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1 Introduction

Is the “cable spaghetti” on the floor really knotted
or is it enough to pull on both ends of the wire

to completely unfold it?

Since its invention, knot theory has always been a place of interdisciplinarity. The first
knot tables composed by Tait have been motivated by Lord Kelvin’s theory of atoms.
But it was not until a century ago that tools for rigorously distinguishing the trefoil
and its mirror image as members of two different knot classes were derived. In the
first half of the twentieth century, knot theory seemed to be a place mainly driven by
algebraic and combinatorial arguments, mentioning the contributions of Alexander,
Reidemeister, Seifert, Schubert, and many others. Besides the development of higher
dimensional knot theory, the search for new knot invariants has been amajor endeav-
our since about 1960.

At the same time, connections to applications in DNA biology and statistical
physics have surfaced. DNA biology had made a huge progress and it was well un-
derstood that the topology of DNA strandsmatters: modeling of the interplay between
molecules and enzymes such as topoisomerases necessarily involves notions of ‘knot-
tedness’.

Any configuration involving long strands or flexible ropes with a relatively small
diameter leads to a mathematical model in terms of curves. Therefore knots appear
almost naturally in this context and require techniques from algebra, (differential)
geometry, analysis, combinatorics, and computational mathematics.

The discovery of the Jones polynomial in 1984 has led to the great popularity
of knot theory not only amongst mathematicians and stimulated many activities in
this direction. Many deep connections between the Jones polynomial and quantum
physics were found. In the 1990s, monographs of Adams, Kauffman, and Livingston
addressed a wide audience of mathematicians, from undergraduate students to re-
search professionals, disseminated new results and ideas and thereby added to the
perception that knot theory is a vivid discipline having impact far beyond its roots.

Today we find that knots appear in almost all mathematical disciplines, having
important applications in the sciences and, most importantly, that concepts from one
field have impact on problems in other areas. Even more, we will see that applica-
tions donot onlymake use of existing theories developed in entirely theoretical frame-
works, but that questions from the sciences also stimulate theoretical developments
in turn.

In this edition we focus on four aspects that thematically contour its basis and back-
ground and these will be outlined below. Of course, this choice is not meant to be ex-
haustive, e.g., we do not cover recent developments in the theory of low-dimensional
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topology and restrict ourselves to one of themost thrilling and active parts of algebraic
knot theory: Khovanov homology.

Applications in the sciences

As already pointed out, the initial development of knot theory has been driven by
physical motivation. In the second half of the last century, many additional fields of
application have emerged. We will illustrate this variety of them by commenting on
some examples.

At the beginning of the 1960s, it was realized that manymolecules consist of long
polymeric chains. The general aim is to investigate their structure and the relationship
of the observed structures to biological features, their formation, and function. In this
context, the question about the likeliness of knots in these structures arose almost
naturally.

In this time, Frisch andWasserman as well as Delbrück stated that ring polymers
would be knotted with probability increasing to one as their length tends to infin-
ity. This conjecture stimulated the study of polygonal knots and could be settled only
about thirty years later.

An important point in this context is to identify and characterize “knotting” us-
ing a topological concept that is applicable to open protein knots. Several approaches
havebeendeveloped to achieve this goal. Aspolymers are oftenmodeledbyopenpoly-
gons, there is a need to generalize quantities used for the characterization of closed
curves, rods, and ropes (such as writhe, self-linking number, and linking number). In
order to consider a large variety of possible states, random walks regarding polygons
have successfully been investigated and are still a subject of recent activity. Certain
knot invariants such as the Jones polynomial have been employed in algorithms to
automatically determine the knot class of a randomly chosen polygon.

In certain situations one can in fact work with closed curves. Since the 1960s it
has been known that there exist some specific circular DNAmolecules. In other cases
the two sticky ends of the DNA are very close to each other, so modeling by a closed
curve seems reasonable.

According to experimental observations, molecules forming more complex knots
migrate faster than thosewith less complex knots. The speed seems to be proportional
to the average crossing number of the corresponding ideal knots. The latter ones min-
imize the ropelength, i.e., the quotient of length over thickness of a given knot. While
this definition seems to be conceptionally elementary, it becomes quite involved from
an analytical point of view due to its non-smoothness. This is a major issue in geo-
metric knot theory which will be addressed below. The average crossing number is a
frequently used and studied functional in polymer topology and turned out to be a
good measure of polymer compaction.
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Long DNA chains are often packed compactly under extreme confining condi-
tions. Although the general DNA packing mechanism still lacks a complete under-
standing, there have been recent attempts to develop a corresponding DNA packing
model and test whether the kind of knot spectrum observed in the experiments can
be computationally reproduced by studying equilateral random polygons confined in
a sphere.

Knots and the concept of ropelength also appear in the context of mathematical
physics, for instance in ideal magnetohydrodynamics, with potential applications in
the study of astrophysical flows. Magnetic knots are tubular embeddings of the mag-
netic field in some torus centered on a smooth oriented loop that is knotted in the fluid
domain. They are driven by the Lorentz force to inflexion-free spiral knots and braids.
The topological crossing number provides a lower bound on the minimum magnetic
energy of knots. Combining results onmagnetic energy relaxation and data on numer-
ical knot tightening reveals relationships between ropelength and groundstate energy
minima.

Models of closed rods in elasticity theory exhibit knotted configurations when ap-
plying a suitable amount of twist in the case where self-avoidance is not present. Im-
posing repulsive forces leads to a variety of different shapes and bifurcation phenom-
ena which has not been fully understood yet.

Geometric knot theory

In the 1990s, the notion of knot energies led to the definition of many functionals on
a suitable space of knots, so calculus of variations came into play. Originating from
an idea of Fukuhara, the general aim is to investigate geometric properties of a given
knotted curve in order to gain information on its knot type. This new subfield emerged
from the search of particularly “nice” shapes of knots. In a broader sense, it is part of
geometric curvature energies which include geometric integrals measuring smooth-
ness and bending for objects that a priori do not have to be smooth, also covering the
higher-dimensional case.

Moffatt speculated that the DNA molecule seeks to attain some minimum energy
state. Up to now, the energy involved here has not been identified, but this idea is one
of themainmotivations to study repulsive functionals in geometric knot theory. There
have been several attempts to employ self-avoiding energies for mathematical models
in microbiology.

In fact, knot energies basicallymodel self-avoidance, i.e., the functionals blow up
on embedded curves converging to a curve with a self-intersection. Following the neg-
ative gradient flow of this functional should simultaneously “untangle” the curve and
prevent it from leaving the ambient knot class. As long as there are no saddle points
of the energy within the unknot class, any such flow is a candidate for a retraction of
the unknot class onto the circles which exists due to the Smale conjecture.
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In this context, questions of existence and regularity of minimizers are of great
interest. The first knot energies defined on smooth curves byO’Hara (which contain as
a special case the famous “Möbius energy”) provide several interesting features. The
definition is quite straight-forward: one penalizes distant strands of the curve with a
small euclideandistance. Itwas the seminal discoverydue toFreedman,He, andWang
that the Möbius energy is invariant under the full group of Möbius transformations
in R3 which paved the way to proving deep theorems on existence and regularity of
minimizers within certain knot classes essentially by geometric means.

The conjecture that the Möbius energy of links is minimized by the stereographic
projection of the standard Hopf link has been settled using the min-max theory of
minimal surfaces which had been developed for proving the Willmore conjecture by
Marques and Neves. There are still other open hypotheses concerning the Möbius en-
ergy, for instance the non-existence of minimizers in composite knot classes as stated
by Kusner and Sullivan.

Ropelength, mentioned above, albeit conceptually being the most elementary
knot energy one can think of, turns out to be analytically quite involved due to taking
suprema which is a non-smooth operation. The existence of ideal knots (ropelength
minimizers within a given knot class) has been established independently by several
research groups. The problem of ropelength criticality is quite hard—due to the lack of
an explicit analytical characterization of the shape of a (non-trivial) ideal knot, many
contributions focus on discretization and numerical visualization.

Analytically, the situation becomes more accessible when suprema in the defini-
tion of ropelength are replaced by integration. However, the regularity properties of
these (families of) functionals still lack complete understanding. Additionally, several
generalizations to higher dimensions have been studied. Especially the investigation
of the integral Menger curvature reveals interesting connections to deep questions in
complex analysis such as Painlevé’s problem.

Up to now, gradient flows have been analyzed mainly for a sub-family of O’Hara’s
energies. Albeit many numerical schemes rely on suitable gradient-based discretiza-
tions, there is still a lack of a rigorous numerical analysis.

There is a close connection between the geometric setup in knot theory and re-
cently developedmethods from analysis of non-local critical partial differential equa-
tions. More precisely, techniques in the setup of so-called fractional harmonic maps
could be extended to theMöbius energy to prove regularity for critical points. Thiswas
quite surprising, and it opens up a new link from knot theory to classical geometric
analysis, making available the well-studied techniques from harmonic maps and har-
monic analysis. This is an active area of research, with the hope of eventually being
able to solve open problems with the well-developed tools from classical geometric
and harmonic analysis, where purely knot-related geometric arguments fail.
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Connections to differential geometry

A classical example for the impact of knottedness to the geometry of curves is the
Fáry–Milnor theorem: The total curvature of a curve is bounded from below in terms
of the bridge number. Consequently, any curve having total curvature less than 4π
must be unknotted.

