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About this Textbook

Natural Resources Biometrics begins with a review of descriptive statistics, estimation, and
hypothesis testing. The following chapters cover one- and two-way analysis of variance
(ANOVA), including multiple comparison methods and interaction assessment, with a
strong emphasis on application and interpretation. Simple and multiple linear regressions
in a natural resource setting are covered in the next chapters, focusing on correlation, model
fitting, residual analysis, and confidence and prediction intervals. The final chapters cover
growth and yield models, volume and biomass equations, site index curves, competition
indices, importance values, and measures of species diversity, association, and community
similarity.
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Chapter 1

Descriptive Statistics and the
Normal Distribution

Statistics has become the universal language of the sciences, and data analysis can lead to
powerful results. As scientists, researchers, and managers working in the natural resources
sector, we all rely on statistical analysis to help us answer the questions that arise in the
populations we manage. For example:

Has there been a significant change in the mean sawtimber volume in
the red pine stands?

*  Has there been an increase in the number of invasive species found in

the Great Lakes?

*  What proportion of white tail deer in New Hampshire have weights
below the limit considered healthy?

+  Did fertilizer A, B, or C have an effect on the corn yield?

These are typical questions that require statistical analysis for the answers. In order to answer
these questions, a good random sample must be collected from the population of interests.
We then use descriptive statistics to organize and summarize our sample data. The next step
is inferential statistics, which allows us to use our sample statistics and extend the results to
the population, while measuring the reliability of the result. But before we begin exploring
different types of statistical methods, a brief review of descriptive statistics is needed.

Statistics is the science of collecting, organizing, summarizing, analyzing, and
interpreting information.

Good statistics come from good samples, and are used to draw conclusions or answer ques-
tions about a population. We use sample statistics to estimate population parameters (the
truth). So let’s begin there...
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Figure 1. Using sample statistics to estimate population parameters.

Section 1

Descriptive Statistics

A population is the group to be studied, and population data is a collection of all elements
in the population. For example:

*  All the fish in Long Lake.
+  All the lakes in the Adirondack Park.
+  All the grizzly bears in Yellowstone National Park.

A sample is a subset of data drawn from the population of interest. For example:

* 100 fish randomly sampled from Long Lake.
* 25 lakes randomly selected from the Adirondack Park.
* 60 grizzly bears with a home range in Yellowstone National Park.

Populations are characterized by descriptive measures called parameters. Inferences about
parameters are based on sample statistics. For example, the population mean (p) is esti-
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mated by the sample mean (X ). The population variance (6?) is estimated by the sample
variance (s?).

Variables are the characteristics we are interested in. For example:

* The length of fish in Long Lake.
 The pH of lakes in the Adirondack Park.
*  'The weight of grizzly bears in Yellowstone National Park.

Variables are divided into two major groups: qualitative and quantitative. Qualitative
variables have values that are attributes or categories. Mathematical operations cannot be
applied to qualitative variables. Examples of qualitative variables are gender, race, and petal
color. Quantitative variables have values that are typically numeric, such as measurements.
Mathematical operations can be applied to these data. Examples of quantitative variables
are age, height, and length.

Quantitative variables can be broken down further into two more categories: discrete and
continuous variables. Discrete variables have a finite or countable number of possible
values. Think of discrete variables as “hens”. Hens can lay 1 egg, or 2 eggs, or 13 eggs...
There are a limited, definable number of values that the variable could take on.

Continuous variables have an infinite number of possible values. Think of continuous
variables as “cows”. Cows can give 4.6713245 gallons of milk, or 7.0918754 gallons of
milk, or 13.272698 gallons of milk ... There are an almost infinite number of values that a
continuous variable could take on.

Ex.1

Is the variable qualitative or quantitative?

Species Weight Diameter Zip Code

(qualitative quantitative, quantitative, qualitative)
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Descriptive Measures

Descriptive measures of populations are called parameters and are typically written using
Greek letters. The population mean is p (mu). The population variance is 62 (sigma squared)
and population standard deviation is o (sigma).

Descriptive measures of samples are called statistics and are typically written using Roman
letters. The sample mean is X (x-bar). The sample variance is s* and the sample standard
deviation is s. Sample statistics are used to estimate unknown population parameters.

In this section, we will examine descriptive statistics in terms of measures of center and

measures of dispersion. These descriptive statistics help us to identify the center and spread
of the data.

Measures of Center

Mean

The arithmetic mean of a variable, often called the average, is computed by adding up all
the values and dividing by the total number of values.

The population mean is represented by the Greek letter p (mu). The sample mean is
represented by X (x-bar). The sample mean is usually the best, unbiased estimate of the
population mean. However, the mean is influenced by extreme values (outliers) and may
not be the best measure of center with strongly skewed data. The following equations com-
pute the population mean and sample mean.

N n

where «, is an element in the data set, /V is the number of elements in the population, and
n is the number of elements in the sample data set.

Ex.2
Find the mean for the following sample data set: 6.4, 5.2,7.9, 3.4

o 6.4+5.2:7.9+3.4 5795
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Median

The median of a variable is the middle value of the data set when the data are sorted in
order from least to greatest. It splits the data into two equal halves with 50% of the data
below the median and 50% above the median. The median is resistant to the influence of
outliers, and may be a better measure of center with strongly skewed data.

Median

l

23 27 31 36 ar 39 42 47 53

'The calculation of the median depends on the number of observations in the data set.

To calculate the median with an odd number of values (7 is odd), first sort the data from
smallest to largest.

Ex.3

23,27,29,31,35,39,40,42, 44,47, 51
'The median is 39. It is the middle value that separates the lower 50% of the data from
the upper 50% of the data.

To calculate the median with an even number of values (7 is even), first sort the data from
smallest to largest and take the average of the two middle values.

Ex. 4
23,27,29,31, 35,39, 40,42, 44, 47
M= 35;—39 _137

Mode

The mode is the most frequently occurring value and is commonly used with qualitative
data as the values are categorical. Categorical data cannot be added, subtracted, multiplied
or divided, so the mean and median cannot be computed. The mode is less commonly used
with quantitative data as a measure of center. Sometimes each value occurs only once and

the mode will not be meaningful.
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Understanding the relationship between the mean and median is important. It gives us
insight into the distribution of the variable. For example, if the distribution is skewed right
(positively skewed), the mean will increase to account for the few larger observations that
pull the distribution to the right. The median will be less affected by these extreme large
values, so in this situation, the mean will be larger than the median. In a symmetric distri-
bution, the mean, median, and mode will all be similar in value. If the distribution is skewed
left (negatively skewed), the mean will decrease to account for the few smaller observations
that pull the distribution to the left. Again, the median will be less affected by these extreme
small observations, and in this situation, the mean will be less than the median.

Skewed Right Symmetric Distribution Skewed Left
ede Hlvde
. Mrdn p T, . Medkan
ra ™. Mean r ", Memm A" -\

.-"' x\..‘ f' x_\ ,-""' \

! - ! ’ Y
/ . ; ™, x"’f‘ Y
i T - z/ \\ - - \

Miean = hinchan = Wode

Figure 2. Illustration of skewed and symmetric distributions.

Measures of Dispersion

Measures of center look at the average or middle values of a data set. Measures of disper-
sion look at the spread or variation of the data. Variation refers to the amount that the
values vary among themselves. Values in a data set that are relatively close to each other
have lower measures of variation. Values that are spread farther apart have higher measures
of variation.

Examine the two histograms below. Both groups have the same mean weight, but the
values of Group A are more spread out compared to the values in Group B. Both groups
have an average weight of 267 1b. but the weights of Group A are more variable.

Histogram of Group A Histogram of Group B
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Figure 3. Histograms of Group A and Group B.
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'This section will examine five measures of dispersion: range, variance, standard deviation,
standard error, and coeflicient of variation.

Range

The range of a variable is the largest value minus the smallest value. It is the simplest
measure and uses only these two values in a quantitative data set.

Ex.5

Find the range for the given data set.
12,29, 32, 34, 38,49, 57
Range=57-12=45

Variance

The variance uses the difference between each value and its arithmetic mean. The differ-
ences are squared to deal with positive and negative differences. The sample variance (s?) is
an unbiased estimator of the population variance (62), with n-1 degrees of freedom.

Degrees of freedom: In general, the degrees of freedom for an estimate is equal
to the number of values minus the number of parameters estimated en route to the
estimate in question.

({32

'The sample variance is unbiased due to the difference in the denominator. If we used “n” in
the denominator instead of “n-1”, we would consistently underestimate the true population
variance. To correct this bias, the denominator is modified to “n-1".

Population variance Sample variance
2 —\2 sz_(Zx,.)z
oo Z (x; — 1) 52=Z (x,—X) _ i "
N n-1 n—1

Ex. 6

Compute the variance of the sample data: 3, 5, 7. The sample mean is 5.

. (3-57+(5-57+(7-5)" _
= - =

4
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Standard Deviation

The standard deviation is the square root of the variance (both population and sample).
While the sample variance is the positive, unbiased estimator for the population variance,
the units for the variance are squared. The standard deviation is a common method for
numerically describing the distribution of a variable. The population standard deviation is
o (sigma) and sample standard deviation is s.

Population standard deviation Sample standard deviation
o =vo? s =4/s?

Ex.7

Compute the standard deviation of the sample data: 3, 5, 7 with a sample mean of 5.

s:\/(3_5)2+(53_51)2+(7_5)2 _Jio2

Standard Error of the Means

Commonly, we use the sample mean X to estimate the population mean p. For example, if
we want to estimate the heights of eighty-year-old cherry trees, we can proceed as follows:

* Randomly select 100 trees
*  Compute the sample mean of the 100 heights
*  Use that as our estimate

We want to use this sample mean to estimate the true but unknown population mean. But
our sample of 100 trees is just one of many possible samples (of the same size) that could
have been randomly selected. Imagine if we take a series of different random samples from
the same population and all the same size:

* Sample 1—we compute sample mean X, .
*  Sample 2—we compute sample mean X, .
*  Sample 3—we compute sample mean X; .

« Etc.

Each time we sample, we may get a different result as we are using a different subset of data
to compute the sample mean. This shows us that the sample mean is a random variable!
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The sample mean (X ) is a random variable with its own probability distribution called the
sampling distribution of the sample mean. The distribution of the sample mean will have
a mean equal to p and a standard deviation equal to / Jn -

The standard error %@ is the standard deviation of all possible sample means.

In reality, we would only take one sample, but we need to understand and quantify the
sample to sample variability that occurs in the sampling process.

The standard error is the standard deviation of the sample means and can be expressed in
different ways.

S sz s
¥ ===
N n VL

Note: ¢ is the sample variance and s is the sample standard deviation

Ex. 8

Describe the distribution of the sample mean.

A population of fish has weights that are normally distributed with p = 81b. and s =
2.6 Ib. If you take a sample of size n=6, the sample mean will have a normal distribu-
tion with a mean of 8 and a standard deviation (standard error) of *%z=1.0611b.

If you increase the sample size to 10, the sample mean will be normally distributed
with a mean of 8 Ib. and a standard deviation (standard error) of 2%/5 =0.8221b.

Notice how the standard error decreases as the sample size increases.

The Central Limit Theorem (CLT) states that the sampling distribution of the sample
means will approach a normal distribution as the sample size increases. If we do not have
a normal distribution, or know nothing about our distribution of our random variable, the
CLT tells us that the distribution of the X ’s will become normal as 7 increases. How large
does 7 have to be? A general rule of thumb tells us that » > 30.

The Central Limit Theorem tells us that regardless of the shape of our population,
the sampling distribution of the sample mean will be normal as the sample size
increases.
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Coefficient of Variation

To compare standard deviations between different populations or samples is difficult
because the standard deviation depends on units of measure. The coeflicient of variation
expresses the standard deviation as a percentage of the sample or population mean. It is a

unitless measure.

Population data Sample data
o
cv = Z#100 cv=2x100
U X
Ex.9

Fisheries biologists were studying the length and weight of Pacific salmon. They took
a random sample and computed the mean and standard deviation for length and
weight (given below). While the standard deviations are similar, the differences in
units between lengths and weights make it difficult to compare the variability. Com-
puting the coeflicient of variation for each variable allows the biologists to determine
which variable has the greater standard deviation.

Sample mean Sample standard deviation
Length 63 cm 19.97 cm
Weight 37.6 kg 19.39 kg
CVL=%*100=31.7% CVW:@*100:51.6%

63.0 376

There is greater variability in Pacific salmon weight compared to length.

Variability

Variability is described in many difterent ways. Standard deviation measures point to point
variability within a sample, i.e., variation among individual sampling units. Coeflicient
of variation also measures point to point variability but on a relative basis (relative to the
mean), and is not influenced by measurement units. Standard error measures the sample
to sample variability, i.e. variation among repeated samples in the sampling process. Typi-
cally, we only have one sample and standard error allows us to quantify the uncertainty in
our sampling process.

Basic Statistics Example using Excel and Minitab
Software

Consider the following tally from 11 sample plots on Heiburg Forest, where X is the
number of downed logs per acre. Compute basic statistics for the sample plots.

10
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ID X, X (x,-X) (X,-Xf  Order
1 25 625 727 52.8529 4
2 35 1225 273 7.4529 6
3 55 3025 22.73 5166529 10
4 15 225 1725 298.2529 2
5 40 1600 7.73 59.7529 8
6 25 625 727 52.8529 5
7 55 3025 22.73 5166529 11
8 35 1225 2.73 7.4529 7
9 45 2025 12.73 162.0529 9
10 5 25 2727 743.6529 1
1 20 400 1227 150.1819 3

Sum 355 14025 0.0 2568.1519
XX XX XX XN
i=1 i=1 i=1 i=1

Table 1. Sample data on number of downed logs per acre from Heiburg Forest.

11
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(1) Sample mean: ZX
= ' 355

n

<
I

(2) Median = 35

(3) Variance:

—\2
I(X"_X) _ 2568.1519

S =i= =256.82
n—1 11-1
n 2
X7 - 14005
= =l - 1L _256.82
n—1 11-1

(4) Standard deviation: S =+S* =+/256.82 =16.0256
(5) Range: 55 -5 =50

(6) Coeflicient of variation:

100 = 16.0256

cr==.
X 32.27

100 =49.66%

(7) Standard error of the mean:

12
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Software Solutions

Minitab

Chapter 1

Open Minitab and enter data in the spreadsheet. Select STAT >Descriptive stats and check
all statistics required.
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Descriptive Statistics: Data
Variable N N* Mean SE Mean  StDev Variance  CoefVar Minimum Q1

Data 11 0

32.27 4.83

Variable Median
Data 35.00

16.03

Q3
45.00

13

256.82

49.66

Maximum
55.00

5.00 20.00

IQR
25.00
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Excel

Open up Excel and enter the data in the first column of the spreadsheet. Select DATA>Data
Analysis>Descriptive Statistics. For the Input Range, select data in column A. Check
“Labels in First Row” and “Summary Statistics”. Also check “Output Range” and select
location for output.
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15 Descriptive Statistics E
10 Exponential Smoothing 3
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Data
Mean 32.27273
Standard Error  4.831884
Median 35
Mode 25
Standard
Deviation 16.02555
Sample Variance 256.8182
Kurtosis -0.73643
Skewness -0.05982
Range 50
Minimum 5
Maximum 55
Sum 355
Count 11

Graphical Representation

Data organization and summarization can be done graphically, as well as numerically.
Tables and graphs allow for a quick overview of the information collected and support
the presentation of the data used in the project. While there are a multitude of available
graphics, this chapter will focus on a specific few commonly used tools.

Pie Charts

Pie charts are a good visual tool allowing the reader to quickly see the relationship between
categories. It is important to clearly label each category, and adding the frequency or rela-
tive frequency is often helpful. However, too many categories can be confusing. Be careful
of putting too much information in a pie chart. The first pie chart gives a clear idea of the
representation of fish types relative to the whole sample. The second pie chart is more dif-
ficult to interpret, with too many categories. It is important to select the best graphic when
presenting the information to the reader.

15
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Pie Chart of Fish

Pie Chart of Names

Category
M Berta
= sil
= christopher
O clyde
[ Fannie
O Fran
O Francis

Ooz

Figure 4. Comparison of pie charts.

Bar Charts and Histograms

Bar charts graphically describe the distribution of a qualitative variable (fish type) while

histograms describe the distribution of a quantitative variable discrete or continuous vari-

ables (bear weight).

Count

20

154

5

T
bass

carp

oat;ish
fish

perch

trout

Frequency

-
o
1

—-
N
h

—
[S)
1

®
1

120 240
bear weight

360

480

Figure 5. Comparison of a bar chart for qualitative data and a histogram for quantitative data.

In both cases, the bars’equal width and the y-axis are clearly defined. With qualitative data,
each category is represented by a specific bar. With continuous data, lower and upper class
limits must be defined with equal class widths. There should be no gaps between classes and

each observation should fall into one, and only one, class.

16
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Boxplots

Boxplots use the 5-number summary (minimum and maximum values with the three
quartiles) to illustrate the center, spread, and distribution of your data. When paired with
histograms, they give an excellent description, both numerically and graphically, of the data.

With symmetric data, the distribution is bell-shaped and somewhat symmetric. In the
boxplot, we see that Q1 and Q3 are approximately equidistant from the median, as are the
minimum and maximum values. Also, both whiskers (lines extending from the boxes) are
approximately equal in length.

Symmetric Symmetric
F

euencies

z0

il 1 20 30 40 a 10 20 30 40
values values

Figure 6. A histogram and boxplot of a normal distribution.

With skewed left distributions, we see that the histogram looks “pulled” to the left. In
the boxplot, Q1 is farther away from the median as are the minimum values, and the left
whisker is longer than the right whisker.

Skewed Left Skewed Left
F

equencies

24

20

—1 |

0 10 20 a0 40 10 20 eli] 40
values Values

Figure 7. A histogram and boxplot of a skewed left distribution.
With skewed right distributions, we see that the histogram looks “pulled” to the right. In

the boxplot, Q3 is farther away from the median, as is the maximum value, and the right
whisker is longer than the left whisker.

17
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Skewed Right Skewed Right

i 10 20 30 40 10 20 20 10
values values

Figure 8. A histogram and boxplot of a skewed right distribution.

Section 2

Probability Distribution

Once we have organized and summarized your sample data, the next step is to identify the
underlying distribution of our random variable. Computing probabilities for continuous
random variables are complicated by the fact that there are an infinite number of possible
values that our random variable can take on, so the probability of observing a particular
value for a random variable is zero. Therefore, to find the probabilities associated with a
continuous random variable, we use a probability density function (PDF).

A PDF is an equation used to find probabilities for continuous random variables. The PDF
must satisfy the following two rules:

1) 'The area under the curve must equal one (over all possible values of
the random variable).

2) 'The probabilities must be equal to or greater than zero for all possible
values of the random variable.

The area under the curve of the probability density function over some interval
represents the probability of observing those values of the random variable
in that interval.
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The Normal Distribution

Many continuous random variables have a bell-shaped or somewhat symmetric distribu-
tion. This is a normal distribution. In other words, the probability distribution of its relative
frequency histogram follows a normal curve. The curve is bell-shaped, symmetric about the
mean, and defined by p and 6 (the mean and standard deviation).

Inflection
point

Infleection
point

L= p pto X

Figure 9. A normal distribution.

There are normal curves for every combination of p and 6. The mean (p) shifts the curve
to the left or right. The standard deviation (o) alters the spread of the curve. The first
pair of curves have different means but the same standard deviation. The second pair of
curves share the same mean (p) but have different standard deviations. The pink curve has
a smaller standard deviation. It is narrower and taller, and the probability is spread over a
smaller range of values. The blue curve has a larger standard deviation. The curve is flatter
and the tails are thicker. The probability is spread over a larger range of values.

p=0ao=

e [

[ = =
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b o=

i
0 4 2 ] 4 fr X

Figure 10. A comparison of normal curves.
Properties of the normal curve:

*  'The mean is the center of this distribution and the highest point.

* 'The curve is symmetric about the mean. (The area to the left of the
mean equals the area to the right of the mean.)

* 'The total area under the curve is equal to one.
* Asxincreases and decreases, the curve goes to zero but never touches.
1 ’(x’.“)z

207

2w o

*  The PDF of a normal curve is V = —\/7 e
* A normal curve can be used to estimate probabilities.

* A normal curve can be used to estimate proportions of a population
that have certain x-values.

The Standard Normal Distribution

'There are millions of possible combinations of means and standard deviations for continuous
random variables. Finding probabilities associated with these variables would require us to
integrate the PDF over the range of values we are interested in. To avoid this, we can rely
on the standard normal distribution. The standard normal distribution is a special normal
distribution with a p = 0 and 6 = 1. We can use the Z-score to standardize any normal
random variable, converting the x-values to Z-scores, thus allowing us to use probabilities
from the standard normal table. So how do we find area under the curve associated with a
Z-score?

20
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Standard Normal Table

*  The standard normal table gives probabilities associated with specific
Z-scores.

*  The table we use is cumulative from the left.

*  'The negative side is for all Z-scores less than zero (all values less than the
mean).

* 'The positive side is for all Z-scores greater than zero (all values greater
than the mean).

* Not all standard normal tables work the same way.

Ex.10

What is the area associated with the Z-score 1.62?

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

0.0 0.5000 | 0.5040 | 0.5080 | 0.5120 | 0.5160 | 0.5199 | 0.5239 | 0.5279 | 0.5319 | 0.5359
0.1 0.5398 | 0.5438 | 0.5478 | 0.5517 | 0.5557 | 0.5596 | 0.5636 | 0.5675 | 0.5714 | 0.5753
0.2 0.5793 | 0.5832 | 0.5871 | 0.5910 | 0.5948 | 0.5987 | 0.6026 | 0.6064 | 0.6103 | 0.6141
15 0.9332 | 0.9345 | 0.9357 | 0.9370 | 0.9382 | 0.9394 | 0.9406 | 0.9418 | 0.9429 | 0.9441
1.6 0.9452 | 0.9463 | 0.9474 | 0.9484 | 0.9495 | 0.9595 | 0.9515 | 0.9525 | 0.9535 | 0.9545
1.7 0.9554 | 0.9564 | 0.9573 | 0.9582 | 0.9591 | 0.9599 | 0.9608 | 0.9616 | 0.9625 | 0.9633

1} 162

Figure 11. The standard normal table and associated area for z=1.62.

Reading the Standard Normal Table

Read down the Z-column to get the first part of the Z-score (1.6).

Read across the top row to get the second decimal place in the Z-

score (0.02).
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* 'The intersection of this row and column gives the area under the curve
to the left of the Z-score.

Finding Z-scores for a Given Area

*  What if we have an area and we want to find the Z-score associated
with that area?

* Instead of Z-score — area, we want area — Z-score.

*  We can use the standard normal table to find the area in the body of
values and read backwards to find the associated Z-score.

*  Using the table, search the probabilities to find an area that is closest
to the probability you are interested in.

Ex. 11
To find a Z-score for which the area to the right is 5%:

Since the table is cumulative from the left, you must use the complement of 5%.

1.000 - 0.05 = 0.9500

95%

5%

My
Figure 12. The upper 5% of the area under a normal curve.

* Find the Z-score for the area of 0.9500.
* Look at the probabilities and find a value as close to 0.9500 as possible.
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0.0
0.1
0.2

1.5
1.6
1.7

0.5000 | 05040 | 05080 | 0.5120 | 05160 (05199 | 0.5239 | 05279 | 0.5319 0.5359
0.5398 | 0.5458 | 0.5478 | 0.5517 | 05557 | 0.5596 | 0.5636 | 05675 | 0.5714 05753
0.5793 | 0.5832 | 05871 | 0.5910 | 055948 | 0.5987 | 06026 | 6064 | 06103 0614l

0.8332 | 09345 | 09357 | 09370 | 09382 | 09394 | 09406 | 09418 | 09429 09441
0.9452 | 09463 | 09474 | 0.9484 | 09495 | 09595 | 09515 | L9525 [ 09535 0.9545
0.9554 | 0.9564 | 09573 | 0.9582 | 09591 | 0.9599 | 09608 | O.9ele | 09625 0.9633

Figure 13. The standard normal table.
'The Z-score for the 95 percentile is 1.64

Area in between Two Z-scores

Ex.12

To find Z-scores that limit the middle 95%:
* 'The middle 95% has 2.5% on the right and 2.5% on the left.

*  Use the symmetry of the curve.

95%

¥ 22
Figure 14. The middle 95% of the area under a normal curve.

* Lookatyour standard normal table. Since the table is cumulative from the left,
it is easier to find the area to the left first.

* Find the area of 0.025 on the negative side of the table.

*  'The Z-score for the area to the left is -1.96.

*  Since the curve is symmetric, the Z-score for the area to the right is 1.96.
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Common Z-scores

There are many commonly used Z-scores:

. Z‘05 = 1.645 and the area between -1.645 and 1.645 is 90%
*  Z,,.=1.96 and the area between -1.96 and 1.96 is 95%
*  Z,s=2.575 and the area between -2.575 and 2.575 is 99%

Applications of the Normal Distribution

Typically, our normally distributed data do not have p = 0 and 6 = 1, but we can relate
any normal distribution to the standard normal distributions using the Z-score. We can
transform values of x to values of z.

For example, if a normally distributed random variable has a p = 6 and o = 2, then a value
of x = 7 corresponds to a Z-score of 0.5.

zzﬂzo.s
2

This tells you that 7 is one-half a standard deviation above its mean. We can use this rela-
tionship to find probabilities for any normal random variable.

These arcas

are equal

Figure 15. A normal and standard normal curve.
To find the area for values of X, a normal random variable, draw a picture of the area of

interest, convert the x-values to Z-scores using the Z-score and then use the standard
normal table to find areas to the left, to the right, or in between.
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Ex. 13

Adult deer population weights are normally distributed with p = 110 1b. and o = 29.7
Ib. As a biologist you determine that a weight less than 82 Ib. is unhealthy and you
want to know what proportion of your population is unhealthy.

P(x<82)

Figure 16. The area under a normal curve for P( x<82).
82-110

29.7
The x value of 82 is 0.94 standard deviations below the mean.

=-0.94

Convert 82 to a Z-score z =

z

-0.94 0
Figure 17. Area under a standard normal curve for P(z<-0.94).

Go to the standard normal table (negative side) and find the area associated with a
Z-score of -0.94.

This is an “area to the left” problem so you can read directly from the table to get the
probability.
P(x<82) =0.1736

Approximately 17.36% of the population of adult deer is underweight, OR one deer
chosen at random will have a 17.36% chance of weighing less than 82 1b.
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Ex. 14

Statistics from the Midwest Regional Climate Center indicate that Jones City, which
has a large wildlife refuge, gets an average of 36.7 in. of rain each year with a standard
deviation of 5.1 in. The amount of rain is normally distributed. During what percent
of the years does Jones City get more than 40 in. of rain?

P(x > 40)
36.7 40
Figure 18. Area under a normal curve for P( x>40).
,-30-36.7 s P(x>40) = (1-0.7422) = 0.2578
5.1

For approximately 25.78% of the years, Jones City will get more than 40 in. of rain.

Assessing Normality

If the distribution is unknown and the sample size is not greater than 30 (Central Limit
Theorem), we have to assess the assumption of normality. Our primary method is the
normal probability plot. This plot graphs the observed data, ranked in ascending order,
against the “expected” Z-score of that rank. If the sample data were taken from a normally
distributed random variable, then the plot would be approximately linear.

Examine the following probability plot. The center line is the relationship we would expect
to see if the data were drawn from a perfectly normal distribution. Notice how the observed
data (red dots) loosely follow this linear relationship. Minitab also computes an Anderson-
Darling test to assess normality. The null hypothesis for this test is that the sample data
have been drawn from a normally distributed population. A p-value greater than 0.05 sup-
ports the assumption of normality.
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99

Mean 12.44
StDev 2.045
N 38
AD 0.141
P-Value 0.970

957

90

807
707
607
507
40
307
207

Percent

1- T T T T T T
5.0 7.5 10.0 12.5 15.0 17.5 20.0

Figure 19. A normal probability plot generated using Minitab 16.

Compare the histogram and the normal probability plot in this next example. The histo-
gram indicates a skewed right distribution.

Mean 3017
StDev. 16.44
N 31
AD 1.292
P-Value _<0.005

E 8 € 60

o o

& B 507

o B

£ 6 & 40
30

0

10 20 30 40 50 60 70 80 -20 0 20 40 60 80

Figure 20. Histogram and normal probability plot for skewed right data.

'The observed data do not follow a linear pattern and the p-value for the A-D test is less
than 0.005 indicating a non-normal population distribution.

Normality cannot be assumed. You must always verify this assumption. Remember, the
probabilities we are finding come from the standard NORMAL table. If our data are NOT
normally distributed, then these probabilities DO NOT APPLY.

* Do you know if the population is normally distributed?

* Do you have a large enough sample size (n230)? Remember the
Central Limit Theorem?

*  Did you construct a normal probability plot?
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Sampling Distributions and
Confidence Intervals

Sampling Distribution of the Sample Mean

Inferential testing uses the sample mean (X ) to estimate the population mean (). Typically,
we use the data from a single sample, but there are many possible samples of the same size
that could be drawn from that population. As we saw in the previous chapter, the sample
mean (X ) is a random variable with its own distribution.

*  The distribution of the sample mean will have a mean equal to .
It will have a standard deviation (standard error) equal to 7\/2 )

Because our inferences about the population mean rely on the sample mean, we focus on
the distribution of the sample mean. Is it normal? What if our population is not normally
distributed or we don’t know anything about the distribution of our population?

The Central Limit Theorem states that the sampling distribution of the sample means will
approach a normal distribution as the sample size increases.

* Soif we do not have a normal distribution, or know nothing about
our distribution, the CLT tells us that the distribution of the sample
means (X) will become normal distributed as 7 (sample size) increases.

*  How large does » have to be?
* A general rule of thumb tells us that z > 30.

The Central Limit Theorem tells us that regardless of the shape of our population, the
sampling distribution of the sample mean will be normal as the sample size increases.
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Sampling Distribution of the Sample Proportion

'The population proportion (p) is a parameter that is as commonly estimated as the mean. It
is just as important to understand the distribution of the sample proportion, as the mean.
With proportions, the element either has the characteristic you are interested in or the
element does not have the characteristic. The sample proportion (p) is calculated by

. X
p —
n
where x is the number of elements in your population with the characteristic and 7 is the
sample size.

Ex. 1

You are studying the number of cavity trees in the Monongahela National Forest for
wildlife habitat. You have a sample size of n = 950 trees and, of those trees, x = 238

trees with cavities. The sample proportion is:

28 025

P~ 950
The distribution of the sample proportion has a mean of t1; = p

1 _
and has a standard deviation of & 5= M .
n

The sample proportion is normally distributed if # is very large and P isn't close to 0 or 1.
We can also use the following relationship to assess normality when the parameter being
estimated is p, the population proportion:

np(1-p) =10

Confidence Intervals

In the preceding chapter we learned that populations are characterized by descriptive mea-
sures called parameters. Inferences about parameters are based on sample statistics. We now
want to estimate population parameters and assess the reliability of our estimates based on
our knowledge of the sampling distributions of these statistics.

Point Estimates

We start with a point estimate. This is a single value computed from the sample data that is
used to estimate the population parameter of interest.

*  The sample mean (X ) is a point estimate of the population mean (p).
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«  'The sample proportion (p) is the point estimate of the population

proportion (p).

We use point estimates to construct confidence intervals for unknown parameters.

* A confidence interval is an interval of values instead of a single point

estimate.

*  'The level of confidence corresponds to the expected proportion of
intervals that will contain the parameter if many confidence intervals
are constructed of the same sample size from the same population.

*  Our uncertainty is about whether our particular confidence interval is
one of those that truly contains the true value of the parameter.

Ex.2

We are 95% confident that our interval contains the population mean bear weight.

If we created 100 confidence intervals of the same size from the same population, we
would expect 95 of them to contain the true parameter (the population mean weight).
We also expect five of the intervals would not contain the parameter.

Density curve of X

Figure 1. Confidence intervals from twenty-five different samples.

In this example, twenty-five samples from the same population gave these 95% con-
fidence intervals. In the long term, 95% of all samples give an interval that contains
B, the true (but unknown) population mean.
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Level of confidence is expressed as a percent.
*  'The compliment to the level of confidence is a (alpha), the level of
significance.

*  'The level of confidence is described as (1- o) * 100%.

What does this really mean?

We use a point estimate (e.g., sample mean) to estimate the population mean.

*  We attach a level of confidence to this interval to describe how certain we are
that this interval actually contains the unknown population parameter.

We want to estimate the population parameter, such as the mean (p) or
proportion (p).
X—E<p<Xx+E
or
ﬁ -E«< p< }5 + E

where £ is the margin of error.

'The confidence is based on area under a normal curve. So the assumption of normality must

be met (see Chapter 1).

Confidence Intervals about the Mean (n) when the
Population Standard Deviation (o) is Known

A confidence interval takes the form of: point estimate + margin of error.

The point estimate

* 'The point estimate comes from the sample data.

* To estimate the population mean (p), use the sample mean (X ) as the
point estimate.

The margin of error

*  Depends on the level of confidence, the sample size and the population
standard deviation.

* Itis computed as

o
E=7  *x——
% n

where Z% is the critical value from the standard normal table associated
with a (the level of significance).

The critical value 7 o

2

« 'This is a Z-score that bounds the level of confidence.
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*  Confidence intervals are ALWAYS two-sided and the Z-scores are the

limits of the area associated with the level of confidence.

95%

2.5% 2.5%

-Z z
% %

Figure 2. The middle 95% area under a standard normal curve.

*  'The level of significance (o) is divided into halves because we are looking

at the middle 95% of the area under the curve.

*  Go to your standard normal table and find the area of 0.025 in the body

of values.

*  What is the Z-score for that area?

e The Z-scores of + 1.96 are the critical Z-scores for a 95% confidence

interval.
Confidence Level | a (level of significance) 7 %
2
99% 1% 2.575
95% 5% 1.96
90% 10% 1.645

Tuble 1. Common critical values (Z-scores).
Construction of a confidence interval about p when 6 is known:
Z
1) 7% (critical value)
2) E=Z,, %~ (margin of error)
% N margin of error
3) X + E (point estimate + margin of error)

Ex.3

Construct a confidence interval about the population mean.
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Researchers have been studying p-loading in Jones Lake for many years. It is known
that mean water clarity (using a Secchi disk) is normally distributed with a popula-
tion standard deviation of 6 = 15.4 in. A random sample of 22 measurements was
taken at various points on the lake with a sample mean of X = 57.8 in. The researchers
want you to construct a 95% confidence interval for |1, the mean water clarity.

1) Z% =1.96

o 15.4
NE=27,%—=196%——===6.435
) % In J22

3) X+ E =57.8+6.435

95% confidence interval for the mean water clarity is (51.36, 64.24).
We can be 95% confident that this interval contains the population mean water
clarity for Jones Lake.

Now construct a 99% confidence interval for |1, the mean water clarity, and interpret.
Z
1) 7% =2.575
o 15.4

NE=Z,, *—==2575*+—==8.454

) % In J22
3) X+ E =57.8+8.454
99% confidence interval for the mean water clarity is (49.35, 66.25).

We can be 99% confident that this interval contains the population mean water

clarity for Jones Lake.

As the level of confidence increased from 95% to 99%, the width of the interval in-
creased. As the probability (area under the normal curve) increased, the critical value
increased resulting in a wider interval.

Software Solutions

Minitab

You can use Minitab to construct this 95% confidence interval (Excel does not con-
struct confidence intervals about the mean when the population standard deviation
is known). Select Basic Statistics>1-sample Z. Enter the known population standard
deviation and select the required level of confidence.
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Figure 3. Minitab screen shots for constructing a confidence interval.

One-Sample Z: depth
The assumed standard deviation = 15.4

Variable N Mean StDev  SE Mean  95% CI
depth 22 57.80 11.60 3.28 (51.36,64.24)

Confidence Intervals about the Mean (p) when the
Population Standard Deviation (o) is Unknown

Typically, in real life we often don’t know the population standard deviation (). We can use
the sample standard deviation (s) in place of 6. However, because of this change, we can’t
use the standard normal distribution to find the critical values necessary for constructing a
confidence interval.

