferroni involves dividing family-wise error (traditionally 𝑝 < .05)
by the number of follow-up comparisons. In our case .05/3 = .017.

Ramdhani_df%>%
dplyr::group_by(Rater)%>%

rstatix::anova_test(Negative ~ Photo)

## # A tibble: 3 x 8
## Rater Effect DFn DFd F p `p<.05` ges
## * <fct> <chr> <dbl> <dbl> <dbl> <dbl> <chr> <dbl>
## 1 Dayaknese Photo 1 33 50.4 0.0000000395 "*" 0.604
## 2 Javanese Photo 1 35 17.2 0.000205 "*" 0.329
## 3 Madurese Photo 1 37 0.0000762 0.993 "" 0.00000206

The APA style write-up will convey what we have found using this traditional approach:

To explore the interaction effect, we followed with a test of the simple main effect
of photo stimulus within the ethnicity of the rater. That is, with separate one-way
ANOVAs (chosen, in part, to mitigate violation of the homogeneity of variance as-
sumption [Kassambara, a]) we examined the effect of the photo stimulus within the
Dayaknese, Madurese, and Javanese groups. To control for Type I error across the
three simple main effects, we set alpha at .017 (.05/3). Results indicated significant dif-
ferences for Dayaknese (𝐹[1, 33] = 50.404, 𝑝 < 0.001, 𝜂2 = 0.604) and Javanese ethnic
groups (𝐹 [1, 35] = 17.183, 𝑝 < 0.001, 𝜂2 = 0.329), but not for the Madurese ethnic group
(𝐹 [1, 37] < 0.001, 𝑝 = .993, 𝜂2 < .001). As illustrated in Figure 1, the Dayaknese and
Javanese raters both reported stronger negative reactions to the Madurese. The differ-
ences in ratings for the Madurese were not statistically significantly different. In this
way, the rater’s ethnic group moderated the relationship between the photo stimulus
and negative reactions.

The rstatix::emmeans_test() offers an efficient alternative to this pairwise analysis that will (a)
automatically control for Type I error and (b) integrate well into a figure. Note that this function
is a wrapper to functions in the emmeans package. If you haven’t already, you will need to install
the emmeans package. For each, the resulting test statistic is a t.ratio. The result of this t-test will
be slightly different than an independent sample t-test because it is based on estimated marginal
means (i.e., means based on the model, not directly on the data). We will spend more time with
estimated marginal means in the ANCOVA lesson.

In the script below, we will group the dependent variable by Rater and then conduct pairwise
comparisons. Note that I have requested that that the traditional Bonferroni be used to manage
Type I error. We can see these adjusted p values in the output.
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library(tidyverse)
pwPHwiETH <- Ramdhani_df%>%

group_by(Rater)%>%
rstatix::emmeans_test(Negative ~ Photo, detailed = TRUE, p.adjust.method = "bonferroni")

pwPHwiETH

## # A tibble: 3 x 15
## Rater term .y. group1 group2 null.value estimate se df conf.low
## * <fct> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 Dayaknese Photo Negati~ Dayak~ Madur~ 0 -1.31 0.294 105 -1.89
## 2 Javanese Photo Negati~ Dayak~ Madur~ 0 -0.941 0.286 105 -1.51
## 3 Madurese Photo Negati~ Dayak~ Madur~ 0 0.00334 0.278 105 -0.549
## # i 5 more variables: conf.high <dbl>, statistic <dbl>, p <dbl>, p.adj <dbl>,
## # p.adj.signif <chr>

Not surprisingly, our results are quite similar. I would report them this way:

To explore the interaction effect, we followed with a test of the simple main effect of
photo stimulus within the ethnicity of the rater. Specifically, we conducted pairwise
comparisons between the groups using the estimated marginal means. We specified the
Bonferroni method for managing Type I error. Results suggested statistically significant
differences differences for the Dayaknese (𝑀𝑑𝑖𝑓𝑓 = −1.312, 𝑡[105] = −4.461, 𝑝 < 0.001)
and Javanese ethnic groups (𝑀𝑑𝑖𝑓𝑓 = −0.941, 𝑡[105] = −3.291, 𝑝 < 0.001) but not for
the Madurese ethnic group (𝑀𝑑𝑖𝑓𝑓 = 0.003, 𝑡[105] = 0.0121, 𝑝 = 0.990). As illustrated
in Figure 1, the Dayaknese and Javanese raters both reported stronger negative reactions
to the Madurese. The differences in ratings for the Madurese were not statistically
significantly different. In this way, the rater’s ethnic group moderated the relationship
between the photo stimulus and negative reactions.

Because we used the rstatix functions, we can easily integrate them into our ggpubr::ggboxplot().
Let’s first re-run the version of the boxplot where “Rater” is on the x-axis (and, is therefore our
grouping variable). Because I want the data to be as true-to-scale as possible, I have added the full
range of the y axis through the ylim argument. In order to update the ggboxplot, we will need to
save it as an option. My object name represents the “PHoto within Ethnicity” simple main effect.

boxPHwiETH <- ggpubr::ggboxplot(Ramdhani_df, x = "Rater", y = "Negative", color = "Photo",xlab = "Ethnicity of Rater", ylab = "Negative Reaction", add = "jitter", title = "Simple Main Effect of Photo Stimulus within Rater", ylim = c(1, 7))

pwPHwiETH <- pwPHwiETH %>% rstatix::add_xy_position(x = "Rater") #x should be whatever the variable was used in the group_by argument
boxPHwiETH <- boxPHwiETH +

ggpubr::stat_pvalue_manual(pwPHwiETH, label = "p.adj.signif", tip.length = 0.02, hide.ns = TRUE, y.position = c(3.8, 5.1))

boxPHwiETH
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8.5.3.3 Option #2 the simple main effect of ethnicity of rater within photo stimulus.

In the examination of the simple main effect of rater ethnicity photo stimulus our goal is to compare:

• Dayaknese, Javanese, and Madurese negative evaluations of the Dayaknese photos, and
• Dayaknese, Javanese, and Madurese negative evaluations of the Maudurese photos.

Consequently, we will need a two-staged evaluation. First, we will conduct separate one-way
ANOVAs. Second, we will follow-up with pairwise comparisons.
Let’s start with the one-way ANOVAs. Using dplyr::group_by() we can efficiently calculate the
three ANOVAs by the grouping variable, Photo. One advantage of separate one-way ANOVAs is
that they each have their own error term and that this can help mitigate problems associated with
violation of the homogeneity of variance assumption [Kassambara, a].
Note that in this method there is no option for controlling Type I error. Thus, we would need to do
it manually. The traditional Bonferroni involves dividing family-wise error (traditionally 𝑝 < .05)
by the number of follow-up comparisons. In our case .05/2 = .025.
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Figure 8.8: Image our place in the Two-Way ANOVA Workflow – analysis of simple main effects
of factor B within levels of factor A.
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Ramdhani_df%>%
dplyr::group_by(Photo)%>%

rstatix::anova_test(Negative ~ Rater)

## # A tibble: 2 x 8
## Photo Effect DFn DFd F p `p<.05` ges
## * <fct> <chr> <dbl> <dbl> <dbl> <dbl> <chr> <dbl>
## 1 Dayaknese Rater 2 51 13.3 0.0000221 "*" 0.343
## 2 Madurese Rater 2 54 0.679 0.512 "" 0.025

The APA style write-up will convey what we have found (so far) using this approach:

To explore the interaction effect, we followed with a test of the simple main effect of
ethnicity of the rater within the photo stimulus. We began with separate one-way
ANOVAs (chosen, in part, to mitigate violation of the homogeneity of variance as-
sumption [Kassambara, a]). To control for Type I error across the two simple main
effects, we set alpha at .025 (.05/2). Results indicated significant differences for Dayak-
nese photo (𝐹[2, 51] = 13.325, 𝑝 < 0.001, 𝜂2 = 0.343) but not for the Madurese photo
(𝐹 [2, 54] = 0.679, 𝑝 = 0.512, 𝜂2 = 0.025).

Results suggest that there are differences within the Dayaknese group, yet because there are three
groups, we cannot know with certainty where there are statistically significant difference. As before,
we can use the rstatix::emmeans_test() to conduct the pairwise analysis. This function will (a)
automatically control for Type I error and (b) integrate well into a figure. For each comparison,
the resulting test statistic is a t.ratios. The result of this t-test will be slightly different than an
independent sample t-test because it is based on estimated marginal means (i.e., means based on
the model, not directly on the data). We will spend more time with estimated marginal means in
the ANCOVA lesson.
In the script below, we will group the dependent variable by Photo and then conduct pairwise
comparisons. Note that I have requested that that the Holm’s sequential Bonferroni be used to
manage Type I error. We can see these adjusted p values in the output.

pwETHwiPH <- Ramdhani_df%>%
dplyr::group_by(Photo)%>%
rstatix::emmeans_test(Negative ~ Rater, p.adjust.method = "holm")

pwETHwiPH

## # A tibble: 6 x 10
## Photo term .y. group1 group2 df statistic p p.adj p.adj.signif
## * <fct> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <chr>
## 1 Dayakn~ Rater Nega~ Dayak~ Javan~ 105 -2.40 1.81e-2 1.81e-2 *
## 2 Dayakn~ Rater Nega~ Dayak~ Madur~ 105 -5.11 1.45e-6 4.35e-6 ****
## 3 Dayakn~ Rater Nega~ Javan~ Madur~ 105 -2.72 7.69e-3 1.54e-2 *
## 4 Madure~ Rater Nega~ Dayak~ Javan~ 105 -1.17 2.43e-1 7.29e-1 ns
## 5 Madure~ Rater Nega~ Dayak~ Madur~ 105 -0.595 5.53e-1 1 e+0 ns
## 6 Madure~ Rater Nega~ Javan~ Madur~ 105 0.601 5.49e-1 1 e+0 ns
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Very consistent with the one-way ANOVAs, we see that there were significant rater differences in
the evaluation of the Dayaknese photo, but not for the Madurese photo. Further, in the rating of
the Dayaknese photo, there were statistically significant differences between all three comparisons
of ethnic groups. The p-values remained statistically significant with the adjustment of the Holm’s.

For a quick demonstration of differences in managing Type I error, I wil replace “holm” with
“bonferroni.” Here, we will see the more restrictive result, where one of the previously significant
comparisons drops out. Note that I am not saving this results as an object – I don’t want it to
interfere with our subsequent analyses

#demonstration of the more restrictive bonferroni approach to managing Type I error
Ramdhani_df%>%

dplyr::group_by(Photo)%>%
rstatix::emmeans_test(Negative ~ Rater, p.adjust.method = "bonferroni")

## # A tibble: 6 x 10
## Photo term .y. group1 group2 df statistic p p.adj p.adj.signif
## * <fct> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <chr>
## 1 Dayakn~ Rater Nega~ Dayak~ Javan~ 105 -2.40 1.81e-2 5.43e-2 ns
## 2 Dayakn~ Rater Nega~ Dayak~ Madur~ 105 -5.11 1.45e-6 4.35e-6 ****
## 3 Dayakn~ Rater Nega~ Javan~ Madur~ 105 -2.72 7.69e-3 2.31e-2 *
## 4 Madure~ Rater Nega~ Dayak~ Javan~ 105 -1.17 2.43e-1 7.29e-1 ns
## 5 Madure~ Rater Nega~ Dayak~ Madur~ 105 -0.595 5.53e-1 1 e+0 ns
## 6 Madure~ Rater Nega~ Javan~ Madur~ 105 0.601 5.49e-1 1 e+0 ns

Let’s create a figure that reflects the results of this simple main effect of rater ethnicity within
photo stimulus. As before, we start with the corresponding figure where “Photo” is on the x-axis.

boxETHwiPH <- ggpubr::ggboxplot(Ramdhani_df, x = "Photo", y = "Negative", color = "Rater",xlab = "Rater Ethnicity Represented within Photo Stimulus", ylab = "Negative Reaction", add = "jitter", title = "Simple Main Effect of Rater within Photo Stimulus", ylim = c(1, 7))

pwETHwiPH <- pwETHwiPH %>% rstatix::add_xy_position(x = "Photo") #x should be whatever the variable was used in the group_by argument
boxETHwiPH <- boxETHwiPH +

ggpubr::stat_pvalue_manual(pwETHwiPH, label = "p.adj.signif", tip.length = 0.02, hide.ns = TRUE, y.position = c(5, 5.5, 6))

boxETHwiPH
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Here’s how I would update the APA style reporting of results:

To explore the interaction effect, we followed with a test of the simple main effect of
ethnicity of the rater within the photo stimulus. We began with separate one-way
ANOVAs (chosen, in part, to mitigate violation of the homogeneity of variance as-
sumption [Kassambara, a]). To control for Type I error across the two simple main
effects, we set alpha at .025 (.05/2). Results indicated significant differences for Dayak-
nese photo (𝐹[2, 51] = 13.325, 𝑝 < 0.001, 𝜂2 = 0.343) but not for the Madurese photo
(𝐹 [2, 54] = 0.679, 𝑝 = 0.512, 𝜂2 = 0.025). We followed up significant one-way ANOVA
with pairwise comparisons between the groups using the estimated marginal means. We
specified the Holm’s sequential Bonferroni for managing Type I error. Regarding eval-
uation of the Dayaknese photo, results suggested statistically significant differences in
all combinations of raters. As shown in Figure 1, the Dayaknese raters had the lowest
ratings, followed by Javanese raters, and then Madurese raters. Consistent with the
non-significant one-way ANOVA evaluating ratings of the Madurese photo, there were
no statistically significant differences for raters. Results of these tests are presented in
Table 1.
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8.5.3.4 Options #3 through k

There are seemingly infinite approaches to analyzing significant interaction effects. I am frequently
asked, “But what about _____?” And “Do you have an example of ____?” In prior versions of
this lesson, I included a few more examples in this section of follow-up to a significant interaction
effect. However, in an effort to reduce the cognitive load of the chapter and stay focused on the
primary learning goals I have relocated some of these to the appendix At the time of this update,
there are worked examples that highlight:

• Orthogonal contrast-coding
• All possible post hoc comparisons
• Polynomial trends

If, as a reader, you have recommendations for more specific examples, please suggest them using
the contact information provided at the beginning of the OER.

8.5.4 Investigating Main Effects

We now focus on the possibility that there might be significant main effects, but a non-significant
interaction effect. We only interpret main effects when there is a non-significant interaction effect.
Why? Because in the presence of a significant interaction effect, the main effect will not tell a
complete story. If we didn’t specify a correct model, we still might have an incomplete story. But
that’s another issue.
Here’s where we are on the workflow.
Recall that main effects are the marginal means – that is the effects of factor A collapsed across all
the levels of factor B.
If the main effect has only two levels (e.g., the ratings of the Dayaknese and Madurese photos):

• the comparison was already ignoring/including all levels of the rater ethnicity factor (Dayak-
nese, Madurese, Javanese),

• it was only a comparison of two cells (Dayaknese rater, Madurese rater), therefore
• there is no need for further follow-up.

In the case of our specific research vignette, we learned from the omnibus test that the Photo
main effect was statistically significant (𝐹[1, 105] = 19.346, 𝑝 < 0.001, 𝜂2 = 0.156).This means that
we know there are statistically significant differences between ratings of Dayaknese and Madurese
photos overall.

psych::describeBy(Negative ~ Photo, data = Ramdhani_df, mat=TRUE)

## item group1 vars n mean sd median trimmed mad
## Negative1 1 Dayaknese 1 54 2.574926 1.0434646 2.449 2.516386 0.9206946
## Negative2 2 Madurese 1 57 3.300211 0.8709631 3.166 3.279745 0.6671700
## min max range skew kurtosis se
## Negative1 0.706 4.854 4.148 0.4699817 -0.5548515 0.1419975
## Negative2 1.211 5.641 4.430 0.3501228 0.5814430 0.1153619
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Figure 8.9: Image our place in the Two-Way ANOVA Workflow.
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A quick review of the descriptive statistics, aggregated by photo stimulus indicates that, overall,
Madurese photos were evaluated more negatively.

If the main effect has three or more levels (e.g,. ethnicity of rater with Dayaknese, Madurese,
Javanese levels), then we follow-up with one or more of the myriad of options. I tend to focus on
three:

• planned contrasts
• posthoc comparisons (all possible cells)
• polynomial

From our omnibus evaluation, our rater main effect was 𝐹[2, 105] = 8.098, 𝑝 < .001, 𝜂2 = 0.134. I
will demonstrate how to do each as follow-up to a pretend scenario where a main effect (but not the
interaction effect) had been significant. In fact, our follow-up of Rater main effects will be quite
similar to the manner in which we followed up the significant omnibus in the one-way ANOVA
lesson.

Here’s what would happen if we simply ran a one-way ANOVA.

rater_main <- rstatix::anova_test(Ramdhani_df, Negative ~ Rater, detailed=FALSE)
rater_main

## ANOVA Table (type II tests)
##
## Effect DFn DFd F p p<.05 ges
## 1 Rater 2 108 6.426 0.002 * 0.106

Results of a one-way ANOVA evaluating negative reaction to photos of members of Dayaknese and
Madurese ethnic groups indicate a statistically differences as a function of the ethnicity of the rater
(𝐹[2, 108] = 6.426, 𝑝 = 0.002, 𝜂2 = 0.106)

A boxplot representing this main effect may help convey how the main effect of Rater (collapsed
across Photo) is different than an interaction effect.

box_RaterMain <- ggpubr::ggboxplot(Ramdhani_df, x = "Rater", y = "Negative", xlab = "Ethnicity of Rater", ylab = "Negative Reaction", color = "Rater", ylim = c(1, 7), title = "Boxplots of Rater Main Effect")
box_RaterMain
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8.5.4.1 Option #1 post hoc paired comparisons

An easy possibility is to follow-up with all possible post hoc pairwise comparisons. Here is a
reminder of our location on the workflow.

Post hoc, pairwise comparisons are:

• used for exploratory work when no firm hypotheses were articulated a priori,
• used to compare the means of all combinations of pairs of an experimental condition, and
• less powerful than planned comparisons because more strict criterion for significance should

be used.

By specifying the formula of the ANOVA, the rstatix::t_test() function will provide comparisons of
all possible combinations. The arguments in the code mirror those we used for the omnibus. Note
that I am saving the results as an object. We will use this object (“ttest”) later when we create an
accompanying figure.
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Figure 8.10: Image our place in the Two-Way ANOVA Workflow: Following up a significant main
effect with post hoc comparisons.
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We will request the traditional Bonferroni using the p.adjust.method. The rstatix::t_test() offers
multiple options for adjusting the p values.

RaterMain_ttest <- rstatix::t_test(Ramdhani_df, Negative ~ Rater, p.adjust.method="bonferroni", detailed=TRUE)
RaterMain_ttest

## # A tibble: 3 x 17
## estimate estimate1 estimate2 .y. group1 group2 n1 n2 statistic p
## * <dbl> <dbl> <dbl> <chr> <chr> <chr> <int> <int> <dbl> <dbl>
## 1 -0.515 2.49 3.01 Negati~ Dayak~ Javan~ 35 37 -2.59 0.012
## 2 -0.807 2.49 3.30 Negati~ Dayak~ Madur~ 35 39 -3.39 0.001
## 3 -0.292 3.01 3.30 Negati~ Javan~ Madur~ 37 39 -1.25 0.214
## # i 7 more variables: df <dbl>, conf.low <dbl>, conf.high <dbl>, method <chr>,
## # alternative <chr>, p.adj <dbl>, p.adj.signif <chr>

The estimate column provide the mean difference between the two levels of the independent dif-
ferent. The estimate1/group1 and estimate2/group2 columns provide those means and identify the
group levels. The statistic column provides the value of the t-test.

The p value is the unadjusted p-value, it will usually be “more significant” (i.e., a lower value) than
the p.adj value associated with the strategy for managing Type I error that we specified in our
code. The column p.adj.signif provides symbolic notation associated with the p.adj value. In this
specific case we specified the traditional Bonferroni as the adjusted p value.

An APA style results section of this portion of follow-up might read like this:

We followed significant the rater main effect with a series of post hoc, pairwise com-
parisons. We controlled for Type I error with the traditional Bonferroni adjustment.
Results suggested that there were statistically significant differences between the Dayak-
nese and Javanese (𝑀𝑑𝑖𝑓𝑓 = −0.515, 𝑝 = 0.035) and Dayaknese and Madurese (𝑀𝑑𝑖𝑓𝑓 =
−0.807, 𝑝 =< 0.003) raters, but not Javanese and Madurese rater (𝑀𝑑𝑖𝑓𝑓 = −0.292, 𝑝 =
0.642). This analysis disregards the ethnic identity displayed on the photo.

Below is an augmentation of the figure that appeared at the beginning of the chapter. We can
use the objects from the omnibus tests (named, “omnibus2w”) and post hoc pairwise comparisons
(“RaterMain_ttest”) to add the ANOVA string and significance bars to the figure. Although
they may not be appropriate in every circumstance, such detail can assist the figure in conveying
maximal amounts of information.

RaterMain_ttest <- RaterMain_ttest %>% rstatix::add_xy_position(x = "Rater")
box_RaterMain +

ggpubr::stat_pvalue_manual(RaterMain_ttest, label = "p.adj.signif", tip.length = 0.02, hide.ns = TRUE, y.position = c(5, 6))
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8.5.4.2 Option #2 planned orthogonal contrasts

We generally try for orthogonal contrasts so that the partitioning of variance is independent (clean,
not overlapping). Planned contrasts are a great way to do this. Here’s where we are in the workflow.

If you aren’t extremely careful about your order-of-operations in R, it can confuse objects, so I have
named these contrasts c1 and c2 to remind myself that they refer to the main effect of ethnicity of
the rater.

In this hypothetical scenario (remember we are pretending we are in the circumstance of a non-
significant interaction effect but a significant main effect), I am:

• comparing the DV for the Javanese rater to the combined Dayaknese and Madurese raters
(c1).

• comparing the DV for the Dayaknese and Madurese raters (c2).

These are orthogonal because:
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Figure 8.11: Image our place in the Two-Way ANOVA Workflow: Followup to a significant main
effect with planned comparisons.
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• there are k - 1 comparisons, and
• once a contrast is isolated (i.e., the Javanese rater in contrast #1) it cannot be used again

– The “cake” analogy can be a useful mnemonic: once you take out a piece of the cake,
you really can’t put it back in

I am not aware of rstatix functions or arguments that can complete these analyses. Therefore, we
will use functions from base R. It helps to know what the default contrast codes are; we can get
that information with the contrasts() function.

contrasts(Ramdhani_df$Rater)

## Javanese Madurese
## Dayaknese 0 0
## Javanese 1 0
## Madurese 0 1

Next, we set up the contrast conditions. In the code below,

• c1 indicates that the Javanese (noted as -2) are compared to the combined ratings from the
Dayaknese (1) and Madurese (1)

• c2 indicates that the Dayaknese (-1) and Madurese (1) are compared; Javanese (0) is removed
from the contrast.

# tell R which groups to compare
c1 <- c(1, -2, 1)
c2 <- c(-1, 0, 1)
mat <- cbind(c1,c2) #combine the above bits
contrasts(Ramdhani_df$Rater) <- mat # attach the contrasts to the variable

This allows us to recheck the contrasts.

contrasts(Ramdhani_df$Rater)

## c1 c2
## Dayaknese 1 -1
## Javanese -2 0
## Madurese 1 1

With this output we can confirm that, in contrast 1 (the first column) we are comparing the
Javanese to the combined Dayaknese and Madurese. In contrast 2 (the second column) we are
comparing the Dayaknese to the Madurese.

Then we run the contrast and extract the output.
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mainPlanned <- aov(Negative ~ Rater, data = Ramdhani_df)
summary.lm(mainPlanned)

##
## Call:
## aov(formula = Negative ~ Rater, data = Ramdhani_df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.08813 -0.74921 0.05792 0.71482 2.34187
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.93283 0.09259 31.676 < 0.0000000000000002 ***
## Raterc1 -0.03712 0.06544 -0.567 0.571670
## Raterc2 0.40342 0.11345 3.556 0.000561 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9745 on 108 degrees of freedom
## Multiple R-squared: 0.1063, Adjusted R-squared: 0.0898
## F-statistic: 6.426 on 2 and 108 DF, p-value: 0.002307

contrasts(Ramdhani_df$Rater)<-cbind(c(1,-2,1), c(-1,0,1))

These planned contrasts show that when the Javanese raters are compared to the combined Dayak-
nese and Madurese raters, there was a non significant difference, 𝑡(108) = −0.567, 𝑝 = 0.572. How-
ever, there were significant differences between Dayaknese and Javanese raters, 𝑡(108) = 3.556, 𝑝 <
0.001.

An mini APA style reporting of these results might look like this:

We followed the significant rater main effect with a pair of planned, orthogonal, con-
trasts. The first compared Javanese raters to the combined Dayakneses and Madurese
raters; there was a nonsignificant difference (𝑡[108] = −0.567, 𝑝 = 0.572). There was sig-
nificant differences between Dayaknese and Javanese raters, 𝑡(108) = 3.556, 𝑝 < 0.001.

I am not aware of script that would effectively display this in a figure. Therefore, I would use a
simple boxplot for the rater main effect.

box_RaterMain <- ggpubr::ggboxplot(Ramdhani_df, x = "Rater", y = "Negative", xlab = "Ethnicity of Rater", ylab = "Negative Reaction", color = "Rater", ylim = c(1, 7), title = "Boxplot of Rater Main Effect")
box_RaterMain
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8.5.4.3 Option #3 trend/polynomial analysis

Polynomial contrasts let us see if there is a linear (or curvilinear) pattern to the data. To detect
a trend, the data must be coded in an ascending order…and it needs to be a sensible comparison.
Here’s where this would fall in our workflow.
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Because these three ethnic groups are not ordered in the same way as would an experiment involv-
ing dosage (e.g,. placebo, lo dose, hi dose), evaluation of the polynomial trend is not really justified
(even though it is statistically possible). None-the-less, I will demonstrate how it is conducted.

The polynomial fits linear and curvilinear trends across levels of a factor based on how the variable
is coded in R. The contrasts() function from base R will reveal ths ordering. Not surprisingly, this
is the same order seen in our boxplots. In terms of the “story” of the vignette, the authors suggest
that the Dayaknese are typically viewed as the ones who were victimized, the Javanese were not
involved, and the Madurese have been viewed as aggressors.

contrasts(Ramdhani_df$Rater)

## [,1] [,2]
## Dayaknese 1 -1
## Javanese -2 0
## Madurese 1 1

Viewing the contrasts() output, we see that the trends (linear, quadratic) in our contrast coding
will be fit across Dayaknese, Javanese, and Madurese.

In a polynomial analysis, the statistical analysis looks across the ordered means to see if they fit
a linear or curvilinear shape that is one fewer than the number of levels (i.e., 𝑘 − 1). Because
the Rater factor has three levels, the polynomial contrast checks for linear (.L) and quadratic (one
change in direction) trends (.Q). If we had four levels, contr.poly() could also check for cubic change
(two changes in direction). Conventionally, when more than one trend is significant, we interpret
the most complex one (i.e., quadratic over linear).
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To the best of my knowledge, rstatix does not offer these contrasts. We can fairly easily make these
calculations in base R by creating a set of polynomial contrasts. In the prior example we specified
our contrasts through coding. Here we can the contr.poly(3) function. The “3” lets R know that
there are three levels in Rater The aov() function will automatically test for quadratic (one hump)
and linear (straight line) trends.

contrasts(Ramdhani_df$Rater)<-contr.poly(3)
mainTrend<-aov(Negative ~ Rater, data = Ramdhani_df)
summary.lm(mainTrend)

##
## Call:
## aov(formula = Negative ~ Rater, data = Ramdhani_df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.08813 -0.74921 0.05792 0.71482 2.34187
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.93283 0.09259 31.676 < 0.0000000000000002 ***
## Rater.L 0.57052 0.16045 3.556 0.000561 ***
## Rater.Q -0.09094 0.16029 -0.567 0.571670
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9745 on 108 degrees of freedom
## Multiple R-squared: 0.1063, Adjusted R-squared: 0.0898
## F-statistic: 6.426 on 2 and 108 DF, p-value: 0.002307

Rater.L tests the data to see if there is a significant linear trend. There is: 𝑡(108) = 3.556, < 0.001.
Rater.Q tests to see if there is a significant quadratic (curvilinear, one hump) trend. There is not:
𝑡(108) = −0.567, 𝑝 = .572.
Here’s how I might prepare a statement for inclusion in an write-up of APA style results:

Our follow-up to a significant main effect for Rater included a polynomial contrast.
Results supported a significant linear trend (𝑡[108] = 3.556, 𝑝 < .001) such that negative
reactions increased linearly across Dayaknese, Javanese, and Madurese raters.

A line plot might be a useful choice in conveying the linear trend.

ggpubr::ggline(Ramdhani_df, x = "Rater", y = "Negative", xlab = "Ethnicity of Rater", linetype="solid",
ylab = "Negative Reaction", add = c("mean_sd", "jitter"), title = "Linear Trend for Rater Main Effect")
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#add this for a different color palette: palette = c("#00AFBB", "#E7B800")

8.6 APA Style Results

First, I am loathe to term anything “final.” In academia, there is always the possibility or revision.
Given that I demonstrated a number of options in the workflow (with more in the appendix), let
me first show the workflow with the particular path I took:

That is, I first tested the statistical assumptions and computed the omnibus ANOVA. Because there
was a significant interaction effect, I followed with examination of the simple main effect of photo
stimulus within ethnicity of the rater. It made sense to me to conduct the all post hoc pairwise
comparisons within this simple main effect. In light of that, here’s how I might write it up:

A 3 X 2 ANOVA was conducted to evaluate the effects of rater ethnicity (3 levels, Dayak-
nese, Madurese, Javanese) and photo stimulus (2 levels, Dayaknese on Madurese,) on
negative reactions to the photo stimuli. Factorial ANOVA assumes that the dependent
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Figure 8.12: Image our place in the Two-Way ANOVA Workflow illustrating the path taken for
this analysis.
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variable is normally is distributed for all cells in the design. Skew and kurtosis values
for each factorial combinations fell below the guidelines recommended by Kline [2016a].
That is, they were below the absolute values of 3 for skew and 10 for kurtosis. Similarly,
no extreme outliers were identified and results of the Shapiro-Wilk normality test (ap-
plied to the residuals from the factorial ANOVA model) suggested that model residuals
did not differ significantly from a normal distribution (𝑊 = 0.9846, 𝑝 = 0.234). Results
of Levene’s test for equality of error variances indicated a violation of the homogeneity
of variance assumption, (𝐹[5, 105] = 8.834, 𝑝 < 0.001). Given that cell sample sizes
were roughly equal and greater than 15, each; [Green and Salkind, 2017c] we proceded
with the two-way ANOVA.

Computing sums of squares with a Type II approach, the results for the ANOVA
indicated a significant main effect for ethnicity of the rater (𝐹[2, 105] = 8.098, 𝑝 <
0.001, 𝜂2 = 0.134), a significant main effect for photo stimulus, (𝐹[1, 105] = 19.346, 𝑝 <
0.001, 𝜂2 = 0.156), and a significant interaction effect (𝐹[2, 105] = 5.696, 𝑝 = .004, 𝜂2 =
0.098).

To explore the interaction effect, we followed with a test of the simple main effect
of photo stimulus within the ethnicity of the rater. That is, with separate one-way
ANOVAs (chosen, in part, to mitigate violation of the homogeneity of variance as-
sumption [Kassambara, a]) we examined the effect of the photo stimulus within the
Dayaknese, Madurese, and Javanese groups. To control for Type I error across the
three simple main effects, we set alpha at .017 (.05/3). Results indicated significant dif-
ferences for Dayaknese (𝐹[1, 33] = 50.404, 𝑝 < 0.001, 𝜂2 = 0.604) and Javanese ethnic
groups (𝐹 [1, 35] = 17.183, 𝑝 < 0.001, 𝜂2 = 0.329), but not for the Madurese ethnic group
(𝐹 [1, 37] < 0.001, 𝑝 = .993, 𝜂2 < .001). As illustrated in Figure 1, the Dayaknese and
Javanese raters both reported stronger negative reactions to the Madurese. The differ-
ences in ratings for the Madurese were not statistically significantly different. In this
way, the rater’s ethnic group moderated the relationship between the photo stimulus
and negative reactions.

We can simply call the Figure we created before:

boxPHwiETH
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apaTables::apa.2way.table(iv1 = Rater, iv2 = Photo, dv = Negative, data = Ramdhani_df, landscape=TRUE, table.number = 1, filename="Table_1_MeansSDs.doc")

##
##
## Table 1
##
## Means and standard deviations for Negative as a function of a 3(Rater) X 2(Photo) design
##
## Photo
## Dayaknese Madurese
## Rater M SD M SD
## Dayaknese 1.82 0.77 3.13 0.16
## Javanese 2.52 0.74 3.46 0.64
## Madurese 3.30 1.03 3.30 1.33
##
## Note. M and SD represent mean and standard deviation, respectively.
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apaTables::apa.aov.table(TwoWay_neg, filename = "Table_2_effects.doc", table.number = 2, type = "II")

##
##
## Table 2
##
## ANOVA results using Negative as the dependent variable
##
##
## Predictor SS df MS F p partial_eta2 CI_90_partial_eta2
## Rater 12.24 2 6.12 8.10 .001 .13
## Photo 14.62 1 14.62 19.35 .000 .16 [.06, .26]
## Rater x Photo 8.61 2 4.30 5.70 .004 .10 [.02, .18]
## Error 79.34 105 0.76
##
## Note: Values in square brackets indicate the bounds of the 90% confidence interval for partial eta-squared

While I have not located a package that will take rstatix output to make an APA style table with
our pairwise comparisons, we can use the MASS package to write the pwc object to a .csv file, then
manually make our own table.

MASS::write.matrix(pwPHwiETH, sep = ",", file = "pwPHwiETH.csv")

8.6.1 Comparing Our Results to Rhamdani et al. [2018]

As is common in simulations, our results approximate the findings reported in the manuscript, but
does not replicate them exactly. Our main and interaction effects map on very closely. However, in
the follow-up tests, while our findings that Dayaknese rated the Madurese photos more negatively,
the findings related to the Javanese’ and Madurese’ ratings wiggled around some. Given the varying
variability around each of the group means (i.e., and violation of the homogeneity of variance
assumption) this makes sense to me. I find it to be a useful lesson in “what it takes” to get stable,
meaningful results.

8.7 Options for Violation of Statistical Assumptions

Statistical assumptions are conditions that we should meet in order for the results of a particular
statistical test to be valid. They are frequently focused on the trustworthiness of the p value.
Some assumptions (e.g., dependency, random sampling) are specific to the research design. Others
(e.g., normal distribution, homogeneity of variance) are ones that we evaluate with statistical tests.
Thus, we are often asking, “What do we do it we violate one of these statistical assumptions?”

8.7.1 Violating the Assumption of Normality

Regarding the assumption of normal distribution within each of the cells (i.e., the combinations of
the levels of the two factors in the design), Green and Salkind [2017c] provide some assurance that
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ANOVA is robust to violation of the normality assumption when there are at least 15 cases per cell
and that the design is balanced (i.e., the number of cases per cell are roughly equal).

In the case of low power caused by low sample size or severely unbalanced designs, the research
team may wish to consider extending the study to collect more data. Alternatively, although it
is always difficult to remove cases, the researchers may inspect the data for outliers and see what
happens if extreme outliers are removed or if the data is truncated at the extreme ends. Further,
Kline [2016a] has helpful coverage for options regarding transforming data. A substantial concern
about transformations relates to the interpretability of the results.

8.7.2 Violating the Homogeneity of Variance Assumption

Addressing violations of the homogeneity of variance assumption feel more tricky. In one-way
ANOVA, the Welch’s alternative was an easily accessible alternative that is robust to the homo-
geneity of variance assumption.The WRS2 package has been identified as a resource for ANOVA
designs with statistical methods based on Wilcox’ WRS functions that are robust to these statistical
violations.

One potential alternative is to change the sums of squares type used in the ANOVA calculations.
In ANOVA models sums of squares can be calculated four different ways: Types I, II, III, and IV.

SS Type II is the aov() default. Because rstatix() is a wrapper for aov() it is similarly the default
for rstatix(). I find it to be a best practice to include the type = argument in my code so that I
am reminded of the need to make this choice.

Type I sums of squares is similar to hierarchical linear regression in that the first predictor in the
model claims as much variance as it can and the leftovers are claimed by the variable entered next
– each claiming as much as possible leaving the leftovers for what follows. Unless the variables are
completely independent of each other (unlikely), Type I sums of squares cannot evaluate the true
main effect of each variable. Type I should not be used to evaluate main effects and interactions
because the order of predictors will affect the results.

Type II (the default in the package we used) is appropriate if you are interested main effects
because it ignores the effect of any interactions involving the main effect. Thus, variance from a
main effect is not “lost” to any interaction terms containing that effect. Type II is appropriate for
main effects analyses only, but should not be used when evaluating interaction effects. Type II sums
of squares is not affected by the type of contrast coding used to specify the predictor variables.

Type III is the default in many stats packages – but not the R packages we used. In Type III
all effects (main effects and interactions) are evaluated (simultaneously) taking into consideration
all other effects in the model (not just the ones entered before). Type III is more robust to
unequal samples sizes (e.g., unbalanced designs). Type III is best when predictors are encoded
with orthogonal contrasts.

Type IV is identical to Type III except it requires no missing cells. In rstatix::anova_test*, this
type is not available.

Researchers appear to disagree about which sums of squares type to use. Certainly, when package
and program developers specify a default. The rstatix::anova_test that we used (which is a wrapper
for the aov() in base R) has set Type II as the default. In contrast, Field [2012] suggested that it
is safest to stick with Type III sums of squares. For more information, check out this explanation
on r-bloggers.

https://cran.r-project.org/web/packages/WRS2/index.html
https://www.r-bloggers.com/2011/03/anova-%E2%80%93-type-iiiiii-ss-explained/
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In this lesson I stuck with the rstatix::anova_test() default because

• Type II sums of squares was used in hand-calculations,
• Our example was reasonably balanced (equal cell sizes), and
• We had only violated the homogeneity of variance assumption.

For demonstration purposes, let’s run the Type III alternative to see the differences:

rstatix::anova_test(Ramdhani_df, Negative ~ Rater*Photo, type="3", detailed=TRUE)

## ANOVA Table (type III tests)
##
## Effect SSn SSd DFn DFd F
## 1 (Intercept) 945.415 79.341 1 105 1251.162
## 2 Rater 12.745 79.341 2 105 8.434
## 3 Photo 15.559 79.341 1 105 20.591
## 4 Rater:Photo 8.609 79.341 2 105 5.696
## p p<.05 ges
## 1 0.00000000000000000000000000000000000000000000000000000000000375 * 0.923
## 2 0.00040099999999999998926553113065551769977901130914688110351562 * 0.138
## 3 0.00001520000000000000015942108744226857197645585983991622924805 * 0.164
## 4 0.00400000000000000008326672684688674053177237510681152343750000 * 0.098

For comparison, this was our earlier analysis:

rstatix::anova_test(Ramdhani_df, Negative ~ Rater*Photo, type="2", detailed=TRUE)

## ANOVA Table (type II tests)
##
## Effect SSn SSd DFn DFd F p p<.05 ges
## 1 Rater 12.238 79.341 2 105 8.098 0.0005360 * 0.134
## 2 Photo 14.619 79.341 1 105 19.346 0.0000262 * 0.156
## 3 Rater:Photo 8.609 79.341 2 105 5.696 0.0040000 * 0.098

Note that the sums of squares are somewhat different between models – and that the Type III
results includes an intercept. In today’s example, the statistical significance remains the same
across the models.

Unfortunately, violations of the assumption of homogeneity variance impact choices at both the
omnibus and follow-up levels of analysis [Green and Salkind, 2017c]. Kassambara [a] noted that
when the homogeneity of variance assumption has been violated, it is better to follow-up a significant
omnibus with separate one-way ANOVAs because these offer separate and unique error terms. One
operational advantage to this is option is that researchers can return to procedures for one-way
ANOVA, assessing for violations at that level and using the Welch’s alternative for the follow-up
of simple main effects or main effects.
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8.8 Power Analysis

Asking about power can be a euphemistic way of asking, “How large should my sample size be?”

Power is defined as the ability of the test to detect statistical significance when there is such. It’s
represented formulaically as (1 - P)(Type II error). Power is traditionally set at 80% (or .8)

We will do both – evaluate the power of our current example and then work backwards to estimate
the sample size needed.

We’ll use the pwr.2way() function from the pwr2 package. Helpful resources are found here:

• https://cran.r-project.org/web/packages/pwr2/pwr2.pdf
• https://rdrr.io/cran/pwr2/man/ss.2way.html

The pwr.2way() and ss.2way() functions require the following:

• a number of groups in Factor A
• b number of groups in Factor B
• alpha significant level (Type I error probability)
• beta Type II error probability (Power = 1 - beta; traditionally set at .1 or .2)
• f.A the f effect size of Factor A
• f.B the f effect size of Factor B
• B Iteration times, default is 100

Hints for calculating the f.A and f.B values:

• In this case, we will rerun the statistic, grab both effect sizes, and convert them to the f (not
the 𝑓2)

– calculation can be straightforward, either use an online calculator, a hand-calculated
formula, or the eta2_to_f function from the effectsize

• When an effect size is unknown, you can substitute what you expect using Cohen’s guidelines
of .10, .25, and .40 as small, medium, and large (for the f, not 𝐹 2)

Let’s quickly rerun our model to get both the df and calculate the f effect value

rstatix::anova_test(Ramdhani_df, Negative ~ Rater*Photo, type="2", detailed=TRUE)

## ANOVA Table (type II tests)
##
## Effect SSn SSd DFn DFd F p p<.05 ges
## 1 Rater 12.238 79.341 2 105 8.098 0.0005360 * 0.134
## 2 Photo 14.619 79.341 1 105 19.346 0.0000262 * 0.156
## 3 Rater:Photo 8.609 79.341 2 105 5.696 0.0040000 * 0.098

https://cran.r-project.org/web/packages/pwr2/pwr2.pdf
https://rdrr.io/cran/pwr2/man/ss.2way.html
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If we want to understand power in our analysis, we need to convert our effect size (𝜂2) for the
interaction to 𝑓 effect size (this is not the same as the F test). The effectsize package has a series
of converters. We can use the eta2_to_f() function.

effectsize::eta2_to_f(0.134) #FactorA -- Rater

## [1] 0.393363

effectsize::eta2_to_f(0.156) #Factor B -- Photo

## [1] 0.4299234

8.8.1 Post Hoc Power Analysis

Now we calculate power for our existing model. We’ll use the package pwr2 and the function
pwr.2way(). To specify this we identify:

• a: number of groups for Factor A (Rater)
• b: number of groups for Factor B (Photo)
• size.A: sample size per group in Factor A (because ours differ slightly, I divided the N by the

number of groups)
• size.B: sample size per group in Factor B (because ours differ slightly, I divided the N by the

number of groups)
• f.A: Effect size of Factor A
• f.A.: Effect size of Factor B

pwr2::pwr.2way(a=3, b=2, alpha = 0.05, size.A = 37, size.B = 55, f.A = .3935, f.B = .430)

##
## Balanced two-way analysis of variance power calculation
##
## a = 3
## b = 2
## n.A = 37
## n.B = 55
## sig.level = 0.05
## power.A = 0.9997716
## power.B = 1
## power = 0.9997716
##
## NOTE: power is the minimum power among two factors

At 0.9998 (Rater), 1.0000 (Photo), and 0.9998 (interaction), our power to detect a significant effect
for Factor A/Rater and Factor B/Photo was huge!
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8.8.2 Estimating Sample Size Requirements

If we want to replicate this study we could use its results to estimate what would be needed for the
replication.

In this specification:

• a: number of groups for Factor A (Rater)
• b: number of groups for Factor B (Photo)
• alpha: significance level (Type I error probability); usually .05
• beta: Type II error probability (Power = 1-beta); usually .80
• f.A: Effect size (f ) of Factor A (this time we know; other times we can guess from previously

published literature)
• f.A.: Effect size (f ) of Factor B
• B: iteration times, default number is 100

pwr2::ss.2way(a = 3, b = 2, alpha = .05, beta = .8, f.A = .3935, f.B = .430, B= 100)

##
## Balanced two-way analysis of variance sample size adjustment
##
## a = 3
## b = 2
## sig.level = 0.05
## power = 0.2
## n = 3
##
## NOTE: n is number in each group, total sample = 18

Curiously, 18 was just about the number that was in each of the six cells!

Often times researchers will play around with the f values. Remember Cohen’s indication of small
(.10), medium (.25), and large (.40). Let’s see what happens when we enter different values.
Specifically, what if we only had a medium effect?

pwr2::ss.2way(a = 3, b = 2, alpha = .05, beta = .80, f.A = .25, f.B = .25, B= 100) #if we expected a medium effect

##
## Balanced two-way analysis of variance sample size adjustment
##
## a = 3
## b = 2
## sig.level = 0.05
## power = 0.2
## n = 6
##
## NOTE: n is number in each group, total sample = 36
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And what would happen if we only had a small effect?

pwr2::ss.2way(a = 3, b = 2, alpha = .05, beta = .80, f.A = .10, f.B = .10, B= 100) #if we expected a small effect

##
## Balanced two-way analysis of variance sample size adjustment
##
## a = 3
## b = 2
## sig.level = 0.05
## power = 0.2
## n = 30
##
## NOTE: n is number in each group, total sample = 180

8.9 Practice Problems

The suggestions for homework differ in degree of complexity. I encourage you to start with a
problem that feels “do-able” and then try at least one more problem that challenges you in some
way. At a minimum your data should allow for a 2 X 3 (or 3 X 2) design. At least one of the
problems you work should have a statistically significant interaction effect that you work all the
way through.

Regardless, your choices should meet you where you are (e.g., in terms of your self-efficacy for
statistics, your learning goals, and competing life demands). Whichever you choose, you will focus
on these larger steps in factorial-way ANOVA, including:

• test the statistical assumptions
• conduct a two-way ANOVA, including

– omnibus test and effect size
– report main and interaction effects
– conduct follow-up testing of simple main effects

• write a results section to include a figure and tables

Additionally, please complete at least one set of hand calculations, that is use the code demonstrated
in the chapter to work through the formulas that compute the factorial ANOVA. At this stage in
your learning, you may ignore any missingness in your dataset by excluding all rows with missing
data in your variables of interest.

8.9.1 Problem #1: Play around with this simulation.

Copy the script for the simulation and then change (at least) one thing in the simulation to see
how it impacts the results.
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• If two-way ANOVA is new to you, perhaps you just change the number in “set.seed(210731)”
from 210731 to something else. Your results should parallel those obtained in the lecture,
making it easier for you to check your work as you go.

• If you are interested in power, change the sample size to something larger or smaller.
• If you are interested in variability (i.e., the homogeneity of variance assumption), perhaps

you change the standard deviations in a way that violates the assumption.

8.9.2 Problem #2: Conduct a factorial ANOVA with the positive evaluation
dependent variable.

The Ramdhani et al. [2018] article has two dependent variables (negative and positive evaluation).
Each is suitable for two-way ANOVA. I used negative evaluation as the dependent variable; you
are welcome to conduct the analysis with positive evaluation as the dependent variable.

8.9.3 Problem #3: Try something entirely new.

Using data for which you have permission and access (e.g., IRB approved data you have collected
or from your lab; data you simulate from a published article; data from an open science repository;
data from other chapters in this OER), complete a two-way, factorial ANOVA. Please have at least
3 levels for one predictor and at least 2 levels for the second predictor.

8.9.4 Grading Rubric

Regardless which option(s) you chose, use the elements in the grading rubric to guide you through
the practice.

Assignment Component Points Possible Points Earned
1. Narrate the research vignette, describing the IV
and DV. Minimally, the data should allow the
analysis of a 2 x 3 (or 3 X 2) design. At least one
of the problems you work should have a significant
interaction effect so that follow-up is required.

5 _____

2. Simulate (or import) and format data. 5 _____
3. Evaluate statistical assumptions. 5 _____
4. Conduct omnibus ANOVA (w effect size). 5 _____
5. Conduct one set of follow-up tests; narrate your
choice.

5 _____

6. Describe approach for managing Type I error. 5 _____
7. APA style results with table(s) and figure. 5 _____
8. Conduct power analyses to determine the power
of the current study and a recommended sample
size.

5 _____

9. Explanation to grader. 5 _____
Totals 45 _____
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Hand Calculations Points Possible Points Earned
1. Calculate sums of squares total (SST) for the
omnibus ANOVA. Steps in this calculation must
include calculating a grand mean and creating
variables representing the mean deviation and mean
deviation squared.

4 _____

2. Calculate the sums of squares for the model
(SSM) for the omnibus ANOVA. A necessary step in
this equation is to calculate group means for all
combinations of the levels in the factorial design.

4 _____

3. Calculate the sums of squares residual (SSR) for
the omnibus ANOVA. A necessary step in this
equation is to calculate the variance for each group.

4 _____

4. Calculate sums of squares model (SSM) for each
of the factors in the model.

4 _____

5. Create a source table that includes the sums of
squares, degrees of freedom, mean squares, F values,
and F critical values

8 _____

6. Are the F-tests for the main and interaction
effects statistically significant? Why or why not?

2 _____

7. Calculate and interpret the 𝜂2 effect sizes for the
main and interaction effects.

4 _____

8. Assemble the results into their statistical strings. 4 _____
Totals 34 _____

8.10 Homeworked Example

Screencast Link

For more information about the data used in this homeworked example, please refer to the descrip-
tion and codebook located at the end of the introduction.

8.10.1 Working the Problem with R and R Packages

Narrate the research vignette, describing the IV and DV. Miniminally, the data should
allow the analysis of a 2 x 3 (or 3 X 2) design. At least one of the problems you work
should have a significant interaction effect so that follow-up is required

I want to ask the question, do course evaluation ratings for the traditional pedagogy dimension
differ for students in the ANOVA class as a function of:

• Stage in the transition

– STABLE: 2017 represents the last year of “stability during the old way” when we taught
with SPSS and during the 2nd year of the doctoral programs.

https://youtu.be/gstP-tx4YUQ
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– TRANSITION: 2018 & 2019 represent the transition to R, when the classes were 30%
larger because each of the IOP and CPY departments were transitioning to the 1st year
(they did it separately, so as not to double the classes)

– RESETTLED: 2020 & 2021 represent the “resettled” phase where the transition to R
was fairly complete and the class size returned to normal because the classes were offered
in the first year.

• Department

– CPY: Clinical Psychology
– ORG: Industrial-Organizational Psychology

If you wanted to use this example and dataset as a basis for a homework assignment, you could
create a different subset of data. I worked the example for students taking the ANOVA class. You
could choose multivariate or psychometrics. You could also choose a different dependent variable.
I chose the traditional pedagogy subscale. Two other subscales include socially responsive pedagogy
and valued by the student.

Simulate (or import) and format data

big <- readRDS("ReC.rds")

Let’s first create the “Stage” variable that represents the three levels of transition. The Pro-
gramYear variable contains the information I need, but the factor labels are not intuitive. Let me
remap them.

big$Stage <- plyr::mapvalues(big$ProgramYear, from = c("Second", "Transition", "First"), to = c("Stable", "Transition", "Resettled"))

Let’s check the structure:

str(big$Stage)

## Factor w/ 3 levels "Stable","Transition",..: 3 3 3 3 3 3 3 3 3 3 ...

The TradPed (traditional pedagogy) variable is an average of the items on that scale. I will first
create that variable.

#This code was recently updated and likely differs from the screencasted lecture

#Calculates a mean if at least 75% of the items are non-missing; adjusts the calculating when there is missingness
big$TradPed <- datawizard::row_means(big, select = c('ClearResponsibilities', 'EffectiveAnswers','Feedback', 'ClearOrganization','ClearPresentation'), min_valid = .75)

Each student in the dataset could contribute up to three course evaluations (i.e., one each for
ANOVA, multivariate, psychometrics). Including all three would introduce dependency into the
dataset and violate the assumption of independence. With our variables properly formatted let’s
create a subset with just the students who took ANOVA.
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TwoWay_df <- subset(big, Course == "ANOVA")

Next, let’s trim it to just the variables we need.

TwoWay_df <-(dplyr::select(TwoWay_df, Stage, Dept, TradPed))

Although we would handle missing data more carefully in a “real study,” I will delete all cases with
any missingness. This will prevent problems in the hand-calculations section, later (and keep the
two sets of results more similar).

df <- na.omit(TwoWay_df)

Before we continue, this data has a hiccup that makes it less than ideal for a 2 x 3 ANOVA. In 2017
everyone enrolled in the CPY section of the course. That is, there was no distinction between CPY
and ORG students. In this dataset I do not have another variable with three levels. I will recode
some data which MAKES THE STORY UNTRUE, but will allow me to demo 2-way ANOVA
(sighhhh). For your homework, you are very welcome to engage in such practices (it’s actually
good for learning!) however, we would never do so in the analysis of real data.

TwoWay_df <- na.omit(TwoWay_df) #the next operation required non-missing data
TwoWay_df[TwoWay_df$Stage == "Stable" & TwoWay_df$TradPed < 4.3, "Dept"]<- "ORG"

Although the homework assignment doesn’t require it, I think it’s useful to create a figure that
shows what I intend to do.

Box2way <- ggpubr::ggboxplot(TwoWay_df, x = "Dept", y = "TradPed", color = "Stage", xlab = "Academic Department",
ylab = "Students' Evaluations of Traditional Pedagogy", add = "jitter",
title = "Course Evaluations as a Function of Department and Stage in Transition")

Box2way
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Evaluate statistical assumptions

Is the dependent variable normally distributed at all levels of the combinations of the
levels within the grouping variables?

