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Zusammenfassung

Die humanoide Robotik beschäftigt sich mit der Konzeption von Robotik-
systemen mit anthropomorpher Struktur, die in für Menschen geschaffenen
Umgebungen operieren sollen. Ein autonomer oder teilautonomer humano-
ider Roboter muss in solchen unstrukturierten und teilweise unbekannten
Umgebungen selbstständig Interaktionsmöglichkeiten mit der Umgebung und
den darin enthaltenen Objekten erkennen und in seine Aktionsplanung bzw.
-ausführung einbeziehen können. Zur Beschreibung der menschlichen Wahr-
nehmung von Interaktionsmöglichkeiten mit Umgebungsobjekten wurde
die Theorie der Affordanzen durch den amerikanischen Kognitionspsycho-
logen James J. Gibson aufgestellt. Diese Theorie besagt, dass Umgebungs-
objekte einem Agenten, das könnte ein Mensch oder ein humanoider Roboter
sein, Interaktionsmöglichkeiten anbieten. Dabei entstehen Affordanzen in
Abhängigkeit von den Objekteigenschaften und den spezifischen Fähig-
keiten des Agenten. Ein Stuhl bietet beispielsweise die Affordanz Sitzen

an, sofern der wahrnehmende Agent über entsprechende Fähigkeiten und
Körpermaße verfügt. Die Theorie der Affordanzen ist in der Kognitionspsy-
chologie weit verbreitet und in Ansätzen anhand des menschlichen Gehirns
bzw. der menschlichen Sensorik biologisch begründet. Auch in der Robotik
sind affordanzbasierte Ansätze zur Perzeption verbreitet.
Ziel dieser Dissertation ist es, basierend auf Gibsons Theorie der Affordanzen,
ein Konzept für das perzeptiv-kognitive System eines humanoiden Roboters
zu entwickeln und zu implementieren, das insbesondere in unbekannten
und unstrukturierten Umgebungen wichtige Informationen zur Aktionspla-
nung und -ausführung liefern kann. Dabei liegt der Fokus auf Affordanzen
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für Ganzkörperaktionen zur stabilen Lokomotion oder Manipulation, soge-
nannten Loko-Manipulationsaktionen, beispielsweise für das Abstützen oder
Festhalten an Umgebungsobjekten. Das System ermöglicht zusammen mit
einer Pilotschnittstelle die teilautonome Steuerung eines humanoiden Robo-
ters und wird anhand verschiedener realistischer Szenarien in Simulation
und auf realen humanoiden Robotern evaluiert. Die Einzelbeiträge der Arbeit
bestehen dabei in der Formalisierung eines berechenbaren Modells des Affor-
danzbegriffs, der Definition eines hierarchischen Systems zur Propagierung
von affordanzbasierter Evidenz, der Konzipierung und Implementierung einer
affordanzbasierten Pilotschnittstelle für die teilautonome Steuerung eines
humanoiden Roboters und der Evaluation des Gesamtsystems in simulierten
Szenarien, sowie mit realen humanoiden Robotern. Im Folgenden werden
die Einzelbeiträge der Arbeit im Detail besprochen.

Formalisierung von Affordanzen Der grundlegendste Beitrag dieser
Arbeit ist die geeignete Formalisierung des Begriffs der Aktionsmöglichkeit,
basierend auf der psychologischen Theorie der Affordanzen. Das Ergebnis
soll ein berechenbares Modell für Affordanzen sein, welches im Kontext
realer Robotikanwendungen eingesetzt werden kann. Dieses Modell wird
im Hinblick auf Affordanzen für Ganzkörper-Loko-Manipulationsaktionen
entwickelt und repräsentiert Affordanzen als Evidenzfunktionen über
dem Raum der Endeffektor-Posen. Neben der effizienten Auswertbarkeit
ermöglicht diese Wahl der Repräsentation die direkte Parameterisierung von
Aktionen. Zur Repräsentation und Kombination von affordanzbezogenen
Evidenzen werden die Evidenztheorie von Dempster und Shafer und die
Theorie der subjektiven Logik verwendet. Diese liefern das theoretische
Rahmenwerk, um affordanzbezogene Evidenzen effektiv miteinander zu
verrechnen.

Hierarchie von Ganzkörper-Affordanzen Die Formalisierung von
Affordanzen als Evidenzfunktionen ermöglicht die hierarchische Definition
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von Affordanzen höherer Ebene als Kompositionen von Evidenzfunktionen
niederer Ebene unter Einbeziehung von körper- bzw. umgebungsbezogenen
Parametern. Durch die hierarchische Definition von Affordanzen wird
implizit ein Modell vorgegeben, nach dem affordanzbasierte Evidenz in
den Hierarchieebenen weiterpropagiert wird. Dieses Modell kann direkt für
die visuelle Wahrnehmung von Affordanzen in unbekannten Umgebungen
und für die physische Validierung der erkannten Affordanzen eingesetzt
werden. Evidenz aus verschiedenen Quellen bezogen auf Affordanzen in
verschiedenen Hierarchieebenen kann konsistent zu einem Gesamtbild der
affordanzbezogenen Evidenz verrechnet werden. Die Menge der definierten
Affordanzen ist ausreichend groß, um komplexe Aufgaben aus dem Bereich
der einhändigen und zweihändigen Loko-Manipulation in unbekannten
Umgebungen zu bewältigen. Dies wird anhand von simulierten Szenarien
und in Experimenten mit realen humanoiden Robotern evaluiert.

Affordanzbasierte Autonomie und Teilautonomie Die Formalisierung
des Affordanzbegriffs und die darauf aufbauende Hierarchie von Ganzkörper-
Affordanzen ermöglichen die Implementierung eines Systems für die Wahr-
nehmung von Interaktionsmöglichkeiten in unbekannten Umgebungen durch
humanoide Roboter. In einem weiteren Beitrag der Arbeit wird die Anwen-
dung dieses Affordanzsystems für die autonome und teilautonome Steuerung
von humanoiden Robotern untersucht. Dazu muss eine zuverlässige Verbin-
dung zwischen wahrgenommenen Affordanzen und bekannten Aktionsprimi-
tiven des Roboters hergestellt werden, die dann für autonome Komponenten
zur Aufgaben- und Aktionsplanung verwendet werden können. In Anlehnung
an aktuelle Entwicklungen in der humanoiden Robotik liegt der Fokus dieser
Arbeit auf der teilautonomen Steuerung eines humanoiden Roboters, in der
ein menschlicher Pilot über eine geeignete Schnittstelle mit dem Roboter
interagiert und die Aufgaben übernimmt, die durch den Roboter nicht auto-
nom zu bewältigen sind. Dazu wird eine Pilotschnittstelle entwickelt, die
dem menschlichen Piloten eine Visualisierung der Umgebungswahrnehmung
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des Roboters zur Verfügung stellt, inklusive erkannter Affordanzen. Der
Pilot übernimmt die abstrakte Aufgabenplanung und steuert den Roboter,
indem er aus autonom erkannten Affordanzen und den damit verbundenen
Aktionsprimitiven des Roboters auswählt und automatische Vorschläge zur
Aktionsparameterisierung überwacht. Wenn nötig kann der Pilot den Roboter
jederzeit auch teleoperativ steuern.

Evaluation des Affordanzsystems Das entwickelte perzeptiv-kognitive
System und die damit verbundenen Strategien zur autonomen und teilau-
tonomen Steuerung von humanoiden Robotern zielt auf die reale Anwen-
dung in unbekannten Umgebungen ab. Neben der individuellen Evaluation
verschiedener Teilaspekte der Arbeit, werden systemweite Evaluationen
in komplexen Simulationsumgebungen sowie auf den realen humanoiden
Robotern ARMAR-III und WALK-MAN durchgeführt. Die Anwendung auf
realen humanoiden Robotern unterstreicht die Realisierbarkeit von affordanz-
basierter Autonomie und insbesondere von affordanzbasierter Teilautonomie
in anwendungsnahen Szenarien.
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1 Introduction

In the most general sense, a robot is a programmable machine designed
for automatically performing sequences of actions in order to complete a
defined task. Robots can roughly be categorized into industrial robots and
service robots. Industrial robots are traditionally employed in well-defined
production environments, like automated assembly lines, physically separated
from human workers. Service robots on the other end are expected to perform
their tasks in less structured environments, like public areas or households in
close co-existence and cooperation with humans. Service robots are designed
to perform tasks that are considered dirty, dull or dangerous for humans,
either in professional or private environments. Recent studies investigating
the dimensions of the global robotics market reveal that there exists a total
of about 1.6 million operational industrial robots in 2015. Similar studies
concentrating on service robots differ between about 300,000 sold units for
professional use and about 5.4 million sold units for personal and domestic
use, both until 2015 (International Federation of Robotics 2016a,b). Common
examples for service robots with domestic application include autonomous
vacuum cleaners and lawn mowers.
A humanoid robot is a particular type of service robot that is designed to
at least partially resemble the shape, the behavior, the sensory-motor skills
and the cognitive capabilities of human beings. While specialized robotic
solutions are sufficient for many relevant applications, humanoid robots are
commonly regarded as a perspective solution for general-purpose robots
that are as flexibly applicable as human workers. Humanoid robots are
kinematically and dynamically complex machines and their conception and
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construction combines several challenging problems from various areas of
mechanical engineering, electrical engineering and computer science. These
challenges make humanoid robotics an active field of fundamental research.

Figure 1.1: The humanoid robot ARMAR-III (Asfour et al. 2006) in a kitchen. Such human-
centered environments impose high challenges on the perceptive-cognitive skills of
a humanoid robot.

The human-centered environments that humanoid robots are intended to be
employed in, see e. g. the kitchen environment in Figure 1.1, are typically
unknown, arbitrary, cluttered and to a certain degree unstructured. For
successful operation under these circumstances, humanoid robots need to
demonstrate sophisticated capabilities in perceiving and understanding such
environments, although not having previously been exposed to the particular
scenes. Based on the scene perception, the robot needs to reason about
possible ways of interaction afforded by available objects and the environ-
ment. In the context of humanoid robotics, possible ways of interaction
include actions that incorporate the whole body of the robot for combined
locomotion and manipulation (see Figure 1.2). These whole-body loco-

manipulation actions are particularly important, as multi-contact stabilization
for locomotion, e. g. by supporting on or leaning against suitable surfaces,

2
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and whole-body manipulation, e. g. pushing or pulling of large objects or
opening of doors, are considered essential capabilities. Despite impressive
advances in the field, general-purpose solutions to the problem of scene
understanding and the perception of action possibilities are a challenging
area of active research and the robust applicability of available approaches
lies beyond the state-of-the-art, which has recently been demonstrated at the
DARPA Robotic Challenge (DRC). The DRC was an international competi-
tion for humanoid robots held in 2015, in which the participating teams had
to perform various challenging tasks in the context of a disaster response
scenario. The robots employed during the DRC were operated in a shared

autonomous control mode which allows the autonomous operation of a
humanoid robot to the degree that is robust and reliable. Behaviors that
exceed the autonomous capabilities of the state-of-the-art are leveraged to
a human pilot which is remotely connected to the robot through a pilot

interface.

Figure 1.2: Examples for whole-body loco-manipulation actions: Pulling and pushing of large
and heavy objects and climbing of staircases or ladders.

1.1 Problem Statement and Contributions

This thesis approaches the problem of developing a perceptive-cognitive
system for autonomous humanoid robots that allows the perception of action

3
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possibilities in unknown and unstructured environments by consistently
integrating information from the visual and haptic sensory systems of the
robot. In line with the incorporated theoretical backgrounds, action possibili-
ties are called affordances in this work. The primary focus is the detection of
whole-body action possibilities or whole-body affordances, particularly with
respect to loco-manipulation tasks (see Figure 1.2), but the developed mecha-
nisms are not necessarily constrained to those. The individual contributions
of this thesis consist of the computational formalization of the concept of
action possibility based on the psychological theory of affordances, the defini-
tion of a hierarchical framework for the detection of whole-body affordances
in unknown environments, the implementation of an affordance detection
and validation system for autonomous and shared autonomous control of
humanoid robots and the evaluation of the developed methods in multiple real-
istic scenarios in simulation and on real robotic platforms. In the following,
the individual contributions of the thesis are described in further detail.

Computational Formalization of Affordances The first contribution of
this thesis is a novel computational formalization of the concept of action

possibility based on the psychological theory of affordances. This formal-
ization is based on the ideas that actions are fundamentally defined by
end-effector contact and that the process of affordance detection can be
understood as a continuous process of evidence fusion. Affordances are
represented as affordance belief functions, i. e. Dempster-Shafer belief func-

tions over the space of end-effector poses. This allows the consistent fusion
of affordance-related evidence from various possible sources, e. g. visual
perception or haptic validation, into a joint system belief. Affordance belief
functions allow the integration of environmental properties, e. g. object sizes,
and body-scaled parameters, e. g. hand dimensions, into the process of affor-
dance detection. Furthermore, the theory of subjective logic is applied to
formulate logic operations on affordance belief functions which eventually
allows the hierarchical composition of affordance belief functions.
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Hierarchy of Whole-Body Affordances The second contribution of this
thesis is the application of the affordance concept to the perception of whole-
body action possibilities which forms a novel approach to action possibility
perception in humanoid robotics. Based on the idea that action possibili-
ties, i. e. affordances, are an inherently hierarchical concept, a hierarchy of
whole-body affordances is defined based on the computational formalization
of affordance belief functions. The benefits of the hierarchical definition of
affordance belief functions is the effective incorporation of evidence from
different sources, e. g. affordance validation experiments, at different hier-
archical layers. The defined affordance hierarchy can directly be used for
visual affordance detection based on simplified environmental representa-
tions in terms of geometric primitives. The proposed whole-body affordance
hierarchy contains a selected set of whole-body affordances, reasonably
sufficient for performing actions of locomotion, unimanual manipulation
and bimanual manipulation. Although the choice of affordances represented
in the hierarchy is justified based on the aspired evaluation scenarios, the
hierarchy is subject to extension.

Affordance-Based Autonomous and Shared-Autonomous Control

The computational model for affordances developed in this thesis can
be employed for the operation of humanoid robots on different levels of
autonomy. Methods for affordance-based robot control are developed for
fully autonomous operation of humanoid robots and for shared autonomous
operation which is closer to real applications. In affordance-based shared
autonomy, a human pilot is connected to the robot via a pilot interface

which shows the pilot a visualization of the robot’s environmental perception
and a selection of available affordances. While switching to traditional
low-level teleoperation is possible at any time, the pilot interface aims
at providing the pilot with the possibility to control the robot based on
detected affordances. Fundamental parameterization for action execution
is automatically proposed based on information from the affordance belief
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functions, particularly end-effector poses, and can be adjusted by the pilot.
The developed affordance-based pilot interface allows the pilot to abstract
from the detailed low-level control of a complex humanoid robot to a more
task-centered control scheme, focusing on the selection of affordances that
lead to successful task execution.

Figure 1.3: The humanoid robots ARMAR-III (left), ARMAR-4 (middle) and WALK-MAN
(right) which are used throughout this thesis.

Evaluation of the Affordance System In this thesis, a computational
model for whole-body affordances for humanoid robots is developed and
implemented, aiming at the application in autonomous and shared-autono-
mous control modes. While multiple aspects of the system are evaluated
individually, the central idea is to perform a system evaluation that demon-
strates the effectiveness of the proposed methods for affordance detection and
validation as a whole in a simulated evaluation environment. Furthermore,
the affordance system is implemented and evaluated on three humanoid
robotic platforms, ARMAR-III (Asfour et al. 2006), ARMAR-4 (Asfour et al.
2013) and WALK-MAN (Tsagarakis et al. 2017), in different challenging
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evaluation scenarios, demonstrating the feasibility of the concept in combi-
nation with real robot hardware and real sensor data. See Figure 1.3 for a
visualization of the employed humanoid robots.

1.2 Structure of the Thesis

This thesis is structured into eight chapters which consecutively introduce,
discuss and evaluate the approach taken towards an affordance system that
satisfies the requirements for the contributions outlined in Section 1.1:

Chapter 2 introduces and discusses fundamentals and related work. This
includes the psychological theory of affordances as one of the foundations of
this work, as well as various approaches to the formalization of this concept
and to the implementation of affordance-based approaches in robotics. One
central body of related work is provided by the DARPA Robotics Challenge

(DRC), a successful competition for humanoid robots held in 2015. The
chapter concludes with an introduction into the concepts of autonomy and
shared autonomy which are central for understanding the proposed ideas of
affordance-based autonomy.

Chapter 3 introduces the frameworks which are necessary for the concepts
proposed and developed in the following chapters. This includes the H2T

perception pipeline for the extraction of geometric primitives in unknown
environments, as well as the concept of Object-Action Complexes (OACs) as
a conceptual framework for the representation of sensorimotor experience
with a strong connection to symbolic planning and affordance detection.
The chapter concludes with a brief introduction into ArmarX, the robot
development environment used within this thesis.

Chapter 4 describes the computational model for whole-body affordances

in humanoid robotics as the first contribution of this thesis. Affordances
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are represented as affordance belief functions, expressing Dempster-Shafer

belief values over the space of end-effector poses. The chapter introduces
these concepts and formalizes the proposed computational model. It further
formalizes methods for incorporating properties of embodiment and envi-
ronment, for evidence fusion, for inference on affordance belief functions
and for representing bimanual affordances. The chapter concludes with a
discussion of discretization of the continuous formalism of affordance belief
functions.

Chapter 5 bases upon the formal methods developed in Chapter 4 for
creating a hierarchy of whole-body affordances. This hierarchy is based on
fundamental power-grasp affordances for prismatic grasping and platform

grasping and successively formulates higher-level affordances by combining
lower-level affordances with properties of the environment or the robot
embodiment. The developed affordance hierarchy represents unimanual
affordances as well as bimanual affordances.

Chapter 6 introduces the concepts of affordance-based autonomy and
affordance-based shared autonomy as fundamental control modes for huma-
noid robots. As full autonomy in humanoid robotics lies beyond the state-of-
the-art, shared autonomy is proposed as a viable approach for the successful
control of complex humanoid robots by human pilots. In the proposed
cognitive architecture, affordances are seen as explicit preconditions for the
instantiation of OACs. This approach provides a functional link between
detected affordances, action execution skills and symbolic planning domains.
A pilot interface is introduced which allows the affordance-based control of a
humanoid robot based on the concept of affordances. In practical applications,
the robot supports the pilot by suggesting possible ways of interaction with
the unknown environment based on detected affordances.
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Chapter 7 evaluates and validates different aspects of the proposed
concepts. First, fundamental aspects of the formalization from Chapter 3
are evaluated, particularly the definition of affordance belief functions
and its suitability to the fusion of affordance-related evidence. In a
simulated experiment, the concepts of autonomous affordance detection and
validation based on the hierarchy of whole-body affordances are evaluated.
Furthermore, the utilization of detected affordances for multi-contact pose
sequence planning is reviewed. Before concluding the chapter with a
discussion of system performance, multiple experiments on real humanoid
robots are reviewed, demonstrating the applicability of the proposed concepts
to real robots in real environments based on the concept of affordance-based
shared autonomy.

Chapter 8 summarizes the contributions of the thesis and the obtained
results. It further discusses strengths and weaknesses of the proposed
approach, as well as possible aspects of extension and future work.

9





2 Fundamentals and Related Work

The goal of this thesis is the conception and development of an affordance
system for action possibility detection in unknown environments and the
application of these methods in the context of autonomous robot control. This
chapter introduces and discusses fundamental concepts that will be of central
use throughout this thesis, particularly focusing on the theory of affordances

which provides the conceptual framework for the proposed approach.
The psychological theory of affordances is systematically introduced and
discussed in Section 2.1. Subsequently, Section 2.2 discusses existing,
pioneering approaches to the computational formalization of the affordance
concept, aiming at applications in artificial intelligence and autonomous
robotics. Although affordance-based approaches in these areas share a
common motivation and terminology, the available formalizations vary
substantially. Section 2.3 gives a broad overview over affordance-based
approaches in autonomous robotics and reviews the differences to the concept
of whole-body affordances as proposed in this thesis. In Section 2.4, an
overview over autonomous control modes in humanoid robotics is presented
with a focus on shared autonomous control modes in which a human pilot
controls a humanoid robot in collaboration with autonomous capabilities of
the robot itself. Finally, Section 2.5 concludes the chapter with a summary
of the insights obtained from the reviewed approaches.
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2.1 The Psychological Theory of Affordance

The American psychologist James J. Gibson1 initially introduced the concept
of affordances as an approach to explaining the visual perceptual process
in humans and animals (J. J. Gibson 1966). With his influential work,
Gibson founded a psychological school, commonly referred to as Ecological

Psychology or Gibsonian Psychology2. Affordances are typically defined as
opportunities for action latent in the environment and the process of under-
standing an environment in terms of interaction possibilities is interpreted as
the detection of affordances. Gibson himself writes:

When the constant properties of constant objects are perceived

(the shape, size, color, texture, composition, motion, animation,

and position relative to other objects), the observer can go

on to detect their affordances. I have coined this word as a

substitute for values, a term which carries an old burden of

philosophical meaning. I mean simply what things furnish, for

good or ill. What they afford the observer, after all, depends on

their properties.

J. J. Gibson (1966, p. 285)

According to Gibson, affordances arise based on properties of perceived
objects in combination with the perceiving agent’s capabilities. This ecolog-
ical view of the relation between agents and environments is called the
animal-environment system:

The affordances of the environment are what it offers the animal,

what it provides or furnishes, either for good or ill. The verb

to afford is found in the dictionary, but the noun affordance is

1 James Jerome Gibson, 1904 - 1979
2 The term Ecological Psychology is sometimes also used in reference to other related schools

of psychology, the prefix Gibsonian is then used for resolving this ambiguity.
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not. I have made it up. I mean by it something that refers to

both the environment and the animal in a way that no existing

term does. It implies the complementarity of the animal and the

environment.

J. J. Gibson (1986, p. 127)

The term ecological in this context means that the foundation for perception
is information which is ecologically available to be perceived by capable
agents (J. J. Gibson 1966). McGrenere et al. (2000) condense Gibson’s ideas
in three fundamental properties of affordances:

1. Affordances exist relative to the agent’s capabilities.

2. The existence of affordances is independent from the agent’s ability to
perceive them.

3. Affordances do not change as the needs and goals of the agent change.

Şahin et al. (2007) point out that affordances can be seen from three funda-
mental perspectives: the agent perspective, the environmental perspective

and the observer perspective. While the concepts remain the same, confusion
is possible3 if author and reader do not share the same perspective. Another
fundamental and frequently cited idea of the affordance concept is:

Perception is economical.

J. J. Gibson (1986)

With this statement, Gibson argues that the perception of object affordances
is not acquired by relating a possibly huge set of perceived object features
to noticed affordances, but rather by relating noticed affordances to small
sets of invariantly discriminating features. This finding relates the affor-
dance concept to the ideas of direct perception, opposing psychological

3 And frequent, according to Şahin et al. (2007).
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schools which assume indirect perception, e. g. cognitivism. The dispute
about direct and indirect perception4 can be condensed into the question
whether environmental objects and events carry inherent meaning which
is directly perceivable by agents without cognitive effort or, in opposition,
whether meaning is attributed to environmental objects and events based on
acquired agent-internal representations (Jones 2003).
Although Gibson believed that the perception of affordances is acquired
over time, he was not interested in the particular question of how affordance
perception is learned (Şahin et al. 2007). However, the psychologist Eleanor
J. Gibson worked on explaining the developmental aspect of affordance
perception. The field of developmental psychology is concerned with the
development of human beings over the course of their lifetime, primarily
within the ages from infancy to adolescence. E. J. Gibson believed that affor-
dances are learned by the acquisition of new motor capabilities, eventually
defining perceptual development as a process of learning about affordances
(E. J. Gibson 1992; Adolph et al. 2015). Comprehensive surveys of the
work of E. J. Gibson and the concept of affordances within developmental
psychology are found in Adolph et al. (2015) and Jamone et al. (2016).
In a thorough review of affordance-related literature, Zech et al. (2017)
identify three fundamental characteristics of affordances: hierarchy, competi-

tiveness and dynamics which are briefly summarized in the following.

Hierarchy Affordances are an inherently hierarchical concept. This means
that complex affordances, which refer to high-level actions, can be composed
of less complex affordances, possibly referring to atomic actions.

Competitiveness Affordance detection is a fundamentally competitive
process, i. e. perceiving agents deliberately choose among sets of detected
affordances based on their individual needs.

4 Also termed direct and indirect realism.
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Dynamics The existence of affordances dynamically adapts to environ-
mental changes. This applies e. g. to the fillability of a mug which dynami-
cally vanishes once the mug is filled.

These fundamental properties of affordances form an important basis for
the successful formalization of the affordance concept. The aspect of hier-
archy will play a crucial role in the computational formalization proposed
in this thesis (see Chapter 4 and Chapter 5) which allows the hierarchical
arrangement of affordances and provides the formal mechanisms for belief
propagation in the defined affordance hierarchy. The aspect of competitive-
ness will be addressed in Chapter 6 where mechanisms for affordance-based
autonomous and shared-autonomous control are investigated. Although the
aspect of dynamics is undoubtedly important, this thesis will focus on static

affordances. While certain environmental changes can be addressed by
performing a re-perception of the scene, the observation of action effects and
the induced changes in affordance existence fall beyond the scope of this
thesis. A related but conceptually different idea that is addressed in Chapter 4
is the idea of affordance validation which refers to the observation of effects
of specific affordance validation actions in order to assess the existence of
visually perceived affordance hypotheses.
Gibson’s ideas have influenced research in numerous fields, including devel-
opmental psychology, neuroscience, industrial design, social sciences and
robotics. While affordance-based approaches to autonomous robotics will be
the subject of Section 2.2 and Section 2.3, the interested reader is referred to
Şahin et al. (2007), Thill et al. (2013), Jamone et al. (2016), and Min et al.
(2016) for more complete reviews including affordance-related approaches
in other fields.
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2.1.1 Attempts to Definition

Though Gibson initially developed the concept of affordances, he missed to
provide a precise definition which led to intensive debate among ecological
psychologists. Furthermore, Gibson’s own view on affordances evolved
over time. Horton et al. (2012) provide a brief summary of the scientific
discourse about affordances, both within the field of Ecological Psychology
and between psychologists and roboticists. Numerous researchers picked
up Gibson’s ideas for enhancement, definition or formalization. Particularly
the precise definition of the term affordance caught the attention of many
researchers, leading to a set of competing definitions. Early discussions about
affordances, including Gibson’s own work, often focus on visual perception,
particularly on optical flow, which is also reflected in the developed defini-
tions of the affordance concept (Şahin et al. 2007).
While affordances are commonly understood as emergent properties, i. e.
properties that become apparent in the presence of an agent, discourse
particularly exists in the questions if affordances are properties of objects
(J. J. Gibson 1966), of the environment (Turvey 1992) or of the animal-
environment system (Stoffregen 2003; Chemero 2003; Michaels 2003) and
if affordances possess a relational nature (Stoffregen 2003; Chemero 2003;
Michaels 2003). In his popular approach, Chemero (2003) defines affor-
dances φ as relations:

Affords − φ(feature,ability). (2.1)

Chemero hence defines affordances as relations between features of an envi-
ronment and the capabilities of an agent. This pragmatic approach has gained
popularity among roboticists and was for example picked up by Şahin et
al. (2007) in the intention of finding a suitable definition of the affordance
concept for robotic applications. Thorough reviews of the detailed differ-
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ences between the individual definitions are found in the comprehensive
overviews in Şahin et al. (2007), Dotov et al. (2012), and Zech et al. (2017).

2.1.2 Experimental Evidence

Within the fields of ecological psychology and developmental psychology,
numerous researchers attempted to find experimental evidence for the direct
perception of affordances in humans and animals. One well-studied aspect is
the body-scaling of affordances which states that affordances are perceived
with respect to the dimensions of the perceiving agent’s embodiment. Exper-
iments have been conducted with human subjects for verifying body-scaled
perception of the climbability of staircase risers with respect to the subject’s
leg length (Warren 1984), the passability of apertures with respect to the
subject’s eyeheight (Warren et al. 1987) or the climbability and sitability of
surfaces at different heights with respect to the subject’s eyeheight (Mark
1987). Costantini et al. (2010), Bub et al. (2010), and Ambrosini et al. (2013)
conducted experiments indicating that the spatial relation between object and
agent, particularly the object’s reachability, plays an important role in the
perception of graspability affordances. Although not fully understood yet,
the mirror neuron system is sometimes seen as an indicator for affordance
detection in primate brains. One principle argument is that besides mirror

neurons which fire on action execution and action observation, canonical

neurons exist which also fire on the observation of objects (Thill et al. 2013).
The aspect of direct affordance perception has attracted numerous researches
to find neuroscientific evidence for a direct link between perception and action
in humans and animals which can in fact be observed for less developed
animals. Frogs, for example, have a simple and direct neural detector for
objects affording eatability, i. e. insects, implemented right behind the eyes
(Lettvin et al. 1959). Behavioral studies have further shown that animals
like frogs and toads can directly perceive locomotion affordances when
approaching prey (Collett 1977; Ingle et al. 1977; Lock et al. 1979). In
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sport science, evidence has been found for direct perceptual mechanisms in
humans, e. g. for the direct perception of the time-to-contact of approaching
objects (Fajen et al. 2008).
While the above experiments focused on different aspect of visual affordance
perception, studies from developmental psychology have found evidence
for haptic perception of affordances. Experiments have for example been
conducted regarding the haptic perception of traversability of soft surfaces
by crawling and walking infants (E. J. Gibson et al. 1987) or the perception
of traversability of sloped surfaces by adult participants (Kinsella-Shaw et al.
1992).

2.1.3 Criticism

Gibson’s theory of affordances gained large popularity in the field of
autonomous robotics. However, it is subject to intense debate within
psychology and computer science. In his comprehensive survey, Horton et al.
(2012) identifies three central points of controversy in the scientific discourse
about affordances which will be briefly addressed in the following.

The Formal Definition of an Affordance Gibson’s original definition of
the term affordance is vague, leaving space for interpretation and debate.
While competing and amending definitions exist (see Section 2.1.1), Horton
et al. (2012) argue that a uniformly accepted formal definition of an affor-
dance has not yet emerged.

The Compatibility of Psychological and Computational Approaches

Horton et al. (2012) state that the two fields interpret the concept of affor-
dances from different directions: Psychologists attempt to describe behavior,
whereas roboticists try to implement behavior. While psychologists and
roboticists generally agree that affordances are relations, controversy exists
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in the question if affordances physically exist as external relations or, in
opposition, if affordances are mental constructs of the agent.

The Role of Direct Perception Another point of controversy is the
implemented degree of direct perception. While ecological psychologists
commonly consider direct perception as a principle foundation, affordance-
based approaches in robotics often construct agent-internal models and
representations, due to practical reasons. Horton et al. (2012) state that
complex behavior that goes beyond the commonly regarded problem of
navigation based on optical flow, e. g. tool use, might be impossible to
implement solely based on directly perceived affordances.

The addressed points of controversy justify the diversity of affordance-based
approaches in robotics as will be reviewed in Section 2.2 and Section 2.3.

2.2 Computational Formalizations of Affordances

The psychological theory of affordances as proposed by Gibson does not
provide an inherent computational formalization of the affordance concept.
However, since affordance-based approaches were introduced in computer
science and robotics, multiple attempts have been taken to develop compu-
tational formalizations of Gibson’s ideas. In this section, the established
formalizations of Steedman (2002a,b), Şahin et al. (2007), Montesano et al.
(2008) and Krüger et al. (2011) are briefly introduced and reviewed.

2.2.1 The Formalization of Steedman

In a famous experiment, Köhler (1925) observed that chimpanzees are only
able to utilize tools in reaching experiments if the tools are placed within
sight of the monkeys. Motivated by this experiment, Steedman (2002a,b)
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concluded that non-linguistic animals5 perform reactive action planning
by forward chaining from the current situation. Humans in contrast, as
linguistic animals, have the ability to plan by backward chaining from a
defined goal state. Steedman further concluded that affordances are a suitable
formalism for representing object-concepts in reactive planning. He proposes
to formalize affordances using Linear Dynamic Event Calculus (LDEC)
descriptions, e. g. :

push(y,x)→

 shut(x)( open(x)

open(x)( shut(x)

 , (2.2)

which reads as: Pushing of a door x by an agent y, yields a shut door

to be open and an open door to be shut. LDEC is capable of expressing
sequences of actions or events with preconditions and consequences and
allows reasoning about causal relations over events. The set of affordances
available for an object, e. g.

Affordances(door) =

 push

go-through

 , (2.3)

can be used for action planning. Steedman postulates that universal opera-
tions for syntactic and semantic composition exist which apply to affordances
as defined above, as well as to natural language expressed in terms of Combi-

natorial Categorial Grammars (CCGs).
Steedman’s formalization of affordances draws an interesting similarity
between affordance-based action planning and natural language processing.
Although Steedman’s formalization might be applicable to symbolic plan-
ning of whole-body actions in loco-manipulation tasks, it does not inherently

5 i. e. non-humans
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link affordances to perception and action execution which is the central
topic of this thesis. Furthermore, although Steedman considers learning of
affordances as the extension of the affordance-set (Equation 2.3), once novel
object-event relations have been discovered, there is no inherent mechanism
for representing uncertainty in the acquired relations.

2.2.2 The Formalization of Şahin et al.

In contrast to Steedman’s formalization which primarily aims at affordance-
driven symbolic planning, Şahin et al. (2007) focus on affordance-based
autonomous robot control and navigation. Affordances, in this formalization,
are defined as relations between effects, entities and behaviors:

(
effect,(entity,behavior)

)
. (2.4)

Such a triplet describes the effect that is caused by applying behavior to entity,
while entity refers to a perceptual representation of a physical entity, e. g. an
object. Through constant interaction with the environment and perception
of caused effects, autonomous robots can populate a growing database of
relation instances, i. e. affordance triplets that have only been observed once.
Şahin et al. (2007) define a set of four basic operations for generalizing from
individual relation instances to affordances: entity equivalence, behavior

equivalence, affordance equivalence and effect equivalence. Following the
example of bimanual lifting from Şahin et al. (2007), the following represen-
tation can be generated from two observed relation instances:lifted,


 blue-can

black-can

 , lift-with-right-hand


 . (2.5)
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By generating entity equivalence classes, the above formulation is condensed
into: (

lifted,(<*-can>,<lift-with-right-hand>)
)
. (2.6)

Similarly, if further relation instances are observed that demonstrate lifting
of cans with the left hand, behavior equivalence classes can be generated in
order to obtain a more general representation of the affordance:

(
lifted,(<*-can>,<lift-with-*-hand>)

)
. (2.7)

Affordance equivalence and effect equivalence work analogously on entity-
behavior-tuples and effects, respectively. The generation of equivalence
classes can be seen as a mechanism for affordance learning, although Şahin
et al. (2007) prefer the term acquisition as the employed learning method is
not specified in the formalization.
The formalization of Şahin et al. (2007) provides a simple and flexible frame-
work for the representation and acquisition of affordances in the context
of autonomous robotics. Reference implementations in Şahin et al. (2007)
show that these ideas are feasible. Although the formalization seems entirely
symbolic, entity and effect may refer to sensory percepts. It is important to
notice that Şahin et al. (2007) provide a framework for the representation of
affordances. Several non-trivial aspects, including feature spaces or learning
methods, need to be defined and implemented in real applications. Although
uncertainty, e. g. in observations or action execution, is not explicitly repre-
sented in the formalization, suitable generalization mechanisms are possible.
In contrast to the formalization of whole-body affordances proposed in this
thesis which inherently provides basic action parameterization in terms of
continuous end-effector poses, such action parameterization is not further
considered in the formalization of Şahin et al. (2007).
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2.2.3 The Formalization of Montesano et al.