The Student’s t-distribution was created for situations when 6 was unknown. Gosset
worked as a quality control engineer for Guinness Brewery in Dublin. He found errors in
his testing and he knew it was due to the use of s instead of 6. He created this distribution
to deal with the problem of an unknown population standard deviation and small sample
sizes. A portion of the t-table is shown below.
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Area in Right Tail
df 0.10 0.05 0.025 0.02 0.01 0.005
1 3.078 6.314 12.706 15.894 31.821 63.657
2 1.886 2.920 4.303 4.849 6.965 9.925
3 1.638 2.353 3.182 3.482 4.541 5.841
4 1.533 2.132 2.776 2.999 3.747 4.604
5 1.476 2.015 2.571 2.757 3.365 4.032
Table 2. Portion of the student’s t-table.
Ex. 4

Find the critical value t% for a 95% confidence interval with a sample size of n=13.
*  Degrees of freedom (down the left-hand column) is equal to n-1 = 12
* «a=0.05and o/2 = 0.025
*  Go down the 0.025 column to 12 df
. oy 22179

The critical values from the students’ t-distribution approach the critical values from the
standard normal distribution as the sample size (n) increases.

n Degrees of t 025
freedom

11 10 2.228

51 50 2.009

101 100 1.984

1001 1000 1.962

Table 3. Critical values from the student’s t-table.

Using the standard normal curve, the critical value for a 95% confidence interval is 1.96.
You can see how different samples sizes will change the critical value and thus the confi-
dence interval, especially when the sample size is small.

Construction of a Confidence Interval about p
when o is Unknown

t
1) % critical value with n-1 df
s
E=t *x—
DE

3)XtE
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Ex.5

Researchers studying the effects of acid rain in the Adirondack Mountains collected
water samples from 22 lakes. They measured the pH (acidity) of the water and want
to construct a 99% confidence interval about the mean lake pH for this region. The
sample mean is 6.4438 with a sample standard deviation of 0.7120. They do not know
anything about the distribution of the pH of this population, and the sample is small
(n<30), so they look at a normal probability plot.

Percent

9

Probability Plot of pH
Normal - 95% CI

957
90

807
707
607
507
407
30
20

Mean 6.443
StDev 0.7120
N 22
AD 0.565
P-Value  0.127

Figure 4. Normal probability plot.

The data is normally distributed. Now construct the 99% confidence interval about
the mean pH.

1) la) _ 2,831

s 0.7120
2) E=t, ,*—= = 2.831* == -0.4297
) % In V22

3) Xt E =6.443 £ 0.4297
The 99% confidence interval about the mean pH is (6.013, 6.863).

We are 99% confident that this interval contains the mean lake pH for this lake
population.

Now construct a 90% confidence interval about the mean pH for these lakes.

t
1) % =1.721

s 0.7120
) E=t, %= = L.721*="===_0.2612
) % In V22
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3) x+ E =6.443 +0.2612
'The 90% confidence interval about the mean pH is (6.182, 6.704).

We are 90% confident that this interval contains the mean lake pH for this lake
population.

Notice how the width of the interval decreased as the level of confidence decreased

from 99 to 90%.

Construct a 90% confidence interval about the mean lake pH using Excel and
Minitab.

Software Solutions

Minitab

For Minitab, enter the data in the spreadsheet and select Basic statistics and 1-sample

t-test
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One-Sample T: pH

Variable N Mean StDev SE Mean 90% CI
PH 22 6.443 0.712 0.152 (6.182,6.704)

Additional example: www.youtube.com/watch?v=glyPIEJE6]c

Excel

For Excel, enter the data in the spreadsheet and select descriptive statistics. Check
Summary Statistics and select the level and confidence.
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Mean 6.442909
Standard Error 0.151801
Median 6.4925
Mode #N/A
Standard Deviation 0.712008
Sample Variance 0.506956
Kurtosis -0.5007
Skewness -0.60591
Range 2.338
Minimum 5.113
Maximum 7.451
Sum 141.744
Count 22
Confidence
Level(90.0%) 0.26121
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Excel gives you the sample mean in the first line (6.442909) and the margin of error
in the last line (0.26121). You must complete the computation yourself to obtain the
interval (6.442909+0.26121).

Confidence Intervals about the Population
Proportion (p)

Frequently, we are interested in estimating the population proportion (p), instead of the
population mean (p). For example, you may need to estimate the proportion of trees in-
tected with beech bark disease, or the proportion of people who support “green” products.
The parameter p can be estimated in the same ways as we estimated p, the population mean.

The Sample Proportion

*  'The sample proportion is the best point estimate for the true popula-
tion proportion.
X
+  Sample proportion P = where x is the number of elements in

the sample with the characteristic you are interested in, and 7 is the
sample size.

The Assumption of Normality when Estimating Proportions

*  'The assumption of a normally distributed population is still important,
even though the parameter has changed.

*  Normality can be verified if:
nxp*(1-p)=10
Constructing a Confidence Interval about the Population Proportion

Constructing a confidence interval about the proportion follows the same three steps we
have used in previous examples.

O/ (critical value from the standard normal table)

2)E=Z7 o 4/ (margm of error)

3) ptE (point estimate + margin of error)

Ex. 6

A botanist has produced a new variety of hybrid soybean that is better able to
withstand drought. She wants to construct a 95% confidence interval about the
germination rate (percent germination). She randomly selected 500 seeds and found
that 421 have germinated.
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First, compute the point estimate

. 421
p=T=2-0842
n 500
Check normality: n* p*(1—p)>10 = 500%0.842(1—0.842)=66.5

You can assume a normal distribution.
Now construct the confidence interval:
Y4
1) 7% =1.96
p(1-p) 842(1-.842)
NE=z, PV =q96% [TV 032
/2 n 500
3) pTE=0.842+0032
The 95% confidence interval for the germination rate is (81.0%, 87.4%).

We can be 95% confident that this interval contains the true germination rate for this
population.

Software Solutions

Minitab

You can use Minitab to compute the confidence interval. Select STAT >Basic stats>1-
proportion. Select summarized data and enter the number of events (421) and the
number of trials (500). Click Options and select the correct confidence level. Check
“test and interval based on normal distribution” if the assumption of normality has

been verified.
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Using the normal approximation.

Excel

Excel does not compute confidence intervals for estimating the population

proportion.

Confidence Interval Summary

Which method do I use?

The first question to ask yourself is: Which parameter are you trying to estimate? If it is
the mean (u), then ask yourself: Is the population standard deviation (¢) known? If yes,

then follow the next 3 steps:

Confidence Interval about the Population Mean (u) when ¢ is Known

1) Z% critical value (from the standard normal table)
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(o}
2) E:Z%*E

3) Xt E

If no, follow these 3 steps:

Confidence Interval about the Population Mean (p) when o is Unknown
ta
1) % critical value with n-1 df from the student t-distribution
A
E=t *—
2) 2 \/Z
3) Xt E

If you want to construct a confidence interval about the population proportion, follow these

3 steps:

Confidence Interval about the Proportion

1) %2 critical value from the standard normal table

~ p(1-p)
2)E—Z%* —n
3) p+E

Remember that the assumption of normality must be verified.
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Chapter 3

Hypothesis Testing

Section 1

The previous two chapters introduced methods for organizing and summarizing sample
data, and using sample statistics to estimate population parameters. This chapter introduces
the next major topic of inferential statistics: hypothesis testing.

A hypothesis is a statement or claim about a property of a population.

The Fundamentals of Hypothesis Testing

When conducting scientific research, typically there is some known information, perhaps
from some past work or from a long accepted idea. We want to test whether this claim is

believable. This is the basic idea behind a hypothesis test:

*  State what we think is true.
*  Quantify how confident we are about our claim.
*  Use sample statistics to make inferences about population parameters.

For example, past research tells us that the average life span for a hummingbird is about
four years. You have been studying the hummingbirds in the southeastern United States
and find a sample mean lifespan of 4.8 years. Should you reject the known or accepted
information in favor of your results? How confident are you in your estimate? At what
point would you say that there is enough evidence to reject the known information and
support your alternative claim? How far from the known mean of four years can the sample
mean be before we reject the idea that the average lifespan of a hummingbird is four years?
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Hypothesis testing is a procedure, based on sample evidence and probability, used
to test claims regarding a characteristic of a population.

A hypothesis is a claim or statement about a characteristic of a population of interest to us.
A hypothesis test is a way for us to use our sample statistics to test a specific claim.

Ex. 1

'The population mean weight is known to be 157 Ib. We want to test the claim that the
mean weight has increased.

Ex.2

Two years ago, the proportion of infected plants was 37%. We believe that a treat-
ment has helped, and we want to test the claim that there has been a reduction in the
proportion of infected plants.

Components of a Formal Hypothesis Test

The null hypothesis is a statement about the value of a population parameter, such as the
population mean (u) or the population proportion (p). It contains the condition of equality
and is denoted as H (H-naught).

H :pu=1570rH :p =037

The alternative hypothesis is the claim to be tested, the opposite of the null hypothesis. It
contains the value of the parameter that we consider plausible and is denoted as H, .

H,:p>1570rH, : p#0.37

The test statistic is a value computed from the sample data that is used in making a decision
about the rejection of the null hypothesis. The test statistic converts the sample mean (X )
or sample proportion (P) to a Z- or t-score under the assumption that the null hypothesis
is true. It is used to decide whether the difference between the sample statistic and the
hypothesized claim is significant.

The p-value is the area under the curve to the left or right of the test statistic. It is com-
pared to the level of significance (o).

The critical value is the value that defines the rejection zone (the test statistic values that
would lead to rejection of the null hypothesis). It is defined by the level of significance.

The level of significance () is the probability that the test statistic will fall into the critical
region when the null hypothesis is true. This level is set by the researcher.

The conclusion is the final decision of the hypothesis test. The conclusion must always
be clearly stated, communicating the decision based on the components of the test. It is
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important to realize that we never prove or accept the null hypothesis. We are merely
saying that the sample evidence is not strong enough to warrant the rejection of the null
hypothesis. The conclusion is made up of two parts:

1) Reject or fail to reject the null hypothesis, and 2) there is or is not enough evidence to
support the alternative claim.

Option 1) Reject the null hypothesis (H,). This means that you have enough statistical
evidence to support the alternative claim (H,).

Option 2) Fail to reject the null hypothesis (H ). This means that you do NOT have enough
evidence to support the alternative claim (H,).

Another way to think about hypothesis testing is to compare it to the US justice system. A
defendant is innocent until proven guilty (Null hypothesis—innocent). The prosecuting at-
torney tries to prove that the defendant is guilty (Alternative hypothesis—guilty). There are
two possible conclusions that the jury can reach. First, the defendant is guilty (Reject the
null hypothesis). Second, the defendant is not guilty (Fail to reject the null hypothesis). This
is NOT the same thing as saying the defendant is innocent! In the first case, the prosecutor
had enough evidence to reject the null hypothesis (innocent) and support the alternative
claim (guilty). In the second case, the prosecutor did NOT have enough evidence to reject
the null hypothesis (innocent) and support the alternative claim of guilty.

The Null and Alternative Hypotheses

There are three different pairs of null and alternative hypotheses:

Two-sided Left-sided Right-sided
Ho: u=c¢ Ho:u=c Ho: p=c
Hy: pzc Hi:p<c Hi:pu>c

where ¢ is some known value.

A Two-sided Test

This tests whether the population parameter is equal to, versus not equal to, some specific
value.

H:p=12vs. H:p#12

'The critical region is divided equally into the two tails and the critical values are + values
that define the rejection zones.

45



Natural Resources Biometrics Chapter 3

Fail to Reject
the Null
Hypothesis

Critical Critical
Value Value
- (+)

Figure 1. The rejection zone for a two-sided hypothesis test.

Ex. 1

A forester studying diameter growth of red pine believes that the mean diameter
growth will be different if a fertilization treatment is applied to the stand.

* H_:pu=12in./year
* H:pu=#12in./year

This is a two-sided question, as the forester doesn't state whether population mean
diameter growth will increase or decrease.

A Right-sided Test

This tests whether the population parameter is equal to, versus greater than, some specific

value.
H:pu=12vs. H:p> 12

The critical region is in the right tail and the critical value is a positive value that defines
the rejection zone.

Fail to Reject
the Null
Hypothesis

Critical
Value

+)

Figure 2. The rejection zone for a right-sided hypothesis test.
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Ex.2

A biologist believes that there has been an increase in the mean number of lakes in-
fected with milfoil, an invasive species, since the last study five years ago.

*  H_:p=151lakes
*  H,:p>151lakes

'This is a right-sided question, as the biologist believes that there has been an increase
in population mean number of infected lakes.

A Left-sided Test

This tests whether the population parameter is equal to, versus less than, some specific value.
H:pu=12vs. H:p<12

The critical region is in the left tail and the critical value is a negative value that defines the
rejection zone.

Fail to Reject
the Null
Hypothesis

Critical
Value
)

Figure 3. The rejection zone for a left-sided hypothesis test.

Ex.3

A scientist’s research indicates that there has been a change in the proportion of
people who support certain environmental policies. He wants to test the claim that
there has been a reduction in the proportion of people who support these policies.

* H_:p=0.57
* Hp:p<0.57

'This is a left-sided question, as the scientist believes that there has been a reduction
in the true population proportion.
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Statistically Significant

When the observed results (the sample statistics) are unlikely (a low probability) under the
assumption that the null hypothesis is true, we say that the result is statistically significant,
and we reject the null hypothesis. This result depends on the level of significance, the sample
statistic, sample size, and whether it is a one- or two-sided alternative hypothesis.

Types of Errors

When testing, we arrive at a conclusion of rejecting the null hypothesis or failing to reject
the null hypothesis. Such conclusions are sometimes correct and sometimes incorrect (even
when we have followed all the correct procedures). We use incomplete sample data to reach
a conclusion and there is always the possibility of reaching the wrong conclusion. There are
four possible conclusions to reach from hypothesis testing. Of the four possible outcomes,
two are correct and two are NOT correct.

Reality

Correct Conclusion Type Il Error

Type | Error Correct Conclusion

Table 1. Possible outcomes from a hypotbhesis test.

A'Type I error is when we reject the null hypothesis when it is true. The symbol a (alpha)
is used to represent Type I errors. This is the same alpha we use as the level of significance.
By setting alpha as low as reasonably possible, we try to control the Type I error through
the level of significance.

A Type II error is when we fail to reject the null hypothesis when it is false. The symbol 8
(beta) is used to represent Type II errors.

In general, Type I errors are considered more serious. One step in the hypothesis test pro-
cedure involves selecting the significance level (&), which is the probability of rejecting the
null hypothesis when it is correct. So the researcher can select the level of significance that
minimizes Type I errors. However, there is a mathematical relationship between a, 3, and
n (sample size).

* As aincreases, 3 decreases
* As adecreases, 3 increases
+  Assample size increases (n), both aand  decrease

'The natural inclination is to select the smallest possible value for «, thinking to minimize
the possibility of causing a Type I error. Unfortunately, this forces an increase in Type II
errors. By making the rejection zone too small, you may fail to reject the null hypothesis,
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when, in fact, it is false. Typically, we select the best sample size and level of significance,
automatically setting [3.

0.05

Reject Ho Fail to Reject Ho

Figure 4. Type 1 error.

Power of the Test

A Type II error (B) is the probability of failing to reject a false null hypothesis. It follows
that 1-f is the probability of rejecting a false null hypothesis. This probability is identified
as the power of the test, and is often used to gauge the test’s effectiveness in recognizing
that a null hypothesis is false.

The probability that at a fixed level a significance test will reject H,, when a
particular alternative value of the parameter is true is called the power of the test.

Power is also directly linked to sample size. For example, suppose the null hypothesis is
that the mean fish weight is 8.7 1b. Given sample data, a level of significance of 5%, and an
alternative weight of 9.2 Ib., we can compute the power of the test to reject = 8.7 1b. If we
have a small sample size, the power will be low. However, increasing the sample size will
increase the power of the test. Increasing the level of significance will also increase power.
A 5% test of significance will have a greater chance of rejecting the null hypothesis than a
1% test because the strength of evidence required for the rejection is less. Decreasing the
standard deviation has the same effect as increasing the sample size: there is more informa-
tion about (L.

49



Natural Resources Biometrics Chapter 3

Section 2

Hypothesis Test about the Population
Mean (u) when the Population Standard
Deviation (o) is Known

We are going to examine two equivalent ways to perform a hypothesis test: the classical
approach and the p-value approach. The classical approach is based on standard devia-
tions. This method compares the test statistic (Z-score) to a critical value (Z-score) from
the standard normal table. If the test statistic falls in the rejection zone, you reject the null
hypothesis. The p-value approach is based on area under the normal curve. This method
compares the area associated with the test statistic to alpha (at), the level of significance
(which is also area under the normal curve). If the p-value is less than alpha, you would
reject the null hypothesis.

As a past student poetically said: If the p-value is a wee value, Reject Ho

Both methods must have:

* Data from a random sample.
*  Verification of the assumption of normality.
* A null and alternative hypothesis.

* A criterion that determines if we reject or fail to reject the null

hypothesis.
* A conclusion that answers the question.

‘There are four steps required for a hypothesis test:

1) State the null and alternative hypotheses.

2) State the level of significance and the critical value.
3) Compute the test statistic.

4) State a conclusion.
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The Classical Method for Testing a Claim about the
Population Mean () when the Population Standard
Deviation (o) is Known

Ex. 4
A Two-sided Test

A forester studying diameter growth of red pine believes that the mean diameter
growth will be different from the known mean growth of 1.35 inches/year if a fertil-
ization treatment is applied to the stand. He conducts his experiment, collects data
from a sample of 32 plots, and gets a sample mean diameter growth of 1.6 in./year.
The population standard deviation for this stand is known to be 0.46 in./year. Does
he have enough evidence to support his claim?

Step 1) State the null and alternative hypotheses.
* H_:u=135in./year
* H;:p=1.35in./year

Step 2) State the level of significance and the critical value.
*  We will choose a level of significance of 5% (a = 0.05).
* Foratwo-sided question, we need a two-sided critical value - Z ,and +Z ,.

* 'The level of significance is divided by 2 (since we are only testing “not equal”).
We must have two rejection zones that can deal with either a greater than or
less than outcome (to the right (+) or to the left (-)).

*  We need to find the Z-score associated with the area of 0.025. The red areas are
equal to a/2 = 0.05/2 = 0.025 or 2.5% of the area under the normal curve.

* Go into the body of values and find the negative Z-score associated with the
area 0.025.

Fail to Reject
the Null
Hypothesis

Critical Critical
Value Value
) +)

Figure 5. The rejection zone for a two-sided fest.
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* 'The negative critical value is -1.96. Since the curve is symmetric, we know that
the positive critical value is 1.96.

*  £1.96 are the critical values. These values set up the rejection zone. If the test
statistic falls within these red rejection zones, we reject the null hypothesis.

Step 3) Compute the test statistic.

* 'The test statistic is the number of standard deviations the sample mean is from
the known mean. It is also a Z-score, just like the critical value.

X—u
yAr

*  For this problem, the test statistic is

z =

1.6-1.35
Z=———

Y m

*  Compare the test statistic to the critical value. If the test statistic falls into the
rejection zones, reject the null hypothesis. In other words, if the test statistic is
greater than +1.96 or less than -1.96, reject the null hypothesis.

=3.07

Step 4) State a conclusion.

Fail to Reject Ho

-1.96 a 1496 3.07
Reject Ho Reject Ho

Figure 6. The critical values for a two-sided test when o = 0.05.

In this problem, the test statistic falls in the red rejection zone. The test statistic of
3.07 is greater than the critical value of 1.96.We will reject the null hypothesis. We
have enough evidence to support the claim that the mean diameter growth is dif-
ferent from (not equal to) 1.35 in./year.

Ex.5
A Right-sided Test

A researcher believes that there has been an increase in the average farm size in his
state since the last study five years ago. The previous study reported a mean size of 450
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acres with a population standard deviation (6) of 167 acres. He samples 45 farms and
gets a sample mean of 485.8 acres. I's there enough information to support his claim?
Step 1) State the null and alternative hypotheses.

*  H_:p=450acres

e H:p>450acres

Step 2) State the level of significance and the critical value.
*  We will choose a level of significance of 5% (ot = 0.05).
* For aone-sided question, we need a one-sided positive critical value Z .

* The level of significance is all in the right side (the rejection zone is just on the
right side).

*  We need to find the Z-score associated with the 5% area in the right tail.

Fail to Reject
the Null
Hypothesis

Critical
Value

(+)
Figure 7. Rejection zone for a right-sided hypothesis test.

*  Go into the body of values in the standard normal table and find the Z-score
that separates the lower 95% from the upper 5%.

* 'The critical value is 1.645. This value sets up the rejection zone.

Step 3) Compute the test statistic.

*  The test statistic is the number of standard deviations the sample mean is from
the known mean. It is also a Z-score, just like the critical value.

*  For this problem, the test statistic is

| 485.8-450

B 167JE

*  Compare the test statistic to the critical value.

=1.44

Step 4) State a conclusion.
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=~ 1
o 144 16845
Fejact Ho

Figure 8. The critical value for a right-sided test when « = 0.05.

*  'The test statistic does not fall in the rejection zone. It is less than the critical
value.

We fail to reject the null hypothesis. We do not have enough evidence to support the
claim that the mean farm size has increased from 450 acres.

Ex. 6
A Left-sided Test

A researcher believes that there has been a reduction in the mean number of hours
that college students spend preparing for final exams. A national study stated that
students at a 4-year college spend an average of 23 hours preparing for 5 final exams
each semester with a population standard deviation of 7.3 hours. The researcher
sampled 227 students and found a sample mean study time of 19.6 hours. Does this
indicate that the average study time for final exams has decreased? Use a 1% level of
significance to test this claim.

Step 1) State the null and alternative hypotheses.
* H_:u=23hours
*  H,:p<23hours

Step 2) State the level of significance and the critical value.
* 'This is a left-sided test so alpha (0.01) is all in the left tail.

Fail to Reject
the Null
Hypothesis

Critical
Value

)
Figure 9. The rejection zone for a left-sided hypothesis test.
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* Go into the body of values in the standard normal table and find the Z-score
that defines the lower 1% of the area.

* 'The critical value is -2.33. This value sets up the rejection zone.

Step 3) Compute the test statistic.

* 'The test statistic is the number of standard deviations the sample mean is from
the known mean. It is also a Z-score, just like the critical value.

*  For this problem, the test statistic is

J_196-23

"

Step 4) State a conclusion.

*  Compare the test statistic to the critical value.

Fail to Reject Ho

T.02 -2.33 0
Reject Ho

Figure 10. The critical value for a lefi-sided test when a = 0.01.

*  The test statistic falls in the rejection zone. The test statistic of -7.02 is less than
the critical value of -2.33.

We reject the null hypothesis. We have sufficient evidence to support the claim that
the mean final exam study time has decreased below 23 hours.

Testing a Hypothesis using P-values

'The p-value is the probability of observing our sample mean given that the null hypothesis
is true. It is the area under the curve to the left or right of the test statistic. If the probability
of observing such a sample mean is very small (less than the level of significance), we would
reject the null hypothesis. Computations for the p-value depend on whether it is a one- or
two-sided test.
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Steps for a hypothesis test using p-values:

+  State the null and alternative hypotheses.
+  State the level of significance.

*  Compute the test statistic and find the area associated with it (this is the
p-value).

*  Compare the p-value to alpha () and state a conclusion.

Instead of comparing Z-score test statistic to Z-score critical value, as in the classical
method, we compare area of the test statistic to area of the level of significance.

The Decision Rule:

If the p-value is less than alpha, we reject the null hypothesis

Computing P-values

it is a two-sided test (the alternative claim is #), the p-value is equal to two times the
If ded he al 1 he p-val qual h

probability of the absolute value of the test statistic. If the test is a left-sided test (the
alternative claim is “<”), then the p-value is equal to the area to the left of the test statistic.

“w.o»

If the test is a right-sided test (the alternative claim is “>”), then the p-value is equal to the
area to the right of the test statistic.

Let’s look at Ex. 4 again.

A forester studying diameter growth of red pine believes that the mean diameter growth
will be different from the known mean growth of 1.35 in./year if a fertilization treatment is
applied to the stand. He conducts his experiment, collects data from a sample of 32 plots,
and gets a sample mean diameter growth of 1.6 in./year. The population standard deviation
for this stand is known to be 0.46 in./year. Does he have enough evidence to support his
claim?

Step 1) State the null and alternative hypotheses.

* H_:p=1.35in./year
* Hj:p=#1.35in/year

Step 2) State the level of significance.

* We will choose a level of significance of 5% (a = 0.05).

Step 3) Compute the test statistic.

*  For this problem, the test statistic is:
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1.6-1.35
Z=———

Y m

The p-value is two times the area of the absolute value of the test statistic (because the
alternative claim is “not equal”).

=3.07

Fail to Reject Ho

0 3.07

Figure 11. The p-value compared to the level of significance.

*  Look up the area for the Z-score 3.07 in the standard normal table.
'The area (probability) is equal to 1 —0.9989 = 0.0011.

*  Multiply this by 2 to get the p-value = 2 * 0.0011 = 0.0022.

Step 4) Compare the p-value to alpha and state a conclusion.

*  Use the Decision Rule (if the p-value is less than a, reject H ).
* In this problem, the p-value (0.0022) is less than alpha (0.05).

* We reject the H . We have enough evidence to support the claim that
the mean diameter growth is different from 1.35 inches/year.

Let’s look at Ex. 5 again.

A researcher believes that there has been an increase in the average farm size in his state
since the last study five years ago. The previous study reported a mean size of 450 acres with
a population standard deviation (6) of 167 acres. He samples 45 farms and gets a sample
mean of 485.8 acres. Is there enough information to support his claim?

Step 1) State the null and alternative hypotheses.

*  H_:p =450 acres
*  H,:p>450 acres

Step 2) State the level of significance.

* We will choose a level of significance of 5% (a = 0.05).
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Step 3) Compute the test statistic.

*  For this problem, the test statistic is

_ 485.8-450

B 167\/3

'The p-value is the area to the right of the Z-score 1.44 (the hatched area).

=144

 'This is equal to 1 - 0.9251 = 0.0749.

*  The p-value is 0.0749.

\

Failto Reject Ho

1] 1.44

Figure 12. The p-value compared to the level of significance for a right-sided test.

Step 4) Compare the p-value to alpha and state a conclusion.

*  Use the Decision Rule.

* In this problem, the p-value (0.0749) is greater than alpha (0.05), so
we Fail to Reject the H .

+  The area of the test statistic is greater than the area of alpha (a).

We fail to reject the null hypothesis. We do not have enough evidence to support the claim
that the mean farm size has increased.

Let’s look at the Ex. 6 again.

A researcher believes that there has been a reduction in the mean number of hours that
college students spend preparing for final exams. A national study stated that students at
a 4-year college spend an average of 23 hours preparing for 5 final exams each semester
with a population standard deviation of 7.3 hours. The researcher sampled 227 students and
found a sample mean study time of 19.6 hours. Does this indicate that the average study
time for final exams has decreased? Use a 1% level of significance to test this claim.
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Step 1) State the null and alternative hypotheses.

*  H_:pu=23hours
*  H,:p <23 hours

Step 2) State the level of significance.

*  'This is a left-sided test so alpha (0.01) is all in the left tail.

Step 3) Compute the test statistic.

*  For this problem, the test statistic is

19.6-23

Y

The p-value is the area to the left of the test statistic (the little black area to the left of
-7.02). The Z-score of -7.02 is not on the standard normal table. The smallest probability
on the table is 0.0002. We know that the area for the Z-score -7.02 is smaller than this area
(probability). Therefore, the p-value is <0.0002.

z

=-7.02

Failto Reject Ho

.01

-7.03 0

Figure 13. The p-value compared to the level of significance for a left-sided test.
Step 4) Compare the p-value to alpha and state a conclusion.

*  Use the Decision Rule.

* In this problem, the p-value (p<0.0002) is less than alpha (0.01), so we
Reject the H,.

* The area of the test statistic is much less than the area of alpha (a).

We reject the null hypothesis. We have enough evidence to support the claim that the mean
final exam study time has decreased below 23 hours.

Both the classical method and p-value method for testing a hypothesis will arrive at the
same conclusion. In the classical method, the critical Z-score is the number on the z-axis
that defines the level of significance (). The test statistic converts the sample mean to units
of standard deviation (a Z-score). If the test statistic falls in the rejection zone defined by
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the critical value, we will reject the null hypothesis. In this approach, two Z-scores, which
are numbers on the z-axis, are compared. In the p-value approach, the p-value is the area
associated with the test statistic. In this method, we compare a (which is also area under the
curve) to the p-value. If the p-value is less than o, we reject the null hypothesis. The p-value
is the probability of observing such a sample mean when the null hypothesis is true. If the
probability is too small (less than the level of significance), then we believe we have enough
statistical evidence to reject the null hypothesis and support the alternative claim.

Software Solutions

Minitab

(referring to Ex. 6)
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Chapter 3

Excel does not offer 1-sample hypothesis testing.
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Section 3

Hypothesis Test about the Population
Mean (u) when the Population Standard
Deviation (o) is Unknown

Frequently, the population standard deviation (6 ) is not known. We can estimate the
population standard deviation (6) with the sample standard deviation (s). However, the
test statistic will no longer follow the standard normal distribution. We must rely on the
student’s t-distribution with n-1 degrees of freedom. Because we use the sample standard
deviation (s), the test statistic will change from a Z-score to a t-score.

X-u t:f—u
A

Steps for a hypothesis test are the same that we covered in Section 2.

zZ=

State the null and alternative hypotheses.

State the level of significance and the critical value.
*  Compute the test statistic.

+  State a conclusion.

Just as with the hypothesis test from the previous section, the data for this test must be from
a random sample and requires either that the population from which the sample was drawn
be normal or that the sample size is sufficiently large (n230). A t-test is robust, so small
departures from normality will not adversely affect the results of the test. That being said, if
the sample size is smaller than 30, it is always good to verify the assumption of normality
through a normal probability plot.

We will still have the same three pairs of null and alternative hypotheses and we can still
use either the classical approach or the p-value approach.

Two-sided Left-sided Right-sided
Ho:pu=c Ho:pu=c Ho:p=c¢
Hi:pzc Hi:p<c Hi:pu>c

Selecting the correct critical value from the student’s t-distribution table depends on three
factors: the type of test (one-sided or two-sided alternative hypothesis), the sample size,
and the level of significance.
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For a two-sided test (“not equal” alternative hypothesis), the critical value (t_,), is deter-
mined by alpha (a), the level of significance, divided by two, to deal with the possibility that
the result could be less than OR greater than the known value.

* Ifyour level of significance was 0.05, you would use the 0.025 column
to find the correct critical value (0.05/2 = 0.025).

* Ifyour level of significance was 0.01, you would use the 0.005 column
to find the correct critical value (0.01/2 = 0.005).

For a one-sided test (“a less than” or “greater than” alternative hypothesis), the critical value
(t,),is determined by alpha (a), the level of significance, being all in the one side.

* Ifyour level of significance was 0.05, you would use the 0.05 column
to find the correct critical value for either a left or right-side question.
If you are asking a “less than” (left-sided question, your critical value
will be negative. If you are asking a “greater than” (right-sided ques-
tion), your critical value will be positive.

Ex.7

Find the critical value you would use to test the claim that p # 112 with a sample size
of 18 and a 5% level of significance.

In this case, the critical value (t ,) would be 2.110. This is a two-sided question (#)
so you would divide alpha by 2 (0.05/2 = 0.025) and go down the 0.025 column to 17

degrees of freedom.

Ex. 8
What would the critical value be if you wanted to test that p < 112 for the same data?

In this case, the critical value would be 1.740. This is a one-sided question (<) so alpha
would be divided by 1 (0.05/1 = 0.05). You would go down the 0.05 column with 17

degrees of freedom to get the correct critical value.

Ex.9
A Two-sided Test

In 2005, the mean pH level of rain in a county in northern New York was 5.41. A
biologist believes that the rain acidity has changed. He takes a random sample of 11
rain dates in 2010 and obtains the following data. Use a 1% level of significance to
test his claim.

4.70,5.63,5.02,5.78,4.99,5.91,5.76, 5.54,5.25,5.18, 5.01

'The sample size is small and we don’t know anything about the distribution of the
population, so we examine a normal probability plot. The distribution looks normal
so we will continue with our test.
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Probability Plot of pH
Normal - 95% CI

99

Mean 5.343
StDev 0.3995
N 11
AD 0.352
P-Value  0.397

957
90

807
707
607
507
407
30
20

Percent

4.0 4.5 5.0 5.5 6.0 6.5 7.0
pH

Figure 14. A normal probability plot for Example 9.

The sample mean is 5.343 with a sample standard deviation of 0.397.
Step 1) State the null and alternative hypotheses.

* H:p=541

* Hgu=#541
Step 2) State the level of significance and the critical value.

* 'This is a two-sided question so alpha is divided by two.

Fail to Reject
the Null
Hypothesis

Ceritical Critical
Value Value
- )

Figure 15. The rejection zones for a two-sided test.

* t_,isfound by going down the 0.005 column with 14 degrees of freedom.
* t,,=%3.169.
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Step 3) Compute the test statistic.

* The test statistic is a t-score.

¢ For this problem, the test statistic is

5.343-5.41

0397
g

*  Compare the test statistic to the critical value.

=-0.560

Step 4) State a conclusion.

Fail fo Reject Ho

<3169 _g.560 3169
Reject Ho Reject Ho

Figure 16. The critical values for a two-sided test when o = 0.01.
* The test statistic does not fall in the rejection zone.

We will fail to reject the null hypothesis. We do not have enough evidence to support
the claim that the mean rain pH has changed.

Ex. 10
A One-sided Test

Cadmium, a heavy metal, is toxic to animals. Mushrooms, however, are able to
absorb and accumulate cadmium at high concentrations. The government has set
safety limits for cadmium in dry vegetables at 0.5 ppm. Biologists believe that the
mean level of cadmium in mushrooms growing near strip mines is greater than the
recommended limit of 0.5 ppm, negatively impacting the animals that live in this
ecosystem. A random sample of 51 mushrooms gave a sample mean of 0.59 ppm with
a sample standard deviation of 0.29 ppm. Use a 5% level of significance to test the
claim that the mean cadmium level is greater than the acceptable limit of 0.5 ppm.

'The sample size is greater than 30 so we are assured of a normal distribution of the
means.
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Step 1) State the null and alternative hypotheses.
* H:p=0.5ppm
* H;:p>05ppm
Step 2) State the level of significance and the critical value.

*  'This is a right-sided question so alpha is all in the right tail.

Fail to Reject
the Null
Hypothesis

Critical
Value

(+)

Figure 17. Rejection zone for a right-sided test.

* t_isfound by going down the 0.05 column with 50 degrees of freedom.
 t _=1.676

Step 3) Compute the test statistic.

e The test statistic is a t-score.

*  For this problem, the test statistic is

~0.59-0.50

Step 4) State a Conclusion.

=2.216

*  Compare the test statistic to the critical value.
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Failto Reject Ho

1] 1.676 2216
Feject Ho

Figure 18. Critical value for a right-sided test when a = 0.05.

The test statistic falls in the rejection zone. We will reject the null hypothesis. We
have enough evidence to support the claim that the mean cadmium level is greater
than the acceptable safe limit.

BUT, what happens if the significance level changes to 1%?

The critical value is now found by going down the 0.01 column with 50 degrees of
freedom. The critical value is 2.403. The test statistic is now LESS THAN the critical
value. The test statistic does not fall in the rejection zone. The conclusion will change.
We do NOT have enough evidence to support the claim that the mean cadmium
level is greater than the acceptable safe limit of 0.5 ppm.

The level of significance is the probability that you, as the researcher, set to decide if
there is enough statistical evidence to support the alternative claim. It should be set
before the experiment begins.