I’ll start with an inspection of skew and kurtosis for all combinations of the levels of the two
grouping variables.

psych::describeBy(TradPed ~ Stage + Dept, mat = TRUE, data = TwoWay_df, digits = 3, type = 1)

## item group1 group2 vars n mean sd median trimmed mad min
## TradPed1 1 Stable CPY 1 25 4.832 0.236 5.0 4.857 0.000 4.4
## TradPed2 2 Transition CPY 1 26 3.769 0.878 3.8 3.818 0.741 1.8
## TradPed3 3 Resettled CPY 1 10 4.010 0.578 3.9 4.037 0.667 3.0
## TradPed4 4 Stable ORG 1 25 3.864 0.582 4.0 3.876 0.297 2.6
## TradPed5 5 Transition ORG 1 15 3.560 1.338 4.0 3.646 1.186 1.0
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## TradPed6 6 Resettled ORG 1 11 4.145 0.658 4.0 4.200 0.593 2.8
## max range skew kurtosis se
## TradPed1 5.0 0.6 -0.937 -0.754 0.047
## TradPed2 5.0 3.2 -0.448 -0.501 0.172
## TradPed3 4.8 1.8 -0.174 -1.017 0.183
## TradPed4 5.0 2.4 -0.428 0.082 0.116
## TradPed5 5.0 4.0 -0.778 -0.777 0.345
## TradPed6 5.0 2.2 -0.437 -0.377 0.198

Following Kline’s (2016) recommendations, skew for each combination of levels of the two IVs are
< |3.0|. Kurtosis for each combination of levels of the two IVs are < |10.0|.

The Shapiro-Wilk examines residuals from the ANOVA model. We can quickly/preliminarily run
the two-way ANOVA. We do this to produce an object that holds the model residuals.

TwoWay_TradPed <- aov(TradPed ~ Stage * Dept, TwoWay_df)
summary(TwoWay_TradPed)

## Df Sum Sq Mean Sq F value Pr(>F)
## Stage 2 9.69 4.844 8.401 0.000411 ***
## Dept 1 6.57 6.570 11.395 0.001030 **
## Stage:Dept 2 5.65 2.827 4.904 0.009187 **
## Residuals 106 61.12 0.577
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The residuals() function serves to extract the residuals. We can apply the model-baesd shapiro.test()
function from base R to see if the model residuals are non-normally distributed.

resid_TradPed <- residuals(TwoWay_TradPed)
shapiro.test(resid_TradPed)

##
## Shapiro-Wilk normality test
##
## data: resid_TradPed
## W = 0.94855, p-value = 0.0002903

A statistically significant Shapiro-Wilks’ test of normality suggests that we violated the assumption
𝑊 = 0.949, 𝑝 < 0.001.
Let’s plot the residuals

hist(resid_TradPed)
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Histogram of resid_TradPed
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The histogram does look somewhat different (negatively skewed) from a normal distribution.

qqnorm(resid_TradPed)
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The dots stray from the expected diagonal; this also visualizes the non-normality of the data.

Summary so far:

Factorial ANOVA assumes that the dependent variable is normally is distributed for all
cells in the design. Although our analysis suggested skew and kurtosis were within the
bounds considered to be normally distributed, the Shapiro-Wilk normality test (applied
to the residuals from the factorial ANOVA model) suggested that the plotting of the
residuals differed significantly from a normal distribution 𝑊 = 0.949, 𝑝 < 0.001.

Are there outliers?
Given the non-normality of the data, we can use the following procedure to see if there are outliers
that could be transformed, truncated, or removed.

library(tidyverse)
TwoWay_df %>%

rstatix::identify_outliers(TradPed)
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## Stage Dept TradPed is.outlier is.extreme
## 1 Transition CPY 1.8 TRUE FALSE
## 2 Transition ORG 1.0 TRUE FALSE
## 3 Transition ORG 1.4 TRUE FALSE
## 4 Transition ORG 1.6 TRUE FALSE

There are four outliers; none are extreme. Given that these are all on the low-side (of a negatively
skewed distribution where most scores are higher), I feel it is important to retain them as they reflect
more students’ experiences. If this were for something other than a homework demonstration, I
might also take a look at the case to see if there was evidence of inattention or something else.

Are the variances of the dependent variable similar across the all combinations of the
levels within the grouping variables?

We can evaluate the homogeneity of variance test with Levene’s test for the equality of error
variances.

rstatix::levene_test(TwoWay_df, TradPed ~ Dept * Stage)

## # A tibble: 1 x 4
## df1 df2 statistic p
## <int> <int> <dbl> <dbl>
## 1 5 106 6.41 0.0000305

Levene’s test has indicated a violation of the homogeneity of variance assumption (𝐹 [5, 106] =
6.412, 𝑝 < .001). This is not surprising. The boxplots shows some widely varying variances.

Do we have to stop? If cell sizes are reasonably large (e.g., at least 15) and balanced (equal),
ANOVA is a relatively robust to violations of normality. Unfortunately, we don’t have 15 in all
cells AND our cells are unequal AND this was not an experiment. So…..this probably isn’t the best
approach (but it’ll work for a class demo).

A 2 X 3 ANOVA was conducted to evaluate the effects of academic department (2
levels, CPY and ORG) and stage of transition (3 levels, stable, transitioning, resettled)
on traditional pedagogy course evaluation ratings.

Factorial ANOVA assumes that the dependent variable is normally is distributed for all
cells in the design. Although our analysis suggested skew and kurtosis were within the
bounds considered to be normally distributed, the Shapiro-Wilk normality test (applied
to the residuals from the factorial ANOVA model) suggested that the plotting of the
residuals differed significantly from a normal distribution 𝑊 = 0.949, 𝑝 < 0.001. Fur-
ther, Levene’s test has indicated a violation of the homogeneity of variance assumption
(𝐹 [5, 106] = 6.412, 𝑝 < .001). Owing to a rather desperate need to provide a demon-
stration of the two-way ANOVA, I have decided to proceed and keep these violations in
mind in the interpretation of results.
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Conduct omnibus ANOVA (w effect size)

We can use the rstatix::anova_test() function.

omnibus2w <- rstatix::anova_test(TwoWay_df, TradPed ~ Dept * Stage, type = "2", detailed = TRUE)
omnibus2w

## ANOVA Table (type II tests)
##
## Effect SSn SSd DFn DFd F p p<.05 ges
## 1 Dept 6.570 61.12 1 106 11.395 0.0010000 * 0.097
## 2 Stage 11.612 61.12 2 106 10.070 0.0000991 * 0.160
## 3 Dept:Stage 5.655 61.12 2 106 4.904 0.0090000 * 0.085

Let’s write the F strings from the above table:

• Department main effect: 𝐹(1, 106) = 11.395, 𝑝 = 0.001, 𝜂2 = 0.097
• Stage main effect: 𝐹(2, 106) = 10.070, 𝑝 < 0.001, 𝜂2 = 0.160
• Interaction effect: 𝐹(2, 106) = 4.904, 𝑝 = 0.009, 𝜂2 = 0.085

So far we have statistically significant effects for the main and interaction effects. Here are the
results so far:

Computing sums of squares with a Type II approach, the results for the omnibus
ANOVA indicated a significant effects for the main effect of department, 𝐹(1, 106) =
11.395, 𝑝 = 0.001, 𝜂2 = 0.097; the main effect for stage in transition, 𝐹(2, 106) =
10.070, 𝑝 < 0.001, 𝜂2 = 0.160; and the interaction effect, 𝐹(2, 106) = 4.904, 𝑝 =
0.009, 𝜂2 = 0.085.

Conduct one set of follow-up tests; narrate your choice

There are so many choices for following up a significant interaction effect. Regardless, we always
follow a statistically significant interaction effect with an analysis of simple main effects. I think I
am interested in the simple main effects for stage within department. This means I will conduct
one-way ANOVAS for CPY and ORG, separately. And, if either is significant, I will look for
differences across the stages.
Although we could do something more complicated (like orthogonal contrast coding), given that
those completing homework are often having early experiences with ANOVA, I will choose a more
streamlined path by examining the the simple main effect of stage within department.
Functionally, this computes two one-way ANOVAs, comparing the three stages within each of the
departments. If the result is statistically significant, we will need to follow-up with more testing.
The rstatix::anova_test does not allow me to specify a control for Type I error. Therefore, if I
wanted to do so, I would need to monitor it outside of the R package. I could evaluate each of
the p values for the two one-way ANOVAs at 0.025 (05/2). Rather than tracking Type I error at
this level, I will wait and do so when I get to the pairwise comparisons that follow a statistically
significant one-way ANOVA.
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TwoWay_df %>%
dplyr::group_by(Dept)%>%
rstatix::anova_test(TradPed ~ Stage)

## # A tibble: 2 x 8
## Dept Effect DFn DFd F p `p<.05` ges
## * <chr> <chr> <dbl> <dbl> <dbl> <dbl> <chr> <dbl>
## 1 CPY Stage 2 58 18.5 0.000000611 "*" 0.389
## 2 ORG Stage 2 48 1.42 0.252 "" 0.056

Results suggest statistically significant differences in department across the stages within the CPY
department, but not the ORG department:

• For CPY: 𝐹(2, 58) = 18.497, 𝑝 < 0.001, 𝜂2 = 0.389
• For ORG: 𝐹(2, 48) = 1.417, 𝑝 = 0.252, 𝜂2 = 0.056

I would write up this stage of the analysis this way:

To explore the significant interaction effect, we followed with a test of simple main effect
of the stage in transition within the academic department. We began with separate one-
way ANOVAs. Results indicated significant differences within the CPY deparmtent
(𝐹 [2, 58] = 18.497, 𝑝 < 0.001, 𝜂2 = 0.389), but not for the ORG department (𝐹 [2, 48] =
1.417, 𝑝 = 0.252, 𝜂2 = 0.056).

Because there are three stages of transition, we need to followup with pairwise comparisons to see
where the differences lie. Because I want to results from the significance tests to update the figure,
I will save the output as an object.
Although, technically, we only needed to compare 3 pairwise tests, this test (and figure) will compute
them all. The Holm’s Sequential Bonferroni is a very reasonable approach (balancing Type I error
with sensibility) and so I will use it to evaluate the six pairwise comparisons that will be produced.

pwTRwiDP <- TwoWay_df %>%
dplyr::group_by(Dept) %>%
rstatix::emmeans_test(TradPed ~ Stage, p.adjust.method = "holm")

pwTRwiDP

## # A tibble: 6 x 10
## Dept term .y. group1 group2 df statistic p p.adj p.adj.signif
## * <fct> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <chr>
## 1 CPY Stage TradPed Stable Trans~ 106 5.00 2.31e-6 6.94e-6 ****
## 2 CPY Stage TradPed Stable Reset~ 106 2.89 4.63e-3 9.26e-3 **
## 3 CPY Stage TradPed Trans~ Reset~ 106 -0.852 3.96e-1 3.96e-1 ns
## 4 ORG Stage TradPed Stable Trans~ 106 1.23 2.23e-1 4.46e-1 ns
## 5 ORG Stage TradPed Stable Reset~ 106 -1.02 3.08e-1 4.46e-1 ns
## 6 ORG Stage TradPed Trans~ Reset~ 106 -1.94 5.48e-2 1.64e-1 ns
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Consistent with the significant one-way ANOVA for the ORG factor, there were non-significant
differences between all pairs of stages. Within the CPY student evaluations, there were statistically
significant differences between stable and transition and stabled and resettled comparisons. Both
comparisons favored the stable level.

Here’w how I would assemble the entire APA style results:

A 2 X 3 ANOVA was conducted to evaluate the effects of academic department (2 levels,
CPY and ORG) and stage of transition (3 levels, stable, transitioning, resettled) and
on traditional pedagogy course evaluation ratings.

Factorial ANOVA assumes that the dependent variable is normally is distributed for all
cells in the design. Although our analysis suggested skew and kurtosis were within the
bounds considered to be normally distributed, the Shapiro-Wilk normality test (applied
to the residuals from the factorial ANOVA model) suggested that the plotting of the
residuals differed significantly from a normal distribution 𝑊 = 0.949, 𝑝 < 0.001. Fur-
ther, Levene’s test has indicated a violation of the homogeneity of variance assumption
(𝐹 [5, 106] = 6.412, 𝑝 < .001). Owing to a rather desperate need to provide a demon-
stration of the two-way ANOVA, I have decided to proceed and keep these violations in
mind in the interpretation of results.

Computing sums of squares with a Type II approach, the results for the omnibus
ANOVA indicated a significant effects for the main effect of department, 𝐹(1, 106) =
11.395, 𝑝 = 0.001, 𝜂2 = 0.097; the main effect for stage in transition, in transition
𝐹(2, 106) = 10.07, 𝑝 < 0.001, 𝜂2 = 0.160, and the interaction effect, 𝐹(2, 106) =
4.904, 𝑝 = 0.009, 𝜂2 = 0.085.

To explore the significant interaction effect, we followed with a test of simple main effect
of the stage in transition within the academic department. We began with separate one-
way ANOVAs. Results indicated significant differences within the CPY deparmtent
(𝐹 [2, 58] = 18.497, 𝑝 < 0.001, 𝜂2 = 0.389), but not for the ORG department (𝐹 [2, 48] =
1.417, 𝑝 = 0.252, 𝜂2 = 0.056).

We followed the significant one-way ANOVAs with pairwise comparisons between the
groups using the estimated marginal means. We specified the Holm’s sequential Bonfer-
roni for managing Type I error. For CPY students, comparisons between the stable and
transition (𝑡[106] = 4.997, 𝑝 < 0.001) and stable and resettled (𝑡[106] = 2.893, 𝑝 = 0.005)
stages were statistically significantly different. Cell means, marginal means, and stan-
dard deviations are presented in Table 1; results are illustrated in Figure 1.

Describe approach for managing Type I error

I managed Type I error with the Holm’s sequential Bonferroni. The Holm’s is less conservative
than the traditional Bonferroni because it adjusts the thresshold for statistical significance in a
stepwise manner that takes into consideration the rank order of the p values and the number of
comparisons made.
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APA style results with table(s) and figure

apaTables::apa.2way.table(Dept, Stage, TradPed, data = TwoWay_df, filename = "2Way.doc", table.number = 1, show.marginal.means = TRUE, landscape = TRUE)

##
##
## Table 1
##
## Means and standard deviations for TradPed as a function of a 2(Dept) X 3(Stage) design
##
## Stage
## Stable Transition Resettled Marginal
## Dept M SD M SD M SD M SD
## CPY 4.83 0.24 3.77 0.88 4.01 0.58 4.24 0.80
## ORG 3.86 0.58 3.56 1.34 4.15 0.66 3.84 0.89
## Marginal 4.35 0.66 3.69 1.06 4.08 0.61
##
## Note. M and SD represent mean and standard deviation, respectively.
## Marginal indicates the means and standard deviations pertaining to main effects.

pwTRwiDP <- pwTRwiDP %>%
rstatix::add_xy_position(x = "Dept") #x should be whatever the variable was used in the group_by argument

Box2way <- Box2way + ggpubr::stat_pvalue_manual(pwTRwiDP, label = "p.adj.signif", tip.length = 0.02, hide.ns = TRUE, y.position = c(5.3, 5.5))
Box2way
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#### Conduct power analyses to determine the power of the current study and a recommended
sample size {-}

The pwr.2way() and ss.2way() functions require the following:

• a number of groups in Factor A
• b number of groups in Factor B
• alpha significant level (Type I error probability)
• beta Type II error probability (Power = 1 - beta; traditionally set at .1 or .2)
• f.A the f effect size of Factor A
• f.B the f effect size of Factor B
• B Iteration times, default is 100

We need to convert our effect size (𝜂2) for the interaction to 𝑓 effect size (this is not the same as
the F test). The effectsize package has a series of converters. We can use the eta2_to_f() function.
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effectsize::eta2_to_f(0.097) #FactorA -- Dept

## [1] 0.3277495

effectsize::eta2_to_f(0.160) #Factor B -- Stage

## [1] 0.4364358

effectsize::eta2_to_f(0.085) #interaction

## [1] 0.3047887

The size.A and size.B are the sample size per group within the factor. Because ours differ, i divided
the N by the number of groups.

112/2

## [1] 56

112/3

## [1] 37.33333

112/6

## [1] 18.66667

pwr2::pwr.2way(a = 2, b = 3, alpha = 0.05, size.A = 56, size.B = 37, f.A = 0.3277495, f.B = 0.4364358)

##
## Balanced two-way analysis of variance power calculation
##
## a = 2
## b = 3
## n.A = 56
## n.B = 37
## sig.level = 0.05
## power.A = 0.9999722
## power.B = 0.9999821
## power = 0.9999722
##
## NOTE: power is the minimum power among two factors
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At 100% (Dept), 100 (Stage), and 100% (interaction), our power to detect statistically significant
main and interaction effects was strong

I will use a different function to estimate what sample size would be sufficiently powerful. In this
syntax:

• beta is the Type II error probability (Power = 1-beta); usually set at 80
• B is the iteration times, the default is 100

pwr2::ss.2way(a = 2, b = 3, alpha = 0.05, beta = 0.8, f.A = 0.3277495, f.B = 0.4364358, B = 100)

##
## Balanced two-way analysis of variance sample size adjustment
##
## a = 2
## b = 3
## sig.level = 0.05
## power = 0.2
## n = 3
##
## NOTE: n is number in each group, total sample = 18

18*3

## [1] 54

This recommends a sample size of 54; 18 in each group.

8.10.2 Hand Calculations

Before we continue:

You may notice that the results from the hand calculation are slightly different from
the results I will obtain with the R packages. This is because the formula we have used
for the hand-calculations utilizes an approach to calculating the sums of squares that
presumes that we have a balanced design (i.e., that the cell sizes are equal). When cell
sizes are unequal (i.e., an unbalanced design) the Type II package in rstatix::anova_test
will produce different result.

Should we be concerned? No (and yes). My purpose in teaching hand calculations
is for creating a conceptual overview of what is occurring in ANOVA models. If this
lesson was a deeper exploration into the inner workings of ANOVA, we would take
more time to understand what is occurring. My goal is to provide you with enough of
an introduction to ANOVA that you would be able to explore further which sums of
squares type would be most appropriate for your unique ANOVA model.
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Calculate sums of squares total (SST) for the omnibus ANOVA. Steps in this calcu-
lation must include calculating a grand mean and creating variables representing the
mean deviation and mean deviation squared

Here is the formula I will use for calculating the sums of squares total:

𝑆𝑆𝑇 = ∑(𝑥𝑖 − ̄𝑥𝑔𝑟𝑎𝑛𝑑)2

I will use psych::describe() to obtain the overall mean:

psych::describe(TwoWay_df)

## vars n mean sd median trimmed mad min max range skew kurtosis
## Stage* 1 112 1.74 0.76 2.0 1.68 1.48 1 3 2 0.46 -1.14
## Dept* 2 112 1.46 0.50 1.0 1.44 0.00 1 2 1 0.18 -1.99
## TradPed 3 112 4.06 0.86 4.2 4.17 0.89 1 5 4 -1.14 1.25
## se
## Stage* 0.07
## Dept* 0.05
## TradPed 0.08

The overall (grand) mean is 4.06.

I will create a variable that represents the mean deviation:

TwoWay_df <- TwoWay_df %>%
dplyr::mutate(m_dev = TradPed - 4.06)

head(TwoWay_df)

## Stage Dept TradPed m_dev
## 1 Resettled CPY 4.4 0.34
## 2 Resettled CPY 3.8 -0.26
## 3 Resettled CPY 4.0 -0.06
## 4 Resettled CPY 3.0 -1.06
## 5 Resettled CPY 4.8 0.74
## 6 Resettled CPY 3.5 -0.56

Now I will square the mean deviation:

TwoWay_df <- TwoWay_df %>%
mutate(m_devSQ = m_dev^2)

head(TwoWay_df)

## Stage Dept TradPed m_dev m_devSQ
## 1 Resettled CPY 4.4 0.34 0.1156
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## 2 Resettled CPY 3.8 -0.26 0.0676
## 3 Resettled CPY 4.0 -0.06 0.0036
## 4 Resettled CPY 3.0 -1.06 1.1236
## 5 Resettled CPY 4.8 0.74 0.5476
## 6 Resettled CPY 3.5 -0.56 0.3136

SST is the sum of the mean deviation squared values:

SST <- sum(TwoWay_df$m_devSQ, na.rm=TRUE)
SST

## [1] 83.0332

Our sums of squares total is 83.0332

Calculate the sums of squares for the model (SSM) for the omnibus ANOVA. A
necessary step in this equation is to calculate group means for all combinations of
the levels in the factorial design

Here is the formula for calculating SSM:

𝑆𝑆𝑀 = ∑ 𝑛𝑘( ̄𝑥𝑘 − ̄𝑥𝑔𝑟𝑎𝑛𝑑)2

The formula indicates that we need:

• n (sample size for each group)
• Group means
• Grand mean (earlier we learned it was 4.06)

I will obtain group means and 𝑛s with psych::desribeBy.

psych::describeBy(TradPed ~ Dept + Stage, mat = TRUE, data = TwoWay_df, digits = 3)

## item group1 group2 vars n mean sd median trimmed mad min
## TradPed1 1 CPY Stable 1 25 4.832 0.236 5.0 4.857 0.000 4.4
## TradPed2 2 ORG Stable 1 25 3.864 0.582 4.0 3.876 0.297 2.6
## TradPed3 3 CPY Transition 1 26 3.769 0.878 3.8 3.818 0.741 1.8
## TradPed4 4 ORG Transition 1 15 3.560 1.338 4.0 3.646 1.186 1.0
## TradPed5 5 CPY Resettled 1 10 4.010 0.578 3.9 4.037 0.667 3.0
## TradPed6 6 ORG Resettled 1 11 4.145 0.658 4.0 4.200 0.593 2.8
## max range skew kurtosis se
## TradPed1 5.0 0.6 -0.882 -0.930 0.047
## TradPed2 5.0 2.4 -0.402 -0.160 0.116
## TradPed3 5.0 3.2 -0.422 -0.690 0.172
## TradPed4 5.0 4.0 -0.701 -1.064 0.345
## TradPed5 4.8 1.8 -0.149 -1.394 0.183
## TradPed6 5.0 2.2 -0.379 -0.832 0.198
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To calculate it:

SSM <- 25 * (4.832 - 4.06)^2 + 25 * (3.864 - 4.06)^2 + 26 * (3.769 - 4.06)^2 +
15 * (3.560 - 4.06)^2 + 10 * (4.010 - 4.06)^2 + 11 * (4.145 - 4.06)^2

SSM

## [1] 21.91618

Sums of squares for the model is 21.91618.

Calculate the sums of squares residual (SSR) for the omnibus ANOVA. A necessary
step in this equation is to calculate the variance for each group

I will use the following formula to calculate SSR:

𝑆𝑆𝑅 = 𝑠2
𝑔𝑟𝑜𝑢𝑝1(𝑛−1)+𝑠2

𝑔𝑟𝑜𝑢𝑝2(𝑛−1)+𝑠2
𝑔𝑟𝑜𝑢𝑝3(𝑛−1)+𝑠2

𝑔𝑟𝑜𝑢𝑝4(𝑛−1)+𝑠2
𝑔𝑟𝑜𝑢𝑝5(𝑛−1)+𝑠2

𝑔𝑟𝑜𝑢𝑝6(𝑛−1))

This requires:

• n (sample size for each group)
• group variance (I can square the standard deviation for each group)

SSR <- ((0.236^2)*(25-1))+ ((0.582^2)*(25-1)) + ((0.878^2)*(26-1)) + ((1.338^2)*(15-1)) + ((0.578^2)*(10-1)) + ((0.658^2)*(11-1))
SSR

## [1] 61.13799

Our sums of squares for the residual is 61.13799.

Calculate sums of squares model (SSM) for each of the factors in the model

SSM for the Department main effect:
Reminder of the formula: 𝑆𝑆𝑎∶𝐷𝑒𝑝𝑡 = ∑ 𝑛𝑘( ̄𝑥𝑘 − ̄𝑥𝑔𝑟𝑎𝑛𝑑)2

Earlier I learned the grand mean = 4.06

psych::describeBy(TradPed ~ Dept, mat=TRUE, data = TwoWay_df, digits=3)

## item group1 vars n mean sd median trimmed mad min max range
## TradPed1 1 CPY 1 61 4.244 0.803 4.4 4.361 0.890 1.8 5 3.2
## TradPed2 2 ORG 1 51 3.835 0.891 4.0 3.946 0.593 1.0 5 4.0
## skew kurtosis se
## TradPed1 -1.048 0.376 0.103
## TradPed2 -1.226 1.527 0.125
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SSM_dept <- 61 * (4.244 - 4.06)^2 + 51 * (3.835 - 4.06)^2
SSM_dept

## [1] 4.647091

Sums of squares model for the department factor is 4.647091.

SSM for the Stage main effect:

Reminder of the formula: 𝑆𝑆𝑎∶𝑆𝑡𝑎𝑔𝑒 = ∑ 𝑛𝑘( ̄𝑥𝑘 − ̄𝑥𝑔𝑟𝑎𝑛𝑑)2

psych::describeBy(TradPed ~ Stage, mat=TRUE, data = TwoWay_df, digits=3)

## item group1 vars n mean sd median trimmed mad min max range
## TradPed1 1 Stable 1 50 4.348 0.658 4.4 4.440 0.890 2.6 5 2.4
## TradPed2 2 Transition 1 41 3.693 1.057 4.0 3.812 1.186 1.0 5 4.0
## TradPed3 3 Resettled 1 21 4.081 0.610 4.0 4.124 0.593 2.8 5 2.2
## skew kurtosis se
## TradPed1 -0.855 -0.040 0.093
## TradPed2 -0.788 -0.209 0.165
## TradPed3 -0.268 -0.850 0.133

SSM_stage <- 50 * (4.348 - 4.06)^2 + 42 * (3.693 - 4.06)^2 + 32 * (4.081 - 4.06)^2
SSM_stage

## [1] 9.81825

Sums of squares model for the stage factor is 9.81825

SSM for the Department x Stage interaction term:

I can calculate the SSM for the interaction term with this formula: 𝑆𝑆𝑎𝑥𝑏 = 𝑆𝑆𝑀 − (𝑆𝑆𝑎 + 𝑆𝑆𝑏)

SSM_int <- 21.91618 - (4.647091 + 9.81825)
SSM_int

## [1] 7.450839

Create a source table that includes the sums of squares, degrees of freedom, mean
squares, F values, and F critical values

It is easiest for me when I put these in a table.
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Summary ANOVA for TradPed as a Function of Dept & Stage

Source SS df 𝑀𝑆 = 𝑆𝑆
𝑑𝑓

𝐹 =
𝑀𝑆𝑠𝑜𝑢𝑟𝑐𝑒
𝑀𝑆𝑟𝑒𝑠𝑖𝑑

𝐹𝐶𝑉

Model 21.916 5 4.383 7.596 2.300
a:Dept 4.647 1 4.647 8.054 3.931
b:Stage 9.818 2 4.909 8.508 3.082
aXb 7.451 2 3.726 6.458 3.082
Residual 61.138 106 0.577
Total 83.033

Main effect for department: 𝐹(1, 106) = 8.054, 𝑝 < 0.05 Main effect for stage: 𝐹(2, 106) =
8.508, 𝑝 < 0.05 Interaction effect: 𝐹(2, 106) = 6.458, 𝑝 < 0.05
You may notice that these calculations don’t exactly follow the rules of the lecture. For example,
The “model and”residual” should equal the total. I believe this is because there are different cell
sizes which causes an unbalanced design and throws off the otherwise perfect calculations. This
issue of unbalanced design is an important one in ANOVA.

Checking to see if my sums of squares a, b, and axb equal the SSM; and that SSM + SSR = SST.

21.916 + 61.138

## [1] 83.054

(4.647 + 9.818 + 7.451) + 61.138

## [1] 83.054

4.647 + 9.818 + 7.451

## [1] 21.916

Below are the calculations for the mean square values:

21.916 /5

## [1] 4.3832

4.647/1

## [1] 4.647
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9.818/2

## [1] 4.909

7.451/2

## [1] 3.7255

61.138/106

## [1] 0.5767736

Below are the calculations for the F tests:

4.383/0.577

## [1] 7.596187

4.647/0.577

## [1] 8.053726

4.909/0.577

## [1] 8.507799

3.726/0.577

## [1] 6.457539

Looking up the F critical values (requires alpha level and degrees of freedom for the numerator and
denominator [model and residual]):

qf(0.05, 5, 106, lower.tail = FALSE) #omnibus

## [1] 2.300053

qf(0.05, 1, 106, lower.tail = FALSE) #Dept main effect

## [1] 3.930692
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qf(0.05, 2, 106, lower.tail = FALSE) #Stage main effect

## [1] 3.082015

qf(0.05, 2, 106, lower.tail = FALSE) #interaction term

## [1] 3.082015

Are the F-tests for the main and interaction effects statistically significant? Why or
why not?

In the hand calculations, the main and interaction effects are significant when the F value exceeds
the F critical value. All three are.

Calculate and interpret the 𝜂2 effect sizes for the main and interaction effects

The formula for eta squared is:

𝜂2 = 𝑆𝑆𝑀
𝑆𝑆𝑇

The values of .01, .06, and .14 are considered small, medium, and large in ANOVA models.

4.647/83.033 #eta squared for department main effect

## [1] 0.0559657

9.818/83.033 #eta squared for stage main effect

## [1] 0.1182421

7.451/83.033 #eta squared for interaction effect

## [1] 0.08973541

The 𝜂2 values are 0.056 (medium), 0.118 (medium-to-large), and 0.090 (medium-to-large) for the
department, stage, and interaction effects, respectively.

Assemble the results into their statistical strings

Main effect for department: 𝐹(1, 106) = 8.054, 𝑝 < 0.05, 𝜂2 = 0.056 Main effect for stage:
𝐹(2, 106) = 8.508, 𝑝 < 0.05, 𝜂2 = 0.118 Interaction effect: 𝐹𝐹(2, 106) = 6.458, 𝑝 < 0.05, 𝜂2 = 0.090
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Chapter 9

One-Way Repeated Measures
ANOVA

Screencasted Lecture Link

In the prior lessons, a critical assumption is that the observations must be “independent.” That
is, related people (partners, parent/child, manager/employee) cannot comprise the data and there
cannot be multiple waves of data for the same person. Repeated measures ANOVA is created
specifically for this dependent purpose. This lessons focuses on the one-way repeated measures
ANOVA, where we measure changes across time.

9.1 Navigating this Lesson

There is just over one hour of lecture. If you work through the materials with me plan for an
additional two hours

While the majority of R objects and data you will need are created within the R script that sources
the chapter, occasionally there are some that cannot be created from within the R framework.
Additionally, sometimes links fail. All original materials are provided at the Github site that hosts
the book. More detailed guidelines for ways to access all these materials are provided in the OER’s
introduction

9.1.1 Learning Objectives

Learning objectives from this lecture include the following:

• Evaluate the suitability of a research design/question and dataset for conducting a one-way
repeated measures ANOVA; identify alternatives if the data is not suitable.

• Hand-calculate a one-way repeated measures ANOVAs

– describing the partitioning of variance as it relates to model/residual; within/between.

• Test the assumptions for one-way repeated measures ANOVA.
• Conduct a one-way repeated measures ANOVA (omnibus and follow-up) in R.

369

https://youtube.com/playlist?list=PLtz5cFLQl4KPauGV2_JPkZ4GkZzI4D4Dw
https://github.com/lhbikos/ReCenterPsychStats
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• Interpret output from the one-way repeated measures ANOVA (and follow-up).
• Prepare an APA style results section of the one-way repeated measures ANOVA output.
• Demonstrate how an increased sample size increases the power of a statistical test.

9.1.2 Planning for Practice

The suggestions for homework vary in degree of challenge with more complete descriptions at the
end of the chapter follow these suggestions.

• Rework the problem in the chapter by changing the random seed in the code that simulates
the data. This should provide minor changes to the data, but the results will likely be very
similar.

• There were no additional variables in this example. However, you’ll see we do have an issue
with statistical power. Perhaps change the sample size to see if it changes (maybe stabilizes?)
the results.

• Conduct a one-way repeated measures ANOVA with data to which you have access. This
could include data you simulate on your own or from a published article.

9.1.3 Readings & Resources

In preparing this chapter, I drew heavily from the following resource(s). Other resources are cited
(when possible, linked) in the text with complete citations in the reference list.

• Repeated Measures ANOVA in R: The Ultimate Guide. (n.d.). Datanovia. Retrieved October
19, 2020, from https://www.datanovia.com/en/lessons/repeated-measures-anova-in-r

– This website is an excellent guide for both one-way repeated measures and mixed design
ANOVA. A great resource for both the conceptual and procedural. This is the guide I
have used for the basis of the lecture. Working through their example would be great
additional practice.

• Green, S. B., & Salkind, N. J. (2017). One-Way Repeated Measures Analysis of Variance
(Lesson 29). In Using SPSS for Windows and Macintosh: Analyzing and understanding data
(Eighth edition., pp. 209–217). Pearson.

– For years I taught from the Green and Salkind text. Even though it was written for
SPSS, the authors do a terrific job of walking the reader through the one-way repeated
measures logic and process.

• Amodeo, A. L., Picariello, S., Valerio, P., & Scandurra, C. (2018). Empowering transgender
youths: Promoting resilience through a group training program. Journal of Gay & Lesbian
Mental Health, 22(1), 3–19.

– This mixed methods (qualitative and quantitative) includes a one-way repeated measures
example.

https://www.datanovia.com/en/lessons/repeated-measures-anova-in-r
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9.1.4 Packages

The packages used in this lesson are embedded in this code. When the hashtags are removed, the
script below will (a) check to see if the following packages are installed on your computer and, if
not (b) install them.

#will install the package if not already installed
#if(!require(knitr)){install.packages("knitr")}
#if(!require(tidyverse)){install.packages("tidyverse")} #manipulate data
#if(!require(psych)){install.packages("psych")}
#if(!require(ggpubr)){install.packages("ggpubr")} #easy plots
#if(!require(rstatix)){install.packages("rstatix")} #pipe-friendly R functions
#if(!require(data.table)){install.packages("data.table")} #pipe-friendly R functions
#if(!require(reshape2)){install.packages("reshape2")} #pipe-friendly R functions
#if(!require(effectsize)){install.packages("effectsize")} #converts effect sizes for use in power analysis
#if(!require(WebPower)){install.packages("WebPower")} #power analysis tools for repeated measures
#if(!require(MASS)){install.packages("MASS")} #power analysis tools for repeated measures

9.2 Introducing One-way Repeated Measures ANOVA

There are a couple of typical use cases for one-way repeated measures ANOVA. In the first, the
research participant is assessed in multiple conditions – with no interested in change-over-time.
An example of a research design using this approach occurred in the Green and Salkind [2017b]
statistics text, the one-way repeated measures vignette compared teachers’ perception of stress
when responding to parents, teachers, and school administrators.

Figure 9.1: Illustration of a research design appropriate for one-way repeated measures ANOVA

Another common use case is about time. The classic design is a pre-test, an intervention, a post-
test, and a follow up. In designs like these researchers often hope that there is a positive change
from pre-to-post and that that change either stays constant (from post-to-follow-up) or, perhaps,
increases even further. The research vignette for this lesson is interested in change-over-time.

Figure 9.2: Illustration of a research design appropriate for one-way repeated measures ANOVA

9.2.1 Workflow for Oneway Repeated Measures ANOVA

The following is a proposed workflow for conducting a one-way repeated measures ANOVA.
Steps involved in analyzing the data include:
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Figure 9.3: Image of a workflow for the one-way repeated measures ANOVA
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1. Preparing and importing the data.
2. Exploring the data

• graphs
• descriptive statistics

3. Checking distributional assumptions

• assessing normality via skew, kurtosis, Shapiro Wilks
• checking or violation of the sphericity assumption with Mauchly’s test; if violated inter-

pret the corrected output or use a multivariate approach for the analysis

4. Computing the omnibus ANOVA
5. Computing post hoc comparisons, planned contrasts, or polynomial trends
6. Managing Type I error
7. Sample size/power analysis (which you should think about first – but in the context of teaching

ANOVA, it’s more pedagogically sensible, here)

9.3 Research Vignette

Amodeo [Amodeo et al., 2018] and colleagues conducted a mixed methods study (qualitative and
quantitative) to evaluate the effectiveness of an empowerment, peer-group-based, intervention with
participants (N = 8) who experienced transphobic episodes. Focus groups used qualitative methods
to summarize emergent themes from the program (identity affirmation, self-acceptance, group as
support) and a one-way, repeated measures ANOVA provided evidence of increased resilience from
pre to three-month followup.

Eight participants (seven transgender women and one genderqueer person) participated in the
intervention. The mean age was 28.5 (SD = 5.85). All participants were located in Italy.

The within-subjects condition was wave, represented by T1, T2, and T3:

• T1, beginning of training
• Training, three 8-hour days,

– content included identity and heterosexism, sociopolitical issues and minority stress,
resilience, and empowerment

• T2, at the conclusion of the 3-day training
• Follow-up session 3 months later
• T3, at the conclusion of the +3 month follow-up session

The dependent variable (assessed at each wave) was a 14-item resilience scale [Wagnild and Young,
1993]. Items were assessed on a 7-point scale ranging from strongly disagree to strongly agree with
higher scores indicating higher levels of resilience. An example items was, “I usually manage one
way or another.”
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Figure 9.4: Diagram of the research design for the Amodeo et al study

9.3.1 Data Simulation

Below is the code I used to simulate data. The following code assumes 8 participants who each
participated in 3 waves (pre, post, followup).

set.seed(2022)
#gives me 8 numbers, assigning each number 3 consecutive spots, in sequence
ID<-factor(c(rep(seq(1,8),each=3)))
#gives me a column of 24 numbers with the specified Ms and SD
Resilience<-rnorm(24,mean=c(5.7,6.21,6.26),sd=c(.88,.79,.37))
#repeats pre, post, follow-up once each, 8 times
Wave<-rep(c("Pre","Post", "FollowUp"),each=1,8)
Amodeo_long<-data.frame(ID, Wave, Resilience)

Let’s take a look at the structure of our variables. We want ID to be a factor, Resilience to be
numeric, and Wave to be an ordered factor (Pre, Post, FollowUp).

str(Amodeo_long)

'data.frame': 24 obs. of 3 variables:
$ ID : Factor w/ 8 levels "1","2","3","4",..: 1 1 1 2 2 2 3 3 3 4 ...
$ Wave : chr "Pre" "Post" "FollowUp" "Pre" ...
$ Resilience: num 6.49 5.28 5.93 4.43 5.95 ...

We need to update Wave to be an ordered factor. Because R’s default is to order factors alphabet-
ically, we can use the levels command and identify our preferred order.

Amodeo_long$Wave <- factor(Amodeo_long$Wave, levels = c("Pre", "Post", "FollowUp"))

We check the structure again.

str(Amodeo_long)

'data.frame': 24 obs. of 3 variables:
$ ID : Factor w/ 8 levels "1","2","3","4",..: 1 1 1 2 2 2 3 3 3 4 ...
$ Wave : Factor w/ 3 levels "Pre","Post","FollowUp": 1 2 3 1 2 3 1 2 3 1 ...
$ Resilience: num 6.49 5.28 5.93 4.43 5.95 ...
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9.3.1.0.1 Shape Shifters The form of our data matters. The simulation created a long form
(formally called the person-period form) of data. That is, each observation for each person is listed
in its own row. In this dataset where we have 8 people with 3 observation (pre, post, follow-up)
each, we have 24 rows. This is convenient, because this is the form we need for repeated measures
ANOVA.

However, for some of the calculations (particularly those we will do by hand), we need the data to
be in its more familiar wide form (formally called the person level form). We can do this with the
data.table and reshape2()* packages.

# Create a new df (Amodeo_wide)
# Identify the original df
# We are telling it to connect the values of the Resilience variable its respective Wave designation
Amodeo_wide <- reshape2::dcast(data = Amodeo_long, formula =ID~Wave, value.var = "Resilience")
#doublecheck to see if they did what you think
str(Amodeo_wide)

'data.frame': 8 obs. of 4 variables:
$ ID : Factor w/ 8 levels "1","2","3","4",..: 1 2 3 4 5 6 7 8
$ Pre : num 6.49 4.43 4.77 5.91 4.84 ...
$ Post : num 5.28 5.95 6.43 7 6.28 ...
$ FollowUp: num 5.93 5.19 6.54 6.19 6.24 ...

Amodeo_wide$ID <- factor(Amodeo_wide$ID)

In this reshape script, I asked for a quick structure check. The format of the variables looks correct.

If you want to export these data as files to your computer, remove the hashtags to save (and re-
import) them as .rds (R object) or .csv (“Excel lite”) files. This is not a necessary step to continue
working the problem in this lesson.

The code for the .rds file will retain the formatting of the variables, but is not easy to view outside
of R. I would choose this option.

#to save the df as an .rds (think "R object") file on your computer;
#it should save in the same file as the .rmd file you are working with
#saveRDS(Amodeo_long, "Amodeo_longRDS.rds")
#saveRDS(Amodeo_wide, "Amodeo_wideRDS.rds")
#bring back the simulated dat from an .rds file
#Amodeo_long <- readRDS("Amodeo_longRDS.rds")
#Amodeo_wide <- readRDS("Amodeo_wideRDS.rds")

Another option is to write them as .csv files. The code for .csv will likely lose any variable format-
ting, but the .csv file is easy to view and manipulate in Excel. If you choose this option, you will
probably need to re-run the prior code to reformat Wave as an ordered factor
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#write the simulated data as a .csv
#write.table(Amodeo_long, file="Amodeo_longCSV.csv", sep=",", col.names=TRUE, row.names=FALSE)
#write.table(Amodeo_wide, file="Amodeo_wideCSV.csv", sep=",", col.names=TRUE, row.names=FALSE)
#bring back the simulated dat from a .csv file
#Amodeo_long <- read.csv ("Amodeo_longCSV.csv", header = TRUE)
#Amodeo_wide <- read.csv ("Amodeo_wideCSV.csv", header = TRUE)

9.3.2 Quick peek at the data

Before we get into the statistic let’s inspect our data. As we work the problem we will switch
between long and wide formats. We can start with the long form.

str(Amodeo_long)

'data.frame': 24 obs. of 3 variables:
$ ID : Factor w/ 8 levels "1","2","3","4",..: 1 1 1 2 2 2 3 3 3 4 ...
$ Wave : Factor w/ 3 levels "Pre","Post","FollowUp": 1 2 3 1 2 3 1 2 3 1 ...
$ Resilience: num 6.49 5.28 5.93 4.43 5.95 ...

In the following output, note the order of presentation of the grouping variable (i.e., FollowUp, Post,
Pre). Even though we have ordered our factor so that “Pre” is first, the describeBy() function seems
to be ordering them alphabetically.

psych::describeBy(Amodeo_long$Resilience, Wave, mat = TRUE, data = Amodeo_long, digits = 3)

item group1 vars n mean sd median trimmed mad min max range
X11 1 FollowUp 1 8 6.137 0.473 6.216 6.137 0.442 5.187 6.708 1.521
X12 2 Post 1 8 6.328 0.655 6.356 6.328 0.875 5.283 7.090 1.807
X13 3 Pre 1 8 5.588 0.822 5.771 5.588 1.147 4.429 6.597 2.168

skew kurtosis se
X11 -0.720 -0.610 0.167
X12 -0.231 -1.629 0.232
X13 -0.144 -1.812 0.291

#Note. Recently my students and I have been having intermittent struggles with the describeBy function in the psych package. We have noticed that it is problematic when using .rds files and when using data directly imported from Qualtrics. If you are having similar difficulties, try uploading the .csv file and making the appropriate formatting changes.

Another view (if we use the wide file).

psych::describe(Amodeo_wide)

vars n mean sd median trimmed mad min max range skew kurtosis
ID* 1 8 4.50 2.45 4.50 4.50 2.97 1.00 8.00 7.00 0.00 -1.65
Pre 2 8 5.59 0.82 5.77 5.59 1.15 4.43 6.60 2.17 -0.14 -1.81
Post 3 8 6.33 0.66 6.36 6.33 0.88 5.28 7.09 1.81 -0.23 -1.63
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FollowUp 4 8 6.14 0.47 6.22 6.14 0.44 5.19 6.71 1.52 -0.72 -0.61
se

ID* 0.87
Pre 0.29
Post 0.23
FollowUp 0.17

Our means suggest that resilience increases from pre to post, then declines a bit. We use one-way
repeated measures ANOVA to learn if there are statistically significant differences between the pairs
of means and over time.

Let’s also take a quick look at a boxplot of our data.

ggpubr::ggboxplot(Amodeo_long, x = "Wave", y = "Resilience", add = "jitter", color = "Wave", title = "Figure 9.1 Boxplots of Resilience Over Time")
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Figure 9.1 Boxplots of Resilience Over Time
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9.4 Working the One-Way Repeated Measures ANOVA (by hand)

Before working our problem in R, let’s gain a conceptual understanding by partitioning the variance
by hand.

In repeated measures ANOVA: 𝑆𝑆𝑇 = 𝑆𝑆𝐵 + 𝑆𝑆𝑊 , where

• B = between-subjects variance
• W = within-subjects variance

– 𝑆𝑆𝑊 = 𝑆𝑆𝑀 + 𝑆𝑆𝑅

What differs is that 𝑆𝑆𝑀 and 𝑆𝑆𝑅 (model and residual) are located in 𝑆𝑆𝑊

• 𝑆𝑆𝑇 = 𝑆𝑆𝐵 + (𝑆𝑆𝑀 + 𝑆𝑆𝑅)

Figure 9.5: Demonstration of partitioning variance

9.4.1 Sums of Squares Total

Our formulas for 𝑆𝑆𝑇 are the same as they were for one-way and factorial ANOVA:

𝑆𝑆𝑇 = ∑(𝑥𝑖 − ̄𝑥𝑔𝑟𝑎𝑛𝑑)2

𝑆𝑆𝑇 = 𝑠2
𝑔𝑟𝑎𝑛𝑑(𝑛 − 1)

Degrees of freedom for 𝑆𝑆𝑇 is N - 1, where N is the total number of cells.

Let’s take a moment to hand-calculate 𝑆𝑆𝑇 (but using R).

Our grand (i.e., overall) mean is

mean(Amodeo_long$Resilience)
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[1] 6.017408

Subtracting the grand mean from each resilience score yields a mean difference.

library(tidyverse)

Amodeo_long <- Amodeo_long %>%
mutate(m_dev = Resilience-mean(Resilience))

head(Amodeo_long)

ID Wave Resilience m_dev
1 1 Pre 6.492125 0.47471697
2 1 Post 5.283057 -0.73435114
3 1 FollowUp 5.927930 -0.08947756
4 2 Pre 4.428839 -1.58856921
5 2 Post 5.948499 -0.06890871
6 2 FollowUp 5.186767 -0.83064071

Pop quiz: What’s the sum of our new m_dev variable?

sum(Amodeo_long$m_dev)

[1] 0.000000000000007993606

If we square those mean deviations:

Amodeo_long <- Amodeo_long %>%
mutate(m_devSQ = m_dev^2)

head(Amodeo_long)

ID Wave Resilience m_dev m_devSQ
1 1 Pre 6.492125 0.47471697 0.225356199
2 1 Post 5.283057 -0.73435114 0.539271599
3 1 FollowUp 5.927930 -0.08947756 0.008006235
4 2 Pre 4.428839 -1.58856921 2.523552145
5 2 Post 5.948499 -0.06890871 0.004748410
6 2 FollowUp 5.186767 -0.83064071 0.689963983

If we sum the squared mean deviations:

sum(Amodeo_long$m_devSQ)

[1] 11.65769

This value, the sum of squared deviations around the grand mean, is our 𝑆𝑆𝑇 ; the associated
degrees of freedom is 23 (24 - 1; N - 1).
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9.4.2 Sums of Squares Within for Repated Measures ANOVA

The format of the formula is parallel to the formulae for 𝑆𝑆 we have seen before. In this case each
person serves as its own grouping factor.

𝑆𝑆𝑊 = 𝑠2
𝑝𝑒𝑟𝑠𝑜𝑛1(𝑛1 − 1) + 𝑠2

𝑝𝑒𝑟𝑠𝑜𝑛2(𝑛2 − 1) + 𝑠2
𝑝𝑒𝑟𝑠𝑜𝑛3(𝑛3 − 1) + ... + 𝑠2

𝑝𝑒𝑟𝑠𝑜𝑛𝑘(𝑛𝑘 − 1)
The degrees of freedom (df) within is N - k; or the summation of the df for each of the persons.

psych::describeBy(Resilience ~ ID, data = Amodeo_long, mat = TRUE, digits = 3)

item group1 vars n mean sd median trimmed mad min max
Resilience1 1 1 1 3 5.901 0.605 5.928 5.901 0.836 5.283 6.492
Resilience2 2 2 1 3 5.188 0.760 5.187 5.188 1.124 4.429 5.948
Resilience3 3 3 1 3 5.912 0.992 6.430 5.912 0.160 4.768 6.537
Resilience4 4 4 1 3 6.370 0.568 6.191 6.370 0.414 5.913 7.005
Resilience5 5 5 1 3 5.787 0.824 6.240 5.787 0.064 4.836 6.283
Resilience6 6 6 1 3 5.744 0.146 5.693 5.744 0.095 5.629 5.908
Resilience7 7 7 1 3 6.627 0.248 6.597 6.627 0.300 6.395 6.889
Resilience8 8 8 1 3 6.612 0.533 6.708 6.612 0.565 6.038 7.090

range skew kurtosis se
Resilience1 1.209 -0.044 -2.333 0.349
Resilience2 1.520 0.002 -2.333 0.439
Resilience3 1.769 -0.380 -2.333 0.573
Resilience4 1.092 0.283 -2.333 0.328
Resilience5 1.447 -0.384 -2.333 0.475
Resilience6 0.279 0.304 -2.333 0.084
Resilience7 0.494 0.118 -2.333 0.143
Resilience8 1.052 -0.175 -2.333 0.307

With 8 people, there will be 8 chunks of the analysis, in each:

• SD squared (to get the variance)
• multiplied by the number of observations less 1

(.605^2*(3-1)) + (.760^2*(3-1)) + (.992^2*(3-1))+ (.568^2*(3-1))+ (.824^2*(3-1))+ (.146^2*(3-1))+ (.248^2*(3-1)) + (.553^2*(3-1))

[1] 6.635836

9.4.3 Sums of Squares Model – Effect of Time

The 𝑆𝑆𝑀 conceptualizes the within-persons (or repeated measures) element as the grouping factor.
In our case these are the pre, post, and follow-up clusters.

𝑆𝑆𝑀 = ∑ 𝑛𝑘( ̄𝑥𝑘 − ̄𝑥𝑔𝑟𝑎𝑛𝑑)2

The degrees of freedom will be k - 1 (number of levels, minus one).
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psych::describe(Amodeo_wide)

vars n mean sd median trimmed mad min max range skew kurtosis
ID* 1 8 4.50 2.45 4.50 4.50 2.97 1.00 8.00 7.00 0.00 -1.65
Pre 2 8 5.59 0.82 5.77 5.59 1.15 4.43 6.60 2.17 -0.14 -1.81
Post 3 8 6.33 0.66 6.36 6.33 0.88 5.28 7.09 1.81 -0.23 -1.63
FollowUp 4 8 6.14 0.47 6.22 6.14 0.44 5.19 6.71 1.52 -0.72 -0.61

se
ID* 0.87
Pre 0.29
Post 0.23
FollowUp 0.17

In this case, we are interested in change in resilience over time. Hence, time is our factor. In our
equation, we have three chunks representing the pre, post, and follow-up conditions (waves). From
each, we subtract the grand mean, square it, and multiply by the n observed in each wave.
The degrees of freedom (df) for 𝑆𝑆𝑀 is k - 1
Let’s calculate grand mean; that is the resilience score for all participants across all waves.

mean(Amodeo_long$Resilience)

[1] 6.017408

Now we can calculate the 𝑆𝑆𝑀 .

(8*(6.14 - 6.017)^2) + (8*(6.33 - 6.017)^2) + (8*(5.59 - 6.017)^2)

[1] 2.363416

#df is 3-1 = 2

9.4.4 Sums of Squares Residual

Because 𝑆𝑆𝑊 = 𝑆𝑆𝑀 + 𝑆𝑆𝑅 we can caluclate 𝑆𝑆𝑅 with simple subtraction:

• 𝑆𝑆𝑤 = 6.636
• 𝑆𝑆𝑀 = 2.363

6.636 - 2.363

[1] 4.273

Correspondingly, the degrees of freedom (also taking the easy way out) is calculated by subtracting
(the associated degrees of freedom) 𝑆𝑆𝑀 from 𝑆𝑆𝑊 .
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16-2

[1] 14

9.4.5 Sums of Squares Between

The 𝑆𝑆𝐵 is not used in our calculations today, but also calculated easily. Given that 𝑆𝑆𝑇 = 𝑆𝑆𝑊
+ 𝑆𝑆𝐵:

• 𝑆𝑆𝑇 = 11.66; df = 23
• 𝑆𝑆𝑊 = 6.64; df = 16

11.66 - 6.64

[1] 5.02

23-16

[1] 7

𝑆𝑆𝐵 = 5.02, df = 7

Figure 9.6: Screenshot of the ANOVA source Table

Looking again at our sourcetable, we can move through the steps to calculate our F statistic.

9.4.6 Mean Squares Model & Residual

Now that we have the Sums of Squares, we can calculate the mean squares (we need these for our
𝐹 statistic). Here is the formula for the mean square model.

𝑀𝑆𝑀 = 𝑆𝑆𝑀
𝑑𝑓𝑀
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#mean squares for the model
2.36/2

[1] 1.18

HEre is the formula for mean square residual.

And 𝑀𝑆𝑅 =
𝑀𝑆𝑅 = 𝑆𝑆𝑅

𝑑𝑓𝑅

Recall, degrees of freedom for the residual is 𝑑𝑓𝑤 − 𝑑𝑓𝑚. In our case that is 16-2.

#mean squares for the residual
4.27 / 14

[1] 0.305

9.4.7 F ratio

The F ratio is calculated with 𝑀𝑆𝑀 and 𝑀𝑆𝑅 =.