The previously discussed affordance formalizations consider learning about
affordances as the process of acquisition and generalization of affordance
relations. However, both formalizations provide no inherent solution for
dealing with the acquisition of uncertain, redundant or irrelevant affordance
relations. Montesano et al. (2008) propose a developmental formalization,
maintaining a strong focus on learning. In their formalization, affordances
are fundamentally represented as probabilistic relations between objects,
actions and effects.
Montesano et al. (2008) propose Bayesian Networks (BNs) as a joint frame-
work for learning and querying affordances. BNs are directed acyclic graphs
in which nodes represent random variables, while edges correspond to condi-
tional probability distributions. In the formalization of Montesano et al.
(2008), the node set X of the BN represents discrete random variables for the
executable motor actions A, self-experienced robot features Fr, perceivable
object features Fo and perceivable effects E:

X = {A,Fr,Fo,E}. (2.8)

Given a set D of executed actions with observed effects, established methods
for model selection are employed for learning the network structure. After
the network structure has been fixed, the parameters of the conditional proba-
bility distributions corresponding to the network edges can be incrementally
updated based on observed data. A learned network can be queried using
the junction tree algorithm in order to obtain e. g. the probability distribution
of effects given a motor action a and a set of observed object features f

(Montesano et al. 2008):

p(E|A = a,Fo = f ). (2.9)
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The formalization of Montesano et al. (2008) differs from the previously
discussed attempts in the inherently probabilistic approach. The results of
incrementally acquired experiments can be jointly represented in a BN, even-
tually allowing affordance-based inference. The affordance formalization
proposed in this thesis is inspired by Montesano et al. (2008) in the sense that
the probabilistic representation of affordances is considered a key element.
However, in contrast to BNs, whole-body affordances in this thesis are repre-
sented as Dempster-Shafer belief expressions over the space of end-effector
poses which allows the consistent fusion of uncertain affordance-related
evidence and provides direct links to action execution parameters. Further-
more, due to the choice of BNs, percepts, action parameters and effects need
to be represented in terms of discrete random variables in Montesano et al.
(2008). While this is often sufficient, it is difficult to represent the continuous
space of end-effector poses in such a formalism.

2.2.4 The PACO-PLUS Formalization

The concept of Object-Action Complexes (Krüger et al. 2011), commonly
abbreviated as OACs, has been developed within the European research
projects PACO-PLUS6 and Xperience7 based on the idea that objects and
actions need to be inseparably intertwined in complex cognitive systems.
OACs provide a general concept for representing and learning robot behav-
iors based on sensorimotor experience. The link between symbolic and
continuous action descriptions make OACs a powerful formalism, particu-
larly in the context of action and task planning. Krüger et al. (2011) formally
define an OAC as a triplet

(E,T,M), (2.10)

6 European Union Sixth Framework (IST-FP6-IP-027657)
http://www.paco-plus.org

7 European Union Seventh Framework Programme under grant agreement number 270273
http://www.xperience.org
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consisting of an execution specification E, a prediction function T : S→ S

defined over an attribute space S and a statistical measure of success M over
previous executions. The particular implementations of E, T and M depend
on the application context.
Originally, affordances have been considered as implicitly modeled within
the concept of OACs. For example, an OAC for grasping based on visual
information decides whether grasping is applicable based on the perceived
set of features and therefore implicitly detects graspability affordances. This
interpretation of affordances is also predominant in Wörgötter et al. (2009),
where affordances are considered to be the conditions that allow a state
transition of an object O by execution of an action A, denoted as:

O→A O′. (2.11)

In both cases, affordances are implicitly encoded in the OAC definitions,
leveraging further formalization and implementation of the actual affordances
and the influence of the agent embodiment to the OAC designer.
The affordance formalization proposed in this thesis is largely influenced
by the ideas of Wörgötter et al. (2009) and Krüger et al. (2011) and is not
intended as a replacement of the concept of OACs, but as a complement:

Affordances as formalized in this thesis can be understood as

explicit preconditions for the instantiation of OACs.

The proposed framework for whole-body affordances provides the formal
mechanisms for explicitly defining affordances as preconditions for the
instantiation of OACs which then provide a direct link to symbolic planning
and action execution.

25



2 Fundamentals and Related Work

2.3 Affordances in Autonomous Robotics

After introducing the psychological theory of affordances and after further
reviewing available computational formalizations of the affordance concept,
this section discusses existing approaches to affordance-based autonomous
robotics. The concept of affordances has served as a popular source of
inspiration within the field of cognitive robotics. Horton et al. (2012) summa-
rizes the early development of affordance-based robotic systems, some of
which date back to times before the term affordance gained popularity among
roboticists. The fundamental idea of these systems, whether they were called
affordance-based or not, was to combine the previously mostly separated
components of sensing, planning and acting (Brooks 1986) into an ecolog-
ical approach to autonomous embodied agents. Many of the introduced
approaches are inspired by the ideas of behavior-based robotics and develop-

mental robotics, whose principles will be briefly introduced in Section 2.3.1.
The subsequent sections provide a comprehensive overview over affordance-
based approaches to autonomous robots, categorized based on the principle
definition of the affordance concept in terms of the employed computational
model. Discussed definitions include affordances as perceptual invariants
(Section 2.3.2), geometric features (Section 2.3.3), probabilistic distributions
(Section 2.3.4), probabilistic networks (Section 2.3.5), knowledge bases
(Section 2.3.6) and semantic segments (Section 2.3.7). It needs to be noted
that the differentiation between the defined categories is not strict and that
some approaches fall into multiple categories. In Section 2.3.8, approaches
related to the concept of whole-body affordances in loco-manipulation tasks
are discussed and Section 2.3.9 particularly reviews approaches seen at the
DARPA Robotics Challenge (DRC).
As discussed in Section 2.1.3, affordance-based approaches in robotics are
sometimes only loosely related to Gibson’s original ideas. This particularly
applies to the aspect of direct perception which is central in the psychological
definitions of the affordance concept, but often ignored in practical implemen-

26



2.3 Affordances in Autonomous Robotics

tations. The survey presented in this chapter further shows that affordance-
based approaches in robotics largely vary in their underlying understanding
of the affordance concept, as well as in the implemented computational
formalizations. In an attempt to organize the plethora of affordance-related
approaches in robotics, Zech et al. (2017) develop a taxonomy of avail-
able computational models and categorize existing approaches. The survey
can be seen as complementary to the following sections as it focuses on
more abstract differentiation criteria such as e. g. the taken perspective (see
Section 2.1).

2.3.1 Behavior-Based and Developmental Robotics

The concept of affordances, particularly its aspect of direct perception, is
fundamentally related to the ideas of behavior-based robotics (Brooks 1990;
Arkin 1998), where complex (or complex-appearing) robotic systems are
created based on combinations of simple individual behaviors. A famous
example for a behavior-based robotic system is the Braitenberg Vehicle

(Braitenberg 1986) which is able to autonomously approach light sources
(see Figure 2.1).

Figure 2.1: A sketch of two Braitenberg Vehicles, one which turns away from light sources
(left) and one which approaches light sources (right) (taken from Braitenberg 1986,
© 1986 MIT Press).
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The field of developmental robotics aims at creating robotic systems that
pass through phases of developmental learning for developing an evolved
understanding of their embodiment, their environment and their capabilities.
Such developmental approaches to robotic learning require that the robot
is intrinsically motivated to interact with the environment and to directly
monitor caused effects. Developmental learning phases can be goal-directed
or random, while in the latter case they are commonly termed motor babbling

phases. While the employed terminology differs, developmental approaches
share the aspects of developmental experimenting and monitoring for percep-
tual invariants.
In ecological robotics, researchers attempt to apply concepts from Ecological
Psychology to behavior-based or developmental robotic agents, particularly
the idea of considering robot and environment as a combined system, the
robot-environment system (Duchon et al. 1998). As such, ecological robots
do not construct internal models, but directly react on effects that their actions
cause in the environment:

Because the agent is in the environment, the environment need

not be in the agent.

Duchon et al. (1998, p. 478)

Direct perception of affordances provides efficient mechanisms for triggering
behaviors or compositions of behaviors in a behavior-based architecture.
This concept has been successfully implemented in the area of autonomous
navigation of mobile robots (e. g. Murphy 1999; Şahin et al. 2007).
While the ideas of behavior-based robotics are appealing, it is mostly applied
to robots with simple actuation and in unknown, but commonly simple envi-
ronments. While the methods proposed in this thesis could serve as perceptual
basis for a purely behavior-based architecture, one of its interesting features
is that it uses the concept of OACs for providing a link from the perception
of affordances to the symbolic and sub-symbolic world of deliberate action
and task planning. Developmental approaches to affordance learning suffer
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from the extensive dimensions of the search space and are therefore typically
pursued for small amounts of actions with defined parameters and effects,
e. g. pushing or pulling. In the context of whole-body actions, the dimensions
of the parameterization space rapidly exceeds the exploratory capabilities of
the robot, making auxiliary technologies like off-line training, simulation or
heuristics necessary.

2.3.2 Affordances as Perceptual Invariants

Inspired by the concept of direct perception, developmental roboticists often
approach the process of affordance learning as learning decision criteria
for affordances in a defined space of visual features. This process is often
called the detection of perceptual invariants during action execution, i. e.
the detection of the subset of features that remain constant throughout all
successful action executions. The possibility to learn affordances bottom-up
only from a set of visual features emphasizes the developmental aspect of
these approaches. However, as developmental experiments tend to be time-
consuming and expensive, research in this area mostly focuses on simple
robots with restricted motor capabilities and associated affordances.
In his early work, MacDorman (2000) implemented an affordance-based
approach to mobile robotics in a survival scenario, i. e. seeking contact
with advantageous (tasty) objects and avoiding contact with disadvanta-
geous (poisonous) objects, by learning canonical visual features. Inspired by
the exploratory behavior of animals, Stoytchev (2005, 2008) implemented
a motor babbling phase for robotic manipulators based on parameterized
behaviors, aiming at the autonomous learning of affordances for tool-use.
Once an invariant, i. e. a regular pattern in object movement, is detected, the
robot attempts to find the shortest behavior sequence that reproduces this
invariant and, if successful, adds this sequence and the associated invariants
to an affordance table. The approach was experimentally validated on a
real robotic manipulator using five manually coded behaviors and a set of
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five tools for manipulating one attractor object. The main drawback of this
approach is that the populated affordance table does not generalize to previ-
ously not observed settings and tools. To address this issue, Sinapov et al.
(2007, 2008) extended the work of Stoytchev (2005, 2008) by replacing the
affordance table with a learned predictive model, implemented as a decision
tree. Fritz et al. (2006) pursue a similar approach by learning affordance
decision trees over a defined set of affordance cues, i. e. selected descriptive
visual features such as shape or color. The concept is evaluated in simulation
using a mobile crane-like robot learning liftability affordances. Paletta et al.
(2007) embedded the concept of affordance cues into a multi-layer cognitive
architecture which allows reasoning about affordance sequences based on
reinforcement learning. In Stark et al. (2008), visual cues for graspability

affordances are learned from human demonstration.
Uğur et al. (2007, 2010) proposed a concept for learning traversability affor-
dances with mobile robots in cluttered environments, following the affor-
dance formalization of Şahin et al. (2007). The authors employ a Support

Vector Machine (SVM) for selecting invariant features among a total of
35,100 defined features in a 360×360 pixels range image. After a learning
phase the method is successfully employed to detect traversability affor-
dances in the defined scenario by utilizing 1% of the defined features. See
Figure 2.2 for a visualization of the experimental setup. The initial approach
is extended in Çakmak et al. (2007) and Doğar et al. (2007) towards goal-
directed autonomous behavior generation based on learned traversability

affordances. Further extension in Doğar et al. (2008) allows the autonomous
learning of novel affordance-related behaviors based on pre-coded primitive
behaviors. Related approaches are pursued e. g. in Akgün et al. (2009) for
the unsupervised learning of object affordances such as rollability, in Dağ
et al. (2010) for the categorization of objects based on available affordances
and in Katz et al. (2014) for learning graspability, pushability and pullability

affordances of objects in cluttered piles. Kostavelis et al. (2012) employ an
SVM to learn invariant features for traversability in stereo vision disparity
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maps. In a related scenario, Baleia et al. (2015) learn traversability affor-
dances for a mobile robot through haptic exploration with a 3 DOF pan-tilt
telescopic antenna.

Figure 2.2: Affordance-based navigation with a mobile robot (adapted from Uğur et al. 2007,
© 2007 IEEE).

Uğur et al. (2011a,b, 2012) apply the affordance formalization of Şahin
et al. (2007) to the developmental learning of manipulation affordances,
comparing the implemented learning strategy to the development of infants
at the age of seven to ten months. In a developmental phase the robot applies
primitive push and lift behaviors to detected objects of different shapes and
categorizes observed effects via hierarchical clustering. Subsequently, effect
predictors, implemented as SVMs, are trained for each behavior. Learned
affordances and their associated effect predictors are then used for action
planning. Szedmak et al. (2014) and Uğur et al. (2014) propose to understand
affordances learned from perceptual invariants, e. g. rollability, as the lowest
level of affordance detection on top of which higher-level affordances, e. g.
stackability, can be learned. This bootstrapping process is evaluated by
learning paired-object affordances such as stackability in a tabletop scenario
using a robotic manipulator. The approach is extended in Uğur et al. (2015a,b)
towards a holistic framework for developmentally learning and updating
relations between perceived objects and symbolic planning entities through
clustering of action effects.
The interpretation of affordances as perceptual invariants is popular in devel-
opmental robotics. Approaches commonly define a, possibly extensive, visual
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feature space and attempt to find invariant features during motor babbling
phases. Knowledge about the early perceptual development of infants justifies
this perspective on affordances (Giagkos et al. 2017). Though the develop-
mental acquisition of affordances is appealing and seems appropriate when
considering the human development, the discussed approaches cannot easily
be applied to whole-body affordances as examined in this thesis. Basic
affordances such as pushability or liftability, which are commonly investi-
gated in developmental approaches, have immediate and well perceivable
visual effects. Furthermore, associated behaviors are simple enough that
successful executions are frequently generated by chance during random
motor babbling phases. Whole-body affordances on the contrary often refer
to complex actions with unapparent effects. Although promising approaches
exist that learn complex behaviors and associated affordances based on
previously acquired primitive motor behaviors (e. g. Uğur et al. 2015a,b),
multi-layered developmental approaches that effectively learn whole-body
affordances in loco-manipulation tasks for complex humanoid robots have
not been proposed yet.

2.3.3 Affordances as Geometric Features

Another group of affordance-based approaches to autonomous robotics under-
stands local geometric features in perceived object geometries as direct hints
for affordances. Some authors even consider geometric features and affor-
dances as equivalent. Although not all approaches in this category can be
considered developmental, those that fall into this category are tightly related
to the approaches that learn affordances as perceptual invariants. Due to
the direct nature of their detection, affordances are usually not explicitly
represented and learning of affordances corresponds to learning of decisive
geometric features.
By choosing descriptive geometric features, researchers are able to effectively
detect graspability affordances in different experimental setups. Implemented
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features include e. g. surface co-planarity and co-colority (Kraft et al. 2008),
cylindrical surface patches (ten Pas et al. 2016), SIFT features (Song et
al. 2016) and curved surface patches (Kanoulas et al. 2017). Although
often not explicitly referring to the concept of affordances, local features of
object surfaces are a common approach to data-driven grasp synthesis for
familiar and unknown objects (Bohg et al. 2014). While the detection of
graspability affordances from visual features is a well-studied problem in
the field of robotic grasping and manipulation, further approaches exist that
attempt to detect graspability affordances using other sensor modalities. In
Bierbaum et al. (2009), graspability affordances for multi-fingered robotic
hands are detected by haptically exploring unknown objects for co-planar
surface patches (see Figure 2.3).

Figure 2.3: Haptic exploration of unknown objects for detecting graspability affordances (taken
from Bierbaum et al. 2009, © 2009 IEEE).

The above approaches for the detection of graspability affordances concen-
trate on a limited set of selected, highly descriptive features, e. g. surface
co-planarity. Other approaches define extensive sets of available geometric
features and subsequently attempt to train affordance classificators based
on large sets of training examples. Myers et al. (2015) subdivide RGB-D
input images into squared patches and extract established geometric features
such as surface normals and principle curvatures which are further used for
training an SVM to detect tool affordances. In a similar approach from D.
Kim et al. (2006), traversability affordances for mobile robots are learned by
on-line classificator training based on autonomous exploratory behavior. In
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Ridge et al. (2013, 2015), the authors propose action-grounded features, i. e.
features with dynamic action-related frames of reference which are partic-
ularly suited for affordance detection. The proposed features are used for
learning pushability affordances. Works like Aldoma et al. (2012) and Ruiz et
al. (2017) perform the identification of discriminative features off-line using
3D CAD models and use the gained information for detecting affordances in
real RGB-D images. Mustafa et al. (2016) train an SVM for the detection of
affordances from a kitchen domain, e. g. pourability or stirrability, based on
relations between small patches of detected object surfaces such as distances
and angles.
In the motivation of defining geometric features that are as discriminative as
possible, Kroemer et al. (2012) introduce a non-parametric representation
of object subparts perceived as point clouds and a complementary kernel
function that expresses object subpart similarity. The authors perform kernel

logistic regression in order to obtain a learned model that expresses the
probability for an object subpart to bear given affordances. The system
is implemented for learning graspability and pourability affordances from
human demonstration using a robotic manipulator equipped with an anthro-
pomorphic hand. This work is extended in Kroemer et al. (2016) towards
learning spatial relations between affordance-bearing object parts as precon-
ditions for action execution.
The above works attempt to detect affordances directly from geometric
features without constructing intermediate environmental models. On the
contrary, numerous researchers approach the problem of affordance detection
by explicitly constructing simplified environmental representations in terms
of geometric primitives, such as planes, boxes, cylinders or spheres. Note
that the transitions between the two types of approaches are smooth which
can be seen by the example of Kroemer et al. (2012).
D. I. Kim et al. (2014) construct geometric primitives from RGB-D images
for subsequent training of an affordance classifier based on a defined set of
geometric features. Considered affordances include pushability and lifta-
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bility, experimentally evaluated using the PR2 robot. The approach has
been extended in D. I. Kim et al. (2015) towards the execution of goal-
directed pushing tasks based on pushability affordance maps in a warehouse
scenario. In Fallon et al. (2015b), planar primitive patches are utilized for the
detection of supportability affordances for humanoid footstep planning (see
Figure 2.4). In a similar approach in Pryor et al. (2016), planar primitives
are used for detecting supportability and leanability affordances for efficient
multi-contact motion planning.

Figure 2.4: The detection of supportability affordances for bipedal locomotion (taken from
Fallon et al. 2015b, © 2015 IEEE).

The idea of detecting affordances directly based on elementary geometric
features is closely related to the previously discussed interpretation of affor-
dances as perceptual invariants. However, learning affordance models from
geometric feature spaces is also popular in less developmental approaches,
in which the considered features can become more sophisticated. A specific
branch of approaches, which is particularly related to the methods proposed
in this thesis, attempts to construct an intermediate, simplified environ-
mental representation in terms of geometric primitives which is further
used for learning affordances. Strictly speaking, these approaches lack the
aspect of direct affordance perception, as internal environmental models are
created, and do therefore not entirely comply with Gibson (see Section 2.1.3).
However, as the approaches introduced in this section show, simplified
geometric models allow the detection of more sophisticated affordances, such
as leanability or supportability in the context of humanoid locomotion. They
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are therefore particularly suited for the detection of whole-body affordances
in loco-manipulation tasks. The affordance detection system proposed in
this work is based on the so called H2T perception pipeline (see Section 3.1)
which pursues a similar approach to environmental representation.

2.3.4 Affordances as Probability Distributions

When considering the visual detection of action possibilities, three principle
spaces can be differentiated: the space of available visual features, the space
of possible action parameters and the space of possible action effects. Once
these three spaces are properly formalized, affordances can be understood
and learned as conditional probability distributions. Approaches in this cate-
gory typically learn such probability distributions for individual affordances.
However, they are conceptually related to the affordance formalization of
Montesano et al. (2008), in which affordances are represented in joint prob-
abilistic networks. Approaches that demonstrate this joint probabilistic
representation of affordances will be discussed in the next section.
Metta et al. (2003) and Fitzpatrick et al. (2003a,b) introduce a neuroscientifi-
cally grounded approach to developmental learning of pushability affordances
in a tabletop scenario by observing immediate action effects. Affordances
are represented as probability distributions, termed maps, over the possible
directions of object movement with respect to the principle object axis. In
related approaches, Erdemir et al. (2008) propose a cognitive framework
for learning of reachability affordances by learning probability distribution
models based on Gaussian mixture models (GMMs), while Barck-Holst et al.
(2009) propose to learn graspability affordances by acquiring probability
distributions over the spaces of grasp regions, grip forces, object shapes and
object sizes. The initial work of Metta et al. (2003) is extended in Tikhanoff
et al. (2013) and Mar et al. (2015, 2017) towards the developmental learning
of tool categorizations based on detected affordances (see Figure 2.5). Affor-
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dances in this case are represented as probability distributions over the space
of tool poses and movement directions.

Figure 2.5: Learning of tool affordances in a tabletop scenario using the humanoid robot iCub
(taken from Mar et al. 2015, © 2015 IEEE).

The representation of affordances as probabilistic densities has been partic-
ularly studied in the context of graspability affordance detection in which
these affordances are commonly understood as object-gripper configurations
that result in stable grasping. In the works of de Granville et al. (2006) and
Sweeney et al. (2007), graspability affordances are represented as probability
distributions over the spaces of end-effector positions and orientations. Based
on these initial works, Detry et al. (2009, 2010, 2011) propose to represent
graspability affordances as probabilistic density functions over the space
SE(3) of end-effector poses (see Figure 2.6). While density functions are
initially constructed from visual cues, the approach is to refine these so called
bootstrap densities through developmental experiments. Visual cues and
successful grasping attempts are collected as particles and further processed
into a density function by applying kernel density estimation using the kernel
functionK composed of a normal distributionN for the spatial dimensions
and a von Mises-Fisher distribution Θ for the orientational dimensions:

K(x; µ,σ) =N(λ ; µt ,σt) ·Θ(θ ; µr,σr). (2.12)
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Figure 2.6: Learning of graspability affordances as probabilistic densities over the space of end-
effector poses. Top row: queried end-effector orientations, bottom row: visualization
of the affordance density function for the corresponding end-effector orientation
(taken from Detry et al. 2011, © 2011 R. Detry et al. ).

The work is summarized in Piater et al. (2011) as an attempt to emphasize
learnable, task-specific representations of visual information over general-
purpose task-independent representations.
While the approaches discussed in this category seem different, they share
the idea of representing affordances as probabilistic distributions over end-
effector or tool poses. Some approaches further include selected action
parameters in the definition space of affordance distributions. While end-
effector poses are certainly important for the affordances evaluated in the
above approaches, e. g. pushability or graspability, they are also important
in the context of whole-body affordances. A central assumption that will
be made within this thesis is that whole-body actions can be elementarily
explained by fundamental power-grasp affordances, and therefore by end-
effector poses, on the lowest level. In fact, affordance densities as introduced
by Detry et al. (2010, 2011) are similar to affordance belief functions for
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prismatic grasping which will be defined and discussed in Chapter 4 and
Chapter 5.
In contrast to the works discussed in this section, affordance belief func-
tions will be defined over the space of Dempster-Shafer belief expressions,
rather than probabilities. This formalism allows the effective combination of
affordance-related evidence from multiple sources with different attributed
degrees of belief. It furthermore allows the consistent fusion of belief func-
tions for different affordances using elementary logic operations in order to
construct higher-level affordance belief functions. A similar representation of
affordance-related evidence is found in Sarathy et al. (2016), where uncertain

logic (Jøsang 2001) is employed for reasoning about symbolic affordances.

2.3.5 Affordances in Probabilistic Networks

The representation of affordances as probabilistic models, as introduced in
the previous section, is a popular and established approach. An important and
conceptually related subset of affordance-based approaches in autonomous
and developmental robotics attempts to learn affordances in probabilistic
networks. Such networks realize directed graphical models in which nodes
represent random variables and edges represent conditional dependencies
between these variables. Affordances in this context are understood as strong
dependencies between combinations of objects, actions and effects which are
typically represented as network nodes. Popular examples for probabilistic
networks are Bayesian networks (BNs).
Hart et al. (2005) propose a framework for learning affordances in rela-

tional dependency networks (RDNs) which express dependencies between
controller attributes, i. e. action parameters. The learned RDNs express the
procedural knowledge for deriving relational probability trees (RPTs) for
the controller attributes. RPTs are decision tree models which express the
values of attributes given the values of their dependency attributes. RPTs are
interpreted to learn the affordances of their respective attributes. The frame-
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work is evaluated for learning liftability affordances with an anthropomorphic
bimanual robot in a tabletop scenario. In later works, Hart (2009) and Hart
et al. (2011) propose methods for intrinsically motivated learning of control
policies for discovering manipulation affordances based on reinforcement

learning (see Figure 2.7).

Figure 2.7: Developmental learning of manipulation affordances and associated control policies
in a tabletop scenario (taken from Hart et al. 2011, © 2011 IEEE).

The representation of affordances in probabilistic networks has particu-
larly been investigated in the context of learning affordances for tool use.
Montesano et al. (2007b, 2008) propose a concept for learning affordances
in Bayesian networks, in which object properties, actions and action effects
are modeled as discrete random variables, represented by the network nodes.
Edges in the BN represent conditional dependencies between nodes. The
influential formalization of Montesano et al. (2008) has been covered in
the survey of computational formalizations of the affordance concept in
Section 2.2.3. The framework for affordance learning is evaluated in an
exemplary tabletop scenario, in which affordances for the primitive actions
touch, tap and grasp are learned. The same formalism is used in Montesano
et al. (2007a) and Lopes et al. (2007) for imitating human action demonstra-
tions based on learned affordances using an anthropomorphic robot and in
Montesano et al. (2009) for learning local visual features that indicate gras-

pability affordances for an anthropomorphic hand. In Rudolph et al. (2010),
affordances are represented in BNs with nodes for actions and features,
implicitly modeling action effects as feature changes.
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Figure 2.8: Task execution based on a learned relational affordance model using the humanoid
robot iCub (taken from Moldovan et al. 2017, © 2017 Springer Nature).

The formalization of Montesano et al. (2008) has been extended and improved
in different aspects. Osório et al. (2010) state that the structure of the BN
proposed in Montesano et al. (2007b, 2008) implicitly assumes complete
observability of object properties, as class assignments are discrete. In
order to improve the approach with respect to noisy sensor data, Osório et al.
(2010) propose an alternative BN structure that implements probabilistic class
assignments based on Gaussian mixture models (GMMs). Moldovan et al.
(2012, 2013) extend the initial approach from Montesano et al. (2008) in order
to effectively learn affordances for combinations of physically related objects.
Instead of extending the structure of the classical BN by additional object
nodes, which quickly becomes infeasible, the authors introduce relational

affordance models which describe affordances as joint distributions over
relations between objects, actions and effects. Relational affordance models
are applied in Moldovan et al. (2014) for finding affordance-bearing objects
in cluttered kitchen environments by removing as few occluding objects as
possible. In Moldovan et al. (2017), a learned relational affordance model is
used for symbolic planning of action sequences. The approach is evaluated
using the humanoid robot iCub (see Figure 2.8).
Gonçalves et al. (2014b,a) use the formalization of Montesano et al. (2008)
for learning tool-use affordances by including nodes for primary objects, i. e.
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the acted objects, and intermediate objects, i. e. the tools, in the network.
The BN is used to learn pushability affordances in simulation using a set of
eight objects and tools, and experimentally validated on the real humanoid
robot iCub. The framework is further applied in Antunes et al. (2016) for
affordance-based probabilistic action planning from human instructions given
in natural language. The work of Gonçalves et al. (2014b,a) is extended in
Dehban et al. (2016) by using denoising auto-encoders in order to circumvent
clustering of continuous feature spaces for the use in a BN.
In an approach similar to Montesano et al. (2007b, 2008), Jain et al. (2013)
employ BNs for learning affordances of unknown tools based on func-

tional features, i. e. tool parts that remain invariant throughout multiple
action demonstrations with different tools. Inspired by the formalization of
Montesano et al. (2008), the authors of Stramandinoli et al. (2015, 2017)
improve the initial implementation of their tool-use affordance learning exper-
iment from Tikhanoff et al. (2013) by employing Bayesian networks. In the
experimental setup, the authors learn the affordances of objects and differ-
ently shaped tools using the humanoid robot iCub. Price et al. (2016) criticize
common approaches for learning affordances in BNs for the dependency of
the learned model on a particular robot embodiment. To overcome this issue,
the authors propose to use a BN to learn boundaries for affordance feasibility
in a wrench-space representation which can be mapped to the capabilities of
different robots.
Sun et al. (2010) argue that the direct perception of affordances based on
image features is a viable approach for learning individual affordances, but
does not scale well as the amount of affordances to learn increases. Based
on previous attempts to the direct perception of traversability affordances
for outdoor navigation in D. Kim et al. (2006), the authors propose the
category-affordance model, a BN that implements intermediate nodes for
visual object categorization, as a general framework for affordance detection.
The system is evaluated in two experiments with real robot hardware, learning
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six affordances, such as traversability, movability or supportability, based on
seven defined object categories.

Figure 2.9: Visualization of affordance heatmaps for placeability (top) and purability (bottom)
(taken from Koppula et al. 2016, © 2016 IEEE).

In Kjellström et al. (2011), human demonstrations of human-object interac-
tions are represented in a Conditional Random Field (CRF). This represen-
tation is used for classifying object-action pairs based on their functional
relation. Koppula et al. (2013, 2014, 2016) propose an affordance-based
approach to human motion anticipation, in which affordances are under-
stood as object positions with respect to the human body or environmental
objects. The authors represent spatio-temporal sequences of human poses and
objects in a CRF. Affordances in the approach are represented in affordance

heatmaps, i. e. distributions of object positions in relation to the human body
or the environment. Figure 2.9 displays visualizations of two exemplary
affordance heatmaps. In Jiang et al. (2013), affordance heatmaps relative to
the human body are employed for improving semantic scene understanding.
In an approach similar to Koppula et al. (2016), the authors of Dutta et al.
(2016) attempt to predict human motion in a human-robot interaction (HRI)
scenario by representing affordances as heatmaps generated from demon-
strated human activities encoded in probabilistic state machines.
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While most approaches to affordance-based autonomous robotics focus on
visual detection of affordances, Chu et al. (2016a,b) attempt to learn haptic
affordances represented as force/torque profiles in Hidden Markov Models

(HMMs). Actions are initially demonstrated by means of kinesthetic teaching
and experimental repetition of the demonstrated action is performed after-
wards in order to learn the characteristic force/torque profile of the affordance.
The approach is evaluated using e. g. openability, pushability or scoopability

of common container objects from a kitchen environment.
The idea of learning affordances in probabilistic networks can be seen as one
of the predominant approaches to the developmental learning of affordances.
Probabilistic networks, such as Bayesian networks, provide the possibility
to express objects, actions and effects in the same graphical structure and to
infer about affordances by marginalizing conditional probability distributions.
Bayesian networks are capable of jointly learning multiple affordances in a
single network representation. However, the network structure needs to be
manually defined or learned using approximative methods. Furthermore, the
classical approach of learning affordances in BNs requires large amounts of
training samples as the number of involved objects increases (Moldovan et al.
2012). The idea of using probabilistic networks for affordance inference has
inspired the hierarchical aspects of the whole-body affordance formalization
that will be introduced in Chapter 4. The affordance hierarchy proposed in
Chapter 5 can be seen related to a probabilistic network structure based on
the concepts of the Dempster-Shafer theory. However, as developmental
learning is tedious in the context of sophisticated whole-body actions with
humanoid robots, the affordance hierarchy in Chapter 5 is manually defined.
While developmental learning of the affordance hierarchy is conceptually
possible, it is left for future work in this thesis.
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2.3.6 Affordances in Knowledge Bases

The developmental acquisition of affordance-related knowledge as pursued in
many of the above approaches can be tedious, particularly when considering
complex humanoid robots with large spaces of possible affordances. Several
researchers approach this problem by endowing robots with manually or auto-
matically crafted ontological knowledge on objects, actions and affordances.
The approaches discussed in this section often draw similarities between
object-action relations and natural language. In this understanding, objects
and actions correspond to nouns and verbs and sentences expressing object-
action relations may convey affordance-related knowledge. This approach
makes the utilization of existing linguistic and commonsense knowledge
bases such as WordNet (Miller 1995) or ConceptNet (H. Liu et al. 2004)
possible.
In an approach to initiate a knowledge base for affordances, Varadarajan
et al. (2012a,b) propose AfNet, a database of scalable visual features that
define conceptual equivalence classes for objects based on their affordances.
The authors define structural affordances, i. e. affordances that relate to
the object structure, and material affordances, i. e. affordances that relate
to the object material, that in combination allow the proper classification
of over 250 common household objects. In a related approach, Zhu et al.
(2014) propose a method to build a knowledge base with object attributes,
affordances, human poses and human-object relations as entities and discuss
suitable reasoning mechanisms. Relations between entities in the knowledge
base represent correlations e. g. between object attributes or between object
attributes and affordances. Affordance-related knowledge is often consid-
ered part of the human common sense knowledge which is rarely explicitly
expressed. However, methods for automatic mining of common sense rela-
tions from large corpora of natural language text exist, e. g. in Kaiser et al.
(2014b), which can be employed for populating affordance knowledge bases.

45



2 Fundamentals and Related Work

In the intention of allowing autonomous robots to understand vague task
descriptions provided in natural language, Tenorth et al. (2013) propose
KnowRob, a framework for robotic knowledge processing which incorpo-
rates a variety of external sources of information such as human observation,
web sites or existing knowledge bases. Although the authors are not explicitly
relating their approach to the concept of affordances, affordances are implic-
itly represented as relations between objects and actions. The framework is
embedded into the ambitious RoboEarth project (Waibel et al. 2011), a joint
effort to provide an open source platform for robotic knowledge exchange.
Çelikkanat et al. (2015) propose a concept web for humanoid robots that
represents nouns, verbs and adjectives as conceptual entities and is-a relations
between those. The concept web is implemented as a Markov Random Field

(MRF), allowing the interactive learning of concepts based on observed
co-occurrences and the probabilistic inference in the learned web structure.
The creation of affordance-related knowledge bases and ontologies is moti-
vated by the idea of circumventing expensive learning phases by transferring
affordance-related knowledge between robots or between humans and robots.
Among other information, affordance-related knowledge bases predomi-
nantly contain symbolic relations between objects and actions. A central
matter of research is the question how symbolic relations can be associated
with robotic sensorimotor experience. Some authors approach this symbol

grounding problem by representing sensorimotor features, e. g. visual object
features, in the knowledge base. While the hierarchy of affordance belief
functions that will be introduced in Chapter 5 can be seen related to an
ontological approach, it does not inherently link continuous affordance belief
functions with symbolic entities. However, this link can be implemented by
connecting affordance belief functions with OACs as proposed in Chapter 6.
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2.3.7 Affordances as Semantic Segments

The detection of affordances from visual information, i. e. RGB or RGB-D
images, can be seen as a special case of a semantic segmentation problem.
Semantic segmentation describes the problem of subdividing input images
into semantically meaningful segments which in the context of the discussed
approaches refer to affordances. In this sense, affordances are represented as
labeled groups of pixels, voxels or points which are assumed to indicate the
possibility of an action. Although conceptually different, semantic segments
in the context of affordance detection are commonly understood as equivalent
to affordances. Semantic segmentation is well studied in the area of computer
vision and received great attention with the recent advances in deep learning.
Many of the discussed approaches employ the RGB-D part affordance dataset

(Myers et al. 2015) as a baseline for comparison.