P-value Approach

We can also use the p-value approach for a hypothesis test about the mean when the
population standard deviation (6) is unknown. However, when using a student’s t-table, we
can only estimate the range of the p-value, not a specific value as when using the standard
normal table. The student’s t-table has area (probability) across the top row in the table,
with t-scores in the body of the table.

+ To find the p-value (the area associated with the test statistic), you
would go to the row with the number of degrees of freedom.

*  Go across that row until you find the two values that your test statistic
is between, then go up those columns to find the estimated range for
the p-value.

Ex. 11

Estimating P-value from a Student’s T-table
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t-Distribution
Area in Right Tail

df .05 .025 .02 .01 .005

1 6.314 12.706 15.894 31.821 63.657
2 2.920 4.303 4.849 6.965 9.925
3 2.353 3.182 3.482 4.541 5.841
4 2.132 2.776 2.999 3.747 4.604
5 2.015 2.571 2.757 3.365 4.032

Table 3. Portion of the student’s t-table.

If your test statistic is 3.789 with 3 degrees of freedom, you would go across the 3 df
row. The value 3.789 falls between the values 3.482 and 4.541 in that row. Therefore,
the p-value is between 0.02 and 0.01. The p-value will be greater than 0.01 but less
than 0.02 (0.01<p<0.02).

Conclusion

If your level of significance is 5%, you would reject the null hypothesis as the p-value (0.01-
0.02) is less than alpha (a) of 0.05.

If your level of significance is 1%, you would fail to reject the null hypothesis as the p-value
(0.01-0.02) is greater than alpha (a) of 0.01.

Software packages typically output p-values. It is easy to use the Decision Rule to answer
your research question by the p-value method.

Software Solutions

Minitab

(referring to Ex. 10)
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Additional example: www.youtube.com/watch?v=WwdSjO4VUsg.

Excel

Excel does not offer 1-sample hypothesis testing.
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Section 4

Hypothesis Test for a Population
Proportion (p)

Frequently, the parameter we are testing is the population proportion.

* We are studying the proportion of trees with cavities for wildlife
habitat.

*  We need to know if the proportion of people who support green
building materials has changed.

*  Has the proportion of wolves that died last year in Yellowstone
increased from the year before?

Recall that the best point estimate of p, the population proportion, is given by

. X
pP=-
n

where « is the number of individuals in the sample with the characteristic studied and 7
is the sample size. The sampling distribution of p is approximately normal with a mean

U, = p and a standard deviation
1—
o= |p1=p)
n

when 7p(1 - p)210. We can use both the classical approach and the p-value approach for
testing.

'The steps for a hypothesis test are the same that we covered in Section 2.

State the null and alternative hypotheses.

State the level of significance and the critical value.
*  Compute the test statistic.

*  State a conclusion.

'The test statistic follows the standard normal distribution. Notice that the standard error
(the denominator) uses p instead of p, which was used when constructing a confidence in-
terval about the population proportion. In a hypothesis test, the null hypothesis is assumed
to be true, so the known proportion is used.
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p-p
p(-p)

n

z=

*  'The critical value comes from the standard normal table, just as in
Section 2. We will still use the same three pairs of null and alternative
hypotheses as we used in the previous sections, but the parameter is
now p instead of p:

Two-sided Left-sided Right-sided
Ho:p=c Ho:p=c Ho:p=c
Hi:p#c Hi:p<c Hi:p>c

*  For a two-sided test, alpha will be divided by 2 giving a + Z , critical
value.

*  For aleft-sided test, alpha will be all in the left tail giving a - Z_
critical value.

*  For aright-sided test, alpha will be all in the right tail giving a Z_

critical value.

Ex. 12

A botanist has produced a new variety of hybrid soy plant that is better able to with-
stand drought than other varieties. The botanist knows the seed germination for the
parent plants is 75%, but does not know the seed germination for the new hybrid.
He tests the claim that it is different from the parent plants. To test this claim, 450
seeds from the hybrid plant are tested and 321 have germinated. Use a 5% level of
significance to test this claim that the germination rate is different from 75%.
Step 1) State the null and alternative hypotheses.

* H:p=0.75

* H;:p=0.75

Step 2) State the level of significance and the critical value.

'This is a two-sided question so alpha is divided by 2.
* Alphais 0.05 so the critical valuesare + Z ,=+Z ..

*  Look on the negative side of the standard normal table, in the body of values
for 0.025.

e 'The critical values are + 1.96.

Step 3) Compute the test statistic.

*  The test statistic is the number of standard deviations the sample mean is from
the known mean. It is also a Z-score, just like the critical value.
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p—p
p(-p)
n

*  For this problem, the test statistic is

L 0.713-0.75 181

[0.75(1-0.75)
450

*  Compare the test statistic to the critical value.

Step 4) State a conclusion.

Failto Reject Ho

1
-1.96 -1.81 0 1.96

Figure 19. Critical values for a two-sided test when o = 0.05.

The test statistic does not fall in the rejection zone. We fail to reject the null hypoth-
esis. We do not have enough evidence to support the claim that the germination rate
of the hybrid plant is different from the parent plants.

Let’s answer this question using the p-value approach. Remember, for a two-sided
alternative hypothesis (“not equal”), the p-value is two times the area of the test sta-
tistic. The test statistic is -1.81 and we want to find the area to the left of -1.81 from
the standard normal table.

*  On the negative page, find the Z-score -1.81. Find the area associated with this
Z-score.

e The area = 0.0351.

* 'This is a two-sided test so multiply the area times 2 to get the p-value =
0.0351x2 =0.0702.

Now compare the p-value to alpha. The Decision Rule states that if the p-value is less
than alpha, reject the H .. In this case, the p-value (0.0702) is greater than alpha (0.05)
so we will fail to reject H . We do not have enough evidence to support the claim that
the germination rate of the hybrid plant is different from the parent plants.
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Ex.13

You are a biologist studying the wildlife habitat in the Monongahela National Forest.
Cavities in older trees provide excellent habitat for a variety of birds and small mam-
mals. A study five years ago stated that 32% of the trees in this forest had suitable
cavities for this type of wildlife. You believe that the proportion of cavity trees has in-
creased. You sample 196 trees and find that 79 trees have cavities. Does this evidence
support your claim that there has been an increase in the proportion of cavity trees?

Use a 10% level of significance to test this claim.

Step 1) State the null and alternative hypotheses.
* H:p=0.32
* H;:p>032

Step 2) State the level of significance and the critical value.

This is a one-sided question so alpha is divided by 1.
*  Alphais 0.10 so the critical valueis Z = Z

* Look on the positive side of the standard normal table, in the body of values
for 0.90.

e 'The critical value is 1.28.

Reject Ho

Figure 20. Critical value for a right-sided test where a = 0.10.

Step 3) Compute the test statistic.

* 'The test statistic is the number of standard deviations the sample proportion
is from the known proportion. It is also a Z-score, just like the critical value.

p-p

p(1-p)
n

z=

0.403-0.32

PR o LR DT
*  For this problem, the test statistic is: (0-32(1-0.32)
196

Step 4) State a conclusion.

*  Compare the test statistic to the critical value.
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oy 125 249

Faject Ho

Figure 21. C’ompari&on of the test statistic and the critical value.

The test statistic is larger than the critical value (it falls in the rejection zone). We will
reject the null hypothesis. We have enough evidence to support the claim that there
has been an increase in the proportion of cavity trees.

Now use the p-value approach to answer the question. This is a right-sided question
(“greater than”), so the p-value is equal to the area to the right of the test statistic. Go
to the positive side of the standard normal table and find the area associated with the
Z-score of 2.49. The area is 0.9936. Remember that this table is cumulative from the
left. To find the area to the right of 2.49, we subtract from one.

p-value = (1 - 0.9936) = 0.0064

The p-value is less than the level of significance (0.10), so we reject the null hypoth-
esis. We have enough evidence to support the claim that the proportion of cavity
trees has increased.
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Software Solutions

Minitab

(referring to Ex. 13)
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Using the normal approximation.

Excel

Excel does not offer 1-sample hypothesis testing.
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Section 5

Hypothesis Test about a Variance

When people think of statistical inference, they usually think of inferences involving
population means or proportions. However, the particular population parameter needed
to answer an experimenter’s practical questions varies from one situation to another, and
sometimes a population’s variability is more important than its mean. Thus, product quality
is often defined in terms of low variability.

Sample variance S* can be used for inferences concerning a population variance 6°. For a
random sample of # measurements drawn from a normal population with mean p and vari-
ance 6% the value S* provides a point estimate for 6°. In addition, the quantity (»—1)S?/ ¢*
tollows a Chi-square (x?) distribution, with df = n— 1.

'The properties of Chi-square (x?) distribution are:

*  Unlike Z and t distributions, the values in a chi-square distribution
are all positive.

*  The chi-square distribution is asymmetric, unlike the Z and t
distributions.

*  'There are many chi-square distributions. We obtain a particular one
by specifying the degrees of freedom (df = # - 1) associated with the

sample variances S

Jix®)

L]

x!

xi al

Figure 22. The chi-square distribution.

One-sample x? test for testing the hypotheses:
Null hypothesis: H : 0* = o, (constant)
Alternative hypothesis:

* H:o%> Gé (one-tailed), reject H  if the observed x* > )512] (upper-tail
value at a).
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* H:o’°<o j (one-tailed), reject H if the observed x? < y; (lower-tail
value at ).

- H:o*= o, (two-tailed), reject H, if the observed ¥ > Xo or X’ < xt
at o/2.

where the x? critical value in the rejection region is based on degrees of freedom df =n—1
and a specified significance level of a.
2 (n ~ 1) -S5?
Test statistic: ¥ =5 .
Oy
As with previous sections, if the test statistic falls in the rejection zone set by the critical
value, you will reject the null hypothesis.

Ex. 14

A forester wants to control a dense understory of striped maple that is interfering
with desirable hardwood regeneration using a mist blower to apply an herbicide
treatment. She wants to make sure that treatment has a consistent application rate,
in other words, low variability not exceeding 0.25 gal./acre (0.06 gal.?). She collects
sample data (n = 11) on this type of mist blower and gets a sample variance of 0.064
gal.? Using a 5% level of significance, test the claim that the variance is significantly

greater than 0.06 gal.?
H,: 6°=0.06
H.: 6%>0.06

The critical value is 18.307. Any test statistic greater than this value will cause you to
reject the null hypothesis.

The test statistic is

— . 2 —_— .
, _(n 12 §*_(11-1)-0064
o 0.06

We fail to reject the null hypothesis. The forester does NOT have enough evidence

to support the claim that the variance is greater than 0.06 gal.> You can also estimate
the p-value using the same method as for the student t-table. Go across the row for
degrees of freedom until you find the two values that your test statistic falls between.
In this case going across the row 10, the two table values are 4.865 and 15.987. Now
go up those two columns to the top row to estimate the p-value (0.1-0.9). The p-value
is greater than 0.1 and less than 0.9. Both are greater than the level of significance
(0.05) causing us to fail to reject the null hypothesis.
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Software Solutions

Minitab

Chapter 3

(referring to Ex. 14)
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Null hypothesis
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Method
Sigma-squared

Sigma-squared

=0.06
> 0.06

'The chi-square method is only for the normal distribution.

Tests
Method Statistic
Chi-Square 10.67
Excel

Test
DF

10

P-Value
0.384

Excel does not offer 1-sample X testing.
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Section ©

Putting it all Together Using the Classical
Method

To Test a Claim about p when o is Known

*  Write the null and alternative hypotheses.

*  State the level of significance and get the critical value from the standard
normal table.

*  Compute the test statistic.

*  Compare the test statistic to the critical value (Z-score) and write the
conclusion.

To Test a Claim about p When ¢ is Unknown

*  Write the null and alternative hypotheses.

State the level of significance and get the critical value from the student’s
t-table with n-1 degrees of freedom.

*  Compute the test statistic.

*  Compare the test statistic to the critical value (t-score) and write the
conclusion.

To Test a Claim about p

*  Write the null and alternative hypotheses.

+  State the level of significance and get the critical value from the standard
normal distribution.

*  Compute the test statistic.
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*  Compare the test statistic to the critical value (Z-score) and write the

A

p(-p)

n

__p—p

conclusion.
Two-sided Test One-sided Test
Alpha (a) z4/2 Za
0.01 2.575 2.33
0.05 1.96 1.645
0.10 1.645 1.28

Table 4. A summary table for critical Z-scores.

To Test a Claim about Variance

*  Write the null and alternative hypotheses.

State the level of significance and get the critical value from the chi-
square table using n-1 degrees of freedom .

*  Compute the test statistic.

*  Compare the test statistic to the critical value and write the conclusion.

80



Chapter 4

Inferences about the
Differences of Two
Populations

Up to this point, we have discussed inferences regarding a single population parameter
(e.g., 1, p, 0%). We have used sample data to construct confidence intervals to estimate the
population mean or proportion and to test hypotheses about the population mean and
proportion. In both of these chapters, all the examples involved the use of one sample to
form an inference about one population. Frequently, we need to compare two sets of data,
and make inferences about two populations. This chapter deals with inferences about two
means, proportions, or variances. For example:

*  You are studying turkey habitat and want to see if the mean number of
brood hens is different in New York compared to Pennsylvania.

*  You want to determine if the treatment used in Skaneateles Lake has
reduced the number of milfoil plants over the last three years.

* Is the proportion of people who support alternative energy in Cali-
fornia greater compared to New York?

 Is the variability in application different between two mist blowers?

'These questions can be answered by comparing the differences of:

*  Mean number of hens in NY to the mean number of hens in PA.
*  Number of plants in 2007 to the number of plants in 2010.

*  Proportion of people in CA to the proportion of people in NY.

*  Variances between the mist blowers.

'This chapter is comprised of five sections. The first and second sections examine inferences
about two means with two independent samples. The third section examines inferences
about means with two dependent samples, the fourth section examines inferences about
two proportions, and the fifth section examines inferences between two variances.
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Section 1

Inferences about Two Means with
Independent Samples (Assuming Unequal
Variances)

Using independent samples means that there is no relationship between the groups. The
values in one sample have no association with the values in the other sample. For example,
we want to see if the mean life span for hummingbirds in South Carolina is different from
the mean life span in North Carolina. These populations are not related, and the samples
are independent. We look at the difference of the independent means.

In Chapter 3, we did a one-sample t-test where we compared the sample mean (X) to the
hypothesized mean (p). We expect that X would be close to u. We use the sample mean,
the sample standard deviation, and the sample size for the one-sample test.

With a two-sample t-test, we compare the population means to each other and again look
at the difference. We expect that X, — X, would be close to i, — p,.The test statistic will use
both sample means, sample standard deviations, and sample sizes for the test.
N
* For a one-sample t-test we used Jn as a measure of the standard
deviation (the standard error).

S 52

*  We can rewrite —— — [—.
NN n

«  The numerator of the test statistic will be (¥, —%,)— (1, —1,) .

2 2
. . e S S

* 'This has a standard deviation of |- +2% .
non,

A two-sample t-test follows the same four steps we saw in Chapter 3.

*  Write the null and alternative hypotheses.

+  State the level of significance and find the critical value. The critical
value, from the student’s t-distribution, has the lesser of n,-1 and n, -1
degrees of freedom.

*  Compute the test statistic.
»  Compare the test statistic to the critical value and state a conclusion.

'The assumptions we saw in Chapter 3 still must be met. Both samples come from inde-
pendent random samples. The populations must be normally distributed, or both have large
enough sample sizes (n, and n, > 30). We will also use the same three pairs of null and
alternative hypotheses.
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Two-sided Left-sided Right-sided
Ho: M1 = W, Ho:M1=H2 | Ho:H1=W,
Hi: g # Wy Hiipa <y | Hiipa > W

Table 1. Null and alternative hypotheses.

Rewriting the null hypothesis of p, = w,to p, - p, = 0, simplifies the numerator. The test
statistic is Welch’s approximation (Satterthwaite Adjustment) under the assumption that
the independent population variances are not equal.

()71 _’_Cz)_(.ul _.uz)

2 2
s, S
S, %

1=

noonm

This test statistic follows the student’s t-distribution with the degrees of freedom adjusted

by
df = o

2 2
Lo(sY, 1 (st
n, —1{n n,—-1{n,

A simpler alternative to determining degrees of freedom when working a problem long-

hand is to use the lesser of n -1 or n -1 as the degrees of freedom. This method results in a
smaller value for degrees of freedom and therefore a larger critical value. This makes the test
more conservative, requiring more evidence to reject the null hypothesis.

Ex. 1

A forester is studying the number of cavity trees in old growth stands in Adirondack
Park in northern New York. He wants to know if there is a significant difference
between the mean number of cavity trees in the Adirondack Park and the old growth
stands in the Monongahela National Forest. He collects two independent random
samples from each forest. Use a 5% level of significance to test this claim.

Adirondack Park Monongahela Forest
n, =51 stands n, = 56 stands
x,=39.6 x,=43.9

s, =9.4 s, =10.7

1) H: p, =, or u, - u, = 0'There is no difference between the two population means.

H.: u, # u, There is a difference between the two population means.
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2) The level of significance is 5%. This is a two-sided test so alpha is split into two
sides. Computing degrees of freedom using the equation above gives 105 degrees of
freedom.

(9.42 107 ]2
51 56
df = > —=104.9
1 (o4 1 (107
51—1( 51} 56—1[ 56 j
The critical value ( t% ), based on 100 degrees of freedom (closest value in the t-table),
is +1.984. Using 50 degrees of freedom, the critical value is +2.009.

3) The test statistic is

X =X )= (4 —H 6-43.9)-
& 2)2 ( 12 ) (39.6-439)-(0) ...
S S \/9.42 10.72
+
noon 51 56

4) The test statistic falls in the rejection zone.

2213 -1.954 0 1.954

Figure 1. A comparison of the critical values and fest statistic.

We reject the null hypothesis. We have enough evidence to support the claim that
there is a difference in the mean number of cavity trees between the Adirondack Park

and the Monongahela National Forest.

Construct and Interpret a Confidence Interval
about the Difference of Two Independent Means

A hypothesis test will answer the question about the difference of the means. BU'T, we can
answer the same question by constructing a confidence interval about the difference of the
means. This process is just like the confidence intervals from Chapter 2.

1) TFind the critical value.

2) Compute the margin of error.
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3) Point estimate + margin of error.

Because we are working with two samples, we must modify the components of the confi-
dence interval to incorporate the information from the two populations.

* The point estimate is X, — X, .

* The standard error comes from the test statistic PR
| 2

L. t
«  The critical value % comes from the student’s t-table.

The confidence interval takes the form of the point estimate plus or minus the standard
error of the differences.

We will use the same three steps to construct a confidence interval about the difference of
the means.

t
1) critical value %
2 2
2) E=lo [
nl n2
3) X=X+ E

Ex. 1a

Let’s look at the mean number of cavity trees in old growth stands again. The forester
wants to know if there is a difference between the mean number of cavity trees in old
growth stands in the Adirondack forests and in the Monongahela Forest. We can
answer this question by constructing a confidence interval about the difference of the
means.

t
1) % =2.009

ta 2 2
NE= % [+ _5 009 \/W=3.904
n n, 51 56

3) % — X, +3.904
The 95% confidence interval for the difference of the means is (-8.204 , -0.396).

We can be 95% confident that this interval contains the mean difference in number
of cavity trees between the two locations. BUT, this doesn’t answer the question the
forester asked. Is there a difference in the mean number of cavity trees between the
Adirondack and Monongahela forests? To answer this, we must look at the confi-
dence interval interpretations.
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Confidence Interval Interpretations

If the confidence interval contains all positive values, we find a signifi-
cant difference between the groups, AND we can conclude that the
mean of the first group is significantly greater than the mean of the
second group.

 If the confidence interval contains all negative values, we find a
significant difference between the groups, AND we can conclude that
the mean of the first group is significantly less than the mean of the
second group.

*  If the confidence interval contains zero (it goes from negative to posi-
tive values), we find NO significant difference between the groups.

In this problem, the confidence interval is (-8.204, -0.396). We have all negative values, so
we can conclude that there is a significant difference in the mean number of cavity trees
AND that the mean number of cavity trees in the Adirondack forests is significantly less
than the mean number of cavity trees in the Monongahela Forest. The confidence interval
gives an estimate of the mean difference in number of cavity trees between the two forests.
There are, on average, 0.396 to 8.204 fewer cavity trees in the Adirondack Park than the
Monongahela Forest.

P-value Approach

We can also use the p-value approach to answer the question. Remember, the p-value is the
area under the normal curve associated with the test statistic. This example is a two-sided
test (H: , # W, ) so the p-value, when computed by hand, will be multiplied by two.

The test statistic equals -2.213, so the p-value is two times the area to the left of -2.213.
We can only estimate the p-value using the student’s t-table. Using the lesser of n,- 1 or
n,- 1 as the degrees of freedom, we have 50 degrees of freedom. Go across the 50 row in
the student’s t-table until you find the absolute value of the test statistic. In this case, 2.213
falls between 2.109 and 2.403. Going up to the top of each of those columns gives you the
estimate of the p-value (between 0.02 and 0.01).

86



Natural Resources Biometrics Chapter 4

Area in Right Tail

df .05 .025 .02 .01 .005
39 1.686 2.024 2.127 2.429 2.712
40 1.684 2.021 2.123 2.423 2.704
50 1.676 2.009 2.109 2.403 2.678
60 1.671 2.000 2.099 2.390 2.660
70 1.667 1.994 2.093 2.381 2.648

Table 2. Student t-Distribution

'The p-value is 2x(0.01 - 0.02) = (0.02 < p < 0.04). The p-value is greater than 0.02 but less
than 0.04. This is less than the level of significance (0.05), so we reject the null hypothesis.
There is enough evidence to support the claim that there is a significant difference in the
mean number of cavity trees between the areas.

Ex.2

Researchers are studying the relationship between logging activities in the northern
forests and amphibian habitats. They were comparing moisture levels between old-
growth and post-harvest habitats. The researchers believe that post-harvest habitat
has a lower moisture level. They collected data on moisture levels from two indepen-
dent random samples. Test their claim using a 5% level of significance.

O1d Growth Post Harvest
n, =26 n,=31

X, =0.62 g/cm® X,=0.56 g/cm?
s, =0.12 g/cm® s,=0.17 g/cm’

H:w, =y, or u - p, = 0. There is no difference between the two population means.

H,: i, > p,. Mean moisture level in old growth forests is greater than post-harvest
levels.

We will use the critical value based on the lesser of n - 1 or n- 1 degrees of freedom.
In this problem, there are 25 degrees of freedom and the critical value is 1.708. Now
compute the test statistic.
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(0.62-0.56)—0
= =1.556
0.12> 0.17°
+
26 31

The test statistic does not fall in the rejection zone. We fail to reject the null hypoth-
esis. There is not enough evidence to support the claim that the moisture level is
significantly lower in the post-harvest habitat.

Now answer this question by constructing a 90% confidence interval about the dif-
ference of the means.

1) t% =1.708

t 2 2 2 2
NE="% [% % _1708]12 1T _ 00658
s 26 31

3) X =X, + E (0.62-0.56) £0.0658

The 90% confidence interval for the difference of the means is (-0.0058, 0.1258). The
values in the confidence interval run from negative to positive indicating that there
is no significant different in the mean moisture levels between old growth and post-
harvest stands.
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Software Solutions
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Two-Sample T-Test and CI: old, post

Two-sample T for old vs. post

N
old 26
post 31

Difference = mu (old) - mu (post)

Estimate for difference: 0.0603

Mean StDev SE Mean
0.620 0.121 0.024
0.559 0.172 0.031

95% lower bound for difference: -0.0049
T-Test of difterence = 0 (vs >): T-Value = 1.55 p-Value = 0.064 DF = 53

The p-value (0.064) is greater than the level of confidence so we fail to reject the null

hypothesis.

Additional example: www.youtube.com/watch?v=7plb-GVixFo.
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t-Test: Two-Sample Assuming Unequal Variances
Variable 1 Variable 2
Mean 0.619615 0.559355
Variance 0.014708 0.02948
Observations 26 31
Hypothesized Mean Difference 0
df 54
t Stat 1.557361
P(T<=t) one-tail 0.063809
t Critical one-tail 1.673565
P(T<=t) two-tail 0.127617
t Critical two-tail 2.004879

The one-tail p-value (0.063809) is greater than the level of significance, therefore, we fail
to reject the null hypothesis.
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Section 2

Pooled Two-sampled t-test (Assuming
Equal Variances)

In the previous section, we made the assumption of unequal variances between our two
populations. Welch’s t-test statistic does not assume that the population variances are equal
and can be used whether the population variances are equal or not. The test that assumes
equal population variances is referred to as the pooled t-test. Pooling refers to finding a
weighted average of the two independent sample variances.

'The pooled test statistic uses a weighted average of the two sample variances.

g2 - (@ -DS! *+ (=D :[ n, -1 jslz+£ n, -1 Jsg

n,+mn,-2 n,+n,-2 n,+n, -2

If n = n, then 82p = (1/2)s*, + (1/2)s?, the average of the two sample variances. But when-
ever n,#n,, the s> based on the larger sample size will receive more weight than the other s>,

The advantage of this test statistic is that it exactly follows the student’s t-distribution with
n+ n,- 2 degrees of freedom.

t= §1-§2 — §1-§2

1 1
q? L + i S \/ + —
P n, n, n; n,

'The hypothesis test procedure will follow the same steps as the previous section.

It may be difhicult to verify that two population variances might be equal based on sample
data. The F-test is commonly used to test variances but is not robust. Small departures
from normality greatly impact the outcome making the results of the F-test unreliable. It
can be difficult to decide if a significant outcome from an F-test is due to the differences
in variances or non-normality. Because of this, many researchers rely on Welch’s # when
comparing two means.

Ex.3

Growth of pine seedlings in two different substrates was measured. We want to know
if growth was better in substrate 2. Growth (in cm/yr) was measured and included in

the table below. a = 0.05
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Substrate 1 Substrate 2
3.2 45
4.5 6.2
3.8 5.8
4.0 6.0
3.7 7.1
3.2 6.8
4.1 7.2
Hpp =p,
Hp:p, <y,
2 2 _ _
S; _ (7-1)0.474- + (7-1)0.936 055 1= 3.79-6.23 _ 02332 —_6.16
772 0.55(1+1j |
7 7

'This is a one-sided test with n, + n, - 2 = 12 degrees of freedom. The critical value
is -1.782. The test statistic is less than the critical value so we will reject the null
hypothesis.

There is enough evidence to support the claim that the mean growth is less in sub-
strate 1. Growth in substrate 2 is greater.

The confidence interval approach also uses the pooled variance and takes the form:

_ ! 1 1
(xl—xz)ita/z S;[n—'Fn—]
1 2

using n, + n, - 2 degrees of freedom. So let’s answer the same question with a 90%
confidence interval.

(3.79-6.23)£1.782 0.55@+%} = (—2.4410.7064) = (-3.146,~1.734)

All negative values tell you that there is a significant difference between the mean
growth for the two substrates and that the growth in substrate 1 is significantly lower
than the growth in substrate 2 with reduction in growth ranging from 1.734 to 3.146
cm/yr.
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Two-Sample T-Test and Cl: Substratel, Substrate2

Two-sample T for Substratel vs. Substrate2

N Mean StDev SE Mean
Substratel 7 3.786 0.474 0.18
Substrate2 7 6.229 0.936 0.35

Difference = mu (Substratel) - mu (Substrate2)

Estimate for difference: -2.443

95% upper bound for difference: -1.736

T-Test of difterence = 0 (vs <): T-Value = -6.16 p-value = 0.000 DF = 12
Both use Pooled StDev = 0.7418

The p-value (0.000) is less than the level of significance (0.05). We will reject the null
hypothesis.
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t-Test: Two-Sample Assuming Equal Variances

Variable 1 Variable 2
Mean 3.785714 6.228571
Variance 0.224762 0.875714
Observations 7 7
Pooled Variance 0.550238
Hypothesized Mean Difference 0
df 12
t Stat -6.16108
P(T<=t) one-tail 2.43E-05
t Critical one-tail 1.782288
P(T<=t) two-tail 4.86E-05
t Critical two-tail 2.178813

This is a one-sided test (greater than) so use the P(T<=t) one-tail value 2.43E-05. The
p-value (0.0000243) is less than the level of significance (0.05). We will reject the null
hypothesis.

Section 3

Inferences about Two Means with
Dependent Samples—Matched Pairs

Dependent samples occur when there is a relationship between the samples. The data con-
sists of matched pairs from random samples. A sampling method is dependent when the
values selected for one sample are used to determine the values in the second sample. Before
and after measurements on a population, such as people, lakes, or animals are an example
of dependent samples. The objects in your sample are measured twice; measurements are
taken at a certain point in time, and then re-taken at a later date. Dependency also occurs
when the objects are related, such as eyes or tires on a car. Pairing isn’t a problem; it’s an
opportunity to use the information that occurs with both measurements.

Before you begin your work, you must decide if your samples are dependent. If they are, you
can take advantage of this fact. You can use this matching to better answer your research
questions. Pairing data reduces measurement variability, which increases the accuracy of our
statistical conclusions.

We use the difference (the subtraction) of the pairs of data in our analysis. For each pair,
we subtract the values:
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. d1 = beforel — after 1
* d, = before 2 — after 2

* d, = before 3 —after 3

We are creating a new random variable d (differences), and it is important to keep the sign,
whether positive or negative. We can compute d, the sample mean of the differences, and
s, the sample standard deviation of the differences as follows:

Just as we used the sample mean and the sample standard deviation in a one-sample t-test,
we will use the sample mean and sample standard deviation of the differences to test for
matched pairs. The assumption of normality must still be verified. The differences must be
normally distributed or the sample size must be large enough (n = 30).

We can do a hypothesis test using matched pairs data following the same methods we used
in the previous chapter.

*  Write the null and alternative hypotheses.

+  State the level of significance and find the critical value.

*  Compute a test statistic.

»  Compare the test statistic to the critical value and state a conclusion.

Since we are using the differences between the pairs of data, we identify this in our null and
alternative hypotheses: H : u, = 0. The mean of the differences is equal to zero; there is no
difference in “before and after” values.

We'll use the same three pairs of null and alternative hypotheses we used in the previous
chapter.

Two-sided Left-sided Right-sided
Ho:mg=c Ho: mg=c¢ Ho: g =c
H1:|J.d¢C H1:|J.d<C H1:|J.d>C

Table 3. Null and alternative hypotheses.

'The critical value comes from the student’s t-distribution table with n - 1 degrees of freedom,
where n = number of matched pairs. The test statistic follows the student’s t-distribution
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'The conclusion must always answer the question you are asking in the alternative hypothesis.

t

*  Reject the H . There is enough evidence to support the alternative
claim.

*  Fail to reject the H . There is not enough evidence to support the
alternative claim.

Ex. 4

An environmental biologist wants to know if the water clarity in Owasco Lake is im-
proving. Using a Secchi disk, she takes measurements in specific locations at specific
dates during the course of the year. She then repeats the measurements in the same
locations and on the same dates five years later. She obtains the following results:

Date  Initial Depth  5-year Depth Difference

5/11 38 52 -14
6/7 58 60 -2
6/24 65 72 -7
7/8 74 72 2

7/27 56 54 2

8/31 36 48 -12
9/30 56 58 -2
10/12 52 60 -8

Using a 5% level of significance, test the biologist’s claim that water clarity is
improving.

The data are paired by date with two measurements taken at each point five years
apart. We will use the differences (right column) to see if there has been a significant
improvement in water clarity. Using your calculator, Minitab, or Excel, compute the
descriptive statistics on the differences to get the sample mean and the sample stan-
dard deviation of the differences.

d =-5.125 5,=6.081
1) The null and alternative hypotheses:

H : = 0 (The mean of the differences is equal to zero- no difference in water
clarity over time.)

H_: u, < 0 (The water clarity is improving.)

We test “less than” because of how we computed the differences and the ques-
tion we are asking.

In this case, we hope to see greater depth (better water clarity) at the five-
year measurements. By calculating Initial — 5-year we hope to see negative
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values, values less than zero, indicating greater depth and clarity at the 5-year
mark. Think of it like this:

Initial Depth < 5-year depth

This gives you the direction of the test!
2) The critical value t .

The critical value comes from the student’s t-distribution table with n - 1
degrees of freedom. In this problem, we have eight pairs of data (n = 8) with
7 degrees of freedom. This is a one-sided test (less than), so alpha is all in the
left tail. Go down the 0.05 column with 7 df to find the correct critical value
(t) of -1.895.

d-p, —5125-0_ .
(s,/\n) = 6.081/38 -
We subtract zero from d-bar because of our null hypothesis. Our null hy-
pothesis is that the difference of the before and after values are statistically
equal to zero. In other words, there has been no change in water clarity.

3) The test statistic /=

4) Compare the test statistic to the critical value and state a conclusion.

The test statistic (-2.38) is less than the critical value (-1.895). It falls in the
rejection zone.

Failto RejectHo

238 -1.895 ]
Reject Ho

Figure 2. Comparison of the critical value and the test statistic.

We reject the null hypothesis. We have enough evidence to support the claim that the
mean water clarity has improved.

P-value Approach

We can also use the p-value approach to answer the question. To estimate p-value
using the student’s t-table, go across the row for 7 degrees of freedom until you find
the two values that the absolute value of your test statistic falls between.
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Area in Right Tail

df .05 .025 .02 .01 .005
5 2.015 2.571 2.757 3.365 4.032
6 1.943 2.447 2.612 3.143 3.707
7 1.895 2.365 2.517 2.998 3.499
8 1.860 2.306 2.449 2.896 3.355
9 1.833 2.262 2.398 2.821 3.250

Table 4. Student t-Distribution

The p-value for this test statistic is greater than 0.02 and just less than 0.025. Compare
this to the level of significance (alpha). The Decision Rule says that if the p-value is
less than a, reject the null hypothesis. In this case, the p-value estimate (0.02 - 0.025)
isless than the level of significance (0.05). Reject the null hypothesis. We have enough

evidence to support the claim that the mean water clarity has improved.

BUT, what if you used a 1% level of significance? In this case, the p-value is NOT
less than the level of significance ((0.02 - 0.025)>0.01). We would fail to reject the
null hypothesis. There is NOT enough evidence to support the claim that the water
clarity has improved. It is important to set the level of significance at the start of your
research and report the p-value. Another researcher may interpret your findings dif-
ferently, based on your reported p-value and their own selected level of significance.

Construct and Interpret a Confidence Interval
about the Differences of the Data for Matched
Pairs

A hypothesis test for matched pairs data is very similar to a one-sample t-test. BUT, we
can answer the same question by constructing a confidence interval about the mean of the
differences. This process is just like the confidence intervals from Chapter 2.

1) Find the critical value.
2) Compute the margin of error.

3) Point estimate + margin of error.

For matched pairs data, the critical value comes from the student’s t-distribution with n - 1
degrees of freedom. The margin of error uses the sample standard deviation of the differ-
ences (s,) and the point estimate is d, the mean of the differences.

For a (1 - ®)*100% confidence interval for the mean of the differences
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ly/ . . .
*  Where % is used because confidence intervals are always two-sided.

Ex. 4a

Let’s look at the biologist studying water clarity in Owasco Lake again. She wants
to test the claim that water clarity has improved. We can answer this question by
constructing a confidence interval about the mean of the differences.

d=-5.125 s,=6.081  a=0.05 n=8
1)1, =2.365

2
S 6.081
E: 4 = _— =
2)_ t%[\/;j 2.365[ \/gj 5.085
3) d+E=-5.125+5.085

The 95% confidence interval about the mean of the differences is

(-10.21, -0.04)
(-10.21= i, < -0.04)

We can be 95% confident that this interval contains the true mean of the differences
in water clarity between the two time periods. BUT, this doesn’t directly answer the
question about improved water clarity. To do this, we use the interpretations given
below.

Confidence Interval Interpretations

1) If the confidence interval contains all positive values, we find a signifi-
cant difference between the groups, AND we can conclude that the
mean of the first group is significantly greater than the mean of the
second group.

2) If the confidence interval contains all negative values, we find a
significant difference between the groups, AND we can conclude that
the mean of the first group is significantly less than the mean of the
second group.

3) If the confidence interval contains zero (it goes from negative to posi-
tive values), we find NO significant difference between the groups.