A more subtle consequence of knottedness is the existence of quadrisecants, i.e.,
straight lines intersecting the curve at least four times, which has been established by
Pannwitz (1933). Surprisingly, there are many of them. Denne sharpened this result a
couple of years ago to stating that a (tame) knotted curve even possesses an alternat-
ing quadrisecant. In fact, quadrisecants greatly improve the known lower bounds on
ropelength.

In the same spirit, configuration spaces come into play when proving that Jordan
curves of finite total curvature (without cusps) have inscribed squares.

Combinatorial knot theory

Classically, a knot invariant is a functional f mappingagivenknot k to someobject f (k)
with the property that f (k1) = f (k2) if the knots k1, k2 belong to the same knot class.
For instance, we have f (k) ∈ {yes, no} in case of tricolorability, and the fundamental
groupof the complement π1(S3\k) is another knot invariant. Up tonow, there is still no
easily computable knot invariant that allows to distinguish any twogiven knot classes.
Therefore, in order to capture features of different knot types, it is of great interest to
define and investigate new knot invariants.

They all contribute to a sort of big ‘tool box’ which can be applied to further char-
acterize knot classes and add valuable pieces to the ‘puzzle’ that knot theory some-
times consists of.

Although the definition may only involve quite elementary geometric means, the
corresponding theory turns out to be rather challenging. This applies, e.g., to the stick
index which is the least number of line segments required to build the knot in space.
A related quantity is the cubic lattice stick index. Another example is the arc index,
the minimum number of pages required to present a given knot type, where an arc
presentation is an embedding k of a knot or link in finitely many pages of an “open-
book” so that each of its pages meets k in a single simple arc. This particular invariant
has a long history dating back to Brunn who looked for a projection of a given link
with a single singular point of higher multiplicity.

Sometimes even the definition of a knot invariant may demand deep algebraic
techniques. In the early 1980s, Jones establisheda connection to statisticalmechanics.
A system of particles where only neighbors interact can be modeled by a lattice or,
more generally, a graph. If the partition function, the sum over all possible states of
this system, can be chosen to respect Reidemeistermoves, it becomes a knot invariant.
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An example is the Potts model which is intimately related to knot theory, more
precisely to the Jones polynomial and to the Khovanov homology, providing a link be-
tween algebraic topology and theoretical physics. The Khovanov homology is a rather
new knot invariant introduced by Khovanov in the 1990s and can be obtained from
categorification of the Jones polynomial.

Exciting physical interpretation and connections of Khovanov homology using
avant-garde ideas from for example quantum fields and strings have already been
found. Andmany new exciting developments in this directions are still to be expected.
Or, as Edward Witten put it in a talk on knot and quantum theory at the Institute of
Advances Study in October 2011: “Probably the full story involves physics ideas that
we do not understand yet.”

The aim of this book is to present short surveys and open questions on different ac-
tive research directions related to knot theory in the broadest sense that are thought
of as invitation and challenge to junior and senior researchers. In this sense, it com-
plements the existing introducing (e.g., the above-mentionedmonographs) andmore
advanced textbooks (like Crowell–Fox, Rolfsen, Burde–Zieschang, and many others).

On the other hand, this collection emphasizes connections between the different
fields and provides a prototypical example for the unity of mathematics. In this light,
distinguishing between “pure” and “applied” fields does not seem to be ameaningful
category.

Joining certain aspects of knot theory, this presentation shall provide an overview
on the state of the art, popularize open problems, and reveal synergies and future
directions.

The fields of modern knot theory use quite different tools. However, each such
area is deeply groundedon results from the others, so newdevelopmentswill certainly
foster prospective research. To bring together those various aspects seems to us like a
great opportunity for all sides.

This edition is intendedas aplatform to exchangeandupdate on ideas, openprob-
lems, and interesting directions on which future collaborations over the borders of
areas can be based. In the past, many of the contributing authors have successfully
collaborated in different formations which adds to the flexibility and vitality of this
area.

Wewould be glad if this collectionwould further stimulate research activities and
help disseminate ideas between different areas related to knots and knotted struc-
tures.

We are very much indebted to all authors who accepted the challenge of presenting
the state of the art of their field of expertise to a broader readership as well as to our
referees for their thorough work.

This edition has been initiated on the occasion of the workshop Geometric Ener-
gies with Links to Applications, Topology, and Open Problems which has been held in



Contents | 7

September 2015 at the University of Basel. We would like to express our gratitude to
the Swiss National Science Foundation, grant no IZ32Z0 160298/1, as well as to the
Mathematical Institute in Basel for their generous support.

We are very grateful to Professor Dr. Gianluca Crippa for his interest in our project
and for adopting it in thenewly launched seriesPartial Differential Equations andMea-
sure Theory. Furthermore we would like to thank the staff at DeGruyter, especially Dr.
Agnieszka Bednarczyk-Drąg, Dr. Konrad Kieling, and Dr. Agata Morka.

Salzburg | Essen | Freiburg, March 2017 S. B. | Φ. R. | A. S.



Paweł Strzelecki and Heiko von der Mosel
Geometric curvature energies: facts, trends,
and open problems

Abstract: This survey focuses on geometric curvature functionals, that is, geo-
metrically defined self-avoidance energies for curves, surfaces, or more general k-
dimensional sets in Rd. Previous investigations of the authors and collaborators con-
centrated on the regularising effects of such energies, with a priori estimates in the
regime above scale-invariance that allowed for compactness and variational appli-
cations for knotted curves and surfaces under topological restrictions. We briefly de-
scribe the impact of geometric curvature energies on geometric knot theory. Currently,
various attempts are beingmade to obtain a deeper understanding of the energy land-
scape of these highly singular and nonlinear nonlocal interaction energies. Moreover,
a regularity theory for critical points is being developed in the setting of fractional
Sobolev spaces. We describe some of these current trends and present a list of open
problems.

Keywords: geometric curvature energies, singular integrals, critical points, regularity
theory, geometric knot theory, elastic knots, rectifiability

2.1 Facts

Energies. Geometric curvature functionals are characterised as geometrically defined
energies on a priorily non-smooth k-dimensional subsets Σk of Rd, and these func-
tionals are designed to penalise self-intersections. In addition, there are regularising
effects: finite energy implies some higher degree of smoothness of Σ. One of the first
examples is that of the Möbius energy on rectifiable curves 𝛾 ⊂ Rd, introduced by J.
O’Hara [82] and investigated analytically by M. H. Freedman et al. [41, 50],

EMöb(𝛾) :=
∫︁
𝛾

∫︁
𝛾

[︁ 1
|x − y|2 − 1

d𝛾(x, y)2
]︁
dH 1(x)dH 1(y), (2.1.1)

where d𝛾(x, y) denotes the intrinsic distance between the points x, y on the curve 𝛾,
andH 1 stands for the one-dimensional Hausdorff-measure. The first summand in the
integrand resembles a Coulomb-type repulsive potential suitably regularised by the
second term so as to obtain finite energy for smooth embedded curves. Another exam-

Paweł Strzelecki, Institute of Mathematics, University of Warsaw, Banacha 2, PL-02-097 Warsaw,
Poland, E-mail: p.strzelecki@mimuw.edu.pl
Heiko von der Mosel, RWTH Aachen University, Templergraben 55, D-52062 Aachen, Germany,
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ple is that of ropelength2.1 defined as the quotient of lengthL (𝛾) and thickness△[𝛾] of
curves 𝛾, where the latter is a non-smooth functional introduced by O. Gonzalez and
J. H. Maddocks [48], defined as

△[𝛾] := inf
x,y,z∈𝛾
x ̸ =y ̸ =z ̸ =x

R(x, y, z). (2.1.2)

Here, R(x, y, z) denotes the circumcircle radius of the three curve points x, y, and z.
Thickness can be regarded as a hard core potential or steric constraint, in contrast to
repulsive potentials.

Both functionals have had their impact on the modeling of macromolecules such
as DNA and proteins [25, 76, 77], and on geometric knot theory, where one studies
relations between the geometry of space curves and the knot types they represent.
Several geometric curvature energies can be minimised within given knot classes to
obtain particularly nice representatives of that knot, for example ideal knots as ro-
pelength minimisers [29, 49]. Bounds on the energy sometimes imply bounds on knot
invariants like stick number or crossing number, hence bounds on the number of knot
classes that possess representatives below these energy thresholds; see, e.g., [24, 73].