Figure 2.10: Detection of affordances in RGB-D images using an end-to-end deep CNN (taken
from Nguyen et al. 2016, © 2016 IEEE).

Multiple groups recently attempted to apply the concepts of semantic segmen-
tation to the problem of affordance detection and achieved remarkable results,
particularly with the application of Convolutional Neural Networks (CNNs).
Deep learning is well suited for the detection of graspability affordances as
large datasets for robotic grasping exist. Lenz et al. (2015) propose a two-
staged approach to detecting graspability affordances for robotic grippers in
RGB-D images: First, a small deep network is employed for reducing the
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extensive set of possible grasps to a small set of grasp candidates, while a
second deep network then identifies a single optimal grasp from the set of
candidates. The network input consist of square image parts including the
color, depth and normal information. Nguyen et al. (2016) pursue a similar
approach by training an end-to-end deep CNN that detects affordances in
RGB-D images. However, in contrast to Lenz et al. (2015), multiple affor-
dances from the context of kitchen and household environments have been
learned (see Figure 2.10). The network is evaluated in grasping experiments
with the humanoid robot WALK-MAN. In a similar approach, Roy et al.
(2016) train a multi-scale deep CNN for detecting walkability, sittability,
lyability, reachability and movability affordances in RGB images on a per-
pixel basis by implementing mid-level cues, such as depth maps or surface
normals. The work of Nguyen et al. (2016) is extended in Do et al. (2017)
towards an end-to-end deep network that jointly detects objects, i. e. object
classes and their bounding boxes, together with object affordances in RGB-D
images. Training CNNs requires large amounts of annotated training data
which is tedious to obtain for affordances. Sawatzky et al. (2017) recently
addressed this problem by proposing a weakly supervised CNN for multil-
abel affordance segmentation in RGB images which can be trained from few
annotated keypoints.
In contrast to the above works, Lakani et al. (2017) do not employ methods
for semantic segmentation for detecting affordances, but include affordance
information during the training phase of a markov random field for improved
segmentation of objects into semantically meaningful parts. Lüddecke et al.
(2016) introduce the concept of scene affordances which arise from specific
arrangements of environmental objects. The later work of Lüddecke et al.
(2017) is motivated by the observation that specific actions are typically
afforded by object-parts rather than objects, e. g. only the door handle affords
pinch-graspability, not the entire door. The authors employ methods for
semantic object part segmentation and a manually defined part affordance

table that maps common object parts to 15 defined affordances in a generic
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way in order to train an end-to-end CNN. The network is able to successfully
detect among 15 common affordances from RGB images, outperforming
multiple baselines. In a similar approach, Ye et al. (2017) train an end-to-end
CNN for detecting affordances in RGB images based on an ontology of 11
affordances, including different grasp types and the utilization of household
appliances and furniture (see Figure 2.11). Besides end-to-end approaches to
affordance segmentation, works like Desai et al. (2013) attempt to identify
affordances, i. e. functional regions, in scenes which are already semantically
segmented.

Figure 2.11: Detection of affordances in RGB images using an end-to-end CNN (taken from Ye
et al. 2017, © 2017 IEEE).

In McMahon et al. (2017) the performance of different CNN architectures in
the detection of trip hazard affordances is compared based on a large-scale
labeled RGB-D construction site dataset of trip hazards. Porzi et al. (2017)
propose a novel general-purpose CNN block DaConv suited for RGB-D input
which can make use of the depth information to learn scale-aware feature
representations. The proposed CNN block shows improvements in different
robotic applications, including the detection of affordances.
The interpretation of affordance detection as a semantic segmentation
problem is appealing because it allows the application of established methods
from computer vision which produce impressive results. Deep CNNs which
need to be trained with extensive amounts of training data are particularly
popular in the community. While such data exists for particular affordance
types, e. g. through the data set of Myers et al. (2015), the transfer of deep
architectures to other affordance domains is not trivial. Particularly in the
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novel context of whole-body affordances in loco-manipulation tasks, labeled
training data is rare. Furthermore, segmentation approaches to affordance
detection provide no inherent connection between the identified affordance
segments and the robot embodiment which is necessary for establishing a
link between perception and action execution. Such a link is an important
foundation of the affordance formalization proposed in Chapter 4.

2.3.8 Whole-Body Affordances

A central contribution of this thesis is the application of the affordance
concept to the detection of possibilities for whole-body actions in loco-
manipulation tasks. Such actions are particularly important in the field of
humanoid robotics, where loco-manipulation actions are considered essential
capabilities. Such actions incorporate the whole robot body for multi-contact
stabilization during locomotion, e. g. by supporting on or leaning against suit-
able surfaces, and whole-body manipulation, e. g. pushing or pulling of large
objects or opening of doors. Figure 1.2 depicts multiple illustrative examples
of humans performing whole-body loco-manipulation actions. The problems
of motion planning and control of such actions with humanoid robots are
challenging, but intensively studied. However, although the previous sections
review an extensive body of affordance-based approaches in autonomous
robotics, the computational formalization of affordances for whole-body
actions is novel. While the terminology of whole-body affordances is devel-
oped within the context of this thesis (Kaiser et al. 2014a), few related
approaches implement strategies for the detection of corresponding action
possibilities which are reviewed within this section.
The work of Fallon et al. (2015b), which has already been mentioned in
Section 2.3.3, approaches the detection of whole-body supportability affor-
dances for foot placement by detecting horizontal planar primitives in the
environment (see Figure 2.4). In accordance with Pryor et al. (2016), detected
planes are considered equivalent to the respective affordances and serve as
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direct hints for end-effector contact planning. In a similar approach in Werner
et al. (2016), planar surface patches, which appear large enough to accommo-
date the robot’s feet, are identified in unknown environments for subsequent
footstep planning. The authors further propose an integrated pipeline from
environmental perception to multi-contact trajectory planning, evaluated at
the example of staircase climbing. The example of staircase climbing based
on detected planar primitives is also investigated in Oßwald et al. (2011a,b)
using the small-scale humanoid robot Nao (see Figure 2.13). Lewis et al.
(2005) argues that the reliable detection of supportability affordances for foot-
step placement requires surface property estimation besides pure geometric
surface features and proposes a method for differing between slippery and
solid surfaces.

Figure 2.12: The detection of supportability and leanability affordances for humanoid locomo-
tion planning (taken from Pryor et al. 2016, © 2016 IEEE).

Pryor et al. (2016) address the detection of affordances for humanoid loco-
motion planning in unknown environments. In an approach similar to the
one followed in this thesis, the authors first simplify the perceived envi-
ronment into planar primitives and subsequently detect supportability and
leanability affordances based on geometric primitive properties. The detected
affordances are considered direct hints for end-effector placement during
locomotion planning. The key contribution of the work is the combination
of iterative affordance detection with the contact sequence planner ANA*

which only needs to consider a local volume of the environment rather than
the full scene (see Figure 2.12). While Pryor et al. (2016) share the concept
of whole-body affordances with the approach proposed in this thesis, their
focus lies in the efficient planning of locomotion trajectories rather than in a
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novel computational formalization of the affordance concept. The two works
can therefore be regarded as complementary.

Figure 2.13: Autonomous staircase climbing based on detected planar primitives (taken from
Oßwald et al. 2011a,b, © 2011 IEEE).

While whole-body loco-manipulation actions are well-studied from the
perspectives of motion planning and control, the investigation of their percep-
tual preconditions received little attention. Several groups, whose primary
focus lies in locomotion planning, proposed approaches for detecting support-

ability or leanability affordances in unknown environments, suiting their
particular needs. In this context, the perception of unknown environments
with 3D range sensors and the subsequent simplification into geometric
primitives appears to be a popular and promising approach. The concept of
affordance detection as proposed in this thesis will pursue a similar approach
to environmental perception. However, in contrast to the works discussed
in this section, discovered geometric primitives are not regarded as direct
hints for action planning, equivalent to affordances. Instead, a sophisti-
cated affordance representation based on Dempster-Shafer belief functions is
constructed from detected primitives.

2.3.9 The DARPA Robotics Challenge

The detection of whole-body affordances in loco-manipulation tasks was also
an essential component of approaches to the DARPA Robotics Challenge.
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Figure 2.14: The humanoid robot Atlas of the team WPI-CMU performing different tasks of the
DRC Finals, i. e. utility vehicle egress, walking over rough terrain and staircase
climbing (taken from Atkeson et al. 2015, © 2015 IEEE).

The DARPA Robotics Challenge (DRC) (Pratt et al. 2013) was a robotics
competition held between 2012 and 2015, consisting of three distinct events:
The Virtual Robotics Challenge (VRC) in June 2013, the DRC Trials in
December 2013 and the DRC Finals in June 2015. Participating teams had
to demonstrate complex, semi-autonomous behavior within the context of
disaster response. Although not explicitly required, many teams employed a
humanoid platform, e. g. the humanoid robot Atlas from Boston Dynamics

(see Figure 2.14). The European team WALK-MAN8 participated with a
humanoid robot of the same name (Tsagarakis et al. 2017) and eventually
ranking 17th out of 23 participating teams. WALK-MAN is partly used as an
evaluation platform throughout this thesis. Table 2.1 summarizes the tasks
that had to be solved in the DRC Finals in 2015 together with the total amount
of points scored by all teams in the respective tasks. Each successful task
execution was awarded one point during the challenge, hence the number
of points listed in Table 2.1 equals the number of teams that accomplished

8 European Union Seventh Framework Programme under grant agreement number 611832
http://www.walk-man.eu
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the respective task. See Krotkov et al. (2017) for a detailed discussion of the
DRC results and insights.

Table 2.1: The tasks of the DRC Finals in the order of a possible challenge attempt (following
Krotkov et al. 2017). The column Pts. indicates the accumulated amount of points
scored by all participating teams.

No. Name Description Pts.

1 Drive Drive a utility vehicle along a lane with obstacles 19
2 Egress Exit the vehicle and locomote to the door 9
3 Door Open the door and locomote through a doorway 17
4 Valve Rotate a 260 mm industrial valve by 360 degrees 16
5 Wall Cut a hole in a wall using a cordless power tool 6
6 Surprise Operate a lever and a magnetic plug 10
7 Rubble Cross one out of two 2.4 m long rubble tracks 9
8 Stairs Climb four steps of 17.8 cm rise 7

The DRC challenges were designed inspired by the idea of robotic disaster
response which implies semi-autonomous robot control in unstructured and
partly unknown environments. See Figure 2.14 for images showing the
humanoid robot Atlas performing exemplary tasks of the DRC Finals. As
stated above, such conditions require a sophisticated robotic system to imple-
ment strategies for autonomous or semi-autonomous affordance detection.
However, in a review of the DRC Trials, Murphy (2015) concludes that
the degrees of autonomy implemented by the different teams were rather
low. This appears appropriate due to the rules of the challenge which were
permissive regarding remote human intervention and teleoperation, but strict9

regarding errors in the task executions, e. g. falls or hardware faults. In such

9 There were no safety ropes for fall prevention and physical intervention by the teams was
punished.
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conditions, reliability and safety has priority over autonomy and generality
of the approach.

DRC Approaches to Affordance Detection During the DRC Trials in
2013, the tasks and scenarios were accurately defined beforehand. While the
task descriptions for the DRC Finals in 2015 were intentionally vague, they
were based upon the tasks of the DRC Trials and key elements such as tools
were specified.10 The predominant approach to action possibility perception
was therefore to recognize known or familiar objects and structures in the
perceived scene and subsequently to utilize known relations between objects
and robot skills in order to solve the defined task. For recognizing the
involved objects and environmental structures, e. g. the valve in task 4, the
teams mostly pursued a semi-autonomous approach, either by using general
matching strategies for predefined object models, e. g. the teams IHMC

(Johnson et al. 2015), MIT (Fallon et al. 2015a) and ViGIR (Romay et al.
2017), or by using specialized detection methods that identify objects based
on task-specific shape features, e. g. the teams RoboSimian (Karumanchi
et al. 2017), WPI-CMU (DeDonato et al. 2017), SNU (S. Kim et al. 2017),
NimbRo Rescue (Schwarz et al. 2017) and WALK-MAN (Tsagarakis et al.
2017). Some teams leveraged the perception of objects and environmental
structures entirely to the human pilot, e. g. the team DRC-HUBO (Zucker
et al. 2015). After detecting critical objects, the teams followed predefined
task execution strategies incorporating autonomous components like motion
planning or stabilization. In critical phases, the pilots of all teams were able
to control the robot via basic teleoperation.
Two teams deliberately implemented affordance-based approaches to action
possibility detection, allowing a certain degree of flexibility beyond the
challenge setup: ViGIR (Romay et al. 2017) and MIT (Fallon et al. 2015a).

10 The rule book of the DRC Finals can be obtained from:
http://archive.darpa.mil/roboticschallenge.
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While both teams based their approaches on the detection of object templates

in the scene, they employ a different understanding of the term affordance. In
Romay et al. (2017), an affordance is defined as a motion constraint for the
robot end-effector that needs to be satisfied in order to use the detected object
in a goal-oriented way. In contrast, Fallon et al. (2015a) define affordances as
the detected objects themselves which can be utilized by the robot in a task-
oriented way. While the terminology differs, both approaches implement
affordance templates which link object descriptions, e. g. object models, to
descriptions of associated actions, e. g. in terms of grasp poses and motion
constraints. While affordance templates are a viable approach within the
context of the DRC where objects and scenarios are at least roughly specified,
their utility is limited in unknown environments.
The different tasks of the DARPA Robotics Challenge are excellent exam-
ples for expected capabilities of humanoid robots in the area of disaster
response. The results of the challenge demonstrate that current humanoid
robots are able to solve the tasks, while leaving large room for improve-
ment, particularly in the aspects of autonomous perception, multi-contact
locomotion and manipulation planning, whole-body stabilization and shared
autonomous pilot interaction. The DRC tasks therefore evolved to become
popular benchmarks in humanoid robotics research. The affordance system
proposed in this thesis provides the foundation for a more general approach
to the detection of whole-body affordances in tasks similar to those from the
DRC. The DRC also showed that shared autonomous collaboration between
a humanoid robot and a human pilot is a viable and appropriate approach to
real-world scenarios using state-of-the-art technology. While the formalisms
for affordance detection proposed in this thesis is independent of the aspired
degree of robot autonomy, the implementation on real humanoid robots is
based on shared autonomous robot control (see Chapter 6). This allows the
evaluation of the proposed concepts in DRC-inspired scenarios which has
partly been done in Chapter 7.
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2.4 Autonomous Control in Humanoid Robotics

In the previous sections, the implementation of affordance detection systems
was proposed as a key challenge for building autonomous robotic applications.
As seen in Section 2.3.9, the state-of-the-art technology in humanoid robotics
is able to produce systems that show semi-autonomous behavior while being
constantly monitored and controlled by a team of human pilots. This control
mode is commonly termed semi autonomy or shared autonomy and can be
localized in between fully teleoperated systems, where the pilot controls
every individual aspect of the robot, and fully autonomous systems which
operate without the need of a pilot. As the proposed affordance detection
system is evaluated by implementing a pilot interface that allows shared
autonomous control of humanoid robots, this section briefly reviews existing
autonomous control modes with a particular focus on humanoid robotics.

Table 2.2: Autonomous control modes categorized by the work distribution between the human
operator (H) and the (semi-) autonomous robot (R) (adapted from Endsley et al. 1999,
© 1999 Taylor & Francis Ltd.).

Role
LOA Name Mon. Gen. Sel. Imp.

1 Manual Control H H H H
2 Action Support H/R H H H/R
3 Batch Processing H/R H H R
4 Shared Control H/R H/R H H/R
5 Decision Support H/R H/R H R
6 Blended Decision Making H/R H/R H/R R
7 Rigid System H/R R H R
8 Automated Decision Making H/R H/R R R
9 Supervisory Control H/R R R R

10 Full Automation R R R R
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Endsley et al. (1999) identify three characteristics common to domains which
allow the application of autonomous or semi-autonomous systems: Multiple
goals and tasks compete for the pilot’s attention in situations where tasks
are highly demanding and time resources are limited. The application of
humanoid robots in disaster response scenarios (see Section 2.3.9) is a viable
example for such a domain. Based on an earlier taxonomy from Sheridan et
al. (1978), Endsley et al. (1999) develop a taxonomy of autonomous control
modes with ten levels of automation (LOA). The authors aim at consistently
describing autonomous control modes in various different domains, such as
air traffic control, air piloting or advanced manufacturing. Control modes
are characterized based on four fundamental tasks that have to be performed
repetitively (see Endsley et al. 1999):

Monitoring (Mon.): Perception of the system status

Generating (Gen.): Formulation of options or strategies for achieving goals

Selecting (Sel.): Decision on a particular option or strategy

Implementing (Imp.): Carrying out the chosen option

The level of autonomy of a system is defined by the distribution of roles
between the human pilot and the robot over the four tasks as shown in
Table 2.2.

2.4.1 Autonomy at the DARPA Robotics Challenge

Reports from the DRC, which was held under conditions as realistic as
the current state-of-the-art allows, show that operator stress was a non-
negligible factor in the teams’ successes. Multiple fatal errors happened
due to bad interplay between the human pilot and autonomous behaviors
of the robot (Atkeson et al. 2015; DRC-Teams 2015). Murphy (2015)
reviews the levels of autonomy implemented by the contestants of the
DRC Trials and concludes that most teams followed a bottom-up approach
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to autonomy, starting from pure teleoperation successively enhanced with
autonomous behaviors. According to his review, the teams generally imple-
mented tight operator control of autonomous behavior-based on successive
execution approval rather than task rehearsal for autonomously planned
action sequences. With respect to the LOA taxonomy in Table 2.2, the
approaches seen at the DRC Trials can be categorized into the LOAs 2-4:
Action Support, Batch Processing and Shared Control. Atkeson et al. (2015),
associated with team WPI-CMU, reviews the predominant approaches seen
at the DRC and concludes that perception and autonomous behavior are
among the key capabilities that need to be improved for producing reliable
solutions for the tasks given in the DRC:

In the DRC, [the problem of only obtaining mediocre perfor-

mance by using available standard software components] was

solved by over-relying on the human operator and the always-on

9600 baud link. We need to figure out ways to get the perception

and autonomy research community interested in helping us make

robots that are more aware and autonomous, and going beyond

standard libraries.

Atkeson et al. (2015, p. 8)

While the DRC was a competition particularly suited to humanoid robotic
research platforms, shared autonomous robots are already in application
in urban search and rescue (USAR) as reviewed in Y. Liu et al. (2013).
Although humanoid robots are not a subject of this survey, it shows that
shared autonomous and even fully autonomous control modes have been
successfully demonstrated in field experiments using single or multiple
mobile and aerial robots. Autonomous capabilities include the detection
and traversal of rough terrain, e. g. stairs, the creation of 3D maps of the
scene via SLAM11 or the identification of victims.

11 SLAM: Simultaneous Localization and Mapping
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The affordance detection system developed in this thesis can be seen as a
promising step towards more sophisticated humanoid robot systems that do
not need to rely on a human operator for performing the roles of Gener-

ating and Selecting (refer to Table 2.2). However, the main contribution
of this thesis is not the actual autonomous implementation of Generating

and Selecting, but the perceptive-cognitive foundation as a step towards
implementing higher levels of autonomy on humanoid robots.

2.4.2 Pilot Interfaces for Humanoid Robots

As long as humanoid robots applied challenging scenarios are not fully
autonomous, there is a need for one or multiple human operators12 controlling
the non-autonomous parts of the robot system via pilot interfaces. The
design13 principles of the pilot interface are critical as the interface should at
the same time:

1. allow the pilot to control the robot on different LOAs in possibly high
detail and precision

2. not overload the pilot with information and possibilities, eventually
inducing likelihood for human error in the control process

Pilot interfaces for semi-autonomous humanoid robots, as developed for
the DRC, are particularly complex due to the complexity of a humanoid
robot and the difficulty of its tasks. In an attempt to balance the work load
between the robot and the operator, Birkenkampf et al. (2014) propose a
shared autonomous pilot interface for the humanoid robot Rollin’ Justin. The
interface reduces the set of defined actions to those which are afforded by
the objects recognized in the current scene. Actions and objects in this work

12 The terms operator and pilot are used synonymously throughout this thesis.
13 Design in this case is not to be understood as visual appearance.
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are defined as PDDL14 planning operators, while the entire world state is
assumed to be known.
As the tasks of the DRC were mostly predefined, the participating teams
predominantly implemented task-specific interfaces, in which the operator is
presented controls for specific behaviors relevant to the current task (e. g.
Tsagarakis et al. 2017). See Figure 2.15 for an exemplary screenshot of the
WALK-MAN pilot interface. Furthermore, the operators could observe the
robot state and the perceived world state in an integrated 3D visualization of
the sensor data which was also used for visualizing essential task parameters
(see Figure 2.16). If necessary, operators could switch to more fundamental
interfaces for pure teleoperation. The 3D visualization of the robot and
its perceived environment provides a viable interface between the human
operator and the robot with respect to the perceptual aspects of the challenge.
Many teams implemented interactive solutions for conveniently specifying
objects of interest within the visualization, e. g. by clicking on points in the
visualized point cloud that characterize pose and dimensions of an object
(Karumanchi et al. 2017) or by adjusting autonomously detected object
templates (Hart et al. 2015; Romay et al. 2015; Fallon et al. 2015a).

Figure 2.15: Parts of the task-specific pilot interface of the team WALK-MAN for the door-
opening task (taken from Tsagarakis et al. 2017, © 2017 Wiley Periodicals, Inc.).

14 PDDL: Planning Domain Definition Language
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task-specific autonomous behaviors under strict observation and continuous
acknowledgment of the human operator. Operator stress and interface
complexity has tuned out to be a critical source of error in the intense
conditions of the challenge, leading to the conclusion that humanoid robots
with more sophisticated autonomous behaviors, particularly in the area of
perception, would result in more robust solutions to real-world applications.
The affordance detection system developed in this thesis has been evaluated
on the humanoid robot platforms ARMAR-III, ARMAR-4 and WALK-MAN
based on an exemplary implementation of an affordance-based pilot
interface that allows to control humanoid robots on a sophisticated level of
autonomy. For the sake of fairness, it has to be mentioned that the pilot
interfaces developed for the DRC were pragmatically designed for the
purposes of the challenge, leading to impressive results using state-of-the-art
humanoid technology. In contrast to these approaches, the prototypical
affordance-based pilot interface discussed in this thesis implements more
sophisticated control modes, but lacks essential features preventing its direct
application under the conditions of the DRC. It can be regarded as a step
towards more sophisticated pilot interfaces for humanoid robots based
on more autonomous perceptive-cognitive capabilities. Furthermore, it
is important to mention that neither the pilot interfaces of the DRC, nor
the proposed affordance-based pilot interface have been developed with a
particular focus on visual appearance, user interface design or ergonomics.

2.5 Summary and Review

This chapter first introduced the theory of affordances in Section 2.1 as a
fundamental conceptual basis for the approach taken in this thesis. After
reviewing the psychological definitions, discourse and criticism, Section 2.2
summarized four essential attempts to the computational formalization of

62

Experience from the DRC shows that shared autonomous control of
humanoid robots in challenging scenarios is possible, but limited to



2.5 Summary and Review

Figure 2.16: The exemplary pilot interface of the team MIT (taken from Fallon et al. 2015a,
© 2015 Wiley Periodicals, Inc.).

Perceptual Invariants The first category of affordance-based approaches
considers affordances as perceptual invariants in a defined visual feature
space. These invariants are commonly learned during developmental phases
of motor babbling. Such developmental definitions of the affordance concept
allow the implementation of robotic learning phases inspired by human and
animal development. However, approaches in this category are typically
applied to basic affordances and robots with limited degrees of freedom.
Application to the developmental learning of whole-body affordances,
although desirable, seems distant.
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directions and each inspired a broad range of applications in the field of
robotics. Section 2.3 provided an overview over affordance-based approaches
in autonomous robotics, while discussed works are sorted into six principle
categories based on the employed representation of affordances:

the affordance concept aiming at application in the area of autonomous
robotics. The discussed formalizations approach affordances from different
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though conceptually related, approaches in this category appear more prag-
matic than the developmental learning of perceptual invariants. Some
approaches in this category achieve promising results by using handcrafted
geometric features rather than learned conditions in a feature space. Indi-
vidual approaches demonstrate the applicability of this concept to the area
of whole-body loco-manipulation, e. g. by detecting supportability affor-
dances for footstep planning based on planar primitive patches. The methods
introduced in this thesis follow related ideas for geometric primitive extrac-
tion. However, the detection of sophisticated affordances and the fusion
of affordance-related evidence from multiple sources cannot be properly
addressed with an immediate link between perception and action as imple-
mented in approaches from this category.

Probability Distributions The third category of affordance-based
approaches introduces probabilistic representations of the affordance
concept. Typically, approaches in this category define affordances as
probability distributions over the spaces of action parameters and action
effects. Approaches particularly related to the one presented in this thesis
define affordances as probability distributions over the space of end-effector
poses. Probabilistic representations over end-effector pose spaces provide a
convenient way for linking affordance detection with action execution, also
in the scope of whole-body affordances. However, approaches from this
category do not provide solutions for combining affordance-related evidence
from different sources or for the hierarchical composition of affordances.

Probabilistic Networks The fourth group of affordance-based approaches
extends the ideas of the previous category towards representing affordances
in probabilistic networks, such as Bayesian networks. These approaches are
particularly popular in the area of developmental learning of affordances,
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expensively learned and the joint representation and learning of multiple
affordances can behave poorly.

Knowledge Bases The fifth group of affordance-based approaches
attempts to define and populate knowledge bases or ontologies with
relational knowledge. Affordances are predominantly interpreted as relations
between objects and actions. While knowledge bases principally allow the
transfer of affordance-related knowledge from external sources to a robot
or between different robots, the grounding of contained knowledge in the
robot’s sensorimotor experience is challenging.

Semantic Segments The last category of affordance-based approaches
formulates the problem of affordance detection as a particular type of
semantic segmentation. Many approaches attempt to apply methods known
from computer vision to the problem of affordance detection and achieve
remarkable results, particularly with the application of convolutional neural
networks. However, approaches in this category typically do not model the
link between detected affordances and action parameterization which is
essential for the autonomous or shared autonomous control of humanoid
robots.
After the broad review of affordance-based approaches given in Section 2.3,
approaches particularly related to the conceptual idea of whole-body
affordances are reviewed in Section 2.3.8. The survey shows that related
approaches are commonly focused on locomotion planning for particular
types of whole-body loco-manipulation actions. Section 2.3.9 extends
this survey to approaches seen at the DARPA robotics challenge which
particularly aimed at demonstrating state-of-the-art skills in humanoid
whole-body locomotion and manipulation. However, the participating teams
preferred, for good reason, to implement predefined shared autonomous
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2 Fundamentals and Related Work

that a consistent formalization of the affordance concept with respect to
whole-body actions in loco-manipulation tasks has not yet been proposed.
Finally, Section 2.4 provides insights into the concepts of autonomy and
shared autonomy, particularly focusing on the degrees of autonomy employed
by the DRC teams. As the concepts proposed in this thesis can be seen as
a step towards more autonomous detection and execution of whole-body
actions in the context of shared autonomy in loco-manipulation tasks, the
review of pilot interfaces given in Section 2.4.2 demonstrates the state-of-
the-art in this area.
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3 Preliminaries

This thesis aims at the formal conception, implementation and evaluation
of an affordance detection and validation system for humanoid robots in
whole-body loco-manipulation tasks. Such an affordance system plays a
central role in the cognitive architecture of a humanoid robot and is therefore
tightly integrated with existing sensorimotor components.
This chapter introduces several important preliminaries which together form
the principle foundation of the methods developed within this dissertation.
The topics will be briefly introduced and discussed to the degree of detail
necessary for a thorough understanding of the later chapters. The foundations
introduced in this chapter are the H2T perception pipeline in Section 3.1,
ArmarX together with its concept of statecharts in Section 3.2 and Object-
Action Complexes in Section 3.3.

3.1 The H2T Perception Pipeline

The H2T perception pipeline has been developed in close collaboration
with other dissertation projects and serves as a perceptual foundation for
the affordance detection system proposed in this thesis. The pipeline is
responsible for processing point clouds into sets of geometric primitives
which then directly serve as input for the affordance detection system. The
pipeline consists of the steps S1, S2 and S3 as outlined in Figure 3.1. The
final step S4 constitutes the main contribution of this thesis and will therefore
be discussed in extensive detail within the following chapters. Depending
on the context, the detection of affordances will be either considered to
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be an independent addition to the pipeline or its final step S4. Figure 3.2
displays the intermediate results of the individual pipeline steps which will be
briefly introduced and discussed in the remainder of this section. This section
presents an extended description of the H2T perception pipeline, initially
proposed and described in Kaiser et al. (2014a, 2015a).

Point Cloud 
Sensor

𝑺𝟐

Part-Based
Segmentation

𝑺𝟑

Primitive 
Extraction

𝑺𝟒

Affordance
Detection

Validation and
Execution

𝑺𝟏

Point Cloud 
Registration

Point Cloud Registered Point Cloud Segmented Point Cloud Primitives Affordances

This Thesis

Figure 3.1: The H2T perception pipeline (adapted from Kaiser et al. 2018a, © 2018 IEEE).
Input point clouds are first registered into a combined representation (S1) and then
segmented (S2). The segmented point cloud serves as the basis for extracting
geometric primitives (S3) which are subsequently used for affordance detection
(S4). The detection of affordances and their later use for the purposes of validation
and action execution falls into the scope of this thesis.

Point Cloud Registration The exemplary point cloud shown in Figure 3.3
demonstrates that single point cloud snapshots do often not provide sufficient
information about the environment, as important environmental structures
can exist outside of the camera’s field of view or inside the shadow volume
of other structures. Hence, real applications often require a robot to locomote
in the scene and to continuously align captured point clouds with previous
point clouds in order to obtain a complete image of the environment. This
process is called point cloud registration and is optionally performed in the
earliest stage S1 of the perception pipeline.
The H2T perception pipeline utilizes the state-of-the-art open source SLAM
library RTAB-Map (Labbé et al. 2014) for this purpose. The real-time capable
RTAB-Map registration method is based on the tracking of 2D local image
features among consecutive frames. RTAB-Map features loop closure detec-
tion and graph pose optimization. While the remaining components of
the pipeline can work with arbitrary point clouds, the implementation of
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3.1 The H2T Perception Pipeline

the registration step S1 requires RGB-D images. Hence, in the current
implementation of the pipeline, the registration step needs to be bypassed if
unorganized point clouds are used. Figure 3.4 shows an example for a regis-
tered point cloud, resembling a standard scene from the area of whole-body
loco-manipulation: a handrail-equipped staircase.

(a) Original Point Cloud (b) Segmented Point Cloud (c) Primitive Segmentation

(d) Geometric Primitives (e) Geometric Primitives (f) Affordances

Figure 3.2: The intermediate steps of the H2T perception pipeline. (a) Multiple individual point
clouds are registered and merged into a combined point cloud representation.
(b) The point cloud is segmented based on the convexity of surface patches. Each
color represents one segment in the visualization. (c-e) Geometric primitives are
fitted into the segmented point cloud. (f) Affordances are extracted from the primi-
tives.

The registration step S1 is optional, the perception pipeline can also be
configured to work on individual captures or on unregistered sequences
of captures. However, some of the experiments on real robotic platforms
discussed in Chapter 7 use the registration step for obtaining a larger initial
environmental representation.
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Figure 3.3: A single exemplary LIDAR point cloud captured in a test environment for loco-
manipulation for the humanoid robot WALK-MAN. Although the laser scan
produces an extensive depth image of the environment (left), shadowed areas are not
reflected in the point cloud (right). For obtaining a complete point cloud representa-
tion of the environment, multiple views from different positions need to be captured
and registered.

Figure 3.4: Cropped visualization of a registered point cloud resembling a handrail-equipped
staircase. The point cloud has been registered using RTAB-Map (Labbé et al. 2014)
from a set of 64 individual point clouds.

Part-Based Segmentation Once, captured point clouds are registered,
the scene is segmented into plausible and distinct regions by employing
the segmentation algorithm LCCP1 (Stein et al. 2014). This initial segmen-
tation allows the parallel processing of segmented regions in the subse-

1 LCCP: Locally Convex Connected Patches
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quent primitive extraction step. In contrast to conventional segmentation
methods that involve model fitting or learning techniques, this approach
grows locally connected convex surface regions bounded by concavities.
Convexly connected neighbor surface patches are then merged together
resulting in a final scene segmentation. While LCCP constitutes the refer-
ence segmentation method implemented in the H2T perception pipeline, other
segmentation algorithms, such as region growing, euclidean clustering or
deep networks for segmentation can be configured. Figure 3.2b depicts the
final part-based segmentation result of the point cloud shown in Figure 3.2a.
In the following, the segmentation S of a registered point cloud P is formally
denoted as a set of disjoint segments si:

S = {s1, . . . ,sn}, si ⊂P, si∩ s j = /0 ∀i 6= j (3.1)

Primitive Extraction The third step S3 of the perception pipeline is the
extraction of geometric primitives from the segmentation result S generated
by the previous pipeline step S2. Each segment si ∈ S is iteratively matched
against a defined set of geometric models using the RANSAC2 algorithm
(Fischler et al. 1981). Currently, three basic primitive types are supported:
planes, cylinders and spheres. However, the extension of the pipeline to
further geometric shapes is straightforward.
One of the main drawbacks of low-level feature-based segmentation methods
is the possible under-segmentation of the scene, i. e. multiple distinct object
segments happen to be merged, for instance due to noise in the depth cues.
An example for under-segmentation is found in Figure 3.2b, where the
segmentation step generates one large segment for the chair. Although
the chair constitutes a semantic entity, it consists of multiple geometric

primitives, i. e. the seating and the backrest. In such cases, naive application
of model fitting algorithms, such as RANSAC is prone to error. To tackle the

2 RANSAC: Random Sample Consensus
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under-segmentation problem, a customized model fitting approach provided
in Rusu et al. (2011) is employed as outlined in the following.
For each segment s ∈ S, the approach computes a set of disjoint geometric
primitives Ψ = {ψ1, . . . ,ψm}, each of which defining either a plane, a
cylinder or a sphere. The primitives ψi ∈Ψ are represented by inlier point
clouds Pψi ⊂ s, together with a corresponding set of outliersOs, i. e. segment
points that have not been assigned to any of the primitives ψi:

Os = s\
m⋃

i=1

Pψi . (3.2)

To partition a segment s ∈ S into distinct primitives, RANSAC is itera-
tively applied. In each iteration, fitting scores δplane, δcylinder and δsphere are
computed based on the maximum number of inliers for the three possible
models. The model with the highest fitting score is instantiated as a new
primitive ψbest. Before adding ψbest to the set of discovered primitives, the
underlying point cloud Pψbest is further partitioned in a clustering process
based on Euclidean distances between points. This step avoids distant clus-
ters of points to be merged into one single primitive. The same procedure is
repeated over the remaining outliers O to generate further primitives, until
the number of outliers |O| is smaller than a threshold τmin. The complete
iterative primitive extraction approach is outlined in Algorithm 1.
Figure 3.2e depicts the primitives extracted from the scene segmentation
shown in Figure 3.2a. Note that scene parts that are segmented into single
segments due to under-segmentation, e. g. the chair, are now successfully
partitioned into distinct primitives. The initial step of under-segmentation
allows a parallel application of RANSAC for all segments, resulting in an
overall faster approach. Figure 3.5 depicts the different steps of the perception
pipeline for the staircase point cloud shown in Figure 3.4. Until now the H2T
perception pipeline has been successfully tested with a range of different
depth sensing technologies, including the ASUS Xtion Pro RGB-D camera,
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the MultiSense S7 stereo camera and the Hokuyo UTM-30LX-EW laser
scanner (Kaiser et al. 2016b), in a variety of real and simulated environments.
This section introduced the pipeline in the version that is used within this
thesis. In particular, the employed version of the pipeline does not reason
about inter-primitive relations and higher semantic structures. However,
extensions to the pipeline have been proposed which address these issues
(Grotz et al. 2017).