In this problem, the confidence interval is (-10.21, -0.04). We have all negative values, so
we can conclude that there is a significant difference in the mean water clarity between the

years AND...

*  'The mean water clarity for the initial time was significantly less than
at the five-year re-measurement.
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*  Water clarity has improved during the five-year period. The confi-

dence interval estimates the mean improvement.

Ex.5

Biologists are studying elk migration in the western US and want to know if the four-
lane interstate that was built ten years ago has disturbed elk migration to the winter
feeding area. A random sample was gathered from nine wilderness districts in the
winter feeding areas. These data were compared to a random sample collected from
the same nine areas before the highway was built. Use a 1% level of significance to
test this claim.

District 1 2 3 4 5 6 7 8
Before 11.6 18.7 15.9 20.6 10.1 17.4 7.2 12.2
After 10.0 21.6 13.9 22.8 11.5 16.2 8.1 10.8
d 1.6 -2.9 2.0 -2.2 -14 1.2 -0.9 1.4

d=0.100 s,=1.946
Hp:p, =0
Hi:p,#0

Determine the critical values: This is a two-sided question (alternative #) so the
critical values are +3.355.

Compute the test statistic:

o d-p, 0.100-0

- ~1.9467
(s, /\n) 5

Now compare the critical value to the test statistic and state a conclusion. The test
statistic is NOT greater than 3.355 or less than -3.355 (it doesn’t fall in the rejection
zones). We fail to reject the null hypothesis. There is not enough evidence to support

=0.1542

the claim that the highway has interfered with the elk migration (no difference before
or after the highway).

Now construct a 99% confidence interval and answer the question.
1) "5 =3.355
K
2) E=t, | ~L |=3.355 1-94y j: 2.176
N e S
3) d £ E 0.100+2.176
The 99% confidence interval about the difference of the means is: (-2.076, 2.276)

'This confidence interval contains zero. The null hypothesis is that there is zero differ-
ence before and after the highway way was created. Therefore, we fail to reject the null
hypothesis. There is not enough evidence to support the claim that the highway has
interfered with the elk migration (no difference before or after the highway).
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Paired T-Test and Cl: Before, After

Paired T for Before - After

N Mean StDev SE Mean
Before 9 13.93 4.42 1.47
After 9 13.83 5.32 1.77
Difference 9 0.100 1.946 0.649

99% CI for mean difference: (-2.077,2.277)
T-Test of mean difference = 0 (vs not = 0): T-Value = 0.15 p-value = 0.881

Minitab gives the test statistic of 0.15 and the p-value of 0.881. It also gives a 99% confi-

dence interval for the difference of the means (-2.077,2.277). All results support failing to
reject the null hypothesis.
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t-Test: Paired Two Sample for Means
Before After
Mean 13.93333  13.83333333
Variance 19.565 28.3075
Observations 9 9
Pearson Correlation 0.936635
Hypothesized Mean Difference 0
df 8
t Stat 0.15415
P(T<=t) one-tail 0.440654
t Critical one-tail 2.896459
P(T<=t) two-tail 0.881309
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The test statistic is 0.15415. This is a two-sided question so we can use P(T<=t) two-tail =
0.881309. The p-value is NOT less than the 1% level of significance so we will fail to reject
the null hypothesis.

Section 4

Inferences about Two Population
Proportions

We can apply the same methods we just learned with means to our two-sample proportion
problems. We have two populations with two samples and we want to compare the popula-
tion proportions.

* Is the proportion of lakes in New York with invasive species different
from the proportion of lakes in Michigan with invasive species?

* Is the proportion of construction companies using certified lumber
greater in the northeast than in the southeast?

A test of two population proportions is very similar to a test of two means, except that the
parameter of interest is now “p” instead of “p”. With a one-sample proportion test, we used
5 =2 as the point estimate of p. We expect that p would be close to p. With a test of two
proportions, we will have two p’s, and we expect that (, - p,) will be close to (p, — p,). The

»

test statistic accounts for both samples.

*  With a one-sample proportion test, the test statistic is
h-p
pr1-p)

n

zZ=

and it has an approximate standard normal distribution.

*  For a two-sample proportion test, we would expect the test statistic to

be

(p—P)—(p—py)
\/pl(l_pl) n p,(1-p,)

n n,

HOWEVER, the null hypothesis will be that p, = p,. Because the H is assumed to be

true, the test assumes that p, = p,. We can then assume that p, = p, equals p, a common
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population proportion. We must compute a pooled estimate of p (its unknown) using our
sample data.

X +X
—_ ™M 2
p_

n +n,

The test statistic then takes the form of

s = (P —P)—(p—py)
\/ﬁ(l—ﬁ)+ﬁ(l—ﬁ)

n, n,

'The hypothesis test follows the same steps that we have seen in previous sections:

*  State the null and alternative hypotheses

*  State the level of significance and determine the critical value

*  Compute the test statistic

*  Compare the critical value and the test statistic and state a conclusion

The assumptions that we set for a one-sample proportion test still hold true for both
samples. Both must be random samples from normally distributed populations satisfying
the following statements:

* n(p)(1-p)=210
*  Each sample size is no more than 5% of the population size.

We can again use the same three pairs of null and alternative hypotheses. Notice that we are
working with population proportions so the parameter is p.

Two-sided Left-sided Right-sided
Ho: p1=p2 Ho: p1=p: Ho: p1=p2
Hi: p1# p2 Hi: pi< p2 Hi: p1>p2

Table 5. Null and alternative hypotheses.
The critical value comes from the standard normal table and depends on the alternative

hypothesis (is the question one- or two-sided?). As usual, you must state a conclusion. You
must always answer the question that is asked in the alternative hypothesis.
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Ex.6

A researcher believes that a greater proportion of construction companies in the
northeast are using certified lumber in home construction projects compared to
companies in the southeast. She collected a random sample of 173 companies in the
southeast and found that 86 used at least 30% certified lumber. She collected another
random sample of 115 companies from the northeast and found that 68 used at least
30% certified lumber. Test the researcher’s claim that a greater proportion of com-
panies in the northeast use at least 30% certified lumber compared to the southeast.

o =0.05.

Southeast Northeast
n, =173 n,= 115
x, =86 X, = 68

Write the null and alternative hypotheses:
H,:p,=p,orp,-p,=0
H:p, <p,

The critical value comes from the standard normal table. It is a one-sided test, so

alpha is all in the left tail. The critical value is -1.645.

Compute the point estimates

86 68
p, =——=0.497 p, =——=0.591
TS ERNTT
Now compute p
_ X +x
p="1n 86468 ) 4as
nm+n, 173+115
The test statistic is
. (P —P,)-(p,—p,) (497-.591)-0
p(1-p) p(l-p .535(1-.535) .535(1-.535
p(-p)  p( p)z\/ ( ) 535( ) _ e
n, n, 173 115

Now compare the critical value to the test statistic and state a conclusion.
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Fail to Reject Ho

1
-1845 157 0

FejectHao

Figure 3. A comparison of the critical value and the test statistic.

We fail to reject the null hypothesis. There is not enough evidence to support the
claim that a greater proportion of companies in the northeast use at least 30% certi-
fied lumber compared to companies in the southeast.

Using the P-Value Approach

We can also answer this question using the p-value approach. The p-value is the area
associated with the test statistic. This is a left-tailed problem with a test statistic of
-1.57 so the p-value is the area to the left of -1.57. Look up the area associated with
the Z-score -1.57 in the standard normal table.

'The p-value is 0.0582.

'The hatched area (p-value) is greater than the 5% level of significance (red area). We
fail to reject the null hypothesis. There is not enough statistical evidence to support
the claim that a greater proportion of companies in the northeast use at least 30%
certified lumber compared to companies in the southeast.

/

hatched area=p-value

Figure 4. Comparison of p~value and the level of significance.
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Construct and Interpret a Confidence Interval
about the Difference of Two Proportions

Just like a two-sample t-test about the means, we can answer this question by constructing
a confidence interval about the difference of the proportions. The point estimate is p, — p,.
The standard error is [2.0=2) | 2.(=5)) and the critical value Z% comes from the standard

normal table.

'The confidence interval takes the form of the point estimate + the margin of error.

A oA n(-p)  p,(1-p,)
(pl_pz)iz%\/l o+ :

ny n,

We will use the same three steps to construct a confidence interval about the difterence of
the proportions. Notice the estimate of the standard error of the differences. We do not
rely on the pooled estimate of p when constructing confidence intervals to estimate the
difference in proportions. This is because we are not making any assumptions regarding the
equality of p, and p,, as we did in the hypothesis test.

1) critical value Z%

S (-5 5 (-7
2) E - Z%\/p]( p1)+p2( pz)

ny n,
3) (151 _ﬁz) +E

Let’s revisit Ex. 6 again, but this time we will construct a confidence interval about the
difference between the two proportions.

Ex. 6a

The researcher claims that a greater proportion of companies in the northeast use
at least 30% certified lumber compared to companies in the southeast. We can test
this claim by constructing a 90% confidence interval about the difference of the
proportions.

1) critical value Z% =1.645

p(1—p) p,(1-p 497(1—. 591(1—.
) E- Zay pd-p)  p,(1-p) ) 1.645\/ 497(1-.497)  .59101-.591)
", n, 173 115

=0.098
3) p, — p,+ E = (0.497-0.591) + 0.098
'The 90% confidence interval about the difference of the proportionsis (-0.192,0.004).

BUT, this doesn’t answer the question the researcher asked. We must use one of the
three interpretations seen in the previous section. In this problem, the confidence
interval contains zero. Therefore we can conclude that there is no significant differ-
ence between the proportions of companies using certified lumber in the northeast
and in the southeast.
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Ex.7

A hydrologist is studying the use of Best Management Plans (BMP) in managed
forest stands to protect riparian zones. He collects information from 62 stands that
had a management plan by a forester and finds that 47 stands had correctly imple-
mented BMPs to protect the riparian zones. He collected information from 58 stands
that had no management plan and found that 26 of them had correctly implemented
BMPs for riparian zones. Do these data suggest that there is a significant difference
in the proportion of stands with and without management plans that had correct

BMPs for riparian zones? a = 0.05.

Plan No Plan
X, = 47 x, =26
n, =62 n, = 58

Let’s answer this question both ways by first using a hypothesis test and then by con-
structing a confidence interval about the difference of the proportions.

H(): P, =p,0rp, - p,= 0
H;:p, #p,
Critical value: +1.96

Test statistic:
(A --p) (0.758~0.448) 0 s
p(1-Dp) N p(1-p) \/0.608(1 —0.608) N 0.608(1—0.608)
n, n, 62 58

The test statistic is greater than 1.96 and falls in the rejection zone. There is enough
evidence to support the claim that there is a significant difference in the proportion
of correctly implemented BMPs with and without management plans.

Now compute the p-value and compare it to the level of significance. The p-value
is two times the area under the curve to the right of 3.48. Look for the area (in the
standard normal table) associated with a Z-score of 3.48. The area to the right of 3.48
is 1-0.9997 = 0.0003. The p-value is 2 x 0.0003 = 0.0006.

The p-value is less than 0.05. We will reject the null hypothesis and support the claim
that the proportions are different.

Now, answer this question using a confidence interval.

1) critical value Z% =1.96

2)E- Z% \/ﬁl(l—ﬁl) N p,(1-p,) :1.96\/0'758(1_0'758) N 0.448(1-0.448) 01666
n n, 62 58
3)p,—p,tE (0.758,-0.448) + 0.1666

The 95% confidence interval about the difference of the proportions is (0.143,
0.477). The confidence interval contains all positive values, telling you that there is
a significant difference between the proportions AND the first group (BMPs used
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with management plans) is significantly greater than the second group (BMPs with
no plans). This confidence interval estimates the difference in proportions. For this
problem, we can say that correctly implemented BMPs with a plan occur in a greater
proportion (14.3% to 44.7%) compared to those implemented without a manage-
ment plan.
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Test and Cl for Two Proportions

Sample X N Sample p
1 47 62 0.758065
2 26 58 0.448276

Difference = p (1) - p (2)

Estimate for difference: 0.309789

95% CI for difference: (0.143223,0.476355)

Test for difference = 0 (vs. not = 0): Z = 3.47 p-value = 0.001
Fisher’s exact test: p-value = 0.001

The p-value equals 0.001 which tells us to reject the null hypothesis. There is a significant
difference in the proportion of correctly implemented BMPs with and without manage-
ment plans. The confidence interval for the difference in proportions is also given (0.143223,
0.476355) which allows us to estimate the difference.

Excel

Excel does not analyze data from proportions.
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Section 5

F-Test for Comparing Two Population
Variances

One major application of a test for the equality of two population variances is for checking
the validity of the equal variance assumption (012 = crf) for a two-sample t-test. First we
hypothesize two populations of measurements that are normally distributed. We label these
populations as 1 and 2, respectively. We are interested in comparing the variance of popula-
tion1 (o 12 ) to the variance of population 2 (622 ).

When independent random samples have been drawn from the respective populations, the
ratio

S'/5;

ol/o;
possesses a probability distribution in repeated sampling that is referred to as an F distribu-
tion and its properties are:

*  Unlike Z and t, but like x?, F can assume only positive values.

* 'The F distribution, unlike the Z and t distributions, but like the x>
distribution, is nonsymmetrical.

*  'There are many F distributions, and each one has a different shape.
We specify a particular one by designating the degrees of freedom
associated with S and S . We denote these quantities by df, and df,,

respectively.

HLF)

Ll
==

Figure 5. The F-distribution.

Note: A statistical test of the null hypothesis o2 = o7 utilizes the test statistic S} /S2.
It may require either upper tail or lower tail rejection region, depending on which sample
variance is larger. To alleviate this situation, we are at liberty to designate the population with
the larger sample variance as population 1 (i.c., used as the numerator of the ratio S?/S; ). By
this convention, the rejection region is only located in the upper tail of the F distribution.
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Null hypothesis: H: ol =0,
Alternative hypothesis:

e H:O 12 > 622 (one-tailed), reject H, if the observed F > F,

2 2
e H:0y # 0y (two-tailed), reject H if the observed F > F .
2
Tttt‘t'-FZS—1 ing S” > S
est statistic: 2 assuming S§; > S,
2
where the F critical value in the rejection region is based on 2 degrees of freedom df, =
n, — 1 (associated with numerator Slz) and df, = n, -1 (associated with denominator S22 ).

Ex. 8

A forester wants to compare two different mist blowers for consistent application. She
wants to use the mist blower with the smaller variance, which means more consistent
application. She wants to test that the variance of Type A (0.087 gal.?) is significantly
greater than the variance of Type B (0.073 gal.?) using a = 0.05.

Type A Type B
$?,=0.087 §°,=0.073
n,=16 n, =21

H: o/ =0,
H:o/! > o)
'The critical value (df, = 15 and df,, = 20) is 2.20.

e 5
The test statistic is: _ S—lz _0.087 _ 192
S, 0.073 .

The test statistic is not larger than the critical value (it does not fall in the rejection
zone) so we fail to reject the null hypothesis. While the variance of Type B is math-
ematically smaller than the variance of Type A, it is not statistically smaller. There is
not enough statistical evidence to support the claim that the variance of Type A is
significantly greater than the variance of Type B. Both mist blowers will deliver the
chemical with equal consistency.
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Test and Cl for Two Variances

Method
Null hypothesis Variance(1) / Variance(2) = 1
Alternative hypothesis Variance(1) / Variance(2) > 1
Significance level Alpha = 0.05

Statistics
Sample N StDev Variance
1 16 0.295 0.087
2 21 0.270 0.073

Ratio of standard deviations = 1.092
Ratio of variances = 1.192

Tests
Test
Method DF1 DF2 Statistic p-value
T Test (normal) 15 20 1.19 0.351
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F-Test Two-Sample for Variances

Type A Type B

Mean 11.07188  11.10595
Variance 0.08699 0.073379
Observations 16 21

df 15 20

F 1.185483

P(F<=f) one-tail 0.355098
F Critical one-tail 2.203274

Summary

Questions about the differences between two samples can be answered in several ways:
hypothesis test, p-value approach, or confidence interval approach. In all cases, you must
clearly state your question, the selected level of significance and the conclusion.

If you choose the hypothesis test approach, you need to compare the critical value to the
test statistic. If the test statistic falls in the rejection zone set by the critical value, then you
will reject the null hypothesis and support the alternative claim.

If you use the p-value approach, you must compute the test statistic and find the area asso-
ciated with that value. For a two-sided test, the p-value is two times the area of the absolute
value of the test statistic. For a one-sided test, the p-value is the area to the left or right of
the test statistic. The decision rule states: If the p-value is less than a(level of significance),
reject the null hypothesis and support the alternative claim.

'The confidence interval approach constructs an interval about the difference of the means or
proportions. If the interval contains zero, then you can conclude that there is no difference
between the two groups. If the interval contains all positive values, you can conclude that
group 1 is significantly greater than group 2. If the interval contains all negative numbers,
you can conclude that group 2 is significantly greater than group 1.

In all approaches, a clear and concise conclusion is required. You MUST answer the ques-
tion being asked by stating the results of your approach.
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One-Way Analysis of
Variance

Previously, we have tested hypotheses about two population means. This chapter examines
methods for comparing more than two means. Analysis of variance (ANOVA) is an infer-
ential method used to test the equality of three or more population means.

Hypy= ===y

This method is also referred to as single-factor ANOVA because we use a single property,
or characteristic, for categorizing the populations. This characteristic is sometimes referred
to as a treatment or factor.

A treatment (or factor) is a property, or characteristic, that allows us to distinguish
the different populations from one another.

The objects of ANOVA are (1) estimate treatment means, and the differences of treatment
means; (2) test hypotheses for statistical significance of comparisons of treatment means,
where “treatment” or “factor” is the characteristic that distinguishes the populations.

For example, a biologist might compare the effect that three different herbicides may have
on seed production of an invasive species in a forest environment. The biologist would want
to estimate the mean annual seed production under the three different treatments, while
also testing to see which treatment results in the lowest annual seed production. The null
and alternative hypotheses are:

H:p=p,=p, H,:atleast one of the means is significantly different from the others

It would be tempting to test this null hypothesis H : p1,= u,= p, by comparing the popula-
tion means two at a time. If we continue this way, we would need to test three different

pairs of hypotheses:

Hyip=p, AND Hgp=p, AND H;p=p,
H:p=p, H:p=p, H:p=p,
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If we used a 5% level of significance, each test would have a probability of a Type I error
(rejecting the null hypothesis when it is true) of a = 0.05. Each test would have a 95%
probability of correctly not rejecting the null hypothesis. The probability that all three tests
correctly do not reject the null hypothesis is 0.95° = 0.86. There is a 1 - 0.95% = 0.14 (14%)
probability that at least one test will lead to an incorrect rejection of the null hypothesis. A
14% probability of a Type I error is much higher than the desired alpha of 5% (remember:
a is the same as Type I error). As the number of populations increases, the probability of
making a Type I error using multiple t-tests also increases. Analysis of variance allows us to
test the null hypothesis (all means are equal) against the alternative hypothesis (at least one
mean is different) with a specified value of a.

The assumptions for ANOVA are (1) observations in each treatment group represents a
random sample from that population; (2) each of the populations is normally distributed,
(3) population variances for each treatment group are homogeneous (i.e., o = o3 = 0Z ..),
We can easily test the normality of the samples by creating a normal probability plot, how-
ever, verifying homogeneous variances can be more difficult. A general rule of thumb is as
tollows: One-way ANOVA may be used if the largest sample standard deviation is no more than
twice the smallest sample standard deviation.

In the previous chapter, we used a two-sample t-test to compare the means from two in-
dependent samples with a common variance. The sample data are used to compute the test
statistic:

T 1 , My —1si+(n; - 1)s3
o [T, L where 56— 1,2
p\i-n’l -n:

=

is the pooled estimate of the common population variance 62 To test more than two popu-
lations, we must extend this idea of pooled variance to include all samples as shown below:

(M, —18F + My - 1SI+ -+ (Ngx-1)sk
Ny 4Ny +-Ny—K

Sy =

where S ? represents the pooled estimate of the common variance 6%, and it measures the
variability of the observations within the different populations whether or not H, is true.
'This is often referred to as the variance within samples (variation due to error).

If the null hypothesis IS true (all the means are equal), then all the populations are the same,
with a common mean p and variance 02 Instead of randomly selecting different samples
from different populations, we are actually drawing 4 different samples from one popula-
tion. We know that the sampling distribution for # means based on 7 observations will have
mean U and variance 6%/n (squared standard error). Since we have drawn % samples of 7
observations each, we can estimate the variance of the k sample means (6%/n) by

e Zx]
. _Z(E,’_:uyf_zxi k _62
sample variance of the means = = =
k-1 k-1 n

Consequently, # times the sample variance of the means estimates o?. We designate this
quantity as S;* such that

118



Natural Resources Biometrics Chapter 5

— 2 >x2— [
§2 = *Z(xi_nu}) e ! k
s=n =n
k-1 k-1
where S? is also an unbiased estimate of the common variance o IF H IS TRUE. This is
often referred to as the variance between samples (variation due to treatment).

Under the null hypothesis that all Z populations are identical, we have two estimates of o?
(S, and S;%). We can use the ratio of S;*/ S, * as a test statistic to test the null hypoth-
esis that H: p,= p,= p,= ...= p, which follows an F-distribution with degrees of freedom
df =k - 1and df, = N - Z (where £ is the number of populations and N is the total number
of observations (N = n, + n_+...+ n, ). The numerator of the test statistic measures the varia-
tion between sample means. The estimate of the variance in the denominator depends only
on the sample variances and is not affected by the diftferences among the sample means.

When the null hypothesis is true, the ratio of S;*> and S,;” will be close to 1. When the
null hypothesis is false, S;> will tend to be larger than S* due to the differences among
the populations. We will reject the null hypothesis if the F test statistic is larger than the
F critical value at a given level of significance (or if the p-value is less than the level of
significance).

Tables are a convenient format for summarizing the key results in ANOVA calculations.
The following one-way ANOVA table illustrates the required computations and the rela-
tionships between the various ANOVA table elements.

Source df Sum of Squares Mean Sum of Squares F-test p-value
of Variation (55) (MSS)
Treatment k-1 SSTr MSTr=SSTr/(k-1) F=MSTr/MSE
Error N-k SSE MSE=SSE/(N-k)
Total N-1 SSTo

Table 1. One-way ANOVA table.

The sum of squares for the ANOVA table has the relationship of SSTo = SSTr + SSE

where:

SSTo =

k n
i=1

= k =
D (x;=x)* SSTr=> n/(x,—x)’ SSE=
i=1

k n
j=1 =1

Z(x[j _)71‘)2

J=

Total variation (SSTo) = explained variation (SSTr) + unexplained variation (SSE)

df,

ssTo) — Hssmy +

df

'The degrees of freedom also have a similar relationship: df, (SSE)

'The Mean Sum of Squares for the treatment and error are found by dividing the Sums of

Squares by the degrees of freedom for each. While the Sums of Squares are additive, the
Mean Sums of Squares are not. The F-statistic is then found by dividing the Mean Sum of
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Squares for the treatment (MSTr) by the Mean Sum of Squares for the error(IMSE). The
MSTr is the S;? and the MSE is the S, *.

F=S,5,2=MSTv/MSE

Ex. 1

An environmentalist wanted to determine if the mean acidity of rain differed among
Alaska, Florida, and Texas. He randomly selected six rain dates at each site obtained

the following data:
Alaska Florida Texas
5.11 4.87 5.46
5.01 4.18 6.29
4.90 4.40 5.57
5.14 4.67 5.15
4.80 4.89 5.45
5.24 4.09 5.30

Table 2. Data for Alaska, Florida, and Texas.

Hpep, =p,=p, H_: at least one of the means is different
State Sample size Sample total Sample mean Sample variance
Alaska n=6 30.2 5.033 0.0265
Florida n,=6 271 4.517 0.1193
Texas n=6 33.22 5.537 0.1575

Table 3. Summary Table.

Notice that there are differences among the sample means. Are the differences small
enough to be explained solely by sampling variability? Or are they of sufficient mag-
nitude so that a more reasonable explanation is that the p’s are not all equal? The
conclusion depends on how much variation among the sample means (based on their
deviations from the grand mean) compares to the variation within the three samples.

The grand mean is equal to the sum of all observations divided by the total sample
size:

x =grand total/N = 90.52/18 = 5.0289
SSTo = (5.11-5.0289)* + (5.01-5.0289)* +...+(5.24-5.0289)*
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+(4.87-5.0289)? + (4.18-5.0289)? +...+(4.09-5.0289)’

+(5.46-5.0289)” + (6.29-5.0289)? +...+(5.30-5.0289)” = 4.6384

SSTr = 6(5.033-5.0289) + 6(4.517-5.0289)* + 6(5.537-5.0289)” = 3.1214
SSE = SSTo — SSTr = 4.6384 — 3.1214 = 1.5170

Source df Sum of Squares Mean Sum of F-test
of Variation (SS) Squares (MSS)
Treatment 3-1 3.1214 3.1214/2=1.5607 1.5607/0.1011=15.4372
Error 18-3 1.5170 1.5170/15=0.1011
Total 18-1 4.6384

Table 4. One-way ANOVA Table.

'This test is based on df, =k -1=2and df, = N - k = 15. For a = 0.05, the F critical value
is 3.68. Since the observed F = 15.4372 is greater than the F critical value of 3.68, we

reject the null hypothesis. There is enough evidence to state that at least one of the
means is different.
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One-way ANOVA: pH vs. State
Source DF SS MS F P
State 2 3.121 1.561 15.43 0.000
Error 15 1.517 0.101
Total 17 4.638

S = 0.3180 R-Sq = 67.29% R-Sq(adj) = 62.93%

Individual 95% CIs For Mean Based on Pooled StDev

Level N Mean StDev + + ¥ n

Alaska 6 5.0333 0.1629 (===~ * o )

Florida 6 4.5167 0.3455 (-=---- ¥ meem )

Texas 6 5.5367 0.3969 [(E— * )
4.40 4.80 5.20 5.60

Pooled StDev = 0.3180
The p-value (0.000) is less than the level of significance (0.05) so we will reject the null

hypothesis.
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ANOVA: Single Factor

SUMMARY
Groups Count Sum Average Variance
Column 1 6 30.2 5.033333  0.026547
Column 2 6 27.1 4.516667  0.119347
Column 3 6 33.22 5.536667  0.157507

ANOVA

Source of Variation SS df MS F p-value F crit
Between Groups 3.121378 2 1.560689  15.43199  0.000229  3.68232
Within Groups 1.517 15 0.101133
Total 4.638378 17
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The p-value (0.000229) is less than alpha (0.05) so we reject the null hypothesis. There is
enough evidence to support the claim that at least one of the means is different.

Once we have rejected the null hypothesis and found that at least one of the treatment
means is different, the next step is to identify those differences. There are two approaches
that can be used to answer this type of question: contrasts and multiple comparisons.

Contrasts can be used only when there are clear expectations BEFORE starting an ex-
periment, and these are reflected in the experimental design. Contrasts are planned
comparisons. For example, mule deer are treated with drug A, drug B, or a placebo to treat
an infection. The three treatments are not symmetrical. The placebo is meant to provide
a baseline against which the other drugs can be compared. Contrasts are more powerful
than multiple comparisons because they are more specific. They are more able to pick up
a significant difference. Contrasts are not always readily available in statistical software
packages (when they are, you often need to assign the coeflicients), or may be limited to
comparing each sample to a control.

Multiple comparisons should be used when there are no justified expectations. They are
aposteriori, pair-wise tests of significance. For example, we compare the gas mileage for six
brands of all-terrain vehicles. We have no prior knowledge to expect any vehicle to perform
differently from the rest. Pair-wise comparisons should be performed here, but only if an

ANOVA test on all six vehicles rejected the null hypothesis first.

It is NOT appropriate to use a contrast test when suggested comparisons appear only
after the data have been collected. We are going to focus on multiple comparisons instead
of planned contrasts.

Multiple Comparisons

When the null hypothesis is rejected by the F-test, we believe that there are significant
differences among the £ population means. So, which ones are different? Multiple com-
parison method is the way to identify which of the means are different while controlling
the experiment-wise error (the accumulated risk associated with a family of comparisons).
There are many multiple comparison methods available.

In The Least Significant Difference Test, each individual hypothesis is tested with the
student t-statistic. When the Type I error probability is set at some value and the variance
s* has v degrees of freedom, the null hypothesis is rejected for any observed value such
that [t |>t, ,, v. It is an abbreviated version of conducting all possible pair-wise t-tests. This
method has weak experiment-wise error rate. Fisher’s Protected LSD is somewhat better
at controlling this problem.

Bonferroni inequality is a conservative alternative when software is not available. When
conducting n comparisons, @ < n a_ therefore a_ = a/n. In other words, divide the ex-
periment-wise level of significance by the number of multiple comparisons to get the
comparison-wise level of significance. The Bonferroni procedure is based on computing
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confidence intervals for the differences between each possible pair of Ws. The critical
value for the confidence intervals comes from a table with (N - £Z) degrees of freedom and
k(% - 1)/2 number of intervals. If a particular interval does not contain zero, the two means
are declared to be significantly different from one another. An interval that contains zero
indicates that the two means are NOT significantly different.

Dunnett’s procedure was created for studies where one of the treatments acts as a control
treatment for some or all of the remaining treatments. It is primarily used if the interest of
the study is determining whether the mean responses for the treatments differ from that
of the control. Like Bonferroni, confidence intervals are created to estimate the difference
between two treatment means with a specific table of critical values used to control the

experiment-wise error rate. The standard error of the difference is (2MSE,

\ r
Scheffe’s test is also a conservative method for all possible simultaneous comparisons sug-
gested by the data. This test equates the F statistic of ANOVA with the t-test statistic. Since
2 = F then t = VF, we can substitute \/F((xe, v,,v,) for t(a, v,) for Schefte’s statistic.

Tukey'’s test provides a strong sense of experiment-wise error rate for all pair-wise compar-

ison of treatment means. This test is also known as the Honestly Significant Difference. This
test orders the treatments from smallest to largest and uses the studentized range statistic

q= V(largest)—y (smallest)

MSZ%

The absolute difference of the two means is used because the location of the two means in

the calculated difterence is arbitrary, with the sign of the difference depending on which
mean is used first. For unequal replications, the Tukey-Kramer approximation is used
instead.

Student-Newman-Keuls (SNK) test is a multiple range test based on the studentized
range statistic like Tukey’s. The critical value is based on a particular pair of means being
tested within the entire set of ordered means. Two or more ranges among means are used for
test criteria. While it is similar to Tukey’s in terms of a test statistic, it has weak experiment-
wise error rates.

Bonferroni, Dunnett’s, and Schefte’s tests are the most conservative, meaning that the dif-
terence between the two means must be greater before concluding a significant difference.
The LSD and SNK tests are the least conservative. Tukey’s test is in the middle. Robert
Kuehl, author of Design of Experiments: Statistical Principles of Research Design and Analysis
(2000), states that the Tukey method provides the best protection against decision errors,
along with a strong inference about magnitude and direction of differences.

Let’s go back to our question on mean rain acidity in Alaska, Florida, and Texas. The null
and alternative hypotheses were as follows:

Hpp, =y =1 H_: at least one of the means is different
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'The p-value for the F-test was 0.000229, which is less than our 5% level of significance. We
rejected the null hypothesis and had enough evidence to support the claim that at least one
of the means was significantly different from another. We will use Bonferroni and Tukey’s
methods for multiple comparisons in order to determine which mean(s) is different.

Bonferroni Multiple Comparison Method

A Bonferroni confidence interval is computed for each pair-wise comparison. For £ popula-
tions, there will be £(%4-1)/2 multiple comparisons. The confidence interval takes the form

of:

MSE MSE
For p, — u, :(X, — X, ) £ (Bonferronit critical value) +
n n,
For w,_, — p, :(X,_, — X, ) (Bonferronit critical value) MSE | MSE
My ny

Where MSE is from the analysis of variance table and the Bonferroni # critical value comes
from the Bonferroni Table given below. The Bonferroni # critical value, instead of the stu-
dent # critical value, combined with the use of the MSE is used to achieve a simultaneous
confidence level of at least 95% for all intervals computed. The two means are judged to be
significantly different if the corresponding interval does not include zero.
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[Number of Intervals |

df 2 3 4 5 6 10
2 6.21 7.65 8.86 9.92 10.89 14.09
3 4.18 4.86 5.39 5.84 6.23 7.45
4 3.50 3.96 4.31 4.60 4.85 5.60
5 3.16 3.53 3.81 4.03 4.22 4.77
6 2.97 3.29 3.52 3.71 3.86 4.32
7 2.84 3.13 3.34 3.50 3.64 4.03
8 2.75 3.02 3.21 3.36 3.48 3.83
9 2.69 2.93 3.1 3.25 3.36 3.69
10 2.63 2.87 3.04 3.17 3.28 3.58
1" 2.59 2.82 2.98 3.1 3.21 3.50
12 2.56 2.78 2.93 3.05 3.15 3.43
13 2.53 2.75 2.90 3.01 3.1 3.37
14 2.51 2.72 2.86 2.98 3.07 3.33
15 249 2.69 2.84 2.95 3.04 3.29
16 2.47 2.67 2.81 2.92 3.01 3.25
17 2.46 2.66 2.79 2.90 2.98 3.22
18 2.45 2.64 2.77 2.88 2.96 3.20
19 243 2.63 2.76 2.86 2.94 3.17
20 242 2.61 2.74 2.85 2.93 3.15
21 241 2.60 2.73 2.83 2.91 3.14
22 241 2.59 272 2.82 2.90 3.12
23 240 2.58 2.71 2.81 2.89 3.10
24 2.39 2.57 2.70 2.80 2.88 3.09
25 2.38 2.57 2.69 2.79 2.86 3.08
26 2.38 2.56 2.68 2.78 2.86 3.07
27 2.37 2.55 2.68 2.77 2.85 3.06
28 2.37 2.55 2.67 2.76 2.84 3.05
29 2.36 2.54 2.66 2.76 2.83 3.04
30 2.36 2.54 2.66 2.75 2.82 3.03
40 2.33 2.50 2.62 2.70 2.78 297
60 2.30 2.46 2.58 2.66 2.73 2.91
120 2.27 2.43 2.54 2.62 2.68 2.86

Table 5. Bonferroni ¢ critical values.

For this problem, % = 3 so there are £(% - 1)/2= 3(3 - 1)/2 = 3 multiple comparisons. The
degrees of freedom are equal to N - 2 = 18 - 3 = 15.'The Bonferroni critical value is 2.69.

0.1011 0.1011
+

For p, — piy. :(5.033-4.517)%(2.69) \/ =(0.0222,1.0098)

6
For p, — u; :(5.033- 5.537)i(2.69)\/0'121 L 0'1211 =(—0.9978,-0.0102)
For p, — 1, :(4.517 —5.537)i(2.69)\/0'1§11 AL (-1.5138,-0.5262)

'The first confidence interval contains all positive values. This tells you that there is a signifi-
cant difference between the two means and that the mean rain pH for Alaska is significantly
greater than the mean rain pH for Florida.
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'The second confidence interval contains all negative values. This tells you that there is a
significant difference between the two means and that the mean rain pH of Alaska is
significantly lower than the mean rain pH of Texas.

The third confidence interval also contains all negative values. This tells you that there is
a significant difference between the two means and that the mean rain pH of Florida is
significantly lower than the mean rain pH of Texas.

All three states have significantly different levels of rain pH. Texas has the highest rain pH,
then Alaska followed by Florida, which has the lowest mean rain pH level. You can use the
confidence intervals to estimate the mean difference between the states. For example, the
average rain pH in Texas ranges from 0.5262 to 1.5138 higher than the average rain pH
in Florida.