However, both these extreme forms of energies have serious drawbacks. The
highly singular integrals involved in the definition of any kind of repulsive potential
like (2.1.1) need some sort of regularisation, and – besides the ambiguity in the choice
of such a regularisation – it is by no means clear how to generalise this concept to
higher dimensional objects. The steric constraint of given thickness (2.1.2) or the rope-
length functional, on the other hand, is a non-smooth quantity imposing challenging
technical problems, e.g., for the derivation and analysis of variational equations. This
led to our systematic research between 2007 and 2012, devoted to a whole range of
intermediate energies on curves and surfaces interpolating in some sense between
hard steric constraints and “soft” repulsive potentials. Examples of such energies on
one-dimensional sets include [119]

Up(𝛾) :=
∫︁
𝛾

sup
y,z∈𝛾
z ̸ =y ̸ =x ̸ =z

1
Rp(x, y, z) dH 1(x), p ≥ 1, (2.1.3)

or the double integral [114]

Ip(𝛾) :=
∫︁
𝛾

∫︁
𝛾

sup
z∈𝛾

z ̸ =x ̸ =y ̸ =z

1
Rp(x, y, z) dH 1(x)dH 1(y), p ≥ 2, (2.1.4)

2.1 The name of that functional is coined after the following geometric variational problem: given a
rope of fixed constant thickness, what is the minimum length of this rope required to tie a given knot?
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and also integral Menger2.2 curvature [115]

Mp(𝛾) :=
∫︁
𝛾

∫︁
𝛾

∫︁
𝛾

1
Rp(x, y, z) dH 1(x)dH 1(y)dH 1(z), p ≥ 3. (2.1.5)

On a fixed loop 𝛾 of unit length, these energies are ordered as

M 1/p
p (𝛾) ≤ I 1/p

p (𝛾) ≤ U 1/p
p (𝛾) ≤ 1

△[𝛾]
, (2.1.6)

where the last term is the ropelength of 𝛾. Moreover, the p-th root of Mp , Ip, and of
Up tends to ropelength as p → ∞ both on fixed conformations of knots and in the
sense of Γ-convergence.

Besides averaging andmaximising over themulti-point interactions in the circum-
radius we investigated tangent-point interactions such as [121, 57]

Ep(𝛾) :=
∫︁
𝛾

∫︁
𝛾

1
rtp(x, y)p

dH 1(x)dH 1(y), p ≥ 2, (2.1.7)

aswell, where rtp(x, y) is the radius of the unique circle through twogiven curve points
x and y that is additionally tangent to 𝛾 in x.

We also introduced and studied geometric curvature energies on higher-
dimensional sets such as thickness for surfaces Σ ⊂ Rd [118, 117], where oneminimises
over all pairs of points x, y ∈ Σ the tangent-point radius Rtp(x, y) of the smallest sphere
through x and y that is tangent to Σ in x. Later, we investigated integral Menger curva-
ture for surfaces Σ ⊂ R3 [120],

Mp(Σ) :=
∫︁
Σ

∫︁
Σ

∫︁
Σ

∫︁
Σ

Kp(x, y, z, ξ ) dH 2(x)dH 2(y)dH 2(z)dH 2(ξ ), p ≥ 8, (2.1.8)

where the integrand K is defined2.3 on tetrahedra T = (x, y, z, ξ ) with vertices
x, y, z, ξ ∈ Σ, as

K(T) = K(x, y, z, ξ ) := H 3(T)
area (T)diam 2(T)

. (2.1.9)

2.2 Karl Menger considered in the 1930’s the circumradius R(x, y, z) of three curve points x, y, z ∈ 𝛾

knowing that the coalescent limit of R(x, y, z) as x and y tend to z coincides with the local radius
of curvature if the curve 𝛾 is sufficiently smooth. Menger was also aware of the fact that there is an
elementary formula for the circumradius solely in terms of the mutual distances of the points x, y,
and z. By means of multipoint functions such as R(·, ·, ·) Menger indeed intended to develop a purely
metric geometry in contrast to classic differential geometry. The idea of using Menger curvature as a
tool – both in harmonic analysis and in modeling – has been re-discovered in the last 20 years.
2.3 Themost obvious choice to take as integrand in (2.1.8) a negative power of the circumsphere radius
of a tetrahedron does not serve our purposes since there are smooth embedded surfaces for which
such an integrand would not be bounded; see our detailed discussion on various integrands in [120,
Appendix B].
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HereH 3(T) is the volume of the tetrahedron T and area (T) the sum of its facet areas.
For k-dimensional submanifolds Σk ⊂ Rd we looked at the tangent-point energy [123]

Ep(Σ) :=
∫︁
Σ

∫︁
Σ

1
Rptp(x, y)

dH k(x)dH k(y), (2.1.10)

and S. Kolasiński investigated in his Ph.D. thesis integralMenger curvature for Σk ⊂ Rd

[61, 62]

Mp(Σ) :=
∫︁
Σ

· · ·
∫︁
Σ⏟  ⏞  

k + 2 integrals

Kp(x0, . . . , xk+1) dH k(x0) · · · dH k(xk+1) (2.1.11)

for p > k(k + 2), where the integrand generalises (and simplifies) the one given in
(2.1.9) to

K(T) = K(x0, . . . , xk+1) :=
H k+1(T)

(diam (T))k+2
, (2.1.12)

for (k + 1)-dimensional simplices T = (x0, . . . , xk+1) with each vertex xi on Σ.

Regularising effects. Summarising the essential results of this systematic re-
search (which is well documented in a number of publications [119, 114, 115, 121, 117,
118, 120, 123, 61, 62], we can say the following: we have a pretty clear understanding of
the topological and regularising effects of each of these energies, with sharp regular-
ity statements and uniform a priori estimates. For example, a rectifiable curve 𝛾 with
finite integral Menger curvature Mp(𝛾) for some p > 3 (i.e., above the scale-invariant
case p = 3) is homeomorphic to the unit-circle or unit-interval, and the arclength
parametrisation of that curve satisfies the uniform a priori estimate

|𝛾′(s) − 𝛾′(t)| . Mp(𝛾[s, t])1/p|s − t|1−3/p for all s, t. (2.1.13)

In other words, 𝛾 ∈ C1,1−(3/p), so although Mp does not capture the pointwise value
of local curvature (which may be simply undefined even if Mp(𝛾) is finite), it does
capture the average oscillation of the unit tangent vector; see [115, Theorem 1.2]. We
may interpret this result as a geometric Morrey-Sobolev embedding: the integrand cor-
responds to a very weak form of curvature integrated to some power p > 3, and the
total domain of integration is three-dimensional; the classic Morrey-Sobolev theorem
applied to second derivatives (instead of curvature) would give exactly the optimal
Hölder exponent 1 − (3/p) for the first derivatives.

Likewise for higher-dimensional subsets of Rd, exemplified by integral Menger
curvature Mp(Σ) for two-dimensional surfaces in Euclidean 3-space, as defined in
(2.1.8); see [120, Theorem 1.4]: if an admissible two-dimensional set Σ ⊂ R3 satis-
fies Mp(Σ) < ∞ for some p > 8 (again above the scale-invariant case p = 8), then
Σ is actually an orientable C1,1−(8/p)-submanifold with a controlled local graph rep-
resentation: There is a uniform radius R > 0 depending only on p and the energy
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valueMp(Σ), such that for each x ∈ Σ the intersection BR(x)∩ Σ equals the graph of a
C1,1−(8/p)-function with uniform estimates on this function solely depending on p and
Mp(Σ). Again, this is a geometric variant of the Morrey-Sobolev embedding theorem
with optimal Hölder exponent 1 − (8/p) for the oscillation of tangent planes. Similar
results hold for k-dimensional admissible sets Σk ⊂ Rd with finite integral Menger
curvature Mp(Σ) for p > k(k + 2), or finite tangent point energy Ep(Σ) for p > 2k,
both in the regime above scale-invariance; see [61, 62, 123]. A thorough discussion of
the respective admissibility class of sets can be found, e.g., in [64]. At this point, we
may roughly describe our mild requirements on the set Σk as a certain degree of local
flatness around many (but not all) points, together with an amount of connectivity to
allow for some degree-theoretic arguments.

That these regularity estimates are indeed sharp, can be seen either by explicit
examples constructed in [66, 57], or by the complete characterisation of energy spaces
for all these energies in the work of S. Blatt and Kolasiński [17, 13, 11]: based on our
results that finite energy implies that the admissible sets are already C1-submanifolds
inRd, they use the explicit structure of the energies to estimate locally the seminorms
of fractional Sobolev spaces to find that Σ has finite energy if and only if Σ is embedded
and has local graph representations of exactly that Sobolev regularity. Recall, e.g.,
from [128, Section 2.2.2], that a function u ∈ Lp(Rk) belongs to the Sobolev-Slobodeckĭı
space Wm+s,p(Rk) for somem ∈ N, s ∈ (0, 1), and p ∈ [1,∞) if u belongs to the classic
Sobolev spaceWm,p and satisfies, in addition,

‖u‖pm+s,p := ‖u‖pWm,p(Rk) +
∑︁
|α|=m

∫︁
Rk

∫︁
Rk

|Dαu(x) − Dαu(y)|p
|x − y|k+sp

dydx < ∞. (2.1.14)

As an example, let us mention Blatt’s and Kolasiński’s characterisation of the energy
space for integral Menger curvature as defined in (2.1.11); see [17, Corollary 1.2]: If
p > k(k + 2) and Σk ⊂ Rd is an admissible set, then its integral Menger curvature
Mp(Σ) is finite if and only if Σ is a submanifoldwith local graph representation of class
W1+s,p(Rk ,Rd−k), where s = 1− (k(k+1)/p) ∈ (0, 1). Blatt and Kolasiński treated also
all intermediate energies where up to all but two integrations in (2.1.11) are replaced
bymaximisations, obtaining corresponding fractional Sobolev spaces as the exact en-
ergy spaceswith suitably adapteddifferentiability and integrability. Themissing cases
where only one integration is left, i.e.,∫︁

Σ

sup
x1 ,...,xk+1∈Σ

Kp(x0, x1, . . . , xk+1) dH k(x0), (2.1.15)

generalising (2.1.3) to k-dimensional sets Σk ⊂ Rd , and the global tangent-point energy
(cf. (2.1.10)), ∫︁

Σ

sup
y∈Σ

1
Rptp(x, y)

dH k(x), (2.1.16)
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were treated in cooperation with Kolasiński in [64] leading to the theorem that fi-
nite energy characterises embedded submanifolds of classic Sobolev regularity W2,p

if p > k; see [64, Theorem 1.4]. This result may be compared to Allard’s famous C1,α-
regularity theorem [3, 37] for k-dimensional varifolds whose generalised mean curva-
ture is p-integrable, where, again, p > k.