Algorithm 1 Primitive extraction in the H2T perception pipeline

Require:
S – Segmentation
τmin – Minimum point cloud size
τmax – Maximum point cloud size

1: function PRIMITIVEEXTRACTION(S, τmin, τmax)
2: Ψ← /0
3: for each s ∈ S do
4: O← s
5: while |O| ∈ (τmin,τmax) do
6: ψplane← RANSACplane(O)
7: ψcylinder← RANSACcylinder(O)
8: ψsphere← RANSACsphere(O)
9: ψbest← argmaxψ∈{ψplane,ψcylinder,ψsphere}|Pψ |

10: if Pψbest = /0 then
11: break
12: end if

13: Ψnew← euclideanClustering(Pψbest)
14: Ψ←Ψ∪Ψnew
15: O←O\Pψbest
16: end while
17: end for
18: return Ψ

19: end function
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Figure 3.5: Geometric primitives extracted from a manually segmented, registered point cloud
of a staircase. The visualizations show the original point clout (first row), the
manually created segmentation (second row) and the resulting set of planar geometric
primitives (third row).
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3.2 The Robot Development Environment ArmarX

The theoretical and conceptual contributions of this thesis can be applied to
arbitrary humanoid robots, running with arbitrary software environments.
However, the reference implementation, which is used for the evaluation
in Chapter 7, is developed within the open source robot development
environment ArmarX3. One of the principle concepts of ArmarX is
robot-agnosticism: Few low-level components need to be implemented in
addition to a kinematic robot model, in order to port the whole framework to
further humanoid robot platforms. These low-level components can either
directly interface with the robot hardware, as in the case of ARMAR-4,
ARMAR-5 and ARMAR-6, or interface with the native software layer
running on the respective robot. This software bridging approach has been
successfully used for porting ArmarX to the humanoid robots ARMAR-III4,
iCub (Paikan et al. 2015) and WALK-MAN (Kaiser et al. 2016c).
ArmarX realizes a distributed software architecture based on the open
source middleware ZeroC Ice5. An outline of the ArmarX architecture is
depicted in Figure 3.6: Besides the middleware layer which is responsible
for providing and monitoring communication in the component-based
architecture, ArmarX provides a rich set of higher-level components for
different aspects of robot programming, including MemoryX for data storage,
VisionX for visual sensor processing, RobotAPI for access to the robot
hardware and collections of robot independent execution skills. The H2T
perception pipeline introduced in Section 3.1 is part of VisionX.
One benefit of the robot-agnostic architecture is that real robot hardware can
be exchanged with a kinematic or dynamic robot simulation without adapting
or re-implementing higher-level components. For the purpose of simulation,

3 ArmarX (Vahrenkamp et al. 2015) is developed at the H2T as a unified software framework
for the ARMAR humanoid robots.

4 The native software framework of ARMAR-III is MCA: http://www.mca2.org.
5 https://zeroc.com/products/ice
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ArmarX provides convenient means for simulating complex, dynamically
changing environments based on the open source physics library bullet6.
The dynamic simulator of ArmarX will be used in the simulated evaluation
experiments in Chapter 7.

Middleware Layer

Simulator
Robot

ArmarX RT

To
o

ls

Application Layer

Robot Framework Layer

API Skills Applications

VisionX

Robot API

MemoryX

Skills

Communication Deployment Monitoring

Provided by ArmarX Custom Implementation Configurable/Extensible

Figure 3.6: Overview over the robot development environment ArmarX (adapted from
Vahrenkamp et al. 2015). The H2T perception pipeline introduced in Section 3.1 is a
part of VisionX.

Robot Programming in ArmarX: Statecharts One of the core principles
of ArmarX is the concept of hierarchical statecharts (Wächter et al. 2016)
which provides a convenient method for graphical programming of high-
level robot skills. Statecharts consist of a hierarchical set of states which are
connected by event-driven transitions. Each state can either be defined as a
subordinate statechart or, alternatively, implemented in C++.
Figure 3.7 shows a visualization of the exemplary statechart MovePlatform

which implements a platform movement for ARMAR-III given a set of
target positions. In this example, the initial state MoveToNext implements a

6 http://bulletphysics.org
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platform movement to a single target position. This state is repeatedly entered
on emittance of a WaypointReached event. The terminal states Success and
Failure are entered if either all waypoints have been successfully reached or if
any type of failure occurred during the execution. ArmarX provides the tools
for conveniently editing and starting statecharts, as well as for the inspection
of running statecharts. Based on the concept of statecharts, ArmarX provides
a rich set of predefined, robot skills on various levels of abstraction.

Figure 3.7: An exemplary ArmarX statechart for platform movement: Nested blue boxes repre-
sent the state hierarchy and black arrows represent event-driven transitions between
states. Yellow boxes identify terminal states which terminate the control flow in the
respective statechart.

3.3 Object-Action Complexes

The H2T perception pipeline provides mechanisms for the pre-processing
of depth camera images into a simplified environmental representation that
can be used by the affordance detection system developed in this thesis. On
the other end, affordances detected in the perceived environment need to
be linked to parameterizable action execution specifications available to the
robot. This connection will be established via the concept of Object-Action

Complexes (OACs, Krüger et al. (2011)), eventually enabling the utilization
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of the proposed affordance system in the context of autonomous and shared
autonomous robot control. OACs have been briefly introduced in Section 2.2
as an approach to formalize the affordance concept. OACs provide a general
concept for representing and learning robot behaviors based on sensorimotor
experience. The link between symbolic and continuous action descriptions
make OACs a powerful formalism, particularly with respect to the planning
of actions and tasks. The affordance formalization proposed in this thesis is
not developed as a replacement of the concept of OACs, but as a complement:
Affordances as formalized in this thesis can be understood as preconditions

for the instantiation of OACs. This relation will be further discussed in
Chapter 6. An OAC is formally defined as a triplet

(E,T,M), (3.3)

consisting of an execution specification E, a prediction function T : S→ S

defined over an attribute space S and a statistical measure of success over
previous executions M. The particular implementations of E, T and M

depend on the application context. Multiple components of an OACs can be
learned, e. g. the prediction function, the success measure and the control
program, if suitable learning mechanisms are implemented.

3.3.1 An Exemplary OAC for Grasping

While the concept of OACs has been proposed as a conceptual framework
for cognitive robotics, the implementation of OACs in practical applications
is surprisingly simple. In this section, an exemplary OAC for object-agnostic
grasping, an adapted version of the AgnoGrasp OAC from Krüger et al.
(2011), is introduced. For defining the AgnoGrasp OAC, the attribute space S

and the three OAC components T , M and E need to be specified as follows:

The Attribute Space S The first step of defining an OAC is the definition
of the attribute space S which acts as the definition set and image set of
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the prediction function T . Hence, the attribute space needs to be chosen
expressively enough to encode preconditions and effects of the intended
action. In the case of the AgnoGrasp OAC, the attribute space can be defined
as:

S = {gripperStatus,Ω,graspStatus}, (3.4)

while gripperStatus ∈ {full,empty} represents the state of the robotic
gripper, i. e. if it is currently grasping an object or not, and graspStatus ∈
{undefined,stable,unstable} represents the condition of the current grasp.
The set Ω contains co-planar contours detected in the scene, identifying
candidates for graspable objects.

The Prediction Function T The prediction function T maps an initial state
S1 to a predicted state S2 = T (S1) which is predicted to be caused by the OAC
execution. The prediction function is problem-specific. In the exemplary
case of AgnoGrasp, the prediction could be implemented by synthesizing
and evaluating simulated grasps from the co-planar contours given in Ω.

The Success Measure M The measure of success M can be defined as
the ratio of successful executions of the OAC, i. e. the number of successful
grasps N, over the last K attempts.

The Execution Specification E The execution specification first ensures
a valid initial world state, i. e. an empty gripper and available grasp candidates
and then chooses the most promising grasp candidate from Ω using a specified
quality rating. After executing a low-level control program, the world state is
subsequently updated according to the robot’s sensorimotor experience.

3.3.2 The Software Library Spoac

In this thesis, OACs will be used as a framework for action execution and
sensorimotor experience with a direct link to symbolic action descriptions
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which can be used for symbolic action and task planning. The software library
Spoac (Ovchinnikova et al. 2015) is used for the convenient implementation,
storage and execution of OACs. Spoac is tightly integrated with the robot
development environment ArmarX (see Section 3.2), particularly with its
memory subsystem MemoryX for the persistent storage of OACs, and the
concept of statecharts for the definition and execution of the OAC execution
specifications. Besides the definition and execution of OACs, Spoac provides
interfaces for OAC-based symbolic action and task planning. Figure 3.8
shows an exemplary statechart implementation of an OAC for prismatic

grasping for ARMAR-III. The OAC implementation first opens the hand,
locomotes to a suitable platform pose, moves the end-effector to a suitable
approach pose and subsequently approaches the grasp target until a force
threshold is exceeded which triggers closing of the hand.

Figure 3.8: An exemplary OAC implementation for prismatic grasping with ARMAR-III: After
moving the platform to a suitable position (LocomoteForIK), the hand is opened
(OpenHand) and moved towards the grasp pose until the detection of contact
(MoveOnLineUntilContact). In the case of a successful approach, the hand is
slightly retracted (MoveTCPOnLine) and closed (CloseHand).
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Figure 3.9 demonstrates the hierarchical composition of ArmarX statecharts,
in this case for defining a validation OAC for prismatic grasping that attempts
a prismatic grasp (via the OAC defined in Figure 3.8) and subsequently
implements a validation state that assesses the quality of the achieved grasp.

Figure 3.9: An exemplary OAC implementation for prismatic grasp validation with ARMAR-III:
After a successful execution of the subordinate statechart for prismatic grasping
(PrismaticGrasp), the grasp is assessed based on the opening angles of the hand
(CheckValidPrismaticGrasp). In either case, the hand is opened and retracted before
reporting the result.

3.4 Summary and Review

This chapter introduced a number of technical and conceptual prerequisites
which are needed for the development and evaluation of the affordance
detection and validation system proposed in this thesis. The H2T perception
pipeline (Section 3.1) and ArmarX (Section 3.2) are software dependencies
of the reference implementation which is used for evaluation and validation
in Chapter 7. Both the H2T perception pipeline and ArmarX evolved to
become a principle foundation of this thesis, providing robust mechanisms
for perception, high-level and low-level robot control and dynamic simulation.
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This was particularly useful for the system evaluation in a complex, dynam-
ically simulated environment (Section 7.2.1) and for the validation on the
humanoid robot platforms ARMAR-III (Section 7.3.1 and Section 7.3.2) and
WALK-MAN (Section 7.3.3). However, despite the choice of the software
dependencies for this dissertation project, the affordance system does not
principally depend on the H2T perception pipeline or ArmarX. Alternative
implementations which use competing pipelines for primitive extraction, e. g.
Pham et al. (2016), or other robot development environments, e. g. ROS7, are
possible.
The concept of Object-Action Complexes discussed in Section 3.3 contributes
to both, the theoretical formalism for an affordance-based architecture and to
the reference implementation via the software library Spoac. On a conceptual
level, OACs provide a viable connection between detected affordances and
robot execution skills, as well as between detected affordances and symbolic
planning domains.

7 ROS: Robot Operating System
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The central theoretic contribution of this thesis is the definition of a compu-
tational model for whole-body affordances which allows the hierarchical
representation of affordances and the consistent fusion of affordance-related
evidence. In the following, these requirements will be briefly reviewed in
further detail.

Hierarchical Representation The requirement of a hierarchical represen-
tation of affordances becomes self-evident by the observation that large
portions of whole-body actions require power grasping contact with envi-
ronmental structures (see Figure 1.2 for examples). Hence, grasping affor-
dances can often be considered prerequisites for higher-level affordances like
pushing or pulling which themselves could serve as prerequisites for even
higher levels of affordances, e. g. bimanual pushing or bimanual pulling. The
hierarchical formalization of affordances ensures that evidence of lower-level
affordances is appropriately propagated to higher-level affordances.

Consistent Fusion of Evidence The affordance representation should
support the consistent fusion of evidence about affordances, obtained from
arbitrary sensor modalities. The consistent fusion of evidence is important
when considering a humanoid robot as an inherently redundant machine,
offering a multitude of sensor modalities which can assess the existence of
affordances. Furthermore, evidence about affordances could result from
human expert knowledge or the robot’s own experience. The possible
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availability of affordance-related evidence from different sources with
different attributed reliabilities necessitates a consistent formalism for
affordance evidence fusion.
This chapter describes an approach towards a computational model of affor-
dances that satisfies the two requirements above. The formalization is based
on the Dempster-Shafer Theory (DST) (Dempster 1967; Shafer 1976) and
the related Theory of Subjective Logic (Jøsang 2001). Parts of the affordance
formalization introduced in this chapter have been published in Kaiser et al.
(2016a, 2018a).

4.1 Mathematical Notations

Before beginning with a formal definition of the affordance concept as
affordance belief functions, this section will provide a brief discussion of
mathematical notations that will be used in this and the following chapters.
The introduced notations particularly correspond to homogeneous transfor-
mations which will be of extensive use within this thesis.

Coordinate Systems Some of the following considerations are made with
respect to a coordinate system, e. g. the end-effector coordinate system which
will be defined in Figure 4.11. In these cases the symbols 1x, 1y and 1z

are used for denoting the unit vectors pointing along the positive x-, y- and
z-axes, respectively:

1x =


1

0

0

 , 1y =


0

1

0

 , 1z =


0

0

1

 . (4.1)
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While many of the following considerations are independent of a world
coordinate system, it is commonly assumed in this thesis that 1z points along
the global up-direction.

Transformations Many of the formal concepts introduced in the following
sections will be based on end-effector poses which are represented as trans-
formations in space. The special Euclidean group SE(3) is used to denote
the space of transformations. A transformation T ∈ SE(3) is defined as a
homogeneous matrix:

T =

 R(T ) t(T )

0 1

 ∈ R4×4. (4.2)

The notations R(T ) ∈ R3×3 and t(T ) ∈ R3 are used when referring to the
orientational and translational parts of T , respectively.

Boundary The topological boundary of a set S is denoted as ∂S. Mathe-
matically, the boundary ∂S is defined as the set of points from the closure
S̄⊇ S which do not belong to the interior S◦ ⊆ S:

∂S = S̄\S◦. (4.3)

In the following, the topological boundary operator will be used to specify
the boundary set of geometric primitives.

4.2 Affordance Belief Functions

Based on the observation that end-effector contact is crucial for whole-body
actions, an affordance a ∈ A from the space of known affordances A is
defined to exist with respect to end-effector poses x ∈ SE(3). The system
belief in the existence of a is expressed by an affordance belief function
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Θa(x), mapping end-effector poses x ∈ SE(3) to belief expressions d ∈ D
from the affordance belief space D:

Θa : SE(3)→D. (4.4)

The affordance belief space D will be formally defined in Equation 4.9. In
order to simplify notations, the index a, denoting the affordance, might be
omitted if clear from the context. Equation 4.4 defines affordance belief with
respect to single end-effector poses which is suitable for unimanual affor-

dances such as unimanual graspability. The following sections will consider
this unimanual case. However, the extension to multiple end-effectors is
possible and will be reviewed in Section 4.6:

Θa : SE(3)×·· ·×SE(3)︸ ︷︷ ︸
N times

→D. (4.5)

For expressing the system belief in the existence of an affordance a with
respect to an assumed (and in the following not explicitly mentioned) end-
effector pose x ∈ SE(3), two fundamental hypotheses are defined: a+ repre-
senting the assumption that a exists and a− representing the assumption
that a does not exist. It is the inherent task of the affordance detection and
validation system to obtain certainty about which of the two hypotheses is
true by combining and evaluating available evidence. The set Xa of defined
hypotheses constitutes the so-called frame of discernment or hypothesis

space:
Xa = {a+,a−}. (4.6)

The set of possible combinations of hypotheses, i. e. the power set 2Xa of Xa

results in:
2Xa =

{
/0,{a+},{a−},Xa

}
. (4.7)

In the interest of simplicity the notations are abbreviated to a+ := {a+} and
a− := {a−}, respectively. Two fundamental properties need to be examined
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before Xa can be considered a suitable hypothesis space in the context of the
Dempster-Shafer Theory: completeness and mutual exclusiveness.

Completeness The hypothesis space Xa must be complete, i. e. it must
contain the true hypothesis. As affordances can only either exist or not exist,
and as both possibilities are reflected in Xa as distinct hypotheses a+ and a−,
Xa is complete by definition.

Mutual Exclusiveness Elements of the hypothesis space must be mutually
exclusive, i. e. only one of the hypotheses can be true. As the complements
a+ and a− are the only contained hypotheses, Xa is mutually exclusive.

The above hypothesis space contains two complementary hypotheses and
therefore constitutes the simplest non-degenerated case of a hypothesis
space. Such hypothesis spaces are called binary and are often denoted
as Xa = {a,¬a}. The simplicity of Xa will play an important role for the
formalization and for the feasibility of the approach.

4.2.1 Belief, Plausibility and Expected Probability

In the DST, belief is formally expressed by attributing probability mass
to the set of hypothesis combinations, i. e. to the elements of 2Xa . Such a
probability mass assignment

m : 2Xa → [0,1] (4.8)

is called basic belief assignment if m( /0) = 0 and ∑A m(A) = 1. Probability
mass can be intuitively interpreted as follows:
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4 Formalizing Whole-Body Affordances

• Probability mass m(a+) expresses belief in the existence of a;

• Probability mass m(a−) expresses belief in the non-existence of a;

• Probability mass m(Xa) expresses uncertainty about the existence
of a.2

The affordance belief space D can now formally be defined as the space of
possible basic belief assignments:

D :=
{

m : 2Xa → [0,1]
∣∣∣∣ m( /0) = 0, ∑

A∈2Xa

m(A) = 1
}
. (4.9)

In order to simplify the following formalizations, the evaluation of affordance
belief functions Θa for end-effector poses x∈ SE(3) and hypotheses A∈ 2Xa

is abbreviated as:
Θa(x,A) :=

(
Θa(x)

)
(A). (4.10)

The DST defines two fundamental measures based on a basic belief assign-
ment m: belief bel(A), describing the system’s confidence that A contains the
true hypothesis, and plausibility pl(A), describing the system’s confidence
that the true hypothesis does not contradict A3:

bel(A) = ∑
B⊆A

m(B) ∈ [0,1]

pl(A) = ∑
B∩A 6= /0

m(B) ∈ [0,1].
(4.11)

2 A possible interpretation is belief that the true hypothesis is contained in Xa which is known
to be true.

3 Beynon et al. (2000) describes plausibility as the extent to which we fail to disbelieve A.
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4.2 Affordance Belief Functions

Belief and plausibility can be expressed for affordance belief functions Θa,
end-effector poses x ∈ SE(3) and hypotheses A ∈ 2Xa as follows:

bela(x,A) = ∑
B⊆A

Θa(x,B) ∈ [0,1]

pla(x,A) = ∑
B∩A 6= /0

Θa(x,B) ∈ [0,1].
(4.12)

The set-theoretic definitions of belief and plausibility can become computa-
tionally hard for large hypothesis spaces. However, exploiting the simplicity
of Xa (Equation 4.6), the equations for belief and plausibility (Equation 4.12)
become pleasantly simple:

bela(x,A) =


Θa(x,a+), if A = a+

Θa(x,a−), if A = a−

1, if A = Xa

pla(x,A) =


Θa(x,a+)+Θa(x,Xa), if A = a+

Θa(x,a−)+Θa(x,Xa), if A = a−

1, if A = Xa.

(4.13)

The DST can be considered an alternative to traditional probability theory
with the important distinction that uncertainty can be properly represented.
However, a DST belief expression can be interpreted in a probability theo-
retical way, in which the (classical) probability p(A) of a hypothesis A lies
between belief and plausibility:

p(A) ∈
[
bel(A), pl(A)

]
. (4.14)
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Based on this relation, the expected probability4 E(A) (Jøsang 2001) will be
used in cases when a belief expression needs to be compacted into a single
real number:

E(A) = bel(A)+
1
2
(
pl(A)−bel(A)

)
= m(A)+

1
2

m(Xa). (4.15)

The expected probability from Equation 4.15 can be directly applied to
affordance belief functions Θa for given end-effector poses x ∈ SE(3):

Ea(x,A) = bela(x,A)+
1
2
(
pla(x,A)−bela(x,A)

)
= Θa(x,A)+

1
2

Θa(x,Xa).

(4.16)

The formalization of affordances as Dempster-Shafer belief functions Θa

over the space of end-effector poses constitutes the core of the proposed
affordance detection and validation system. In the following, the initial
requirements of evidence fusion and hierarchy are properly formalized in
Section 4.3 and Section 4.4.

4.3 Evidence Fusion

Evidence about affordances can emerge at different points in time, based
on different sensory modalities with different attributed degrees of belief. It
is the task of the evidence fusion formalism to consistently combine such
expressions of affordance evidence into a joint system belief. For formal-
izing the process of evidence fusion, let Ω = {ω1, . . . ,ωN} be a sequence
of observations. Each observation ω ∈Ω is defined as an affordance belief
function

ω : SE(3)→D. (4.17)

4 The definition of expected probability used here is the special case for binary hypothesis
spaces. The general definition can be found in Jøsang (2001).
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4.3 Evidence Fusion

Hence, observations express affordance-related evidence over the space of
end-effector poses. Each value ω(x) ∈ D is a basic belief assignment in the
sense of the Dempster-Shafer Theory. Figure 4.1 shows an overview over
the concept of evidence fusion.

Evidence Fusion

Θ𝑎

Action 
Execution

𝜉𝑣𝑖𝑠𝑢𝑎𝑙𝜉𝑣𝑖𝑠𝑢𝑎𝑙𝜔ℎ𝑎𝑝𝑡𝑖𝑐

𝜉𝑣𝑖𝑠𝑢𝑎𝑙𝜉𝑣𝑖𝑠𝑢𝑎𝑙𝜔𝑣𝑖𝑠𝑢𝑎𝑙

𝜉𝑣𝑖𝑠𝑢𝑎𝑙𝜉𝑣𝑖𝑠𝑢𝑎𝑙𝜔𝑒𝑥𝑝𝑒𝑟𝑡
Human Expert 

Knowledge

H²T Pipeline

Figure 4.1: The concept of evidence fusion (taken from Kaiser et al. 2018a, © 2018 IEEE):
Affordance-related evidence resulting from different sensory modalities under
different experimental conditions, is aggregated into a set of observations Ω. Exem-
plary sources of evidence include visual affordance detection, the execution of
exploration and validation actions and human expert knowledge. Evidence fusion
describes the process of deriving a joint system belief Θa from the available observa-
tions under consideration of the certainties attributed to the respective observations.

4.3.1 Dempster’s Rule of Combination

The DST defines an associative operator ⊕ for combining compatible basic
belief assignments. Two basic belief assignments are compatible if they are
defined over the same hypothesis space. Hence, in the context of affordance
belief functions, two observations are compatible if they express evidence
related to the same affordance. The combination of compatible observations
ω1, . . . ,ωN is formalized using Dempster’s rule of combination:
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(
N⊕

i=1

ωi

)
(x,A) =


0, if A = /0

1
1−K(x) ∑

(
⋂N

j=1 A j)=A

N

∏
k=1

ωk(x,Ak), otherwise
(4.18)

with the conflict factor K(x):

K(x) = ∑
(
⋂N

j=1 A j)= /0

N

∏
k=1

ωk(x,Ak). (4.19)

The summation sets
(⋂N

j=1 A j
)
=Z used in Equation 4.18 and Equation 4.19

with Z ∈ {A, /0} is a shorthand notation for:{
(A1, . . . ,AN) ∈ XN

a

∣∣∣∣∣
(

N⋂
j=1

A j

)
= Z

}
. (4.20)

A simple proof based on the associativity of the combination rule, outlined
in Section A.2, shows that incremental evidence fusion is possible:

N⊕
i=1

ωi = ω1⊕·· ·⊕ωN . (4.21)
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space Xa, the combination rule from Equation 4.18 and Equation 4.19 can
be simplified into efficiently computable equations:

(ω1⊕ω2)(x,A) =
1

1−K(x)
·



0, if A = /0

ω1(x,Xa) ·ω2(x,Xa), if A = Xa

ω1(x,A)ω2(x,A)

+ω1(x,Xa)ω2(x,A)

+ω1(x,A)ω2(x,Xa)

otherwise,

with the conflict factor K(x):

K(x) = ω1(x,a+) ·ω2(x,a−)+ω1(x,a−) ·ω2(x,a+). (4.22)

4.3.2 Spatial Generalization of Observations

There are several types of experiments which would produce evidence in
terms of observations ω . Depending on the utilized sensors and the experi-
mental setup, two main types of observations, need to be differentiated:

Extensive Observations inherently provide spatially distributed evidence,
as the employed sensor and the experimental setup evaluate affordances for
whole ranges of possible end-effector poses. Producers of extensive obser-
vations include visual affordance detection as affordances in this case are
evaluated for all end-effector poses on the boundaries of detected primitives.

Selective Observations provide evidence for specific end-effector poses
only. Producers of selective observations include haptic affordance validation
as the employed validation experiments are performed for specific end-
effector poses.
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Selective observations provide affordance-related evidence with respect to
individual reference end-effector poses xref. In order to allow efficient
reasoning about affordances in a larger scale, selective observations need
to be spatially generalized, producing evidence for a local environment
around xref. The spatial generalization of selective observations is a concept
known from the literature of graspability affordance learning. In Detry et al.
(2011), individual grasping experiments are considered as particles which are
spatially generalized by means of kernel density estimation using Gaussian
and von Mises-Fisher distributed kernel functions. In accordance to Detry
et al. (2011), spatial generalization in this work is performed by combining
two distribution functions

n(xref,x) ∝N
(
t(xref) ,σ

2
pos
)

m(xref,x) ∝M
(
R(xref) ,σ

2
rot
)
,

(4.23)

for the translational component t(xref) and the rotational component R(xref)

of xref, respectively. The distribution function n is proportional to a normal
distribution N , modeling the spatial generalization of observations. The
distribution function m is proportional to a von Mises-Fisher distribution
M, modeling the rotational generalization of observations.5 Note that both
functions m and n are proportional to their respective distribution, but they
are no actual probability distributions, as they are normalized to a maximum
value of 1. The combined distribution function is defined as:

δ (xref,x) = n(xref,x) ·m(xref,x). (4.24)

5 See Appendix A.1 for further details on the choice and the definition of the von Mises-Fisher
distribution.
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Using the combined distribution function δ (xref,x), the spatial generaliza-
tion of selective observations ω(x,A) can be modeled as the following belief
function:

ω(x,A) =


δ (xref,x) ·ω(x,a+), if A = a+

δ (xref,x) ·ω(x,a−), if A = a−

1−ω(x,a+)−ω(x,a−), if A = Xa,

(4.25)

For modeling the general observation certainty η ∈ [0,1], the definition of
ω(x,A) from Equation 4.25 is extended by adding the observation certainty
as a weighting factor to positive and negative belief:

ωη(x,A) =


η ·δ (xref,x) ·ω(x,a+), if A = a+

η ·δ (xref,x) ·ω(x,a−), if A = a−

1−ωη(x,a+)−ωη(x,a−), if A = Xa.

(4.26)

An observation certainty η < 1 allows the affordance system to appropriately
account for erroneous observations. It further allows to model observations
with different attributed degrees of certainty. For example, one could reason-
ably attribute less certainty to observations from visual affordance detection
than to observations from haptic validation experiments.

4.3.3 Examples

Figure 4.2 shows a visualization of the iterative fusion of three selective
observations ω1, ω2 and ω3, two in favor and one against the existence of
an assumed affordance a on a hypothetic one-dimensional primitive (the
x-axis). Belief and plausibility are visualized as green and red lines, respec-
tively, while the interval between belief and plausibility, which contains the
existence probability of a in a classical sense, is highlighted in grey. In its
initial belief state ω0, obtained e. g. via visual perception, the system tends
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towards the existence of the affordance, supposing a certainty of η = 0.6.
Through the iterative fusion of the initial system belief ω0 with the evidence
from ω1, ω2 and ω3, the system belief gradually evolves to a clearer picture
of the affordance. In the final joint system belief shown in Figure 4.2d, the
affordance is assumed to exist for (roughly) x ∈ [0,4] and it is assumed to not
exist for x ∈ [−3,−1]. Outside of these intervals of relative certainty, there is
no sufficient evidence other than the initial system belief ω0.

−8 −6 −4 −2 0 2 4 6 8
0.0

0.2

0.4

0.6

0.8

1.0

(a) Initial belief ω0
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(b) ω0⊕ω1
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(c) ω0⊕ω1⊕ω2
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Plausibility
Belief

(d) ω0⊕ω1⊕ω2⊕ω3

Figure 4.2: Three observations ω1, ω2 and ω3 applied to an initial belief estimation with a
certainty of η = 0.6. The observations express evidence for different end-effector
poses (1, 3 and -2, respectively) which are indicated by red and green arrows. While
ω1 and ω2 confirm the affordance, ω3 contradicts it.

In the examples of Figure 4.2, the observations ω1, ω2 and ω3 were attributed
absolute certainty, i. e. η = 1. Figure 4.3 shows the joint belief function
ω0⊕ω1⊕ω2⊕ω3 from Figure 4.2d with varying observation certainties η

ranging from observations with fairly low certainty (η = 0.2) to absolute
trust in the observation (η = 1). It can be seen that observations with smaller
attributed certainties have lower impact on the system belief.
The one-dimensional examples shown in Figure 4.2 and Figure 4.3 provide
a good intuition of the evidence fusion behavior. However, the type of
visualization does not scale with the dimensionality of the end-effector pose
space. Affordance belief functions defined over higher dimensional spaces of
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end-effector poses will be visualized according to the decision value va(x)

based on the expected probability defined in Equation 4.15:

va(x) : SE(3)→ [0,1],

x 7→ 1
2
·
(
Ea(x,a+)−Ea(x,a−)+1

)
.

(4.27)

The visualization of higher dimensional affordance belief functions is defined
in the HSL6 color space, where the decision value va(x) determines the hue
value, the saturation is fixed to a constant value and the uncertainty Θa(x,Xa)

determines the lightness (see Figure 4.4).
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(a) η = 0.4
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(d) η = 1.0

Figure 4.3: The influence of different observation certainties η attributed to the joint belief
function ω0⊕ω1⊕ω2⊕ω3.

Figure 4.5 visualizes a two-dimensional affordance belief function
constructed from seven consecutive selective observations. Figure 4.6
repeats the same experimental setup based on an initial belief obtained
through an extensive observation which could for example result from
visual perception. The results show the applicability of the concept to
two-dimensional primitive surfaces and that accumulated confirming
observations can eventually overrule the initial system belief.

6 HSL: Hue, Saturation, Lightness
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0.0 0.2 0.4 0.6 0.8 1.0

va(x)
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0.4

0.6

0.8
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Θ
a
(x
,X

a
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Figure 4.4: Belief functions Θa are visualized by projection to the HSL color space (taken from
Kaiser et al. 2018a, © 2018 IEEE). The decision value va(x) is represented by the
hue value, ranging from red to green, while red indicates predominant belief in a−

and green indicates predominant belief in a+. Uncertainty Θa(Xa) is represented by
the lightness value.

4.4 Inference on Affordance Belief Functions

In the previous sections, a formalization was proposed which is able to
effectively combine evidence expressed in terms of affordance belief func-
tions Θa(x). As Dempster’s rule of combination is only defined for belief
assignments that share the same hypothesis space, the combination of belief
functions Θa1 and Θa2 for different affordances a1 and a2 is not possible. In
order to use affordance belief functions in a hierarchical representation of
affordances, a formalism of inference needs to be developed which is able
to combine belief functions in the sense of logic operations. As a simple
example, consider a hierarchical rule for the existence of supportability

affordances:

A supportability affordance exists for a given end-effector pose

x if a graspability affordance exists for x and if the underlying

primitive is horizontally oriented.
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Figure 4.5: Visualization of an affordance belief function composed from eight consecutive
observations with attributed certainties η = 0.7 for a hypothetic 2D primitive surface
(taken from Kaiser et al. 2018a, © 2018 IEEE). (a) Without prior information
the initial belief represents complete uncertainty. (b-e) Confirming observations
emphasize belief in the existence of the investigated affordance, resulting in dark
green areas of high belief bel(a+). (f-i) Contradicting observations emphasize belief
in the absence of the investigated affordance, resulting in dark red color in areas of
high belief bel(a−).
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Figure 4.6: Visualization of an affordance belief function composed from eight consecutive
observations with attributed certainties η = 0.7 and prior belief from visual percep-
tion with attributed certainty η = 0.6, for a hypothetic 2D primitive surface. (a)
Visual perception produces a prior belief distribution with high belief bel(a+) in
the primitive interior and high belief bel(a−) at the primitive boundaries which,
as will be seen later, is characteristic for a platform graspability affordance. (b-
e) Confirming observations emphasize belief in the existence of the investigated
affordance, partially overriding the initial belief assignment. (f-i) Contradicting
observations emphasize belief in the absence of the investigated affordance, resulting
in dark red color in areas of high belief bel(a−).
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If the graspability affordance and the horizontal primitive orientation are
given as belief functions ΘGrasp and ΘHorizontal, this rule can formally be
expressed as:

ΘGrasp(x)∧ΘHorizontal(p)
ΘSupport(x)

. (4.28)

In this case, ΘSupport is called the higher-level affordance as its existence
depends on the lower-level affordance ΘGrasp.7 Other logic operations are
possible as well, e. g. in the case of a general graspability affordance which
exists if one of multiple, more specific graspability affordances exists:

ΘPlatform-Grasp(x)∨ΘPrismatic-Grasp(x)∨ΘCircular-Grasp(x)

ΘGrasp(x)
. (4.29)

It is important to realize that the belief functions Θ∗ in the above equations
represent belief with respect to different hypothesis spaces, as defined in
Equation 4.6. Hence, inference on affordance belief functions cannot be
done by means of traditional DST. Dempster’s rule of combination is neither
theoretically applicable in this case, nor does it practically produce reasonable
results. However, the Theory of Subjective Logic (Jøsang 2001) provides the
theoretical means for applying logic operations to Dempster-Shafer belief
values. Let a and b be distinct affordances with respective hypothesis spaces
Xa and Xb and x ∈ SE(3) be an end-effector pose. Further, let A ∈ 2Xb

and B ∈ 2Xb be affordance hypotheses. Then the subjective logic operations
A∧B, A∨B and ¬A are defined as follows:

bela∧b(x,A∧B) = bela(x,A) ·belb(x,B)

bela∨b(x,A∨B) = bela(x,A)+belb(x,B)−bela(x,A) ·belb(x,B)

bela(¬A) = 1−pla(A).