Now let’s use the Tukey method for multiple comparisons. We are going to let software
compute the values for us. Excel doesn’t do multiple comparisons so we are going to rely
on Minitab output.
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One-way ANOVA: pH vs. state

Source DF SS MS F P
state 2 3.121 1.561 15.4 0.000
Error 15 1.517 0.101

Total 17 4.638

S =0.3180 R-Sq = 67.29% R-Sq(adj) = 62.93%

We have seen this part of the output before. We now want to focus on the Grouping Infor-
mation Using Tukey Method. All three states have different letters indicating that the mean
rain pH for each state is significantly different. They are also listed from highest to lowest.
It is easy to see that Texas has the highest mean rain pH while Florida has the lowest.

Grouping Information Using Tukey Method

state N Mean Grouping
Texas 6 5.5367 A
Alaska 6 5.0333 B
Florida 6 4.516 C

Means that do not share a letter are significantly different.
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'This next set of confidence intervals is similar to the Bonferroni confidence intervals. They
estimate the difference of each pair of means. The individual confidence interval level is set
at 97.97% instead of 95% thus controlling the experiment-wise error rate.

Tukey 95% Simultaneous Confidence Intervals
All Pairwise Comparisons among Levels of state

Individual confidence level = 97.97%

state = Alaska subtracted from:

state Lower Center Upper + + + +

Florida -0.9931 -0.5167 -0.0402 (----- *oens)

Texas 0.0269 0.5033 0.9798 (----- S )
-0.80 0.00 0.80 1.60

state = Florida subtracted from:

state Lower Center Upper + + + +
Texas 0.5435 1.0200 1.4965 (----- G )
+ + + +
-0.80 0.00 0.80 1.60

The first pairing is Florida — Alaska, which results in an interval of (-0.9931, -0.0402). The
interval has all negative values indicating that Florida is significantly lower than Alaska.
'The second pairing is Texas — Alaska, which results in an interval of (0.0269, 0.9798). The
interval has all positive values indicating that Texas is greater than Alaska. The third pairing
is Texas — Florida, which results in an interval from (0.5435, 1.4965). All positive values
indicate that Texas is greater than Florida.

The intervals are similar to the Bonferroni intervals with differences in width due to
methods used. In both cases, the same conclusions are reached.

When we use one-way ANOVA and conclude that the differences among the means are
significant, we can’t be absolutely sure that the given factor is responsible for the differences.
It is possible that the variation of some other unknown factor is responsible. One way to
reduce the effect of extraneous factors is to design an experiment so that it has a completely
randomized design. This means that each element has an equal probability of receiving
any treatment or belonging to any different group. In general good results require that the
experiment be carefully designed and executed.

Additional example: www.youtube.com/watch?v=BMyYXc8cWHs.
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Chapter 6

Two-way Analysis of Variance

In the previous chapter we used one-way ANOVA to analyze data from three or more
populations using the null hypothesis that all means were the same (no treatment effect).
For example, a biologist wants to compare mean growth for three different levels of fertil-
izer. A one-way ANOVA tests to see if at least one of the treatment means is significantly
different from the others. If the null hypothesis is rejected, a multiple comparison method,
such as Tukey’s, can be used to identify which means are different, and the confidence
interval can be used to estimate the difference between the different means.

Suppose the biologist wants to ask this same question but with two different species of
plants while still testing the three different levels of fertilizer. The biologist needs to in-
vestigate not only the average growth between the two species (main effect A) and the
average growth for the three levels of fertilizer (main effect B), but also the interaction or
relationship between the two factors of species and fertilizer. Two-way analysis of variance
allows the biologist to answer the question about growth aftected by species and levels of
tertilizer, and to account for the variation due to both factors simultaneously.

Our examination of one-way ANOVA was done in the context of a completely random-
ized design where the treatments are assigned randomly to each subject (or experimental
unit). We now consider analysis in which two factors can explain variability in the response
variable. Remember that we can deal with factors by controlling them, by fixing them at
specific levels, and randomly applying the treatments so the effect of uncontrolled variables
on the response variable is minimized. With two factors, we need a factorial experiment.

Factor B
(fertilizer)
Level 1 Level 2 Level 3
Factor A (species) | Species 1 12,24,2.6,2.2  24,2.7,27,29  3.1,3.0,3.2,3.4
Species 2 0.6,0.9,1.0,0.9 2.1,2.3,2.0,1.9 0.7,0.5, 0.6, 0.5

Table 1. Observed data for two species at three levels of fertilizer.

This is an example of a factorial experiment in which there are a total of 2 x 3 = 6 possible
combinations of the levels for the two different factors (species and level of fertilizer). These
six combinations are referred to as treatments and the experiment is called a 2 x 3 factorial
experiment. We use this type of experiment to investigate the effect of multiple factors
on a response and the interaction between the factors. Each of the 7 observations of the
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response variable for the different levels of the factors exists within a cell. In this example,
there are six cells and each cell corresponds to a specific treatment.

When you compare treatment means for a factorial experiment (or for any other experi-
ment), multiple observations are required for each treatment. These are called replicates.
For example, if you have four observations for each of the six treatments, you have four
replications of the experiment. Replication demonstrates the results to be reproducible and
provides the means to estimate experimental error variance. Replication also provides the
capacity to increase the precision for estimates of treatment means. Increasing replication
decreases <2 =5 thereby increasing the precision of 7,

Notation
% = number of levels of factor A
/ = number of levels of factor B

%l = number of treatments (each one a combination of a
factor A level and a factor B level)

m = number of observations on each treatment

Main Effects and Interaction Effect

Main effects deal with each factor separately. In the previous example we have two factors,
A and B. The main effect of Factor A (species) is the difference between the mean growth
for Species 1 and Species 2, averaged across the three levels of fertilizer. The main effect of
Factor B (fertilizer) is the difference in mean growth for levels 1, 2, and 3 averaged across
the two species. The interaction is the simultaneous changes in the levels of both factors. If
the changes in the level of Factor A result in different changes in the value of the response
variable for the different levels of Factor B, we say that there is an interaction effect between
the factors. Consider the following example to help clarify this idea of interaction.

Ex. 1

Factor A has two levels and Factor B has two levels. In the left box, when Factor
A is at level 1, Factor B changes by 3 units. When Factor A is at level 2, Factor B
again changes by 3 units. Similarly, when Factor B is at level 1, Factor A changes by
2 units. When Factor B is at level 2, Factor A again changes by 2 units. There is no
interaction. The change in the true average response when the level of either factor
changes from 1 to 2 is the same for each level of the other factor. In this case, changes
inlevels of the two factors affect the true average response separately, or in an additive
manner.
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Factor B Factor B
1 2 1 2
1 24 27 1 24 27
e e e
2 26 ; 3 29 2 26 - 3 32

Figure 1. Illustration of interaction effect.

The right box illustrates the idea of interaction. When Factor A is atlevel 1, Factor B
changes by 3 units but when Factor A is at level 2, Factor B changes by 6 units. When
Factor B is at level 1, Factor A changes by 2 units but when Factor B is at level 2,
Factor A changes by 5 units. The change in the true average response when the levels
of both factors change simultaneously from level 1 to level 2 is 8 units, which is much
larger than the separate changes suggest. In this case, there is an interaction between
the two factors, so the effect of simultaneous changes cannot be determined from the
individual effects of the separate changes. Change in the true average response when
the level of one factor changes depends on the level of the other factor. You cannot
determine the separate effect of Factor A or Factor B on the response because of the
interaction.

Assumptions

Basic Assumption: The observations on any particular treatment are
independently selected from a normal distribution with variance o? (the same
variance for each treatment), and samples from different treatments are
independent of one another.

We can use normal probability plots to satisfy the assumption of normality for each treat-
ment. The requirement for equal variances is more difficult to confirm, but we can generally
check by making sure that the largest sample standard deviation is no more than twice the
smallest sample standard deviation.

Although not a requirement for two-way ANOVA, having an equal number of observations
in each treatment, referred to as a balance design, increases the power of the test. However,
unequal replications (an unbalanced design), are very common. Some statistical software
packages (such as Excel) will only work with balanced designs. Minitab will provide the
correct analysis for both balanced and unbalanced designs in the General Linear Model
component under ANOVA statistical analysis. However, for the sake of simplicity, we will
focus on balanced designs in this chapter.
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Sums of Squares and the ANOVA Table

In the previous chapter, the idea of sums of squares was introduced to partition the varia-
tion due to treatment and random variation. The relationship is as follows:

SSTo = SSTr + SSE

We now partition the variation even more to reflect the main effects (Factor A and Factor
B) and the interaction term:

SSTo = SSA + SSB +SSAB +SSE
where

1) SSTo is the total sums of squares, with the associated degrees of
freedom &/m - 1

2) SSA is the factor A main effect sums of squares, with associated
degrees of freedom 4 - 1

3) SSB is the factor B main effect sums of squares, with associated
degrees of freedom /-1

4) SSAB is the interaction sum of squares, with associated degrees of

freedom (%£- 1)(7- 1)

5) SSE is the error sum of squares, with associated degrees of freedom

kl(m - 1)

As we saw in the previous chapter, the magnitude of the SSE is related entirely to the
amount of underlying variability in the distributions being sampled. It has nothing to do
with values of the various true average responses. SSAB reflects in part underlying vari-
ability, but its value is also aftected by whether or not there is an interaction between the
factors; the greater the interaction, the greater the value of SSAB.

The following ANOVA table illustrates the relationship between the sums of squares for
each component and the resulting F-statistic for testing the three null and alternative hy-

potheses for a two-way ANOVA.

1) H,:'There is no interaction between factors
H_: There is a significant interaction between factors

2) H_: There is no effect of Factor A on the response variable
H_:There is an effect of Factor A on the response variable

3) H,:There is no effect of Factor B on the response variable
H_: There is an effect of Factor B on the response variable

If there is a significant interaction, then ignore the following two sets of hypotheses for
the main effects. A significant interaction tells you that the change in the true average
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response for a level of Factor A depends on the level of Factor B. The effect of simultaneous
changes cannot be determined by examining the main effects separately. If there is NOT a
significant interaction, then proceed to test the main effects. The Factor A sums of squares
will reflect random variation and any differences between the true average responses for
different levels of Factor A. Similarly, Factor B sums of squares will reflect random variation
and the true average responses for the different levels of Factor B.

Source of df Sums of Mean square F
variation squares
Factor A k-1 SSA e, o5a _ M54
.r.irjh—lr‘:_l Fd_ﬁ
Factor B -1 S55B . 558 _ M5B
“ISB__:'—I Fq__.‘.ISE
Interaction AB | {k=1)(i= SSAB Voip L SSAB _ MsiB
1) T AR EERE
Error El(m-1) 35E VSE = 55E
T T kitm - 1)
Total kElm-1 55To

Table 2. Two-way ANOVA table.

Each of the five sources of variation, when divided by the appropriate degrees of freedom
(df), provides an estimate of the variation in the experiment. The estimates are called mean
squares and are displayed along with their respective sums of squares and df in the analysis
of variance table. In one-way ANOVA, the mean square error (MSE) is the best estimate
of 6* (the population variance) and is the denominator in the F-statistic. In a two-way
ANOVA, it is still the best estimate of 6. Notice that in each case, the MSE is the de-
nominator in the test statistic and the numerator is the mean sum of squares for each main
factor and interaction term. The F-statistic is found in the final column of this table and
is used to answer the three alternative hypotheses. Typically, the p-values associated with
each F-statistic are also presented in an ANOVA table. You will use the Decision Rule to
determine the outcome for each of the three pairs of hypotheses.

If the p-value is smaller than « (level of significance), you will reject the null hypothesis.

When we conduct a two-way ANOVA, we always first test the hypothesis regarding the
interaction effect. If the null hypothesis of no interaction is rejected, we do NOT interpret
the results of the hypotheses involving the main effects. If the interaction term is NOT
significant, then we examine the two main effects separately. Let’s look at an example.

Ex. 1

An experiment was carried out to assess the effects of soy plant variety (factor A,
with % = 3 levels) and planting density (factor B, with / = 4 levels — 5, 10, 15, and 20
thousand plants per hectare) on yield. Each of the 12 treatments (% * /) was randomly
applied to 7 = 3 plots (4/m = 36 total observations). Use a two-way ANOVA to assess
the effects at a 5% level of significance.
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Density (B)
Variety (A) 5 (k/ha) 10 (k/ha) 15 (k/ha) 20 (k/ha)
1 7.8,9.1,10.6 11.2,12.7,13.3 | 12.1,125,14.1 9.1,10.7,12.6
2 8.0,8.7,10.0 11.3,12.9,13.8 | 13.8,14.3,15.4 | 11.3,12.7,143
3 15.3,16.0,17.6 | 16.8,18.3,19.2, | 17.9,21.0,20.7 | 17.2,18.3,19.1

Table 3. Observed data for three varieties of soy plants at four densities.

It is always important to look at the sample average yields for each treatment, each
level of factor A, and each level of factor B.

Variety

1
2
3

Density
5 10 15
9.17 12.40 12.90
8.90 12.67 14.50
16.30 18.10 19.87
11.46 1439 15.77

Sample average yield for each
level of factor B

Sample average yield for each

20
level of factor A
10.80 11.32
12.77  12.21
18.20 18.12
13.92 13.88

Table 4. Summary table.

For example, 11.32 is the average yield for variety #1 over all levels of planting densi-
ties. The value 11.46 is the average yield for plots planted with 5,000 plants across all
varieties. The grand mean is 13.88. The ANOVA table is presented next.

Source

variety

density
variety*density
error

total

DF SS MSS F P
2 327.774 163.887 100.48

3 86.908 28.969  17.76

6 8.068 1.345 0.82

24 39.147  1.631

35

Table 5. Two-way ANOVA table.

You begin with the following null and alternative hypotheses:

The F-statistic: F B =

HO: There is no interaction between factors

H_: There is a significant interaction between factors

MSAB 1345

0.82

MSE  1.631

<0.001
<0.001
0.562

The p-value for the test for a significant interaction between factors is 0.562. This p-
value is greater than 5% (a), therefore we fail to reject the null hypothesis. There is no
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evidence of a significant interaction between variety and density. So it is appropriate
to carry out further tests concerning the presence of the main effects.

H,: There is no effect of Factor A (variety) on the response variable

H_: There is an effect of Factor A on the response variable

The F-statistic: F/, = 2o 103887 _ 154 4

MSE  1.631
The p-value (<0.001) is less than 0.05 so we will reject the null hypothesis. There is a

significant difference in yield between the three varieties.

H,: There is no effect of Factor B (density) on the response variable

H_: There is an effect of Factor B on the response variable

MSB _ 28.969

MSE ~ 1.631
'The p-value (<0.001) is less than 0.05 so we will reject the null hypothesis. There is a

significant difference in yield between the four planting densities.

The F-statistic: F, = =17.76

Multiple Comparisons

The next step is to examine the multiple comparisons for each main effect to determine
the differences. We will proceed as we did with one-way ANOVA multiple comparisons
by examining the Tukey’s Grouping for each main effect. For factor A, variety, the sample
means, and grouping letters are presented to identify those varieties that are significantly
different from other varieties. Varieties 1 and 2 are not significantly different from each
other, both producing similar yields. Variety 3 produced significantly greater yields than
both variety 1 and 2.

Grouping Information Using Tukey Method and 95.0% Confidence

variety N Mean Grouping
3 12 18.117 A

2 12 12.208 B

1 12 11.317 B

Means that do not share a letter are significantly different.

Some of the densities are also significantly different. We will follow the same procedure to
determine the differences.

Grouping Information Using Tukey Method and 95.0% Confidence

density N Mean Grouping
15 9 15.756 A

10 9 14.389 A B

20 9 13.922 B

5 9 11.456 C
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Means that do not share a letter are significantly different.

'The Grouping Information shows us that a planting density of 15,000 plants/plot results
in the greatest yield. However, there is no significant difference in yield between 10,000
and 15,000 plants/plot or between 10,000 and 20,000 plants/plot. The plots with 5,000
plants/plot result in the lowest yields and these yields are significantly lower than all other
densities tested.

'The main effects plots also illustrate the differences in yield across the three varieties and
four densities.

Main Effects Plot for yield
Fitted Means

density variety

197

187

177

167

Mean

157

147

137

127

11_ T T T T T T T

Figure 2. Main effects plots.

But what happens if there is a significant interaction between the main effects? This next
example will demonstrate how a significant interaction alters the interpretation of a 2-way

ANOVA.

Ex.2

A researcher was interested in the effects of four levels of fertilization (control, 100
Ib.,1501b.,and 2001b.) and four levels of irrigation (A, B, C,and D) on biomass yield.
The sixteen possible treatment combinations were randomly assigned to 80 plots (5
plots for each treatment). The total biomass yields for each treatment are listed below.
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Fertilizer
Irrigation Control 100 1b. 150 Ib. 200 Ib.
A 2700,2801,2720, 3250,3151, 3170, 3300, 3235, 3500, 3455, 3100, 3600,
2390, 2890 3300, 3290 3025, 3165, 3250
3120
B 3101, 3035,3205, 2700, 2935, 2250, 3050, 3110, 3100, 3235, 3005, 3095,
3007,3100 2495, 2850 3033, 3195, 3050
4250
C 101,97,106,142,  400,302,296,315, 630, 624,595, 400, 325,200, 375, 390
99 390 675,595
D 121,174, 88,100, 100, 125,91, 222, 60,28,112, 89, 201,223,195, 120, 180
76 219 67

Table 6. Observed data for four irrigation levels and four fertilizer levels.

Factor A (irrigation level) has % = 4 levels and factor B (fertilizer) has /= 4 levels. There
are 7 = 5 replicates and 80 total observations. This is a balanced design as the number

of replicates is equal. The ANOVA table is presented next.

Source DF SS MSS F P
fertilizer 3 1128272 376091 12.76 <0.001
irrigation 3 161776127 53925376 1830.16 <0.001
fert*irrigation 9 2088667 232074 7.88 <0.001
error 64 1885746 29465

total 79 166878812

Table 7. Two-way ANOVA table.

We again begin with testing the interaction term. Remember, if the interaction term
is significant, we ignore the main effects.

H,: There is no interaction between factors

H_:There is a significant interaction between factors

The F-statistic: F,, = Aﬁ?j = 223924067: =7.88

The p-value for the test for a significant interaction between factors is <0.001. This

p-value is less than 5%, therefore we reject the null hypothesis. There is evidence of
a significant interaction between fertilizer and irrigation. Since the interaction term
is significant, we do not investigate the presence of the main effects. We must now
examine multiple comparisons for all 16 treatments (each combination of fertilizer
and irrigation level) to determine the differences in yield, aided by the factor plot.
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Grouping Information Using Tukey Method and 95.0% Confidence

fert irrigation
200 A

150
100
150
200

100
150
100
200
200
100
C

C

150 D

QOgogoogo0aowEswwmE e =

N

L L1 L L L L1 L1 L1 L L1 L1 L1 Lt L1 L

5

Mean
3381.00
3327.60
3232.20
3169.00
3097.00
3089.60
2700.20
2646.00
623.80
340.60
338.00
183.80
151.40
111.80
109.00
71.20

Grouping

-

O 0 0

vllvilvilvilvilv)

D

Means that do not share a letter are significantly different.

The factor plot allows you to visualize the differences between the 16 treatments.
Factor plots can present the information two ways, each with a different factor on

the x-axis. In the first plot, fertilizer level is on the x-axis. There is a clear distinction

in average yields for the different treatments. Irrigation levels A and B appear to be

producing greater yields across all levels of fertilizers compared to irrigation levels C

and D. In the second plot, irrigation level is on the x-axis. All levels of fertilizer seem

to result in greater yields for irrigation levels A and B compared to C and D.

Mean

Interaction Plot for yiel
Fitted Means

d

3500

3000+

2500+

2000+

1500

1000+

500

irrigation
—o— A
—m— B

C
—4&-D

Mean

Interaction Plot for yield
Fitted Means

3500

3000+

2500+

2000+

1500

1000+

500

fert
—e— 100
—=— 150

200
—A-C

irrigation

Figure 3. Interaction plots.

The next step is to use the multiple comparison output to determine where there are

SIGNIFICANT differences. Let’s focus on the first factor plot to do this.
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Interaction Plot for yield
Fitted Means
35001 irrigation
—o— A
30001 =B
C
Y —A-D
25007
20004
e
15004
d 10004
5001
g ‘_5‘_‘_“_”______%
100 150 — 200 C
fert

Figure 4. Interaction plot.

'The Grouping Information tells us that while irrigation levels A and B look similar
across all levels of fertilizer, only treatments A-100, A-150, A-200, B-control, B-150,
and B-200 are statistically similar (upper circle). Treatment B-100 and A-control
also result in similar yields (middle circle) and both have significantly lower yields
than the first group.

Irrigation levels C and D result in the lowest yields across the fertilizer levels. We
again refer to the Grouping Information to identify the differences. There is no sig-
nificant difference in yield for irrigation level D over any level of fertilizer. Yields for
D are also similar to yields for irrigation level C at 100, 200, and control levels for
fertilizer (lowest circle). Irrigation level C at 150 level fertilizer results in significantly
higher yields than any yield from irrigation level D for any fertilizer level, however,

this yield is still significantly smaller than the first group using irrigation levels A and
B.

Interpreting Factor Plots

When the interaction term is significant the analysis focuses solely on the treatments, not

the main effects. The factor plot and grouping information allow the researcher to identify

similarities and differences, along with any trends or patterns. The following series of factor

plots illustrate some true average responses in terms of interactions and main effects.
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This first plot clearly shows a significant interaction between the factors. The change in
response when level B changes, depends on level A.

20 ~

avg. response
N
>
.

Factor A levels

Figure 5. Interaction plot.

'The second plot shows no significant interaction. The change in response for the level of
factor A is the same for each level of factor B.

20
18 A

16 1 .’.A"’ -\‘A

14 A

avg. response

12 A

10 A

Factor A levels

Figure 6. Interaction plot.

The third plot shows no significant interaction and shows that the average response does
not depend on the level of factor A.
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Figure 7. Interaction plot.

'This fourth plot again shows no significant interaction and shows that the average response
does not depend on the level of factor B.

15 1

14

13

12 A ——B1

11 1 ---A--- B3
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Factor A levels

Figure 8. Interaction plot.

'This final plot illustrates no interaction and neither factor has any effect on the response.
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Figure 9. Interaction plot.

Summary

Two-way analysis of variance allows you to examine the effect of two factors simultaneously
on the average response. The interaction of these two factors is always the starting point
tor two-way ANOVA. If the interaction term is significant, then you will ignore the main
effects and focus solely on the unique treatments (combinations of the different levels of the
two factors). If the interaction term is not significant, then it is appropriate to investigate
the presence of the main effect of the response variable separately.
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Software Solutions
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General Linear Model: yield vs. fert, irrigation

Factor Type Levels Values
fert fixed 4 100, 150, 200,
irrigation fixed 4 A, B, C,

Analysis of Variance for Yield, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS
fert 3 1128272 1128272 376091
irrigation 3 161776127 161776127 53925376
fert*irrigation 9 2088667 2088667 232074
Error 64 1885746 1885746 29465
Total 79 166878812

S = 171.653 R-Sq = 98.87% R-Sq(adj) = 98.61%
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P

0.000
0.000
0.000
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Unusual Observations for yield

Obs yield Fit
4 2390.00
28 2250.00
35 4250.00

SE Fit Residual St Resid
2700.20 76.77 -310.20 -2.02 R
2646.00 76.77 -396.00 -2.58 R

3327.60 76.77  922.40 6.01 R

R denotes an observation with a large standardized residual.

Grouping Information Using Tukey Method and 95.0% Confidence

irrigation N Mean
A 20 3120.60
B 20 3040.05
C 20 352.85
D 20 129.55

Grouping
A
A

C

Means that do not share a letter are significantly different.

Grouping Information Using Tukey Method and 95.0% Confidence

fert N Mean

150 20 1797.90
200 20 1749.95
100 20 1592.55
C 20 1502.65

Grouping

A

A
B
B

Means that do not share a letter are significantly different.

Grouping Information Using Tukey Method and 95.0% Confidence

fert irrigation N
200 A
150
100
150
200

(%28

100
150
100
200
200
100
C

C

150 D 5

QO Qogogooo0®wpwxm x>
ULl L L L LT LT L1 L1 L1 L1 LT L1

Mean
3381.00
3327.60
3232.20
3169.00
3097.00
3089.60
2700.20 B

2646.00 B

623.80 C
340.60 C
338.00 C
183.80

151.40

111.80

109.00

71.20

Grouping

b

ivllvilvilvilvilvilv)

Means that do not share a letter are significantly different.
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Anova: Two-Factor With Replication
SUMMARY Bcontrol  B100  B150 B200 Total
AA
Count 5 5 5 5 20
Sum 13501 16161 15845 16905 62412
Average 2700.2 3232.2 3169 3381 3120.6
Variance 35700.2 4679.2 11167.5 40930 87716.57
AB
Count 5 5 5 5 20
Sum 15448 13230 16638 15485 60801
Average 3089.6 2646 3327.6 3097 3040.05
Variance 5839.8 76917.5 269901.3  7432.5 139929.4
AC
Count 5 5 5 5 20
Sum 545 1703 3119 1690 7057
Average 109 340.6 623.8 338 352.85
Variance 351.5 2525.8 1079.7 6782.5 37326.03
AD
Count 5 5 5 5 20
Sum 559 757 356 919 2591
Average 111.8 151.4 71.2 183.8 129.55
Variance 1485.2 4135.3 997.7 1510.7 3590.366
Total
Count 20 20 20 20
Sum 30053 31851 35958 34999
Average 1502.65 1592.55 1797.9 1749.95
Variance 2069464 1977134 2317478 2359637
ANOVA
Source of Variation SS df MS F p-value F crit
Sample 1.62E+08 53925376  1830.164 5.98E-62  2.748191
Columns 1128272 376090.7 12.76408 1.23E-06 2.748191
Interaction 2088667 2320742 7.876325  1.02E-07  2.029792
Within 1885746 64 29464.78
Total 1.67E+08 79

149



Chapter /

Correlation and Simple
Linear Regression

In many studies, we measure more than one variable for each individual. For example,
we measure precipitation and plant growth, or number of young with nesting habitat, or
soil erosion and volume of water. We collect pairs of data and instead of examining each
variable separately (univariate data), we want to find ways to describe bivariate data, in
which two variables are measured on each subject in our sample. Given such data, we begin
by determining if there is a relationship between these two variables. As the values of one
variable change, do we see corresponding changes in the other variable?

We can describe the relationship between these two variables graphically and numerically.
We begin by considering the concept of correlation.

Correlation is defined as the statistical association between two variables.

A correlation exists between two variables when one of them is related to the other in some
way. A scatterplot is the best place to start. A scatterplot (or scatter diagram) is a graph of
the paired (x,y) sample data with a horizontal x-axis and a vertical y-axis. Each individual
(x,y) pair is plotted as a single point.

Scatterplot of Chest.G vs Length
60
[ ]
.« 8
507] e P°8 0 0% o
°® °
() hd ...0'. ®
(L] (] [ ]
£ 40- % goe ® o
3 . o J ¥
(8] q. s
. ;f.g?‘,:'
. a
30 .o ®e% o o ...
[ ] ° [ ]
[ ] ’.. o 1
20 oo
T T T T T T
30 40 50 60 70 80
Length

Figure 1. Scatterplot of chest girth versus length.
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In this example, we plot bear chest girth (y) against bear length (x). When examining a
scatterplot, we should study the overall pattern of the plotted points. In this example, we
see that the value for chest girth does tend to increase as the value of length increases. We
can see an upward slope and a straight-line pattern in the plotted data points.

A scatterplot can identify several different types of relationships between two variables.

A relationship has no correlation when the points on a scatterplot do

not show any pattern.

* A relationship is non-linear when the points on a scatterplot follow a
pattern but not a straight line.

* A relationship is linear when the points on a scatterplot follow a
somewhat straight line pattern. This is the relationship that we will

examine.

Linear relationships can be either positive or negative. Positive relationships have points
that incline upwards to the right. As x values increase, y values increase. As x values de-
crease, y values decrease. For example, when studying plants, height typically increases as

diameter increases.

Scatterplot of Height vs Diameter

T
2 3 4
Diameter

Negative relationships have points that decline downward to the right. As x values increase
g p p g )
y values decrease. As x values decrease, y values increase. For example, as wind speed in-

Figure 2. Scatterplot of height versus diameter.

creases, wind chill temperature decreases.
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Scatterplot of Wind Chill at 20F vs Speed
107 ®
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Figure 3. Scatterplot of temperature versus wind speed.

Chapter 7

Non-linear relationships have an apparent pattern, just not linear. For example, as age in-
creases height increases up to a point then levels off after reaching a maximum height.

Scatterplot of Height vs Age
7 st 1%
:
8
57 ..
%%
o
24 °
o
£ [ ]
31 $
(]
..
27 o.
o,
s
s
1- T T T T T T T
0 10 20 30 40 50 60
Age

Figure 4. Scatterplot of height versus age.

When two variables have no relationship, there is no straight-line relationship or non-
linear relationship. When one variable changes, it does not influence the other variable.
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Scatterplot of growth vs area
357
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area

Figure 5. Scatterplot of growth versus area.

Linear Correlation Coefficient

Because visual examinations are largely subjective, we need a more precise and objective
measure to define the correlation between the two variables. To quantify the strength and
direction of the relationship between two variables, we use the linear correlation coeflicient:

O, =x) ;- »)

S, s,

n—1

V=

Chapter 7

where X and s_are the sample mean and sample standard deviation of the x’s, and ) and

Sy are the mean and standard deviation of the y’s. The sample size is 7.

An alternate computation of the correlation coeficient is:

where §_ =

3o (%X)

S

Xy

S.S

xx™yy

g (T

r=

2_@

The linear correlation coefficient is also referred to as Pearson’s product moment correlation
coeflicient in honor of Karl Pearson, who originally developed it. This statistic numerically
describes how strong the straight-line or linear relationship is between the two variables
and the direction, positive or negative.

The properties of “¢”:

*  Itis always between -1 and +1.
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* Ttis a unitless measure so

r wou

Chapter 7

1d be the same value whether you

measured the two variables in pounds and inches or in grams and

centimeters.

»

*  Positive values of “r

«. »

*  Negative values of

1’ are associa

are associated with positive relationships.

ted with negative relationships.

Examples of Positive Correlation

Weight

500

400

200

100

Scatterplot of Weight vs Chest.G
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Weight
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Scatterplot of Weight vs Head.L
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Strong positive relationship
r=0.96

Moderate positive relationship
r=0.67

Scatterplot of Flavor vs Oakiness
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Figure 6. Examples of positive correlation.
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Examples of Negative Correlation

Chapter 7
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Figure 7. Examples of negative correlation.

Correlation is not causation!!! Just because two variables are correlated does not
mean that one variable causes another variable to change.

Examine these next two scatterplots. Both of these data sets have an r = 0.01, but they are

very different. Plot 1 shows little linear relationship between x and y variables. Plot 2 shows

a strong non-linear relationship. Pearson’s linear correlation coeflicient only measures the

strength and direction of a linear relationship. Ignoring the scatterplot could result in a

serious mistake when describing the relationship between two variables.
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Plot 1 Plot 2
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Figure 8. Comparison of scatterplots.

When you investigate the relationship between two variables, always begin with a scat-
terplot. This graph allows you to look for patterns (both linear and non-linear). The next
step is to quantitatively describe the strength and direction of the linear relationship using
“_»

r”. Once you have established that a linear relationship exists, you can take the next step

in model building.

Simple Linear Regression

Once we have identified two variables that are correlated, we would like to model this
relationship. We want to use one variable as a predictor or explanatory variable to explain
the other variable, the response or dependent variable. In order to do this, we need a good
relationship between our two variables. The model can then be used to predict changes in
our response variable. A strong relationship between the predictor variable and the response
variable leads to a good model.

167

151

14

131

121

117

101

B 4 5 6 7

Figure 9. Scaﬁer]ﬁlot with regression model.

A simple linear regression model is a mathematical equation that allows us to
predict a response for a given predictor value.
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Our model will take the form of » =b;, +bx where 4, is the y-intercept, 4, is the slope, x is
the predictor variable, and j an estimate of the mean value of the response variable for any
value of the predictor variable.

'The y-intercept is the predicted value for the response (y) when x = 0. The slope describes
the change in y for each one unit change in x. Let’s look at this example to clarify the
interpretation of the slope and intercept.

Ex. 1

A hydrologist creates a model to predict the volume flow for a stream at a bridge
crossing with a predictor variable of daily rainfall in inches.

y=1.6+29x

The y-intercept of 1.6 can be interpreted this way: On a day with no rainfall, there
will be 1.6 gal. of water/min. flowing in the stream at that bridge crossing. The slope
tells us that if it rained one inch that day the flow in the stream would increase by an
additional 29 gal./min. If it rained 2 inches that day, the flow would increase by an
additional 58 gal./min.

Ex.2

What would be the average stream flow if it rained 0.45 inches that day?
y=1.6+29x=1.6+29(0.45) =14.65 gal./min.

The Least-Squares Regression Line (shortcut equations)
The equation is given by
y=b,+bx where b =r ::—y is the slope and
b, =y —bXx is the y—interceptxof the regression line.
An alternate computational equation for slope is:

5o (EE

b= =

| = =

sz_(Z:x) S

n

This simple model is the line of best fit for our sample data. The regression line does not
go through every point; instead it balances the difference between all data points and the
straight-line model. The difference between the observed data value and the predicted value
(the value on the straight line) is the error or residual. The criterion to determine the line
that best describes the relation between two variables is based on the residuals.
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Residual = Observed - Predicted

For example, if you wanted to predict the chest girth of a black bear given its weight, you
could use the following model.

Chest girth = 13.2 +0.43 weight
'The predicted chest girth of a bear that weighed 120 Ib. is 64.8 in.
Chest girth = 13.2 + 0.43(120) = 64.8 in.

But a measured bear chest girth (observed value) for a bear that weighed 120 1b. was actu-
ally 62.1 in.

'The residual would be 62.1 — 64.8 = -2.7 in.
A negative residual indicates that the model is over-predicting. A positive residual indicates

that the model is under-predicting. In this instance, the model over-predicted the chest

girth of a bear that actually weighed 120 Ib.

theat G

Scaltterplot of Chest.G vs Weight ,

- Model line
5 4
4 4

vs Weight /
0 4 . -

Predicted value (y) \[
2 ¢ .
| -
Residual

observed value (v}

Figure 10. Scatterplot with regression model illustrating a residual value.

'This random error (residual) takes into account all unpredictable and unknown factors that
are not included in the model. An ordinary least squares regression line minimizes the sum
of the squared errors between the observed and predicted values to create a best fitting line.
The differences between the observed and predicted values are squared to deal with the
positive and negative differences.
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Coefficient of Determination

After we fit our regression line (compute 4, and 4,), we usually wish to know how well the
model fits our data. To determine this, we need to think back to the idea of analysis of vari-
ance. In ANOVA, we partitioned the variation using sums of squares so we could identify
a treatment effect opposed to random variation that occurred in our data. The idea is the
same for regression. We want to partition the total variability into two parts: the variation
due to the regression and the variation due to random error. And we are again going to
compute sums of squares to help us do this.

Suppose the total variability in the sample measurements about the sample mean is denoted
by 2 (v, — ¥)?, called the sums of squares of total variability about the mean (SST).
The squared difference between the predicted value j and the sample mean is denoted
by (5, —¥), called the sums of squares due to regression (SSR). The SSR represents
the variability explained by the regression line. Finally, the variability which cannot be
explained by the regression line is called the sums of squares due to error (SSE) and is

denoted by ) (¥, = 7)*. SSE is actually the squared residual.

SST =SSR + SSE
Z(yi_J_/)Z =Z(JA/,'_J7)2 +Z(y,-_),>)2

60

50

40

307

20

0 5 10 15 20 25

Figure 11. An illustration of the relationship between the mean of the ys and the predicted and
observed value of a specific y.

The sums of squares and mean sums of squares (just like ANOVA) are typically presented
in the regression analysis of variance table. The ratio of the mean sums of squares for the
regression (MSR) and mean sums of squares for error (MSE) form an F-test statistic used
to test the regression model.
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'The relationship between these sums of square is defined as

Total Variation = Explained Variation + Unexplained Variation

The larger the explained variation, the better the model is at prediction. The larger the
unexplained variation, the worse the model is at prediction. A quantitative measure of the
explanatory power of a model is R? the Coefficient of Determination:

2 _ Explained Variation

Total Variation

'The Coeflicient of Determination measures the percent variation in the response variable
(y) that is explained by the model.