𝐹 = 𝑀𝑆𝑀
𝑀𝑆𝑅

1.18 / .305

[1] 3.868852

To find the 𝐹𝐶𝑉 we can use an F distribution table. Or use a look-up function in R, which follows
this general form: qf(p, df1, df2. lower.tail=FALSE)

qf(.05, 2, 14, lower.tail=FALSE)

[1] 3.738892

Our example has 2 (numerator) and 14 (denominator) degrees of freedom. If we use a table we
find the corresponding degrees of freedom combinations for the column where 𝛼 = .05. We observe
that any 𝐹 value > 3.73 will be statistically significant. Our 𝐹 = 3.87, so we have (just barely)
exceeded the threshold. This is our omnibus F. We know there is at least 1 statistically significant
difference between our pre, post, and follow-up conditions.

You may notice that the results from the hand calculation are slightly different from
the results I will obtain with the R packages. Hand calculations and those used in the
R packages likely differ on how the sums of squares is calculated. While the results are
“close-ish” they are not always identical.

https://www.statology.org/f-distribution-table/


384 CHAPTER 9. ONE-WAY REPEATED MEASURES ANOVA

Should we be concerned? No (and yes). My purpose in teaching hand calculations
is for creating a conceptual overview of what is occurring in ANOVA models. If this
lesson was a deeper exploration into the inner workings of ANOVA, we would take
more time to understand what is occurring. My goal is to provide you with enough of
an introduction to ANOVA that you would be able to explore further which sums of
squares type would be most appropriate for your unique ANOVA model.

9.5 Working the One-Way Repeated Measures ANOVA with R
packages

As usual, we will work through the testing of statistical assumptions, calculating the omnibus, and
then (if the omnibus is significant), conducting follow-up tests.

9.5.1 Testing the assumptions

We will start by testing the assumptions. Highlighting in the figure notes our place in the one-way
ANOVA workflow:

There are several different ways to conduct a repeated measures ANOVA. Each has different as-
sumptions/requirements. These include:

• univariate statistics

– This is what we will use today.

• multivariate statistics

– Functionally similar to univariate, except the underlying algorithm does not require the
sphericity assumption.

– An example of using a multivariate approach to working the problem (using the car
package) is in the appendix.

• multi-level modeling/hierarchical linear modeling

– This a different statistic altogether and is addressed in the multilevel modeling OER.

9.5.1.1 Univariate assumptions for repeated measures ANOVA

• The cases represent a random sample from the population.
• There is no dependency in the scores between participants.

– Of course there is intentional dependency in the repeated measures (or within-subjects)
factor.

• There are no significant outliers in any cell of the design

– Check by visualizing the data using box plots. The identify_outliers() function in the
rstatix package identifies extreme outliers.

https://lhbikos.github.io/MultilevelModeling
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Figure 9.7: Image of our position in the workflow for the one-way repeated measures ANOVA
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• The dependent variable is normally distributed in the population for each level of the within-
subjects factor.

– Conduct a Shapiro-Wilk test of normality for each of the levels of the DV.
– Visually examine Q-Q plots.

• The population variance of difference scores computed between any two levels of a within-
subjects factor is the same value regardless of which two levels are chosen; termed the spheric-
ity assumption. This assumption is

– akin to compound symmetry (both variances across conditions are equal).
– akin to the homogeneity of variance assumption in between-group designs.
– sometimes called the homogeneity-of-variance-of-differences assumption.
– statistically evaluated with Mauchly’s test. If Mauchly’s p < .05, there are statisti-

cally significant differences. The anova_test() function in the rstatix package reports
Mauchly’s and two alternatives to the traditional F that correct the values by the degree
to which the sphericity assumption is violated.

9.5.1.2 Demonstrating sphericity

Using the data from our motivating example, I calculated differences for each of the time variables.
These are the three columns (in green shading) on the right. The variance for each is reported at
the bottom of the column.

When we get into the analysis, we will use Mauchly’s test in hopes that there are non-significant
differences in variances between all three of the comparisons.

We are only concerned with the sphericity assumption if there are three or more groups.

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝐴−𝐵 ≈ 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝐴−𝐶 ≈ 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝐵−𝐶

Figure 9.8: Demonstration of unequal variances
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9.5.1.3 Is the data normally distributed?

We can obtain skew and kurtosis values for each cell in our model with the psych::describeBy()
function.

psych::describeBy(Resilience ~ Wave, mat=TRUE, type = 1, data = Amodeo_long)

item group1 vars n mean sd median trimmed mad
Resilience1 1 Pre 1 8 5.587693 0.8217561 5.770952 5.587693 1.1471137
Resilience2 2 Post 1 8 6.327615 0.6550520 6.356491 6.327615 0.8751431
Resilience3 3 FollowUp 1 8 6.136916 0.4729432 6.215983 6.136916 0.4416578

min max range skew kurtosis se
Resilience1 4.428839 6.597214 2.168376 -0.1755752 -1.448137 0.2905347
Resilience2 5.283057 7.089591 1.806534 -0.2819094 -1.209000 0.2315959
Resilience3 5.186767 6.708259 1.521491 -0.8802629 0.121247 0.1672107

Our skew and kurtosis values fall below the thresholds of concern [Kline, 2016a]:

• < |3| for skew
• < |10| for kurtosis

The Shapiro-Wilk test evaluates the hypothesis that the distribution of the data deviates from
a comparable normal distribution. If the test is non-significant (p >.05) the distribution of the
sample is not significantly different from a normal distribution. If, however, the test is significant
(p < .05), then the sample distribution is significantly different from a normal distribution. The
rstatix package can conduct this test for us.

Amodeo_long %>%
group_by(Wave) %>%
rstatix::shapiro_test(Resilience)

# A tibble: 3 x 4
Wave variable statistic p
<fct> <chr> <dbl> <dbl>

1 Pre Resilience 0.919 0.419
2 Post Resilience 0.941 0.617
3 FollowUp Resilience 0.926 0.480

The p value is > .05 for each of the cells. This provides some assurance that we have not violated
the assumption of normality at any level of the design.

The 𝑝 values for the distributions of the dependent variable (Resilience) in each wave of the study
are all well above .05. This tells us that the Resilience variable does not deviate from a statistically
significant distribution at any level (Pre, 𝑊 = 0.929, 𝑝 = 0.418; Post, 𝑝 = 0.941, 𝑝 = 0.617;
FellowUp, 𝑊 = 0.926, 𝑝 = 0.430).
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Especially in the more simple “ANOVA’s” I like this form of the Shapiro-Wilk test because it makes
it clear that we expect normality within each of the grouping levels. This approach, however, is
only appropriate when there are a low number of levels/groupings and there are many data points
per group. As models become more complex, researchers should use the model-based option for
assessing normality. To do this, we first create an object that tests our research model.

Although that model (a regression model) has information about the results of our primary analysis,
at this point we are only using it to investigate the assumption of normality. One product of the
analysis is residuals. Residuals are the unexplained variance in the outcome (or dependent) variable
after accounting for the predictor (or independent) variable. When we plot these “leftovers” against
the values of x, we can visualize the fit of the model in a QQ plot. The dots represent the residuals.
When they are relatively close to the line they not only suggest good fit of the model, but we know
they are small and evenly distributed around zero (i.e., normally distributed).

RMres_model <- lm(Resilience ~ Wave, data = Amodeo_long)
ggpubr::ggqqplot(residuals(RMres_model))
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We can also use the model in a Shapiro-Wilk test. As before, we want a non-significant result.
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rstatix::shapiro_test(residuals(RMres_model))

# A tibble: 1 x 3
variable statistic p.value
<chr> <dbl> <dbl>

1 residuals(RMres_model) 0.957 0.385

These results are consistent with what we have already learned. That is, the non-significant p value
associated with the model-based Shapiro-Wilk test of normality indicates that our distribution of
residuals does not differ from a normal distribution (𝑊 = 0.957, 𝑝 = 0.385). Given the space
restrictions in journal articles and the higher priority of describing the results of the primary
analyses, I am more likely to report model-level results than the results from the cell-based Shapiro-
Wilk tests.

There are limitations to the Shapiro-Wilk test. As the dataset being evaluated gets larger, the
Shapiro-Wilk test becomes more sensitive to small deviations; this leads to a greater probability of
rejecting the null hypothesis (null hypothesis being the values come from a normal distribution).
Green and Salkind [2017c] advised that ANOVA is relatively robust to violations of normality if
there are at least 15 cases per cell and the design is reasonably balanced (i.e., equal cell sizes).

9.5.1.4 Are there any outliers (and should we consider their removal)?

The boxplot is one common way for identifying outliers. The boxplot uses the median and the
lower (25th percentile) and upper (75th percentile) quartiles. The difference bewteen Q3 and Q1 is
the interquartile range (IQR). Outliers are generally identified when values fall outside these lower
and upper boundaries:

• Q1 - 1.5xIQR
• Q3 + 1.5xIQR

Extreme values occur when values fall outside these boundaries:

• Q1 - 3xIQR
• Q3 + 3xIQR

Let’s take another look at the boxplot. Swapping “jitter” for “point” may help with the visual
inspection.

ggpubr::ggboxplot(Amodeo_long, x = "Wave", y = "Resilience", add = "point", color = "Wave", title = "Figure 9.2 Identifying Outliers with Boxplots")
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Figure 9.2 Identifying Outliers with Boxplots

The package rstatix has features that allow us to identify outliers.

Amodeo_long %>%
group_by(Wave)%>%
rstatix::identify_outliers(Resilience)

[1] Wave ID Resilience m_dev m_devSQ is.outlier is.extreme
<0 rows> (or 0-length row.names)

#?identify_outliers

The output, “0 rows” indicates there are no outliers.

This is consistent with the visual inspection of boxplots (above), where all observed scores fell within
the 1.5x the interquartile range. If there were outliers and you chose to delete them, instructions
for doing so are found in the parallel sections of the one-way ANOVA and factorial ANOVA lessons.
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9.5.1.5 Summarizing results from the analysis of assumptions

Here’s how I would write up the assumptions we have tested thus far:

Similarly, no extreme outliers were identified and results of a model-based Shapiro-Wilk test of
normality, indicated that the model residuals did not did differ from a normal distribution (𝑊 =
0.979, 𝑝 = 0.15).

Repeated measures ANOVA has several assumptions regarding normality, outliers, and
sphericity. Regarding normality, no values of skew and kurtosis (at each wave of assess-
ment) fell within cautionary ranges for skew and kurtosis [Kline, 2016a]. Additionally,
results of a model-based Shapiro-Wilk test of normality indicated that the model resid-
uals did not differ from a normal distribution (𝑊 = 0.957, 𝑝 = 0.385). Visual inspection
of boxplots for each wave of the design, assisted by the identify_outliers() function in
the rstatix package (which reports values above Q3 + 1.5xIQR or below Q1 - 1.5xIQR,
where IQR is the interquartile range) indicated no outliers.

9.5.1.6 Assumption of Sphericity

The sphericity assumption is automatically checked with Mauchley’s test during the computation of
the ANOVA when the rstatix::anova_test() function is used. When the rstatix::get_anova_table()
function is used, the Greenhouse-Geisser sphericity correction is automatically applied to factors
violating the sphericity assumption.

The effect size, 𝜂2 is reported in the column labeled “ges.” Conventionally, values of .01, .06, and
.14 are considered to be small, medium, and large effect sizes, respectively.

You may see different values (.02, .13, .26) offered as small, medium, and large – these values are
used when multiple regression is used. A useful summary of effect sizes, guide to interpreting their
magnitudes, and common usage can be found here [Watson, 2020].

Earlier in the lesson I noted that the evaluation of the sphericity assumption occurs at the same
time that we evaluate the omnibus ANOVA. We are at that point in the analyses. The workflow
points to our stage in the process.

9.5.2 Computing the Test Statistic

As we prepare to run the omnibus ANOVA it may be helpful to think again about our variables.
Our DV, Resilience, should be a continuous variable. In R, its structure should be “num.” Our
predictor, Wave, should be categorical. In R case, Wave should be an ordered factor that is
consistent with its timing: pre, post, follow-up.

The repeated measures ANOVA must be run with a long form of the data. This means that there
needs to be a within-subjects identifier. In our case, it is the “ID” variable which is also formatted
as a factor.

We can verify the format of our variables by examining the structure of our dataframe. Recall that
we created the “m_dev” and “m_devSQ” variables earlier in the demonstration. We will not use
them in this analysis; it does not harm anything for them to “ride along” in the dataframe.

https://imaging.mrc-cbu.cam.ac.uk/statswiki/FAQ/effectSize
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Figure 9.9: Image of our position in the workflow for the one-way repeated measures ANOVA
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str(Amodeo_long)

'data.frame': 24 obs. of 5 variables:
$ ID : Factor w/ 8 levels "1","2","3","4",..: 1 1 1 2 2 2 3 3 3 4 ...
$ Wave : Factor w/ 3 levels "Pre","Post","FollowUp": 1 2 3 1 2 3 1 2 3 1 ...
$ Resilience: num 6.49 5.28 5.93 4.43 5.95 ...
$ m_dev : num 0.4747 -0.7344 -0.0895 -1.5886 -0.0689 ...
$ m_devSQ : num 0.22536 0.53927 0.00801 2.52355 0.00475 ...

We can use the rstatix::anova_test() function to calculate the omnibus ANOVA. Notice where our
variables are included in the script:

• Resilience is the dv
• ID is the wid
• Wave is assigned to within

RM_AOV <- rstatix::anova_test(data = Amodeo_long, dv = Resilience, wid = ID, within = Wave)
RM_AOV

ANOVA Table (type III tests)

$ANOVA
Effect DFn DFd F p p<.05 ges

1 Wave 2 14 3.91 0.045 * 0.203

$`Mauchly's Test for Sphericity`
Effect W p p<.05

1 Wave 0.566 0.182

$`Sphericity Corrections`
Effect GGe DF[GG] p[GG] p[GG]<.05 HFe DF[HF] p[HF] p[HF]<.05

1 Wave 0.698 1.4, 9.77 0.068 0.817 1.63, 11.44 0.057

We can assemble our F string from the ANOVA object: 𝐹(2, 14) = 3.91, 𝑝 = 0.045, 𝜂2 = 0.203
From the Mauchly’s Test for Sphericity object we learn that we did not violate the sphericity
assumption: 𝑊 = 0.566, 𝑝 = .182
From the Sphericity Corrections object are output for two alternative corrections to the F statistic,
the Greenhouse-Geiser epsilon (GGe), and Huynh-Feldt epsilon (HFe). Because we did not violate
the sphericity assumption we do not need to use them. Notice that these two tests adjust our df
(both numerator and denominator) to have a more conservative p value.

If we needed to write an F string that is corrected for violation of the sphericity assumption, it
might look like this:
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The Greenhouse Geiser estimate was 0.698 the correct omnibus was F(1.4, 9.77) = 3.91,
p = .068. The Huyhn Feldt estimate was 0.817 and the corrected omnibus was F (1.63,
11.44) = 3.91 p = .057.

You might be surprised that we are at follow-up already.

### Planning
for the management of Type I Error
In a one-way repeated measures ANOVA, managing Type I error can be relatively straightforward.
The LSD (least significant differences) method is especially appropriate in the one-way ANOVA
scenario when there are only three levels in the factor. In this case, Green and Salkind [2017c]
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have suggested that alpha can be retained at the alpha level for the “family” (𝛼𝑓𝑎𝑚𝑖𝑙𝑦), which is
conventionally 𝑝 = .05 and used both to evaluate the omnibus and, so long as they don’t exceed
three in number, the planned or pairwise comparisons that follow. Because there are only three
levels (i.e., pre, post, follow-up) in this one-way repeated measures design this is what I will do.

More information about options for managing Type I error is included in the appendix.

9.5.3 Follow-up to Omnibus F

Given the simplicity of our design, it makes sense to me to follow-up with post hoc, pairwise,
comparisons. Note that when I am calculating these pairwise t tests, I am creating an object
(named “pwc”). The object will be a helpful tool in creating a Figure and an APA Style table.

Note that the script used to produced the figure will pull the symbols from the column labeled,
“p.adj.signif.” The rstatix::pairwise_t_test default is the traditional Bonferroni. Therefore, if we
want to use the LSD approach, we must “p.adjust.method” as “none.”

pwc <- Amodeo_long %>%
rstatix::pairwise_t_test(Resilience~Wave, paired = TRUE, p.adjust.method = "none")

pwc

# A tibble: 3 x 10
.y. group1 group2 n1 n2 statistic df p p.adj p.adj.signif

* <chr> <chr> <chr> <int> <int> <dbl> <dbl> <dbl> <dbl> <chr>
1 Resilience Pre Post 8 8 -2.15 7 0.069 0.069 ns
2 Resilience Pre Follow~ 8 8 -2.00 7 0.086 0.086 ns
3 Resilience Post Follow~ 8 8 1.06 7 0.325 0.325 ns

Although omnibus test had a statistically significant result, we did not obtain statistically significant
results in an of the posthoc pairwise comparisons. Why not?

• Our omnibus F was right at the margins

– a larger sample size (assuming that the effects would hold) would have been more pow-
erful.

– there could be significance if we compared pre to the combined effects of post and follow-
up.

How would we manage Type I error? With only three possible post-omnibus comparisons, I would
cite the Tukey LSD approach and not adjust the alpha to a more conservative level [Green and
Salkind, 2017c].

We can combine information from the object we created (“bxp”) from an earlier boxplot with the
object we saved from the posthoc pairwise comparisons (“pwc) to enhance our boxplot with the F
string and indications of pairwise significant (or, in our case, non-significance).
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RMbox <- ggpubr::ggboxplot(Amodeo_long, x = "Wave", y = "Resilience", add = "jitter", color = "Wave", title = "Figure 9.3 Resilience as a Function of Wave")
pwc <- pwc %>% rstatix::add_xy_position(x = "Wave")
RMbox <- RMbox+

ggpubr::stat_pvalue_manual(pwc, label = "p.adj.signif", tip.length = 0.01, hide.ns = FALSE, step.increase = 0.05) +
labs(
subtitle = rstatix::get_test_label(RM_AOV, detailed = TRUE),
caption = rstatix:: get_pwc_label(pwc)

)
RMbox
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Anova, F (2,14) = 3.91, p = 0.045, ηg
2 = 0.2

Figure 9.3 Resilience as a Function of Wave

pwc: T test ; p.adjust: None

Unfortunately, the apaTables package does not work with the rstatix package, so a table would
need to be crafted by hand.

9.6 APA Style Results

Repeated measures ANOVA has several assumptions regarding normality, outliers, and
sphericity. Regarding normality, no values of skew and kurtosis (at each wave of assess-
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ment) fell within cautionary ranges for skew and kurtosis [Kline, 2016a]. Additionally,
results of a model-based Shapiro-Wilk test of normality indicated that the model resid-
uals did not differ from a normal distribution (𝑊 = 0.957, 𝑝 = 0.385). Visual inspection
of boxplots for each wave of the design, assisted by the identify_outliers() function in
the rstatix package (which reports values above Q3 + 1.5xIQR or below Q1 - 1.5xIQR,
where IQR is the interquartile range) indicated no outliers. A non-significant Mauch-
ley’s test (𝑊 = 0.566, 𝑝 = .182) indicated that the sphericity assumption was not
violated.

The omnibus ANOVA was significant: 𝐹(2, 14) = 3.91, 𝑝 = 0.045, 𝜂2 = 0.203. We
followed up with all pairwise comparisons. Curiously, and in spite of a significant
omnibus test, there were not statistically significant differences between any of the
pairs. Regarding pre versus post, 𝑡 = −2.15, 𝑝 = .069. Regarding pre versus follow-up,
𝑡 = −2.00, 𝑝 = .068. Regarding post versus follow-up, 𝑡 = 1.059, 𝑝 = .325. Because
there were only three pairwise comparisons subsequent to the omnibus test, we used
the LSD (least significant differences) approach to managing Type I error and alpha was
retained at .05 [Green and Salkind, 2017c]. While the trajectories from pre-to-post and
pre-to-follow-up were in the expected direction, the small sample size likely contributed
to a Type II error. Descriptive statistics are reported in Table 1 and the differences are
illustrated in Figure 1.

While I have not located a package that will take rstatix output to make an APA style table, we
can use the MASS package to write the pwc object to a .csv file, then manually make our own
table.

MASS::write.matrix(pwc, sep = ",", file = "PWC.csv")

9.6.1 Comparison with Amodeo et al.[2018]

How do our findings and our write-up from the simulated data compare with the original article?

In the published manuscript, the F string is presented in the Table 1 note (𝐹[1.612, 11.283]) =
6.390, 𝑝 = 0.18, 𝜂2

𝑝). We can tell from the fractional degrees of freedom that the p value has been
had a correction for violation of the sphericity assumption.

Table 1 also reports all of the post hoc, pairwise comparisons. There is no mention of control for
Type I error. Had they used a traditional Bonferroni, they would have needed to reduce the alpha
to (k*(k-1)/2) and then divide .05 by that number.

(3 * (3-1))/2

[1] 3

.05/3

[1] 0.01666667
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Although Amodeo et al. report six comparisons; three are repeated because they are merely in
reverse. Thus, the revised alpha would be .016 and the one, lone, comparison would not have
been statistically significant. That said, the Tukey LSD is appropriate because there are only 3
comparisons and holding alpha at .05 can be defended [Green and Salkind, 2017c].

• Regarding the presentation of the results

– there is no figure
– there is no data presented in the text; all data is presented in Table 1

• Regarding the research design and its limitations

– the authors note that a control condition would have better supported the conclusions
– the authors note the limited sample size and argue that this is a difficult group to recruit

for intervention and evaluation
– the article is centered around the qualitative aspect of the design; the quantitative

portion is, appropriately, secondary

Figure 9.10: Another peek at the research design for the Amodeo et al study

9.7 Power Analysis

Power analysis allows us to determine the probability of detecting an effect of a given size with a
given level of confidence. The package wp.rmanova was designed for power analysis in repeated
measures ANOVA.
In the WebPower package, we specify 6 of 7 interrelated elements; the package computes the missing
one.

• n = sample size (number of individuals in the whole study).
• ng = number of groups.
• nm = number of measurements/conditions/waves.
• f = Cohen’s f (an effect size; we can use an effect size converter to obtain this value)

– Cohen suggests that f values of 0.1, 0.25, and 0.4 represent small, medium, and large
effect sizes, respectively.

• nscor = the Greenhouse Geiser correction from our ouput; 1.0 means no correction was needed
and is the package’s default; < 1 means some correction was applied.

• alpha = is the probability of Type I error; we traditionally set this at .05
• power = 1 - P(Type II error) we traditionally set this at .80 (so anything less is less than

what we want).
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• type = 0 is for between-subjects, 1 is for repeated measures, 2 is for interaction effect.

I used effectsize::eta2_to_f packages convert our 𝜂2 to Cohen’s f.

effectsize::eta2_to_f(.203)

[1] 0.5046832

Retrieving the information about our study, we add it to all the arguments except the one we wish
to calculate. For power analysis, we write “power = NULL.”

WebPower::wp.rmanova(n=8, ng=1, nm=3, f = .5047, nscor = .689, alpha = .05, power = NULL, type = 1)

Repeated-measures ANOVA analysis

n f ng nm nscor alpha power
8 0.5047 1 3 0.689 0.05 0.1619613

NOTE: Power analysis for within-effect test
URL: http://psychstat.org/rmanova

Here we learned that we were only powered at .16. That is, we had a 16% chance of finding a
statistically significant effect if, in fact, it existed. This is low!

In reverse, setting power at .80 (the traditional value) and changing n to NULL yields a recom-
mended sample size.
In many cases we won’t know some of the values in advance. We can make best guesses based on
our review of the literature.

WebPower::wp.rmanova(n=NULL, ng=1, nm=3, f = .5047, nscor = .689, alpha = .05, power = .80, type = 1)

Repeated-measures ANOVA analysis

n f ng nm nscor alpha power
50.87736 0.5047 1 3 0.689 0.05 0.8

NOTE: Power analysis for within-effect test
URL: http://psychstat.org/rmanova

With these new values, we learn that we would need 50 individuals in order to feel confident in our
ability to get a statistically significant result if, in fact, it existed.
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9.8 Practice Problems

The suggestions for homework differ in degree of complexity. I encourage you to start with a
problem that feels “do-able” and then try at least one more problem that challenges you in some
way. All problems attempted should have at least three levels in the independent variable. At least
one problem should have a significant omnibus test and require follow-up.

Regardless, your choices should meet you where you are (e.g., in terms of your self-efficacy for
statistics, your learning goals, and competing life demands). Whichever you choose, you will focus
on these larger steps in one-way repeated measures/within-subjects ANOVA, including:

• test the statistical assumptions
• conduct a one-way, including

– omnibus test and effect size
– conduct follow-up testing

• write a results section to include a figure and tables

9.8.1 Problem #1: Change the Random Seed

If repeated measures ANOVA is new to you, perhaps change the random seed and follow-along
with the lesson.

9.8.2 Problem #2: Increase N

Our analysis of the Amodeo et al. [Amodeo et al., 2018] data failed to find significant increases in
resilience from pre-to-post through follow-up. Our power analysis suggested that a sample size of
50 would be sufficient to garner statistical significance. The script below re-simulates the data by
increasing the sample size to 50 (from 8). All else remains the same.

set.seed(2022)
ID<-factor(c(rep(seq(1,50),each=3)))#gives me 8 numbers, assigning each number 3 consecutive spots, in sequence
Resilience<-rnorm(150,mean=c(5.7,6.21,6.26),sd=c(.88,.79,.37)) #gives me a column of 24 numbers with the specified Ms and SD
Wave<-rep(c("Pre","Post", "FollowUp"),each=1,50) #repeats pre, post, follow-up once each, 8 times
Amodeo50_long<-data.frame(ID, Wave, Resilience)

9.8.3 Problem #3: Try Something Entirely New

Using data for which you have permission and access (e.g., IRB approved data you have collected
or from your lab; data you simulate from a published article; data from an open science repository;
data from other chapters in this OER), complete a one-way repeated measures ANOVA. Please
have at least 3 levels for the predictor variable.
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9.8.4 Grading Rubric

Regardless which option(s) you chose, use the elements in the grading rubric to guide you through
the practice.

Assignment Component Points Possible Points Earned
1. Narrate the research vignette, describing the IV
and DV. The data you analyze should have at least
3 levels in the independent variable; at least one of
the attempted problems should have a significant
omnibus test so that follow-up is required)

5 _____

2. Check and, if needed, format data 5 _____
3. Evaluate statistical assumptions 5 _____
4. Conduct omnibus ANOVA (w effect size) 5 _____
5. Conduct all possible pairwise comparisons (like
in the lecture)

5 _____

6. Describe approach for managing Type I error 5 _____
7. APA style results with figure 5 _____
8. Conduct power analyses to determine the power
of the current study and a recommended sample
size.

5 _____

9. Explanation to grader 5 _____
Totals 40 _____

Hand Calculations Points Possible Points Earned
1. Calculate sums of squares total (SST) for the
omnibus ANOVA. Steps in this calculation must
include calculating a grand mean and creating
variables representing the mean deviation and mean
deviation squared.

4 _____

2. Calculate the sums of squares within (SSW) for
the omnibus ANOVA. A necessary step in this
equation is to calculate the variance for each case
(student).

4 _____

3. Calculate sums of squares model (SSM) for for the
effect of time (or repeated measures).

4 _____

4. Calculate sums of squares residual (SSR). 4 _____
5. Calculate the sums of squares between (SSB). 4 _____
6. Create a source table that includes the sums of
squares, degrees of freedom, mean squares, F values,
and F critical values

8 _____

6. Are the F-tests statistically significant? Why or
why not?

2 _____

7. Assemble the results into a statistical strings 4 _____
Totals 26 _____
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9.9 Homeworked Example

Screencast Link

For more information about the data used in this homeworked example, please refer to the descrip-
tion and codebook located at the end of the introduction.

9.9.1 Working the Problem with R and R Packages

Narrate the research vignette, describing the IV and DV. The data you analyze should
have at least 3 levels in the independent variable; at least one of the attempted prob-
lems should have a significant omnibus test so that follow-up is required)

I want to ask the question, do course evaluation ratings for the traditional pedagogy dimension differ
for students across the ANOVA, multivariate, and psychometrics courses (in that order, because
that’s the order in which the students take the class.)

The dependent variable is the evaluation of traditional pedagogy. The independent variable is
course/time (i.e., each student offers course evaluations in each of the three classes).

If you wanted to use this example and dataset as a basis for a homework assignment, the three
different classes are the only repeated measures variable. Rather, you could choose a different
dependent variable. I chose the traditional pedagogy subscale. Two other subscales include socially
responsive pedagogy and valued by the student.

Check and, if needed, format data

big <- readRDS("ReC.rds")

The TradPed (traditional pedagogy) variable is an average of the items on that scale. I will first
create that variable.

#This code was recently updated and likely differs from the screencasted lecture

#Calculates a mean if at least 75% of the items are non-missing; adjusts the calculating when there is missingness
big$TradPed <- datawizard::row_means(big, select = c('ClearResponsibilities', 'EffectiveAnswers','Feedback', 'ClearOrganization','ClearPresentation'), min_valid = .75)

Let’s trim to just the variables we need.

rm1wLONG_df <- (dplyr::select (big, deID, Course, TradPed))
head(rm1wLONG_df)

deID Course TradPed
1 1 ANOVA 4.4
2 2 ANOVA 3.8
3 3 ANOVA 4.0

https://youtu.be/3UhTJXp8uNI
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4 4 ANOVA 3.0
5 5 ANOVA 4.8
6 6 ANOVA 3.5

• Grouping variables: factors
• Dependent variable: numerical or integer

str(rm1wLONG_df)

Classes 'data.table' and 'data.frame': 310 obs. of 3 variables:
$ deID : int 1 2 3 4 5 6 7 8 9 10 ...
$ Course : Factor w/ 3 levels "Psychometrics",..: 2 2 2 2 2 2 2 2 2 2 ...
$ TradPed: num 4.4 3.8 4 3 4.8 3.5 4.6 3.8 3.6 4.6 ...
- attr(*, ".internal.selfref")=<externalptr>

rm1wLONG_df$Course <- factor(rm1wLONG_df$Course, levels = c("ANOVA", "Multivariate", "Psychometrics"))
str(rm1wLONG_df)

Classes 'data.table' and 'data.frame': 310 obs. of 3 variables:
$ deID : int 1 2 3 4 5 6 7 8 9 10 ...
$ Course : Factor w/ 3 levels "ANOVA","Multivariate",..: 1 1 1 1 1 1 1 1 1 1 ...
$ TradPed: num 4.4 3.8 4 3 4.8 3.5 4.6 3.8 3.6 4.6 ...
- attr(*, ".internal.selfref")=<externalptr>

Let’s update the df to have only complete cases.

rm1wLONG_df <- na.omit(rm1wLONG_df)
nrow(rm1wLONG_df)#counts number of rows (cases)

[1] 307

This took us to 307 cases.
These analyses require that students have completed evaluations for all three courses. In the lesson,
I restructured the data from long, to wide, back to long again. While this was useful pedagogy in
understanding the difference between the two data structures, there is also super quick code that
will simply retain data that has at least three observations per student.

library(tidyverse)
rm1wLONG_df <- rm1wLONG_df%>%

dplyr::group_by(deID)%>%
dplyr::filter(n()==3)

This took the data to 210 observations. Since each student contributed 3 observations, we know
𝑁 = 70.
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210/3

[1] 70

Before we start, let’s get a plot of what’s happening:

bxp <- ggpubr::ggboxplot(rm1wLONG_df, x = "Course", y = "TradPed", add = "point", color = "Course",
xlab = "Statistics Course", ylab = "Traditional Pedagogy Course Eval Ratings", title = "Course Evaluations across Doctoral Statistics Courses")

bxp
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Evaluate statistical assumptions

Is the dependent variable normally distributed?
Given that this is a one-way repeated measures ANOVA model, the dependent variable must be
normally distributed within each of the cells of the factor.
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We can examine skew and kurtosis in each of the levels of the TradPed variable with
psych::describeBy().

#R wasn't recognizing the data, so I quickly applied the as.data.frame function
rm1wLONG_df <- as.data.frame(rm1wLONG_df)
psych::describeBy(TradPed ~ Course, mat = TRUE, type = 1, data = rm1wLONG_df)

item group1 vars n mean sd median trimmed mad
TradPed1 1 ANOVA 1 70 4.211429 0.7108971 4.2 4.296429 0.88956
TradPed2 2 Multivariate 1 70 4.332143 0.7267176 4.4 4.453571 0.59304
TradPed3 3 Psychometrics 1 70 4.414286 0.6718535 4.6 4.532143 0.59304

min max range skew kurtosis se
TradPed1 2.2 5 2.8 -0.7864361 -0.008737723 0.08496846
TradPed2 1.2 5 3.8 -2.0368575 5.752276032 0.08685937
TradPed3 2.4 5 2.6 -1.3145875 1.306390888 0.08030186

Although we note some skew and kurtosis, particularly for the multivariate class, none exceed the
critical thresholds of |3| for skew and |10| identified by Kline [2016a].

I can formally test for normality with the Shapiro-Wilk test. If I use the residuals from an evaluated
model, with one test, I can determine if TradPed is distributed normally within each of the courses.

#running the model
RMres_TradPed <- lm(TradPed ~ Course, data = rm1wLONG_df)
summary(RMres_TradPed)

Call:
lm(formula = TradPed ~ Course, data = rm1wLONG_df)

Residuals:
Min 1Q Median 3Q Max

-3.13214 -0.33214 0.06786 0.58571 0.78857

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.21143 0.08409 50.083 <0.0000000000000002 ***
CourseMultivariate 0.12071 0.11892 1.015 0.3112
CoursePsychometrics 0.20286 0.11892 1.706 0.0895 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.7035 on 207 degrees of freedom
Multiple R-squared: 0.01403, Adjusted R-squared: 0.004501
F-statistic: 1.472 on 2 and 207 DF, p-value: 0.2317

We will ignore this for now, but use the residuals in the formal Shapiro-Wilk test.
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rstatix::shapiro_test(residuals(RMres_TradPed))

# A tibble: 1 x 3
variable statistic p.value
<chr> <dbl> <dbl>

1 residuals(RMres_TradPed) 0.876 4.11e-12

The distribution of model residuals is statistically significantly different than a normal distribution
(𝑊 = 0.876, 𝑝 < .001). Although we have violated the assumption of normality, ANOVA models
are relatively robust to such a violation when cell sizes are roughly equal and greater than 15 each
[Green and Salkind, 2017b].
Creating a QQ plot can let us know how badly the distribution departs from a normal one.

ggpubr::ggqqplot(residuals(RMres_TradPed))
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We can identify outliers and see if they are reasonable or should be removed.
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library(tidyverse)
rm1wLONG_df %>%

group_by(Course)%>%
rstatix::identify_outliers(TradPed)

# A tibble: 6 x 5
Course deID TradPed is.outlier is.extreme
<fct> <int> <dbl> <lgl> <lgl>

1 ANOVA 16 2.2 TRUE FALSE
2 ANOVA 29 2.4 TRUE FALSE
3 Multivariate 51 1.2 TRUE FALSE
4 Multivariate 61 1.6 TRUE FALSE
5 Psychometrics 11 2.4 TRUE FALSE
6 Psychometrics 16 2.4 TRUE FALSE

Outliers for the TradPed variable are among the lowest evaluations (these can be seen on the
boxplot). Although there are six outliers identified, none are extreme. Although they contribute
to non-normality, I think it’s important that this sentiment be retained in the dataset.

Assumption of sphericity

We will need to evaluate and include information about violations related to sphericity. Because
these are calculated at the same time as the ANOVA, itself, I will simply leave this here as a
placeholder.

Here’s how I would write up the evaluation of assumptions so far:

We utilized one-way repeated measures ANOVA to determine if there were differences
in students’ evaluation of traditional pedagogy across three courses – ANOVA, multi-
variate, and psychometrics – taught in that order.

Repeated measures ANOVA has several assumptions regarding normality, outliers, and
sphericity. Although we note some skew and kurtosis, particularly for the multivariate
class, none exceed the critical thresholds of |3| for skew and |10| identified by Kline
[2016a]. We formally evaluated the normality assumption with the Shapiro-Wilk test.
The distribution of model residuals was statistically significantly different than a normal
distribution (𝑊 = 0.876, 𝑝 < .001). Although we violated the assumption of normality,
ANOVA models are relatively robust to such a violation when cell sizes are roughly equal
and greater than 15 each [Green and Salkind, 2017b]. Although our data included
six outliers, none were classified as extreme. Because they represented lower course
evaluations, we believed it important to retain them in the dataset. PLACEHOLDER
FOR SPHERICITY.

Conduct omnibus ANOVA (w effect size)
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rmAOV <- rstatix::anova_test(data = rm1wLONG_df, dv = TradPed, wid = deID, within = Course)
rmAOV

ANOVA Table (type III tests)

$ANOVA
Effect DFn DFd F p p<.05 ges

1 Course 2 138 2.838 0.062 0.014

$`Mauchly's Test for Sphericity`
Effect W p p<.05

1 Course 0.878 0.012 *

$`Sphericity Corrections`
Effect GGe DF[GG] p[GG] p[GG]<.05 HFe DF[HF] p[HF] p[HF]<.05

1 Course 0.891 1.78, 122.98 0.068 0.913 1.83, 126.02 0.067

Let’s start first with the sphericity test. Mauchly’s test for sphericity was statistically significant,
(𝑊 = 0.878, 𝑝 = 0.012). Had we not violated the assumption, our F string would have been created
from the data in the ANOVA section of the output : 𝐹(2, 138) = 2.838, 𝑝 = 0.062, 𝜂2 = 0.14
However, because we violated the assumption, we need to use the degrees-of-freedom adjusted
output under the “Sphericity Corrections” section; 𝐹(1.78, 122.98) = 2.838, 𝑝 = 0.068, 𝑔𝑒𝑠 = 0.014.
While the ANOVA is non-significant, because this is a homework demonstration, I will behave as
if the test is significant and continue with the pairwise comparisons.

Conduct all possible pairwise comparisons (like in the lecture)

I will follow up with a test of all possible pairwise comparisons and adjust with the bonferroni.

pwc <- rstatix::pairwise_t_test(TradPed ~ Course, paired = TRUE, p.adjust.method = "bonf", data = rm1wLONG_df)
pwc

# A tibble: 3 x 10
.y. group1 group2 n1 n2 statistic df p p.adj p.adj.signif

* <chr> <chr> <chr> <int> <int> <dbl> <dbl> <dbl> <dbl> <chr>
1 TradPed ANOVA Multi~ 70 70 -1.21 69 0.229 0.687 ns
2 TradPed ANOVA Psych~ 70 70 -2.07 69 0.043 0.128 ns
3 TradPed Multivari~ Psych~ 70 70 -0.772 69 0.443 1 ns

Consistent with the non-significant omnibus, there were non-significant differences between the
pairs. This included, ANOVA and multivariate (𝑡[69] = −1.215, 𝑝 = 0.687); ANOVA and psy-
chometrics courses (𝑡[69] = −2.065, 𝑝 = 0.128); and multivariate and psychometrics (𝑡[69] =
−0.772, 𝑝 = 1.000).
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Describe approach for managing Type I error

I used a traditional Bonferroni for the three, follow-up, pairwise comparisons.

APA style results with figure

We utilized one-way repeated measures ANOVA to determine if there were differences
in students’ evaluation of traditional pedagogy across three courses – ANOVA, multi-
variate, and psychometrics – taught in that order.

Repeated measures ANOVA has several assumptions regarding normality, outliers, and
sphericity. Although we note some skew and kurtosis, particularly for the multivariate
class, none exceed the critical thresholds of |3| for skew and |10| identified by Kline
[2016a]. We formally evaluated the normality assumption with the Shapiro-Wilk test.
The distribution of model residuals was statistically significantly different than a normal
distribution (𝑊 = 0.876, 𝑝 < .001). Although we violated the assumption of normality,
ANOVA models are relatively robust to such a violation when cell sizes are roughly equal
and greater than 15 each [Green and Salkind, 2017b]. Although our data included
six outliers, none were classified as extreme. Because they represented lower course
evaluations, we believed it important to retain them in the dataset. Mauchly’s test
indicated a violation of the sphericity assumption (𝑊 = 0.878, 𝑝 = 0.012).

Given the violation of the homogeneity of sphericity assumption, we are reporting the
Greenhouse-Geyser adjusted values. Results of the omnibus ANOVA were not statisti-
cally significant 𝐹(1.78, 122.98) = 2.838, 𝑝 = 0.068, 𝑔𝑒𝑠 = 0.014.

Although we would normally not follow-up a non-significant omnibus ANOVA with more
testing, because this is a homework demonstration, we will follow-up the ANOVA with
pairwise comparisons and manage Type I error with the traditional Bonferroni approach.
Consistent with the non-significant omnibus, there were non-significant differences be-
tween the pairs. This included, ANOVA and multivariate (𝑡[69] = −1.215, 𝑝 = 0.687);
ANOVA and psychometrics courses (𝑡[69] = −2.065, 𝑝 = 0.128); and multivariate and
psychometrics (𝑡[69] = −0.772, 𝑝 = 1.000).

I can update the figure to include star bars.

library(tidyverse)
pwc <- pwc %>%

rstatix::add_xy_position(x = "Course")
bxp <- bxp + ggpubr::stat_pvalue_manual(pwc, label = "p.adj.signif", tip.length = 0.01, hide.ns = FALSE, y.position = c(5.25, 5.5, 5.75))
bxp
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Conduct power analyses to determine the power of the current study and a recom-
mended sample size

In the WebPower package, we specify 6 of 7 interrelated elements; the package computes the missing
one.

• n = sample size (number of individuals in the whole study).
• ng = number of groups.
• nm = number of measurements/conditions/waves.
• f = Cohen’s f (an effect size; we can use an effect size converter to obtain this value)

– Cohen suggests that f values of 0.1, 0.25, and 0.4 represent small, medium, and large
effect sizes, respectively.

• nscor = the Greenhouse Geiser correction from our ouput; 1.0 means no correction was needed
and is the package’s default; < 1 means some correction was applied.

• alpha = is the probability of Type I error; we traditionally set this at .05
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• power = 1 - P(Type II error) we traditionally set this at .80 (so anything less is less than
what we want).

• type = 0 is for between-subjects, 1 is for repeated measures, 2 is for interaction effect.

I used effectsize::eta2_to_f packages convert our 𝜂2 to Cohen’s f.

effectsize::eta2_to_f(.014)

[1] 0.1191586

Retrieving the information about our study, we add it to all the arguments except the one we wish
to calculate. For power analysis, we write “power = NULL.”

WebPower::wp.rmanova(n=70, ng=1, nm=3, f = .1192, nscor = .891, alpha = .05, power = NULL, type = 1)

Repeated-measures ANOVA analysis

n f ng nm nscor alpha power
70 0.1192 1 3 0.891 0.05 0.1256669

NOTE: Power analysis for within-effect test
URL: http://psychstat.org/rmanova

The study had a power of 13%. That is, we had a 13% probability of finding a statistically significant
result if one existed.

In reverse, setting power at .80 (the traditional value) and changing n to NULL yields a recom-
mended sample size.

WebPower::wp.rmanova(n=NULL, ng=1, nm=3, f = .1192, nscor = .891, alpha = .05, power = .80, type = 1)

Repeated-measures ANOVA analysis

n f ng nm nscor alpha power
736.7714 0.1192 1 3 0.891 0.05 0.8

NOTE: Power analysis for within-effect test
URL: http://psychstat.org/rmanova

With these new values, we learn that we would need 737 individuals in order to obtain a statistically
significant result 80% of the time.
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9.9.2 Hand Calculations

For hand calculations, I will use the same dataframe (rm1wLONG_df) as I did for the calculations
with R and R packages.Before we continue:

You may notice that the results from the hand calculation are slightly different from
the results I will obtain with the R packages. This was true in the lesson as well. Hand
calculations and those used in the R packages likely differ on how the sums of squares
is calculated. While the results are “close-ish” they are not always identical.

Should we be concerned? No (and yes). My purpose in teaching hand calculations
is for creating a conceptual overview of what is occurring in ANOVA models. If this
lesson was a deeper exploration into the inner workings of ANOVA, we would take
more time to understand what is occurring. My goal is to provide you with enough of
an introduction to ANOVA that you would be able to explore further which sums of
squares type would be most appropriate for your unique ANOVA model.

Calculate sums of squares total (SST) for the omnibus ANOVA. Steps in this calcu-
lation must include calculating a grand mean and creating variables representing the
mean deviation and mean deviation squared

The formula for sums of squares total:

𝑆𝑆𝑇 = ∑(𝑥𝑖 − ̄𝑥𝑔𝑟𝑎𝑛𝑑)2

.
We can use the mean function from base R to calculate the grand mean:

mean(rm1wLONG_df$TradPed)

[1] 4.319286

I will create a mean deviation variable by subtracting the mean from each score:

rm1wLONG_df$mDev <- rm1wLONG_df$TradPed - 4.319286
head(rm1wLONG_df)#shows first six rows of dataset

deID Course TradPed mDev
1 11 Psychometrics 2.4 -1.919286
2 12 Psychometrics 4.8 0.480714
3 13 Psychometrics 4.8 0.480714
4 14 Psychometrics 3.2 -1.119286
5 15 Psychometrics 3.6 -0.719286
6 16 Psychometrics 2.4 -1.919286

Now I will square the mean deviation:
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rm1wLONG_df$mDev2 <- rm1wLONG_df$mDev * rm1wLONG_df$mDev
head(rm1wLONG_df)#shows first six rows of dataset

deID Course TradPed mDev mDev2
1 11 Psychometrics 2.4 -1.919286 3.6836587
2 12 Psychometrics 4.8 0.480714 0.2310859
3 13 Psychometrics 4.8 0.480714 0.2310859
4 14 Psychometrics 3.2 -1.119286 1.2528011
5 15 Psychometrics 3.6 -0.719286 0.5173723
6 16 Psychometrics 2.4 -1.919286 3.6836587

Sums of squares total is the sum of the mean deviation squared scores.

SST <- sum(rm1wLONG_df$mDev2)
SST

[1] 103.9144

The sums of squares total is 103.9144.

Calculate the sums of squares within (SSW) for the omnibus ANOVA. A necessary
step in this equation is to calculate the variance for each student

Here is the formula for sums of squares within:

𝑆𝑆𝑊 = 𝑠2
𝑝𝑒𝑟𝑠𝑜𝑛1(𝑛1 − 1) + 𝑠2

𝑝𝑒𝑟𝑠𝑜𝑛2(𝑛2 − 1) + 𝑠2
𝑝𝑒𝑟𝑠𝑜𝑛3(𝑛3 − 1) + ... + 𝑠2

𝑝𝑒𝑟𝑠𝑜𝑛𝑘(𝑛𝑘 − 1)

I can get the use the psych::describeBy() to obtain the standard deviations for each student’s three
ratings. I can square each of those for the variance to enter into the formula.

psych::describeBy(TradPed ~ deID, mat=TRUE, type = 1, data = rm1wLONG_df)

item group1 vars n mean sd median trimmed mad min
TradPed1 1 11 1 3 3.400000 0.8717798 3.8 3.400000 0.29652 2.40
TradPed2 2 12 1 3 4.666667 0.4163332 4.8 4.666667 0.29652 4.20
TradPed3 3 13 1 3 4.400000 0.6928203 4.8 4.400000 0.00000 3.60
TradPed4 4 14 1 3 3.600000 0.4000000 3.6 3.600000 0.59304 3.20
TradPed5 5 15 1 3 3.733333 0.4163332 3.6 3.733333 0.29652 3.40
TradPed6 6 16 1 3 2.533333 0.4163332 2.4 2.533333 0.29652 2.20
TradPed7 7 17 1 3 4.600000 0.5291503 4.8 4.600000 0.29652 4.00
TradPed8 8 18 1 3 4.400000 0.5291503 4.6 4.400000 0.29652 3.80
TradPed9 9 19 1 3 4.133333 0.7023769 4.2 4.133333 0.88956 3.40
TradPed10 10 23 1 3 4.733333 0.4618802 5.0 4.733333 0.00000 4.20
TradPed11 11 24 1 3 3.866667 0.4163332 4.0 3.866667 0.29652 3.40
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TradPed12 12 25 1 3 4.933333 0.1154701 5.0 4.933333 0.00000 4.80
TradPed13 13 26 1 3 4.733333 0.3055050 4.8 4.733333 0.29652 4.40
TradPed14 14 28 1 3 4.933333 0.1154701 5.0 4.933333 0.00000 4.80
TradPed15 15 29 1 3 3.733333 1.2220202 4.0 3.733333 1.18608 2.40
TradPed16 16 30 1 3 4.666667 0.4163332 4.8 4.666667 0.29652 4.20
TradPed17 17 31 1 3 3.666667 0.9018500 3.6 3.666667 1.18608 2.80
TradPed18 18 32 1 3 4.533333 0.5033223 4.6 4.533333 0.59304 4.00
TradPed19 19 33 1 3 4.000000 0.0000000 4.0 4.000000 0.00000 4.00
TradPed20 20 34 1 3 4.066667 0.9451631 4.4 4.066667 0.59304 3.00
TradPed21 21 39 1 3 3.733333 1.0066446 3.6 3.733333 1.18608 2.80
TradPed22 22 40 1 3 4.933333 0.1154701 5.0 4.933333 0.00000 4.80
TradPed23 23 41 1 3 4.666667 0.3055050 4.6 4.666667 0.29652 4.40
TradPed24 24 43 1 3 4.200000 0.3464102 4.4 4.200000 0.00000 3.80
TradPed25 25 46 1 3 3.883333 0.5484828 4.2 3.883333 0.00000 3.25
TradPed26 26 47 1 3 4.133333 0.1154701 4.2 4.133333 0.00000 4.00
TradPed27 27 48 1 3 4.933333 0.1154701 5.0 4.933333 0.00000 4.80
TradPed28 28 51 1 3 2.933333 1.6165808 3.2 2.933333 1.77912 1.20
TradPed29 29 52 1 3 3.733333 0.1154701 3.8 3.733333 0.00000 3.60
TradPed30 30 53 1 3 4.266667 0.3055050 4.2 4.266667 0.29652 4.00
TradPed31 31 54 1 3 4.800000 0.3464102 5.0 4.800000 0.00000 4.40
TradPed32 32 55 1 3 4.200000 0.9165151 4.4 4.200000 0.88956 3.20
TradPed33 33 56 1 3 3.466667 0.4163332 3.6 3.466667 0.29652 3.00
TradPed34 34 58 1 3 4.533333 0.4163332 4.4 4.533333 0.29652 4.20
TradPed35 35 60 1 3 4.800000 0.3464102 5.0 4.800000 0.00000 4.40
TradPed36 36 61 1 3 2.333333 0.6429101 2.6 2.333333 0.29652 1.60
TradPed37 37 62 1 3 4.600000 0.3464102 4.4 4.600000 0.00000 4.40
TradPed38 38 63 1 3 4.600000 0.5291503 4.8 4.600000 0.29652 4.00
TradPed39 39 64 1 3 3.666667 0.1154701 3.6 3.666667 0.00000 3.60
TradPed40 40 65 1 3 4.866667 0.2309401 5.0 4.866667 0.00000 4.60
TradPed41 41 66 1 3 4.933333 0.1154701 5.0 4.933333 0.00000 4.80
TradPed42 42 67 1 3 4.200000 0.9165151 4.4 4.200000 0.88956 3.20
TradPed43 43 68 1 3 4.933333 0.1154701 5.0 4.933333 0.00000 4.80
TradPed44 44 69 1 3 4.000000 0.5291503 4.2 4.000000 0.29652 3.40
TradPed45 45 70 1 3 4.400000 0.5291503 4.2 4.400000 0.29652 4.00
TradPed46 46 71 1 3 4.400000 0.5291503 4.2 4.400000 0.29652 4.00
TradPed47 47 72 1 3 4.800000 0.3464102 5.0 4.800000 0.00000 4.40
TradPed48 48 73 1 3 4.933333 0.1154701 5.0 4.933333 0.00000 4.80
TradPed49 49 74 1 3 4.866667 0.2309401 5.0 4.866667 0.00000 4.60
TradPed50 50 75 1 3 4.866667 0.2309401 5.0 4.866667 0.00000 4.60
TradPed51 51 76 1 3 5.000000 0.0000000 5.0 5.000000 0.00000 5.00
TradPed52 52 77 1 3 4.000000 0.2000000 4.0 4.000000 0.29652 3.80
TradPed53 53 78 1 3 4.066667 0.1154701 4.0 4.066667 0.00000 4.00
TradPed54 54 79 1 3 4.466667 0.5033223 4.4 4.466667 0.59304 4.00
TradPed55 55 80 1 3 4.333333 0.3055050 4.4 4.333333 0.29652 4.00
TradPed56 56 81 1 3 5.000000 0.0000000 5.0 5.000000 0.00000 5.00
TradPed57 57 82 1 3 4.866667 0.2309401 5.0 4.866667 0.00000 4.60
TradPed58 58 83 1 3 4.733333 0.4618802 5.0 4.733333 0.00000 4.20
TradPed59 59 84 1 3 4.133333 0.4163332 4.0 4.133333 0.29652 3.80
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TradPed60 60 86 1 3 4.733333 0.3055050 4.8 4.733333 0.29652 4.40
TradPed61 61 87 1 3 4.600000 0.4000000 4.6 4.600000 0.59304 4.20
TradPed62 62 115 1 3 4.600000 0.3464102 4.8 4.600000 0.00000 4.20
TradPed63 63 116 1 3 3.733333 0.8326664 4.0 3.733333 0.59304 2.80
TradPed64 64 117 1 3 4.333333 0.5773503 4.0 4.333333 0.00000 4.00
TradPed65 65 118 1 3 4.000000 0.0000000 4.0 4.000000 0.00000 4.00
TradPed66 66 124 1 3 4.800000 0.2000000 4.8 4.800000 0.29652 4.60
TradPed67 67 136 1 3 4.533333 0.3055050 4.6 4.533333 0.29652 4.20
TradPed68 68 137 1 3 4.200000 0.3464102 4.0 4.200000 0.00000 4.00
TradPed69 69 138 1 3 4.733333 0.4618802 5.0 4.733333 0.00000 4.20
TradPed70 70 139 1 3 4.533333 0.3055050 4.6 4.533333 0.29652 4.20

max range skew kurtosis se
TradPed1 4.0 1.60 -0.665468866123835 -1.5 0.50332230
TradPed2 5.0 0.80 -0.528004979218190 -1.5 0.24037009
TradPed3 4.8 1.20 -0.707106781186550 -1.5 0.40000000
TradPed4 4.0 0.80 0.000000000000000 -1.5 0.23094011
TradPed5 4.2 0.80 0.528004979218188 -1.5 0.24037009
TradPed6 3.0 0.80 0.528004979218190 -1.5 0.24037009
TradPed7 5.0 1.00 -0.595170064139495 -1.5 0.30550505
TradPed8 4.8 1.00 -0.595170064139495 -1.5 0.30550505
TradPed9 4.8 1.40 -0.172800544078648 -1.5 0.40551750
TradPed10 5.0 0.80 -0.707106781186547 -1.5 0.26666667
TradPed11 4.2 0.80 -0.528004979218188 -1.5 0.24037009
TradPed12 5.0 0.20 -0.707106781186557 -1.5 0.06666667
TradPed13 5.0 0.60 -0.381801774160605 -1.5 0.17638342
TradPed14 5.0 0.20 -0.707106781186557 -1.5 0.06666667
TradPed15 4.8 2.40 -0.381801774160607 -1.5 0.70553368
TradPed16 5.0 0.80 -0.528004979218190 -1.5 0.24037009
TradPed17 4.6 1.80 0.135061522784740 -1.5 0.52068331
TradPed18 5.0 1.00 -0.239063146929544 -1.5 0.29059326
TradPed19 4.0 0.00 NaN NaN 0.00000000
TradPed20 4.8 1.80 -0.567316577993728 -1.5 0.54569018
TradPed21 4.8 2.00 0.239063146929544 -1.5 0.58118653
TradPed22 5.0 0.20 -0.707106781186557 -1.5 0.06666667
TradPed23 5.0 0.60 0.381801774160605 -1.5 0.17638342
TradPed24 4.4 0.60 -0.707106781186547 -1.5 0.20000000
TradPed25 4.2 0.95 -0.707106781186547 -1.5 0.31666667
TradPed26 4.2 0.20 -0.707106781186557 -1.5 0.06666667
TradPed27 5.0 0.20 -0.707106781186557 -1.5 0.06666667
TradPed28 4.4 3.20 -0.294799620144829 -1.5 0.93333333
TradPed29 3.8 0.20 -0.707106781186552 -1.5 0.06666667
TradPed30 4.6 0.60 0.381801774160605 -1.5 0.17638342
TradPed31 5.0 0.60 -0.707106781186544 -1.5 0.20000000
TradPed32 5.0 1.80 -0.381801774160607 -1.5 0.52915026
TradPed33 3.8 0.80 -0.528004979218190 -1.5 0.24037009
TradPed34 5.0 0.80 0.528004979218190 -1.5 0.24037009
TradPed35 5.0 0.60 -0.707106781186544 -1.5 0.20000000
TradPed36 2.8 1.20 -0.630903856710625 -1.5 0.37118429
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TradPed37 5.0 0.60 0.707106781186544 -1.5 0.20000000
TradPed38 5.0 1.00 -0.595170064139495 -1.5 0.30550505
TradPed39 3.8 0.20 0.707106781186552 -1.5 0.06666667
TradPed40 5.0 0.40 -0.707106781186543 -1.5 0.13333333
TradPed41 5.0 0.20 -0.707106781186557 -1.5 0.06666667
TradPed42 5.0 1.80 -0.381801774160607 -1.5 0.52915026
TradPed43 5.0 0.20 -0.707106781186557 -1.5 0.06666667
TradPed44 4.4 1.00 -0.595170064139496 -1.5 0.30550505
TradPed45 5.0 1.00 0.595170064139495 -1.5 0.30550505
TradPed46 5.0 1.00 0.595170064139495 -1.5 0.30550505
TradPed47 5.0 0.60 -0.707106781186544 -1.5 0.20000000
TradPed48 5.0 0.20 -0.707106781186557 -1.5 0.06666667
TradPed49 5.0 0.40 -0.707106781186543 -1.5 0.13333333
TradPed50 5.0 0.40 -0.707106781186543 -1.5 0.13333333
TradPed51 5.0 0.00 NaN NaN 0.00000000
TradPed52 4.2 0.40 0.000000000000000 -1.5 0.11547005
TradPed53 4.2 0.20 0.707106781186557 -1.5 0.06666667
TradPed54 5.0 1.00 0.239063146929544 -1.5 0.29059326
TradPed55 4.6 0.60 -0.381801774160605 -1.5 0.17638342
TradPed56 5.0 0.00 NaN NaN 0.00000000
TradPed57 5.0 0.40 -0.707106781186543 -1.5 0.13333333
TradPed58 5.0 0.80 -0.707106781186547 -1.5 0.26666667
TradPed59 4.6 0.80 0.528004979218190 -1.5 0.24037009
TradPed60 5.0 0.60 -0.381801774160605 -1.5 0.17638342
TradPed61 5.0 0.80 0.000000000000004 -1.5 0.23094011
TradPed62 4.8 0.60 -0.707106781186544 -1.5 0.20000000
TradPed63 4.4 1.60 -0.528004979218188 -1.5 0.48074017
TradPed64 5.0 1.00 0.707106781186549 -1.5 0.33333333
TradPed65 4.0 0.00 NaN NaN 0.00000000
TradPed66 5.0 0.40 0.000000000000000 -1.5 0.11547005
TradPed67 4.8 0.60 -0.381801774160605 -1.5 0.17638342
TradPed68 4.6 0.60 0.707106781186544 -1.5 0.20000000
TradPed69 5.0 0.80 -0.707106781186547 -1.5 0.26666667
TradPed70 4.8 0.60 -0.381801774160605 -1.5 0.17638342

Someone who codes in R could probably write a quick formula to do this – in this case, I will
take the time (and space) to copy each student’s standard deviation into a formula that squares it,
multiplies it by 𝑛 − 1 and then sums all 70 of those calculations.

