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Preface

Cancer is the leading cause of death worldwide, and as such, research in this field 
remains one of the most important healthcare priorities. This book elucidates some 
of the new concepts in cancer research, including basic science and open questions 
in cancer treatment. Chapters cover a broad spectrum of currently very relevant 
topics, from biomarkers and immunotherapy to some unanswered questions in 
everyday clinical practice. Biomarkers are extremely important tools for early detec-
tion and prediction of cancer prognosis and response to therapeutic interventions. 
Authors comment on the value of miRNA as a biomarker, which seems to be a new 
and very promising one. In addition to biomarkers, two other hot topics are cov-
ered: angiogenesis and immunotherapy. There are many open questions regarding 
treatment with these two modalities. Angiogenesis has been a target for quite a few 
years, but there are still issues to address such as non-optimal therapeutic scenarios, 
lack of biomarkers and poor understanding of mechanisms of resistance. In recent 
years, immunotherapy has become one of the cornerstones of cancer treatment. 
Chapters describe both angiogenesis and immunotherapy as well as examine the 
influence of gastrointestinal microenvironement and the role of dendritic cells. 
Regarding cancer treatment, the recent trend is to try to deescalate treatment 
intensity and to spare patients avoidable side effects, of course with the same onco-
logical results. Sentinel node biopsy for uterine cancer, as described in this book, 
is an important step toward this goal. Finally, the book addresses pediatric central 
nervous system tumors, which are the second most common childhood tumors, and 
reviews current treatment options and efforts to reduce morbidity and mortality.

I would like to thank all the authors and my co-editor, Prof. Eva Sgelov. They accom-
plished an excellent task. It was a privilege collaborating with them. I sincerely hope 
that this book will help readers, leading them to new horizons of cancer care and 
enlightening them to generate new research ideas.

Mirjana Rajer, MD, PhD
Assistant Professor,

Institute of Oncology Ljubljana,
Ljubljana, Slovenia

Eva Segelov
Professor,

MBBS (Hons 1) PhD FRACP,
Professor/Director of Oncology,

Monash Health and Monash University,
Australia

Board Member, Australasian Gastrointestinal Trials Group (AGITG)
Co-Founder, Commonwealth Neuroendocrine Tumour Collaboration 

(CommNETS)
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Chapter 1

MicroRNA: A Signature
for Cancer Diagnostics
Ayesha Siddiqua, Sumaira Kousar, Amer Jamil,
Riaz Tabassum,Tariq Mehmood and Nusrat Shafiq

Abstract

Various tools and techniques are being used for the diagnosis of cancer, but not
a sole technique provides powerful result at the very early stages of cancer. This
provides the need for type of tools which could detect cancer at early stages so that
survival rate could be augmented. There are various diagnostic ways to identify
cancer, but in each case, there are always circumstances to compromise on the
sensitivity. In this framework, a new and more advanced approach of diagnosis for
cancer is microRNA (miRNA). miRNAs are conserved regions among humans and
animals, and their synthesis takes place in the nucleus and cytoplasm. There are
several types of microRNAs that could be upregulated and downregulated in vari-
ous cancers. A cancer cell could be identified by measurement of the expression
pattern of miRNA. By examining the expression level for different types of cancers,
miRNA can be used as biomarker for early detection of cancer in human beings.

Keywords: microRNA, cancer biomarker, diagnostic, colorectal, upregulation,
downregulation, breast cancer, cervical, liver, prostate

1. Introduction

MicroRNAs (miRNAs) are a small, non-coding, single-stranded RNA consisting
of around 22 nucleotides [1]. More than 3% of the human genome (gene portion)
encodes for microRNA, and their number is around 1000 [2–4]. This small RNA can
regulate gene expression posttranscriptionally [5–7]. This small RNA can regulate
gene expression posttranscriptionally by binding to its cognate RNA target at the 30

untranslated region (UTR) [8–11]. A small microRNA was discovered for the first
time in C. elegans and is encoded by the Lin-4 gene [12] providing evidence for its
evolutionary conservation. This conserved microRNA was found to be involved in
many important biological processes including cell proliferation, growth, apoptosis,
etc. [13, 14], and many cell-based factors have been known to regulate its expres-
sion [15]. The genes transcribing the miRNA are considered to belong to the set of
tumor suppressor genes, and the serum level of miRNA can be detected [16, 17].
There are certain miRNAs that can behave as either oncomiRs (whose expression
can cause the cancer) or tumor suppressor depending on the context “Several
miRNAs cannot be clearly and unequivocally categorized as tumor suppressors or
oncomiRs because data in our hands are quite intricate and conflicting since they
could act as tumor suppressors in one scenario or as oncomiRs in the other” [18].
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2. Synthesis/biogenesis of miRNA

Synthesis of miRNA takes place in the nucleus as well as in the cytoplasm.
Genes encoding miRNAs are present in the form of a cluster and contain introns
(Figure 1). These genes are transcribed by polymerase II with the generation of the
primary precursor pri-miRNA. This precursor miRNA consists of a 30 poly-A tail
and a 50 end cap [19, 20] with a stem-loop structure. RNase 3 Drosha cleaves this
structure with the help of its Pasha cofactor DGCR8. This resultant cleaved, pre-
cursor structure is known as pre-miRNA and consists of �70–90 nucleotides [21].
This �70 nt precursor is exported to the cytoplasm by Exportin-5.

In the cytoplasm, the whole pri-miRNA is recruited by a RNA-induced silencing
complex (RISC) and is converted into mature miRNA. These are mediated by an
RISC leaching complex (RLS), which is basically a multiprotein complex and con-
sists of a double-stranded RNA domain protein (DICER), tar RNA-binding protein
(TARB), and the Ago 2 protein. The RNAse 3 DICER along with its cofactor yields
duplex miRNA (19–25 nucleotide duplex miRNA with 2 nucleotide overhangs at
each 30end). During the process of cleavage, two strands are formed, namely, a
functional and a passenger strand. The functional strand along with the Ago protein
(RISC) is involved in gene silencing function, while the passenger strand is
degraded due to its instability. This miRISC incorporates one strand of miRNA
(functional strand and guide strand) so that it takes the guidance from this complex
to target mRNA (complementary) for its degradation or inhibition at the transla-
tional level [22]. miRNA is processed in the cytosol and transported to the blood.
It is resistant to degradation because it is carried by complexes of lipoprotein
inclusions [23] or in the form of exosomes [24, 25].

3. Mechanism of action

The mechanism of action of microRNA is such that it binds to its partial
complementary sequence in the target mRNA (that codes for protein). Hence, the
expression is repressed (Figure 2) and no product is synthesized [7].

In another scenario, the microRNA may bind to the complementary sequence of
target mRNA that codes for protein and initiates RNA-mediated gene silencing,
with the resultant cleavage of the target RNA (Figure 3) [26].

Figure 1.
Biogenesis of microRNA.
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4. Diagnosis of cancer

There are reported differences in the expression pattern of miRNA in normal
and cancer cells [27]. Some miRNAs are overexpressed, while the others are
downregulated in different kinds of cancers [28]. Due to its small size and resistance
to RNase-mediated degradation, they have the potential as powerful biomarkers for
cancer diagnosis [29]. miRNA expression is involved with the rearrangement of
chromosomes, methylation of the promoter region, and transcriptional regulation.
miRNA-mediated aberrations in one or more of these processes can culminate in
alterations in protein and mRNA expression [30].

5. Types of miRNA and cancer according to organs

Different miRNAs are involved in different types of cancers:

5.1 Breast cancer

Breast cancer is the most prevalent form of cancer in women. Among 12.7
million cancer cases globally, breast cancer is most frequently diagnosed, that is, 23
and 14% deaths due to breast cancer have been reported [1, 31]. The alarmingly
increasing mortality data coupled with increases in relapses warrants an improved
molecular understanding of the etiology and mechanistic details that contribute to
the chemoresistance. There are four subtypes (intrinsic) of breast cancer. These are
ErbB2+ (epidermal growth factor receptor 2-positive (also called HER2)), luminal A

Figure 2.
Mechanism of action of miRNA.

Figure 3.
Mechanism of miRNA.
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(hormone receptor positive for estrogen and progesterone, HER2), luminal B (hor-
mone receptor positive for estrogen and progesterone and positive or negative for
HER2), and basal like (hormone receptors negative for estrogen, progesterone, and
HER2) showing its heterogeneity. Many of the microRNAs play a role in the inhibi-
tion of breast cancer. The upregulation of miR-21 (Table 1) results in the increased
expression of BCL-2 protein and chemoresistance in breast cancer [38]. MiR-125b
shows the resistance to chemotherapeutic agents 5-fluorouracil, and it has higher
expression in the patients that are nonresponsive to this agent (Table 2). Many
promote the prognosis of breast cancer by targeting the tumor suppressor at
the gene level and activating the transcriptional factors that are oncogenic in
nature [32, 38].

The Rab protein is a member of the Ras superfamily (Figure 4). This protein is a
G-protein-coupled receptor and is involved in many cellular processes including
fusion, budding, synthesis of vesicles, and motility [55]. A member of the Rab class
is Rab11a, and this protein has many functions including cellular migration and
phagocytosis [56]. In breast cancer there is overexpression of Rab11a protein [57]
and is regulated by miRNA 320a. This miRNA can downregulate Rab11a protein,
thereby mediating the inhibition of breast cancer progression.

MiR-320a has an important role in tumor suppression [58] and can be a bio-
marker for breast cancer. This miR-320a results in a 15% increase of cells in G0/G1,

Sr. no. MicroRNAs Potential targets Function Ref.

1 miR-10b Homeobox D10 Promotes cellular invasion,
migration, and metastasis by
targeting the RhoC

[32]

2 miR-21 Programmed cell death
protein 4, hypoxia-
inducible factor-1α

Promotes cellular invasion,
metastasis, epithelial-to-
mesenchymal transition and
migration

Phosphatase and tensin
homolog, programmed cell
death protein 4,
tropomyosin 1

Promotes cellular invasion [33]

Metalloproteinase inhibitor
3

Promotes cellular invasion [34]

3 miR-155
(chemosensitive
determinant by
targeting the
FOXO3)

Suppressor of cytokine
signaling 1

Promotes cell proliferation and
growth

[35]

Tumor protein p53
inducible nuclear protein

Promotes cell proliferation [36]

Forkhead box protein O3 Promotes cell proliferation and
cell survival

[37, 38]

4 miR-373 CD44 (inversely
correlated)

Promotes cellular invasion and
migration

[39]

Promotes cellular invasion and
metastasis

[40]

5 miR-520c Promotes cellular migration,
invasion, and metastasis

[39]

Meta-analysis or Cochrane reviews documenting the involvement of a specific miRNA or a battery of miRNAs
contributing to relapse or recurrence can be displayed as a separate table for each of the cancers.

Table 1.
MicroRNAs upregulating the breast cancer.
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and the population of cells in the S phase is decreased. Apart from the G0/G1 cell
cycle arrest, miR-320a also increases the activity of caspase resulting in the induc-
tion of apoptosis [59]. The potential target of miR-20 is Rab11a; it has two binding
sites at the 30UTR region for miR-320a and can mediate its posttranscriptional
repression. This protein is also necessary for the activation of Akt via phosphatidy-
linositol-4-kinase (PI4K3) in breast cancer—a pro-survival signal [60]. Further,
overexpression of Rab11a protein results in the reversal of cell cycle arrest and
apoptosis mediated by miR-320a by targeting the MTDH at 30UTR [61]. The gene
coding for the Rab coupling protein (RCP) (a Rab11-FIP1C (Rab coupling protein))

Sr. no. MicroRNAs Potential targets Function Ref.

1 miR-125b Erythropoietin, erythropoietin
receptors (positive correlation with
ERBB2/HER2 expression)

Inhibition of cellular
differentiation and
proliferation

[41]

Glutamyl aminopeptidase or
aminopeptidase A, casein kinase 2-
alpha, cyclin J, multiple EGF-like
domains 9

Inhibition of cellular
proliferation

[42]

Receptor tyrosine-protein kinase
erbB-2 (human epidermal growth
factor receptor 2) (induction of miR
cause the downregulation of ERBB2/
ERBB3)

Inhibition of invasion and
migration

[43,
44]

2 miR-205 High-mobility group box 3 gene Suppression of invasion and
proliferation

[45, 46]

3 miR-17-92 Mitogen-activated protein kinase
kinase kinase 2

Promotes the antitumoral
activity of natural killer cells
and reduction in metastasis

[47]

4 miR-206 Cyclin D2, connexin 43 Reduction in invasion,
migration, and metastasis

[48]

5 miR-200 Zinc finger E-box binding homeobox
1/2, snail family zinc finger ½

Reduction in tumor growth,
EMT through E-cadherin,
and metastasis

[49]

6 miR-146b Nuclear factor kappa B, signal
transducer, and activator of
transcription 3

Reduction in survival and
metastasis via interleukin 6

[50]

7 miR-126 Insulin-like growth factor-binding
protein 2, c-Mer tyrosine kinase,
phosphatidylinositol transfer protein,
cytoplasmic 1

Reduction in angiogenesis
and metastasis

[51]

8 miR-335 SRY-related HMG-box 4, tenascin C Suppression in migration
and metastasis

[52]

9 miR-31 Ras homolog gene family Targets various steps of
metastasis and invasion for
inhibition

[38]

WAS protein family, member 3, Ras
homolog gene family

Reduction in the metastasis
and progression of cancer

[53]

WAS protein family, member 3 Reduction in the metastasis
and progression of cancer

[54]
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(hormone receptor positive for estrogen and progesterone, HER2), luminal B (hor-
mone receptor positive for estrogen and progesterone and positive or negative for
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Sr. no. MicroRNAs Potential targets Function Ref.
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[40]
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Meta-analysis or Cochrane reviews documenting the involvement of a specific miRNA or a battery of miRNAs
contributing to relapse or recurrence can be displayed as a separate table for each of the cancers.

Table 1.
MicroRNAs upregulating the breast cancer.
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and the population of cells in the S phase is decreased. Apart from the G0/G1 cell
cycle arrest, miR-320a also increases the activity of caspase resulting in the induc-
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migration, and metastasis

[48]

5 miR-200 Zinc finger E-box binding homeobox
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6 miR-146b Nuclear factor kappa B, signal
transducer, and activator of
transcription 3
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is amplified in breast cancer and aids in the sorting of epidermal growth factor
receptor (EGFR) [62, 63]. For the metastasis or migration of cancer, the cell critical
factor is RCP which mediates this effect via cell surface integrin alpha-5-beta-1
demonstrating that Rab11a is a protein that is involved in the metastatic or invasive
phenotype of breast cancer [64, 65].

5.2 Colorectal cancer

Colorectal cancer is the third most common cancer around the world. The
incidence rate is increased up to 6% [66]. Survival rate can increase to 90%, if it is
diagnosed at an early stage. Survival rate is inversely proportional to the stage of
cancer [67].

In a study, the cluster of miR-17/miR-92 (chromosomal region 13q31.1 with
miR-20a as one of its members). The region encompassing this cluster is under the
regulation of the oncogenic Myc transcriptional factor and TGF-β [68, 69].
Overexpression converts a benign tumor to colorectal cancer [70].

Mir-20 acts as a potential colorectal cancer cell biomarker [71]. Induction of
miR-20-mediated EMT is a critical factor contributing to the increases in tumor cell
migration, metastasis, E-cadherin downregulation, and upregulation of matrix
metalloproteinases (Figure 5) [72, 73]. This microRNA can cause a delay in TGF-β-
mediated G1/S transition. However, cell cycle progression occurs due to an
inactivating mutation in this pathway [74]. Normal TGF-β-mediated signaling can
be a cytostatic response and inhibit tumorigenicity in colorectal cancer cells [75].

Figure 4.
MicroRNA and breast cancer.

Figure 5.
MicroRNA and colorectal cancer.
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miR-20 may be degraded by a bacterial strain that is dominant in the lumen of the
bowel of colorectal patients. Hence, expression of miR-20a is reduced in patients
having colorectal adenoma [76–78].

In another study, miR-34a modulates EMT and MET processes. There is
methylation in CpG islands (cancer specific), and these are repressed by
IL-6/STAT3 pathway which is mediated by interleukin-6 receptors (IL6R) and
inactivation of TP53. This results in downregulation of miR-34a [79]. miR-34a
inhibits SIRT and activates TP53. A positive feedback loop has been suggested
between miR-34a (Table 3) and TP53 [81]. In many cancers, TP53-inducible
microRNA is miR-34a [82].

In another study, miR-200 is downregulated in primary colorectal cancer
(invasive stage) correlatable with the disruption of the basement membrane [83].
The miR-200 family consists of five members and is encoded in two clusters. One
cluster is present on chromosome 1 and encodes for miR-200a, miR-200b, miR-
200c, and miR-141. The other cluster is present on chromosome 12 and encodes for
miR-141. The potential target of miR-200 family is ZEB1/ZEB2 which is a repressor
of CDH1 (Table 4). Expression of all members of this family can be repressed
following methylation of CpG islands in the regulatory region of their genes
[84, 85]. Strong expression of miR-200 results in metastatic colorectal cancer [83].
Another study shows that miR-155 and miR-21 are overexpressed in colorectal
cancer [86]. In another study involving colorectal cancer patients, the expression of
miR-195 and miR-497 is reduced [87].

5.3 Cervical cancer

Cervical cancer is the most common cause of death among women in the devel-
oping countries [88, 89]. Cervical cancer can cause the death of 270,000 women per
year [90]. Human papillomavirus (HPV) is the causative agent, with the E6 and E7
proteins targeting p53 and pRb, respectively [91].

Sr. no. MicroRNAs Potential target Function

1 miR-185 Ras homolog gene family, member
A, and cell division control protein
42 homolog

Reduction in the proliferation, induction
of cell cycle arrest at the G1 stage, and
promotion of apoptosis

2 miR-192 cyclin-dependent kinase inhibitor 1 Regulating the p53

3 miR-215

4 miR-34a Tumor suppressor p53 Modulate the EMT transition

Table 3.
MicroRNAs suppressing the colorectal cancer [80].

Sr. no. MicroRNAs Potential target Function

1 miR-130a Mothers against decapentaplegic
homolog 4 (SMAD4)

Enhances the cell proliferation and
migration

2 miR-301a

3 miR-454

4 miR-200 Zinc finger E-box-binding homeobox ½ Promotes metastasis

Table 4.
MicroRNAs promoting the colorectal cancer [80].
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miR-20 may be degraded by a bacterial strain that is dominant in the lumen of the
bowel of colorectal patients. Hence, expression of miR-20a is reduced in patients
having colorectal adenoma [76–78].

In another study, miR-34a modulates EMT and MET processes. There is
methylation in CpG islands (cancer specific), and these are repressed by
IL-6/STAT3 pathway which is mediated by interleukin-6 receptors (IL6R) and
inactivation of TP53. This results in downregulation of miR-34a [79]. miR-34a
inhibits SIRT and activates TP53. A positive feedback loop has been suggested
between miR-34a (Table 3) and TP53 [81]. In many cancers, TP53-inducible
microRNA is miR-34a [82].

In another study, miR-200 is downregulated in primary colorectal cancer
(invasive stage) correlatable with the disruption of the basement membrane [83].
The miR-200 family consists of five members and is encoded in two clusters. One
cluster is present on chromosome 1 and encodes for miR-200a, miR-200b, miR-
200c, and miR-141. The other cluster is present on chromosome 12 and encodes for
miR-141. The potential target of miR-200 family is ZEB1/ZEB2 which is a repressor
of CDH1 (Table 4). Expression of all members of this family can be repressed
following methylation of CpG islands in the regulatory region of their genes
[84, 85]. Strong expression of miR-200 results in metastatic colorectal cancer [83].
Another study shows that miR-155 and miR-21 are overexpressed in colorectal
cancer [86]. In another study involving colorectal cancer patients, the expression of
miR-195 and miR-497 is reduced [87].

5.3 Cervical cancer

Cervical cancer is the most common cause of death among women in the devel-
oping countries [88, 89]. Cervical cancer can cause the death of 270,000 women per
year [90]. Human papillomavirus (HPV) is the causative agent, with the E6 and E7
proteins targeting p53 and pRb, respectively [91].
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Several miRNAs are upregulated and downregulated during cervical cancer
(Table 5). miR-135b is a biomarker for cervical cancer. Suppression of this bio-
marker results in the inhibition of cell growth.

Downregulation of miR-135b results in the percentage of G1 cells with a con-
comitant decrease in those in the S phase. The expression of cyclin-dependent
kinases (p27 and p21) is increased and that of cyclin D1 is decreased. Cyclin D1
(nuclear protein) is responsible for the regulation of cells (proliferating) that are at
the G1 phase of the cell cycle [72, 73].

There seems to be an inverse relationship between miR-135b and FOXO1 pro-
tein. When FOXO1 protein is downregulated, cervical cancer is promoted. When
FOXO1 protein is expressed, then there is an increase in the p27 and p21 expression
with a decrease in cyclin D1 level and cell cycle is arrested [95, 96]. So, when miR-
135 is downregulated, FOXO1 is upregulated with the resultant inhibition of cell
growth (Figure 6).

In cervical cancer, miR-196a is upregulated and its targets are p27Kip and
FOXO1. It promotes the transition of cells from G1 phase to S phase, enhances the
cellular proliferation by involving the PI3K/Akt pathway, and is involved in
tumorigenesis [97].

In one study, miR-10a is overexpressed in cervical cancer (Long et al., 2012;
[28]). The target of miR-10a is transmembrane protein type 1 close homolog of L1
(CHL1) that is downregulated. A decrease in CHL1 protein dysregulates PAK and
MAPK pathways resulting in increases in cell growth followed by migration and
invasion [98].

In another study, miR-21 is upregulated in cervical cancer, and it is located at the
17q23.21 locus (Table 6). The pri-miR-21 is transcribed by the intronic region of
TMEM49 (protein-coding gene). This miRNA targets the p53 and Cdc25 (regulators
of the expression of genes), TPM1 and RECK (suppressing the metastasis), and
PTEN and PDCD4 (inducing the apoptosis of metastasized cell). Hence, decreases
in this miRNA can result in the PDCD4 gene providing signals for the activation of
the RAS pathway. This activation, in turn, activates the transcription factor AP-

Type of
miRNA

Function Ref.

miR-491-5p Downregulated; suppress cervical cancer by telomerase reverse transcriptase and
regulate the PI3K/AKT pathway

[92]

miR-142-3p Inhibit the proliferation of cell Frizzled_7 receptor (FZD7) [93]

miR-142-3p Inhibit the growth of cell via downregulation of its FOXM1 target [94]

Table 5.
AmiRNA involved in cervical cancer.

Figure 6.
MicroRNA and cervical cancer.
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1gene. This AP-1 binds to a specific site on the promoter of miR-21 and as a result
miR-21 gene is transcribed [99], thereby providing a plausible mechanism for a
positive feedback loop.

It was reported that miR-886-5p targets and negatively regulates Bax gene
expression via inhibition of translation, and hence, this form of control may be
significant for the development of cervical cancer. When there is a death signal, the
proapoptotic protein coded by Bax gene is inserted into the outer membrane of
mitochondria. As a result, cytochrome C is released, and the initiator caspase-9 is
subsequently activated with the initiation of apoptosis (Table 7) [91].

5.4 Liver cancer

Liver cancer is rising very rapidly globally with aflatoxins also contributing to its
etiology. Specific miRNA may be expressed in the case of liver cancer. One of the

Sr. no. MicroRNAs Potential targets Function Ref.

1 miR-196a Binds to the 30UTR of p27Kip and
FOXO1 and inhibits their
translation

Increases in cell proliferation and
tumorigenesis

[97]

2 miR-10a Has an inverse relation with the
expression of close homolog of L1
(CHL1) transmembrane protein
type 1—a cell-adhesion protein

Cell growth followed by migration
and invasion

[91]

3 miR-21 Negatively regulates p53 and
Cdc25, TPM1 and RECK, and
PTEN and PDCD4

Enhances the expression of genes
associated with cell proliferation,
metastasis, as well as those involved
in the antiapoptosis effect

[91]

4 miR-886-5p Negatively regulates the Bax gene Dysregulation of the gene involved
in apoptosis (miR-10a, miR-106b,
miR-21, miR-135b, miR-141,
miR146, miR-148a, miR-214, and
miR-886-5p)

[91]

5 miR-20a TNKS2 oncogene is upregulated
(by binding at 30UTR of mRNA of
TNKS2 results in enhanced
translation)

Migration, colony formation, and
invasion

[91]

Table 6.
MicroRNAs activating the cervical cancer.

Sr. no. MicroRNAs Potential target Function

1 miR-143 Target k-Ras, Bcl-2 and Macc1, specifically
downregulation of Bcl-2

Inhibition of apoptosis and
uncontrolled cell proliferation

2 miR-129-5p Downregulates HPV18 E5 and E7 expression
as well as inhibits the translation of SP-1
transcriptional factor

Suppressing the progression of
cervical cancer

3 miR-34a Cyclin E2 and D1, CDK6, E2F3, CDK4, E2F1,
E2F5, P18, Bcl-2, and SIRT1

Aberrations in cell
proliferation and
differentiation—cell
transformation

Table 7.
MicroRNAs suppressing cervical cancer [91].
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miRNA biomarkers in liver cancer is miR-26a. Its expression is reduced in
liver cancer unlike normal hepatic cells, where its expression level is increased [100].

miR-26a and miR-34a cause an increased number of cells in the G1 phase of the
cell cycle, while there is a decrease in the cells in the S phase of the cell cycle. miR-26
causes cell cycle arrest at the G1 phase [84]. In the 30UTR region of cyclins E2 and
D2, there is a conserved binding site for miR-26a. miR-26a binds to these binding
sites and represses the expression of both cyclins (Figure 7). miR-26 causes the
induction of apoptosis in the tumor cells and suppresses hepatic cancer [101].

Kim et al. studied the expression of miR-31 in liver cancer (Table 8). The main
target of miR-31 is CDK2 protein and HDAC2, with these proteins suppressed in the
livers of normal individuals. There is an enhanced expression of CDK2 protein and
HDAC2 in liver cancer. When HDAC2 is suppressed, p21WAF1/Cip1 and p16INK4A are
activated, and positive regulators of the cell cycle (cyclin D1, CDK2, and CDK4) are
suppressed simultaneously [102].

In another study, the expression of miR-9 enhances the formation of tumor
spheres in the liver. The direct target of the miR-9 is PPARA and CDH1 genes and
regulates them via binding to the 30UTR region of these genes. Upregulation of miR-
9 enhances the level of vimentin (mesenchymal marker) and deregulates the CDH1
(Table 9). The transcriptional factor PPARA has been implicated in the metabolic
homeostasis of the liver by regulating the nuclear factor-4 alpha (hepatocyte
HNF4A) gene, which is a tumor suppressor. In liver cancer, miR-9 suppresses the
CDH1 and also suppresses the PPARA at their mRNA level by binding to the 30UTR
of these genes [103].

In one study, there is overexpression of miR-525-3p in liver cancer, and its
potential target is a zinc finger protein (Krüppel C2H2 type family) ZNF395. This

Figure 7.
MicroRNA and liver cancer.

Sr. no. MicroRNAs Potential
targets

Function Ref.

1 miR-26a Cyclin E2 and
D2

The arrest of the cell cycle at G1 phase [84]

2 miR-31 CDK2 protein
and HDAC2

Suppress the positive regulators of cell cycle and
promote those proteins involved in EMT-related
processes

[102]

Table 8.
MicroRNAs suppressing the liver cancer.
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zinc finger protein was originally a transcriptional factor and binds to the promoter
region of the human papillomavirus (HPV). This protein mediates the regulation of
PI3K/Akt pathway and causes the inhibition of cell growth via the induction of
caspase-3 and the promotion of apoptosis. The expression of miR-525-3p enhances
cell growth and prevention of apoptosis [104].

5.5 Prostate cancer

In countries in the West, prostate cancer is a more prevalent form of cancer
among males with an increasing incidence rate [105]. Prostate cancer is the result of
undesirable genomic alteration [106, 107]. CD9 is inactivated during prostate can-
cer and may cause its progression [108].

In the prostate cancer, serum level of miR-141 is elevated [109]. So it acts as the
biomarker of prostate cancer. In the progression or repression of prostate cancer,
miR-141 function is understood poorly [110]. One other study is done by Waltering
et al. in which miR-141 is castrated and results in upregulation and activation
(Figure 8). This causes the LNCaP cell growth to increase. This miRNA is also
involved in the regulation of signaling of the androgen. This androgen has a crucial
role in the growth of prostate cancer (castration-resistant and androgen-
dependent). So it may be involved in the progression of prostate cancer [111, 112].

In a study involving prostate cancer, miR-888 was found to be upregulated. Its
target is the tumor suppressors SMAD4 and RBL1. Binding of this miRNA to the
30UTR causes their downregulation. RBL1 is the member of the RB (retinoblastoma)
family and blocks the progression of cells at the G1-S phase following its binding
and inhibition of the transcription factor E2F. SMAD4 protein binds to SMAD
receptors and transduces the signal initiated by TGF-β/BMP ligands in order to
regulate differentiation and cell growth [113].

In another study, there is the downregulation of miR-23a, b (Table 10). There is
upregulation of the-Myc gene which causes the repression of these miRNAs at the
transcriptional level. Mitochondrial glutaminase protein is expressed in the prostate
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Figure 7.
MicroRNA and liver cancer.

Sr. no. MicroRNAs Potential
targets

Function Ref.

1 miR-26a Cyclin E2 and
D2

The arrest of the cell cycle at G1 phase [84]
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Suppress the positive regulators of cell cycle and
promote those proteins involved in EMT-related
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[102]

Table 8.
MicroRNAs suppressing the liver cancer.
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cancer cells. Consequently, glutamine catabolism is increased, providing a growth
advantage to the cancer cells [114].

In another study, miR-34a is suppressed in prostate cancer. The target of miR-
34a is deacetylase sirtuin (SIRT1) and cyclin-dependent kinase 6 (CDK6). CDK6
regulates cyclin D, which, in turn, regulates cell cycle progression and G1-S phase
transition, while p53 protein-dependent apoptosis is regulated by SIRT1 via
deacetylation and stabilization of p53. The target of the p53 gene is miR-34a. It is
suggested that there is a positive feedback loop in which SIRT1 mediates the acti-
vation of miR-34a via stabilization of p53 and induces the apoptosis and blocks the
cell cycle transition. This activation of p53 causes the upregulation of miR-34a
which in turn suppresses the SIRT1 (Table 11) [114].

5.6 Lung cancer

The leading cause of death around the world is lung cancer by tobacco smoke.
This environmental lifestyle-related factor may cause undesirable epigenetic and
genetic modifications [115]. The key role in lung cancer is the alteration and muta-
tion in tumor suppressor genes (p53 and RB/p16pathway) and less frequent is the
genetic alteration of FHIT, K-ras, MYO18B, and PTEN [116].

Five miRNAs were differentially expressed in lung cancer tissues, and these
include miR-21, miR-155, miR-145, miR-17-3p, and hsa-let-7a-2. Specifically, hsa-
miR-155 levels were increased, while that of hsa-let-7a-2 was downregulated [117].

There is a functional interaction of let-7 with the Ras as a target gene is
overexpressed associated with protein kinase and resulting intracellular pathway of
signaling [118]. The molecular mechanism is unclear involving miRNA in lung
cancer. Alteration in the somatic genes resulted in the defective miRNA expression
in lung cancer. This reduced expression of miRNA (has-let-7a-2) in the lung cancer
is due to epigenetic modification and results in the silencing of tumor suppressor
gene and many others (Figure 9) [119, 120]. The expression of hsa-miR-21 is
upregulated in cancer cell and causes the inhibition of product of gene which
initiates apoptosis and causes lung cancer [121]. In a report miR-17�92 cluster is
overexpressed in the lung cancer. This cluster consists of six miRNAs.

Sr. no. MicroRNAs Potential targets Function Ref.

1 miR-141 LNCaP cells Promote cell growth
Decreased growth in response to anti-miR-
141 treatment

[112]

2 miR-888 Downregulates SMAD4
and RBL1

G1-S phase transition [113]

Table 10.
MicroRNAs activating the prostate cancer.

Sr. no. MicroRNAs Potential targets Function

1 miR-23a,b Glutaminase protein (indirect) Glutamine catabolism

2 miR-34a SIRT1 and CDK6 Progression of cell cycle, G1-S phase
transition, and antiapoptosis

Table 11.
MicroRNAs suppressing the prostate cancer [114].
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This cluster in lung cancer is transactivated via MYC and members of the E2F
family. The direct target of this cluster is HIF-1α. Upregulation of MYC causes the
downregulation of HIF-1α and affects proliferation of cell in normoxia without
affecting the hypoxic condition. Overexpression of this cluster causes knockdown
of retinoblastoma gene and results in the formation of reactive oxygen species.
Another direct target of this cluster is RAS-related protein 14 (RAB-14), and it is
downregulated by this cluster and results in the initiation and development of
cancer [122].

In another study, miR-21 is upregulated in the lung cancer. Its direct target is
tumor suppressor gene PTEN that is repressed by overexpression of miR-21
(Table 12), which results in cell growth enhancement and non-small cell lung
carcinoma invasion [123]. miR-21 is upregulated by RAS via PI3K and RAF/MAPK
pathways [122].

In another study, miR-34 is downregulated in the lung cancer. This miRNA is
directly regulated by p53 and regulates the apoptosis and arrest of the cell cycle in
cancer [81].

The miR-34/miR-499 is downregulated in lung cancer and its direct target is E2F
and p53 (Table 13). Both miRNAs suppress the E2F and upregulate the p53 via
SIRT1 so cell growth is increased [124].

The miR-15/miR-16 is downregulated in lung cancer. There is upregulation of
cyclin D1 with the downregulation of miR-15/miR-16. The overexpression of
miR-15/miR-16 causes the arrest of the cell cycle at G1 phase [122]

Figure 9.
miRNA and lung cancer.
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5.7 Gastric cancer

The second malignancy that is widely prevailed is the gastric cancer which
results in 12% deaths around the world [125]. Gastric cancer is the result of a series
of steps. When transforming growth factor (TGF-beta) resistance is developed and
E2F1 is upregulated, then gastric cancer is developed [126, 127].

In gastric cancer, there is upregulation of cluster of miR-106b-25 present on
Mcm gene [128]. The transition of the G1/S phase of the cell cycle is targeted by
Mcm gene. It ensures that DNA is replicated only one time when replication fork is
assembled on the DNA during each cycle [129]. When cells exit from the mitosis,
then expression of cluster of miR-106b-25 is activated by E2F1 (Figure 10) and
gains the reentry in the G1 phase of the cell cycle. The cell cycle inhibitor is
p21 [130].

The cytokine TGF-beta causes the cell cycle arrests by activating p21 and causes
the apoptosis [131]. As this cytokine is activated it causes the downregulation of
miR-106b-25 cluster, reduces the expression of E2F1, causes the cell cycle arrest at
G1/S phase of cell cycle, and causes the induction of apoptosis. The key target of
miR-93 and miR-106b is E2F1 [132]. The key target of miR-25, the biomarker of
gastric cancer, is TGF-beta cytokine [133]. The target of cytokine in mediating the
apoptosis is Bim protein that in turn causes the activation of proapoptotic Bax and
Bad molecules acting as an antagonist of Bcl2 and BclXL antiapoptotic factors
(Figure 11) [134].

Sr. no. MicroRNAs Potential targets Function Ref.

1 miR-34 p53 Regulate the apoptosis and
arrest of cell cycle

[81]

2 miR-34/miR-499 E2F and p53 Cell growth and proliferation [124]

3 miR-15/miR-16 Cyclin D1 The arrest of the cell cycle at
the G1 phase

[122]

Table 13.
MicroRNAs suppressing the lung cancer.

Sr. no. MicroRNAs Potential targets Function Ref.

1 let-7 Ras Protein kinase-associated
signaling pathway

[118]

2 miR-17�92 HIF-1α and RAB14 ROS and initiation and
development of cancer

[122]

3 miR-21 PTEN Cell growth enhancement
and invasion

[122]

Table 12.
MicroRNAs activating the lung cancer.

Figure 10.
miR-106b-25 cluster.
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Lim found that miR-196b is upregulated in the gastric cancer (Table 14). This
miRNA is present in chromosome 9 at HOXA cluster. There is a positive association
of expression of miR-196b with the expression of HOXA10. Unmethylation of CpG
islands results in the expression of miR-196b. The HOXA10 expression results in
hematopoietic stem cell proliferation and progenitor cell proliferation leading to the
development of cancer via expression of genes that codes for integrin-β3, TGFβ2,
and dual-specificity protein phosphatase 4 [135].

We studied miR-375 is downregulated in gastric cancer (Table 15). Its expres-
sion in cancer cell causes the decrease in cell viability by downregulation of PDK1
and JAK2 revealing that miR-375 is a tumor suppressor in gastric cancer [136, 137].

In another study, miR-135a is a tumor suppressor in gastric cancer. Upregulation
of miR-135a causes the suppression of gastric cancer via suppression of proliferation
of cell via E2F, metastasis, and EMT. In gastric cancer, lymph node metastasis is
associated with proliferation, metastasis, and EMT which is suppressed by
overexpression of miR135a [138].

Figure 11.
miRNA and gastric cancer.

Sr. no. MicroRNAs Potential targets Function Ref.

1 miR-106b-25 E2F1 Antiapoptosis and cell proliferation [132]

2 miR-196b HOXA10 Progenitor and hematopoietic stem
cell proliferation

[135]

Table 14.
MicroRNAs activating the gastric cancer.

Sr. no. MicroRNAs Potential targets Function Ref.

1 miR-375 PDK1 and JAK2 Decrease the cell viability [136, 137]

2 miR-135a E2F Suppress cell proliferation,
metastasis, and EMT

[138]

Table 15.
MicroRNAs suppressing the gastric cancer.
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5.8 Bladder cancer

In males, bladder cancer is an important malignancy present in two forms that
are muscle invasive and non-muscle invasive (benign) [139]. There are two
microRNAs associated with bladder cancer. They are miR-21 and miR-129 [140].

In the bladder cancer, miR-129 and miR-21 both are upregulated. The direct
target of miR-21 is the tumor suppressor genes that are TPM1 and PTEN
(Figure 12) [141, 142]. The known targets of miR-129 are the genes involved in the
regulation of transcription and processing of miRNA that are TAMTA1 and EIF2CA
[143]. The mir-129’s pathway of death effectors leads to the tumor as its target is
also SOX4 [144].

According to one study, miR-19a is frequently upregulated in the bladder
cancer. The expression of miR-19a is related to PTEN expression (Table 16).
PTEN is a tumor suppressor gene. When miR-19a is overexpressed, it causes the
downregulation of PTEN and increases the cell level of phosphatidylinositol-3,4,5-
trisphosphate in AKT/PKB pathway. When growth factors are released, then the
AKT pathway is initiated and cell growth is increased [145].

Zhang studied that miR-125b is downregulated in bladder cancer. The expres-
sion of miR-135b causes the inhibition of formation of colony and development of
cancer via suppression of E2F3 which is overexpressed in bladder cancer [74].

In another study angiogenesis in the bladder cancer is suppressed by miR-34a
(Table 17). The target of miR-34a is CD44 and causes the suppression of CD44
when upregulated which results in the regulation of transcription of the various

Figure 12.
miRNA and bladder cancer.

Sr. no. MicroRNAs Potential targets Function Ref.

1 miR-129 TAMTA1 and EIF2CA Regulation of transcription [143]

2 miR-21 TPM1 and PTEN Growth of tumor cell [141]

3 miR-19a PTEN Increase in the cell growth [145]

Table 16.
MicroRNAs activating the bladder cancer.

Sr. no. MicroRNAs Potential targets Function Ref.

1 miR-125b E2F3 Inhibition of formation of colony and
development of cancer

[74]

2 miR-34a CD44 Inhibition of invasion, metastasis,
migration, tube formation, and angiogenesis

[146]

Table 17.
MicroRNAs suppressing the bladder cancer.
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genes in bladder cancer. Over expression of miR-34a causes the inhibition of inva-
sion, metastasis, migration, tube formation, and angiogenesis by targeting the
CD44 [146].

5.9 Glioblastoma

Glioblastoma is the tumor of astrocytes, star-shaped cells that form the support-
ive tissues (glue-like) of the brain. This is readily metastasizing tumor because it is
surrounded by large blood vessels. Glioblastoma is a complex and heterogeneous
tumor that comprises on neoplastic cells, endothelial cells, stemlike cells, neural
precursor cells, microglia, reactive extracellular components, and peripheral
immune cells [147].

The biomarker in glioblastoma is miR-21 that is upregulated in this cancer
(Figure 13). It mediates its effect in two ways: acting at the translational level and
acting at the transcription level. It binds the 30UTR region of the target gene (for
apoptosis) [148] and causes the inhibition of transcription of apoptotic genes by
decreasing the stability. It also resists the caspases 3 and 7 that are important
apoptotic agents so apoptosis does not occur [149].

Upregulation of miR-221 and miR-222 was in glioma cells. These two miRNAs
present as a cluster on Xp11.3 and have the same target. Functional studies revealed
that there is an association of these two miRNAs with the progression of the cell
cycle. Their direct target is cyclin-dependent kinase 1B/p27. The overexpression of
these miRNAs cause the activation of quiescent glioblastoma cells and the progres-
sion of these cells from G1 phase to S phase of the cell cycle. miR-221/miR-222 also
targets the p57 and p27 (inhibitors of cell-dependent kinase) to prevent the
quiescence at G1 phase and cause their entry to S phase of the cell cycle. The
miR-221/miR-222 also targets the PUMA, a proapoptotic protein, to prevent the
apoptosis (Table 18) [150].

Another biomarker miR-128 is found to be downregulated in glioblastoma.
The expression of miR-128 causes the regulation of proliferation of glioblastoma
multiform (GBM) cells via targeting the PDGFR-α and EGFR, the oncogenic kinases

Figure 13.
miRNA and glioblastoma.

Sr. no. MicroRNAs Potential targets Function Ref.

1 miR-21 Caspases 3 and 7 Antiapoptotic [149]

2 miR-221/miR-222 Cyclin-dependent kinase
1B/p27

Prevent the apoptosis [150]

Table 18.
MicroRNAs activating the glioblastoma.
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present as a cluster on Xp11.3 and have the same target. Functional studies revealed
that there is an association of these two miRNAs with the progression of the cell
cycle. Their direct target is cyclin-dependent kinase 1B/p27. The overexpression of
these miRNAs cause the activation of quiescent glioblastoma cells and the progres-
sion of these cells from G1 phase to S phase of the cell cycle. miR-221/miR-222 also
targets the p57 and p27 (inhibitors of cell-dependent kinase) to prevent the
quiescence at G1 phase and cause their entry to S phase of the cell cycle. The
miR-221/miR-222 also targets the PUMA, a proapoptotic protein, to prevent the
apoptosis (Table 18) [150].

Another biomarker miR-128 is found to be downregulated in glioblastoma.
The expression of miR-128 causes the regulation of proliferation of glioblastoma
multiform (GBM) cells via targeting the PDGFR-α and EGFR, the oncogenic kinases

Figure 13.
miRNA and glioblastoma.

Sr. no. MicroRNAs Potential targets Function Ref.

1 miR-21 Caspases 3 and 7 Antiapoptotic [149]

2 miR-221/miR-222 Cyclin-dependent kinase
1B/p27

Prevent the apoptosis [150]

Table 18.
MicroRNAs activating the glioblastoma.
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(receptor tyrosine kinases) (Table 19). It suppresses the GBM by enhancing the
differentiation of neuronal cells. It also targets the signaling molecules in the
PI3-kinase/AKT pathway which causes the tumor cell proliferation [147].

In other study miR-7 is downregulated in glioblastoma. Its target is EGFR and
causes the inhibition of AKT pathways and EGFR and results in the reduction of cell
viability of GBM via direct binding to mRNA of EGFR or via targeting to IRS1 and
IRS2 (insulin receptor substrate). The major regulators EGFR and IRS are at
upstream site of AKT pathway [151].

5.10 B cell chronic lymphocytic leukemia

This is the cancer of B lymphocytes (antibodies), and it is a prevalent form of
leukemia in the adult around western countries [152].

In B cell leukemia, the expression of three microRNAs is seen as cancer bio-
marker. These are miR-15a, miR-16-1, and miR-19a (Figure 14). Two microRNAs
are present at 13q14.3 chromosomal location; these are miR-15a and 16-1 [153]. The
expression of these two is decreased in this leukemia, whereas the expression of
miR-19a is increased [152]. The region encoding for miR-15a and miR-16-1 was
deleted. This leads to the presence of the genes of IgVH that were mutated [154].
The potent target of miR-19a is PTEN, and there is down-expression of this PTEN
gene; hence its protein is not properly synthesized because the promoter of the gene
is hypermethylated [155].

The miR-16-1 and miR-15a (located on chromosome 13) are downregulated in B
cell lymphocytic leukemia (Table 20). These miroRNAs target the p53 gene which

Sr. no. MicroRNAs Potential targets Function Ref.

1 miR-128 PDGFR-α and EGFR Enhancing the differentiation of neuronal cells [147]

2 miR-7 EGFR Reduction of cell viability [151]

Table 19.
MicroRNAs suppressing the glioblastoma.

Figure 14.
miRNA and B cell lymphocytic leukemia.

Sr. no. MicroRNAs Potential targets Function Ref.

1 miR-15a p53 Prevent the apoptosis and cell
survival is increased

[153]

2 miR-16-1 p53 Prevent the apoptosis and cell
survival is increased

[156]

Table 20.
MicroRNAs suppressing the B cell lymphocytic leukemia.
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is a tumor suppressor gene. When these miRNAs are downregulated, then the
expression of p53 is reduced or inhibited, and expression of BCL-2 is increased
which prevent the apoptosis and cell survival is increased [156].

In one study, miR-17/miR-92 cluster is overexpressed in the B cell lymphocytic
leukemia (Table 21). The direct target of this cluster is PTEN and Bim. The PTEN
is a tumor suppressor gene, and Bim is proapoptotic protein. Overexpression
of this cluster causes prevention of apoptosis and progression of tumor [157].

In other study, miR-155 is overexpressed in the B cell lymphocytic leukemia
[159]. The potential target for miR-155 is SHIP1. Expression of miR-155 causes the
alteration of BCR response in signaling pathway via the modulation of SHIP1
expression in chronic lymphocytic leukemia. Scr homology-2 domain comprising
the inositol 5-phosphatase is encoded by SHIP1. This phosphatase causes the inhi-
bition of BCR signaling and surface immunoglobulin [158].

5.11 Pancreatic cancer

Pancreatic tumor is most of the time identified at the last stages when therapy
does not save life. Li et al. characterize the pancreatic cancer stem cells (PCSCs) for
the very first time [160].

In one study, there is overexpression of miR-1290 in pancreatic cancer. The
direct target of miR-1290 is FoxA1 which has an effect on the transition of epithelial
mesenchyma. The overexpression of miR-1290 results in the growth of cell and
invasion [94].

In another study there is overexpression of miR-194 in pancreatic cancer.
The target of miR-194 is DACH1 and results in the formation of the colony, the
proliferation of cell, and migration (Table 22), so miR-194 causes the progression
of the tumor [161].

The growth and differentiation of the cell are regulated by LIN28, a protein that
binds to the RNA [162]. The protein that is encoded by LIN28 is 25 kDa and has two
binding sites for RNA: cold shock domain (CSD) and a pair of zinc fingers. In
pancreatic cancer, the expression of LIN28 is increased which in turn suppresses the
biosynthesis of family let-7 of microRNA (Figure 15). This family targets the genes
involved in the growth and differentiation regulation [163]. This LIN28 causes the
inhibition by binging to the loop present at the terminal region of let-7 family, so

Sr. no. MicroRNAs Potential targets Function Ref.

1 miR-19a PTEN Cause the tumor [155]

2 miR-17/miR-92 PTEN and Bim Prevention of apoptosis and
progression of tumor

[157]

3 miR-155 SHIP1 Inhibition of BCR signaling and
surface immunoglobulin

[158]

Table 21.
MicroRNAs activating the B cell lymphocytic leukemia.

Sr. no. MicroRNAs Potential targets Function Ref.

1 miR-1290 FoxA1 Cell growth and invasion [94]

2 miR-194 DACH1 Progression of tumor [161]

Table 22.
MicroRNAs activating the pancreatic cancer.
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mesenchyma. The overexpression of miR-1290 results in the growth of cell and
invasion [94].

In another study there is overexpression of miR-194 in pancreatic cancer.
The target of miR-194 is DACH1 and results in the formation of the colony, the
proliferation of cell, and migration (Table 22), so miR-194 causes the progression
of the tumor [161].

The growth and differentiation of the cell are regulated by LIN28, a protein that
binds to the RNA [162]. The protein that is encoded by LIN28 is 25 kDa and has two
binding sites for RNA: cold shock domain (CSD) and a pair of zinc fingers. In
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Table 21.
MicroRNAs activating the B cell lymphocytic leukemia.

Sr. no. MicroRNAs Potential targets Function Ref.

1 miR-1290 FoxA1 Cell growth and invasion [94]

2 miR-194 DACH1 Progression of tumor [161]

Table 22.
MicroRNAs activating the pancreatic cancer.
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their processing is blocked [45, 46, 164]. This family is involved in the regulation of
tumor by cyclin D1 (CCND1) inhibition [165, 166].

In one study there is downregulation of miR-145 in pancreatic cancer. The
decreased expression of miR-145 is due to activation of the K-ras gene. Expression
of miR-145 causes the inhibition of expression of insulin growth factor-1 receptors
(Table 23). Its expression causes the downregulation of genes related to cancer
(SET, MCM2, SPTBN1). These genes cause growth and carcinogenesis of pancreatic
cancer [161].

5.12 Acute myeloid leukemia

In the myeloid leukemia, malignant blast cells are synthesized in comparison to
mononuclear cells of healthy bone marrow [167]. In myeloid leukemia the
hypermethylation of the DNA is involved in tumor suppression [168]. In one study,
there is overexpression of miR-204 in acute myeloid leukemia. The target of
miR-204 is MEIS1 and HOXA 10 genes which disturbs the differentiation of
myeloid cells. Its overexpression causes tumorigenesis [169].

In another study, miR-125b (located on chromosome 1) is overexpressed in acute
myeloid leukemia. The target of miR-125b is BCL2-antagonist/killer 1 (Bak1) which
enhance the proliferation of AML cell and prevent the apoptosis [169].

In another study, miR-155 (located on chromosome 21) is overexpressed in the
acute myeloid leukemia. This miR-155 is located in B cell integration cluster (BIC)
gene. This BIC correlated to MYC to initiate lymphomas. Overexpression of
miR-155 causes the inhibition of WEE1, a regulator of the cell cycle, and hMLH1,
hMLH6, and hMLH4, the genes for mismatch repair (Table 24). The result of
this inhibition is increased in mutation rate in progenitor and hematopoietic stem
cells [169].

The known biomarker for the acute myeloid leukemia is miR-29b [167]. miR-
29b causes the hypomethylation of the DNA. Sp1 transcriptional factor has the
binding site for both miR-29b and DNMT1. In DNMT, it binds to its promoter and
30UTR for miR-29b of Sp1 (specificity protein 1). Binding to the 30UTR causes the
reduced expression of Sp1, so DNMT (DNA methyltransferase) expression is also

Figure 15.
miRNA and pancreatic cancer.

Sr. no. MicroRNAs Potential targets Function Ref.

1 let-7 family cyclin D1 (CCND1) Regulation of tumor [166]

2 miR-145 K-ras Growth and carcinogenesis [161]

Table 23.
MicroRNAs suppressing the pancreatic cancer.
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reduced (Figure 16). In acute myeloid leukemia, miR-29b results in the apoptosis
when it directly targets the MCL (induced myeloid leukemia cell differentiation
protein) [170]. So the expression of miR-29b is reduced in acute myeloid leukemia
which leads to cancer progression as apoptosis has been decreased with reduced
expression of miR-29b (Table 25).

5.13 Ovarian cancer

In ovarian cancer, the biomarker that is used is miR-214 and it is upregulated in
cancer. It binds to the 30UTR region of phosphatase and tensin analog (PTEN) gene
and causes its hypermethylation. So this is inactivated. The direct target of PTEN is
Akt protein kinase B and mediates its activation by the help of PI4K3B [171]. Akt
causes the downstream effects such as activation of glycogen synthase. So when
PTEN is inhibited, it activates the expression of Akt. This miR-214 resists the
cisplatin-mediated cell death, so it is antiapoptotic in nature (Figure 17). Cisplatin is
an important factor in mediating cell death [172].

In a study, there is overexpression of Hsa-miR-182 in ovarian cancer. The
potential target of Hsa-miR-182 is forkhead box 3 (FOXO3) and forkhead box 1
(FOXO1) which promote the differentiation and inhibition of growth (acting as a
tumor suppressor). These tumor suppressor genes are suppressed, and growth and
proliferation of ovarian cell are increased (Table 26) [173].

Figure 16.
miRNA and acute myeloid leukemia.

Sr. no. MicroRNAs Potential targets Function

1 miR-204 MEIS1 and HOXA Tumorigenesis

2 miR-125b Bak1 Enhance proliferation and prevent apoptosis

3 miR-155 WEE1, hMLH1, hMLH6,
and hMLH4

Increase mutation rate in progenitor and
hematopoietic stem cells

Table 24.
MicroRNAs activating the acute myeloid leukemia [169].

Sr. no. MicroRNAs Potential targets Function

1 miR-29b DNMT Apoptosis

2 miR-29b MCL protein Apoptosis

Table 25.
MicroRNAs suppressing the acute myeloid leukemia [170].
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which leads to cancer progression as apoptosis has been decreased with reduced
expression of miR-29b (Table 25).
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cancer. It binds to the 30UTR region of phosphatase and tensin analog (PTEN) gene
and causes its hypermethylation. So this is inactivated. The direct target of PTEN is
Akt protein kinase B and mediates its activation by the help of PI4K3B [171]. Akt
causes the downstream effects such as activation of glycogen synthase. So when
PTEN is inhibited, it activates the expression of Akt. This miR-214 resists the
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an important factor in mediating cell death [172].
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In another study, there is downregulation of miR-200 family in ovarian cancer.
The direct target of miR-200 is zinc finger E-box-binding homeobox 1 and 2 (ZEB1
and ZEB2). It prevents the EMT, metastasis, invasion, and migration of tumor cell.
Interleukin-8 and CXCL1 (released from tumor epithelial cells) are also the target of
miR-200 and prevent the angiogenesis of tumor cell [174].

In another study there is downregulation of miR-506 in ovarian cancer, so there
is cell migration invasion of the cancer cell. When this miRNA is overexpressed, it
causes the expression of E-cadherin and results in inhibition of cell invasion and
migration and proliferation of ovarian cancer and, via targeting SNAI2 (E-cadherin
transcriptional factor), prevents the EMT induction by TGF-β (Table 27). The
miR-506 directly targets the CDK4/CDK6-FOXM1 axis and initiates the senescence
[175].

6. Conclusion

MicroRNAs (miRNAs) could be used as potential tool for early detection of
cancer. It may upregulate or downregulate multiple targets through various mech-
anisms. It is upregulated as an oncogene (miRNA) and downregulated as a tumor
suppressor. microRNA targets the PTEN, interferon (tumor suppressor genes), and

Figure 17.
miRNA and ovarian cancer.

Sr. no. MicroRNAs Potential targets Function Ref.

1 miR-214 PTEN Antiapoptosis [172]

2 Hsa-miR-182 FOXO3 and FOXO1 Increased proliferation and growth [173]

Table 26.
MicroRNAs activating the ovarian cancer.

Sr. no. MicroRNAs Potential targets Function Ref.

1 miR-200 ZEB1 and ZEB2 Prevent the EMT, metastasis, invasion, and
migration

[174]

2 miR-506 SNAI2, CDK4/
CDK6-FOXM1 axis

Inhibition of cell invasion and migration and
proliferation; initiates the senescence

[175]

Table 27.
MicroRNAs suppressing the ovarian cancer.
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also to the cell cycle along with the regulation of these genes [172]. MicroRNA is of
vital importance because of its resistance to degradation and could be a potential
candidate for clinical applications. However, its expression level can be screened in
the serum/plasma (blood) by high-throughput sequencing technology. Further
research for identification of novel microRNA will warrant the development of
microRNA-related cancer prognosis [176–180].
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Chapter 2

Angiogenesis and Its Role in the 
Tumour Microenvironment: A 
Target for Cancer Therapy
Sophia Frentzas, Caroline Lum and Ting-Yu Chen

Abstract

The process of angiogenesis refers to the growth of new blood vessels from 
existing ones. Tumours can produce factors in the micro-environment which act on 
blood vessels to promote angiogenesis. It is therefore considered to be fundamental 
in tumour progression and metastatic dissemination. This neovascularization can 
be regulated by numerous endogenous factors in the tumour micro-environment. 
As a result, anti-angiogenic therapies have been developed in the hope of targeting 
this process to reduce tumour growth and progression. However, only a proportion 
of patients respond to therapy, indicating the presence of treatment resistance in 
some. In this chapter, we aim to highlight the process of angiogenesis and to review 
pivotal evidence for the use of anti-angiogenic therapies thus far (alone and in 
combination with other agents). Finally, we will illustrate recent evidence for the 
discovery of biomarkers for anti-angiogenic therapies and potential mechanisms of 
resistance to such agents.