Connections to geometric knot theory. The uniform estimates obtained in
[119, 114, 115] for finite energy curves 𝛾 (like the one in (2.1.13)) together with a uni-
form geometric rigidity of these curves (replacing the excluded volume constraint of
thickness) was used to connect the respective energies to geometric knot theory, as de-
scribed indetail in [116, Section4]; see also the recent surveys [122, 124]. This geometric
rigidity2.4 means, roughly speaking, that the curve may be equipped with a necklace
of consecutive double-cones whose size and opening angle are determined purely in
terms of the respective energy [116, Proposition 4.7]. The circular cross-sections of each
piece of this necklace, i.e., of each such double cone (with its two tips located on the
curve 𝛾), are intersected by 𝛾 transversally and exactly in one point; see Figure 2.1.
Once this necklace is established one can fairly easily construct an ambient isotopy
from 𝛾 to the inscribed polygon made of the consecutive double cones’ axes.

Thus, any one of the geometric curvature energies for curves (2.1.3)–(2.1.5), (2.1.7),
bounds the stick number, which is theminimal number of straight segments you need
to build a polygonal representative of the same knot type. Since stick number is a knot
invariant, any such energy bounds the number of knot types: given any constant E ≥ 0
there is a nonnegative integer N(E) depending only on E, such that at most N(E) knot
types can be represented by curves of geometric curvature energy below the energy
threshold E.

On the other hand, the double-cone property described above also serves as a
substitute of the excluded volume constraint given by finite ropelength. This allows
us to control the average crossing number acn(𝛾), where you count the number of self-
intersections of every planar projection of the given curve 𝛾 and then average over all
directions of projections. Indeed, Freedman et al. derived in [41, Section 3] a double
integral formula for acn(𝛾),

acn(𝛾) := 1
4π

1∫︁
0

1∫︁
0

|(𝛾′(s) × 𝛾′(t)) · (𝛾(t) − 𝛾(s))|
|𝛾(t) − 𝛾(s)|3 ds dt, (2.1.17)

where × denotes the usual cross-product in R3. While the local interaction terms in
that formula may be estimated by the local smoothness properties of a finite energy
curve 𝛾, one can follow the strategy of G. Buck and J. Simon [24] for curves of finite
ropelength, to estimate the global interaction terms by estimating the volume of a
spatial region necessary to fit in a maximally compactified curve 𝛾. Only here, one

2.4 Referred to as diamond property in [116].
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Fig. 2.1: Top: The curve 𝛾 is trapped in a conical region with two tips at x, y ∈ 𝛾 and does not me-
ander back and forth: each cross section of the double-cones contain exactly one point of the curve.
Bottom: Necklace made of such small double cones with vertices along the curve 𝛾 that have pair-
wise disjoint interiors. The polygonal curve joining the consecutive vertices of the cones is ambient
isotopic to 𝛾.

has to replace the excluded volume constraint by the double-cone condition, so that
our constants are far from being optimal; see [116, Proposition 4.13]. Since the aver-
age crossing number bounds the classic knot invariant crossing number, we thus have
established another means to control the number of knot types below given energy
thresholds.

In addition, we could show that all these energies are charge and tight, which
means that they blow up along sequences that converge to curves with self-
intersections and also along sequences where one small knotted subarc pulls tight,
i.e., vanishes in the limit. Being tight distinguishes these geometric curvature energies
from the Möbius energy (2.1.1): O’Hara showed in [83, Theorem 3.1] that the Möbius
energy does not prevent the pull-tight phenomenon. Moreover, Up and Ip could be
shown to distinguish the knot from the unknot: there is a gap between the infimum
over unknots and the infimumover non-trivially knotted curves. The infimaof all these
energies (in contrast, e.g., to the Möbius2.5 energy) are attained on each given knot

2.5 The Möbius energy can, however, be minimised within prescribed prime (or irreducible ) knot
classes; see [41, Theorem 4.3].
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class. Freedman et al. [41] showed that the Möbius energy EMöb is uniquely minimised
by the round circle, a knot energy with that property is called basic. A. Abrams et
al. [1] extended that uniqueness result to a larger family of energies. Also ropelength
is basic, and more generally, Up as well; see [119, Lemma 7]. A more recent mono-
tonicity formula2.6 for compact free boundary surfaces by A. Volkmann [129, Section
5] implies the same for the tangent-point energy Ep (see (2.1.7)), and hence also Ip
by the arguments in [116, Proof of Cor. 3.7]. All these results resolve some of the open
problems formulated in geometric knot theory, e.g. in [125, Section 2], or in [86, Chap-
ter 8], and give some first insights into the presumably complicated energy landscape
of these energies on knot space. Almost nothing is known about the actual shape of
knotted energy minimisers, apart from the explicit continuous family of ideal links
(minimising ropelength in fixed link classes) presented by J. Cantarella, R. B. Kusner,
and J. M. Sullivan in [29], and necessary criticality conditions for ropelength minimis-
ers [110, 26, 27]. Moreover, studying ideal knots in R4 lead to the discovery of unique
explicit solution families of longest (thick) ropes on the two-sphere by H. Gerlach and
the second author; see [45] and the popular account in [44].

2.2 Trends and open problems

Regularity. Higher regularity of local minimisers or critical points is only known in a
few cases. Freedman et al. [41] used the Möbius-invariance of the Möbius energy EMöb
defined in (2.1.1) to apply reflection arguments to show that local minimisers are of
class C1,1, and they derived the Euler-Lagrange equation

δEMöb(𝛾, h) := lim
τ→0

EMöb(𝛾 + τh) − EMöb(𝛾)
τ (2.2.1)

= 2 lim
ε↘0

∫︁∫︁
|u−v|≥ε

(︂
𝛾′(u) · h′(u)
|𝛾′(u)|2 − (𝛾(u) − 𝛾(v)) · (h(u) − h(v))

|𝛾(u) − 𝛾(v)|2

)︂

× |𝛾′(v)||𝛾′(u)|
|𝛾(u) − 𝛾(v)|2 du dv

for injective and regular curves 𝛾 and perturbations h both of class C1,1. Later Zh.-
X. He [50] used this Euler-Lagrange equation to improve the regularity of local EMöb-
minimisers to C∞-smoothness; see also [98]. Quite recently, there has been consider-
able progress through the work of Blatt, P. Reiter, and A. Schikorra, who established
the following deep regularity result [22, Theorem I] in the correct fractional Sobolev
space W3/2,2 corresponding – according to Blatt’s earlier work [11] – to finite Möbius
energy:

2.6 Or alternatively, a secant map approach of Blatt reminiscent of an argument to prove the classic
Fenchel inequality; see [129, Section 5].



16 | Paweł Strzelecki and Heiko von der Mosel

Theorem 2.2.1 (EMöb-critical points are smooth). Any arclength parametrised critical
point 𝛾 ∈ W3/2,2 of the Möbius energy is C∞-smooth.

It is remarkable that no use at all is made of the Möbius-invariance of EMöb to prove
Theorem 2.2.1 in contrast to the previous work of Freedman et al. Here, one uses the
Euler-Lagrange equation (suitably extended to the correct fractional Sobolev spaces)
to first gain some additional regularity, i.e., a slightly higher integrability of the tan-
gent [22, Theorem III], before a bootstrapping process can be started. One should point
out that, similarly to other geometric equations like the variational equation for the
Willmore functional, the Euler-Lagrange equation for EMöb is in a sense critical, which
requires some very intricate techniques that were developed in the context of frac-
tional harmonic mappings [34, 33, 102, 101].

Somewhat less involved is the regularity proof for othermembers of O’Hara’s fam-
ilies of repulsive potentials [82, 84, 85], namely for the energies E α, where a power
α ∈ (2, 3) replaces the quadratic power in the denominators of (2.1.1). Blatt and Re-
iter established the Fréchet-differentiability of E α on the space of regular curves of
finite energy, and proved C∞-smoothness for arclength parametrised critical points
[19, Theorems 1.1 & 1.2].

To carry over this regularity program to critical points of geometric curvature ener-
gies such as the tangent-point energy (2.1.7) or integral Menger curvature (2.1.5), Blatt
and Reiter embedded those energies into larger two-parameter families of energies by
decoupling the integrability exponent p into different powers for numerator and de-
nominator of the integrands. In this way they obtain, for instance, modified tangent-
point energies

TP (p,q) :=
∫︁
𝛾

∫︁
𝛾

1
r(p,q)(x, y)

dH 1(x)dH 1(y), (2.2.2)

by replacing the p-th power of the inverse tangent-point radius

1
rtp(x, y)

= 2dist (Tx , y)
|x − y|2 by the less geometric expression 1

r(p,q)(x, y)
:= dist (Tx , y)q

|x − y|p .