(4.30)

7 The existence of supportability further depends on the primitive property of horizontality
which will be formalized in Section 4.5.
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Note that with the exception of the negation ¬A, resulting belief is expressed
over the new hypothesis spaces Xa∧b and Xa∨b. For two affordance belief
functions Θa and Θb, defined over the respective hypothesis spaces Xa and
Xb, the subjective logic operations from Equation 4.30 can be written as:

Θa∧b(x,A) =


Θa(x,a+) ·Θb(x,b+), if A = c+

Θa(x,a−)+Θb(x,b−)−Θa(x,a−) ·Θb(x,b−), if A = c−

1−Θa∧b(x,c+)−Θa∧b(x,c−), if A = Xc

Θa∨b(x,A) =


Θa(x,a+)+Θb(x,b+)−Θa(x,a+) ·Θb(x,b+), if A = c+

Θa(x,a−) ·Θb(x,b−), if A = c−

1−Θa∨b(x,c+)−Θa∨b(x,c−), if A = Xc

Θ¬a(x,A) =


Θa(x,a−), if A = a+

Θa(x,a+), if A = a−

1−Θ¬a(x,a+)−Θ¬a(x,a−), if A = Xa.

Note that the affordance belief functions Θa∧b and Θa∨b(x,A) are defined
over the novel hypothesis spaces Xa∧b and Xa∨b, respectively, which are
abbreviated as Xc in the above equations. The initially stated affordance
inference rules from (Equation 4.28 and Equation 4.29) can now be written
based on subjective logic operations as:

ΘSupport(x) = ΘGrasp(x)∧ΘHorizontal(p) (4.31)

and

ΘGrasp(x) = ΘPlatform-Grasp(x)∨ΘPrismatic-Grasp(x)∨ΘCircular-Grasp(x).

Visualizations of the DS-theoretic logic operators applied to exemplary affor-
dance belief functions Θ1 and Θ2 are shown in Figure 4.7, Figure 4.8 and
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Figure 4.9. As can be seen, the subjective logic operations applied to affor-
dance belief functions with areas of different belief and uncertainty, produce
intuitive results.
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Figure 4.7: The DS-theoretic conjunction (subjective logic AND) applied to two affordance
belief functions Θ1 and Θ2 (taken from Kaiser et al. 2018a, © 2018 IEEE).
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Figure 4.8: The DS-theoretic disjunction (subjective logic OR) applied to two affordance belief
functions Θ1 and Θ2.

4.5 Sigmoid Decision Functions

The previous sections introduced a formalism that is able to combine exper-
imentally obtained evidence about affordances into a joint system belief
(Section 4.3) and to perform logic operations on obtained affordance belief
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functions (Section 4.4). This section will formalize the process of obtaining
belief functions from properties of the environment or properties of the
robot’s embodiment. These properties are explicitly mentioned in Gibson’s
work as essential components in affordance perception.
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Figure 4.9: The DS-theoretic negation (subjective logic NOT) applied to an affordance belief
function Θ.

Properties of environment or embodiment could for example be dimensions
of primitives or end-effectors. The consideration of parameters of the robot
embodiment in affordance belief functions is necessary as different affor-
dances exist for differently embodied agents, e. g. graspability affordances
that exists for ARMAR-4 might not necessarily exist for a small-scaled Nao

robot due to the different end-effector sizes. In this section, properties of
environment and embodiment will be incorporated by defining threshold-
based belief functions Θ. These belief functions will intuitively express
belief that e. g. the primitive length is larger than the robot’s hand breadth.
The threshold-based belief is modeled through sigmoid decision functions:

sigmλ ,β (x) =
1

1+ e−λ (x−β )
∈ (0,1). (4.32)

Figure 4.10 visualizes sigmλ ,β (x) which implements a greater-than-

threshold decision and two of its variations which implement lesser-than-

threshold and in-threshold-interval decisions. The decision threshold β
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4.5 Sigmoid Decision Functions

defines the point for which sigmλ ,β (β ) = 0.5, while λ defines the gradient
in this point. The combination of two sigmoid decision functions produces a
decision interval function with values greater than 0.5 for x ∈ [β − ε,β + ε]:

sigmλ ,β−ε(x) · sigm−λ ,β+ε(x). (4.33)

¯
0  
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¯¡" ¯ ¯+"
0  
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Figure 4.10: The sigmoid functions sigmλ ,β (x) (blue) and sigm−λ ,β (x) (red). The bottom plot
displays a sigmoid-based interval function sigmλ ,β−ε (x) · sigm−λ ,β+ε (x) (green)
(taken from Kaiser et al. 2016a, © 2016 IEEE).

There are two predominant types of inputs to the sigmoid function: trans-
lations t ∈ R in meters and rotations r ∈ [0,2π) in radians. The parameter
λ of the sigmoid function can be fixed to λt and λr with respect to the
input type and will be omitted in the following.8 Now, three instances of
threshold-based decision functions can be defined as:

Γ>β (x) = sigmλ ,β (x)

Γ<β (x) = sigm−λ ,β (x)

Γ∈[β ,ε](x) = sigmλ ,β (x) · sigm−λ ,ε(x).

(4.34)

8 The values have been fixed to λt = 1,λr = 20 throughout the entire thesis.
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4 Formalizing Whole-Body Affordances

In order to utilize the results of threshold operations on environmental and
embodiment properties p ∈ R, the result of the threshold operation has to be
converted to a belief function Θ with attributed certainty η ∈ [0,1]:

Θp>β (x,A) =


η ·Γ>β (p), if A = p+

η ·Γ<β (p), if A = p−

1−Θp>β (x, p+)−Θp>β (x, p−), if A = Xp,

(4.35)

and likewise for Θp<β (x,A) and Θ∈[β ,ε](x,A). Note that this definition
implicitly assumes an appropriate hypothesis space Xp = {p+, p−}, whose
entries can be interpreted as parameter p satisfies the threshold condition

(p+) and parameter p does not satisfy the threshold condition (p−).
The formalization of sigmoid decision functions and their associated belief
functions introduced in this section allows the formulation of threshold and
interval conditions on environmental and embodiment parameters in terms
of a belief function Θ. The resulting belief function can be combined with
regular affordance belief functions using the logic operations introduced in
Section 4.4 which for example allows the formulation of supportability affor-
dances based on prismatic graspability and horizontal primitive orientation
as suggested in Equation 4.31.

4.6 Extension to Multiple End-Effectors

The formalization introduced and discussed in this chapter defines affordance
belief functions over the space of end-effector poses:

Θa : SE(3)→D. (4.36)

While the case of unimanual affordances has been used for illustration in this
chapter, the formalism is not limited to this case. Arbitrary numbers of end-
effectors can be considered by extending the definition space of affordance
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belief functions to the Cartesian product of individual end-effector pose
spaces:

Θa : SE(3)×·· ·×SE(3)︸ ︷︷ ︸
N times

→D. (4.37)

As the definition space of affordance belief functions was never explicitly
used, the formalization introduced in this chapter is also valid for the case
of multiple end-effectors. The only difference is that wherever single end-
effector poses x∈ SE(3) are used, the case of multiple end-effectors requires
tuples of (x1, . . . ,xN) ∈ SE(3)× ·· · × SE(3) of end-effector poses. The
extension of the proposed formalism to arbitrary numbers of end-effectors is
possible, but will likely cause computational problems even for small values
of N. Hence, the case of N > 2 lies beyond the scope of this thesis. However,
special attention will be paid to the case of N = 2 which defines bimanual

or bipedal affordances, referring to an important set of actions in the area of
whole-body loco-manipulation.

4.7 Discrete Affordance Belief Functions

Affordance belief functions Θa are continuously defined over the space of end-
effector poses. While the continuous nature of the approach is appealing, real-
world applications require appropriate discretization. The naive approach of
defining fixed discretization step sizes δspatial and δorientational for the spatial
and orientational components of SE(3) is infeasible even for unimanual
affordances as Table 4.1 suggests.9 Hence, this section discusses approaches
to reduce the size of the end-effector pose space before discretization in order
to ensure feasibility for unimanual and bimanual affordance belief functions.

9 Memory consumption per sampling is estimated as two 32 bit floating point values for storing
belief and plausibility.
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4 Formalizing Whole-Body Affordances

Table 4.1: Naive sampling of a 1 m3 cube in SE(3).

δspatial δorientational Sampling Size Memory

10 cm π

2 rad 32,000 250 KiB
1 cm π

2 rad 32,000,000 244 MiB
1 cm π

4 rad 256,000,000 1.9 GiB
1 cm π

8 rad 2,048,000,000 15.3 GiB
1 mm π

8 rad 2,048,000,000,000 15.3 TiB

Sampling of End-Effector Positions The first important observation
that implies a large reduction of the sampling sizes is that affordances in
Section 4.2 are defined based on end-effector contact. The implication is that
affordance belief functions, by definition, do only attribute nonzero belief
bela(a+) to end-effector poses x ∈ SE(3) which lie at the boundaries of
geometric primitives. Let Π = {p1, . . . , pK} be the set of detected geometric
primitives and let ∂Π⊂ SE(3) be the space of end-effector poses in contact
with the primitive boundaries:

∂Π =
{
x ∈ SE(3)

∣∣ ∃p ∈Π : x ∈ ∂ p
}
, (4.38)

then it holds that:

bela(x,a+) = 0 ∀x ∈ SE(3)\∂Π, ∀a ∈ A. (4.39)

Hence, the fundamental approach to discretization is the discretization of the
primitive boundaries ∂Π.

Sampling of End-Effector Orientations The definition space
∂Π ⊂ SE(3) can further be reduced by exploiting a second observa-
tion: As all affordances are hierarchically defined based on fundamental
power grasp affordances, which will be formally discussed in Chapter 5,
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4.7 Discrete Affordance Belief Functions

affordance belief functions can only take nonzero values for end-effector
poses for which these fundamental grasping affordances are feasible.
As can be seen in Figure 4.11, the end-effector coordinate systems are defined
with respect to a grasp direction which equals to the z-axis of the end-effector
coordinate frame. Hence, end-effector poses x for which the local z-axis does
not point towards the primitive are not considered feasible for fundamental
grasping and can therefore be discarded.

(a) (b)

Figure 4.11: Examples for the local end-effector coordinate system of (a) the right hand of
ARMAR-4 and (b) the right foot of ARMAR-4 (taken from Kaiser et al. 2016a,
© 2016 IEEE). The z-axis (blue) points into grasp direction and the y-axis (green)
points into the direction of the longest end-effector extent. This definition of the
local end-effector coordinate system will be assumed for all end-effectors of all
employed robots throughout this thesis.

Implementation As discussed in the previous sections, the sampling of
primitive boundaries is equivalent to an efficient version of sampling the
definition space of affordance belief functions. A sampling Σp in this context
is represented as a single matrix containing feasible end-effector poses along-
side the boundaries of a primitive p:

Σp = [xp,1| . . . |xp,N ] ∈ R4×4N (4.40)

Affordance belief functions are implemented with respect to a reference prim-
itive sampling according to the following procedure. First, an affordance
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4 Formalizing Whole-Body Affordances

belief function Θa is separated into multiple disjoint affordance belief func-
tions Θa,p1 , . . . ,Θa,pK which only attribute nonzero belief to end-effector
poses x ∈ ∂ pi on the boundary of a primitive pi ∈Π. Each belief function
Θa,p refers to the sampling Σp generated for p ∈Π and evaluates to a matrix
containing the DS belief expressions to the corresponding end-effector poses
from Σp:

Θa,p j = [d1| . . . |dN ] ∈ R2×N , (4.41)

while each DS belief expression d j ∈ R2 is composed as:

d j =

 Θa(Σp[ j],a+)

Θa(Σp[ j],a−)

 . (4.42)

Examples The difference in the sampling sizes obtained with the reduced
definitions space compared to the naive approach (Table 4.1) obviously
depends on the primitive density in the scene. Table 4.2 lists the reduced
sampling sizes of exemplary scenes introduced throughout this thesis. The
listed scenes are categorized into three sections:

A This section contains single-view point clouds captured using an ASUS

Xtion Pro structured light sensor as employed on the humanoid robot
ARMAR-III.

B This section contains single-view point clouds captured using an
Hokuyo UTM-30LX-EW laser scanner embedded into the Carnegie

Robotics MultiSense-SL robot head10, as employed on the humanoid robot
WALK-MAN.

10 http://carnegierobotics.com/multisense-sl
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C This section contains large-scale point clouds constructed by registering
multiple individual views into a single point cloud representation. The
individual point clouds are obtained via an ASUS Xtion Pro sensor (Large

Staircase) or via a simulated point cloud sensor based on a CAD environment
model (Kitchen and Kitchen Counter). In contrast to the categories A and B,
point clouds in this section are used with manual segmentation within this
thesis.

The sampling sizes and memory consumptions given in Table 4.2 show that
the reduced definition space makes efficient samplings of affordance belief
functions feasible, even for large-scale, registered environments like the stair-
case (Figure 3.4) and the kitchen (Figure 7.9). Performance measurements
of the primitive extraction and affordance detection steps are presented in
Section 7.4 for the scenes from Table 4.2.

Table 4.2: Sampling sizes for exemplary scenes (δspatial =2.5 cm, δorientational =
π

8 rad).

Scene Reference Num. Points Prim. Area Sampling Sz.

Chair Figure 3.2 144,832 2.47 m2 277,952
A Sm. Staircase Figure 5.6 119,615 2.95 m2 173,536

Ladder - 61,100 1.15 m2 79,584

Bar Figure 7.26 412,044 1.26 m2 78,112
B Board Figure 7.28 418,171 1.47 m2 89,008

Valve Figure 7.29 392,267 1.35 m2 85,936

Lg. Staircase Figure 3.4 759,400 58.45 m2 3,281,200
C Kitchen Figure 7.9 1,599,320 37.00 m2 2,111,540

Kitchen Ctr. Figure 7.9 205,101 11.78 m2 672,752
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4.8 Summary and Review

This chapter introduced a formalism for the hierarchical representation of
whole-body affordances which allows the consistent fusion of affordance-
related evidence at different levels. The formalism is based on affordance
belief functions which map end-effector poses to Dempster-Shafer belief
expressions. Evidence is expressed as affordance belief functions, indepen-
dently of its source and certainty, and is combined using Dempster’s rule of
combination. The Theory of Subjective Logic is employed for applying logic
operations on affordance belief functions in order to allow the hierarchical
composition of higher-level affordances based on more simple, lower-level
affordances. The integration of environmental properties or properties of the
robot’s embodiment is possible by creating sigmoid belief functions which
can be consistently used together with affordance belief functions. The
chapter concluded with a review of techniques for reducing the definition
space of affordance belief functions with the aim of generating computation-
ally feasible samplings of belief functions.
The representation of affordances through affordance belief functions
provides the formal foundation for the hierarchical definition of whole-body
affordances introduced in Chapter 5, as well as for the practical implementa-
tion of an affordance detection system based on visual sensor information
and for the consistent fusion of observation obtained through validation
actions. The approach to discretization discussed in Section 4.7 is crucial for
the efficient implementation in realistic, large-scale environments, as will be
described in Chapter 7.
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Affordances

The previous chapter introduced and discussed a formalism for the represen-
tation and combination of affordance-related evidence based on affordance
belief functions Θ. In this chapter, the formalization will be used for defining
a hierarchy of whole-body affordances. The underlying assumption that affor-

dances are hierarchical is justified by the observation that many whole-body
affordances, e. g. holdability of a handrail, require the existence of lower-
level affordances, e. g. prismatic graspability of the handrail. The definition
of affordances developed in this chapter enables the effective propagation
of evidence from lower to higher levels in the hierarchy. In the context of
the example above, if the robot gains evidence about prismatic graspability,
this evidence will automatically also be considered for the system’s belief in
holdability affordances.
The affordance definitions will be hierarchical in the sense that higher-level
affordance belief functions can be composed of lower-level affordance belief
functions using the logic operations defined in Section 4.4. Intra-affordance
evidence, i. e. evidence defined over a common hypothesis space and there-
fore concerning a single affordance, is combined using Dempster’s rule of
combination as introduced in Section 4.3. Environmental properties, e. g.
primitive orientation or extent, and properties of the robot embodiment,
e. g. end-effector dimensions, can be considered in the composition of affor-
dance belief functions based on the concept of sigmoid decision functions
(Section 4.5). After the introduction of preliminary concepts in Section 5.1,
fundamental power grasp affordances will be defined in Section 5.2 as the
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root of the affordance hierarchy. These lowest-level affordances are only
composed of environmental and embodiment properties. Section 5.3 and
Section 5.4 introduce the entire affordance hierarchy for unimanual and
bimanual affordances.
Parts of the whole-body affordance hierarchy and of the underlying
formalisms have been published in Kaiser et al. (2016a, 2018a).

5.1 Preliminaries

For the formalization of the process of visual affordance detection, let Π

denote the set of detected environmental primitives:

Π = {p1, . . . , pK}. (5.1)

In this section, multiple fundamental functions are introduced that express
basic geometric properties of primitives p ∈Π, possibly with respect to an
end-effector pose x ∈ SE(3). Some of the defined property functions refer
to the local end-effector coordinate system as defined in Figure 4.11.

Shape Functions Formally, a set of shape functions is defined in order to
determine the degree to which a primitive p ∈ Π belongs to an associated
shape class. Possible shape functions, matching the current capabilities of
the H2T perception pipeline, are:

planar(p) ∈ [0,1]

circular(p) ∈ [0,1]

spherical(p) ∈ [0,1]

cylindrical(p) ∈ [0,1]

(5.2)
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The shape functions are not mutually exclusive per definition, for example a
planar and circular primitive1 is possible. The perception pipeline as well
as the following considerations are agnostic with respect to the types of
primitives, meaning that the extension of the system to further shape classes
is possible and straightforward. However, the evaluation shows that the
reliable extraction of primitives from real sensor data is prone to noise and
error. It turns out that planes are the most reliable and usable primitive
type. The H2T perception pipeline is therefore configured to prefer planar
segmentations if possible.

Dimension Functions For assessing the primitive extent, the dimension

functions width(p), height(p) and depth(p) are defined which determine
width, height and depth of the primitive’s object-aligned bounding box.
While the names width, height and depth imply a defined order based on the
primitive’s local coordinate system, this order is not further considered in the
affordance definitions.

Grasp Volume Extent Functions In order to assess the graspability of
geometric primitives p, the notion of grasp volumes is introduced which
represent the sub-volume Vg(x, p)⊆ p that is enclosed by the grasping hand.
In the case of a non-prehensile grasp, e. g. a platform grasp, the grasp volume
is defined as the sub-volume of p that is in supporting contact with the end-
effector. See Figure 5.1 for visualizations of grasp volumes in different power
grasping examples. The grasp volume Vg(x, p) is not formally defined at this
point as it cannot directly be used for the purpose of graspability affordance
definition, particularly due to its dependency on the concrete hand shape.
However, grasp volume extent functions will be defined in the following

1 One example for such a primitive is an industrial valve which will play an important role in
the experiments shown in Chapter 7.
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which characterize the biggest possible grasp cuboid based on the primitive
geometry and the robot embodiment, i. e. its end-effector dimensions.
The interesting aspect of the grasp volume is its extent orthogonally to
the grasp direction, i. e. in x- and y-direction of the local grasp coordinate
system (see Figure 4.11), as these properties characterize the applicable grasp
types. Hence, the grasp volume extent functions vx(x, p,βF) and vy(x, p,βF)

are introduced which determine the extent of the biggest possible grasp
volume in x- or y-direction of the local grasp coordinate system based on
the end-effector pose x ∈ SE(3) and the primitive p. The grasp volume
extent is computed with respect to the body-scaled forehand length βF which
describes the maximum depth to which the end-effector can wrap around the
primitive in grasp direction. The forehand length will be formally introduced
in Section 5.2 (see Figure 5.5) together with further body-scaled parameters
of the robot end-effector. The grasp volume extent functions can be defined
in an absolute version, in which the grasp volume can be arbitrarily shifted in
the hand, and in a symmetric version, in which the end-effector pose needs
to be centered in the grasp volume. This differentiation leads to four grasp
volume extent functions which are defined in Table 5.1. See Figure 5.2 for
exemplary visualizations of absolute and symmetric grasp volumes.

Table 5.1: Grasp volume extent functions

Function Description

va
x(x, p,βF ) Length of the biggest absolute grasp volume in x-direction

vs
x(x, p,βF ) Length of the biggest symmetric grasp volume in x-direction

va
y(x, p,βF ) Length of the biggest absolute grasp volume in y-direction

vs
y(x, p,βF ) Length of the biggest symmetric grasp volume in y-direction
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vector can be arbitrarily defined, u := 1z is used throughout the entire thesis.
The primitive orientation function evaluates the angle between the primitive
normal n(p) and u:

up(p) = arccos
(

n(p) ·u
‖n(p)‖ · ‖u‖

)
∈ [0,π] (5.3)

For the definition of bimanual affordances, three further property functions
are defined which compute geometric relations between two end-effector
poses x1 ∈ SE(3) and x2 ∈ SE(3): The end-effector distance function, the
end-effector angle function and the bimanual orientation function.

Figure 5.1: Visualization of grasp volumes (yellow) for exemplary grasps on planar and cylin-
drical primitives (green).

(a) (b)

Figure 5.2: Visualization of a symmetric grasp volume (a) and an absolute grasp volume (b)
with respective maximum extent for an exemplary primitive (green).
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End-Effector Distance Function The distance between two end-effector
poses is relevant as too large or too small distances make bimanual operation
infeasible. The end-effector distance function d(x1,x2) is defined as:

d(x1,x2) = ‖t(x1)− t(x2)‖ ∈ R+ (5.4)

End-Effector Angle Function The angle α(x1,x2) between two end-
effector poses characterizes the difference in grasp orientation and is defined
as the angle between the y-axes of the local end-effector coordinate systems
(see Figure 4.11):

α(x1,x2) = arccos
((

R(x1) ·1y
)
·
(
R(x2) ·1y

))
. (5.5)

This definition of the angular difference between end-effector poses applies
to aligned and opposed bimanual end-effector configurations.

Bimanual Orientation Function The bimanual orientation up(x1,x2)

characterizes the orientation of the bimanual end-effector configuration with
respect to the global up-vector u:

up(x1,x2) = arccos

((
t(x1)− t(x2)

)
·u

‖t(x1)− t(x2)‖

)
(5.6)

In the following, the introduced geometric functions will be used for defining
fundamental power grasp affordances which serve as the lowest-level affor-
dances in the hierarchy.

5.2 Fundamental Power Grasp Affordances

This section formally defines the root of the proposed whole-body affordance
hierarchy. As the hierarchy is intended to reflect the hierarchical composition
of affordance belief functions, root affordances need to be lowest-level
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affordances which are only used for composing higher-level affordances,
not vice versa. Whole-body actions are fundamentally understood as multi-
contact actions in this thesis, i. e. actions that establish environmental contact
with one or multiple end-effectors. While environmental contact with body
parts other than end-effectors is possible, consider e. g. sitting, such actions
are not further considered. In this sense, the natural root affordances of the
whole-body affordance hierarchy are end-effector contact affordances, i. e.
graspability affordances. Note that graspability is defined in its most general
sense here.

Figure 5.3: The taxonomy of human grasp types from Cutkosky (1989) with highlighting of
the four basic types of power grasps: platform grasps (A), prismatic grasps (B),
circular grasps (C) and lateral pinch grasps (D). Green color indicates grasp types
that are represented in the affordance hierarchy while grasp types in red are not
further considered (adapted from Cutkosky 1989, © 1989 IEEE).
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The well-known taxonomy of Cutkosky (1989), depicted in Figure 5.3, distin-
guishes between precision grasps and power grasps. While precision grasps
are used for dexterous manipulation actions, power grasps are employed
when larger forces need to be exerted. As whole-body actions, particularly
within loco-manipulation tasks, most exclusively employ power grasping
(see Figure 1.2 for examples), precision grasps are not further considered
in this work. Within Cutkosky’s taxonomy of power grasps depicted in
Figure 5.3, four principle grasp types, labeled A to D, are distinguished
which will briefly be reviewed in the following.

Platform Grasps (A) refer to planar contact between a suitable end-
effector, such as the palm of a hand or the sole of a foot, and a planar
environmental primitive. Platform grasps are commonly observed in
whole-body actions, e. g. in leaning, supporting or bimanual grasping, and
platform graspability will therefore be considered as the first root affordance
in the proposed hierarchy.

Prismatic Grasps (B) refer to a class of grasp types for prismatic objects,
e. g. cylinders. While Cutkosky (1989) distinguishes between five different
types of prismatic grasps, these differentiations appear too meticulous to be
performed on an affordance level. Grasp surveys such as Bullock et al. (2013)
and Vergara et al. (2014) show that prismatic grasps are the predominant
power grasp types used by humans during tasks of daily living. Hence,
prismatic graspability will be considered as the second root affordance in
the hierarchy.

Circular Grasps (C) refer to a class of grasp types for circular or spherical
objects. According to Bullock et al. (2013) and Vergara et al. (2014) circular
grasps belong to the most frequently used power grasp types. However, the
execution of circular grasps relies on the ability of finger spreading which
is not implemented in the robotic hands considered throughout this thesis.
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Hence, circular graspability, although principally possible, is not further
considered in the proposed whole-body affordance hierarchy.

Lateral Pinch Grasps (D) refer to a specific power grasp type for small
objects. The object is clamped between the thumb and the side of the
index finger. Similar to circular graspability, lateral pinch graspability is
not further considered in this work, as the employed robotic hands are not
capable of reproducing this grasp type.

In the following, the two fundamental power grasp affordances are formally
defined based on the concept of belief functions introduced in Chapter 4. The
existence of fundamental affordances solely depends on properties of envi-
ronmental primitives and robot embodiment, as no lower-level affordances
exist. Most important for grasping are end-effector dimensions which are
shown in Figure 5.5. Table A.1 lists possible values for these parameters for
the embodiments of an average human and the humanoid robots ARMAR-III,
ARMAR-4 and WALK-MAN.

(a) Prismatic grasp (b) Platform grasp

Figure 5.4: The two fundamental grasp types considered to form the root of the affordance
hierarchy (taken from Kaiser et al. 2016a, © 2016 IEEE).

Platform Graspability Affordance The first fundamental grasp affor-
dance is platform graspability, as shown in Figure 5.4b. In platform grasping,
the hand is opened to full extent and put in contact with large, planar surfaces
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which is particularly useful for whole-body actions such as supporting,
pushing or bimanual grasping. Narratively, platform graspability affordances
can be defined as follows:

A platform graspability affordance exists for a given end-effector

pose x and a primitive p if the primitive is large enough to

accommodate the dimensions of the end-effector.

This intuitive definition can be formally expressed as an affordance belief
function based on the body-scaled parameters for the hand length βL and
hand breadth βB (see Figure 5.5) and based on the dimensions of p in the
end-effector pose frame x (see Table 5.1):

ΘG-Platform(p,x) = Θvs
x(x,p,βF )>βB(x)∧Θvs

y(x,p,βF )>βL(x) (5.7)

The axes x and y refer to the local end-effector coordinate systems as shown
in Figure 4.11.

Figure 5.5: The body-scaled parameters βL (black), βB (red), βF (blue) and βA (green) as
foundation for perceiving grasp affordances (adapted from Kaiser et al. 2016a,
© 2016 IEEE). The parameters refer to hand length, hand breadth, forehand length
and hand aperture, respectively, as defined in Garrett (1971).

Prismatic Graspability Affordance The second fundamental grasp affor-
dance is prismatic graspability, as shown in Figure 5.4a. In prismatic
grasping, fingers and thumb are opposedly wrapped around objects that
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fit into the hand aperture. This grasp type is particularly useful for whole-
body actions, such as holding, pulling or bimanual grasping. Narratively,
prismatic graspability affordances can be defined as follows:

A prismatic graspability affordance exists for a given end-

effector pose x and a primitive p if the primitive width is larger

than the hand breadth βB and the primitive height is smaller

than the hand aperture βA.

This intuitive definition can be formally expressed as an affordance belief
function based on the body-scaled parameters for the hand breadth βB and
hand aperture βA (see Figure 5.5) and the dimensions of p in the end-effector
pose frame x (see Table 5.1):

ΘG-Prismatic(p,x) = Θvs
x(x,p,βF )>βB(x)∧Θva

y(x,p,βF )<βA
(x) (5.8)

Figure 5.6 shows visualizations of affordance belief functions for plat-

form graspability and prismatic graspability for the example of a handrail-
equipped staircase. The belief functions have been generated using the
formalisms from Equation 5.7 and Equation 5.8. The example shows that the
resulting belief functions take high values for end-effector poses for which
the respective grasp type would be well applicable, e. g. in the inner areas
of planar surfaces for platform grasping and at the boundaries of planar and
cylindrical primitives for prismatic grasping.

5.3 Unimanual Affordance Hierarchy

This section defines the hierarchy of unimanual whole-body affordances
which will subsequently be extended to bimanual affordances in Section 5.4.

2 See Figure 4.4 for an explanation of the color mapping.
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(a) (b)

(c) (d)

Figure 5.6: Visualization of affordance belief functions for prismatic graspability and platform
graspability to an exemplary staircase scenario2(taken from Kaiser et al. 2016a,
© 2016 IEEE). The figures show (a) the original point cloud, (b) the geometric
primitives obtained via the H2T perception pipeline, (c) the affordance belief function
ΘG-Platform and (d) the affordance belief function ΘG-Prismatic.
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5.3 Unimanual Affordance Hierarchy

distance to the fundamental power grasp affordances defined in Section 5.2
which form the root of the affordance hierarchy. Belief functions from a layer
Lk can be composed of lower-level belief functions from layersL0, . . . ,Lk−1.
Depending on the types of contained belief functions, layers will be denoted
as Ai, containing affordance belief functions (see Section 4.2), or as Pi,
containing property decision functions (see Section 4.5).

The Property Layer P0 Table 5.2 defines the belief functions for funda-
mental environmental properties of a primitive p, assorted into layer P0.
This layer contains the belief functions ΘVertical(p) and ΘHorizontal(p) for
expressing the primitive orientation3 and ΘRound(p) for expressing the degree
of circularity of p. The belief functions ΘMovable(p) and ΘFixed(p) have a
more complex definition based on the dimensions of the primitive’s object-
aligned bounding box. Refer to Section 5.1 for details on the employed
property functions.

Table 5.2: The whole-body affordance hierarchy (layer P0)

Layer Symbol Composition of Belief Function

P0

ΘVertical(p) Θup(p)≈ε 0(p)

ΘHorizontal(p) Θup(p)≈ε π (p)

ΘRound(p) Θcircular(p)≈ε 1(p)

ΘMovable(p) Θwidth(p)<λ1 (p)∧Θheight(p)<λ1 (p)∧Θdepth(p)<λ1 (p)

ΘFixed(p) Θwidth(p)>λ1 (p)∨Θheight(p)>λ1 (p)∨Θdepth(p)>λ1 (p)

The Affordance LayersA0 andA1 Table 5.3 defines the lowest layerA0

of affordance belief functions, containing the fundamental grasp affordances
ΘG-Prismatic and ΘG-Platform. It further defines the layer A1 which contains

3 The notation up(p)≈ε x is a short writing for up(p) ∈ [x− ε, x+ ε].
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The hierarchy of whole-body affordances is sorted in layers based on the



5 A Hierarchy of Whole-Body Affordances

required. It is defined based on the fundamental grasp affordances from layer
A0.

The Affordance Layer A2 The grasp affordances ΘG-Platform, ΘG-Prismatic

and ΘGrasp from layersA0 andA1 can now be combined with environmental
properties from layer P0 to form higher-level affordance belief functions for
unimanual whole-body actions, such as supporting, leaning, holding, lifting,
pushing, pulling and turning. Table 5.4 defines the belief functions assorted
to layerA1. Figure 5.7 displays the exemplary composition of a leanability

affordance based on the lower-level affordance belief function ΘG-Platform for
platform graspability and the property belief functions ΘVertical and ΘFixed

which characterize a vertical and large primitive.

Table 5.3: The whole-body affordance hierarchy (layers A0 and A1)

Layer Symbol Composition of Affordance Belief Function

A0
ΘG-Platform(p,x) Θvs

x(x,p,βF )>βB
(x)∧Θvs

y(x,p,βF )>βL
(x)

ΘG-Prismatic(p,x) Θvs
x(x,p,βF )>βB

(x)∧Θva
y (x,p,βF )<βA

(x)

A1 ΘGrasp(p,x) ΘG-Platform(p,x)∨ΘG-Prismatic(p,x)

Table 5.4: The whole-body affordance hierarchy (layer A2)

Layer Symbol Composition of Affordance Belief Function

A2

ΘSupport(p,x) ΘG-Platform(p,x)∧ΘFixed(p)∧ΘHorizontal(p)

ΘLean(p,x) ΘG-Platform(p,x)∧ΘFixed(p)∧ΘVertical(p)

ΘHold(p,x) ΘG-Prismatic(p,x)∧ΘFixed(p)

ΘLift(p,x) ΘG-Prismatic(p,x)∧ΘMovable(p)

ΘPush(p,x) ΘGrasp(p,x)∧ΘMovable(p)

ΘPull(p,x) ΘG-Prismatic(p,x)∧ΘMovable(p)

ΘTurn(x) ΘG-Prismatic(p,x)∧ΘMovable(p)∧ΘRound(p)
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only one affordance belief function, ΘGrasp. The general graspability affor-
dance defined in layer A1 can be used when no particular grasp type is
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𝑣𝑥
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Figure 5.7: The hierarchical composition of the affordance belief function ΘLean based on the
lower-level affordance belief function ΘG-Platform and the property belief functions
ΘVertical and ΘFixed.

the specified set of affordances is rich enough for performing a variety of
different tasks in real environments, as will be demonstrated in Chapter 7,
the hierarchy is not considered complete. In the following section, bimanual
affordances will be introduced into the hierarchy as an extension of the
previously defined layers.

5.4 Bimanual Affordance Hierarchy

The hierarchy of unimanual whole-body affordances introduced in
Section 5.3 contains the layers P0 and A0 to A2. In this section, the
results of Section 4.6 are used for extending the hierarchy with layers
P1 and A3 to A6 for bimanual whole-body affordances. As discussed in
Section 4.6, the definition space of bimanual affordance belief functions
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The layersA0,A1 andA2 define basic unimanual whole-body affordances
and specify their composition rules within the affordance hierarchy. While
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specific unimanual affordance belief functions, e. g. a bimanual platform

graspability affordance for the end-effector pose pair (x1,x2) is defined
based on unimanual platform graspability affordances for the individual
end-effector poses x1 and x2.

The Property Layer P1 For defining bimanual affordances, a new prop-
erty layer P1 is introduced which contains properties of the relation between
the two end-effector poses x1 and x2: This layer contains the belief func-
tions ΘVertical(p) and ΘHorizontal(p) for expressing the orientation of the end-
effector arrangement, as well as ΘFeasible(p) for expressing the degree of
feasibility of the distance between the end-effector poses. The belief func-
tions ΘAligned(p) and ΘOpposed(p) specify if the end-effector arrangement is
aligned or opposed. Refer to Table 5.5 for details on the employed property
functions.

Table 5.5: The whole-body affordance hierarchy (layer P1)

Layer Symbol Composition of Belief Function

P1

ΘVertical(x1,x2) Θup(x1 ,x2)≈ε 0(x1,x2)

ΘHorizontal(x1,x2) Θup(x1 ,x2)≈ε π (x1,x2)

ΘFeasible(x1,x2) Θd(x1 ,x2)>βL (x1,x2)∧Θd(x1 ,x2)<βSh (x1,x2)

ΘAligned(x1,x2) Θα(x1 ,x2)≈ε 0(x1,x2)

ΘOpposed(x1,x2) Θα(x1 ,x2)≈ε π (x1,x2)

The Affordance Layers A3, A4 and A5 In the same way as with the
definition of the fundamental unimanual graspability affordances in layer
A0, the fundamental bimanual graspability affordances ΘBi-G-Platform and
ΘBi-G-Prismatic can now be defined based on their unimanual counterparts.
Bimanual grasping is considered possible if the respective unimanual grasp
affordances exist for the individual end-effector poses and if the distance
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is SE(3)×SE(3), i. e. the Cartesian product of end-effector poses. Hence,
bimanual affordance belief functions can be composed of end-effector
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graspability affordance defined in layer A4 is defined based on the funda-
mental bimanual grasp affordances and is used when no particular grasp type
is required. Now, further bimanual grasp affordances can be differentiated
by considering the relative orientation of the end-effectors. Based on these
affordances, bimanual grasping can be categorized into aligned and opposed

end-effector configurations. Refer to Table 5.6 for details on the employed
property functions.