*  Values range from O to 1.

* An R? close to zero indicates a model with very little explanator
y p y
power.

* An R?close to one indicates a model with more explanatory power.

The Coeflicient of Determination and the linear correlation coefficient are related
mathematically.

R?2=12

However, they have two very different meanings: » is a measure of the strength and direc-
«

tion of a linear relationship between two variables; R* describes the percent variation in “y
that is explained by the model.

Residual and Normal Probability Plots

Even though you have determined, using a scatterplot, correlation coeflicient and R?, that x
is useful in predicting the value of y, the results of a regression analysis are valid only when
the data satisfy the necessary regression assumptions.

1) 'The response variable (y) is a random variable while the predictor vari-
able (x) is assumed non-random or fixed and measured without error.

2) 'The relationship between y and x must be linear, given by the model
y=b,+bx.

3) 'The values of the random error term € are independent, have a mean
of 0 and a common variance 0% independent of x, and are normally
distributed.

We can use residual plots to check for a constant variance, as well as to make sure that the
linear model is in fact adequate. A residual plot is a scatterplot of the residual (= observed
- predicted values) versus the predicted or fitted (as used in the residual plot) value. The
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center horizontal axis is set at zero. One property of the residuals is that they sum to zero
and have a mean of zero. A residual plot should be free of any patterns and the residuals
should appear as a random scatter of points about zero.

A residual plot with no appearance of any patterns indicates that the model assumptions
are satisfied for these data.

Versus Fits
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= o0
-1 °
) [ J
-2
° o °
-3 °
T T T T T
50 60 70 80 90
Fitted Value

Figure 12. A residual plot.

A residual plot that has a “fan shape” indicates a heterogeneous variance (non-constant
variance). The residuals tend to fan out or fan in as error variance increases or decreases.
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Figure 13. A residual plot that indicates a non-constant variance.

A residual plot that tends to “swoop” indicates that a linear model may not be appropriate.
The model may need higher-order terms of x, or a non-linear model may be needed to

better describe the relationship between y and x. Transformations on x or y may also be
considered.
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Versus Fits
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Figure 14. A residual plot that indicates the need for a higher order model.

A normal probability plot allows us to check that the errors are normally distributed. It
plots the residuals against the expected value of the residual as if it had come from a normal
distribution. Recall that when the residuals are normally distributed, they will follow a
straight-line pattern, sloping upward.

'This plot is not unusual and does not indicate any non-normality with the residuals.

Normal Probability Plot
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Figure 15. A normal probability plot.

This next plot clearly illustrates a non-normal distribution of the residuals.
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Normal Probability Plot
(response is Weight)
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Figure 16. A normal probability plot, which illustrates non-normal distribution.

'The most serious violations of normality usually appear in the tails of the distribution be-
cause this is where the normal distribution differs most from other types of distributions
with a similar mean and spread. Curvature in either or both ends of a normal probability
plot is indicative of nonnormality.

Population Model

Our regression model is based on a sample of 7 bivariate observations drawn from a larger
population of measurements.

y=>b,+bx

We use the means and standard deviations of our sample data to compute the slope (5,)
and y-intercept (4,) in order to create an ordinary least-squares regression line. But we want
to describe the relationship between y and «x in the population, not just within our sample
data. We want to construct a population model. Now we will think of the least-squares
line computed from a sample as an estimate of the true regression line for the population.

The Population Model
/’ly = BO + ﬁlx

where p_is the population mean response, B, is the y-intercept, and B, is the slope
for the population model.

In our population, there could be many different responses for a value of «x. In simple linear
regression, the model assumes that for each value of x the observed values of the response
variable y are normally distributed with a mean that depends on x. We use 1, to represent
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these means. We also assume that these means all lie on a straight line when plotted against
x (a line of means).

For any fixed ‘x’, the response ‘y’ follows a normal
distribution with standard deviation .

Figure 17. The statistical model for linear regression; the mean response is a straight-line
Sfunction of the predictor variable.

'The sample data then fit the statistical model:

Data = fit + residual

Vi = (ﬁo +ﬂ1xi)+8i

where the errors (g) are independent and normally distributed V (0, 0). Linear regression
also assumes equal variance of y (o is the same for all values of x). We use & (Greek epsilon)
to stand for the residual part of the statistical model. A response y is the sum of its mean
and chance deviation € from the mean. The deviations € represents the “noise” in the data.
In other words, the noise is the variation in y due to other causes that prevent the observed
(x, y) from forming a perfectly straight line.

The sample data used for regression are the observed values of y and . The response y to
a given «x is a random variable, and the regression model describes the mean and standard
deviation of this random variable y. The intercept B, slope B,, and standard deviation o of
y are the unknown parameters of the regression model and must be estimated from the
sample data.

*  'The value of j from the least squares regression line is really a predic-
tion of the mean value of y (uy) for a given value of x.

*  'The least squares regression line () = b, + b,X) obtained from sample
data is the best estimate of the true population regression line

(M, =Py +Bx).
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¥ is an unbiased estimate for the mean response I,
b, is an unbiased estimate for the intercept jB,
b, is an unbiased estimate for the slope B,

Parameter Estimation

Once we have estimates of 3, and B, (from our sample data 4, and 4,), the linear relation-
ship determines the estimates of p_for all values of x in our population, not just for the
observed values of x. We now want to use the least-squares line as a basis for inference
about a population from which our sample was drawn.

Model assumptions tell us that 4, and 4, are normally distributed with means B, and 3,
with standard deviations that can be estimated from the data. Procedures for inference
about the population regression line will be similar to those described in the previous
chapter for means. As always, it is important to examine the data for outliers and influential
observations.

In order to do this, we need to estimate o, the regression standard error. This is the standard
deviation of the model errors. It measures the variation of y about the population regression
line. We will use the residuals to compute this value. Remember, the predicted value of
y () for a specific x is the point on the regression line. It is the unbiased estimate of the
mean response (uy) for that x. The residual is:

residual = observed — predicted
¢=y,=3=y,—(b+bx)

The residual e corresponds to model deviation € where £ ¢ = 0 with a mean of 0. The
regression standard error s is an unbiased estimate of ©.

Z residual®
S =
n-2

The quantity s is the estimate of the regression standard error (0) and s is often called the
mean square error (MSE). A small value of s suggests that observed values of y fall close
to the true regression line and the line = b, + b,x should provide accurate estimates and
predictions.
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Confidence Intervals and Significance Tests
for Model Parameters

In an earlier chapter, we constructed confidence intervals and did significance tests for
the population parameter p (the population mean). We relied on sample statistics such as
the mean and standard deviation for point estimates, margins of errors, and test statistics.
Inference for the population parameters B (slope) and B, (y-intercept) is very similar.

Inference for the slope and intercept are based on the normal distribution using the esti-
mates 4, and 4,. The standard deviations of these estimates are multiples of o, the population
regression standard error. Remember, we estimate o with s (the variability of the data about
the regression line). Because we use s, we rely on the student t-distribution with (z — 2)
degrees of freedom.

The standard error for estimate of 3, The standard error for estimate of 3,

We can construct confidence intervals for the regression slope and intercept in much the
same way as we did when estimating the population mean.

A confidence interval for §: b + t , SE |

A confidence interval for 3, : b £ t_, SE,,

where SE, and SE, , are the standard errors for the y-intercept and slope,

respectively.

We can also test the hypothesis H: B, = 0. When we substitute B, = 0 in the model, the
x-term drops out and we are left with W, = B,- This tells us that the mean of y does NOT
vary with x. In other words, there is no straight line relationship between x and y and the
regression of y on x is of no value for predicting .

Hypothesis test for f,
H,: B, =0 H,: B, 20
The test statisticis t = b, / SE,,
We can also use the F-statistic (MSR/MSE) in the regression
ANOVA table*
*Recall that t? = F

So let’s pull all of this together in an example.

166



Natural Resources Biometrics

IBI
47
72
21
19
72
56
49
89
43
66

Ex.3

Chapter 7

The index of biotic integrity (IBI) is a measure of water quality in streams. As a man-
ager for the natural resources in this region, you must monitor, track, and predict

changes in water quality. You want to create a simple linear regression model that
will allow you to predict changes in IBI in forested area. The following table conveys
sample data from a coastal forest region and gives the data for IBI and forested area
in square kilometers. Let forest area be the predictor variable (x) and IBI be the re-
sponse variable (y).

Forest Area

38
9
10
10
52
14
66
17
18
21

IBI
41
33
23
32
80
31
78
21
43
45

Forest Area

22
25
31
32
33
33
33
39
41
43

IBI Forest Area

61 43
62 47
18 49
44 49
30 52
65 52
78 59
71 63
60 68
58 75

IBI Forest Area

71
33
59
81
71
75
64
41
82
60

Table 1. Observed data of biotic integrity and forest area.

79
79
80
86
89
90
95
95
100
100

IBI
84
83
82
82
86
79
67
56
85
91

We begin with a computing descriptive statistics and a scatterplot of IBI against

s, =21381r=0.735

Forest Area.
x =47.42 s, = 2737 y =58.80
Scatterplot of IBI vs Forest Area
100
90 ° . ®
[ ]
801 R oo .o & o °
[ ]
701 o0 o © °
[ ] ° ®
60 °° ° o )
E ° °
50 °
»® ¢ L4
407 °
307 ©e ° ¢
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0 20 40 60 80 100
Forest Area

Figure 18. Scatterplot of IBI vs. Forest Area.

There appears to be a positive linear relationship between the two variables. The linear
correlation coefficient is r = 0.735. This indicates a strong, positive, linear relation-

167



Natural Resources Biometrics Chapter 7

ship. In other words, forest area is a good predictor of IBI. Now let’s create a simple
linear regression model using forest area to predict IBI (response).

First, we will compute 4 and 4, using the shortcut equations.
b =r| 2 |0.735[ 2138 g 574
S, 27.37
b,=y—bx =58.80-0.574%47.42=31.581
The regression equation is p =31.58 +0.574x .

Now let’s use Minitab to compute the regression model. The output appears below.
Regression Analysis: IBI versus Forest Area

The regression equation is IBI = 31.6 + 0.574 Forest Area

Predictor Coef SE Coef T P
Constant 31.583 4177 7.56 0.000
Forest Area 0.57396 0.07648 7.50 0.000

S = 14.6505 R-Sq=54.0% R-Sq(adj) = 53.0%

Analysis of Variance
Source DF SS MS F P
Regression 1 12089 12089 56.32 0.000
Residual Error 48 10303 215
Total 49 22392

'The estimates for B and B, are 31.6 and 0.574, respectively. We can interpret the
y-intercept to mean that when there is zero forested area, the IBI will equal 31.6. For
each additional square kilometer of forested area added, the IBI will increase by 0.574
units.

The coeflicient of determination, R?, is 54.0%. This means that 54% of the varia-
tion in IBI is explained by this model. Approximately 46% of the variation in IBI is
due to other factors or random variation. We would like R? to be as high as possible
(maximum value of 100%).

The residual and normal probability plots do not indicate any problems.
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Residual
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Figure 19. A residual and normal probability plot.

The estimate of @, the regression standard error, is s = 14.6505. This is a measure of
the variation of the observed values about the population regression line. We would
like this value to be as small as possible. The MSE is equal to 215. Remember, the

MSE = 5. The standard errors for the coefficients are 4.177 for the y-intercept and
0.07648 for the slope.

We know that the values 4, = 31.6 and 4, = 0.574 are sample estimates of the true,
but unknown, population parameters 3, and ,. We can construct 95% confidence
intervals to better estimate these parameters. The critical value (t ) comes from the
student t-distribution with (n — 2) degrees of freedom. Our sample size is 50 so we

would have 48 degrees of freedom. The closest table value is 2.009.

95% confidence intervals for 3, and f3,
byxt  SE, =31.6 +2.009(4.177) = (23.21,39.99)
bxt ,SE, =0.574+2.009(0.07648) = (0.4204, 0.7277)

The next step is to test that the slope is significantly different from zero using a 5%
level of significance.

Hj:B, =0 H,: B, =0
t=b, /SE, = 0.574/0.07648 = 7.50523

We have 48 degrees of freedom and the closest critical value from the student t-dis-
tribution is 2.009. The test statistic is greater than the critical value, so we will reject
the null hypothesis. The slope is significantly different from zero. We have found a
statistically significant relationship between Forest Area and IBI.

'The Minitab output also report the test statistic and p-value for this test.

'The regression equation is IBI = 31.6 + 0.574 Forest Area

Predictor Coef SE Coef T P
Constant 31.583 4177 7.56 0.000
Forest Area 0.57396 0.07648 7.50 0.000

S=14.6505 R-Sq=540% R-Sq(adj) = 53.0%
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Analysis of Variance

Source DF  SS MS F P
Regression 1 12089 12089 56.32 0.000
Residual Error 48 10303 215

Total 49 22392

The t test statistic is 7.50 with an associated p-value of 0.000. The p-value is less than
the level of significance (5%) so we will reject the null hypothesis. The slope is signifi-
cantly different from zero. The same result can be found from the F-test statistic of

56.32 (7.505% = 56.32). The p-value is the same (0.000) as the conclusion.

Confidence Interval for n,

Now that we have created a regression model built on a significant relationship between the
predictor variable and the response variable, we are ready to use the model for

* estimating the average value of y for a given value of x
*  predicting a particular value of y for a given value of x

Let’s examine the first option. The sample data of 7 pairs that was drawn from a population
was used to compute the regression coefficients 4, and 4, for our model, and gives us the
average value of y for a specific value of x through our population model

uy:ﬁ0+ﬂ1x

For every specific value of x, there is an average y(f,), which falls on the straight line equa-
tion (a line of means). Remember, that there can be many different observed values of the y
for a particular x, and these values are assumed to have a normal distribution with a mean
equal to By + BiX and a variance of o2 Since the computed values of 4, and 4, vary from
sample to sample, each new sample may produce a slightly different regression equation.
Each new model can be used to estimate a value of y for a value of x. How far will our
estimator J = b, + b,x be from the true population mean for that value of x? This depends,
as always, on the variability in our estimator, measured by the standard error.

It can be shown that the estimated value of y when x = x (some specified value of x), is
an unbiased estimator of the population mean, and that J is normally distributed with a
standard error of

—\2
SE; =s l+—(x0—x)

7 Z(xi_f)z

We can construct a confidence interval to better estimate this parameter (uy) following the
same procedure illustrated previously in this chapter.
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H y T ta / 2S E i
where the critical value t_,, comes from the student t-table with (7 — 2) degrees of freedom.

Statistical software, such as Minitab, will compute the confidence intervals for you. Using
the data from the previous example, we will use Minitab to compute the 95% confidence
interval for the mean response for an average forested area of 32 km.

Predicted Values for New Observations
New Obs Fit  SE Fit 95% CIl
1 49.9496 2.38400 (45.1562,54.7429)

If you sampled many areas that averaged 32 km. of forested area, your estimate of the
average IBI would be from 45.1562 to 54.7429.

You can repeat this process many times for several different values of x and plot the confi-
dence intervals for the mean response.

x 95%CI
20 (37.13,48.88)
40  (50.22,58.86)
60  (61.43,70.61)
80  (70.98,84.02)
100 (79.88,98.07)

120

100 ~

80

60 -

40 ~

20

0 T T T T T 1
0 20 40 60 80 100 120

Figure 20. 95% confidence intervals for the mean response.
Notice how the width of the 95% confidence interval varies for the different values of «.

Since the confidence interval width is narrower for the central values of «, it follows that W,
is estimated more precisely for values of x in this area. As you move towards the extreme
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limits of the data, the width of the intervals increases, indicating that it would be unwise to
extrapolate beyond the limits of the data used to create this model.

Prediction Intervals

What if you want to predict a particular value of y when x = x> Or, perhaps you want to
predict the next measurement for a given value of x? This problem differs from constructing
a confidence interval for p. Instead of constructing a confidence interval to estimate a
population parameter, we need to construct a prediction interval. Choosing to predict a
particular value of y incurs some additional error in the prediction because of the deviation
of y from the line of means. Examine the figure below. You can see that the error in predic-
tion has two components:

1) 'The error in using the fitted line to estimate the line of means

2) 'The error caused by the deviation of y from the line of means, mea-

sured by o?
12 S
10 4 Actual value of v ~_ F 7
N - :_L _— 'i-’lj n SI_T.-
& Youare
. i attempting to
predict
& - Hy =By + Bx
4 J
Dradictad valus
24 Emorof of ¥
estimating &
El 1 [l 1 O 1 1
a 2 = a8 a8 10 12

Figure 21. Illustrating the two components in the error of prediction.
The variance of the difference between y and J is the sum of these two variances and

forms the basis for the standard error of (y — ) used for prediction. The resulting form of
a prediction interval is as follows:
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—\2
vyt s 1+1+Lx)2
" Z (x,—x)
where «, is the given value for the predictor variable, 7 is the number of observations, and
t , is the critical value with (7 — 2) degrees of freedom.

Software, such as Minitab, can compute the prediction intervals. Using the data from the
previous example, we will use Minitab to compute the 95% prediction interval for the IBI
of a specific forested area of 32 km.

Predicted Values for New Observations
New Obs  Fit SE Fit 95% PI
1 49.9496 2.38400 (20.1053,79.7939)

You can repeat this process many times for several different values of x and plot the predic-
tion intervals for the mean response.

X 95% PI
20 (13.01,73.11)
40 (24.77,84.31)
60  (36.21,95.83)
80 (47.33,107.67)
100 (58.15,119.81)

Notice that the prediction interval bands are wider than the corresponding confidence in-
terval bands, reflecting the fact that we are predicting the value of a random variable rather
than estimating a population parameter. We would expect predictions for an individual
value to be more variable than estimates of an average value.
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Figure 22. A comparison of confidence and prediction intervals.

Transformations to Linearize Data
Relationships

In many situations, the relationship between x and y is non-linear. In order to simplify the
underlying model, we can transform or convert either x or y or both to result in a more
linear relationship. There are many common transformations such as logarithmic and recip-
rocal. Including higher order terms on x may also help to linearize the relationship between
x and y. Shown below are some common shapes of scatterplots and possible choices for
transformations. However, the choice of transformation is frequently more a matter of trial
and error than set rules.

Shape of scatterplot Choice of transformation

w0

20

o X or y

150 x? logy

10 X -1y

%

’ 0 2 4 6 8 10
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log x
-1/x

60

50

40

30

20

log x
-1/x

2 4 6 8 10

or

or

or

Chapter 7

<%

logy
-1y

N

Figure 23. Examples of possible transformations for x and y variables.

Ex. 4

A forester needs to create a simple linear regression model to predict tree volume
using diameter-at-breast height (dbh) for sugar maple trees. He collects dbh and
volume for 236 sugar maple trees and plots volume versus dbh. Given below is the
scatterplot, correlation coeflicient, and regression output from Minitab.
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Scatterplot of volume vs dbh
2007 ®
°
'. 1)
[ 1Y °
150 ® o © °®
o0
°
2 ®
3 1007 LA SR
> ° [ ] Y " ®
i ® ‘*:A 4
50 o0 .", °
0
5 10 15 20 25 30
dbh

Figure 24. Scatterplot of volume versus dbh.

Pearson’s linear correlation coefhicient is 0.894, which indicates a strong, positive,
linear relationship. However, the scatterplot shows a distinct nonlinear relationship.

Regression Analysis: volume versus dbh

'The regression equation is volume = - 51.1 + 7.15 dbh

Predictor
Constant
dbh

S =19.5820

Coef SE Coef T
-51.097 3.271 -15.62
7.1500 0.2342 30.53
R-Sq = 79.9%

Analysis of Variance

R-Sq(adj) = 79.8%

Source DF SS MS F
Regression 1 357397 357397 932.04
Residual Error 234 89728 383

Total 235 447125

0.000
0.000

0.000

The R? is 79.9% indicating a fairly strong model and the slope is significantly dif-
ferent from zero. However, both the residual plot and the residual normal probability
plot indicate serious problems with this model. A transformation may help to create
a more linear relationship between volume and dbh.
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Figure 25. Residual and normal probability plots.

Volume was transformed to the natural log of volume and plotted against dbh (see
scatterplot below). Unfortunately, this did little to improve the linearity of this rela-
tionship. The forester then took the natural log transformation of dbh. The scatterplot
of the natural log of volume versus the natural log of dbh indicated a more linear
relationship between these two variables. The linear correlation coefficient is 0.954.

Scatterplot of InVOL vs dbh

Scatterplot of InVOL vs InDBH
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Figure 26. Scatterplots of natural log of volume versus dbh and natural log of volume versus
natural log of dbh.

The regression analysis output from Minitab is given below.

Regression Analysis: InVOL vs. InDBH

'The regression equation is InVOL = - 2.86 + 2.44 InDBH

Predictor Coef
Constant -2.8571
InDBH 2.44383

S =0.327327 R-Sq=91.1%

SE Coef T P
0.1253 -22.80 0.000
0.05007 48.80 0.000

R-Sq(adj) = 91.0%
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Analysis of Variance

Residual

Source DF SS MS F P
Regression 1 255.19 255.19 2381.78 0.000
Residual Error 234 25.07 0.11
Total 235 280.26
Versus Fits Normal Probability Plot
(response i IVOL) (response is InVOL)

Percent
8

-1.01

T
1 2 3 4 5 6 -1.0 -0.5 0.0 0.5 1.0
Fitted Value Residual

Figure 27. Residual and normal probability plots.

The model using the transformed values of volume and dbh has a more linear rela-
tionship and a more positive correlation coefficient. The slope is significantly different
from zero and the R? has increased from 79.9% to 91.1%. The residual plot shows a
more random pattern and the normal probability plot shows some improvement.

There are many possible transformation combinations possible to linearize data. Each
situation is unique and the user may need to try several alternatives before selecting
the best transformation for x or y or both.
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Minitab
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Excel
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SUMMARY OUTPUT

Regression Stalistics
Multiple R 0.89404782
R Square 0.7595%3215
Adjusted R Square  0.7924639
Standard E mor 19.5819962

O bservations 236
ANOWVA
of E5 ME F ignificance F

Regression 1 3573595 6011 3573966 9320442 144E-33
Residual 234 8972837054 3834548
Total 235 447124 5717

Coefficients Standard Error ¢ Siat P-value | ower 35% Upper 95% ower 95.0%/pper 85.0%
Intercept -51.086811 3270935681 -15.6215 36BE-38 -57.5411 4486526 -57.5411 446526
dbh 714997446 023410906851 30.5204 1 44FE 33 6688565 7611384 BEB8565 7611384

dbh Residual Plot
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Figure 28. Residual and normal probability plots.
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Multiple Linear Regression

It frequently happens that a dependent variable (y) in which we are interested is related to
more than one independent variable. If this relationship can be estimated, it may enable
us to make more precise predictions of the dependent variable than would be possible by
a simple linear regression. Regressions based on more than one independent variable are
called multiple regressions.

Multiple linear regression is an extension of simple linear regression and many of the ideas
we examined in simple linear regression carry over to the multiple regression setting. For
example, scatterplots, correlation, and least squares method are still essential components
for a multiple regression.

For example, a habitat suitability index (used to evaluate the impact on wildlife habitat
from land use changes) for ruffed grouse might be related to three factors:

x, = stem density
x, = percent of conifers
x, = amount of understory herbaceous matter

A researcher would collect data on these variables and use the sample data to construct a
regression equation relating these three variables to the response. The researcher will have
questions about his model similar to a simple linear regression model.

How strong is the relationship between y and the three predictor variables?
How well does the model fit?

Have any important assumptions been violated?

How good are the estimates and predictions?

'The general linear regression model takes the form of
Y; = By + Bx + oy +. 4 By, + £,
with the mean value of y given as
u, = By + Bix, + Byx, +...+ Bx,
where:

* yis the random response variable and . is the mean value of y,
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* B, B,,B,and B, are the parameters to be estimated based on the
sample data,

* X, Xy..., X are the predictor variables that are assumed to be non-
random or fixed and measured without error, and k is the number of

predictor variable,

* and ¢ is the random error, which allows each response to deviate from
the average value of y. The errors are assumed to be independent,
have a mean of zero and a common variance (0%), and are normally
distributed.

As you can see, the multiple regression model and assumptions are very similar to those for
a simple linear regression model with one predictor variable. Examining residual plots and
normal probability plots for the residuals is key to verifying the assumptions.

Correlation

As with simple linear regression, we should always begin with a scatterplot of the response
variable versus each predictor variable. Linear correlation coefficients for each pair should
also be computed. Instead of computing the correlation of each pair individually, we can
create a correlation matrix, which shows the linear correlation between each pair of vari-
ables under consideration in a multiple linear regression model.

y x1 x2
x1 0.816
0.000
X2 0.413 -0.144
0.029 0.466
X3 0.768 0.588 0.406
0.000 0.001 0.032

Table 1. A correlation matrix.

In this matrix, the upper value is the linear correlation coefficient and the lower value is the
p-value for testing the null hypothesis that a correlation coeflicient is equal to zero. This
matrix allows us to see the strength and direction of the linear relationship between each
predictor variable and the response variable, but also the relationship between the predictor
variables. For example, y and x7 have a strong, positive linear relationship with r = 0.816,
which is statistically significant because p = 0.000. We can also see that predictor variables
x1 and x3 have a moderately strong positive linear relationship (r = 0.588) that is significant
(p = 0.001).

There are many different reasons for selecting which explanatory variables to include in our

model (see Model Development and Selection), however, we frequently choose the ones
that have a high linear correlation with the response variable, but we must be careful. We
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do not want to include explanatory variables that are highly correlated among themselves.
We need to be aware of any multicollinearity between predictor variables.

Multicollinearity exists between two explanatory variables if they have a strong
linear relationship.

For example, if we are trying to predict a person’s blood pressure, one predictor variable
would be weight and another predictor variable would be diet. Both predictor variables are
highly correlated with blood pressure (as weight increases blood pressure typically increases,
and as diet increases blood pressure also increases). But, both predictor variables are also
highly correlated with each other. Both of these predictor variables are conveying essentially
the same information when it comes to explaining blood pressure. Including both in the
model may lead to problems when estimating the coeflicients, as multicollinearity increases
the standard errors of the coefficients. This means that coeflicients for some variables may
be found not to be significantly difterent from zero, whereas without multicollinearity and
with lower standard errors, the same coeflicients might have been found significant. Ways
to test for multicollinearity are not covered in this text, however a general rule of thumb is
to be wary of a linear correlation of less than -0.7 and greater than 0.7 between two pre-
dictor variables. Always examine the correlation matrix for relationships between predictor
variables to avoid multicollinearity issues.

Estimation

Estimation and inference procedures are also very similar to simple linear regression. Just
as we used our sample data to estimate 3 and B, for our simple linear regression model, we
are going to extend this process to estimate all the coefficients for our multiple regression
models.

With the simpler population model
H, = [))o + ﬂl x

B, is the slope and tells the user what the change in the response would be as the predictor
variable changes. With multiple predictor variables, and therefore multiple parameters to
estimate, the coefficients B, B,, B; and so on are called partial slopes or partial regression
coefficients. The partial slope B, measures the change in y for a one-unit change in x, when
all other independent variables are held constant. These regression coefficients must be
estimated from the sample data in order to obtain the general form of the estimated mul-
tiple regression equation

y=b,+bx, +bx, +bx,+...+bx,

and the population model
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u, = By + Bix, + Byx, + Bix; +...+ Brx,

where % = the number of independent variables (also called predictor variables)

3 = the predicted value of the dependent variable (computed by using the multiple regres-
sion equation)

%, %, ..., %_= the independent variables

B, is the y-intercept (the value of y when all the predictor variables equal 0)

b, is the estimate of B based on that sample data

B,» B, By-..B, are the coefficients of the independent variables x., x,, ..., %,

b, by, b, ..., b_are the sample estimates of the coefficients B, B, B,...B,

'The method of least-squares is still used to fit the model to the data. Remember that this
method minimizes the sum of the squared deviations of the observed and predicted values

(SSE).

'The analysis of variance table for multiple regression has a similar appearance to that of a
simple linear regression.

Source of df Seq sums of  Sums of Mean sums of F
variation squares squares squares
Regression k SSR SSR/k=MSR MSR/MSE=F
Error n-k-1 SSE SSE/(n-k-1)=MSE
Total n-1 SSTo

Table 2. ANOVA table.
Where k is the number of predictor variables and n is the number of observations.

The best estimate of the random variation o>—the variation that is unexplained by the
predictor variables—is still s?, the MSE. The regression standard error, s, is the square root

of the MISE.

A new column in the ANOVA table for multiple linear regression shows a decomposition
of SSR, in which the conditional contribution of each predictor variable given the variables
already entered into the model is shown for the order of entry that you specify in your regres-
sion. These conditional or sequential sums of squares each account for 1 regression degree
of freedom, and allow the user to see the contribution of each predictor variable to the total
variation explained by the regression model by using the ratio:

SeqSS
SSR
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Adjusted R?

In simple linear regression, we used the relationship between the explained and total varia-
tion as a measure of model fit:

R Explained Variation _ SSR - SSE
Total Variation SSTo SSTo

Notice from this definition that the value of the coefficient of determination can never
decrease with the addition of more variables into the regression model. Hence, R? can be
artificially inflated as more variables (significant or not) are included in the model. An
alternative measure of strength of the regression model is adjusted for degrees of freedom
by using mean squares rather than sums of squares:

(n-1)(1-R*) ( MSE ]

R*(adj)=1- =|1-
(acf) SSTo / (n—1)

The adjusted R? value represents the percentage of variation in the response variable ex-
plained by the independent variables, corrected for degrees of freedom. Unlike R?, the
adjusted R? will not tend to increase as variables are added and it will tend to stabilize
around some upper limit as variables are added.

Tests of Significance

Recall in the previous chapter we tested to see if y and x were linearly related by testing
H:B,=0 H:B,#0

with the t-test (or the equivalent F-test). In multiple linear regression, there are several
partial slopes and the t-test and F-test are no longer equivalent. Our question changes: Is

the regression equation that uses information provided by the predictor variables x,, x,, x,,

..., X, better than the simple predictor Y (the mean response value), which does not rely on
any of these independent variables:
y of th dependent bles?

H:B,=B,=B,=...=, =0
H: Atleast one of B, 3,,B,,...8, #0

The F-test statistic is used to answer this question and is found in the ANOVA table.

Fo MSR
MSE

This test statistic follows the F-distribution with df, = k and df, = (n-k-1). Since the exact
p-value is given in the output, you can use the Decision Rule to answer the question.
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If the p-value is less than the level of significance, reject the null hypothesis.

Rejecting the null hypothesis supports the claim that at least one of the predictor variables
has a significant linear relationship with the response variable. The next step is to determine
which predictor variables add important information for prediction in the presence of other
predictors already in the model. To test the significance of the partial regression coeflicients,
you need to examine each relationship separately using individual t-tests.

H:B.=0 H:B #0

bi_ﬁi

t= ith df = (n-k-1
SE(h,) with df = (n )

where SE(5,) is the standard error of 4. Exact p-values are also given for these tests. Exam-
ining specific p-values for each predictor variable will allow you to decide which variables
are significantly related to the response variable. Typically, any insignificant variables are
removed from the model, but remember these tests are done with other variables in the
model. A good procedure is to remove the least significant variable and then refit the model
with the reduced data set. With each new model, always check the regression standard error
(lower is better), the adjusted R? (higher is better), the p-values for all predictor variables,
and the residual and normal probability plots.

Because of the complexity of the calculations, we will rely on software to fit the model and
give us the regression coefficients. Don’t forget... you always begin with scatterplots. Strong
relationships between predictor and response variables make for a good model.

Ex. 1

A researcher collected data in a project to predict the annual growth per acre of upland
boreal forests in southern Canada. They hypothesized that cubic foot volume growth
(») is a function of stand basal area per acre (x,), the percentage of that basal area in
black spruce (x,), and the stand’s site index for black spruce (x,). a = 0.05.
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%BA %BA
CuFt BAl/ac Bspruce Sl CuFt BA/ac Bspruce Sl
55 51 79 45 71 65 93 35
68 100 48 53 67 87 68 41
60 63 67 44 73 108 51 54
40 52 52 31 87 105 82 51
45 67 52 29 80 100 70 45
49 42 82 43 77 103 61 43
62 81 80 42 64 55 96 51
56 70 65 36 60 60 80 47
93 108 96 63 65 70 76 40
76 90 81 60 65 78 74 46
94 110 78 56 83 85 96 55
82 111 59 48 67 92 58 50
86 94 84 53 61 82 58 38
55 82 48 40 51 56 69 35

Table 3. Observed data for cubic feet, stand basal area, percent basal area in black spruce, and
site index.

Scatterplots of the response variable versus each predictor variable were created along with

a correlation matrix.

Scatterplot of CuFt vs BA/ac
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Scatterplot of CuFt vs % BA Bspruce
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Figure 1. Scatterplots of cubic feet versus basal area, percent basal area in black spruce, and site

index.
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Correlations: CuFt, BA/ac, %BA Bspruce, SI

CuFt BA/ac $BA Bspruce
BA/ac 0.816
0.000
%$BA Bspruce 0.413 -0.144
0.029 0.466
SI 0.768 0.588 0.406
0.000 0.001 0.032

Cell Contents: Pearson correlation
P-Value

Table 4. Correlation matrix.

As you can see from the scatterplots and the correlation matrix, BA/ac has the strongest
linear relationship with CuFt volume (r = 0.816) and %BA in black spruce has the weakest
linear relationship (r = 0.413). Also of note is the moderately strong correlation between
the two predictor variables, BA/ac and SI (r = 0.588). All three predictor variables have sig-
nificant linear relationships with the response variable (volume) so we will begin by using
all variables in our multiple linear regression model. The Minitab output is given below.

We begin by testing the following null and alternative hypotheses:
Hp:B,=B,=B,=0
H,: At least one of B, 3,,B,# 0
General Regression Analysis: CuFt versus BA/ac, Sl, %BA Bspruce

Regression Equation
CuFt = -19.3858 + 0.591004 BA/ac + 0.0899883 SI + 0.489441 %BA Bspruce

Coefhicients
Term Coef SE Coef T P 95% CI
Constant -19.3858 415332 -4.6675 0.000 (-27.9578,-10.8137)
BA/ac 0.5910 0.04294 13.7647 0.000 (0.5024,0.6796)
SI 0.0900 0.11262 0.7991 0.432 (-0.1424,0.3224)
%BA Bspruce 0.4894 0.05245 9.3311 0.000 (0.3812,0.5977)
Summary of Model
S =3.17736 R-Sq = 95.53% R-Sq(adj) = 94.97%
PRESS = 322.279 R-Sq(pred) = 94.05%
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Analysis of Variance

Source DF Seq SS Adj SS Adj MS F P
Regression 3 5176.56 5176.56 1725.52 170.918 0.000000
BA/ac 1 3611.17 1912.79 1912.79 189.467 0.000000
ST 1 686.37 6.45 6.45 0.638 0.432094
%BA Bspruce 1 879.02 879.02 879.02 87.069 0.000000
Error 24 242.30 242.30 10.10

Total 27 5418.86

The F-test statistic (and associated p-value) is used to answer this question and is found in
the ANOVA table. For this example, F = 170.918 with a p-value of 0.00000. The p-value
is smaller than our level of significance (0.0000<0.05) so we will reject the null hypothesis.
At least one of the predictor variables significantly contributes to the prediction of volume.

The coefficients for the three predictor variables are all positive indicating that as they
increase cubic foot volume will also increase. For example, if we hold values of SI and %BA
Bspruce constant, this equation tells us that as basal area increases by 1 sq. ft., volume will
increase an additional 0.591004 cu. ft. The signs of these coefficients are logical, and what
we would expect. The adjusted R? is also very high at 94.97%.