(Here, Tx denotes the tangent-line to 𝛾 through the point x ∈ 𝛾.) In the parameter
regime q > 1 and p ∈ (q + 2, 2q + 1) the modified tangent-point energies turn out
to be well-behaved knot energies that are minimisable in every knot class. The frac-
tional Sobolev regularity W (p−1)/q,q characterises finite energy (see[20, Theorems 1.1
& 1.3]), and allows a first variation formula even without Cauchy principal values [20,
Theorem 1.4] in contrast to the variational equations of O’Hara’s repulsive energies.
Blatt and Reiter then identify a non-degenerate parameter range q = 2, p ∈ (4, 5)
that permits a regularity result[20, Theorem 1.5]. Unfortunately this range excludes
the original tangent-point energy Ep = TP2p,p (cf. (2.1.7)).

Theorem 2.2.2 (TP (p,2)-critical points are smooth). For p ∈ (4, 5) any TP (p,2)-
critical arclength parametrised injective curve of class W (p−1)/2,2 is C∞-smooth.
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Asimilar result holds also for a subfamily ofmodified integralMenger energies; see [21],
but apart from that non-degenerate parameter regime, in particular for (the original)
integral Menger curvature (2.1.5) and tangent point energies (2.1.7) the regularity of
critical points, even that of local minimisers remains open.

Open questions 2.2.3. Despite degeneracies in the non-local Euler-Lagrange equa-
tions, is there any chance to prove additional regularity (beyond the fractional Sobolev
regularity characterising energy spaces) for localminimisers or critical points of tangent-
point energies (2.1.7), or of integral Menger curvature (2.1.5)? Does the optimal regular-
ity depend on p, and if yes, what happens with that p-dependent regularity in the limit
p → ∞? Does that lead to new insights into the still open optimal regularity of ideal
knots?

We know that the geometric curvature energies in higher dimensions such as inte-
gral Menger curvature (2.1.8), (2.1.11), or the tangent-point energy (2.1.10) can be min-
imised within given isotopy classes of submanifolds [117, Theorem 7.1], [120, Theorem
1.7], [65, Corollary 1], but nothing is known about higher regularity of these minimis-
ers, not to speak of a regularity statement about possible critical points. Not even a
variational equation has been derived so far in higher dimensions. In case of the non-
smooth energies (2.1.15), (2.1.16), and also for the one-dimensional prototype (2.1.3),
non-smooth analysis tools such as Clarke gradients would have to be applied to de-
rive the variational differential inclusion, similar to the analysis performed for the ro-
pelength functional for curves involving the non-smooth expression (2.1.2) for thick-
ness; see [109, 110, 26, 27].

Open questions 2.2.4. Whatare theEuler-Lagrange-equations for higher-dimensional
geometric curvature energies like integral Menger curvature (2.1.5) or tangent-point en-
ergies (2.1.10)? Is there any chance to prove higher regularity of local minimisers or crit-
ical points of these energies? What form do the expected variational inclusions have for
the non-smooth geometric energies (2.1.3), (2.1.15), (2.1.16)? What can be said about the
regularity of thick knotted surfaces minimising area?

Below or in the scale-invariant regime. Integral Menger curvature Mp on one-
dimensional sets E ⊂ C with integrability exponent p = 2 (well below the scale-
invariant exponent p = 3) has played a fundamental rôle in harmonic analysis, e.g.,
in the proof of the famous Vitushkin conjecture on the removability of compact sub-
sets of the complex plane for complex analytic functions; see, for instance, X. Tolsa’s
quite recent excellent monograph [126]. Motivated by some of G. David’s methods [35]
for his final proof of this conjecture, J.-C. Léger [70] proved the following remarkable
rectifiability result:
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Theorem 2.2.5 (Rectifiability for sets of finite integral Menger curvature M2). Any
Borel set E ⊂ Rn with 0 < H 1(E) < ∞ satisfying

M2(E) =
∫︁
E

∫︁
E

∫︁
E

1
R2(x, y, z) dH 1(x)dH 1(y)dH 1(z) < ∞ (2.2.3)

is 1-rectifiable, i.e., there exists a countable family of Lipschitz functions fi : R → Rn

such that H 1(E \
⋃︀
i fi(R)) = 0.

So, even below scale-invariance, integralMenger curvature has regularising effects on
sets. In our context of geometric curvature energies one is naturally lead to the ques-
tion if one can generalise Leger’s deep result to sets of higher dimensions? What are
suitable generalisations of the integrand in (2.2.3) which is defined on point triples
forming two-dimensional simplices. Already for our generalisations to surfaces and
submanifolds as given in (2.1.9) and (2.1.12) we had discussed several variants of in-
tegrands defined on general (k + 1)-dimensional simplices; see, e.g., the introduction
and appendix of [120]. Recently, M. Meurer [75] presented a collection of integrands
for which Léger’s result could indeed be extended to arbitrary dimensions and co-
dimensions, including, e.g., the integrand, defined on (k + 1)-dimensional simplices
T = (x0, x1, . . . , xk+1); see [75, Section 3.2],

KM(T) = KM(x0, . . . , xk+1) :=
H k+1(T)

diam (T)(k+1)(k+2)/2
, (2.2.4)

which is one out of several possible generalisations of Léger’s integrand 1/R(x, y, z)
in (2.2.3). Meurer could prove the following rectifiability theorem [75, Theorem 1.1].

Theorem 2.2.6 (Rectifiability in arbitrary dimensions). Any Borel set E ⊂ Rn with 0 <
H k(E) < ∞ satisfying

M2(E) :=
∫︁
E

· · ·
∫︁
E⏟  ⏞  

k + 2 integrals

K2
M(x0, . . . , xk+1) dH k(x0) · · · dH k(xk+1) < ∞ (2.2.5)

is k-rectifiable, i.e., can be covered (up to sets ofH k-measure zero) by a countable union
of Lipschitz images of Rk.

Meurer’s class of admissible integrands includes also the discrete curvatures used by
G. Lerman and J. T. Whitehouse in [71, 72] to give a characterisation of David’s and S.
Semmes’ concept of uniform rectifiability; cf [36, Theorem 1.57]. J. Azzam and Tolsa
[7] recently established a new rectifiability criterion in terms of P. Jones’s β-numbers
[56] which are fundamentally related to integral Menger curvature as shown in [70,
75]. Interestingly, however, and somewhat surprising is the fact, that the integrands
(2.1.9) and (2.1.12) we studied in the integrability regime above scale-invariance, are
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not included in Meurer’s class of integrands; they do scale differently. At this point it
remains open, if one can replaceKM in (2.2.5) by the expressionK defined in (2.1.12).

In the definition of rectifiability one covers the set (up to a set of measure zero) by
Lipschitz images, and one might think about improving the regularity of the covering
images. The step from Lipschitz to C1-images is immediate by Whitney’s extension
theorem; see, e.g. [112, Section 3, Lemma 11.1], but improving that to C1,α (as in the
regime above scale-invariance) is highly non-trivial. This was recently accomplished
by Kolasiński [63] also for a large class of discrete curvatures with a certain overlap
with Meurer’s class including (2.2.4), so that, e.g., the following higher order rectifia-
bility result holds true and can be deduced from [63, Theorem 1.1].

Theorem 2.2.7 (C1,α-rectifiability). Any Borel set E ⊂ Rn with 0 < H k(E) < ∞ and
a.e. positive lower density, satisfying

Mp(E) :=
∫︁
E

· · ·
∫︁
E⏟  ⏞  

k + 2 integrals

K
p
M(x0, . . . , xk+1) dH k(x0) · · · dH k(xk+1) < ∞ (2.2.6)

for some p > 2 is k-rectifiable of class C1,α for some positive Hölder exponent α = α(p),
i.e., the set E can be covered (up to sets of H k-measure zero) by a countable union of
k-dimensional C1,α-submanifolds of Rn.

Open questions 2.2.8. Can one extend Meurer’s rectifiability result to the integrands
(2.1.9) or (2.1.12) of integral Menger curvature or to the tangent-point energies (2.1.10)
defined on a suitable wide class of non-smooth sets? How does Meurer’s result relate to
other recent rectifiability results like [127, 7]?

Not much is known about geometric curvature energies in the scale-invariant regime,
but simple scaling arguments reveal the fact that cone-type singularities do lead to
infinite geometric curvature energies; see Figure 2.2. S. Scholtes could indeed demon-
strate that embedded polygons have finite integral Menger curvature Mp if and only
if p ∈ (0, 3); see [103]. Recall that p = 3 is the scale-invariant exponent for integral
Menger curvature for curves. In addition, Scholtes established certainweak tangential
properties of arbitrary (a priori fairly wild) sets at every point if the one-dimensional
set E ⊂ Rn has finite integral Menger curvature M3(E) [104].