SSW <- (0.8717798^2 * (3 - 1)) + (0.4163332 ^2 * (3 - 1)) + (0.6928203 ^2 * (3 - 1)) + (0.4000000 ^2 * (3 - 1)) + (0.4163332^2 * (3 - 1)) + (0.4163332^2 * (3 - 1)) + (0.5291503^2 * (3 - 1)) + (0.5291503^2 * (3 - 1)) + (0.7023769^2 * (3 - 1)) + (0.4618802^2 * (3 - 1)) + (0.4163332^2 * (3 - 1)) + (0.1154701^2 * (3 - 1)) + (0.3055050^2 * (3 - 1)) + (0.1154701^2 * (3 - 1)) + (1.2220202^2 * (3 - 1)) + (0.4163332^2 * (3 - 1)) + (0.9018500^2 * (3 - 1)) + (0.5033223^2 * (3 - 1)) + (0.0000000^2 * (3 - 1)) + (0.9451631^2 * (3 - 1)) +
(1.0066446^2 * (3 - 1)) + (0.1154701^2 * (3 - 1)) + (0.3055050^2 * (3 - 1)) + (0.3464102^2 * (3 - 1)) + (0.5484828^2 * (3 - 1)) + (0.1154701^2 * (3 - 1)) + (0.1154701^2 * (3 - 1)) + (1.6165808^2 * (3 - 1)) + (0.1154701^2 * (3 - 1)) + (0.3055050^2 * (3 - 1)) + (0.3464102^2 * (3 - 1)) + (0.9165151^2 * (3 - 1)) + (0.4163332^2 * (3 - 1)) + (0.4163332^2 * (3 - 1)) + (0.3464102^2 * (3 - 1)) + (0.6429101^2 * (3 - 1)) + (0.3464102^2 * (3 - 1)) + (0.5291503^2 * (3 - 1)) + (0.1154701^2 * (3 - 1)) + (0.2309401^2 * (3 - 1)) +
(0.1154701^2 * (3 - 1)) + (0.9165151^2 * (3 - 1)) + (0.1154701^2 * (3 - 1)) + (0.5291503^2 * (3 - 1)) +
(0.5291503^2 * (3 - 1)) + (0.5291503^2 * (3 - 1)) + (0.3464102^2 * (3 - 1)) + (0.1154701^2 * (3 - 1)) +
(0.2309401^2 * (3 - 1)) + (0.2309401^2 * (3 - 1)) + (0.0000000^2 * (3 - 1)) + (0.2000000^2 * (3 - 1)) + (0.1154701^2 * (3 - 1)) + (0.5033223^2 * (3 - 1)) + (0.3055050^2 * (3 - 1)) + (0.0000000^2 * (3 - 1)) + (0.2309401^2 * (3 - 1)) + (0.4618802^2 * (3 - 1)) + (0.4163332^2 * (3 - 1)) + (0.3055050^2 * (3 - 1)) + (0.4000000^2 * (3 - 1)) + (0.3464102^2 * (3 - 1)) + (0.8326664^2 * (3 - 1)) + (0.5773503^2 * (3 - 1)) +
(0.0000000^2 * (3 - 1)) + (0.2000000^2 * (3 - 1)) + (0.3055050^2 * (3 - 1)) + (0.3464102^2 * (3 - 1)) +
(0.4618802^2 * (3 - 1)) + (0.3055050^2 * (3 - 1))

SSW
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[1] 36.895

Our sums of squares within is 36.895.

Calculate sums of squares model (SSM) for for the effect of time (or repeated mea-
sures)

The formula for the sums of squares model in repeated measures captures the effect of time (or the
repeated measures nature of the design):

𝑆𝑆𝑀 = ∑ 𝑛𝑘( ̄𝑥𝑘 − ̄𝑥𝑔𝑟𝑎𝑛𝑑)2

Earlier we learned that the grand mean is 4.319286.
I can obtain the means for each course with psych::describeBy().

psych::describeBy(TradPed ~ Course, mat = TRUE, digits = 3, type = 1, data = rm1wLONG_df)

item group1 vars n mean sd median trimmed mad min max
TradPed1 1 ANOVA 1 70 4.211 0.711 4.2 4.296 0.890 2.2 5
TradPed2 2 Multivariate 1 70 4.332 0.727 4.4 4.454 0.593 1.2 5
TradPed3 3 Psychometrics 1 70 4.414 0.672 4.6 4.532 0.593 2.4 5

range skew kurtosis se
TradPed1 2.8 -0.786 -0.009 0.085
TradPed2 3.8 -2.037 5.752 0.087
TradPed3 2.6 -1.315 1.306 0.080

I can put it in the formula:

(70 * (4.211 - 4.319286)^2) + (70 * (4.332 - 4.319286)^2) + (70 * (4.414 - 4.319286)^2)

[1] 1.460077

Sums of squares model is 1.4601

Calculate sums of squares residual (SSR)

In repeated measures ANOVA 𝑆𝑆𝑊 = 𝑆𝑆𝑀 + 𝑆𝑆𝑅. Knowing SSW (34.255) and SSM (1.460), we
can do simple arithmetic to obtain SSR.

SSR <- 36.895 - 1.460
SSR

[1] 35.435

Sums of squares residual is 35.435.
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Calculate the sums of squares between (SSB)

In repeated measures ANOVA 𝑆𝑆𝑇 = 𝑆𝑆𝑊 + 𝑆𝑆𝐵. Knowing SST (103.9144) and SSW (34.255),
we can do simple arithmetic to obtain SSB.

SSB <- 103.9144 - 35.435
SSB

[1] 68.4794

Sums of squares between is 68.4794.

Create a source table that includes the sums of squares, degrees of freedom, mean
squares, F values, and F critical values

One Way Repeated Measures ANOVA Source Table

Source SS df 𝑀𝑆 = 𝑆𝑆
𝑑𝑓

𝐹 =
𝑀𝑆𝑠𝑜𝑢𝑟𝑐𝑒
𝑀𝑆𝑟𝑒𝑠𝑖𝑑

𝐹𝐶𝑉

Within 36.895 (N-k) = 67
Model 1.4601 (k-1) = 2 0.7301 1.3391 3.138
Residual 35.435 (dfw - dfm) = 65 0.5452
Between 68.4794 (N-1) = 69
Total 103.9144 (cells-1) = 209

#calculating degrees of freedom for the residual
67-2

[1] 65

Calculating mean square model and residual.

1.4601/2#MSM

[1] 0.73005

35.435/65#MSR

[1] 0.5451538

Calculating the F ratio
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.7301/.5452

[1] 1.339142

Obtaining the F critical value:

qf(.05, 2, 65, lower.tail = FALSE)

[1] 3.138142

We can see the same in an F distribution table.

Is the F-tests statistically significant? Why or why not?

No. The F value did not exceed the F critical value. To achieve statistical significance, my F value
has to exceed 3.138.

Assemble the results into a statistical string

𝐹(2, 65) = 1.339, 𝑝 > 0.05

https://www.statology.org/f-distribution-table/
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Chapter 10

Mixed Design ANOVA

Screencasted Lecture Link

The focus of this lecture is mixed design ANOVA. That is, we are conducting a two-way ANOVA
where one of the factors is repeated measures and one of the factors is between groups. The mixed
design ANOVA is often associated with the random clinical trial (RCT) where the researcher hopes
for a significant interaction effect. Specifically, the researcher hopes that the individuals who were
randomly assigned to the treatment condition improve from pre-test to post-test and maintain (or
continue to improve) after post-test, while the people assigned to the no-treatment control are not
statistically significantly different from treatment group at pre-test, and do not improve over time.

10.1 Navigating this Lesson

There is just over one hour of lecture. If you work through the materials with me it would be plan
for an additional two hours.

While the majority of R objects and data you will need are created within the R script that sources
the chapter, occasionally there are some that cannot be created from within the R framework.
Additionally, sometimes links fail. All original materials are provided at the Github site that hosts
the book. More detailed guidelines for ways to access all these materials are provided in the OER’s
introduction

10.1.1 Learning Objectives

Learning objectives from this lecture include the following:

• Evaluate the suitability of a research design/question and dataset for conducting a mixed
design ANOVA; identify alternatives if the data is not suitable.

• Test the assumptions for mixed design ANOVA.
• Conduct a mixed design ANOVA (omnibus and follow-up) in R.
• Interpret output from the mixed design ANOVA (and follow-up).
• Prepare an APA style results section of the mixed design ANOVA output.
• Conduct a power analysis for mixed design ANOVA.
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https://youtube.com/playlist?list=PLtz5cFLQl4KOBGvzZ9QezuAFfthNOh-3B
https://github.com/lhbikos/ReCenterPsychStats
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10.1.2 Planning for Practice

In each of these lessons I provide suggestions for practice that allow you to select from problems
that vary in degree of difficulty. The least complex is to change the random seed and rework the
problem demonstrated in the lesson. The results should map onto the ones obtained in the lecture.

The second option comes from the research vignette. The Murrar and Brauer [2018] article has
three variables (attitudes toward Arabs, attitudes toward Whites, and a difference score) which are
suitable for mixed design ANOVAs. I will demonstrate a mixed design ANOVA with the difference
score. I’ll leave the other two variables for opportunities for practice.

As a third option, you are welcome to use data to which you have access and is suitable for two-way
ANOVA. In either case the practice options suggest that you:

• test the statistical assumptions
• conduct a mixed design ANOVA, including

– omnibus test and effect size
– report main and interaction effects
– conduct follow-up testing of simple main effects

• write a results section to include a figure and tables

10.1.3 Readings & Resources

In preparing this chapter, I drew heavily from the following resource(s). Other resources are cited
(when possible, linked) in the text with complete citations in the reference list.

• Mixed ANOVA in R. (n.d.). Datanovia. Retrieved October 19, 2020, from https://www.
datanovia.com/en/lessons/mixed-anova-in-r/

– This website is an excellent guide for mixed design ANOVA and providing explanatory
figures of the results. It is a great resource for both the conceptual and procedural. This
is the guide I have used for the basis of the lecture. Working through their example
would be provide an additional, excellent, opportunity for practice.

• Murrar, S., & Brauer, M. (2018). Entertainment-education effectively reduces prejudice.
Group Processes & Intergroup Relations, 21(7), 1053–1077. https://doi.org/10.1177/
1368430216682350

– This article is the source of our research vignette. Our vignette is simulated from the
first of their two experiments. The authors did not conduct mixed design ANOVA.
Instead, they ran independent-samples t tests to test the differences between the sitcom
conditions for each of the three waves. This is comparable to conducting the simple-main
effect analysis of condition within wave subsequent to a significant interaction.

– Full-text of the article is available at the authors’ ResearchGate.

https://www.datanovia.com/en/lessons/mixed-anova-in-r/
https://www.datanovia.com/en/lessons/mixed-anova-in-r/
https://doi.org/10.1177/1368430216682350
https://doi.org/10.1177/1368430216682350
https://www.researchgate.net/publication/312177602_Entertainment-education_effectively_reduces_prejudice
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10.1.4 Packages

The packages used in this lesson are embedded in this code. When the hashtags are removed, the
script below will (a) check to see if the following packages are installed on your computer and, if
not (b) install them.

#will install the package if not already installed
#if(!require(knitr)){install.packages("knitr")}
#if(!require(tidyverse)){install.packages("tidyverse")}
#if(!require(psych)){install.packages("psych")}
#if(!require(ggpubr)){install.packages("ggpubr")}
#if(!require(rstatix)){install.packages("rstatix")}
#if(!require(MASS)){install.packages("MASS")}
#if(!require(effectsize)){install.packages("effectsize")}
#if(!require(WebPower)){install.packages("WebPower")}

10.2 Introducing Mixed Design ANOVA

Mixed design ANOVA is characterized by the following:

• at least two independent variables.
• Termed “mixed” because

– one is a between-subjects factor, and
– one is a repeated-measures (i.e., within-subjects) factor.

• In essence, we are simultaneously conducting

– a one-way independent ANOVA and a
– a one-way repeated-measures ANOVA.

The illustration below represents the simplest of the mixed ANOVA designs. This 2x2 ANOVA
includes random assignment to the between-participants factor. In this case it represents a control
(or comparison) condition to a treatment condition. The within-persons factor is pre-test and
post-test.
By increasing the number of between-persons conditions or follow-up assessments, the mixed design
ANOVA can quickly become more complex.

Figure 10.1: Illustration of a research design appropriate for a mixed design ANOVA

Especially when there is a significant interaction there can be numerous ways to follow up. We
will work one set of analyses: simple main effects (condition within wave; wave within condition)
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and, when needed, conduct posthoc pairwise comparisons as follow-up. Other good options include
identifying a priori contrasts and conducting polynomials (not demonstrated in this lecture).

10.2.1 Workflow for the Mixed Design ANOVA

Figure 10.2: Image of a workflow for mixed design ANOVA

The steps in working the mixed design generally include,

1. Exploring the data/evaluating the assumptions
2. Evaluating the omnibus test
3. Follow-up to the omnibus

• if significant interaction effect: simple main effects and further follow-up to those
• if significant main effect (but no significant interaction effect), identify source of signif-

icance in the main effect
• if no significance, stop

4. Write it up with tables, figure(s)

Assumptions for the mixed design ANOVA include the following:

• The dependent variable should be continuous with no significant outliers in any cell of the
design
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– Check by visualizing the data using box plots and by using the rstatix::identify_outliers()
function

• The DV should be approximately normally distributed in each cell of the design

– Check with Shapiro-Wilk normality test rstatix::shapiro_test() function and with visual
inspection by creating Q-Q plots. The ggpubr::ggqqplot() function is a great tool.

• The variances of the differences between groups should be equal. This is termed the spheric-
ity assumption. This can be checked with Mauchly’s test of sphericity, which is reported
automatically in the rstatix::anova_test() output.

The best way to address violations of these assumptions is not always clear. Possible solutions
include:

• For 2- and 3- way ANOVAs, violations of the normality assumption might be addressed
by removing extreme outliers or considering transformations of the data. Transformations,
though, introduce their own complexities regarding interpretation. Kline’s text [Kline, 2016a]
provides excellent coverage of options.

• A robust ANOVA option is available in the WRS2 package
• If there are three or more waves/conditions and the sample is large, it may be possible to run

a multilevel, model.
• In the absence of alternatives, it may be necessary to run the mixed design with the violated

assumptions, but report them.
• ….and more. Internet searches continue to offer new approaches and alternatives.

10.3 Research Vignette

This lesson’s research vignette is from Murrar and Brauer’s [2018] article that describes the results
of two studies that evaluated interventions designed to reduce prejudice against Arabs/Muslims. We
are working only a portion of the first study reported in the article. Participants (N = 193), all who
were White, were randomly assigned to one of two conditions where they watched six episodes of
the sitcom Friends or Little Mosque on the Prairie. The sitcoms and specific episodes were selected
after significant pilot testing. The researchers wanted stimuli that were as similar as possible while
ensuring that the intervention-oriented sitcom would be capable of reducing prejudice. The authors
felt that both series had characters that were likable and relatable and were engaged in regular
activities of daily living. The Friends series featured characters who were predominantly White,
cisgender, and straight. The Little Mosque series portrayed the experience of Western Muslims and
Arabs as they lived in a small Canadian town. This study involved assessment across three waves:
baseline (before watching the assigned episodes), post1 (immediately after watching the episodes),
and post2 (completed 4-6 weeks after watching the episodes).
The study used feelings and liking thermometers, rating their feelings and liking toward 10 different
groups of people on a 0 to 100 sliding scale (with higher scores reflecting greater liking and positive
feelings). For the purpose of this analysis, the ratings of attitudes toward White people and
attitudes toward Arabs/Muslims were used. A third metric was introduced by subtracting the
attitudes towards Arabs/Muslims from the attitudes toward Whites. Higher scores indicated more
positive attitudes toward Whites where as low scores indicated no difference in attitudes. To recap,
there were three potential dependent variables, all continuously scaled:

http://www.friends-tv.org/
https://en.wikipedia.org/wiki/Little_Mosque_on_the_Prairie


426 CHAPTER 10. MIXED DESIGN ANOVA

• AttWhite: attitudes toward White people; higher scores reflect greater liking
• AttArab: attitudes toward Arab people; higher scores reflect greater liking
• Diff : the difference between AttWhite and AttArab; higher scores reflect a greater liking for

White people

With random assignment, nearly equal cell sizes, a condition with two levels (Friends, Little
Mosque), and three waves (baseline, post1, post2), this is perfect for mixed design ANOVA.

Figure 10.3: Image of the design for the Murrar and Brauer (2018) study

10.3.1 Data Simulation

Below is the code used to simulate the data. The simulation includes two dependent variables (At-
tWhite, AttArab), Wave (baseline, post1, post2), and COND (condition; Friends, Little_Mosque).
There is also a caseID (repeated three times across the three waves) and rowID (giving each ob-
servation within each case an ID). This creates the long-file, where each person has 3 rows of data
representing baseline, post1, and post2. You can use this simulation for two of the three practice
suggestions.

library(tidyverse)
#change this to any different number (and rerun the simulation) to rework the chapter problem
set.seed(210813)
AttWhite<-round(c(rnorm(98,mean=76.79,sd=18.55),rnorm(95,mean=75.37,sd=18.99),rnorm(98, mean=77.47, sd=18.95), rnorm(95, mean=75.81, sd=19.29), rnorm(98, mean=77.79, sd=17.25), rnorm(95, mean=75.89, sd=19.44)),3) #sample size, M and SD for each cell; this will put it in a long file
#set upper bound for variable
AttWhite[AttWhite>100]<-100
#set lower bound for variable
AttWhite[AttWhite<0]<-0
AttArab<-round(c(rnorm(98,mean=64.11,sd=20.97),rnorm(95,mean=64.37,sd=20.03),rnorm(98, mean=64.16, sd=21.64), rnorm(95, mean=70.52, sd=18.55), rnorm(98, mean=65.29, sd=19.76), rnorm(95, mean=70.30, sd=17.98)),3)
#set upper bound for variable
AttArab[AttArab>100]<-100
#set lower bound for variable
AttArab[AttArab<0]<-0
rowID <- factor(seq(1,579))
caseID <- rep((1:193),3)
Wave <- c(rep("Baseline",193), rep("Post1", 193), rep ("Post2", 193))
COND <- c(rep("Friends", 98), rep("LittleMosque", 95), rep("Friends", 98), rep("LittleMosque", 95), rep("Friends", 98), rep("LittleMosque", 95))
#groups the 3 variables into a single df: ID#, DV, condition
Murrar_df<- data.frame(rowID, caseID, Wave, COND, AttArab, AttWhite)

Let’s check the structure. We want
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• rowID and caseID to be unordered factors
• Wave and COND to be ordered factors
• AttArab and AttWhite to be numerical

str(Murrar_df)

'data.frame': 579 obs. of 6 variables:
$ rowID : Factor w/ 579 levels "1","2","3","4",..: 1 2 3 4 5 6 7 8 9 10 ...
$ caseID : int 1 2 3 4 5 6 7 8 9 10 ...
$ Wave : chr "Baseline" "Baseline" "Baseline" "Baseline" ...
$ COND : chr "Friends" "Friends" "Friends" "Friends" ...
$ AttArab : num 74.3 55.8 33.3 66.3 71 ...
$ AttWhite: num 100 79 75.9 68.2 100 ...

The script below changes

• caseID from integer to factor
• Wave and COND from factor to ordered factors

– It makes sense to order Friends and LittleMosque, since we believe that LittleMosque
contains prejudice-reducing properties

#make caseID a factor
Murrar_df[,'caseID'] <- as.factor(Murrar_df[,'caseID'])
#make Wave an ordered factor
Murrar_df$Wave <- factor(Murrar_df$Wave, levels = c("Baseline", "Post1", "Post2"))
#make COND an ordered factor
Murrar_df$COND <- factor(Murrar_df$COND, levels = c("Friends", "LittleMosque"))

Let’s check the structure again.

str(Murrar_df)

'data.frame': 579 obs. of 6 variables:
$ rowID : Factor w/ 579 levels "1","2","3","4",..: 1 2 3 4 5 6 7 8 9 10 ...
$ caseID : Factor w/ 193 levels "1","2","3","4",..: 1 2 3 4 5 6 7 8 9 10 ...
$ Wave : Factor w/ 3 levels "Baseline","Post1",..: 1 1 1 1 1 1 1 1 1 1 ...
$ COND : Factor w/ 2 levels "Friends","LittleMosque": 1 1 1 1 1 1 1 1 1 1 ...
$ AttArab : num 74.3 55.8 33.3 66.3 71 ...
$ AttWhite: num 100 79 75.9 68.2 100 ...

A key dependent variable in the Murrar and Brauer [Murrar and Brauer, 2018] article is attitude
difference. Specifically, the attitudes toward Arabs score was subtracted from the attitudes toward
Whites scores. Higher attitude difference indicate a greater preference for Whites. Let’s create
that variable, here.
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Murrar_df$Diff <- Murrar_df$AttWhite - Murrar_df$AttArab
head(Murrar_df)

rowID caseID Wave COND AttArab AttWhite Diff
1 1 1 Baseline Friends 74.291 100.000 25.709
2 2 2 Baseline Friends 55.796 78.977 23.181
3 3 3 Baseline Friends 33.267 75.938 42.671
4 4 4 Baseline Friends 66.315 68.232 1.917
5 5 5 Baseline Friends 70.992 100.000 29.008
6 6 6 Baseline Friends 94.297 77.961 -16.336

If you want to export this data as a file to your computer, remove the hashtags to save it (and
re-import it) as a .csv (“Excel lite”) or .rds (R object) file. This is not a necessary step.

The code for the .rds file will retain the formatting of the variables, but is not easy to view outside
of R. This is what I would do.

#to save the df as an .rds (think "R object") file on your computer;
#it should save in the same file as the .rmd file you are working with
#saveRDS(Murrar_df, "Murrar_RDS.rds")
#bring back the simulated dat from an .rds file
#Murrar_df <- readRDS("Murrar_RDS.rds")

The code for .csv will likely lose the formatting (i.e., stripping Wave and COND of their ordered
factors), but it is easy to view in Excel.

#write the simulated data as a .csv
#write.table(Murrar_df, file="DiffCSV.csv", sep=",", col.names=TRUE, row.names=FALSE)
#bring back the simulated dat from a .csv file
#Murrar_df <- read.csv ("DiffCSV.csv", header = TRUE)

10.3.2 Quick peek at the data

Let’s first examine the descriptive statistics (e.g., means of the variable, Negative) by group. We
can use the describeBy() function from the psych package.

Diff.descripts <- psych::describeBy(Diff ~ COND + Wave, mat = TRUE, data = Murrar_df, digits = 3) #digits allows us to round the output
Diff.descripts

item group1 group2 vars n mean sd median trimmed mad
Diff1 1 Friends Baseline 1 98 9.306 23.909 8.804 8.991 24.481
Diff2 2 LittleMosque Baseline 1 95 9.733 30.519 10.797 10.554 30.905
Diff3 3 Friends Post1 1 98 15.926 26.418 16.191 16.231 29.771
Diff4 4 LittleMosque Post1 1 95 -0.149 26.969 -1.280 -0.940 23.932
Diff5 5 Friends Post2 1 98 11.954 23.336 10.882 11.834 24.592
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Diff6 6 LittleMosque Post2 1 95 3.670 23.665 1.860 3.786 25.261
min max range skew kurtosis se

Diff1 -47.342 72.565 119.907 0.176 -0.356 2.415
Diff2 -71.510 90.737 162.247 -0.201 -0.030 3.131
Diff3 -42.598 82.288 124.886 -0.046 -0.575 2.669
Diff4 -65.259 83.367 148.626 0.328 0.549 2.767
Diff5 -46.528 75.014 121.542 0.132 0.065 2.357
Diff6 -53.856 55.264 109.120 -0.065 -0.424 2.428

#Note. Recently my students and I have been having intermittent struggles with the describeBy function in the psych package. We have noticed that it is problematic when using .rds files and when using data directly imported from Qualtrics. If you are having similar difficulties, try uploading the .csv file and making the appropriate formatting changes.

First we inspect the means. We see that the baseline scores for the Friends and Little Mosque
conditions are similar. However, the post1 and post2 difference scores (i.e., difference in attitudes
toward White and Arab individuals, where higher scores indicate more favorable ratings of White
individuals) are higher in the Friends condition than in the Little Mosque condition.

The write.table() function can be a helpful way to export output to .csv files so that you can
manipulate it into tables.

write.table(Diff.descripts, file="DiffDescripts.csv", sep=",", col.names=TRUE, row.names=FALSE)

At this stage, it would be useful to plot our data. Figures can assist in the conceptualization of the
analysis.

ggpubr::ggboxplot(Murrar_df, x = "Wave", y = "Diff", color = "COND",xlab = "Study Wave", ylab = "Difference in Attitudes toward Arab and White People", add = "jitter", title = "Difference Scores: Condition within Wave")
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Narrating results is sometimes made easier if variables are switched. There is usually not a right
or wrong answer. Here is another view, switching the Rater and Photo predictors.

ggpubr::ggboxplot(Murrar_df, x = "COND", y = "Diff", color = "Wave", xlab = "Study Condition",
ylab = "Difference in Attitudes toward Arab and White People", add = "jitter", title = "Difference Scores: Wave within Condition")
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Yet another option plots the raw data as bubbles, the means as lines, and denotes differences in
the moderator with color.

ggpubr::ggline(Murrar_df, x = "Wave", y = "Diff", color = "COND", xlab = "Study Wave",
ylab = "Difference in Attitudes toward Arab and White People", add = c("mean_se", "dotplot"), title = "Lineplots: Condition within Wave")
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#add this for a different color palette: palette = c("#00AFBB", "#E7B800")

We can reverse this to see if it assists with our conceptualization.

ggpubr::ggline(Murrar_df, x = "COND", y = "Diff", color = "Wave", xlab = "Study Condition",
ylab = "Difference in Attitudes toward Arab and White People", add = c("mean_se", "dotplot"), title = "Lineplots: Wave within Condition")
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10.4 Working the Mixed Design ANOVA with R packages

10.4.1 Exploring data and testing assumptions

We begin the 2x3 mixed design ANOVA with a preliminary exploration of the data and testing of
the assumptions. Here’s where we are on the workflow:

The are several critical assumptions in factorial ANOVA:

• Cases represent random samples from the populations

– This is an issue of research design
– Although we see ANOVA used (often incorrectly) in other settings, ANOVA was really

designed for the random clinical trial (RCT).

• The DV is continuously scaled (i.e., assessed on an interval or ratio scale); this is a matter of
research design.
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Figure 10.4: Image of the workflow showing that we are on the “Evaluating assumptions” portion
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• The DV is normally distributed for each of the populations

– that is, data for each cell (representing the combinations of each factor) is normally
distributed.

• Population variances of the DV are the same for all cells (i.e., homogeneity of variance as-
sumption)

– When cell sizes are not equal, ANOVA not robust to this violation and we cannot trust
F ratio.

• If the repeated measures factor has three or more levels the population variance of difference
scores computed between any two levels of a within-subjects factor is the same value regardless
of which two levels are chosen; termed the sphericity assumption. This assumption is

– akin to compound symmetry (both variances across conditions are equal).
– akin to the homogeneity of variance assumption in between-group designs.
– sometimes called the homogeneity-of-variance-of-differences assumption.
– statistically evaluated with Mauchly’s test. If Mauchly’s p < .05, there are statisti-

cally significant differences. The anova_test() function in the rstatix package reports
Mauchly’s and two alternatives to the traditional F that correct the values by the degree
to which the sphericity assumption is violated.

• The covariance matrix of the DV is the same for all levels of the between-subjects factors
(i.e., homogeneity of covariance matrix).

10.4.1.1 Is the dependent variable normally distributed?

10.4.1.1.1 Are skew and kurtosis levels concerning? Our analysis will use the difference
score (Diff) as the dependent variable. Let’s inspect values of skew and kurtosis for this variable
in its combinations of wave and condition.

psych::describeBy(Diff ~ Wave + COND, data = Murrar_df, type = 1, mat=TRUE)

item group1 group2 vars n mean sd median trimmed
Diff1 1 Baseline Friends 1 98 9.3064898 23.90867 8.804 8.9906625
Diff2 2 Post1 Friends 1 98 15.9261327 26.41789 16.191 16.2309375
Diff3 3 Post2 Friends 1 98 11.9540102 23.33602 10.882 11.8340000
Diff4 4 Baseline LittleMosque 1 95 9.7331158 30.51895 10.797 10.5544156
Diff5 5 Post1 LittleMosque 1 95 -0.1486632 26.96858 -1.280 -0.9402727
Diff6 6 Post2 LittleMosque 1 95 3.6704737 23.66524 1.860 3.7857403

mad min max range skew kurtosis se
Diff1 24.48143 -47.342 72.565 119.907 0.17873477 -0.30140294 2.415140
Diff2 29.77135 -42.598 82.288 124.886 -0.04684904 -0.52430090 2.668609
Diff3 24.59189 -46.528 75.014 121.542 0.13445276 0.12837311 2.357294
Diff4 30.90480 -71.510 90.737 162.247 -0.20457520 0.03318234 3.131178
Diff5 23.93213 -65.259 83.367 148.626 0.33344683 0.62510747 2.766918
Diff6 25.26054 -53.856 55.264 109.120 -0.06578811 -0.36855661 2.428002
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#Note. Recently my students and I have been having intermittent struggles with the describeBy function in the psych package. We have noticed that it is problematic when using .rds files and when using data directly imported from Qualtrics. If you are having similar difficulties, try uploading the .csv file and making the appropriate formatting changes.

Our values of skew and kurtosis are well within the limits [Kline, 2016a] of a normal distribution.

• skew: < |3|; the highest skew value in our data is 0.32
• kurtosis: < |10|; the highest kurtosis value in our data is |.57|

10.4.1.1.2 Are the model residuals normally distributed? We can formally investigate
the normality assumption with the Shapiro-Wilk test. In the case of multiple factors (such as is the
case in mixed design ANOVA), the assumption requires a normal distribution in each combination
of these levels (e.g., difference scores at baseline for participants in the Friends condition). In this
lesson’s 3 x 2 ANOVA, there are six such combinations. A cell-level analysis (i.e., testing for normal
distributions within each combination of factor levels) has been demonstrated in one-way ANOVA
and independent t-test lessons. To the degree that there are many factorial combinations (and
therefore, cells), this approach becomes unwieldy to calculate, interpret, and report. Further, the
cell-level analysis of normality is only appropriate when there are a low number of levels/groupings
and there are many data points per group. As designs increase in complexity, researchers turn to
the model-based option for assessing normality.

To do this, we first create an object that tests our research model. Because the model-based
approach to calculating the Shapiro-Wilk test of normality requires an object created by the aov()
function from base R, I will quickly run this. For the moment, we will only peek at the ANOVA
results to make sure it ran, but will save the interpretation until later.

Mixed_diff<-aov(Diff~COND*Wave, Murrar_df)
summary(Mixed_diff)

Df Sum Sq Mean Sq F value Pr(>F)
COND 1 9209 9209 13.723 0.000232 ***
Wave 2 320 160 0.238 0.788240
COND:Wave 2 6574 3287 4.898 0.007774 **
Residuals 573 384530 671
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

From this object we can extract the residuals.

#creates object of residuals
resid_Diff<- residuals(Mixed_diff)

We can visually inspect the distribution of the residuals with a couple of plots.

hist(resid_Diff)
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So far so good – our distribution of residuals (i.e., what is leftover after the model is applied)
resembles a normal distribution.

The Q-Q plot provides another view. The dots represent the residuals. When they are relatively
close to the line they not only suggest good fit of the model, but we know they are small and evenly
distributed around zero (i.e., normally distributed).

qqnorm(resid_Diff)
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Finally, we can formally evaluate whether or not the distribution of residuals is statistically signifi-
cantly different from a normal distribution with a Shapiro test. We want the associated p value to
be greater than 0.05.

shapiro.test(resid_Diff)

Shapiro-Wilk normality test

data: resid_Diff
W = 0.99869, p-value = 0.9526

The non-significant p value indicates that the distribution of our model residuals are not statistically
significantly different from a normal distribution (𝑊 = 0.999, 𝑝 = 0.953).

10.4.1.1.3 Is there evidence of outliers? The boxplot is one common way for identifying
outliers. The boxplot uses the median and the lower (25th percentile) and upper (75th percentile)
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quartiles. The difference bewteen Q3 and Q1 is the interquartile range (IQR). Let’s revisit one of
our boxplots to see if there are any dots above the whiskers.

ggpubr::ggboxplot(Murrar_df, x = "COND", y = "Diff", color = "Wave", xlab = "Study Condition",
ylab = "Difference in Attitudes toward Arab and White People", add = "jitter", title = "Difference Scores: Wave within Condition")
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The distributions look relatively normal with the mean well-centered. Given that we simulated the
data from means and standard deviations, this is somewhat expected.
Outliers are generally identified when values fall outside these lower and upper boundaries. In the
short formulas below, IQR is the interquartile range (i.e., the middle 50%, the distance of the box):

• Q1 - 1.5xIQR
• Q3 + 1.5xIQR

Extreme values occur when values fall outside these boundaries:

• Q1 - 3xIQR
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• Q3 + 3xIQR

Using the rstatix::identify_outliers function we can identifier outliers, doubly grouped by our pre-
dictor variables.

Murrar_df %>%
group_by(Wave, COND) %>%
rstatix::identify_outliers(Diff)

# A tibble: 4 x 9
Wave COND rowID caseID AttArab AttWhite Diff is.outlier is.extreme
<fct> <fct> <fct> <fct> <dbl> <dbl> <dbl> <lgl> <lgl>

1 Baseline LittleMosq~ 107 107 100 28.5 -71.5 TRUE FALSE
2 Post1 LittleMosq~ 297 104 16.6 100 83.4 TRUE FALSE
3 Post1 LittleMosq~ 315 122 26.8 100 73.2 TRUE FALSE
4 Post1 LittleMosq~ 337 144 97.4 32.2 -65.3 TRUE FALSE

While we have some outliers (where “is.outlier” = “TRUE”), none are extreme (where “is.outlier”
= “FALSE”). We’ll keep these in mind as we continue to evaluate the data.

If I had extreme outliers, I would individually inspect them. Especially if something looked awry
(e.g., erratic responding extreme scores across variables) I might consider deleting them. In this
mixed design ANOVA, a case will only be included in the final analysis if all three waves of data
are present. Therefore, if we decided to remove case at rowID = 337, we would need to remove
all three cases. That is, we would need to remove it by caseID = 144. This would decrease the
number of rows/observations by 3.

Let’s say that, after very careful consideration, we decided to remove the caseID = 144. We could
use dplyr::filter() to do so. In this code, the filter() function locates all the cases where caseID =
144. The exclamation point that precedes the equal sign indicates that the purpose is to remove
the case.

#Murrar_df <- dplyr::filter (Murrar_df, caseID != "144")

Once executed, we can see that this case is no longer in the dataframe. Because each person had
three observations, this reduces the number of observations by 3. Although I demonstrated this
in the accompanying lecture, I have hashtagged out the command because I would not delete the
case. If you already deleted the case, you can return the hashtag and re-run all the code up to this
point.

10.4.1.2 Homogeneity of variance assumption

Because there is a between-subjects variable, we need need to evaluate the homogeneity of variance
assumption. As before, we can use the Levene’s test with the rstatix::levene_test() function. Con-
sidering each of the comparisons of condition within wave, there is no instance where we violate
the assumption.
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Murrar_df %>%
group_by(Wave) %>%
rstatix::levene_test(Diff ~ COND)

# A tibble: 3 x 5
Wave df1 df2 statistic p
<fct> <int> <int> <dbl> <dbl>

1 Baseline 1 191 3.97 0.0477
2 Post1 1 191 0.141 0.708
3 Post2 1 191 0.107 0.744

Levene’s test indicated a violation of this assumption between the Friends and Little Mosque
conditions at baseline (𝐹[1, 191] = 3.973, 𝑝 = .047). However, there was no indication of assumption
violation at post1 (𝐹[1, 191] = 0.141, 𝑝 = .708), and post2 (𝐹[1, 191] = 0.107, 𝑝 = .743) waves of
the design.

10.4.1.3 Assumption of homogeneity of covariance matrices

In this multivariate sample, the Box’s M test evaluates if two or more covariance matrices are
homogeneous. Like other tests of assumptions, we want a non-significant test result (i.e., where p
> .05). Box’s M has some disavantages. Box’s M has low power in small sample sizes and is overly
sensitive in large sample sizes. We would unlikely make a decision about our data with Box’s M
alone. Rather, we consider it along with our dashboard of diagnostic screeners.

rstatix::box_m(Murrar_df[, "Diff", drop = FALSE], Murrar_df$COND)

# A tibble: 1 x 4
statistic p.value parameter method

<dbl> <dbl> <dbl> <chr>
1 3.21 0.0732 1 Box's M-test for Homogeneity of Covariance Matric~

Box’s M indicated no violation of the homogeneity of covariance matrices assumption (𝑀 =
3.209, 𝑝 = .073).

10.4.1.4 APA style writeup of assumptions

At this stage we are ready to draft the portion of the APA style writeup that evaluates the as-
sumptions.

Mixed design ANOVA has a number of assumptions related to both the within-subjects
and between-subjects elements. Data are expected to be normally distributed at each
level of design. There was no evidence of skew (all values were at or below the absolute
value of 0.32) or kurtosis (all values were below the absolute value of .55; [Kline, 2016a]).
Similarly, results of the Shapiro-Wilk normality test (applied to the residuals from the
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factorial ANOVA model) suggested that model residuals did not differ significantly from
a normal distribution (𝑊 = 0.999, 𝑝 = 0.953). Visual inspection of boxplots for each
wave of the design, assisted by the rstatix::identify_outliers() function (which reports
values above Q3 + 1.5xIQR or below Q1 - 1.5xIQR, where IQR is the interquartile
range) indicated some outliers, but none at the extreme level. Because of the between-
subjects aspect of the design, the homogeneity of variance assumption was evaluated.
Levene’s test indicated a violation of this assumption between the Friends and Little
Mosque conditions at baseline (𝐹[1, 191] = 3.973, 𝑝 = .047). However, there was no
indication of assumption violation at post1 (𝐹[1, 191] = 0.141, 𝑝 = .708), and post2
(𝐹[1, 191] = 0.107, 𝑝 = .743) waves of the design. Further, Box’s M-test (M = 3.209, p
= .073) indicated no violation of the homogeneity of covariance matrices. LATER WE
WILL ADD INFORMATION ABOUT THE SPHERICITY ASSUMPTION.

10.4.2 Omnibus ANOVA

Having evaluated the assumptions (excepting sphericity) we are ready to move to the evaluation
of the omnibus ANOVA. This next step produces both the omnibus test as well as testing the
sphericity assumption. Conceptually, evaluating the sphericity assumption precedes the omnibus;
procedurally these are evaluated simultaneously. The figure also reflects that decisions related to
follow-up are dependent upon the significance of the main and omnibus effects.

Figure 10.5: Image of the workflow showing that we at the “Compute the Omnibus ANOVA” step

The rstatix package is a wrapper for the car package. Authors of wrappers attempt to streamline
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a more complex program to simplify the input needed and maximize the output produced for the
typical use-cases.

If we are ever confused about a function, we can place a question mark in front of it. It will
summons information and, if the package is in our library, let us know to which package it belongs
and open the instructions that are embedded in R/R Studio.

#?anova_test

In the code below the identification of the data, DV, between, and within variables are likely to
be intuitive. The within-subjects identifier (wid) is the person-level ID that assists the statistic in
controlling for the dependency introduced by the repeated-measures factor.

#Murrar_df is our df, Diff is our df, wid is the caseID
#between is the between-subjects variable, within is the within subjects variable
Diff_2way <- rstatix::anova_test(

data = Murrar_df, dv = Diff, wid = caseID,
between = COND, within = Wave, detailed = TRUE
)

Diff_2way

ANOVA Table (type III tests)

$ANOVA
Effect DFn DFd SSn SSd F p p<.05 ges

1 (Intercept) 1 191 40911.756 133769.4 58.415 0.000000000001 * 0.096000
2 COND 1 191 9209.127 133769.4 13.149 0.000369000000 * 0.023000
3 Wave 2 382 359.022 250761.1 0.273 0.761000000000 0.000933
4 COND:Wave 2 382 6574.365 250761.1 5.008 0.007000000000 * 0.017000

$`Mauchly's Test for Sphericity`
Effect W p p<.05

1 Wave 0.99 0.369
2 COND:Wave 0.99 0.369

$`Sphericity Corrections`
Effect GGe DF[GG] p[GG] p[GG]<.05 HFe DF[HF] p[HF] p[HF]<.05

1 Wave 0.99 1.98, 378.06 0.759 1 2, 382 0.761
2 COND:Wave 0.99 1.98, 378.06 0.007 * 1 2, 382 0.007 *

10.4.2.1 Checking the sphericity assumption

We continue our evaluation of statistical assumptions by examining the Mauchly’s test for sphericity.
Fortunately, the Mauchly’s is included with the results of the omnibus ANVOA. The sphericity
assumption becomes important when there are three or more levels in the repeated measures factor.
The assumption requires that the variance of difference scores computed between any two levels
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of a within-subjects factor is the same value regardless of which two levels are chosen. As with so
many of our statistical tests of assumptions, we want the p value to be > .05.
Mauchly’s test (in the middle of the output) reports the result. Because our Wave variable has
three levels and appears in the main and interaction effects. The results are identical and we didn’t
violate the sphericity assumption.

• main effect for Wave: 𝑊 = .99, 𝑝 = .369
• interaction effect for COND:Wave: 𝑊 = .99, 𝑝 = .369

We will be able to add this statement to our assumptions write-up:

Mauchly’s test indicated no violation of the sphericity assumption for the main (𝑊 =
.99, 𝑝 = .369) and interaction (𝑊 = .99, 𝑝 = .369) effects.

If the p vaue associated with Mauchly’s test had been less than .05, we could have used one of
the two options (Greenhouse Geyser/GGe or Huynh-Feldt/HFe). In each of these an epsilon value
provides an adjustment to the degrees of freedom used in the estimation of the p value.
When there are concerns about sphericity violations, there is also a multivariate approach that does
not require the assumption of sphericity. The rstatix package does include this analysis. There is
also an option to use a multivariate approach when ANOVA designs include a repeated measures
factor. In the appendix, I included an example of the multivariate approach with a one-way repeated
measures design using with the car package.

10.4.2.2 Interpreting the omnibus results

We are interested in the output reported in rows 2, 3, 4. These include the:

• main effect for condition: 𝐹(1, 191) = 13.149, 𝑝 < .001, 𝜂2 = 0.023
• main effect for wave: 𝐹(2, 382) = 0.273, 𝑝 = .761, 𝜂2 = 0.001
• condition:wave interaction effect: 𝐹(2, 382) = 5.008, 𝑝 = 0.007, 𝜂2 = 0.017

Results of the omnibus ANOVA indicated a significant main effect for condition
(𝐹 [1, 191] = 13.149, 𝑝 < .001, 𝜂2 = 0.023), a non-significant main effect for wave
(𝐹 [2, 382] = 0.273, 𝑝 = .761, 𝜂2 = 0.001), and a significant interaction effect
(𝐹 [2, 382] = 5.008, 𝑝 = 0.007, 𝜂2 = 0.017).

In the output, the column labeled “ges” provides the value for the effect size, 𝜂2. Recall that
eta-squared is one of the most commonly used measures of effect. It refers to the proportion of
variability in the dependent variable/outcome that can be explained in terms of the independent
variable/predictor. Conventionally, values of .01, .06, and .14 are considered to be small, medium,
and large effect sizes, respectively.
You may see different values (.02, .13, .26) offered as small, medium, and large – these values are
used when multiple regression is used. A useful summary of effect sizes, guide to interpreting their
magnitudes, and common usage can be found here [Watson, 2020].
With a significant interaction effect, we would focus on interpreting one or both of the simple main
effects. Let’s first look at the simple main effect of condition within wave option.

https://imaging.mrc-cbu.cam.ac.uk/statswiki/FAQ/effectSize
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10.4.3 Follow-up to Omnibus Tests

10.4.3.1 Planning for the management of Type I error

Controlling for Type I error can depend, in part, on the design of the follow-up tests that are
planned, and the number of pairwise comparisons that follow.

In the first option, the examination of the simple main effect of condition within wave results in
only three pairwise comparisons. In this case, I will use the traditional Bonferroni. Why? Because
there are only three post omnibus analyses and the traditional Bonferroni’s more restrictive control
is less likely to be problematic.

In the second option, the examination of the simple main effect of wave within condition results
in the potential comparison of nine pairwise comparisons. If we used a traditional Bonferroni and
divided .05/6, the p value for each comparison would need to be less than 0.008. Most would agree
that this is too restrictive.

.05/6

[1] 0.008333333

The Holm’s sequential Bonferroni [Green and Salkind, 2017c] offers a middle-of-the-road approach
(not as strict as .05/6 with the traditional Bonferroni; not as lenient as “none”) to managing Type
I error.

If we were to hand-calculate the Holm’s, we would rank order the p values associated with the
6 comparisons in order from lowest (e.g., 0.016) to highest (e.g., 1.000). The first p value is
evaluated with the most strict criterion (.05/6; the traditional Bonferroni approach). Then, each
successive comparison calculates the p value by using the number of remaining comparisons as the
denominator (e.g., .05/5, .05/4, .05/3). As the p values increase and the alpha levels relax, there
will be a cut-point where remaining comparisons are not statistically significant.

Luckily, most R packages offer the Holm’s sequential Bonferroni as an option. The algorithm in
the package rearranges the mathematical formula and produces a p value that we can interpret
according to the traditional values of 𝑝 < .05, 𝑝 < .01 and 𝑝 < .001. I will demonstrate use of
Holm’s in the examination of the simple main effect of ethnicity of rater within photo stimulus.

10.4.4 Simple main effect of condition within wave

The figure reflects our path in the workflow. In the presence of a significant interaction effect we
could choose from a variety of follow-up tests.

If we take this option we follow up with three t-tests. Why? Because within each wave (the
repeated measures factor), there are two conditions. Statistically, we could use one-way ANOVAs,
however, using the rstatix::t_test function will allow us to map statistically significant differences
on a subsequent figure. Here are the comparisons:

• comparison of Friends and Little Mosque within the baseline wave
• comparison of Friends and Little Mosque within the post1 wave
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Figure 10.6: Image of the workflow showing that we are at the “Simple Main Effects for Factor A
within all levels of Factor B” step
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• comparison of Friends and Little Mosque within the post2 wave

We will control for Type I error by requesting the traditional Bonferroni.

Note that the function is rstatix::t_test. Recall that t-tests can be for independent samples or paired
samples. The rstatix::t_test is for independent samples and therefore appropriate for comparing
the Friends to LittleMosque conditions (from the between-groups factor, COND).

Finally, I have also specified detailed=TRUE. This permits me to see the means (i.e., estimate and
estimate 1) for the Friends and Little Mosque conditions, the sample sizes for each (i.e., n1, n2),
the confidence interval around the true difference between the means (i.e, conf.low, conf.high), and
that we used a two-sided t-test.

SimpleWave <- Murrar_df %>%
group_by(Wave) %>%
rstatix::t_test(Diff ~ COND, detailed=TRUE, p.adjust.method = "bonferroni")%>%
rstatix::add_significance()
#rstatix::adjust_pvalue(method = "bonferroni") #this displays the adjusted Bonferroni values

SimpleWave

# A tibble: 3 x 17
Wave estimate estimate1 estimate2 .y. group1 group2 n1 n2 statistic
<fct> <dbl> <dbl> <dbl> <chr> <chr> <chr> <int> <int> <dbl>

1 Baseli~ -0.427 9.31 9.73 Diff Frien~ Littl~ 98 95 -0.108
2 Post1 16.1 15.9 -0.149 Diff Frien~ Littl~ 98 95 4.18
3 Post2 8.28 12.0 3.67 Diff Frien~ Littl~ 98 95 2.45
# i 7 more variables: p <dbl>, df <dbl>, conf.low <dbl>, conf.high <dbl>,
# method <chr>, alternative <chr>, p.signif <chr>

We can begin to assemble the results. At each wave we are comparing the Friends and Little
Mosque conditions.