'The next step is to examine the individual t-tests for each predictor variable. The test statis-
tics and associated p-values are found in the Minitab output and repeated below:

Coefhicients
Term Coef SE Coef T P 95% CI
Constant -19.3858 4.15332 -4.6675 0.000 (-27.9578,-10.8137)
BA/ac 0.5910 0.04294 13.7647 0.000 (0.5024,0.6796)
ST 0.0900 0.11262 0.7991 0.432 (-0.1424,0.3224)
%BA Bspruce 0.4894 0.05245 9.3311 0.000 (0.3812,0.5977)

The predictor variables BA/ac and %BA Bspruce have t-statistics of 13.7647 and 9.3311
and p-values of 0.0000, indicating that both are significantly contributing to the prediction
of volume. However, SI has a t-statistic of 0.7991 with a p-value of 0.432.This variable does
not significantly contribute to the prediction of cubic foot volume.

This result may surprise you as SI had the second strongest relationship with volume, but
don’t forget about the correlation between SI and BA/ac (r = 0.588). The predictor variable
BA/ac had the strongest linear relationship with volume, and using the sequential sums
of squares, we can see that BA/ac is already accounting for 70% of the variation in cubic
foot volume (3611.17/5176.56 = 0.6976). The information from SI may be too similar
to the information in BA/ac, and SI only explains about 13% of the variation on volume

(686.37/5176.56 = 0.1326) given that BA/ac is already in the model.

The next step is to examine the residual and normal probability plots. A single outlier is
evident in the otherwise acceptable plots.

190



Natural Resources Biometrics

Chapter 8

Residual

5.0

2.5

0.0

-2.54

-5.01

-7.54

-10.01

Versus Fits Normal Probability Plot
(response is CuFt) (response is CuFt)
o °
° ¢ EH
(]
[ ] %04
° (]
[) ) LY ° PY &
) g ° 704
" e £ o
oo $ w-
° ° 9 07
[ ] 30
24
10
54
° °
T T T T T T T ==
40 50 60 70 80 90 100 -10
Fitted Value Residual

Figure 2. Residual and normal probability plots.
So where do we go from here?

We will remove the non-significant variable and re-fit the model excluding the data for SI
in our model. The Minitab output is given below.

General Regression Analysis: CuFt versus BA/ac, %BA Bspruce

Regression Equation
CuFt =-19.1142 + 0.615531 BA/ac + 0.515122 %BA Bspruce

Coefhicients
Term Coef SE Coef T P 95% CI
Constant -19.1142 4.10936 -4.6514 0.000 (-27.5776,-10.6508)
BA/ac 0.6155 0.02980 20.6523 0.000 (0.5541,0.6769)
%BA Bspruce  0.5151 0.04115 12.5173 0.000 (0.4304,0.5999)
Summary of Model
S =3.15431 R-Sq = 95.41% R-Sq(adj) = 95.04%

PRESS = 298.712 R-Sq(pred) = 94.49%

Analysis of Variance
Source DF SeqSS AdjSS AdiMS F P
Regression 2 5170.12 5170.12 2585.06 259.814 0.0000000
BA/ac 1 3611.17 4243.71 4243.71 426.519 0.0000000
%BA Bspruce 1 1558.95 1558.95 1558.95 156.684 0.0000000
Error 25 248.74 248.74 9.95
Total 27 5418.86

We will repeat the steps followed with our first model. We begin by again testing the fol-
lowing hypotheses:
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Hi:B,=B,=B,=0
H.: At least one of B,, B, , B, # 0

'This reduced model has an F-statistic equal to 259.814 and a p-value of 0.0000. We will
reject the null hypothesis. At least one of the predictor variables significantly contributes to
the prediction of volume. The coeflicients are still positive (as we expected) but the values
have changed to account for the different model.

'The individual t-tests for each coefficient (repeated below) show that both predictor vari-
ables are significantly different from zero and contribute to the prediction of volume.

Coefhicients
Term Coef SE Coef T P 95% CI
Constant -19.1142 4.10936 -4.6514 0.000 (-27.5776,-10.6508)
BA/ac 0.6155 0.02980 20.6523 0.000 (0.5541,0.6769)
%BA Bspruce 0.5151 0.04115 12.5173 0.000 (0.4304,0.5999)

Notice that the adjusted R? has increased from 94.97% to 95.04% indicating a slightly better
fit to the data. The regression standard error has also changed for the better, decreasing from
3.17736 to 3.15431 indicating slightly less variation of the observed data to the model.
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Figure 3. Residual and normal probability plots.

'The residual and normal probability plots have changed little, still not indicating any issues
with the regression assumption. By removing the non-significant variable, the model has
improved.

Model Development and Selection

There are many different reasons for creating a multiple linear regression model and its
purpose directly influences how the model is created. Listed below are several of the more
commons uses for a regression model:
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1) Describing the behavior of your response variable

2) Predicting a response or estimating the average response
3) Estimating the parameters (8, B,,B,, --.)

4) Developing an accurate model of the process

Depending on your objective for creating a regression model, your methodology may vary
when it comes to variable selection, retention, and elimination.

When the object is simple description of your response variable, you are typically less con-
cerned about eliminating non-significant variables. The best representation of the response
variable, in terms of minimal residual sums of squares, is the full model, which includes
all predictor variables available from the data set. It is less important that the variables are
causally related or that the model is realistic.

A common reason for creating a regression model is for prediction and estimating. A re-
searcher wants to be able to define events within the x-space of data that were collected
for this model, and it is assumed that the system will continue to function as it did when
the data were collected. Any measurable predictor variables that contain information on
the response variable should be included. For this reason, non-significant variables may be
retained in the model. However, regression equations with fewer variables are easier to use
and have an economic advantage in terms of data collection. Additionally, there is a greater
confidence attached to models that contain only significant variables.

If the objective is to estimate the model parameters, you will be more cautious when con-
sidering variable elimination. You want to avoid introducing a bias by removing a variable
that has predictive information about the response. However, there is a statistical advantage
in terms of reduced variance of the parameter estimates if variables truly unrelated to the
response variable are removed.

Building a realistic model of the process you are studying is often a primary goal of much
research. It is important to identify the variables that are linked to the response through
some causal relationship. While you can identify which variables have a strong correlation
with the response, this only serves as an indicator of which variables require further study.
'The principal objective is to develop a model whose functional form realistically reflects the
behavior of a system.

The following figure is a strategy for building a regression model.
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Figure 4. Strategy for building a regression model.
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'The output and plots are given in the previous example.
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Chapter 9

Modeling Growth, Yield, and
Site Index

Growth and Yield Models

Forest and natural resource management decisions are often based on information collected
on past and present resource conditions. This information provides us with not only cur-
rent details on the timber we manage (e.g., volume, diameter distribution) but also allows
us to track changes in growth, mortality, and ingrowth over time. We use this informa-
tion to make predictions of future growth and yield based on our management objectives.
Techniques for forecasting stand dynamics are collectively referred to as growth and yield
models. Growth and yield models are relationships between the amount of yield or growth
and the many different factors that explain or predict this growth.

Before we continue our examination of growth and yield models, let’s review some basic
terms.

Yield: total volume available for harvest at a given time

Growth: difference in volume between the beginning and end of a specified period of time
(V,=V)

Annual growth: when growth is divided by number of years in the growing period

Model: a mathematical function used to relate observed growth rates or yield to measured
tree, stand, and site variables

Estimation: a statistical process of obtaining coeflicients for models that describe the
growth rates or yield as a function of measured tree, stand, and site variables
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Evaluation: considering how, where, and by whom the model should be used, how the
model and its components operate, and the quality of the system design and its biological

reality

Verification: the process of confirming that the model functions correctly with respect to
the conceptual model. In other words, verification makes sure that there are no flaws in the
programming logic or algorithms, and no bias in computation (systematic errors).

Validation: checks the accuracy and consistency of the model and tests the model to see
how well it reflects the real system, if possible, using an independent data set

Simulation: using a computer program to simulate an abstract model of a particular system.
We use a growth model to estimate stand development through time under alternative
conditions or silvicultural practices.

Calibration: the process of modifying the model to account for local conditions that may
differ from those on which the model was based

Monitoring: continually checking the simulation output of the system to identify any
shortcomings of the model

Deterministic model: a model in which the outcomes are determined through known
relationships among states and events, without any room for random variation. In forestry,
a deterministic model provides an estimate of average stand growth, and given the same
initial conditions, a deterministic model will always predict the same result.

Stochastic model: a model that attempts to illustrate the natural variation in a system by
providing different predictions (each with a specific probability of occurrence) given the
same initial conditions. A stochastic model requires multiple runs to provide estimates of
the variability of predictions.

Process model: a model that attempts to simulate biological processes that convert carbon
dioxide, nutrients, and moisture into biomass through photosynthesis

Succession model: a model that attempts to model species succession, but is generally
unable to provide reliable information on timber yield

Models

Growth and yield models are typically stated as mathematical equations and can be implicit
or explicit in form. An implicit model defines the variables in the equation but the specific
relationship is not quantified. For example,

V = f (BA,HY)
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where V' is volume (ft*/ac), BA is density (basal area in ft?), Ht is total tree height. This
model says that volume is a function of (depends on) density and height, but it does not put
a numerical value on the volume for specific values of basal area and height. This equation
becomes explicit when we specify the relationship such as

In(¥) = -0.723 + 0.781*In(BA)+ 0.922 In(Hz)

Growth and yield models can be linear or nonlinear equations. In this linear model, all the
independent variables of X, and X, are only raised to the first power.

y=1.29+7.65X,-27.02 X,

A nonlinear model has independent variables with exponents different from one.

y — boele

In this example, 4 and &, are parameters to be estimated and Xis the independent variable.

Classification of Growth and Yield Models

Growth and yield models have long been part of forestry but development and use has
greatly increased in the last 25 years due to the accessibility of computers. There are many
different approaches to modeling, each with their own advantages and disadvantages.
Selecting a specific type of modeling approach often depends on the type of data used.
Growth and yield models are categorized depending on whether they model the whole
stand, the diameter classes, or individual trees.

Whole Stand Models

Whole stand models may or may not contain density as an independent variable. Density-
free whole stand models provide the basis for traditional normal yield tables since “normal”
implies nature’s maximum density, and empirical yield tables assume nature’s average den-
sity. In both of these cases, stand volume at a specific age is typically a function of stand age
and site index. Variable-density whole stand models use density as an explicit independent
variable to predict current or future volume. Buckman (1962) published the first study in
the United States that directly predicted growth from current stand variables, then inte-
grated the growth function to obtain yield:

Y=1.6689 + 0.041066B4 — 0.00016303BA4*- 0.0769584 + 0.000227414* + 0.06441S

where Y = periodic net annual basal area increment
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BA = basal area, in square feet per acre

A = age, in years

§ = site index
Diameter distribution models are a refinement of whole stand models. This type of model
disaggregates the results at each age and then adds additional information about diameter
class structure such as height and volume. The number of stems in each class is a function
of the stand variables and all growth functions are for the stand. This type of whole stand
model provides greater detail of the stand conditions in terms of volume, tree size, and
value.

Diameter Class Models

Diameter class models (not to be confused with diameter distribution models) simulate
growth and volume for each diameter class based on the average tree in each class. The
number of trees in each class is empirically determined. The diameter class volumes are
computed separately for each diameter class, then summed up to obtain stand values. Stand
table projection is a common diameter class method used to predict short-term future
conditions based on observable diameter growth for that stand. Mortality, harvest, and
ingrowth must be computed separately. Differences in projection methods are based on
the distribution of the number of stems in each class and how the growth rate is applied.
For example, the simplest projection method is based on two assumptions: 1) that all tree
diameters in a diameter class equal the midpoint diameter for that class, and 2) that they
all grow at the same average rate. An improvement upon this method is to use a movement
ratio that defines the proportion of trees which move into a higher DBH class.

m=%x100
1

where  is the movement ratio, ¢ is the average periodic diameter increment for that spe-
cific class, and 7 is the diameter class interval. Let’s look at an example.

Assume for a specific DBH class that g is 1.2 in. and 7 (class interval) is 2.0 in.

m:£x100260%
2.0

'This means that 60% of the trees in that diameter class will move up to the next diameter
class, and 40% will remain in this class. If the diameter class interval was one inch, the
movement ratio would be different.

m:£x100:120%
1.0

In this case, all the trees in this diameter class would move up at least one size class and 20%
of them would move up two size classes.
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Individual Tree Models

Individual tree models simulate the growth of each individual tree in the tree list. These
models are more complex but have become more common as computing power has in-
creased. Individual tree models typically simulate the height, diameter, and survival of each
tree while calculating its growth. Individual tree data are aggregated affer the model grows
each tree, while stand models aggregate individual tree data into stand variables defore the
growth model is applied. Additionally, this type of model allows the user to include a
measure of competition for each tree. Because of this, individual tree models are typically
divided into two groups based on how competition is treated.

Distance-independent models define the competitive neighborhood for a subject tree by its
own diameter, height, and condition to stand characteristics such as basal area, number of
trees per area, and average diameter, however, the distances between trees are not required
for computing the competition for each tree. Distance-dependent models include distance
and bearing to all neighboring trees, along with their diameter. This way, the competitive
neighborhood for each subject tree is precisely and uniquely defined. While this approach
seems logically superior to distance-independent methods, there has not been any clear
documented evidence to support the use of distance-dependent competition measures over
distance-independent measures.

There are many growth and yield models and simulators available and it can be difficult to
select the most appropriate model. There are advantages and disadvantages to many of these
options and foresters must be concerned with the reliability of the estimates, the flexibility
of the model to deal with management alternatives, the level of required detail, and the
efficiency for providing information in a clear and useable fashion. Many models have been
created using a broad range of available data. These models are best used for comparative
purposes only. In other words, they are most appropriate when comparing the outcomes
from different management options instead of predicting results for a specific stand. It is
important to review and understand the foundations for any model or simulator before
using it.

Forest Vegetation Simulator

The Forest Vegetation Simulator (FVS, Wykoff et al. 1982; Dixon 2002) is a distance-
independent, individual-tree forest growth model commonly used in the United States to
support forest management decisions. Projections are typically made at the stand level, but
FVS has the ability to expand the spatial scope to much larger management units. FVS
began as the Prognosis Model for Stand Development (Stage 1973) with the objective to
predict stand dynamics in the mixed forests of Idaho and Montana. This model became the
common modeling platform for the USDA Forest Service and was renamed FVS.

Stands are the basic unit of management and projections are dependent on the interactions

among trees within stands using key variables such as density, species, diameter, height,
crown ratio, diameter growth, and height growth. Values for slope, aspect, elevation, density,
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and a measure of site potential are included for each plot. There are 22 geographically
specific versions of FVS called variants.

NE-TWIGS (Belcher 1982) is a common variant applicable to fourteen northeastern
states. Stand growth projections are based on simulating the growth and mortality for trees
in the 5-inch and larger DBH classes. Ingrowth can be manually entered or simulated
using an automatic ingrowth function. The growth equation annually estimates a diameter
for each sample tree and updates the crown ratio of the tree (Miner et al. 1988).

Annual diameter growth = potential growth*competition modifier

Potential growth is defined as the growth of the top 10% of the fastest growing trees and is
predicted using the following equation:

Potential growth = b, * SI * [1 0—exp(—b, * D):'
where,

potential growth is defined as the potential annual basal area growth of a tree (sq. ft./yr)
b, and &, are species specific coefficients
81 is site index (index age 50 years) and
D is current tree diameter in in.

'The competition modifier is an index bounded from 0 to 1, and is found by:

Competition modifier = e B
where 4, is a species-specific coefficient and
BA is the current basal area (sq. ft./ac).

Tree mortality is calculated by estimating the probability of death of each tree in a given
year:

Survival = 1-[1/(1+e")]

5, e #D—cs*BA—cg*SI
where n=cl+cz*(D+1)‘*ec“ I

€5+ +-5C, are species-specific coefficients
D is current tree diameter (inches)
BA is stand basal area (sq. ft./ac) and
ST is site index.

Inventory data and site information are entered into FVS, and a self-calibration process
adjusts the growth models to match the rates present in the entered data. Harvests can be
simulated with growth and mortality rates based on post-removal stand densities. Growth
cycles run for 5-10 years and output includes a summary of current stand conditions, sam-
pling statistics, and calibration results.
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Applications of Regression Techniques

Regression models serve many purposes in the management of natural and forest resources.
'The following examples serve to highlight some of these applications.

Weight Scaling for Sawlogs

In 1962, Bower created the following equation for predicting loblolly pine sawlog volume
based on truckload weights and the number of logs per truck:

Y=-3.954 N+0.0925 W

where Y = total board-foot volume (Internationall/4- rule) for a truckload of logs
N = number of 16-ft logs on the truck
W = total load weight (Ib.)

Notice that there is no y-intercept in the model. When there are no logs on the truck, there
is no volume to be estimated.

Rates of Stem Taper

Kozak et al. (1969) developed a technique for estimating the fraction of volume per tree
located in logs of any specified length and dib for any system of scaling (board feet, cubic
feet, or weight). Their regression model also predicted taper curves and upper stem diam-
eters (dib) for some conifer species.

d’ h n
a0t (Ejb(ﬁj

where & = stem diameter at any height 4 above ground

H = total tree height

h h’
d = dbl’l\/bo +b1 (EJ'FZ)Z [?j

The predictor variables are the ratio, and squared ratio, of any height to total height.

This equation resolves to:

Multiple Entry Volume Table that Allows for
Variable Utilization Standards

Foresters commonly want to predict tree volume for various top diameters but many of the
available volume equations were created for specific top limits. Burkhart (1977) created a
regression model to predict volume (cubic feet) of loblolly pine to any desired merchant-
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able top limit. His approach predicted total stem volume, then converted total volume to
merchantable volume by applying predicted ratios of merchantable volume to total volume.

V =0.34864+0.00232dbh’ H

3157
R=1-0.32354| —/——

h2.7115

where dbh = diameter at breast height (in.)

H = total tree height (ft.)

V' = total stem cubic-foot volume

R = merchantable cubic-foot volume to top diameter &, divided by total stem
cubic-foot volume

d_ = top dob (in.)

Weight Tables for Tree Boles

Belanger (1973) utilized a combined-variable approach to develop predictions of green-
weight and dry weight of sycamore tree:

GBW =-32.35109+0.15544dbh*H

DBW =-17.67910+0.06684dbh* H

where GBI = green bole weight to 3-in.top (Ib.)
DBW = dry bole weight to 3-in.top (Ib.)
dbh = diameter at breast height (in.)
H = total tree height (ft.)

Biomass Prediction

A common approach to predicting tree biomass weight has been to use a logarithmic
combined-variable formula (e.g. Edwards and McNab 1979). The observed relationship
between these variables is typically non-linear, therefore a log or natural log transformation
is needed to linearize the relationship.

logY = b, +b, logdbh®H

where Y = total tree weight
dbh = diameter at breast height
H = total tree height

However, past studies (Tritton and Hornbeck 1982 and Wiant et al. 1979) indicated that
there was little model improvement when height was added. Many dry-weight biomass
models now follow this form:
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In wt = b, + b, In dbh
wt = e"dbh”

where w# = total tree weight
dbh = diameter at breast height

Volume Predictions based on Stump Diameter

Bylin (1982) created a regression model to predict tree volume using stump diameter and
stump height for species in Louisiana.

V=b,+bS;,+bH,

where V = tree volume (cu. ft.)
8y = stump diameters inside bark (in.)

Hj = stump height (ft.)

Yield Estimation

MacKinney and Chaiken (1939) were the first to use multiple regression, with stand den-
sity as a predictor variable, to predict yield for loblolly pine trees.

10gY=b0+b1%+b2S+b3 log SDI +b,C

where Y = yield (cu. ft./ac)
A = stand age
§ = site index
SDI = stand-density index
C = composition index (loblolly pine BA/total BA)

Growth and Yield Prediction for Uneven-aged
Stands

Moser and Hall (1969) developed a yield equation, expressed as a function of time, initial
volume, and basal area, to predict volume in mixed northern hardwoods.

-105.5

Y= [(1’0)(8.33483140‘1'3”5 )} x[0.9348 ~(0.9348-1.020384,"""* )6_0'0062’]

where Y = initial volume (cu. ft./ac)
BA| = initial basal area (sq. ft./ac)
¢ = elapsed time interval (years from initial condition)
Y = predicted volume (cu. ft./ac) # years after observation of initial conditions Y,
and BA at time £,
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Site Index

Site is defined by the Society of American Foresters (1971) as “an area considered in terms
of its own environment, particularly as this determines the type and quality of the vegeta-
tion the area can carry.” Forest and natural resource managers use site measurement to
identify the potential productivity of a forest stand and to provide a comparative frame of
reference for management options. The productive potential or capacity of a site is often
referred to as site quality.

Site quality can be measured directly or indirectly. Direct measurement of a stand’s pro-
ductivity can be measured by analyzing the variables such as soil nutrients, moisture,
temperature regimes, available light, slope, and aspect. A productivity-estimation method
based on the permanent features of soil and topography can be used on any site and is
suitable in areas where forest stands do not presently exist. Soil site index is an example of
such an index. However, such indices are location specific and should not be used outside
the geographic region in which they were developed. Unfortunately, environmental factor
information is not always available and natural resource managers must use alternative
methods.

Historical yield records also provide direct evidence of a site’s productivity by averaging
the yields over multiple rotations or cutting cycles. Unfortunately, there are limited long-
term data available, and yields may be affected by species composition, stand density, pests,
rotation age, and genetics. Consequently, indirect methods of measuring site quality are
frequently used, with the most common involving the relationship between tree height and
tree age.

Using stand height data is an easy and reliable way to quantify site quality. Theoretically,
height growth is sensitive to differences in site quality and height development of larger
trees in an even-aged stand is seldom affected by stand density. Additionally, the volume-
production potential is strongly correlated with height-growth rate. This measure of site
quality is called site index and is the average total height of selected dominant-codominant
trees on a site at a particular reference or index age. If you measure a stand that is at an
index age, the average height of the dominant and codominant trees is the site index. It
is the most widely accepted quantitative measure of site quality in the United States for

even-aged stands (Avery and Burkhart 1994).

The objective of the site index method is to select the height development pattern that the
stand can be expected to follow during the remainder of its life (not to predict stand height
at the index age). Most height-based methods of site quality evaluation use site index
curves. Site index curves are a family of height development patterns referenced by either
age at breast height or total age. For example, site index curves for plantations are generally
based on total age (years since planted), where age at breast height is frequently used for
natural stands for the sake of convenience. If total age were to be used in this situation, the
number of years required for a tree to grow from a seedling to DBH must be added in. Site
index curves can either be anamorphic or polymorphic curves. Anamorphic curves (most
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common) are a family of curves with the same shape but different intercepts. Polymorphic
curves are a family of curves with different shapes and intercepts.

'The index age for this method is typically the culmination of mean annual growth. In the
western part of the United States, 100 years is commonly used as the reference age with
50 years in the eastern part of this country. However, site index curves can be based on any
index age that is needed. Coile and Schumacher (1964) created a family of anamorphic site
index curves for plantation loblolly pine with an index age of 25 years. The following family
of anamorphic site index curves for a southern pine is based on a reference age of 50 years.

160
140 il

120 o
100 o

40 ////

0 T T T T T
0 20 40 60 80 100 120

Age (year)

Figure 1. Site index curves with an index age of 50 years.

Creating a site index curve involves the random selection of dominant and codominant
trees, measuring their total height, and statistically fitting the data to a mathematical equa-
tion. So, which equation do you use? Plotting height over age for single species, even-aged
stands typically results in a sigmoid shaped pattern.

H,=b,* exp(blA_l)

where H, is the height of dominant and codominant trees, 4 is stand age, and 4, and 4, are
coeflicients to be estimated. Variable transformation is needed if linear regression is to be
used to fit the model. A common transformation is

InH,=b,+bA"
Coile and Schumacher (1964) fit their data to the following model:
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1nS=1nH+5.l9O(l—Lj
A 25

where § is site index, / is total tree height, and A4 is average age. The site index curve is
created by fitting the model to data from stands of varying site qualities and ages, making
sure that all necessary site index classes are equally represented at all ages. It is important
not to bias the curve by using an incomplete range of data.

Data for the development of site index equations can come from measurement of tree or
stand height and age from temporary or permanent inventory plots or from stem analysis.
Inventory plot data are typically used for anamorphic curves only and sampling bias can
occur when poor sites are over represented in older age classes. Stem analysis can be used
for polymorphic curves but requires destructive sampling and it can be expensive to obtain
such data.

We are going to examine three different methods for developing site index equations:

1) Guide curve method
2) Difference equation method

3) Parameter prediction method

Guide Curve Method

The guide curve method is commonly used to generate anamorphic site index equations.
Let’s begin with a commonly used model form:

InH,=b,+bhA" =bo+b,i [1]
Parameterizing this model results in a “guide curve” (the average line for the sample data)
that is used to create the individual height/age development curves that parallel the guide
curve. For a particular site index the equation is:

InH,=b,+bA" (2]

where 4 _ is the unique y-intercept for that age. By definition, when 4 = 4 (index age), H
is equal to site index S. Thus:

by =InS—b 4 (3]

Substituting 4 into equation [2] gives:

InH=InS+b(4"-4") [4]

which can be used to generate site index curves for given values of § and 4 and a range of
ages (A). The equation can be algebraically rearranged as:
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1 1
InS=InH-b(A"-4")=In(H)-b,| ———
(47 =4, ) = In(H) I(A Ag] [5]
This is the form to estimate site index (height at index age) when height and age data mea-
surements are given. This process is sound only if the average site quality in the sample data
is approximately the same for all age classes. If the average site quality varies systematically
with age, the guide curve will be biased.

Difference Equation Method

'This method requires either monumented plot, tree remeasurement data, or stem analysis
data. The model is fit using differences of height and specific ages. This method is ap-
propriate for anamorphic and polymorphic curves, especially for longer and/or multiple
measurement periods. Schumacher (after Clutter et al. 1983) used this approach when
estimating site index using the reciprocal of age and the natural log of height. He believed
that there was a linear relationship between Point A (1/4,, Inf{,) and Point B (1/4,, InH,)
and defined B, (slope) as:

_ In(H,)-In(H,)
(1 4) (1 4)

where /, and A4, were initial height and age, and /7, and 4, were height and age at the end
of the remeasurement period. His height/age model became:

B,

In(H,) = In(H,) + B, [AL—A%J

Using remeasurement data, this equation would be fitted using linear regression procedures
with the model

Y=BX

where Y = In(#)) - In(H)
X=(1/4) - (1/4,)

After estimating [, a site index equation is obtained from the height/age equation by
letting 4, equal 4, (the index age) so that /H, is, by definition, site index (). The equation
can then be written:

In(S) = In(H,) + f, & - A%]

Parameter Prediction Method

This method requires remeasurement or stem analysis data, and involves the following
steps:
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1) Fitting a linear or nonlinear height/age function to the data on a
tree-by-tree (stem analysis data) or plot by plot (remeasurement data)
basis

2) Using each fitted curve to assign a site index value to each tree or plot
(put A, in the equation to estimate site index)

3) Relating the parameters of the fitted curves to site index through
linear or nonlinear regression procedures

Trousdell et al. (1974) used this approach to estimate site index for loblolly pine and it pro-
vides an example using the Chapman-Richards (Richards 1959) function for the height/
age relationship. They collected stem analysis data on 44 dominant and codominant trees
that had a minimum age of at least 50 years. The Chapman-Richards function was used to

define the height/age relationship:

H =6, [l —exp (—GZA)}[(]_QB)W

where H is height in feet at age 4 and 8 , 0., and 0, are parameters to be estimated. This

equation was fitted separately to each tree. The fitted curves were all solved with 4 = 50 to
obtain site index values (§) for each tree.

'The parameters 8, 8,, and 8, were hypothesized to be functions of site index, where

0, =B, +B,S
0, = B, +ﬂ4S+ﬁ5S2
0, = Bg +ﬁ7S+ﬂ8S2
'The Chapman-Richards function was then expressed as:
. R
= (B, +B.S) {1 —exp| ~(B,+ B.S+ B:S*) 4}

This function was then refitted to the data to estimate the parameters B, ,, ...B,. The
estimating equations obtained for 0., 8,, and 0, were

A

0, =63.1415+0.635080 S
éz =0.00643041+0.000124189 S +0.00000162545 S*
é3 =0.0172714-0.00291877 S +0.0000310915 S*

For any given site index value, these equations can be solved to give a particular Chapman-
Richards site index curve. By substituting various values of age into the equation and solving
for H, we obtain height/age points that can be plotted for a site index curve. Since each site
index curve has different parameter values, the curves are polymorphic.
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Periodic Height Growth Data

An alternative to using current stand height as the surrogate for site quality is to use peri-
odic height growth data, which is referred to as a growth intercept method. This method is
practical only for species that display distinct annual branch whorls and is primarily used
for juvenile stands because site index curves are less dependable for young stands.

This method requires the length measurement of a specified number of successive annual
internodes or the length over a 5-year period. While the growth-intercept values can be
used directly as measures of site quality, they are more commonly used to estimate site
index.

Alban (1972) created a simple linear model to predict site index for red pine using 5-year
growth intercept in feet beginning at 8 ft. above ground.

S§I=32.54+343X
where S1 is site index at a base age of 50 years and X is 5-year growth intercept in feet.

Using periodic height growth data has the advantage of not requiring stand age or total
tree height measurements, which can be difficult in young, dense stands. However, due to
the short-term nature of the data, weather variation may strongly influence the internodal
growth thereby rendering the results inaccurate.

Site index equations should be based on biological or mathematical theories, which will
help the equation perform better. They should behave logically and not allow unreasonable
values for predicted height, especially at very young or very old ages. The equations should
also contain an asymptotic parameter to control unbounded height growth at old age. The
asymptote should be some function of site index such that the asymptote increases with
increases of site index.

When using site index, it is important to know the base age for the curve before use. It
is also important to realize that site index based on one base age cannot be converted to
another base age. Additionally, similar site indices for different species do not mean similar
sites even when the same base age is used for both species. You have to understand how
height and age were measured before you can safely interpret a site index curve. Site index
is not a true measure of site quality; rather it is a measure of a tree growth component that

is affected by site quality (top height is a measure of stand development, NOT site quality).
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Chapter 10

Quantitative Measures of
Diversity, Site Similarity, and
Habitat Suitability

As forest and natural resource managers, we must be aware of how our timber management
practices impact the biological communities in which they occur. A silvicultural prescrip-
tion is going to influence not only the timber we are growing but also the plant and wildlife
communities that inhabit these stands. Landowners, both public and private, often require
management of non-timber components, such as wildlife, along with meeting the financial
objectives achieved through timber management. Resource managers must be cognizant
of the effect management practices have on plant and wildlife communities. The primary
interface between timber and wildlife is habitat, and habitat is simply an amalgam of envi-
ronmental factors necessary for species survival (e.g., food or cover). The key component to
habitat for most wildlife is vegetation, which provides food and structural cover. Creating
prescriptions that combine timber and wildlife management objectives are crucial for sus-
tainable, long-term balance in the system.

So how do we develop a plan that will encompass multiple land use objectives? Knowledge
is the key. We need information on the habitat required by the wildlife species of interest
and we need to be aware of how timber harvesting and subsequent regeneration will affect
the vegetative characteristics of the system. In other words, we need to understand the di-
versity of organisms present in the community and appreciate the impact our management
practices will have on this system.

Diversity of organisms and the measurement of diversity have long interested ecologists
and natural resource managers. Diversity is variety and at its simplest level it involves
counting or listing species. Biological communities vary in the number of species they
contain (richness) and relative abundance of these species (evenness). Species richness, as
a measure on its own, does not take into account the number of individuals of each species
present. It gives equal weight to those species with few individuals as it does to a species
with many individuals. Thus a single yellow birch has as much influence on the richness of
an area as 100 sugar maple trees. Evenness is a measure of the relative abundance of the
different species making up the richness of an area. Consider the following example.
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Ex.1
Number of Individuals
Tree Species Sample 1 Sample 2
Sugar Maple 167 391
Beech 145 24
Yellow Birch 134 31

Both samples have the same richness (3 species) and the same number of individuals
(446). However, the first sample has more evenness than the second. The number
of individuals is more evenly distributed between the three species. In the second
sample, most of the individuals are sugar maples with fewer beech and yellow birch
trees. In this example, the first sample would be considered more diverse.

A diversity index is a quantitative measure that reflects the number of different species and
how evenly the individuals are distributed among those species. Typically, the value of a
diversity index increases when the number of types increases and the evenness increases.
For example, communities with a large number of species that are evenly distributed are
the most diverse and communities with few species that are dominated by one species are
the least diverse. We are going to examine several common measures of species diversity.

Simpson’s Index

Simpson (1949) developed an index of diversity that is computed as:

where 7_is the number of individuals in species 7, and V is the total number of species in
the sample. An equivalent formula is:

D= p;
i=1

where p. is the proportional abundance for each species and R is the total number of species
in the sample. Simpson’s index is a weighted arithmetic mean of proportional abundance
and measures the probability that two individuals randomly selected from a sample will
belong to the same species. Since the mean of the proportional abundance of the spe-
cies increases with decreasing number of species and increasing abundance of the most
abundant species, the value of D obtains small values in data sets of high diversity and large
values in data sets with low diversity. The value of Simpson’s D ranges from 0 to 1, with 0
representing infinite diversity and 1 representing no diversity, so the larger the value of D,
the lower the diversity. For this reason, Simpson’s index is usually expressed as its inverse
(1/D) or its compliment (1-D) which is also known as the Gini-Simpson index.
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Let’s look at an example. We want to compute Simpsons D for this hypothetical com-
munity with three species.

Ex.2
Species No. of individuals
Sugar Maple 35
Beech 19
Yellow Birch 11

First, calculate N.
N=35+19+11=65.

Then compute the index using the number of individuals for each species:

D:i m(n=1) (3534 1908)  1100) | _ 50,
S\ N(N-1)) (65(64) 65(64) 65(64))

The inverse is found to be:
1/0.3947 = 2.5336.

Using the inverse, the value of this index starts with 1 as the lowest possible figure.
The higher the value of this inverse index the greater the diversity. If we use the com-
pliment to Simpson’s D, the value is:

1-0.3947 = 0.6053.

This version of the index has values ranging from 0 to 1, but now, the greater the
value, the greater the diversity of your sample. This compliment represents the prob-
ability that two individuals randomly selected from a sample will belong to different
species. It is very important to clearly state which version of Simpson’s D you are
using when comparing diversity.

Shannon-Weiner Index

'The Shannon-Weiner index (Barnes et al. 1998) was developed from information theory
and is based on measuring uncertainty. The degree of uncertainty of predicting the spe-
cies of a random sample is related to the diversity of a community. If a community has
low diversity (dominated by one species), the uncertainty of prediction is low; a randomly
sampled species is most likely going to be the dominant species. However, if diversity is
high, uncertainty is high. It is computed as:

R 1
H':_Zpi ln(pi)ZhILHR 7 ]

i=1 =147

where p. is the proportion of individuals that belong to species 7 and R is the number of
species in the sample. Since the sum of the p’s equals unity by definition, the denomi-
nator equals the weighted geometric mean of the p. values, with the p. values being used as
weights. The term in the parenthesis equals true diversity D and H'=In(D). When all species
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in the data set are equally common, all p, values = 1/R and the Shannon-Weiner index
equals In(R). The more unequal the abundance of species, the larger the weighted geometric
mean of the p, values, the smaller the index. If abundance is primarily concentrated into one
species, the index will be close to zero.

An equivalent and computationally easier formula is:

_NInN-) (n1nn)
B N

where IV is the total number of species and 7, is the number of individuals in species i.
'The Shannon-Weiner index is most sensitive to the number of species in a sample, so it is
usually considered to be biased toward measuring species richness.

Let’s compute the Shannon-Weiner diversity index for the same hypothetical community
in the previous example.