Table 5.6: The whole-body affordance hierarchy (layers A3, A4 and A5)

Layer Symbol Composition of Belief Function

A3
ΘBi-G-Platform(p,x1,x2) ΘG-Platform(p,x1)∧ΘG-Platform(p,x2)∧ΘFeasible(x1,x2)

ΘBi-G-Prismatic(p,x1,x2) ΘG-Prismatic(p,x1)∧ΘG-Prismatic(p,x2)∧ΘFeasible(x1,x2)

A4 ΘBi-Grasp(p,x1,x2) ΘBi-G-Platform(p,x1,x2)∨ΘBi-G-Prismatic(p,x1,x2)

A5

ΘBi-G-Aligned(p,x1,x2) ΘBi-Grasp(p,x1,x2)∧ΘAligned(x1,x2)

ΘBi-G-Opposed(p,x1,x2) ΘBi-Grasp(p,x1,x2)∧ΘOpposed(x1,x2)

ΘBi-G-Aligned-Platform(p,x1,x2) ΘBi-G-Platform(p,x1,x2)∧ΘAligned(x1,x2)

ΘBi-G-Aligned-Prismatic(p,x1,x2) ΘBi-G-Prismatic(p,x1,x2)∧ΘAligned(x1,x2)

ΘBi-G-Opposed-Platform(p,x1,x2) ΘBi-G-Platform(p,x1,x2)∧ΘOpposed(x1,x2)

ΘBi-G-Opposed-Prismatic(p,x1,x2) ΘBi-G-Prismatic(p,x1,x2)∧ΘOpposed(x1,x2)

The Affordance Layer A6 As for the unimanual affordance layer A2,
higher-level affordances can now be defined based on the lower-level
bimanual grasp affordances. See Figure 5.8 for the exemplary composition
of the belief function ΘBi-Support for bimanual supportability. Refer to
Table 5.7 for details on the employed property functions.

5.5 Summary and Review

Based on the hypothesis that platform grasping and prismatic grasping are
essential foundations for whole-body actions, this chapter introduced and
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between the end-effector poses is considered feasible. The general bimanual
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Table 5.7: The whole-body affordance hierarchy (layer A6)

Layer Symbol Composition of Belief Function

A6

ΘBi-Support(p,x1,x2) ΘBi-G-Platform(p,x1,x2)∧ΘFixed(p)∧ΘHorizontal(p)

ΘBi-Lean(p,x1,x2) ΘBi-G-Platform(p,x1,x2)∧ΘFixed(p)∧ΘVertical(p)

ΘBi-Hold(p,x1,x2) ΘBi-G-Prismatic(p,x1,x2)∧ΘHold(p,x1)∧ΘHold(p,x2)

ΘBi-Lift(p,x1,x2) ΘBi-G-Prismatic(p,x1,x2)∧ΘLift(p,x1)∧ΘLift(p,x2)

ΘBi-Push(p,x1,x2) ΘBi-G-Aligned(p,x1,x2)∧ΘPush(x1)∧ΘPush(x2)

ΘBi-Pull(p,x1,x2) ΘBi-G-Aligned-Prismatic(p,x1,x2)∧ΘPull(x1)∧ΘPull(x2)

ΘBi-Turn(p,x1,x2) ΘBi-G-Opposed-Prismatic(p,x1,x2)∧ΘRound(p)

affordance hierarchy consists of two fundamental power grasp affordances.
The hierarchical arrangement of affordances allows the composition of affor-
dance belief functions from lower-level affordance belief functions. In this
concept, affordances for supporting, leaning, holding, lifting, pushing, pulling
and turning are defined which represent essential skills from the area of
whole-body loco-manipulation. Furthermore, by extending the definition
space of the underlying affordance belief functions, Section 5.4 extended
the given hierarchy to include bimanual affordances. The full set of defined
affordances together with their composition rules can be found in Table A.2.
One benefit of the hierarchical formalization of affordances presented in
this chapter is that the set of affordances can easily be extended on all
layers and gained evidence will be appropriately propagated to newly defined
affordances as well. Although the affordance hierarchy as defined in this
chapter is intended to capture significant portions of the space of whole-body
actions that are relevant in humanoid robotic applications, the hierarchy
cannot be considered complete.

130

formally defined a hierarchy of whole-body affordances. The root of this
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Figure 5.8: The hierarchical composition of the affordance belief function ΘBi-Support for
bimanual supportability, based on lower-level affordance belief functions.
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6 Affordance-Based Autonomy

This chapter provides the conceptual and practical foundations for applying
the affordance detection system, as introduced and discussed in the previous
chapters, to the control of real humanoid robots. Section 2.4 introduced
different levels of autonomy that can be used for robotic control. In particular
full autonomy as the ultimate goal and shared autonomy as a practical solution
to high-level control for state-of-the-art humanoid robots are introduced.
The formalization of affordances in terms of affordance belief functions
and OACs provides the necessary means for convenient integration into
autonomous and shared-autonomous control schemes which will be discussed
in Section 6.1 and Section 6.2, respectively. The concept of affordance-based
shared autonomy is accompanied by the implementation of a pilot interface
which allows the practical application of the proposed affordance detection
system on real humanoid robots. This pilot interface will be used in Chapter 7
for the evaluation of the affordance detection system in real applications.

6.1 A Concept for Affordance-Based Autonomy

Fully autonomous humanoid robots need to implement sophisticated mecha-
nisms not only in the perception of action possibilities, but also in higher-level
components, such as action or task planning. In order to realize a complete
cognitive architecture based on the proposed system for affordance detec-
tion, perceived affordances need to provide links to both, action execution
descriptions and symbolic planning entities.
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Figure 6.1: Affordance belief functions embedded in a conceptual framework that integrates
affordance detection with symbolic planning. The fusion of evidence from multiple
observations ω form affordance belief functions Θ (red) which directly contribute to
the instantiation and parametrization of OACs (blue). Execution of selected OACs
enrich Θ with additional validation observations ωval (green).

The Xperience project1 provides a sophisticated cognitive architecture based
on the formalism of Object-Action Complexes (OACs) (Krüger et al. 2011).
OACs have been introduced in Section 2.2 and Section 3.3 as representations
of object-action dependencies which comprehensively combine action execu-
tion strategies (control programs) and symbolic representations of precon-

ditions and action effects. OACs integrate well into the general symbolic
planning architecture Spoac (Ovchinnikova et al. 2015) which is integrated in

1 European Union Seventh Framework Programme under grant agreement number 270273
http://www.xperience.org
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the robot software environment ArmarX (Vahrenkamp et al. 2015) developed
at the H2T. In the context of Spoac, OACs are directly linked with action
execution strategies formulated as ArmarX statecharts (Wächter et al. 2016).
Figure 6.1 outlines the integration of the affordance detection system into
a higher-level cognitive architecture based on the formalism of OACs. In
the following, the individual components of the cognitive architecture for
affordance-based autonomy are explained in further detail.

Visual Affordance Detection In the first step, the environment is
perceived using depth sensing technology2, resulting in point cloud
representations. The H2T perception pipeline then processes the point
clouds as explained in Section 3.1, resulting in sets of geometric primitives
π1, . . . ,πK which are stored in the robot’s working memory. In the final
pipeline stage, visualized as a separate component in Figure 6.1, the
detected geometric primitives are used as a basis for the visual detection of
affordances by evaluating the affordance hierarchy introduced in Chapter 5.
The process of visual affordance detection produces affordance belief
functions which are stored as observations ωvisual in the robot’s working
memory.

Evidence Fusion Affordance belief functions from different observations,
possibly also from different experimental conditions using different sensors,
are collected in the robot’s working memory. These affordance belief func-
tions in combination assemble the robot’s belief in the respective affordance.
The evidence fusion component is responsible for consistently combining
available evidence into joint affordance belief functions, expressing the
overall belief in the existence of respective affordances. These joint belief
functions are denoted as ΘAffordance and stored in the robot’s working memory
for further use by affordance-based system components.

2 This could be e. g. RGB-D cameras, stereo cameras or LIDAR laser scanners.
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OACs The long-term memory contains the OACs that are available to the
robot. While OACs provide a generic and flexible concept for coupling
objects and actions, this section refers to OACs as implemented in the soft-
ware library Spoac introduced in Section 3.3. Linking affordances with OACs
is an important element in the affordance-based architecture as OACs provide
a link between action execution skills implemented as ArmarX statecharts and
symbolic descriptions of preconditions and effects of implemented actions
with respect to an appropriate planning domain. OACs further provide infor-
mation about their parameterization, particularly with respect to the amount
of end-effectors involved in the action execution.

Autonomous Task and Action Planning A cognitive architecture for
autonomous robots requires two essential components which realize high-
level cognitive behavior based on given task descriptions: A task planner that
produces sequences of intermediate goals from an abstract task specification
and an action planner that produces action sequences based on their symbolic
preconditions and effects. As suggested in the architecture, the combination
of affordance belief functions and OACs provides valuable information that
can be used for realizing these components. However, autonomous task and
action planning is an unsolved field of fundamental research in robotics, and
hence this thesis does not further elaborate on the concrete implementation
of these components. Instead, Section 6.2 proposes to leverage these tasks to
a human pilot.

Action Execution Once action sequences have been planned by high-level
autonomous planning components, the corresponding sequences of OACs
are passed to the action execution control component which controls and
supervises their execution. Depending on the control programs of executed
OACs, affordance-related evidence can be collected during action execution.
This is particularly true for affordance validation actions, whose sole purpose
is the collection of affordance-related evidence. This evidence is represented
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as observations ωval and is stored in the working memory, alongside other
available observations.

6.2 A Concept for Affordance-Based
Shared Autonomy

The concept for affordance-based autonomy proposed in Figure 6.1 is feasible
in the way that collected affordances inform higher-level autonomous compo-
nents. However, the state-of-the-art in the field of autonomous task and action
planning does not provide true autonomy in these components, even when
informed by autonomously detected affordances. Hence, the application of
the affordance detection system proposed in this thesis is focused on shared

autonomous control modes which allow high-level autonomous capabilities
to be leveraged to a human pilot.
Figure 6.2 visualizes the role of the affordance-based pilot interface within
the autonomous cognitive architecture from Figure 6.1: Detected affor-
dances and intermediate perceptual representations are presented to a human
pilot, including the original point clouds, extracted geometric primitives, the
detected affordances and their associated OACs. Based on this information,
the human pilot can conveniently control the robot on an abstract level by
selecting among the affordances and OACs proposed by the robot. In this
system, the pilot essentially replaces the autonomous components of task
and action planning displayed in Figure 6.1. The concept of affordance-
based shared autonomy and the affordance-based pilot interface have been
published in Kaiser et al. (2016c).
Based on the concepts of affordance-based autonomy and shared autonomy
discussed in the previous sections, an affordance-based pilot interface has
been developed within the context of this thesis. This pilot interface allows
a human pilot to interact with the affordance detection system. The pilot
interface itself is agnostic to the employed robot and to the circumstances
of its application, e. g. if it is connected to a simulated robot in a simulated
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environment or to a real humanoid robot in a full-scale demonstration envi-
ronment. In the following, the pilot interface will be discussed based on
the simulated humanoid robot ARMAR-III in a simulated kitchen environ-
ment (see Figure 6.3), while the application on real humanoid robots will be
discussed in Chapter 7.
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Figure 6.2: An affordance-based pilot interface embedded in the affordance-based cognitive
architecture from Figure 6.1: The abstract and conceptually challenging functions
of task and action planning are leveraged to a human pilot.

The simulation environment used in this section and throughout the evalua-
tion in Chapter 7 is SimulationX, the default dynamics simulation environ-
ment of ArmarX (Vahrenkamp et al. 2015). Besides simulating multibody
dynamics, the ArmarX simulation environment features simulated depth
camera images which allows the direct application of the H2T perception
pipeline in simulated scenarios. ArmarX implements a transparent interface
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between higher-level components and low-level components that connect to
the simulation environment or to actual robotic hardware (see Figure 3.6).
Hence, the implementation of the pilot interface in ArmarX allows its conve-
nient application to simulated and real scenarios.

Figure 6.3: The humanoid robot ARMAR-III in a simulated kitchen environment.

Figure 6.4 shows a screenshot of the affordance-based pilot interface, while
its individual components are tagged with labels from A to E. These compo-
nents will be discussed in further detail below.

Pipeline Control (A) The top left area of the pilot interface allows the pilot
to configure and control the H2T perception pipeline and to introspect the
current pipeline status (see Figure 6.5). The pilot selects the sensor device to
use, the desired cropping strategy and a predefined set of segmentation param-
eters. The widget further allows the pilot to start the perception pipeline,
either in a continuous or in a one-shot mode. The current pipeline status is
visualized at the bottom of the widget, indicating the capture timestamp of
the point cloud that just passed the respective pipeline step.

139



6 Affordance-Based Autonomy

Figure 6.4: The affordance-based pilot interface for shared autonomous control of a humanoid
robot in unknown scenarios. In this example, the pilot interface is connected to the
simulated humanoid robot ARMAR-III in a kitchen environment (see Figure 6.3).
The configured 3D visualization (C) shows geometric primitives extracted from the
current robot view based on the simulated situation shows in Figure 6.3.

Point Cloud Visualization Setup and Camera Images (B) By default,
the bottom left area of the pilot interface shows a configured camera image
of the robot (see Figure 6.6a). This is necessary for providing the pilot with
as much information as possible for orientation in the unknown environment.
However, the camera images are not further used for the affordance detection
system. In a second tab, the widget allows the configuration of the point
cloud visualization setup (see Figure 6.6b). This is essential for the pilot
as the processed point clouds that result from the intermediate steps of the
perception pipeline carry valuable information which can in some cases
support the pilot’s understanding of the scene.
In the point cloud visualization setup widget, the pilot can enable, disable and
configure the visualization of the point clouds generated in all pipeline steps.
This includes the original captured point cloud, the globally transformed
captured point cloud, the filtered (i. e. down-sampled) captured point cloud,
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the segmented point cloud and the final point cloud with geometric primi-
tive labels. Some of these point clouds are labeled which is appropriately
displayed by the visualization component.

Figure 6.5: Pipeline control and status overview component of the pilot interface (Widget A in
Figure 6.4).

(a) (b)

Figure 6.6: Point cloud visualization setup and camera images (Widget B in Figure 6.4): (a)
Simulated camera images in the exemplary kitchen environment (see Figure 6.3)
and (b) widget for point cloud visualization setup.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.7: Different visualization configurations in the pilot interface (Widget C in Figure 6.4):
(a) no visualization, (b) the captured point cloud, (c) the segmented point cloud, (d)
extracted primitives as labeled point cloud, (e) extracted primitives as 3D shapes,
(f) combined visualization of the captured point cloud and extracted primitives,
(g) affordance belief function ΘG-Platform for platform graspability, (h) affordance
belief function ΘSupport for supportability and (i) affordance belief function ΘLean
for leanability.
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3D Visualization of the Robot Perception (C) The main component of
the pilot interface is the 3D visualization of the robot perception. This
includes the robot itself in its current configuration and everything the robot
sensed and learned about its environment using the affordance detection and
validation system. By using the widgets for point cloud visualization setup
(B) and affordance selection (D), the pilot is able to efficiently tailor a custom
visualization that conveniently displays the information needed to interpret
the current robot environment. Figure 6.7 displays different visualization
setups that can be configured in the pilot interface. The camera can be freely
adjusted by the pilot in all visualization setups.

Figure 6.8: List of detected affordances and corresponding OACs (Widget D in Figure 6.4).
In the depicted state, the OAC Prismatic Grasp is selected based on a detected
prismatic graspability affordance (G-Pr) for a planar primitive (Plane #2). After
selection, automatically proposed end-effector poses are visualized in the 3D scene
allowing the pilot to review and adjust the OAC parameterization.

Affordances and OACs (D) The top right component of the pilot interface
displays the detected affordances (see Figure 6.8). The pilot is able to select
among the presented affordances in order to obtain a visualization of the
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corresponding affordance belief function. Furthermore, the pilot can interac-
tively select a primitive in the 3D visualization and obtain a list of affordances
that exist for the selected primitive. Depending on the detected affordances,
the pilot interface automatically proposes related action execution strategies,
i. e. OACs, from the robot’s long-term memory. The pilot can select one of
the proposed OACs and is then presented a visualization of its automatically
determined parameterization, particularly the end-effector poses.

OAC Parameter Configuration and Execution (E) In the bottom-right
corner of the pilot interface, the pilot is presented an automatically determined
parameterization for the selected OAC (see Figure 6.9). Each OAC requires
an individual set of input parameters that the pilot has to specify while the
most elementary type of parameter is an end-effector pose. Predefined end-
effector poses constrain the considered whole-body action in order to support
subsequent automatic action planning. High-level task-related parameters
cannot be determined based on affordance belief functions and have to be
provided by the pilot. The evaluation of affordance belief functions generated
by the affordance detection system produces a list of end-effector poses with
assigned belief values. Further feasibility checks, such as reachability tests,
are performed by the pilot interface in order to provide the pilot with a
restricted set of good suggestions for end-effector poses.

Figure 6.9: Widget for the display and configuration of OAC parameters (left, Widget E in
Figure 6.4) and the adjustment of automatically proposed end-effector poses in the
3D visualization (right) (taken from Kaiser et al. 2016c, © 2016 IEEE).
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The pilot selects an OAC and receives a visualization of the automatically
proposed OAC parameterization which consists of either a single end-effector
pose or two end-effector poses in case of a bimanual OAC. The pilot can
manually adjust the end-effector poses in the 3D environment if the proposed
parameterization is not sufficient (see Figure 6.9). The final step of the pilot
workflow is the execution of the selected OAC. The pilot receives feedback
on the progress of the OAC execution in terms of a simple status report (in
progress, success or failed) and in terms of the robot’s self perception during
action execution.

6.3 Summary and Review

This chapter introduced and discussed concepts for affordance-based
autonomy and affordance-based shared autonomy based on the coupling of
the affordance detection system defined in Chapter 4 and Chapter 5 with the
concept of OACs for action execution. OACs provide the necessary means
for linking execution skills with symbolic planning domains needed for
autonomous task and action planning.
The concept of affordance-based shared autonomy, which leverages the chal-
lenging tasks of task and action planning to a human pilot, is complemented
by the implementation of an affordance-based pilot interface within the robot
development environment ArmarX. The pilot interface allows the shared
autonomous control of a humanoid robot based on detected geometric primi-
tives and derived affordances. It can be applied to the control of a simulated
robot as well as to the control of a real humanoid robot by using the layers
of abstraction provided by ArmarX. In Chapter 7, the pilot interface will
be a central component enabling affordance-related experiments on the real
humanoid robots ARMAR-III and WALK-MAN.
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The methods developed in this thesis are evaluated in several synthetic, simu-
lated and real experiments which are presented and discussed in this chapter.
Parts of the evaluation experiments and results have been published in Kaiser
et al. (2015a,b, 2016a,c, 2018a,b). While the synthetic experiments intro-
duced in Section 7.1 aim at the evaluation of the fundamental mechanisms of
evidence fusion, the simulated and real experiments introduced in Section 7.2
and Section 7.3 aim at the evaluation of the affordance detection and valida-
tion system as a whole. In the following, the three classes of experiments are
briefly introduced.

Synthetic Experiments The first set of experiments, which is presented
and discussed in in Section 7.1, aims at the evaluation of affordance belief
functions and the associated mechanisms for affordance-related evidence
fusion as the fundamental building block of the affordance detection and vali-
dation system. The synthetic experiments are performed in artificial setups, in
which joint affordance belief functions generated from the fusion of multiple
observations are compared against randomly generated ground-truth affor-
dances. The central question is if affordance belief functions composed of
several iterative observations provide adequate means for accurately resem-
bling available action possibilities.

Simulated Experiments After evaluating the formalism of affordance
belief functions, two simulated experiments are presented and discussed in
Section 7.2. The first experiment in Section 7.2.1 evaluates the affordance
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detection and validation system as a whole in a dynamic simulation envi-
ronment. In the simulated experiment, the humanoid robot ARMAR-III
is exposed to a kitchen environment, for which initial affordance belief is
generated based on simulated visual perception. Subsequently the robot
performs affordance validation experiments in order to validate the initial
hypotheses, iteratively refining the belief about prismatic graspability affor-
dances. In the second experiment in Section 7.2.2, the integration of the
affordance detection system with an existing approach for whole-body pose
sequence planning from Mandery et al. (2016) is briefly discussed and evalu-
ated in order to demonstrate the feasibility of affordance-based multi-contact
locomotion pose sequence planning for the humanoid robot ARMAR-4.
The established link between affordance belief functions and whole-body
pose sequence planning is an important prerequisite for affordance-based
locomotion planning.

Real Experiments Section 7.3 discusses the results of multiple affordance
detection and validation experiments on real humanoid robots in different
scenarios. The validation of novel approaches on real hardware is important
in robotics as it demonstrates the conceptual and computational feasibility
of the approaches and their ability to handle inaccurate and noisy sensor
data. Furthermore, the experimental validation of the proposed concepts on
different robots is essential in order to demonstrate their generality and robot-
agnosticism. The experiments have been conducted on the real humanoid
robots ARMAR-III and WALK-MAN.

Performance Measurements Finally, after the different evaluation exper-
iments are discussed, Section 7.4 presents the results of performance measure-
ments of the different steps of the H2T perception pipeline and the affordance
detection system in several exemplary scenes.
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7.1 Synthetic Experiments

This section presents the evaluation of the fundamental building block of the
affordance detection and validation system: affordance belief functions and
the associated principles of evidence fusion as introduced in Chapter 4. The
evaluation experiments presented in this section are performed in synthetic
setups based on randomized ground-truth affordances which are generated
as described in Section 7.1.1. After introducing the evaluation method-
ology in Section 7.1.2, generated ground-truth affordances are employed in
Section 7.1.3 for assessing the quality of affordance belief functions resulting
from iterative evidence fusion of equidistant observations. In Section 7.1.4,
a more realistic strategy is employed and evaluated, in which observation
locations are determined based on a combined measure of uncertainty and
conflict. In the interest of visualization, the spaces of end-effector positions
and orientations are evaluated separately, both in 2D. Parts of this section are
extended versions of the experimental evaluation published in Kaiser et al.
(2018a).

7.1.1 Ground-Truth Affordances

Ground-truth affordances g determine the locations for which an hypothe-
sized affordance exists. This information is used for generating observations
and it is the implicit task of the evidence fusion mechanism to appropriately
approximate the ground-truth affordance through iterative fusion of obser-
vations. While ground-truth affordances g and affordance belief functions
Θ share the same definition space of end-effector poses, the image set of
ground-truth affordances is binary, indicating the true existence of the hypoth-
esized affordance or its absence. For positions, ground-truth affordances gpos

are defined over a planar, square primitive with side lengths of [−1,1]:

gpos : [−1,1]× [−1,1]→{0,1}. (7.1)
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In the case of orientations, ground-truth affordances grot are defined over the
2D spherical coordinates1 θ ∈ [0,π] and φ ∈ [0,2π]:

grot : [0,π]× [0,2π)→{0,1}. (7.2)

Ground-truth affordances are generated as intersections of randomly sampled
half-spaces2 as outlined in Algorithm 2. The definition of ground-truth affor-
dances as intersections of randomly generated half-spaces leads to convex
affordance polygons in the ground-truth data. In order to avoid degenerated
ground-truth affordances with very small areas of affordance existence or
non-existence, generated ground-truth affordances are rejected if one of the
two classes covers less than 20% of the definition space. In the following
evaluation experiments, the positional and orientational definition spaces of
affordance belief functions and ground-truth affordances are discretized into
200×200 grids and 100×200 grids, respectively. The maximum number
of half-spaces to intersect was set to four. See Figure 7.1 for visualizations
of multiple randomly generated ground-truth affordances for the space of
end-effector positions.

7.1.2 Methodology

The synthetic evaluation experiments target the formalism of evidence fusion
in affordance belief functions based on the principles of the Dempster-Shafer
theory. The evidence fusion formalism as introduced in Section 4.3 provides

1 Spherical coordinates represent points in the three-dimensional space by a triplet (r,θ ,φ),
containing the radial distance r from a given origin, the polar angle θ and the azimuth angle
φ . In order to obtain unique coordinates, the angular components are constrained to θ ∈ [0,π]
and φ ∈ [0,2π), while other conventions exist. For representing 2D orientations from SO(2),
the value r is omitted in the above considerations, i. e. r = 0.

2 A hyperplane splits an affine space into two half-spaces. In the case of the two-dimensional
Euclidean space R2, a line n ·x = c with normal n ∈ R2 and distance c ∈ R to the origin
splits the space into the half-spaces H1 = {x∈R2 |n ·x≤ c} and H2 = {x∈R2 |n ·x> c}.
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the means for consistent fusion of affordance-related observations. The
primary question which is investigated in this evaluation experiment is:

Does the proposed formalism allow the consistent combination

of affordance-related evidence into joint affordance belief

functions which approximate randomly generated ground-truth

affordances?

In the evaluation experiments, K observations ω1, . . . ,ωK are selected from a
randomly generated ground-truth affordance g. Two strategies for observation
location selection are employed in the evaluation experiments: observation
location selection based on an equidistant grid (Section 7.1.3) and observation
location selection based on a combined measure of uncertainty and conflict
(Section 7.1.4). In either of the cases, the formalism for evidence fusion
based on spatially generalized observations (see Section 4.3) is employed for
deriving a joint affordance belief function b = ω1⊕·· ·⊕ωK .
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Figure 7.1: Examples for randomized ground-truth affordances for 2D end-effector positions
on a planar square primitive. Green areas indicate the existence of the affordance,
while red areas indicate the absence of the affordance.

For comparing Dempster-Shafer-valued joint belief functions b (i. e. b(x) ∈
D) with binary ground-truth affordances g (i. e. g(x) ∈ {0,1}), the belief
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functions are binarized by applying a threshold of 1
2 to the expected proba-

bility Ea (see Equation 4.15).

Algorithm 2 Randomized Ground-Truth Affordance Generation

Require:
D⊂ R2 – Discretized definition space
maxHalfSpaces – Maximum number of half-spaces

1: function GENERATEGROUNDTRUTHAFFORDANCE(D, maxHalfS-
paces)

2: while True do
3: g← Empty map
4: for x ∈ D do
5: gx← 1
6: end for

7: N← uniformChoice({1, . . . ,maxHalfSpaces})
8: for i ∈ 1, . . . ,N do
9: r← uniformChoice(D)

10: s← uniformChoice({0,1})

11: n← 1
‖r‖r

12: c←‖r‖

13: for x ∈ D do

14: gx← gx∧

{
s, if n ·x≤ c.
1− s, otherwise.

15: end for
16: end for

17: α+← |{x∈D | gx=1}|
|D|

18: α−← |{x∈D | gx=0}|
|D|

19: if α+ ≥ 0.2 and α− ≥ 0.2 then
20: return g
21: end if
22: end while
23: end function
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Figure 7.2: A joint affordance belief function generated from a set of 25 observations: (a)
ground-truth affordance, (b) observations, (c) joint affordance belief function and
(d) binarized joint affordance belief function. The joint affordance belief function
receives an F1 score of 0.98. See Figure 4.4 for further details on the visualization
method.

The conversion to a binary decision function is necessary in order to comply
with the formal definitions in Chapter 4.

[b]a(x) =

a+, if Ea
(
b(x,a+)

)
≥ 1

2

a−, otherwise.
(7.3)

The index a in the above equation refers to the affordance which is repre-
sented by the ground-truth affordance g. In the interest of simplicity, [b]a
and [g]a are abbreviated as b and g, implicitly referring to binarized belief
function related to the hypothesized affordance a given in the evaluation
scenario. To quantify the degree of similarity between b and g, the evaluation
experiments employ the macro-averaged F1-measure (Sokolova et al. 2009):

F1(b,g) =
Precision(b,g) ·Recall(b,g)

Precision(b,g)+Recall(b,g)
, (7.4)

with

Precision(b,g) =
1
2

(
TPb,g,a+

TPb,g,a+ +FPb,g,a+
+

TPb,g,a−

TPb,g,a− +FPb,g,a−

)
, (7.5)
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and

Recall(b,g) =
1
2

(
TPb,g,a+

TPb,g,a+ +FNb,g,a+
+

TPb,g,a−

TPb,g,a− +FNb,g,a−

)
, (7.6)

where TPb,g,a± , FPb,g,a± and FNb,g,a± refer to the amount of true positives,
false positives and false negatives in the discretized belief functions with
respect to the existence statement a±.

7.1.3 Evidence Fusion with Equidistant Observations

In this evaluation experiment, observations are sampled on an equidistant
grid in the definition space [−1,1]× [−1,1] of affordance belief functions
(see Equation 7.1). Figure 7.2 shows an example for a set of 25 observations
generated from a ground-truth affordance over the space of 2D end-effector
positions and the resulting joint affordance belief function. The results in
Figure 7.3 show the averaged F1-score (Equation 7.4) together with the aver-
aged conflict Θa(x,a+) ·Θa(x,a−) and the averaged uncertainty Θa(x,Xa)

over the numbers of generated observations. Section 4.3.2 introduces the
concept of spatial generalization of selective observations by means of a Gaus-
sian distribution in the positional space and a von Mises-Fisher distribution
in the orientational space. As the standard deviation σ of the employed distri-
bution has an influence on the evidence fusion, Figure 7.3 contains multiple
plots for different values of σ . The results suggest that the formalism for
evidence fusion in affordance belief functions based on selective observations
as proposed in Section 4.3.2 can produce joint affordance belief functions
that accurately represent the hypothesized ground-truth affordance. For small
standard deviations σ ∈ {0.05,0.1}, observations have little spatial influence
and hence, the overall degree of conflict is low while a high degree of uncer-
tainty remains. Larger standard deviations show better performance in spatial
generalization of observations by reducing the degree of uncertainty while at
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the same time moderately increasing conflict. Too large standard deviations
(σ = 0.8) show poor approximation behavior with F1-scores lower than 0.8.
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Figure 7.3: Average F1-scores of joint affordance belief functions resulting from the fusion
of 1, 4, 16, 25, 36, 49, 64, 81 and 100 grid-aligned observations (x-axes) in a 2D
position space for different standard deviations σ which model the spatial extension
of observations. Each result has been averaged over 400 randomly generated ground-
truth affordances (see Algorithm 2).

The results suggest that the choice of σ modeling the spatial extension of
observations is a trade-off between ground-truth approximation and spatial
generalization. Obviously, the choice of the parameter σ depends on the
intended density of validation experiments. Further experiments have shown
that changes in the observation certainty η (see Section 4.3.2) do not have a
significant impact on the approximation behavior.

7.1.4 Uncertainty and Conflict for Observation
Location Selection

The evaluation experiment discussed in the previous section demonstrates
that the mechanisms of evidence fusion proposed in Section 4.3 provide
the means for accurately approximating ground-truth affordances based on
the fusion of observations. However, in the experiment, the observation
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locations are sampled on a uniform grid in the 2D end-effector position space
which is not suitable for practical affordance validation experiments. In real
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applications, the next observation location needs to be determined based on
the existing belief state, i. e. validation experiments should be performed for
end-effector poses for which the belief state exhibits either a high degree
uncertainty or a high degree of conflict. In this section, a measure Ca(x)

is proposed and employed for observation location selection which solely
considers uncertainty and conflict:

Ca(x) = Θa(x,Xa)︸ ︷︷ ︸
Uncertainty

+Θa(x,a+) ·Θa(x,a−)︸ ︷︷ ︸
Conflict

. (7.7)

The algorithm for sampling observation locations evaluates this measure
for all end-effector poses x and randomly selects a pose xobs among the
subset of the 25% highest-ranked poses x based on the corresponding values
of Ca(x). The observation sampling strategy outlined in Algorithm 3 is
defined in a way that uncertainty and conflict are appropriately considered
while maintaining a certain degree of randomness in the observation location
selection. However, it is not claimed that Algorithm 3 implements an optimal
strategy. Figure 7.4 shows a set of exemplary ground-truth affordances with
different numbers of observations sampled using Algorithm 3 together with
the resulting joint affordance belief function in its original and binarized
form.

Evidence Fusion for End-Effector Positions Figure 7.5 shows averaged
F1 scores of joint affordance belief functions for end-effector positions over
increasing numbers of generated observations. The results indicate that
affordance belief functions are able to resemble ground-truth affordances by
fusing spatially distributed observations ω with decent accuracy.
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Figure 7.4: Evaluation of evidence fusion in affordance belief functions based on varying
numbers of generated observations. First column: ground-truth affordances, second
column: observations, third column: joint affordance belief functions and fourth
column: binarized joint affordance belief functions. From top to bottom the examples
receive the F1 scores 0.84, 0.88, 0.95, 0.93 and 0.96. Joint affordance belief func-
tions composed from fewer observations (top rows) are visualized in lighter colors,
because they include higher degrees of uncertainty as joint affordance belief func-
tions composed from large numbers of observations (bottom rows). See Figure 4.4
for further details on the visualization method.
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information for an exact reconstruction of the ground-truth affordance, the
evaluation shows that higher accuracy can be obtained by the fusion of
more observations. The visualizations in Figure 7.4 as well as the system
evaluation in Section 7.2.1 further suggest that moderate accuracy is sufficient
for the purpose of whole-body affordance detection. This is particularly true
as extensive observations such as visual affordance detection provide prior
belief in real applications. The results show that the average uncertainty
Θ(Xa) decreases with the growing number of observations, indicating that
the system belief converges against a state of high certainty. Further, the
average conflict Θ(a+) ·Θ(a−) moderately increases with the number of
observations which is expected as the fusion of contradicting evidence causes
conflict.

Algorithm 3 Generation of Validation Observation Locations

Require:
b – Joint affordance belief function
g – Ground-truth affordance
S – End-effector pose space

1: function GENERATEOBSERVATIONLOCATION(b, g, S)
2: Ξ← sortDescending

(
(x)x∈S, key =Ca

)
3: i← uniformChoice

({
0, . . . ,

⌈
0.25 · |Ξsorted|

⌉})
4: return Ξi
5: end function

Evidence Fusion for End-Effector Orientations A similar evaluation
procedure demonstrates the effectiveness of evidence fusion in the orienta-
tional components of end-effector poses. An exemplary evaluation has been
performed in the space of 2D end-effector poses SO(2), employing the von
Mises-Fisher distribution as explained in Section 4.3. Ground-truth affor-
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In the experiments, an F1 score greater than 0.8 was obtained from few
observations. Although small numbers of observations do not provide enough
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Algorithm 2 and exemplarily visualized in Figure 7.6, while using the space
of 2D spherical coordinates (θ ,φ) ∈ [0,π]× [0,2π) as a basis.
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Figure 7.5: F1-scores of joint affordance belief functions resulting from the fusion of up to 15
observations (x-axis) in a 2D position space, each averaged over 400 randomized
runs (taken from Kaiser et al. 2018a, © 2018 IEEE).