Baseline: 𝑡(178.04) = −0.108, 𝑝 = 0.914 Post1: 𝑡(190.49) = 4.182, 𝑝 < 0.001 Post2: 𝑡(190.61) =
2.448, 𝑝 = 0.015
You might wonder about effect sizes. The rstatix::pairwise_t_test does not produce any. A com-
monly used effect size for t tests is the Cohen’s d. This gives the degree to which means differ in
the metric of standard deviations. Values of .02, .05, and .08 are interpreted as small, moderate,
and large, respectively. We can use rstatix::cohens_d. A helpful feature of this function is that
interpretive language is provided.

SimpleWave_d <- Murrar_df %>%
group_by(Wave) %>%
rstatix::cohens_d(Diff~COND)

SimpleWave_d

# A tibble: 3 x 8
.y. group1 group2 effsize Wave n1 n2 magnitude
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* <chr> <chr> <chr> <dbl> <fct> <int> <int> <ord>
1 Diff Friends LittleMosque -0.0156 Baseline 98 95 negligible
2 Diff Friends LittleMosque 0.602 Post1 98 95 moderate
3 Diff Friends LittleMosque 0.352 Post2 98 95 small

We can update our t strings with this information.

Baseline: 𝑡(178.04) = −0.108, 𝑝 = 0.914, 𝑑 = −0.016 Post1: 𝑡(190.49) = 4.182, 𝑝 < 0.001, 𝑑 = 0.602
Post2: 𝑡(190.61) = 2.448, 𝑝 = 0.015, 𝑑 = 0.352

Producing a figure can be helpful in conceptualizing what we have first done. Because we used the
rstatix functions, we can easily integrate them into our ggpubr::ggboxplot(). Let’s re-run the version
of the boxplot where “Wave” is on the x-axis (and, is therefore our grouping variable). Because I
want the data to be as true-to-scale as possible, I have added the full, potential, range of the y axis
through the ylim argument. In order to update the ggboxplot, we will need to save it as an option.
My object name represents the “Condition within Wave” simple main effect.

#Although we have used this code this before, I respecified the basic figure here.
CNDwiWV <- ggpubr::ggboxplot(Murrar_df, x = "Wave", y = "Diff", color = "COND",xlab = "Study Wave", ylab = "Difference in Attitudes toward Arab and White People", add = "jitter", ylim = c(-100, 100), title = "Difference Scores: Condition within Wave")

#This updates the SimpleWave object (which holds the t-tests) to include plotting information about the xy positions
SimpleWave <- SimpleWave %>% rstatix::add_xy_position(x = "Wave")
#SimpleWave #unhashtag if you want to see the plotting information

#Now we update the figure to include the significance bars and stars
# label = "p.adj.signif" points to the values in the rstatix output from the pairwise_t_test
#tip.length is the amount of downward pointing on the lines that hold the p-values
#hide.ns=TRUE suppresses a bar over non-significant comparisons
#y.position adjusts the significance bars up and down, I pushed them up
CNDwiWV <- CNDwiWV +

ggpubr::stat_pvalue_manual(SimpleWave, label = "p.signif", tip.length = .02, hide.ns = TRUE, y.position = c(95, 88))
CNDwiWV
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If we were to write up this simple main effect of condition within wave:

We followed the significant interaction effect with an evaluation of simple main effects
of condition within wave. A traditional Bonferroni was used to manage Type I error
[Green and Salkind, 2017c]. There was a non-statistically significant difference between
conditions at baseline (𝑡[178.04] = −0.108, 𝑝 = 0.914, 𝑑 = −0.016) However there were
statistically significant differences at post1 (𝑡[190.49] = 4.182, 𝑝 < 0.001, 𝑑 = 0.602) and
post2 𝑡[190.61] = 2.448, 𝑝 = 0.015, 𝑑 = 0.352. We note that the effect size at post1
approached a moderate size; the effect size at post2 was small.

10.4.5 Simple main effect of wave within condition

Alternatively, we could evaluate the simple main effect of wave within condition. The figure reflects
our path along the workflow.
Because there are three waves within each condition, would start with two one-way ANOVAs
and then follow each of those with pairwise comparisons. First, the one-way repeated measures
ANOVAs:
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Figure 10.7: Image of the workflow showing that we at the “Simple Main Effects for Factor B
within all levels of Factor A” step
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• comparison of baseline, post1, and post2 within the Friends condition
• comparison of baseline, post1, and post2 within the Little Mosque condition

SimpleCond <- Murrar_df %>%
group_by(COND) %>%
rstatix::anova_test(dv = Diff, wid = caseID, within = Wave) %>%
rstatix::get_anova_table() %>%
rstatix::adjust_pvalue(method = "none")

SimpleCond

# A tibble: 2 x 9
COND Effect DFn DFd F p `p<.05` ges p.adj
<fct> <chr> <dbl> <dbl> <dbl> <dbl> <chr> <dbl> <dbl>

1 Friends Wave 2 194 1.76 0.175 "" 0.012 0.175
2 LittleMosque Wave 2 188 3.39 0.036 "*" 0.022 0.036

Below are the F strings for the one-way ANOVAs the followed the omnibus, mixed design, ANOVA:

• Friends: F (2, 194) = 1.759, p = 0.175, 𝜂2 = 0.012 (effect size indicates a small effect)
• Little Mosque: F (2, 188) = 3.392, p = 0.036, 𝜂2 = 0.072 (a moderate effect size)

Because each of these one-way ANOVAs has three levels, we need to follow with pairwise com-
parisons. However, because the oneway repeated measures ANOVA was non-significant for the
Friends condition, we only need to report them for the Little Mosque condition. As you can see we
generally work our way down to comparing chunks to each other to find the source(s) of significant
differences.

You will notice that we are saving the results of the pairwise comparisons as an object. This allows
us to update the object in combination with the boxplot we created earlier.

Note that in this follow-up, once we have arrived at the level of paired comparisons, we are using
rstatix::pairwise_t_test. Because wave (within condition) is repeated measures, we including the
command, paired = TRUE.

In order to manage Type I error, I have specified “holm.” The Holm’s sequential Bonferroni offers
a middle-of-the-road approach (not as strict as .05/6 with the traditional Bonferroni; not as lenient
as “none”) to managing Type I error.

pwcWVwiGP <- Murrar_df %>%
group_by(COND) %>%
rstatix::pairwise_t_test(
Diff ~ Wave, paired = TRUE, detailed = TRUE,
p.adjust.method = "holm"
) #%>%

#select(-df, -statistic, -p) # Remove details
pwcWVwiGP
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# A tibble: 6 x 16
COND estimate .y. group1 group2 n1 n2 statistic p df conf.low

* <fct> <dbl> <chr> <chr> <chr> <int> <int> <dbl> <dbl> <dbl> <dbl>
1 Frien~ -6.62 Diff Basel~ Post1 98 98 -1.80 0.075 97 -13.9
2 Frien~ -2.65 Diff Basel~ Post2 98 98 -0.793 0.43 97 -9.27
3 Frien~ 3.97 Diff Post1 Post2 98 98 1.09 0.276 97 -3.23
4 Littl~ 9.88 Diff Basel~ Post1 95 95 2.45 0.016 94 1.86
5 Littl~ 6.06 Diff Basel~ Post2 95 95 1.62 0.108 94 -1.36
6 Littl~ -3.82 Diff Post1 Post2 95 95 -1.03 0.304 94 -11.2
# i 5 more variables: conf.high <dbl>, method <chr>, alternative <chr>,
# p.adj <dbl>, p.adj.signif <chr>

Consistent with the non-significant one-way repeated measures ANOVA, there were non-significant
pairwise comparisons for the Friends condition.

Within the Little Mosque condition, we find a significant difference between baseline and post1
(t[94] = 2.447, p = .049), but non-significant differences between baseline and post2 (t[94] = 1.621,
p = .216) and post1 and post2 (t[94] = -1.034, p = .304)

We can use rstatix::cohens_d to calculate effect sizes. In the metric of standard deviation units,
values of .02, .05, and .08 are interpreted as small, moderate, and large, respectively.

pwcWVwiGP_d <- Murrar_df %>%
group_by(COND) %>%
rstatix::cohens_d(Diff~Wave)

pwcWVwiGP_d

# A tibble: 6 x 8
.y. group1 group2 effsize COND n1 n2 magnitude

* <chr> <chr> <chr> <dbl> <fct> <int> <int> <ord>
1 Diff Baseline Post1 -0.263 Friends 98 98 small
2 Diff Baseline Post2 -0.112 Friends 98 98 negligible
3 Diff Post1 Post2 0.159 Friends 98 98 negligible
4 Diff Baseline Post1 0.343 LittleMosque 95 95 small
5 Diff Baseline Post2 0.222 LittleMosque 95 95 small
6 Diff Post1 Post2 -0.151 LittleMosque 95 95 negligible

We can update our t strings with this information. That is, within the Little Mosque condition: .

Baseline versus post1: t(94) = 2.447, p = .049, d = 0.343), Baseline versus post2:t(94) = 1.621, p
= .216, d = 0.222), and Post1 versus post2: (t(94) = -1.034, p = .304, d = -0.150)

Let’s create a figure to illustrate what we’ve just learned.

#We ran this before -- grabbing again to make it clear how creating and updating the boxplot works
WVwiCND <- ggpubr::ggboxplot(Murrar_df, x = "COND", y = "Diff", color = "Wave", xlab = "Study Condition", ylim = c(-100, 100), ylab = "Difference in Attitudes toward Arab and White People", add = "jitter", title = "Difference Scores: Wave within Condition")
#WVwiCND

#This updates the pwcWVwiGP object (which holds the t-tests) to include plotting information about the xy positions
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pwcWVwiGP <- pwcWVwiGP %>% rstatix::add_xy_position(x = "COND")
#pwcWVwiGP
#Diff_2way was my omnibus ANOVA object
WVwiCND <- WVwiCND +

ggpubr::stat_pvalue_manual(pwcWVwiGP, label = "p.adj.signif", tip.length = .02, hide.ns = TRUE, y.position = c(100))
WVwiCND
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If we were to write up this result:

We followed the significant interaction effect with an evaluation of simple main ef-
fects of wave within condition. There were non-significant difference within the Friends
condition (𝐹 [2, 194] = 1.759, 𝑝 = 0.175, 𝜂2 = 0.012). There were significant differ-
ences with an effect size indicating a moderate effect in the Little Mosque condition
(𝐹 [2, 188] = 3.392, 𝑝 = 0.036, 𝜂2 = 0.072). We followed up the significant simple
main effect for with pairwiwse comparisons. At this level we controlled for Type I
error with the Holm’s sequential Bonferroni [Green and Salkind, 2017c]. Within the
Little Mosque condition, we found a significant difference between baseline and post1
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(𝑡[94] = 2.447, 𝑝 = .049, 𝑑 = 0.343), but non-significant differences between baseline
and post2 (𝑡[94] = 1.621, 𝑝 = .216, 𝑑 = 0.222) and post1 and post2 (𝑡[94] − 1.034, 𝑝 =
.304, 𝑑 = −0.150).

10.4.6 If we only had a main effect

When there is an interaction effect, we do not interpret main effects. This is because the solution
is more complicated than a main effect could explain. It is important, though, to know how to
interpret a main effect. We would do this if we had one or more significant main effects and no
interaction effect.

The figure shows our place on the workflow.

Figure 10.8: Image of a workflow showing that we at the “Main effects only” step

If we had not had a significant interaction, but did have a significant main effect for wave, we could
have conducted pairwise comparisons for pre, post1, and post2 – collapsing across condition.

pwcMain <- Murrar_df %>%
rstatix::pairwise_t_test(
Diff ~ Wave, paired = TRUE,
p.adjust.method = "bonferroni"

)
pwcMain
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# A tibble: 3 x 10
.y. group1 group2 n1 n2 statistic df p p.adj p.adj.signif

* <chr> <chr> <chr> <int> <int> <dbl> <dbl> <dbl> <dbl> <chr>
1 Diff Baseline Post1 193 193 0.539 192 0.59 1 ns
2 Diff Baseline Post2 193 193 0.652 192 0.515 1 ns
3 Diff Post1 Post2 193 193 0.0528 192 0.958 1 ns

Ignoring condition (Friends, Little Mosque), we do not see changes across time. This is not surpris-
ing since the F test for the main effect was also non-significant (𝐹 [2, 382] = 0.273, 𝑝 = .761, 𝜂2 =
0.0014),

If we had had a non-significant interaction effect but a significant main effect for condition, there
would have been no need for further follow-up. Why? Because there were only two levels the
significant main effect already tells us there were statistically significant differences between Friends
and Little Mosque (𝐹 [1, 191] = 13.149, 𝑝 < .001, 𝜂2 = 0.023).

Here is a figure to represent this analysis.

#We ran this before -- grabbing again to make it clear how creating and updating the boxplot works
WaveMain <- ggpubr::ggboxplot(Murrar_df, x = "Wave", y = "Diff", xlab = "Wave of Experiment", ylim = c(-100, 100), ylab = "Difference in Attitudes toward Arab and White People", add = "jitter", title = "Difference Scores Across Time")

#This updates the pwcWVwiGP object (which holds the t-tests) to include plotting information about the xy positions
pwcMain <- pwcMain %>% rstatix::add_xy_position(x = "Wave")
#pwcWVwiGP
#Diff_2way was my omnibus ANOVA object
WaveMain <- WaveMain +

ggpubr::stat_pvalue_manual(pwcMain, label = "p.adj.signif", tip.length = .02, hide.ns = FALSE, y.position = c(93, 103, 87))
WaveMain
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10.4.7 APA Style Write-up of the Results

As I looked across the different approaches to describing the results, I felt that the simple main
effect of condition within wave best explained the findings.

10.4.7.1 Results

We conducted a 2 X 3 mixed design ANOVA to evaluate the combined effects of condi-
tion (Friends and Little Mosque) and wave (baseline, post1, post2) on a difference score
that compared attitudes toward White and Arab people.

Mixed design ANOVA has a number of assumptions related to both the within-subjects
and between-subjects elements. Data are expected to be normally distributed at each
level of design. There was no evidence of skew (all values were at or below the absolute
value of 0.32) or kurtosis (all values were below the absolute value of .57 [Kline, 2016a]).
Similarly, results of the Shapiro-Wilk normality test (applied to the residuals from the
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factorial ANOVA model) suggested that model residuals did not differ significantly from
a normal distribution (𝑊 = 0.999, 𝑝 = 0.953). Visual inspection of boxplots for each
wave of the design, assisted by the rstatix::identify_outliers() function (which reports
values above Q3 + 1.5xIQR or below Q1 - 1.5xIQR, where IQR is the interquartile
range) indicated some outliers, but none at the extreme level. Because of the between-
subjects aspect of the design, the homogeneity of variance assumption was evaluated.
Levene’s test indicated a violation of this assumption between the Friends and Little
Mosque conditions at baseline (𝐹 [1, 191] = 3.973, 𝑝 = .047). However, there was no
indication of assumption violation at post1 (𝐹 [1, 191] = 0.141, 𝑝 = .708) and post2
(𝐹 [1, 191] = 0.107, 𝑝 = .743) waves of the design. Further, Box’s M-test (𝑀 = 3.21, 𝑝 =
.073) indicated no violation of the homogeneity of covariance matrices. Mauchly’s test
indicated no violation of the sphericity assumption for the main (𝑊 = .99, 𝑝 = .369)
and interaction (𝑊 = .99, 𝑝 = .369) effects.

Results of the omnibus ANOVA indicated a significant main effect for condition
(𝐹 [1, 191] = 13.149, 𝑝 < .001, 𝜂2 = 0.023), a non-significant main effect for wave
(𝐹 [2, 382] = 0.273, 𝑝 = .761, 𝜂2 = 0.001), and a significant interaction effect
(𝐹 [2, 382] = 5.008, 𝑝 = 0.007, 𝜂2 = 0.017).

We followed the significant interaction effect with an evaluation of simple main effects of
wave within condition. A one-way ANOVA indicated non-significant differences within
the Friends condition (𝐹 [2, 194] = 1.759, 𝑝 = 0.175, 𝜂2 = 0.012). In contrast, there were
significant differences in the Little Mosque condition (𝐹 [2, 188] = 3.392, 𝑝 = 0.036, 𝜂2 =
0.072). We followed up this significant simple main effect with pairwiwse comparisons.
At this level we controlled for Type I error with the Holm’s sequential Bonferroni [Green
and Salkind, 2017c]. Within the Little Mosque condition, we found a significant differ-
ence between baseline and post1 (𝑡[94] = 2.447, 𝑝 = .049, 𝑑 = 0.343), but non-significant
differences between baseline and post2 (𝑡[94] = 1.621, 𝑝 = .216, 𝑑 = 0.222) and post1
and post2 (𝑡[94] − 1.034, 𝑝 = .304, 𝑑 = −0.150).

As illustrated in Figure 1 difference scores were comparable at baseline. After the
intervention, difference scores increased for those in the Friends condition – indicating
more favorable attitudes toward White people. In contrast, those exposed to the Little
Mosque condition had difference scores that were lower from baseline to post1 and stayed
at that same level at post2. Means and standard deviations are reported in Table 1.

WVwiCND
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The following code can be used to write output to .csv files. From there it is easy(er) to manipulate
them into tables for use in an empirical manuscript.

MASS::write.matrix(pwcWVwiGP, sep = ",", file = "pwcWVwiGP.csv")
#this command can also be used to export other output
MASS::write.matrix(Diff_2way$ANOVA, sep = ",", file = "Diff_2way.csv")
MASS::write.matrix(SimpleWave, sep = ",", file = "SimpleWave.csv")
MASS::write.matrix(SimpleCond, sep = ",", file = "SimpleCond.csv")

10.4.7.2 Comparing our findings to Murrar and Brauer [2018]

In general, the results of our simulation mapped onto the findings. If you have access to the article
I encourage you to examine it as you consider my observations.

• The authors started their primary analyses of Experiment 1 with independent t tests com-
paring the Friends and Little Mosque conditions within each of the baseline, post1, and post2



10.5. POWER IN MIXED DESIGN ANOVA 459

waves. This is equivalent to our simple main effects of condition within wave that we con-
ducted as follow-up to the significant interaction effect. It is not clear to me why they did
not precede this with a mixed design ANOVA.

– The results of the article are presented in their Table 1
– Our results were comparable in that we found no attitude difference at baseline
– Similar to the results in the article we found statistically significant differences (with

comparable p values and effect sizes) at post1 and post2

• With two experiments (each with a number of associated hypotheses) in a single paper there
were a large number of analyses conducted by the authors. I think they designed tables and
figures that provided an efficient and clear review of the study design and their findings.

• This finding is exciting to me. Anti-racism education frequently encourages individuals to
expose themselves to content authored/created by individuals from groups with marginalized
identities. This finding supports that approach to prejudice reduction.

10.5 Power in Mixed Design ANOVA

The package wp.rmanova was designed for power analysis in repeated measures ANOVA.

Power analysis allows us to determine the probability of detecting an effect of a given size with a
given level of confidence. Especially when we don’t achieve significance, we may want to stop.

In the WebPower package, we specify 6 of 7 interrelated elements; the package computes the missing
element

• n = sample size (number of individuals in the whole study)
• ng = number of groups
• nm = number of repeated measurements (i.e., waves)
• f = Cohen’s f (an effect size; we can use a conversion calculator); Cohen suggests that f values

of 0.1, 0.25, and 0.4 represent small, medium, and large effect sizes, respectively
• nscor = the Greenhouse Geiser correction from our ouput; 1.0 means no correction was needed

and is the package’s default; < 1 means some correction was applied
• alpha = is the probability of Type I error; we traditionally set this at .05
• power = 1 - P(Type II error) we traditionally set this at .80 (so anything less is less than

what we want)
• type = 0 is for between-subjects, 1 is for repeated measures, 2 is for interaction effect; in a

mixed design ANOVA we will select “2”

As in the prior lessons, we need to convert our effect size for the interaction to 𝑓 effect size (this
is not the same as the F test). The effectsize package has a series of converters. We can use the
eta2_to_f() function to translate the 𝜂2 associated with the interaction effect to Cohen’s f.

#interaction effect
effectsize::eta2_to_f(0.017)

[1] 0.1315066

https://webpower.psychstat.org/wiki/_media/grant/practical_statistica_interior_for_kindle.pdf
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We can now retrieve information from our study (including the Cohen’s f value we just calculated)
and insert it into the script for the power analysis.

WebPower::wp.rmanova(n=193, ng=2, nm=3, f = .1315, nscor = .99, alpha = .05, power = NULL, type = 2)

Repeated-measures ANOVA analysis

n f ng nm nscor alpha power
193 0.1315 2 3 0.99 0.05 0.3493183

NOTE: Power analysis for interaction-effect test
URL: http://psychstat.org/rmanova

We are powered at .349 (we have a 35% of rejecting the null hypothesis, if it is true)

In reverse, setting power at .80 (the traditional value) and changing n to NULL yields a recom-
mended sample size.

WebPower::wp.rmanova(n=NULL, ng=2, nm=3, f = .1315, nscor = .99, alpha = .05, power = .80, type = 2)

Repeated-measures ANOVA analysis

n f ng nm nscor alpha power
562.608 0.1315 2 3 0.99 0.05 0.8

NOTE: Power analysis for interaction-effect test
URL: http://psychstat.org/rmanova

Given our desire for strong power and our weak effect size, this power analysis suggests a sample
size of 562 participants to detect a significant interaction effect.

10.6 Practice Problems

The suggestions for homework differ in degree of complexity. I encourage you to start with a
problem that feels “do-able” and then try at least one more problem that challenges you in some
way. At a minimum your data should allow for a 2 X 3 (or 3 X 2) design. At least one of the
problems you work should have a statistically significant interaction effect that you work all the
way through.

Regardless, your choices should meet you where you are (e.g., in terms of your self-efficacy for
statistics, your learning goals, and competing life demands). Whichever you choose, you will focus
on these larger steps in one-way ANOVA, including:

• test the statistical assumptions
• conduct a two-way (minimally a 2x3), mixed design, ANOVA, including
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– omnibus test and effect size
– report main and interaction effects
– conduct follow-up testing of simple main effects

• write a results section to include a figure and tables

10.6.1 Problem #1: Play around with this simulation.

Copy the script for the simulation and then change (at least) one thing in the simulation to see
how it impacts the results.

• If mixed design ANOVA is new to you, perhaps you just change the number in
“set.seed(210813)” from 210813 to something else. Your results should parallel those
obtained in the lecture, making it easier for you to check your work as you go.

• If you are interested in power, change the sample size to something larger or smaller.
• If you are interested in variability (i.e., the homogeneity of variance assumption), perhaps

you change the standard deviations in a way that violates the assumption.

10.6.2 Problem #2: Conduct a mixed design ANOVA with a different depen-
dent variable.

The Murrar et al. [2018] article has three dependent variables (attitudes toward people who are
Arab, attitudes toward people who are White, and the difference score). I analyzed the difference
score. Select one of the other dependent variables. If you do not get a significant interaction, play
around with the simulation (changing the sample size, standard deviations, or both) until you get
a significant interaction effect.

10.6.3 Problem #3: Try something entirely new.

Using data for which you have permission and access (e.g., IRB approved data you have collected
or from your lab; data you simulate from a published article; data from an open science repository;
data from other chapters in this OER), complete a mixed design ANOVA. Please have at least 3
levels for one predictor and at least 2 levels for the second predictor.

10.6.4 Grading Rubric

Regardless which option(s) you chose, use the elements in the grading rubric to guide you through
the practice.

Assignment Component Points Possible Points Earned
1. Narrate the research vignette, describing the IV
and DV. Miniminally, the data should allow the
analysis of a 2 x 3 (or 3 X 2) design. At least one
of the problems you work should have a significant
interaction effect so that follow-up is required.

5 _____
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Assignment Component Points Possible Points Earned
2. Simulate (or import) and format data 5 _____
3. Evaluate statistical assumptions 5 _____
4. Conduct omnibus ANOVA (w effect size) 5 _____
5. Conduct one set of follow-up tests; narrate your
choice

5 _____

6. Describe approach for managing Type I error 5 _____
7. APA style results with table(s) and figure 5 _____
8. Conduct power analyses to determine the power
of the current study and a recommended sample
size.

5 _____

9. Explanation to grader. 5 _____
Totals 45 _____

10.7 Homeworked Example

Screencast Link

For more information about the data used in this homeworked example, please refer to the descrip-
tion and codebook located at the end of the introduction.

10.7.1 Working the Problem with R and R Packages

Narrate the research vignette, describing the IV and DV

Minimally, the data should allow the analysis of a 2 x 3 (or 3 X 2) design. At least one
of the problems you work should have a significant interaction effect so that follow-up
is required.

I want to ask the question, what are the effects of intentional recentering on students evaluations
of socially responsive pedagogy as they progress through three doctoral courses in statistics. My
design is a 3 x 2 ANOVA:

• Within-subjects factor: student as they progress through ANOVA, multivariate, psychomet-
rics

• Between-subjects factor: recentering status of the class (Pre, Re)
• Continuous DV: SRPed (socially responsive pedagogy)

If you wanted to use this example and dataset as a basis for a homework assignment, you could
choose a different dependent variable. I chose the socially responsive pedagogy subscale. Two other
subscales include traditional pedagogy and valued by the student.

Simulate (or import) and format data

First I import the larger dataset.

https://youtu.be/6pkF-tnmNuY
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big <- readRDS("ReC.rds")

The SRPed (socially responsive pedagogy) variable is an average of the items on that scale. I will
first create that variable.

#This code was recently updated and likely differs from the screencasted lecture

#Calculates a mean if at least 75% of the items are non-missing; adjusts the calculating when there is missingness
big$SRPed <- datawizard::row_means(big, select = c('InclusvClassrm', 'EquitableEval','MultPerspectives', 'DEIintegration'), min_valid = .75)

Let’s trim it to just the variables of interest

mixt_df <- (dplyr::select (big, deID, Course, Centering, SRPed))

I want the course variable to be factor that is ordered by its sequence: ANOVA, multivariate,
psychometrics.

I want the centering variable to be ordered: Pre, Re

str(mixt_df)

Classes 'data.table' and 'data.frame': 310 obs. of 4 variables:
$ deID : int 1 2 3 4 5 6 7 8 9 10 ...
$ Course : Factor w/ 3 levels "Psychometrics",..: 2 2 2 2 2 2 2 2 2 2 ...
$ Centering: Factor w/ 2 levels "Pre","Re": 2 2 2 2 2 2 2 2 2 2 ...
$ SRPed : num 5 5 4.25 5 5 3.75 5 5 4.25 5 ...
- attr(*, ".internal.selfref")=<externalptr>

Because R’s default is to order alphabetically, the centering variable is correct. I just need to change
the course variable.

mixt_df$Course <- factor(mixt_df$Course, levels = c("ANOVA", "Multivariate", "Psychometrics"))
str(mixt_df)

Classes 'data.table' and 'data.frame': 310 obs. of 4 variables:
$ deID : int 1 2 3 4 5 6 7 8 9 10 ...
$ Course : Factor w/ 3 levels "ANOVA","Multivariate",..: 1 1 1 1 1 1 1 1 1 1 ...
$ Centering: Factor w/ 2 levels "Pre","Re": 2 2 2 2 2 2 2 2 2 2 ...
$ SRPed : num 5 5 4.25 5 5 3.75 5 5 4.25 5 ...
- attr(*, ".internal.selfref")=<externalptr>

After checking the structure again, both are correct.

I want all of my analyses (i.e., testing of assumptions, descriptives, omnibus F, follow-up) to be
with the same dataset. Because each of these analyses will use listwise deletion (i.e., deleting cases,
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potentially differing numbers, when there is missing data), I will take care of this now. Because
this is a longitudinal analysis, I will do it in two steps.

The current dataset is is in long form. This means each student has up to three rows of data. I
will first delete rows that have any missing data:

mixt_df <- na.omit(mixt_df)

This took me from 310 observations to 299.

These analyses, though, require that students have completed evaluations for all three courses. In
the chapter, I restructured the data from long, to wide, back to long again. While this was useful
pedagogy in understanding the difference between the two datasets, there is also super quick code
that will simply retain data that has at least three observations per student.

library(tidyverse)
mixt_df <- mixt_df%>%

dplyr::group_by(deID)%>%
dplyr::filter(n()==3)

This took the data to 198 observations. Since each student contributed 3 observations, we know
𝑁 = 66.

Let’s get an a priori peek at what we’re doing:

mixt_box <- ggpubr::ggboxplot(mixt_df, x = "Course", y = "SRPed", color = "Centering", palette = "jco", xlab = "Statistics Sequence", ylab = "Socially Responsive Pedagogy", title = "Socially Responsive Course Evaluations as a Function of Centering and Time", add = "jitter")
mixt_box
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Evaluate statistical assumptions

Is the dependent variable normally distributed in all combinations of the factors?

I can examine skew and kurtosis at the cell level with psych::describeBy().

mixt_df <- as.data.frame(mixt_df)#my data was not reading as a df so I applied this function
psych::describeBy(SRPed ~ Course + Centering, data = mixt_df, type = 1, mat = TRUE, digits = 3)

item group1 group2 vars n mean sd median trimmed mad min
SRPed1 1 ANOVA Pre 1 42 4.522 0.639 4.875 4.630 0.185 2.250
SRPed2 2 Multivariate Pre 1 42 4.387 0.648 4.583 4.468 0.618 2.333
SRPed3 3 Psychometrics Pre 1 34 4.659 0.525 5.000 4.747 0.000 3.333
SRPed4 4 ANOVA Re 1 24 4.427 0.524 4.500 4.475 0.741 3.250
SRPed5 5 Multivariate Re 1 24 4.698 0.448 5.000 4.775 0.000 3.250
SRPed6 6 Psychometrics Re 1 32 4.523 0.636 4.750 4.654 0.371 2.250
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max range skew kurtosis se
SRPed1 5 2.750 -1.455 2.044 0.099
SRPed2 5 2.667 -0.951 0.561 0.100
SRPed3 5 1.667 -1.317 0.250 0.090
SRPed4 5 1.750 -0.561 -0.627 0.107
SRPed5 5 1.750 -1.622 2.477 0.092
SRPed6 5 2.750 -1.909 3.680 0.112

Across all 6 conditions:

• No skew exceeds the threshholds of concern (>3; Kline [2016])

– the most extreme skew is -1.909

• No kurtosis exceeds the threshholds of concern (>10; Kline [2016])

– the most extreme kurtosis is 3.680

Are the model residuals normally distributed?
I can use the Shapiro-Wilk test to formally investigate the normality assumption. Examining the
distribution of the model residuals is one of the most efficient ways to do this. First, I need to run
the model and extract the residuals.

mixt_mod <- aov(SRPed ~ Course*Centering, mixt_df)
summary(mixt_mod)

Df Sum Sq Mean Sq F value Pr(>F)
Course 2 0.44 0.2215 0.639 0.5288
Centering 1 0.02 0.0240 0.069 0.7926
Course:Centering 2 1.89 0.9474 2.734 0.0675 .
Residuals 192 66.54 0.3465
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We won’t look at this yet, but simply focus on testing the assumption of normality. The next step
is to extract the residuals.

mixt_resid <- residuals(mixt_mod)

The formal test of normality is the Shapiro-Wilk test:

shapiro.test(mixt_resid)

Shapiro-Wilk normality test

data: mixt_resid
W = 0.85884, p-value = 0.000000000001396
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Our test result is 𝑊 = 0.859, 𝑝 < .001.. The significant p value indicates that we have violated
the normality assumption. When cell sizes have at least 15 cases each and are roughly equivalent
in size, ANOVA models are generally robust to this violation. None-the-less, we should keep it in
mind.

We can plot the residuals to “see” how bad it is:

hist(mixt_resid)

Histogram of mixt_resid

mixt_resid
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Like the data itself, the residuals have a negative skew with a pile-up of scores on the “high” side.

qqnorm(mixt_resid)
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Similarly, we see that the residuals sharply deviate from the diagonal at the top.
Is there evidence of outliers? Are they extreme?
The rstatix::identify_outliers() function identifies outliers and extreme outliers.

mixt_df%>%
group_by(Course, Centering)%>%
rstatix::identify_outliers(SRPed)

# A tibble: 9 x 6
Course Centering deID SRPed is.outlier is.extreme
<fct> <fct> <int> <dbl> <lgl> <lgl>

1 ANOVA Pre 61 2.25 TRUE FALSE
2 Multivariate Pre 61 2.33 TRUE FALSE
3 Multivariate Re 116 3.25 TRUE FALSE
4 Psychometrics Pre 51 3.33 TRUE FALSE
5 Psychometrics Pre 58 3.75 TRUE FALSE
6 Psychometrics Pre 61 3.67 TRUE FALSE
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7 Psychometrics Pre 64 3.5 TRUE FALSE
8 Psychometrics Pre 77 3.75 TRUE FALSE
9 Psychometrics Re 11 2.25 TRUE FALSE

There are 9 rows of outliers; none are extreme. Cross-referencing back to the boxplot, these are
on the low side of evaluations. As an instructor, it seems important to retain the voices that
rated socially responsive pedagogy lower than the other students. Although they contribute to
non-normality, to exclude them would bias the data in a positive direction.
Are the variances of the dependent variable equivalent across all combinations of the
factors?
I can use the Levene’s test with rstatix::levene_test().

mixt_df %>%
group_by(Course)%>%
rstatix::levene_test(SRPed ~ Centering)

# A tibble: 3 x 5
Course df1 df2 statistic p
<fct> <int> <int> <dbl> <dbl>

1 ANOVA 1 64 0.177 0.676
2 Multivariate 1 64 4.79 0.0322
3 Psychometrics 1 64 0.319 0.574

Levene’s test indicated a violation of this assumption between the Pre and Re centering conditions
in the multivariate class (𝐹 [1, 64] = 4.787, 𝑝 = 0.032). There was no indication of assumption
violation for the ANOVA class (𝐹 [1, 64] = 0.176, 𝑝 = 0.676) nor the psychometrics class (𝐹 [1, 64] =
0.320, 𝑝 = 0.573).
Before moving on I will write up the portion of the APA results section that evaluates the assump-
tions:

We conducted a 2 X 3 mixed design ANOVA to evaluate students’ evaluations of social
responsive pedagogy as a function of centering stage (i.e., pre-centered and re-centered)
across three doctoral statistics courses in professional psychology (i.e., ANOVA, multi-
variate, psychometrics; taught in that order).

Mixed design ANOVA has a numer of assumptions related to both the within-subjects
and between-subjects elements. Data are expected to be normaly distributed at each
level of the design. Relative to the thresholds identified by Kline [2016a] there was no
evidence of skew (all values were at or below the absolute value of 1.909) and kurtosis
(all values were below the absolute value of 3.680). The Shapiro-Wilk test applied to
model residuals provided a formal test of normality. The test result was 𝑊 = 0.859, 𝑝 <
.001. and indicated a violation of the the normality assumption. Visual inspection of
boxplots for each wave of the design, assisted by the rstatix::identify_outliers() function
(which reports values above Q3 + 1.5xIQR or below Q1 - 1.5xIQR, where IQR is the
interquartile range) indicated 9 outliers; none of these at the extreme level. All outliers
were among the lowest student ratings of socially responsive pedagogy. We determined
that it was important that the dataset retain these perspectives.
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Regardin the homogeneity of variance assumption, Levene’s test indicated a violation
between the pre- and re- centering conditions in the multivariate class (𝐹 [1, 64] =
4.787, 𝑝 = 0.032). There was no indication of assumption violation for the ANOVA class
(𝐹 [1, 64] = 0.176, 𝑝 = 0.676) nor the psychometrics class (𝐹 [1, 64] = 0.320, 𝑝 = 0.573).
PLACEHOLDER FOR SPHERICITY ASSUMPTION.

Conduct omnibus ANOVA (w effect size)

rstatix::anova_test(data = mixt_df, dv = SRPed, wid = deID, between = Centering, within = Course)

Warning: The 'wid' column contains duplicate ids across between-subjects
variables. Automatic unique id will be created

ANOVA Table (type III tests)

$ANOVA
Effect DFn DFd F p p<.05 ges

1 Centering 1 56 0.000227 0.988000 0.00000298
2 Course 2 112 0.550000 0.579000 0.00300000
3 Centering:Course 2 112 8.548000 0.000351 * 0.03900000

$`Mauchly's Test for Sphericity`
Effect W p p<.05

1 Course 0.92 0.099
2 Centering:Course 0.92 0.099

$`Sphericity Corrections`
Effect GGe DF[GG] p[GG] p[GG]<.05 HFe DF[HF]

1 Course 0.925 1.85, 103.66 0.565000 0.956 1.91, 107.04
2 Centering:Course 0.925 1.85, 103.66 0.000519 * 0.956 1.91, 107.04

p[HF] p[HF]<.05
1 0.571000
2 0.000443 *

Because Course is a repeated measures factor, we evaluate Mauchly’s test for the main (𝑊 =
0.919, 𝑝 = 0.098) and interaction (𝑊 = 0.919, 𝑝 = 0.098) effects. Neither was statistically signifi-
cant, meaning we did not violate the sphericity assumption.
Let’s write the F strings from the above table:

• Centering main effect: 𝐹(1, 56) = 0.000, 𝑝 = 0.988, 𝜂2 = 0.000
• Course effect: 𝐹(2, 112) = 0.550, 𝑝 = 0.578, 𝜂2 = 0.003
• Interaction effect: 𝐹(2, 112) = 8.547, 𝑝 = 0.001, 𝜂2 = 0.039

Regarding the omnibus ANOVA, neither the main effect for centering stage (𝐹 [1, 56] =
0.000, 𝑝 = 0.988, 𝜂2 = 0.000) nor course (𝐹 [2, 112] = 0.550, 𝑝 = 0.578, 𝜂2 = 0.003). How-
ever there was a statistically significant centering x course interaction effect (𝐹 [2, 112] =
8.547, 𝑝 = 0.001, 𝜂2 = 0.039).
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Conduct one set of follow-up tests; narrate your choice

With a significant interaction effect, we will want to follow-up with an analysis of simple main
effects. I think I am interested in the simple main effects for centering within each of the courses.
Because there are two levels of Centering (pre, re) within each of the courses, I can go straight to
t-tests.

Simple_Course <- mixt_df%>%
group_by(Course)%>%
rstatix::t_test(SRPed ~ Centering, detailed = TRUE, p.adjust.method = "none")%>%
rstatix::add_significance()

Simple_Course

# A tibble: 3 x 17
Course estimate estimate1 estimate2 .y. group1 group2 n1 n2 statistic
<fct> <dbl> <dbl> <dbl> <chr> <chr> <chr> <int> <int> <dbl>

1 ANOVA 0.0947 4.52 4.43 SRPed Pre Re 42 24 0.651
2 Multiv~ -0.311 4.39 4.70 SRPed Pre Re 42 24 -2.29
3 Psycho~ 0.136 4.66 4.52 SRPed Pre Re 34 32 0.943
# i 7 more variables: p <dbl>, df <dbl>, conf.low <dbl>, conf.high <dbl>,
# method <chr>, alternative <chr>, p.signif <chr>

I also want effect sizes (Cohen’s d):

mixt_df%>%
group_by(Course)%>%
rstatix::cohens_d(SRPed ~ Centering)

# A tibble: 3 x 8
.y. group1 group2 effsize Course n1 n2 magnitude

* <chr> <chr> <chr> <dbl> <fct> <int> <int> <ord>
1 SRPed Pre Re 0.162 ANOVA 42 24 negligible
2 SRPed Pre Re -0.558 Multivariate 42 24 moderate
3 SRPed Pre Re 0.233 Psychometrics 34 32 small

We followed the significant interaction effect with an evaluation of simple main effects
of centering within course. Because there were only three comparisons following the
omnibus evaluation, we used the LSD method (i.e., no additional control) to control
for Type I error and left the alpha at .05 (Green & Salkind, 2014b). While there were
non-statistically significant difference between pre- and re-centered conditions in the
ANOVA (𝑀𝐷𝑖𝑓𝑓 = 0.095; 𝑡[56.04] = 0.652, 𝑝 = 0.517, 𝑑 = 0.162) and psychometrics
(𝑀𝐷𝑖𝑓𝑓 = 0.136; 𝑡[60.23 = 0.944, 𝑝 = 0.349, 𝑑 = 0.233) courses, there was a statis-
tically significant difference in the multivariate course (𝑀𝐷𝑖𝑓𝑓 = −0.311; 𝑡[61.53] =
−2.294, 𝑝 = 0.025, 𝑑 = −0.558) which suggested an increase in ratings of socially re-
sponsive pedagogy.
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Describe approach for managing Type I error

Because there were only three comparisons following the omnibus evaluation, I used the LSD
method to control for Type I error and retained the alpha at .05 (Green & Salkind, 2014b).

APA style results with table(s) and figure

We conducted a 2 X 3 mixed design ANOVA to evaluate students’ evaluations of social
responsive pedagogy as a function of centering stage (i.e., pre-centered and re-centered)
across three doctoral statistics courses in professional psychology (i.e., ANOVA, multi-
variate, psychometrics; taught in that order).

Mixed design ANOVA has a numer of assumptions related to both the within-subjects
and between-subjects elements. Data are expected to be normaly distributed at each
level of the design. Relative to the thresholds identified by Kline [2016a] there was no
evidence of skew (all values were at or below the absolute value of 1.909) and kurtosis (all
values were below the absolute value of 3.680). The Shapiro-Wilk test applied to model
residuals provided a formal test of normality. The test result was 𝑊 = 0.859, 𝑝 <
.001.and indicated a violation of the the normality assumption. Visual inspection of
boxplots for each wave of the design, assisted by the rstatix::identify_outliers() function
(which reports values above Q3 + 1.5xIQR or below Q1 - 1.5xIQR, where IQR is the
interquartile range) indicated 9 outliers; none of these at the extreme level. All outliers
were among the lowest student ratings of socially responsive pedagogy. We determined
that it was important that the dataset retain these perspectives.

Regardin the homogeneity of variance assumption, Levene’s test indicated a violation
between the pre- and re- centering conditions in the multivariate class (𝐹 [1, 64] =
4.787, 𝑝 = 0.032). There was no indication of assumption violation for the ANOVA class
(𝐹 [1, 64] = 0.176, 𝑝 = 0.676) nor the psychometrics class (𝐹 [1, 64] = 0.320, 𝑝 = 0.573).
Mauchly’s test indicated no violation of the sphericity asssumption (𝑊 = 0.919, 𝑝 =
0.098), therefore we proceeded normally.

Regarding the omnibus ANOVA, neither the main effect for centering stage (𝐹 [1, 56] =
0.000, 𝑝 = 0.988, 𝜂2 = 0.000) nor course (𝐹 [2, 112] = 0.550, 𝑝 = 0.578, 𝜂2 = 0.003). How-
ever there was a statistically significant centering x course interaction effect (𝐹 [2, 112] =
8.547, 𝑝 = 0.001, 𝜂2 = 0.039).

We followed the significant interaction effect with an evaluation of simple main effects
of centering within course. Because there were only three comparisons following the
omnibus evaluation, we used the LSD method (i.e., no additional control) to control
for Type I error and left the alpha at .05 (Green & Salkind, 2014b). While there were
non-statistically significant difference between pre- and re-centered conditions in the
ANOVA (𝑀𝐷𝑖𝑓𝑓 = 0.095; 𝑡[56.04] = 0.652, 𝑝 = 0.517, 𝑑 = 0.162) and psychometrics
(𝑀𝐷𝑖𝑓𝑓 = 0.136; 𝑡[60.23 = 0.944, 𝑝 = 0.349, 𝑑 = 0.233) courses, there was a statis-
tically significant difference in the multivariate course (𝑀𝐷𝑖𝑓𝑓 = −0.311; 𝑡[61.53] =
−2.294, 𝑝 = 0.025, 𝑑 = −0.558) .



10.7. HOMEWORKED EXAMPLE 473

A quick way to produce a table of means and standard deviations for mixed design ANOVA is this:

apaTables::apa.2way.table(iv1=Course, iv2=Centering, dv=SRPed, data=mixt_df, filename = "Mixed_Table.doc", table.number = 1)

Table 1

Means and standard deviations for SRPed as a function of a 3(Course) X 2(Centering) design

Centering
Pre Re

Course M SD M SD
ANOVA 4.52 0.64 4.43 0.52

Multivariate 4.39 0.65 4.70 0.45
Psychometrics 4.66 0.52 4.52 0.64

Note. M and SD represent mean and standard deviation, respectively.

I can update my figure with star bars:

library(tidyverse)
Simple_Course <- Simple_Course %>%

rstatix::add_xy_position(x = "Course")
mixt_box <- mixt_box + ggpubr::stat_pvalue_manual(Simple_Course, label = "p.signif", tip.length = 0.02, hide.ns = TRUE, y.position = c(5.3))
mixt_box
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Conduct power analyses to determine the power of the current study and a recom-
mended sample size

In the WebPower package, we specify 6 of 7 interrelated elements; the package computes the missing
element

• n = sample size (number of individuals in the whole study)
• ng = number of groups
• nm = number of repeated measurements (i.e., waves)
• f = Cohen’s f (an effect size; we can use a conversion calculator); Cohen suggests that f values

of 0.1, 0.25, and 0.4 represent small, medium, and large effect sizes, respectively
• nscor = the Greenhouse Geiser correction from our ouput; 1.0 means no correction was needed

and is the package’s default; < 1 means some correction was applied
• alpha = is the probability of Type I error; we traditionally set this at .05
• power = 1 - P(Type II error) we traditionally set this at .80 (so anything less is less than

what we want)
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• type = 0 is for between-subjects, 1 is for repeated measures, 2 is for interaction effect; in a
mixed design ANOVA we will select “2”

As in the prior lessons, we need to convert our effect size for the interaction to 𝑓 effect size (this
is not the same as the F test). The effectsize package has a series of converters. We can use the
eta2_to_f() function to translate the 𝜂2 associated with the interaction effect to Cohen’s f.

#include effect size from the interaction effect
effectsize::eta2_to_f(0.039)

[1] 0.2014515

We can now retrieve information from our study (including the Cohen’s f value we just calculated)
and insert it into the script for the power analysis.

WebPower::wp.rmanova(n=66, ng=2, nm=3, f = 0.2014515, nscor = .925, alpha = .05, power = NULL, type = 2)

Repeated-measures ANOVA analysis

n f ng nm nscor alpha power
66 0.2014515 2 3 0.925 0.05 0.2737866

NOTE: Power analysis for interaction-effect test
URL: http://psychstat.org/rmanova

We are powered at .274 (we have a 27% of rejecting the null hypothesis, if it is true)

In reverse, setting power at .80 (the traditional value) and changing n to NULL yields a recom-
mended sample size.

WebPower::wp.rmanova(n=NULL, ng=2, nm=3, f = 0.2014515, nscor = .925, alpha = .05, power = .80, type = 2)

Repeated-measures ANOVA analysis

n f ng nm nscor alpha power
252.2835 0.2014515 2 3 0.925 0.05 0.8

NOTE: Power analysis for interaction-effect test
URL: http://psychstat.org/rmanova

Given our desire for strong power and our weak effect size, this power analysis suggests a sample size
of 252 participants is required to be adequately powered (80%) to detect a significant interaction
effect.
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Chapter 11

Analysis of Covariance

Screencasted Lecture Link
The focus of this lecture is analysis of covariance. Sticking with the same research vignette as we
used for the mixed design ANOVA, we rearrange the variables a bit to see how they work in an
ANCOVA design. The results help clarify the distinction between moderator and covariate.

11.1 Navigating this Lesson

There is about just about an hour of lecture. If you work through the materials with me, plan for
an additional hour or two
While the majority of R objects and data you will need are created within the R script that sources
the chapter, occasionally there are some that cannot be created from within the R framework.
Additionally, sometimes links fail. All original materials are provided at the Github site that hosts
the book. More detailed guidelines for ways to access all these materials are provided in the OER’s
introduction

11.1.1 Learning Objectives

Learning objectives from this lecture include the following:

• Define a covariate and distinguish it from a moderator.
• Recognize the case where ANCOVA is a defensible statistical approach for analyzing the data.
• Name and test the assumptions underlying ANCOVA.
• Analyze, interpret, and write up results for ANCOVA.
• List the conditions that are prerequisite for the appropriate use of a covariate or control

variable.

11.1.2 Planning for Practice

In each of these lessons I provide suggestions for practice that allow you to select from problems
that vary in degree of difficulty The least complex is to change the random seed and rework the
problem demonstrated in the lesson. The results should map onto the ones obtained in the lecture.
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https://youtube.com/playlist?list=PLtz5cFLQl4KM2GjVUMy1Vy816d5lgbOvi
https://github.com/lhbikos/ReCenterPsychStats


478 CHAPTER 11. ANALYSIS OF COVARIANCE

The second option comes from the research vignette. For this ANCOVA article, I take a lot of
liberties with the variables and research design. You could further mix and match for a different
ANCOVA constellation.

As a third option, you are welcome to use data to which you have access and is suitable for
ANCOVA. In either case the practice options suggest that you:

• test the statistical assumptions
• conduct an ANCOVA, including

– omnibus test and effect size
– report main effects and engage in any follow-up testing
– interpret results in light of the role of the second predictor variable as a covariate (as

opposed to the moderating role in the prior lessons)

• write a results section to include a figure and tables

11.1.3 Readings & Resources

In preparing this chapter, I drew heavily from the following resource(s). Other resources are cited
(when possible, linked) in the text with complete citations in the reference list.

• Green, S. B., & Salkind, N. J. (2017). One-Way Analysis of Covariance (Lesson 27). In
Using SPSS for Windows and Macintosh: Analyzing and understanding data (Eighth edition.,
pp. 151–160). Boston: Pearson. OR

– This lesson provides an excellent review of ANCOVA with examples of APA style write-
ups. The downside is that it is written for use in SPSS.

• ANCOVA in R: The Ultimate Practical Guide. (n.d.). Retrieved from https://www.
datanovia.com/en/lessons/ancova-in-r/

– This is the workflow we are using for the lecture and written specifically for R.

• Bernerth, J. B., & Aguinis, H. (2016). A critical review and best‐practice recommendations
for control variable usage. Personnel Psychology, 69(1), 229–283. https://doi.org/10.1111/
peps.12103

– An article from the industrial-organizational psychology world. Especially relevant for
this lesson is the flowchart on page 273 and the discussion (pp. 270 to the end).

• Murrar, S., & Brauer, M. (2018). Entertainment-education effectively reduces prejudice.
Group Processes & Intergroup Relations, 21(7), 1053–1077. https://doi.org/10.1177/
1368430216682350

• This article is the source of our research vignette. I used this same article in the lesson on
mixed design ANOVA. Swapping variable roles can be useful in demonstrating how ANCOVA
is different than mixed design ANOVA.

https://www.datanovia.com/en/lessons/ancova-in-r/
https://www.datanovia.com/en/lessons/ancova-in-r/
https://doi.org/10.1111/peps.12103
https://doi.org/10.1111/peps.12103
https://doi.org/10.1177/1368430216682350
https://doi.org/10.1177/1368430216682350
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11.1.4 Packages

The packages used in this lesson are embedded in this code. When the hashtags are removed, the
script below will (a) check to see if the following packages are installed on your computer and, if
not (b) install them.

#used to convert data from long to wide
#if(!require(reshape2)){install.packages("reshape2")}
#if(!require(broom)){install.packages("broom")}
#if(!require(tidyverse)){install.packages("tidyverse")}
#if(!require(psych)){install.packages("psych")}
#easy plots
#if(!require(ggpubr)){install.packages("ggpubr")}
#pipe-friendly R functions
#if(!require(rstatix)){install.packages("rstatix")}
#export objects for table making
#if(!require(MASS)){install.packages("MASS")}
#if(!require(knitr)){install.packages("knitr")}
#if(!require(dplyr)){install.packages("dplyr")}
#if(!require(apaTables)){install.packages("apaTables")}

11.2 Introducing Analysis of Covariance (ANCOVA)

Analysis of covariance (ANCOVA) evaluates the null hypothesis that

• population means on a dependent variable are equal across levels of a factor(s) adjusting for
differences on a covariate(s); stated differently -

• the population adjusted means are equal across groups

This lecture introduces a distinction between moderators and covariates.
Moderator: a variable that changes the strength or direction of an effect between two variables
X (predictor, independent variable) and Y (criterion, dependent variable).

Covariate: an observed, continuous variable, that (when used properly) has a relationship with the
dependent variable. It is included in the analysis, as a predictor, so that the predictive relationship
between the independent (IV) and dependent (DV) are adjusted.

Understanding this difference may be facilitated by understanding one of the assumptions of AN-
COVA – that the slopes relating the covariate to the dependent variable are the same for all groups
(i.e., the homogeneity-of-slopes assumption). If this assumption is violated then the between-group
differences in adjusted means are not interpretable and the covariate should be treated as a mod-
erator and analyses that assess the simple main effects (i.e., follow-up to a significant interaction)
should be conducted.

A one-way ANCOVA requires three variables:

• IV/factor – categorical (2 or more)
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• DV – continuous
• covariate – continuous

Green and Salkind [2017a] identified common uses of ANCOVA:

• Studies with a pretest and random assignment of subjects to factor levels. Variations on this
research design include:

– assignment to factor levels based on that pretest,
– matching based on the pretest, and random assignment to factor levels,
– simply using the pretest as a covariate for the posttest DV.

• Studies with a potentially confounding variable (best when there is theoretical justification
and prior empirical evidence for such) over which the researcher wants “control”

Although it is possible to have multi-way (e.g., 2-way, 3-way) ANCOVA, in this lecture we will only
work two, one-way ANCOVAs representing these common use cases.

11.2.1 Workflow for ANCOVA

Our analytic process will be similar to others in the ANOVA series. An ANCOVA workflow maps
this in further detail.

1. Prepare the data
2. Evaluate potential violation of the assumptions
3. Compute the omnibus ANCOVA, and follow-up accordingly

• If significant: follow-up with post-hoc comparisons, planned contrasts, and/or polyno-
mial

• If non-significant: stopping.