Keywords: angiogenesis, tumour microenvironment, blood vessels, growth factor, 
stroma, anticancer therapies, biomarkers, resistance mechanisms

1. Introduction

Angiogenesis is a process that is important to the growth of cancers. It refers 
to when new blood vessels sprout from existing ones. This multi-step process is 
imperative to the physiological maintenance of the body such as tissue repair [1]. 
It is also thought to be a critical process that tumours depend on for the delivery 
of oxygen and nutrients, in order to facilitate growth and progression [2]. Both 
pro-angiogenic factors and anti-angiogenic factors play a role in modulating 
tumour neovascularisation. Notably, vascular endothelial growth factors (VEGF) 
and catecholaminergic signalling pathways have been shown to be key factors in 
angiogenesis, invasion and metastases [3]. Investigations into catecholaminergic 
signalling from the sympathetic nervous system have shown to increase VEGF 
and matrix metalloprotease (MMP) levels, promoting tumour growth, invasion 
and metastasis [4]. Since tumour angiogenesis requires the up-regulation of these 
factors, anti-angiogenic agents have now been developed. A multitude of trials have 
investigated the effect of anti-angiogenic agents on the progression of cancer as well 
as combination therapies to improve the current standard of care. However, not all 
patients respond to these, leading to studies that aim at elucidating the mechanisms 
of resistance.
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and metastasis [4]. Since tumour angiogenesis requires the up-regulation of these 
factors, anti-angiogenic agents have now been developed. A multitude of trials have 
investigated the effect of anti-angiogenic agents on the progression of cancer as well 
as combination therapies to improve the current standard of care. However, not all 
patients respond to these, leading to studies that aim at elucidating the mechanisms 
of resistance.
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Figure 1. 
Signalling from VEGFR2. The signalling cascades downstream of VEGFR2 have been the best studied and are 
illustrated here. VEGF binding to VEGFR2 induces dimerisation of VEGFR2 and phosphorylation of tyrosine 
residues (indicated by the four-digit numbers in the illustration). Pathways activated include the Ras-Raf-
MEK-ERK pathway, PLCγ/PKC pathway and the PI3K/Akt pathway. Activation of downstream signalling 
from VEGF receptors exerts control over multiple processes required for angiogenesis including endothelial cell 
proliferation, migration, tube formation and vascular permeability.

2. The role of VEGF in tumour angiogenesis

Angiogenesis is considered to be a fundamental event in tumour progression 
and metastatic dissemination and is [2] regulated by numerous endogenous factors 
that stimulate or inhibit neovascularisation [3]. One of the most studied pathways is 
the vascular endothelial growth factor (VEGF) family of ligands and their recep-
tors [5]. In humans and mice, the VEGF family consists of 5 members: VEGF-A, 
-B, -C, -D and placental growth factor (PIGF). These ligands demonstrate variable 
specificity for the three VEGF receptors (VEGFR1, VEGFR2, VEGFR3) [3, 5]. The 
predominant member of the VEGF family involved in tumourigenesis is VEGF-A 
and will be referred to as simply ‘VEGF’ from herein.

One of the most important stimuli for tumour angiogenesis is hypoxia, which can 
occur when a rapidly growing tumour exceeds the ability of the local vasculature to 
supply its needs. Hypoxia-inducible factor 1 (HIF-1) is a heterodimeric transcription 
factor, made up of two DNA binding proteins (HIF-1 α  and HIF-1 β ), which induces 
the transcription of many genes, including VEGF [6]. In the presence of adequate 
oxygen concentrations, HIF-1 α  is ubiquitinated and subsequently degraded by the 
proteasome. However, under hypoxic conditions, HIF-1 α  is stabilised and persis-
tently dimerises with the other subunit, HIF-1 β , to form the HIF-1 heterodimer. 
The stabilised HIF-1 is then able to bind the VEGF promoter, leading to persistent 
transcription of the VEGF gene [7]. The expression of VEGF is also stimulated by 
oncogenes, including Ras, c-Src, Bcr-Abl and p53 [8]. A multitude of studies have 
shown that VEGF is overexpressed in the majority of solid tumours and that it is a 
key driver of sprouting angiogenesis [9]. Furthermore, it has been demonstrated in 
multiple xenograft models that VEGF inhibition supresses tumour growth [10].

3. Signalling in the VEGF pathway

Binding of VEGF to the extracellular domain of VEGFR2 causes receptor 
dimerisation and phosphorylation of the receptor on tyrosine residues within the 
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intracellular domain (Figure 1) [11]. The Y1054 and Y1059 residues, which lie 
within the kinase domain, become phosphorylated in response to VEGF stimula-
tion. These positively regulate the intrinsic kinase activity of the intracellular 
domain and signal to phospholipase-Cγ (PLCγ), which in turn leads to VEGFR2 
internalisation [12]. The Y1175 and Y1214 residues lie in the carboxyl terminal 
tail. These residues become highly phosphorylated in response to VEGF. Y1214 
signalling leads to endothelial cell migration and Y1175 signalling leads to PLCγ 
and extracellular related kinase 1/2 (ERK1/2) activation that is required for DNA 
synthesis and cell proliferation [13]. Activation of ERK1/2 requires the Ras-Raf-
MEK-ERK1/2 signalling cascade but may also require the PLCγ/PKC/PKD pathway 
[14]. The roles of Y951 and Y996 residues, which lie in the kinase insert region, have 
not been definitively determined, but Y951 phosphorylation has been shown to 
increase endothelial cell migration and proliferation via both the PLC-γ and PI3K 
pathways [15].

4. Sprouting angiogenesis

According to the established dogma, VEGF released by tumours stimulates 
the growth of new vessels in the following way. The VEGF diffuses through 
the tissue and activates endothelial cells located in local blood vessels. Firstly, 
VEGF receptor activation induces the selection of sprouting endothelial cells. 
Proteinases such as urokinase-type plasminogen activator, uPA, and members 
of the matrix metalloproteinase (MMP) family mediates the dissolution of the 
vascular basement membrane and extracellular matrix to facilitate the infil-
tration of sprouting endothelial cells into the surrounding tissue [16]. Next, 
endothelial proliferation, migration and branching allows for the formation 
of new vessels. This is followed by sprout fusion and lumen formation where 
vessels fuse together to form a network. Finally, there is perfusion and matura-
tion. This is where the stabilisation of new blood vessels forms a functionally 
perfused system, which is mediated by the recruitment of pericytes to sur-
round the newly formed endothelial tubes; recruitment of pericytes prevents 
further endothelial cell proliferation and migration and also suppresses vessel 
leakage [17].

5. VEGF immunomodulation

Multiple possible mechanisms exist regarding immunosuppressive effects of 
VEGF on the tumour microenvironment. Firstly, due to the effect of VEGF on 
tumour vasculature, T cell migration from lymph nodes to the microenvironment 
may be impaired. Furthermore, the ability of T cells to migrate through vessels is 
negatively affected by VEGF through the down regulation of vascular endothelial 
selectins, adhesion molecules and promotion of Fas ligand expression. Secondly, 
VEGF binding to its receptor on myeloid derived suppressor cells within the tumour 
microenvironment results in STAT 3 signalling, with subsequent promotion of Treg 
cells and the down regulation of tumour specific T cells [18]. Additionally, the bind-
ing of VEGF to VEGFR2 has effects including reduced activation of cytotoxic CD8+ 
and CD4+ T cells, as well as the upregulation of inhibitory receptors including PD1 
and CTLA4 [19]. The interaction of VEGF with VEGFR may also upregulate the 
programmed death ligand 1 (PDL1) on dendritic cells (DCs) [20]. Furthermore, the 
binding of VEGF to VEGFR1 on dendritic cells has the effect of inhibiting dendritic 
cell maturation [20].
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the growth of new vessels in the following way. The VEGF diffuses through 
the tissue and activates endothelial cells located in local blood vessels. Firstly, 
VEGF receptor activation induces the selection of sprouting endothelial cells. 
Proteinases such as urokinase-type plasminogen activator, uPA, and members 
of the matrix metalloproteinase (MMP) family mediates the dissolution of the 
vascular basement membrane and extracellular matrix to facilitate the infil-
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endothelial proliferation, migration and branching allows for the formation 
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tion. This is where the stabilisation of new blood vessels forms a functionally 
perfused system, which is mediated by the recruitment of pericytes to sur-
round the newly formed endothelial tubes; recruitment of pericytes prevents 
further endothelial cell proliferation and migration and also suppresses vessel 
leakage [17].

5. VEGF immunomodulation

Multiple possible mechanisms exist regarding immunosuppressive effects of 
VEGF on the tumour microenvironment. Firstly, due to the effect of VEGF on 
tumour vasculature, T cell migration from lymph nodes to the microenvironment 
may be impaired. Furthermore, the ability of T cells to migrate through vessels is 
negatively affected by VEGF through the down regulation of vascular endothelial 
selectins, adhesion molecules and promotion of Fas ligand expression. Secondly, 
VEGF binding to its receptor on myeloid derived suppressor cells within the tumour 
microenvironment results in STAT 3 signalling, with subsequent promotion of Treg 
cells and the down regulation of tumour specific T cells [18]. Additionally, the bind-
ing of VEGF to VEGFR2 has effects including reduced activation of cytotoxic CD8+ 
and CD4+ T cells, as well as the upregulation of inhibitory receptors including PD1 
and CTLA4 [19]. The interaction of VEGF with VEGFR may also upregulate the 
programmed death ligand 1 (PDL1) on dendritic cells (DCs) [20]. Furthermore, the 
binding of VEGF to VEGFR1 on dendritic cells has the effect of inhibiting dendritic 
cell maturation [20].
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6. The development of anti-angiogenic therapies

Given the key role VEGF is proposed to play in tumour angiogenesis, it is unsur-
prising that it has become a major drug target. Various drugs designed to inhibit 
VEGF signalling have been developed, including VEGF neutralising antibodies  
(e.g. bevacizumab), novel fusion proteins which bind pro-angiogenic growth factors 
(e.g. aflibercept) and VEGF receptor tyrosine kinase inhibitors (e.g. sunitinib) [5, 21]. 
Such agents have shown promise in the treatment of several malignancies, including 
mCRC, metastatic renal cell carcinoma (mRCC), metastatic lung cancer, hepatocel-
lular carcinoma (HCC) and pancreatic neuroendocrine tumours (PNET) [22].

6.1 Bevacizumab

Bevacizumab (Avastin®) is a recombinant humanised monoclonal antibody that 
binds to the VEGF-A isoform of human VEGF specifically and prevents the VEGF 
from activating the VEGF receptor [23].

6.1.1 Bevacizumab in metastatic CRC

Trials with bevacizumab as a single agent in metastatic colorectal cancer 
(mCRC) failed to demonstrate activity, but early Phase I trials demonstrated that 
it has the potential to be combined with many chemotherapy agents [24]. In the 
advanced setting, several randomised Phase II and III clinical trials clearly demon-
strated that bevacizumab improves response rates (ORR), progression free survival 
(PFS) and overall survival (OS) in mCRC, when added to standard chemotherapy 
in the first line setting [25, 26], and the second line setting [27] (Table 1). In 
February 2004, the US Food and Drug Administration (FDA) approved beva-
cizumab for the treatment of mCRC in combination with 5-fluorouracil-based 
chemotherapy regimens based on a pivotal Phase III study which demonstrated 
significant PFS and OS survival benefit [25]. Of clinical importance, bevacizumab 
in combination with a fluoropyrimidine has also demonstrated efficacy in elderly 
patients with mCRC [26].

Despite these data, only a small proportion of patients benefit from the addi-
tion of bevacizumab, and furthermore, some studies have demonstrated only an 
increase in PFS, with no increase in ORR or OS (Table 1) [28]. Additionally, even 
those who respond initially to bevacizumab combined with chemotherapy will 
inevitably develop resistance and relapse [29].

In the setting of colorectal liver-only metastasis (CRLM), it has been well demon-
strated that preoperative chemotherapy improves outcome and metastatectomy rates 
[30]. With this in mind, and on the basis that bevacizumab can improve ORR, several 
groups set out to evaluate its role in the preoperative CRLM setting. Findings from a 
small non-randomised controlled trial of neoadjuvant conventional chemotherapy 
with bevacizumab in high-risk CRLM patients alluded to an improvement of CRC 
liver metastasis rate to 40% [31]. Data from retrospective, inter-trial studies have also 
suggested that the addition of bevacizumab to chemotherapy significantly improves 
pathological response in CRLM compared to when chemotherapy is administered 
alone [32]. Subgroup post hoc analyses extracted from large randomised controlled 
trials of unselected patients have failed to show significant improvements in resection 
rates with the addition of bevacizumab [33]. Without prospective randomised trials 
however, it is difficult to make conclusions regarding the efficacy of chemotherapy 
versus chemotherapy combined with bevacizumab in the CRLM setting.

The role of continuing bevacizumab beyond first progression in advanced 
colorectal cancer has also been examined. The results of two non-randomised 
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observational cohort studies (BRiTE and ARIES) demonstrated a significant 
correlation between the use of bevacizumab beyond progression and substantial 
improvement in OS [34, 35]. Benefit of treatment beyond progression following 
first line treatment was later confirmed in a prospective randomised trial [36].

The efficacy of bevacizumab has also been evaluated in the adjuvant setting in 
CRC patients. Two large randomised studies compared survival between the follow-
ing arms: adjuvant chemotherapy alone for 6 months versus adjuvant chemotherapy 
in combination with bevacizumab for 6 months (followed by bevacizumab alone 
for 6 months). Both studies demonstrated that at 1 year there was an improvement 
in PFS in the bevacizumab arm. However, no significant difference in OS was 
observed between treatment arms when assessed at 3 or 5 years [37, 38]. In fact, an 
analysis at 5 years in the AVANT study demonstrated a possible detrimental effect 
on survival with the addition of bevacizumab, documenting a higher number of 
relapses and deaths due to disease progression [37].

6.1.2 Bevacizumab in other tumour types

Bevacizumab in combination with cytotoxic chemotherapy has also shown 
significant clinical efficacy in other tumour types.

In advanced non-squamous non-small cell lung cancer (NSCLC), two randomised 
controlled phase III trials demonstrated significant benefit in PFS when bevacizumab 
was added to platinum-based doublet chemotherapy [39, 40], but only one study 
reported an increase in OS [40]. To further understand this discrepancy, a recent meta-
analysis pooling data from several studies including the aforementioned two, deduced 
a modest but significant improvement in OS [41]. More recently in metastatic non-
squamous NSCLC, the Impower150 phase 3 clinical trial investigated treatment with 

Table 1. 
Studies investigating bevacizumab in metastatic colorectal cancer in the first line.
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bevacizumab plus platinum doublet chemotherapy with or without the PDL1 inhibitor 
atezolizumab. Treatment with atezolizumab, bevacizumab and chemotherapy com-
pared with bevacizumab and chemotherapy resulted in a significant improvement 
in PFS at 6 months (66.9% vs. 36.5%) and at 12 months (56.1% vs. 18%) [42]. In an 
interim analysis of OS, an improvement was again seen (Table 2) [42].

In advanced ovarian cancer, in the first- and second-line settings, the efficacy 
of bevacizumab has been assessed when added to platinum-based chemotherapy 
doublets. Two pivotal first line phase III studies utilising the same chemotherapy 
doublet (ICON7/AGO-OVAR and GOG-0218 trials) demonstrated a significant 
improvement in PFS [43]. An updated survival analysis failed to show a significant 
survival benefit [43].

Bevacizumab has been investigated in glioblastoma multiforme (GBM), in the 
recurrent setting following first line treatment with temozolamide and radia-
tion therapy. In this setting bevacizumab monotherapy is ineffective, however 
in combination with lomustine it has resulted in improvement in PFS but not OS 
[44]. Bevacizumab has also been investigated in the first line setting with chemo-
radiation in a large randomised placebo controlled trial, but failed to improve 
outcomes [45].

Earlier phase III trials in RCC have demonstrated efficacy of bevacizumab 
in combination with sorafenib, sunitinib and interferon alpha (Table 2). More 
recently, bevacizumab has been combined with atezolizumab in metastatic RCC.  
A phase III randomised trial confirmed significant improvement in PFS for beva-
cizumab combined with atezolizumab compared with sunitinib monotherapy but 
mature OS data are still awaited [46].

Despite such encouraging results, bevacizumab has thus far failed to make a 
significant impact in several other indications, including metastatic breast cancer 
(mBC), melanoma, pancreatic cancer and prostate cancer. Interestingly, in breast 
cancer, pooled data from four large clinical trials demonstrated that it neither pro-
longed OS, nor delayed disease progression significantly, leading the FDA to revoke 
its initial approval of bevacizumab for mBC [47]. The variation in impact that 
bevacizumab has, not only across tumour types, but also within a single tumour 
type, is curious and needs to be better understood.

6.2 Ramucirumab

Ramucirumab is a fully human IgG1 monoclonal antibody that binds to the 
extracellular domain of VEGFR-2, blocking VEGF from activating the receptor [48]. 
Clinical efficacy and tolerability have been demonstrated in a number of preclini-
cal studies and more recently in phase III trials. In the refractory metastatic gastric 
and gastro-oesophageal junction (GOJ) adenocarcinoma setting, ramucirumab 
significantly improved median OS compared with placebo but this only represented 
an absolute improvement of 1.4 months [49]. In the second line setting of advanced 
gastric and GOJ adenocarcinoma, the combination of ramucirumab and paclitaxel 
has become standard treatment based on the results of the pivotal RAINBOW trial 
showing significant improvement in OS compared with paclitaxel and placebo [50]. 
Ramucirumab has not shown benefit in the first line setting including combination 
with chemotherapy [51].

Ramucirumab has also been investigated in metastatic NSCLC but does not yet 
have an established role for this indication. After progression on first line platinum 
based chemotherapy, there was a small but statistically significant benefit in median 
OS of ramucirumab added to docetaxel [52]. Early results of the RELAY phase 3 
clinical trial investigating ramucirumab in combination with erlotinib in the first 
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line setting of metastatic EGFR mutated NSCLC have indicated an improvement in 
PFS however formal publication of the study findings are awaited.

Ramucirumab has also been investigated in urothelial cancers. In a phase III trial 
of ramucirumab plus docetaxel compared with docetaxel plus placebo in patients 
with advanced urothelial carcinoma who had received platinum-based chemother-
apy, there was a statistically significant improvement in median PFS (4.07 months 
vs. 2.76 months) [53].

Table 2. 
Studies investigating anti-VEGF agents in NSCLC and RCC.
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line setting of metastatic EGFR mutated NSCLC have indicated an improvement in 
PFS however formal publication of the study findings are awaited.

Ramucirumab has also been investigated in urothelial cancers. In a phase III trial 
of ramucirumab plus docetaxel compared with docetaxel plus placebo in patients 
with advanced urothelial carcinoma who had received platinum-based chemother-
apy, there was a statistically significant improvement in median PFS (4.07 months 
vs. 2.76 months) [53].

Table 2. 
Studies investigating anti-VEGF agents in NSCLC and RCC.
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6.3 Aflibercept

Aflibercept is a recombinant fusion protein that binds to VEGF-A, VEGF-B and 
placental growth factor (PLGF), all of which have been implicated in angiogenesis 
and/or the survival of newly formed blood vessels [54]. As it binds to additional 
pro-angiogenic targets (compared to bevacizumab which binds only VEGF-A), 
aflibercept may provide further anti-angiogenic effects compared to targeting 
VEGF-A alone. In preclinical studies, it demonstrated a broad range of anti-tumour 
and anti-angiogenic activity both alone and in combination with chemotherapy, 
which was also observed in phase I clinical trials [55]. Recently, a large randomised 
phase III clinical trial (VELOUR) in advanced CRC patients, receiving second line 
therapy, demonstrated that the addition of aflibercept to systemic chemotherapy 
significantly improved outcomes compared to chemotherapy alone [56]. Based on 
this data, aflibercept was recently approved for use in the second line setting in 
mCRC when given in combination with chemotherapy. Importantly, results from 
a subanalysis of VELOUR showed that there was no significant impact of prior 
exposure to bevacizumab, illustrating the benefit that it provides as a multiple 
angiogenic factor trap, in a setting where resistance to bevacizumab may have 
developed [57].

6.4 Receptor tyrosine kinase inhibitors (TKIs)

Several small molecule inhibitors of VEGF receptor tyrosine kinase activity now 
have an established role in the treatment of certain tumour types, including mRCC, 
HCC and advanced CRC. These small molecule inhibitors readily diffuse through 
the cell membrane to compete for ATP binding to the intracellular tyrosine kinase 
domain of VEGF receptor 2.

6.4.1 Sunitinib

Sunitinib is an orally active multi-kinase inhibitor, which targets VEGFR1–3, 
PDGFR α / β , c-Kit and FLT3 [58]. Xenograft models have clearly demonstrated that 
as well as inhibiting new blood vessel formation, sunitinib also induces regression 
of newly formed immature vessels and significantly stunts tumour growth [59]. 
Furthermore, immunohistochemical studies performed on human tissue derived 
from mRCC patients treated with sunitinib have demonstrated that this agent can 
induce a reduction in tumour vessel density [60].

In terms of outcome in the clinical setting, sunitinib initially showed efficacy, 
as a single agent, for second-line therapy in single-arm, Phase II studies in mRCC 
[61]. Patients treated with sunitinib showed promising outcomes in terms of ORR, 
response duration, PFS and OS. A pivotal Phase III study was subsequently con-
ducted comparing sunitinib with interferon-α as a first-line treatment in mRCC, 
which demonstrated improved OS, PFS and ORR in the sunitinib arm [62]. Based 
on such data, sunitinib was approved by the FDA in 2006 for the first line treat-
ment of mRCC. Other TKI’s, with similar target specificity (sorafenib, pazopanib, 
cabozantinib and axitinib) also have activity in mRCC. Combination with immuno-
therapeutic agents has also shown promising results and we are seeing the treatment 
algorithm for mRCC change rapidly. In a recent landmark phase 3 trial of advanced 
RCC in the first line setting, axitinib was combined with the PD1 inihibitor pembro-
lizumab and compared with sunitinib monotherapy (KEYNOTE-426). The results 
are promising with a significant improvement in PFS and ORR with axitinib and 
pembrolizumab, however more mature OS data are awaited [63].
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The role of such TKIs has also being evaluated in mCRC. The anti-tumour and 
anti-angiogenic effects of sunitinib have been well documented in a series of CRC 
xenograft tumour models [64]. In the clinical setting, however, sunitinib employed 
either as a single agent or with combination chemotherapy, has failed to demon-
strate favourable outcome, both for ORR and PFS [65].

6.4.2 Regorafenib

Recently, another TKI called regorafenib has created a lot of interest in advanced 
CRC. This agent inhibits VEGFR1-3, PDGFR α / β , KIT, RET, FGFR1 and Tie2. It is 
also a potent inhibitor of Raf-1 and suppresses both wild-type and V599E mutant 
BRAF activity in vitro and in mouse models [66]. Significant anti-tumour and 
anti-angiogenic effects in CRC xenograft models, both as a single agent and in 
combination with irinotecan chemotherapy have been reported [67]. In the clinical 
setting, the Phase III CORRECT trial demonstrated significant benefit for OS and 
PFS in advanced CRC patients, when it was used as a single agent compared to best 
supportive care, in a population who had failed previous standard therapy [68]. 
Based on this data, regorafenib was approved by the FDA as a multikinase inhibitor 
for metastatic colorectal cancer in the third line setting in 2012.

Regorafenib also has clinical utility in gastrointestinal stromal tumours (GIST) 
where it is currently employed in the third line setting after imatinib and suni-
tinib. This indication followed from a phase 3 randomised trial, demonstrating 
significantly improved PFS for regorafenib compared with placebo (4.8 months vs. 
0.9 months) [69]. There was no significant difference in OS, however this trial did 
allow for crossover which likely impacted on this finding [69].

Regorafenib has FDA approval for second line treatment of HCC following the 
positive results of the phase 3 RESORCE clinical trial. Compared with placebo, 
regorafenib demonstrated survival benefit [70].

7.  Potential mechanisms of synergy between bevacizumab and 
chemotherapy

Early phase clinical trials have demonstrated that bevacizumab, in combination 
with systemic cytotoxic chemotherapy, can potentiate treatment efficacy when 
given concomitantly [71]. In fact, in most clinical settings, with the exception of 
ovarian cancer where bevacizumab has been observed to have single agent activity 
[72], bevacizumab has only shown significant activity when it is combined with 
cytotoxic chemotherapy and the same is true for aflibercept [21].

It has been well-established that the tumour vasculature is dysfunctional and 
leaky, resulting in enhanced interstitial fluid pressure and thus preventing effec-
tive delivery of chemotherapy [73]. Evidence from preclinical studies showed that 
bevacizumab can ‘normalise’ the chaotic tumour vasculature, achieving reduced 
vessel tortuosity, reduced leakiness and reduced interstitial fluid pressure. Based on 
these studies, it was proposed that bevacizumab works in combination with chemo-
therapy to improve chemotherapy delivery [71, 73], which is now a widely accepted 
notion amongst many clinicians.

However, this concept is also highly controversial, with some work even refuting 
the normalisation hypothesis. For example, one group demonstrated that bevaci-
zumab persistently reduced both tumour perfusion and chemotherapy delivery 
when NSCLC patients were treated with bevacizumab-containing chemotherapy 
[74]. Therefore, other potential explanations for synergy between bevacizumab and 
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chemotherapy must be considered. Current alternative theories based mostly on 
preclinical data include: (1) direct synergy between the anti-angiogenic effects of 
bevacizumab and potential anti-angiogenic effects of chemotherapy [75], (2) tar-
geting of VEGF signalling directly in cancer cells by bevacizumab [21], (3) chemo-
therapy may inhibit resistance to bevacizumab, because chemotherapy suppresses 
the tumour recruitment of myeloid cells that have been implicated in resistance to 
bevacizumab [76], (4) bevacizumab may prevent tumour rebound that may occur 
during breaks in chemotherapy [76].

It should be noted that vessel normalisation facilitated by anti-angiogenic agents 
may provide therapeutic benefit through other mechanisms, which are independent 
of chemotherapy delivery. For example, in glioblastoma patients, vessel normalisa-
tion induced by single agent VEGF-targeted therapy may prolong survival due to 
other effects, such as oedema control or improved tumour oxygenation [77].

There are two other curious observations that have yet to be properly explained. 
Firstly, the synergistic effect of adding bevacizumab to chemotherapy does not occur in 
all tumour types. For example, the addition of bevacizumab does not lead to improve-
ments in outcome in advanced breast cancer [78]. Secondly, VEGFR TKIs show single 
agent activity without the need for co-administration of chemotherapy [21].

Recent insight into these two curious observations has been reported. A study 
examining both clinical and mouse tumour tissue specimens demonstrated that 
tumour types utilising a vasculature surrounded by a well-developed stroma (e.g. 
mCRC, NSCLC) respond better to bevacizumab when it is added to chemotherapy 
as opposed to tumour types that utilise a vasculature without a well-developed 
intervening stromal component (e.g. mRCC, PNET) which respond better to VEGF 
TKIs alone [79]. This suggests that tumour cell interactions with different stromal 
components may influence response to different anti-angiogenic agents and how 
they synergise with concomitant drugs. However, there is still much work to be 
done in order to understand the mechanisms involved.

8. Synergy of anti-angiogenic agents with immunomodulatory therapy

A series of pre-clinical studies have shown that the use of anti-angiogenic agents 
along with immune checkpoint inhibitors (ICI) as a combination therapy has a syn-
ergistic and enhanced effect on the tumour when compared to either ICI therapy 
or anti-angiogenic therapy alone. Immunotherapy has emerged as a promising 
treatment option for many cancer types, offering hope for patients with the demon-
stration of improved outcomes including durable responses in some. Unfortunately, 
there are still many patients that either have short lived responses to such therapies 
or none at all. To overcome resistance mechanisms, combinations of immunother-
apy with other treatments including VEGF inhibitors are being explored.

Since 2013, pre-clinical investigations in mice with various tumours have indi-
cated that the combination of ICI and anti-angiogenic agents results in prolonged 
overall survival [80]. It has been observed that the VEGF can cause the upregulation 
of immune checkpoint molecules such as PD-1 and as a result, the use of anti-VEGF 
agents has been seen to reduce the expression of PD-1 on cytotoxic T lymphocytes 
[81]. Thus, the combination of using both anti-VEGF agents as well as anti-PD-1 
agents could have a synergistic effect on inhibiting further tumour development 
[81]. Through the encouraging findings of pre-clinical investigations, many clinical 
studies have recently or are still in the process of investigating this.

There are a multitude of clinical studies supporting the role of bevacizumab 
in the positive immune modulation of the tumour microenvironment and its 
beneficial effects when combined with the immune checkpoint PD1/PDL1 and 
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CTLA4 inhibitors. In a study investigating melanoma patients treated with ipili-
mumab plus bevacizumab versus ipilimumab alone, the results showed that the 
combination therapy increased circulating CD4+ and CD8+ T cells compared with 
ipilimumab monotherapy [82]. The investigation showed that there was a greater 
median overall survival in patients undergoing combination therapy (25.1 months) 
compared to those who underwent the ipilimumab alone treatment (10.1 months) 
[82]. Furthermore, a separate study of patients with RCC investigating the effect 
that bevacizumab plus atezolizumab had versus bevacizumab alone found that 
the combination therapy demonstrated a reduction in neovasulature-related gene 
expression and decreased microvascular density. The treatment was also associated 
with an increased tumour infiltration of CD8+ T cells as demonstrated by immuno-
histochemical staining of cells [83]. This study also demonstrated that MHC Class I 
is upregulated as a result of the treatment and that both intratumoural CD8+ T cells 
and macrophages increased as well.

In a phase II study involving patients with RCC, as compared with sunitinib 
monotherapy, atezolizumab and bevacizumab demonstrated improvements in PFS 
in patients with an immunosuppressive tumour microenvironment [84]. Whilst it 
was also discovered that the use of atezolizumab failed to generate an anti-tumour 
immune response (possibly due to myeloid-induced immune suppression), the 
addition of bevacizumab to atezolizumab was found to be able to overcome this 
suppression [84].

Both pre-clinical and clinical studies have shown that anti-angiogenic agents and 
immunomodulatory therapies have a synergistic affect in reducing tumour growth 
and a multitude of clinical trials are currently investigating this synergy further. 
Thus, there is promise in the use of a combination therapy with anti-angiogenic 
agents and immunomodulatory agents to improve on patient prognosis.

9. Potential predictive biomarkers for anti-angiogenic agents

In view of the variable outcomes seen in the clinic, there is a need for the devel-
opment of validated predictive biomarkers of response for anti-angiogenic therapy. 
In this way, patients who will derive benefit from such agents could be appropriately 
selected, whilst those that will not derive benefit (either at the outset or during 
therapy) could be selected for alternative, more effective therapy. Such a strategy 
would not only improve clinical outcomes but would also reduce the unnecessary 
burden of (a) toxicity to the patient, and (b) cost to the economy. Despite extensive 
international research in this field, there is currently no biomarker which predicts 
benefit or resistance to anti-angiogenic agents that is approved for routine clinical 
practice. The following are amongst several which have been investigated in the 
clinical setting.

9.1 Circulating biomarkers

Circulating biomarkers are an attractive tool for patients and clinicians as 
‘liquid biopsies’ are relatively non-invasive and easy to perform, as compared with 
tissue biopsies of tumour with associated risks and potential technical difficulties 
depending on tumour site. VEGF levels have been studied as a potential biomarker 
with high levels associated with poorer outcomes [85]. Findings regarding its utility 
as a predictive biomarker have been more inconsistent [85]. An analysis of four 
randomised phase 3 trials investigated circulating VEGF level as a prognostic and 
predictive biomarker in mCRC, lung cancer and RCC which included bevacizumab 
in the treatment regimen. Tumour specimens were also tested for VEGF level. This 
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found that higher baseline circulating VEGF levels were associated with poorer 
clinical outcomes but levels did not predict response to bevacizumab [86]. There is 
early evidence from small and exploratory studies to suggest soluble VEGFR-1, with 
higher levels being associated with poorer outcomes with anti-angiogenic treat-
ments, however larger studies are required to confirm these findings [87].

Other potential circulating biomarkers have also been investigated. In mCRC, 
elevated IL-8 levels at baseline were associated with a shorter PFS in patients 
treated with chemotherapy (FOLFIRI) and bevacizumab [88]. Elevated LDH and 
neutrophil levels have been found to independently predict poorer survival in 
patients treated with chemotherapy plus bevacizumab [89]. A promising predictive 
biomarker for response to bevacizumab based therapy in CRC appears to be circu-
lating endothelial cells, with studies showing that patients with lower circulating 
endothelial cells at baseline undergoing treatment with bevacizumab based therapy 
had improved PFS [90].

9.2 Levels of tumour VEGF isoforms

Levels of VEGF expression in a tumour could be a determinant of responsive-
ness to anti-VEGF therapy. Some small studies have demonstrated a relationship 
between baseline VEGF expression and response, however these findings have not 
been consistently replicated in large clinical trials and are often more informa-
tive as prognostic rather than predictive biomarkers [91]. Data from more recent 
prospective studies, however, have shown more consistency in the use of VEGF as a 
biomarker. A large randomised trial in patients with advanced breast cancer treated 
with bevacizumab demonstrated a significant association between high circulating 
levels of VEGF and survival benefit [78]. VEGF expression in tumours was inves-
tigated in the large phase III clinical trial of bevacizumab plus chemotherapy in 
mCRC, but this failed to predict outcomes [92].

There are multiple reasons why using VEGF expression as a biomarker could be 
problematic: (1) advanced tumours express numerous pro-angiogenic factors in 
addition to VEGF which could confer resistance to bevacizumab irrespective of the 
amount of VEGF produced [93], (2) differences in the intensity of VEGF expression 
might be too small to be clinically relevant, (3) hypoxia, which is promoted by anti-
angiogenic therapy, is an important inducer of VEGF expression and might, there-
fore, lead to increased VEGF production in the presence of bevacizumab treatment; 
indeed, anti-angiogenic agents have been shown to induce expression of VEGF even 
in tumour naïve hosts [94], (4) variations in methodology across centres (including 
sample handling, the use of different scoring systems and non-validated antibod-
ies) have a significant effect on biomarker trial results [95], (5) it is very challenging 
to standardise cut-offs for low and high VEGF levels, due to: (a) different methods 
used to measure VEGF at different centres and (b) differences in biology that occur 
between racial groups, tumour types and different stages of disease [95].

9.3 Levels of alternative pro-angiogenic growth factors

Studies which have investigated other single circulating factors (such as FGF2, 
and r soluble VEGFR2) have also yielded contradictory and unsatisfactory conclu-
sions [96]. Interestingly, however, recent clinical work in mRCC patients treated 
with anti-angiogenic TKIs suggests that profiling multiple circulating factors in the 
blood could have a more powerful prognostic and predictive role than assessing lev-
els of single factors alone [97]. In this study, when patients with mRCC were treated 
with the TKI pazopanib, a biomarker signature of six factors (HGF, interleukin 6 and 
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interleukin 8, osteopontin, VEGF and TIMP1) was able to distinguish a sub-group of 
patients that derived a significantly greater overall survival benefit from this agent.

9.4 VEGF polymorphisms

Polymorphisms in VEGF or VEGF receptors have been proposed to predict out-
come from anti-angiogenic therapy. As these are generally binary in nature, they are 
attractive biomarkers since they may be easier to measure and apply prospectively. 
In metastatic breast cancer, polymorphisms in VEGF and VEGFR2 were analysed in 
several retrospective subset analyses in patients treated with chemotherapy, with or 
without bevacizumab. Two polymorphisms within the VEGF promoter/5′ untrans-
lated region, VEGF alleles −2578AA and −1154AA, were significantly associated 
with improved OS in the bevacizumab plus paclitaxel group when compared to the 
−2578CA/−2578CC and −1154GA/−1154GG alleles. In contrast, they did not have 
prognostic power for OS in the chemotherapy-only arm [98]. The predictive power 
of the −2578AA and −1154AA VEGF alleles was also reported in a retrospective 
subset analysis of patients with metastatic colorectal cancer that received either 
FOLFIRI (leucovorin, fluorouracil, and irinotecan) plus bevacizumab or XELIRI 
(capecitabine and irinotecan) plus bevacizumab [99].

More recently, the role of VEGFR1 polymorphisms was studied in a large 
meta-analysis pooling DNA data from two phase III trials in patients with advanced 
pancreatic cancer treated with bevacizumab. VEGFR1 −1213AC/−1213CC alleles 
were significantly associated with poor outcome in patients receiving bevacizumab 
when compared to VEGFR1 −1213AA alleles [100]. To understand how this VEGFR1 
polymorphism functionally affects VEGFR1 expression and how it might explain 
its correlation with poor outcome in patients receiving bevacizumab, Lambrechts 
and colleagues performed an in vitro study where the mutant codon of Tyr1213 was 
transiently overexpressed in HEK293T cells. Lysates from these cells demonstrated a 
significant increase in expression and signalling of VEGFR1 compared to HEK293T 
cells harbouring the wild type codon, thus providing a biological rationale for the 
role of this polymorphism as a negative predictive marker of response [100]. A sig-
nificant correlation of the VEGFR −1213 with poor outcome was also corroborated 
by a subsequent study in patients with mRCC treated with sunitinib [101].

9.5 Radiological parameters

Functional clinical imaging, taking into account tumour vasculature or 
metabolic activity by utilising CT, MRI or PET scanning, either prior to com-
mencing treatment or following brief exposure of patients to therapy, may be a 
useful tool for predicting response or resistance to anti-angiogenic therapy [102]. 
For conventional cytotoxic chemotherapy, imaging has been employed to assess 
therapy response based on change in tumour size, as defined by RECIST (Response 
Evaluation Criteria In Solid Tumours). However, biological agents, such as bevaci-
zumab and TKIs, may be cytostatic in terms of their mechanism of action, thus size 
may not be the only parameter that needs to be considered when assessing response 
and outcome. Examination of various parameters such as blood flow and tumour 
morphology may provide additional important predictive information.

9.5.1 Baseline vascular perfusion on imaging

Several studies have examined pre-treatment levels of tumour perfusion and 
whether they can predict outcome. For example, enhanced levels of vessel perfusion 
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found that higher baseline circulating VEGF levels were associated with poorer 
clinical outcomes but levels did not predict response to bevacizumab [86]. There is 
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ments, however larger studies are required to confirm these findings [87].
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For conventional cytotoxic chemotherapy, imaging has been employed to assess 
therapy response based on change in tumour size, as defined by RECIST (Response 
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whether they can predict outcome. For example, enhanced levels of vessel perfusion 
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at baseline (measured by contrast-assisted tumour enhancement) in mRCC patients 
treated with VEGF TKIs has been shown to predict for response and survival [103].

9.5.2 Changes in vascular characteristics on imaging

Early alterations in features of the tumour vasculature on imaging after a short 
period of therapy have also been shown to be associated with response and out-
come. For example, in studies of mRCC patients treated with anti-angiogenic TKIs, 
response criteria that measured both a significant reduction in tumour vascular per-
fusion and a significant reduction in tumour size were more predictive of outcome 
compared to change in lesion size alone [104].

Although the use of the above radiological criteria may seem promising as 
predictors of response and outcome, there are associated challenges that need 
to be considered before incorporating them into clinical practice. These include, 
(a) diversity in the methodologies used to assess potential surrogate radiological 
biomarkers of response between studies and across centres, and (b) insufficient 
comprehension of how certain radiological features correlate with the underlying 
tumour biology.

10. Measuring the clinical response to anti-angiogenic agents

Currently, the efficacy of any anti-neoplastic therapy is assessed by several 
outcome measures, which include (a) effective downsizing of tumours on clinical 
imaging (to facilitate curative surgery or consolidative radiotherapy for localised 
disease and to reduce the symptomatic burden of disease in the metastatic setting), 
(b) prolongation of the interval where a patient is either disease-free or progres-
sion-free, and (c) prolongation of survival.

Conventional assessment of residual tumour volume after cytotoxic chemo-
therapy has traditionally been performed with the use of size-based criteria (overall 
response rate, ORR, by RECIST). This was based on evidence that there is good cor-
relation between radiological information and residual viable tumour (pathological 
response) and good correlation with progression-free (PFS) and overall survival 
(OS) in patients treated with cytotoxic chemotherapy [105]. However, with the 
advent of biological therapies, such as bevacizumab, the value of utilising RECIST 
on its own as a surrogate for outcome has been questioned and new imaging criteria 
have been proposed [102].

10.1 RECIST criteria

For anti-angiogenic therapy employed in advanced malignant disease, retro-
spective clinical meta-analyses have (a) highlighted the pitfalls and limitations 
of using RECIST alone in the assessment of response and progression, and (b) 
highlighted a disassociation of RECIST from time-related endpoints of PFS and 
OS [105].

This curiosity was provoked by several large randomised clinical trials investigating 
the effect of adding bevacizumab to conventional chemotherapy in different tumour 
types. These have consistently demonstrated that significant improvements in PFS and 
OS were incongruent with modest increases in ORRs [25, 28, 40]. In their CRC meta-
analysis, Grothey and colleagues specifically examined the impact of tumour response 
to bevacizumab (ORR) on treatment benefit (PFS, OS) and concluded that patients 
who did not attain a positive response according to RECIST (i.e. stable disease) in fact 
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showed significant benefit from bevacizumab, which was of the same magnitude as 
responding patients (i.e. complete or partial response) [105].

Moreover, similar concepts have consistently featured in several Phase I and II 
clinical trials employing antiangiogenic agents, and other molecular targeted thera-
pies. These studies corroborate that there is little value in utilising ORR alone, par-
ticularly in predicting whether an agent will ultimately have truly meaningful effects 
on pathological response or in prolonging survival [106]. The underlying reason for 
these incongruent observations with bevacizumab and other molecular targeted 
therapies may be because such agents are cytostatic rather than cytotoxic [107].

10.2 Morphological response criteria

There has been growing interest in how the appearance of lesions on clinical 
imaging can be utilised to accurately assess the effect of bevacizumab on tumour 
volume and how this appearance may correlate with other clinical end-points. 
In a small retrospective colorectal liver only metastasis (CRLM) patient cohort 
treated with bevacizumab and chemotherapy, Chun and colleagues demonstrated 
that novel morphological response criteria predicted more accurately for OS 
and pathological response than RECIST (Figure 2) [108]. This was subsequently 
validated in a larger patient population which included patients who were treated 
with and without bevacizumab [109]. Not only were the morphological response 
criteria superior to RECIST in predicting major pathological response and OS, 
further analyses confirmed that the morphological response criteria did not 
correlate with responses measured according to RECIST. Moreover, there was a 
significantly higher incidence of optimal responses (measured by morphological 
response criteria) in the patient cohort receiving bevacizumab with chemo-
therapy compared to the chemotherapy alone cohort [109]. These data suggest 
that (a) morphological response criteria and RECIST measure different biological 
parameters, and (b) the use of morphological response criteria represents a more 
sensitive tool for measuring tumour response and time-related endpoints of 
survival for bevacizumab. Similar findings were reported in a retrospective study 
of non-small cell lung cancer patients treated with bevacizumab and concomitant 
chemotherapy [110].

10.3 Pathological response criteria

Radiological assessment alone may not accurately reflect response to therapy 
because simple, unidimensional imaging parameters may overestimate or under-
estimate downstaging of tumour burden [111]. Furthermore, in the case of adding 
anti-angiogenic therapy to chemotherapy, although it has been suggested that 
proposed morphological imaging characteristics can accurately predict tumour 
response and clinical outcome, such scoring methods have not yet been validated 
for conventional use in clinical practice and may also be too subjective. Scoring of 
pathological response may therefore be a better alternative or perhaps an adjunct 
in assessing residual viable tumour. Moreover, in the case of preoperative chemo-
therapy or radiotherapy in settings such as rectal cancer and oesophageal cancer, 
pathological response has also been shown to correlate significantly to disease-free 
survival (DFS) and OS [112].

Several methodologies incorporating various parameters for scoring pathologi-
cal response in resected CRLMs, treated with and without bevacizumab, have been 
proposed. It is still not clear from the current literature which of these classification 
methods may be superior.
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spective clinical meta-analyses have (a) highlighted the pitfalls and limitations 
of using RECIST alone in the assessment of response and progression, and (b) 
highlighted a disassociation of RECIST from time-related endpoints of PFS and 
OS [105].

This curiosity was provoked by several large randomised clinical trials investigating 
the effect of adding bevacizumab to conventional chemotherapy in different tumour 
types. These have consistently demonstrated that significant improvements in PFS and 
OS were incongruent with modest increases in ORRs [25, 28, 40]. In their CRC meta-
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showed significant benefit from bevacizumab, which was of the same magnitude as 
responding patients (i.e. complete or partial response) [105].

Moreover, similar concepts have consistently featured in several Phase I and II 
clinical trials employing antiangiogenic agents, and other molecular targeted thera-
pies. These studies corroborate that there is little value in utilising ORR alone, par-
ticularly in predicting whether an agent will ultimately have truly meaningful effects 
on pathological response or in prolonging survival [106]. The underlying reason for 
these incongruent observations with bevacizumab and other molecular targeted 
therapies may be because such agents are cytostatic rather than cytotoxic [107].

10.2 Morphological response criteria

There has been growing interest in how the appearance of lesions on clinical 
imaging can be utilised to accurately assess the effect of bevacizumab on tumour 
volume and how this appearance may correlate with other clinical end-points. 
In a small retrospective colorectal liver only metastasis (CRLM) patient cohort 
treated with bevacizumab and chemotherapy, Chun and colleagues demonstrated 
that novel morphological response criteria predicted more accurately for OS 
and pathological response than RECIST (Figure 2) [108]. This was subsequently 
validated in a larger patient population which included patients who were treated 
with and without bevacizumab [109]. Not only were the morphological response 
criteria superior to RECIST in predicting major pathological response and OS, 
further analyses confirmed that the morphological response criteria did not 
correlate with responses measured according to RECIST. Moreover, there was a 
significantly higher incidence of optimal responses (measured by morphological 
response criteria) in the patient cohort receiving bevacizumab with chemo-
therapy compared to the chemotherapy alone cohort [109]. These data suggest 
that (a) morphological response criteria and RECIST measure different biological 
parameters, and (b) the use of morphological response criteria represents a more 
sensitive tool for measuring tumour response and time-related endpoints of 
survival for bevacizumab. Similar findings were reported in a retrospective study 
of non-small cell lung cancer patients treated with bevacizumab and concomitant 
chemotherapy [110].

10.3 Pathological response criteria

Radiological assessment alone may not accurately reflect response to therapy 
because simple, unidimensional imaging parameters may overestimate or under-
estimate downstaging of tumour burden [111]. Furthermore, in the case of adding 
anti-angiogenic therapy to chemotherapy, although it has been suggested that 
proposed morphological imaging characteristics can accurately predict tumour 
response and clinical outcome, such scoring methods have not yet been validated 
for conventional use in clinical practice and may also be too subjective. Scoring of 
pathological response may therefore be a better alternative or perhaps an adjunct 
in assessing residual viable tumour. Moreover, in the case of preoperative chemo-
therapy or radiotherapy in settings such as rectal cancer and oesophageal cancer, 
pathological response has also been shown to correlate significantly to disease-free 
survival (DFS) and OS [112].

Several methodologies incorporating various parameters for scoring pathologi-
cal response in resected CRLMs, treated with and without bevacizumab, have been 
proposed. It is still not clear from the current literature which of these classification 
methods may be superior.
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10.3.1 Percentage viable tumour

Microscopic assessment of the percentage residual viable tumour on haematoxy-
lin & eosin-stained sections of resected tissue has been employed as a predominant 
parameter in assessing the efficacy of different pre-operative chemotherapy 
regimens in tumour types such as oesophageal, gastric and rectal adenocarcinomas 
[113]. Based on this methodology, Ribero and colleagues modified this scoring sys-
tem for application in CRLMs treated preoperatively, with or without bevacizumab 
[114]. A semi-quantitative estimation of the percentage area of residual viable 
tumour cells relative to total tumour surface area within each CRLM metastasis 
was made with the analysis of four tumour cell viability subsets (<25%, 25–49%, 

Figure 2. 
Morphological response criteria on contrast-enhanced CT (CECT) scans as a predictor of outcome (i) 
and (ii) CECT performed in a 43-year old patient before and after 10 cycles of bevacizumab containing 
chemotherapy demonstrating an optimal response (OR). (i) Before therapy, the liver metastasis presented 
with profound heterogeneous attenuation, a hyperattenuated peripheral rim and a thick, poorly defined 
tumour-liver interface (‘group 3’ metastasis). (ii) After therapy, the same liver metastasis shows complete 
resolution of these features (i.e. it is homogeneous, of low attenuation, with a thin, sharply defined tumor-liver 
interface). Change in size of lesion is minimal. (iii) and (iv) CECT of the liver performed in a 67-year old 
patient before and after 2 cycles of bevacizumab-containing chemotherapy demonstrating a partial response 
(PR). (iii) Before therapy, the liver metastas is presented with features of a ‘group 3’ metastasis. (iv) After 
therapy, the same liver metastasis shows moderate resolution of these features (i.e. it has a moderate degree 
of heterogeneous attenuation, a moderately defined tumor-liver interface with a slight hyperattenuating 
peripheralrim (‘group 2’ metastasis)). (v) and (vi) CECT of the liver performed in a 56-year old patient before 
and after 2 cycles of bevacizumab-containing chemotherapy demonstrating an absent response (AR). (v) Before 
therapy, the liver metastasis presented with features of a ‘group 3’ metastasis. (vi) After therapy, the same liver 
metastas is shows a decrease in tumour size without change in attenuation or tumour-liver interface (‘group 3’ 
metastasis). Changes in tumour morphology on CECT have been shown to correlate more significantly 
with survival than the use of RECIST citeria in CRLM patients treated with bevacizumab-containing 
chemotherapy.
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50–75%, >75%). This retrospective study confirmed that the addition of bevaci-
zumab to chemotherapy yielded an incrementally greater decrease in residual viable 
cells within these CRLMs in comparison to those treated with chemotherapy alone 
but no correlation with imaging, or other clinical end-points, was made [114].

10.3.2 Tumour regression grade (TRG)

Mandard and colleagues were one of the first to establish a five-point histologi-
cal scoring system for pathological response. This was based on cytological and 
stromal changes on haematoxylin & eosin-stained sections of primary oesophageal 
squamous cell carcinomas treated with chemoradiotherapy prior to resection [115]. 

Figure 3. 
Tumour regression grade (TRG) scoring system as a component of measuring pathological response in treated 
CRLMs. (A–E) TRG as scored on haematoxylin and eosin sections of CRLMs based on the proportion 
of fibrosis to viable tumour cells. The five TRGs shown in this cartoon roughly illustrate the different 
proportions of fibrosis (fibrils) to tumour cells (black areas). (A) TRG1. There is an absence of viable 
tumour cells and large amounts of fibrosis. (B) TRG2. The presence of viable tumour cells is rare and they are 
scattered throughout the fibrosis. (C) TRG3. There is the presence of more residual tumour cells but fibrosis 
predominates. (D) TRG4. Residual cancer cells predominate over fibrosis. (E) TRG5. There are no signs of 
tumour regression. The percentage of the CRLM surface area occupied by necrosis is also incorporated as a 
parameter for pathological response (grey areas). 3 main pathological response groups: TRG1-2: major response 
(MjHR), TRG3: partial response (PHR), TRG4-5: no histological response (NHR).
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zumab to chemotherapy yielded an incrementally greater decrease in residual viable 
cells within these CRLMs in comparison to those treated with chemotherapy alone 
but no correlation with imaging, or other clinical end-points, was made [114].

10.3.2 Tumour regression grade (TRG)

Mandard and colleagues were one of the first to establish a five-point histologi-
cal scoring system for pathological response. This was based on cytological and 
stromal changes on haematoxylin & eosin-stained sections of primary oesophageal 
squamous cell carcinomas treated with chemoradiotherapy prior to resection [115]. 
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of fibrosis to viable tumour cells. The five TRGs shown in this cartoon roughly illustrate the different 
proportions of fibrosis (fibrils) to tumour cells (black areas). (A) TRG1. There is an absence of viable 
tumour cells and large amounts of fibrosis. (B) TRG2. The presence of viable tumour cells is rare and they are 
scattered throughout the fibrosis. (C) TRG3. There is the presence of more residual tumour cells but fibrosis 
predominates. (D) TRG4. Residual cancer cells predominate over fibrosis. (E) TRG5. There are no signs of 
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Tumour response was scored according to five tumour regression grades (TRG1-5) 
based on the proportion of fibrosis to viable tumour cells. Later, this TRG scoring 
system was modified for its application in CRLMs receiving different chemotherapy 
backbones prior to liver resection (Figure 3A–E) [116]. Correlation analyses have 
demonstrated a significant association of major histological responders with 
increased survival.

Similar retrospective studies using the TRG in CRLMs were undertaken to see 
whether adding bevacizumab to chemotherapy would further increase pathological 
response rate, without necessarily increasing radiographic response rate, after liver 
resection. Indeed, several retrospective analyses demonstrated that a significantly 
increased percentage of patients treated with bevacizumab achieved a major 
pathological response and a significantly higher percentage area of tumour necrosis 
compared to chemotherapy-only treated patients [117]. Furthermore, the extent 
of pathological response correlated significantly with long-term-outcomes such as 
3- and 5-year overall survival.

11. Mechanisms of resistance to anti-VEGF therapy

As is the case with most cancer therapeutics, drug resistance is considered to 
be a major factor that limits the efficacy of anti-angiogenic agents. Two ‘modes’ 
of resistance to anti-angiogenic therapy are currently recognised: intrinsic resis-
tance, whereby the tumour fails to respond to the therapy from the outset, and 
acquired resistance, whereby the tumour develops means to evade the therapy 
after a period of response [21, 29, 118]. It is important to realise that resistance 
to anti-angiogenic therapy may be attributable to either the tumour cells them-
selves or due to interactions with their microenvironment. In terms of specific 
mechanisms mediating resistance to anti-angiogenic therapy, several have been 
proposed.

11.1 Vessel heterogeneity

Pre-clinical work has demonstrated that although anti-angiogenic agents thwart 
the growth of newly established tumour vessels, they are less effective against 
more mature blood vessels, indicating that they may be less dependent on VEGF 
(Figure 4A) [29]. This may be due to PDGF secretion mediating pericyte recruit-
ment, allowing young vessels to mature and survive [119]. Co-inhibition of VEGF 
and PDGF has been shown to generate significant anti-angiogenic and anti-tumour 
effects than with VEGF inhibition alone [120].

11.2 Alternative pro-angiogenic signalling pathways

Alternative pro-angiogenic signalling pathways may allow tumour vascularisa-
tion to proceed when VEGF signalling is blocked (Figure 4B) [29]. A large body 
of preclinical work has identified candidate pathways that may provide such an 
alternative pro-angiogenic stimulus. These include fibroblast growth factors 1 and 
2 (FGF1 and FGF2) [121], hepatocyte growth factor (HGF) [122] and epidermal 
growth factor (EGF) [123]. Most of the above preclinical work suggests that, by 
inhibiting both VEGF signalling and the candidate pathway, improvements in the 
anti-tumour efficacy can be seen. Therefore, targeting multiple pro-angiogenic 
pathways may prove more beneficial than employing agents that inhibit VEGF 
signalling alone.
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Figure 4. 
Proposed mechanisms of resistance to anti-angiogenic therapy. (A–F) The potential mechanisms that tumours 
can utilise to evade anti-angiogenic therapy. (A) Vessel heterogeneity. Tumours can contain vessels that are at 
different stages of maturation making some more sensitive to therapy than others. For example, here the top 
vessel is immature and is abolished by therapy (grey), whilst the bottom one is mature and remains viable 
(red). (B) Alternative proangiogenic signalling pathway scan affect the susceptibility of vessels to therapy. 
Here, tumour cells (blue) have up-regulated an alternative pro-angiogenic growth factor to facilitate persistent 
blood vessel growth and survival despite VEGF blockade. (C) Stromal cells infiltrating into of the tumour, such 
as myeloid progenitors (black) or fibroblasts (green), can also mediate resistance by releasing pro-angiogenic 
growth factors or by physically incorporating into vessels. (D) Tumour cell adaptation to stress. Subpopulations 
of cancer cells in the tumour (blue) can survive the hypoxic conditions and nutrient shortage resulting from 
vascular destruction by employing different adaptation mechanisms. (E) Alternative tumour vascularisation 
mechanisms. Apart from sprouting angiogenesis, tumours may utilise alternative mechanisms to recruit a 
vascular supply. In intussusceptive microvascular growth, new vessels are generated by the fission of pre-
existing vessels. Glomeruloid angiogenesis is where tight nests of vessels, resembling the renal glomerulus, are 
formed. Vasculogenic mimicry is a process whereby tumour cells can create vascular-like structures themselves 
(blue) which are perfused as they become continuous with the host vasculature (red). In looping angiogenesis, 
contractile myofibroblasts (green) pull host vessels (red) out of the surrounding parenchymal tissue (pink 
region). Vessel co-option is a process whereby invading tumour cells engulf pre-existing vessels (red) in the 
normal parenchyma (pink region). (F) Selection of aggressive cells. Therapy alters the biology of the tumour 
cells in that they become more invasive and/or facilitate accelerated growth of metastases.
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11.3 Role of stromal cells

Preclinical data suggest that cells in the tumour stroma, including fibroblasts, 
neutrophils, macrophages and myeloid progenitors, mediate resistance to VEGF-
targeted agents (Figure 4C) [124]. For example, tumour-derived granulocyte-
colony stimulating factor (G-CSF) mobilises myeloid cells from bone marrow, and 
is believed to promote pro-angiogenic Bv8 signalling by myeloid cells, which in 
tumours may confer resistance to anti-VEGF treatment [125]. Immunohistochemistry 
studies in human tumours showed expression of Bv8 in tumour-infiltrating neutro-
phils, which were seen in around 15% of breast carcinomas [126].