Figure 7.7 shows averaged F1 scores of the obtained joint belief functions
for end-effector orientations over increasing numbers of observations. The
results for the 2D orientation space are similar to those for the 2D position
space shown in Figure 7.5. The results overall suggest that the iterative
fusion of observations is a suitable approach for approximating ground-truth
affordance belief functions. While the number of observations is not sufficient
for an exact approximation, the results indicate that few observations together
with prior belief from visual affordance detection can produce accurate belief
about affordances.

7.2 Simulated Experiments

In this section, the proposed affordance detection and validation system is
evaluated in simulated environments. The focus of experiments in this section
lies on the evaluation of the system as a whole rather than the evaluation of
individual system components as in the previous section.
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Figure 7.6: Examples for evidence fusion in affordance belief functions defined over the space
SO(2) of 2D orientations based on varying numbers of generated observations. First
column: ground-truth affordances, second column: observations, third column: joint
affordance belief functions and fourth column: binarized joint affordance belief
functions. From top to bottom the shown examples receive the F1 scores 0.24, 0.66
and 0.97.
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Figure 7.7: F1-scores of joint affordance belief functions resulting from the fusion of up to 15
observations (x-axis) in a 2D orientation space, each averaged over 400 randomized
runs (taken from Kaiser et al. 2018a, © 2018 IEEE).

In the following, two evaluation experiments are introduced and discussed
concerning the detection and validation of prismatic graspability affordances
with ARMAR-III in a dynamic simulation environment (Section 7.2.1) and
the detection of supportability affordances for whole-body multi-contact pose
sequence planning with ARMAR-4 in a kinematic simulation environment
(Section 7.2.2).

7.2.1 Evaluation of Autonomous Affordance
Detection and Validation

The principles of autonomous affordance detection and validation are eval-
uated using the simulated humanoid robot ARMAR-III in a sophisticated
dynamic simulation environment. Evaluating the system performance in
realistic applications, even when simulated environments are considered, is
difficult as humanoid robotic systems are complex combinations of orthog-
onal, but critical subsystems. The responsibilities of these subsystems range
from sensor perception and motion control to high-level planning, each of
which being active research areas in the humanoid robotics community.
With the intention of reducing the influence of error-prone subsystems,
ARMAR-III was chosen as a passively stable platform-based humanoid
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robot (see Figure 1.3). In this section, the affordance detection and validation
system is evaluated in the dynamic simulation of a kitchen environment using
ARMAR-III.
Large portions of whole-body actions, particularly in the context of loco-
manipulation tasks, require legged humanoid systems and hence exceed
the capabilities of ARMAR-III. This section is an extended versions of
the experimental evaluation published in Kaiser et al. (2018a). However,
the focus of this evaluation lies in the visual perception and interactive
validation of affordances which can be found in a kitchen environment.
Figure 7.8 shows the dynamic simulation of the H2T robot kitchen. In
this simulation environment, all doors and drawers can be manipulated by
the robot and simulated sensor feedback, e. g. from force-torque sensors,
is available. Furthermore, simulated RGB and RGB-D camera images are
generated and used as input for the H2T perception pipeline introduced in
Section 3.1.

Figure 7.8: ARMAR-III in a dynamic simulation of a kitchen environment. The simulated
kitchen contains 37 joints which can be operated by the robot, e. g. the fridge door
or the kitchen drawers.
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(a) (b)

(c) (d)

Figure 7.9: Extraction of geometric primitives in a kitchen environment: (a) a part of the
simulated point cloud of the kitchen environment, (b) the manually created segmen-
tation, (c) geometric primitives extracted from the segmented point cloud and (d) a
combined view of extracted primitives with the original point cloud.

Experimental Setup and Results In this evaluation scenario, the affor-
dance detection and validation system is evaluated in a dynamic simula-
tion environment using the humanoid robot ARMAR-III. In the evaluation
scenario, visual scene perception is simulated by passing a segmented point
cloud of the kitchen environment to the H2T perception pipeline which
subsequently extracts geometric primitives and then evaluates the affordance
hierarchy. Figure 7.9 visualizes the extraction of geometric primitives from
the simulated kitchen point cloud based on a manually created segmentation.
In Figure 7.10, the following affordance belief functions are visualized for
the full kitchen environment:

• ΘG-Prismatic for prismatic graspability (Figure 7.10c);

• ΘG-Platform for platform graspability (Figure 7.10d);
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• ΘLean for leanability (Figure 7.10e);

• ΘSupport for supportability (Figure 7.10f);

• ΘPush for pushability (Figure 7.10g);

• ΘPull for pullability (Figure 7.10h).

Based on the visualization of ΘG-Prismatic in Figure 7.10c, it can be seen that
the affordance detection system assigns high belief for prismatic graspability

to primitive edges. While this includes important elements of interaction in
the kitchen, particularly the available handles, it can be seen that other areas
of high belief are false positives. These end-effector poses will largely be
rejected during validation experiments. This particularly applies to primitive
edges which are unreachable for the robot, e. g. very low primitives, but also
to connecting edges between primitives. The H2T perception pipeline has
no information about inter-primitive relations and can therefore not properly
distinguish between graspable primitive edges and corners. While the robot’s
ability to grasp such corners is debatable, prismatic graspability is largely
rejected for these cases during interactive affordance validation.
The affordance belief function ΘG-Platform for platform graspability indicates
predominant applicability to the inner areas of large planar primitives, making
it complementary to prismatic graspability. Another pair of complementary
affordance belief functions is leanability ΘLean, indicating applicability to
vertical planar primitives, and supportability ΘSupport, indicating applicability
to horizontal planar primitives. The visualization of pullability ΘPull and
pushability ΘPush shows that the affordance detection system successfully
identifies the kitchen handles as interesting areas for interaction.
In the evaluation experiment, the robot generates the affordance belief func-
tion ΘG-Prismatic for prismatic graspability, leading to the initial belief shown
in Figure 7.10c. The robot then successively selects end-effector poses based
on a combined measure of uncertainty and conflict (see Equation 7.7) and
executes affordance-specific validation actions.
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(a) Point cloud (b) Geometric primitives

(c) ΘG-Prismatic (d) ΘG-Platform

(e) ΘLean (f) ΘSupport

(g) ΘPush (h) ΘPull

Figure 7.10: Visualization of different affordance belief functions in the simulated kitchen
environment according to the visualization scheme introduced in Figure 4.4. In
the interest of a clear visualization, end-effector poses x ∈ SE(3) with expected
probability E(Θ∗(x))< 0.5 are omitted.
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Vision After 40 Observations After 70 Observations

After 100 Observations After 130 Observations After 160 Observations

After 190 Observations After 220 Observations After 250 Observations

Figure 7.11: Visualization of the affordance belief function ΘG-Prismatic for prismatic graspability
in different stages of the evaluation (adapted from Kaiser et al. 2018a, © 2018 IEEE).
Validation experiments predominantly reduce the amount of false positives, e. g.
the handles of low drawers which are unreachable for the robot. Belief in prismatic
graspability increases, e. g. for the vertical cupboard handles on the left side,
if validation experiments succeed. Affordance belief functions are visualized
according to the color scheme shown in Figure 4.4.

The results of executed validation actions are used as additional observations
ω for evidence fusion. The evaluation is performed for prismatic graspa-

bility affordances, while the resulting joint affordance belief functions are
compared to a manually created ground-truth.
The results depicted in Figure 7.11 and Figure 7.12 show that the degree
of uncertainty in the affordance belief functions decreases with the number
of observations. The results further demonstrate that the robot can grad-
ually improve the initial belief from visual affordance detection which is
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already relatively accurate (F1 > 0.6), by performing consecutive affordance
validation experiments. It needs to be noted that, although affordance vali-
dation is an important aspect of the affordance detection and validation
system, validation experiments are expensive. Hence, the excessive amount
of validation experiments carried out in this evaluation scenario, although
providing a suitable validation of the evidence fusion formalism, does not
qualify as a general strategy for affordance-based autonomy. In real applica-
tions, autonomous and shared autonomous humanoid robots are intended to
perform individual validation experiments in cases of high risk or uncertainty,
possibly demanded by a human pilot.

50 100 150 200 250
Number of Observations

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

su
re

Positive Decision Rate
Uncertainty
F1 Score
F1 Score (Positives)
F1 Score (Negatives)
Conflict

Figure 7.12: Validation of visually detected prismatic graspability affordances through consec-
utive validation experiments in a simulated kitchen environment (adapted from
Kaiser et al. 2018a, © 2018 IEEE).

7.2.2 Affordance-Based Planning of Whole-Body
Multi-Contact Pose Sequences

While the formalization of the affordance concept proposed in Chapter 4 is
able to represent various types of affordances, the subsequently introduced
affordance hierarchy described in Chapter 5 aims at the representation of
whole-body affordances. Section 7.2.1 discussed a simulated experiment that
evaluates the mechanisms of interactive affordance validation and evidence
fusion. While the whole-body affordance hierarchy is used in the experiment,
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its intended focus on loco-manipulation actions is neglected. In this section,
the whole-body multi-contact pose sequence planner from Mandery et al.
(2015a, 2016) is extended in order to generate pose sequences based on
affordance belief functions obtained in unknown environments. An extended
version of this section is found in Kaiser et al. (2018b), where the experiment
and the underlying conceptual foundations are explained. The employed
multi-contact pose sequence planner uses n-gram language models learned
from human observation to describe support pose transitions. The employed
human motion demonstrations are taken from the large-scale KIT Human

Motion Database3 (Mandery et al. 2015b). It has previously been evaluated
in known environments with predefined contact opportunities (Mandery et al.
2015a, 2016).
The proposed combination of whole-body affordance detection and pose
sequence planning is evaluated based on a set of four exemplary hallway
scenarios with different arrangements of tables (see Figure 7.13). The tables
provide opportunities for supporting hand contacts along a defined locomo-
tion path. The scenes, which are assumed to be entirely unknown to the robot,
are represented as registered point clouds captured using an ASUS Xtion Pro

sensor. In this evaluation scenario, the proposed approach is employed to
plan pose sequences for walking with supporting end-effector contacts for the
humanoid robot ARMAR-4. Figure 7.13 also shows the geometric primitives
extracted from the scenes. All considered examples define the target loco-
motion trajectory as a straight path along the hallway. The trajectories are
chosen such that sequences of contact and non-contact phases with the same
end-effector (Scenario 1a and Scenario 2), unreachable contact opportunities
(Scenario 1b), as well as sequences of simultaneous or alternating contact
phases with both end-effectors (Scenario 3 and Scenario 4) are considered.
In all evaluation scenarios, the locomotion is defined to start and stop in a
neutral double-foot support pose.

3 https://motion-database.humanoids.kit.edu

168

https://motion-database.humanoids.kit.edu


7.2 Simulated Experiments

Scenario 1a/1b Scenario 2 Scenario 3 Scenario 4

Figure 7.13: Top row: Four evaluation scenarios for walking with support contact opportunities
composed from different arrangements of tables in a hallway. The scenes are
represented as registered point clouds. Bottom row: Visualization of geometric
primitives obtained from the evaluation scenarios and the defined straight locomo-
tion trajectories (taken from Kaiser et al. 2018b, © 2018 IEEE).

For model training, the dataset from Mandery et al. (2016) is used, consisting
of 137 human motion recordings from the KIT Whole-Body Human Motion

Database4 (Mandery et al. 2015b). These recordings represent walking
motions, in which different supportability affordances from handrails and
tables have been used during motion demonstrations. The employed dataset
is symmetric with respect to left and right hand supports. The multi-contact
pose sequence planner employs a penalty term for missed contact opportuni-
ties in order to maximize contact utilization in generated solution paths.

4 The motions can be found at https:
//motion-database.humanoids.kit.edu/details/motions/<ID> with
ID ∈ {395,396,677,678,679,681,705,724}.
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Pose #5 Pose #10 Pose #15 Pose #25 Pose #35

Pose #6 Pose #12 Pose #17 Pose #23 Pose #30

Pose #5 Pose #14 Pose #21 Pose #27 Pose #31

Pose #9 Pose #14 Pose #19 Pose #25 Pose #31

Figure 7.14: Solution paths for the humanoid robot ARMAR-4 in the evaluation scenarios 1a
(first row), 2 (second row), 3 (third row) and 4 (fourth row) (taken from Kaiser
et al. 2018b, © 2018 IEEE). See Figure 7.13 for descriptions of the scenario setups.
The affordance belief function ΘSupport is visualized in the leftmost pictures in
which support contact opportunities are highlighted in green color. Note that the
presented solutions are sequences of whole-body poses with end-effector contact
information and do not represent motion trajectories.
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The proposed affordance-based pose sequence planner is able to successfully
find pose sequences for ARMAR-4 with appropriate utilization of environ-
mental support opportunities in all evaluated scenarios. The solution pose
sequences generated for the evaluation scenarios 1a, 2, 3 and 4 are visualized
in Figure 7.14, where selected intermediate robot poses are depicted with end-
effector contact indicated by red highlighting. The detected supportability

affordance belief functions are visualized as green areas in the respective first
pictures. The examples demonstrate that the affordance-based pose sequence
planner is able to produce meaningful multi-contact poses for crucial points
in a desired whole-body locomotion trajectory which can be used for subdi-
viding the subsequent problem of whole-body motion planning into multiple
computationally feasible subproblems.

7.3 Real Experiments

While the results of the synthetic and simulated evaluation experiments
presented in the previous sections suggest that the affordance system can
be successfully deployed on autonomous and shared autonomous humanoid
robots in various scenarios, the applicability to real robots still needs to
be demonstrated as the differences between simulation and reality can be
enormous. In this section, the affordance detection and validation system
is evaluated on different humanoid robots in different realistic scenarios.
This includes the detection of bimanual affordances for valve-turning with
ARMAR-III (Section 7.3.1), the detection and validation of pushability and
liftability affordances for path clearance with ARMAR-III (Section 7.3.2)
and the execution of object-removal and valve-turning actions using the
affordance-based pilot interface for shared autonomous control with WALK-
MAN (Section 7.3.3).
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7.3.1 Experiment I: Bimanual Valve-Turning

In the first experiment, the humanoid robot ARMAR-III is confronted with
a DRC-inspired experimental setup of valve-turning. Turning an industrial
valve has been defined as one of the challenges in the DRC and has there-
fore evolved into a popular scenario for testing humanoid robotic skills in
perception and action execution. This section is an extended version of the
experimental evaluation published in Kaiser et al. (2016a). The experimental
setup is depicted in Figure 7.15.

Figure 7.15: The experiment of valve-turning using the humanoid robot ARMAR-III. The
robot is requested to autonomously perceive the unknown environment and to
detect available affordances in the constructed environmental model. Affordance
candidates for bimanual turning are then selected and a respective OAC is executed.

In the first phase of the experiment, the robot needs to perceive the unknown
environment in order to construct an environmental model in terms of
geometric primitives. This step employs the H2T perception pipeline
discussed in Section 3.1. Figure 7.16 shows the experimental situation
together with a visualization of the robot’s environmental perception. The
perception pipeline successfully identifies two predominant primitives in the
scene, representing the valve and the wall. Both of these primitives are planar,
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the primitive representing the valve however receives a high circularity
score (circular(p) ≈ 1). In this exemplary situation of valve-turning, the
robot needs to autonomously detect bimanual turnability affordances (see
Section 5.4) which are defined based on unimanual turnability affordances
(see Section 5.3) in the affordance hierarchy.

Figure 7.16: ARMAR-III perceives an unknown environment in a valve-turning scenario (taken
from Kaiser et al. 2016a, © 2016 IEEE). Left: The robot’s perceptual knowledge
state. Two predominant geometric primitives are detected representing the valve
and the wall, respectively. Right: The actual experimental situation of the robot.

See Figure 7.17 for a visualization of the hierarchical composition of the
affordance belief function ΘTurn for unimanual turning which requires the
existence of a circular shaped primitive. In order to circumvent the problem of
high-level planning (see Section 6.1), the robot is provided with a preference
for automatically executing OACs related to bimanual turnability affordances.
The affordance detection system successfully identifies the valve as turnable
and proposes a bimanual turnability affordance. With the detection of the
affordance and the generation of the associated affordance belief function
ΘBi-Turn, bimanual end-effector poses are automatically suggested, which are
visualized as green hands in Figure 7.18.
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Figure 7.17: The composition of unimanual turnability ΘTurn(x) based on prismatic gras-
pability ΘG-Prismatic(x) in combination with a circular shape of the primitive p
expressed in ΘRound and estimated primitive mobility expressed in ΘMovable.

In the final step, the OAC for bimanual turning associated with the bimanual

turnability affordance is executed based on the provided end-effector pose
selection (see Figure 7.19). The execution program of the OAC for bimanual
turning implements a general bimanual end-effector trajectory for the reactive
turning of medium-sized objects, parameterized only by the end-effector
poses provided by the affordance system. Task-specific parameterization,
such as the turning angle or force thresholds, have been predefined in this
scenario.

7.3.2 Experiment II: Validation of Pushability and
Liftability Affordances

This section describes an experiment carried out on the humanoid robot
ARMAR-III, demonstrating the detection and validation of affordance
hypotheses for pushability and liftability. In the experiment ARMAR-III is
facing a cluttered arrangement of different obstacles that block its way: A
pipe (O1), a chair (O2) and a box (O3).
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Figure 7.18: ARMAR-III detects bimanual turnability for the valve (taken from Kaiser et
al. 2016a, © 2016 IEEE). Left: The robot selects the most credible hypothesis
for bimanual turnability based on the values of the respective affordance belief
function. This selection process automatically suggests suitable end-effector poses
for subsequent action execution (visualized as green hands). Right: The actual
experimental situation of the robot.

Figure 7.19: ARMAR-III bimanually turns the valve based on the detected affordances (taken
from Kaiser et al. 2016a, © 2016 IEEE). Left: Visualization of the robot state and
its perceptual knowledge. Right: The actual experimental situation of the robot.
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Figure 7.20: The experiment of affordance validation using the humanoid robot ARMAR-
III. The robot autonomously perceives its unknown environment by registering
multiple views of the scene and subsequently detects available affordances. Based
on pushability and liftability affordances, the robot is requested to remove blocking
objects O1, O2 and O3. Before action execution, the robot performs validation
actions for validating the generated affordance belief functions.

This section is an extended version of the experimental evaluations published
in Kaiser et al. (2015a,b). The experimental setup is depicted in Figure 7.20.
The robot has no a-priori knowledge on the types or locations of the employed
obstacles. In order to successfully remove the objects, the robot is provided
with a straightforward strategy: Iteratively move to a given initial position in
front of the obstacles, capture multiple snapshots of the scene with different
head orientations and detect affordances in the registered point clouds. Subse-
quently, pick the closest movable primitive, i. e. a primitive that is pushable
or liftable, validate the attributed affordance of pushability or liftability and,
in the case of a successful validation, execute a corresponding OAC for
removing the obstacle. This process is repeated until no further obstacles are
found.
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(a) Detection (b) Validation (c) Execution

Figure 7.21: Left: Detection of the pipe as a liftable cylindrical primitive. Middle: Execution of
the validation OAC associated with the liftability affordance. Right: Execution of
the OAC for object removal associated with the liftability affordance.

The Pipe (O1) Figure 7.21 shows the detection of the pipe (obstacle O1 in
Figure 7.20) as a liftable cylindrical primitive. After detection of liftability,
the robot executes an associated validation OAC which assesses liftability
by attempting a lift and monitoring the wrist forces. If the forces exceed a
defined threshold, the validation is considered failed and the investigated
liftability affordance is marked as invalid. In the case of Figure 7.21, the vali-
dation is successful and the associated OAC for object removal is successfully
executed.

The Chair (O2) Figure 7.22 shows the detection of the chair (obstacle O2
in Figure 7.20) as a pushable planar primitive. As the employed version of the
H2T perception pipeline does not reason about higher semantic structures, the
chair is detected as a planar, pushable backrest. After detection of pushability,
the robot executes an associated validation OAC which assesses pushability
by attempting a push and monitoring the wrist forces. If the forces exceed
a defined threshold, the validation is considered failed and the investigated
pushability affordance is marked as invalid. In the case of Figure 7.22,
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the validation is successful and the associated OAC for object removal is
executed.

(a) Detection (b) Validation (c) Execution

Figure 7.22: Left: Detection of the chair as a pushable planar primitive. Middle: Execution of
the validation OAC associated with the pushability affordance. Right: Execution
of the OAC for object removal associated with the pushability affordance.

(a) Detection (b) Validation (c) Execution

Figure 7.23: Left: Detection of the box as a pushable planar primitive. Middle: Execution of the
validation OAC associated with the pushability affordance. Right: The execution
of the OAC for object removal associated with the pushability affordance is not
initiated as the validation of pushability failed.
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H2T perception pipeline does not reason about higher semantic structures, the
box is detected as one planar, pushable side. In this case, the box is manually
fixed in order to artificially create a false affordance hypothesis. While
executing the associated validation OAC, the robot monitors wrist forces
exceeding a defined threshold, leading to the assumption of a fixed object.
Hence, the validation is considered failed and the investigated pushability

affordance is marked as invalid. In this case, no further action execution is
initiated as pushability is refuted.

Figure 7.24: Detection and validation of leanability affordances for a two-sided door (taken
from Kaiser et al. 2015b, © 2015 World Scientific Publishing Company). The left
side of the door is locked and therefore affords leaning, while the right side of the
door is unlocked and hence does not afford leaning. Based on validation strategies
incorporating wrist force sensing, the robot is able to validate the initial leanability
hypotheses.

Validation of Leanability Affordances Figure 7.24 shows a related exper-
imental setup in which ARMAR-III validates leanability affordances at a
two-sided door. While the left part of the door is locked, the right part is
freely movable. The robot detects both parts of the door as individual planar
primitives with associated leanability affordances and subsequently executes
corresponding validation OACs.
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consecutive experiments have been performed, suggesting that the detec-
tion of geometric primitives and affordances works sufficiently reliable with
real sensor data. The experiment further shows that the validation of affor-
dance hypotheses based on simple sensory cues is possible and allows the
implementation of basic autonomous behavior.

Figure 7.25: The experimental setup consists of several objects blocking the robot’s access to an
industrial valve (T5). The objects are a large, horizontal pipe (T1), a wooden and a
metallic block (T2 and T3) and a wooden board (T4). The experiment has been
performed using the humanoid robot WALK-MAN (top right) (taken from Kaiser
et al. 2016c, © 2016 IEEE).
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7.3.3 Experiment III: Shared Autonomous Pilot Interface

In this section, the affordance-based pilot interface is experimentally evalu-
ated in a DRC-inspired scenario targeting the removal of blocking objects
and the turning of an industrial valve using the humanoid robot WALK-
MAN. Figure 7.25 depicts the complete scenario setup and introduces the
labels T1 to T5 that will be used throughout this section, referring to the
individual objects in the scenario. This section is an extended version of the
experimental evaluations published in Kaiser et al. (2016b,c).
The unknown environment is perceived and processed using the H2T percep-
tion pipeline with the stereo camera system of WALK-MAN5 and resulting
affordances are presented to the pilot via the affordance-based pilot interface
introduced in Section 6.2. The pilot interface allows the application of the
affordance detection and validation system in a shared autonomous fashion,
resulting in a more reliable and robust approach as perceptual shortcom-
ings, e. g. segmentation errors, can be recognized and corrected by the pilot.
The following sections is discuss the actions taken by the pilot in order to
successfully achieve the goal defined in Figure 7.25.

T1: The Pipe In the first task, the pilot needs to remove the long pipe
T1 (see Figure 7.25). The perceptual pipeline successfully identifies the
pipe as a distinct primitive and offers the pilot the option to grasp it. The
object is also assigned a liftability affordance which is related to a number
of different OACs. One of these OACs, termed remove, attempts to lift the
object and subsequently moves and drops it in order to remove it from its
disturbing position. Other OACs could implement different behavior at this
point and would be offered to the pilot in the same way. See Figure 7.26 for
a visualization of the pilot side of this experiment and for snapshots of the
corresponding OAC execution with WALK-MAN.

5 A MultiSense SL head from Carnegie Robotics.
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 7.26: (a)-(c): Snapshots of the pipe removal experiment with WALK-MAN controlled
using the affordance-based pilot interface introduced in Section 6.2. (d)-(f): Visual-
ization of the perceptual process for the experiment. The visualizations shown are:
(d) the raw point cloud obtained by stereo vision, (e) the extracted primitives and
(f) the extracted primitives in a combined view with the point cloud. (g): Suitable
unimanual end-effector pose for action execution (taken from Kaiser et al. 2016c,
© 2016 IEEE)

Note that the generated affordance belief functions are not explicitly visu-
alized in Figure 7.26 and in the following figures. However, the affordance
belief functions are queried for determining the reachable end-effector poses
with the highest attributed belief. In the evaluation experiments, the best
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end-effector pose is automatically proposed by the pilot interface based on
the generated affordance belief functions. The pilot can adjust the proposed
end-effector pose if needed, resulting in the final end-effector pose that is
used for OAC parameterization which is indicated by the visualization of a
colored robot hand in Figure 7.26g.
Figure 7.26e shows that the pipe T1 is misleadingly detected as a planar
primitive instead of a cylinder. This example shows that the affordance detec-
tion system is flexible enough to account for those perceptual inaccuracies
and is still able to offer reasonable affordances and end-effector poses to the
pilot (Figure 7.26g).

(a) (b) (c)

(d) (e) (f)

Figure 7.27: (a)-(c): Snapshots of the humanoid robot WALK-MAN executing a removal OAC
for the block-shaped object T2. (d)-(f): The visualization of the robot perception
for the pilot and the end-effector pose selected by the pilot based on the system’s
proposals (taken from Kaiser et al. 2016c, © 2016 IEEE)
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(a) (b)

(c) (d) (e)

Figure 7.28: (a) and (b): Pictures of the humanoid robot WALK-MAN executing a removal
OAC for the wooden board T4. (c)-(e): The visualization of the robot perception
for the pilot and the end-effector pose selected by the pilot based on the system’s
proposals (taken from Kaiser et al. 2016c, © 2016 IEEE)

T2 and T3: The Blocks Subsequent to the pipe, the pilot needs to
command the robot to remove the two small block-like objects T2 and T3
from the scene. As the employed version of the H2T perception pipeline
does not reason about higher semantic structures, block-shaped objects
result in sets of planar primitives for the visible sides. In this case, the
pilot can apply prismatic grasping to the slim sides of the primitives in the
intention of grasping the entire object. Subsequently, the pilot executes the
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associated OAC for object removal to initiate the action. See Figure 7.27 for
a visualization of the pilot side of this experiment and for snapshots of the
corresponding OAC execution.

(a) (b)

(c) (d) (e)

Figure 7.29: (a) and (b): Snapshots of the humanoid robot WALK-MAN executing a valve-
turning OAC for the industrial valve T5. (c)-(e): The visualization of the robot
perception for the pilot and the end-effector poses selected by the pilot based on
the system’s proposals (taken from Kaiser et al. 2016c, © 2016 IEEE)

T4: The Wooden Board In the next task, a wooden board needs to be
removed that is located directly in front of the valve. As shown in Figure 7.28,
the board is correctly detected as a planar primitive, although the segmen-
tation algorithms failed to properly extract its lower bound. Hence, the
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primitive appears larger than its actual size. Autonomous strategies for
object removal might fail if they attempt to grasp the board from the sides.
However, the pilot is able to recognize the unfortunate segmentation by
comparing the resulting geometric primitives to the captured point cloud (see
Figure 7.28d). Using the affordance-based pilot interface, the pilot can move
the autonomously proposed end-effector pose for prismatic grasping towards
the top side of the board which is properly reflected in the primitive. See
Figure 7.28 for a visualization of the pilot side of this experiment and for
snapshots of the corresponding OAC execution.

T5: The Valve In the final step, after clearing the area around the valve, the
pilot is able to command the robot to bimanually turn the valve. The valve is
recognized as a planar primitive with a circular shape. Based on this infor-
mation, the pilot is offered a bimanual turnability affordance ΘBi-Turn with
appropriately suggested end-effector poses for bimanual prismatic grasping.
See Figure 7.29 for a visualization of the pilot side of this experiment and
for snapshots of the corresponding OAC execution.

7.4 Performance Measurements

This section provides performance measurements for the different compo-
nents of the H2T perception pipeline including the reference implementation
of the affordance detection subsystem which is proposed in this thesis. The
discussions in this section are an extended versions of the system performance
evaluation published in Kaiser et al. (2018a). All measurements have been
generated on standard Intel Core i7-7700 desktop quad-core processors with
3.6 GHz and 32 GB RAM. Figure 7.30 displays performance measurements
for the different exemplary scenes summarized in Table 4.2. The scenes Bar,
Board, Valve and Kitchen Counter refer to the evaluation scenarios discussed
in Section 7.3.3 and Section 7.2.1, respectively. As explained in Table 4.2,
the scene complexity, i. e. the point cloud size, varies dramatically among
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the evaluated scenes. Hence, different runtime characteristics are expected,
particularly with respect to the large-scale scenes Large Staircase, Kitchen

and Kitchen Counter. All input point clouds have been down-sampled first
with a leaf size of 2 cm, before extracting primitives. Extracted primitives
have been sampled with a spatial sampling distance of 2.5 cm and an orienta-
tional sampling distance of π/8 rad. During the performance measurements,
eight affordance belief functions have been evaluated on all considered
scenes: ΘG-Prismatic, ΘG-Platform, ΘGrasp, ΘSupport, ΘLean, ΘPush, ΘPull and
ΘTurn.
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Figure 7.30: Performance measurements of the affordance detection system proposed in this
thesis in different exemplary scenes. The measurements have been generated
using a spatial sampling distance of 2.5 cm and an orientational sampling distance
of π/8 rad, averaged over 100 measurements. Black range markers indicate the
standard deviation.

The performance measurements in Figure 7.30 show that affordance detec-
tion based on the formalism of affordance belief functions is computation-
ally feasible for realistic scene sizes. In the case of the first six scenes,
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which consist of single-view point clouds, the defined set of affordances is
processed within 50 ms - 200 ms, making online application of the concept
possible. The results further show that the initial segmentation step S2

of the H2T perception pipeline as introduced in Figure 3.1 has negligible
runtime compared to the primitive extraction step S3. A significant fraction
of the runtime is spent with system overhead which refers to the time needed
for transporting point clouds, geometric primitives and affordance belief
functions between system components and the storage subsystem. The detec-
tion of affordances in the large-scale evaluation scenarios Large Staircase,
Kitchen and Kitchen Counter show similar runtime distributions while taking
significantly longer in general which is expected due to the increased scene
complexity.
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Figure 7.31: Performance measurements of the affordance detection process, i. e. the evaluation
of hierarchically defined affordance belief functions, for different affordances
in different exemplary scenarios. The measurements have been generated using
a spatial sampling distance of 2.5 cm and an orientational sampling distance of
π/8 rad, averaged over 100 measurements. Black range markers indicate the
standard deviation.
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The results presented in Figure 7.31 show that the evaluation of different
affordance belief functions have approximately the same runtime charac-
teristics, independent of the affordance level in the hierarchy. The reason
for this is that affordance detection is efficiently implemented in a way that
avoids re-evaluation of affordances that have been evaluated before. Hence,
higher-level affordances that include evidence from lower-level affordances
reuse already computed evidences. The lowest-level affordances ΘG-Prismatic

and ΘG-Platform show a slightly higher runtime than other affordances which
can be justified with their relatively complex implementation (see Table A.2).

7.5 Summary and Review

In this chapter the theoretic contributions of this thesis, i. e. the formalization
of affordance belief functions and the principles of evidence fusion, have
been evaluated in synthetic, simulated and real experiments. Section 7.1
focused on the evaluation of the principle of evidence fusion in affordance
belief functions, both in the spaces of end-effector positions and orientations.
For this purpose, joint affordance belief functions obtained via the fusion of
consecutive observations have been compared to randomly generated ground-
truth affordances. The evaluation shows that the methods for evidence fusion
introduced in Section 4.3 provide a feasible solution for fusing affordance-
related evidence into a consistent system belief. With increasing numbers of
fused observations, the joint belief functions produce increasingly accurate
representations of ground-truth affordances. This finding emphasizes the
applicability of affordance belief functions and allows the further evaluation
in a dynamic simulation environment and on real humanoid robots.
In Section 7.2.1, the affordance detection and validation system based on the
formalism of affordance belief functions is evaluated in a dynamically simu-
lated kitchen environment. The environmental perception is simulated using
a manually segmented artificial point cloud of the simulated environment.
The affordance detection system subsequently extracts geometric primitives
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and identifies prismatic graspability affordances. Due to the definition of
ΘG-Prismatic, the visual affordance detection system produces a significant
number of false positives, making the affordances subject to validation exper-
iments. In the dynamically simulated environment, the humanoid robot
ARMAR-III autonomously performs validation experiments and iteratively
obtains an accurate belief about the existence of prismatic graspability affor-
dances in the scene.
Section 7.2.2 evaluated the combination of the affordance detection system
with the whole-body multi-contact pose sequence planner from Mandery et al.
(2015a) which provides an initial step towards whole-body multi-contact
motion trajectory planning in a contacts-before-motion approach. Affor-
dance belief functions ΘSupport for supportability are queried in the search
path extension step of the approach, in order to determine the availability of
contact opportunities for the humanoid robot ARMAR-4 in a kinematic simu-
lation environment. The evaluation shows that affordance belief functions
generated by the affordance detection system are suitable for supporting the
application of multi-contact pose sequence planning in unknown environ-
ments. The original approach from Mandery et al. (2015a) has previously
been evaluated in known environments with predefined support contact oppor-
tunities.
Section 7.3 investigated the applicability of the affordance detection and
validation system to real humanoid robots in real evaluation environments.
The step from simulated environments to real robotic hardware is critical
to demonstrate the applicability of the concepts to real scenarios which are
not as well-behaved as simulation environments. The affordance-based pilot
interface for shared autonomous control of humanoid robots introduced in
Section 6.2 has been employed in this evaluation on the humanoid robots
ARMAR-III and WALK-MAN. Evaluation experiments include the detec-
tion and utilization of bimanual turnability affordances in a valve-turning
scenario inspired by the DRC (Section 7.3.1), the autonomous detection
and validation of pushability and liftability affordances for clearing cluttered
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object arrangements (Section 7.3.2) and the shared autonomous removal of
blocking objects in a cluttered valve-turning scenario (Section 7.3.3). The
experiments on real humanoid robots suggest the feasibility and applica-
bility of the concept of affordance detection and the affordance-based pilot
interface to realistic problems.
In a final evaluation, performance measurements of the affordance detec-
tion system have been provided for the different exemplary scenes used
throughout the thesis. The results show that affordance detection based
on affordance belief functions can be efficiently implemented for reason-
ably scaled environments. Although the reference implementation used for
the provided measurements already exhibits decent performance, further
optimization, e. g. through GPU-based implementations, seems possible.
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8 Conclusion

The goal of this thesis was the development of an affordance detection and
validation system for humanoid robots, its implementation and its evaluation
in simulation, as well as on real humanoid robots in realistic scenarios. The
developed computational model for affordances was used for defining a hier-
archy of whole-body affordances which describe possibilities for whole-body
actions. The planning and execution of whole-body actions has been a key
element of the DARPA Robotics Challenge where impressive whole-body
loco-manipulation skills have been demonstrated in scenarios inspired by
robotic disaster response. However, the teams predominantly implemented
task-specific solutions to action possibility perception. The proposed affor-
dance detection system was developed in the motivation of providing the
foundation for a more generic approach towards the perception of whole-body
action possibilities, i. e. whole-body affordances.

8.1 Scientific Contributions of the Thesis

With respect to the goals formulated in Section 1.1, the main contributions of
this thesis can be summarized as follows.