ANCOVA has four primary assumptions:
Linearity: The covariate is linearly related to the dependent variable within all levels of the factor
(IV).
Homogeneity of regression slopes: The weights or slopes relating the covariate to the DV are
equal across all levels of the factor.
Normally distributed: The DV is normally distributed in the population for any specific value
of the covariate and for any one level of a factor. This assumption applies to every combination
of the values of the covariate and levels ohttps://www.datanovia.com/en/lessons/ancova-in-r/f the
factor and requires them all to be normally distributed. To the degree that population distributions
are not normal and sample sizes are small, p values may not be trustworthy and power reduced.
Evaluating this is frequently operationalized by inspecting the residuals and identifying outliers.
Homogeneity of variances: The variances of the DV for the conditional distributions (i.e., every
combination of the values of the covariate and levels of the factor) are equal.
We are following the approach to analyzing ANCOVA identified in the Datanovia lesson on AN-
COVA [Datanovia].
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Figure 11.1: Image of the ANCOVA workflow
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11.3 Research Vignette

We will continue with the example used in the mixed design ANOVA lesson The article does
not contain any ANCOVA analyses, but there is enough data that I can demonstrate the two
general ways (i.e., controlling for the pretest, controlling for a potentially confounding variable)
that ANCOVA is used.

Here is a quick reminder of the research vignette.

Murrar and Brauer’s [2018] article described the results of two studies designed to reduce prejudice
against Arabs/Muslims. In the lesson on mixed design ANOVA, we only worked the first of two
experiments reported in the study. Participants (N = 193), all who were White, were randomly
assigned to one of two conditions where they watched six episodes of the sitcom Friends or Little
Mosque on the Prairie. The sitcoms and specific episodes were selected after significant pilot testing.
The selection was based on the tension selecting stimuli that were as similar as possible, yet the
intervention-oriented sitcom needed to invoke psychological processes known to reduce prejudice.
The authors felt that both series had characters that were likable and relateble who were engaged
in activities of daily living. The Friends series featured characters who were predominantly White,
cis-gendered, and straight. The Little Mosque series portrays the experience Western Muslims and
Arabs as they live in a small Canadian town. This study involved assessment across three waves:
baseline (before watching the assigned episodes), post1 (immediately after watching the episodes),
and post2 (completed 4-6 weeks after watching the episodes).

The study used feelings and liking thermometers, rating their feelings and liking toward 10 different
groups of people on a 0 to 100 sliding scale (with higher scores reflecting greater liking and positive
feelings). For the purpose of this analysis, the ratings of attitudes toward White people and
attitudes toward Arabs/Muslims were used. A third metric was introduced by subtracting the
attitudes towards Arabs/Muslims from the attitudes toward Whites. Higher scores indicated more
positive attitudes toward Whites where as low scores indicated no difference in attitudes. To recap,
there were three potential dependent variables, all continuously scaled:

• AttWhite: attitudes toward White people; higher scores reflect greater liking
• AttArab: attitudes toward Arab people; higher scores reflect greater liking
• Diff: the difference between AttWhite and AttArab; higher scores reflect a greater liking for

White people

With random assignment, nearly equal cell sizes, a condition with two levels (Friends, Little
Mosque), and three waves (baseline, post1, post2), this is perfect for mixed design ANOVA but
suitable for an ANCOVA demonstration.

Figure 11.2: Image of the design for the Murrar and Brauer (2018) study

http://www.friends-tv.org/
https://en.wikipedia.org/wiki/Little_Mosque_on_the_Prairie
https://en.wikipedia.org/wiki/Little_Mosque_on_the_Prairie
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11.3.1 Data Simulation

Below is the code I have used to simulate the data. The simulation includes two dependent vari-
ables (AttWhite, AttArab), Wave (baseline, post1, post2), and COND (condition; Friends, Lit-
tle_Mosque). There is also a caseID (repeated three times across the three waves) and rowID
(giving each observation within each case an ID). You can use this simulation for two of the three
practice suggestions.

library(tidyverse)
#change this to any different number (and rerun the simulation) to rework the chapter problem
set.seed(210813)
#sample size, M and SD for each cell; this will put it in a long file
AttWhite<-round(c(rnorm(98,mean=76.79,sd=18.55),rnorm(95,mean=75.37,sd=18.99),rnorm(98, mean=77.47, sd=18.95), rnorm(95, mean=75.81, sd=19.29), rnorm(98, mean=77.79, sd=17.25), rnorm(95, mean=75.89, sd=19.44)),3)
#set upper bound for variable
AttWhite[AttWhite>100]<-100
#set lower bound for variable
AttWhite[AttWhite<0]<-0
AttArab<-round(c(rnorm(98,mean=64.11,sd=20.97),rnorm(95,mean=64.37,sd=20.03),rnorm(98, mean=64.16, sd=21.64), rnorm(95, mean=70.52, sd=18.55), rnorm(98, mean=65.29, sd=19.76), rnorm(95, mean=70.30, sd=17.98)),3)
#set upper bound for variable
AttArab[AttArab>100]<-100
#set lower bound for variable
AttArab[AttArab<0]<-0
rowID <- factor(seq(1,579))
caseID <- rep((1:193),3)
Wave <- c(rep("Baseline",193), rep("Post1", 193), rep ("Post2", 193))
COND <- c(rep("Friends", 98), rep("LittleMosque", 95), rep("Friends", 98), rep("LittleMosque", 95), rep("Friends", 98), rep("LittleMosque", 95))
#groups the 3 variables into a single df: ID#, DV, condition
Murrar_df<- data.frame(rowID, caseID, Wave, COND, AttArab, AttWhite)
#make caseID a factor
Murrar_df[,'caseID'] <- as.factor(Murrar_df[,'caseID'])
#make Wave an ordered factor
Murrar_df$Wave <- factor(Murrar_df$Wave, levels = c("Baseline", "Post1", "Post2"))
#make COND an ordered factor
Murrar_df$COND <- factor(Murrar_df$COND, levels = c("Friends", "LittleMosque"))
#creates the difference score
Murrar_df$Diff <- Murrar_df$AttWhite - Murrar_df$AttArab

Let’s check the structure. We want

• rowID and caseID to be unordered factors,
• Wave and COND to be ordered factors,
• AttArab, AttWhite, and Diff to be numerical

str(Murrar_df)

'data.frame': 579 obs. of 7 variables:
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$ rowID : Factor w/ 579 levels "1","2","3","4",..: 1 2 3 4 5 6 7 8 9 10 ...
$ caseID : Factor w/ 193 levels "1","2","3","4",..: 1 2 3 4 5 6 7 8 9 10 ...
$ Wave : Factor w/ 3 levels "Baseline","Post1",..: 1 1 1 1 1 1 1 1 1 1 ...
$ COND : Factor w/ 2 levels "Friends","LittleMosque": 1 1 1 1 1 1 1 1 1 1 ...
$ AttArab : num 74.3 55.8 33.3 66.3 71 ...
$ AttWhite: num 100 79 75.9 68.2 100 ...
$ Diff : num 25.71 23.18 42.67 1.92 29.01 ...

The structure looks satisfactory. R will automatically “order” factors alphabetically or numeri-
cally. In this lesson’s example the alphabettical ordering (i.e., Baseline, Post1, Post2; Friends,
LittleMosque) is consistent with the logic in our study.

If you want to export this data as a file to your computer, remove the hashtags to save it (and
re-import it) as a .csv (“Excel lite”) or .rds (R object) file. This is not a necessary step.

The code for the .rds file will retain the formatting of the variables, but is not easy to view outside of
R. This is what I would do. Note: My students and I have discovered that the the psych::describeBy()
function seems to not work with files in the .rds format, but does work when the data are imported
with .csv.

#to save the df as an .rds (think "R object") file on your computer;
#it should save in the same file as the .rmd file you are working with
#saveRDS(Murrar_df, "Murrar_RDS.rds")
#bring back the simulated dat from an .rds file
#Murrar_df <- readRDS("Murrar_RDS.rds")

The code for .csv will likely lose the formatting (i.e., stripping Wave and COND of their ordered
factors), but it is easy to view in Excel.

#write the simulated data as a .csv
#write.table(Murrar_df, file="DiffCSV.csv", sep=",", col.names=TRUE, row.names=FALSE)
#bring back the simulated dat from a .csv file
#Murrar_df <- read.csv ("DiffCSV.csv", header = TRUE)

11.4 Working the ANCOVA – Scenario #1: Controlling for the
pretest

So that we can begin to understand how the covariate operates, we are going to predict attitudes
towards Arabs at post-test (AttArabP1) by condition (COND), controlling for attitudes toward
Arabs at baseline (AttArabB). You may notice that in this analysis we are ignoring the second
post-test. This is because I am simply demonstrating ANCOVA. To ignore the second post test
would be a significant loss of information.

11.4.1 Preparing the data

When the covariate in ANCOVA is a pretest, we need three variables:
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• IV that has two or more levels; in our case it is the Friends and Little Mosque conditions
• DV that is continuous; in our case it is the attitudes toward Arabs at post1
• Covariate that is continuous; in our case it is the attitudes toward Arabs at baseline

The form of our data matters. The simulation created a long form (formally called the person-
period form) of data. That is, each observation for each person is listed in its own row. In this
dataset where we have 193 people with 3 observation (baseline, post1, post2) each, we have 579
rows. In ANCOVA where we use the pre-test as a covariate, we need all the data to be on a single
row.This is termed the person level form of data. We can restructure the data with the data.table
and reshape2()* packages.

# Create a new df (Murrar_wide)
# Identify the original df
#In the transition from long-to-wide it seems like you can only do one time-varying variable at a time
#When there are multiple time-varying and time-static variables,
#put all the time-static variables on the left side of the tilde
#Put the name of the single time-varying variable in the concatonated list
Murrar1 <- reshape2::dcast(data = Murrar_df, formula =caseID +COND ~ Wave, value.var = "AttArab")
#before restructuring a second variable, rename the first variable
Murrar1 <- rename(Murrar1, AttArabB = "Baseline", AttArabP1 = "Post1", AttArabP2 = "Post2")
#repeat the process for additional variables; but give the new df new names -- otherwise you'll overwrite your work
Murrar2 <- reshape2::dcast(data = Murrar_df, formula =caseID ~Wave, value.var = "AttWhite")
Murrar2 <- rename(Murrar2, AttWhiteB = "Baseline", AttWhiteP1 = "Post1", AttWhiteP2 = "Post2")
#Now we join them
Murrar_wide <- dplyr::full_join(Murrar1, Murrar2, by = c("caseID"))

str(Murrar_wide )

'data.frame': 193 obs. of 8 variables:
$ caseID : Factor w/ 193 levels "1","2","3","4",..: 1 2 3 4 5 6 7 8 9 10 ...
$ COND : Factor w/ 2 levels "Friends","LittleMosque": 1 1 1 1 1 1 1 1 1 1 ...
$ AttArabB : num 74.3 55.8 33.3 66.3 71 ...
$ AttArabP1 : num 80.3 76.6 92 96.5 59.1 ...
$ AttArabP2 : num 64.8 43.3 40.3 69.1 74.9 ...
$ AttWhiteB : num 100 79 75.9 68.2 100 ...
$ AttWhiteP1: num 95.6 51 91.9 86.7 75.8 ...
$ AttWhiteP2: num 100 89.7 49.5 99.4 83.1 ...

If you want to export this data as a file to your computer, remove the hashtags to save it (and
re-import it) as a .csv (“Excel lite”) or .rds (R object) file. This is not a necessary step.

The code for the .rds file will retain the formatting of the variables, but is not easy to view outside
of R. This is what I would do.

#to save the df as an .rds (think "R object") file on your computer;
#it should save in the same file as the .rmd file you are working with
#saveRDS(Murrar_wide, "MurrarW_RDS.rds")
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#bring back the simulated dat from an .rds file
#Murrar_wide <- readRDS("MurrarW_RDS.rds")

The code for .csv will likely lose the formatting (i.e., stripping Wave and COND of their ordered
factors), but it is easy to view in Excel.

#write the simulated data as a .csv
#write.table(Murrar_wide, file="MurrarW_CSV.csv", sep=",", col.names=TRUE, row.names=FALSE)
#bring back the simulated dat from a .csv file
#Murrar_wide <- read.csv ("MurrarW_CSV.csv", header = TRUE)

11.4.2 Evaluating the statistical assumptions

There are a number of assumptions in ANCOVA. These include:

• random sampling
• independence in the scores representing the dependent variable

– there is, of course, intentional dependence in any repeated measures or within-subjects
variable

• linearity of the relationship between the covariate and DV within all levels of the independent
variable

• homogeneity of the regression slopes
• a normally distributed DV for any specific value of the covariate and for any one level of a

factor
• homogeneity of variance

These are depicted in the flowchart, below.

11.4.2.1 Linearity assumption

ANCOVA assumes that there is linearity between the covariate and outcome variable at each level of
the grouping variable. In our case this means that there is linearity between the pre-test (covariate)
and post-test (outcome variable) at each level of the intervention (Friends, Little Mosque).

We can create a scatterplot (with regression lines) between covariate (our pretest) and the outcome
(post-test1).

ggpubr::ggscatter (
Murrar_wide, x = "AttArabB", y = "AttArabP1",
color = "COND", add = "reg.line"

)+
ggpubr::stat_regline_equation(
aes(label = paste(..eq.label.., ..rr.label.., sep = "~~~~"), color = COND)
)
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Figure 11.3: Image of the ANCOVA workflow, showing our current place in the process
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Warning: The dot-dot notation (`..eq.label..`) was deprecated in ggplot2 3.4.0.
i Please use `after_stat(eq.label)` instead.
i The deprecated feature was likely used in the ggpubr package.

Please report the issue at <https://github.com/kassambara/ggpubr/issues>.
This warning is displayed once every 8 hours.
Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
generated.
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As in not surprising (because we tested a similar set of variables in the mixed design chapter), this
relationship look like an interaction effect. Let’s continue our exploration.

11.4.2.2 Homogeneity of regression slopes

This assumption requires that the slopes of the regression lines formed by the covariate and the
outcome variable are the same for each group. The assumption evaluates that there is no interaction
between the outcome and covariate. The plotted regression lines should be parallel.
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Murrar_wide %>% rstatix::anova_test(AttArabP1 ~ COND*AttArabB)

ANOVA Table (type II tests)

Effect DFn DFd F p p<.05 ges
1 COND 1 189 26.819 0.000000569 * 0.124
2 AttArabB 1 189 0.676 0.412000000 0.004
3 COND:AttArabB 1 189 4.297 0.040000000 * 0.022

Because the statistically significant interaction term is violation of homogeneity of regression slopes
(𝐹 [1, 189] = 4.297, 𝑝 = .040, 𝜂2 = 0.022) we should not proceed with ANCOVA as a statistical
option. However, for the sake of demonstration, I will continue. One of the reasons I wanted to
work this example as ANCOVA is to demonstrate that covariates and moderators each have their
role. We can already see how this data is best analyzed with mixed design ANOVA.

11.4.2.3 Normality of residuals

Our goal here is to specify a model and extract residuals: the difference between the observed
value of the DV and its predicted value. Each data point has one residual. The sum and mean of
residuals are equal to 0.

Once we have saved the residuals, we can treat them as data and evaluate the shape of their
distribution. We hope that the distribution is not statistically significantly different from a normal
one. We first compute the model with lm() (lm stands for “linear model”). This is a linear
regression.

#Create a linear regression model predicting DV from COV & IV
AttArabB_Mod <- lm (AttArabP1 ~ AttArabB + COND, data = Murrar_wide)
AttArabB_Mod

Call:
lm(formula = AttArabP1 ~ AttArabB + COND, data = Murrar_wide)

Coefficients:
(Intercept) AttArabB CONDLittleMosque

63.01428 -0.06042 14.92165

With the broom::augment() function we can augment our lm() model object to add fitted values
and residuals.

#new model by augmenting the lm model
AttArabB_Mod.metrics <- broom::augment(AttArabB_Mod)
#shows the first three rows of the UEmodel.metrics
head(AttArabB_Mod.metrics,3)
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# A tibble: 3 x 9
AttArabP1 AttArabB COND .fitted .resid .hat .sigma .cooksd .std.resid

<dbl> <dbl> <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 80.3 74.3 Friends 58.5 21.7 0.0111 20.2 0.00440 1.08
2 76.6 55.8 Friends 59.6 17.0 0.0116 20.2 0.00280 0.845
3 92.0 33.3 Friends 61.0 31.0 0.0247 20.1 0.0204 1.56

From this, we can assess the normality of the residuals using the Shapiro Wilk test

#apply shapiro_test to that augmented model
rstatix::shapiro_test(AttArabB_Mod.metrics$.resid)

# A tibble: 1 x 3
variable statistic p.value
<chr> <dbl> <dbl>

1 AttArabB_Mod.metrics$.resid 0.984 0.0261

The statistically significant Shapiro Wilk test has indicated a violation of the normality assumption
(W = 0.984, p = .026).

11.4.2.4 Homogeneity of variances

ANCOVA presumes that the variance of the residuals is equal for all groups. We can check this
with the Levene’s test.

AttArabB_Mod.metrics %>% rstatix::levene_test(.resid ~ COND)

# A tibble: 1 x 4
df1 df2 statistic p

<int> <int> <dbl> <dbl>
1 1 191 3.52 0.0623

A non-significant Levene’s test indicated no violation of the homogeneity of the residual variances
for all groups (𝐹 [1, 191] = 3.515𝑝 = .062).

11.4.2.5 Outliers

We can identify outliers by examining the standardized (or studentized) residuals. This is the
residual divided by its estimated standard error. Standardized residuals are interpreted as the
number of standard errors away from the regression line.

#from our model metrics
#show us any standardized residuals that are >3
AttArabB_Mod.metrics%>%

filter(abs(.std.resid)>3)%>%
as.data.frame()
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AttArabP1 AttArabB COND .fitted .resid .hat .sigma
1 6.137 68.085 LittleMosque 73.82234 -67.68534 0.01056251 19.62279

.cooksd .std.resid
1 0.04044273 -3.371254

We do have one outlier with a standardized residual that has an absolute value greater than 3. At
this point I am making a mental note of this. If this were “for real” I might more closely inspect
these data. I would look at the whole response. If any response seemed invalid (e.g., random,
extreme, or erratic responding) I would delete it. If the responses seemed valid, I could truncate
them to exactly 3 SEs or. I could also ignore it. Kline [2016a] has a great section on some of these
options.
Code for deleting outliers can be found in earlier chapters, including Mixed Design ANOVA.
As noted by the suggestion of an interaction effect, our preliminary analyses suggests that ANCOVA
is not the best option. We know from the prior lesson that a mixed design ANOVA worked well.
In the spirit of an example, here’s a preliminary write-up so far:

11.4.2.6 Summarizing results from the analysis of assumptions

A one-way analysis of covariance (ANCOVA) was conducted. The independent vari-
able, condition, had two levels: Friends, Little Mosque. The dependent variable was
attitudes towards Arabs expressed by the participant at post-test and covariate was
the pre-test assessment of the same variable. A preliminary analysis evaluating the
homogeneity-of-slopes assumption indicated that the relationship between the covari-
ate and the dependent variable differed significantly as a function of the independent
variable, 𝐹(1, 189) = 4.297, 𝑝 = .040, 𝜂2 = 0.022. Regarding the assumption that the
dependent variable is normally distributed in the population for any specific value of the
covariate and for any one level of a factor, results of the Shapiro-Wilk test of normality
on the model residuals was also significant,𝑊 = 0.984, 𝑝 = .026. Only one datapoint
(in the Little Mosque condition) had a standardized residual (-3.37) that exceeded an
absolute value of 3.0. A non-significant Levene’s test indicated no violation of the
homogeneity of the residual variances for all groups, 𝐹(1, 191) = 3.515, 𝑝 = .062.

11.4.3 Calculating the Omnibus ANOVA

We are ready to conduct the omnibus ANOVA.
Order of variable entry matters in ANCOVA. Thinking of the controlling for language associate
with covariates, we want to remove the effect of the covariate before we run the one-way ANOVA.
With this ANCOVA we are asking the question, “Does the condition (Friends or Little Mosque)
contribute to more positive attitudes toward Arabs, when controlling for the pre-test score?”
In repeated measures projects, we expect there to be dependency in the data. That is, in most
cases prior waves will have significant prediction on later waves. When ANCOVA uses a prior
asssessment or wave as a covariate, that variable “claims” as much variance as possible and the
subsequent variable can capture what is left over.
In the code below, we are predicting attitudes toward Arabs at post1 from the condition (Friends
or Little Mosque), controlling for attitudes toward Arabs at baseline.
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Figure 11.4: Image of the ANCOVA workflow, showing our current place in the process.
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The ges column provides the effect size, 𝜂2. Conventionally, values of .01, .06, and .14 are considered
to be small, medium, and large effect sizes, respectively.
You may see different values (.02, .13, .26) offered as small, medium, and large – these values are
used when multiple regression is used. A useful summary of effect sizes, guide to interpreting their
magnitudes, and common usage can be found here [Watson, 2020].

MurrarB_ANCOVA <- Murrar_wide %>%
rstatix::anova_test(AttArabP1 ~ AttArabB + COND)

rstatix::get_anova_table(MurrarB_ANCOVA )

ANOVA Table (type II tests)

Effect DFn DFd F p p<.05 ges
1 AttArabB 1 190 0.665 0.416000000 0.003
2 COND 1 190 26.361 0.000000698 * 0.122

There was a non-significant effect of the baseline covariate on the post-test (𝐹 [1, 190] = 0.665, 𝑝 =
.416, 𝜂2 = 0.003). After controlling for the baseline attitudes toward Arabs, there was a statisti-
cally significant effect of condition on post-test attitudes toward Arabs, 𝐹(1, 190) = 26.361, 𝑝 <
.001, 𝜂2 = 0.122. This effect appears to be moderate-to-large in size.

11.4.4 Post-hoc pairwise comparisons (controlling for the covariate)

Just like in one-way ANOVA, we follow-up the significant effect of condition. We’ll use all-possible
pairwise comparisons. In our case, we only have two levels of the categorical factor, so this run
wouldn’t be necessary. I included it to provide the code for doing so. If there were three or more
variables, we would see all possible comparisons.

pwc_B <- Murrar_wide %>%
rstatix::emmeans_test(
AttArabP1 ~ COND, covariate = AttArabB,
p.adjust.method = "none"

)
pwc_B

# A tibble: 1 x 9
term .y. group1 group2 df statistic p p.adj p.adj.signif

* <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <chr>
1 AttArabB*COND AttA~ Frien~ Littl~ 190 -5.13 6.98e-7 6.98e-7 ****

Not surprisingly (since this single pairwise comparison is redundant with the omnibus ANCOVA),
results suggest a statistically significant difference between Friends and Little Mosque at Post1.
With the script below we can obtain the covariate-adjusted marginal means. These are termed
estimated marginal means. Take a look at these and compare them to what we would see in the
regular descriptives. It is helpful to see the grand mean (AttArabB) and then the marginal means
(emmean).

https://imaging.mrc-cbu.cam.ac.uk/statswiki/FAQ/effectSize


494 CHAPTER 11. ANALYSIS OF COVARIANCE

emmeans_B <- rstatix::get_emmeans(pwc_B)
emmeans_B

# A tibble: 2 x 8
AttArabB COND emmean se df conf.low conf.high method

<dbl> <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <chr>
1 66.2 Friends 59.0 2.04 190 55.0 63.0 Emmeans test
2 66.2 LittleMosque 73.9 2.07 190 69.8 78.0 Emmeans test

Note that the emmeans process produces slightly different means than the raw means produced
with the psych package’s describeBy() function. Why? Because the get_emmeans() function uses
the model that included the covariate. That is, the estimated means are covariate-adjusted.

descripts_P1 <- psych::describeBy(AttArabP1 ~ COND, data = Murrar_wide, mat = TRUE)
descripts_P1

item group1 vars n mean sd median trimmed
AttArabP11 1 Friends 1 98 59.02351 21.65024 57.9955 59.31306
AttArabP12 2 LittleMosque 1 95 73.92134 18.51082 74.4600 75.52858

mad min max range skew kurtosis se
AttArabP11 23.67045 8.297 100 91.703 -0.0518848 -0.6252126 2.187005
AttArabP12 15.98984 6.137 100 93.863 -0.9798189 1.6335325 1.899170

#Note. Recently my students and I have been having intermittent struggles with the describeBy function in the psych package. We have noticed that it is problematic when using .rds files and when using data directly imported from Qualtrics. If you are having similar difficulties, try uploading the .csv file and making the appropriate formatting changes.

(𝑀 = 59.02, 𝑆𝐷 = 21.65) (𝑀 = 73.92, 𝑆𝐷 = 18.51)
In our case the adjustments are very minor. Why? The effect of the attitudes toward Arabs baseline
test on the attitudes toward Arabs post test was nonsignificant. We can see this in the bivariate
correlations, below.

MurP1_Rmat <- psych::corr.test(Murrar_wide[c("AttArabB", "AttArabP1")])
MurP1_Rmat

Call:psych::corr.test(x = Murrar_wide[c("AttArabB", "AttArabP1")])
Correlation matrix

AttArabB AttArabP1
AttArabB 1.00 -0.05
AttArabP1 -0.05 1.00
Sample Size
[1] 193
Probability values (Entries above the diagonal are adjusted for multiple tests.)

AttArabB AttArabP1
AttArabB 0.00 0.47
AttArabP1 0.47 0.00

To see confidence intervals of the correlations, print with the short=FALSE option
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The correlation between attitudes toward Arabs at baseline and post test are nearly negligible
(𝑟 = −0.05, 𝑝 = .47).

11.4.5 APA style results for Scenario 1

As we assemble the elements for an APA style result sections, a table with the means, adjusted
means, and correlations may be helpful.

apaTables::apa.cor.table(Murrar_wide[c("AttArabB", "AttArabP1")], table.number = 1 )

Table 1

Means, standard deviations, and correlations with confidence intervals

Variable M SD 1
1. AttArabB 66.25 19.66

2. AttArabP1 66.36 21.46 -.05
[-.19, .09]

Note. M and SD are used to represent mean and standard deviation, respectively.
Values in square brackets indicate the 95% confidence interval.
The confidence interval is a plausible range of population correlations
that could have caused the sample correlation (Cumming, 2014).
* indicates p < .05. ** indicates p < .01.

#You can save this as a Microsoft word document by adding this statement into the command: filename = "your_filename.doc"

Additionally, writing this output to excel files helped create the two tables that follow. The MASS
package is useful to export the model objects into .csv files. They are easily opened in Excel where
they can be manipulated into tables for presentations and manuscripts.

MASS::write.matrix(pwc_B, sep = ",", file = "pwc_B.csv")
MASS::write.matrix(emmeans_B, sep = ",", file = "emmeans_B.csv")
MASS::write.matrix(descripts_P1, sep = ",", file = "descripts_P1.csv")

Ultimately, I would want a table that included this information. Please refer to the APA style
manual for more proper formatting for a manuscript that requires APA style.
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Table 1
Unadjusted and Covariate-Adjusted Descriptive Statistics

Condition Unadjusted Covariate-Adjusted

M SD EMM SE
Friends 59.02 21.65 59.01 2.04
Little Mosque 73.92 18.51 73.93 2.07

Unlike the figure we created when we were testing assumptions, this script creates a plot from the
model (which identifies AttArabB in its role as covariate). Thus, the relationship between condition
and AttArabP1 controls for the effect of the AttArabB covariate.

pwc_B <- pwc_B %>% rstatix::add_xy_position(x = "COND", fun = "mean_se")
ggpubr::ggline(rstatix::get_emmeans(pwc_B), x = "COND", y = "emmean", title = "Figure 1. Post-test Attitudes by Condition, Controlling for Pre-test Attitudes") +

geom_errorbar(aes(ymin = conf.low, ymax = conf.high), width = 0.2) +
ggpubr::stat_pvalue_manual(pwc_B, hide.ns = TRUE, tip.length = .02, y.position = c(80))
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Figure 1. Post−test Attitudes by Condition, Controlling for Pre−test Attitudes

Results

A one-way analysis of covariance (ANCOVA) was conducted. The independent variable,
condition, had two levels: Friends, Little Mosque. The dependent variable was attitudes
towards Arabs expressed by the participant at post-test and covariate was the baseline
assessment of the same variable. Descriptive statistics are presented in Table 1. A
preliminary analysis evaluating the homogeneity-of-slopes assumption indicated that
the relationship between the covariate and the dependent variable differed significantly
as a function of the independent variable, 𝐹(1, 189) = 4.297, 𝑝 = .040, 𝜂2 = 0.022.
Regarding the assumption that the dependent variable is normally distributed in the
population for any specific value of the covariate and for any one level of a factor, results
of the Shapiro-Wilk test of normality on the model residuals was also significant,𝑊 =
0.984, 𝑝 = .026. Only one datapoint (in the Little Mosque condition) had a standardized
residual (-3.37) that exceeded an absolute value of 3.0. A non-significant Levene’s
test indicated no violation of the homogeneity of the residual variances for all groups,
𝐹(1, 191) = 3.515𝑝 = .062.

There was a non-significant effect of the baseline covariate on the post-test (𝐹 [1, 190] =
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0.665, 𝑝 = .416, 𝜂2 = 0.003). After controlling for the baseline attitudes toward Arabs,
there was a statistically significant effect of condition on post-test attitudes toward
Arabs, 𝐹(1, 190) = 26.361, 𝑝 < .001, 𝜂2 = 0.122. This effect appears to be moderate-
to-large. Given there were only two conditions, no further follow-up was required.
As illustrated in Figure 1, results suggest that those in the Little Mosque condition
(𝑀 = 73.92, 𝑆𝐷 = 18.51) had more favorable attitudes toward Arabs than those in the
Friends condition (𝑀 = 59.02, 𝑆𝐷 = 21.65). Means and covariate-adjusted means are
presented in Table 1b.

11.5 Working the ANCOVA – Scenario #2: Controlling for a con-
founding or covarying variable

In the scenario below, I am simulating a one-way ANCOVA, predicting attitudes toward Arabs at
post1 as a function of sitcom condition (Friends, Little Mosque), controlling for the participants’
attitudes toward Whites. That is, the ANCOVA will compare the the means of the two groups (at
post1, only), adjusted for level of attitudes toward Whites

TO BE CLEAR: This is not the best way to analyze this data. With such a strong, balanced
design, the multi-way, mixed design ANOVAs were an excellent choice that provided much fuller
information than this demonstration, below. The purpose of this over-simplified demonstration is
merely to give another example of using a variable as a covariate rather than a moderator.

11.5.1 Preparing the data

When the covariate in ANCOVA is a potentially confounding variable, we need three variables:

• IV that has two or more levels; in our case it is the Friends and Littls Mosque sitcom condi-
tions.

• DV that is continuous; in our case it attitudes toward Arabs at post1 (AttArabP1).
• Covariate that is continuous; in our case it attitudes toward Whites at post1 (AttWhiteP1).

Note We could have also chosen attitudes toward Whites at baseline.

We can continue using the Murrar_wide df.

11.5.2 Evaluating the statistical assumptions

There are a number of assumptions in ANCOVA. These include:

• random sampling
• independence in the scores representing the dependent variable
• linearity of the relationship between the covariate and DV within all levels of the independent

variable
• homogeneity of the regression slopes
• a normally distributed DV for any specific value of the covariate and for any one level of a

factor



11.5. WORKING THE ANCOVA – SCENARIO #2: CONTROLLING FOR A CONFOUNDING OR COVARYING VARIABLE499

• homogeneity of variance

These are depicted in the flowchart, below.

Figure 11.5: Image of the ANCOVA workflow, showing our current place in the process

11.5.2.1 Linearity assumption

ANCOVA assumes that there is linearity between the covariate and outcome variable at each level
of the grouping variable. In our case this means that there is linearity between the attitudes toward
Whites (covariate) and attitudes toward Arabs (outcome variable) at each level of the intervention
(Friends, Little Mosque).
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We can create a scatterplot (with regression lines) between the covariate (attitudes toward Whites)
and the outcome (attitudes toward Arabs).

ggpubr::ggscatter (
Murrar_wide, x = "AttWhiteP1", y = "AttArabP1",
color = "COND", add = "reg.line"

)+
ggpubr::stat_regline_equation(
aes(label = paste(..eq.label.., ..rr.label.., sep = "~~~~"), color = COND)
)

y = 51 + 0.11 x    R2 = 0.0072

y = 83 − 0.12 x    R2 = 0.014
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As we look at this scatterplot, we are trying to determine if there is an interaction effect (rather
than a covarying effect). The linearity here, looks reasonable and not terribly “interacting” (to
help us decide whether empathy should be a covariate or a moderator). More testing can help us
make this distinction.
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11.5.2.2 Homogeneity of regression slopes

This assumption requires that the slopes of the regression lines formed by the covariate and the
outcome variable are the same for each group. The assumption evaluates that there is no interaction
between the outcome and covariate. The plotted regression lines should be parallel.

Murrar_wide %>% rstatix::anova_test(AttArabP1 ~ COND*AttWhiteP1)

ANOVA Table (type II tests)

Effect DFn DFd F p p<.05 ges
1 COND 1 189 26.240 0.00000074 * 0.1220000
2 AttWhiteP1 1 189 0.014 0.90700000 0.0000729
3 COND:AttWhiteP1 1 189 1.886 0.17100000 0.0100000

Preliminary analysis supported ANCOVA as a statistical option in that there was no violation
of the homogeneity of regression slopes as the interaction term was not statistically significant,
𝐹(1, 189) = 1.886, 𝑝 = .171, 𝜂2 = 0.010.

11.5.2.3 Normality of residuals

Assessing the normality of residuals means running the model, capturing the unexplained portion
of the model (i.e., the residuals), and then seeing if they are normally distributed. Proper use of
ANCOVA is predicated on normally distributed residuals.

We first compute the model with lm(). The lm() function is actually testing what we want to test.
However, at this early stage, we are just doing a “quick run and interpretation” to see if we are
within the assumptions of ANCOVA.

#Create a linear regression model predicting DV from COV & IV
WhCov_mod <- lm (AttArabP1 ~ AttWhiteP1 + COND, data = Murrar_wide)
WhCov_mod

Call:
lm(formula = AttArabP1 ~ AttWhiteP1 + COND, data = Murrar_wide)

Coefficients:
(Intercept) AttWhiteP1 CONDLittleMosque

59.765300 -0.009897 14.886178

We can use the augment(model) function from the broom package to add fitted values and residuals.

WhCov_mod.metrics <- broom::augment(WhCov_mod)
#shows the first three rows of the UEcon_model.metrics
head(WhCov_mod.metrics,3)
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# A tibble: 3 x 9
AttArabP1 AttWhiteP1 COND .fitted .resid .hat .sigma .cooksd .std.resid

<dbl> <dbl> <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 80.3 95.6 Friends 58.8 21.4 0.0176 20.2 0.00685 1.07
2 76.6 51.0 Friends 59.3 17.3 0.0203 20.2 0.00518 0.867
3 92.0 91.9 Friends 58.9 33.2 0.0152 20.1 0.0140 1.65

Now we assess the normality of residuals using the Shapiro Wilk test. The script below captures
the “.resid” column from the model.

rstatix::shapiro_test(WhCov_mod.metrics$.resid)

# A tibble: 1 x 3
variable statistic p.value
<chr> <dbl> <dbl>

1 WhCov_mod.metrics$.resid 0.984 0.0294

The statistically significant Shapiro Wilk test indicate a violation of the normality assumption (𝑊 =
0.984, 𝑝 = .029). As I mentioned before, there are better ways to analyze this research vignette.
None-the-less, we will continue with this demonstration so that you will have the procedural and
conceptual framework for conducting ANCOVA.

11.5.2.4 Homogeneity of variances

ANCOVA presumes that the variance of the residuals is equal for all groups. We can check this
with the Levene’s test.

WhCov_mod.metrics %>% rstatix::levene_test(.resid ~ COND)

# A tibble: 1 x 4
df1 df2 statistic p

<int> <int> <dbl> <dbl>
1 1 191 4.54 0.0344

Contributing more evidence that ANCOVA is not the best way to analyze this data, a statisti-
cally significant Levene’s test indicates a violation of the homogeneity of the residual variances
(𝐹 [1, 191] = 4.539, 𝑝 = .034).

11.5.2.5 Outliers

We can identify outliers by examining the standardized (or studentized) residual. This is the
residual divided by its estimated standard error. Standardized residuals are interpreted as the
number of standard errors away from the regression line.
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WhCov_mod.metrics %>%
filter(abs(.std.resid)>3)%>%
as.data.frame()

AttArabP1 AttWhiteP1 COND .fitted .resid .hat .sigma
1 6.137 59.518 LittleMosque 74.06242 -67.92542 0.01407535 19.65185

.cooksd .std.resid
1 0.05447684 -3.383443

There is one outlier with a standardized residual with an absolute value greater than 3. At this
point I am making a mental note of this. If this were “for real” I might more closely inspect these
data. I would look at the whole response. If any response seems invalid (e.g., random, erratic, or
extreme responding) I would delete it. If the response seem valid, I could truncate them to within
3 SEs. I could also ignore it. Kline [2016a] has a great section on some of these options.

11.5.2.6 Summarizing the results from the analysis of assumptions

A one-way analysis of covariance (ANCOVA) was conducted. The independent variable,
sitcom condition, had two levels: Friends, Little Mosque. The dependent variable was
attitudes towards Arabs at pre-test. Preliminary anlayses which tested the assumptions
of ANCOVA were mixed. Results suggesting that the relationship between the covariate
and the dependent variable did not differ significantly as a function of the independent
variable (𝐹 [1, 189] = 1.886, 𝑝 = .171, 𝜂2 = 0.010) provided evidence that we did not
violate the homogeneity-of-slopes assumption. In contrast, the Shapiro-Wilk test of
normality on the model residuals was statistically significant (𝑊 = 0.984, 𝑝 = .029).
This means that we likely violated the assumption that the dependent variable is nor-
mally distributed in the population for any specific value of the covariate and for any
one level of a factor. Regarding outliers, one datapoint (-3.38) had a standardized resid-
ual that exceeded an absolute value of 3.0. Further, a statistically significant Levene’s
test indicated a violation of the homogeneity of the residual variances for all groups,
(𝐹 [1, 191] = 4.539, 𝑝 = .034).

Because the intent of this analysis was to demonstrate how ANCOVA differs from mixed design
ANOVA we proceeded with the analysis. Were this for “real research” we would have chosen a
different analysis.

11.5.3 Calculating the Omnibus ANOVA

We are ready to conduct the omnibus ANOVA.
Order of variable entry matters in ANCOVA. Thinking of the controlling for language associated
with covariates, we firstly want to remove the effect of the covariate.
In the code below we are predicting attitudes toward Arabs at post1 from attitudes toward Whites
at post1 (the covariate) and sitcom condition (Friends, Little Mosque).
The ges column provides the effect size, 𝜂2 where a general rule-of-thumb for interpretation is .01
(small), .06 (medium), and .14 (large) [Lakens, 2013].
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Figure 11.6: Image of the ANCOVA workflow, showing our current place in the process.
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WhCov_ANCOVA <- Murrar_wide %>%
rstatix::anova_test(AttArabP1 ~ AttWhiteP1 + COND)

rstatix::get_anova_table(WhCov_ANCOVA)

ANOVA Table (type II tests)

Effect DFn DFd F p p<.05 ges
1 AttWhiteP1 1 190 0.014 0.907000000 0.0000722
2 COND 1 190 26.119 0.000000779 * 0.1210000

There was a non-significant effect of the attitudes toward Whites covariate on the attitudes toward
Arabs at post-test, 𝐹(1, 190) = 0.014, 𝑝 = .907, 𝜂2 < .001. After controlling for attitudes toward
Whites, there was a statistically significant effect in attitudes toward Arabs at post-test between
the conditions, 𝐹(1, 190) = 26.119, 𝑝 < .001, 𝜂2 = 0.121. The effect size was moderate-to-large.

11.5.4 Post-hoc pairwise comparisons (controlling for the covariate)

With only two levels of sitcom condition (Friends, Little Mosque), we do not need to conduct post-
hoc pairwise comparisons. However, because many research designs involve three or more levels, I
will use code that would evaluates them here.

pwc_cond <- Murrar_wide %>%
rstatix::emmeans_test(
AttArabP1 ~ COND, covariate = AttWhiteP1,
p.adjust.method = "none"

)
pwc_cond

# A tibble: 1 x 9
term .y. group1 group2 df statistic p p.adj p.adj.signif

* <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <chr>
1 AttWhiteP1*C~ AttA~ Frien~ Littl~ 190 -5.11 7.79e-7 7.79e-7 ****

Results suggest a statistically significant post-test difference between the Friends and Little Mosque
sitcom conditions. With the script below we can obtain the covariate-adjusted marginal means.
These are termed estimated marginal means.

emmeans_cond <- rstatix::get_emmeans(pwc_cond)
emmeans_cond

# A tibble: 2 x 8
AttWhiteP1 COND emmean se df conf.low conf.high method

<dbl> <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <chr>
1 74.4 Friends 59.0 2.04 190 55.0 63.1 Emmeans test
2 74.4 LittleMosque 73.9 2.08 190 69.8 78.0 Emmeans test
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As before, these means are usually different (even if only ever-so-slightly) than the raw means you
would obtain from the descriptives.

descripts_cond <- psych::describeBy(AttArabP1 ~ COND, data = Murrar_wide, mat = TRUE)
descripts_cond

item group1 vars n mean sd median trimmed
AttArabP11 1 Friends 1 98 59.02351 21.65024 57.9955 59.31306
AttArabP12 2 LittleMosque 1 95 73.92134 18.51082 74.4600 75.52858

mad min max range skew kurtosis se
AttArabP11 23.67045 8.297 100 91.703 -0.0518848 -0.6252126 2.187005
AttArabP12 15.98984 6.137 100 93.863 -0.9798189 1.6335325 1.899170

11.5.5 APA style results for Scenario 2

Tables with the means, adjusted means, and pairwise comparison output may be helpful. The
apa.cor.table() function in the apaTables package is helpful for providing means, standarddeviations,
and correlations.

apaTables::apa.cor.table(Murrar_wide[c("AttArabP1", "AttWhiteP1")], table.number = 2 )

Table 2

Means, standard deviations, and correlations with confidence intervals

Variable M SD 1
1. AttArabP1 66.36 21.46

2. AttWhiteP1 74.37 17.28 -.02
[-.16, .12]

Note. M and SD are used to represent mean and standard deviation, respectively.
Values in square brackets indicate the 95% confidence interval.
The confidence interval is a plausible range of population correlations
that could have caused the sample correlation (Cumming, 2014).
* indicates p < .05. ** indicates p < .01.

#You can save this as a Microsoft word document by adding this statement into the command: filename = "your_filename.doc"

Writing this output to excel files helped create the two tables that follow.
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MASS::write.matrix(pwc_cond, sep = ",", file = "pwc_con.csv")
MASS::write.matrix(emmeans_cond, sep = ",", file = "emmeans_con.csv")
MASS::write.matrix(descripts_cond, sep = ",", file = "descripts_con.csv")

Ultimately, I would want a table that included this information. Please refer to the APA style
manual for more proper formatting for a manuscript that requires APA style.

Table 1b
Unadjusted and Covariate-Adjusted Descriptive Statistics

Condition Unadjusted Covariate-Adjusted

M SD EMM SE
Friends 59.02 21.65 59.03 2.04
Little Mosque 73.92 18.51 73.92 2.08

Unlike the figure we created when we were testing assumptions, this script creates a plot from
the model (which identifies AttWhiteP1 in its role as covariate). Thus, the relationship between
condition and AttArabP1 controls for the effect of the AttArabB covariate.

pwc_cond <- pwc_cond %>% rstatix::add_xy_position(x = "COND", fun = "mean_se")
ggpubr::ggline(rstatix::get_emmeans(pwc_B), x = "COND", y = "emmean", title = "Figure 1 Attitudes toward Arabs by Condition, Controlling for Attitudes toward Whites") +

geom_errorbar(aes(ymin = conf.low, ymax = conf.high), width = 0.2) +
ggpubr::stat_pvalue_manual(pwc_B, hide.ns = TRUE, tip.length = .02, y.position = c(80))
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Figure 1 Attitudes toward Arabs by Condition, Controlling for Attitudes toward Whites

Results

A one-way analysis of covariance (ANCOVA) was conducted. The independent vari-
able, sitcom condition, had two levels: Friends, Little Mosque. The dependent variable
was attitudes towards Arabs at pre-test. We controlled for attitudes toward Whites.
Preliminary analyses which tested the assumptions of ANCOVA were mixed. Results
suggesting that the relationship between the covariate and the dependent variable did
not differ significantly as a function of the independent variable (𝐹 [1, 189] = 1.886, 𝑝 =
.171, 𝜂2 = 0.010) provided evidence that we did not violate the homogeneity-of-slopes
assumption. In contrast, the Shapiro-Wilk test of normality on the model residuals was
statistically significant (𝑊 = 0.984, 𝑝 = .029). This means that we likely violated the
assumption that the dependent variable is normally distributed in the population for
any specific value of the covariate and for any one level of a factor. Regarding outliers,
one datapoint (-3.38) had a standardized residual that exceeded an absolute value of 3.0.
Further, a statistically significant Levene’s test indicated a violation of the homogeneity
of the residual variances for all groups, (𝐹 [1, 191] = 4.539, 𝑝 = .034).

Because the intent of this analysis was to demonstrate how ANCOVA differs from mixed design
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ANOVA we proceeded with the analysis. Were this for “real research” we would have chosen a
different analysis.

There was a non-significant effect of the attitudes toward Whites covariate on the atti-
tudes toward Arabs post-test, 𝐹(1, 190) = 0.014, 𝑝 = .907, 𝜂2 < .001. After controlling
for attitudes toward Whites, there was a statistically significant effect in attitudes to-
ward Arabs at post-test between the conditions, 𝐹(1.190) = 26.119, 𝑝 < .001, 𝜂2 =
0.121. The effect size was moderately large. Means and covariate-adjusted means are
presented in Table 1b.

11.6 More (and a recap) on covariates

Covariates, sometimes termed controls are often used to gain statistical control over variables that
are difficult to control in a research design. That is, it may be impractical for polychotomize an
otherwise continuous variable and/or it is impractical to have multiple factors and so a covariate
is a more manageable approach. Common reasons for including covariates include [Bernerth and
Aguinis, 2016]:

• they mathematically remove variance associated with nonfocal variables,
• the purification principle – removing unwanted or confusing variance,
• they remove the noise in the analysis to clear up the clear up the relationship between IV

and DVs.

Perhaps it is an oversimplification, but we can think of three categories of variables: moderators,
covariates, and mediators. Through ANOVA and ANCOVA, we distinguish between moderator
and covariate.

Moderator: a variable that changes the strength or direction of an effect between two variables
X (predictor, independent variable) and Y (criterion, dependent variable).

Covariate: an observed, continuous variable, that (when used properly) has a relationship with the
dependent variable. It is included in the analysis, as a predictor, so that the predictive relationship
between the independent (IV) and dependent (DV) are adjusted.

Bernerth and Aguinis [2016] conducted a review of how and when control variables were used
in nearly 600 articles published between 2003 and 2012. Concurrently with their analysis, they
provided guidance for when to use control variables (covariates). The flowchart that accompanies
their article is quite helpful. Control variables (covariates) should only be used when:

1. Theory suggests that the potential covariate(s) relate(s) to variable(s) in the currrent study.
2. There is empirical justification for including the covariate in the study.
3. The covariate can be measured reliably.

Want more? Instructions for calculating a two-way ANCOVA are here: https://www.datanovia.
com/en/lessons/ancova-in-r/

https://www.datanovia.com/en/lessons/ancova-in-r/
https://www.datanovia.com/en/lessons/ancova-in-r/
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11.7 Practice Problems

The suggestions for homework differ in degree of complexity. I encourage you to start with a
problem that feels “do-able” and then try at least one more problem that challenges you in some
way. At a minimum your data should have three levels in the independent variable. At least one
of the problems you work should have a statistically significant interaction effect that you work all
the way through.

Regardless, your choices should meet you where you are (e.g., in terms of your self-efficacy for
statistics, your learning goals, and competing life demands). Whichever you choose, you will focus
on these larger steps in one-way ANCOVA, including:

• test the statistical assumptions
• conduct an ANCOVA
• if the predictor variable has more three or more levels, conduct follow-up testing
• present both means and coviarate-adjusted means
• write a results section to include a figure and tables

11.7.1 Problem #1: Play around with this simulation.

Copy the script for the simulation and then change (at least) one thing in the simulation to see
how it impacts the results.

• If ANCOVA is new to you, perhaps you just change the number in “set.seed(210813)” from
210813 to something else. Then rework Scenario#1, Scenario#2, or both. Your results should
parallel those obtained in the lecture, making it easier for you to check your work as you go.

• If you are interested in power, change the sample size to something larger or smaller.
• If you are interested in variability (i.e., the homogeneity of variance assumption), perhaps

you change the standard deviations in a way that violates the assumption.

11.7.2 Problem #2: Conduct a one-way ANCOVA with the DV and covariate
at post2.

The Murrar et al. [2018]article has three waves: baseline, post1, post2. In this lesson, I focused on
the post1 waves. Rerun this analysis using the post2 wave data.

11.7.3 Problem #3: Try something entirely new.

Using data for which you have permission and access (e.g., IRB approved data you have collected
or from your lab; data you simulate from a published article; data from an open science repository;
data from other chapters in this OER), complete an ANCOVA.
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11.7.4 Grading Rubric

Regardless which option(s) you chose, use the elements in the grading rubric to guide you through
the practice. Using the lecture and workflow (chart) as a guide, please work through all the steps
listed in the proposed assignment/grading rubric.

Assignment Component Points Possible Points Earned
1. Narrate the research vignette, describing the
IV, DV, and COV.

5 _____

2. Simulate (or import) and format data. 5 _____
3. Evaluate statistical assumptions. 5 _____
4. Conduct omnibus ANCOVA (w effect size). 5 _____
5. If the IV has three or more levels, conduct
follow-up tests.

5 _____

6. Present means and covariate-adjusted means;
interpret them.

5 _____

7. APA style results with table(s) and figure. 5 _____
8. Explanation to grader. 5 _____
Totals 35 _____

11.8 Homeworked Example

Screencast Link

For more information about the data used in this homeworked example, please refer to the descrip-
tion and codebook located at the end of the introduction.

11.8.1 Working the Problem with R and R Packages

Narrate the research vignette, describing the IV, DV, and COV

I want to ask the question, what are the effects of intentional recentering on students’ evaluations
of socially responsive pedagogy in the multivariate (last) course as a function of centering status
(i.e., pre versus re), controlling for the socially responsive evaluations in the ANOVA (first) course:

• Continuous DV: SRPed (socially responsive pedagogy) in the multivariate (last) class
• Between-subjects factor: recentering status of the class (Pre, Re)
• Covariate: SRPed in the ANOVA (first) class

If you wanted to use this example and dataset as a basis for a homework assignment, you could
choose a different dependent variable. I chose the socially responsive pedagogy subscale. Two other
subscales include traditional pedagogy and valued by the student.

https://youtu.be/eRCDNibARtg
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Simulate (or import) and format data

First I import the larger dataset.

big <- readRDS("ReC.rds")

The SRPed (socially responsive pedagogy) variable is an average of the items on that scale. I will
first create that variable.

#This code was recently updated and likely differs from the screencasted lecture

#Calculates a mean if at least 75% of the items are non-missing; adjusts the calculating when there is missingness
big$SRPed <- datawizard::row_means(big, select = c('InclusvClassrm', 'EquitableEval','MultPerspectives', 'DEIintegration'), min_valid = .75)

Let’s trim it to just the variables of interest.

ANCOVA_df <- (dplyr::select (big, deID, Course, Centering, SRPed))

And further filter so that there are just evaluations of ANOVA and multivariate courses.

ANCOVA_df <- subset(ANCOVA_df, Course == "ANOVA" | Course == "Multivariate") #multiple conditions

I want the course variable to be factor that is ordered by its sequence: ANOVA, multivariate.

I want the centering variable to be ordered: Pre, Re

str(ANCOVA_df)

Classes 'data.table' and 'data.frame': 198 obs. of 4 variables:
$ deID : int 1 2 3 4 5 6 7 8 9 10 ...
$ Course : Factor w/ 3 levels "Psychometrics",..: 2 2 2 2 2 2 2 2 2 2 ...
$ Centering: Factor w/ 2 levels "Pre","Re": 2 2 2 2 2 2 2 2 2 2 ...
$ SRPed : num 5 5 4.25 5 5 3.75 5 5 4.25 5 ...

Because R’s default is to order alphabetically, the centering variable is correct. I just need to change
the course variable.

ANCOVA_df$Course <- factor(ANCOVA_df$Course, levels = c("ANOVA", "Multivariate"))
str(ANCOVA_df)

Classes 'data.table' and 'data.frame': 198 obs. of 4 variables:
$ deID : int 1 2 3 4 5 6 7 8 9 10 ...
$ Course : Factor w/ 2 levels "ANOVA","Multivariate": 1 1 1 1 1 1 1 1 1 1 ...
$ Centering: Factor w/ 2 levels "Pre","Re": 2 2 2 2 2 2 2 2 2 2 ...
$ SRPed : num 5 5 4.25 5 5 3.75 5 5 4.25 5 ...
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After checking the structure again, both are correct.

My data is in the long (person-period) form. For this particular ANOVA I need it to be in the
wide (person level) form.

ANCOVA_wide<- reshape2::dcast(data = ANCOVA_df, formula = deID + Centering ~ Course, value.var = "SRPed")
# before restructuring a second variable, rename the first variable
ANCOVA_wide <- dplyr::rename(ANCOVA_wide, SRPed_ANV = "ANOVA", SRPed_MLTV = "Multivariate")

str(ANCOVA_wide)

'data.frame': 119 obs. of 4 variables:
$ deID : int 1 2 3 4 5 6 7 8 9 10 ...
$ Centering : Factor w/ 2 levels "Pre","Re": 2 2 2 2 2 2 2 2 2 2 ...
$ SRPed_ANV : num 5 5 4.25 5 5 3.75 5 5 4.25 5 ...
$ SRPed_MLTV: num NA NA NA NA NA NA NA NA NA NA ...

head(ANCOVA_wide)

deID Centering SRPed_ANV SRPed_MLTV
1 1 Re 5.00 NA
2 2 Re 5.00 NA
3 3 Re 4.25 NA
4 4 Re 5.00 NA
5 5 Re 5.00 NA
6 6 Re 3.75 NA

The head function shows that the multivariate scores are missing. This design still has missingness
for (a) some students who took ANOVA but haven’t yet had multivariate and (b) others who may
have skipped completing course evaluations. I’ll take care of that next by requiring rows to have
non-missing data.