11.4 Tumour cell adaptation to stress

It is presumed that the inhibition of tumour vascularisation by anti-angiogenic 
agents will lead to a reduction in oxygen and nutrients available to the tumour thus 
causing retardation of tumour growth. However, tumours may develop a number of 
survival mechanisms enabling them to adapt to such hostile conditions (Figure 4D).

11.4.1 Metabolism

Some studies have suggested that anti-angiogenic therapy leads to metabolic 
reprogramming of tumour cells, allowing them to adapt to reduced vascular supply. 
Preclinical studies have demonstrated that treatment with anti-VEGF antibodies can 
lead to tumour cells relying on anaerobic metabolism and the glycolytic pathway for 
ATP [127]. Furthermore, the withdrawal of anti-angiogenic therapy has been shown 
to cause an increase in lipid metabolism, leading to a rebound in tumour growth [127].

11.4.2 Autophagy

Tumours treated with anti-angiogenic agents may also adapt to survive by 
activation of autophagy. Autophagy can occur in response to treatment related 
stressors such as hypoxia and occurs when organelles and proteins in the cell are 
degraded and recycled by lysosomes [128]. Autophagy-mediating molecules such 
as BNIP3 have been identified in GBM tumour cells after exposure (a) to hypoxic 
conditions in vitro, (b) to bevacizumab therapy in vivo or (c) to bevacizumab 
therapy in human tumours [129]. Furthermore, a recent study has reported that 
when MDA-MB-231 breast cancer cells were treated with an agent that induced 
autophagy, they exhibited increased invasiveness [130].

11.4.3 Cancer stem cells (CSCs)

It is becoming clear that many solid tumours contain relatively rare subpopula-
tions of cancer stem cells. These are clones of tumour cells that are able to sustain 
self-renewal and can tolerate hostile environments [131]. Furthermore, it has been 
proposed that hypoxia induced by anti-angiogenic therapy can (a) select for CSCs, 
and (b) maintain the niche that supports the survival of CSCs [132]. Conceivably, 
these persistent clones of CSCs may render the tumour more invasive and meta-
static and may also lead to antiangiogenic therapy resistance [133].

11.4.4 Enhanced tumour aggressiveness

Anti-angiogenic therapy has been proposed to induce hypoxic tumour microen-
vironments, enhancing the aggressiveness of tumour cells (Figure 4F) [134]. This 
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may help explain why the response to anti-angiogenic therapy is often transient 
as anti-angiogenic agents can cause initial reductions in tumour burden and a 
prolonged PFS, but with minimal or no improvement in OS [118]. Anti-angiogenic 
agents have demonstrated an ability to select for more aggressive cancer cells and 
enhance tumour cell invasion, growth and metastasis [135]. Moreover, it is now well 
accepted that some GBM patients with tumours treated with bevacizumab show an 
increase in tumour invasiveness [136].

11.5 Alternative vascularisation mechanisms

Despite the dogma that tumours primarily employ VEGF-dependent sprouting 
angiogenesis, emerging evidence now exists for alternative tumour vascularisation 
mechanisms, including: intussusceptive microvascular growth (IMG) (sometimes 
known merely as ‘intussusception’), glomeruloid angiogenesis, vascular mimicry 
(also sometimes called ‘vasculogenic mimicry’), looping angiogenesis, and vessel 
co-option (also sometimes called ‘vascular co-option’) (Figure 4E) [21]. These 
mechanisms may occur by alternative signalling pathways that may not be inhibited 
by VEGF-targeted therapies.

11.5.1 Intussusception

Intussusception is a mechanism whereby pre-existing vessels split into two 
daughter vessels without the need for endothelial cell proliferation and sprouting 
(Figure 4E). It has been observed in embryonic development and within experi-
mental tumours recovering from anti-angiogenic therapy and radiotherapy [137]. 
The molecular mechanisms that control this process are still not well understood.

11.5.2 Vascular mimicry

Vascular mimicry (VM) is a process observed in clinical and preclinical studies 
whereby tumour cells differentiate into vascular-like structures themselves [138] 
(Figure 4E). It has been shown that basic fibroblast growth factor (bFGF) and 
VEGF, are incapable of inducing VM channels and networks in poorly aggressive 
melanoma cell lines, suggesting that VM channel formation maybe be independent 
of these classical pro-angiogenic growth factors [139]. However, further mechanis-
tic detail is lacking.

11.5.3 Vessel co-option

Vessel co-option is the process whereby, when a tumour invades, exist-
ing local vessels become directly incorporated into the tumour (Figure 4E). 
Histopathological studies have indicated that colorectal and breast cancer liver 
metastases may utilise vessel co-option [140, 141].

Vessel co-option has been shown to mediate resistance to VEGF inhibitors in 
mouse models of melanoma metastasis to the brain and in mouse models of glio-
blastoma multiforme, and has been observed in glioblastoma patients who have 
progressed on anti-VEGF therapy [142–144]. Recently, it has been demonstrated 
that vessel co-option plays a role in mediating resistance to anti-angiogenic therapy 
in colorectal cancer liver metastases [145].

In tumour samples obtained from primary lung cancer patients, gene expression 
arrays have been utilised to identify pathways differentially expressed between 
angiogenic tumours and vessel co-opting tumours [146]. Stromal expression of 
thrombospondin-1 appeared to be up regulated in angiogenic tumours, whilst in 
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vessel co-option tumours, there was increased expression of genes involved in 
oxidative phosphorylation in primary [146]. Surprisingly, no differences in classic 
hypoxia or angiogenesis related genes were found between angiogenic and non-
angiogenic tumours.

In a glioma rat model of breast cancer brain and lung metastasis, co-opted blood 
vessels were seen in early-stage tumours and these vessels were found to overexpress 
angiopoietin-2, a natural antagonist of angiopoietin-1 [147]. As these tumours grew 
to become more hypoxic, VEGF was upregulated at the hypoxic tumour periphery 
and stimulated angiogenesis [147]. These observations suggest that a transition 
from vessel co-option to angiogenesis, or vice versa, may be dependent on the 
relative expression of pro-angiogenic growth factors (angiopoeitin-1, VEGF) and 
anti-angiogenic factors (angiopoeitin-2).

Cell adhesion molecules have been implicated in facilitating the process of vessel 
co-option. In a preclinical brain metastasis model, Carbonell et al. demonstrated 
that the β1 integrin subunit in breast cancer and lymphoma cells facilitates (a) 
tumour cell adhesion to the vascular basement membrane of existing brain vessels, 
(b) tumour cell invasion and (c) the process of vessel co-option [148]. When the 
function of the β1 integrin subunit was blocked, adhesion to vessels was attenuated 
and brain metastasis colonies failed to become established and grow [148].

Furthermore, the L1 cell adhesion molecule (L1CAM) has been shown to be 
involved in vessel co-option in the brain [149]. The ability of cancer cells to co-
opt blood vessels was suppressed when L1CAM expression was depleted using 
shRNA. Conversely, when L1CAM was overexpressed, tumour cells demonstrated 
enhanced adherence to the outer surface of vessels and tumour growth alongside 
them. Although such mechanisms are likely to be more specific for vessel co-option 
in the brain, similar mechanisms may be at work during vessel co-option at other 
anatomical sites.

12. Conclusion

Tumour vascularisation is modulated by the complex interplay of several 
endogenous factors and processes that can be up-regulated or downregulated, 
depending on the tumour microenvironment and the treatment pressures that are 
imposed on it. A multitude of studies have shown that the majority of solid tumours 
exhibit an overexpression of VEGF, one of the key drivers of sprouting angiogen-
esis. As a result, various anti-angiogenic therapies targeting VEGF or VEGFR have 
now been developed and are used conventionally in the clinic. Compellingly, recent 
pre-clinical and clinical studies using anti-angiogenic agents in combination with 
immunotherapies (e.g. ICI’s), have demonstrated a synergistic effect in reducing 
tumour growth. This highlights that there is promise, not only in incorporating 
anti-angiogenic therapy in the management of most cancers, but also in combining 
such agents with immunomodulatory agents.

However, as is the case with many cancer treatments, drug resistance can limit the 
efficacy of these agents. Trials of VEGF-targeted therapies in advanced malignancies 
have not consistently demonstrated beneficial outcomes in terms of tumour response 
and survival. Importantly, only a proportion of patients benefit from anti-angiogenic 
therapy, control of tumour growth is generally transient, there remains significant 
risk for therapeutic toxicity and we are still challenged by the burden of health costs.

Limited clinical outcomes with anti-angiogenic therapies are felt to be driven by 
either intrinsic or acquired resistance mechanisms, and several of these have now 
been proposed. In this chapter, we have reviewed the most commonly used anti-
angiogenic agents in the clinic and have highlighted the spectrum of mechanisms 
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that may be involved in therapeutic resistance. However, despite the plethora of 
pre-clinical and clinical studies that have been undertaken, these mechanisms are 
yet to be entirely elucidated. Importantly, the clinically relevant mechanisms that 
mediate such resistance to anti-angiogenic therapy are poorly understood and 
we still do not have means to select patients who will benefit from these agents. 
Furthermore, there has been a rapid expansion in the development of multiple next 
generation anti-vascular agents, but there is still little clarity regarding important 
biological pathways that may affect their efficacy.

The data supporting the role of candidate biomarkers for response and resis-
tance to anti-angiogenic therapies thus far have been generated from basic research, 
retrospective studies and limited prospective correlative studies. As such there 
remains a crucial need for substantial research of clinically relevant predictive 
biomarkers with the use of large, prospective randomised trials. This could also 
provide a platform for longitudinal and frequent biospecimen collection in order to 
further interrogate the mechanisms involved in tumour vascularisation and thera-
peutic resistance over time.

© 2019 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
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Abstract

The gastrointestinal (GI) tumour microenvironment is characterised by its 
unique colonisation with bacteria that are estimated to match the total number 
of cells in our body. It is becoming increasingly clear that the microbiome and its 
metabolites are important orchestrators of local and systemic immune responses, 
anticancer immunity and the host response to cancer therapy. Apart from their 
role as an energy source, metabolites have been shown to modulate inflammation, 
immune cell function and cancer cell survival. The polarisation of immune cell 
subsets by microbial metabolites towards either pro- or antitumorigenic functions 
strongly affects cancer progression and outcomes. In this chapter, we will discuss 
the link between microbial metabolites in the GI tumour microenvironment, 
anticancer immune responses and cancer progression.

Keywords: gastrointestinal tumour environment, host immune response, innate 
immunity, microbial metabolites, metabolism

1. Introduction

The GI tract is a complex ecosystem, populated by a large variety of bacteria, 
fungi and viruses that together form the intestinal microbiome. A surprising 
amount of local and systemic bodily functions are affected by the composition 
of the microbiome and its produced metabolites. This includes the generation of 
energy, metabolism of dietary components and synthesis of vitamins as well as 
regulation of immune responses, behaviour and mood. Perturbations of microbial 
populations, commonly referred to as dysbiosis, have been associated with a large 
number of diseases, such as inflammatory bowel disease [1], diabetes [2], obesity 
[3], autism [4], depression [5] and colorectal cancer [6, 7]. Understanding the 
reciprocal relationship between the microbiota and immunity has received great 
attention as it is becoming increasingly clear that inflammatory processes underlie 
many pathologies. The complexity of microbiome-immune interactions is stagger-
ing as not only the presence or absence of bacterial species shape immunity, but 
metabolites produced and modified by bacteria have a direct effect on the immune 
system’s ability to react to infectious and non-communicable diseases [8].
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Microbial metabolites, as the sum of products modified and synthesised by 
microbiota, can be a useful tool to understand microbiota-driven immune modula-
tion when analysis of bacterial lineages proves difficult. Diversity and abundance of 
microbial communities varies greatly amongst healthy individuals, whereas meta-
bolic pathways are conserved and stable [9, 10]. Therefore, assessing changes of 
metabolic pathways and how they affect immunity may provide crucial insights into 
the role of the GI microenvironment in health and disease. Microbial metabolites 
are commonly divided into three categories, (1) metabolites produced by bacteria, 
derived from host products; (2) metabolites modified by bacteria, derived from 
host products; and (3) metabolites synthesised by bacteria directly.

In the following sections, we will briefly describe GI cancers and components of 
the GI tract that shape the tumour microenvironment. Furthermore, we will discuss 
the evidence for connecting changes in the microbiome and its metabolites with 
carcinogenesis and the role of bacterial metabolites in shaping immunity and in 
particular anticancer immunity.

2. The GI cancer microenvironment

2.1 The gastrointestinal tract

The gastrointestinal tract starts at the mouth, extends to the anus and includes 
the oesophagus, stomach, small intestine, large intestine, liver and pancreas. Its 
main functions are primarily the disruption and digestion of food, absorption of 
nutrients and elimination of waste products. With the diverse functions of the GI 
tract, it is not unsurprising that it has a number of diverse environments which 
are contributed to by various types of immune cells and the multiple bacteria that 
reside in the GI tract.

Movement of food down the GI tract is facilitated by muscular contractions. 
Much of the tube that makes up the GI tract is muscle lined to enable this to occur, 
with sphincters at particular junctures to enable control of food passage. The muscle 
layers are coated by a mucous membrane which varies depending on the function of 
that section of the GI tract.

The epithelium that lines the GI tract can be broadly divided into three sub-
types, primarily based on their function. Squamous epithelium is found at the start 
(mouth and oesophagus) and end (anus) of the GI tract providing a protective cov-
ering. Secretory epithelium is found in the stomach. Absorptive epithelium is found 
in both the small and large intestines. The small intestine has numerous fingerlike 
projections, called villi, that increase the surface area to facilitate absorption of 
nutrients with interspersed crypts, or glands, which contain the stem cells that give 
rise to the epithelial cells. The absorptive epithelium of the large intestine is more 
closely packed with glands specialised for water absorption and mucus-secreting 
cells to lubricate the passage of faecal material down the GI tract.

The tube that forms the GI tract has a number of layers that lie between the 
outer muscular wall (the muscularis propria) and the innermost epithelium. The 
epithelium forms the innermost layer of the mucosa, which has two additional 
components, the lamina propria (composed of supportive connective tissue) and a 
thin layer of smooth muscle, the muscularis mucosae. Underneath the mucosa is the 
submucosa, which contains connective tissue, nerves and lymphatic and blood ves-
sels. The submucosa is surrounded by the outer muscularis propria, the muscle layer 
whose contractions facilitate passage of material down the GI tract. The supporting 
tissue surrounding the GI tract is called the adventitia or serosa and contains major 
nerves and blood vessels.
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The GI tract includes two large glands, the liver and pancreas. Both develop from 
the primitive foregut embryonically and have functions that contribute to digestion 
by generating digestive fluids. The liver produces bile, which can be stored and con-
centrated in the gallbladder. When lipids enter the duodenum, neuroendocrine cells 
of the duodenal mucosa are stimulated to release cholecystokinin-pancreozymin 
(CCK) causing contraction of the gallbladder releasing bile into the duodenum. 
Bile acids are emulsifying agents which aid in lipid digestion. Pancreatic secretions 
reach the duodenum via the pancreatic duct and contain a high content of alkaline 
bicarbonate ions which assist in neutralising the acidic fluid that has come from 
the stomach. The pancreas also produces a number of enzymes including trypsin, 
chymotrypsin, amylase, lipase and carboxypeptidases which are involved in the 
breakdown of proteins, carbohydrates and lipids.

2.2 Microbiota in the GI tract

Our lifestyle, including diet, exercise, childhood microbial exposure and the 
use of antibiotics strongly, influences the composition of our microbiota [9, 11–14]. 
Two phyla of bacteria dominate the human gut Bacteroidetes and Firmicutes. Over 
decades the ability to classify bacteria into their genus and species has evolved with 
technology resulting in numerous reclassifications. Bacteria can be additionally 
classified into subspecies on the basis of small but relevant differences within a 
species. Further classifications into strains or serovars, indicating variable immune 
antigens present on their surface, can be allocated outside nomenclature rules. This 
level of complexity demonstrates the purpose of studying microbial metabolites in 
the context of gut immunity, thereby avoiding the complexities of bacterial species, 
focusing instead on their metabolic output.

Epidemiological data initially made links between bacteria and cancer develop-
ment. However, identifying the role of bacteria in cancer development has been 
challenging due to the importance of host factors in cancer susceptibility combined 
with the ubiquitous nature of bacteria and the prolonged period between introduc-
tion of a bacterium and development of overt cancer [15]. This is further compli-
cated by environmental factors which are thought to play a much larger role than 
genetic makeup in determining the makeup of an individual’s microbiota [16].

While the knowledge of outcomes from bacterial interactions with human cells 
is growing, there is enormous potential for further discovery when accommodating 
other microbes that populate different levels of the gastrointestinal tract such as 
fungi and viruses [17].

2.3 Gastrointestinal cancers

Gastrointestinal (GI) cancers are as diverse as the environments of the GI tract 
and the various cell types found in the GI tract. Squamous cell carcinomas arise in 
the squamous epithelium of the oral cavity, oesophagus and anus. Those that arise 
in the oral cavity are considered head and neck cancers rather than GI cancers. 
Adenocarcinomas are cancers that arise from glandular epithelium and can arise 
in the oesophagus, stomach, small intestine, pancreas and large intestine. Other 
cancers that can arise from the GI tract include cholangiocarcinoma, with origin 
from bile duct cells; hepatocellular carcinoma (HCC), originating from hepatocytes 
(liver cells); gastrointestinal stromal tumours, originating from the interstitial 
cells of Cajal which have a role in the control of peristaltic contractions [18]; and 
neuroendocrine cancers which can arise from neuroendocrine cells throughout the 
GI tract. Multiple studies examining these GI cancers have demonstrated diverse 
molecular alterations within cancers that arise from the same cell type in the same 
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organ of the GI tract, highlighting the multitude of malignancies that can arise in 
the GI tract [19–27].

Chronic inflammation and infection are intimately associated with the devel-
opment of cancer, with 15% of global cancer cases in 2012 being attributed to a 
carcinogenic infection [28]. Examples from the GI tract include HCC with hepatitis 
B and C virus infections contributing to more than 70% of global HCC diagnoses 
in 2012 [28]. In gastric adenocarcinoma four molecular subtypes were described by 
The Cancer Genome Atlas (TCGA) in 2014, one is characterised by Epstein-Barr 
virus positivity and shows extreme DNA hypermethylation [29]. Helicobacter pylori 
(H. pylori) is considered a class I carcinogen by the World Health Organization due 
to the association of chronic infection with the development of gastric adenocar-
cinoma and mucosa-associated lymphoid tissue (MALT) lymphoma, a form of B 
cell lymphoma in the stomach [30, 31]. The risk of developing gastric cancer with 
H. pylori is dependent on the virulence factors of the strain causing infection, other 
environmental factors and host genetics [32–34].

In colorectal cancer studies, Fusobacterium subspecies were consistently identi-
fied as being differentially present in tumour samples; however, these findings 
are still limited by small sample sizes [35]. A study of the microbiome in a heredi-
tary form of CRC has implicated oncotoxins produced by co-colonisation with 
Bacteroides fragilis (B. fragilis) and Escherichia coli (E. coli) subspecies in mucosal 
biofilms. Further animal studies have revealed the bacterial synergy involved 
in carcinogenesis whereby the B. fragilis toxin increases expression of the pro-
inflammatory cytokine interleukin (IL)-17 enabling the oncotoxin-producing E. coli 
to invade the mucosa inducing DNA damage in epithelial cells [36].

In addition to bacteria and viruses being implicated in carcinogenesis, parasitic 
infections have also been implicated in cancer development in the GI tract, with 
liver fluke infection, particularly Opisthorchis viverrini, being associated with the 
development of cholangiocarcinoma [37].

2.4 Inflammation in the GI tract

Acute inflammation is an integral part of the host defence against pathogens 
and tissue damage and is also required for the initiation of beneficial antitumour 
immunity [38, 39]. In contrast, it is ongoing ‘smouldering’ inflammation that 
contributes to tumour development, progression, invasion and metastasis [40]. 
Low-grade inflammation affects the function of immune cells and promotes an 
immune-suppressive, tumour-promoting phenotype [41, 42]. This in turn is 
associated with reduced immune surveillance and clearance of tumour cells by the 
immune system.

Chronic inflammation can be induced through a variety of mechanisms, includ-
ing chronic infections [43], autoimmunity [44], metabolic disorders [45] and 
altered microbiota [46, 47]. In the GI tract in particular, the host immune system 
has to maintain a delicate balance, and pathogens and malignant cells need to be 
cleared, whereas normal flora has to be tolerated. Disruption of immune tolerance 
or dysbiosis may result in loss of epithelial barrier function and overstimulation of 
immune cells, leading to tissue damage and chronic inflammation.

Conditions associated with recurrent or chronic inflammation, such as inflam-
matory bowel disease (IBD), have been shown to contribute to the risk of develop-
ing small and large intestine cancers [48, 49]. Mechanistically, this has been related 
to increased stimulation of inflammation-promoting immune cells by altered 
microbiota [46]. As a result, pro-inflammatory cytokines and chemokines are 
secreted, attract further immune cells into the tissue and polarise them towards 
tumour-promoting functions [50–52]. Particularly the presence of pathogenic 
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T-cell subsets, induced by pro-inflammatory cytokines, has been shown to be a 
predictor of poor prognosis in colorectal cancer patients [53]. Chronic inflamma-
tion also contributes to the expansion of oncogenic bacteria thereby re-enforcing 
disease progression [54]. See Box 1 for an overview of the immune cell populations 
involved in intestinal antitumour immune responses.

3. Microbial metabolites that shape antitumour immunity

Metabolites produced or modified by bacteria significantly impact health 
and disease by acting locally on GI tract cells but can also have systemic effects 
by influencing the function and activation states of immune cells. The ‘metabo-
lome’ constitutes the sum of small molecules produced by a biological system 
and is a powerful approach to explore the current condition of that system [55]. 
Metabolomics refers to the analysis of metabolites using techniques, such as mass 
spectrometry, nuclear magnetic resonance analysis, high-performance liquid chro-
matography and gas chromatography coupled with mass spectrometry. Obtained 
peak patterns can be compared against spectral databases for identification of 
metabolites. Metabolomics can be combined with metagenomics, investigating 
the genetic material of the entire community, and metatranscriptomics, exploring 
which genes are expressed, to increase our understanding of microbiomes. The 
benefits, disadvantages and technical challenges of these omics techniques are 
reviewed extensively elsewhere [56–59].

Dendritic cells
DCs are innate immune cells that develop from 
myeloid precursors in the bone marrow. They are 
capable of detecting pathogens or tissue disturbances 
and initiate an inflammatory response. In the tumour 
microenvironment, they are thought to engulf dead 
tumour cells and debris and present fragments thereof to 
T cells, thus initiating anticancer immune responses.
Macrophages
Macrophages are antigen-presenting cells that arise from 
either circulating monocytes or embryonic progenitors 
that persist into adulthood, both giving rise to tissue-
specific macrophage populations that are capable of 
self-renewal [186, 187]. Macrophages serve important 
functions in immunity, cancer, metabolism and tissue 
repair. Macrophages play an important role in in the 
antitumour immune response but can also adopt a pro-
tumour phenotype in the tumour environment [188, 189].
Cytotoxic T cells (CD8+ T cells)
CTLs express the CD8 receptor and recognise antigens 
presented on the surface of antigen-presenting cells. 
Once primed by this encounter, CTLs are capable of 
recognising the same antigens and kill target cells 
expressing the antigen. Tumour-specific CTL responses 
are crucial for controlling tumour growth.
Helper T cells (CD4+ T cells)
Th cells express the CD4 receptor and support functions 
of innate and adaptive immune cells by secreting 
cytokines. Depending on the environment they 
encounter, Th cells develop into subsets with a wide range 
of functions [190].

Cytokines, such as IL-12, promote the development 
of Th1 cells, which are efficient at secreting IFN-γ 
and TNF-α, important cytokines for antitumour 
immunity. When naïve CD4+ T cells reside an 
environment high in IL-6 and TGF-β, they develop 
into Th17 cells, which promote autoimmunity and 
are a negative prognostic marker for colorectal 
cancer [49]. Th cells can develop into immune-
suppressive Tregs in the presence of TGF-β when 
expressing the transcription factor FOXP3.
Mucosa-activated invariant T cells (MAIT cells)
MAIT cells reside at mucosal surfaces in the lung 
and the intestine [163] and are widely distributed 
in tissue and the systemic blood circulation [164, 
165]. They have innate immune cell features but 
also express a semi-invariant T-cell receptor, 
which can recognise antigens presented on a 
monomorphic MHC class 1-related protein (MR1) 
expressed by antigen-presenting cells [166]. MAIT 
cells are first responders to a variety of infections 
caused by bacteria, fungi and viruses through 
detection of microbial B vitamin antigens.
Innate lymphoid cells (ILCs)
ILCs stem from the lymphoid lineage but have 
innate immune cell characteristics [109]. They are 
quick responders and contribute to elimination of 
pathogens and tissue homeostasis by producing 
a variety of cytokines. Based on their specific 
cytokine secretion, ILCs are grouped into different 
classes that resemble their T-cell counterparts, for 
example, group 3 ILCs (ILC3s) resemble Th17 cells 
and produce IL-17 and IL-22 [109].

Box 1. Overview of immune cell populations involved in intestinal antitumour immune responses.
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In the following sections, we will discuss the impact of microbial metabolites 
on immune cell function, focusing on how these metabolites shape the immune 
response. The anatomical components of the intestinal immune system including 
immune and epithelial cell populations and the mechanisms employed by these cell 
populations to discriminate between commensal and pathogenic bacteria have been 
reviewed extensively recently [60–66].

3.1 Metabolites produced by bacteria from dietary components

3.1.1 Short-chain fatty acids

Short-chain fatty acids (SCFAs) are 1–6 carbon volatile fatty acids which can 
either be in straight or branched chain conformation [67]. They are end products 
of fermentation of indigestible carbohydrates such as starch and fibre, by anaerobic 
microbiota in the caecum and large intestine [68]. SCFAs are the most abundant 
metabolite in the colon and consist almost entirely of acetate (C2), propionate (C3) 
and butyrate (C4) [69]. Acetate is the most common SCFA (60% of total SCFAs) in 
the colon and can also reach the systemic circulation after absorption from the GI 
tract. Propionate and butyrate make up roughly 20% of the SCFAs in faeces each 
[68, 70]. Propionate is mainly metabolised in the liver after draining into the portal 
vein after absorption from the gut mucosa, while butyrate is the preferred energy 
source of colonocytes and is digested locally [71].

SCFAs affect host physiology and pathology through a multitude of local and 
systemic mechanisms of action (Figure 1). In the GI tract, they act through binding 
to transmembrane G protein-coupled receptors (GPRs) and diffusion into epithelial 
and immune cells where they modify post-translational gene expression and func-
tion as energy source.

GPRs implicated in SCFA signalling are free fatty acid receptors GPR41, GPR43 
and GPR109a. The SCFAs acetate, propionate and butyrate have differing selectivity 
for these receptors with all three binding to GPR43, expressed on the GI epithelium 
and immune cells [72, 73]. Propionate and butyrate bind to GPR41, expressed by 
lamina propria cells in the large intestine, immune cells and cells of the peripheral 
nervous system [72]. Butyrate has also been found to ligate GPR109a expressed by 
large intestinal epithelium and certain subsets of immune cells [73].

Activation of the GPRs leads to changes in intracellular potassium concentra-
tions [K+], which directly activate intracellular danger-sensing molecular com-
plexes, called inflammasomes. Integral components of inflammasomes are Nod-like 
receptors, which are cytosolic pattern recognition receptors (PRRs). Particularly 
changes in the NLRP3 and NLRP6 inflammasomes (containing Nod-like receptors 
3 and 6, respectively) have been implicated in exacerbating intestinal inflammation 
[74–76]. Inflammasome complexes can be activated through a two-step process. 
The first signal is considered the ‘priming signal’, which induces nuclear factor 
(NF)-kB-mediated transcription of inflammasome components and pro-IL-1β and 
IL-18 in epithelial and immune cells [77]. The second signal leads to the assembly of 
the inflammasome complex and caspase-1-dependent processing of pro-IL-1β and 
IL-18 into their biologically active forms.

IL-1β and IL-18 are important signalling molecules for gut homeostasis and 
immune effector function. IL-1β can have pro- and anti-homeostatic functions, 
whereas IL-18 is generally regarded as a crucial cytokine for maintaining gut 
barrier integrity and a healthy microbiome composition. A reduction in IL-18 
secretion has been found to be associated with a shift in microbiota towards the 
expansion of Bacteroidetes, which promote colonic inflammation and carcinogen-
esis in mouse models [46, 76]. This aligns with findings that describe a decreased 
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expression of NLRP6 in gastric cancer, correlated with a reduced survival time 
in patients [78]. When the NLRP6 inflammasome was overexpressed, gastric 
cancer cell proliferation and development were inhibited, and migration and 
invasion of cancer cells were decreased. Furthermore, NLRP6 activity has been 
linked with intact epithelial barrier function and prevention of colorectal cancer 

Figure 1. 
Effects of the SCFA butyrate on epithelial and immune cell function. SCFAs are produced through 
fermentation of non-digestible fibre and starch by microbiota. (a) Cancer cells switch their metabolism to 
glycolysis and are less efficient at metabolising SCFAs such as butyrate, leading to accumulation of butyrate in 
the cell. Increased concentrations of butyrate inhibit HDAC activity and induce apoptosis, reduce proliferation 
and increase immunogenicity of cancer cells. (b) In healthy epithelial cells, butyrate is metabolised through 
oxidative phosphorylation and used as energy source by the cell. Butyrate also activates NLRP3 and NLRP6 
inflammasomes through binding to GPRs, resulting in secretion of cytokines IL-1β and IL-18. In turn, IL-18 
strengthens intestinal barrier integrity and promotes diversity of intestinal microbiota. (c) The effects of 
butyrate on immune cells in the lamina propria can be described as promoting the development and activity 
of anti-inflammatory populations, such as Tregs, while suppressing immune cell functions contributing to 
inflammation. Butyrate suppresses the maturation of DCs, limits their ability to prime CTLs and reduces the 
production of pro-inflammatory cytokines in DCs and macrophages. Together this reduces inflammation and 
the development of inflammatory Th subsets, such as Th17, which contribute to intestinal carcinogenesis.
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development [79]. Even though NLRP3 inflammasome activation has been 
shown to contribute to tumour-promoting inflammation and immune infiltrate 
in several ways [11, 80–83], many reports highlight the beneficial functions of 
the NLRP3 inflammasome in preventing intestinal cancer development. For 
example, activation of NLRP3 inflammasomes has been demonstrated to protect 
from intestinal carcinogenesis via IL-18-mediated epithelial repair [84] and sup-
pression of metastatic colon cancer growth via maturation of natural killer (NK) 
cells and stimulation of their tumoricidal activity [85]. The complex biology 
of intestinal inflammasome signalling and its role in tumorigenesis have been 
reviewed recently [74, 86]. It remains to be investigated how the often overlap-
ping and controversial findings regarding inflammasome functions orchestrate 
induction and resolution of inflammation.

SCFAs, particularly butyric acid and β-hydroxybutyrate, stimulate NLRP3 
and NLRP6 inflammasomes through binding to GPR43 and GPR109a, leading 
to increased production of IL-1β and IL-18 [87, 88]. Subsequently it was shown 
that dietary supplementation with sodium butyrate or increased consumption of 
dietary fibre protected mice against colitis [87] and colonic carcinogenesis [89] 
through production of IL-18 and promotion of gut homeostasis. Interestingly, even 
though activation of the NLRP3 inflammasome was mediated via activation of 
GPRs, stimulation of GPRs with synthetic agonists did not recapitulate these find-
ings, indicating that SCFAs must act on additional targets that influence cytokine 
secretion [90].

A prominent target of SCFAs is histone deacetylases (HDAC) and acetyltrans-
ferases (HAT), which regulate gene expression by allowing or preventing access of 
the transcription machinery to DNA. HDAC inhibitors have been used in cancer 
therapy for their ability to induce cancer cell death, reduce proliferation and 
increase immunogenicity of cancer cells as well as stimulate anticancer immune 
function [91–93]. Cancer cells utilise glucose as their primary energy source, and 
thus SCFAs, such as butyrate, accumulate and due to increased concentration 
inhibit HDAC activity [94]. In contrast, healthy cells are capable of metabolising 
butyrate into small molecules required for energy generation, thereby preventing 
accumulation of butyrate and HDAC inhibition [95, 96].

Interestingly, a similar mechanism may explain the diverging effects of butyrate 
on immune cell populations in the gut. In order to retain intestinal homeostasis, 
immune cells have to remain passive when challenged with host microbiota and 
food antigens yet remain responsive to fight pathogenic bacteria. This diversity of 
function is supported by SCFAs that induce a hypo-responsive state in immune cell 
populations, which are capable of promoting inflammation, such as macrophages, 
dendritic cells (DCs) and T cells [47], yet cells involved in containing inflammation 
are induced and expanded by SCFAs [97, 98].

DCs and macrophages are professional antigen-presenting cells, highly pro-
ficient at scanning the environment for invaders or tissue disturbances. Once 
detected, pathogens or abnormal cells are engulfed, processed and presented 
in small fragments to T helper (Th) cells. These cells, in turn, differentiate into 
populations of effector Th cells, directed by cytokines from DCs. Secretion of 
pro-inflammatory cytokines by DCs, such as IL-6, IL-12 and IL-23 in particular, 
supports the polarisation of Th cells towards effector and inflammatory subsets Th1 
and Th17, respectively. This is important for removal of pathogens but can be detri-
mental for tissue homeostasis if not regulated tightly. Th cells also facilitate the full 
activation and memory development of cytotoxic T cells (CTLs), which are able to 
kill antigen specifically and react swiftly in the case of a second encounter. SCFAs, 
butyrate and propionate, but not acetate, have been shown to reduce production of 
pro-inflammatory cytokines, such as IL-12 and IL-23, and chemokines in DCs and 
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also impair the maturation of DCs [90, 99, 100]. Changes in cytokine secretion are 
associated with impaired ability of DCs to prime CTLs [101], reduced polarisation 
of Th-cell subsets towards effector and inflammatory subsets and induction of 
regulatory T cells (Tregs) [102].

Regulatory T cells have an important role in control of inflammation. Tissue 
inflammation and autoimmunity are promoted if Tregs are not present or dys-
functional. In contrast to many other cancers where Tregs are thought to suppress 
effective antitumour immunity, GI cancer patients benefit from the presence of 
Tregs in the tumour microenvironment [103]. Tregs limit inflammatory processes, 
induce tolerance towards food and microbial antigens and promote stem cell 
renewal in the intestine through a variety of mechanisms. This includes production 
of anti-inflammatory cytokines, such as IL-10 and transforming growth factor beta 
(TGF-β)1, expression of inhibitory molecules and restriction of nutrients required 
by effector T cells, particularly Th1 and Th17 cells [64, 104–106].

Interestingly, due to the high rates of glycolysis in effector and pro-inflammatory 
cells, such as CTLs, Th1 and Th17 subsets, butyrate accumulates in these cells, 
leading to an inhibitory effect mediated by both HDAC inhibition and binding to 
GPR109a [90, 93, 102]. In contrast, anti-inflammatory cells, such as Tregs, which 
rely on oxidative phosphorylation can process butyrate for energy consumption, 
circumventing these effects [107]. It has been demonstrated comprehensively that 
SCFAs drive Treg development via HDAC inhibition and GPR activation in the 
intestine and periphery, thereby protecting mice against colonic inflammation, 
colitis and colorectal cancer [97, 98, 106, 108].

3.1.2 Indole derivatives

Indoles are aromatic heterocyclic compounds, produced by gut bacteria from 
the degradation of tryptophan via several enzymes [109]. Tryptophan is an essen-
tial amino acid, which cannot be produced by the host and is taken up in the diet. 
Dietary tryptophan can be metabolised by microbiota and host cells to indole 
derivatives that have important immune modulatory functions in the gut [110]. 
Indole derivatives, such as kynurenines, are ligands for the aryl hydrocarbon recep-
tor (AHR), an intracellular ligand-activated transcription factor with important 
roles in detecting environmental changes and alerting cells to them. Microbial AHR 
ligands are thought to play an important role in maintaining intestinal homeostasis 
and limiting inflammation [111]. The importance of AHR signalling has been 
demonstrated in AHR−/− mice where clearance of pathogenic bacteria was impaired 
while intestinal inflammation was elevated and associated with an increased risk of 
developing colitis [112–114].

Mechanistically, bacterial AHR ligands have been shown to induce the produc-
tion of IL-22 in innate lymphoid cells (ILCs), which promotes diversity of gut 
microbiota and protects mucosal barrier functions [115, 116]. ILCs stem from the 
lymphoid lineage but have innate immune cell characteristics [117]. They are quick 
responders and contribute to elimination of pathogens and tissue homeostasis 
by producing a variety of cytokines. Based on their specific cytokine secretion, 
ILCs are grouped into different classes that resemble their T-cell counterparts, for 
example, group 3 ILCs (ILC3s) resemble Th17 cells and produce IL-17 and IL-22 
[117]. Even though production of IL-22 by ILC3s is vital for mucosal homeostasis, 
elevated levels of ILC3s and increased production of IL-17 have been associated 
with IBD pathology [118, 119]. Furthermore, it has been found that IL-22 contrib-
utes to tumorigenesis in the colon when elevated chronically. This was mediated 
via an inflammasome-dependent reduction of IL-22 binding protein and chronic 
elevated IL-22 levels [50, 51].
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Genetic induction of constitutively active AHR signalling in mouse models has 
been found to be associated with stomach and liver cancer development [120, 121], 
whereas the absence of AHR in AHR−/− mice protected from prostate cancer [122]. 
As AHR is crucially involved in early development, maintenance of stem cells and 
cell differentiation, it is difficult to discern if stable genetic induction or ablation of 
these signalling pathways may promote carcinogenesis directly or through distur-
bances in early development.

3.1.3 Polyamines

Polyamines are small polycationic molecules, derived either from the diet or 
synthesised by gut bacteria or host cells [123]. While they are found in almost all 
living cells, the method of production in mammalian and bacterial cells differs. 
Intestinal bacteria use inducible or constitutive forms of amino acid decarboxylase 
enzymes in order to produce polyamines with arginine as a precursor. Mammalian 
synthesis involves a series of steps to convert arginine to polyamines, with ornithine 
decarboxylase being the rate-limiting enzyme. Putrescine, spermidine and sperm-
ine are the major polyamines secreted by both the gut microbiota and mammalian 
cells and have important immune modulatory functions [124].

Along with other polyamines, spermine directly regulates cells in the innate 
arm of the immune system and has an anti-inflammatory effect. Spermine inhibits 
lipopolysaccharide-induced expression of pro-inflammatory cytokines in mono-
cytes and macrophages [125]. In macrophages, spermine is able to increase the 
expression of IL-10 and suppress production of inflammatory cytokines such as 
IFN-γ [126]. These functions were shown to have anti-inflammatory and protective 
effects in animal models of local and systemic inflammation [127].

Conversely, spermine inhibits the activation of the NLRP6 inflammasome and 
reduces the amount of IL-1β and IL-18 released. This is counteracted by taurine, 
another microbial metabolite, which is discussed below. The inhibitory effect of 
spermine on NLRP6 activity may be counteracted by the role polyamines play in 
maintenance of the gut epithelial lining. Many studies have found that intestinal 
mucosal repair is associated with an increase in levels of spermine, spermidine and 
putrescine [128]. Furthermore, when the synthesis of polyamines is blocked, migra-
tion and proliferation of intestinal epithelial cells to the site of injury as well as in 
regular turnover of mucosal cells are significantly reduced. Polyamines promote the 
transcription of E-cadherin, which is important for the formation of tight junctions. 
In this regard, they play a role in stabilising the gut epithelium, so it is able to act as 
a barrier between the external and internal environment [128].

3.2 Metabolites modified by bacteria, derived from host products

3.2.1 Bile acids and derivatives

Bile acids are physiological surfactants, produced in the liver and secreted into the 
duodenum or stored in the gall bladder. Bile acid molecules contain a hydrophobic 
hemisphere and a hydrophilic one, enabling them to associate around dietary fats and 
fat-soluble vitamins into micelles [129]. This promotes the breakdown and absorption 
of these molecules in the hydrophilic environment of the GI tract [130]. Approximately 
95% of bile acids are reabsorbed via active transport by the apical sodium-dependent 
bile acid transporter in the ileum of the small intestine [131]. Microbial bile salt hydro-
lases catalyse the hydrolysis of amide bond linkage in bile acids, releasing an uncon-
jugated bile acid. The de-conjugation of bile acids causes the release of glycine and 
taurine, which can then be used for further metabolism and growth.
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Bile acids modulate innate immune cell function by inhibiting NF-kB activity, 
resulting in reduced production of pro-inflammatory cytokines and molecules 
(TNF-α, IL-1β, IL-6, IL-12, cyclooxygenase-1 and cyclooxygenase-2, and induc-
ible nitric oxide synthase) in stimulated monocytes, macrophages, DCs and 
intestinal epithelial cells [132–135]. In human macrophages, administration of 
bile acids leads to increased production of IL-10 and a decrease in phagocytosis 
[136]. The reduction in pro-inflammatory cytokines combined with the increase 
in anti-inflammatory cytokine production induces the development, recruitment 
and expansion of Tregs in the colon. Together, the properties of bile acids improve 
barrier integrity and outcomes in mouse models of experimental colitis, which lead 
to the development of inflammatory bowel disease and colorectal cancer [133]. The 
effects occur via bile acid-mediated activation of the farnesoid X receptor (FXR), 
a ligand-activated nuclear receptor, and the G protein-coupled bile acid receptor 1 
(GPBAR1). These receptors also play a crucial role in bile acid-induced inhibition of 
the NLRP3 inflammasome, which is associated with reduced levels of secreted IL-1β 
and IL-18 [137, 138].

In contrast to primary bile acids, the bile acid-derivative taurine stimulates 
NLRP6 inflammasome activity, leading to increased production of IL-18 [139]. 
Levy et al. found high taurine and associated IL-18 concentrations maintained and 
restored functional microbiota typically present in healthy flora.

3.3 Metabolites synthesised by bacteria directly

Microbiota are able to synthesise metabolites that are either unique to prokary-
otic organisms, such as capsule polysaccharides and certain vitamins, or that can 
also be produced by host cells, for example, adenosine triphosphate (ATP).

3.3.1 ATP

In addition to its role as universal energy source, ATP is an important signal-
ling molecule that directly impacts immune cell function when released into the 
extracellular space. ATP is not only produced by living organisms but has been 
found to be secreted by a variety of commensal and pathogenic bacteria [140, 141]. 
Generally, increased levels of ATP are produced and secreted by host cells under 
inflammatory stress conditions and injury, often associated with inflammatory cell 
death [142]. Furthermore, the tumour microenvironment has high concentrations 
of extracellular ATP, at least partly induced by hypoxia, an activator of ATP secre-
tion, and necrotic cell death [143, 144]. The chronic presence of ATP in the tumour 
microenvironment supports cancer cell proliferation, survival and metastasis as 
reviewed elsewhere [144]. In the immune context, most of the actions of ATP have 
been described to be pro-inflammatory; however, its hydrolysis product adenosine 
has immune-suppressive functions.

Host-, tumour- and microbial-derived ATP binds to purinergic-type receptor 
P2, while adenosine, the downstream product of hydrolysed ATP, binds to P1 recep-
tors [144]. Purinergic P2 receptors are expressed highly by immune cells, and ATP 
exerts most of its pro-inflammatory effects through binding to P2X(1–7) ion chan-
nels and P2Y(1, 4, 6, 11–14) metabotropic purinergic receptors [145]. Activation 
of purinergic receptor P2X7 by ATP increases intracellular potassium and calcium 
concentrations [146]. Together with a priming signal, ATP is an important inducer 
of NLRP3 inflammasome activity [147]. As discussed previously, activation of the 
NLRP3 inflammasome and the subsequent secretion of IL-1β and IL-18 have impor-
tant roles in shaping the magnitude of inflammatory responses, gut homeostasis 
and barrier function and have a controversial role in tumour progression [86].
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Besides its role as inflammasome activator, ATP modulates migration of innate 
and adaptive immune cell subsets [148]. After release of ATP into the extracel-
lular space, innate immune cells such as monocytes, mature DCs, neutrophils, 
macrophages and microglia are mobilised via activation of P2X and P2Y receptors 
and migrate to the source of the high ATP concentration. This migratory response 
is further amplified through autocrine activation of pannexin 1 channels in the 
membrane of innate immune cells [149–153]. Interestingly, ATP has been shown 
to affect migration of CD4+ T-cell subsets differently, depending on their function 
and activation status. While activated CD4+ T cells respond to high ATP concen-
trations and stimulation of P2X7 and P2X4 receptors with induction of apoptosis, 
immune-suppressive Tregs increase proliferation and migration via their P2Y2 
receptor [154].

In the context of intestinal inflammation and carcinogenesis, ATP drives the 
polarisation of CD4+ T cells towards IL-17-producing CD4+ T cells, associated with a 
higher susceptibility to develop colitis and exacerbation of existing colitis in experi-
mental mouse models [155, 156]. A Th17 signature in colorectal cancer patients is 
associated with disease progression and worse outcomes [53]. Polymorphism of 
the ATP-converting enzyme CD39 (hydrolysis of ATP to adenosine diphosphate 
(ADP)) in IBD patients and increased expression of P2X7 receptors in the inflamed 
epithelium of Crohn’s patients have been found, suggesting another role of ATP in 
disease pathology [156, 157].

ATP is hydrolysed by CD39 and CD73 to adenosine, which have been widely 
investigated and reviewed for their immune-suppressive functions in the tumour 
environment [144, 151, 152, 158]. Therapeutic inhibition of ATP and adenosine 
receptors as well as targeting of CD39 and CD73, alone and in combination with 
traditional chemotherapy, has shown great promise to prevent tumour growth by 
overturning adenosine-induced immune suppression [159–163]. However, recent 
evidence demonstrates that extracellular ATP is required for the formation of long-
term, antigen-specific CTL responses, which are crucial for immunological memory 
[164]. It remains to be determined if therapeutic targeting of purinergic receptors 
and conversion enzymes affects development of immunological memory in cancer, 
which is desirable to prevent cancer occurrence.

3.3.2 Vitamins

Humans lack the ability to produce most essential vitamins and rely on 
vitamins to be supplied with the diet and produced by gut bacteria. Microbiota 
are able to synthesise vitamin K and a large number of B vitamins, such as folate 
(vitamin B9), riboflavin (vitamin B2), pyridoxine (vitamin B6), cobalamin 
(vitamin B12) and methionine [165]. B vitamins have achieved great attention 
for their cancer-preventing properties, with folate being the most investigated 
B vitamin in the cancer context [166]. The cancer-preventing mechanisms have 
been attributed to the role of B vitamins as cofactors in metabolic processes 
related to energy generation and gene regulation [166, 167]. Folate (B9) and 
pyridoxine (B6) have also been found to modulate intestinal immunity by 
increasing CD4+ T-cell proliferation, trafficking and survival of Treg subsets and 
NK cell cytotoxicity [168–170].

Interestingly, bacteria that synthesise vitamins B2 and B9 are recognised by 
mucosa-activated invariant T (MAIT) cells. MAIT cells reside at mucosal surfaces 
in the lung and the intestine [171] and are also widely distributed in tissue and 
the systemic blood circulation [172, 173]. They have innate immune cell features 
but also express a semi-invariant T-cell receptor, which can recognise antigens 
presented on a monomorphic MHC class 1-related protein (MR1) expressed by 
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antigen-presenting cells [174]. MAIT cells are first responders to a variety of 
infections caused by bacteria, fungi and viruses through detection of microbial B 
vitamin antigens.

Upon activation, MAIT cells are able to proliferate and produce cytotoxic 
molecules, capable of destroying infected cells displaying microbial B vitamin 
antigens on their MR1 protein [175–177]. Furthermore, MAIT cells produce immune 
modulatory cytokines, including IFN-γ, IL-2, IL-17, IL-10 and TNF-α [178]. While 
IFN-γ production is highly desirable to promote antitumour immunity, an IL-17 
signature has been found to be associated with worse outcomes in CRC patients 
[53]. Numbers of MAIT cells decrease in the peripheral circulation but accumulate 
in intestinal tumours [179, 180]. Several groups report a diminished ability of 
tumour-infiltrating MAIT cells to produce IFN-γ combined with increased secre-
tion of IL-17 [180, 181]. Even though it appears that MAIT cells may develop a 
tumour-promoting phenotype in the tumour microenvironment and thus contrib-
ute to cancer progression, further studies are needed to elucidate the role of these 
recently discovered cells.

It is tempting to speculate that MAIT cells may impact intestinal cancer devel-
opment and progression through recognition of B vitamin antigens produced by 
dysbiotic and carcinogenic bacteria. Since MAIT cells can be activated or inhibited 
depending on the B vitamin antigen presented on MR1 proteins, MAIT cells have 
been suggested as attractive targets for cancer immunotherapy [182]. This is in part 
related to their potential to be targeted in combination with chemotherapy, due 
the expression of drug resistance proteins that allows their survival and activation 
during and post-chemotherapy [172].

3.3.3 Bacterial polysaccharides

Commensal bacteria contribute to intestinal homeostasis through production 
of capsular polysaccharides. Polysaccharide A (PSA), the most studied bacterial 
polysaccharide, is produced by B. fragilis and plays an important role in regulating 
intestinal inflammation. Exogenous administration or bacterial production of PSA 
can prevent the development of experimental colitis by activating Treg and inhibit-
ing Th17 responses [183–185]. This is mediated by PSA binding to PRRs expressed 
by DCs, which in turn secrete IL-10 that promotes the development and activation 
of Tregs. Furthermore, PSA influences the polarisation of Th subsets towards IFN-
γ-producing Th cells, an important effector population for anticancer immunity. B. 
fragilis are not the only commensals that regulate inflammation; many other strains, 
for example, a large number of Clostridium strains [186], have been shown to have 
anti-inflammatory functions. This highlights the fact that the sum of commensals 
and their metabolites, rather than a defined strain or metabolite, shapes the func-
tionality of the immune system by impacting the polarisation of immune subsets, 
crucial for clearance of diseases.

4. Conclusions

The link between microbiome disturbances and the development of inflam-
matory diseases highlights the importance of studying the effects of microbes and 
their metabolites on immune cell function. Deciphering the effects of microbial 
metabolites on the immune system in a highly dynamic organ system, such as the 
GI tract, is inherently difficult. The actions of individual metabolites need to be 
considered before the complex interplay of microbes, metabolites and cellular 
components, such as epithelial and immune cells can be investigated. The GI 
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metabolites on the immune system in a highly dynamic organ system, such as the 
GI tract, is inherently difficult. The actions of individual metabolites need to be 
considered before the complex interplay of microbes, metabolites and cellular 
components, such as epithelial and immune cells can be investigated. The GI 
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tumour microenvironment is unique in that immunological tolerance is required to 
maintain a healthy intestinal environment, including maintenance of the “normal” 
microbiome, yet the presence of regulatory immune cells may impede antitumour 
immune responses and promote carcinogenesis.

There is increasing evidence from preclinical mouse model systems and human 
studies that GI tract microbiota, such as B. fragilis, Bifidobacterium, Faecalibacterium 
prausnitzii and Akkermansia muciniphila, can directly influence response to treat-
ment including immunotherapies and survival in some malignancies [187–193]. 
This effect is potentially mediated by bacteria stimulating activation of innate 
immune cells and downstream polarisation of Th-cell subsets towards Th1 cells 
[194]. The species and diversity of bacterium identified as influencing treatment 
response and survival vary, likely reflecting the complexity of the interactions 
involved, the diverse malignancies and populations within which those malignan-
cies had arisen, and the number of bacterial species that have immunomodulatory 
effects mediated through the GI tract.

The influence of infections on initiation and promotion of cancer has been long 
recognised, but our understanding of the complex network of interactions between 
the host, the microbiome, the genetics of both the host and microbiome and the 
metabolome remains superficial. These interactions are not static, which, with the 
diversity of the GI tract environment, add to the challenge of deciphering what 
microbial species may be influencing the immune response in a tumour-promoting 
or tumour-suppressive manner. The complexity of microbial species and indeed 
the complexity of immune cells and their function mean that practically assaying 
and identifying individual species of bacteria, or subsets of immune cells, clinically 
in a prognostic or predictive sense is challenging. The more readily measureable 
microbial metabolome may provide a more clinically accessible read-out of this 
interaction. The wide-ranging impact that products of microbial metabolism have 
on immune cell function and polarity and therefore anticancer immunity has 
been underappreciated to this point. A greater understanding of how microbial 
metabolites influence the GI tumour microenvironment has the potential to expand 
therapeutic options and improve survival of patients with GI cancers.
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Dendritic Cells and Their Roles in 
Anti-Tumour Immunity
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Abstract

Dendritic cells are rare cells found in blood and throughout all organs of the 
body as resident or migrating cell populations. Dendritic cells sense danger signals 
of pathogens and host cell stress through pattern receptors expressed on the cell 
surface and within organelles of the cell. Ligation of these receptors leads to activa-
tion and production of many different chemokines, cytokines and interferons. 
Key to the function of dendritic cells is their potent capacity to present antigen 
and activate naïve T cells. These qualities, potent antigen presentation and cyto-
kine production together allow the dendritic cells to be at the forefront of danger 
responses, linking innate and adaptive immunity. Research over the last 20 years has 
clarified a role of dendritic cells in anti-tumour responses, and their location within 
the tumour environment is clear, with both deleterious and beneficial correlations, 
depending on the subset and tumour type. Harnessing the qualities of dendritic 
cells to increase anti-tumour immunity is the ultimate goal, although this will 
require extensive knowledge of different dendritic cell subsets and their regulation 
through immune checkpoints.

Keywords: dendritic cells, pattern recognition receptors, immune checkpoints, 
tumour vaccines, plasmacytoid dendritic cell, conventional dendritic cell

1. Introduction to dendritic cells

Dendritic cells (DCs) are professional antigen presenting cells (APCs), the only 
cells capable of specifically activating naïve T cells and are key orchestrators of an 
immune response. They are a rare, heterogeneous population of haematopoietic 
cells that are equipped to capture, process and present antigen (Ag) to the adaptive 
immune system.

In a non-inflamed or steady state setting, DCs constantly sample the local 
environment for Ags and have the potential to induce peripheral tolerance via T 
cell anergy or deletion [1]. DCs recognise danger via pattern recognition recep-
tors (PRR) on their cell surface, the cytoplasm and within cellular organelles [2]. 
Ligation of PRRs by pathogen associated molecular patterns (PAMPs) or damage 
associated molecular patterns (DAMPs), activates DC and licences DC to upregu-
late co-stimulatory marker expression such as CD86 and CD80 on their cell surface 
and initiate immunogenic T cell priming.
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DCs situated in non-lymphoid tissues, also known as migratory DCs, constantly 
migrate to draining lymph nodes (LNs), maturing during this process, to present Ag 
to naïve T cells. Resident DCs in lymphoid organs are immature and maintain toler-
ance during steady state, but can stimulate naïve T cells when activated in situ. The 
DC maturation process not only involves morphological changes into their charac-
teristic stellate shape with dendritic cytoplasmic processes and increased expression 
of MHC and co-stimulatory markers, but their Ag acquisition and sampling capa-
bilities are initially upregulated and then rapidly shut down while MHCII expression 
on the cell’s surface is increased due to the simultaneous up- and down-regulation 
of MHCII synthesis and turnover events respectively [3]. This allows mature DCs to 
present a snapshot of the Ag profile in its local environment prior to migration and/
or activation. Furthermore, activated DCs produce a combination of cytokines that 
modulate an immune response that is specific to the initial danger signals.

In humans, the majority of DC characterisation studies are of DCs isolated 
from the blood due to the rarity of the cell type and limited access to human tissue 
samples, although more investigations on non-lymphoid DCs in the skin, lung and 
liver have recently emerged [4–7]. DCs in the blood comprise ~1% of total periph-
eral blood mononuclear cells (PBMCs) and are traditionally identified by the high 
expression of MHCII (HLA-DR) and the lack of lineage markers CD3, CD14, CD15, 
CD19, CD20 and CD56, although the latter marker has recently been shown to be 
expressed on gut and other non-lymphoid DCs [6].

Human blood DCs can be divided into conventional DCs (cDCs) and plasma-
cytoid DCs (pDCs), which are HLA-DRhiCD11c+123− and HLA-DRhiCD11c−123+ 
respectively. Human blood cDCs are further categorised into cDC1 and cDC2 
subsets. Additionally, there are monocyte-derived DCs that originate separately 
from cDCs and pDC precursors. The recent use of whole population and single cell 
sequencing techniques has been instrumental in elucidating transcription factors 
and surface markers that are unique to each DC subset, which has helped identify 
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of cellular Ag

Cross-presentation of soluble Ag CD4+ and CD8+ T cell 
priming*

Roles in 
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Potent producer of 
Type III IFN (after 
TLR3 stimulation), 
CTL priming, Th1 
response

Th1, Th17 response Potent producers of 
Type I and III IFN 
and mediating anti-
viral immunity

*Previous Ag presentation abilities by pDCs are now suggested to be contributed by contaminating AXL+Siglec6+ 
(AS) DCs.
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relationships between DC subsets across species and tissues as well as corroborate 
DC functional analyses [6–9], summarised in Table 1.