So, one can indeed hope for mild regularising effects, like for the energy Up for
curves for p = 1, where we proved in [119, Theorem 1] that finite U1-energy implies
that the curve is embedded and in the Sobolev class W2,1. However, not every em-
beddedW2,1-curve has finite U1-energy; see [119, Example pp. 120–121]. Finiteness of
the tangent-point energy Ep in the scale-invariant case p = 2 (see definition (2.1.7))
yields at least a topological one-dimensional manifold – possibly with boundary; see
[121, Theorem1.1]. Only for theMöbius energy (2.1.1),whoseMöbius-invariance implies
scale-invariance, one has Blatt’s [11] characterisation of the appropriate energy spaces
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Fig. 2.2: A cone has infinite scale-invariant geometric curvature E , since scaling of a fixed portion S
of the cone leads to the same quantum of energy E (S) = E (S/2) = E (S/4) = . . .. Adding up these
infinitely many contributions E (S/2i), i ∈ N leads to a divergent series of positive real numbers as a
lower bound for the cone’s energy if (S/2i) ∩ (S/2j) = ∅ for i ̸= j.

as the fractional Sobolev space W3/2,2 (assuming injective arclength parametrised
curves), and already earlier Blatt andReiter used an idea of He to construct a closed bi-
Lipschitz curve with finite Möbius energy that is not differentiable [18, Corollary 4.2].
But very recently, Blatt has established a nice approximation result on convolutions of
curves whose tangents have vanishing mean oscillations which in particular implies
that arclength parametrised curves of finiteMöbius energy can be approximated in the
W3/2,2-norm and in energy2.7 by smooth curves; see [14, Theorem 1.3]. At present there
are a few suggestions how to generalise theMöbius energy to higher-dimensional sub-
manifolds – we are aware of Kusner and Sullivan [67, 68] and D. Auckly and L. Sadun
[5] (see also the very recent contribution by O’Hara and G. Solanes [88], [87]) – but
no satisfactory analysis regarding regularity or variational issues has been performed
yet.

2.7 This has various consequences in geometric knot theory, for instance, it completes Scholtes’ recent
investigations on a discrete version of the Möbius energy for polygons with n edges, that can now be
shown to Γ-converge to the Möbius energy (2.1.1) as n → ∞; see [105, Theorem 1.1] and [14, Theorem
3.8]. We do not address the very interesting questions regarding suitable discretisations and merely
refer to the work of Rawdon et al. [92, 93, 95, 78, 94, 96, 97, 106] on discretised versions of ropelength,
and to [108, 105, 107] for discretisations of a few other geometric curvature energies.
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The scale-invariant exponent for integral Menger curvature Mp(Σ) on two-
dimensional surfaces Σ ⊂ R3 is p = 8, and we proved a Fenchel-type theorem [120,
Theorem 1.2].

Theorem 2.2.9 (Fenchel-type theorem). There is anabsolute constant 𝛾0 > 0 such that
M8(Σ) ≥ 𝛾0 for any closed compact connected two-dimensional Lipschitz surface Σ ⊂
R3.

Due to our rather rough estimates the constant 𝛾0 is far from being optimal.

Open questions 2.2.10. What is the optimal regularity of finite energy Lipschitz curves
or submanifolds for any of the geometric curvature energies in the scale-invariant case?
How regular are submanifolds of finite energy for a suitable generalisation of theMöbius
energy to higher dimensional objects? How much geometric curvature energy does one
really need to close a curve or a surface, in other words what are the optimal constants
in Fenchel-type theorems like Theorem 2.2.9? Is every k-dimensional manifold Mk im-
mersed in Rn automatically embedded if its image has finite scale-invariant tangent-
point energyE2k (see (2.1.10)), or finite scale-invariant integralMenger curvatureMk(k+2)
(see (2.1.11))?

Existence of critical points. For all geometric curvature energies above scale-
invariance one can find (at least one) minimising knot in a given isotopy class. This
even works for higher-dimensional geometric curvature energies such as integral
Menger curvature or tangent-point energies for submanifolds as described above. But
are there other critical points, and how can one prove their existence? One of the first
attempts in that direction is the work of D. Kim and Kusner [59] on the Möbius energy.
They applied R. S. Palais’ principle of symmetric criticality [89] to obtain EMöb-critical
torus knots byminimising the Möbius energy within the appropriate subclass of torus
knots enjoying particular symmetries . In addition, together with G. Stengle [59, p. 4]
they used classic residue calculus from complex analysis to calculate their energy val-
ues. Further numerical experiments lead them to conjecture that most of these EMöb-
critical torus knots are not local minimisers. For the non-smooth ropelength func-
tional Cantarella et al. [28] successfully modified Palais’ symmetric criticality prin-
ciple to find new critical points in several symmetry classes of knots and links, e.g.
in the non-trivial (a, b)-torus knots. They used their numerical ropelength minimis-
ing algorithm ridge runner to compute their respective values for ropelength; see
Figure 2.3.
In ongoing cooperative work with A. Gilsbach we apply Palais’ principle to O’Hara’s
repulsive energies, integral Menger curvature, and tangent-point energies to produce
symmetric critical configurations in every prescribed knot class. Specifically, in non-
trivial (a, b)-torus knot classes we even obtain two distinct symmetric critical knots
with thismethod [46], [47]. Very helpful in that context is the knowledge of the respec-
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Fig. 2.3: A 5-fold and a 2-fold symmetric ropelength-critical (2, 5)-torus knot, both with ropelength
values distinctly larger than the unsymmetric global ropelength minimiser on the right accord-
ing to the computations with ridge runner of Cantarella et al. in [28]. (Images by courtesy of
J. Cantarella.)

tive correct energy spaces described in Section 2.1. Gilsbach also uses Γ-convergence
arguments to show that her symmetric critical points of integral Menger curvatureMp
do converge to ropelength-critical points as p → ∞. Recently, Gilsbach has modi-
fied T. Hermes’ numerical code [52] to actually compute the energy values of the sym-
metric critical points of integral Menger curvature. Hermes had rigorously derived the
first variation formula for integral Menger curvature in the suitable fractional Sobolev
space, and could prove that the round circle is a critical point. He created a numer-
ical tool to explore the presumably quite complicated energy landscape of integral
Menger curvature. His numerical experiments exhibit among other things the ability
of the Menger gradient flow to untangle complicated unknots to the round circle after
fairly short time, aswell as varying features as p approaches infinity. For p only slightly
above the scale-invariant exponent one finds smoothing as the predominant feature
(while keeping the curves embedded in contrast to, e.g., the classic mean curvature
flow on space curves), whereas for large p, say p ≥ 50, the similarity to Cantarella’s
ridge runner (corresponding to the case p = ∞) is striking [4]: both flows try to em-
bed the curves as nicely as possible.

A second variation formula has beenderived and analysed in detail for theMöbius
energy by A. Ishizeki and T. Nagasawa [54]. They used a very interesting decompo-
sition theorem for the Möbius energy itself [53], and studied recently the Möbius-
invariance of the various parts of that decomposition [55]. Also quite recently J. Knapp-
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The gradient flow for integral
Menger curvature flows the ini-
tial configuration above to the
trefoil on the top right for p =
3.5, and to the bottom trefoil on
the right as p = 50.

Fig. 2.4: Different parameters p > 3 lead to different final configurations for the gradient flow of
the rescaled integral Menger curvature but the knot type is preserved. (Images by courtesy of T. Her-
mes.)

mann [60] succeeded in deriving rigorously a second variation formula for integral
Menger curvature Mp on curves in the appropriate fractional Sobolev spaces.

The only approach to deal with higher-dimensional critical points for geometric
curvature energies is the ingenious paper by A. Nabutovsky [80] who combined com-
plexity theory with real algebraic geometry to prove the existence of infinitely many
critical unknotted hyperspheres in Rn for n ≥ 6 for a higher-dimensional variant of
ropelength.

Open questions 2.2.11. Are there critical points for geometric curvature energies in
every prescribed knot class other than the known global minimisers? In particular, are
there critical unknots different2.8 from the round circle? And if so, how many are there?
Can we relate critical points of different geometric curvature energies with each other,
e.g., via Γ-convergence? What can be said about the stability of such critical points? Is
it possible to find critical configurations in higher dimensions?

2.8 Energies that allow such critical unknots would therefore not be suitable to give an alternative
proof of the Smale conjecture bymeans of a gradient flow as, e.g., suggested by Freedman et al. in [41,
p. 41] for the Möbius energy. We do not address here the very challenging topic of gradient flows for
geometric curvature energies and just refer to the pioneering work of Blatt on the gradient flow for the
Möbius energy and other O’Hara energies [12, 15, 16]
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Fig. 2.5: Springy knots: figure-eight knot, mathematician’s loop, and Chinese button knot. Wire
models manufactured bywhy knots, Aptos, in 1980; photographs by B. Bollwerk, Aachen.

Further implications on geometric knot theory. The round circle minimises many
of the knowngeometric knot energies [41, Corollary 2.2],[1], [119, Lemma 7],[129, Corol-
lary 5.12], and we expect the same for integral Menger curvature due to strong numer-
ical evidence based on Hermes’ numerical experiments with his gradient flow algo-
rithm [52, Section 4.3]. In addition, we mentioned the explicit continuous families
of ropelength-minimising links constructed by Cantarella et al. [29]. More recently,
I. Agol, F. C. Marques, and A. Nèves applied their ingenious min-max-theory for mini-
mal currents to resolve not only the famousWillmore conjecture [74] but also a conjec-
ture by Freedman et al. by proving that the stereographic projection of the standard
Hopf-link minimises the Möbius energy; see [2]. Apart from these results nothing is
known analytically about the shape of non-trivially knotted minimising curves. For
the ropelength-minimising trefoil, the so-called ideal trefoil one has presumably fairly
accurate numerical solutions [8, 30, 9, 4, 91] and some local analytic information on
the possible shape of general ideal knots [110, 26, 39, 40, 27] extracted from the com-
plicated necessary conditions.
If one combines geometric curvature energies with (higher order) local energies like
the classic bending energy Ebend(𝛾) :=

∫︀
𝛾
κ2 ds, one can studyminimal configurations

for such energies under topological constraints on the competing curves or surfaces.
This leads to the concept of elastic knots that can be obtained as limits of minimisers
𝛾ϑ of the total energy

Eϑ(𝛾) := Ebend(𝛾) + ϑ
1

△[𝛾]
(2.2.7)

as ϑ → 0. Recall that△[𝛾] denotes the thickness as defined in (2.1.2), so that the par-
ticular geometric curvature energy chosen in (2.2.7) is the ropelength functional if one
restricts to curves of length one. Indeed, it can be shown [43, Theorem2.2] that in every
given knot class one finds such a limiting curve 𝛾0, which has smaller bending energy
than any knotted competitor. However, as one would expect from the simple toy mod-
els of knotted wires designed by J. C. Langer, see Figure 2.5, 𝛾0 has self-intersections
unless the givenknot class is theunknot inwhich case 𝛾0 is the round circle [43, Propo-
sition 3.1].