ANCOVA_wide <- na.omit(ANCOVA_wide)

Evaluate statistical assumptions

Is there a linear relationship between the covariate and outcome at each level of the
grouping variable?“

This would mean that there is linearity between the evaluation in the first course (covari-
ate/ANOVA) and last course (outcome/Multivariate) at each level of the independent variable
(Centering status).

We can get a visual of this with a scatterplot (with regression lines) between the covariae and
outcome.
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library(ggplot2)
ggpubr::ggscatter(ANCOVA_wide, x = "SRPed_ANV", y = "SRPed_MLTV", color = "Centering", add = "reg.line") + ggpubr::stat_regline_equation(aes(label = paste(..eq.label.., ..rr.label.., sep = "~~~~"), color = Centering))

y = 1.5 + 0.65 x    R2 = 0.42

y = 3.1 + 0.37 x    R2 = 0.2
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The plot looks a little funny. This is likely because there are no values below 3(ish) for ANOVA
when courses were re-centered. Although we are looking for a linear relationship, the angled
lines suggest there could be an interaction effect. The previous lesson (when we included all three
courses [ANOVA, psychometrics, multivariate]) showed that there was. Spoiler alert – mixed design
ANOVA is a better analysis for this question, but the data does allow me (statistically) to use it
for a homework demonstration.

Are the regression lines formed by the covariate and the outcome variable the same
for each group?

This would mean that there is no interaction between the outcome and covariate. We can test this
with an ANOVA model that specifies an interaction.



11.8. HOMEWORKED EXAMPLE 515

library(tidyverse)
ANCOVA_wide %>%

rstatix::anova_test(SRPed_MLTV ~Centering*SRPed_ANV)

ANOVA Table (type II tests)

Effect DFn DFd F p p<.05 ges
1 Centering 1 71 10.444 0.0020000000 * 0.128
2 SRPed_ANV 1 71 40.189 0.0000000186 * 0.361
3 Centering:SRPed_ANV 1 71 1.971 0.1650000000 0.027

Curiously, the interaction term was not statistically significant (𝐹 [1, 71] = 1.975, 𝑝 = 0.164). This
non-violation of the homogeneity of slopes assumption supports the use of ANCOVA.

Are the model residuals normally distributed and equal across groups?

First, I create a linear regression model

SRPed_mod <- lm(SRPed_MLTV ~ SRPed_ANV + Centering, data = ANCOVA_wide)

I will use broom::augment() to add fitted values and residuals to the model I just created.

SRPed_mod_metrics <- broom::augment(SRPed_mod)
head(SRPed_mod_metrics)

# A tibble: 6 x 10
.rownames SRPed_MLTV SRPed_ANV Centering .fitted .resid .hat .sigma .cooksd
<chr> <dbl> <dbl> <fct> <dbl> <dbl> <dbl> <dbl> <dbl>

1 11 4.5 4.5 Re 4.73 -0.232 0.0357 0.459 3.31e-3
2 12 5 4.5 Re 4.73 0.268 0.0357 0.459 4.41e-3
3 13 5 4.75 Re 4.87 0.125 0.0382 0.460 1.03e-3
4 14 5 4.25 Re 4.59 0.411 0.0382 0.457 1.11e-2
5 15 4.75 4.5 Re 4.73 0.0179 0.0357 0.460 1.96e-5
6 16 4.5 3.5 Re 4.16 0.338 0.0751 0.458 1.61e-2
# i 1 more variable: .std.resid <dbl>

I can now assess the normality of residuals with the Shapiro-Wilk test.

rstatix::shapiro_test(SRPed_mod_metrics$.resid)

# A tibble: 1 x 3
variable statistic p.value
<chr> <dbl> <dbl>

1 SRPed_mod_metrics$.resid 0.972 0.100
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The Shapiro-Wilk test suggested that our residuals are not statistically significantly different from
a normal distribution (𝑊 = 0.972, 𝑝 = 0.101).
ANCOVA further presumes that the variances of the residuals is equal for all groups. I can check
this with the Levene’s test.

SRPed_mod_metrics%>%
rstatix::levene_test(.resid ~ Centering)

# A tibble: 1 x 4
df1 df2 statistic p

<int> <int> <dbl> <dbl>
1 1 73 2.69 0.105

A non-significant Levene’s test indicated no violation of the homogeneity of the residual variances
for the groups (𝐹 [1, 73] = 2.675, 𝑝 = 0.106).
Is there evidence of outliers? Are they extreme?
I can identify outliers by examining the standardized (or studentized) residuals. These are inter-
preted as the number of standard errors away from the regression line.

SRPed_mod_metrics %>%
filter(abs(.std.resid) > 3) %>%

as.data.frame()

[1] .rownames SRPed_MLTV SRPed_ANV Centering .fitted .resid
[7] .hat .sigma .cooksd .std.resid
<0 rows> (or 0-length row.names)

No outliers were identified.

Here’s write-up of what I’ve done so far:

A one-way analysis of covariance (ANCOVA) was conducted. The independent variable,
centering stage, had two levels: pre-centered, re-centered. The dependent variable was
students’ evaluation of socially responsive pedagogy during the last statistics course
(multivariate) and the covariate was the students’ evaluation of the same variable during
the first statistics class (ANOVA).

A preliminary analysis evaluating the homogeneity-of-slopes assumption indicated that
the relationship between the covariate and the dependent variable did not differ sig-
nificantly as a function of the independent variable, (𝐹 [1, 71] = 1.975, 𝑝 = 0.164).
Further, the non-significant Shapiro-Wilk test of normality on the model residuals
(𝑊 = 0.972, 𝑝 = 0.101) indicated that the dependent variable was not statistically
significantly different from a normal distribution and no outliers were identified. A
non-significant Levene’s test indicated no violation of the homogeneity of the residual
variances for all groups (𝐹 [1, 73] = 2.675, 𝑝 = 0.106).
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Conduct omnibus ANOVA (w effect size)

ANCOVA_mod <- ANCOVA_wide %>%
rstatix::anova_test(SRPed_MLTV ~ SRPed_ANV + Centering)

rstatix::get_anova_table(ANCOVA_mod)

ANOVA Table (type II tests)

Effect DFn DFd F p p<.05 ges
1 SRPed_ANV 1 72 39.654 0.0000000212 * 0.355
2 Centering 1 72 10.305 0.0020000000 * 0.125

There was a significant effect of the evaluation of socially responsive pedagogy at the first
course (ANOVA) on the same rating at the last course (𝐹 [1, 72] = 39.696, 𝑝 < .001, 𝜂2 =
0.355) as well as a statistically significant effect of recentering on evaluations of socially
responsive pedagogy during the last class (𝐹 [1, 72]) = 10.304, 𝑝 = 0.002, 𝜂2 = 0.125).
Considering that we interpret values 𝑒𝑡𝑎2 values of .01, .06, and .14 to be small, medium,
and large it appears that both the covariate and independent variable had substantial
effects on the results.

Conduct one set of follow-up tests; narrate your choice

Because this design has only two levels (pre-centered, re-centered), follow-up tests will not tell us
any more information. However, investigating the covariate-adjusted mean is useful.

emmeans_MLTV <- ANCOVA_wide%>%
rstatix::emmeans_test(SRPed_MLTV ~ Centering, covariate = SRPed_ANV, p.adjust.method = "none")

emmeans_MLTV

# A tibble: 1 x 9
term .y. group1 group2 df statistic p p.adj p.adj.signif

* <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <chr>
1 SRPed_ANV*Ce~ SRPe~ Pre Re 72 -3.21 0.00198 0.00198 **

Not surprisingly (since this single pairwise comparison is redundant with the omnibus ANCOVA),
results suggest a statistically significant difference between the pre- and re-centered stages in the
multivariate class.

With this script I can obtain the covariate-adjusted (i.e., estimated marginal) means.

emmeans_list <- rstatix::get_emmeans(emmeans_MLTV)
emmeans_list

# A tibble: 2 x 8
SRPed_ANV Centering emmean se df conf.low conf.high method
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<dbl> <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <chr>
1 4.50 Pre 4.38 0.0666 72 4.25 4.51 Emmeans test
2 4.50 Re 4.73 0.0863 72 4.56 4.90 Emmeans test

We can compare these to the unadjusted means:

descripts_means <- psych::describeBy(SRPed_MLTV ~ Centering, data = ANCOVA_wide, mat=TRUE, digits=6)
descripts_means

item group1 vars n mean sd median trimmed mad
SRPed_MLTV1 1 Pre 1 47 4.381206 0.632681 4.5 4.450855 0.7413
SRPed_MLTV2 2 Re 1 28 4.732143 0.424529 5.0 4.802083 0.0000

min max range skew kurtosis se
SRPed_MLTV1 2.333333 5 2.666667 -0.867724 0.366448 0.092286
SRPed_MLTV2 3.250000 5 1.750000 -1.730808 2.909250 0.080228

While the differences are minor, they do exist.

Describe approach for managing Type I error

Because we only needed to conduct the omnibus, there was no additional control of Type I error.

APA style results with table(s) and figure

A one-way analysis of covariance (ANCOVA) was conducted. The independent variable,
centering stage, had two levels: pre-centered, re-centered. The dependent variable was
students’ evaluation of socially responsive pedagogy during the last statistics course
(multivariate) and the covariate was the students’ evaluation of the same variable during
the first statistics class (ANOVA).

A preliminary analysis evaluating the homogeneity-of-slopes assumption indicated that
the relationship between the covariate and the dependent variable did not differ sig-
nificantly as a function of the independent variable, (𝐹 [1, 71] = 1.975, 𝑝 = 0.100).
Further, the non-significant Shapiro-Wilk test of normality on the model residuals
(𝑊 = 0.972, 𝑝 = 0.101) indicated that the dependent variable was not statistically
significantly different from a normal distribution and no outliers were identified. A
non-significant Levene’s test indicated no violation of the homogeneity of the residual
variances for all groups (𝐹 [1, 73] = 2.675, 𝑝 = 0.106).

There was a significant effect of the evaluation of socially responsive pedagogy at the first
course (ANOVA) on the same rating at the last course (𝐹 [1, 72] = 39.696, 𝑝 < .001, 𝜂2 =
0.355) as well as a statistically significant effect of recentering on evaluations of socially
responsive pedagogy during the last class (𝐹 ]1, 72) = 10.304, 𝑝 = 0.002, 𝜂2 = 0.125).
Considering that we interpret values 𝑒𝑡𝑎2 values of .01, .06, and .14 to be small, medium,
and large it appears that both the covariate and independent variable had substantial



11.8. HOMEWORKED EXAMPLE 519

effects on the results. As illustrated in Figure 1, results suggested that those in the
multivariate condition had more favorable ratings of socially responsive pedagogy than
those in the ANOVA class. Table 1 provides unadjusted and covariate-adjusted means
for the dependent variable.

In the case of ANCOVA, a table that compares unadjusted and covariate-adjusted means can be
helpful. The lesson contains some script to export data. I will create a table to demonstrate how
this might work:

Table 1
Unadjusted and Covariate-Adjusted Descriptive Statistics

Centering Unadjusted Covariate-Adjusted

M SD EMM SE
Pre-centered 4.381277 0.633 4.381639 0.067
Re-centered 4.732143 0.425 4.731534 0.086

And now a figure:

emmeans_MLTV <- emmeans_MLTV %>%
rstatix::add_xy_position(x = "Centering", fun = "mean_se")

ggpubr::ggline(rstatix::get_emmeans(emmeans_MLTV), x = "Centering", y = "emmean", title = "Figure 1. SRPed Ratings as a Function of Centering, Controlling for Earlier Ratings") +
geom_errorbar(aes(ymin = conf.low, ymax = conf.high), width = 0.2) +
ggpubr::stat_pvalue_manual(emmeans_MLTV, hide.ns = TRUE, tip.length = 0.02, , y.position = c(5.0))
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Chapter 12

Correlation

Jessica Fossum, PhD
Screencasted Conceptual Lecture Link

options(scipen=999)#eliminates scientific notation

Correlation is concept in statistics that measures the strength and direction of the linear relationship
between two variables. It helps us understand how changes in one variable are associated with
changes in another. Correlation is one of my favorite topics in statistics because the colloquial
use of the word “correlation” is very close to how it is used in statistics, where both describe how
two events/variables are related. For example, in industrial-organizational psychology, researchers
might examine the relationship between employee job satisfaction and productivity. If there is a
strong positive correlation, it means that for higher job satisfaction, productivity tends to higher
as well. Conversely, a strong negative correlation would indicate that higher job satisfaction is
associated with lower productivity.

12.1 Navigating this Lesson

While the majority of R objects and data you will need are created within the R script that sources
the chapter, occasionally there are some that cannot be created from within the R framework.
Additionally, sometimes links fail. All original materials are provided at the Github site that hosts
the book.

12.1.1 Learning Objectives

Learning objectives from this lecture include the following:

• Describe the strength and direction (positive or negative) of a correlation coefficient and be
able to visualize the relationship between two variables at different correlations

• Understand when to use correlation coefficients
• Calculate and interpret correlation coefficients (Pearson’s r, Spearnan’s 𝜌 and Kendall’s 𝜏)
• Recognize and report correlation coefficients and descriptive statistics tables in APA style
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https://youtu.be/u0jHGceCgZs?si=nYgTaA-4feALEpNf
https://github.com/lhbikos/ReCenterPsychStats
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12.1.2 Planning for Practice

The suggestions for homework vary in degree of complexity. The more complete descriptions at the
end of the chapter follow these suggestions.

• Rework the correlations in the lesson by changing the random seed in the code that simulates
the data. This should provide minor changes to the data, but the results will likely be very
similar.

• Rework the correlations in the lesson by changing something else about the simulation. For
example, if you are interested in power, consider changing the sample size.

• Use the simulated data that is provided, but use different variables, instead.
• Conduct an correlation test with data to which you have access and permission to use. This

could include data you simulate on your own or from a published article.

12.1.3 Readings & Resources

In preparing this chapter, I drew heavily from the following resource(s). Other resources are cited
(when possible, linked) in the text with complete citations in the reference list.

• McNulty, K. (2024). Chapter 3: Statistics Foundations. In [Handbook of Regression Modeling
in People Analytics]https://peopleanalytics-regression-book.org/index.html).

• Hayes, A. (2023).
• Ramos, G., Ponting, C., Bocanegra, E., Chodzen, G., Delgadillo, D., Rapp, A., Escovar, E. &

Chavira, D. (2022) Discrimination and Internalizing Symptoms in Rural Latinx Adolescents:
The Protective Role of Family Resilience, Journal of Clinical Child & Adolescent Psychology,
51(6), 997-1010. https://doi.org/10.1080/15374416.2021.1923018

– The source of our research vignette.

12.1.4 Packages

The script below will (a) check to see if the following packages are installed on your computer and,
if not (b) install them.

#will install the package if not already installed
#if(!require(psych)){install.packages("psych")}
#if(!require(tidyverse)){install.packages("tidyverse")}
#if(!require(ggpubr)){install.packages("ggpubr")}
#if(!require(pwr)){install.packages("pwr")}
#if(!require(apaTables)){install.packages("apaTables")}
#if(!require(knitr)){install.packages("knitr")}
#if(!require(rstatix)){install.packages("rstatix")}
#if(!require(MASS)){install.packages("MASS")}

library(MASS)
library(tidyverse)

https://peopleanalytics-regression-book.org/index.html
https://doi.org/10.1080/15374416.2021.1923018
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-- Attaching core tidyverse packages ------------------------ tidyverse 2.0.0 --
v dplyr 1.1.4 v readr 2.1.5
v forcats 1.0.0 v stringr 1.5.1
v ggplot2 3.5.1 v tibble 3.2.1
v lubridate 1.9.3 v tidyr 1.3.1
v purrr 1.0.2
-- Conflicts ------------------------------------------ tidyverse_conflicts() --
x dplyr::filter() masks stats::filter()
x dplyr::lag() masks stats::lag()
x dplyr::select() masks MASS::select()
i Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors

12.2 Introducing correlations

Correlation is a fundamental concept in statistics that measures the strength and direction of the
linear relationship between two variables. It is essential for understanding how changes in one
variable are associated with changes in another. Correlation coefficients, typically ranging from -1
to 1, quantify these relationships, with values closer to the extremes indicating stronger associations.
Understanding correlation is crucial for analyzing data and making informed decisions based on
statistical relationships.
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Correlations are defined by two main properties: strength and direction. The strength is the
magnitude or absolute value of the correlation, and the direction is the sign (positive or negative).
The strength determines how close the cluster of points fall on the graph, and the direction de-
termines whether whether as one variable increases, the other variable will increase (positive) or
decrease (negative).

There are several different types of correlation coefficients, and choosing which one to use depends
on what type of variables are involved. The most common type of correlation reported is Pearson’s
r. This is used for two continuous variables.

To calculate Pearson’s r, a score from each participant is needed for each variable. Notationally,
here we see variable x and variable y as the two variables. The first step is to calculate the covariance
between the two variables, which is is a measure of the extent to which one changes as the other
changes. If 𝑥 = 𝑥1, 𝑥2, …, 𝑥𝑛 is a variable and 𝑦 = 𝑦1, 𝑦2, …, 𝑦𝑛 is another variable, i as a subscript
represents the individual score of a participant, and ̄𝑥 and ̄𝑥 are the means of x and y, respectively,
then the sample covariance of x and y is defined as
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𝑐𝑜𝑣𝑠(𝑥, 𝑦) = 1
1 − 𝑛

𝑛
∑
𝑖=1

(𝑥𝑖 − ̄𝑥)(𝑦𝑖 − ̄𝑦)

which can be read as taking each individual score and subtracting off the mean, multiplying those
values together, then adding that product up for each individual i. That results in the population
covariance, but since we are often working with samples in psychology, the adjustment of 1

1−𝑛 is
necessary.

Once the covariance is calculated, it is scaled by the product of the standard deviation of the two
variables to get the correlation. This is why correlations are always between -1 and 1.

𝑟𝑥,𝑦 = 𝑐𝑜𝑣(𝑥, 𝑦)
𝜎𝑥𝜎𝑦

This equation is for the population correlation. We will learn how to calculate the sample correlation
coefficient with a similar adjustment later in this chapter. The equation for a sample correlation is
the default in base R.

The other types of correlation described in this chapter are point-biserial correlation, Spearman’s
𝜌, Kendall’s 𝜏 , and rank-biserial correlations. Pearson’s r is limited to just continuous variables.
Point-biserial correlations are used to describe the correlation between a continuous variable and
a dichotomous (binary) variable. Spearman’s 𝜌 and Kendall’s 𝜏 are used whenever at least one of
the two variables is a ranked (ordinal) variable, and a rank-biserial correlation is used when one
variable is a ranked variable and the other is a dichotomous variable.

12.2.1 Workflow for Choosing which Correlation

The following is a workflow for choosing the proper type of correlation test.

If the data meets the assumptions associated with the research design (e.g., continuous variables
for Pearson’s r), these are the steps for the correlation test:

1. Prepare (upload) data.
2. Explore data with

• graphs
• descriptive statistics (means, standard deviations)

3. Compute the proper type of correlation
4. Assess the statistical significance of the correlation
5. Sample size/power analysis (which you should think about first, but in the context of teaching

statistics, it’s more pedagogically sensible, here).

12.3 Assumptions of correlation

The main assumption is that the proper type of correlation is reported depending on the type
of variables included. The other assumption of a correlation is that the relationship between the
variables is linear, because correlations do a poor job of describing nonlinear trends. A parabolic
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Figure 12.1: A colorful image of a workflow for choosing the correct type of correlation
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trend could have a correlation close to 0, even though graphing the points would show a clear
relationship between the two.
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Nonlinear Trend

12.4 Research Vignette

Empirically published articles often include correlation tables along with the descriptive statistics.
An example of this can be found in [Ramos et al., 2021], which was a study that explored the
relationships between discrimination and internalizing symptoms in rural Latinx adolescents, and
found that family resilience acted as a protective factor.

This article is a great example of several statistical tests, but for this chapter, we will focus on
the variables and explore correlations among them. The article measured continuous, ordinal, and
dichotomous variables.

• Continuous variables: Perceived Discrimination, Self-Reported Internalizing Symptoms, Self-
Reported Depressive Symptoms, Self-Reported Somatic Symptoms, Self-Reported Anxiety
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Symptoms, Perceived Family Resilience, Perceived Individual Resilience, Perceived Contex-
tual Resilience, and Self-Reported Level of Acculturation.

• Ordinal variables: Self-Reported Depressive Symptom Severity (normative, borderline, clini-
cally significant), Self-Reported Somatic Symptom Severity (normative, borderline, clinically
significant), Self-Reported Anxiety Symptom Severity (normative, borderline, clinically sig-
nificant).

• Dichotomous variable: sex

12.4.1 Data Simulation

In the data below, I have simulated the continuous variables using the means, standard deviations,
and correlations listed in the article. Further, I truncated them to fit within the assigned range.
From there, I created the three ordinal variables by taking their corresponding continuous variable
(eg., Self-Reported Depressive Symptom Severity) and creating three levels, with allocations that
match those reported in the article (eg., the lowest 78% in the normative severity category, the
next 12% in the borderline severity category, and the top 10% in the clinically significant severity
category.). Finally, I randomly assigned sex to match the demographics of the study’s sample
because it was reported to not correlate with any of the other measures. I created data for 444
participants to match the sample size reported in the article.

The packages I’m using for simulating data are dplyr from the tidyverse and MASS. Creating the
levels of the ordinal variables could be done in base R, but this is the kind of data manipulation
where the dplyr package really shines. The MASS package has the mvrnorm() function in it, which
allows us to draw from multivariate normal distributions. Instead of just using rnorm() to get data
for one variable, the mvrnorm() function allows us to generate correlated variables.

set.seed(90263)

# Specify the number of observations
n <- 444

# Specify the means for the 9 variables
means <- c(14.890, 13.345, 5.581, 2.613, 5.162, 27.853, 44.188, 38.014, 39.688)

# Specify the standard deviations for the 9 variables
sds <- c(4.420, 9.395, 4.677, 2.602, 3.629, 4.900, 6.182, 6.103, 7.467)

# Create a correlation matrix for the 9 continuous variables
cor_matrix <- matrix(

c(1, .431, .433, .299, .341, -.239, -.253, -.137, -.162,
.431, 1, .914, .729, .878, -.404, -.470, -.295, .017,
.433, .914, 1, .515, .698, -.453, -.485, -.340, -.018,
.299, .729, .515, 1, .506, -.204, -.215, -.099, .015,
.341, .878, .698, .506, 1, -.315, -.438, -.257, .058,
-.239, -.404, -.453, -.204, -.315, 1, .6, .672, .005,
-.253, -.470, -.485, -.215, -.438, .6, 1, .677, .011,
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-.137, -.295, -.340, -.099, -.257, .672, .677, 1, -.024,
-.162, .017, -.018, .015, .058, .005, .011, -.024, 1),

nrow = 9
)

# Create the covariance matrix from the correlation matrix and standard deviations
cov_matrix <- diag(sds) %*% cor_matrix %*% diag(sds)

# Generate the multivariate normal data using the MASS library
dat <- mvrnorm(n = n, mu = means, Sigma = cov_matrix)

# Create 0 as the lower bound for all scale variables
dat[dat < 0] <- 0

# Convert the data to a data frame
dat <- as.data.frame(dat)

# Assign column names
colnames(dat) <- c("PerceivedDiscrimination",

"InternalizingProblems",
"DepressiveSymptoms",
"SomaticSymptoms",
"AnxietySymptoms",
"FamilyResilience",
"IndividualResilience",
"ContextualResilience",
"Acculturation")

# Create 3 ordinal variables
dat <- dat %>%

mutate(
DepressiveSymptomsLevels = case_when(

DepressiveSymptoms <= sort(dat$DepressiveSymptoms)[345] ~ "NormativeSeverity",
DepressiveSymptoms > sort(dat$DepressiveSymptoms)[345] & DepressiveSymptoms <= sort(dat$DepressiveSymptoms)[345+55] ~ "BorderlineSeverity",
DepressiveSymptoms > sort(dat$DepressiveSymptoms)[345+55] ~ "ClinicallySignificantSeverity"

)
)

dat <- dat %>%
mutate(
SomaticSymptomsLevels = case_when(

SomaticSymptoms <= sort(dat$SomaticSymptoms)[359] ~ "NormativeSeverity",
SomaticSymptoms > sort(dat$SomaticSymptoms)[359] & SomaticSymptoms <= sort(dat$SomaticSymptoms)[359+47] ~ "BorderlineSeverity",
SomaticSymptoms > sort(dat$SomaticSymptoms)[359+47] ~ "ClinicallySignificantSeverity"

)
)
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dat <- dat %>%
mutate(
AnxietySymptomsLevels = case_when(

AnxietySymptoms <= sort(dat$AnxietySymptoms)[366] ~ "NormativeSeverity",
AnxietySymptoms > sort(dat$AnxietySymptoms)[366] & AnxietySymptoms <= sort(dat$AnxietySymptoms)[366+39] ~ "BorderlineSeverity",
AnxietySymptoms > sort(dat$AnxietySymptoms)[366+39] ~ "ClinicallySignificantSeverity"

)
)

# Create dichotomous variable (randomly assigned)
dat$sex <- sample(c("Male", "Female"), size = n, replace = TRUE, prob = c(0.51, 0.49))

With our data created and saved in the object “data,” let’s inspect its structure (i.e., the measure-
ment scales for the variables) to see if they are appropriate.

str(dat)

'data.frame': 444 obs. of 13 variables:
$ PerceivedDiscrimination : num 16.97 16.15 4.26 15.03 14.92 ...
$ InternalizingProblems : num 10.65 12.42 0 9.97 9.11 ...
$ DepressiveSymptoms : num 4.35 1.42 0 4.95 4.71 ...
$ SomaticSymptoms : num 0.815 5.338 0 3.025 0.364 ...
$ AnxietySymptoms : num 5.24 5.49 0 2.03 4.18 ...
$ FamilyResilience : num 25.7 31 39.5 31.2 31.8 ...
$ IndividualResilience : num 47 44.7 56.8 44.1 43.1 ...
$ ContextualResilience : num 38.2 40.4 48.9 40.3 39.7 ...
$ Acculturation : num 32 27.6 26.1 43.7 34.7 ...
$ DepressiveSymptomsLevels: chr "NormativeSeverity" "NormativeSeverity" "NormativeSeverity" "NormativeSeverity" ...
$ SomaticSymptomsLevels : chr "NormativeSeverity" "BorderlineSeverity" "NormativeSeverity" "NormativeSeverity" ...
$ AnxietySymptomsLevels : chr "NormativeSeverity" "NormativeSeverity" "NormativeSeverity" "NormativeSeverity" ...
$ sex : chr "Male" "Female" "Female" "Male" ...

The perceived discrimination, internalizing problems, symptoms, resilience, and acculturation vari-
ables were all continuous variable made out of Likert-scale items in the original Ramos [2021]
article. Therefore, the numerical scale is correctly assigned by R. In contrast, the levels of symp-
toms variables is ordinal and sex is categorical, and therefore should all be factors. Because R
orders factors alphabetically, we will specify the levels in order for the Normative, Borderline, and
Clinically Significant severity categories.

dat$DepressiveSymptomsLevels <- factor(dat$DepressiveSymptomsLevels, levels = c("NormativeSeverity", "BorderlineSeverity", "ClinicallySignificantSeverity"))

dat$SomaticSymptomsLevels <- factor(dat$SomaticSymptomsLevels, levels = c("NormativeSeverity", "BorderlineSeverity", "ClinicallySignificantSeverity"))

dat$AnxietySymptomsLevels <- factor(dat$AnxietySymptomsLevels, levels = c("NormativeSeverity", "BorderlineSeverity", "ClinicallySignificantSeverity"))

dat$sex <- factor(dat$sex, levels = c("Male", "Female"))
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Let’s again check the formatting of the variables:

str(dat)

'data.frame': 444 obs. of 13 variables:
$ PerceivedDiscrimination : num 16.97 16.15 4.26 15.03 14.92 ...
$ InternalizingProblems : num 10.65 12.42 0 9.97 9.11 ...
$ DepressiveSymptoms : num 4.35 1.42 0 4.95 4.71 ...
$ SomaticSymptoms : num 0.815 5.338 0 3.025 0.364 ...
$ AnxietySymptoms : num 5.24 5.49 0 2.03 4.18 ...
$ FamilyResilience : num 25.7 31 39.5 31.2 31.8 ...
$ IndividualResilience : num 47 44.7 56.8 44.1 43.1 ...
$ ContextualResilience : num 38.2 40.4 48.9 40.3 39.7 ...
$ Acculturation : num 32 27.6 26.1 43.7 34.7 ...
$ DepressiveSymptomsLevels: Factor w/ 3 levels "NormativeSeverity",..: 1 1 1 1 1 1 1 1 3 1 ...
$ SomaticSymptomsLevels : Factor w/ 3 levels "NormativeSeverity",..: 1 2 1 1 1 1 1 1 3 1 ...
$ AnxietySymptomsLevels : Factor w/ 3 levels "NormativeSeverity",..: 1 1 1 1 1 1 1 1 3 1 ...
$ sex : Factor w/ 2 levels "Male","Female": 1 2 2 1 1 1 1 1 1 2 ...

All of our variables of interest are now correctly formatted as num and factor.
Below is code for saving (and then importing) the data in .csv or .rds files. I make choices about
saving data based on what I wish to do with the data. If I want to manipulate the data outside of
R, I will save it as a .csv file. It is easy to open .csv files in Excel. A limitation of the .csv format
is that it does not save any restructuring or reformatting of variables. For this lesson, this is not
an issue.
Here is code for saving the data as a .csv and then reading it back into R. I have hashtagged these
out, so you will need to remove the hashtags if you wish to run any of these operations. If you have
simulated the data (above), you do not need to save and then re-import the data.

#writing the simulated data as a .csv
#write.table(dat, file = "RamosCorrelations.csv", sep = ',', col.names=TRUE, row.names=FALSE)
#at this point you could clear your environment and then bring the data back in as a .csv
#reading the data back in as a .csv file
#dat<- read.csv ('RamosCorrelations.csv', header = TRUE)

The .rds form of saving variables preserves any formatting (e.g., creating ordered factors) of the
data. A limitation is that these files are not easily opened in Excel. Here is the hashtagged code
(remove hashtags if you wish to do this) for writing (and then reading) this data as an .rds file.

#saveRDS(dat, 'RamosCorrelations.rds')
#dat <- readRDS('RamosCorrelations.rds')
#str(dat)

12.4.2 Data Visualization

Plotting the data is a helpful early step in any data analysis. Further, visualizing the data can help
us with a conceptual notion of the statistic we are utilizing. The ggplot2 package is part of the
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tidyverse as well, so it is automatically loaded when we ran the library(tidyverse) command. There
are lots of tutorials and samples of ggplot2 code available online, and the cheatsheet is incredibly
helpful. https://ggplot2.tidyverse.org/

If you’re curious about what the plots of different correlations look like, this is a great interactive
website: https://rpsychologist.com/correlation/

Here, we’ll start with the correlation between AnxietySymptoms and FamilyResilience. From the
article, it seems that family resilience is a protective factor, so we should see those that have higher
family resilience scores tending to have lower anxiety symptoms. Each point in the scatterplot
below represents an individual participant, with their score on the FamilyResilience variable on the
x-axis (and labeled as such in the code) and AnxietySymptoms on the y-axis. For correlations, it
doesn’t really matter which variable is specified as x and which is y, and the coefficient will be the
same either way.

While there are several lines of code, they are all connected and can only be run together. The +
at the end of each line tells R that it is not done yet and needs to go on to the next line to get all
the features of the plot we want. The geom_point() command gets us a scatterplot with points,
the labs() is how we get a title and axis labels, and the geom_smooth() gets the line. The method
is lm, and we’ll learn more about linear models (lm) later in the book. Since I just wanted a basic
line without a the standard error shaded in around it, se = FALSE, and the color argument makes
it any color you choose. If you want a specific color, the HEX code can be provided. Otherwise, R
has a few default colors available by name such as blue.

ggplot(dat, aes(x = FamilyResilience, y = AnxietySymptoms)) +
geom_point() +
labs(title = "Scatterplot of a Negative Correlation",

x = "Family Resilience",
y = "Anxiety Symptoms") +

geom_smooth(method = "lm", se = FALSE, color = "blue") +
theme_minimal()

`geom_smooth()` using formula = 'y ~ x'

https://ggplot2.tidyverse.org/
https://rpsychologist.com/correlation/
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12.5 Working Pearson’s r (by hand)

12.5.1 Stating the Hypothesis

To give an example of calculating a correlation by hand, we will focus on the correlation between
two continuous variables, in this case FamilyResilience and AnxietySymptoms. Specifically, I hy-
pothesize that the population level correlation between FamilyResilience and AnxietySymptoms
will differ from 0. In the hypotheses below, the null hypothesis (𝐻0) states that the population
correlation equals 0; the alternative hypothesis (𝐻𝐴) states that the population correlation does
not equal 0.

𝐻0 ∶ 𝜌 = 0
𝐻𝐴 ∶ 𝜌 ≠ 0



536 CHAPTER 12. CORRELATION

12.5.2 Calculating Pearson’s r

Since both FamilyResilience and AnxietySymptoms are continuous variables, Pearson’s r is the
appropriate correlation to calculate. The formulas from above involve calculating the population
correlation, but since we have a sample we will use the version appropriate for calculating Pearson’s
r in a sample:

𝑟 = Σ(𝑥𝑖 − ̄𝑥)(𝑦𝑖 − ̄𝑦)
√Σ(𝑥𝑖 − ̄𝑥)2Σ(𝑦𝑖 − ̄𝑦)2

where 𝑥𝑖 represents an individual score on 𝑥, ̄𝑥 represents the sample mean of 𝑥, 𝑦𝑖 represents an
individual score on 𝑦, and ̄𝑦 represents the sample mean of 𝑦.
We can calculate this in pieces. First, our individual 𝑥𝑖 scores are stored in the vector Fami-
lyResilience, and we can find the mean of that variable using the mean() command. Let’s call
these the 𝑥 difference scores, or xdif (arbitrary name). We can do the same for our 𝑦 variable,
AnxietySymptoms.

dat$FamilyResilience - mean(dat$FamilyResilience)

[1] -2.01715401 3.34238086 11.84288389 3.51296843 4.08711581
[6] -1.79632903 4.38497388 -1.60636933 -3.94013746 13.91884396

[11] -0.82475716 0.29736473 4.83427702 -0.29499545 1.24976368
[16] -3.09016954 0.84764408 -1.99488492 11.55666790 0.01155968
[21] -2.11628963 1.46196525 -4.91932046 0.66187801 4.50313709
[26] 4.39359380 -0.42794353 1.80576847 -0.54664325 -0.55308250
[31] 3.62930676 8.13915784 8.06943123 5.46481830 5.58882328
[36] 7.57832552 0.66975329 2.36338024 -0.00658840 -1.13833678
[41] -0.51723377 -5.45742093 -0.43928937 -1.22657769 -5.99948602
[46] -4.66026310 1.17191935 3.74538358 6.90703425 -1.14507549
[51] -1.60499656 -2.63446155 -3.94414296 3.65485470 -1.03381995
[56] -0.20509307 -7.82310477 3.42084351 -1.68979632 4.61407402
[61] -1.41029523 -1.16131772 -1.00891795 2.31190559 3.48483168
[66] -3.68964575 5.73562622 -3.94004423 4.21721076 8.01858196
[71] 5.47819302 -1.27590540 7.88021598 -5.66466324 -5.15053056
[76] 4.33232081 0.28385093 7.54984948 -7.02327260 4.70933436
[81] -2.28739131 1.21029221 4.25441292 -2.24011759 11.46130470
[86] 6.64062865 2.49750832 7.07879134 -5.05253122 -6.61690467
[91] 2.51305253 -4.54240660 0.91399808 2.49149146 4.49813439
[96] -2.87654963 7.50703063 -5.80939810 0.42962027 -0.35224275
[101] -1.39706795 5.48543960 4.57516627 -2.49998145 -8.76523762
[106] 2.34841989 -0.87010564 -4.77288540 1.14558936 1.95763510
[111] -4.46100969 4.15625319 1.03341386 -6.20252715 -3.51452581
[116] -0.31980945 1.76973507 -6.19898089 -0.76317891 -1.08762493
[121] 1.24844616 3.95871362 -5.11059959 -6.87266550 -2.09928028
[126] -3.79319665 -6.12329758 3.65665539 -2.52186587 -1.55020509
[131] -6.86168568 -3.29688935 -4.14898290 4.57311482 -3.48932492
[136] 7.47981089 4.31009153 0.07590609 6.49777255 -3.60709026
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[141] -15.21693979 -8.80156833 -1.02248198 -2.90746987 2.06343932
[146] -0.03306862 6.41304504 -3.71100983 -3.68562711 2.30720968
[151] 1.99071738 0.39845139 -2.18663866 -2.92510323 -1.57367337
[156] 0.01696974 -0.75471333 -2.42646104 -1.00317504 1.28356393
[161] 2.74594432 -1.29351503 -8.33700967 -2.65904221 -8.04702181
[166] 6.80379124 4.32748368 -3.94059692 5.53669857 2.52101102
[171] -3.77836169 -6.75911471 -5.14347495 -6.51102284 6.50653460
[176] -1.38858478 -3.37851240 -2.94243412 2.78217510 -1.01673871
[181] -9.03168991 1.42420560 -3.64964835 -14.83114327 -5.04723881
[186] 2.87988254 1.16903667 4.99165335 2.30329483 2.07189538
[191] -2.80938568 1.16743488 -10.44643148 -3.26284643 4.93971054
[196] -3.66490242 3.37691904 1.59466049 -6.00591086 -3.58795950
[201] 8.05958216 7.35081993 -0.38286154 2.01070216 -4.38847238
[206] 0.29118386 -0.28920687 6.34679820 -1.55077495 -9.03458172
[211] 3.41483372 7.75781057 -0.10764633 -0.40890136 -1.94294496
[216] 1.20443864 1.78061031 -1.23560547 -5.94741356 5.93110444
[221] 2.67521930 8.28448922 -2.13652896 1.65157152 -6.16036035
[226] -3.43505921 -0.67788506 1.96059007 -0.43200375 -0.04686974
[231] 10.09848409 2.59604714 1.30302408 -5.74792230 8.27844260
[236] -2.76042138 0.51264083 4.08424041 1.58290029 -5.78017676
[241] 3.69209836 -3.71975779 -1.74008245 -13.29230621 -0.94570144
[246] 1.28854846 5.11963324 7.50143976 12.35646934 6.70946349
[251] 1.29891281 -10.34423370 -3.47141150 5.44481545 -4.58172132
[256] -0.68262868 -3.07706807 -6.95635159 5.85377004 -6.29349565
[261] -0.65966067 -1.58105294 5.30083153 -0.20213250 -2.39814736
[266] -0.32957705 -5.80237925 -5.89510541 8.68885955 -4.47984556
[271] 0.18433831 2.42303710 -4.70880869 5.06781853 -0.14688672
[276] -8.12096171 -7.88495046 10.87783924 -1.02012052 6.81802707
[281] 5.95277062 -1.42052566 -1.53560789 3.76987311 4.54255101
[286] -3.91828611 -2.93941727 -2.40373741 -1.10834706 -5.70554189
[291] -2.78401633 -3.72669714 9.66825226 -3.56408069 -2.62114031
[296] 5.01532733 4.77921676 -3.02471364 0.87820039 1.11566093
[301] -1.01501842 -0.77190917 -1.68099551 11.75459085 -4.93672451
[306] -2.81229486 -8.81756819 4.72625799 5.53497952 -4.27674195
[311] 5.78005421 -2.56565432 -1.89087499 -3.42736959 2.32992397
[316] 5.80648570 -2.42129345 4.06466769 -8.13547004 2.28431443
[321] -0.51487064 4.06696137 3.68758922 7.90418110 3.72884319
[326] -4.57530828 3.09795018 -2.63323995 0.90024586 3.88643758
[331] 10.64221278 -7.13637514 15.86587812 -8.40439066 -8.28948226
[336] 1.55651736 1.36689637 5.95813277 4.56118453 -7.58139148
[341] -7.66063154 -1.63964897 6.45659153 -4.14466194 -5.68312000
[346] -3.92432861 2.09478439 2.66530488 5.17743784 -6.16593851
[351] -0.94523906 1.00072737 -4.15003311 0.68588622 -2.77365621
[356] 0.11965399 7.23496791 0.57473571 -2.66425920 0.49827376
[361] 0.25937989 -3.68416132 4.17721690 0.76828116 -3.58822125
[366] 7.45413016 -9.91056733 -8.83862307 1.73740593 -0.46865216
[371] 0.87564918 0.24262257 2.64663158 4.94383366 2.24002941
[376] 3.40413846 -2.23474903 -0.72073670 -5.34333339 -3.70529113
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[381] 3.88698300 3.31347430 -5.31666116 -8.19765560 0.56118929
[386] 12.52268982 -1.80835914 4.27849571 -17.00346818 9.97977133
[391] -5.19306634 -4.24084653 -5.46891889 7.57415418 11.83340882
[396] 1.18472533 -0.65159960 -8.03941452 -0.48173753 -0.75649908
[401] 4.14330852 -2.94712263 0.17135681 9.83414028 -4.34154664
[406] 4.02105659 -2.05420642 -1.67617772 -3.08108609 -2.64038072
[411] 9.22525013 6.56837882 -0.02714509 3.30876738 -11.31429739
[416] -8.31950265 2.45382372 1.37345224 -4.03552375 -1.11601218
[421] -7.59318575 -2.75197467 -9.30606936 7.82514987 -2.06420253
[426] 12.29456251 4.90987248 1.76654263 5.08720652 2.07623272
[431] 0.63150388 -1.97273129 -10.74909958 -0.24730095 0.85937473
[436] -2.56110447 3.43540396 -4.61909920 -4.23668482 -5.02502746
[441] -1.44353477 0.91861746 -6.09689147 -0.51261071

xdif <- dat$FamilyResilience - mean(dat$FamilyResilience)
ydif <- dat$AnxietySymptoms - mean(dat$AnxietySymptoms)

From there, we can calculate the numerator by taking the product of each xdif and ydif score, and
then adding them all together with the sum function as indicated by the Σ symbol.

Σ(𝑥𝑖 − ̄𝑥)(𝑦𝑖 − ̄𝑦)

numerator <- sum(xdif*ydif)

The denominator is similar, but includes squaring each difference between the individual score and
mean score for the variable. This scales Pearson’s r to remain between -1 and 1.

√Σ(𝑥𝑖 − ̄𝑥)2Σ(𝑦𝑖 − ̄𝑦)2

denominator <- sqrt(sum(xdif^2)*sum(ydif^2))

Finally, we divide the numerator by the denominator to get the correlation.

correlation <- numerator/denominator
correlation

[1] -0.2893842

The sample correlation between FamilyResilience and AnxietySymptoms is -.289. Hopefully, this
hand-calculation provided an indication of how Pearson’s r is formed and how sensitive it can be
to outliers. Now we ask, “But it is statistically significant?”
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12.5.2.1 Statistical Significance

The question of statistical significance testing invokes NHST (null hypothesis significance testing).
In the case of a correlation, the null hypothesis is that the correlation equals 0; the alternative is
that they do not equal 0. Our test is of the null hypothesis. When the probability (p) is less than
the value we specify (usually .05), we have statistically significant results. Thus, we reject the null
hypothesis (the one we tested) in favor of the alternative (that the means are not equal).

𝐻0 ∶ 𝜌 = 0
𝐻𝐴 ∶ 𝜌 ≠ 0

Although still used, NHST has its critiques. Among the critiques are the layers of logic and
confusing language as we interpret the results.

We first need a t value for our correlation, and that can be calculated using this formula:

𝑡 = 𝑟√ 𝑛 − 2
1 − 𝑟2

Here, n represents the sample size, and the subtraction of 2 is because we have 2 variables involved
in the correlation. Let’s calculate it for our sample correlation.

correlation * sqrt((n-2)/(1-correlation^2))

[1] -6.355905

Our t-value is -6.36. We compare this value to the test critical value in a table of t critical values.
In-so-doing we must know our degrees of freedom. In the test that involves two variables, we will
use 𝑛−2 as the value for degrees of freedom. We must also specify the �* level (in our case we want
p* < .05) and whether-or-not our hypothesis is unidirectional or bi-directional. Our question only
asked, “Does the correlation differ from 0?” In this case, the test is two-tailed, or bi-directional.

Let’s return to the table of critical values for the t distribution to compare our t-value (-6.36) to
the column that is appropriate for our:

• Degrees of freedom (in this case 𝑛 − 2 or 442)
• Alpha, as represented by 𝑝 < .05
• Specification as a one-tailed or two-tailed test

– Our alternative hypothesis made no prediction about the direction of the difference;
therefore we will use a two-tailed test

In the above linked table of critical values, when the degrees of freedom reaches 30, there larger
intervals. We will use the row representing degrees of freedom of 120 since our df is lower than the
next value of 1000. In this case, that value is 1.98. If our t-test value is lower than -1.98 or greater
than 1.98, then our correlation is statistically significantly different from 0. In our case, we have in
fact achieved statistical significance and we can say that the correlation differs from 0. Our results
would be reported as: 𝑟(442) = −6.36, 𝑝 < .05

https://www.statology.org/t-distribution-table/
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We can also use the qt() function in base R. In the script below, I have indicated an alpha of .05. The
“2” that follows indicates I want a two-tailed test. The 442 represents my degrees of freedom (𝑛−2).
In a two-tailed test, the regions of rejection will be below the lowerbound (lower.tail=TRUE) and
above the upperbound (lower.tail=FALSE).

qt(.05/2, 442, lower.tail=TRUE)

[1] -1.965346

qt(.05/2, 442, lower.tail=FALSE)

[1] 1.965346

This gives us the exact threshold for our df, insead of relying on the closest approximation in the
table.

12.5.2.2 Confidence Intervals

How confident are we in our result? With correlations, it is common to report an interval in which
we are confident that if we repeated our experiment many times, 95% of the intervals would contain
the true population correlation coefficient 𝜌. However, despite the popularity of reporting these
intervals, the formula for calculating them is complicated. So much, in fact, that Loftus and Loftus
[1988], authors of the textbook, Essence of Statistics, had to publish a correction to this section.
Since the distribution of 𝑟 is skewed, the interval is not symmetrical like other CIs. The formula
takes a few steps including a transformation. Below is the formula, which involves:

𝑧 ± (𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛) × 𝑆𝐷

• 𝑧 as a placeholder variable while we calculate transformations
• 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 was found above using the qt() function, and is around 1.96 for the normal distri-

bution at 𝛼 = .05
• 𝑆𝐷 the standard deviation of 𝑟, which can be calculated √ 1

𝑛−3

𝑧 is calculated as

𝑧 = 0.5𝑙𝑛 (1 + 𝑟
1 − 𝑟)

We found earlier that 𝑟 = −.289 for our example correlation between FamilyResilience and Anx-
ietySymptoms. Plugging that into this transformation to calculate 𝑧, and noting that log() in R
actually gives the natural log ln by default, we get

0.5*log((1-.289)/(1+.289))
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[1] -0.2974748

The standard deviation, √ 1
𝑛−3 , is calculated as follows

sqrt(1/(n-3))

[1] 0.04761905

With this in hand, let’s calculate the confidence intervals around 𝑧.

(-0.2974748) - (-1.965346*0.04761905)

[1] -0.2038869

(-0.2974748) + (-1.965346*0.04761905)

[1] -0.3910627

Finally, we need to put this interval around 𝑧 back on the Pearson’s 𝑟 metric using a reverse of
the 𝑧 equation, because ultimately we want the confidence interval for our correlation, 𝑟, and the
𝑧 metric is not interpretable.

𝑟 = 𝑒2𝑧 − 1
𝑒2𝑧 + 1

Using our numbers, and knowing that the function for “e to the power of” is exp(), we will transform
both the lower limit and upper limit we found above in the 𝑧 metric.
Lower limit:

(exp(2*-0.3910627)-1)/(exp(2*-0.3910627)+1)

[1] -0.372276

Upper limit:

(exp(2*-0.2038869)-1)/(exp(2*-0.2038869)+1)

[1] -0.2011079

These values indicate the range of scores in which we are 95% confident that our true population
correlation (𝜌) lies. Stated another way, we are 95% confident that the true population correlation
is between -.37 and -.20. Since this interval does not cross zero, we have evidence against the null
hypothesis that 𝜌 could equal 0.00. This result is consistent with our significant p value. For these
types of statistics, the 95% confidence interval and p value will always yield the same conclusion.
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12.5.2.3 Effect Size

A correlation coefficient is an effect size. The agreed upon (yet arbitrary) guidelines for interpreting
the magnitude of correlations are from Cohen (1988, 1992)

• .1 represents a small effect
• .3 represents a medium effect
• .5 represents a large effect

12.6 Finding a Correlation in R

12.6.1 Evaluating the Statistical Assumptions and Choosing a Test

Both FamilyResilience and AnxietySymptoms are continuous, and we expect the relationship be-
tween them to be linear. Therefore, we can use Pearson’s r.

12.6.2 Computing Pearson’s r

We are ready to compute the correlation using Pearson’s r. Base R has a function for this, so no
extra packages are required.

cor.test(dat$FamilyResilience, dat$AnxietySymptoms)

Pearson's product-moment correlation

data: dat$FamilyResilience and dat$AnxietySymptoms
t = -6.3559, df = 442, p-value = 0.0000000005166
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
-0.3724164 -0.2017561
sample estimates:

cor
-0.2893842

From this output we can put together the pieces to report in APA format: 𝑟(442) = −.29, 𝑝 <
.001, 𝐶𝐼95[−.37, −.20].
A note about reporting output: APA format specifies no leading 0 (before the decimal place) if the
number cannot exceed 1. That should apply to our correlation coefficient of -.29 and our p value.
Additionally, numbers should be rounded to two decimal places, with the exception of p values
which can extend to three. If the p value is less than .001, then report it as 𝑝 < .001.
What does this mean? Our result is statistically significant. Our estimate of the correlation is -.29.
We are 95% confident that that true population correlation is between -.37 and -.20. Because the
confidence interval does not cross zero, we can claim that the true difference is not zero. This is
consistent with the significant p value. The effect size for this correlation is around a moderate or
medium correlation.
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Figure 12.2: The workflow for choosing a type of correlation
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12.7 Correlation Matrices

We can summarize correlations between many variables succinctly in a table or matrix. A correla-
tion matrix lists all the variables in the first column, then often numbers the subsequent columns
to match the same order. From there, the correlation between each pair of variables is found by
finding one variable in the row and the other in the column. For example, the correlation between
the first and second variable can be found in column 1, row 2. Correlation matrices are only pop-
ulated in the lower triangle because it would be repetitive information in the upper triangle (for
example, column 2, row 1 would have the same information as column 1, row 2). The diagonal,
represented by pairs of the same variable, is often marked with a - to show that the correlation is
between a variable and itself which is inherently 1.

Correlation matrices are often used as Table 1 in journal articles, including in the article our research
vignette is based off of, because they convey meaningful information about the variables. Means
and standard deviations are usually included as well. The APA style blog has a great example of a
correlation table: https://apastyle.apa.org/style-grammar-guidelines/tables-figures/sample-tables

The apaTables package makes this easy. Given a dataset, it will produce an APA style correlation
table for all of the continuous variables. It will exclude factors, but always make sure to check that
all the variables included are appropriate. If you want to include a point-biserial correlation with
any dichotomous variables, just turn them into a numeric variable in the dataset and it will be
included.

12.8 APA Style Results

Putting it altogether, here is an APA Style results section:

A correlation test was conducted using Pearson’s r to evaluate the hypothesis that there
would be a correlation between Family Resilience and Anxiety Symptoms. Results of
the correlation test were statistically significant, 𝑟(442) = −.29, 𝑝 < .001. The 95%
confidence interval for the correlation ranged from -.39 to -.20. Means and standard
deviations along with other correlations from this study are presented in Table 1; the
results are illustrated in Figure 1.

apaTables::apa.cor.table(dat)

Means, standard deviations, and correlations with confidence intervals

Variable M SD 1 2 3
1. PerceivedDiscrimination 15.00 4.06

2. InternalizingProblems 13.73 8.26 .37**
[.29, .45]

https://apastyle.apa.org/style-grammar-guidelines/tables-figures/sample-tables
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3. DepressiveSymptoms 5.89 4.11 .38** .89**
[.30, .46] [.86, .90]

4. SomaticSymptoms 2.84 2.19 .22** .68** .43**
[.13, .31] [.63, .73] [.35, .50]

5. AnxietySymptoms 5.28 3.27 .28** .85** .62**
[.19, .36] [.82, .88] [.56, .67]

6. FamilyResilience 27.69 5.03 -.27** -.41** -.48**
[-.35, -.18] [-.48, -.33] [-.55, -.41]

7. IndividualResilience 43.72 6.23 -.18** -.41** -.42**
[-.27, -.09] [-.49, -.33] [-.49, -.34]

8. ContextualResilience 37.46 6.29 -.12** -.26** -.30**
[-.21, -.03] [-.34, -.17] [-.38, -.21]

9. Acculturation 39.52 7.37 -.06 .05 -.02
[-.16, .03] [-.04, .14] [-.11, .08]

4 5 6 7 8

.44**
[.37, .52]

-.15** -.29**
[-.24, -.06] [-.37, -.20]

-.14** -.42** .62**
[-.23, -.04] [-.49, -.34] [.56, .67]

-.06 -.23** .68** .70**
[-.15, .04] [-.32, -.14] [.62, .72] [.65, .74]

.09 .09 -.02 -.03 -.06
[-.00, .18] [-.01, .18] [-.11, .07] [-.12, .06] [-.15, .04]
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Note. M and SD are used to represent mean and standard deviation, respectively.
Values in square brackets indicate the 95% confidence interval.
The confidence interval is a plausible range of population correlations
that could have caused the sample correlation (Cumming, 2014).
* indicates p < .05. ** indicates p < .01.