2. Conventional dendritic cells 1 (cDC1)

cDC1s constitute ~0.03% of PBMCs and are found in the blood, tonsil, spleen 
and non-lymphoid tissues such as the skin. They were classically defined by the 
high expression of CD141 (blood DC antigen 3 (BDCA3) or thrombomodulin) 
[10]. However, CD141 is not a completely specific marker for cDC1 as it is also 
expressed on endothelial cells, monocytes and other DC subsets [8]. Using pheno-
typic, transcriptional and functional assays, these CD141+ DCs have been further 
characterised as CD11c+HLA-DR+CD11b−CD172a− CLEC9a+XCR1+Necl2+ cells that 
lack monocytic markers CD14 and CD16 [4, 11] identifying them as human cDC1 
[12–16].

The dependence of CD141+ DCs on Flt3 ligand (FL), an important DC develop-
mental factor, has been demonstrated in vitro and in vivo [11, 17–19] and transcrip-
tion factor BATF3 is required in vitro but not in vivo [15]. Another cDC1-defining 
transcription factor, IRF8, is also highly expressed in human cDC1, although 
patients harbouring mutations in IRF8 did not exhibit cDC1 deficiencies, suggest-
ing the involvement of other transcription factors as well [6, 20]. Furthermore, 
genome wide expression profiling and microarray analyses have revealed transcrip-
tional profile clustering between CD141+ DCs in blood and non-lymphoid tissues, 
as well as between human blood CD141+ DCs and murine CD8a+ and migratory 
CD103+ DCs [4, 21], firmly establishing CD141+ cDC as cDC1.

PRRs expressed by human cDC1s are predominantly Toll-like receptor (TLR) 
3, located in endosomes and which recognises double-stranded RNA and TLR8, 
also located in endosomes and which recognises bacterial ssRNA and mammalian 
mitochondrial RNA [10, 22]. In response to TLR3 signals [23] and also HCV in vivo 
[23, 24], the cDC1 produce large amounts of type III interferon (IFN), also known 
as IFN-lambda (λ).

The cDC1s are superior to other DC subsets in their ability to present exogenous Ag 
on MHCI, a process known as cross-presentation [2] and the activation of cytotoxic 
CD8+ T cells, crucial for anti-tumour responses. In particular, they have a specialised 
ability to cross-present Ags from dead or necrotic cells to CD8+ T cells, enhanced by 
Clec9a on cDC1 binding to actin filaments exposed on dead and dying cells [25]. The 
cDC1 are superior at inducing Th1 differentiation of CD4 helper T cells [11, 16].

3. Conventional dendritic cells 2 (cDC2)

Human cDC2, traditionally known as CD1c+ or BDCA1+ DCs, constitute ~1% 
of PBMCs and can be identified by the expression of CD11c, CD11b, CD13, CD33, 
CD172a, HLA-DR and CD45RO [2, 10, 26]. The phenotypic similarities between 
these DCs and moDCs, as well as the expression of CD1c on B cells and other DC 
subsets, have made the precise segregation of this subset quite difficult. Although 
previous studies have used CD64 to exclude monocytes from bonafide CD1c+ DCs 
in the blood, cDCs express low levels of this marker and cannot be definitively 
used to separate the cell populations [6, 7]. More recently, the use of single cell 
RNA sequencing techniques has identified additional surface phenotypic mark-
ers, such as CLEC10A, FCGR2B, FCER1A, to distinguish human cDC2 subsets 
[7, 8]. In particular, CLEC10A protein has been proposed as the cDC1 CLEC9A-
equivalent marker for cDC2s in different species and tissues. However, different 
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relationships between DC subsets across species and tissues as well as corroborate 
DC functional analyses [6–9], summarised in Table 1.
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lack monocytic markers CD14 and CD16 [4, 11] identifying them as human cDC1 
[12–16].

The dependence of CD141+ DCs on Flt3 ligand (FL), an important DC develop-
mental factor, has been demonstrated in vitro and in vivo [11, 17–19] and transcrip-
tion factor BATF3 is required in vitro but not in vivo [15]. Another cDC1-defining 
transcription factor, IRF8, is also highly expressed in human cDC1, although 
patients harbouring mutations in IRF8 did not exhibit cDC1 deficiencies, suggest-
ing the involvement of other transcription factors as well [6, 20]. Furthermore, 
genome wide expression profiling and microarray analyses have revealed transcrip-
tional profile clustering between CD141+ DCs in blood and non-lymphoid tissues, 
as well as between human blood CD141+ DCs and murine CD8a+ and migratory 
CD103+ DCs [4, 21], firmly establishing CD141+ cDC as cDC1.

PRRs expressed by human cDC1s are predominantly Toll-like receptor (TLR) 
3, located in endosomes and which recognises double-stranded RNA and TLR8, 
also located in endosomes and which recognises bacterial ssRNA and mammalian 
mitochondrial RNA [10, 22]. In response to TLR3 signals [23] and also HCV in vivo 
[23, 24], the cDC1 produce large amounts of type III interferon (IFN), also known 
as IFN-lambda (λ).

The cDC1s are superior to other DC subsets in their ability to present exogenous Ag 
on MHCI, a process known as cross-presentation [2] and the activation of cytotoxic 
CD8+ T cells, crucial for anti-tumour responses. In particular, they have a specialised 
ability to cross-present Ags from dead or necrotic cells to CD8+ T cells, enhanced by 
Clec9a on cDC1 binding to actin filaments exposed on dead and dying cells [25]. The 
cDC1 are superior at inducing Th1 differentiation of CD4 helper T cells [11, 16].

3. Conventional dendritic cells 2 (cDC2)

Human cDC2, traditionally known as CD1c+ or BDCA1+ DCs, constitute ~1% 
of PBMCs and can be identified by the expression of CD11c, CD11b, CD13, CD33, 
CD172a, HLA-DR and CD45RO [2, 10, 26]. The phenotypic similarities between 
these DCs and moDCs, as well as the expression of CD1c on B cells and other DC 
subsets, have made the precise segregation of this subset quite difficult. Although 
previous studies have used CD64 to exclude monocytes from bonafide CD1c+ DCs 
in the blood, cDCs express low levels of this marker and cannot be definitively 
used to separate the cell populations [6, 7]. More recently, the use of single cell 
RNA sequencing techniques has identified additional surface phenotypic mark-
ers, such as CLEC10A, FCGR2B, FCER1A, to distinguish human cDC2 subsets 
[7, 8]. In particular, CLEC10A protein has been proposed as the cDC1 CLEC9A-
equivalent marker for cDC2s in different species and tissues. However, different 
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isoforms of Clec10A have been found in mice and should be carefully considered 
when using it across species [27]. Heterogeneity within the human cDC2 subset 
has been identified using CD5 or CD32B versus CD163 and CD36. The CD5lo or 
CD163+CD36+ ‘cDC2’ are transcriptionally more related to monocytes than the 
other cDC2 subset (CD5hi or CD32B+) [8, 28]. Like cDC1, CD1c+ cDC2s require 
FL, but also rely on transcription factors IRF4 and IRF8, for development [20, 29].

The cDC2 DCs highly express TLR2 and also express a range of cytosolic viral RNA 
sensors such as RIG-I [30, 31]. Different proposed cDC2 subsets also seem to have dif-
ferent PRR expression patterns. For example, CD5hi cDC2 express high levels of TLR7 
and 8 compared to CD5lo cDC2 and CD32B+ cDC2 express higher levels of TMEM173 
(also known as STING) in comparison to CD163+ CD36+ cDC2 subset [8, 28].

Activated cDC2s can drive Th17 immune response and can also produce high 
levels of IL-12p70, potentially inducing Th1 differentiation [2, 29]. However, cur-
rent data suggests Th17 versus Th1 driven responses may be independently driven 
by CD5+ versus CD5lo cDC2 subsets, respectively [8, 28].

Human cDC2s are able to cross-present soluble Ag to naïve and memory CD8+ T 
cells at comparable levels with cDC1s [32–35]. However, the mechanism of cross-
presentation differs between both subsets [35] and cDC2 do not possess the potent 
ability to cross-present Ags from dead cells. Human cDC2 are also potent stimula-
tors of CD4+ T cells [8, 10, 16].

4. Plasmacytoid dendritic cells (pDC)

The pDCs constitute ~0.01–0.04% of PBMCs and commonly reside in second-
ary lymphoid organs localising in the follicular cortex, T cell nodules and around 
high endothelial venules [36, 37]. As their name suggests, pDCs are similar in 
morphology to that of plasma cells. Under light microscopy, pDCs are observed 
to be spherical in shape with a rounded nucleus, often predominant endoplasmic 
reticulum and present as clusters in T-cell rich regions of lymphoid tissue [36–38].

The pDCs, originally identified as ‘natural interferon producing cells’ (NIPC), 
are renowned for their ability to drive immense type I and type III IFN production 
via TLRs 7 and 9 [39–41]. This IFN production is essential to combat viral infec-
tion but pDC-derived IFN is also thought to contribute to disease in autoimmune 
diseases including systemic lupus erythematosus [42]. They are also thought to play 
a role in Th2 induction and asthma progression in humans [42]. Conversely, pDC 
have also been shown to play a major role in tolerance in vivo, through their produc-
tion of IDO and TGF-beta [42].

pDCs are recognised as being CD11c−/loCD45RA+CD123+CD303+CD304+HLA-
DR+ and can express CD56 (reviewed in [2]). pDCs may also be identified by their 
transcription factors including; TCF4 (also known as E2-2), SPIB, ZEB2, IRF8, IRF7 
and IRF4 [43–45]. Haploinsufficiency in the TCF4 gene results in Pitts-Hopkins 
syndrome, which characteristically generates defective pDCs, illustrating a depen-
dence of this factor for normal human pDC development [46].

The pDCs can be divided into 2 subsets based on CD2 expression [47]. Recent 
single cell transcriptomic profiling of blood DCs from healthy donors has revealed 
that CD2+ ‘pDC’ also express AXL and SIGLEC6 (known as AS DCs). These AS 
DCs can stimulate CD4+ and CD8+ allogeneic T cell proliferation whereas the 
segregation of pDCs away from contaminating AS DCs demonstrated potent IFN-α 
production after TLR9 stimulation and a lack of T cell priming attributes [8]. 
Whether AS DCs and pDC are 2 distinct cell types or differentiation stages of one 
another is yet to be defined.
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A rare and highly aggressive acute leukaemia known as Blastic Plasmacytoid 
Dendritic Cell Neoplasm (BPDCN) involves the malignancy of pDC precursors 
[48], driven, at least in part by the juxtaposition of the pDC-specific RUNX2 
enhancer and the MYC promotor due to the chromosomal translocation (6;8)
(p21;q24) [49]. The BPDCN can be reliably identified by immunohistochemical 
staining with TCF4 and CD123 antibodies [50]. BPDCNs most commonly present as 
skin lesions and may be accompanied by swelling of other organs such as the lymph 
nodes, bone marrow or spleen. Standard chemotherapy treatments for myeloid neo-
plasms often result in poor prognosis [51] although a toxin-conjugated anti-CD123 
drug, tagraxofusp-erzs, has recently been approved as the first FDA-approved 
BPDCN-specific treatment [52].

5. Monocyte derived DCs

Monocyte derived DC (moDC) refers to DCs induced from monocytes with 
GM-CSF in vitro. These tissue culture systems originated in the early 1990s 
based on work showing varying combination of cytokines with GM-CSF could 
induce the acquisition of antigen presentation capacity in stem cells and CD34+ 
blood precursors [53–56], and this was optimised with the addition of IL-4 [57]. 
These systems have been an immensely popular tool for more than two decades 
for in vitro research pertaining to conventional DC biology and immunological 
function. They have been particularly useful in human research due to the dif-
ficulties in obtaining large numbers of ex vivo primary human DC for research. 
However, the feasibility of these models has recently been questioned, detailed 
analyses of GM-CSF induced DC cultures reveal a heterogeneous popula-
tion of macrophages and conventional DCs, with the MHCIIhi cells the most 
DC-like [58–61].

It still remains unclear whether the moDC actually represent an in vivo equiva-
lent cell subset. They potentially represent an in vitro equivalent of an inflammatory 
monocyte known as TNF/iNOS producing DCs (TipDCs), based on their surface 
phenotype [62], cytokine profile and a shared precursor [62]. Importantly, high 
intra-tumoral expression of CD40L, TNF-α and iNOS, key phenotypes of TipDCs, 
were strongly correlated with substantially higher long term disease free survival 
rates over 10 years in patients with colorectal cancer [63]. Therefore, moDCs may 
represent a useful and relevant in vitro model of inflammatory DCs.

5.1 MoDC and cancer vaccines

While the ex vivo induced moDC do not recapitulate bona fide DC subsets, the 
ease of isolation and culture has made the moDC a popular vaccine candidate in 
human clinical trials since the late 1990s. However, results from clinical trials using 
moDC in cancer immunotherapies for various cancer types have been modest at 
best [64, 65]. In a more recent phase II trial of patients with surgically resectable 
liver metastatic colon adenocarcinoma, vaccination of patients with autologous 
tumour lysate pulsed moDC conferred interim protection, demonstrating a 3-fold 
increase in the median disease free survival compared to the control arm of the 
study [66]. The continued refinement of moDC preparations and the choice of 
antigens, may see future improvements of DC cancer vaccines.

The ability to present Ag and activate the adaptive immune response makes 
DCs an attractive target to re-invigorate anti-cancer immunity. There are different 
types of DC vaccines, with the most common type involving the ex vivo maturation 
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of autologous DCs. In this method, DCs are isolated from patient peripheral blood 
mononuclear cells (PBMCs) obtained via leukapheresis, incubated with maturation 
stimuli and tumour Ags, and vaccinated back into the patient. Because this method 
requires a large number of DCs, and naturally circulating blood DCs are rare, the 
majority of clinical trials have previously used moDCs for this type of DC vaccine 
and have been extensively characterised [67, 68].

Thus far, a wide variety of moDC vaccine strategies have been trialled [68]. 
moDCs have been differentiated and matured using monocyte conditioned medium 
with various supplements of cytokines (TNF-α, GM-CSF, IL-4, IFN-α), TLR 
agonists (LPS) and other factors such as prostaglandin E2 [67–69]. There is also 
variety in the type of Ags loaded into DCs such as peptides from tumour-associated 
Ags (TAA), TAA-encoding mRNA and whole tumour lysates [67]. More recently, 
the electroporation of synthetic mRNA encoding DC-maturation factors such as 
CD40 ligand, constitutively active TLR4 and CD70 together with fusion proteins 
DC-LAMP and melanoma-associated Ags into autologous moDCs (TriMixDC-
MEL) have proven safe and immunogenic in phase 1 clinical trials in metastatic 
melanoma [70]. However, the variation in the aforementioned vaccine factors as 
well as the route of DC administration (intranodal, i.v.) and lack of standardised 
method of moDC generation has shown variable efficacies of moDC vaccines in 
clinical outcomes.

6. DC vaccines

More recent clinical trials using naturally circulating blood DCs have turned 
to CliniMACS system by Miltenyi to isolate different DC subsets from patients 
(Figure 1). Two completed Phase I clinical trials have used CD1c+ DCs (cDC2) 
loaded with TAA peptides in hormone refractory metastatic prostate cancer and 
metastatic melanoma and observed good safety and immunogenicity [71, 72]. 
Another completed Phase I trial using pDCs showed the induction of tumour-Ag 
specific CTL response as well as an IFN signature [33]. On-going clinical trials, as 
summarised by Bol et al., are not only isolating single DC subsets for vaccination, 
but are also trying combination vaccines comprised of cDC2 and pDC subsets 
and using dual-activating maturation agonists such as single stranded RNA that 
stimulates TLR8 on cDC2 and TLR7 on pDCs (NCT-02993315, NCT-02574377, NCT-
02692976) [67]. However, there are still many challenges in using naturally circulat-
ing blood DCs in tumour vaccinations. The methodology for isolation of sufficient 
CD141+ cDC1 DCs, which comprise only 0.03% PBMCs, is still lacking and will be 
important to harness due to their superior ability to cross-present dead and necrotic 
Ag. Furthermore, although improved over the years, the duration of DCs spent 
ex vivo can drastically affect DC viability and functionality and the personalised 
nature of these vaccines can limit the quantity of patient access to these treatments.

Apart from the ex vivo maturation of autologous DCs, another strategy of DC 
vaccines has been receptor targeting (Figure 1). This involves the administration 
of a monoclonal Ab (mAb) specific for endocytic receptors on various DC subsets 
to deliver tumour Ags to DCs directly in vivo [73]. Tumour Ags are conjugated to 
these DC-targeting mAb either chemically, through genetic fusion, or attachment to 
nanoparticles and liposomes [74]. Importantly, the administration of adjuvant, such 
as TLR3 agonist poly I:C, in conjunction with Ag delivery, is necessary to induce 
immune priming instead of tolerance, as shown in mice [75–77]. Moreover, the tar-
geting of cross-presenting DC subsets has been particularly attractive, due to their 
ability to activate CTLs. DEC-205, a C-type lectin that is highly expressed on cDC1 
can cross-present Ag when targeted and induce tumour Ag NY-ESO-1-specific 
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cellular and humoral responses in patients with solid cancers [78, 79]. However, 
DEC-205 is also expressed on many other cell-types including CD1c+ DCs, pDCs 
and monocytes which can affect targeting specificities and efficiencies [79–81]. In 
contrast, another C-type lectin, Clec9a (also known as DNGR-1), is specifically 
expressed on cDC1 and strategies targeting this molecule have demonstrated highly 
immunogenic responses without adjuvant in non-human primates, and also supe-
rior Ag-specific cross-presentation when targeted in vitro and in vivo [79, 81, 82]. 
Based on these pre-clinical studies, the progression of vaccines targeting Clec9a into 
clinical trials is much anticipated.

7. DC in the tumour microenvironment

The tumour microenvironment (TME) is a complex niche of tumour cells, 
stromal cells and tumour infiltrating myeloid and lymphoid immune cells. The 
dynamic nature of this niche varies with different types and stages of cancer, as 
well as between patients themselves. It has been established that the infiltration of 
CD8+ cytotoxic T cells have been associated with better treatment outcomes with 

Figure 1. 
Overview of potential roles of DC in cancer therapies. To improve current cancer treatments and the activation 
of tumour-specific CTL, DC may be directly targeted in vivo (Section 6) or may themselves be the targets of 
checkpoint immunotherapies (Section 8). Ex vivo manipulation of DC (Section 6) may also be beneficial in some 
cancer patients. In vivo targeting strategies may also be combined with Flt3-L treatment to enhance DC numbers, 
and adjuvants targeting specific PRR to ensure the DC subset of interest are activated. Created with Biorender.com.
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of autologous DCs. In this method, DCs are isolated from patient peripheral blood 
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and using dual-activating maturation agonists such as single stranded RNA that 
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02692976) [67]. However, there are still many challenges in using naturally circulat-
ing blood DCs in tumour vaccinations. The methodology for isolation of sufficient 
CD141+ cDC1 DCs, which comprise only 0.03% PBMCs, is still lacking and will be 
important to harness due to their superior ability to cross-present dead and necrotic 
Ag. Furthermore, although improved over the years, the duration of DCs spent 
ex vivo can drastically affect DC viability and functionality and the personalised 
nature of these vaccines can limit the quantity of patient access to these treatments.

Apart from the ex vivo maturation of autologous DCs, another strategy of DC 
vaccines has been receptor targeting (Figure 1). This involves the administration 
of a monoclonal Ab (mAb) specific for endocytic receptors on various DC subsets 
to deliver tumour Ags to DCs directly in vivo [73]. Tumour Ags are conjugated to 
these DC-targeting mAb either chemically, through genetic fusion, or attachment to 
nanoparticles and liposomes [74]. Importantly, the administration of adjuvant, such 
as TLR3 agonist poly I:C, in conjunction with Ag delivery, is necessary to induce 
immune priming instead of tolerance, as shown in mice [75–77]. Moreover, the tar-
geting of cross-presenting DC subsets has been particularly attractive, due to their 
ability to activate CTLs. DEC-205, a C-type lectin that is highly expressed on cDC1 
can cross-present Ag when targeted and induce tumour Ag NY-ESO-1-specific 
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cellular and humoral responses in patients with solid cancers [78, 79]. However, 
DEC-205 is also expressed on many other cell-types including CD1c+ DCs, pDCs 
and monocytes which can affect targeting specificities and efficiencies [79–81]. In 
contrast, another C-type lectin, Clec9a (also known as DNGR-1), is specifically 
expressed on cDC1 and strategies targeting this molecule have demonstrated highly 
immunogenic responses without adjuvant in non-human primates, and also supe-
rior Ag-specific cross-presentation when targeted in vitro and in vivo [79, 81, 82]. 
Based on these pre-clinical studies, the progression of vaccines targeting Clec9a into 
clinical trials is much anticipated.

7. DC in the tumour microenvironment

The tumour microenvironment (TME) is a complex niche of tumour cells, 
stromal cells and tumour infiltrating myeloid and lymphoid immune cells. The 
dynamic nature of this niche varies with different types and stages of cancer, as 
well as between patients themselves. It has been established that the infiltration of 
CD8+ cytotoxic T cells have been associated with better treatment outcomes with 

Figure 1. 
Overview of potential roles of DC in cancer therapies. To improve current cancer treatments and the activation 
of tumour-specific CTL, DC may be directly targeted in vivo (Section 6) or may themselves be the targets of 
checkpoint immunotherapies (Section 8). Ex vivo manipulation of DC (Section 6) may also be beneficial in some 
cancer patients. In vivo targeting strategies may also be combined with Flt3-L treatment to enhance DC numbers, 
and adjuvants targeting specific PRR to ensure the DC subset of interest are activated. Created with Biorender.com.
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checkpoint blockade therapies in a number of cancer types including metastatic 
melanoma [83]. However, the phenotype and role of tumour-infiltrating DCs 
(TIDCs) are less clear, possibly due to the lack of consistent markers probing DCs 
within the TME and the lack of distinctions between monocyte and putative DC 
subsets [84].

Using immunohistochemistry staining, many studies have previously used 
CD1a and S100 proteins to identify TIDCs. The higher density of these cells within 
tumours correlated with better clinical outcomes in melanoma and head and neck 
cancers [84, 85]. However, discrepancies in this correlation were reported in colon, 
breast, gastric, nasopharyngeal, lung and ovarian cancers [84, 86–88]. One major 
factor that could explain these reported discrepancies is the markers used to iden-
tify DCs. CD1a and S100 are expressed at different levels on Langerhans cells (LCs), 
interdigitating DCs and moDCs, but not on cDCs or pDCs and the expression of 
these markers on epithelial-tropic DCs such as LCs could account for the strong 
correlations observed in only the epithelial cancers [84]. Furthermore, DC activa-
tion markers CD83 and DC-LAMP were used to identify mature DCs, though CD83 
is not expressed in all DC subsets [7, 84, 89]. In breast adenocarcinoma patients, 
immature DCs were found to localise within the tumour whereas CD83/DC-LAMP+ 
mature DCs localised in the peri-tumour edges [90]. Some studies have reported 
significant correlations between the intratumoral infiltration of mature DCs with 
better clinical outcomes. For example, a recent report showed that the recruitment 
of DC-LAMPhi cells into the tumour stroma exhibited strong correlations with 
significantly higher overall and relapse-free survival in high-grade serous ovarian 
carcinoma [91]. However, this correlation has also been inconsistent in a number of 
different cancers [85, 90, 92–94].

More recently, with the establishment of The Cancer Genome Atlas (TCGA) 
program, scientists are able to compare DC-specific signatures with a publicly 
available molecular and clinical database of a vast array of cancers. In melanoma 
and breast cancer patients, DC-specific genes such as BATF3, IRF8, CLEC9A and 
FLT3 were associated with higher CTL scores and better overall survival [95–97]. 
They also exhibited positive correlations with chemokines CXCL9, 10 and 11 and 
chemokine receptor CCR7 expression [95, 96]. Furthermore, Broz et al. [98] 
observed strong associations between cDC1-derived genes within the tumour 
and better overall survival in breast cancer, head-neck squamous cell carcinoma 
and lung adenocarcinoma. This corroborates mouse tumour models showing that 
migratory cDC1 subsets are required for cross-presenting tumour Ag in tumour-
draining lymph nodes and priming of cytotoxic CD8+ T cells [97, 99].

Whilst the recent data above points towards a benefit of the infiltration of 
conventional DC into tumour sites, the correlation between tumour infiltrating 
pDCs and poor survival prognosis is clear. This has been described in breast, head 
and neck, ovarian and lung cancers [100–103] where it is thought that pDC-
induced tolerance and impaired IFN-α production contributes to a suppressive, 
non-immunogenic TME. Indeed mouse studies point to a role of TGF-β in the 
tumour environment in preventing an activatory phenotype of pDC and favouring 
a tolerising, IDO producing phenotype [104].

Further factors within the TME that have been illustrated to correlate with 
DC infiltration or function include for example, vascular endothelial growth 
factor (VEGF), a tumour angiogenic factor, inversely correlated with DC density 
and overall survival in gastric adenocarcinoma tissues [87, 105]. High serum 
VEGF levels were also associated with low blood cDC1 and cDC2 numbers 
in colorectal and non-small cell lung cancers and treatment of VEGF decoy 
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receptor, VEGF-Trap, increased the proportion of mature DCs, but not overall 
numbers or DC priming function in various solid cancer patients [106–108]. 
Direct evidence of VEGF-induced DC inhibition was also reported in DCs dif-
ferentiated from CD34+ precursors and moDCs [105, 106, 109]. Other cytokines 
such as IL-6, IL-10 and TGFβ have also demonstrated DC-inhibitory effects in 
the TME [104, 110–114].

In metastatic melanoma patients, higher active β-catenin signalling within 
the tumour was associated with low cDC1 signatures and T cell signatures [115]. 
Furthermore, the expression of fatty acid synthase was inversely correlated with 
CD11c+ DC signatures in ovarian, prostate and bladder cancers [116].

8. DC and immune checkpoint inhibitors

Chemotherapy and radiotherapy have remained the core pillars of cancer 
treatments. However, the combination of these traditional therapies with immu-
notherapies targeting immune checkpoint receptors has greatly enhanced patient 
clinical outcomes, especially in patients with immunogenic cancers, summarised in 
Table 2.

Immune checkpoints consist of a family of co-stimulatory and co-inhibitory 
receptors expressed by T cells that modulate their immune responses. Signalling 
from these receptors depends on their interaction with specific ligands present at 
the surface of various immune and non-immune cells. These regulatory pathways 
are a major cause of immune suppression during cancer due the high levels of 
co-inhibitory ligands being expressed in the tumour microenvironment, resulting 
in T cell immunosuppression. Monoclonal antibodies (mAb) blocking programmed 
cell death 1 (PD-1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA4), 
two co-inhibitory immune checkpoint receptors have become routine treatment 
against many malignancies and more therapeutic molecules against members of the 
immune checkpoint family are being trialled. Here we review the role of DC in the 
response to immune checkpoint therapies.

8.1 DC and PD-1

PD-1 is expressed by activated T cells and interacts with two ligands, PD-L1 
(B7-H1/CD274) and PD-L2 (B7-DC/CD273). PD-1 engagement results in down-
regulation of T cell proliferation and function [117]. This inhibitory pathway is 
harnessed by tumour cells to escape attack by T cells through expression of PD-L1 
on their cell surface. Anti-PD-1/PD-L1 therapies have shown considerable effects 
on patients with high PD-L1-expressing tumours, boosting the effector functions of 
tumour-associated CD8+ T cells inducing tumour regression. To date, two anti-PD-1 
mAb (Pembrolizumab, Nivolumab) and three anti-PD-L1 mAb (Atezolizumab, 
Durvalumab, Avelumab) have been approved for the treatment of cancers includ-
ing advanced melanoma, non-small-cell lung cancer, head and neck squamous cell 
carcinoma, Hodgkin lymphoma and renal carcinoma [118].

The ligands for PD-1 are abundant on DC. PD-L1 expression is on pDC and 
cDC subsets and upregulated in response to inflammatory stimuli and following 
exposure to platinum-based chemotherapy drugs [84, 119]. Furthermore, PD-L1 
is also highly expressed on DC that infiltrate tumours as exemplified by the high 
PD-L1 expression measured on both pDC and multiple myeloma cells isolated from 
the bone-marrow of multiple myeloma patients [120]. PD-L2 is detectable at low 
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checkpoint blockade therapies in a number of cancer types including metastatic 
melanoma [83]. However, the phenotype and role of tumour-infiltrating DCs 
(TIDCs) are less clear, possibly due to the lack of consistent markers probing DCs 
within the TME and the lack of distinctions between monocyte and putative DC 
subsets [84].

Using immunohistochemistry staining, many studies have previously used 
CD1a and S100 proteins to identify TIDCs. The higher density of these cells within 
tumours correlated with better clinical outcomes in melanoma and head and neck 
cancers [84, 85]. However, discrepancies in this correlation were reported in colon, 
breast, gastric, nasopharyngeal, lung and ovarian cancers [84, 86–88]. One major 
factor that could explain these reported discrepancies is the markers used to iden-
tify DCs. CD1a and S100 are expressed at different levels on Langerhans cells (LCs), 
interdigitating DCs and moDCs, but not on cDCs or pDCs and the expression of 
these markers on epithelial-tropic DCs such as LCs could account for the strong 
correlations observed in only the epithelial cancers [84]. Furthermore, DC activa-
tion markers CD83 and DC-LAMP were used to identify mature DCs, though CD83 
is not expressed in all DC subsets [7, 84, 89]. In breast adenocarcinoma patients, 
immature DCs were found to localise within the tumour whereas CD83/DC-LAMP+ 
mature DCs localised in the peri-tumour edges [90]. Some studies have reported 
significant correlations between the intratumoral infiltration of mature DCs with 
better clinical outcomes. For example, a recent report showed that the recruitment 
of DC-LAMPhi cells into the tumour stroma exhibited strong correlations with 
significantly higher overall and relapse-free survival in high-grade serous ovarian 
carcinoma [91]. However, this correlation has also been inconsistent in a number of 
different cancers [85, 90, 92–94].

More recently, with the establishment of The Cancer Genome Atlas (TCGA) 
program, scientists are able to compare DC-specific signatures with a publicly 
available molecular and clinical database of a vast array of cancers. In melanoma 
and breast cancer patients, DC-specific genes such as BATF3, IRF8, CLEC9A and 
FLT3 were associated with higher CTL scores and better overall survival [95–97]. 
They also exhibited positive correlations with chemokines CXCL9, 10 and 11 and 
chemokine receptor CCR7 expression [95, 96]. Furthermore, Broz et al. [98] 
observed strong associations between cDC1-derived genes within the tumour 
and better overall survival in breast cancer, head-neck squamous cell carcinoma 
and lung adenocarcinoma. This corroborates mouse tumour models showing that 
migratory cDC1 subsets are required for cross-presenting tumour Ag in tumour-
draining lymph nodes and priming of cytotoxic CD8+ T cells [97, 99].

Whilst the recent data above points towards a benefit of the infiltration of 
conventional DC into tumour sites, the correlation between tumour infiltrating 
pDCs and poor survival prognosis is clear. This has been described in breast, head 
and neck, ovarian and lung cancers [100–103] where it is thought that pDC-
induced tolerance and impaired IFN-α production contributes to a suppressive, 
non-immunogenic TME. Indeed mouse studies point to a role of TGF-β in the 
tumour environment in preventing an activatory phenotype of pDC and favouring 
a tolerising, IDO producing phenotype [104].

Further factors within the TME that have been illustrated to correlate with 
DC infiltration or function include for example, vascular endothelial growth 
factor (VEGF), a tumour angiogenic factor, inversely correlated with DC density 
and overall survival in gastric adenocarcinoma tissues [87, 105]. High serum 
VEGF levels were also associated with low blood cDC1 and cDC2 numbers 
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receptor, VEGF-Trap, increased the proportion of mature DCs, but not overall 
numbers or DC priming function in various solid cancer patients [106–108]. 
Direct evidence of VEGF-induced DC inhibition was also reported in DCs dif-
ferentiated from CD34+ precursors and moDCs [105, 106, 109]. Other cytokines 
such as IL-6, IL-10 and TGFβ have also demonstrated DC-inhibitory effects in 
the TME [104, 110–114].

In metastatic melanoma patients, higher active β-catenin signalling within 
the tumour was associated with low cDC1 signatures and T cell signatures [115]. 
Furthermore, the expression of fatty acid synthase was inversely correlated with 
CD11c+ DC signatures in ovarian, prostate and bladder cancers [116].

8. DC and immune checkpoint inhibitors

Chemotherapy and radiotherapy have remained the core pillars of cancer 
treatments. However, the combination of these traditional therapies with immu-
notherapies targeting immune checkpoint receptors has greatly enhanced patient 
clinical outcomes, especially in patients with immunogenic cancers, summarised in 
Table 2.

Immune checkpoints consist of a family of co-stimulatory and co-inhibitory 
receptors expressed by T cells that modulate their immune responses. Signalling 
from these receptors depends on their interaction with specific ligands present at 
the surface of various immune and non-immune cells. These regulatory pathways 
are a major cause of immune suppression during cancer due the high levels of 
co-inhibitory ligands being expressed in the tumour microenvironment, resulting 
in T cell immunosuppression. Monoclonal antibodies (mAb) blocking programmed 
cell death 1 (PD-1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA4), 
two co-inhibitory immune checkpoint receptors have become routine treatment 
against many malignancies and more therapeutic molecules against members of the 
immune checkpoint family are being trialled. Here we review the role of DC in the 
response to immune checkpoint therapies.

8.1 DC and PD-1

PD-1 is expressed by activated T cells and interacts with two ligands, PD-L1 
(B7-H1/CD274) and PD-L2 (B7-DC/CD273). PD-1 engagement results in down-
regulation of T cell proliferation and function [117]. This inhibitory pathway is 
harnessed by tumour cells to escape attack by T cells through expression of PD-L1 
on their cell surface. Anti-PD-1/PD-L1 therapies have shown considerable effects 
on patients with high PD-L1-expressing tumours, boosting the effector functions of 
tumour-associated CD8+ T cells inducing tumour regression. To date, two anti-PD-1 
mAb (Pembrolizumab, Nivolumab) and three anti-PD-L1 mAb (Atezolizumab, 
Durvalumab, Avelumab) have been approved for the treatment of cancers includ-
ing advanced melanoma, non-small-cell lung cancer, head and neck squamous cell 
carcinoma, Hodgkin lymphoma and renal carcinoma [118].

The ligands for PD-1 are abundant on DC. PD-L1 expression is on pDC and 
cDC subsets and upregulated in response to inflammatory stimuli and following 
exposure to platinum-based chemotherapy drugs [84, 119]. Furthermore, PD-L1 
is also highly expressed on DC that infiltrate tumours as exemplified by the high 
PD-L1 expression measured on both pDC and multiple myeloma cells isolated from 
the bone-marrow of multiple myeloma patients [120]. PD-L2 is detectable at low 
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levels on cDC only after activation and is highly expressed by moDC [121]. Whether 
PD-L2 is also expressed by DC in different TMEs and the effect of anti-PD-L2 
therapies is yet to be defined.

cDC1 play a critical role in the efficacy of anti-PD-1/PD-L1 mAb therapies. 
Single cell mass spectrometry analyses of PBMC from patients with advanced 
melanoma, before and after anti-PD-1 therapy revealed that CD141 and CD11c, 
both expressed by cDC1 are strong predictive biomarkers of clinical response 
to anti-PD-1 treatments [122]. This is consistent with several mouse studies 
reporting that cDC1-deficient mice do not respond to immune checkpoint 
blockade using anti-PD-L1 or a combination of anti-PD-1 anti-CTLA4 mAb 
[123, 124]. Furthermore, mice that possess cDC1 defective in antigen cross-
presentation fail to establish CTL responses and do not respond to anti-PD-1 
blockade [125].

The success of anti-PD-1 therapy also depends on a cross-talk between cDC1 and 
T cells in the TME. In mouse models anti-PD-1 treatment induces IL-12 production 
by tumour-infiltrating cDC1 [124, 126] which amplifies T cell effector functions. In 
melanoma patients, the clinical electroporation of an IL-12 plasmid in the tumour 
lesions enhances the CTL gene signature, thus validating the role of this cytokine in 
supporting CTL responses [126], Figure 1.

In addition to its ligands, expression of the PD-1 receptor on DC has been 
reported during cancer. In hepatocellular carcinoma patients, detectable levels of 
PD-1 were reported on peripheral blood cDC1, cDC2 and pDC whereas PD-1 was 
only present on cDC1 in healthy donors. This was confirmed with microscopy 
analyses of cancerous liver tissues showing co-expression of PD-1 and the DC 
marker CD11c [127]. In line with this data, co-expression of PD-1 and PD-L1 
was detected on CD11c+ DC isolated from the tumours of non-small cell lung 
cancer patients [128]. However, in this case, PD-1 was absent from DC isolated 
from the PBMC of either cancer patients or healthy donors, suggesting that PD-1 
is upregulated locally on DC in response to the immunosuppressive tumour 
 environment [128].

Mouse studies support an inhibitory role of PD-1 on DC [127]. This finding 
however contrasts with a recent study revealing that PD-1 can establish cis-
interactions with both PD-L1 and PD-L2 at the cell membrane. PD-L1/PD-1 cis-
interaction disrupts PD-L1 binding to PD-1 on T cells, thus resulting in increased 
T cell activities. However, whether this mechanism exists in DC in the setting of 
cancer remains unknown [128]. Similarly, several reports have shown that PD-L1 
can interact in cis with the immune checkpoint ligand CD80/B7.1 [129–131] and 
this occurs on several types of APC, including cDC1 and cDC2 [131]. The PD-L1/
CD80 cis-interaction limits the binding of PD-L1 to PD-1 on T cells and ultimately 
promotes T cell immune responses [131]. Altogether, these data show that, while 
trans-interactions between PD-L1 and PD-1 at the interface of DC and T cells 
promote T cell immune suppression, cis-interactions between PD-L1 and other 
molecules on DC show opposite effects and could potentially promote cancer 
immunity.

Combining anti-PD-1/PD-L1 therapy with DC-based vaccines, or vaccines that 
target DC in situ, or include a DC growth factor, is a logical strategy to increase 
responses to checkpoint blockade in cancer patients. Several studies in mice have 
reported that such combination leads to higher protection by boosting the antigen-
specific T cell immune response induced by different type of vaccines [18, 123, 
132–134]. Several vaccines containing peptides or viral vectors, in combination with 
anti-PD-1 mAb Pembolizumab or Nivolumab, have shown encouraging results in 
early clinical trial with patients with advanced solid cancers, melanoma and Human 
Papillomavirus 16-Related Cancer [135–138].
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levels on cDC only after activation and is highly expressed by moDC [121]. Whether 
PD-L2 is also expressed by DC in different TMEs and the effect of anti-PD-L2 
therapies is yet to be defined.

cDC1 play a critical role in the efficacy of anti-PD-1/PD-L1 mAb therapies. 
Single cell mass spectrometry analyses of PBMC from patients with advanced 
melanoma, before and after anti-PD-1 therapy revealed that CD141 and CD11c, 
both expressed by cDC1 are strong predictive biomarkers of clinical response 
to anti-PD-1 treatments [122]. This is consistent with several mouse studies 
reporting that cDC1-deficient mice do not respond to immune checkpoint 
blockade using anti-PD-L1 or a combination of anti-PD-1 anti-CTLA4 mAb 
[123, 124]. Furthermore, mice that possess cDC1 defective in antigen cross-
presentation fail to establish CTL responses and do not respond to anti-PD-1 
blockade [125].

The success of anti-PD-1 therapy also depends on a cross-talk between cDC1 and 
T cells in the TME. In mouse models anti-PD-1 treatment induces IL-12 production 
by tumour-infiltrating cDC1 [124, 126] which amplifies T cell effector functions. In 
melanoma patients, the clinical electroporation of an IL-12 plasmid in the tumour 
lesions enhances the CTL gene signature, thus validating the role of this cytokine in 
supporting CTL responses [126], Figure 1.

In addition to its ligands, expression of the PD-1 receptor on DC has been 
reported during cancer. In hepatocellular carcinoma patients, detectable levels of 
PD-1 were reported on peripheral blood cDC1, cDC2 and pDC whereas PD-1 was 
only present on cDC1 in healthy donors. This was confirmed with microscopy 
analyses of cancerous liver tissues showing co-expression of PD-1 and the DC 
marker CD11c [127]. In line with this data, co-expression of PD-1 and PD-L1 
was detected on CD11c+ DC isolated from the tumours of non-small cell lung 
cancer patients [128]. However, in this case, PD-1 was absent from DC isolated 
from the PBMC of either cancer patients or healthy donors, suggesting that PD-1 
is upregulated locally on DC in response to the immunosuppressive tumour 
 environment [128].

Mouse studies support an inhibitory role of PD-1 on DC [127]. This finding 
however contrasts with a recent study revealing that PD-1 can establish cis-
interactions with both PD-L1 and PD-L2 at the cell membrane. PD-L1/PD-1 cis-
interaction disrupts PD-L1 binding to PD-1 on T cells, thus resulting in increased 
T cell activities. However, whether this mechanism exists in DC in the setting of 
cancer remains unknown [128]. Similarly, several reports have shown that PD-L1 
can interact in cis with the immune checkpoint ligand CD80/B7.1 [129–131] and 
this occurs on several types of APC, including cDC1 and cDC2 [131]. The PD-L1/
CD80 cis-interaction limits the binding of PD-L1 to PD-1 on T cells and ultimately 
promotes T cell immune responses [131]. Altogether, these data show that, while 
trans-interactions between PD-L1 and PD-1 at the interface of DC and T cells 
promote T cell immune suppression, cis-interactions between PD-L1 and other 
molecules on DC show opposite effects and could potentially promote cancer 
immunity.

Combining anti-PD-1/PD-L1 therapy with DC-based vaccines, or vaccines that 
target DC in situ, or include a DC growth factor, is a logical strategy to increase 
responses to checkpoint blockade in cancer patients. Several studies in mice have 
reported that such combination leads to higher protection by boosting the antigen-
specific T cell immune response induced by different type of vaccines [18, 123, 
132–134]. Several vaccines containing peptides or viral vectors, in combination with 
anti-PD-1 mAb Pembolizumab or Nivolumab, have shown encouraging results in 
early clinical trial with patients with advanced solid cancers, melanoma and Human 
Papillomavirus 16-Related Cancer [135–138].
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8.2 DC and CTLA4

The co-inhibitory immune checkpoint CTLA4 (CD152) is constitutively 
expressed by regulatory T cells (Treg) and by effector T cells upon activation. 
CTLA4 is highly homologous to the co-stimulatory receptor CD28 and binds the 
same ligands CD80 and CD86 (B7.2), however with a much higher affinity. As 
such, CTLA4 outcompetes CD28 for ligand binding and reduces CD28-mediated 
co-stimulation of T cell functions. CTLA4 blockade promotes anti-tumour 
immunity by increasing the activation of effector T cells and by depleting Treg in 
the TME. The CTLA4 blocking mAb Ipilimumab and Tremelimumab have been 
approved for the treatment of metastatic melanoma, renal cell carcinoma and 
colorectal cancer [118].

CTLA4 on T cells directly alters DC functions by removing the CTLA4 
ligands (CD80/86) from their cell surfaces. When human moDC are co-cultured 
with CTLA4+ T cells, CD80/86 levels on DC decrease rapidly in a CTLA4-
dependent manner. This mechanism, named trans-endocytosis, involves the 
physical capture of CTLA4 ligands by the receptor and their degradation. This 
process is upregulated by TCR engagement [139, 140]. Mouse in vivo studies 
show that trans-endocytosis is primarily carried out by regulatory T cells and 
impacts the migratory cDC1 and cDC2 [141]. In addition, CTLA4 interaction 
with CD80/CD86 on DC induces immunosuppression through reverse signalling. 
MoDC stimulated with soluble CTLA4 or agonistic anti-CD80/86 Ab produced 
indoleamine 2,3-dioxygenase (IDO), which is able to inhibit allogenic T cell 
activation [142]. IDO is expressed by human pDC [143], hence similar immu-
nosuppressive pathways are likely to be induced downstream of CD80/86 in this 
subset, as reported in mouse pDC [144].

Besides their regulation through CTLA4-CD80/86 interaction, moDC also 
express the CTLA4 molecule upon activation by TLR stimuli. Treatment of these 
cells with an agonistic anti-CTLA4 Ab induced increased production of IL-10, 
reduced expression of IL-8 and IL-12 and decreased T cell stimulation capac-
ity [145]. MoDC are also able to secrete CTLA4 in extracellular microvesicles. 
Microvesicular CTLA4 has been shown to downregulate CD80 and CD86 on 
moDC [146].

Combinatorial approaches of anti-CTLA4 mAb with cancer vaccines have been 
tested in clinics and have yielded mixed results. In melanoma patients, peptide 
vaccines, in combination with anti-CTLA4 Ipilimumab did not show better clinical 
outcomes compared to Ipilimumab alone [127, 147, 148]. However, other strategies 
using DC vaccines have provided promising results. For instance, the co-admin-
istration to melanoma patients of autologous moDC that have been pulsed with 
tumour peptide, together with Tremelimumab, resulted in objective and durable 
tumour responses [149]. Furthermore, a phase II study using Ipilimumab and 
moDC electroporated with synthetic mRNA (TriMixDC-MEL) has been tested in 
advanced melanoma patients and has shown an encouraging rate of highly durable 
tumour response [150].

8.3 DC and TIM-3

T cell immunoglobulin mucin-3 (TIM-3) is a co-inhibitory immune check-
point receptor expressed by all T cell populations as well as B cells and a large 
variety of myeloid cells. Four TIM-3 ligands have been identified, including 
Galectin-9, CEACAM-1, HMGB1 and phosphatidylserine. Engagement of TIM-3 on 
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tumour-infiltrating T cells induces exhaustion and suppresses tumour immunity. 
Preclinical studies have reported high therapeutic activities of blocking anti-TIM-3 
antibodies against various types of malignancies and clinical trials with TIM-3 
inhibitors are currently underway [128].

High TIM-3 expression has been reported on cDC1 and cDC2 from peripheral 
blood [151–153] and on tumour-associated cDC1 and cDC2 from mammary 
tumour biopsies [152]. Mouse models indicated that blocking TIM-3 on cDC1 leads 
to an increase in the T cell chemoattractant CXCL9. Moreover, cDC1 expressing 
TIM-3 correlated with CXCL9 expression in human breast cancer biopsies and was 
positively associated with CD8+ T cell infiltration. These data suggest that TIM-3 
blocking in these cancers could potentially enhance CD8+ T cell recruitment to the 
TME [152].

8.4 DC and LAG-3

Lymphocyte activation gene-3 (LAG-3) is a co-inhibitory immune check-
point receptor expressed on activated T cells and NK cells that recognise MHCII 
molecules on APCs as a ligand. LAG3 negatively regulates T cell activation and is 
frequently co-expressed with PD-1 on exhausted T cells in the TME. Several LAG-
3-targeting cancer immunotherapies are currently in different phases of clinical 
development [154].

The interaction between MHCII and LAG-3 not only has effects in T cells, 
but also induces reverse signalling in DCs that is stimulatory. This was shown 
using the soluble LAG-3-Ig fusion protein that activates moDC, as indicated by 
the upregulation of co-stimulatory molecules, the production of several pro-
inflammatory cytokines and chemokines and increased allogenic T cell activation. 
However, Ab-mediated MHCII ligation does not activate moDC, thus showing 
that the MHCII: LAG-3 interaction is required in this process [155–157]. Soluble 
LAG-3-Ig fusion protein in combination with the chemotherapy drug Paclitaxel 
has demonstrated elevated clinical activity in metastatic breast carcinoma during 
a phase I/II trial. This treatment also strongly stimulated the patients’ APC, as 
evidenced by the increase in the number and activation of monocytes, pDC and 
cDCs [158].

Notably, LAG-3 itself has been found expressed by DC, specifically by a sub-
population of circulating pDC in healthy donors. LAG-3+ pDC are also found in the 
tumour lesions and in the tumour-draining lymph nodes of melanoma patients and 
are thought to contribute to the immunosuppressive environment. Engagement 
of LAG-3 on pDC provides an activating signal, independent of TLR signalling, 
inducing low IFN-α and high IL-6 expression [159]. Hence, LAG-3-specific mAb 
in cancer immunotherapies may enhance the anti-tumour immune response by 
inhibiting LAG-3 signalling in both T cells and DC.

8.5 DC and ICOS

Inducible T cell costimulatory (ICOS) belongs to the co-stimulatory immune 
checkpoint receptor family and similarly to CD28, enhances the proliferation and 
effector functions of T cells. ICOS is expressed on activated T cells and constitu-
tively on a subpopulation of Treg [160] while ICOS-L is present at the surface of 
APC. High ICOS expression on T cells has been particularly observed during anti-
CTLA4 therapies and the co-administration of agonistic ICOS-specific mAb further 
improves the efficacy to CTLA4 blockade [161].
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Preclinical studies have reported high therapeutic activities of blocking anti-TIM-3 
antibodies against various types of malignancies and clinical trials with TIM-3 
inhibitors are currently underway [128].

High TIM-3 expression has been reported on cDC1 and cDC2 from peripheral 
blood [151–153] and on tumour-associated cDC1 and cDC2 from mammary 
tumour biopsies [152]. Mouse models indicated that blocking TIM-3 on cDC1 leads 
to an increase in the T cell chemoattractant CXCL9. Moreover, cDC1 expressing 
TIM-3 correlated with CXCL9 expression in human breast cancer biopsies and was 
positively associated with CD8+ T cell infiltration. These data suggest that TIM-3 
blocking in these cancers could potentially enhance CD8+ T cell recruitment to the 
TME [152].

8.4 DC and LAG-3

Lymphocyte activation gene-3 (LAG-3) is a co-inhibitory immune check-
point receptor expressed on activated T cells and NK cells that recognise MHCII 
molecules on APCs as a ligand. LAG3 negatively regulates T cell activation and is 
frequently co-expressed with PD-1 on exhausted T cells in the TME. Several LAG-
3-targeting cancer immunotherapies are currently in different phases of clinical 
development [154].
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but also induces reverse signalling in DCs that is stimulatory. This was shown 
using the soluble LAG-3-Ig fusion protein that activates moDC, as indicated by 
the upregulation of co-stimulatory molecules, the production of several pro-
inflammatory cytokines and chemokines and increased allogenic T cell activation. 
However, Ab-mediated MHCII ligation does not activate moDC, thus showing 
that the MHCII: LAG-3 interaction is required in this process [155–157]. Soluble 
LAG-3-Ig fusion protein in combination with the chemotherapy drug Paclitaxel 
has demonstrated elevated clinical activity in metastatic breast carcinoma during 
a phase I/II trial. This treatment also strongly stimulated the patients’ APC, as 
evidenced by the increase in the number and activation of monocytes, pDC and 
cDCs [158].

Notably, LAG-3 itself has been found expressed by DC, specifically by a sub-
population of circulating pDC in healthy donors. LAG-3+ pDC are also found in the 
tumour lesions and in the tumour-draining lymph nodes of melanoma patients and 
are thought to contribute to the immunosuppressive environment. Engagement 
of LAG-3 on pDC provides an activating signal, independent of TLR signalling, 
inducing low IFN-α and high IL-6 expression [159]. Hence, LAG-3-specific mAb 
in cancer immunotherapies may enhance the anti-tumour immune response by 
inhibiting LAG-3 signalling in both T cells and DC.
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Inducible T cell costimulatory (ICOS) belongs to the co-stimulatory immune 
checkpoint receptor family and similarly to CD28, enhances the proliferation and 
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tively on a subpopulation of Treg [160] while ICOS-L is present at the surface of 
APC. High ICOS expression on T cells has been particularly observed during anti-
CTLA4 therapies and the co-administration of agonistic ICOS-specific mAb further 
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pDC are able to induce immunosuppression though ICOS stimulation. ICOS-L 
is strongly upregulated by human blood pDC, but not CD11c+ cDC, in response to 
TLR stimuli or IL-3 [162]. Co-cultures of pDC with allogenic T cells induced IL-10 
expression through a mechanism mediated by ICOS-L-ICOS interaction [162] and 
similar observations were reported with pDC isolated from ovarian carcinoma 
[163]. Furthermore, pDC are able to induce Treg proliferation though ICOS stimu-
lation [160] and this mechanism likely explains the dramatic accumulation of ICOS+ 
Treg in ovarian, breast, liver and gastric tumour tissues, in close proximity with 
ICOS-L+ pDC [101, 164–166].

9. Summary

DCs are rare, heterogeneous cells with clear roles in anti-tumour immunity. 
As summarised in Figure 1, understanding how best to activate DC to gain 
optimal anti-tumour adaptive immune responses will likely involve careful 
optimisation of adjuvants, checkpoint immunotherapies and DC targeting 
strategies. Emerging studies will likely examine checkpoint receptors and their 
ligands on DC, lymphocytes and other cells in tumour environments, in order to 
design targeted therapies for optimal antigen presentation, DC activation and 
anti-tumour response.
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pDC are able to induce immunosuppression though ICOS stimulation. ICOS-L 
is strongly upregulated by human blood pDC, but not CD11c+ cDC, in response to 
TLR stimuli or IL-3 [162]. Co-cultures of pDC with allogenic T cells induced IL-10 
expression through a mechanism mediated by ICOS-L-ICOS interaction [162] and 
similar observations were reported with pDC isolated from ovarian carcinoma 
[163]. Furthermore, pDC are able to induce Treg proliferation though ICOS stimu-
lation [160] and this mechanism likely explains the dramatic accumulation of ICOS+ 
Treg in ovarian, breast, liver and gastric tumour tissues, in close proximity with 
ICOS-L+ pDC [101, 164–166].