Ex.2a
Species No. of individuals
Sugar Maple 35
Beech 19
Yellow Birch 11

We know that N = 65. Now let’s compute the index:

651n(635) - (((351n(35)) + (191n(19)) + (1 1In(1 1)) _
65

H'=

_ 271.335-(124.437+55.944+26.377)
65

Rank Abundance Graphs

H' =0.993

Species abundance distribution can also be expressed through rank abundance graphs. A
common approach is to plot some measure of species abundance against their rank order
of abundance. Such a plot allows the user to compare not only relative richness but also
evenness. Species abundance models (also called abundance curves) use all available com-
munity information to create a mathematical model that describes the number and relative
abundance of all species in a community. These models include the log normal, geometric,
logarithmic, and MacArthur’s brokenstick model. Many ecologists use these models as a
way to express resource partitioning where the abundance of a species is equivalent to the
percentage of space it occupies (Magurran 1988). Abundance curves offer an alternative to
single number diversity indices by graphically describing community structure.
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Geometric :
Series Log-series

Increasing log(relative abundance) ----->

Log-normal

Descending rank-abundance ---->

Figure 1. Generic Rank-abundance diagram of three common mathematical models used to fit
species abundance distributions: Motomura’s geometric series, Fisher’s logseries, and Preston’s

log-normal series (modified from Magurran 1988) by Aedrake09.

Let’s compare the indices and a very simple abundance distribution in two different situa-
tions. Stand A and B both have the same number of species (same richness), but the number
of individuals in each species is more similar in Stand A (greater evenness). In Stand B,
species 1 has the most individuals, with the remaining nine species having a substantially
smaller number of individuals per species. Richness, the compliment to Simpson’s D, and
Shannons H’ are computed for both stands. These two diversity indices incorporate both
richness and evenness. In the abundance distribution graph, richness can be compared on
the x-axis and evenness by the shape of the distribution. Because Stand A displays greater
evenness it has greater overall diversity than Stand B. Notice that Stand A has higher values
for both Simpson’s and Shannon’s indices compared to Stand B.
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Figure 2. Two stands comparing richness, Simpson’s D, and Shannons index.

Indices of diversity vary in computation and interpretation so it is important to make sure
you understand which index is being used to measure diversity. It is unsuitable to compare
diversity between two areas when different indices are computed for each area. However,
when multiple indices are computed for each area, the sampled areas will rank similarly
in diversity as measured by the different indices. Notice in this previous example both
Simpson’s and Shannon’s index rank Stand A as more diverse and Stand B as less diverse.
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Similarity between Sites

There are also indices that compare the similarity (and dissimilarity) between sites. The ideal
objective is to express the ecological similarity of different sites; however, it is important to
identify the aim or focus of the investigation in order to select the most appropriate index.
While many indices are available, van Tongeren (1995) states that most of the indices do
not have a firm theoretical basis and suggests that practical experience should guide the
selection of available indices.

The Jaccard index (1912) compares two sites based on the presence or absence of species
and is used with qualitative data (e.g., species lists). It is based on the idea that the more
species both sites have in common, the more similar they are. The Jaccard index is the
proportion of species out of the total species list of the two sites, which is common to both
sites:

Sf=c/(a+b+c)

where §/ is the similarity index, ¢ is the number of shared species between the two sites
and a and 4 are the number of species unique to each site. Serenson (1948) developed a
similarity index that is frequently referred to as the coefficient of community (CC):

CC=2c/(a+b+20).

As you can see, this index differs from Jaccard’s in that the number of species shared be-
tween the two sites is divided by the average number of species instead of the total number
of species for both sites. For both indices, the higher the value the more ecologically similar
two sites are.

If quantitative data are available, a similarity ratio (Ball 1966) or a percentage similarity
index, such as Gauch (1982), can be computed. Not only do these indices compare number
of similar and dissimilar species present between two sites, but also incorporate abundance.
'The similarity ratio is:

i - 2 Vb
! Zylfi-i-zyl_fj_Z(ykiykj)
where y,. is the abundance of the £* species at site 7 (sites 7 and j are compared). Notice that

this equation resolves to Jaccard’s index when just presence or absence data is available. The
percent similarity index is:

o _ 200 min (., )
DI DI

Again, notice how this equation resolves to Serenson’s index with qualitative data only. So
let’s look at a simple example of how these indices allow us to compare similarity between

three sites. The following example presents hypothetical data on species abundance from
three different sites containing seven different species (A-G).
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Site
Species 1 2 3
A 4 0 1
B 0 1 0
C 0 0 0
D 1 0 1
E 1 4 0
F 3 1 1
G 1 0 3

Let’s begin by computing Jaccard’s and Serenson’s indices for the three comparisons (site 1
vs. site 2, site 1 vs. site 3, and site 2 vs. site 3).

S = o33 S 4 080 8=~
12 TR V15 arao - 5 ST
20 _sqcC 2B _o2m
2 (3+1+2(2) 0-50 %15 (1+0+2(4)) 2 (243+2(1)

Both of these qualitative indices declare that sites 1 and 3 are the most similar and sites 2
and 3 are the least similar. Now let’s compute the similarity ratio and the percent similarity
index for the same site comparisons.

SR = [(4%0)+(0x1)+(0x0)+(1x0)+(1x4)+(3x1)+(1x0)]
L2 (£ 40 +0+ P+ +3 +1)+(0° + 12 +0* + 07 +4” +1° + 0°) + (4% 0) + (0x 1) + (0x 0) + (1x 0) + (1x 4) + (3x 1) + (1x 0)

SR, ,=0.23

SR = [(4xD)+(0x0)+(0x0)+(AxD)+(Ax0)+(3x1)+(1x3)]
13 (4407 + 02+ P+ P43 4+ 1)+ (P 407+ 0> + 12+ 07 +17 +3%) + (4x1) + (0x 0) + (0x 0) + (1x 1) + (1x 0) + 3x 1) + (1x 3)

SR, = 0.38

SR = [(0x1)+(1x0)+(0x0)+(0x 1)+ (4x0) +(1x 1)+ (0x3)]
23 0P+l 40 +0°+ 4+ +02) + (P +0% + 0% + 12 + 0% + 12 +3%) + (0x1) + (1x0) + (0x 0) + (0x ) + (4 x 0) + (1x 1) + (0x3)

SR, = 0.03

S - 200(0+0+0+0+1+1+0) _250
s (4+0+0+1+1+3+D)+(0+1+0+0+4+1+0)

- 200(1+0+0+1+0+1+1)
Psm_(4+0+0+1+1+3+1)+(1+0+0+1+0+1+3):50
PS. = 200(0+0+0+0+0+1+0) .

0+14+0+0+4+1+0)+(1+0+0+1+0+1+3)

A matrix of percent similarity values allows for easy interpretation (especially when com-
paring more than three sites).
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| 1 2
2 25.0
3 50.0  16.7

Table 1. A matrix of percent similarity for three sites.
'The quantitative indices return the same conclusions as the qualitative indices. Sites 1 and

3 are the most similar ecologically, and sites 2 and 3 are the least similar; and also site 2 is
most unlike the other two sites.

Habitat Suitability Index (HSI)

In 1980, the US Fish and Wildlife Service (USFWS) developed a procedure for docu-

menting predicted impacts to fish and wildlife from proposed land and water resource

development projects. The Habitat Evaluation Procedures (HEP) (Schamberger and
Farmer 1978) were developed in response to the need to document the non-monetary value
of fish and wildlife resources. HEP incorporates population and habitat theories for each
species and is based on the assumption that habitat quality and quantity can be numerically
described so that changes to the area could be assessed and compared. It is a species-habitat
approach to impact assessment and habitat quality, for a specific species is quantified using
a habitat suitability index (HSI).

Habitat suitability index (HSI) models provide a numerical index of habitat quality for
a specific species (Schamberger et al. 1982) and in general assume a positive, linear rela-
tionship between carrying capacity (number of animals supported by some unit area) and
HSI. Today’s natural resource manager often faces economically and socially important
decisions that will affect not only timber but wildlife and its habitat. HSI models provide
managers with tools to investigate the requirements necessary for survival of a species. Un-
derstanding the relationships between animal habitat and forest management prescription
is vital towards a more comprehensive management approach of our natural resources. An
HSI model synthesizes habitat use information into a framework appropriate for fieldwork
and is scaled to produce an index value between 0.0 (unsuitable habitat) to 1.0 (optimum
habitat), with each increment of change being identical to another. For example, a change
in HSI from 0.4 to 0.5 represents the same magnitude of change as from 0.7 to 0.8. The
HSI values are multiplied by area of available habitat to obtain Habitat Units (HUs) for
individual species. The US Fish and Wildlife Service (USFWS) has documented a series of
HSI models for a wide variety of species (FWS/OBS-82/10).

Let’s examine a simple HSI model for the marten (Martes americana) which inhabits late
successional forest communities in North America (Allen 1982). An HSI model must
begin with habitat use information, understanding the species needs in terms of food,
water, cover, reproduction, and range for this species. For this species, the winter cover
requirements are more restrictive than cover requirements for any other season so it was
assumed that if adequate winter cover was available, habitat requirements for the rest of
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the year would not be limiting. Additionally, all winter habitat requirements are satisfied in
boreal evergreen forests. Given this, the research identified four crucial variables for winter
cover that needed to be included in the model.

Habitat varable Life requisite Cover type

W1 % tree canopy closure
W2 % overstary canopy
closure in sprucelfir Winter cover ——® Evergreen forest —— HSl
W3 3Stand successional stage
W4 % ground surface covered
by downfall

Figure 3. Habitat requirements for the marten.

For each of these four winter cover variables (V,, V,, V,, and V), suitability index graphs
were created to examine the relationship between various conditions of these variables and
suitable habitat for the marten. A reproduction of the graph for % tree canopy closure is
presented below.

1 _
0.8
x
S
£ 0.6
2
E
S 0.4
>
(2]
0.2
0 T T T T T T T T 1
0 25 50 75 100
% canopy cover

Figure 4. Suitability index graph for percent canopy cover.

Notice that any canopy cover less than 25% results in unacceptable habitat based on this
variable alone. However, once 50% canopy cover is reached the suitability index reaches 1.0
and optimum habitat for this variable is achieved. The following equation was created that
combined the life requisite values for the marten using these four variables:

(V,xV,xV.xV)"”
Since winter cover was the only life requisite considered in this model, the HSI equals the

winter cover value. As you can see, the more life requisites included in the model, the more
complex the model becomes.
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While HSI values identify the quality of the habitat for a specific species, wildlife diversity
as a whole is a function of size and spatial arrangement of the treated stands (Porter 1986).
Horizontal and structural diversity are important. Generally speaking, the more stands of
different character an area contains, the greater the wildlife diversity. The spatial distribu-
tion of differing types of stands supports animals that need multiple cover types. In order to
promote wildlife species diversity, a manager must develop forest management prescription
that varies the spatial and temporal patterns of timber reproduction, thereby providing
greater horizontal and vertical structural diversity.

RELATIVE HUMBER OF BIRD SPECIES

FOREST EDGE FIELD

Figure 5. Bird species diversity nesting across a forest to field gradient (After Strelke and
Dickson 1980).

Typically, even-aged management reduces vertical structural diversity, but options such as
the shelterwood method tend to mitigate this problem. Selection system tends to promotes
both horizontal and vertical diversity.

Integrated natural resource management can be a complicated process but not impossible.
Vegetation response to silvicultural prescriptions provides the foundation for under-
standing the wildlife response. By examining the present characteristics of the managed
stands, understanding the future response due to management, and comparing those with
the requirements of specific species, we can achieve habitat manipulation together with
timber management.
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Appendix

Biometrics Lab #1

Name:

1)You are unhappy with the logging company you hired to thin a stand of red pine. You
carefully laid out the skid trails leaving bumper trees to avoid excess damage to the re-
maining trees. In the contract, it is stated that the logging company would pay a penalty
(3 times the stumpage rate) for trees damaged beyond the agreed amount of five or more
damaged trees per acre. You want to estimate the number of damaged trees per acre to see
if they exceeded this amount. You take 27 samples, from which you compute the sample
mean, and then construct a 95% confidence interval about the mean number of damaged
trees per acre.

5 3 5 6 4 9 5 3 6
Enter these data in the first column of the Minitab worksheet and label it “Trees”. Now
calculate the sample mean and sample standard deviation. Stat>Basic Statistics>Display

Descriptive Statistics. Select the column with your data in the variable box.

a) sample mean

sample standard deviation

Examine the normal probability plot for this data set. Remember, for a sample size less than
n = 30, we must verify the assumption of normality if we do not know that the random

variable is normally distributed. Go to GRAPH — PROBABILITY PLOT. Enter the
column with your data in the “Graph variables” box and click OK.

b) Would you say that this distribution is normal?

N
c) Calculate the 95% confidence interval by hand using *x + t% (T] and the t-table.
n
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95% CI for the mean number of damaged trees

Now find the 95% confidence interval for the mean using Minitab.

Go to STAT > Basic Statistics> 1-sample t...Enter data in “Samples in columns”. You do
not have to enter the standard deviation but select OPTIONS and set the confidence level
(make sure it is for 95%) and select “Alternative:not equal”.

d) 95% CI for the mean number of damaged trees

e) Do you have enough statistical evidence to state that the logging company has exceeded

the damage limit? Why?

2) The amount of sewage and industrial pollution dumped into a body of water affects the
health of the water by reducing the amount of dissolved oxygen available for aquatic life.
If the population mean dissolved oxygen drops below five parts per million (ppm), a level
some scientists think is marginal for supplying enough dissolved oxygen for fish, some
remedial action will be attempted. Given the expense of remediation, a decision to take
action will be made only if there is sufficient evidence to support the claim that the mean
dissolved oxygen has DECREASED below 5 ppm. Below are weekly readings from the

same location in a river over a two-month time period.
5.2,4.9,5.1,4.2,4.7,4.5,5.0,5.2,4.8,4.6,4.8

'The population standard deviation is unknown and we have a small sample (n<30). You
must verify the assumption of normality. Go to GRAPH—-PROBABILITY PLOT. Ex-

amine the normal probability plot. Does the distribution look normal?

Use DESCRIPTIVE STATISTICS (Basic Statistics>Display Descriptive Statistics) to
get the mean and sample standard deviation.

Now test the claim that the mean dissolved oxygen is less than 5ppm using a = 0.05

a) First, state the null and alternative hypotheses
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H;: H:
]
b) Compute the test statistic by hand =~ s
P e

¢) Find the critical value from the t-table

d) Do you reject the null hypothesis or fail to reject the null hypothesis?

Now use Minitab to do the hypothesis test. Go to STAT > BASIC STAT > 1-SAMPLE
t. Check PERFORM HYPOTHESIS TEST and enter the hypothesized mean (5.00).
Click OPTIONS and enter the confidence level (1-a) and select alternative hypothesis
(H,). Click OK. Check to see that the null and alternative hypotheses shown in the session
window are correct.

e) What is the p-value for this test?

£) Do you reject or fail to reject the null hypothesis?

g) State your conclusion

3) A forester believes that tent caterpillars are doing a significant amount of damage to the
growth of the hardwood tree species in his stand. He has growth data from 21 plots before
the infestation. Since then, he has re-measured those same plots and wants to know if there
has been a significant reduction in the annual diameter growth.

Before After
0.17 0.15
0.22 0.23
0.19 0.17
0.2 0.14
0.12 0.13
0.13 0.11
0.15 0.13
0.16 0.17
0.16 0.12
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0.19 0.16
0.25 0.26
0.24 0.21
0.21 0.21
0.18 0.15
0.19 0.17
0.22 0.2

0.24 0.19
0.25 0.24
0.24 0.25
0.14 0.1

0.11 0.11

You need to compute the differences between the defore values and the affer values. To
create a new variable (diff), type “dift” in the header of the column you want to use. Select
CALC>CALCULATOR. In the “Expressions” box, type in the equation “Before-After.”
In the box “Store results in variable” type “diff.” Click OK.

You now have a new data set of the differences with which you will complete your analyses.
Compute basic descriptive statistics to get the sample mean d and sample standard de-
viation S4 of the differences. Use these statistics to test the claim that there has been
a reduction in annual diameter growth. You can answer this question by using either a
hypothesis test or confidence interval.

a) H;: H.:

Do you reject or fail to reject the null hypothesis?

Now let Minitab do the work for you. Select STAT > Basic Statistics> Paired t... Select
SAMPLES IN COLUMNS. Enter the before as the First sample and affer data as the
Second sample. Select OPTIONS to set the confidence level and alternative hypothesis.
Make sure the Test mean is set to 0.0. Click OK.

b) Write the test statistic and p-value

c¢) Write a complete conclusion that answers the question.
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4) Alternative energy is an important topic these days and a researcher is studying a solar
electric system. Each day at the same time he collected voltage readings from a meter con-
nected to the system and the data are given below. Is there a significant difference in the
mean voltage readings for the different types of days? First do an F-test to test for equal
variances and then test the means using the appropriate 2-sample t-test based on the results
from the F-test. Please state a complete conclusion for this problem. a = 0.05.

Sunny - 13.5,15.8,13.2,13.9,13.8,14.0,15.2,12.1,12.9, 14.9
Cloudy -12.7,12.5,12.6,12.7,13.0,13.0,12.1,12.2,12.9,12.7

F-Test
Write the null and alternative hypotheses to test the claim that the variances are not equal.

H : H:

0 1°

Select STAT>BASIC STAT>2 Variances. In the Data box select “Samples in different
columns” and enter Sunny in the First box and Cloudy in the Second box. Click OP-
TIONS and in Hypothesized Ratio box select Variancel/Variance2. Make sure the
Alternative is set at “Not equal.” Click OK. Look at the p-value for the F-test at the
bottom of the output.

Do you reject for fail to reject the null hypothesis?

Can you assume equal variances?

Now conduct a 2-sample t-test (you should have rejected the null hypothesis in the F-test
and assumed unequal variances). STAT>BASIC STAT>2-Sample t...Select the button
for “Samples in different columns” and put Sunny in the First box and Cloudy in the
Second box. Click OPTIONS and set the confidence level and select the correct alterna-
tive hypothesis. Set the Test difference at 0.0. Click OK.

What is the p-value for this test?

Do you reject or fail to reject the null hypothesis?

State your conclusion
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One-way ANOVA Computer Lab

Name:

1) A forester working with uneven-aged northern hardwoods wants to know if there is
a significant difference in total merchantable sawtimber volume (m®*ha™) produced from
stands using three different methods of selection system and a 15-yr cutting cycle. The fol-
lowing data are the total merchantable volume from 7 sample plots for each method. If you
find a significant difference (reject Ho), then test the multiple comparisons for significant
differences. Report the findings using all available information. a=0.05.

SingleTree  GroupSelection  PatchStrip

108.6 104.2 102.1
110.9 103.9 101.4
112.4 109.4 100.3
106.3 105.2 95.6

101.4 106.3 102.9
114.6 107.2 99.8

117 105.8 103.5

Write the null and alternative hypotheses.

H .

0

H .

1

Open Minitab and label the first column as Volume and the second column as Method.
Enter all of the volumes in the first column and the methods in the second:
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Volume Method
108.6 Single
110.9...  Single...
104.2 Group
103.9...  Group...
102.1 Patch
101.4...  Patch...

Select STAT>ANOVA>One-way. In the Response box select Volume, and in the Factor
box select Method. Click on the Comparisons box. Select Tukeys, family error rate “5.”
'This tells Minitab that you want to control the experiment-wise error using Tukey’s method
while keeping the overall level of significance at 5% across all multiple comparisons. Click

OK.

State the p-value from the ANOVA table

Write the value for the §?, and the §* (MSE)

Do you reject or fail to reject the null hypothesis?

Using the Grouping Information from the Tukey Method, describe the differences in
volume produced using the three methods.

Now refer to the Tukey 95% Simultaneous Confidence intervals for the multiple com-
parisons. What is the Individual confidence interval level? This is the

adjusted level of significance used for all the multiple comparisons that keeps the 5% level
of significance across the total experiment.

Using these confidence intervals, describe the estimated differences in sawtimber volume
due to the three different treatments.

Example: The group method results in greater levels of sawtimber volume compared to
patch. The group method yields, on average, 0.327 to 10.073 m® more sawtimber volume

per plot than the patch method.

Compare “Single” and “Patch,” and “Single” and “Group.”
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2) A plant physiologist is studying the rate of transpirational water loss (ml) of plants
growing under five levels of soil moisture stress. This species is an important component to
the wildlife habitat in this area and she wants to make sure it survives in an area that tends
to be dry. She randomly assigns 18 pots to each treatment (N = 90). She is measuring total
rate of water transpiring from the leaves (ml) per pot per unit area. Is there a significant
difference in the transpiration rates between the levels of water stress (days)? o = 0.05.

0 DAYS 5 DAYS 10 DAYS |20 DAYS | 30 DAYS
7.78 7.15 9.1 4.72 1.05
8.09 9.12 5.86 3.53 1.29
7.27 7.67 9.45 4.96 1.11
11.35 10.82 7.14 5 0.83
11.94 12.31 6.87 3.82 1.08
10.89 9.76 8.72 4.36 1.09
10.93 8.46 8.58 291 0.75
9.16 11.01 9.93 491 0.99
7.83 7.54 9.28 4.99 0.71
8.6 9.48 6.65 4.95 1.02
9.32 9.47 10.55 3.28 1.01
6.46 10.2 7.93 3.53 1.08
8.12 6.04 7.68 5.37 1.99
10.47 7.99 5.42 6.54 3.01
5.98 8.05 4.99 5.51 2.61
6.9 7.42 5.29 4.24 2.99
7.57 5.76 7.65 4.39 2.62
9.17 7.78 4.75 4.16 1.98

Write the null and alternative hypotheses.

H .

0

H .

1

State the p-value from the ANOVA table

Do you reject or fail to reject the null hypothesis?

Using the Grouping Information using the Tukey Method, describe the differences in
water loss between the five levels of water stress (0, 5, 10, 20, and 30).

Now refer to the Tukey 95% Simultaneous Confidence intervals for the multiple com-
parisons. What is the Individual confidence interval level? This is the
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adjusted level of significance used for all the multiple comparisons that keeps the 5% level
of significance across the total experiment.

Using these confidence intervals, describe the estimated differences in water loss between
the five different treatments.

3) A rifle club performed an experiment on a randomly selected group of first-time shooters.
'The purpose was to determine whether shooting accuracy is affected by method of sighting
used: only the right eye open, only the left eye open, or both eyes open. Fifteen shooters
were all given similar training except in the method of sighting. Their scores are recorded
below. At the 0.05 level of significance, is there sufficient evidence to reject the claim that
the three methods of sighting are equally effective? o = 0.05.

Right | Left Both
13 10 15
9 18 16
17 15 15
13 11 12
14 15 16

Write the null and alternative hypotheses.

H.:

o

H .

1

State the p-value from the ANOVA table

Do you reject or fail to reject the null hypothesis?

Give a complete conclusion.

Why do you think you were not able to identify any differences between the sighting
methods?
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Name

You are studying the growth of a hybrid species of Alaskan pine in three levels of soil
moisture (wet, moderate, and dry) over a period of 30 days (0, 5, 10, 20, and 30). You want
to determine if this species grows differently over time given different starting levels of soil
moisture. Use the given data to test this claim (a = 0.05). If the interaction is significant,
at what point does the difference in growth between the levels of soil moisture over time
become significant? Use the factor plot and the Grouping information to specifically iden-
tify the difference in your conclusion.

Moisture  Days Growth Moisture  Days Growth Moisture  Days Growth

Dry 0 7.78 Moderate 0 10.926 Wet 0 8.116
Dry 0 8.09 Moderate 0 9.162 Wet 0 10.473
Dry 0 7.27 Moderate 0 7.83 Wet 0 8.654
Dry 0 11.35 Moderate 0 8.604 Wet 0 6.901
Dry 0 11.94 Moderate 0 9.324 Wet 0 7.565
Dry 0 10.89 Moderate 0 6.462 Wet 0 9.169
Dry 5 7.152 Moderate 5 8.456 Wet 5 10.039
Dry 5 9.117 Moderate 5 11.012 Wet 5 9.994
Dry 5 7.671 Moderate 5 7.541 Wet 5 8.045
Dry 5 10.823 Moderate 5 9.482 Wet 5 9.445
Dry 5 12.309 Moderate 5 9.473 Wet 5 8.024
Dry 5 9.756 Moderate 5 10.2 Wet 5 7.783
Dry 10 9.096 Moderate 10 8.582 Wet 10 7.679
Dry 10 5.864 Moderate 10 9.934 Wet 10 11.671
Dry 10 9.445 Moderate 10 9.279 Wet 10 10.567
Dry 10 7.136 Moderate 10 6.651 Wet 10 9.66

Dry 10 6.869 Moderate 10 10.546 Wet 10 7.646
Dry 10 8.716 Moderate 10 7.927 Wet 10 8.953
Dry 20 4.716 Moderate 20 2.903 Wet 20 7.368
Dry 20 3.528 Moderate 20 491 Wet 20 6.539
Dry 20 4.964 Moderate 20 4,998 Wet 20 7.034
Dry 20 5.004 Moderate 20 4.954 Wet 20 7.258
Dry 20 3.824 Moderate 20 3.279 Wet 20 6.309
Dry 20 4.356 Moderate 20 3.528 Wet 20 7.223
Dry 30 1.053 Moderate 30 0.748 Wet 30 4.909
Dry 30 1.287 Moderate 30 0.997 Wet 30 5.891
Dry 30 1.11 Moderate 30 0.7 Wet 30 4.223
Dry 30 0.832 Moderate 30 1.018 Wet 30 3.997
Dry 30 1.082 Moderate 30 1.007 Wet 30 2.616
Dry 30 1.095 Moderate 30 1.083 Wet 30 3.995

Open Minitab and enter the data into a spreadsheet. Select STAT>ANOVA>General
Linear Model.
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Click in the Response box and select GROW'TH for the Response box, and enter MOIS-
TURE, DAYS, and MOISTURE*DAYS (interaction term) in the Model box, as shown.
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Under OPTIONS, select “Adjusted (Type III)” under Sums of Squares. Click OK.
Under COMPARISONS, select “Pairwise comparisons” using “Tukey” method and enter
the two main effects and interaction (MOISTURE, DAYS, and MOISTURE*DAYS) in

the terms box (click in the box first to select).

Check the Grouping Information box. Click OK.
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Under RESULTS, select “Analysis of Variance Table” for Display of Results. Click OK.
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Under FACTOR PLOTS, enter MOISTURE and DAYS in both the main effects and
interaction plot box. Click OK. Click OK.

Is the interaction term significant?

Write the p-value

Use the third Grouping Information Using Tukey Method (for the interaction) and the
Factor plot to determine where the difterences are for each treatment.

Attach a complete conclusion describing the differences in growth for this species over the
30 days for the 3 different levels of soil moisture.
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Name:

1) The following data were collected on Old Faithful geyser in Yellowstone Park. The x-
variable is time between eruptions and the y-variable is length of eruptions.

X Y

12.17 1.88
11.63 1.77
12.03 1.83
12.15 1.83
11.30 1.70
11.70 1.82
12.27 1.93
11.60 1.77
11.72 1.83
12.10 1.89
11.70 1.80
11.40 1.72
11.22 1.75
11.42 1.73
11.53 1.74
11.50 1.77
11.90 1.87
11.86 1.84

a) Determine if a relationship exists between the 2 variables using a scatterplot and the
linear correlation coeflicient. Select Graph> Scatterplot. Select the Simple plot and click
OK. Enter the response variable (length of eruptions) in the Y variables box, and the
predictor variable (time between eruptions) in the X variables box. Click OK. Describe the
relationship that you see.

b) Calculate the linear correlation coefficient. Statistics> Basic Stats> Correlation. Enter
the 2 variables in the Variables box and click OK.
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What two pieces of information about the relationship between these two variables does
the linear correlation coefficient tell you?

¢) Find a least squares regression line treating “time between eruptions” as the predictor
variable (x) and “length of eruptions” as the response variable (y). Stat>Regression> Gen-
eral Regression. Enter “length of eruptions” in the Response box. Enter “time between
eruptions” in the Model box. Click on Options and make sure that 95% is selected for all
confidence intervals. Click on Graphs and select the Residual plot “Residual versus fits.”
Click Results and make sure the Regression equation, Coefhicient table, Display confi-
dence intervals, Summary of model, Analysis of Variance table, and prediction tables are

checked. Click OK.

Write the regression equation

What is the value of R??

What does this mean?

Examine the residual model. Do you see any problems?

What is the value of the regression standard error?

Write the confidence intervals for the y-intercept

and slope

Use the output to test if the slope is significantly different from zero. Write the null and
alternative hypotheses for this test.

H : H:

0 1°

Using the test statistic and p-value from the Minitab output to test this claim.

Test statistic p-value
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Conclusion:

d) Using the regression equation, what would be the length of the eruption if the time
between eruptions is 11.42 min.?

2) 'The index of biotic integrity (IBI) is a measure of water quality in streams. The sample
data given in the table below comes from the Piedmont forest region. The table gives the
data for IBI and forested area in square kilometers. Let Forest Area be the predictor vari-

able (x) and IBI be the response variable (y).

Forest Area IBlI @ Forest Area IBlI @ Forest Areal IBI @ Forest Area IBl Forest Area
24 47 38 89 22 84 43 71 79
57 61 9 33 25 62 47 33 79
12 39 10 46 31 55 49 59 80
6 59 10 32 32 29 49 81 86
72 72 52 80 33 29 52 71 89
21 76 14 80 33 54 52 75 90
33 85 66 78 33 78 59 64 95
54 89 17 53 39 71 63 41 95
17 74 18 43 41 55 68 82 100
38 89 21 88 43 58 75 60 100

Create a scatterplot and describe the relationship between these variables. Compute the
linear correlation coefficient.

Create a regression model for this data set following the steps from the first example. Write
the regression model.

Is there significant evidence to support the claim that IBI increases with Forest Area?
Write the test statistic/p-value used for this slope test along with your answer.

'The researcher wants to estimate the population mean IBI for streams that have an average

forested area of 48 sq. km. Click STAT>REGRESSION> GENERAL REGRESSION.
Making sure that IBI is in the Response box and Forest Area is in the Model box, click on
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Prediction and enter 48 in the New observation for continuous predictors box and check
Confidence limits. Click OK. Write the 95% confidence interval for mean IBI for streams
in an average forested area of 48 sq. km.

You are working with a stream in an area with 19 sq. km. of forested area. Your management
plan includes an afforestation project that will increase the forested area to 23 sq. km. You
need to predict what the specific IBI would be for this stream when the forested area is
increased. Create a prediction interval to estimate this IBI if the forested area increased to
23 sq. km.

Click STAT>REGRESSION>GENERAL REGRESSION. Making sure that IBI is in
the Response box and Forest Area is in the Model box, click on Prediction and enter 23 in
the New observation for continuous predictors box and check Prediction limits. Click
OK. Write the 95% prediction interval for the IBI for this stream when the forested area is
increased to 23 sq. km.

Explain the difference between the confidence and prediction intervals you just computed.

244



Biometrics Lab #5

Name:

You are working on an alternative energy source and biomass is a key component. You want
to predict above-ground biomass for this region, and you believe that biomass is related
to substrate (subsoil) variables of salinity, water acidity, potassium, sodium, and zinc. Your
crew collects information on biomass and these five variables for 45 plots.

1) Before you create this regression model, you must examine the relationships between
each of the five predictor variables and biomass (the response variable). Create five scat-
terplots using biomass as the response variable (y) and each of the predictor variables (x).
Compute the linear correlation coefficient for each pair. Describe the relationships.

GRAPH>Scatterplot>Simple>OK. The response variable (y-variable) is Bio and the five
predictor variables are the x-variables. Look at the scatterplots and describe each relation-
ship below. Next compute the correlation coefficient for each pair and write the r-value
below. STAT>Basic Statistics>Correlation. You can easily do all correlations at once by
creating a correlation matrix. Put all predictor variables in the Variables box together.
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Bio v. sal
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Biov.K

Bio v. Na

Biov.Zn

Circle the above pair that has the strongest linear relationship.
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2) You are now going to create four regression models using the predictor variables. You will
compare the adjusted R?, regression standard error, p-values for each coeflicient, and the
residuals for each model. Using this information, you will select the best model and state
your reasons for this choice.

Begin with the full model using all five predictor variables. STAT>Regression>General
Regression. Put Bio in the Response box and all five predictor variables in the Model
box (see image). Click Results and make sure that the Regression equation, coefficient
table, Display confidence intervals, Summary of Model, and Analysis of Variance Table are
checked (see image). Click OK. Click Graphs and make sure that under Residual Plots
that Individual plots and Residual versus Fits are selected (see image). Click OK.
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MODEL 1

Write the regression model

Write the adj. R?

Write the regression standard error

Examine the residual plot. Are there any problems?

Write the variables which are NOT significant

MODEL 2

Now remove the LEAST significant variable (highest p-value) and repeat the steps using
only the remaining variables.

Write the regression model

Write the adj. R?

Write the regression standard error

Examine the residual plot. Are there any problems?

Write the variables which are NOT significant
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MODEL 3

Now remove the LEAST significant variable (highest p-value) and repeat the steps using
only the remaining variables.

Write the regression model

Write the adj. R?

Write the regression standard error

Examine the residual plot. Are there any problems?

Write the variables which are NOT significant

MODEL 4

Now remove the LEAST significant variable (highest p-value) and repeat the steps using
only the remaining variables.

Write the regression model

Write the adj. R?

Write the regression standard error

Examine the residual plot. Are there any problems?

Write the variables which are NOT significant

3) Select the best model and state your reasons for selecting this model.
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biomass
676
516
1052
208
1008
436
244
680
640
492
984
1400
1276
1736
1004
396
352
328
392
236
392
268
252
236
340
2436
2216
2096
1660
2272
224
1196
1960
2080
1764
412
416
204
492
636
1756
1232
1400
1620
1560

sal
33
35
32
E11]
33
33
B 1]
30
38
a0
3o
a7
33
B 1]
30
3o
27
29
34
36
a0
28
3l
3l
35
29
35
35
3o
30
26
29
25
26
26
25
26
26
27
27
24
27
26
28
28

pH

4.75
4.2
4.4

5.55

5.05

4.25

445

4.75
4.6
4.1
345
345
4.1
3.5
3.25
3.35
3.2
3.35
3.3
3.25
3.25
3.2
3.2
3.35
7.1
7.35
745
745
7.4

485
4.6
3.2

4,75
3.2

455
395
3.7
3.75

415
5.6

5.35
3.5
3.5
3.4

K
1441.67
1299.19
1134.27
1045.15

521.62
1273.02
1346.35
1253.88
1242.65
1281.95
553.69
434.74
525.97
571.14
408.64
646.65
514.03
350.73
496.29
580.92
535.82
430.34
352.39
661.32
672.15
528.65
563.13
437.96
458.38
498.25
936.26
894.79
941.36
1038.79
838.05
989.87
951.28
939.83
925.42
954.11
720.72
782.09
77332
829.26
836.96
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Ma Zn
35184.5 16.4524
281704 13.9852

20455  15.3276
250729 17.3128
3lepd.2 22,3312
25491.7 12.2778
20877.3 17.8225
25621.3 14.3516
27587.3 13.6820
26511.7 11.73566
78806.5 9.882

14596 16.6752
9826.8 12.373
11978.4 9.4058
10368.60 14.9302
173074 31.2865
12822 30.1652
8582.6 28.0901
12369.5 19.8795
147319 18.3050
15060.6 22.1344
11056.3 28.6101
81189 23.1908
130095 24.6917
15003.7 22.6758
10225 0.3729
8024.2  0.2703
10393 0.3205
8711.6 0.2048
10239.6 0.2105
20436 18.9875
125199 20.9687
18979 23,9841
22986.1 19.9727
117045 21.3864
17721 23.7063
16485.2 30.5589
17101.3 26.8415
17849  27.7292
1694596 21.5699
113446 19.6531
147524 20.3295
136498 19588
14533  20.1328
16892.2 19.242
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Data

Pg. 96: Water clarity data from Owasco Lake: Virginia Piekarski, Joliet Junior College.

Pg. 234: Water loss data: Eddie Bevilacqua, SUNY College of Environmental Science
and Forestry.

Pg. 240: Old Faithful data: Ladonna Hansen, Park Curator, Old Faithful Geyser of

California.

Pg. 249: Rawlings, ., S. Pantula, and D. Dickey. 1998. Applied Regression Analysis: A
Research Tool. 2nd Ed. Springer.

Other data sets supplied by the author
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