Computational Formalization of Affordances The computational
formalization of the affordance concept proposed in Chapter 4 is inspired by
the idea that whole-body actions are predominantly based upon elementary
power grasping contacts between end-effectors and environmental structures.
Hence, affordances have been formalized as affordance belief functions
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defined over the space of end-effector poses. The formal definition of
affordance belief functions allows the representation of affordance-related
evidence by means of the Dempster-Shafer Theory. It further provides the
formal means for consistently fusing affordance-related evidence from
different sources such as visual affordance detection and haptic validation
experiments. Section 4.7 and Section 7.4 demonstrate that the proposed
computational affordance model lays the foundation for a computationally
feasible approach towards affordance-driven action execution in real world
scenarios.

Hierarchy of Whole-Body Affordances The formalization of affordances
as belief functions over the space of end-effector poses allows the application
of the Theory of Subjective Logic, as introduced in Section 4.4, in order to
combine belief functions for different affordances by logic operators. This
formalism allows the hierarchical composition of affordance belief func-
tions. Starting from the hypothesis that whole-body affordances are based on
fundamental power grasping affordances, Chapter 5 proposes a hierarchy of

whole-body affordances which allows the propagation of affordance-related
evidence from lower-level affordances, such as graspability to higher-level
affordances, such as liftability or turnability. While the hierarchy of whole-
body affordances is subject to revision and completion, it allows the imple-
mentation of effective mechanisms for visual affordance detection based on
the H2T perception pipeline introduced in Section 3.1.

Affordance-Based Autonomous and Shared-Autonomous Control

The hierarchical formalization of affordances as described in Chapter 4 and
Chapter 5 lays the foundation for effective affordance detection and vali-
dation mechanisms. As affordance belief functions are defined over the
end-effector pose space, detected affordances inherently provide information
for parameterizing action execution skills. Hence, the proposed mechanisms
for affordance detection and validation establish a link between perception
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and action and therefore qualify for the integration in autonomous or shared
autonomous control strategies for humanoid robots in unknown environ-
ments. While autonomous control is certainly the long-term goal, Chapter 6
suggests that fundamental problems in robotics and artificial intelligence,
such as autonomous task and action planning, need to be addressed before
implementing autonomous affordance-based control modes for humanoid
robots. Hence, Chapter 6 focuses on affordance-based shared autonomous
control which implements the cooperative operation of a humanoid robot
based on detected affordances. The robot is controlled by a human pilot on an
abstract level, by selecting among detected affordances and action execution
skills, as well as by supervising autonomous skill parameterization and action
execution. Section 6.2 discusses the implementation of an affordance-based
pilot interface within the robot software environment ArmarX. While the
pilot interface is subject to improvement in terms of user experience, it serves
as a reference implementation for affordance-based shared autonomy on
multiple simulated and real humanoid robots and consequently allows the
experimental evaluation carried out in Chapter 7.

Evaluation of the Affordance Detection and Validation System In
Chapter 7, the computational model for affordances and the corresponding
affordance detection and validation system, for which a reference implemen-
tation has been created within the robot software environment ArmarX, has
been evaluated in multiple synthetic, simulated and real experiments. First,
in Section 7.1, the principle concept of evidence fusion has been investigated
in synthetic experiments based on randomly generated ground-truth
affordances, suggesting that the proposed formalisms for evidence fusion are
viable and can sufficiently well approximate the ground-truth by iterative
fusion of observations. In Section 7.2.1, the entire affordance system ranging
from visual affordance detection to the execution of affordance validation
experiments and the subsequent fusion of obtained evidence is evaluated
for prismatic graspability affordances in a dynamic simulation environment
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using the humanoid robot ARMAR-III. The simulated experiments
performed in this environment indicate that continuous affordance validation
and evidence fusion lets the system belief converge against the ground-truth
assumption. The experiment further shows that the proposed affordance
system establishes a viable link between perception and action and that
visual affordance detection which has been performed based on manual point
cloud segmentation, already provides a sufficiently accurate approximation
to the ground-truth. Section 7.2.2 evaluated the conceptual combination
of the affordance detection system with a whole-body multi-contact pose
sequence planner, approaching the problem of planning multi-contact
pose sequences in loco-manipulation scenarios. Furthermore, Section 7.3
summarizes the results of multiple experiments on actual humanoid robots in
realistic exemplary environments which have been assumed to be entirely
unknown to the robot. The experiments have been carried out on the
humanoid robots ARMAR-III and WALK-MAN demonstrating the ability
of the concept to generalize among robot platforms and experimental setups.
The experiment shown in Section 7.3.3 has been reliably and successfully
performed in a semi-public demonstration in the context of the WALK-MAN
project review in Genoa, Italy.

8.2 Discussion and Future Work

In Chapter 7, the affordance system proposed in this thesis has proven to
provide a viable, promising and computationally feasible way for robotic
action perception. Inspired by the tasks of the DARPA Robotics Challenge,
which represent the state-of-the-art in the field, the affordance system was
developed as an approach towards a more general solution to the perception
of possibilities for whole-body actions targeting unknown environments. It
needs to be noted that the DRC contained highly complex and integrated
tasks, such as the utility vehicle egress (see Table 2.1), which are not captured
in the proposed system. Furthermore, the prototypical implementation of the
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affordance system proposed in this thesis does not qualify for application in
challenges such as the DRC. However, the affordance system advances the
state-of-the-art in this area and provides the foundation for a more general
approach to the detection of whole-body affordances in tasks and challenges
similar to those from the DRC. The affordance detection and validation
system as proposed in this thesis lays the foundation for a variety of inter-
esting extensions which are left to be investigated in future work.

Efficient implementation of affordances for multiple end-effectors

The combination of multiple end-effectors is particularly important in
humanoid robotics as four distinct end-effectors are commonly available
and as important groups of actions, e. g. walking or bimanual manipulation,
require environmental contact of multiple end-effectors. Section 4.6 shows
a natural way for extending the formalism of affordance belief functions
to multiple end-effectors. However, as the proposed approach extends the
definition space of affordance belief functions to the Cartesian product of
end-effector poses, it has a strong impact on the overall efficiency. While
bimanual affordance detection is feasible, as demonstrated in Section 7.3.1,
it comes at much higher costs compared to unimanual affordance detection.
One aspect of future work is the question if the computational costs of
affordance belief functions for multiple end-effectors can be reduced, e. g. by
using data structures that condense homogeneous areas of affordance belief
functions into few samples.

Consistent integration of robot experience and human expert knowl-

edge Chapter 4 identifies the consistent fusion of affordance-related
evidence as one of the driving motivations behind the proposed formalization
of the affordance concept. While any type of evidence that is expressible
in terms of affordance belief functions can be processed by the proposed
formalization, only two types of evidence have been considered in this
thesis: visual affordance detection and interactive affordance validation
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experiments. It is an open and interesting question how to properly formalize
additional sources of evidence to be included in the affordance system, such
as experience from previous experiments or human expert knowledge.

Implementation of affordance-based action and task planning The
detection of action possibilities as investigated in this thesis serves the
sole purpose of providing adequate information for subsequent action plan-
ning and execution. While the affordance system developed in this thesis
provides rudimentary information for action parameterization as discussed
in Chapter 6, complex actions that go beyond the level of simple execution
skills require sophisticated parameterization which cannot be solely produced
based on affordances. Section 3.3 introduces the concept of Object-Action
Complexes (OACs) which are used in this thesis for linking affordances
with action execution skills. However, OACs provide further information,
particularly links to symbolic planning domains and success measures based
on the execution history, that can be used by high-level planning compo-
nents to generate complex and robust execution strategies. The link between
affordances and OACs therefore appears as a promising approach towards
affordance-based action and task planning.

Extension to further affordances and applications Chapter 7 showed
and evaluated different applications of the affordance system in simulation
as well as on real humanoid robots. However, one exciting aspect of the
proposed system is its intended use in unknown environments allowing the
straight-forward evaluation in novel scenes and use-cases. Furthermore, the
affordance system itself is robot-agnostic. Hence, a major part of future work
will be the application of the developed methods to further environments,
use-cases and robotic platforms. The whole-body affordances hierarchy
introduced in Chapter 5 has been developed with the explicit intention of
being extended and refined in novel scenarios and applications.
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A.1 Von Mises-Fisher Distribution in SO(3)

The method for spatial generalization of observations introduced in
Section 4.3.2 employs a combination of two distribution functions which are
further reviewed in this section. For a given observation pose x ∈ SE(3), the
translational components t(x) ∈ R3 are spatially generalized by applying a
multivariate normal distribution N :

N (x;µ,Σ) =
1

|2πΣ|
exp
(
−1

2
(x−µ)T Σ−1(x−µ)

)
. (A.1)

The distribution is parameterized by the mean vector µ ∈ R3 and the covari-
ance matrix Σ ∈ R3×3. While the translational components can be spatially
generalized by a standard normal distribution, the periodic nature of SO(3)
needs to be considered when generalizing the orientational components.
According to Sudderth (2006), the natural analogy of the normal distribution
for circular data is the wrapped normal distribution1 Nw:

Nw(θ ; µ,σ2) =
1√

2πσ2

∞

∑
k=−∞

exp

(
−(θ −µ +2πk)2

2σ2

)
. (A.2)

This univariate distribution is parameterized by the mean µ ∈ R and the
variance σ2 ∈ R+. A mathematically simpler and more convenient option

1 Also called folded normal distribution
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is the von Mises distributionM which closely approximates the wrapped
normal distribution as:

M(θ ; µ,κ) =
1

2πI0(κ)
exp
(
κ cos(θ −µ)

)
. (A.3)

with the zero-order Bessel function I0(κ). The parameters µ and 1
κ

refer
to the parameters µ and σ2 of the wrapped normal distribution. Following
Sudderth (2006), the univariate von Mises distribution shown above can be
generalized to points r ∈ S3 on the three-dimensional unit sphere:

M(r;µ,κ) =
κ

2I1(κ)
exp(κµTr). (A.4)

This distribution is called von Mises-Fisher distribution. The interested
reader is referred to Sudderth (2006) for further details. The combination
of a multivariate normal distribution N and a von Mises-Fisher distribution
M as outlined in Section 4.3.2 allows the spatial and orientational gener-
alization of observations for end-effector poses x ∈ SE(3). Note that both
distributions are normalized to a maximum value of 1 for the considerations
in Section 4.3.2. Hence, more formally, the proportional functions N1 and
M1 are used:

N1(x;µ,Σ) = exp
(
−1

2
(x−µ)T Σ−1(x−µ)

)
M1(r;µ,κ) =

1
exp(κ)

exp(κµTr).

(A.5)

Figure A.1 shows exemplary plots of N1 andM1 for different values of the
standard deviation σ , visualizing the wrapped shape of the von Mises-Fisher
distribution in the one-dimensional case. Figure A.2 shows a visualization of
a von Mises-Fisher distribution on the two-dimensional unit sphere S2.

200



A.1 Von Mises-Fisher Distribution in SO(3)

0 π/2 π 3π/2 2π
0.0

0.2

0.4

0.6

0.8

1.0

σ = π
16

σ = π
8

σ = π
4

σ = π
2

0 π/2 π 3π/2 2π
0.0

0.2

0.4

0.6

0.8

1.0

σ = π
16

σ = π
8

σ = π
4

σ = π
2

Figure A.1: Visualizations of the distribution functions N1, which is proportional to a normal
distribution (left), and M1, which is proportional to a von Mises distribution (right),
with varying standard deviations σ (for M1: σ = 1√

κ
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A.2 Proof of Iterative Evidence Fusion

This section provides a proof for the claim of iterative evidence fusion
formulated in Section 4.3.1. The claim states that affordance-related evidence
expressed as basic belief assignments in the sense of the Dempster-Shafer
theory can be iteratively combined. This is an important precondition for the
process of affordance validation as proposed in Section 4.3 which produces
affordance-related evidence in an iterative process. The evidence generated
during affordance validation needs to be consistently fused with the existing
system belief. More formally, the claim of iterative evidence fusion is
expressed in the following theorem.

Theorem. Let X be a hypothesis space and m1, . . . ,mN be basic belief

assignments over the associated space of hypothesis combinations 2X . Then

it holds that:
N⊕

i=1

mi = m1⊕·· ·⊕mN . (A.6)

Proof. Due to the associativity of Dempster’s combination rule (Sentz et al.
2002), the right hand side of Equation A.6 is well defined and can be written
as:

m1⊕·· ·⊕mN =
(
(m1⊕m2)⊕m3

)
· · ·⊕mN . (A.7)

Furthermore, the trivial base case for n = 2 holds by definition:

2⊕
i=1

mi = m1⊕m2. (A.8)

Let A ∈ 2X be a hypothesis. If A = /0, then Equation A.6 is trivially true as
the result of Dempster’s rule of combination is a basic belief assignment
which by definition assigns a probability mass of 0 to the empty hypothesis.
If A 6= /0, then we conclude for N ∈ N≥3:((

N−1⊕
i=1

mi

)
⊕mN

)
(A)

(Eq. 4.18)
=

1
1−K∗

∑
A∗∩AN=A

mN(AN)

(
N−1⊕
i=1

mi

)
(A∗) , (A.9)
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while the implicit notation A∗∩AN = A for the summation set, adopted from
Equation 4.18, is interpreted as:{

(A∗,AN) ∈ X 2
∣∣∣ A∗∩AN = A

}
. (A.10)

The indices of hypotheses Ai and conflict factors Ki refer to the index of the
associated basic belief assignment mi in the (n−1)-ary combination, while
A∗ and K∗ refer to the binary combination of the result of the (n− 1)-ary
combination and mN .

(Eq. A.9)
(Eq. 4.18)

=
1

(1−K∗)(1−KN−1)
∑

A∗∩AN=A
mN (AN) ∑⋂N−1

j=1 A j=A∗

N−1

∏
k=1

mk (Ak)

=
1

(1−K∗)(1−KN−1)
∑

A∗∩AN=A
∑⋂N−1

j=1 A j=A∗

N

∏
k=1

mk (Ak)

=
1

(1−K∗)(1−KN−1)︸ ︷︷ ︸
(∗)

∑⋂N
j=1 A j=A

N

∏
k=1

mk(Ak).

(A.11)
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The combination of the conflict factors K∗ and KN−1 in (∗) can be processed
as follows:

(∗) =
(
(1−K∗)(1−KN−1)

)−1

(Eq. 4.19)
=

((
1− ∑

A∗∩AN= /0
mN(AN) ·

(
N−1⊕
i=1

mi

)
(A∗)

)
· (1−KN−1)

)−1

=


1− 1

1−KN−1
∑

A∗∩AN= /0
A∗ 6= /0

mN (AN) ∑⋂N−1
j=1 A j=A∗

N−1

∏
k=1

mk (Ak)

 · (1−KN−1)


−1

=

1−

KN−1 + ∑
A∗∩AN= /0

A∗ 6= /0

∑⋂N−1
j=1 A j=A∗

N

∏
k=1

mk (Ak)



−1

=

1−

KN−1 + ∑⋂N
j=1 A j= /0⋂N−1
j=1 A j 6= /0

N

∏
k=1

mk (Ak)



−1

(Eq. 4.19)
=

1−

 ∑⋂N−1
j=1 A j= /0

N−1

∏
k=1

mk(Ak)+ ∑⋂N
j=1 A j= /0⋂N−1
j=1 A j 6= /0

N

∏
k=1

mk (Ak)



−1

(∗∗)
=

1−

 ∑
AN∈2X

mN(AN) ∑⋂N−1
j=1 A j= /0

N−1

∏
k=1

mk(Ak)+ ∑⋂N
j=1 A j= /0⋂N−1
j=1 A j 6= /0

N

∏
k=1

mk (Ak)



−1

=

1−

 ∑⋂N
j=1 A j= /0⋂N−1
j=1 A j= /0

N

∏
k=1

mk(Ak)+ ∑⋂N
j=1 A j= /0⋂N−1
j=1 A j 6= /0

N

∏
k=1

mk (Ak)



−1

=
1

1−KN
.

(A.12)

In (∗∗) it is implicitly used that mN is a basic belief assignment and therefore
∑AN∈2X mN(AN) = 1. Finally, it follows that:

(Eq. A.11)
(Eq. A.12)

=
1

1−KN
∑⋂N

j=1 A j=A

N

∏
k=1

mk(Ak)
(Eq. 4.18)

=

(
N⊕

i=1

mi

)
(A) . (A.13)
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A.3 Body Scalings

The hierarchical definition of affordance belief functions discussed in
Chapter 5 allows the inclusion of body-scaled parameters in order to relate
the perception of affordances to physical properties of the robot embodiment.
This section contains the body-scaled parameters βL, βB, βA, βF and βsh for
the humanoid robots ARMAR-III, ARMAR-IV and WALK-MAN, as well
as their human equivalents. The hand measures for the human embodiment
refer to the hand of an average male adult as defined in Garrett (1971).
Furthermore, the shoulder length is given for an assumed body height of
180 cm according to the relative description in Winter (1990).

Table A.1: Body-scaled parameters for an average human and the humanoid robots ARMAR-III,
ARMAR-4 and WALK-MAN (adapted from Kaiser et al. 2016a, © 2016 IEEE).

Parameter Sym. Human ARMAR-III ARMAR-4 WALK-MAN

Hand Length βL 19.71 cm 17.0 cm 16.0 cm 23.0 cm
Hand Breadth βB 8.97 cm 10.0 cm 6.5 cm 13.0 cm
Hand Aperture βA 12.42 cm 13.0 cm 10.0 cm 10.0 cm
Forehand Len.2 βF 8.56 cm 9.5 cm 8.5 cm 11.0 cm
Shoulder Len. βSh 46.44 cm 40.0 cm 40.0 cm 81.5 cm

A.4 Complete Whole-Body Affordance Hierarchy

The hierarchy of whole-body affordances was introduced in Section 5.3
and Section 5.4 layer for layer in multiple tables. In Table A.2, the entire

2 The middle finger length measured in Garrett (1971) was used here for approximating βF for
the average human embodiment.
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hierarchy is provided as a whole for reference. A preliminary version of the
complete whole-body affordance hierarchy has been published in Kaiser et al.
(2016a).

A.5 Software

The H2T perception pipeline introduced in Section 3.1, as well as the software
library Spoac for symbolic planning based on Object-Action Complexes are
part of the robot software environment ArmarX which is in development at
the H2T. ArmarX is open source software and can be obtained from:

https://gitlab.com/ArmarX

Further information and documentation is found under:

https://armarx.humanoids.kit.edu

While the affordance-based pilot interface and the robot demonstrations have
been developed in ArmarX, the reference implementation of the affordance
detection component based on the formalisms introduced in this thesis has
no mandatory dependencies to ArmarX. The AffordanceKit is open source
software and can be obtained independently of ArmarX under:

https://gitlab.com/h2t/affordance-kit
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A.5 Software

Table A.2: The complete whole-body affordance hierarchy

Layer Symbol Composition of Belief Function

P0

ΘVertical(p) Θup(p)≈ε 0(p)
ΘHorizontal(p) Θup(p)≈ε π (p)
ΘRound(p) Θcircular(p)≈ε 1(p)
ΘMovable(p) Θwidth(p)<λ1 (p)∧Θheight(p)<λ1 (p)∧Θdepth(p)<λ1 (p)
ΘFixed(p) Θwidth(p)>λ1 (p)∨Θheight(p)>λ1 (p)∨Θdepth(p)>λ1 (p)

A0
ΘG-Platform(p,x) Θvs

x(x,p,βF )>βB
(x)∧Θvs

y(x,p,βF )>βL
(x)

ΘG-Prismatic(p,x) Θvs
x(x,p,βF )>βB

(x)∧Θva
y (x,p,βF )<βA

(x)

A1 ΘGrasp(p,x) ΘG-Platform(p,x)∨ΘG-Prismatic(p,x)

A2

ΘSupport(p,x) ΘG-Platform(p,x)∧ΘFixed(p)∧ΘHorizontal(p)
ΘLean(p,x) ΘG-Platform(p,x)∧ΘFixed(p)∧ΘVertical(p)
ΘHold(p,x) ΘG-Prismatic(p,x)∧ΘFixed(p)
ΘLift(p,x) ΘG-Prismatic(p,x)∧ΘMovable(p)
ΘPush(p,x) ΘGrasp(p,x)∧ΘMovable(p)
ΘPull(p,x) ΘG-Prismatic(p,x)∧ΘMovable(p)
ΘTurn(x) ΘG-Prismatic(p,x)∧ΘRound(p)

P1

ΘVertical(x1,x2) Θup(x1 ,x2)≈ε 0(x1,x2)

ΘHorizontal(x1,x2) Θup(x1 ,x2)≈ε π (x1,x2)

ΘFeasible(x1,x2) Θd(x1 ,x2)>βL (x1,x2)∧Θd(x1 ,x2)<βSh (x1,x2)

ΘAligned(x1,x2) Θα(x1 ,x2)≈ε 0(x1,x2)

ΘOpposed(x1,x2) Θα(x1 ,x2)≈ε π (x1,x2)

A3
ΘBi-G-Platform(p,x1,x2) ΘG-Platform(p,x1)∧ΘG-Platform(p,x2)∧ΘFeasible(x1,x2)

ΘBi-G-Prismatic(p,x1,x2) ΘG-Prismatic(p,x1)∧ΘG-Prismatic(p,x2)∧ΘFeasible(x1,x2)

A4 ΘBi-Grasp(p,x1,x2) ΘBi-G-Platform(p,x1,x2)∨ΘBi-G-Prismatic(p,x1,x2)

A5

ΘBi-G-Aligned(p,x1,x2) ΘBi-Grasp(p,x1,x2)∧ΘAligned(x1,x2)

ΘBi-G-Opposed(p,x1,x2) ΘBi-Grasp(p,x1,x2)∧ΘOpposed(x1,x2)

ΘBi-G-Aligned-Platform(p,x1,x2) ΘBi-G-Platform(p,x1,x2)∧ΘAligned(x1,x2)

ΘBi-G-Aligned-Prismatic(p,x1,x2) ΘBi-G-Prismatic(p,x1,x2)∧ΘAligned(x1,x2)

ΘBi-G-Opposed-Platform(p,x1,x2) ΘBi-G-Platform(p,x1,x2)∧ΘOpposed(x1,x2)

ΘBi-G-Opposed-Prismatic(p,x1,x2) ΘBi-G-Prismatic(p,x1,x2)∧ΘOpposed(x1,x2)

A6

ΘBi-Support(p,x1,x2) ΘBi-G-Platform(p,x1,x2)∧ΘFixed(p)∧ΘHorizontal(p)
ΘBi-Lean(p,x1,x2) ΘBi-G-Platform(p,x1,x2)∧ΘFixed(p)∧ΘVertical(p)
ΘBi-Hold(p,x1,x2) ΘBi-G-Prismatic(p,x1,x2)∧ΘHold(p,x1)∧ΘHold(p,x2)

ΘBi-Lift(p,x1,x2) ΘBi-G-Prismatic(p,x1,x2)∧ΘLift(p,x1)∧ΘLift(p,x2)

ΘBi-Push(p,x1,x2) ΘBi-G-Aligned(p,x1,x2)∧ΘPush(x1)∧ΘPush(x2)

ΘBi-Pull(p,x1,x2) ΘBi-G-Aligned-Prismatic(p,x1,x2)∧ΘPull(x1)∧ΘPull(x2)

ΘBi-Turn(p,x1,x2) ΘBi-G-Opposed-Prismatic(p,x1,x2)∧ΘRound(p)
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Ude, T. Asfour, D. Kraft, D. Omrčen, A. Agostini, and R. Dillmann
(2011), „Object-Action Complexes: Grounded abstractions of sensory-
motor processes“, Robotics and Autonomous Systems, vol. 59, no. 10,
pp. 740–757.

M. Labbé and F. Michaud (2014), „Online Global Loop Closure Detection for
Large-Scale Multi-Session Graph-Based SLAM“, IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), pp. 2661–2666.

S. R. Lakani, A. J. Rodríguez-Sánchez, and J. Piater (2017), „Can Affor-
dances Guide Object Decomposition into Semantically Meaningful Parts?“,
IEEE Winter Conference on Applications of Computer Vision (WACV),
pp. 82–90.

I. Lenz, H. Lee, and A. Saxena (2015), „Deep learning for detecting robotic
grasps“, International Journal of Robotics Research (IJRR), vol. 34, no. 4,
pp. 705–724.

J. Y. Lettvin, H. R. Maturana, W. S. McCulloch, and W. H. Pitts (1959),
„What the Frog’s Eye Tells the Frog’s Brain“, Proceedings of the IRE,
vol. 47, no. 11, pp. 1940–1951.

M. A. Lewis, H.-K. Lee, and A. Patla (2005), „Foot Placement Selection
Using Non-geometric Visual Properties“, International Journal of Robotics

Research (IJRR), vol. 24, no. 7, pp. 553–561.

H. Liu and P. Singh (2004), „ConceptNet — a practical commonsense
reasoning tool-kit“, BT Technology Journal, vol. 22, no. 4, pp. 211–226.

232



Bibliography

Y. Liu and G. Nejat (2013), „Robotic Urban Search and Rescue: A Survey
from the Control Perspective“, Journal of Intelligent & Robotic Systems,
vol. 72, no. 2, pp. 147–165.

A. Lock and T. Collett (1979), „A Toad’s Devious Approach to Its Prey: A
Study of Some Complex Uses of Depth Vision“, Journal of Comparative

Physiology, vol. 131, pp. 179–189.

M. Lopes, F. S. Melo, and L. Montesano (2007), „Affordance-based imitation
learning in robots“, IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 1015–1021.

T. Lüddecke and F. Wörgötter (2016), „Scene Affordance: Inferring Actions
from Household Scenes“, Workshop on Action and Anticipation for Visual

Learning, European Conference on Computer Vision (ECCV).

T. Lüddecke and F. Wörgötter (2017), „Learning to Label Affordances from
Simulated and Real Data“, arXiv:1709.08872 [cs.CV].

K. F. MacDorman (2000), „Responding to Affordances: Learning and
Projecting a Sensorimotor Mapping“, IEEE International Conference on

Robotics and Automation (ICRA), pp. 3253–3259.

C. Mandery, J. Borràs, M. Jöchner, and T. Asfour (2015a), „Analyzing
Whole-Body Pose Transitions in Multi-Contact Motions“, IEEE/RAS Inter-

national Conference on Humanoid Robots (Humanoids), pp. 1020–1027.

C. Mandery, J. Borràs, M. Jöchner, and T. Asfour (2016), „Using Language
Models to Generate Whole-Body Multi-Contact Motions“, IEEE/RSJ Inter-

national Conference on Intelligent Robots and Systems (IROS), pp. 5411–
5418.

C. Mandery, Ö. Terlemez, M. Do, N. Vahrenkamp, and T. Asfour (2015b),
„The KIT Whole-Body Human Motion Database“, IEEE International

Conference on Advanced Robotics (ICAR), pp. 329–336.

233



Bibliography

T. Mar, V. Tikhanoff, G. Metta, and L. Natale (2015), „Self-supervised
learning of grasp dependent tool affordances on the iCub Humanoid robot“,
IEEE International Conference on Robotics and Automation (ICRA),
pp. 3200–3206.

T. Mar, V. Tikhanoff, and L. Natale (2017), „What can I do with this tool?
Self-supervised learning of tool affordances from their 3D geometry.“,
IEEE Transactions on Cognitive and Developmental Systems.

L. S. Mark (1987), „Eyeheight-Scaled Information About Affordances: A
Study of Sitting and Stair Climbing“, Journal of Experimental Psychology:

Human Perception and Performance, vol. 13, no. 3, pp. 361–370.

J. McGrenere and W. Ho (2000), „Affordances: Clarifying and Evolving a
Concept“, Graphics Interface, pp. 179–186.

S. McMahon, N. Sünderhauf, B. Upcroft, and M. Milford (2017), „Multi-
modal Trip Hazard Affordance Detection On Construction Sites“, IEEE

Robotics and Automation Letters, vol. 3, no. 1.

G. Metta and P. Fitzpatrick (2003), „Better Vision Through Manipulation“,
Adaptive Behavior, vol. 11, no. 2, pp. 109–128.

C. F. Michaels (2003), „Affordances: Four Points of Debate“, Ecological

Psychology, vol. 15, no. 2, pp. 135–148.

G. A. Miller (1995), „WordNet: A Lexical Database for English“, Communi-

cations of the ACM, vol. 38, no. 11, pp. 39–41.

H. Min, C. Yi, R. Luo, J. Zhu, and S. Bi (2016), „Affordance Research in
Developmental Robotics: A Survey“, IEEE Transactions on Cognitive and

Developmental Systems, vol. 8, no. 4, pp. 237–255.

234



Bibliography

B. Moldovan and L. De Raedt (2014), „Occluded Object Search by Relational
Affordances“, IEEE International Conference on Robotics and Automation

(ICRA), pp. 169–174.

B. Moldovan, P. Moreno, D. Nitti, J. Santos-Victor, and L. De Raedt (2017),
„Relational affordances for multiple-object manipulation“, Autonomous

Robots.

B. Moldovan, P. Moreno, and M. van Otterlo (2013), „On the Use of Proba-
bilistic Relational Affordance Models for Sequential Manipulation Tasks
in Robotics“, IEEE International Conference on Robotics and Automation

(ICRA), pp. 1050–4729.

B. Moldovan, P. Moreno, M. van Otterlo, J. Santos-Victor, and L. De Raedt
(2012), „Learning Relational Affordance Models for Robots in Multi-
Object Manipulation Tasks“, IEEE International Conference on Robotics

and Automation (ICRA), pp. 4373–4378.

L. Montesano and M. Lopes (2009), „Learning grasping affordances from
local visual descriptors“, IEEE International Conference on Development

and Learning (ICDL), pp. 1–6.

L. Montesano, M. Lopes, A. Bernardino, and J. Santos-Victor (2007a), „Affor-
dances, development and imitation“, IEEE International Conference on

Development and Learning (ICDL), pp. 270–275.

L. Montesano, M. Lopes, A. Bernardino, and J. Santos-Victor (2007b),
„Modeling Affordances using Bayesian networks“, IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 4102–4107.

L. Montesano, M. Lopes, A. Bernardino, and J. Santos-Victor (2008),
„Learning Object Affordances: From Sensory-Motor Coordination to
Imitation“, IEEE Transactions on Robotics, vol. 24, no. 1, pp. 15–26.

235



Bibliography

R. R. Murphy (1999), „Case Studies of Applying Gibson’s Ecological
Approach to Mobile Robots“, IEEE Transactions on Systems, Man, and

Cybernetics, vol. 29, no. 1, pp. 105–111.

R. R. Murphy (2015), „Meta-analysis of Autonomy at the DARPA Robotics
Challenge Trials“, Journal of Field Robotics, vol. 32, no. 2, pp. 189–191.

W. Mustafa, M. Wächter, S. Szedmak, A. Agostini, D. Kraft, T. Asfour, J.
Piater, F. Wörgötter, and N. Krüger (2016), „Affordance Estimation For
Vision-Based Object Replacement on a Humanoid Robot“, International

Symposium on Robotics (ISR), pp. 1–9.

A. Myers, C. L. Teo, C. Fermüller, and Y. Aloimonos (2015), „Affordance
Detection of Tool Parts from Geometric Features“, IEEE International

Conference on Robotics and Automation (ICRA), pp. 1374–1381.

A. Nguyen, D. Kanoulas, D. G. Caldwell, and N. G. Tsagarakis (2016),
„Detecting Object Affordances with Convolutional Neural Networks“,
IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), pp. 2765–2770.

P. Osório, A. Bernardino, R. Martinez-Cantin, and J. Santos-Victor (2010),
„Gaussian Mixture Models for Affordance Learning using Bayesian
Networks“, IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), pp. 4432–4437.

S. Oßwald, A. Görög, A. Hornung, and M. Bennewitz (2011a), „Autonomous
Climbing of Spiral Staircases with Humanoids“, IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), pp. 4844–4849.

S. Oßwald, J.-S. Gutmann, A. Hornung, and M. Bennewitz (2011b), „From
3D Point Clouds to Climbing Stairs: A Comparison of Plane Segmenta-
tion Approaches for Humanoids“, IEEE/RAS International Conference on

Humanoid Robots (Humanoids), pp. 93–98.

236



Bibliography

E. Ovchinnikova, M. Wächter, V. Wittenbeck, and T. Asfour (2015), „Multi-
Purpose Natural Language Understanding Linked to Sensorimotor Expe-
rience in Humanoid Robots“, IEEE/RAS International Conference on

Humanoid Robots (Humanoids), pp. 365–372.

A. Paikan, D. Schiebener, M. Wächter, T. Asfour, G. Metta, and L. Natale
(2015), „Transferring Object Grasping Knowledge and Skill Across
Different Robotic Platforms“, IEEE International Conference on

Advanced Robotics (ICAR), pp. 498–503.

L. Paletta, G. Fritz, F. Kintzler, J. Irran, and G. Dorffner (2007), „Learning
to Perceive Affordances in a Framework of Developmental Embodied
Cognition“, IEEE International Conference on Development and Learning

(ICDL), pp. 110–115.

T. T. Pham, M. Eich, I. Reid, and G. Wyeth (2016), „Geometrically
Consistent Plane Extraction for Dense Indoor 3D Maps Segmentation“,
IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), pp. 4199–4204.

J. Piater, S. Jodogne, R. Detry, D. Kraft, N. Krüger, O. Kroemer, and J. Peters
(2011), „Learning visual representations for perception-action systems“,
The International Journal of Robotics Research (IJRR), vol. 30, no. 3,
pp. 294–307.

L. Porzi, S. R. Bulò, A. Penate-Sanchez, E. Ricci, and F. Moreno-Noguer
(2017), „Learning Depth-aware Deep Representations for Robotic Percep-
tion“, IEEE Robotics and Automation Letters (RA-L), vol. 2, no. 2, pp. 468–
475.

G. Pratt and J. Manzo (2013), „The DARPA Robotics Challenge“, IEEE

Robotics & Automation Magazine, vol. 20, no. 2, pp. 10–12.

237



Bibliography

A. Price, S. Balakirsky, A. Bobick, and H. Christensen (2016), „Affordance-
Feasible Planning with Manipulator Wrench Spaces“, IEEE International

Conference on Robotics and Automation (ICRA), pp. 3979–3986.

W. Pryor, Y.-C. Lin, and D. Berenson (2016), „Integrated Affordance
Detection and Humanoid Locomotion Planning“, IEEE/RAS International

Conference on Humanoid Robots (Humanoids), pp. 125–131.

B. Ridge, A. Leonardis, A. Ude, M. Deniša, and D. Skočaj (2015), „Self-
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Autonomous humanoid robots are designed to assist humans in performing tedious, 
exhausti ng or dangerous tasks in previously unknown environments. One key prerequisite 
for robots to be able to act in such unknown environments is their capability to autono-
mously reason about available interacti on possibiliti es. While visual percepti on is essenti al 
in this context, further sensor modaliti es are required for obtaining reliable informati on 
about existi ng interacti on possibiliti es.
The psychological theory of aff ordances att empts to explain the process of acti on possibil-
ity percepti on in humans and animals. It defi nes aff ordances as acti on possibiliti es latent 
in the environment which arise depending on properti es of perceived objects and capabili-
ti es of the perceiving agent. In the context of humanoid roboti cs, whole-body aff ordances, 
i.e. aff ordances which refer to acti ons incorporati ng the whole body for loco-manipulati on 
tasks, are of parti cular interest.
The goal of this work is the development of a novel computati onal formalizati on of whole-
body aff ordances which is suitable for the multi modal detecti on and validati on of existi ng 
interacti on possibiliti es in unknown environments. The developed hierarchical framework 
allows the consistent fusion of aff ordance-related evidence and can be uti lized for realiz-
ing aff ordance-based shared autonomous control of humanoid robots. The aff ordance for-
malizati on is evaluated in several experiments in simulati on and on real humanoid robots.
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