If we want to include our dichotomous variable sex and have it report point-biserial correlations,
we can make it numeric and then recreate the table.

dat$Sex <- as.numeric(dat$sex)
apaTables::apa.cor.table(dat)

Means, standard deviations, and correlations with confidence intervals

Variable M SD 1 2 3
1. PerceivedDiscrimination 15.00 4.06

2. InternalizingProblems 13.73 8.26 .37**
[.29, .45]

3. DepressiveSymptoms 5.89 4.11 .38** .89**
[.30, .46] [.86, .90]

4. SomaticSymptoms 2.84 2.19 .22** .68** .43**
[.13, .31] [.63, .73] [.35, .50]

5. AnxietySymptoms 5.28 3.27 .28** .85** .62**
[.19, .36] [.82, .88] [.56, .67]

6. FamilyResilience 27.69 5.03 -.27** -.41** -.48**
[-.35, -.18] [-.48, -.33] [-.55, -.41]

7. IndividualResilience 43.72 6.23 -.18** -.41** -.42**
[-.27, -.09] [-.49, -.33] [-.49, -.34]

8. ContextualResilience 37.46 6.29 -.12** -.26** -.30**
[-.21, -.03] [-.34, -.17] [-.38, -.21]

9. Acculturation 39.52 7.37 -.06 .05 -.02
[-.16, .03] [-.04, .14] [-.11, .08]
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10. Sex 1.51 0.50 -.01 .05 .01
[-.10, .08] [-.05, .14] [-.08, .11]

4 5 6 7 8 9

.44**
[.37, .52]

-.15** -.29**
[-.24, -.06] [-.37, -.20]

-.14** -.42** .62**
[-.23, -.04] [-.49, -.34] [.56, .67]

-.06 -.23** .68** .70**
[-.15, .04] [-.32, -.14] [.62, .72] [.65, .74]

.09 .09 -.02 -.03 -.06
[-.00, .18] [-.01, .18] [-.11, .07] [-.12, .06] [-.15, .04]

.08 .07 -.06 -.12** -.04 -.05
[-.02, .17] [-.03, .16] [-.15, .03] [-.21, -.03] [-.13, .05] [-.14, .04]

Note. M and SD are used to represent mean and standard deviation, respectively.
Values in square brackets indicate the 95% confidence interval.
The confidence interval is a plausible range of population correlations
that could have caused the sample correlation (Cumming, 2014).
* indicates p < .05. ** indicates p < .01.

The figure we created earlier in the lesson would be sufficient for a journal article, and modifica-
tions can be made using the ggplot2 package to format it appropriately based on specific journal
requirements. Often, color figures have a fee, so I’ll adjust the line from blue to grey here.

ggplot(dat, aes(x = FamilyResilience, y = AnxietySymptoms)) +
geom_point() +
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labs(title = "Scatterplot of a Negative Correlation",
x = "Family Resilience",
y = "Anxiety Symptoms") +

geom_smooth(method = "lm", se = FALSE, color = "grey") +
theme_minimal()

`geom_smooth()` using formula = 'y ~ x'
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Scatterplot of a Negative Correlation

12.9 Power for Pearson’s 𝑟 correlations

Researchers often use power analysis packages to estimate the sample size needed to detect a
statistically significant effect, if, in fact, there is one. Used another way, these tools allows us
to determine the probability of detecting an effect of a given sample size with a given level of
confidence, or allows us to determine the minimum effect size that could be detected for a given
sample size at a given power value. If the power is unacceptably low, we may want to revise or
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stop. A helpful overview of power as well as guidelines for how to use the WebPower package can
be found at a WebPower.
In Zhang’s WebPower package, we can conduct a power analysis for a variety of designs, including
Pearson’s 𝑟 correlation we worked in this lesson. There are a number of interrelating elements of
power:

• Sample size, n refers to the number of observations; our vignette had 444
• r refers to the effect size or Pearson’s correlation between the two continuous variables
• power refers to the power of a statistical test; conventionally it is set at .80
• alpha refers to our desired alpha level; conventionally it is set at .05

In this script, we must specify all-but-one parameter; the remaining parameter must be defined as
NULL. R will calculate the value for the missing parameter.
Imagine we wanted to run a replication study to verify the results found by Ramos and colleagues
[Ramos et al., 2021]. I want to know what sample size 𝑛 we need to collect to have 80% power
to detect an effect similar to the one found in the original paper. The effect size was -.289, but
I would be interested in an effect as small as -.20, so that is the value I will input for r. This is
considered my “smallest effect size of interest”, which is a typical approach to sample size planning
and power analysis (Lakens, 2014).

WebPower::wp.correlation(n=NULL,power=.8,r=0.2, alternative="two.sided")

Power for correlation

n r alpha power
192.9771 0.2 0.05 0.8

URL: http://psychstat.org/correlation

The sample size recommendation is 192.9771, but since it is impossible to have a partial person,
we need to round. Unlike usual rounding rules, we always round up for power analyses, because
we want to claim that we have at least 80% power. Rounding down, even if the calculated sample
size has a decimal of .0001, would make that untrue.

12.10 Other Types of Correlations

12.10.1 Spearman and Kendall

Spearman’s 𝜌 and Kendall’s 𝜏 are used whenever at least one of the two variables is a ranked
(ordinal) variable. Both can be used interchangeably, but Kendall’s is more robust and generally
the preferred method of the two. Both are implemented in the same correlation function we had
used above, cor(). The additional argument is method, and the options are “kendall” or “spearman”.
There were a few ordinal variables in our example dataset. Let’s examine the correlation between
FamilyResilience and DepressiveSymptomsLevels (ordinal with three levels). First, we need to get
the levels to be numeric instead of the labels ()

https://cran.r-project.org/web/packages/WebPower/WebPower.pdf


550 CHAPTER 12. CORRELATION

dat$DepressiveSymptomsLevelsNumeric <- recode(dat$DepressiveSymptomsLevels, NormativeSeverity = 1,
BorderlineSeverity = 2,
ClinicallySignificantSeverity = 3)

Then, we can choose the method we wan to use. It defaults to Pearson, but if you include
method=“pearson” for two continuous variables you should get the same result as omitting the
method argument.

Spearman’s 𝜌

cor.test(dat$FamilyResilience, dat$DepressiveSymptomsLevelsNumeric, method="spearman")

Warning in cor.test.default(dat$FamilyResilience,
dat$DepressiveSymptomsLevelsNumeric, : Cannot compute exact p-value with ties

Spearman's rank correlation rho

data: dat$FamilyResilience and dat$DepressiveSymptomsLevelsNumeric
S = 18699497, p-value = 0.000000001494
alternative hypothesis: true rho is not equal to 0
sample estimates:

rho
-0.2818419

Kendall’s 𝜏

cor.test(dat$FamilyResilience, dat$DepressiveSymptomsLevelsNumeric, method="kendall")

Kendall's rank correlation tau

data: dat$FamilyResilience and dat$DepressiveSymptomsLevelsNumeric
z = -5.9466, p-value = 0.000000002738
alternative hypothesis: true tau is not equal to 0
sample estimates:

tau
-0.2249436

For more detailed information, including the formula for Kendall’s 𝜏 , this R-bloggers article is
a great resource: https://www.r-bloggers.com/2021/06/kendalls-rank-correlation-in-r-correlation-
test/

https://www.r-bloggers.com/2021/06/kendalls-rank-correlation-in-r-correlation-test/
https://www.r-bloggers.com/2021/06/kendalls-rank-correlation-in-r-correlation-test/
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12.11 Practice Problems

The suggestions for homework differ in degree of complexity. I encourage you to start with a
problem that feels “do-able” and then try at least one more problem that challenges you in some
way. Regardless, your choices should meet you where you are (e.g., in terms of your self-efficacy
for statistics, your learning goals, and competing life demands).

Additionally, please complete at least one set of hand calculations, that is using the code demon-
strated in the chapter to work through the formulas that compute a Pearson’s 𝑟 correlation coeffi-
cient. At this stage in your learning, you may ignore any missingness in your dataset by excluding
all rows with missing data in your variables of interest.

12.11.1 Problem #1: Rework the research vignette as demonstrated, but
change the random seed

If this topic feels a bit overwhelming, simply change the random seed in the data simulation of the
research vignette, then rework the problem. This should provide minor changes to the data (maybe
even in the second or third decimal point), but the results will likely be very similar.

12.11.2 Problem #2: Rework the research vignette, but change something
about the simulation

Rework the Pearson’s 𝑟 correlation test in the lesson by changing something else about the simula-
tion. You may wish to pick a different sample size for this option. Alternatively, you could specify
different means and/or standard deviations where the data are generated.

12.11.3 Problem #3: Rework the research vignette, but swap one or more
variables

Use the simulated data, but select an alternate pair of continuous variables to focus on for the
correlation calculations. The APA style correlation matrices will be the same, since those are all
the variables included in the dataset.

12.11.4 Problem #4: Use other data that is available to you

Using data for which you have permission and access (e.g., IRB approved data you have collected
or from your lab; data you simulate from a published article; data from an open science repository;
data from other chapters in this OER), complete a correlation test.

12.11.5 Grading Rubric

Regardless which option(s) you chose, use the elements in the grading rubric to guide you through
the practice.
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Assignment Component Points Possible Points Earned
1. Narrate the research vignette, describing the
variables and their role in the analysis

5 _____

2. Simulate (or import) and format data 5 _____
3. Evaluate statistical assumptions 5 _____
4. Conduct a Pearson’s 𝑟 correlation test (with
an effect size and 95%CIs)

5 _____

5. APA style results with table and figure 5 _____
6. Conduct power analyses to determine the
sample size recommended to replicate the study
and have 80% power

5 _____

7. Explanation to grader 5 _____
Totals 35 _____

Hand Calculations Points Possible Points Earned
1. Using traditional NHST (null hypothesis
testing language), state your null and alternative
hypotheses

2 _____

2. Using an R package or functions in base R,
calculate the difference between each individual
score and the mean for both continuous variables.

4 _____

3. Find the sum of the product of those difference
scores, creating the numerator of Pearson’s 𝑟

4 _____

4. Find the square root of the product of the sum
of the difference scores squared, creating the
denominator of Pearson’s 𝑟

4 _____

5. Divide the numerator by the denominator to
get the correlation coefficient

2 _____

6. Identify the degrees of freedom associated with
your test for the t-distribution

2 _____

7. Locate the test critical value for your test 2 _____
8. Is the correlation statistically significant? Why
or why not?

4 _____

9. Assemble results into a statistical string 4 _____
Totals 28 _____
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Chapter 13

Type I Error

Screencasted Lecture Link

13.1 Type I Error Defined

Type I error is the concern about false positives – that we would incorrectly reject a true null
hypothesis (that we would say that there is a statistically significant difference when there is not
one). This concern is increased when there are multiple hypothesis tests. This concern increases
when we have a large number of pairwise comparisons.

Throughout the chapters, I noted the importance and relative risk of Type I error with each statistic
and options for follow-up testing. Because there are so many options, I have provided a review and
summary of each option in this appendix. For each, I provide a definition, a review of the steps
and options for utilizing the statistic, and suggest the types of follow-up for which this approach is
indicated.

13.2 Methods for Managing Type I Error

13.2.1 LSD (Least Significant Difference) Method

The LSD method is especially appropriate in the one-way ANOVA scenario when there are only
three levels in the factor. In this case, Green and Salkind [2017c] have suggested that alpha can
be retained at the alpha level for the “family” (𝛼𝑓𝑎𝑚𝑖𝑙𝑦), which is conventionally 𝑝 = .05 and used
both to evaluate the omnibus and, so long as they don’t exceed three in number, the planned or
pairwise comparisons that follow.

13.2.2 Traditional Bonferroni

The traditional Bonferroni is, perhaps, the most well-known approach to managing Type I error.
Although the lessons in this OER will frequently suggest another approach to managing Type I
error, I will quickly review it now because, conceptually it is easy to understand. We start by
establishing the 𝛼𝛼𝑓𝑎𝑚𝑖𝑙𝑦; this is traditionally 𝑝 = .05.

555

https://youtu.be/q7eQgXqY84Y
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Next, we determine how many pairwise comparisons that we are going to conduct. If we are going
to conduct all possible comparisons, we could use this formula: 𝑁𝑝𝑐 = 𝑁𝑔(𝑁−1)

2 , where

• 𝑁𝑝𝑐 is the number of pairwise comparisons, and
• 𝑁𝑔 is the number of groups.

In the one-way ANOVA research vignette, the COND factor had three levels: control, low, high.
Thus, if we wanted to conduct all possible comparisons we would detrmine 𝑁𝑝𝑐 this way:

3*(3-1)/2

## [1] 3

Subsequently, we would compute a new alpha that would be used for each comparison with this
formula: 𝛼𝑝𝑐 = 𝛼𝑓𝑎𝑚𝑖𝑙𝑦

𝑁𝑝𝑐
.

In the one-way ANOVA research vignette we would calculate it this way:

.05/3

## [1] 0.01666667

If we were to use the traditional Bonferroni to manage Type I error, the resultant 𝑝 value would
need to be < .017 in order for statistical significance to be claimed.

Luckily, each of these options has been reverse-engineered so that we do not have to determine the
more conservative alpha levels. Instead, when we specify these options (and, as you will see, more)
in the script, the p value is adjusted and we can continue to use the customary 𝑝 < .05, 𝑝 < .01
and 𝑝 < .001 levels of interpretation. In the case of the traditional Bonferonni, the p value an
be adjusted upward by multiplying it (i.e., the raw p values) by the number of comparisons being
completed. This holds the total Type I error rate across these tests to be 𝛼 (usually 0.05). Further,
most R packages allow specification of one or more types of p values in the script. The result is the
Type 1 error-adjusted p values.

Although the traditional Bonferroni is easy-to-understand and computer, it has been criticized as
being too restrictive. That is, it increases the risk of making a Type II error (i.e., failing to reject
the null hypothesis when it is false). This is why the majority of follow-up options to ANOVA did
not use the traditional Bonferroni.

13.2.3 Tukey HSD

The Tukey HSD (honestly significant difference test) is a multiple comparison procedure used
to identify significant differences between means of multiple groups. In the ANOVA context, it
examines which specific pairs of groups differ from one another. The Tukey HSD was designed to
control for Type I error. It does so by calculating the difference between the largest and smallest
group means, then dividing this mean difference by the standard error of the same mean difference.
The resulting statitic, q has an associated Studentized Range Distribution. Critical values for this
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distribution come from a Studentized Range q Table and are based on based on the alpha level,
the number of groups, and the denominator degrees of freedom (i.e., 𝑑𝑓𝑊 ).

The Tukey HSD (“Tukey’s honestly significantly different”) test automatically controls for Type I
error (i.e., false positives) by using the studentized range distribution to calculate a critical value.
Subsequently, it compares the difference between pairs of means to this critical value. In the rstatix
package, the tukey_hsd() function will perform the t-tests of all possible pairwise combinations.
The Tukey HSD p value is automatically adjusted. In fact, there is nothing additional that can be
specified about p values (i.e., there are no other choice options).

I had intended to demonstrate this with the one-way ANOVA chapter, but could not get the results
to render a figure with the significance bars and results. An online search suggested that I am not
the only one to have experienced this glitch.

13.2.4 Holms Sequential Bonferroni

The Holm’s sequential Bonferroni [Green and Salkind, 2017c] offers a middle-of-the-road approach
(not as strict as .05/9 with the traditional Bonferroni; not as lenient as “none”) to managing Type
I error.

If we were to hand-calculate the Holms, we would rank order the p values associated with the 9
comparisons in order from lowest (e.g., 0.000001448891) to highest (e.g., 1.000). The first p value is
evaluated with the most strict criterion (.05/9; the traditional Bonferonni approach). Then, each
successive comparison calculates the p value by using the number of remaining comparisons as the
denominator (e.g., .05/8, .05/7, .05/6). As the p values increase and the alpha levels relax, there
will be a cut-point where remaining comparisons are not statistically significant. Luckily, most R
packages offer the Holm’s sequential Bonferroni as an option. The algorithm behind the output
rearranges the mathematical formula and produces a p value that we can interpret according to
the traditional values of 𝑝 < .05, 𝑝 < .01 and 𝑝 < .001. [Green and Salkind, 2017c]



558 CHAPTER 13. TYPE I ERROR



Chapter 14

Examples for Follow-up to Factorial
ANOVA

Screencasted Lecture Link
As noted in the lesson on factorial ANOVA, the options for follow-up to a significant interaction
effect are infinite. In order to maintain a streamlined chapter with minimal distractions to student
learning (through numerous examples and changes in R packages), I have moved examples of some
these variations to this section.
As a quick reminder, I will describe and re-simulate the data. The narration will presume familiarity
with the factorial ANOVA lesson.

14.1 Research Vignette

The research vignette for this example was located in Kalimantan, Indonesia and focused on bias
in young people from three ethnic groups. The Madurese and Dayaknese groups were engaged
in ethnic conflict that spanned 1996 to 2001. The last incidence of mass violence was in 2001
where approximately 500 people (mostly from the Madurese ethnic group) were expelled from the
province. Ramdhani et al.’s [2018] research hypotheses were based on the roles of the three ethnic
groups in the study. The Madurese appear to be viewed as the transgressors when they occupied
lands and took employment and business opportunities from the Dayaknese. Ramdhani et al. also
included a third group who were not involved in the conflict (Javanese). The research participants
were students studying in Yogyakara who were not involved in the conflict. They included 39
Madurese, 35 Dyaknese, and 37 Javanese; 83 were male and 28 were female.
In the study [Ramdhani et al., 2018], participants viewed facial pictures of three men and three
women (in traditional dress) from each ethnic group (6 photos per ethnic group). Participant were
asked, “How do you feel when you see this photo? Please indicate your answers based on your
actual feelings.” Participants responded on a 7-point Likert scale ranging from 1 (strongly disagree)
to 7 (strongly agree). Higher scores indicated ratings of higher intensity on that scale. The two
scales included the following words:

• Positive: friendly, kind, helpful, happy
• Negative: disgusting, suspicious, hateful, angry
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14.1.1 Quick Resimulating of the Data

Below is script to simulate data for the negative reactions variable from the information available
from the manuscript [Ramdhani et al., 2018]. If you would like more information about the details
of this simulation, please visit the lesson on factorial ANOVA.

library(tidyverse)
set.seed(210731)
#sample size, M and SD for each cell; this will put it in a long file
Negative<-round(c(rnorm(17,mean=1.91,sd=0.73),rnorm(18,mean=3.16,sd=0.19),rnorm(19, mean=3.3, sd=1.05), rnorm(20, mean=3.00, sd=1.07), rnorm(18, mean=2.64, sd=0.95), rnorm(19, mean=2.99, sd=0.80)),3)
#sample size, M and SD for each cell; this will put it in a long file
Positive<-round(c(rnorm(17,mean=4.99,sd=1.38),rnorm(18,mean=3.83,sd=1.13),rnorm(19, mean=4.2, sd=0.82), rnorm(20, mean=4.19, sd=0.91), rnorm(18, mean=4.17, sd=0.60), rnorm(19, mean=3.26, sd=0.94)),3)
ID <- factor(seq(1,111))
Rater <- c(rep("Dayaknese",35), rep("Madurese", 39), rep ("Javanese", 37))
Photo <- c(rep("Dayaknese", 17), rep("Madurese", 18), rep("Dayaknese", 19), rep("Madurese", 20), rep("Dayaknese", 18), rep("Madurese", 19))
#groups the 3 variables into a single df: ID#, DV, condition
Ramdhani_df<- data.frame(ID, Negative, Positive, Rater, Photo)

Ramdhani_df[,'Rater'] <- as.factor(Ramdhani_df[,'Rater'])
Ramdhani_df[,'Photo'] <- as.factor(Ramdhani_df[,'Photo'])

If you want to export this data as a file to your computer, remove the hashtags to save it (and
re-import it) as a .csv (“Excel lite”) or .rds (R object) file. This is not a necessary step.

The code for .csv will likely lose the formatting (i.e., making the Rater and Photo variables factors),
but it is easy to view in Excel.

#write the simulated data as a .csv
#write.table(Ramdhani_df, file="RamdhaniCSV.csv", sep=",", col.names=TRUE, row.names=FALSE)
#bring back the simulated dat from a .csv file
#Ramdhani_df <- read.csv ("RamdhaniCSV.csv", header = TRUE)
#str(Ramdhani_df)

The code for the .rds file will retain the formatting of the variables, but is not easy to view outside
of R.

#to save the df as an .rds (think "R object") file on your computer; it should save in the same file as the .rmd file you are working with
#saveRDS(Ramdhani_df, "Ramdhani_RDS.rds")
#bring back the simulated dat from an .rds file
#Ramdhani_df <- readRDS("Ramdhani_RDS.rds")
#str(Ramdhani_RDS)

14.2 Analysis of Simple Main Effects with Orthogonal Contrasts

This example follows a significant interaction effect. Specifically, we will analyze the effects of
ethnicity of rater (three levels) within photo stimulus (two levels). We will conduct two one-way
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ANOVAs for the Dayaknese and Madurese photos, separately. In this example, we will utilize
orthogonal contrast-coding for rater ethnicity.

In the lesson on factorial ANOVA I used the rstatix package. I am not aware of a way to do this
type of analysis in rstatix, therefore this worked example will use functions from base R.

This is our place on the ANOVA workflow.

Figure 14.1: Image our place in the Two-Way ANOVA Workflow – analysis of simple main effects
of factor A within levels of factor B with orthogonal contrasts

Among the requirements for orthogonal contrasts are these critical ones:

• there be one fewer contrast than the number of groups, (i.e., k -1), and
• once a group is singled out, it cannot be compared again.

Thus, with a limit of two contrasts I want to compare the

• Javanese to the Dayaknese and Madurese combined (asking, “Do the Javanese evaluations of
the photo differ from the combined Dyaknese/Madurese evaluations?”), then

• Dayaknese to Madurese (asking, “Do the Dayknese and Madurese evaluations of the photos
differ from each other?”)

Such contrasts should be theoretically or rationally defensible. In the case of none, low, and high
dose intervention/exposure designs this is an easy requirement to meet. Typically, the no-dose
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is compared to the combined low and high dosage conditions. Then the low and high dosage
conditions are compared. I would argue that because the Javanese were observers to the conflict,
we can single them out in the first contrast, then compare the two groups who were directly involved
in the conflict.

It helps to know what the default contrast codes are; we can get that information with the con-
trasts() function.

contrasts(Ramdhani_df$Rater)

Javanese Madurese
Dayaknese 0 0
Javanese 1 0
Madurese 0 1

Next, we set up the contrast conditions. In the code below,

• c1 indicates that the Javanese (noted as -2) are compared to the Dayaknese (1) and Madurese
(1)

• c2 indicates that the Dayaknese (-1) and Madurese (1) are compared; Javanese (0) is removed
from the contrast.

# tell R which groups to compare
c1 <- c(1, -2, 1)
c2 <- c(-1, 0, 1)
mat <- cbind(c1,c2) #combine the above bits
contrasts(Ramdhani_df$Rater) <- mat # attach the contrasts to the variable

This allows us to recheck the contrasts.

contrasts (Ramdhani_df$Rater)

c1 c2
Dayaknese 1 -1
Javanese -2 0
Madurese 1 1

With this output we can confirm that, in contrast 1 (the first column) we are comparing the
Javanese to the combined Dayaknese and Madurese. In contrast 2 (the second column) we are
comparing the Dayaknese to the Madurese.

We will conduct these contrasts with one group at a time. First, we must create a subset of all
observations of the Dayaknese photo:
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#subset data
Dayaknese_Ph <- subset(Ramdhani_df, Photo == "Dayaknese")

Next we use the aov() function from base R for the one-way ANOVA. Like magic, the contrast that
we specified is assigned to the Rater variable. We can apply the summary() function to the aov()
object that we created to see the results.

Dykn_simple <- aov(Negative ~ Rater, data = Dayaknese_Ph)
summary(Dykn_simple)

Df Sum Sq Mean Sq F value Pr(>F)
Rater 2 19.81 9.903 13.32 0.0000221 ***
Residuals 51 37.90 0.743
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We can apply the etaSquared() function from the lsr package to retrieve an 𝜂2.

#effect size for simple main effect can add "type = 1,2,3,4" to correspond with the ANOVA that was run
lsr::etaSquared(Dykn_simple, anova = FALSE )

eta.sq eta.sq.part
Rater 0.3432006 0.3432006

We can capture the F string from this output: F [2, 51]) = 13.32, p < .001, 𝜂2 = 0.343.

This code produces the contrasts we specified. Note that in our code we can improve the inter-
pretability of the output by adding labels. We know the specific contrasts from our prior work.

summary.aov(Dykn_simple, split=list(Rater=list("Javanese v Dayaknese and Madurese"=1, "Dayaknese Madurese" = 2)))

Df Sum Sq Mean Sq F value Pr(>F)
Rater 2 19.81 9.903 13.325 0.00002211

Rater: Javanese v Dayaknese and Madurese 1 0.07 0.071 0.095 0.759
Rater: Dayaknese Madurese 1 19.73 19.735 26.554 0.00000419

Residuals 51 37.90 0.743

Rater ***
Rater: Javanese v Dayaknese and Madurese
Rater: Dayaknese Madurese ***

Residuals
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

An APA style reporting of results-so-far might look like this
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The simple main effect evaluating differences between rater ethnicity when evaluating
photos of Dayaknese ethnic group was statistically significant: 𝐹(2, 5)1 = 13.32, 𝑝 <
.001, 𝜂2 = 0.343. Follow-up testing indicated non-significant differences when the rat-
ings from members of the Javanese ethnic group were compared to the Dayaknese and
Madurese, combined (𝐹 [1, 51] = 0.095, 𝑝 = .759). There was a statistically significant
difference when Dayaknese and Madurese raters were compared (𝐹 [1, 51] = 26.554, 𝑝 <
.001).

We repeat the simple main effect process for evaluation of the Madurese photos.

#subset data
Madurese_Ph <- subset(Ramdhani_df, Photo == "Madurese")
#change df to subset, new model name
Mdrs_simple <- aov(Negative ~ Rater, data = Madurese_Ph)
#output for simple main effect
summary(Mdrs_simple)

Df Sum Sq Mean Sq F value Pr(>F)
Rater 2 1.04 0.5207 0.679 0.512
Residuals 54 41.44 0.7674

#effect size for simple main effect can add "type = 1,2,3,4" to correspond with the ANOVA that was run
lsr::etaSquared(Mdrs_simple, anova = FALSE )

eta.sq eta.sq.part
Rater 0.02451385 0.02451385

Let’s capture the F string for ratings of the Madurese photos: 𝐹(2, 54) = 0.679, 𝑝 = .512, 𝜂2 =
0.024.
We can use the procedure described above to obtain our orthogonal contrasts.

summary.aov(Mdrs_simple, split=list(Rater=list("Javanese v Dayaknese and Madurese"=1, "Dayaknese Madurese" = 2)))

Df Sum Sq Mean Sq F value Pr(>F)
Rater 2 1.04 0.5207 0.679 0.512

Rater: Javanese v Dayaknese and Madurese 1 0.77 0.7734 1.008 0.320
Rater: Dayaknese Madurese 1 0.27 0.2679 0.349 0.557

Residuals 54 41.44 0.7674

Here’s a write-up of this portion of the result.

The simple main effect evaluating differences between rater ethnicity when evaluating
photos of Madurese ethnic group was not statistically significant: 𝐹(2, 54) = 0.679, 𝑝 =
.512, 𝜂2 = 0.024. Correspondingly, follow-up testing indicated non-significant differences
when the ratings of the Javanese were compared to Dayaknese and Madurese, combined
(𝐹 [1, 54] = 1.008, 𝑝 = .320) and when the ratings of the Dayaknese and Madurese were
compared (𝐹 [1, 54] = 0.349, 𝑝 = .557)
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In this series of analyses we did not have an opportunity to “let R manage Type I error for us.”
Therefore, we will need to do it manually. We had 4 follow-up contrasts (2 for Dayaknese, 2 for
Madurese). Using a traditional Bonferroni we could control Type I error with .05/4 = .0125

.05/4

[1] 0.0125

APA Write-up of the simple main effect of photo stimulus within rater ethnicity.

This would be added to the write-up of the omnibus two-way ANOVA test.

To explore the interaction effect, we followed with tests of simple effect of rater eth-
nicity within the photo stimulus. That is, we examined the effect of each each rater’s
ethnicity within the Madurese and Dayaknese photo stimulus, separately. Our first
analysis evaluated the effect of the rater’s ethnicity when evaluating the Dayaknese
photo; our second analysis evaluated effect of the rater’s ethnicity when evaluating the
Madurese photo. To control for Type I error across the two simple main effects, we
set alpha at .0125 (.05/4). The simple main effect evaluating differences between rater
ethnicity when evaluating photos of Dayaknese ethnic group was statistically signifi-
cant: 𝐹(2, 51) = 13.32, 𝑝 < .001, 𝜂2 = 0.343. Follow-up testing indicated non-significant
differences when the ratings from members of the Javanese ethnic group were compared
to the Dayaknese and Madurese, combined (𝐹 [1, 51] = 0.095, 𝑝 = .759). There was a
statistically significant difference when Dayaknese and Madurese raters were compared
(𝐹 [1, 51] = 26.554, 𝑝 < .001). The simple main effect evaluating differences between
rater ethnicity when evaluating photos of Madurese ethnic group was not statistically
significant: 𝐹(2, 54) = 0.679, 𝑝 = .512, 𝜂2 = 0.024. Correspondingly, follow-up testing
indicated non-significant differences when the ratings of the Javanese were compared to
Dayaknese and Madurese, combined (𝐹 [1, 54] = 1.008, 𝑝 = .320) and when the ratings
of the Dayaknese and Madurese were compared (𝐹 [1, 54] = 0.349, 𝑝 = .557). This mod-
erating effect of ethnicity of the rater on the negative reaction to the photo stimulus is
illustrated in Figure 1.

I am not aware of an integration of packages that would represent this type of orthogonal contrast
in a figure. Therefore, I would simply present the boxplots clustered by photo stimulus.

ggpubr::ggboxplot(Ramdhani_df, x = "Photo", y = "Negative", color = "Rater",xlab = "Rater Ethnicity Represented within Photo Stimulus", ylab = "Negative Reaction", add = "jitter", title = "Figure 1. Simple Main Effect of Rater within Photo Stimulus", ylim = c(1, 7))
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Figure 1. Simple Main Effect of Rater within Photo Stimulus

14.3 Analysis of Simple Main Effects with a Polynomial Trend

In the context of the significant interaction effect, we might be interested in polynomial trends for
any simple main effects where three or more cells are compared.

Why? If there are only two cells being compared, then the significance of that has already been
tested and if significant, it is also a significant linear effect (because the shape between any two
points is a line).

Here is where we are in the workflow:

At the outset, let me acknowledge that this is not the best example to demonstrate a polynomial
trend. Why? We do not necessarily have an ordered prediction across categories for this vignette.
Other research scenarios (e.g., when dosage, intervention, or exposure is none, low, high) are more
readily suited for this analytic strategy.

In our example, Rater has three groups. Thus, we could evaluate a polynomial for the simple main
effect of ethnicity of the rater within photo stimulus. That is, we conduct polynomial analyses
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Figure 14.2: Image our place in the Two-Way ANOVA Workflow.
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separately for the Dayaknese and Madurese photo stimuli.

If you haven’t already, we need to subset the data, creating separate datasets for the evaluations
of the Dayaknese photos and Madurese photos:

Dayaknese_Ph <- subset(Ramdhani_df, Photo == "Dayaknese")
Madurese_Ph <- subset(Ramdhani_df, Photo == "Madurese")

We will work the entire contrast for each of the datasets, separately.

First, we assign the polynomial contrast to the Rater variable. This is easily accomplished because
the contr.poly(#) argument is built into base R. We simply indicate the number of levels in the
variable. With Javanese, Dayaknese, and Madurese ethnic groups, we have three.

Second, we calculate the one-way ANOVA. Because we are using the aov() function in base R, we
will need to extract the results. This time we need to use the summary.lm() function.

contrasts(Dayaknese_Ph$Rater)<-contr.poly(3)
poly_Dy<-aov(Negative ~ Rater, data = Dayaknese_Ph)
summary.lm(poly_Dy)

Call:
aov(formula = Negative ~ Rater, data = Dayaknese_Ph)

Residuals:
Min 1Q Median 3Q Max

-1.8948 -0.5463 -0.1098 0.5155 2.1402

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.54746 0.11744 21.693 < 0.0000000000000002 ***
Rater.L 1.04869 0.20351 5.153 0.00000419 ***
Rater.Q 0.02901 0.20330 0.143 0.887
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.8621 on 51 degrees of freedom
Multiple R-squared: 0.3432, Adjusted R-squared: 0.3174
F-statistic: 13.32 on 2 and 51 DF, p-value: 0.00002211

We are interested in the regression output that end in the extensions “.L” (for linear trend) and
“.Q” (for quadratic trend). In the event that more than one polynomial trend is significant, select
the higher one. For example, if both linear and quadratic are selected, interpret the quadratic trend

Results of polynomial trend analysis indicated a statistically significant linear trend for evaluation
of the Dayaknese photos across the three raters 𝑡(51) = 5.153, 𝑝 < .001.
Let’s repeat the process for the Madurese photos.
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contrasts(Madurese_Ph$Rater)<-contr.poly(3)
poly_Md<-aov(Negative ~ Rater, data = Madurese_Ph)
summary.lm(poly_Md)

Call:
aov(formula = Negative ~ Rater, data = Madurese_Ph)

Residuals:
Min 1Q Median 3Q Max

-2.08650 -0.54395 0.01367 0.35905 2.34350

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.2973 0.1161 28.391 <0.0000000000000002 ***
Rater.L 0.1189 0.2012 0.591 0.557
Rater.Q -0.2054 0.2011 -1.021 0.312
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.876 on 54 degrees of freedom
Multiple R-squared: 0.02451, Adjusted R-squared: -0.01162
F-statistic: 0.6785 on 2 and 54 DF, p-value: 0.5116

Results of a polynomial trend analyses were non-significant when ethnicity of the rater was evaluated
when rating Madurese photos. Compared to the significant linear trend for the Dayaknese photos,
results for ratings of the Madurese photos were non-significant (𝑡[54] = 0.591, 𝑝 = 0.557).

Here’s how I might write up the results. In the case of polynomials, I will sometimes add them to
an analysis that uses post hoc comparisons, particularly if the polynomial is helpful in conveying
meaningful information about the result.

We followed up a significant interaction effect with a simple main effect of rater ethnicity
within photo stimulus. Specifically, we were curious to see if there was a polynomial
trend across rater ethnicity (ordered as Dayaknese, Javanese, and Madurese). Results
indicated a statistically significant linear trend for evaluation of the Dayaknese photos
𝑡(51) = 5.153, 𝑝 < .001, but not for the Madurese photos (𝑡[54] = 0.591, 𝑝 = 0.557).

The figure we have been using would be appropriate to illustrate the significant linear trend.

ggpubr::ggboxplot(Ramdhani_df, x = "Photo", y = "Negative", color = "Rater",xlab = "Rater Ethnicity Represented within Photo Stimulus", ylab = "Negative Reaction", add = "jitter", title = "Figure 1. Simple Main Effect of Rater within Photo Stimulus", ylim = c(1, 7))
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Figure 1. Simple Main Effect of Rater within Photo Stimulus

14.4 All Possible Post Hoc Comparisons

Another option is the comparison possible cells. These are termed post hoc comparisons. They
are an alternative to simple main effects; you would not report both. A potential criticism of this
approach is that it is atheoretical. Without compelling justification, reviewers may criticize this
approach as “fishing,” “p-hacking,” or “HARKing” (hypothesizing after results are known). None-
the-less, particularly when our results are not as expected, I do think having these tools available
can be a helpful resource.

The figure shows our place on the Two-Way ANOVA Workflow.

As the numbers of levels increase, post hoc comparisons become somewhat unwieldy. Even though
this procedure produces them all, you can select which sensible number you want to compare and
control for Type I error according to the number in that set.

With rater ethnicity (3 levels) and photo stimulus (2 levels), we have 6 groupings. When k is the
number of groups, the total number of paired comparisons is: k(k-1)*2
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Figure 14.3: Image our place in the Two-Way ANOVA Workflow.
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6*(6-1)/2

[1] 15

Before running this analysis, we must calculate the omnibus ANOVA with the aov() function in
base R and save the result as an object.

TwoWay_neg<-aov(Negative~Rater*Photo, Ramdhani_df)
summary(TwoWay_neg)

Df Sum Sq Mean Sq F value Pr(>F)
Rater 2 12.21 6.103 8.077 0.000546 ***
Photo 1 14.62 14.619 19.346 0.0000262 ***
Rater:Photo 2 8.61 4.304 5.696 0.004480 **
Residuals 105 79.34 0.756
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We can calculate the 15 post-hoc paired comparisons with the TukeyHSD() function from base R.

posthocs <- TukeyHSD(TwoWay_neg, ordered = TRUE)
posthocs

Tukey multiple comparisons of means
95% family-wise confidence level
factor levels have been ordered

Fit: aov(formula = Negative ~ Rater * Photo, data = Ramdhani_df)

$Rater
diff lwr upr p adj

Javanese-Dayaknese 0.5147954 0.02750358 1.0020872 0.0358235
Madurese-Dayaknese 0.8068425 0.32566283 1.2880222 0.0003629
Madurese-Javanese 0.2920471 -0.18222911 0.7663234 0.3124227

$Photo
diff lwr upr p adj

Madurese-Dayaknese 0.726071 0.3987575 1.053385 0.0000262

$`Rater:Photo`
diff lwr upr

Javanese:Dayaknese-Dayaknese:Dayaknese 0.706013072 -0.14743916 1.5594653
Dayaknese:Madurese-Dayaknese:Dayaknese 1.311568627 0.45811640 2.1650209
Madurese:Madurese-Dayaknese:Dayaknese 1.479735294 0.64726775 2.3122028
Madurese:Dayaknese-Dayaknese:Dayaknese 1.483077399 0.64060458 2.3255502



14.4. ALL POSSIBLE POST HOC COMPARISONS 573

Javanese:Madurese-Dayaknese:Dayaknese 1.647182663 0.80470985 2.4896555
Dayaknese:Madurese-Javanese:Dayaknese 0.605555556 -0.23561614 1.4467273
Madurese:Madurese-Javanese:Dayaknese 0.773722222 -0.04615053 1.5935950
Madurese:Dayaknese-Javanese:Dayaknese 0.777064327 -0.05296553 1.6070942
Javanese:Madurese-Javanese:Dayaknese 0.941169591 0.11113973 1.7711995
Madurese:Madurese-Dayaknese:Madurese 0.168166667 -0.65170609 0.9880394
Madurese:Dayaknese-Dayaknese:Madurese 0.171508772 -0.65852109 1.0015386
Javanese:Madurese-Dayaknese:Madurese 0.335614035 -0.49441582 1.1656439
Madurese:Dayaknese-Madurese:Madurese 0.003342105 -0.80509532 0.8117795
Javanese:Madurese-Madurese:Madurese 0.167447368 -0.64099006 0.9758848
Javanese:Madurese-Madurese:Dayaknese 0.164105263 -0.65463115 0.9828417

p adj
Javanese:Dayaknese-Dayaknese:Dayaknese 0.1652148
Dayaknese:Madurese-Dayaknese:Dayaknese 0.0002907
Madurese:Madurese-Dayaknese:Dayaknese 0.0000171
Madurese:Dayaknese-Dayaknese:Dayaknese 0.0000211
Javanese:Madurese-Dayaknese:Dayaknese 0.0000018
Dayaknese:Madurese-Javanese:Dayaknese 0.3005963
Madurese:Madurese-Javanese:Dayaknese 0.0760131
Madurese:Dayaknese-Javanese:Dayaknese 0.0802217
Javanese:Madurese-Javanese:Dayaknese 0.0166363
Madurese:Madurese-Dayaknese:Madurese 0.9911395
Madurese:Dayaknese-Dayaknese:Madurese 0.9908344
Javanese:Madurese-Dayaknese:Madurese 0.8482970
Madurese:Dayaknese-Madurese:Madurese 1.0000000
Javanese:Madurese-Madurese:Madurese 0.9907331
Javanese:Madurese-Madurese:Dayaknese 0.9920328

If we want to consider all 15 pairwise comparisons and also control for Type I error, a Holm’s
sequential Bonferroni [Green and Salkind, 2017c] will help us take a middle-of-the-road approach
(not as strict as .05/15 with the traditional Bonferroni; not as lenient as “none”) to managing Type
I error.

With the Holms, we rank order the p values associated with the 15 comparisons in order from lowest
(e.g., .0000018) to highest (e.g., 1.000). The first p value is evaluated with the most strict criterion
(.05/15; the traditional Bonferonni approach). Then, each successive comparison calculates the
p value by using the number of remaining comparisons as the denominator (e.g., .05/14, .05/13,
.05/12). As the p values rise and the alpha levels relax, there will be a cut-point where remaining
comparisons are not statistically significant.

.05/15

[1] 0.003333333

.05/14

[1] 0.003571429
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To facilitate this contrast, let’s extract the 15 TukeyHSD tests and work with them in Excel.
First, obtain the structure of the posthoc object

str(posthocs)

List of 3
$ Rater : num [1:3, 1:4] 0.5148 0.8068 0.292 0.0275 0.3257 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : chr [1:3] "Javanese-Dayaknese" "Madurese-Dayaknese" "Madurese-Javanese"
.. ..$ : chr [1:4] "diff" "lwr" "upr" "p adj"

$ Photo : num [1, 1:4] 0.726071 0.3987575 1.0533845 0.0000262
..- attr(*, "dimnames")=List of 2
.. ..$ : chr "Madurese-Dayaknese"
.. ..$ : chr [1:4] "diff" "lwr" "upr" "p adj"

$ Rater:Photo: num [1:15, 1:4] 0.706 1.312 1.48 1.483 1.647 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : chr [1:15] "Javanese:Dayaknese-Dayaknese:Dayaknese" "Dayaknese:Madurese-Dayaknese:Dayaknese" "Madurese:Madurese-Dayaknese:Dayaknese" "Madurese:Dayaknese-Dayaknese:Dayaknese" ...
.. ..$ : chr [1:4] "diff" "lwr" "upr" "p adj"

- attr(*, "class")= chr [1:2] "TukeyHSD" "multicomp"
- attr(*, "orig.call")= language aov(formula = Negative ~ Rater * Photo, data = Ramdhani_df)
- attr(*, "conf.level")= num 0.95
- attr(*, "ordered")= logi TRUE

write.csv(posthocs$'Rater:Photo', 'posthocsOUT.csv')

In Excel, I would sort my results by their p values (low to high) and consider my threshold (p <
.0033) to determine which effects were statistically significant. Using the strictest criteria of p <
.0033, we would have four statistically significant values.
I would ask, “Is this what we want?” Similar to the simple main effects we just tested, I am
interested in two sets of comparisons:
First, how are the two sets of photos (Madurese and Dayaknese) rated within each set of raters.

• Javanese:Madurese - Javanese:Dayaknese
• Dayaknese:Madurese - Dayaknese:Dayaknese
• Madurese:Madurese - Madurese:Dayaknese

Second, focused on each photo, what are the relative ratings.

• Javanese:Madurese - Dayaknese:Madurese
• Madurese: Madurese - Dayaknese:Madurese
• Javanese:Dayaknese - Dayaknese:Dayaknese
• Madurese: Dayaknese - Dayaknese:Dayaknese

This is only seven sets of comparisons and would considerably reduce the alpha:
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Figure 14.4: Image of the results of the Holms sequential Bonferroni.

.05/7

[1] 0.007142857

Below I have greyed-out the comparisons that are less interesting to me and left the seven that are
my focal interest. I have highlighted in green the two comparisons that are statistically significant
based on the Holms’ sequential criteria. In this case, it does not make any difference in our
interpretation of these focal predictors.

Given that my “tinkering around” analysis resembles the results of the simple main effects analyses
in the factorial lessonn, I will not write this up as an APA style results section, but rather offer
this is as a set of tools when you would like to explore the data in an atheoretical manner.
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Chapter 15

One-Way Repeated Measures with a
Multivariate Approach

Screencasted Lecture Link

As noted in the lesson on one-way repeated measures ANOVA, the researcher can use a univariate or
multivariate approach to analyzing the data. The rstatix::anova_test() is limited to the univariate
approach. In order to maintain a streamlined chapter with minimal distractions to student learning
I have chosen to provide a quick and separate demonstration of the multivariate approach in this
appendix. In-so-doing, I will use the car package.

As a quick reminder, I will describe and resimulate the data. The narration will presume familiarity
with the one-way repeated measures ANOVA lesson.

15.1 Research Vignette

Amodeo [Amodeo et al., 2018] and colleagues conducted a mixed methods study (qualitative and
quantitative) to evaluate the effectiveness of an empowerment, peer-group-based, intervention with
participants (N = 8) who experienced transphobic episodes. Focus groups used qualitative methods
to summarize emergent themes from the program (identity affirmation, self-acceptance, group as
support) and a one-way, repeated measures ANOVA provided evidence of increased resilience from
pre to three-month followup.

Eight participants (seven transgender women and one genderqueer person) participated in the
intervention. The mean age was 28.5 (SD = 5.85). All participants were located in Italy.

The within-subjects condition was wave, represented by T1, T2, and T3:

• T1, beginning of training
• Training, three 8-hour days,

– content included identity and heterosexism, sociopolitical issues and minority stress,
resilience, and empowerment

• T2, at the conclusion of the 3-day training
• Follow-up session 3 months later

577

https://youtu.be/1c3N733nSM0
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• T3, at the conclusion of the +3 month follow-up session

The dependent variable (assessed at each wave) was a 14-item resilience scale [Wagnild and Young,
1993]. Items were assessed on a 7-point scale ranging from strongly disagree to strongly agree with
higher scores indicating higher levels of resilience. An example items was, “I usually manage one
way or another.”

15.1.1 Data Simulation

Below is the code I used to simulate data. The following code assumes 8 participants who each
participated in 3 waves (pre, post, followup). The sript produces “long” and “wide” forms are
created.

set.seed(2022)
#gives me 8 numbers, assigning each number 3 consecutive spots, in sequence
ID<-factor(c(rep(seq(1,8),each=3)))
#gives me a column of 24 numbers with the specified Ms and SD
Resilience<-rnorm(24,mean=c(5.7,6.21,6.26),sd=c(.88,.79,.37))
#repeats pre, post, follow-up once each, 8 times
Wave<-rep(c("Pre","Post", "FollowUp"),each=1,8)
Amodeo_long<-data.frame(ID, Wave, Resilience)

Amodeo_long$Wave <- factor(Amodeo_long$Wave, levels = c("Pre", "Post", "FollowUp"))

# Create a new df (Amodeo_wide)
# Identify the original df
# We are telling it to connect the values of the Resilience variable its respective Wave designation
Amodeo_wide <- reshape2::dcast(data = Amodeo_long, formula =ID~Wave, value.var = "Resilience")
#doublecheck to see if they did what you think
str(Amodeo_wide)

'data.frame': 8 obs. of 4 variables:
$ ID : Factor w/ 8 levels "1","2","3","4",..: 1 2 3 4 5 6 7 8
$ Pre : num 6.49 4.43 4.77 5.91 4.84 ...
$ Post : num 5.28 5.95 6.43 7 6.28 ...
$ FollowUp: num 5.93 5.19 6.54 6.19 6.24 ...

Amodeo_wide$ID <- factor(Amodeo_wide$ID)

15.2 Computing the Omnibus F

Without the rstatix helper package, here is how the analysis would be run in the package, car.
Although this package is less intuitive to use, it results in both univariate output (both sphericity
assumed and sphericity violated) and multivariate output (which does not require the sphericity
assumption).
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Evaluating the data requires that we create some objects that will be fed into function. We can
name these objects anything we like.

In ths script below I define the objects that are required.

• waveLevels is an object that will specify three levels of the independent variable (pre, post,
follow-up),

• waveFactor simply makes “waveLevels” a factor
• waveBind column-binds (i.e., cbind) the pre, post, and follow-up variables from the wide form

of the Amodeo dataset
• waveModel calculates the intercept (i.e., the means) of the pre, post, and follow-up levels

#library(car)
waveLevels <- c(1,2,3)
waveFactor <- as.factor(waveLevels)
waveFrame <- data.frame(waveFactor)
waveBind <-cbind(Amodeo_wide$Pre, Amodeo_wide$Post, Amodeo_wide$FollowUp)
waveModel<- lm(waveBind~1)
waveModel

Call:
lm(formula = waveBind ~ 1)

Coefficients:
[,1] [,2] [,3]

(Intercept) 5.588 6.328 6.137

To run the analysis, we insert these objects into arguments:

• waveModel is the first argument,
• waveFrame is assigned to the idata command,
• waveFactor is assigned to the idesign command

analysis <-car::Anova(waveModel, idata=waveFrame, idesign=~waveFactor)

Note: model has only an intercept; equivalent type-III tests substituted.

summary(analysis)

Type III Repeated Measures MANOVA Tests:

------------------------------------------
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Term: (Intercept)

Response transformation matrix:
(Intercept)

[1,] 1
[2,] 1
[3,] 1

Sum of squares and products for the hypothesis:
(Intercept)

(Intercept) 2607.062

Multivariate Tests: (Intercept)
Df test stat approx F num Df den Df Pr(>F)

Pillai 1 0.9942 1200.028 1 7 0.0000000043326 ***
Wilks 1 0.0058 1200.028 1 7 0.0000000043326 ***
Hotelling-Lawley 1 171.4325 1200.028 1 7 0.0000000043326 ***
Roy 1 171.4325 1200.028 1 7 0.0000000043326 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

------------------------------------------

Term: waveFactor

Response transformation matrix:
waveFactor1 waveFactor2

[1,] 1 0
[2,] 0 1
[3,] -1 -1

Sum of squares and products for the hypothesis:
waveFactor1 waveFactor2

waveFactor1 2.4131705 -0.8378898
waveFactor2 -0.8378898 0.2909282

Multivariate Tests: waveFactor
Df test stat approx F num Df den Df Pr(>F)

Pillai 1 0.4026101 2.021846 2 6 0.21319
Wilks 1 0.5973899 2.021846 2 6 0.21319
Hotelling-Lawley 1 0.6739486 2.021846 2 6 0.21319
Roy 1 0.6739486 2.021846 2 6 0.21319

Univariate Type III Repeated-Measures ANOVA Assuming Sphericity

Sum Sq num Df Error SS den Df F value Pr(>F)
(Intercept) 869.02 1 5.0692 7 1200.0279 0.000000004333 ***
waveFactor 2.36 2 4.2272 14 3.9102 0.04476 *
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---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Mauchly Tests for Sphericity

Test statistic p-value
waveFactor 0.56648 0.18179

Greenhouse-Geisser and Huynh-Feldt Corrections
for Departure from Sphericity

GG eps Pr(>F[GG])
waveFactor 0.69759 0.06754 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

HF eps Pr(>F[HF])
waveFactor 0.8172743 0.05734876

The car::Anova() function produces both univariate and multivariate results. To begin to un-
derstand this data, let’s start with what we learned in the one-way repeated measures ANOVA
lesson.

15.2.1 Univariate Results

When we ran the univariate approach in the lesson, we first checked the sphericity assumption.
Our results here are identical to those from rstatix::anova_test. That is, we did not violate the
sphericity assumption: Mauchley’s test = .566𝑝 = 0.182. The F test with univariate results was
𝐹(2, 14) = 3.910, 𝑝 = 0.045.

The Greenhouse Geiser estimate was 0.698 the corrected p = .068. The Huyhn Feldt
estimate was 0.817 and the corrected p = .057.

The univariate ANOVA results are under the “Univariate Type III Repeated-Measures ANOVA
Assuming Sphericity” heading. We find the ANOVA output on the row titled, “waveFactor.” The
results are identical to what we found in the lesson: 𝐹(2, 14) = 3.91, 𝑝 = 0.045. I do not see that
an effect size is reported.

15.2.2 Multivariate Results

Researchers may prefer the multivariate approach because it does not require the sphericity as-
sumption. Stated another way, if the sphericity assumption is violated, researchers can report the
results of the multivariate analysis.
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We find the multivariate results in the middle of the output, under the heading, “Multivariate
Tests: waveFactor.” There are four choices: Pillai, Wilks, Hotelling-Lawley, and Roy. Green and
Salkind [2017b] have noted that in the one-way within-subjects ANOVA, all four will yield the
same F and p values. They recommended reporting Wilks’ lambda because researchers will have
greatest familiarity with it. Thus, I would write up the result of this omnibus test like this:

Results of the one-way repeated measures ANOVA indicated a significant wave effect,
𝑊𝑖𝑙𝑘𝑠′𝜆 = .597, 𝐹(2, 6) = 2.022, 𝑝 = 0.213.

Because follow-up testing is pairwise (i.e., there are only two levels being compared), the sphericity
assumption is not required and those could proceed in the manner demonstrated in the one-way
repeated measures ANOVA lesson.

15.2.3 A Brief Commentary on Wrappers

As noted several times, because of its relative ease-of-use, the relevance of information included in
the results, and its integration with the ggpubr package, I chose to use rstatix package in all of the
ANOVA lessons. As I worked through this example, I spent several hours creating and interpreting
the code. For me, there was value in this exercise:

• I am encouraged and reassured with the consistency of results between the two approaches,
• I am in awe of the power of these programs and a little intimidated by all the options that

are available within a given package, and
• I am deeply grateful to package developers who take the time to create packages for discipline-

specific use-cases and then freely share their work with others. Thank you Alboukadel Kas-
sambara!

https://github.com/kassambara/rstatix
https://github.com/kassambara/rstatix
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