Geometric curvature energies: facts, trends, and open problems | 25

Is there anything one can say about the actual shape of the elastic knot 𝛾0 for non-
trivial knot classes? This is indeed the case for any (2, b)-torus knot as shown in [43,
Corollary 6.5]:

Theorem 2.2.12 (Elastic (2, b)-torus knots). For any odd integer |b| ≥ 3 the unique
elastic (2, b)-torus knot is the doubly covered circle. In particular, the elastic trefoil is
the doubly covered circle.

This result confirms mechanical and numerical experiments (see Figure 2.6), as well
as the heuristics and Metropolis Monte Carlo simulations of R. Gallotti and O. Pierre-
Louis [42, 90], and the numerical gradient-descent results by S. Avvakumov and
A. Sossinsky [6]. However, adding twist changes the geometry of the springywire dras-
tically; see bottom right of Figure 2.6. And there is no theory yet, describing these twist
effects for knotted elastic wires.

ϑ = 0.1 ϑ = 0.001

Fig. 2.6: Top: Numerically computed minimisers of the total energy Eϑ in the class of trefoils ap-
proaching the doubly covered circle as ϑ tends to zero. Bottom left: Mechanical experiments: The
springy trefoil knot is close to the doubly covered circle. Bottom right: Adding twist leads to a stable
flat trefoil configuration close to a planar figure-eight. (Wire models by courtesy of J. H. Maddocks,
Lausanne.)
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Open questions 2.2.13. Does the round circle minimise integral Menger curvature
(2.1.5)? Can one prove more about the actual shape of ideal knots? What is the shape of
links with more than two components minimising the Möbius energy? Can one identify
the shapes of global minimisers of other geometric curvature energies for curves? What
can be said about elastic knots for non-trivial knot classes different from (2, b)-torus
knots? What is the shape of twisted elastic knots?

A higher-dimensional branch of geometric knot theory is naturally much less devel-
oped yet. The shape of possibleminimising configurations for higher-dimensional ge-
ometric curvature energies is wide open and seems currently out of reach. There is one
exception, however: We proved in [64, Theorem 1.5] with the isoperimetric inequal-
ity and a simple measure-theoretic argument the following uniqueness result for the
global tangent-point-energy (2.1.16):

Theorem 2.2.14 (Spheres are unique minimisers). The round sphere uniquely min-
imises the global tangent-point energy (2.1.16) among all compact embedded C1-
hypersurfaces in Rn.

Recently, we proved in [65] that many higher-dimensional geometric curvature en-
ergies including integral Menger curvature (2.1.8), (2.1.11) or tangent-point energies
(2.1.10), or their more singular variants (2.1.15), (2.1.16), are valuable knot energies.
All these energies are self-repulsive (on the scale above scale-invariance), lower-
semicontinuous on sublevel sets with respect to Hausdorff-convergence, they enjoy
nice compactness properties and can thus be minimised in given isotopy classes; see
[65, Theorem 2, Corollary 1]. They also bound the number of isotopy typeswith explicit
constants only depending on the energy level and the integrability exponent, on a di-
ameter bound, and on the dimensions [65, Theorem 1 & Remark 1.1]. In particular, one
has the following boundedness result.

Theorem 2.2.15 (Isotopy finiteness). Let E, d > 0 be given. Then there are at most
K = K(E, d, k, n, p) different ambient isotopy types among all k-dimensional Lipschitz
submanifolds Σ ⊂ Rn with integral Menger curvature Mp(Σ) ≤ E and diam Σ ≤ d. This
constant may be estimated as

log log K ≤ c(k, n, p)
(︁
| log d| + log(E1/p + 1) + 1

)︁
. (2.2.8)

This result canbe compared to awhole series of finiteness theoremsof diffeomorphism
types under given bounds on classic curvatures, beginningwith thework of J. Cheeger
[31], and extended by many others, see, e.g, Cheeger’s exhaustive survey [32] and the
references therein. The notable difference is here that we deal with embedded sub-
manifolds of lower regularity, whose Riemannian metrics are just Hölder continuous
so that the classic notion of curvature does not make sense. The geometric curvature
energies in the regime above scale-invariance turn out to be valuable substitutes. The
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only comparable result with this emphasis is the work of O. Durumeric [38] who, how-
ever, works in the context of C1,1-submanifolds with positive thickness.

Higher-dimensional variants of elastic knots have not been discussed explicitly
yet, but L. Simon’s pioneering work [113] solves the problem of minimising the Will-
more energy ∫︁

Σ

H2(x) dH 2(x) (2.2.9)

in the class of two-dimensional embedded surfaces with prescribed genus or under
alternative constraints; see also [10, 100, 111, 69, 58, 99, 79]. But minimising the Will-
more energy or related functionals such as the Helfrich functional [51, 81] on given
isotopy classes has to the best of our knowledge not been investigated yet — with the
exception of recent work of P. Breuning, J. Hirsch, and E. Mäder-Baumdicker [23] on
Willmore minimising Klein bottles.

Open questions 2.2.16. Is it possible to identify the shape of global minimisers of
higher-dimensional geometric curvature energies? The explicit constant in Theorem
2.2.15 is far from being optimal, what is the best constant bounding the number of iso-
topy types under given energy values? For curves the energies could often be related
to knot invariants or to quantities like the average crossing number (2.1.17) controlling
knot invariants. Are there meaningful topological invariants or geometric quantities for
higher-dimensional knots that could be controlled by means of higher-dimensional geo-
metric curvature energies? Are there higher-dimensional elastic knots, for instance min-
imisers of the Willmore functional in arbitrary prescribed isotopy classes? And can one
say anything about their shapes?
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Takeyuki Nagasawa
On Möbius invariant decomposition of the
Möbius energy

3.1 O’Hara’s knot energies

In his early paper [17], O’Hara took inspiration from Fukuhara’s paper [6] to propose
the use of the knot energy

E(α,p)(f ) =
∫︁∫︁

(R/LZ)2

(︂
1

‖f (s1) − f (s2)‖αR3

1
D(f (s1), f (s2))α

)︂p
ds1ds2

to determine the “canonical configuration” of knots of a given knot type. Here f :
R/LZ → R3 represents a knot, i.e., a closed curve without self-intersections that is
parametrized by arc-length s and has total lengthL. The notationD represents the in-
trinsic distance (i.e., the distance along the curve) between two points f (s1) and f (s2),
and α and p are positive constants. Because the canonical configuration should be of
a shape that makes it as easy as possible to determine how it is knotted, O’Hara first
considered the negative power of the Euclidean distance of two points as the energy
density. However, this may result in the divergence of energy for all knots. Thus, to
avoid such a situation, he subtracted the intrinsic distance raised to the same power.
This means that the energy calculates the proximity of every two points, but excludes
the singularity at the diagonal set {(s1, s2) ∈ (R/LZ)2 | s1 = s2}. This procedure ex-
tracts the convergence part from the divergence integral, whichO’Hara calls renormal-
ization, and is mathematically equivalent to Hadamard’s regularization.

Let us consider the problem of minimizing O’Hara’s energy in a given knot type
[K], i.e., the ambient class of given knot K.

Remark 3.1.1. When αp ̸= 2, the energy does not exhibit scaling invariance, and
therefore we consider the problem under a length constraint.

Because the energy E is non-negative, there exists a minimizing sequence in the set
of “all knots”. The first problem is the existence of minimizers in the class [K]. When
αp = 2, the energy induces self-repulsiveness. That is, the knots cannot be continu-
ously deformed into a different class while preserving the finiteness of the energy.
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Fig. 3.1: pull-tight (The image was firstly appeared in [16].)

Theorem 3.1.1 ([19]). E(α,p) is finite for smooth embedded knots if and only if α and p
satisfy

α 5 2, or p < 1
α − 2 and 2 < α < 4.

Furthermore, if αp = 2, then E(α,p) induces self-repulsiveness.

Thismeans that there exists an energywall between two classes of knotswhen αp = 2.
In other words, when αp < 2, there is no energy wall, and therefore the minimizing
sequence can freely move into other knot classes. This suggests that minimizers are
not guaranteed to exist for any given knot type except for the trivial type.

Furthermore there is an energy holewhen αp = 2. This is the casewhen the energy
is scaling-invariant. Scaling-invariance may allow the pull-tight phenomena to occur
along the sequence. If such a phenomena occurs, then the limit knot, if it exists, is not
of the same knot type as the sequence. The energy behavior along the pull-tight for
E(α,p) has been studied by O’Hara [18].