9. Summary

DCs are rare, heterogeneous cells with clear roles in anti-tumour immunity. 
As summarised in Figure 1, understanding how best to activate DC to gain 
optimal anti-tumour adaptive immune responses will likely involve careful 
optimisation of adjuvants, checkpoint immunotherapies and DC targeting 
strategies. Emerging studies will likely examine checkpoint receptors and their 
ligands on DC, lymphocytes and other cells in tumour environments, in order to 
design targeted therapies for optimal antigen presentation, DC activation and 
anti-tumour response.
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of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 

115

Dendritic Cells and Their Roles in Anti-Tumour Immunity
DOI: http://dx.doi.org/10.5772/intechopen.91692

[1] Banchereau J, Steinman RM. 
Dendritic cells and the control of 
immunity. Nature. 1998;392:245-252. 
DOI: 10.1038/32588

[2] Macri C, Pang ES, Patton T, 
O’Keeffe M. Dendritic cell subsets. 
Seminars in Cell & Developmental 
Biology. 2018;84:11-21. DOI: 10.1016/j.
semcdb.2017.12.009

[3] Villadangos JA, Schnorrer P, 
Wilson NS. Control of MHC class II 
antigen presentation in dendritic cells: 
A balance between creative and 
destructive forces. Immunological 
Reviews. 2005;207:191-205. DOI: 
10.1111/j.0105-2896.2005.00317.x

[4] Haniffa M, Shin A, Bigley V, 
McGovern N, Teo P, See P, et al. Human 
tissues contain CD141hi cross-
presenting dendritic cells with 
functional homology to mouse CD103+ 
nonlymphoid dendritic cells. Immunity. 
2012;37:60-73. DOI: 10.1016/j.
immuni.2012.04.012

[5] Baharom F, Thomas S, Rankin G, 
Lepzien R, Pourazar J, Behndig AF, 
et al. Dendritic cells and monocytes 
with distinct inflammatory responses 
reside in lung mucosa of healthy 
humans. The Journal of Immunology. 
2016;196:4498. DOI: 10.4049/jimmunol. 
1600071

[6] Guilliams M, Dutertre C-A, Scott CL, 
McGovern N, Sichien D, Chakarov S, 
et al. Unsupervised high-dimensional 
analysis aligns dendritic cells across 
tissues and species. Immunity. 
2016;45:669-684. DOI: 10.1016/j.
immuni.2016.08.015

[7] Heidkamp GF, Sander J, 
Lehmann CHK, Heger L, Eissing N, 
Baranska A, et al. Human lymphoid 
organ dendritic cell identity is 
predominantly dictated by ontogeny, 
not tissue microenvironment. Science 

Immunology. 2016;1:eaai7677. DOI: 
10.1126/sciimmunol.aai7677

[8] Villani A-C, Satija R, Reynolds G, 
Sarkizova S, Shekhar K, Fletcher J, 
et al. Single-cell RNA-seq reveals new 
types of human blood dendritic cells, 
monocytes, and progenitors. Science. 
2017;356:eaah4573. DOI: 10.1126/
science.aah4573

[9] See P, Dutertre C-A, Chen J, 
Günther P, McGovern N, Irac SE, et al. 
Mapping the human DC lineage 
through the integration of high-
dimensional techniques. Science. 
2017;356:eaag3009. DOI: 10.1126/
science.aag3009

[10] O’Keeffe M, Mok WH, Radford KJ. 
Human dendritic cell subsets and 
function in health and disease. 
Cellular and Molecular Life Sciences. 
2015;72:4309-4325. DOI: 10.1007/
s00018-015-2005-0

[11] Poulin LF, Salio M, Griessinger E, 
Anjos-Afonso F, Craciun L, Chen J-L, 
et al. Characterization of human 
DNGR-1+ BDCA3+ leukocytes 
as putative equivalents of mouse 
CD8α+ dendritic cells. The Journal of 
Experimental Medicine. 2010;207:1261. 
DOI: 10.1084/jem.20092618

[12] Caminschi I, Proietto AI, Ahmet F, 
Kitsoulis S, Shin Teh J, Lo JCY, et al. 
The dendritic cell subtype-restricted 
C-type lectin Clec9A is a target 
for vaccine enhancement. Blood. 
2008;112:3264. DOI: 10.1182/
blood-2008-05-155176

[13] Huysamen C, Willment JA, 
Dennehy KM, Brown GD. CLEC9A 
is a novel activation C-type Lectin-
like receptor expressed on BDCA3+ 
dendritic cells and a subset of 
monocytes. Journal of Biological 
Chemistry. 2008;283:16693-16701. DOI: 
10.1074/jbc.M709923200

References



Current Cancer Treatment

116

[14] Sancho D, Mourão-Sá D, Joffre OP, 
Schulz O, Rogers NC, Pennington DJ, 
et al. Tumor therapy in mice via antigen 
targeting to a novel, DC-restricted 
C-type lectin. The Journal of Clinical 
Investigation. 2008;118:2098-2110. DOI: 
10.1172/JCI34584

[15] Poulin LF, Reyal Y, Uronen-Hansson 
H, Schraml BU, Sancho D, Murphy 
KM, et al. DNGR-1 is a specific and 
universal marker of mouse and human 
Batf3-dependent dendritic cells in 
lymphoid and nonlymphoid tissues. 
Blood. 2012;119:6052. DOI: 10.1182/
blood-2012-01-406967

[16] Jongbloed SL, Kassianos AJ, 
McDonald KJ, Clark GJ, Ju X, Angel CE, 
et al. Human CD141+ (BDCA-3)+ 
dendritic cells (DCs) represent a unique 
myeloid DC subset that cross-presents 
necrotic cell antigens. The Journal of 
Experimental Medicine. 2010;207:1247. 
DOI: 10.1084/jem.20092140

[17] Proietto AI, Mittag D, Roberts AW, 
Sprigg N, Wu L. The equivalents of 
human blood and spleen dendritic cell 
subtypes can be generated in vitro from 
human CD34+ stem cells in the presence 
of fms-like tyrosine kinase 3 ligand and 
thrombopoietin. Cellular and molecular 
immunology. 2012;9:446. DOI: 10.1038/
cmi.2012.48

[18] Ding Y, Wilkinson A, Idris A, 
Fancke B, O’Keeffe M, Khalil D, et al. 
FLT3-ligand treatment of humanized 
mice results in the generation of 
large numbers of CD141+ and CD1c+ 
dendritic cells In vivo. The Journal of 
Immunology. 2014;192:1982. DOI: 
10.4049/jimmunol.1302391

[19] Galibert L, Diemer GS, Liu Z, 
Johnson RS, Smith JL, Walzer T, et al. 
Nectin-like protein 2 defines a subset of 
T-cell zone dendritic cells and is a ligand 
for class-I-restricted T-cell-associated 
molecule. Journal of Biological 
Chemistry. 2005;280:21955-21964. DOI: 
10.1074/jbc.M502095200

[20] Hambleton S, Salem S, 
Bustamante J, Bigley V, Boisson-
Dupuis S, Azevedo J, et al. IRF8 
mutations and human dendritic-cell 
immunodeficiency. New England 
Journal of Medicine. 2011;365:127-138. 
DOI: 10.1056/NEJMoa1100066

[21] Robbins SH, Walzer T, Dembélé D, 
Thibault C, Defays A, Bessou G, et al. 
Novel insights into the relationships 
between dendritic cell subsets in 
human and mouse revealed by genome-
wide expression profiling. Genome 
Biology. 2008;9:R17. DOI: 10.1186/
gb-2008-9-1-r17

[22] Krüger A, Oldenburg M, 
Chebrolu C, Beisser D, Kolter J, 
Sigmund AM, et al. Human TLR8 senses 
UR/URR motifs in bacterial and 
mitochondrial RNA. EMBO Reports. 
2015;16:1656-1663. DOI: 10.15252/
embr.201540861

[23] Lauterbach H, Bathke B, Gilles S, 
Traidl-Hoffmann C, Luber CA, Fejer G, 
et al. Mouse CD8α+ DCs and human 
BDCA3+ DCs are major producers 
of IFN-λ in response to poly IC. The 
Journal of Experimental Medicine. 
2010;207:2703. DOI: 10.1084/
jem.20092720

[24] Yoshio S, Kanto T, Kuroda S, 
Matsubara T, Higashitani K, Kakita N, 
et al. Human blood dendritic cell antigen 
3 (BDCA3)+ dendritic cells are a potent 
producer of interferon-λ in response 
to hepatitis C virus. Hepatology. 
2013;57:1705-1715. DOI: 10.1002/
hep.26182

[25] Zhang JG, Czabotar PE, 
Policheni AN, et al. The dendritic cell 
receptor Clec9A binds damaged cells 
via exposed actin filaments. Immunity. 
2012;36(4):646-657. DOI: 10.1016/j.
immuni.2012.03.009

[26] Collin M, Ginhoux F. Human 
dendritic cells. Seminars in Cell & 
Developmental Biology. 2019;86:1-2. 
DOI: 10.1016/j.semcdb.2018.04.015

117

Dendritic Cells and Their Roles in Anti-Tumour Immunity
DOI: http://dx.doi.org/10.5772/intechopen.91692

[27] Heger L, Balk S, Lühr JJ, et al. 
CLEC10A is a specific marker for human 
CD1c+ dendritic cells and enhances 
their toll-like receptor 7/8-induced 
cytokine secretion. Frontiers in 
Immunology. 2018;9:744. DOI: 10.3389/
fimmu.2018.00744 [Published: 27 April 
2018]

[28] Yin X, Yu H, Jin X, Li J, Guo H, Shi 
Q , et al. Human blood CD1c+ dendritic 
cells encompass CD5high and CD5low 
subsets that differ significantly in 
phenotype, gene expression, and 
functions. The Journal of Immunology. 
2017;198:1553. DOI: 10.4049/
jimmunol.1600193

[29] Schlitzer A, McGovern N, Teo P, 
Zelante T, Atarashi K, Low D, et al. 
IRF4 transcription factor-dependent 
CD11b+ dendritic cells in human 
and mouse control mucosal IL-17 
cytokine responses. Immunity. 
2013;38:970-983. DOI: 10.1016/j.
immuni.2013.04.011

[30] Luber CA, Cox J, Lauterbach H, 
Fancke B, Selbach M, Tschopp J, et al. 
Quantitative proteomics reveals 
subset-specific viral recognition in 
dendritic cells. Immunity. 2010;32:279-
289. DOI: 10.1016/j.immuni.2010.01.013

[31] Worah K, Mathan TSM, Vu Manh TP, 
Keerthikumar S, Schreibelt G, Tel J, 
et al. Proteomics of human dendritic 
cell subsets reveals subset-specific 
surface markers and differential 
Inflammasome function. Cell Reports. 
2016;16:2953-2966. DOI: 10.1016/j.
celrep.2016.08.023

[32] Mittag D, Proietto AI, Loudovaris T, 
Mannering SI, Vremec D, Shortman K, 
et al. Human dendritic cell subsets 
from spleen and blood are similar in 
phenotype and function but modified 
by donor health status. The Journal 
of Immunology. 2011;186:6207. DOI: 
10.4049/jimmunol.1002632

[33] Tel J, Aarntzen EHJG, Baba T, 
Schreibelt G, Schulte BM, Benitez- 

Ribas D, et al. Natural human 
plasmacytoid dendritic cells induce 
antigen-specific T-cell responses in 
melanoma patients. Cancer Research. 
2013;73:1063. DOI: 10.1158/0008-5472.
CAN-12-2583

[34] Chun I, Yu CB, Wang Y, Marches F, 
Helft J, Leboeuf M, et al. Human CD1c+ 
dendritic cells drive the differentiation 
of CD103+ CD8+ mucosal effector T 
cells via the cytokine TGF-β. Immunity. 
2013;38:818-830. DOI: 10.1016/j.
immuni.2013.03.004

[35] Chiang M-C, Tullett KM, Lee YS, 
Idris A, Ding Y, McDonald KJ, et al. 
Differential uptake and cross-
presentation of soluble and necrotic cell 
antigen by human DC subsets. European 
Journal of Immunology. 2016;46:329-
339. DOI: 10.1002/eji.201546023

[36] Colonna M, Trinchieri G, 
Liu Y-J. Plasmacytoid dendritic cells 
in immunity. Nature Immunology. 
2004;5:1219

[37] Facchetti F, Vermi W, Mason D, 
Colonna M. The plasmacytoid 
monocyte/interferon producing cells. 
Virchows Archiv. 2003;443:703-717

[38] Grouard G, Rissoan M-C, 
Filgueira L, Durand I, Banchereau J, 
Liu Y-J. The enigmatic plasmacytoid T 
cells develop into dendritic cells with 
interleukin (IL)-3 and CD40-ligand. 
The Journal of Experimental Medicine. 
1997;185:1101-1112

[39] Coccia EM, Severa M, Giacomini E, 
Monneron D, Remoli ME, Julkunen I, 
et al. Viral infection and Toll-like receptor 
agonists induce a differential expression 
of type I and λ interferons in human 
plasmacytoid and monocyte-derived 
dendritic cells. European Journal of 
Immunology. 2004;34:796-805. DOI: 
10.1002/eji.200324610

[40] Gilliet M, Cao W, Liu Y-J. 
Plasmacytoid dendritic cells: Sensing 



Current Cancer Treatment

116

[14] Sancho D, Mourão-Sá D, Joffre OP, 
Schulz O, Rogers NC, Pennington DJ, 
et al. Tumor therapy in mice via antigen 
targeting to a novel, DC-restricted 
C-type lectin. The Journal of Clinical 
Investigation. 2008;118:2098-2110. DOI: 
10.1172/JCI34584

[15] Poulin LF, Reyal Y, Uronen-Hansson 
H, Schraml BU, Sancho D, Murphy 
KM, et al. DNGR-1 is a specific and 
universal marker of mouse and human 
Batf3-dependent dendritic cells in 
lymphoid and nonlymphoid tissues. 
Blood. 2012;119:6052. DOI: 10.1182/
blood-2012-01-406967

[16] Jongbloed SL, Kassianos AJ, 
McDonald KJ, Clark GJ, Ju X, Angel CE, 
et al. Human CD141+ (BDCA-3)+ 
dendritic cells (DCs) represent a unique 
myeloid DC subset that cross-presents 
necrotic cell antigens. The Journal of 
Experimental Medicine. 2010;207:1247. 
DOI: 10.1084/jem.20092140

[17] Proietto AI, Mittag D, Roberts AW, 
Sprigg N, Wu L. The equivalents of 
human blood and spleen dendritic cell 
subtypes can be generated in vitro from 
human CD34+ stem cells in the presence 
of fms-like tyrosine kinase 3 ligand and 
thrombopoietin. Cellular and molecular 
immunology. 2012;9:446. DOI: 10.1038/
cmi.2012.48

[18] Ding Y, Wilkinson A, Idris A, 
Fancke B, O’Keeffe M, Khalil D, et al. 
FLT3-ligand treatment of humanized 
mice results in the generation of 
large numbers of CD141+ and CD1c+ 
dendritic cells In vivo. The Journal of 
Immunology. 2014;192:1982. DOI: 
10.4049/jimmunol.1302391

[19] Galibert L, Diemer GS, Liu Z, 
Johnson RS, Smith JL, Walzer T, et al. 
Nectin-like protein 2 defines a subset of 
T-cell zone dendritic cells and is a ligand 
for class-I-restricted T-cell-associated 
molecule. Journal of Biological 
Chemistry. 2005;280:21955-21964. DOI: 
10.1074/jbc.M502095200

[20] Hambleton S, Salem S, 
Bustamante J, Bigley V, Boisson-
Dupuis S, Azevedo J, et al. IRF8 
mutations and human dendritic-cell 
immunodeficiency. New England 
Journal of Medicine. 2011;365:127-138. 
DOI: 10.1056/NEJMoa1100066

[21] Robbins SH, Walzer T, Dembélé D, 
Thibault C, Defays A, Bessou G, et al. 
Novel insights into the relationships 
between dendritic cell subsets in 
human and mouse revealed by genome-
wide expression profiling. Genome 
Biology. 2008;9:R17. DOI: 10.1186/
gb-2008-9-1-r17

[22] Krüger A, Oldenburg M, 
Chebrolu C, Beisser D, Kolter J, 
Sigmund AM, et al. Human TLR8 senses 
UR/URR motifs in bacterial and 
mitochondrial RNA. EMBO Reports. 
2015;16:1656-1663. DOI: 10.15252/
embr.201540861

[23] Lauterbach H, Bathke B, Gilles S, 
Traidl-Hoffmann C, Luber CA, Fejer G, 
et al. Mouse CD8α+ DCs and human 
BDCA3+ DCs are major producers 
of IFN-λ in response to poly IC. The 
Journal of Experimental Medicine. 
2010;207:2703. DOI: 10.1084/
jem.20092720

[24] Yoshio S, Kanto T, Kuroda S, 
Matsubara T, Higashitani K, Kakita N, 
et al. Human blood dendritic cell antigen 
3 (BDCA3)+ dendritic cells are a potent 
producer of interferon-λ in response 
to hepatitis C virus. Hepatology. 
2013;57:1705-1715. DOI: 10.1002/
hep.26182

[25] Zhang JG, Czabotar PE, 
Policheni AN, et al. The dendritic cell 
receptor Clec9A binds damaged cells 
via exposed actin filaments. Immunity. 
2012;36(4):646-657. DOI: 10.1016/j.
immuni.2012.03.009

[26] Collin M, Ginhoux F. Human 
dendritic cells. Seminars in Cell & 
Developmental Biology. 2019;86:1-2. 
DOI: 10.1016/j.semcdb.2018.04.015

117

Dendritic Cells and Their Roles in Anti-Tumour Immunity
DOI: http://dx.doi.org/10.5772/intechopen.91692

[27] Heger L, Balk S, Lühr JJ, et al. 
CLEC10A is a specific marker for human 
CD1c+ dendritic cells and enhances 
their toll-like receptor 7/8-induced 
cytokine secretion. Frontiers in 
Immunology. 2018;9:744. DOI: 10.3389/
fimmu.2018.00744 [Published: 27 April 
2018]

[28] Yin X, Yu H, Jin X, Li J, Guo H, Shi 
Q , et al. Human blood CD1c+ dendritic 
cells encompass CD5high and CD5low 
subsets that differ significantly in 
phenotype, gene expression, and 
functions. The Journal of Immunology. 
2017;198:1553. DOI: 10.4049/
jimmunol.1600193

[29] Schlitzer A, McGovern N, Teo P, 
Zelante T, Atarashi K, Low D, et al. 
IRF4 transcription factor-dependent 
CD11b+ dendritic cells in human 
and mouse control mucosal IL-17 
cytokine responses. Immunity. 
2013;38:970-983. DOI: 10.1016/j.
immuni.2013.04.011

[30] Luber CA, Cox J, Lauterbach H, 
Fancke B, Selbach M, Tschopp J, et al. 
Quantitative proteomics reveals 
subset-specific viral recognition in 
dendritic cells. Immunity. 2010;32:279-
289. DOI: 10.1016/j.immuni.2010.01.013

[31] Worah K, Mathan TSM, Vu Manh TP, 
Keerthikumar S, Schreibelt G, Tel J, 
et al. Proteomics of human dendritic 
cell subsets reveals subset-specific 
surface markers and differential 
Inflammasome function. Cell Reports. 
2016;16:2953-2966. DOI: 10.1016/j.
celrep.2016.08.023

[32] Mittag D, Proietto AI, Loudovaris T, 
Mannering SI, Vremec D, Shortman K, 
et al. Human dendritic cell subsets 
from spleen and blood are similar in 
phenotype and function but modified 
by donor health status. The Journal 
of Immunology. 2011;186:6207. DOI: 
10.4049/jimmunol.1002632

[33] Tel J, Aarntzen EHJG, Baba T, 
Schreibelt G, Schulte BM, Benitez- 

Ribas D, et al. Natural human 
plasmacytoid dendritic cells induce 
antigen-specific T-cell responses in 
melanoma patients. Cancer Research. 
2013;73:1063. DOI: 10.1158/0008-5472.
CAN-12-2583

[34] Chun I, Yu CB, Wang Y, Marches F, 
Helft J, Leboeuf M, et al. Human CD1c+ 
dendritic cells drive the differentiation 
of CD103+ CD8+ mucosal effector T 
cells via the cytokine TGF-β. Immunity. 
2013;38:818-830. DOI: 10.1016/j.
immuni.2013.03.004

[35] Chiang M-C, Tullett KM, Lee YS, 
Idris A, Ding Y, McDonald KJ, et al. 
Differential uptake and cross-
presentation of soluble and necrotic cell 
antigen by human DC subsets. European 
Journal of Immunology. 2016;46:329-
339. DOI: 10.1002/eji.201546023

[36] Colonna M, Trinchieri G, 
Liu Y-J. Plasmacytoid dendritic cells 
in immunity. Nature Immunology. 
2004;5:1219

[37] Facchetti F, Vermi W, Mason D, 
Colonna M. The plasmacytoid 
monocyte/interferon producing cells. 
Virchows Archiv. 2003;443:703-717

[38] Grouard G, Rissoan M-C, 
Filgueira L, Durand I, Banchereau J, 
Liu Y-J. The enigmatic plasmacytoid T 
cells develop into dendritic cells with 
interleukin (IL)-3 and CD40-ligand. 
The Journal of Experimental Medicine. 
1997;185:1101-1112

[39] Coccia EM, Severa M, Giacomini E, 
Monneron D, Remoli ME, Julkunen I, 
et al. Viral infection and Toll-like receptor 
agonists induce a differential expression 
of type I and λ interferons in human 
plasmacytoid and monocyte-derived 
dendritic cells. European Journal of 
Immunology. 2004;34:796-805. DOI: 
10.1002/eji.200324610

[40] Gilliet M, Cao W, Liu Y-J. 
Plasmacytoid dendritic cells: Sensing 



Current Cancer Treatment

118

nucleic acids in viral infection and 
autoimmune diseases. Nature Reviews 
Immunology. 2008;8:594. DOI: 10.1038/
nri2358

[41] Swiecki M, Colonna M. The 
multifaceted biology of plasmacytoid 
dendritic cells. Nature Reviews. 
2015;15:471-485. DOI: 10.1038/nri3865

[42] Alculumbre S, Raieli S, 
Hoffmann C, Chelbi R, Danlos F-X, 
Soumelis V. Plasmacytoid pre-dendritic 
cells (pDC): From molecular pathways 
to function and disease association. 
Seminars in Cell & Developmental 
Biology. 2019;86:24-35. DOI: 10.1016/j.
semcdb.2018.02.014

[43] Murphy TL, Grajales-Reyes GE, 
Wu X, Tussiwand R, Briseño CG, 
Iwata A, et al. Transcriptional control 
of dendritic cell development. 
Annual Review of Immunology. 
2016;34:93-119. DOI: 10.1146/
annurev-immunol-032713-120204

[44] Musumeci A, Lutz K, Winheim E, 
Krug AB. What makes a pDC: Recent 
advances in understanding plasmacytoid 
DC development and heterogeneity. 
Frontiers in Immunology. 2019;10:1222. 
DOI: 10.3389/fimmu.2019.01222 
[Published: 29 May 2019]

[45] Wu X, Briseño CG, Grajales-Reyes 
GE, Haldar M, Iwata A, Kretzer NM, 
et al. Transcription factor Zeb2 regulates 
commitment to plasmacytoid dendritic 
cell and monocyte fate. Proceedings 
of the National Academy of Sciences. 
2016;113:14775-14780. DOI: 10.1073/
pnas.1611408114

[46] Cisse B, Caton ML, Lehner M, 
Maeda T, Scheu S, Locksley R, 
et al. Transcription factor E2-2 is 
an essential and specific regulator 
of plasmacytoid dendritic cell 
development. Cell;135:37-48. DOI: 
10.1016/j.cell.2008.09.016

[47] Matsui T, Connolly JE, 
Michnevitz M, Chaussabel D, Yu C-I, 

Glaser C, et al. CD2 distinguishes 
two subsets of human plasmacytoid 
dendritic cells with distinct phenotype 
and functions. The Journal of 
Immunology. 2009;182:6815-6823

[48] Owczarczyk-Saczonek A, 
Sokołowska-Wojdyło M, Olszewska B, 
Malek M, Znajewska-Pander A, 
Kowalczyk A, et al. Clinicopathologic 
retrospective analysis of blastic 
plasmacytoid dendritic cell neoplasms. 
Postepy Dermatologii i Alergologii. 
2018;35:128-138. DOI: 10.5114/
ada.2017.72269

[49] Kubota S, Tokunaga K, Umezu T, 
Yokomizo-Nakano T, Sun Y, Oshima M, 
et al. Lineage-specific RUNX2 super-
enhancer activates MYC and promotes 
the development of blastic plasmacytoid 
dendritic cell neoplasm. Nature 
Communications. 2019;10:1653. DOI: 
10.1038/s41467-019-09710-z

[50] Sukswai N, Aung PP, Yin CC, 
Li S, Wang W, Wang SA, et al. Dual 
expression of TCF4 and CD123 is 
highly sensitive and specific for blastic 
plasmacytoid dendritic cell neoplasm. 
The American Journal of Surgical 
Pathology. 2019;43:1429-1437. DOI: 
10.1097/pas.0000000000001316

[51] Sullivan JM, Rizzieri DA. Treatment 
of blastic plasmacytoid dendritic cell 
neoplasm. Hematology-American 
Society of Hematology Education 
Program. 2016;2016(1):16-23. DOI: 
10.1182/asheducation-2016.1.16

[52] Jen EY, Gao X, Li L, Zhuang L, 
Simpson NE, Aryal B, et al. FDA 
approval summary: Tagraxofusp-erzs 
for treatment of blastic plasmacytoid 
dendritic cell neoplasm. Clinical Cancer 
Research. 2020;26:532-536. DOI: 
10.1158/1078-0432.ccr-19-2329

[53] Cavanagh L, Saal R, Grimmet K, 
Thomas R. Proliferation in monocyte-
derived dendritic cell cultures is 
caused by progenitor cells capable 

119

Dendritic Cells and Their Roles in Anti-Tumour Immunity
DOI: http://dx.doi.org/10.5772/intechopen.91692

of myeloid differentiation. Blood. 
1998;92:1598-1607

[54] Reid CD, Stackpoole A, Meager A, 
Tikerpae J. Interactions of tumor 
necrosis factor with granulocyte-
macrophage colony-stimulating factor 
and other cytokines in the regulation of 
dendritic cell growth in vitro from early 
bipotent CD34+ progenitors in human 
bone marrow. Journal of Immunology. 
1992;149:2681-2688

[55] Santiago-Schwartz F, Belilos E, 
Diamond B, Carsons S. TNF in 
combination with GM-CSF enhances 
the differentiation of neonatal cord 
bloods cells into dendritic cells and 
macrophages. Journal of Leukocyte 
Biology. 1992;52:274-281

[56] Gabrilovich D, Nadaf S, Corak J, 
Berzofsky J, Carbone D. Dendritic cells 
in antitumor immune responses II. 
Dendritic cells grown from bone 
marrow precursors, but not mature 
DC from tumor-bearing mice, are 
effective antigen carriers in the 
therapy of established tumors. Cellular 
Immunology. 1996;170:111-119

[57] Sallusto F, Lanzavecchia A. Efficient 
presentation of soluble antigen by 
cultured human dendritic cells is 
maintained by granulocyte/macrophage 
colony-stimulating factor plus interleukin 
4 and downregulated by tumor necrosis 
factor alpha. The Journal of Experimental 
Medicine. 1994;179:1109-1118. DOI: 
10.1084/jem.179.4.1109

[58] Helft J, Bottcher J, Chakravarty P, 
Zelenay S, Huotari J, Schraml BU, et al. 
GM-CSF mouse bone marrow cultures 
comprise a heterogeneous population 
of CD11c(+)MHCII(+) macrophages 
and dendritic cells. Immunity. 
2015;42:1197-1211. DOI: 10.1016/j.
immuni.2015.05.018

[59] Guilliams M, Malissen B. A 
death notice for in-vitro-generated 
GM-CSF dendritic cells? Immunity. 

2015;42:988-990. DOI: 10.1016/j.
immuni.2015.05.020

[60] Lutz MB, Inaba K, Schuler G, 
Romani N. Still alive and kicking: 
In-vitro-generated GM-CSF dendritic 
cells! Immunity. 2016;44:1-2. DOI: 
10.1016/j.immuni.2015.12.013

[61] Helft J, Bottcher JP, Chakravarty P, 
Zelenay S, Huotari J, Schraml BU, et al. 
Alive but confused: Heterogeneity 
of CD11c(+) MHC class II(+) cells in 
GM-CSF mouse bone marrow cultures. 
Immunity. 2016;44:3-4. DOI: 10.1016/j.
immuni.2015.12.014

[62] Xu Y, Zhan Y, Lew AM, Naik SH, 
Kershaw MH. Differential development 
of murine dendritic cells by GM-CSF 
versus Flt3 ligand has implications 
for inflammation and trafficking. 
The Journal of Immunology. 
2007;179:7577-7584. DOI: 10.4049/
jimmunol.179.11.7577

[63] Marigo I, Zilio S, Desantis G, 
Mlecnik B, Agnellini AHR, Ugel S, et al. 
T cell cancer therapy requires CD40-
CD40L activation of tumor necrosis 
factor and inducible nitric-oxide-
synthase-producing dendritic cells. 
Cancer Cell. 2016;30:377-390. DOI: 
10.1016/j.ccell.2016.08.004

[64] Kumar C, Kohli S, Bapsy PP, 
Vaid AK, Jain M, Attili VSS, et al. 
Immune modulation by dendritic-
cell-based cancer vaccines. Journal 
of Biosciences. 2017;42:161-173. DOI: 
10.1007/s12038-017-9665-x

[65] Murphy GP, Tjoa BA, Simmons SJ, 
Jarisch J, Bowes VA, Ragde H, et al. 
Infusion of dendritic cells pulsed with 
HLA-A2-specific prostate-specific 
membrane antigen peptides: A 
phase II prostate cancer vaccine trial 
involving patients with hormone-
refractory metastatic disease. Prostate. 
1999;38:73-78

[66] Rodriguez J, Castanon E, 
Perez-Gracia JL, Rodriguez I, Viudez A, 



Current Cancer Treatment

118

nucleic acids in viral infection and 
autoimmune diseases. Nature Reviews 
Immunology. 2008;8:594. DOI: 10.1038/
nri2358

[41] Swiecki M, Colonna M. The 
multifaceted biology of plasmacytoid 
dendritic cells. Nature Reviews. 
2015;15:471-485. DOI: 10.1038/nri3865

[42] Alculumbre S, Raieli S, 
Hoffmann C, Chelbi R, Danlos F-X, 
Soumelis V. Plasmacytoid pre-dendritic 
cells (pDC): From molecular pathways 
to function and disease association. 
Seminars in Cell & Developmental 
Biology. 2019;86:24-35. DOI: 10.1016/j.
semcdb.2018.02.014

[43] Murphy TL, Grajales-Reyes GE, 
Wu X, Tussiwand R, Briseño CG, 
Iwata A, et al. Transcriptional control 
of dendritic cell development. 
Annual Review of Immunology. 
2016;34:93-119. DOI: 10.1146/
annurev-immunol-032713-120204

[44] Musumeci A, Lutz K, Winheim E, 
Krug AB. What makes a pDC: Recent 
advances in understanding plasmacytoid 
DC development and heterogeneity. 
Frontiers in Immunology. 2019;10:1222. 
DOI: 10.3389/fimmu.2019.01222 
[Published: 29 May 2019]

[45] Wu X, Briseño CG, Grajales-Reyes 
GE, Haldar M, Iwata A, Kretzer NM, 
et al. Transcription factor Zeb2 regulates 
commitment to plasmacytoid dendritic 
cell and monocyte fate. Proceedings 
of the National Academy of Sciences. 
2016;113:14775-14780. DOI: 10.1073/
pnas.1611408114

[46] Cisse B, Caton ML, Lehner M, 
Maeda T, Scheu S, Locksley R, 
et al. Transcription factor E2-2 is 
an essential and specific regulator 
of plasmacytoid dendritic cell 
development. Cell;135:37-48. DOI: 
10.1016/j.cell.2008.09.016

[47] Matsui T, Connolly JE, 
Michnevitz M, Chaussabel D, Yu C-I, 

Glaser C, et al. CD2 distinguishes 
two subsets of human plasmacytoid 
dendritic cells with distinct phenotype 
and functions. The Journal of 
Immunology. 2009;182:6815-6823

[48] Owczarczyk-Saczonek A, 
Sokołowska-Wojdyło M, Olszewska B, 
Malek M, Znajewska-Pander A, 
Kowalczyk A, et al. Clinicopathologic 
retrospective analysis of blastic 
plasmacytoid dendritic cell neoplasms. 
Postepy Dermatologii i Alergologii. 
2018;35:128-138. DOI: 10.5114/
ada.2017.72269

[49] Kubota S, Tokunaga K, Umezu T, 
Yokomizo-Nakano T, Sun Y, Oshima M, 
et al. Lineage-specific RUNX2 super-
enhancer activates MYC and promotes 
the development of blastic plasmacytoid 
dendritic cell neoplasm. Nature 
Communications. 2019;10:1653. DOI: 
10.1038/s41467-019-09710-z

[50] Sukswai N, Aung PP, Yin CC, 
Li S, Wang W, Wang SA, et al. Dual 
expression of TCF4 and CD123 is 
highly sensitive and specific for blastic 
plasmacytoid dendritic cell neoplasm. 
The American Journal of Surgical 
Pathology. 2019;43:1429-1437. DOI: 
10.1097/pas.0000000000001316

[51] Sullivan JM, Rizzieri DA. Treatment 
of blastic plasmacytoid dendritic cell 
neoplasm. Hematology-American 
Society of Hematology Education 
Program. 2016;2016(1):16-23. DOI: 
10.1182/asheducation-2016.1.16

[52] Jen EY, Gao X, Li L, Zhuang L, 
Simpson NE, Aryal B, et al. FDA 
approval summary: Tagraxofusp-erzs 
for treatment of blastic plasmacytoid 
dendritic cell neoplasm. Clinical Cancer 
Research. 2020;26:532-536. DOI: 
10.1158/1078-0432.ccr-19-2329

[53] Cavanagh L, Saal R, Grimmet K, 
Thomas R. Proliferation in monocyte-
derived dendritic cell cultures is 
caused by progenitor cells capable 

119

Dendritic Cells and Their Roles in Anti-Tumour Immunity
DOI: http://dx.doi.org/10.5772/intechopen.91692

of myeloid differentiation. Blood. 
1998;92:1598-1607

[54] Reid CD, Stackpoole A, Meager A, 
Tikerpae J. Interactions of tumor 
necrosis factor with granulocyte-
macrophage colony-stimulating factor 
and other cytokines in the regulation of 
dendritic cell growth in vitro from early 
bipotent CD34+ progenitors in human 
bone marrow. Journal of Immunology. 
1992;149:2681-2688

[55] Santiago-Schwartz F, Belilos E, 
Diamond B, Carsons S. TNF in 
combination with GM-CSF enhances 
the differentiation of neonatal cord 
bloods cells into dendritic cells and 
macrophages. Journal of Leukocyte 
Biology. 1992;52:274-281

[56] Gabrilovich D, Nadaf S, Corak J, 
Berzofsky J, Carbone D. Dendritic cells 
in antitumor immune responses II. 
Dendritic cells grown from bone 
marrow precursors, but not mature 
DC from tumor-bearing mice, are 
effective antigen carriers in the 
therapy of established tumors. Cellular 
Immunology. 1996;170:111-119

[57] Sallusto F, Lanzavecchia A. Efficient 
presentation of soluble antigen by 
cultured human dendritic cells is 
maintained by granulocyte/macrophage 
colony-stimulating factor plus interleukin 
4 and downregulated by tumor necrosis 
factor alpha. The Journal of Experimental 
Medicine. 1994;179:1109-1118. DOI: 
10.1084/jem.179.4.1109

[58] Helft J, Bottcher J, Chakravarty P, 
Zelenay S, Huotari J, Schraml BU, et al. 
GM-CSF mouse bone marrow cultures 
comprise a heterogeneous population 
of CD11c(+)MHCII(+) macrophages 
and dendritic cells. Immunity. 
2015;42:1197-1211. DOI: 10.1016/j.
immuni.2015.05.018

[59] Guilliams M, Malissen B. A 
death notice for in-vitro-generated 
GM-CSF dendritic cells? Immunity. 

2015;42:988-990. DOI: 10.1016/j.
immuni.2015.05.020

[60] Lutz MB, Inaba K, Schuler G, 
Romani N. Still alive and kicking: 
In-vitro-generated GM-CSF dendritic 
cells! Immunity. 2016;44:1-2. DOI: 
10.1016/j.immuni.2015.12.013

[61] Helft J, Bottcher JP, Chakravarty P, 
Zelenay S, Huotari J, Schraml BU, et al. 
Alive but confused: Heterogeneity 
of CD11c(+) MHC class II(+) cells in 
GM-CSF mouse bone marrow cultures. 
Immunity. 2016;44:3-4. DOI: 10.1016/j.
immuni.2015.12.014

[62] Xu Y, Zhan Y, Lew AM, Naik SH, 
Kershaw MH. Differential development 
of murine dendritic cells by GM-CSF 
versus Flt3 ligand has implications 
for inflammation and trafficking. 
The Journal of Immunology. 
2007;179:7577-7584. DOI: 10.4049/
jimmunol.179.11.7577

[63] Marigo I, Zilio S, Desantis G, 
Mlecnik B, Agnellini AHR, Ugel S, et al. 
T cell cancer therapy requires CD40-
CD40L activation of tumor necrosis 
factor and inducible nitric-oxide-
synthase-producing dendritic cells. 
Cancer Cell. 2016;30:377-390. DOI: 
10.1016/j.ccell.2016.08.004

[64] Kumar C, Kohli S, Bapsy PP, 
Vaid AK, Jain M, Attili VSS, et al. 
Immune modulation by dendritic-
cell-based cancer vaccines. Journal 
of Biosciences. 2017;42:161-173. DOI: 
10.1007/s12038-017-9665-x

[65] Murphy GP, Tjoa BA, Simmons SJ, 
Jarisch J, Bowes VA, Ragde H, et al. 
Infusion of dendritic cells pulsed with 
HLA-A2-specific prostate-specific 
membrane antigen peptides: A 
phase II prostate cancer vaccine trial 
involving patients with hormone-
refractory metastatic disease. Prostate. 
1999;38:73-78

[66] Rodriguez J, Castanon E, 
Perez-Gracia JL, Rodriguez I, Viudez A, 



Current Cancer Treatment

120

Alfaro C, et al. A randomized phase 
II clinical trial of dendritic cell 
vaccination following complete resection 
of colon cancer liver metastasis. Journal 
for Immunotherapy of Cancer. 2018;6:96. 
DOI: 10.1186/s40425-018-0405-z

[67] Bol KF, Schreibelt G, Rabold K, 
Wculek SK, Schwarze JK, Dzionek A, 
et al. The clinical application of 
cancer immunotherapy based on 
naturally circulating dendritic cells. 
Journal for Immunotherapy of 
Cancer. 2019;7:109-109. DOI: 10.1186/
s40425-019-0580-6

[68] Mody N, Dubey S, Sharma R, 
Agrawal U, Vyas SP. Dendritic cell-
based vaccine research against 
cancer. Expert Review of Clinical 
Immunology. 2015;11:213-232. DOI: 
10.1586/1744666X.2015.987663

[69] Reddy A, Sapp M, Feldman M, 
Subklewe M, Bhardwaj N. A monocyte 
conditioned medium is more effective 
than defined cytokines in mediating the 
terminal maturation of human dendritic 
cells. Blood. 1997;90:3640

[70] Wilgenhof S, Van Nuffel AMT, 
Benteyn D, Corthals J, Aerts C, 
Heirman C, et al. A phase IB study 
on intravenous synthetic mRNA 
electroporated dendritic cell 
immunotherapy in pretreated advanced 
melanoma patients. Annals of Oncology. 
2013;24:2686-2693. DOI: 10.1093/
annonc/mdt245

[71] Schreibelt G, Bol KF, Westdorp H, 
Wimmers F, Aarntzen EHJG, Boer T 
D-d, et al. Effective clinical responses 
in metastatic melanoma patients 
after vaccination with primary 
myeloid dendritic cells. Clinical 
Cancer Research. 2016;22:2155. DOI: 
10.1158/1078-0432.CCR-15-2205

[72] Prue RL, Vari F, Radford KJ, 
Tong H, Hardy MY, D’Rozario R, et al. A 
phase I clinical trial of CD1c (BDCA-1)+ 

dendritic cells pulsed with HLA-
A*0201 peptides for immunotherapy of 
metastatic hormone refractory prostate 
cancer. Journal of Immunotherapy. 
2015;38:71-76. DOI: 10.1097/
cji.0000000000000063

[73] Macri C, Dumont C, Johnston AP, 
Mintern JD. Targeting dendritic cells: A 
promising strategy to improve vaccine 
effectiveness. Clinical & Translational 
Immunology. 2016;5:e66-e66. DOI: 
10.1038/cti.2016.6

[74] Caminschi I, Maraskovsky E, 
Heath W. Targeting dendritic cells 
in vivo for cancer therapy. Frontiers in 
Immunology. 2012;3:13

[75] Bonifaz LC, Bonnyay DP, 
Charalambous A, Darguste DI, Fujii 
S-I, Soares H, et al. In vivo targeting 
of antigens to maturing dendritic cells 
via the DEC-205 receptor improves 
T cell vaccination. The Journal of 
Experimental Medicine. 2004;199:815-
824. DOI: 10.1084/jem.20032220

[76] Hawiger D, Inaba K, Dorsett Y, 
Guo M, Mahnke K, Rivera M, et al. 
Dendritic cells induce peripheral T 
cell unresponsiveness under steady 
state conditions in vivo. The Journal of 
Experimental Medicine. 2001;194:769-
779. DOI: 10.1084/jem.194.6.769

[77] Mahnke K, Ring S, Johnson TS, 
Schallenberg S, Schönfeld K, Storn V, 
et al. Induction of immunosuppressive 
functions of dendritic cells in vivo 
by CD4+CD25+ regulatory T cells: 
Role of B7-H3 expression and antigen 
presentation. European Journal of 
Immunology. 2007;37:2117-2126. DOI: 
10.1002/eji.200636841

[78] Dhodapkar MV, Sznol M, Zhao B, 
Wang D, Carvajal RD, Keohan ML, et al. 
Induction of antigen-specific immunity 
with a vaccine targeting NY-ESO-1 
to the dendritic cell receptor DEC-
205. Science Translational Medicine. 
2014;6:232ra251. DOI: 10.1126/
scitranslmed.3008068

121

Dendritic Cells and Their Roles in Anti-Tumour Immunity
DOI: http://dx.doi.org/10.5772/intechopen.91692

[79] Tullett KM, Leal Rojas IM, 
Minoda Y, Tan PS, Zhang J-G, Smith C, 
et al. Targeting CLEC9A delivers antigen 
to human CD141(+) DC for CD4(+) and 
CD8(+)T cell recognition. JCI Insight. 
2016;1:e87102-e87102. DOI: 10.1172/jci.
insight.87102

[80] Kato M, McDonald KJ, Khan S, 
Ross IL, Vuckovic S, Chen K, et al. 
Expression of human DEC-205 (CD205) 
multilectin receptor on leukocytes. 
International Immunology. 2006;18:857-
869. DOI: 10.1093/intimm/dxl022

[81] Schreibelt G, Klinkenberg LJJ, 
Cruz LJ, Tacken PJ, Tel J, Kreutz M, et al. 
The C-type lectin receptor CLEC9A 
mediates antigen uptake and (cross-)
presentation by human blood 
BDCA3+ myeloid dendritic cells. 
Blood. 2012;119:2284. DOI: 10.1182/
blood-2011-08-373944

[82] Li J, Ahmet F, Sullivan LC, 
Brooks AG, Kent SJ, De Rose R, et al. 
Caminschi, antibodies targeting Clec9A 
promote strong humoral immunity 
without adjuvant in mice and non-
human primates. European Journal of 
Immunology. 2015;45:854-864. DOI: 
10.1002/eji.201445127

[83] Spranger S, Gajewski TF. Impact 
of oncogenic pathways on evasion of 
antitumour immune responses. Nature 
Reviews Cancer. 2018;18:139. DOI: 
10.1038/nrc.2017.117

[84] Karthaus N, Torensma R, 
Tel J. Deciphering the message broadcast 
by tumor-infiltrating dendritic cells. 
The American Journal of Pathology. 
2012;181:733-742. DOI: 10.1016/j.
ajpath.2012.05.012

[85] Ladányi A, Kiss J, Somlai B, Gilde K, 
Fejős Z, Mohos A, et al. Density of 
DC-LAMP+ mature dendritic cells 
in combination with activated T 
lymphocytes infiltrating primary 
cutaneous melanoma is a strong 

independent prognostic factor. 
Cancer Immunology, Immunotherapy. 
2007;56:1459-1469. DOI: 10.1007/
s00262-007-0286-3

[86] Coventry B, Heinzel S. CD1a in 
human cancers: A new role for an old 
molecule. Trends in Immunology. 
2004;25:242-248. DOI: 10.1016/j.
it.2004.03.002

[87] Saito H, Tsujitani S, Ikeguchi M, 
Maeta M, Kaibara N. Relationship 
between the expression of vascular 
endothelial growth factor and the 
density of dendritic cells in gastric 
adenocarcinoma tissue. British Journal 
of Cancer. 1998;78:1573-1577. DOI: 
10.1038/bjc.1998.725

[88] Hilly O, Rath-Wolfson L, Koren R, 
Mizrachi A, Hamzany Y, Bachar G, et al. 
CD1a-positive dendritic cell density 
predicts disease-free survival 
in papillary thyroid carcinoma. 
Pathology—Research and Practice. 
2015;211:652-656. DOI: 10.1016/j.
prp.2015.05.009

[89] Coventry BJ, Lee PL, Gibbs D, 
Hart DNJ. Dendritic cell density and 
activation status in human breast 
cancer—CD1a, CMRF-44, CMRF-56 
and CD-83 expression. British Journal of 
Cancer. 2002;86:546-551. DOI: 10.1038/
sj.bjc.6600132

[90] Bell D, Chomarat P, Broyles D, 
Netto G, Harb GM, Lebecque S, et al. 
In breast carcinoma tissue, immature 
dendritic cells reside within the tumor, 
whereas mature dendritic cells are 
located in peritumoral areas. The 
Journal of Experimental Medicine. 
1999;190:1417

[91] Truxova I, Kasikova L, Hensler M, 
Skapa P, Laco J, Pecen L, et al. Mature 
dendritic cells correlate with favorable 
immune infiltrate and improved 
prognosis in ovarian carcinoma 
patients. Journal for Immunotherapy of 



Current Cancer Treatment

120

Alfaro C, et al. A randomized phase 
II clinical trial of dendritic cell 
vaccination following complete resection 
of colon cancer liver metastasis. Journal 
for Immunotherapy of Cancer. 2018;6:96. 
DOI: 10.1186/s40425-018-0405-z

[67] Bol KF, Schreibelt G, Rabold K, 
Wculek SK, Schwarze JK, Dzionek A, 
et al. The clinical application of 
cancer immunotherapy based on 
naturally circulating dendritic cells. 
Journal for Immunotherapy of 
Cancer. 2019;7:109-109. DOI: 10.1186/
s40425-019-0580-6

[68] Mody N, Dubey S, Sharma R, 
Agrawal U, Vyas SP. Dendritic cell-
based vaccine research against 
cancer. Expert Review of Clinical 
Immunology. 2015;11:213-232. DOI: 
10.1586/1744666X.2015.987663

[69] Reddy A, Sapp M, Feldman M, 
Subklewe M, Bhardwaj N. A monocyte 
conditioned medium is more effective 
than defined cytokines in mediating the 
terminal maturation of human dendritic 
cells. Blood. 1997;90:3640

[70] Wilgenhof S, Van Nuffel AMT, 
Benteyn D, Corthals J, Aerts C, 
Heirman C, et al. A phase IB study 
on intravenous synthetic mRNA 
electroporated dendritic cell 
immunotherapy in pretreated advanced 
melanoma patients. Annals of Oncology. 
2013;24:2686-2693. DOI: 10.1093/
annonc/mdt245

[71] Schreibelt G, Bol KF, Westdorp H, 
Wimmers F, Aarntzen EHJG, Boer T 
D-d, et al. Effective clinical responses 
in metastatic melanoma patients 
after vaccination with primary 
myeloid dendritic cells. Clinical 
Cancer Research. 2016;22:2155. DOI: 
10.1158/1078-0432.CCR-15-2205

[72] Prue RL, Vari F, Radford KJ, 
Tong H, Hardy MY, D’Rozario R, et al. A 
phase I clinical trial of CD1c (BDCA-1)+ 

dendritic cells pulsed with HLA-
A*0201 peptides for immunotherapy of 
metastatic hormone refractory prostate 
cancer. Journal of Immunotherapy. 
2015;38:71-76. DOI: 10.1097/
cji.0000000000000063

[73] Macri C, Dumont C, Johnston AP, 
Mintern JD. Targeting dendritic cells: A 
promising strategy to improve vaccine 
effectiveness. Clinical & Translational 
Immunology. 2016;5:e66-e66. DOI: 
10.1038/cti.2016.6

[74] Caminschi I, Maraskovsky E, 
Heath W. Targeting dendritic cells 
in vivo for cancer therapy. Frontiers in 
Immunology. 2012;3:13

[75] Bonifaz LC, Bonnyay DP, 
Charalambous A, Darguste DI, Fujii 
S-I, Soares H, et al. In vivo targeting 
of antigens to maturing dendritic cells 
via the DEC-205 receptor improves 
T cell vaccination. The Journal of 
Experimental Medicine. 2004;199:815-
824. DOI: 10.1084/jem.20032220

[76] Hawiger D, Inaba K, Dorsett Y, 
Guo M, Mahnke K, Rivera M, et al. 
Dendritic cells induce peripheral T 
cell unresponsiveness under steady 
state conditions in vivo. The Journal of 
Experimental Medicine. 2001;194:769-
779. DOI: 10.1084/jem.194.6.769

[77] Mahnke K, Ring S, Johnson TS, 
Schallenberg S, Schönfeld K, Storn V, 
et al. Induction of immunosuppressive 
functions of dendritic cells in vivo 
by CD4+CD25+ regulatory T cells: 
Role of B7-H3 expression and antigen 
presentation. European Journal of 
Immunology. 2007;37:2117-2126. DOI: 
10.1002/eji.200636841

[78] Dhodapkar MV, Sznol M, Zhao B, 
Wang D, Carvajal RD, Keohan ML, et al. 
Induction of antigen-specific immunity 
with a vaccine targeting NY-ESO-1 
to the dendritic cell receptor DEC-
205. Science Translational Medicine. 
2014;6:232ra251. DOI: 10.1126/
scitranslmed.3008068

121

Dendritic Cells and Their Roles in Anti-Tumour Immunity
DOI: http://dx.doi.org/10.5772/intechopen.91692

[79] Tullett KM, Leal Rojas IM, 
Minoda Y, Tan PS, Zhang J-G, Smith C, 
et al. Targeting CLEC9A delivers antigen 
to human CD141(+) DC for CD4(+) and 
CD8(+)T cell recognition. JCI Insight. 
2016;1:e87102-e87102. DOI: 10.1172/jci.
insight.87102

[80] Kato M, McDonald KJ, Khan S, 
Ross IL, Vuckovic S, Chen K, et al. 
Expression of human DEC-205 (CD205) 
multilectin receptor on leukocytes. 
International Immunology. 2006;18:857-
869. DOI: 10.1093/intimm/dxl022

[81] Schreibelt G, Klinkenberg LJJ, 
Cruz LJ, Tacken PJ, Tel J, Kreutz M, et al. 
The C-type lectin receptor CLEC9A 
mediates antigen uptake and (cross-)
presentation by human blood 
BDCA3+ myeloid dendritic cells. 
Blood. 2012;119:2284. DOI: 10.1182/
blood-2011-08-373944

[82] Li J, Ahmet F, Sullivan LC, 
Brooks AG, Kent SJ, De Rose R, et al. 
Caminschi, antibodies targeting Clec9A 
promote strong humoral immunity 
without adjuvant in mice and non-
human primates. European Journal of 
Immunology. 2015;45:854-864. DOI: 
10.1002/eji.201445127

[83] Spranger S, Gajewski TF. Impact 
of oncogenic pathways on evasion of 
antitumour immune responses. Nature 
Reviews Cancer. 2018;18:139. DOI: 
10.1038/nrc.2017.117

[84] Karthaus N, Torensma R, 
Tel J. Deciphering the message broadcast 
by tumor-infiltrating dendritic cells. 
The American Journal of Pathology. 
2012;181:733-742. DOI: 10.1016/j.
ajpath.2012.05.012

[85] Ladányi A, Kiss J, Somlai B, Gilde K, 
Fejős Z, Mohos A, et al. Density of 
DC-LAMP+ mature dendritic cells 
in combination with activated T 
lymphocytes infiltrating primary 
cutaneous melanoma is a strong 

independent prognostic factor. 
Cancer Immunology, Immunotherapy. 
2007;56:1459-1469. DOI: 10.1007/
s00262-007-0286-3

[86] Coventry B, Heinzel S. CD1a in 
human cancers: A new role for an old 
molecule. Trends in Immunology. 
2004;25:242-248. DOI: 10.1016/j.
it.2004.03.002

[87] Saito H, Tsujitani S, Ikeguchi M, 
Maeta M, Kaibara N. Relationship 
between the expression of vascular 
endothelial growth factor and the 
density of dendritic cells in gastric 
adenocarcinoma tissue. British Journal 
of Cancer. 1998;78:1573-1577. DOI: 
10.1038/bjc.1998.725

[88] Hilly O, Rath-Wolfson L, Koren R, 
Mizrachi A, Hamzany Y, Bachar G, et al. 
CD1a-positive dendritic cell density 
predicts disease-free survival 
in papillary thyroid carcinoma. 
Pathology—Research and Practice. 
2015;211:652-656. DOI: 10.1016/j.
prp.2015.05.009

[89] Coventry BJ, Lee PL, Gibbs D, 
Hart DNJ. Dendritic cell density and 
activation status in human breast 
cancer—CD1a, CMRF-44, CMRF-56 
and CD-83 expression. British Journal of 
Cancer. 2002;86:546-551. DOI: 10.1038/
sj.bjc.6600132

[90] Bell D, Chomarat P, Broyles D, 
Netto G, Harb GM, Lebecque S, et al. 
In breast carcinoma tissue, immature 
dendritic cells reside within the tumor, 
whereas mature dendritic cells are 
located in peritumoral areas. The 
Journal of Experimental Medicine. 
1999;190:1417

[91] Truxova I, Kasikova L, Hensler M, 
Skapa P, Laco J, Pecen L, et al. Mature 
dendritic cells correlate with favorable 
immune infiltrate and improved 
prognosis in ovarian carcinoma 
patients. Journal for Immunotherapy of 



Current Cancer Treatment

122

Cancer. 2018;6:139-139. DOI: 10.1186/
s40425-018-0446-3

[92] Lewko B, Zółtowska A, Stepinski J, 
Roszkiewicz A, Moszkowska G. 
Dendritic and cancer cells in the breat 
tumours—An immunohistochemical 
study: Short communication. Medical 
Science Monitor. 2000;6:892-895

[93] Lespagnard L, Gancberg D, 
Rouas G, Leclercq G, de Saint-Aubain 
Somerhausen N, Di Leo A, et al. 
Tumor-infiltrating dendritic cells in 
adenocarcinomas of the breast: A study 
of 143 neoplasms with a correlation to 
usual prognostic factors and to clinical 
outcome. International Journal of 
Cancer. 1999;84:309-314. DOI: 10.1002/ 
(SICI)1097-0215(19990621)84:3<309:: 
AID-IJC19>3.0.CO;2-3

[94] Hillenbrand EE, Neville AM, 
Coventry BJ. Immunohistochemical 
localization of CD1a-positive putative 
dendritic cells in human breast 
tumours. British Journal of Cancer. 
1999;79:940-944. DOI: 10.1038/
sj.bjc.6690150

[95] Roberts EW, Broz ML, Binnewies M, 
Headley MB, Nelson AE, Wolf DM, 
et al. Critical role for CD103+/CD141+ 
dendritic cells bearing CCR7 for tumor 
antigen trafficking and priming of T 
cell immunity in melanoma. Cancer 
Cell. 2016;30:324-336. DOI: 10.1016/j.
ccell.2016.06.003

[96] Spranger S, Dai D, Horton B, 
Gajewski TF. Tumor-residing Batf3 
dendritic cells are required for effector 
T cell trafficking and adoptive T cell 
therapy. Cancer Cell. 2017;31:711, e714-
723. DOI: 10.1016/j.ccell.2017.04.003

[97] Böttcher JP, Bonavita E, 
Chakravarty P, Blees H, Cabeza-
Cabrerizo M, Sammicheli S, et al. NK 
cells stimulate recruitment of cDC1 
into the tumor microenvironment 
promoting cancer immune control. 
Cell. 2018;172:1022, e1014-1037. DOI: 
10.1016/j.cell.2018.01.004

[98] Broz ML, Binnewies M, 
Boldajipour B, Nelson AE, Pollack JL, 
Erle DJ, et al. Dissecting the tumor 
myeloid compartment reveals rare 
activating antigen-presenting cells 
critical for T cell immunity. Cancer 
Cell. 2014;26:638-652. DOI: 10.1016/j.
ccell.2014.09.007

[99] Daniel S, Chen IM. Oncology meets 
immunology: The cancer-immunity 
cycle. Immunity. 2013;39:1-10. DOI: 
10.1016/j.immuni.2013.07.012

[100] Treilleux I, Blay J-Y, Bendriss-
Vermare N, Ray-Coquard I, Bachelot T, 
Guastalla J-P, et al. Dendritic cell 
infiltration and prognosis of early stage 
breast cancer. Clinical Cancer Research. 
2004;10:7466. DOI: 10.1158/1078-0432.
CCR-04-0684

[101] Conrad C, Gregorio J, Wang Y-H, 
Ito T, Meller S, Hanabuchi S, et al. 
Plasmacytoid dendritic cells promote 
immunosuppression in ovarian cancer 
via ICOS Costimulation of Foxp3+ 
T-regulatory cells. Cancer Research. 
2012;72:5240. DOI: 10.1158/0008-5472.
CAN-12-2271

[102] Sisirak V, Faget J, Gobert M, 
Goutagny N, Vey N, Treilleux I, et al. 
Impaired IFN-α production by 
plasmacytoid dendritic cells favors 
regulatory T-cell expansion that 
may contribute to breast cancer 
progression. Cancer Research. 
2012;72:5188. DOI: 10.1158/0008-5472.
CAN-11-3468

[103] Mitchell D, Chintala S, 
Dey M. Plasmacytoid dendritic cell 
in immunity and cancer. Journal of 
Neuroimmunology. 2018;322:63-73. 
DOI: 10.1016/j.jneuroim.2018.06.012

[104] Terra M, Oberkampf M, 
Fayolle C, Rosenbaum P, Guillerey C, 
Dadaglio G, et al. Tumor-derived TGFβ 
alters the ability of plasmacytoid 
dendritic cells to respond to innate 
immune signaling. Cancer Research. 

123

Dendritic Cells and Their Roles in Anti-Tumour Immunity
DOI: http://dx.doi.org/10.5772/intechopen.91692

2018;78:3014-3026. DOI: 10.1158/0008-
5472.can-17-2719

[105] Takahashi A, Kono K, Ichihara F, 
Sugai H, Fujii H, Matsumoto Y. Vascular 
endothelial growth factor inhibits 
maturation of dendritic cells induced 
by lipopolysaccharide, but not by 
proinflammatory cytokines. Cancer 
Immunology, Immunotherapy. 
2004;53:543-550. DOI: 10.1007/
s00262-003-0466-8

[106] Della Porta M, Danova M, 
Rigolin GM, Brugnatelli S, Rovati B, 
Tronconi C, et al. Dendritic cells and 
vascular endothelial growth factor 
in colorectal cancer: Correlations 
with clinicobiological findings. 
Oncology. 2005;68:276-284. DOI: 
10.1159/000086784

[107] H. B FXH, Dong QG, Sha HF, 
Bao GL, Liao ML. Ascular endothelial 
growth factor inhibits dendritic cells 
from patients with non-small cell lung 
carcinoma. Zhonghua Jie He He Hu Xi 
Za Zhi. 2003;26:539-543

[108] Fricke I, Mirza N, Dupont J, 
Lockhart C, Jackson A, Lee J-H, et al. 
Vascular endothelial growth factor-
trap overcomes defects in dendritic 
cell differentiation but does not 
improve antigen-specific immune 
responses. Clinical Cancer Research. 
2007;13:4840. DOI: 10.1158/1078-0432.
CCR-07-0409

[109] Gabrilovich DI, Chen HL, 
Girgis KR, Cunningham HT, Meny GM, 
Nadaf S, et al. Production of vascular 
endothelial growth factor by human 
tumors inhibits the functional 
maturation of dendritic cells. Nature 
Medicine. 1996;2:1096-1103. DOI: 
10.1038/nm1096-1096

[110] Thepmalee C, Panya A,  
Junking M, Chieochansin T, 
Yenchitsomanus P-t. Inhibition 
of IL-10 and TGF-β receptors 
on dendritic cells enhances 

activation of effector T-cells to kill 
cholangiocarcinoma cells. Human 
Vaccines & Immunotherapeutics. 
2018;14:1423-1431. DOI: 
10.1080/21645515.2018.1431598

[111] Bharadwaj U, Li M, Zhang R, 
Chen C, Yao Q. Elevated Interleukin-6 
and G-CSF in human pancreatic 
cancer cell conditioned medium 
suppress dendritic cell differentiation 
and activation. Cancer Research. 
2007;67:5479. DOI: 10.1158/0008-5472.
CAN-06-3963

[112] Fu C, Jiang A. Dendritic cells 
and CD8 T cell immunity in tumor 
microenvironment. Frontiers in 
Immunology. 2018;9:3059

[113] Zong J, Keskinov AA, Shurin GV, 
Shurin MR. Tumor-derived factors 
modulating dendritic cell function. 
Cancer Immunology, Immunotherapy. 
2016;65:821-833. DOI: 10.1007/
s00262-016-1820-y

[114] Kitamura H, Ohno Y, Toyoshima Y, 
Ohtake J, Homma S, Kawamura H, et al. 
Interleukin-6/STAT3 signaling as a 
promising target to improve the efficacy 
of cancer immunotherapy. Cancer 
Science. 2017;108:1947-1952. DOI: 
10.1111/cas.13332

[115] Spranger S, Bao R, Gajewski TF. 
Melanoma-intrinsic β-catenin signalling 
prevents anti-tumour immunity. 
Nature. 2015;523:231. DOI: 10.1038/
nature14404

[116] Jiang L, Fang X, Wang H, Li D, 
Wang X. Ovarian cancer-intrinsic fatty 
acid synthase prevents anti-tumor 
immunity by disrupting tumor-
infiltrating dendritic cells. Frontiers in 
Immunology. 2018;9:2927

[117] Freeman GJ, Long AJ, Iwai Y, 
Bourque K, Chernova T, Nishimura H, 
et al. Engagement of the PD-1 
immunoinhibitory receptor by a novel 
B7 family member leads to negative 
regulation of lymphocyte activation. 



Current Cancer Treatment

122

Cancer. 2018;6:139-139. DOI: 10.1186/
s40425-018-0446-3

[92] Lewko B, Zółtowska A, Stepinski J, 
Roszkiewicz A, Moszkowska G. 
Dendritic and cancer cells in the breat 
tumours—An immunohistochemical 
study: Short communication. Medical 
Science Monitor. 2000;6:892-895

[93] Lespagnard L, Gancberg D, 
Rouas G, Leclercq G, de Saint-Aubain 
Somerhausen N, Di Leo A, et al. 
Tumor-infiltrating dendritic cells in 
adenocarcinomas of the breast: A study 
of 143 neoplasms with a correlation to 
usual prognostic factors and to clinical 
outcome. International Journal of 
Cancer. 1999;84:309-314. DOI: 10.1002/ 
(SICI)1097-0215(19990621)84:3<309:: 
AID-IJC19>3.0.CO;2-3

[94] Hillenbrand EE, Neville AM, 
Coventry BJ. Immunohistochemical 
localization of CD1a-positive putative 
dendritic cells in human breast 
tumours. British Journal of Cancer. 
1999;79:940-944. DOI: 10.1038/
sj.bjc.6690150

[95] Roberts EW, Broz ML, Binnewies M, 
Headley MB, Nelson AE, Wolf DM, 
et al. Critical role for CD103+/CD141+ 
dendritic cells bearing CCR7 for tumor 
antigen trafficking and priming of T 
cell immunity in melanoma. Cancer 
Cell. 2016;30:324-336. DOI: 10.1016/j.
ccell.2016.06.003

[96] Spranger S, Dai D, Horton B, 
Gajewski TF. Tumor-residing Batf3 
dendritic cells are required for effector 
T cell trafficking and adoptive T cell 
therapy. Cancer Cell. 2017;31:711, e714-
723. DOI: 10.1016/j.ccell.2017.04.003

[97] Böttcher JP, Bonavita E, 
Chakravarty P, Blees H, Cabeza-
Cabrerizo M, Sammicheli S, et al. NK 
cells stimulate recruitment of cDC1 
into the tumor microenvironment 
promoting cancer immune control. 
Cell. 2018;172:1022, e1014-1037. DOI: 
10.1016/j.cell.2018.01.004

[98] Broz ML, Binnewies M, 
Boldajipour B, Nelson AE, Pollack JL, 
Erle DJ, et al. Dissecting the tumor 
myeloid compartment reveals rare 
activating antigen-presenting cells 
critical for T cell immunity. Cancer 
Cell. 2014;26:638-652. DOI: 10.1016/j.
ccell.2014.09.007

[99] Daniel S, Chen IM. Oncology meets 
immunology: The cancer-immunity 
cycle. Immunity. 2013;39:1-10. DOI: 
10.1016/j.immuni.2013.07.012

[100] Treilleux I, Blay J-Y, Bendriss-
Vermare N, Ray-Coquard I, Bachelot T, 
Guastalla J-P, et al. Dendritic cell 
infiltration and prognosis of early stage 
breast cancer. Clinical Cancer Research. 
2004;10:7466. DOI: 10.1158/1078-0432.
CCR-04-0684

[101] Conrad C, Gregorio J, Wang Y-H, 
Ito T, Meller S, Hanabuchi S, et al. 
Plasmacytoid dendritic cells promote 
immunosuppression in ovarian cancer 
via ICOS Costimulation of Foxp3+ 
T-regulatory cells. Cancer Research. 
2012;72:5240. DOI: 10.1158/0008-5472.
CAN-12-2271

[102] Sisirak V, Faget J, Gobert M, 
Goutagny N, Vey N, Treilleux I, et al. 
Impaired IFN-α production by 
plasmacytoid dendritic cells favors 
regulatory T-cell expansion that 
may contribute to breast cancer 
progression. Cancer Research. 
2012;72:5188. DOI: 10.1158/0008-5472.
CAN-11-3468

[103] Mitchell D, Chintala S, 
Dey M. Plasmacytoid dendritic cell 
in immunity and cancer. Journal of 
Neuroimmunology. 2018;322:63-73. 
DOI: 10.1016/j.jneuroim.2018.06.012

[104] Terra M, Oberkampf M, 
Fayolle C, Rosenbaum P, Guillerey C, 
Dadaglio G, et al. Tumor-derived TGFβ 
alters the ability of plasmacytoid 
dendritic cells to respond to innate 
immune signaling. Cancer Research. 

123

Dendritic Cells and Their Roles in Anti-Tumour Immunity
DOI: http://dx.doi.org/10.5772/intechopen.91692

2018;78:3014-3026. DOI: 10.1158/0008-
5472.can-17-2719

[105] Takahashi A, Kono K, Ichihara F, 
Sugai H, Fujii H, Matsumoto Y. Vascular 
endothelial growth factor inhibits 
maturation of dendritic cells induced 
by lipopolysaccharide, but not by 
proinflammatory cytokines. Cancer 
Immunology, Immunotherapy. 
2004;53:543-550. DOI: 10.1007/
s00262-003-0466-8

[106] Della Porta M, Danova M, 
Rigolin GM, Brugnatelli S, Rovati B, 
Tronconi C, et al. Dendritic cells and 
vascular endothelial growth factor 
in colorectal cancer: Correlations 
with clinicobiological findings. 
Oncology. 2005;68:276-284. DOI: 
10.1159/000086784

[107] H. B FXH, Dong QG, Sha HF, 
Bao GL, Liao ML. Ascular endothelial 
growth factor inhibits dendritic cells 
from patients with non-small cell lung 
carcinoma. Zhonghua Jie He He Hu Xi 
Za Zhi. 2003;26:539-543

[108] Fricke I, Mirza N, Dupont J, 
Lockhart C, Jackson A, Lee J-H, et al. 
Vascular endothelial growth factor-
trap overcomes defects in dendritic 
cell differentiation but does not 
improve antigen-specific immune 
responses. Clinical Cancer Research. 
2007;13:4840. DOI: 10.1158/1078-0432.
CCR-07-0409

[109] Gabrilovich DI, Chen HL, 
Girgis KR, Cunningham HT, Meny GM, 
Nadaf S, et al. Production of vascular 
endothelial growth factor by human 
tumors inhibits the functional 
maturation of dendritic cells. Nature 
Medicine. 1996;2:1096-1103. DOI: 
10.1038/nm1096-1096

[110] Thepmalee C, Panya A,  
Junking M, Chieochansin T, 
Yenchitsomanus P-t. Inhibition 
of IL-10 and TGF-β receptors 
on dendritic cells enhances 

activation of effector T-cells to kill 
cholangiocarcinoma cells. Human 
Vaccines & Immunotherapeutics. 
2018;14:1423-1431. DOI: 
10.1080/21645515.2018.1431598

[111] Bharadwaj U, Li M, Zhang R, 
Chen C, Yao Q. Elevated Interleukin-6 
and G-CSF in human pancreatic 
cancer cell conditioned medium 
suppress dendritic cell differentiation 
and activation. Cancer Research. 
2007;67:5479. DOI: 10.1158/0008-5472.
CAN-06-3963

[112] Fu C, Jiang A. Dendritic cells 
and CD8 T cell immunity in tumor 
microenvironment. Frontiers in 
Immunology. 2018;9:3059

[113] Zong J, Keskinov AA, Shurin GV, 
Shurin MR. Tumor-derived factors 
modulating dendritic cell function. 
Cancer Immunology, Immunotherapy. 
2016;65:821-833. DOI: 10.1007/
s00262-016-1820-y

[114] Kitamura H, Ohno Y, Toyoshima Y, 
Ohtake J, Homma S, Kawamura H, et al. 
Interleukin-6/STAT3 signaling as a 
promising target to improve the efficacy 
of cancer immunotherapy. Cancer 
Science. 2017;108:1947-1952. DOI: 
10.1111/cas.13332

[115] Spranger S, Bao R, Gajewski TF. 
Melanoma-intrinsic β-catenin signalling 
prevents anti-tumour immunity. 
Nature. 2015;523:231. DOI: 10.1038/
nature14404

[116] Jiang L, Fang X, Wang H, Li D, 
Wang X. Ovarian cancer-intrinsic fatty 
acid synthase prevents anti-tumor 
immunity by disrupting tumor-
infiltrating dendritic cells. Frontiers in 
Immunology. 2018;9:2927

[117] Freeman GJ, Long AJ, Iwai Y, 
Bourque K, Chernova T, Nishimura H, 
et al. Engagement of the PD-1 
immunoinhibitory receptor by a novel 
B7 family member leads to negative 
regulation of lymphocyte activation. 



Current Cancer Treatment

124

The Journal of Experimental Medicine. 
2000;192:1027-1034. DOI: 10.1084/
jem.192.7.1027

[118] Seidel JA, Otsuka A, Kabashima K. 
Anti-PD-1 and anti-CTLA-4 therapies 
in cancer: Mechanisms of action, 
efficacy, and limitations. Frontiers in 
Oncology. 2018;8:86. DOI: 10.3389/
fonc.2018.00086

[119] Pulko V, Liu X, Krco CJ, 
Harris KJ, Frigola X, Kwon ED, et al. 
TLR3-stimulated dendritic cells 
up-regulate B7-H1 expression and 
influence the magnitude of CD8 T cell 
responses to tumor vaccination. Journal 
of Immunology. 2009;183:3634-3641. 
DOI: 10.4049/jimmunol.0900974

[120] Ray A, Das DS, Song Y, 
Richardson P, Munshi NC, Chauhan D, 
et al. Targeting PD1-PDL1 immune 
checkpoint in plasmacytoid dendritic 
cell interactions with T cells, natural 
killer cells and multiple myeloma cells. 
Leukemia. 2015;29:1441-1444. DOI: 
10.1038/leu.2015.11

[121] Brown JA, Dorfman DM, Ma FR, 
Sullivan EL, Munoz O, Wood CR, 
et al. Blockade of programmed death-1 
ligands on dendritic cells enhances T 
cell activation and cytokine production. 
Journal of Immunology. 2003;170:1257-
1266. DOI: 10.4049/jimmunol.170.3.1257

[122] Krieg C, Nowicka M, Guglietta S, 
Schindler S, Hartmann FJ, Weber LM, 
et al. High-dimensional single-cell 
analysis predicts response to anti-PD-1 
immunotherapy. Nature Medicine. 
2018;24:144-153. DOI: 10.1038/
nm.4466

[123] Salmon H, Idoyaga J, Rahman A, 
Leboeuf M, Remark R, Jordan S, et al. 
Expansion and activation of CD103(+) 
dendritic cell progenitors at the tumor 
site enhances tumor responses to 
therapeutic PD-L1 and BRAF inhibition. 
Immunity. 2016;44:924-938. DOI: 
10.1016/j.immuni.2016.03.012

[124] Beavis PA, Henderson MA, 
Giuffrida L, Davenport AJ, Petley EV, 
House IG, et al. Dual PD-1 and CTLA-4 
checkpoint blockade promotes antitumor 
immune responses through CD4(+)
Foxp3(−) cell-mediated modulation 
of CD103(+) dendritic cells. Cancer 
Immunology Research. 2018;6:1069-1081. 
DOI: 10.1158/2326-6066.CIR-18-0291

[125] Alloatti A, Rookhuizen DC, 
Joannas L, Carpier JM, Iborra S, 
Magalhaes JG, et al. Critical role for 
Sec22b-dependent antigen cross-
presentation in antitumor immunity. 
The Journal of Experimental Medicine. 
2017;214:2231-2241. DOI: 10.1084/
jem.20170229

[126] Garris CS, Arlauckas SP, 
Kohler RH, Trefny MP, Garren S, 
Piot C, et al. Successful anti-PD-1 cancer 
immunotherapy requires T cell-
dendritic cell crosstalk involving the 
cytokines IFN-gamma and IL-12. 
Immunity. 2018;49:1148-1161e1147. 
DOI: 10.1016/j.immuni.2018.09.024

[127] Bjoern J, Iversen TZ, Nitschke NJ, 
Andersen MH, Svane IM. Safety, 
immune and clinical responses 
in metastatic melanoma patients 
vaccinated with a long peptide derived 
from indoleamine 2,3-dioxygenase 
in combination with ipilimumab. 
Cytotherapy. 2016;18:1043-1055. DOI: 
10.1016/j.jcyt.2016.05.010

[128] He Y, Cao J, Zhao C, Li X, Zhou C, 
Hirsch FR. TIM-3, a promising target 
for cancer immunotherapy. Oncotargets 
and Therapy. 2018;11:7005-7009. DOI: 
10.2147/OTT.S170385

[129] Butte MJ, Keir ME, Phamduy TB, 
Sharpe AH, Freeman GJ. Programmed 
death-1 ligand 1 interacts specifically 
with the B7-1 costimulatory molecule 
to inhibit T cell responses. Immunity. 
2007;27:111-122. DOI: 10.1016/j.
immuni.2007.05.016

[130] Chaudhri A, Xiao Y, Klee AN, 
Wang X, Zhu B, Freeman GJ. PD-L1 

125

Dendritic Cells and Their Roles in Anti-Tumour Immunity
DOI: http://dx.doi.org/10.5772/intechopen.91692

binds to B7-1 only In Cis on the same cell 
surface. Cancer Immunology Research. 
2018;6:921-929. DOI: 10.1158/2326-
6066.CIR-17-0316

[131] Sugiura D, Maruhashi T, 
Okazaki IM, Shimizu K, Maeda TK, 
Takemoto T, et al. Restriction of 
PD-1 function by cis-PD-L1/CD80 
interactions is required for optimal T 
cell responses. Science. 2019;364: 
558-566. DOI: 10.1126/science.aav7062

[132] Sierro SR, Donda A, Perret R, 
Guillaume P, Yagita H, Levy F, 
et al. Combination of lentivector 
immunization and low-dose 
chemotherapy or PD-1/PD-L1 blocking 
primes self-reactive T cells and induces 
anti-tumor immunity. European Journal 
of Immunology. 2011;41:2217-2228. 
DOI: 10.1002/eji.201041235

[133] Li B, VanRoey M, Wang C, 
Chen TH, Korman A, Jooss K. Anti-
programmed death-1 synergizes 
with granulocyte macrophage 
colony-stimulating factor—Secreting 
tumor cell immunotherapy providing 
therapeutic benefit to mice with 
established tumors. Clinical Cancer 
Research. 2009;15:1623-1634. DOI: 
10.1158/1078-0432.CCR-08-1825

[134] Rice AE, Latchman YE, Balint JP, 
Lee JH, Gabitzsch ES, Jones FR. An 
HPV-E6/E7 immunotherapy plus PD-1 
checkpoint inhibition results in tumor 
regression and reduction in PD-L1 
expression. Cancer Gene Therapy. 
2015;22:454-462. DOI: 10.1038/
cgt.2015.40

[135] Chung V, Kos FJ, Hardwick N, 
Yuan Y, Chao J, Li D, et al. Evaluation of 
safety and efficacy of p53MVA vaccine 
combined with pembrolizumab in 
patients with advanced solid cancers. 
Clinical & Translational Oncology. 
2019;21:363-372. DOI: 10.1007/
s12094-018-1932-2

[136] Massarelli E, William W, 
Johnson F, Kies M, Ferrarotto R, Guo M, 

et al. Combining immune checkpoint 
blockade and tumor-specific vaccine 
for patients with incurable human 
papillomavirus 16-related cancer: 
A phase 2 clinical trial. JAMA 
Oncology. 2019;5:67-73. DOI: 10.1001/
jamaoncol.2018.4051

[137] Weber JS, Kudchadkar RR, 
Yu B, Gallenstein D, Horak CE, 
Inzunza HD, et al. Safety, efficacy, 
and biomarkers of nivolumab with 
vaccine in ipilimumab-refractory or 
-naive melanoma. Journal of Clinical 
Oncology. 2013;31:4311-4318. DOI: 
10.1200/JCO.2013.51.4802

[138] Gibney GT, Kudchadkar RR, 
DeConti RC, Thebeau MS, Czupryn MP, 
Tetteh L, et al. Safety, correlative 
markers, and clinical results of adjuvant 
nivolumab in combination with 
vaccine in resected high-risk metastatic 
melanoma. Clinical Cancer Research. 
2015;21:712-720. DOI: 10.1158/1078-
0432.CCR-14-2468

[139] Qureshi OS, Zheng Y, Nakamura K, 
Attridge K, Manzotti C, Schmidt EM, 
et al. Trans-endocytosis of CD80 and 
CD86: A molecular basis for the cell-
extrinsic function of CTLA-4. Science. 
2011;332:600-603. DOI: 10.1126/
science.1202947

[140] Hou TZ, Qureshi OS, Wang CJ, 
Baker J, Young SP, Walker LS, et al. A 
transendocytosis model of CTLA-4 
function predicts its suppressive 
behavior on regulatory T cells. Journal 
of Immunology. 2015;194:2148-2159. 
DOI: 10.4049/jimmunol.1401876

[141] Ovcinnikovs V, Ross EM, 
Petersone L, et al. CTLA-4-mediated 
transendocytosis of costimulatory 
molecules primarily targets migratory 
dendritic cells. Science Immunology. 
2019;4(35):eaaw0902. DOI: 10.1126/
sciimmunol.aaw0902

[142] Munn DH, Sharma MD, 
Mellor AL. Ligation of B7-1/B7-2 
by human CD4+ T cells triggers 



Current Cancer Treatment

124

The Journal of Experimental Medicine. 
2000;192:1027-1034. DOI: 10.1084/
jem.192.7.1027

[118] Seidel JA, Otsuka A, Kabashima K. 
Anti-PD-1 and anti-CTLA-4 therapies 
in cancer: Mechanisms of action, 
efficacy, and limitations. Frontiers in 
Oncology. 2018;8:86. DOI: 10.3389/
fonc.2018.00086

[119] Pulko V, Liu X, Krco CJ, 
Harris KJ, Frigola X, Kwon ED, et al. 
TLR3-stimulated dendritic cells 
up-regulate B7-H1 expression and 
influence the magnitude of CD8 T cell 
responses to tumor vaccination. Journal 
of Immunology. 2009;183:3634-3641. 
DOI: 10.4049/jimmunol.0900974

[120] Ray A, Das DS, Song Y, 
Richardson P, Munshi NC, Chauhan D, 
et al. Targeting PD1-PDL1 immune 
checkpoint in plasmacytoid dendritic 
cell interactions with T cells, natural 
killer cells and multiple myeloma cells. 
Leukemia. 2015;29:1441-1444. DOI: 
10.1038/leu.2015.11

[121] Brown JA, Dorfman DM, Ma FR, 
Sullivan EL, Munoz O, Wood CR, 
et al. Blockade of programmed death-1 
ligands on dendritic cells enhances T 
cell activation and cytokine production. 
Journal of Immunology. 2003;170:1257-
1266. DOI: 10.4049/jimmunol.170.3.1257

[122] Krieg C, Nowicka M, Guglietta S, 
Schindler S, Hartmann FJ, Weber LM, 
et al. High-dimensional single-cell 
analysis predicts response to anti-PD-1 
immunotherapy. Nature Medicine. 
2018;24:144-153. DOI: 10.1038/
nm.4466

[123] Salmon H, Idoyaga J, Rahman A, 
Leboeuf M, Remark R, Jordan S, et al. 
Expansion and activation of CD103(+) 
dendritic cell progenitors at the tumor 
site enhances tumor responses to 
therapeutic PD-L1 and BRAF inhibition. 
Immunity. 2016;44:924-938. DOI: 
10.1016/j.immuni.2016.03.012

[124] Beavis PA, Henderson MA, 
Giuffrida L, Davenport AJ, Petley EV, 
House IG, et al. Dual PD-1 and CTLA-4 
checkpoint blockade promotes antitumor 
immune responses through CD4(+)
Foxp3(−) cell-mediated modulation 
of CD103(+) dendritic cells. Cancer 
Immunology Research. 2018;6:1069-1081. 
DOI: 10.1158/2326-6066.CIR-18-0291

[125] Alloatti A, Rookhuizen DC, 
Joannas L, Carpier JM, Iborra S, 
Magalhaes JG, et al. Critical role for 
Sec22b-dependent antigen cross-
presentation in antitumor immunity. 
The Journal of Experimental Medicine. 
2017;214:2231-2241. DOI: 10.1084/
jem.20170229

[126] Garris CS, Arlauckas SP, 
Kohler RH, Trefny MP, Garren S, 
Piot C, et al. Successful anti-PD-1 cancer 
immunotherapy requires T cell-
dendritic cell crosstalk involving the 
cytokines IFN-gamma and IL-12. 
Immunity. 2018;49:1148-1161e1147. 
DOI: 10.1016/j.immuni.2018.09.024

[127] Bjoern J, Iversen TZ, Nitschke NJ, 
Andersen MH, Svane IM. Safety, 
immune and clinical responses 
in metastatic melanoma patients 
vaccinated with a long peptide derived 
from indoleamine 2,3-dioxygenase 
in combination with ipilimumab. 
Cytotherapy. 2016;18:1043-1055. DOI: 
10.1016/j.jcyt.2016.05.010

[128] He Y, Cao J, Zhao C, Li X, Zhou C, 
Hirsch FR. TIM-3, a promising target 
for cancer immunotherapy. Oncotargets 
and Therapy. 2018;11:7005-7009. DOI: 
10.2147/OTT.S170385

[129] Butte MJ, Keir ME, Phamduy TB, 
Sharpe AH, Freeman GJ. Programmed 
death-1 ligand 1 interacts specifically 
with the B7-1 costimulatory molecule 
to inhibit T cell responses. Immunity. 
2007;27:111-122. DOI: 10.1016/j.
immuni.2007.05.016

[130] Chaudhri A, Xiao Y, Klee AN, 
Wang X, Zhu B, Freeman GJ. PD-L1 

125

Dendritic Cells and Their Roles in Anti-Tumour Immunity
DOI: http://dx.doi.org/10.5772/intechopen.91692

binds to B7-1 only In Cis on the same cell 
surface. Cancer Immunology Research. 
2018;6:921-929. DOI: 10.1158/2326-
6066.CIR-17-0316

[131] Sugiura D, Maruhashi T, 
Okazaki IM, Shimizu K, Maeda TK, 
Takemoto T, et al. Restriction of 
PD-1 function by cis-PD-L1/CD80 
interactions is required for optimal T 
cell responses. Science. 2019;364: 
558-566. DOI: 10.1126/science.aav7062

[132] Sierro SR, Donda A, Perret R, 
Guillaume P, Yagita H, Levy F, 
et al. Combination of lentivector 
immunization and low-dose 
chemotherapy or PD-1/PD-L1 blocking 
primes self-reactive T cells and induces 
anti-tumor immunity. European Journal 
of Immunology. 2011;41:2217-2228. 
DOI: 10.1002/eji.201041235

[133] Li B, VanRoey M, Wang C, 
Chen TH, Korman A, Jooss K. Anti-
programmed death-1 synergizes 
with granulocyte macrophage 
colony-stimulating factor—Secreting 
tumor cell immunotherapy providing 
therapeutic benefit to mice with 
established tumors. Clinical Cancer 
Research. 2009;15:1623-1634. DOI: 
10.1158/1078-0432.CCR-08-1825

[134] Rice AE, Latchman YE, Balint JP, 
Lee JH, Gabitzsch ES, Jones FR. An 
HPV-E6/E7 immunotherapy plus PD-1 
checkpoint inhibition results in tumor 
regression and reduction in PD-L1 
expression. Cancer Gene Therapy. 
2015;22:454-462. DOI: 10.1038/
cgt.2015.40

[135] Chung V, Kos FJ, Hardwick N, 
Yuan Y, Chao J, Li D, et al. Evaluation of 
safety and efficacy of p53MVA vaccine 
combined with pembrolizumab in 
patients with advanced solid cancers. 
Clinical & Translational Oncology. 
2019;21:363-372. DOI: 10.1007/
s12094-018-1932-2

[136] Massarelli E, William W, 
Johnson F, Kies M, Ferrarotto R, Guo M, 

et al. Combining immune checkpoint 
blockade and tumor-specific vaccine 
for patients with incurable human 
papillomavirus 16-related cancer: 
A phase 2 clinical trial. JAMA 
Oncology. 2019;5:67-73. DOI: 10.1001/
jamaoncol.2018.4051

[137] Weber JS, Kudchadkar RR, 
Yu B, Gallenstein D, Horak CE, 
Inzunza HD, et al. Safety, efficacy, 
and biomarkers of nivolumab with 
vaccine in ipilimumab-refractory or 
-naive melanoma. Journal of Clinical 
Oncology. 2013;31:4311-4318. DOI: 
10.1200/JCO.2013.51.4802

[138] Gibney GT, Kudchadkar RR, 
DeConti RC, Thebeau MS, Czupryn MP, 
Tetteh L, et al. Safety, correlative 
markers, and clinical results of adjuvant 
nivolumab in combination with 
vaccine in resected high-risk metastatic 
melanoma. Clinical Cancer Research. 
2015;21:712-720. DOI: 10.1158/1078-
0432.CCR-14-2468

[139] Qureshi OS, Zheng Y, Nakamura K, 
Attridge K, Manzotti C, Schmidt EM, 
et al. Trans-endocytosis of CD80 and 
CD86: A molecular basis for the cell-
extrinsic function of CTLA-4. Science. 
2011;332:600-603. DOI: 10.1126/
science.1202947

[140] Hou TZ, Qureshi OS, Wang CJ, 
Baker J, Young SP, Walker LS, et al. A 
transendocytosis model of CTLA-4 
function predicts its suppressive 
behavior on regulatory T cells. Journal 
of Immunology. 2015;194:2148-2159. 
DOI: 10.4049/jimmunol.1401876

[141] Ovcinnikovs V, Ross EM, 
Petersone L, et al. CTLA-4-mediated 
transendocytosis of costimulatory 
molecules primarily targets migratory 
dendritic cells. Science Immunology. 
2019;4(35):eaaw0902. DOI: 10.1126/
sciimmunol.aaw0902

[142] Munn DH, Sharma MD, 
Mellor AL. Ligation of B7-1/B7-2 
by human CD4+ T cells triggers 



Current Cancer Treatment

126

indoleamine 2,3-dioxygenase activity in 
dendritic cells. Journal of Immunology. 
2004;172:4100-4110. DOI: 10.4049/
jimmunol.172.7.4100

[143] Chen W, Liang X, Peterson AJ, 
Munn DH, Blazar BR. The indoleamine 
2,3-dioxygenase pathway is essential 
for human plasmacytoid dendritic 
cell-induced adaptive T regulatory cell 
generation. Journal of Immunology. 
2008;181:5396-5404. DOI: 10.4049/
jimmunol.181.8.5396

[144] Mellor AL, Chandler P, Baban B, 
Hansen AM, Marshall B, Pihkala J, et al. 
Specific subsets of murine dendritic 
cells acquire potent T cell regulatory 
functions following CTLA4-
mediated induction of indoleamine 
2,3 dioxygenase. International 
Immunology. 2004;16:1391-1401. DOI: 
10.1093/intimm/dxh140

[145] Laurent S, Carrega P, Saverino D, 
Piccioli P, Camoriano M, Morabito A, 
et al. CTLA-4 is expressed by human 
monocyte-derived dendritic cells and 
regulates their functions. Human 
Immunology. 2010;71:934-941. DOI: 
10.1016/j.humimm.2010.07.007

[146] Halpert MM, Konduri V, 
Liang D, Chen Y, Wing JB, Paust S, 
et al. Dendritic cell-secreted cytotoxic 
T-lymphocyte-associated Protein-4 
regulates the T-cell response by 
Downmodulating bystander surface 
B7. Stem Cells and Development. 
2016;25:774-787. DOI: 10.1089/
scd.2016.0009

[147] Hodi FS, O’Day SJ, McDermott DF, 
Weber RW, Sosman JA, Haanen JB, et al. 
Improved survival with ipilimumab 
in patients with metastatic melanoma. 
The New England Journal of Medicine. 
2010;363:711-723. DOI: 10.1056/
NEJMoa1003466

[148] Sarnaik AA, Yu B, Yu D, Morelli D, 
Hall M, Bogle D, et al. Extended dose 
ipilimumab with a peptide vaccine: 

Immune correlates associated with 
clinical benefit in patients with resected 
high-risk stage IIIc/IV melanoma. 
Clinical Cancer Research. 2011;17:896-
906. DOI: 10.1158/1078-0432.
CCR-10-2463

[149] Ribas A, Comin-Anduix B, 
Chmielowski B, Jalil J, de la 
Rocha P, McCannel TA, et al. Dendritic 
cell vaccination combined with CTLA4 
blockade in patients with metastatic 
melanoma. Clinical Cancer Research. 
2009;15:6267-6276. DOI: 10.1158/1078-
0432.CCR-09-1254

[150] Wilgenhof S, Corthals J, Heirman C,  
van Baren N, Lucas S, Kvistborg P, et al. 
Phase II study of autologous monocyte-
derived mRNA electroporated dendritic 
cells (TriMixDC-MEL) plus Ipilimumab 
in patients with pretreated advanced 
melanoma. Journal of Clinical Oncology. 
2016;34:1330-1338. DOI: 10.1200/
JCO.2015.63.4121

[151] Anderson AC, Anderson DE, 
Bregoli L, Hastings WD, Kassam N, 
Lei C, et al. Promotion of tissue 
inflammation by the immune receptor 
Tim-3 expressed on innate immune 
cells. Science. 2007;318:1141-1143. DOI: 
10.1126/science.1148536

[152] de Mingo Pulido A, Gardner A, 
Hiebler S, Soliman H, Rugo HS, 
Krummel MF, et al. TIM-3 regulates 
CD103(+) dendritic cell function and 
response to chemotherapy in breast 
cancer. Cancer Cell. 2018;33:60-74e66. 
DOI: 10.1016/j.ccell.2017.11.019

[153] Fromm PD, Kupresanin F, 
Brooks AE, Dunbar PR, Haniffa M, 
Hart DN, et al. A multi-laboratory 
comparison of blood dendritic 
cell populations. Clinical & 
Translational Immunology. 2016;5:e68. 
DOI: 10.1038/cti.2016.5

[154] Long L, Zhang X, Chen F, Pan 
Q , Phiphatwatchara P, Zeng Y, et al. 
The promising immune checkpoint 

127

Dendritic Cells and Their Roles in Anti-Tumour Immunity
DOI: http://dx.doi.org/10.5772/intechopen.91692

LAG-3: From tumor microenvironment 
to cancer immunotherapy. Genes & 
Cancer. 2018;9:176-189. DOI: 10.18632/
genesandcancer.180

[155] Andreae S, Piras F, Burdin N, 
Triebel F. Maturation and activation of 
dendritic cells induced by lymphocyte 
activation gene-3 (CD223). Journal of 
Immunology. 2002;168:3874-3880. DOI: 
10.4049/jimmunol.168.8.3874

[156] Avice MN, Sarfati M, Triebel F, 
Delespesse G, Demeure CE. Lymphocyte 
activation gene-3, a MHC class II 
ligand expressed on activated T 
cells, stimulates TNF-alpha and 
IL-12 production by monocytes and 
dendritic cells. Journal of Immunology. 
1999;162:2748-2753

[157] Buisson S, Triebel F. MHC class 
II engagement by its ligand LAG-3 
(CD223) leads to a distinct pattern of 
chemokine and chemokine receptor 
expression by human dendritic cells. 
Vaccine. 2003;21:862-868

[158] Brignone C, Gutierrez M, Mefti F, 
Brain E, Jarcau R, Cvitkovic F, et al. 
First-line chemoimmunotherapy 
in metastatic breast carcinoma: 
Combination of paclitaxel and IMP321 
(LAG-3Ig) enhances immune responses 
and antitumor activity. Journal of 
Translational Medicine. 2010;8:71. DOI: 
10.1186/1479-5876-8-71

[159] Camisaschi C, De Filippo A, 
Beretta V, Vergani B, Villa A, Vergani E, 
et al. Alternative activation of human 
plasmacytoid DCs in vitro and in 
melanoma lesions: Involvement of 
LAG-3. The Journal of Investigative 
Dermatology. 2014;134:1893-1902. DOI: 
10.1038/jid.2014.29

[160] Ito T, Hanabuchi S, Wang YH, 
Park WR, Arima K, Bover L, et al. 
Two functional subsets of FOXP3+ 
regulatory T cells in human thymus and 
periphery. Immunity. 2008;28:870-880. 
DOI: 10.1016/j.immuni.2008.03.018

[161] Marinelli O, Nabissi M, 
Morelli MB, Torquati L, Amantini C, 
Santoni G. ICOS-L as a potential 
therapeutic target for cancer 
immunotherapy. Current Protein & 
Peptide Science. 2018;19:1107-1113. DOI: 
10.2174/1389203719666180608093913

[162] Ogata M, Ito T, Shimamoto K, 
Nakanishi T, Satsutani N, Miyamoto R, 
et al. Plasmacytoid dendritic cells have a 
cytokine-producing capacity to enhance 
ICOS ligand-mediated IL-10 production 
during T-cell priming. International 
Immunology. 2013;25:171-182. DOI: 
10.1093/intimm/dxs103

[163] Wei S, Kryczek I, Zou L,  
Daniel B, Cheng P, Mottram P, et al. 
Plasmacytoid dendritic cells induce 
CD8+ regulatory T cells in human 
ovarian carcinoma. Cancer Research. 
2005;65:5020-5026. DOI: 10.1158/ 
0008-5472.CAN-04-4043

[164] Faget J, Bendriss-Vermare N, 
Gobert M, Durand I, Olive D, 
Biota C, et al. ICOS-ligand expression 
on plasmacytoid dendritic cells 
supports breast cancer progression 
by promoting the accumulation of 
immunosuppressive CD4+ T cells. 
Cancer Research. 2012;72:6130-6141. 
DOI: 10.1158/0008-5472.CAN-12-2409

[165] Huang XM, Liu XS, Lin XK,  
Yu H, Sun JY, Liu XK, et al. Role 
of plasmacytoid dendritic cells 
and inducible costimulator-
positive regulatory T cells in the 
immunosuppression microenvironment 
of gastric cancer. Cancer Science. 
2014;105:150-158. DOI: 10.1111/
cas.12327

[166] Pedroza-Gonzalez A, Zhou G, 
Vargas-Mendez E, Boor PP, Mancham S, 
Verhoef C, et al. Tumor-infiltrating 
plasmacytoid dendritic cells 
promote immunosuppression by 
Tr1 cells in human liver tumors. 
Oncoimmunology. 2015;4:e1008355. 
DOI: 10.1080/2162402X.2015.1008355



Current Cancer Treatment

126

indoleamine 2,3-dioxygenase activity in 
dendritic cells. Journal of Immunology. 
2004;172:4100-4110. DOI: 10.4049/
jimmunol.172.7.4100

[143] Chen W, Liang X, Peterson AJ, 
Munn DH, Blazar BR. The indoleamine 
2,3-dioxygenase pathway is essential 
for human plasmacytoid dendritic 
cell-induced adaptive T regulatory cell 
generation. Journal of Immunology. 
2008;181:5396-5404. DOI: 10.4049/
jimmunol.181.8.5396

[144] Mellor AL, Chandler P, Baban B, 
Hansen AM, Marshall B, Pihkala J, et al. 
Specific subsets of murine dendritic 
cells acquire potent T cell regulatory 
functions following CTLA4-
mediated induction of indoleamine 
2,3 dioxygenase. International 
Immunology. 2004;16:1391-1401. DOI: 
10.1093/intimm/dxh140

[145] Laurent S, Carrega P, Saverino D, 
Piccioli P, Camoriano M, Morabito A, 
et al. CTLA-4 is expressed by human 
monocyte-derived dendritic cells and 
regulates their functions. Human 
Immunology. 2010;71:934-941. DOI: 
10.1016/j.humimm.2010.07.007

[146] Halpert MM, Konduri V, 
Liang D, Chen Y, Wing JB, Paust S, 
et al. Dendritic cell-secreted cytotoxic 
T-lymphocyte-associated Protein-4 
regulates the T-cell response by 
Downmodulating bystander surface 
B7. Stem Cells and Development. 
2016;25:774-787. DOI: 10.1089/
scd.2016.0009

[147] Hodi FS, O’Day SJ, McDermott DF, 
Weber RW, Sosman JA, Haanen JB, et al. 
Improved survival with ipilimumab 
in patients with metastatic melanoma. 
The New England Journal of Medicine. 
2010;363:711-723. DOI: 10.1056/
NEJMoa1003466

[148] Sarnaik AA, Yu B, Yu D, Morelli D, 
Hall M, Bogle D, et al. Extended dose 
ipilimumab with a peptide vaccine: 

Immune correlates associated with 
clinical benefit in patients with resected 
high-risk stage IIIc/IV melanoma. 
Clinical Cancer Research. 2011;17:896-
906. DOI: 10.1158/1078-0432.
CCR-10-2463

[149] Ribas A, Comin-Anduix B, 
Chmielowski B, Jalil J, de la 
Rocha P, McCannel TA, et al. Dendritic 
cell vaccination combined with CTLA4 
blockade in patients with metastatic 
melanoma. Clinical Cancer Research. 
2009;15:6267-6276. DOI: 10.1158/1078-
0432.CCR-09-1254

[150] Wilgenhof S, Corthals J, Heirman C,  
van Baren N, Lucas S, Kvistborg P, et al. 
Phase II study of autologous monocyte-
derived mRNA electroporated dendritic 
cells (TriMixDC-MEL) plus Ipilimumab 
in patients with pretreated advanced 
melanoma. Journal of Clinical Oncology. 
2016;34:1330-1338. DOI: 10.1200/
JCO.2015.63.4121

[151] Anderson AC, Anderson DE, 
Bregoli L, Hastings WD, Kassam N, 
Lei C, et al. Promotion of tissue 
inflammation by the immune receptor 
Tim-3 expressed on innate immune 
cells. Science. 2007;318:1141-1143. DOI: 
10.1126/science.1148536

[152] de Mingo Pulido A, Gardner A, 
Hiebler S, Soliman H, Rugo HS, 
Krummel MF, et al. TIM-3 regulates 
CD103(+) dendritic cell function and 
response to chemotherapy in breast 
cancer. Cancer Cell. 2018;33:60-74e66. 
DOI: 10.1016/j.ccell.2017.11.019

[153] Fromm PD, Kupresanin F, 
Brooks AE, Dunbar PR, Haniffa M, 
Hart DN, et al. A multi-laboratory 
comparison of blood dendritic 
cell populations. Clinical & 
Translational Immunology. 2016;5:e68. 
DOI: 10.1038/cti.2016.5

[154] Long L, Zhang X, Chen F, Pan 
Q , Phiphatwatchara P, Zeng Y, et al. 
The promising immune checkpoint 

127

Dendritic Cells and Their Roles in Anti-Tumour Immunity
DOI: http://dx.doi.org/10.5772/intechopen.91692

LAG-3: From tumor microenvironment 
to cancer immunotherapy. Genes & 
Cancer. 2018;9:176-189. DOI: 10.18632/
genesandcancer.180

[155] Andreae S, Piras F, Burdin N, 
Triebel F. Maturation and activation of 
dendritic cells induced by lymphocyte 
activation gene-3 (CD223). Journal of 
Immunology. 2002;168:3874-3880. DOI: 
10.4049/jimmunol.168.8.3874

[156] Avice MN, Sarfati M, Triebel F, 
Delespesse G, Demeure CE. Lymphocyte 
activation gene-3, a MHC class II 
ligand expressed on activated T 
cells, stimulates TNF-alpha and 
IL-12 production by monocytes and 
dendritic cells. Journal of Immunology. 
1999;162:2748-2753

[157] Buisson S, Triebel F. MHC class 
II engagement by its ligand LAG-3 
(CD223) leads to a distinct pattern of 
chemokine and chemokine receptor 
expression by human dendritic cells. 
Vaccine. 2003;21:862-868

[158] Brignone C, Gutierrez M, Mefti F, 
Brain E, Jarcau R, Cvitkovic F, et al. 
First-line chemoimmunotherapy 
in metastatic breast carcinoma: 
Combination of paclitaxel and IMP321 
(LAG-3Ig) enhances immune responses 
and antitumor activity. Journal of 
Translational Medicine. 2010;8:71. DOI: 
10.1186/1479-5876-8-71

[159] Camisaschi C, De Filippo A, 
Beretta V, Vergani B, Villa A, Vergani E, 
et al. Alternative activation of human 
plasmacytoid DCs in vitro and in 
melanoma lesions: Involvement of 
LAG-3. The Journal of Investigative 
Dermatology. 2014;134:1893-1902. DOI: 
10.1038/jid.2014.29

[160] Ito T, Hanabuchi S, Wang YH, 
Park WR, Arima K, Bover L, et al. 
Two functional subsets of FOXP3+ 
regulatory T cells in human thymus and 
periphery. Immunity. 2008;28:870-880. 
DOI: 10.1016/j.immuni.2008.03.018

[161] Marinelli O, Nabissi M, 
Morelli MB, Torquati L, Amantini C, 
Santoni G. ICOS-L as a potential 
therapeutic target for cancer 
immunotherapy. Current Protein & 
Peptide Science. 2018;19:1107-1113. DOI: 
10.2174/1389203719666180608093913

[162] Ogata M, Ito T, Shimamoto K, 
Nakanishi T, Satsutani N, Miyamoto R, 
et al. Plasmacytoid dendritic cells have a 
cytokine-producing capacity to enhance 
ICOS ligand-mediated IL-10 production 
during T-cell priming. International 
Immunology. 2013;25:171-182. DOI: 
10.1093/intimm/dxs103

[163] Wei S, Kryczek I, Zou L,  
Daniel B, Cheng P, Mottram P, et al. 
Plasmacytoid dendritic cells induce 
CD8+ regulatory T cells in human 
ovarian carcinoma. Cancer Research. 
2005;65:5020-5026. DOI: 10.1158/ 
0008-5472.CAN-04-4043

[164] Faget J, Bendriss-Vermare N, 
Gobert M, Durand I, Olive D, 
Biota C, et al. ICOS-ligand expression 
on plasmacytoid dendritic cells 
supports breast cancer progression 
by promoting the accumulation of 
immunosuppressive CD4+ T cells. 
Cancer Research. 2012;72:6130-6141. 
DOI: 10.1158/0008-5472.CAN-12-2409

[165] Huang XM, Liu XS, Lin XK,  
Yu H, Sun JY, Liu XK, et al. Role 
of plasmacytoid dendritic cells 
and inducible costimulator-
positive regulatory T cells in the 
immunosuppression microenvironment 
of gastric cancer. Cancer Science. 
2014;105:150-158. DOI: 10.1111/
cas.12327

[166] Pedroza-Gonzalez A, Zhou G, 
Vargas-Mendez E, Boor PP, Mancham S, 
Verhoef C, et al. Tumor-infiltrating 
plasmacytoid dendritic cells 
promote immunosuppression by 
Tr1 cells in human liver tumors. 
Oncoimmunology. 2015;4:e1008355. 
DOI: 10.1080/2162402X.2015.1008355



Chapter 5

What Are the New Challenges of
the Current Cancer Biomarkers?
Jie Chen, Liqiong Yang, Yuxi Duan,Tinging Pu, Sha Zheng,
Fangfang Liu, Kun Huang, Greg Mirt and Fan Xu

Abstract

Biomarkers are emerging research filed in the past decade. Even though numer-
ous biomarkers were reported, the efficiency of cancer therapy remains low. So the
question emerges as to how much can we trust the current biomarkers on cancer
therapy? In this upcoming chapter, we would like to illustrate the outcomes of
classical cancer therapies on advanced pancreatic cancer disclosed successful,
neutral and failed in clinical trials. The analysis will be carried on the perspective
interdisciplinary on the biomarkers including anatomy, physiology, pharmacology,
biochemistry, history path and development of pharmacy. Particular in-depth
insight may open a window for new researches and lighting the therapies.

Keywords: advanced pancreatic cancer, biomarker, clinical trials

1. Introduction

Advance pancreatic cancer (APC) is a highly lethal tumor. Most patients with
APC remain asymptomatic until the disease reaches an advanced stage [1]. The
incidence rate was 5.5 for men and 4.0 for women per 100,000 people. The mor-
tality rate was 5.1 for men and 3.8 for women per 100,000 people around the world,
according to data, from 2018 [2]. For the incidence rate, Asia is at 48.4%, Europe
at 23.4%, and the Americas is at 21.0%. As for the mortality rate, Asia is at 57.3%,
Europe at 20.3%, and the Americas is at 14.3% [3].

Our previous study disclosed that there were more than 19 chemotherapy regi-
mens combinations in clinical practice available [4]. The advantages and disadvan-
tages of each therapy regimens are clear. Briefly, to lengthen the overall survival
and to reduce the treatment-related toxicity we must consider the outclass selec-
tion. There are more than 14 treatment-related toxicities in gastrointestinal, consti-
tutional, skin, hepatotoxicity, infection, vascular, neuropathy, mental, pain, renal,
electrolytes and pulmonary of human body in current dominant chemotherapy
regimens. To broaden the balance requires expertise and professional medical
training based on evidence.

2. Long period run in research and development in pharmacy

The development of drugs is based on the determination of new therapeutic
targets, the pharmacological receptors. This concept was first proposed by Paul
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Ehrlich in 1908 [5]. Normal cells replicate their DNA with great accuracy, but
cancer has a large number of mutations that show up in cancer cells that make them
pharmacological targets [6]. From the initial concept of molecular targets, drug
targets were discovered and validated, which successful translated the most drugs
into practice [7].

Excellent and reliable targets identification and validation can increase the cred-
ibility of the relationship between intentions and diseases, this may strength the
effectively of drugs. Drugs are usually developed only when specific drug target for
the action of these drugs are analyzed and examined. Sufficient potential targets
have been discovered rapidly for the drug discovery process.

Numerous data including identified gene and drug discovery cycles have been
generated exponentially. This may forge the difficultness in decision making and
becomes more and more difficult for drug R&D. Thanks to rapid bioinformatic
discoveries, more and more biopharmaceutical targets can be identified and
analyzed [8].

Validation from cross-species a bioeffect is performed after the drug target is
determined and verified. Rodents and non-human primates provide appropriate
animal models for screening and evaluation of a new drug. Most of current cancer
in vivo experiments use rodent experimental animals such as mice and rats. Because
they are small, rapid reproduction, clear genetic background and mature genetic
modification technology can be done. However, due to the distant relationship
between rodents and humans, many of the results obtained from rodent models
cannot be reproduced in humans. Moreover, non-human primates are highly simi-
lar to humans in terms of genetic evolution, immunity, physiology and metabolism.
They are theoretically more suitable for cancer researches [9].

Clinical trials are the best channel to tie up pharmaceutical targets to reliable
drugs. The goal is to determine whether a candidate drug is safe and effective. There
are four phases in clinical trials. More specific biomarker studies are based on data
from prospective studies [10]. In the study of cancer biomarkers, retrospective
studies and prospective studies help to identify potential biomarkers, which may
be validated in the future studies, however, the reliability of evidence remains
controversial.

3. Can we trust the current biomarkers of cancer?

Unfortunately, the overall survival of APC patients has not revised assuredly.
There are too many choices in clinical practice and evidence-based medicine is a
permanent challenge. Which of the modern biomarkers is reliable? Are we ever
going to detect precise pharmaceutical targets on APC [11]?

4. Validation method

In order to clarify this question, we collected the raw data source (http://clinica
ltrials.gov) and searched all the drug treatments on APC. We refined all the data
which had results and were published. Briefly, a total of 2726 recordings were found
since May 2019. Hundred and fifteen recordings which finished clinical trials,
further we ruled out irrelevant 32 recordings and 56 unclear results. Finally, 27
recordings kept comprising the following three tables. Raw data are free, please
follow the link 10.6084/m9.figshare.8275190.
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5. What can data tell us?

Total, there are 18 biomarkers used among these results. For details please see
Table 1. The results from 27 clinical trials could be divided into three categories (a)
rank of the effectiveness (b) rank of intervention and (c) quality of life improved.

5.1 Estimation of clinical trials with success outcome on advanced
pancreatic cancer

Total, we found 10 publications where the author declares the successful out-
come on the treatment of APC from 2011 to 2019, Table 2. These clinical trials
recruited 1080 patients with APC (611 male and 469 female). The average overall
survival month is 11.62 and progress-free survival month is 10.79. Briefly, Lutz et al.
tests the GVAX pancreatic cancer vaccine via GPI biomarkers The OS and PFS
approach got the highest point, 24.8 and 17.3, respectively Similarly, Phan et al.
tested the pazopanib hydrochloride via VEGF biomarkers. This approach had a
higher OS and PFS points. Survival months are 25 and 14.4. Furthermore, Hong
et al. disclosed the capecitabine may put the OS and PFS to 17.3 and 10.4 survival
months; the remain studies presented similar results, the OS and PFS were lower
than 10 months.

Biomarkers Abbreviation

Vascular endothelial growth factor* VEGF

Thymidine phosphorylase TP

Epidermal growth factor receptor* EGFR

Tumor necrosis factor α TNF-α

Topoisomerase I inhibitor TIH

Sonic hedgehog SHH

Severe hypoxia intracellular reductases SHIR

Secreted protein acid rich in cysteine SPARC

Platelet-derived growth factor PDGF

MEK1/2-dependent effector proteins ERK1/2

Kirsten rat sarcoma viral oncogene homolog* KRAS

Interleukin 6/interleukin 8 IL-6/IL-8

Heat shock protein 27 Hsp27

Glycosyl-phosphatidylinositol GPI

Double-strand breaks in DNA —

Checkpoint kinase 1 CHK1

Microtubule-associated protein light chain 3- II LC3- II

Circulating free DNA cfDNA

Dihydropyrimidine dehydrogenase DPD

NCCN Recommend: National Comprehensive Cancer Network.

Table 1.
Potential biomarkers used in advanced pancreatic cancer.
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Year Author N M F Drug OS PFS Biomarkers

2011 Hill [12] 21 8 13 Capecitabine;
docetaxel;

7.4 5.8 TP

gemcitabine

2011 Lutz [13] 60 37 23 GVAX pancreatic
cancer

24.8 17.3 GPI

Vaccine

2011 Raymond [14] 86 42 44 Sunitinib 9 30 VEGF

85 40 45 Sunitinib 21 51

2013 Hosein [15] 19 9 10 Abraxane 7.3 1.7 SPARC

2014 Soares [16] 43 21 22 Capecitabine;
docetaxel

5.3 3.7 TP

2014 Ban [17] 33 30 3 Belotaxel; belloxa 10.9 3.6 Double-strand breaks in
DNA

2014 Borad [18] 69 40 29 TH-302 with
gemcitabine;

6.9 3.6 Severe hypoxia
Intracellular reductases

Gemcitabine

71 44 27 TH-303 with
gemcitabine;

8.7 5.6

gemcitabine

74 42 32 TH-304 with
gemcitabine;

9.2 6

gemcitabine

2015 Phan [19] 32 22 10 Pazopanib
hydrochloride

25 14.4 VEGF

20 12 8 Pazopanib
hydrochloride

18.5 12.2

2019 Wang-Gillam
[20]

151 87 64 MM-398 4.9 2.7 Topoisomerase I inhibitor

149 81 68 5 Fluorouracil;
leucovorin

4.2 1.6

117 69 48 MM-398; 5
fluorouracil;

6.2 3.1

leucovorin

Table 2.
Clinical trials with a successful outcome on pancreatic cancer.

Year Author N M F Drug OS PFS Biomarkers

2008 Spano [21] 69 35 34 Gemcitabine 5.6 3.7 VEGF

34 16 18 Gemcitabine; AG-013736 6.9 4.2

2015 Hobday [22] 58 29 29 Bevacizumab; temsirolimus 34 13.2 VEGF

2016 Stein [23] 37 21 16 MPC modified FOLFIRINOX 10.2 6.1 DPD

31 20 11 LAPC modified FOLFIRINOX 26.6 17.8

Table 3.
Clinical trial with neutral outcomes on pancreatic cancer.
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5.2 Estimation of clinical trials with the neutral outcome on advanced
pancreatic cancer

Here are three studies clarified neural results in OS and PFS result, ranged
from 2008 to 2016, totally recruited 229 APC patients (121 male and 108 female).
For details please see Table 3. Averagely the OS is 16.6 months and PFS is
9 months in neutral studies. For example, Jean in 2008 reported gemcitabine
plus AG-013736 achieved better OS and PFS (6.9 and 4.2) than gemcitabine
single used.

5.3 Estimation of clinical trials with the failed outcome on advanced
pancreatic cancer

Regarding the failed outcomes, there are 14 studies ranged from 2011 to 2018,
recruited 2448 APC patients (1385 male and 1063 female) for clinical trials. For
details please see Table 1. Averagely the OS is 8.25 months and PFS is 4.39 months.
It is evident that Faivre et al. in 2016 tested sunitinib malate to treat APC and
achieved 38.6 months of OS and 12.6 months of PFS. However, Brian reported that
hydroxychloroquine cures APC, unfortunately, there were 1.8 months both in OS
and PFS negativity. Even though many combination tests, the benefit for APC
patient is low.

6. Different perspectives on biomarkers

6.1 Vascular endothelial growth factor, VEGF

VEGF is a highly specific vascular endothelial cell mitogen and an angiogenic
factor associated with platelet-derived growth factor (PDGF) structure. It is also
known as vascular permeability factor (VPF), due to its permeabilization of blood
vessels [24]. It is a subfamily of growth factors and belongs to a family of platelet-
derived growth factors of cystine knot growth factor. VEGF is divided into the
following groups: VEGF-A, VEGF-B, VEGF-C, VEGF-D, VEGF-E and placental
growth factor. VEGF binds to three transmembrane receptors (VEGFR1, VEGFR2
and VEGFR3). This receptor initiates downstream signaling through intracellular
tyrosine kinase activity [25]. In fact, VEGF family members are playing an
important role in the physiological angiogenesis of adults. Like wound healing,
ovulation and pregnancy [26].

Activation of the VEGF/VEGF receptor (VEGFR) axis may trigger multiple
signaling networks. Consequently, this may lead to endothelial cell survival,
mitosis, migration and differentiation, vascular permeability and mobilization of
endothelial progenitor cells (EPCs) from the bone marrow into the peripheral
circulation [27]. On ligand binding, VEGFR-2 dimerization results in kinase activa-
tion and autophosphorylation of tyrosine residues. Activation of PKC may stimulate
the Raf/MEK/ERK pathway, which accelerates the cell proliferation. Ca2+ mobiliza-
tion and PKC activation are playing the key role in signaling events for VEGF-
A-induced vascular permeability through activation of endothelial nitric oxide
synthase activity [28].

The sword has double sides. VEGF participates in the pathogenesis of cancer,
proliferative retinopathy and rheumatoid arthritis [29]. Its antibodies have shown
therapeutic potential to inhibit tumor growth in vivo by inhibiting tumor-induced
angiogenesis [30]. VEGF overexpression is associated with a variety of tumor pro-
gression and poor prognosis, including colorectal cancer [31], pancreatic cancer [32],
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gastric cancer [33], breast cancer [34], lung cancer [35], prostate cancer [36] and
melanoma [37]. This unique protein aids tumors grow and can be used for cancer
treatment if used properly.

Early in 1971, Folkman first proposed the idea of angiogenesis. He believed that
tumor growth and proliferation are closely related to angiogenesis and could be
used as a targeted tumor therapy procedure [38]. Subsequently, countless scientists
gathered in the field of VEGF to study the molecular mechanism of VEGF in tumor
angiogenesis. They have also used it as a drug target to block the formation of blood
vessels, thereby inhibiting tumor growth [39]. Studies have shown that the mecha-
nism of anti-VEGF inhibitors may involve a variety of signaling pathways, such as
FGF, D114, PGF/VEGFR1 and VEGF-C/VEGFR2. At least some of these pathways
can increase the efficacy of VEGF inhibitors [40]. The anti-tumor drugs were
developed with VEGF as the main target area. Like anti-VEGF humanized mono-
clonal antibody, VEGF-targeted antibody, protein kinase inhibitor and tumor vac-
cine [41, 42]. However, in the clinical application of anti-antigenic drugs, reliable
biomarkers have not been found to screen the target population before patient
improvement.

Our data disclosed that there were two studies reporting successful outcomes
[14, 19], two studies reported neutral outcomes [21, 22] and four studies reported
negative outcomes [43–46]. The results from the above eight trials remain contro-
versial.

Regarding successful outcomes, Raymond et al. found that neuroendocrine
tumors may be particularly sensitive to the combined inhibition of VEGFR and
PDGFR. As for the neutral outcomes [14], Spano et al. used the gemcitabine +
axitinib to treat the APC [21]. However, results differ from the results of Phase III
trials in which erlotinib + gemcitabine confers the greatest survival advantage for
patients with ECOG status 2 and metastatic disease, it possibly due to the mecha-
nism of action between different EGFR and VEGFR inhibitors. Moreover, Hobday
et al. found that the median PFS in the gefitinib trial was only 3.7 months which was
even lower than the placebo group in the phase III trial [22].

With respect to the failed outcomes, Kindler et al. found that the effect of
axitinib and gemcitabine on APC was limited to improve the survival period in
patients with locally APC [43]. In fact, the results may be related to the gene locus
of the VEGF receptor 1 tyrosine kinase domain. Furthermore, Ropugier et al. found
that PFS was not significantly improved between the treatment arms. It indicates
that blocking the VEGF/VEGFR axis does not lead to the survival of a patient with
APC [45]. Nooan et al. study shows that pelareorep combination chemotherapy is
not a sufficient solution to overcome the severe immunosuppression prevalent in
PCA patients [46].

6.2 Epidermal growth factor receptor, EGFR

EGFR is one of the transmembrane receptors of epidermal growth factor family
members of extracellular protein ligands. Its main function is to regulate various
cellular functions including proliferation, movement and differentiation. Its mech-
anism can be described as the binding of the ligand to EGFR leading to dimerization
followed by autophosphorylation of EGFR and activation of downstream signaling
pathways. Activation of EGFR triggers multiple signal cascades within the cell,
ultimately leading to gene transcription and biological responses [47]. Recently,
studies have shown that dimerization occurs even in the absence of ligands, partic-
ularly when EGFR is overexpressed, possibly limited to a subset of dimers. More-
over, overexpressed EGFR can dimerize and become tyrosine phosphorylated
without ligand [48].
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EGFR signal transduction pathway can directly participate in tumor pathogene-
sis and progression [49]. EGFR overexpression plays a major role in carcinogenesis
in cancer development [50]. Overexpression of EGFR accounts for 90% in pancre-
atic cancer cells [51]. Specifically, the aberrant activity of EGFR may impact the
development and growth of tumor cells [52].

Mutation of EGFR may induce the resistance of tyrosine kinase inhibitors (TKIs)
[53]. Notably, in tumor angiogenesis, vascular endothelial growth factor receptor-2
(VEGFR-2) plays a key role, and inhibition of VEGFR-2 signaling pathway has
become an attractive cancer treatment method [54]. The binding of VEGF to
VEGFR-2 stimulates the signaling pathway (PI3K/Akt, p38MAPK) that mediates
several cellular functions. Besides, glycoproteins, EGFR and VEGFR-2 are in close
correlation. Inhibition of EGFR can also reduce VEGF expression, while VEGFR-2
targeting can enhance the anticancer activity of EGFR inhibitors. Therefore, the
dual inhibition treatment of EGFR and VEGFR-2 has a good effect and represents a
promising cancer treatment. Recently, several EGFR/VEGFR-2 dual inhibitors have
been discovered, such as vandetanib showing effective inhibitory activity on EGFR
and VEGFR-2 [55].

A receptor tyrosine kinase is associated with cell proliferation and survival.
Epidermal Growth Factor Receptor, EGFR, is overactive in many epithelial-derived
tumors. It has been reported that EGFR is not related to its kinase activity, but
rather maintains basal intracellular glucose levels to prevent autophagic death of
cells. Despite the presence of chemotherapeutic drugs and tyrosine kinase inhibi-
tors, this function of EGFR allows tumor cells to have higher viability [56]. EGFR
inhibitors for cancer therapy are rapidly evolving in the broad context of cancer
therapy, and in those patients achieving significant tumor response to EGFR inhib-
itors. Most patients will eventually exhibit disease progression, suggesting
acquired resistance. This reminds us that increasing our ability to recognize tumors
that depend on EGFR signaling growth is critical for the best choice of treating
patients [57].

Unfortunately, two clinical trials showed that the results failed via EGFR. Stud-
ies by Ko et al. showed that subjects treated by cetuximab, bevacizumab and
gemcitabine had 5.41 months in OS and 4.17 months in PFS. Propper et al. in 2014
tested Erlotinib to treat APC, and only achieved 4.0 months of OS and 1.5 months of
PFS, Table 4 [44, 58]. Ko reported the incidence of severe (grades 3–5) toxicity,
comparable to the use of gemcitabine as a single agent in this patient population
which may reflect a relatively short duration of treatment due to lack of efficacy.
Moreover, it is difficult to explain the quality of life analysis based on the number of
patients completing the series of questionnaires and the overall time the patients
stayed in the study [44]. Propper concluded that there is limited evidence to sup-
port the use of predictive biomarkers for patients with pancreatic cancer who could
benefit from targeted therapies [58].

6.3 Kirsten rat sarcoma viral oncogene homolog, KRAS

KRAS protein plays a key role in human cancer but has not yet succumbed to
therapeutic attacks [59]. The search is now focused on targeting alternative
pathways that are activated in mtKRAS cells, to circumvent or prevent drug
resistance [60].

There are currently no therapeutic interventions for KRAS. Pharmacological
agents that are speculated to inhibit KRAS include farnesyltransferase inhibitors
that block the binding of KRAS to the cell membrane. These drugs have failed in
clinical studies. Antisense oligonucleotides and engineered microRNAs (miRNAs)
have been used as an alternative to targeted mutations in KRAS without disrupting
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have been used as an alternative to targeted mutations in KRAS without disrupting
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the expression of non-mutant KRAS and have achieved some success in preclinical
trials [70].

In recent years, many studies have suggested that the oncogene KRAS plays a
major role in controlling cancer metabolism by coordinating multiple metabolic
changes [71]. Furthermore, combined inhibition of therapeutic effects and feedback
pathways is promising in KRAS mutant cancers. Moreover, it is unclear what spe-
cific pathways should be used to optimize treatment response [72].

Year Author N M F Drug OS PFS Biomarkers

2011 Kindler [43] 314 191 123 Gemcitabine; AG-013736 8.5 4.4 VEGF

316 188 128 Gemcitabine; placebo 8.3 4.4

2012 Ko [44] 29 18 11 Cetuximab; bevacizumab
gemcitabine

5.41 4.17 EGFR
VEGF

29 14 15 Cetuximab; bevacizumab 3.55 1.91

2013 Rougier [45] 275 157 118 Placebo; gemcitabine 7.8 3.7 VEGF

271 160 111 Aflibercept; gemcitabine 6.5 3.7

2013 Wu [61] 30 16 14 Etanercept; gemcitabine 5.43 0.3 TNF-α

8 3 5 Gemcitabine 8.1 1.8

2014 Propper [58] 104 59 45 Erlotinib 4.0 1.5 EGFR

103 59 44 Placebo 3.1 1.5

2014 Infante [62] 80 39 41 Gemcitabine; GSK1120212 8.4 16.1 cfDNA

80 46 34 Placebo; gemcitabine 6.7 15.1

2014 Wolpin [63] 10 5 5 Hydroxychloroquine 400 mg 1.8 1.8 LC3-II

10 6 4 Hydroxychloroquine 600 mg 3.0 1.6

2015 Catenacci [64] 53 27 26 Gemcitabine hydrochloride;
Placebo

6.1 2.5 SHH

53 31 22 Gemcitabine hydrochloride;
vismodegib

6.9 4.0

2016 Noonan [46] 36 22 14 wild-type reovirus; carboplatin;
paclitaxel

7.31 4.94 VEGF;
IL-6;
IL-8

37 19 18 Carboplatin; paclitaxel 8.77 5.2

2017 Chung [65] 62 22 40 Fluorouracil; oxaliplatin 6.7 2.0 KRAS
protein

58 35 23 Akt inhibitor
MK2206; selumetinib

3.9 1.9

2017 Faivre [66] 86 42 44 Sunitinib malate 38.6 12.6 VEGF;
PDGF

85 40 45 Placebo 29.1 5.8

2017 Ko [67] 66 38 28 OGX-427 6.9 3.8 Hsp27

66 37 29 Placebo 5.3 2.7

2017 Laquente [68] 65 42 23 LY2603618; gemcitabine 7.8 3.5 CHK1

34 20 14 Gemcitabine 8.3 5.6

2018 Van Cutsem
[69]

44 22 22 Gemcitabine; placebo 7.6 2.8 ERK 1/2

44 27 17 Gemcitabine; pimasertib 7.3 3.7

Table 4.
Clinical trial failed outcome on pancreatic cancer.
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Unfortunately, Chung et al. tested pharmaceutical target via KRAS protein,
whereas the result was unsuccessful. The results showed that the OS and PFS of
patients treated by Akt Inhibitor MK2206 and selumetinib were 3.9 and 1.9 months,
respectively, see Table 4 [65]. The results indicated that the strategy of utilizing
two or more kinase inhibitors is subject to the challenge of toxicity overlap. These
toxicities will significantly block the delivery of effective inhibitory amounts of
both drugs in vivo. However, a major disadvantage factor is the delay in toxicity-
related treatment and the frequency of dose reduction in the experimental group
through damaging sustained signal suppression [65].

7. Conclusion

APC reserves unpredictable mechanisms to maintain a highly resistant pheno-
type. The genetic and epigenetic alterations of the APC lead to the resistance of the
chemotherapy.

Nowadays, many biomarkers have been on board to improve the clinical treat-
ment outcome of advanced pancreatic cancer. Although these successful bio-
markers have provided notable therapeutic effects on advanced pancreatic cancer,
the outcomes remain unsatisfactory to the patients and health providers. With the
development of the biology of advanced pancreatic cancer, we now expect better
biomarkers and conduct therapy by unveiling the tumor microenvironment and the
mechanism of the mutations (Figure 1).

We can assume that with the development of truly effective treatments and
clinically useful markers for early detection of the disease, better combination of
markers to advanced pancreatic cancer. In the meanwhile, researchers are trying to
detect magnificently predictive biomarkers to decide the treatment strategy and
permit practitioners to adequately evaluate and propose individualized treatment
protocols which would give a greater survival rate.

Clearly, there is a need to better understand the underlying signaling networks
that drive pancreatic cancer progression and potential escape mechanisms. In addi-
tion, it is necessary to improve the role of preclinical models of pancreatic cancer

Figure 1.
Difficulties in decision making both for R&D and doctors.
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Unfortunately, Chung et al. tested pharmaceutical target via KRAS protein,
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two or more kinase inhibitors is subject to the challenge of toxicity overlap. These
toxicities will significantly block the delivery of effective inhibitory amounts of
both drugs in vivo. However, a major disadvantage factor is the delay in toxicity-
related treatment and the frequency of dose reduction in the experimental group
through damaging sustained signal suppression [65].
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chemotherapy.

Nowadays, many biomarkers have been on board to improve the clinical treat-
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markers have provided notable therapeutic effects on advanced pancreatic cancer,
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and the optimal transformation of preclinical success into experimental design. The
genetic and proteomic technologies show great potential to detect the novel bio-
markers in cancer research. We place great expectations on these technologies to
personalize treatment for advanced pancreatic cancer patients.
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Chapter 6

An Overview of Pediatric CNS 
Malignancies
Neha Sharma and Deepti Sharma

Abstract

Central nervous system tumours are the most common solid tumours and 
second most common malignancy in pediatric age group. They are the leading 
cause of cancer related morbidity and mortality. It accounts for 3.5% of all deaths 
in the 1–14 years age group. Childhood central nervous system (CNS) tumors 
differ significantly from adult brain tumors in reference to their sites of origin, 
clinical presentation, tendency to disseminate early, histological features and 
their biological behaviour. Supratentorial tumors are more common in infants 
and children up to 3 years of age and again after age 10, whereas between ages 4 
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Although it affects all ages, the incidence peaks among children between the 
ages of 3 and 7. In adults and older children, most tumours are supratentorial 
in location while in young children they are more commonly infratentorial 
in location [1].
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The incidence of childhood CNS tumor varies from 1.12 to 5.14 cases per 
100,000 individuals [2]. Based upon data from the Central Brain Tumor Registry 
of the United States (CBTRUS), the estimated incidence of primary non-malig-
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histological subtypes of CNS tumours are recognized but their incidence varies 
with age. Incidence in Africa is around 11 per 10,00,000 and in Japan and Europe 
it ranges from 20 to 30 per 1,000,000. The male to female ratio is 1.25:1, as slightly 
higher frequency of medulloblastoma and CNS germinoma is seen in boys [4]. 
The most common histological subtypes along with location are mentioned below 
(Table 1).

3. Etiology and pathogenesis

Development of brain tumours occurs as a consequence of cellular genetic 
alterations that allow them to evade normal regulatory mechanisms and destruction 
by the immune system. These changes may be caused by an inherited or acquired 
(chemical, physical or biological neuro-carcinogens) cause. Overall, only a very 
small percentage of brain tumors can be ascribed to the effect of inherited inclina-
tion (Table 2). The different environmental factors involved and alleged typically 
involve ionizing radiation, non-ionizing radiation, N-nitroso compounds, viral 
infections (JC virus, cytomegalovirus, HIV, SV-40, varicella-zoster, chicken pox) 
and head injury [6].

Location Tumor type Relative frequency (%)  
in 0–17 years old

Supratentorial Pilocytic astrocytoma 23.5

Fibrillary astrocytoma 5

Ganglioganglioma 2.5

Dysembryoplastic neuroepithelial tumor 0.6

Desmoplastic infantile ganglioglioma 0.6

Choroid plexus papilloma 0.9

Ependymoma 3.8

Anaplastic ependymoma 3.8

Anaplastic astrocytoma 7.2

Glioblastoma 7.2

Supratentorial PNET 1.9

Choroid plexus carcinoma 0.6

Posterior fossa Medulloblastoma 16.3

ATRT 1.3

Pilocytic astrocytoma 23.5

Ependymoma 3.8

Brainstem glioma 10–20

Pineal tumours Germ cell tumour 2.5

Pineal parenchymal tumour 1.9

Suprasellar Craniopharyngioma 5.6

Optic hypothalamic glioma 3–6

Table 1. 
Common brain tumor types with location and frequency [5].
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4. Pathology and classification

Astrocytic tumors

• subependymal giant cell astrocytoma

• pilocytic astrocytoma

• Pilomyxoid astrocytoma

• diffuse astrocytoma

• pleomorphic xanthoastrocytoma

• anaplastic astrocytoma

• glioblastoma

• giant cell glioblastoma

• gliosarcoma

Oligodendroglial tumors

• oligodendroglioma

• anaplastic oligodendroglioma

Oligoastrocytic tumors

• oligoastrocytoma

• anaplastic oligoastrocytoma

Ependymal tumors

• subependymoma

Syndrome Gene 
locus

Gene Type of CNS tumour

NF type 1 17q11 NF1 Neurofibroma, meningioma, optic nerve glioma

NF2 22q12 NF2 Meningioma, schwannoma

TS 9q34, 
16p13

TSc1/TSC2 SEGA

VHL 3p35 VHL Haemangioblastoma

Li-Fraumani 17q13 p53 Glioma

Gorlin’s syndrome 9q31 PNET

Table 2. 
CNS tumour along with gene involved.
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• myxopapillary ependymoma

• ependymoma

• anaplastic epedymoma

Choroid plexus tumors

• choroid plexus papilloma

• atypical choroid plexus papilloma

• choroid plexus carcinoma

Other neuroepithelial tumors

• astroblastoma

• angiocentric glioma

• chordoid glioma of the third ventricle

Neuronal and mixed neuronal-glial tumors

• gangliocytoma

• ganglioglioma

• Anplastic ganglioglioma

• desmoplastic infantile astrocytoma and ganglioglioma

• dysembryplastic neuroepithelial tumor

• central neurocytoma

• extraventricular neurocytoma

• cerebellar liponeurocytoma

• paraganglioma of the spinal cord

• papillary glioneuronal tumor

• Rosette-forming glioneuronal tumor of the fourth ventricle

Pineal tumors

• pineocytoma

• pineal parenchymal tumor of intermediate differentiation
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• pineoblastoma

• papillary tumor of the pineal region

Embryonal tumors

• medulloblastoma

• CNS primitive neuroectodermal tumors

• atypical teratoid/rhabdoid tumor

Tumors of cranial and paraspinal nerves

• Schwannoma

• neurofibroma

• perineuroma

• malignant peripheral nerve sheath tumors

Meningeal tumors

• tumors of meningothelial cells

• mesenchymal tumors

• primary melanocytic lesions

• other neoplasms related to the meninges

• hemangioblastoma

Lymphoma and hematopoietic neoplasms

• malignant lymphoma

• plasmacytoma

• granulocytic sarcoma

Germ cell tumors

• germinoma

• embryonal carcinoma

• yolk-sac tumors

• choriocarcinoma
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• teratoma

• mixed germ cell tumor

Tumors of the sellar region

• craniopharyngioma

• granular cell tumor of the neurohypophysis

• pituicytoma

• spindle cell oncocytoma of the adenohypophysis

Metastatic tumors
Modified from the WHO Classification of Tumors of the CNS, 2007 [7].

5. Clinical manifestations

The most common presenting symptoms of pediatric brain tumours are due 
to increased intracranial pressure. Headache and vomiting are two well-known 
symptoms associated with elevated intracranial pressure. Other signs, which reflect 
the increase in intracranial pressure, include drowsiness, confusion, nausea, sixth 
nerve palsy, papilledema, generalized seizures, and cognitive impairment. Focal 
signs and symptoms reflect the effect of the tumor on specific structures [8].

6. Radiological diagnosis

The features that play an important role in establishing the diagnosis are 
the age of the patient, location of the tumor and the imaging characteristics. 
Supratentorial tumors are more common in neonates and infants up to 2 years 
old, whereas infratentorial tumors are more common in children older than 
2 years. Although some tumors may be found both supra- and infratentorially. 
Tumors that are considered mostly supratentorial and intraaxial include astro-
cytomas, such as diffuse astrocytoma, anaplastic astrocytoma, pleomorphic 
xanthoastrocytoma (PXA), subependymal giant cell astrocytoma (SEGA), and 
glioblastoma multi-forme (GBM); oligodendrocytoma; primitive neuroectoder-
mal tumor (PNET); dysembryo-plastic neuroepithelial tumor (DNET); ganglio-
glioma; and desmoplastic infantile ganglioglioma. Some supratentorial extraaxial 
masses include arachnoid cysts, pineal region masses, and choroid plexus tumors.

Imaging is an important aspect in the management of patients with brain tumors. 
Imaging workup is largely based upon CT and MRI of the lesion. The technical 
development of CT and MRI methods has greatly enhanced brain tumor detection 
and sophisticated neuroimaging offers extra data by determining the metabolism and 
physiology of these lesions, which helps to diagnose and monitor brain neoplasms [9].

7. Computed tomography (CT)

CT scan plays an important role in establishing diagnosis of brain tumours. It 
can detect both blood and calcification. But some tumors, particularly tumors of 
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the brainstem, cerebellum, and suprasellar region as well as infiltrative tumors of 
the white matter, can be missed on CT neuroimaging [10].

7.1 MRI

It is the standard of care in children for imaging of suspected brain tumours.
The most useful imaging studies are T1-weighted sagittal images, gadolinium 

(Gd)-enhanced and unenhanced T1 axial images, T2-weighted axial images, and 
fluid-attenuated inversion recovery (FLAIR) sequences.

T1 images usually are better at demonstrating anatomy and areas of contrast 
enhancement. T2 and FLAIR images are more sensitive for detecting edema and 
infiltrative tumor.

7.2 Perfusion MRI

It plays an important role In differentiating low-grade tumors from high-grade 
tumors. It evaluates several hemodynamic parameters including cerebral blood 
volume (CBV), cerebral blood flow (CBF), and mean transit time (MTT); how-
ever, CBV has been shown to be the most useful parameter for the evaluation of 
intracranial masses [11].

7.3 Functional MRI

It detects functional areas of the brain by identifying areas of brain activation 
which have increased blood flow and changes in cerebral metabolism. It is used 
to determine the extent of resection as it can prevent any functional compromise. 
It is essential for planning function-preserving surgery in patients with brain 
tumours [12].

7.4 Magnetic resonance spectroscopy

It is useful in the evaluation of brain tumors in pediatric patients by helping 
determine the diagnosis, grade, and extent of the tumor. MRS can also differentiate 
radiation necrosis from tumor recurrence because normal metabolite levels after 
treatment favor edema and postsurgical changes [13].

7.5 Positron emission tomography (PET)

PET has clearly defined roles in primary brain tumor imaging. The FDG uptake 
of high-grade gliomas is more as compared with low-grade or well-differentiated 
neoplasms, and FDG-PET can be useful in making a distinction between low- and 
high-grade gliomas [14].

A few limitations of FDG-PET as a cerebral imaging agent are that normal brain 
tissue has high physiologic glucose metabolic rate producing a high FDG uptake 
which may mask smaller lesions. Another issue is in the detection of tumors with 
only modest increases in glucose metabolism, such as low-grade tumors which may 
be difficult to interpret [15]. 18F-fluoroethyl-L-thyrosin (18F-FET) is a promising 
radiotracer in determining the grade of brain tumors.

7.6 Cerebral fluid analysis

Chemistry and cytology of the cerebral fluid are used to determine the spread of 
the tumor. Findings may be important in subsequent treatment approaches.
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8. Histologic confirmation of diagnosis

Histopathologic diagnosis of brain tumours is necessary for decision making 
regarding appropriate management. Stereotactic biopsy has emerged as a com-
paratively safe method of histological diagnosis and has significantly reduced the 
risks associated with brain biopsy [16]. Tissue sampling can be obtained either with 
stereotactic, open, or endoscopic procedures and, overall, provides.

Greater than 90% diagnostic yield, while it may be significantly lower (60–70%) 
in small (<1 cm3) and/or heterogeneous lesions [17].

8.1 Open biopsy

It is performed as an open technique by intraoperative neuronavigation. 
Typically, it is asserted for surface brain lesion, where hemostasis is critically vital 
or a surgical resection depending on frozen section histopathology is arranged. 
Although morbidity and mortality of open biopsy is more as compared to stereotac-
tic biopsy but neoplastic tissue yield is better and it influences the likelihood of an 
accurate diagnosis.

8.2 Stereotactic biopsy

It can be frame based and frameless. The frame-based method is focused on the 
fixation of the stereotactic frame on the patient’s head, whereupon the localizer is 
attached to the frame with many N-shaped posts. Under stereotactic circumstances, 
neuroimaging (CT, MRI, positron emission tomography [PET], etc.) is carried out 
and radiological information is transmitted to the specialized computer platform. 
The localizer posts are used as space coordinate references. For optimizing the 
target location and defining the ideal trajectory for biopsy, multiple pictures are 
combined.

The frameless biopsies are generally technically easier and require less prepara-
tory efforts in comparison to frame-based ones [18].

8.3 Endoscopic biopsy

It is recommended for intra- and periventricular tumors and can be done with or 
without frameless stereotactic guidance. The advantages of this technique are

1. direct visualization of the lesion

2. vascular structures can be seen during tissue sampling

3. more pathological specimens can be taken.

4. cerebrospinal fluid (CSF) samples can be taken for tumor marker analysis

In case obstructive hydrocephalus, third ventriculostomy can be simultaneously 
done [10].

Exception may be produced in chosen patients such as patients with known 
active systemic cancer and numerous lesions radiographically associated with brain 
metastases, patients with classic clinical and MRI results of brain stem glioma or 
optic nerve meningioma, HIV-positive patients with CT or MRI results consistent 
with primary CNS lymphoma and positive Epstein-Barr virus polymerase chain 
reaction in the CSF, or patients with secretory germ-cell tumors [19].
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9. Differential diagnosis

9.1 Infectious

Abscess-fever, acutely ill, ±systemic infection, ct findings show cyst cavity with 
smooth thin walls and restricted diffusion within cavity.

Cerebritis-fever, acutely ill, ±systemic infection, mri findings show diffuse T2 
change, no mass meningitis-diffuse enhancement of meninges on T1-weighted imaging.

9.2 Vascular

Infarct—MRI findings show Gray and white matter involvement, wedge like 
vascular distribution associated with restricted diffusion and low signal.

Subdural hematoma: anemia, retinal hemorrhage.
Bleeding—homogenous, clears quickly, residual hemosiderin ring.
Treatment-related necrosis—central hypodensity, edema, >6 months after 

radiation therapy or chemotherapy, metabolic scan shows low activity.

9.3 Neoplasm

Primary-solitary, no prior cancer.
Metastatic-multiple, prior cancer, ++edema, located at gray/white junction 

hydrocephalus: headache, vomiting, subarachnoid hemorrhage, Guillain-Barré 
syndrome tuberculoma: exposure to tuberculosis.

Pseudotumor cerebri: after otitis media, hormonal abnormalities.

10. General management

A focused history and symptom-based neurological examination is required 
which may be sufficient to raise brain tumor suspicion. Mental status assessment, 
cranial nerves, motor skills, sensory examination, coordination, and gait are key 
components of the neurological examination.

Preoperative laboratory testing which includes a complete blood cell count, renal 
and hepaic profile. A baseline ophthalmologic evaluation, including visual field 
testing and fundoscopic evaluation, is important in preoperative evaluations because 
most patients do not complain of visual field deficits at presentation. Glucocorticoids 
are used to control neurologic signs and symptoms caused by cerebral edema.

Although there is little evidence to support the use of corticosteroids with regard 
to overall outcome, corticosteroids can relieve headache, nausea, and vomiting and 
remain a generally accepted treatment.

In assessing a child suspected of having a brain tumor, a thorough neurological 
examination is of critical importance. Most kids diagnosed with a brain tumor have 
abnormal results on the presentation of neurological examination [20].

11. Neurosurgical procedure

Surgery remains the main treatment modality for most pediatric brain tumors. 
Depending on tumor type, the goals of surgical intervention are:

• Tissue diagnosis

• Re-establishment of normal CSF pathways
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9. Differential diagnosis

9.1 Infectious
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Cerebritis-fever, acutely ill, ±systemic infection, mri findings show diffuse T2 
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Infarct—MRI findings show Gray and white matter involvement, wedge like 
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Subdural hematoma: anemia, retinal hemorrhage.
Bleeding—homogenous, clears quickly, residual hemosiderin ring.
Treatment-related necrosis—central hypodensity, edema, >6 months after 

radiation therapy or chemotherapy, metabolic scan shows low activity.
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Primary-solitary, no prior cancer.
Metastatic-multiple, prior cancer, ++edema, located at gray/white junction 

hydrocephalus: headache, vomiting, subarachnoid hemorrhage, Guillain-Barré 
syndrome tuberculoma: exposure to tuberculosis.

Pseudotumor cerebri: after otitis media, hormonal abnormalities.
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cranial nerves, motor skills, sensory examination, coordination, and gait are key 
components of the neurological examination.

Preoperative laboratory testing which includes a complete blood cell count, renal 
and hepaic profile. A baseline ophthalmologic evaluation, including visual field 
testing and fundoscopic evaluation, is important in preoperative evaluations because 
most patients do not complain of visual field deficits at presentation. Glucocorticoids 
are used to control neurologic signs and symptoms caused by cerebral edema.

Although there is little evidence to support the use of corticosteroids with regard 
to overall outcome, corticosteroids can relieve headache, nausea, and vomiting and 
remain a generally accepted treatment.

In assessing a child suspected of having a brain tumor, a thorough neurological 
examination is of critical importance. Most kids diagnosed with a brain tumor have 
abnormal results on the presentation of neurological examination [20].

11. Neurosurgical procedure

Surgery remains the main treatment modality for most pediatric brain tumors. 
Depending on tumor type, the goals of surgical intervention are:

• Tissue diagnosis

• Re-establishment of normal CSF pathways



Current Cancer Treatment

156

• Diversion of CSF (shunting)

• Tumor debulking

• Complete tumor resection [5]

In the literature, overall surgical morbidity rates vary from 10 to 54%. The rates 
highly depend on the location of the tumour, grade and propensity to disseminate [21].

12. Radiotherapy

Radiotherapy plays an important role in the management of pediatric brain 
tumours. It can be used either as adjuvant treatment in case of resectable tumours 
or as a definitive management option in case of unresectable tumours [22].

The most common long term side effect of radiotherapy in pediatric age group 
is neurocognitive dysfunction and upto 20–60% patients suffer from neurocogni-
tive deficit as a long term sequelae of radiotherapy [23]. Sophisticated radiotherapy 
techniques are warranted for to avoid future negative impacts of radiation on 
pediatric brain development.

Use of better immobilization and more suitable imaging techniques like high-
resolution brain imaging with computed tomography (CT) and magnetic resonance 
imaging (MRI) to accurately define the tumour limits and precisely assess the 
normal brain structures has greatly improved the degree of efficacy achieved by 
radiotherapy without increasing the side effects [24].

Technological advancements like use of conformal radiotherapy allows high 
radiation dose distributions within targeted tissues while simultaneously attempt-
ing to reduce dose to surrounding normal tissues. Conformal radiotherapy can 
be accomplished through a variety of techniques, including intensity-modulated 
radiotherapy (IMRT), stereotactic radiotherapy and proton beam therapy.

IMRT has shown promise in the treatment of a number of disease sites and is 
now being investigated in the use of pediatric tumors to reduce long-term toxicity. 
Stereotactic technique has the ability to reduce the treatment volume as it delivers 
highly conformal radiation to brain tumours and minimum dose to surrounding 
brain tissue. It can be delivered as stereotactic radiosurgery in which the entire dose 
is delivered as a single fraction or as fractionated stereotactic radiotherapy (FSRT) 
in which the treatment is delivered over weeks with multiple daily fractions. Only 
small margins of several millimeters are used for brain tumors, greatly reducing the 
volume of normal brain parenchyma receiving high doses of radiation.

13. Chemotherapy

High-dose chemotherapy with or without support by autologous stem cell 
transplantation, especially in children below the age of 3 years [25].

Palliative chemotherapy:

• May induce transient remission

• Increases the quality of life

• The benefits of chemotherapy or other treatments must be balanced by consid-
eration of the toxicities
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14. Special tumor types astrocytic tumor

Astrocytomas are the most common pediatric brain tumors, accounting for 7–8% 
of all childhood cancers [26]. Approximately 40% of all pediatric brain tumours are 
low grade astrocytoma, whereas most common primary CNS malignancy in adults 
being high grade astrocytoma [7]. Pediatric brain tumors are typically infratentorial, 
localized predominantly in the posterior fossa and brainstem [27].

Pediatric astrocytic tumours are further sub-classified by WHO grades (Table 3).

14.1 Genomic alterations low grade glioma

1. Most common genomic modification in cases of pilocytic astrocytoma involves 
activation of BRAF and the ERK/MAPK pathway [29]

2. Alternative BRAF gene fusions, RAF1 rearrangements, RAS mutations, and 
BRAF V600E point mutations are less commonly observed in such cases [30].

3. Presence of the BRAF-KIAA1549 fusion gene shows better progression-free 
survival (PFS) and overall survival (OS) [31].

4. Other pediatric low-grade gliomas (e.g., pilomyxoid astrocytoma) are also 
associated with BRAF activation through the BRAF-KIAA1549 fusion [32].

5. In 53% pediatric grade II diffuse astrocytomas, the most common alterations 
reported are rearrangements in the MYB family of transcription factors [33].

Children having mutation in one of two tuberous sclerosis genes (TSC1/
hamartin or TSC2/tuberin) are at a risk of developing Subependymal giant cell 
astrocytomas, cortical tubers, and subependymal nodules, as either of these 
mutations results in activation of the mammalian target of rapamycin (mTOR) 
complex 1 [34].

14.2 High grade glioma

The following pediatric high-grade glioma subgroups were identified on the 
basis of their DNA methylation patterns, and they show distinctive molecular and 
clinical characteristics:

1. Histone K27-mutation: H3.3 (H3F3A) and H3.1 (HIST1H3B and, rarely, 
HIST1H3C) mutation at K27. These cases occur predominantly in mid 

Astrocytic tumour Grade

Subependymal giant cell astrocytoma
Pilocytic astrocytoma

I

Pilomyxoid astrocytoma
Diffuse astrocytoma
Pleomorphic xanthoastrocytoma

II

Anaplastic astocytoma III

Glioblastoma giant glioblastoma gliosarcoma IV

Table 3. 
WHO grades of pediatric astrocytic tumours [28].
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childhood (median age, approximately 10 years). They are almost exclusively 
midline, usually present in the thalamus, brain stem, and spinal cord, and 
carry a very poor prognosis.

H3.3K27M cases are usually present between ages 5 and 10 years, accounting 
for approximately 60% of cases in the midline and pons. The prognosis for 
H3.3K27M patients is extremely poor, with a median survival of <1 year [35].

H3.1K27M cases present at a younger age than H3.3K27M cases and are 
approximately 5 times less frequent. These cases have a slightly more favorable 
prognosis than do H3.3K27M cases (median survival, 15 vs. 11 months).

2. H3.3 (H3F3A) mutation at G34: The H3.3G34 subtype is associated with 
mutations in TP53 and ATRX which show widespread hypomethylation across 
the whole genome. It is common in older children and young adults (median 
age, 14–18 years) and arises exclusively in the cerebral cortex [36].

About 5% pediatric high-grade gliomas have IDH1-mutation. They are almost 
exclusively common in older adolescents (median age in a pediatric population, 
16 years).

Pleomorphic xanthoastrocytoma (PXA)-like: Approximately 10% of pediat-
ric high-grade gliomas have DNA methylation patterns that are PXA-like [37].

15. Treatment

15.1 Low-grade astrocytomas

Low-grade astrocytomas (grade I [pilocytic] and grade II) spread by direct 
extension; dissemination to other CNS sites is uncommon. Complete excision is the 
treatment of choice and the outcome is favorable especially if the tumor is circum-
scribed [38].

Markers of poor prognosis for childhood low-grade astrocytomas are:

1. Young age.

2. Diffuse histology, especially IDH-mutant.

3. Inability to obtain a complete resection.

4. Diencephalic syndrome.

5. Intracranial hypertension at initial presentation [39].

6. Metastases.

15.2 High-grade astrocytomas

Gross total resection is recommended for anaplastic astrocytomas. Local inva-
sion of adjacent brain tissue is relatively common. Prognosis is poor for younger 
patients.

Depending on the degree of resectability, other treatment options are:

• Radiotherapy usually causes short-term and partial remission.
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• Multiagent chemotherapy improve survivability with variable long-term 
remission

• Effective drugs alone or in combination: cisplatin, carboplatin, cyclophospha-
mide, ifosfamide, etoposide, topotecan, procarbazine, temozolomide, lomus-
tine (CCNU), carmustine (BCNU) [40].

15.3 Optic-hypothalamic glioma

Optic pathway-hypothalamic gliomas are rare astrocytic tumors that are more 
among young children. They comprise approximately 2% of all central nervous 
system tumors and account for 3–5% of pediatric intracranial tumors.

OPG was classified by Dodge et al. into the following three stages: (A) limited to 
the optic nerve; (B) involving optic chiasma (with or without extension to the optic 
nerve) and (C) involvement of hypothalamus and other structures [41].

The tumours do not produce symptoms at an early stage. The symptoms can be 
due to impingement on optic nerve or chiasma which leads to visual disturbances, 
involvement of hypothalamus causing endocrinopathies and hypothalamic dys-
function such as the diencephalic syndrome. It can also cause csf outflow block 
leading to hydrocephalus [42].

Surgery has a limited role in the treatment of these tumours as they lie close to 
critical structures. It is usually limited to establishing a histopathological diagnosis or 
debulking in case of large tumours. Although Gross total resection of low-grade glioma 
is strongly associated with improvement of both OS and PFS but Aggressive resection, 
often leads to blindness, hypothalamic damage and cognitive dysfunctions [43].

15.3.1. Chemotherapy

Carboplatin and Vincristine is the most frequently recommended first-line 
chemotherapy, and it is considered to be the standard treatment of OPG [44].

15.3.2. Radiation

Radiotherapy is considered as a treatment option for OPG but at a cost of long 
term complications of neurocognitive dysfunction and visual disturbances [45]. 
Radiation may therefore be useful for an adjuvant treatment in the case of che-
motherapy refractory tumors. Prognosis depends upon the age of the patient and 
location of the tumour. Young age and tumour located in optic pathway and hypo-
thalamus are considered as poor prognostic factors.

16. Brain stem tumors

Pediatric brainstem gliomas occur as two major types:
Focal brainstem gliomas, usually WHO grade I–II tumors.
Diffuse intrinsic pontine gliomas, range from WHO grade III–IV [46]. They usu-

ally arise in the medulla, pons, or midbrain.
Focal brainstem gliomas (FBSG): constitutes approximately 20% of pediatric 

brainstem gliomas and usually occur outside the pons. Most are either pilocytic 
astrocytomas (grade I) or fibrillary astrocytomas (grade II) [47].

FBSG is usually insidious in nature and the symptoms are related to site of 
tumour location. Most common symptoms include neck stiffness, cranial nerve 
deficit and contralateral hemiparesis.
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Hydrocephalus is uncommon except in posterior exophytic tumours [48].
On MRI, FBSG can be seen with defined borders, lack of surrounding edema, 

iso- or hypointensity on T1, hyperintensity on T2, and homogeneous contrast 
enhancement [49].

Surgical resection has emerged as treatment of choice due to development of 
modern imaging and neurosurgical techniques. FBSG confined to cervicomedullary 
region and/ or exophytic are amenable to complete resection [50] even with incom-
plete resection, the long-term prognosis for this patient population is excellent.

Chemotherapy can be used as adjuvant after complete or incomplete tumour 
resection or in cases of tumour progression. Most commonly used chemotherapy 
regimen is vincristine and carboplatin, which achieves at least stable disease in 
68–75% of patients, and a positive response in about 40% [51]. Other regimens 
comprise of 6-thioguanine, procarbazine, lomustine, and vincristine (TPCV), 
vinblastine [52], bevacizumab with or without irinotecan [53], everolimus [54], and 
a metronomic, oral, anti-angiogenic regimen consisting of celecoxib, thalidomide, 
fenofibrate, cyclosphosphamide, and etoposide [55].

Radiation therapy (RT), while often effective in inducing prolonged remission 
in FBSG, has severe associated toxicities, especially for young children.

Diffuse intrinsic pontine gliomas (DIPG) account for approximately 80% of 
pediatric brainstem tumors and with male to female ratio as 1:1. It is more common in 
younger age group. These tumors are almost always highly malignant and fatal [56].

The patients have DIPG have a more lethal and shorter duration course than 
FBSG as it is more aggressive disease. Patients usually present within 3 months of 
tumour development. The most common symptoms are cranial nerve palsies, most 
often of cranial nerves VI and VII but sometimes including III, IV, IX, and/or X, as 
well as long tract signs like hemiparesis.

On CT scan, DIPG appears isodense or hypodense, without calcifications. On 
MRI, DIPG is most often hypointense on T1 and hyperintense on T2. Contrast 
enhancement is variable in both modalities but is usually not diffusely uniform, as it 
often is in FBSG. Diffusion is most often increased [57].

Apart from medical management starting with dexamethsone, aimed to relieve 
neurological symptoms, not many treatment options are available. RT is the only 
therapy proven to prolong survival of patients, that too it is palliative in nearly 
every case.

Currently, RT is given at a dose of 54–59 Gy at 1.8 Gy daily fractions for 
30–33 days locally, to the area of the tumor plus a 1–2 cm surrounding margin.

Chemotherapy has not shown any benefit in concurrent, adjuvant or palliative form.
The prognosis for DIPG patients remains devastatingly poor. Recent studies 

have shown median progression free survival of 7 months and an overall survival of 
9–11 months. In one large series, 77% of patients responded to treatment, and it was 
for a transient period as the therapy is rarely curative [58]. Poor prognostic marker 
at diagnosis or post treatment is the presence of leptomeningeal disease and no 
studies confirm these patients will benefit from craniospinal irradiation [59].

17. Medulloblastoma

Medulloblastoma is the second most common central nervous system tumour of 
childhood, most commonly occurring between 4 and 7 years of age. It usually arises 
from the roof of the fourth ventricle or from the midline structures of the brain [60].

Etiology: for most patients the etiology is unknown but is associated with certain 
genetic disorders (i.e., Gorlin syndrome, Turcot syndrome, Li-Fraumeni syndrome, 
Rubinstein-Taybi syndrome, and ataxia telangiectasia) [61].
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It has the propensity to disseminate along the cerebrospinal fluid (CSF) path-
way, and metastatic disease at diagnosis is found in approximately 30% of patients. 
Spread outside the central nervous system (CNS) is very rare at diagnosis.

WHO classification 2007 categorises medulloblastoma as grade IV neoplasms 
under the group of embryonal neuroepithelial tumours. There are several histo-
pathological subtypes of medulloblastoma. In addition to classic variant, other 
subtypes include desmoplastic/nodular medulloblastoma, medulloblastoma with 
extensive nodularity (MBEN), anaplastic medulloblastoma, and large cell medul-
loblastoma [25].

Molecular subgrouping of medulloblastoma divides it into four distinct sub-
groups which are identified on the basis of transcriptional profiling studies as wing-
less (Wnt), sonic hedgehog (Shh), Group 3, and Group 4 (Table 4). Each subgroup 
is defined by a unique set of demographic and clinical features, genetics, and gene 
expression [63].

Signs and symptoms: usually due to increased intracranial tension, hydro-
cephalus and cerebellar dysfunction, and comprise vomiting, macrocephalus, loss 
of developmental achievements in infants, and headache, vomiting, ataxia, and 
cranial nerve palsy in older patients.

Management: biopsy has no role in the diagnosis if it is radiographically sup-
ported. Medulloblastomas have distinct imaging characteristics on both computed 
tomography (CT) and magnetic resonance imaging (MRI). Since 75% of medul-
loblastomas arise from the cerebellar vermis, they tend to protrude into the fourth 
ventricle in pediatric age group. On CT scan, in case of young patients, efface-
ment of the fourth ventricle is seen along with its dilatation which is secondary to 
obstructive hydrocephalus. In case of older patients, they are most commonly seen 
as a hyperdense mass arising from the vermis with cyst formation or necrosis.

On MRI, medulloblastomas are hypointense to grey matter on T1-weighted 
imaging with heterogeneous gadolinium enhancement on T2-weighted imaging 

WNT SHH GROUP 3 GROUP 4

Percentage 10% 30% 25% 35%

Age Children and 
adults

Mainly infants 
and adults

Mainly infants 
and children

Mainly children 
and adults

Somatic 
nucleotide 
variant

CTNNB1, 
DDX3, 

SMARCA4, 
CREBBP, TP53*

PTCH1, SUFU, 
SMO, TERT, 
IDH1, TP53, 

KMT2D

SMARCA4, 
CTDNEP1, 

KMT2D, KBTBD4

KDM6A, 
KMT2C

Somatic 
copy number 
alterations

MYCN, GLI2 MYC, PVT1, 
OTX2, GFI1/1b

SNCAIP, 
MYCN, CDK6, 

GFI1/1b

Cytogenetics Monosomy 6 Gain of 3q, 9p, 
loss of 9q, 10q, 

14q, 17p

i17q, loss of 8, 10q, 
11, 16p, 17p, gain 
of 1q, 7, 17q, 18q

i17q, loss of 8p, 
11p, X, gain of 

7q, 18q

Prognosis Very good Intermediate Poor Intermediate

Incidence of 
metastasis

5–10% 10–15% 40–45% 35–40%

Pattern of 
relapse

Local and distal Local Distal Distal

*It shows characterstics of each molecular subgroups of medulloblastoma.

Table 4. 
Molecular subgroups of medulloblastoma [62].
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It has the propensity to disseminate along the cerebrospinal fluid (CSF) path-
way, and metastatic disease at diagnosis is found in approximately 30% of patients. 
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extensive nodularity (MBEN), anaplastic medulloblastoma, and large cell medul-
loblastoma [25].

Molecular subgrouping of medulloblastoma divides it into four distinct sub-
groups which are identified on the basis of transcriptional profiling studies as wing-
less (Wnt), sonic hedgehog (Shh), Group 3, and Group 4 (Table 4). Each subgroup 
is defined by a unique set of demographic and clinical features, genetics, and gene 
expression [63].

Signs and symptoms: usually due to increased intracranial tension, hydro-
cephalus and cerebellar dysfunction, and comprise vomiting, macrocephalus, loss 
of developmental achievements in infants, and headache, vomiting, ataxia, and 
cranial nerve palsy in older patients.

Management: biopsy has no role in the diagnosis if it is radiographically sup-
ported. Medulloblastomas have distinct imaging characteristics on both computed 
tomography (CT) and magnetic resonance imaging (MRI). Since 75% of medul-
loblastomas arise from the cerebellar vermis, they tend to protrude into the fourth 
ventricle in pediatric age group. On CT scan, in case of young patients, efface-
ment of the fourth ventricle is seen along with its dilatation which is secondary to 
obstructive hydrocephalus. In case of older patients, they are most commonly seen 
as a hyperdense mass arising from the vermis with cyst formation or necrosis.

On MRI, medulloblastomas are hypointense to grey matter on T1-weighted 
imaging with heterogeneous gadolinium enhancement on T2-weighted imaging 

WNT SHH GROUP 3 GROUP 4

Percentage 10% 30% 25% 35%

Age Children and 
adults

Mainly infants 
and adults

Mainly infants 
and children

Mainly children 
and adults

Somatic 
nucleotide 
variant

CTNNB1, 
DDX3, 

SMARCA4, 
CREBBP, TP53*

PTCH1, SUFU, 
SMO, TERT, 
IDH1, TP53, 

KMT2D

SMARCA4, 
CTDNEP1, 

KMT2D, KBTBD4

KDM6A, 
KMT2C

Somatic 
copy number 
alterations

MYCN, GLI2 MYC, PVT1, 
OTX2, GFI1/1b

SNCAIP, 
MYCN, CDK6, 

GFI1/1b

Cytogenetics Monosomy 6 Gain of 3q, 9p, 
loss of 9q, 10q, 

14q, 17p

i17q, loss of 8, 10q, 
11, 16p, 17p, gain 
of 1q, 7, 17q, 18q

i17q, loss of 8p, 
11p, X, gain of 

7q, 18q

Prognosis Very good Intermediate Poor Intermediate

Incidence of 
metastasis

5–10% 10–15% 40–45% 35–40%

Pattern of 
relapse

Local and distal Local Distal Distal

*It shows characterstics of each molecular subgroups of medulloblastoma.

Table 4. 
Molecular subgroups of medulloblastoma [62].
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they appear iso- to hyperintense to grey matter and can seem heterogeneous due to 
cyst formation, calcification and necrosis. MR spectroscopy shows elevated choline 
peaks and decreased creatine and N-acetyl acetate peaks, with occasional elevation 
in lactic acid and lipid peaks [64].

Maximal safe resection is recommended in all medulloblastoma patients. Apart 
from surgical resection, the current standards of radiation therapy and medical 
management vary by extent of disease and age of the patient. Radiation therapy can 
be used to decrease the risk of recurrence but neurocognitive effects of radiation 
therapy have to be considered by weighing the risk benefit ratio.

Patients who are 3 years of age or older are stratified as either “average-risk” or 
“high-risk” depending upon postoperative residual tumor volume and the presence 
or absence of disseminated disease (Table 5).

Patients who are younger than 3 years of age, are treated without upfront radiation 
therapy due to the unacceptably high risk of severe neurocognitive impairment [65].

In the postoperative setting, average-risk patients >3 years old were previously 
treated with 36 Gy craniospinal irradiation (CSI) but now a boost to the posterior 
fossa is given for a total dose of 54 Gy due to the high rate of relapse within the 
posterior fossa. CSI dose of 23.4–24 Gy can be given with the addition of chemo-
therapy as supported by Studies conducted by the International Society of Pediatric 
Oncology (SIOP) and the Children’s Oncology Group [66].

Current recommendations for post-radiation chemotherapy in average-
risk patients include approximately 1 year of therapy consisting of 8 cycles at 
6-week intervals of cisplatin, lomustine (CCNU), and vincristine. The St. Jude 
Medulloblastoma-96 trial has demonstrated a similar event-free survival of 83% 
when an alkylator-based, dose-intensive chemotherapy regimen consisting of four 
4-week cycles of cyclophosphamide, cisplatin, and vincristine with autologous stem 
cell rescue was employed following each cycle [67].

For high risk medulloblastoma cases in children 3 years or older, the treatment is 
surgical resection followed by post-operative “standard dose” RT (36 Gy CSI with a 
boost to both the posterior fossa and focal sites of metastatic disease to 55.8 Gy) as 
well as adjuvant chemotherapy.

The most common adverse effect of craniospinal irradiation in children <3 years 
age is neurocognitive deficit. Therefore radiotherapy is either delayed or omitted in 
this subset of patients. There is evidence that regimens consisting of surgery and 
chemotherapy without RT can be successful in specific subsets of medulloblas-
toma patients. Outcomes in patients with relapsed disease are generally poor, with 
reported 5-year survival rates of approximately 25% [68]. Unfavorable prognostic 
factors include large tumor, csf dissemination, age <4 years, subtotal tumour resec-
tion (<90%), chromosome deletion 17p, c-MYC amplification.

18. Atypical teratoid rhabdoid tumors (ATRT)

Atypical teratoid rhabdoid tumours (ATRTs) are the most common malig-
nant central nervous system tumours in children ≤1 year of age and represent 

Average 
risk

High 
risk

Residual postoperative tumour volume <1.5 cm2 ≥1.5

CSF cytology/evidence of disease dissemination on MRI in brain and spine Absent Present

Table 5. 
Risk stratification of medulloblastoma.
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approximately 1–2% of all pediatric brain tumours [69]. ATRT is a primarily 
monogenic disease characterized by the bi-allelic loss of the SMARCB1 gene, which 
encodes the hSNF5 subunit of the SWI/SNF chromatin remodeling complex [70]. 
The most common site of ATRT is posterior fossa, mainly cerebellar hemispheres 
(⅔ cases) [71]. It can also occupy fourth ventricle causing its displacement and 
compression by invading the adjacent cisternal space.

In patients <3 years of age, the most common treatment is high dose chemother-
apy with autologous stem cell rescue, so that CSI can be avoided in young patients as 
poor outcomes are seen due radiotherapy induced neurocognitive impairment [72].

Despite using chemotherapy and radiotherapy as treatment options, ATRT has poor 
survival outcomes due to early dissemination and progression of the tumours [73].

19. Pineal tumors

Incidence of pineal tumours in children ranges from 2.7 to 11% [74]. Germ cell 
tumors (GCTs) account for nearly 50–75% of all pineal tumors [75], Pineal paren-
chymal tumors account for nearly 15–27% of pineal tumors and include pineo-
cytoma, parenchymal tumor of intermediate differentiation, pineoblastoma and 
papillary tumor of the pineal region. Other described pineal tumors include glioma, 
ependymoma and atypical teratoid or rhabdoid tumors [76].

Preferred treatment strategy of different pineal region tumours [77] (Table 6).

20. Ependymoma

Ependymoma accounts for 6–12% of all brain tumors in childhood. It represents 
the third most common brain tumor in this age group, following astrocytomas and 
medulloblastomas [78]. Ependymoma are classified according to the WHO patho-
logical grading system (Table 7).

They are usually located in or adjacent to ventricles within the parenchyma. In 
pediatric age group majority of intracranial ependymoma are located at infratento-
rial region in posterior fossa, usually arising at the floor of fourth ventricle.

Prognostic factors include tumor location, size, surrounding anatomical structures, 
tumor appearance, genotype, comorbidities, clinical symptoms, and patient age [79].

Pineoblastoma <3 years Radiotherapy is avoided
Induction chemotherapy followed by consolidation myeloablative 
chemotherapy with stem cell rescue

Pineoblastoma 3–6 years Induction chemotherapy followed by consolidation myeloablative 
chemotherapy with stem cell rescue

Pineoblastoma >6 years Full-dose craniospinal irradiation (36 Gy) plus boost (total of 54 Gy) to the 
primary site along with concomitant daily carboplatin and weekly vincristine 
followed by 6 cycles of maintenance chemotherapy

Germinoma Four cycles of chemotherapy with carboplatin and etoposide followed by whole 
ventricular irradiation to 23.4 Gy plus a boost to the primary site to a total dose 
of 30 Gy

Non-germinomatous 
germ cell tumour

Six cycles of chemotherapy with carboplatin, ifosfamide and etoposide 
followed by 30 Gy whole ventricular irradiation plus a boost to the primary site 
to a total dose of 50 Gy in patients with a radiographic and serologic complete 
response

Table 6. 
Treatment strategies of different pineal tumours.
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Prognostic factors include tumor location, size, surrounding anatomical structures, 
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to a total dose of 50 Gy in patients with a radiographic and serologic complete 
response

Table 6. 
Treatment strategies of different pineal tumours.
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The current treatment of choice for pediatric patients with cranial ependymoma 
is resection, if possible, followed by radiation therapy alone [80].

21. Craniopharyngioma

They are low histological grade (WHO I) tumours which arise from epithelial 
remnants of rathke’s pouch. They are usually located in sellar or parasellar location 
with an overall incidence of 0.5–2.0 new cases per million of the population per 
year, and constitute 1.2–4.0% of all childhood intracranial tumors.

Symptoms depend upon the location of the tumour:
Craniopharyngimas can present with nonspecific symptoms like headache and 

nausea due to increased intracranial pressure.
Intrasellar lesions can compress the pituitary gland and hypothalamus involving 

the hypothalamic-pituitary axes in 52–87% cases, leading to endocrine defects, par-
ticularly deficits in the secretion of growth hormone (75% of cases), gonadotropins 
(40%), adrenocorticotropic hormone (25%) and TSH (25%) [81].

Prechiasmal lesions may compress the optic pathway, leading to visual field 
cuts, decreased central visual acuity or vision impairment (62–84% of cases in 
children).

Retrochiasmal lesions may grow into the third ventricle and cause hydrocepha-
lus or compress the optic tracts.

Craniopharyngiomas can cause direct impingement of brain parenchyma and 
produce neurological deficit.

In case of localized tumours the preferred choice of treatment is complete 
resection with preservation of visual, pituitary and hypothalamic function [82]. 
In case of incomplete resection, there are chances of residual tumour progression 
in 71–90% of patients, whereas the rate of progression after incomplete resection 
followed by radiotherapy is 21%. Therefore radiotherapy is recommended after 
surgical resection [83].

22. Conclusion

Since brain tumours are a leading cause of morbidity and mortality among 
children, the focus lies on how effectively they can be treated. Surgery plays a major 
role and can be curative in a number of tumours including pilocytic astrocytoma. 
Radiotherapy is curative in cases of PNET and ependymoma.

The survival and long-term outcome of patients with brain tumors will continue 
to enhance with future advances in nonsurgical methods, molecular and transla-
tional oncology research. For longer survival and reduced morbidity, new molecu-
lar diagnostics and new therapies such as immunotherapy, gene therapy and stem 
cell therapy may be promising.

Tumour type Grade

Subependymoma (benign) myxopapillary ependymoma I

Ependymoma II

Anaplastic ependymoma III

Table 7. 
WHO pathological grades of ependymoma.
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Chapter 7

Role of Sentinel Node Biopsy in
Endometrial Cancer
Begoña Díaz de la Noval

Abstract

Lymphadenectomy, for early stages of endometrial cancer (EC), provides a low
detection rate of lymphatic metastasis, without having demonstrated a therapeutic
effect; so that the collection and histological analysis of the sentinel lymph node
(SLN) might be an alternative to lymphadenectomy. The contribution of SLN to
surgical staging represents a change in the paradigm of lymphadenectomy in EC,
being an intermediate approach between not assessing the condition of the lymph
nodes and complete pelvic and paraaortic dissection. Accurate identification of the
main uterine drainage pathway increases the likelihood of detecting metastases
during lymphatic mapping. In addition, pathological assessment by the ultrastaging
of the SLN is the most important advance in the SLN biopsy (SLNB) technique. The
application of the SLNB presumes a decrease in surgical and long-term morbidity,
with an increase in the detection of lymphatic metastasis, mainly at the expense of
detecting low tumour volume, selecting the group of patients that would benefit
from a modification in adjuvant therapy. The SLNB can be established as an
oncologically safe and effective method in the surgical staging of early-stage EC.
Prospective studies are required to determine optimal behaviour and prognosis in
the detection of low-volume metastases.

Keywords: endometrial cancer, lymphatic mapping, predictive value of tests,
sentinel lymph node biopsy, ultrastaging

1. History and concept

The origins of lymphatic mapping date back more than 100 years, when Sappey
injected mercury into the skin of cadavers to delineate the skin’s lymphatic path-
ways [1, 2]. Lymphoscintigraphy was described by Shearman and Ter-Pogossian in
1953, both of whom confirmed Sappey’s hypothesis that lymphatic drainage occurs
in an orderly and predictable manner [2].

The origin of lymphatic drainage of tumours and its implications for surgical
staging are traced back to 1850 with the studies of Virchow and Haldsted on radical
axillary lymphadenectomy for breast cancer.

The contribution of SLN to surgical staging represents a change in the paradigm
of lymphadenectomy in EC. SLN represented an intermediate approach between
not assessing the condition of the lymph nodes and complete pelvic and paraaortic
dissection [3, 4]. The accurate identification of the main uterine drainage pathway
increases the likelihood of detecting metastases during lymphatic mapping [5].
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This information, provided by SLN, will change the therapeutic approach, with a
potential benefit in the prognosis, both in survival and quality of life [6].

2. Detection method

Theoretically, the ideal method for studying SLN in EC should meet the
following requirements:

1.Cause the least amount of patient discomfort possible, be easy to perform and
be reproducible.

2.Be a preoperative procedure that enables planning of the surgical approach
according to the anatomical location of the SLN.

3.Enable a laparoscopic approach according to the concept of minimally invasive
surgery.

4.Enable the detection of SLN without complete dissection of the retroperitoneal
space.

5.Obtain a lymphatic map representative of the tumour drainage or, at least, of
the uterine body drainage [7].

2.1 Lymphatic drainage of the uterus

Unlike superficial tumours, such as melanoma, the physiology of lymphatic
drainage in deeper/visceral tumours is not well established [8]. Uterine drainage, as
well as being bilateral, is therefore complex [9]. Anatomically, three segments of
uterine lymphatic drainage have been established:

1.The lower uterine segment drains from the paracervix to the parametrium and to
the broad ligament, passing by the obturator, internal iliac and interiliac lymph
node chains.

2.The middle third of the uterus drains the round ligament and the external iliac
lymph node chain.

3.The upper uterine segment drains through the infundibular pelvic ligament,
uterine-ovarian plexus and gonadal vessels towards the common iliac lymph
node chain, presacral lymph nodes and paraaortic lymph nodes [10].

Physiologically, there are two main lymphatic pathways and a third accessory
for uterine drainage [5]:

1.The main pathway or upper paracervical, located in the lymph trunks of the
parametrium. The lymphatic vessels of the uterine body often cross the
obliterated umbilical artery, which is the most common location of the pelvic
SLN, rising over the upper part of the obturator region, medial to the external
iliac vessels and ventral to the hypogastric vessels [5].

2.A less common pathway, the lower paracervical, is generally observed when
the lymphatic vessels do not cross the obliterated umbilical artery and move
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cranially over the course of the mesoureter. In these cases, SLN is usually
observed in the internal iliac, common iliac or presacral region.

3.A third pathway has been described, the infundibular pelvic, but it is very rare
except with fundal injections. This pathway has mainly fundal drainage
towards the broad ligament and paraaortic chain [11].

2.2 Injection techniques

Three main areas of injection on the uterus have been described: (1) corporal,
(2) endometrial and (3) cervical. Each area has been assessed with various
approaches: hysteroscopic, laparoscopic and ultrasound-guided transvaginal and
even with combined techniques.

1.Corporal: The injection can be subserosal or transmyometrial, in the anterior
wall, posterior wall or uterine fundus. Corporal injection by laparotomy, using
blue dye, was the first technique described. Subserosal injections have the
drawback of multiple injections [12] and anatomical distortion when dealing
with fibroids [13]. These injections might not be representative of the lesion if
the tumour does not infiltrate the uterine fundus. Due to the lack of
parametrial drainage, subserosal injections have a detection rate of 75–91% and
bilaterality of 80%, which is lower than that of cervical injections (p = 0.005)
[11], although the former has superior paraaortic drainage (31–40%) [14].

2.Endometrial: Intratumoural and peritumoural infiltration have superior
validity due to the proximity to the tumour lesion [10, 15]. The disadvantages
of this injection pathway are lower rates of bilaterality and paraaortic drainage,
which are determined by the location and size of the lesion [16]. Hysteroscopic
injections achieve detection rates of 69–80% [17, 18], with greater paraaortic
drainage (up to 60%) [15], without having shown superiority against other
injection pathways [19]. The hysteroscopic injection procedure is a more
complex and uncomfortable technique for the patient. Recent studies have
concluded that hysteroscopic injections do not have a correlation between the
location of the SLN and the location of the tumour in the uterine cavity [20].
The risk of tumour dissemination to the abdominal cavity has been shown to
be irrelevant [21]. Clamping the tubes before or after the injection of the dye
interferes with the detection rate by decreasing it [22].

In 2013, the group from the Hospital Clinic of Barcelona published their results
with the transvaginal ultrasound-guided myometrial injection of radiotracer
(TUMIR) technique, injecting 148 MBq of 99mTc-albumin nanocolloid (in a volume
of 8 mL) in the anterior and posterior peritumoural uterine wall, with migration of
90.5% and laparoscopic identification of 74.3%. The drainage was pelvic in 87.2%,
pelvic and paraaortic in 45.4% and exclusively paraaortic in 12.8% of cases.
Metastatic involvement of SLN in high-risk histology appeared in 24 patients, with
paraaortic extension in 30% of cases. The authors concluded that the TUMIR
technique is representative of tumour drainage and can be a promising detection
method in high-risk histology, although further studies on the technique are needed
[7]. The TUMIR technique has shown no differences compared with hysteroscopic
injections (p = 0.2) [7].

3.Cervical: The cervical injection is the modality most often reported in studies
[23]. The technique is reproducible, because the uterine cervix is accessible and
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rarely distorted in patients with EC [24]. The meta-analyses by Kang et al. [25]
and Bodurtha-Smith et al. [26] showed that hysteroscopic or subserosal
injections were associated with lower performance (p < 0.05), while cervical
administration was correlated with higher detection rates (92%; range, 62–100%
[27]; p = 0.031) [4] and bilaterality (56 vs. 33%; p = 0.003) (bilaterality is defined
as the detection of sentinel node on both sides of the pelvis). The disadvantage
was lower detection of paraaortic drainage (95% CI 3.4–10.1%) compared with
other techniques (7% cervical vs. 27% corporal; p = 0.001) [28–31].

In terms of the number of injections, there have been no differences between the
injection in two or four quadrants (with detection rates of 92 vs. 88%; p = 0.38), but
there is less dye dissemination if the injection is limited to two quadrants [31].
Geppert et al. [11] performed pericervical injections at 2, 4, 8 and 10 o’clock thereby
obtaining 5% paraaortic drainage. The MSKCC group recommended that cervical
injections in EC be bilateral (at 3 and 9 o’clock), both superficial (in the submucosa)
to 1–3 mm and deep (in the stroma) to 1–2 cm. In this way, the deep injection would
therefore arrive at the isthmus, ensuring parametrial drainage. Applying this tech-
nique, a threefold greater detection of lymphatic metastases is achieved (p = 0.045),
without assuming an increase in the overall detection rates (86%) [32]. The sys-
tematic review by Cormier et al. [27] determined that paraaortic detection has been
significantly greater with deep cervical infiltration (17 vs. 2%).

Taking into account the critical review of Frumovitz and Levenback [33] and
knowing the uterine drainage pathways, the location of the tumour will determine
the dissemination of the disease, and the injection technique might reflect the
pattern of lymphatic mapping. However, the study by Geppert et al. [11] concluded
that the cervical pathway (with submucosal and stromal injection) should be con-
sidered the standard pathway, not only due to being a safer injection technique but
also because the two main pathways of lymphatic drainage of the uterus were
identified regardless of the injection technique employed.

In terms of the lower cervical paraaortic drainage, numerous studies have veri-
fied that the incidence rate of paraaortic metastases isolated for EC in initial stages
is 5%, with approximately 50% of metastatic pelvic and paraaortic lymph nodes
[34]. Ninety percent of detected SLNs are located in the pelvic area; the rest are
presacral or paraaortic. The other techniques likely obtain greater paraaortic drain-
age, at the expense of underestimating the main pathway of pelvic drainage
[29, 30].

There is no known technique that detects with absolute bilaterality, and we still
do not know why a central organ, such as the uterus, has cases in which bilateral
drainage is not observed [20]. Ideally, the technique is considered valid if at least
one SLN is identified in each hemipelvis [11].

There is no one ideal or superior technique; all have shown good results, with
advantages and disadvantages [25]. Cervical injection is effective and reproduces
pelvic drainage. Corporal injection better reproduces paraaortic drainage and the
hysteroscopic pathway is representative of tumour drainage, although both are less
reproducible than the cervical pathway [4]. A number of authors have advocated
combined methods that provide better results. Studies such as the one by Holub
et al. [35] have combined cervical and subserosal injections, achieving detection
rates of 80%, without observing superiority over the two methods applied individ-
ually. In other studies with cervical and fundal injection, detection rates of 72.5%
were achieved, comparable results without superior paraaortic drainage (4.9 vs.
9.8%; p = 0.18) [6].

Table 1 shows a comparison of the main characteristics of the abovementioned
injection techniques.

176

Current Cancer Treatment

2.3 Sentinel node identification

Various tracers have been shown to be useful. The most commonly used tracers
in the lymphatic mapping of EC include 99mTc-nanocolloid, blue dyes and
indocyanine green (ICG), alone or in combination [36].

One inherent and necessary advantage of tracers is their high capacity for pene-
tration and fixation in lymphatic tissues [30]. The objective of lymphatic mapping
and preoperative marking with tracer is the ability to analyse at least one lymph
node per lymph node chain, two in the case of bilaterality [37].

SLNB was initially performed by the colorimetric method with methylene blue
(MB) or synthetic variants of blue dye. SLNB was later combined with the isotopic
detection of radiocolloids, thanks to the development of endoscopic gamma-ray
detection probes, becoming the standard for use. In recent years, the application of
lymphatic mapping by fluorescence in the near-infrared (NIR) electromagnetic
spectrum with ICG obviated the need for a nuclear medicine unit and avoiding the
adverse effects of blue dye, providing excellent results.

2.3.1 Preoperative marking: radiocolloid

The approach to studying the lymphatic pathways using nuclear medicine tech-
niques has gained considerable momentum in recent years with the development of
SLNB.

A radiopharmaceutical is a radioactive compound used for the diagnosis and
treatment of diseases. Radiopharmaceuticals’s property of transmitting radioiso-
topes for remote detection is employed to diagnostic purposes [38].

Radiopharmaceuticals can be classified, according to their chemical structure,
into primary radionuclides and labelled compounds, the latter of which are essen-
tially a combination of two components: a radionuclide and a particle. The particles
are small molecules, colloids, proteins and cells; the most widely used are colloidal
sulphur (USA) and albumin (Europe). The particle serves as a vehicle that selec-
tively directs the radiopharmaceutical to a specific tissue in response to physiolog-
ical conditions or specific patterns of gene expression [38]. The size of the particles

Characteristic Corporal Endometrial Cervical

Surgical approach for
injection:

Subserosal or transmyometrial by
laparoscopy or laparotomy

Hysteroscopy
Transvaginal

Ultrasound-guided

Transvaginal

Multiple injections ++ + �
Influence on anatomical
distortion or tumour size

++ + �

Increase in economic cost +/� + �
Technical complexity +/� + �
Reproducibility + � ++

Detection rate/bilaterality + ++ ++

Paraaortic drainage + ++ �
Comfort for the patient +/� � +/�

The score was assigned according to the following gradation: (�) = absence of the characteristic or negative evaluation,
(+) = meets the characteristic or positive evaluation, (++) = complies being better; (+++) = it fulfils being superior.

Table 1.
Characteristics of injection techniques.
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2.3 Sentinel node identification
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is important (range, 2–1500 nm) because it affects the drainage speed and retention
of particles in the lymph node [34].

The most widely used diagnostic radiopharmaceutical in nuclear medicine is
isomerised metastable 99mTc [38], which is nontoxic and has almost ideal physical
properties: a physical half-life to 99Tc (transition metal) of 6 h, a detectable emis-
sion and monochromatic gamma ray of 140 keV, complete disintegration within
24 h and low ionising radiation with negligible exposure [36, 39]. The greatest
contribution of radiopharmaceuticals is the ability to use it as a marker of distinct
pharmaceutical preparations, known as cold kits. The most used cold kit is the
Nanocoll® 500 μg/vial (GE Healthcare Bio-Sciences, S.A.U., Madrid), a compound
of colloidal particles of human serum albumin measuring ≤80 nm in diameter. The
compound therefore has avidity for absorption through the lymphatic capillaries,
and the size of its particles does not permit displacement of the lymph node.

To perform the SLNB, low doses of radioactivity are employed (40–185 MBq/
0.2–4 mCi) because the distribution space is highly reduced. Only the drainage to
the first or second lymph nodes needs to be assessed [38]. Furthermore, the injected
dose of radiocolloid is calculated based on the estimated time to surgery; the longer
the interval, the larger the dose to ensure an adequate signal. The 99mTc-albumin
nanocolloid is injected the day of the surgery (the radiocolloid injection is
performed 6 h before the operation with preoperative imaging 30 min after the
injection; the dose should be 0.2–1.0 mCi), a method known as the short protocol. If
the nanocolloid is injected the day before the surgery (at a dose of 2.0–4.0 mCi), the
method is known as the long protocol [40]. Therefore, the radioisotope compound
deposited in the interstitial space near the tumour will migrate to the lymphatic
capillaries until it reaches the first lymph node encountered by the capillaries. Due
to the size of the compound, the capillaries will be trapped, indicating the first
sentinel node into which the administered site drains. Moreover, both the short
half-life and the low injected dose leave relatively little space for flexibility in
surgical scheduling, given that hours-long delays and postponing the operation to
the following day due to logistics will compromise the efficacy of the lymphatic
mapping [36].

The compound is contraindicated when faced with hypersensitivity to the active
ingredient or any of the excipients and during pregnancy. As the radiocolloid is
primarily cleared by the kidneys but also by the hepatobiliary system, dose adjust-
ment is required for patients with renal and/or hepatic failure [39]. There have been
no reported adverse effects related to the radiopharmaceutical 99mTc-nanocolloid,
except the standard risks of the technical procedure: bleeding, vasovagal syncope
and local infection [6].

2.3.1.1 Lymphoscintigraphy and single-photon emission computed tomography

The disadvantages of radiocolloid are the lack of visual assessment and the need
for nuclear medicine procedures [30]. Lymphoscintigraphy and single-photon
emission computed tomography (SPECT) can obtain preoperative images of the
lymphatic drainage [38].

Lymphoscintigraphy obtains a flat static image with morphological information
of the lymphatic drainage of the injected radiocolloid [8, 41]. Lymphoscintigraphy
in EC offers varying results, depending on the injection method, with poorer
detection rates than the overall rates and poor correlation between the preoperative
findings and intraoperative detection [42, 43]. In the meta-analysis by Bodurtha-
Smith and Tanner [26] of 55 articles and 4915 included patients, preoperative
lymphoscintigraphy and the combined use of radiotracer with dye improved the
overall SLN detection rates (86 vs. 76%; p = 0.016 and 87 vs. 78%; p = 0.008,
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respectively); however, preoperative lymphoscintigraphy showed no benefit. An
explanation for the low resolution and correlation could be the proximity of the
injection site to the drainage, which can mask the SLN in flat images, and the
anatomical complexity of the pelvic area, which can cause confusion in the correct
anatomical description.

SPECT obtained a three-dimensional image with the fusion of the scintigraphic
image with that of the traditional scanner. SPECT provides image information on
the intensity of the scintigraphy and the precise anatomical location of the SLN(s)
by scanner [44]. In the study by Naaman et al. [45], SPECT achieved a topograph-
ical accuracy of 91%, detecting a higher number of SLNs (1.4 vs. 2.13 SLNs/patient).
Buda et al. achieved a detection rate of 50% and bilaterality of 39% for lymphoscin-
tigraphy. For SPECT, the authors achieved a detection rate of 91%, bilaterality of
53% and sensitivity and a negative predictive value of 100% [46]. Compared with
lymphoscintigraphy, the high sensitivity of SPECT seems to offer significant
improvement in detecting SLNs and in the anatomical location [47, 48].

2.4 Surgical detection

The surgical SLN detection techniques can be applied to open surgery, laparos-
copy and robot-assisted surgery [30], with overall detection rates of 60–100% [27].
Regarding the possibility of laparotomic detection, Mais et al. [49] used methylene
blue (MB) as tracer and observed a significant difference between the laparoscopic
pathway and laparotomy, with detection rates of 82 and 41%, respectively, although
with the same false negative rate (FNR).

The mean number of SLNs detected per patient is 2.9 (95% CI 2.5 � 3.3; range 1–
8) [26]. In terms of location, Abu-Rustum et al. [50] reported 89% of SLNs in the
territory between the external iliac, obturator and internal iliac areas, with 4% of
SLNs in the paraaortic area and 6% in the common iliac areas.

2.4.1 Radiocolloid

The gamma emissions of the radiocolloid can be tracked intraoperatively by a
portable gamma probe adapted to open surgery or laparoscopy [42]. The use of
laparoscopic gamma probe increases SLN identification guided anatomically by the
previous images of SPECT and lymphoscintigraphy [51]. The gamma probe emits a
signal proportional to the radioactivity uptake (analogue [counts per second] and
auditory), enabling the accurate localisation of the radiocolloid in the lymph node
station [38]. The activity will mark this lymph node regardless of whether is it
normal or pathological [38].

The radiocolloid is often used along with dye to optimise the detection rate and
visual assessment [30]. Studies with only radiotracer are therefore few, with a
detection rate in the range of 70–96% [6]. In the Detection Rate and Diagnostic
Accuracy of Sentinel-node Biopsy in Early Stage Endometrial Cancer (SENTI-
ENDO) multicentre study, the long protocol with an injection of radiocolloid
increased the detection rate of lymphoscintigraphy versus the short protocol (80.3
vs. 68.2%; p = 0.02). The paraaortic detection was more frequent in the long
protocol, with no intraoperative differences [40]. There was a weak correlation
between preoperative and intraoperative detection (k = 0.3) [40]. Other published
data indicate good detection rates of 82% [6] and bilaterality with both protocols.
While some authors use to perform another lymphoscintigraphy on the morning of
the surgery [43, 52], with similarly poor improvement and weak correlation [22].
Other authors have proposed injecting the radiocolloid intraoperatively after the
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induction of anaesthesia, omitting the preoperative imaging and identifying the
SLN directly with the gamma probe 30 min after the injection [36].

The disadvantages of this procedure include the high financial and staff costs,
the risk of radioactive exposure and patient discomfort during the preoperative
preparation. The advantages include the longer duration of the marking and fixa-
tion in the lymph node [15]. The technical limitations are related to the massive and
diffuse uptake by the tissue, the interference caused in the gamma probe (which
hinders the proper differentiation of the lymphatic tissue, especially in the
parametrium and obturator area) and the uptake by the reticuloendothelial system
(liver, spleen and bone marrow) [6, 27].

2.5 Dyes

2.5.1 Blue dye

The dye enables the visual identification of the SLN marked or not with the
radioisotope. Several dyes have been used: 1% isosulfan blue, 1% MB and 2.5%
patent blue. Isosulfan blue is a blue-green hygroscopic powder that is prepared by
diluting it in sterile water. MB was created in 1876 and is the first fully synthetic
drug used in medicine. Patent blue is a dark blue synthetic dye used as food
colouring, and its intensity fades quickly when exposed to sunlight [36].

The detection rates with only blue dye are lower (57–62%), with a bilaterality
of 56.1% (50–60%) [17, 53]. MB has lower diffusion but acceptable detection
rates (57.5%, range 45–92%) and bilaterality (42.4%, range 50–60%) [54].
Nevertheless, when SLNB is applied to other cancers, such as breast cancer, the
various dyes have shown accuracy and equivalence in SLN marking [36]. MB is
preferred due to the extensive experience with this dye and its better toxicity
profile. Due to the lower detection and given that the combination with 99mTc
or ICG results in higher detection rates, MB is not recommended for use in isolation
[21, 27].

After the blue dye is injected interstitially, it binds to the serum proteins and is
filtered to the lymphatic vessels passing to the SLN, which will be stained in blue in
approximately 5–10 min. This simple method requires no specific logistics, but the
SLN must be identified at the start of the procedure before the dye vanishes or is
displaced further along the lymphatic system and identifies a second nonsentinel
step [36].

MB is more economical and safer than isosulfan blue. The half-life is 5–6 h,
withmainly urinary and, to a lesser extent, biliary excretion. The recommendation is to
use 2–4ml of a 1% solution and to not takemore than 10–20min detecting the SLN due
to the diffusion of the dye through the lymphatic tissue. A number of authors have
estimated themean procedure time, with an interval of 13.4� 6.2 min between the
injection and visualisation and a SLN excision time of 17.4� 11.2 min [31].

Adverse effects related to the blue dye occur in 2% of cases [36]. The following
effects have been reported: severe allergic reactions and anaphylactic crises (0.7–
1.9%), thrombophlebitis at the injection site, tissue necrosis, haemolysis or para-
doxical methemoglobinemia and serotonin syndrome in patients undergoing treat-
ment with serotonin reuptake inhibitors [30, 55]. Patients and health professionals
should be advised of transient colouring of the urine and the possibility of interfer-
ence with pulse oximetry readings [36]. The use of the dye is contraindicated in
cases of hypersensitivity (MD induced allergic reaction and methemoglobinemia),
severe renal failure (dosage adjustments may be necessary as serum concentrations
are increased in patients with impaired renal function) and glucose-6-phosphate-
dehydrogenase deficiency (due to haemolytic anaemia when red blood cells are
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exposed to the chemical). The dye is not recommended for use during pregnancy or
breastfeeding because the dye’s safety has not been established.

2.5.2 Indocyanine green

Since the inclusion of fluorescence, the authors such as Holloway et al. [31] have
replaced the radiocolloid and achieved equally good results. ICG is a tricarbocyanine
dye with a short half-life of 3–4 min and hepatic excretion. ICG was developed by
Kodak in the 1950s for use in photography and was approved by the US Food and
Drug Administration in 1956 for IV administration [36]. The dye emits an intense
blue colour detectable in real time when excited by laser in the near-infrared
wavelength (range 750–900 nm, with an absorption peak at 800 nm) [6]. The high
avidity by lymphatic tissue enables a high detection rate and accuracy compared
with common tracers [4, 56, 57].

ICG has been used for years in laparoscopic and open surgery and in numerous
other specialties (cardiology, general surgery, ophthalmology, vascular surgery,
urology, etc.). The dye has recently been included in gynaecology. Lymph node
mapping by fluorescence with ICG was first described by Furukawa et al. in 2010 in
patients with cervical cancer. In 2012, Rossi et al. [58] applied ICG to 20 patients
with cervical cancer or EC who underwent robot-assisted laparoscopic detection,
achieving a detection rate of 85% and bilaterality of 60%.

The supposed benefits of this technology include high tissue penetration with
low autofluorescence [59]. ICG has been shown to be superior to blue dyes, partic-
ularly in patients with obesity [30]. Following an interstitial injection, ICG is
absorbed to the lymphatic system and travels quickly to the lymph nodes. ICG binds
to plasma proteins and is excreted by the liver [36]. The dye lacks significant
adverse effects. A single case of a severe allergic reaction after IV injection has been
reported (incidence rate of 0.05%) [60]. However, the dye is contraindicated for
use in patients with allergies to iodine [23, 56]. Nevertheless, given that iodine is a
chemical element and an essential component of the human body, a number of
authors have suggested the safety of using ICG in patients with iodine allergies,
given that a type I allergic reaction (antibody-mediated and responsible for ana-
phylactic shock) will not occur [36]. The use of ICG in pregnant patients has been
reported as safe [61].

To date, there has been no standard in the concentration and volume to be
injected. Rossi et al. [58], Jewell et al. [62] and Holloway et al. [63] established the
optimal ICG dose for detecting SLN at 1, 1.25 or 2.5 mg/mL in 4 mL [23]. Unlike
99mTc, ICG does not remain confined to a lymph node but rather diffuses rapidly
through the lymphatic tissue towards the second step lymph nodes without losing
intensity. It is therefore crucial to quickly start the search for the SLNs after the
administration of ICG, without delaying the start of detection by more than 10 min
[23], thereby reducing the risk of sampling too many lymph nodes [36], which
limits the technique beyond 25–30 min of the injection [64].

Erikson et al. [65] compared the isolated use of ICG and MB in 472 patients,
obtaining a higher detection rate (95 vs. 81%; p < 0.001) and bilaterality (85 vs.
54%; p < 0.001) with ICG. In 2015, How et al. [66] compared ICG, MB and 99mTc-
nanocolloid, obtaining a higher detection rate (86 vs. 71%; p = 0.005) and
bilaterality (65 vs. 43%; p = 0.002) with ICG than with MB and a similar rate (87 vs.
88%; p = 0.83) and bilaterality (65 vs. 71%; p = 0.36) to 99mTc. In 2016, Papadia
et al. [67] published the results of a retrospective, multicentre comparative study
between detection with the combined technique using radiocolloid and blue dye
versus radiocolloid and ICG. The overall detection rate was 97.3% for 99mTc-blue
and 96.9% for ICG (p = 0.547). The bilaterality was 84.1% with ICG and 73.5% with
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the blue dye; ICG was significantly superior (p = 0.007). In a series by Martinelli
et al. [19] of 202 cases using ICG plus 99mTc as tracer, there were no differences in
the detection rate (93.2%), and the bilateral detection was superior with ICG (72.8
vs. 53.3%; p = 0.0012). All of the authors (and many not mentioned here) agree that
ICG offers the highest detection rates comparable to those of the standard 99mTc-
blue technique but with superior bilaterality [11, 26].

ICG achieves greater diffusion; better visualisation; greater bilateral detection,
which translates into a lower risk of lymphadenectomy (61% with MB vs. 39% with
ICG; p < 0.001 [63]); a shorter surgical time and long-term financial savings and
can obviate the need for an injection of radiotracer [68]. It was initially stated that
ICG represented an increase in the number of resected SLNs, a finding that became
standard with experience in the technique [69]. Therefore, considering its good
toxicity profile, its ease of use and high effectiveness, ICG is the current tracer of
choice [70]. The main disadvantage of ICG is that the NIR detection equipment is
expensive, because it requires specific optical systems [71].

Advances in the fluorescence technique are ongoing. New NIR detection sys-
tems, such as the PINPOINT® Endoscopic Fluorescence Imaging System, specifi-
cally identify the uptake intensity with colour codes, such that the primary lymph
node is differentiated from the secondary nodes, preventing the excision of
nonlymphatic or canalicular tissue [72].

2.6 Combined method

The objective of the double injection method is to optimise the detection rate
and bilaterality, given that single dyes (mainly blue dyes) have lower detection
rates and bilaterality [27]. The recent systematic review by Cormier et al. [27]
achieved superior results with a combination of two tracers. Various combinations
have been applied.

2.6.1 Radiocolloid and blue dye

Results vary significantly; however, the conclusion is that a better detection rate
(81 vs. 57%; p = 0.01) and bilaterality (54 vs. 28%; p = 0.009) are achieved with the
combination than with the isolated application of each tracer [45]. The multicentre
prospective study by the AGO group with 590 patients obtained a better detection
rate applying the combined method of radiocolloid and patent blue dye (88.6 vs.
93.5%; p < 0.001). Other authors have achieved similarly improved surgical detec-
tion results by applying this double method, which has become established as the
most appropriate combination of tracers. The review by Ruscito et al. [70] com-
pared the detection by the combined technique (of 99mTc and MB) with ICG and
achieved superior bilaterality with ICG and a tendency to a higher overall detection
rate, without differences compared with the combined method.

2.6.2 Radiocolloid and ICG

How et al. [66] compared ICG and isosulfan blue with radiocolloid in a cervical
injection in 100 patients with EC. The detection rate (87 vs. 88%; p = 0.83) and
bilaterality (71 vs. 65%; p = 0.36) achieved with ICG and the radiocolloid were
comparable to the data obtained with only an injection of ICG. In the meta-analysis
by Lin et al. [73], the combined technique with 99mTc and ICG achieved a detection
rate of 92% and bilaterality of 86%, results comparable to those using only ICG
(91% and 78%, respectively).

182

Current Cancer Treatment

2.6.3 Blue dye and ICG

The prospective cohort study by Holloway et al. [31] combining blue dye with
ICG achieved a significant increase in the detection rate (87.8% with blue-ICG vs.
76% for blue alone), bilaterality (83.9% with blue-ICG vs. 40% for blue alone; p
< 0.001) and detection of lymphatic metastases (21.1% with blue-ICG vs. 13.5% for
blue alone; p = 0.056) versus the isolated injection of blue dye. In the study by
Jewell et al. [62], lymphatic mapping with ICG detected the SLN in 95% of cases,
with bilaterality of 79% and no statistically significant differences versus the com-
bined use with isosulfan blue (detection rate of 93%, p = 0.64; bilaterality of 77%,
p = 0.8). Other authors have reached the same conclusion as Jewell: the high
effectiveness in the identification with fluorescence is not increased by blue dye.
The combination therefore appears unnecessary, which would avoid an increased
risk of adverse effects [54].

2.7 Triple tracer

There are few published studies on this subject. How et al. [66] concluded that
the triple injection (blue dye, 99mTc and ICG) in the cervix (submucosa and stroma)
provided a detailed mapping of the lymphatic canals, from the parametrium and
presacral areas to the hypogastric vessels.

2.8 Paramagnetic tracer

New tracers are being applied. Recently, the Central-European SentiMAG
multicentre clinical trial compared the use of the standard tracer (99mTc-
nanocolloid and MB) with superparamagnetic iron oxide (SPIO) labelled
nanoparticles, marketed under the name Sienna+®. The preliminary results indi-
cated comparable detection rates of 97.3 versus 98% with the same number of SLNs

Characteristics 99mTc Blue ICG

Economic cost + � +

Technical complexity + � �
Detection rate/
bilaterality

++ + +++

Comfort for the
patient

� + +

Need for specific
equipment

++
(Radiopharmaceutical/

lymphogammagraphy/SPECT–CT)

� +
(NIR detection
hardware)

Adverse Reactions �
(1–6/100.000)

++
(2%)

�
(<0.05%)

Lymphotropism ++ + +++

Duration marking 24 h/+++ 10–
20 min/+

20–30 min/++

The score was assigned according to the following gradation: (�) = absence of the characteristic or negative evaluation,
(+) = meets the characteristic or positive evaluation, (++) = complies being better; (+++) = it fulfils being superior.
99mTc = 99mTc-nanocolloid albumin; ICG = indocyanine green; NIR = near-infrared electromagnetic spectrum.
Reference source: Papadia et al. [36].
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2.6.3 Blue dye and ICG

The prospective cohort study by Holloway et al. [31] combining blue dye with
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per patient and a tendency for the SPIO tracer to identify more metastatic SLNs,
although further research is needed [34].

Table 2 shows a comparison of the main characteristics of the most widely used
tracers.

3. Histological analysis

One of the main advantages that the SLN technique offers pathologists is the
ability to select and minimise the number of lymph nodes to study, which enables a
more exhaustive analysis and search for microscopic metastatic involvement.

3.1 Intraoperative value

Classically, the most widely used method for analysing SLNs has been the
intraoperative assessment with haematoxylin-eosin (H&E) of imprint cytology
performed in fresh samples and in frozen sections with rapid Diff-Quik staining.
Intraoperative examination is questionable due to its limitations, both in the
processing and in the results. Its success depends greatly on the collaboration
between the surgeon and pathologist [74]. An intraoperative assessment can only
examine a small portion of the SLN, has low sensitivity (56–67%) for the
intraoperative detection of metastases and has an FNR of 20–30%, which makes the
procedure inadequate and unsafe for the patient [75]. The results of Kim et al. [76]
indicate an intraoperative understaging of 24%. For Ballester et al. [77], the rate was
43.7%, with little assessment of low-volume metastases. Additionally, the frozen
sections distort the lymph node tissue, thereby precluding lymph node ultrastaging
[30] and precluding the detection of micrometastatic involvement in the case of
initially negative lymph nodes [75]. Currently, the guidelines of the National Com-
prehensive Cancer Network (NCCN) do not recommend the routine intraoperative
assessment of SLNs, except when there is high suspicion and a nonsentinel lymph
node [5]. However, other authors have emphasised the importance of
intraoperative study to avoid reoperations, especially in high-risk tumours [78].

3.2 Ultrastaging

Conventional histological examination of a nonsentinel lymph node involves a
single section along the lymph node’s major longitudinal axis and H&E staining,
with deeper levels or application of immunohistochemistry (IHC) at the patholo-
gist’s discretion [30].

Occasionally, the only evidence of extrauterine disease is the presence of metas-
tases in the SLN. Considering the poorer prognosis associated with the detection of
lymphatic metastases, a much more exhaustive analysis is justified [74, 79]. There-
fore, pathological assessment by the ultrastaging of the SLN is the most important
advance in the SLNB technique [80].

3.2.1 Histological ultrastaging and immunohistochemistry

The histological ultrastaging procedure includes a protocol for the series of
microscopic examinations of the SLN block fixed and imbedded in paraffin, with
the addition of the immunohistochemical analysis with cytokeratin measurement
(pan-cytokeratin kits AE1/AE2 or anti-CK19), thereby increasing the sensitivity
[80]. There are no formal evidence-based regimens for the pathology assessment of
SLNs in EC, which entails considerable variability among institutions and,
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therefore, debatable results [30]. The study by Euscher et al. [81] compared two
methods of ultrastaging by histological microsection, achieving increased detection
of metastatic SLN in 32% of patients, with a mean metastasis size of 0.24–0.38 mm,
with no differences in the detection rate by ultrastaging method. The algorithm
proposed by the MSKCC consists of an initial assessment by H&E and, if negative,
performing two adjacent 5-μm slices at two levels separated by 50 μm in the paraffin
block, applying H&E staining and pan-cytokeratins AE1/AE3 in each slice [82].
Holloway et al. [48] performed three slices per level, two of which were then
stained with H&E and one with AE1/AE3. Other authors have performed four levels
with six slices at 40 μm intervals (levels 1 and 2 with H&E and levels 3 and 4 with
AE1/AE3) or five levels (levels 1, 3 and 5 with H&E and 2 and 4 with AE1/AE3) [30]
(Figure 1).

Cytokeratin-19 (CK-19) is a protein of the intermediate filament responsible for
the structural integrity of epidermal epithelial cells, which in normal conditions is
not expressed in the lymphatic tissue and is expressed abnormally in more than
90% of cells by EC [83, 84]. CK-19 is a biomarker directly related to the capacity for
tumour dissemination in EC, with high sensitivity and a capacity for discriminating
between metastatic and nonmetastatic lymph nodes or areas of lymphovascular
invasion [84, 85].

Ultrastaging is a more complex procedure, requiring significant dedication, and
has the added risk of high intraobserver and interobserver variability. The diagnos-
tic categories of the American Joint Committee on Cancer (AJCC) are applied for
breast cancer, with the following classifications for SLN: negative (<200 individual
tumour cells or tumour cell aggregates <0.2 mm in size, including the presence of
isolated cytokeratin-positive tumour cells [ITC]), micrometastatic (size ≥0.2 and
<2 mm) (μM) or macrometastatic (>2 mm) (MM) [86]. The term low tumour
volume includes the ITC and μM categories.

The ultrastaging of SLN has improved the validity of the technique and detects
an additional 5–15%, with a high rate of low-volume lymph node disease (approxi-
mately 50% of patients with metastatic SLN), which would not be identified with
the conventional technique. Ultrastaging represents an overall mean increase of
25% (range, 10–60%) in detecting metastatic lymph nodes [80, 84].

Figure 1.
The SLN algorithm for surgical staging of endometrial cancer. Obtained from NCCN Guideline in Endometrial
Carcinoma, Version 4.2019: ‘Principles of evaluation and surgical staging when SLN mapping is used,
Figure 4: The SLN algorithm for surgical staging of endometrial cancer’. SLN = sentinel lymph node;
LND = lymph node dissection.
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proposed by the MSKCC consists of an initial assessment by H&E and, if negative,
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block, applying H&E staining and pan-cytokeratins AE1/AE3 in each slice [82].
Holloway et al. [48] performed three slices per level, two of which were then
stained with H&E and one with AE1/AE3. Other authors have performed four levels
with six slices at 40 μm intervals (levels 1 and 2 with H&E and levels 3 and 4 with
AE1/AE3) or five levels (levels 1, 3 and 5 with H&E and 2 and 4 with AE1/AE3) [30]
(Figure 1).

Cytokeratin-19 (CK-19) is a protein of the intermediate filament responsible for
the structural integrity of epidermal epithelial cells, which in normal conditions is
not expressed in the lymphatic tissue and is expressed abnormally in more than
90% of cells by EC [83, 84]. CK-19 is a biomarker directly related to the capacity for
tumour dissemination in EC, with high sensitivity and a capacity for discriminating
between metastatic and nonmetastatic lymph nodes or areas of lymphovascular
invasion [84, 85].

Ultrastaging is a more complex procedure, requiring significant dedication, and
has the added risk of high intraobserver and interobserver variability. The diagnos-
tic categories of the American Joint Committee on Cancer (AJCC) are applied for
breast cancer, with the following classifications for SLN: negative (<200 individual
tumour cells or tumour cell aggregates <0.2 mm in size, including the presence of
isolated cytokeratin-positive tumour cells [ITC]), micrometastatic (size ≥0.2 and
<2 mm) (μM) or macrometastatic (>2 mm) (MM) [86]. The term low tumour
volume includes the ITC and μM categories.

The ultrastaging of SLN has improved the validity of the technique and detects
an additional 5–15%, with a high rate of low-volume lymph node disease (approxi-
mately 50% of patients with metastatic SLN), which would not be identified with
the conventional technique. Ultrastaging represents an overall mean increase of
25% (range, 10–60%) in detecting metastatic lymph nodes [80, 84].

Figure 1.
The SLN algorithm for surgical staging of endometrial cancer. Obtained from NCCN Guideline in Endometrial
Carcinoma, Version 4.2019: ‘Principles of evaluation and surgical staging when SLN mapping is used,
Figure 4: The SLN algorithm for surgical staging of endometrial cancer’. SLN = sentinel lymph node;
LND = lymph node dissection.
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Analysis by histological microsection and H&E detects 6.9% more patients with
metastatic SLN, while the inclusion of IHC provides an additional 4.5% (82.6% with
low tumour volume), which represents 12.6% of patients with metastatic SLN [82].
In the multicentre retrospective study by Raimond et al. [87] with 136 low-
intermediate risk cases, the detection of SLN and the ultrastaging analysis increased
the detection of metastatic lymph nodes threefold over lymphadenectomy (16.2 vs.
5.1%; p = 0.03); 11% of the cases were μM and 5.1% were MM, with an FNR of 0
(95% CI 0–1.6%). In the study, 6.1% of the metastatic SLN were detected by
histological microsection, and 10.1% were detected by IHC. All MM cases were
diagnosed by histological microsection, and 73.3% of the μM cases were diagnosed
by IHC readings. Thus, by applying ultrastaging, the SLNB restaged 50% of the
patients included in the study to an European Society of Medical Oncology (ESMO)
high risk (14.7% of the sample), thereby changing the adjuvant therapy compared
with women with negative or unassessed lymph nodes (p < 0.001). In the study by
Hagen et al. [88], 75% of patients with metastatic SLN were detected with histolog-
ical microsection and an additional 25% with IHC. For Desai et al. [89], 50% of the
metastatic SLNs were detected by IHC.

3.2.2 Molecular ultrastaging

The one-step nucleic acid amplification method (OSNA) is a validated technique
for breast cancer and enables a quantitative, systematic, automated, nonobserver-
dependent analysis for detecting lymph node metastases [74, 84]. The application
of this method always requires prior confirmation of CK-19 expression in the
tumour tissue [90, 91]. The application of radiocolloid or dye does not interfere
with the process. The number of mRNA copies of CK-19 corresponds to the size of
the metastatic foci present in the SLN [92], such that the results are visualised in
four separate categories: negative (<102 copies of mRNA/μL), ITC (102 to
<2.5� 102 copies of mRNA/μL), μM (≥2.5� 102 to <5� 103 copies mRNA/μL) and
MM (>5 � 103 copies mRNA/μL) [93].

The results of the Breast Complete Lymphadenectomy OSNA Study for
Enhanced Review-I (B-CLOSER-I) [94] indicate that histopathology (compared
with molecular detection) significantly underestimates the rate of metastases of
axillary lymph nodes.

Preliminary results of its application in EC indicate superior diagnostic accuracy
compared with conventional ultrastaging, although further research is needed. By
applying the OSNA method, the study by Nagai et al. [84] achieved sensitivity of
93.3%, specificity of 99.5%, a negative predictive value (NPV) of 99.5% and a
correlation of 99.1%. In the study by López-Ruiz et al. [85] of 34 patients with
chronic diseases and 94 analysed SLNs, the OSNA method detected a larger portion
of additional low tumour volume metastases, with diagnostic capacity (sensitivity
of 100%, specificity of 87.5%, accuracy of 88.3% and an FNR of 2.8%).

4. Approach and prognosis for metastatic sentinel nodes

The increase in detection of lymphatic metastases resulting from the introduc-
tion of ultrastaging is mainly at the expense of the detection of low tumour volume.
The NCCN guidelines [5] and the consensus of The Society of Gynecologic Oncol-
ogy (SGO) [30] recommend the study of SLNs by ultrastaging, indicating that the
significance of low-volume lymph node involvement is still uncertain and have not
established an optimal treatment approach [56, 95, 96].

186

Current Cancer Treatment

A number of authors have debated and hypothesised a different tumour biology
and therefore a different behaviour between tumours with MM and μM. For other
authors, μM metastases appear early and are reflections of isolated metastases in
type 2 histology but would be metastases of late evolution in tumours with low
oncologic aggressiveness [97]. It has also been suggested that μM metastases could
represent an intermediate state between negative lymph nodes and positive lymph
nodes for MM [98].

One of the aforementioned advantages of the SLNB technique in early stages is
avoiding the implementation of lymphadenectomy [87]. However, the therapeutic
benefit of completing the lymphadenectomy when faced with the finding of meta-
static SLN with low tumour volume remains unknown, and its systematic imple-
mentation is not justified [83, 98, 99]. The FIRES trial performed postoperative
radiological studies (with scanner or positron emission tomography-computed
tomography [PET-CT]). When the findings showed voluminous residual metasta-
ses, the proposed treatment was surgical cytoreduction or a change in the adjuvant
radiation therapy (RT) to include the paraaortic area [75].

In recent years, research has been conducted on the possible influence of adju-
vant therapy and the prognosis for patients with low-volume lymphatic metastases
[100]. There is still no evidence from prospective randomised studies on cases with
detected low-volume metastatic tumours, resulting in heterogeneity among the
published studies [57]. Moreover, it is important to determine the benefit provided
to these patients by combining CT and/or adjuvant RT, considering the scarce
survival benefit obtained. The study by Plante et al. [101] analysed the impact of
adjuvant therapy on survival. Thirty-five percent of the patients with ITC in the
SLN underwent CT and external beam RT, 32% only underwent external beam RT
or vaginal brachytherapy and 32% underwent follow-up. The overall survival at
3 years in the group with ITC was 95.5%, with no differences compared with the
patients without metastatic lymph nodes or with μM in the SLN (87.6 and 85.5%,
respectively). However, the low tumour volume SLN was superior to the SLN with
MM (58.5%; p < 0.001).

Significant differences have not been observed between the prognosis of
patients with only SLN excision versus those with lymphadenectomy (disease-free
survival [DFS] at 3 years of 94.9 vs. 96.8%; p = 0.35). However, it has been observed
that the patient group with metastatic SLN increases the portion of adjuvant ther-
apy received (27.1 vs. 10.8%; p < 0.001) [102]. In the retrospective series by
Raimond et al. [87], neither the absence of metastases in SLN, the detection of
metastatic SLN nor the presence of μM in the SLN represented an improvement in
DFS ([hazard ratio (HR), 0.89; 95% CI 0.42–1.90; p = 0.77], [HR, 0.82; 95% CI
0.18–3.64; p = 0.8] and [HR, 0.46; 95% CI 0.03–7.42; p = 0.59], respectively). When
comparing negative lymphadenectomy with the detection of lymphatic metastases,
there were no differences in DFS (HR, 1.13; 95% CI 0.34–3.76; p = 0.84) or overall
survival (HR, 1.29; 95% CI 0.30–5.59; p = 0.73).

Yabushita et al. [92] showed that the detection of μM and SLN was an indepen-
dent factor for recurrence in early stages of EC. Kim et al. [76] measured a tendency
to late distant metastasis when the SLN was metastatic for μM. For Todo et al. [97],
ITCs in the paraaortic area were not associated with a greater risk of
nonlymphogenic or extrapelvic recurrence. For Kim et al. [76], these ITCs did not
represent increased relapses. In the study by Erkanli et al. [103], DFS and overall
survival were significantly lower in patients with μM (p < 0.05), while the presence
of ITCs appeared to have no effect on survival. In another study by Todo et al.
[104], the presence of low tumour volume was an independent factor for
extrapelvic relapse (RR, 17.9), with 20% lower survival (overall survival of 71.4 vs.
91.9% and DFS of 55.6 vs. 84%; p = 0.074) and a tendency towards late relapse
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nodes for MM [98].
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avoiding the implementation of lymphadenectomy [87]. However, the therapeutic
benefit of completing the lymphadenectomy when faced with the finding of meta-
static SLN with low tumour volume remains unknown, and its systematic imple-
mentation is not justified [83, 98, 99]. The FIRES trial performed postoperative
radiological studies (with scanner or positron emission tomography-computed
tomography [PET-CT]). When the findings showed voluminous residual metasta-
ses, the proposed treatment was surgical cytoreduction or a change in the adjuvant
radiation therapy (RT) to include the paraaortic area [75].

In recent years, research has been conducted on the possible influence of adju-
vant therapy and the prognosis for patients with low-volume lymphatic metastases
[100]. There is still no evidence from prospective randomised studies on cases with
detected low-volume metastatic tumours, resulting in heterogeneity among the
published studies [57]. Moreover, it is important to determine the benefit provided
to these patients by combining CT and/or adjuvant RT, considering the scarce
survival benefit obtained. The study by Plante et al. [101] analysed the impact of
adjuvant therapy on survival. Thirty-five percent of the patients with ITC in the
SLN underwent CT and external beam RT, 32% only underwent external beam RT
or vaginal brachytherapy and 32% underwent follow-up. The overall survival at
3 years in the group with ITC was 95.5%, with no differences compared with the
patients without metastatic lymph nodes or with μM in the SLN (87.6 and 85.5%,
respectively). However, the low tumour volume SLN was superior to the SLN with
MM (58.5%; p < 0.001).

Significant differences have not been observed between the prognosis of
patients with only SLN excision versus those with lymphadenectomy (disease-free
survival [DFS] at 3 years of 94.9 vs. 96.8%; p = 0.35). However, it has been observed
that the patient group with metastatic SLN increases the portion of adjuvant ther-
apy received (27.1 vs. 10.8%; p < 0.001) [102]. In the retrospective series by
Raimond et al. [87], neither the absence of metastases in SLN, the detection of
metastatic SLN nor the presence of μM in the SLN represented an improvement in
DFS ([hazard ratio (HR), 0.89; 95% CI 0.42–1.90; p = 0.77], [HR, 0.82; 95% CI
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there were no differences in DFS (HR, 1.13; 95% CI 0.34–3.76; p = 0.84) or overall
survival (HR, 1.29; 95% CI 0.30–5.59; p = 0.73).

Yabushita et al. [92] showed that the detection of μM and SLN was an indepen-
dent factor for recurrence in early stages of EC. Kim et al. [76] measured a tendency
to late distant metastasis when the SLN was metastatic for μM. For Todo et al. [97],
ITCs in the paraaortic area were not associated with a greater risk of
nonlymphogenic or extrapelvic recurrence. For Kim et al. [76], these ITCs did not
represent increased relapses. In the study by Erkanli et al. [103], DFS and overall
survival were significantly lower in patients with μM (p < 0.05), while the presence
of ITCs appeared to have no effect on survival. In another study by Todo et al.
[104], the presence of low tumour volume was an independent factor for
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(49 vs. 16.5 months; p = 0.066) compared with the patient group without lymphatic
metastasis. The conclusion of these studies is that the presence of μM can represent
a prognostic biomarker in terms of survival, but whether the presence of ITCs
should be used as such, regardless of other clinical-pathological risk factors, is still
unknown [30] (Tables 3 and 4).

5. Recommendations for the clinical application of selective sentinel
node biopsy

The published results of SLNB in EC have shown good diagnostic performance.
SNLB is a promising and safe technique from the oncological point of view [10].
Given the mixed results, which have failed to show a therapeutic benefit [9], and
the lack of long-term results [5], an appropriate interpretation is recommended
[4, 29], considering SNLB a technique under study [79].

As with lymphadenectomy and adjuvant therapy, SNLB can be safely omitted for
low-risk patients (endometrioid histology: IA G1, IA G2) [9, 56]. For intermediate-
risk (endometrioid histology: IA G3, IB G1, IB G2) patients, SNLB has not shown a
clear benefit in survival when performing systematic lymphadenectomy. This group
does, however, have a greater risk of lymphatic involvement and typically undergo
adjuvant therapy. SLNB in both patient groups has been shown to detect 2–3 times
more cases of metastatic EC than lymphadenectomy, without changing the disease
prognosis [87, 110]. These results justify extending the technique to low to interme-
diate risk, with the recommendation of including it in an algorithm or surgical
protocol that includes the implementation when faced with failure of the technique.
The potential benefit of detecting metastatic SLN in low-risk patients is however
diluted by the low incidence of cases and the high proportion of low tumour volume.
It appears we need to clarify the role of SLNB and the effect of low tumour volume,
which is more frequently detected in this group [87, 110].

Two randomised clinical trials did not show that lymphadenectomy changed
overall survival or relapse rates in high-risk patients [111–113], although retrospec-
tive series did show this change [114, 115]. The implementation of pelvic and
paraaortic lymphadenectomy has been systematised due to the higher rate of lym-
phatic metastases and poorer prognosis associated with their detection. In contrast,
sceptics of lymphadenectomy state that routine nodal assessment of high-risk
patients rarely changes the recommendations for adjuvant therapy. EC (especially
in high-risk cases) is not just a disease confined to the pelvis [51]. Patients with
high-risk EC have a higher probability of recurrence and recidivism with or without
detection of lymphatic metastases and should undergo systemic therapy regardless
of the nodal state [116]. Nevertheless, published results on high-risk patients have
shown no differences compared with those expected from studies that also include
low- to intermediate-risk cases, with the same incidence of paraaortic metastasis
estimated by lymphadenectomy. Survival data have shown no differences [30],
which would assume that the benefit of SNLB in high-risk patients would be
equivalent to lymphadenectomy alone [107, 108].

In terms of applying SLNB to high-risk patients, the greatest debate concerns
paraaortic drainage, with a greater proportion of undetected metastatic paraaortic
nonsentinel lymph nodes. A study by Naoura et al. [117] analysed 180 patients and
achieved a much higher FNR in the high-risk group (2.3 vs. 20%; p < 0.001). In this
study, it was much more likely that the high-risk subtype (7 vs. 28%; p = 0.03) and
the nonendometrioid type (8 vs. 29%; p = 0.02) were poorly assessed.

The FIRES study [75] on 385 patients represents the largest prospective series to
date and included low and high-risk patients, achieving a sensitivity of 97.2% and
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an NPV of 99.6%. Fifty percent of detected metastatic SLNs were in patients with
low-risk EC, the most incidental group. Only 1% were isolated paraaortic metasta-
ses, with an FNR of 2.7%. Barlin et al. [3] and the FIRES study concluded that a
pelvically located SLN could be sufficient for directing the treatment [75].

In light of these results and lacking a therapeutic benefit for lymphadenectomy,
the current guidelines recommend that only pelvic SLNs should be determined (and
with caution) in this high-risk patient group [5, 30]. Until there is better evidence,
the recommendation is to perform systematic lymphadenectomy adding SLNB,
which a number of authors have labelled as ‘high-precision lymphadenectomy’.

To decrease the number of faults in the technique and the risk of underdiagnosis
in high-risk cases, several research groups have performed PET-CT, excluding cases
with peritoneal or lymphatic uptake [118]. Other authors have included postoperative
scans or PET in cases in which the paraaortic lymphadenectomy was not completed
[30]. Another option for managing high-risk patients includes implementing a com-
bined injection pathway, ensuring both pelvic and paraaortic drainage.

The Selective Targeting of Adjuvant Therapy in Endometrial Cancer (STATEC)
in the United Kingdom [30] and the Evaluation of Sentinel Node Policy in Early
Stage Endometrial Carcinomas at Intermediate and High Risk of Recurrence
(SENTIRAD) in France are two studies currently underway on high-risk patients,
comparing the effect of SLNB versus systematic lymphadenectomy (bilateral pelvic
and paraaortic) in high-risk EC in initial clinical stages. The STATEC study com-
pares SLNB versus lymphadenectomy with the patient as the same control. The
SENTIRAD study randomised patients to SLNB or lymphadenectomy, following an
algorithm that performs bilateral pelvic and paraaortic lymphadenectomy when
faced with a failure in detection or unilateral detection.

In 2014, the NCCN clinical guidelines assessed the technique as an acceptable
alternative to systematic lymphadenectomy in selected cases [36]. In the latest
edition, NCCN [5] (v.3.2019) accepted the technique as category 2A (based on
lower level evidence with uniform consensus by the expert panel that the procedure
was appropriate) and established a number of recommendations:

• SLN mapping may be considered

• The application of SLN mapping is appropriate for low intermediate-risk
patients or those who do not tolerate standard lymphadenectomy.

• Recent evidence indicates that sentinel node mapping may also be used in
high-risk histologies (serous carcinoma, clear cell carcinoma, carcinosarcoma).

• Cervical injection (superficial and optional deep) is a useful and valid option.

• The use of a radiocolloid with blue dye is recommended. The usefulness of ICG
is admitted if NIR detection equipment is available.

• The key point in the normalisation of the technique is adherence to a surgical
protocol.

• SLNB should be performed in institutions with experience in this procedure.
The technique requires proper methodology and demands good anatomical
knowledge and surgical ability. The MSKCC group recommends performing
SLNB in centres with experience in endoscopic surgery and with an experience
of at least 30 supervised cases during the learning process, with a specialised
team that enables close collaboration between the surgeon and pathologist [32].
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In the study by Papadia et al. [119], the implementation of at least 20
procedures decreased the number of SLNs obtained without compromising the
FNR, improving the accuracy of the technique.

• The histological analysis should be performed by ultrastaging. Although the
implication and proper management of low tumour volume are not known, its
detection has a potential effect on staging.

• Lymphatic mapping implementation is contraindicated in uterine sarcoma.

Recently, the SGO published a first consensus on the application of SLNB in EC
[30], which concluded with the following recommendations:

• Lymphatic mapping with cervical injection accurately predicts the detection of
lymphatic metastasis, with an FNR <5%. In institutions with higher FNRs, the
implementation of lymphadenectomy should be maintained (if it was
previously indicated) until an FNR <5% has been ensured. Similarly, the SGO
suggests adopting the indications of the American Society of Clinical Oncology
applied to SLNB in breast cancer, such that lymphadenectomy is completed
after SLNB in the first 20–30 cases. For low-risk patients, the recommendation
is to increase the number of supervised cases during the learning process, given
the lower risk of detecting lymphatic metastases [36, 120].

• The injection of radiocolloid and dye is acceptable. If ICG is available, it should
be used instead.

• For patients with low- to intermediate-grade type I EC and tumour
confinement to the uterus, lymphadenectomy can be skipped, performing only
the SLNB.

• Although SLNB has been shown to increase the detection of lymphatic
metastases, patients should be informed of the potential risk of undetected
occult disease.

• The main demonstrated usefulness of SLNB is in detecting pelvic metastasis.
The decision to perform paraaortic lymphadenectomy is at the surgical team’s
discretion, considering the patient’s clinicopathological characteristics.

• Ultrastaging is recommended in the analysis of the SLN, although its
involvement in detecting ITC requires more research.

• The application of SLNB to high-risk patients (type 1 G3 and type 2 histology)
following the NCCN algorithm is feasible and has had good published results
[30]. The combination of pelvic and paraaortic lymphadenectomy is
reasonable until more safety and efficacy data for SLNB are available.

Abbreviations

CT chemotherapy
CK19 cytokeratin 19
EBRT external boost radiotherapy
EC endometrial cancer
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DR detection rate
FNR false negative rate
H&E haematoxylin and eosin
HR hazard ratio
ICG indocyanine green
IHQ Immunohistochemistry
ITC isolated tumour cells
MB methylene blue
MM macrometastases
NPV negative predictive value
OSNA one-step nuclear acid amplification
PET-CT positron emission tomography-computed tomography
RR relative risk
RT radiotherapy (includes EBRT y vaginal-cuff brachytherapy)
Se sensibility
SLN sentinel lymph node
SLNB sentinel lymph node biopsy
Sp specificity
SPECT single photon emission computed tomography
vs. versus
95%CI confidence interval of 95%
99mTc 99mTc-albumin nanocolloid
μM micrometastases
μ meanP

summation or total
σ standard deviation
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