Theorem 3.1.2 ([18]). Let a knotKε be a connected sumof K anda small tangle Tε. The
difference of the energy D(ε) = E(α,p)(Kε) − E(α,p)(K) behaves as follows in a pull-tight
process Tε → {a point}:
– D(ε) blows up when αp > 2.
– D(ε) converges to a positive constant when αp = 2.
– D(ε) vanishes when αp < 2.

Consequently, when αp = 2, a knot can be moved into another class while preserv-
ing the finiteness of the energy, through a pull-tight process that we call the energy
hole. This effect is related to the concentration of energy density at scaling-invariant
energies.

Hence, when αp > 2, the energy wall is present but without energy holes, and we
can expect that the direct method of calculus of variations can be applied. Indeed, the
following result was demonstrated by O’Hara.

Theorem 3.1.3 ([19]). Let n = 3. Then, there exists a minimizer (under rescaling) for
any knot types if αp > 2.

We call the cases αp > 2, = 2, and < 2 subcritical, critical, and supercritical, respec-
tively.
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3.2 Freedman-He-Wang’s procedure and
the Kusner-Sullivan conjecture

A pull-tight entails the disappearance of a tangle. The above results implies that a
pull-tight can occur in critical and supercritical cases. This shows that the argument
of minimizing sequence fails in such cases. Nevertheless, the argument applies for
the case (α, p) = (2, 1) in prime knot classes. This remarkable result was proven by
Freedman-He-Wang [5].

Definiton 3.2.1. Let n = 3. A knot is a composite knot if it is a connected sum of two
non-trivial knots. A prime knot is a knot that is neither composite nor trivial.

The authors showed that E(2,1) is not only invariant under scaling, but also under
Möbius transformations. Since then, this has been called theMöbius energy.

Theorem 3.2.1 ([5]). There exists a minimizer of E(2,1) on each prime or trivial knot
type.

The key point is avoiding the occurrence of a pull-tight along the minimizing se-
quence. If the knot is prime, then we can enlarge the tangle by inversion with respect
to a sphere near the shrinking tangle, without changing the energy level. The authors
passed to the limit of the minimizing sequence together with, if necessary, the en-
larged tangle, and showed the limit knot is a minimizer in the given knot class. If the
knot is composite, then two tanglesmay shrink simultaneously. Hence, such amethod
does not apply.

For a knot class [K], we denote

̃︀E(2,1)([K]) = inf
f∈[K]

E(2,1)(f ) − 4.

Fig. 3.2: A composite knot A prime knot
(The images were firstly appeared in [16].)
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Fig. 3.3: Freedman-He-Wang’s procedure (The image was firstly appeared in [16].)

Note that ̃︀E(2,1)([K]) exists, because the energy density is non-negative. Kusner and
Sullivan [14] investigated the energyE(2,1) for various knots numerically, andproposed
the following conjecture.
Conjecture 3.2.1 (The Kusner-Sullivan conjecture [14]).
1. There do not exist minimizers of composite knot type.
2. Assume that f ∈ [K] is composite, and it is a connected sum f 1 ♯ f 2, for f i ∈ [Ki].

Then, it holds that

̃︀E(2,1)([K]) = ̃︀E(2,1)([K1]) + ̃︀E(2,1)([K2]).
As far as the author knows, this remains an open conjecture.

3.3 Basic properties of the Möbius energy

In what follows, we consider the Möbius energy in Rn, which is denoted simply by E:

E(f ) =
∫︁∫︁

(R/LZ)2

(︂
1

‖f (s1) − f (s2)‖2Rn
− 1

D(f (s1), f (s2))2

)︂
ds1ds2.

Möbius invariance still holds for the n-dimensional case. As stated in the previous sec-
tion, the minimizing problem for the Möbius energy was partially solved and remains
partially unsolved.Hence, it seems important to study further properties ofE. To begin
with it, we summarize some basic properties that are given without proofs.

Because our energy was introduced to determine the “canonical” configuration
of knots, we expect that the finiteness of energy suggests some regularity of curves.
Indeed, we have the bi-Lipschitz estimate for a curve with finite energy, which means
that the curve cannot bend rapidly.

Because we use the arc-length parameter, the fact that

‖f (s1) − f (s2)‖Rn 5 D(f (s1), f (s2))

is trivial. That is, f is Lipschitz continuous, with the Lipschitz constant 1. The finite-
ness of E implies the converse estimate.
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Theorem 3.3.1 ([19, 2]). If E(f ) < M, then there exists λ = λ(M) > 0 such that

‖f (s1) − f (s2)‖Rn = λD(f (s1), f (s2)).

We call these estimates bi-Lipschitz continuity. In the following, we assume that f is
bi-Lipschitz.

The finiteness of energy not only implies bi-Lipschitz continuity but also the inte-
grability of (fractional) derivatives.

Definiton 3.3.1 (Sobolev-Slobodeckij space). For a non-negative integer j, and α ∈
(0, 1),W j+α,p(R/LZ,Rn) is defined as

W j+α,p(R/LZ,Rn) = {f ∈ W j,p(R/LZ,Rn) | [f (j)]α,p < ∞},

[f (j)]α,p =

⎛⎜⎝ ∫︁
R/LZ

L
2∫︁

−L
2

‖f (j)(s1 + s2) − f (j)(s1)‖pRn
|s2|αp+1

ds2ds1

⎞⎟⎠
1
p

with the norm
‖f‖W j+α,p = ‖f‖W j,p + [f (j)]α,p .

When p = 2, we denoteW j+α,2(R/LZ) by H j+α(R/LZ).

The following result was given by Blatt [2].

Theorem 3.3.2 ([2]). Thefiniteness resultE(f ) < ∞ implies the bi-Lipschitz continuity
of f and f ∈ H3/2(R/LZ) ∩ W1,∞(R/LZ). The converse is also true, i.e., if f is bi-
Lipschitz and belongs to H3/2(R/LZ) ∩W1,∞(R/LZ), then E(f ) is finite.

This indicates the proper domain of E.

Remark 3.3.1. O’Hara and Blatt demonstrated that the above results not only hold for
the Möbius energy, but also for the general O’Hara’s energy. For details, we refer the
reader to the papers of those authors.

The criticality of energy can provide further information regarding regularity. Several
results have been established. Freedman, He, and Wang [5] and He [7] demonstrated
the regularity of local minimizers.

Theorem 3.3.3 ([5, 7]). Local minimizers of Ewith respect to L∞(R/LZ) topology are
smooth.

Reiter [21] proved the regularity for not only local minimizers, but also critical points.

Theorem 3.3.4 ([21]). Any critical point of E inW2,2(R/LZ) is smooth.
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Recently, Blatt, Reiter, and Schikorra [4] improved on the assumptions of the previous
result.

Theorem 3.3.5 ([4]). Any critical point of E with finite energy is smooth.

3.4 The Möbius invariant decomposition

In this section, we present a decomposition of the Möbius energy, where each part
retains the Möbius invariance. This is based on a series of papers [10]–[13] written
with Ishizeki. See also the dissertation of that author [9]. According to Theorems 3.3.1
and 3.3.2, we may assume the existence of the unit tangent vector τ(s) = f ′(s) almost
everywhere, which satisfies some integrability condition. Then, the energy may be
decomposed into three parts:

E(f ) = E1(f ) + E2(f ) + 4.

See Theorem 3.4.1 below for details. This was recently demonstrated by our research
group [10]. The first decomposed energyE1 is an analogue of the Gagliardo semi-norm
of τ in the fractional Sobolev space H1/2(R/LZ). Indeed, if we replace the Euclidean
distance in the denominator of the energy density ofE1 (seeM1 in Theorem 3.4.1) with
the intrinsic distance, we find that

E1(f ) ≈
1
2

∫︁∫︁
‖τ(s1) − τ(s2)‖2
D(f (s1), f (s2))2

ds1ds2 =
1
2[f

′]2H1/2 .

This implies that the domain of E is H3/2(R/LZ) ∩ W1,∞(R/LZ), as was shown by
Blatt. The energy density of the second energy E2 has a determinant structure, which
implies a cancellation of the integrand. O’Hara helpfully informed the current author
that the second energy is a constant multiple of the O’Hara-Solanes energy ([20]). As a
by-product, we can provide an alternative proof of the known fact that the right circle,
i.e., the circle with constant curvature, is the only global minimizer of the Möbius en-
ergy. In Section 3.4.1, we give the precise statement of the decomposition and a sketch
of the proof.

Using this decomposition, we can derive explicit expressions for variational for-
mulae and reasonable estimates in several function spaces, including absolute inte-
grability ([11, 13]). Indeed, because the last part, “4”, is an absolute constant, we can
ignore this when considering variational problems. This fact shortens the derivation
of variational formulae, and enables us to find their “good” estimates for them in sev-
eral functional spaces [11]. Furthermore, we can determine the L2-gradient of each
decomposed energy that contains the fractional Laplacian (−∆s)3/2 as the principal
term [13]. See Section 3.4.2 for further details.

Surprisingly, each of the components of the decomposition is Möbius invariant.
In Section 3.4.3, we focus on this fact, which has been studied in [10, 12]. As a conse-
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quence,we candemonstrate that right circles are the only globalminimizers ofE1with
the minimum value 2π2. This seems to be related to the fact that the first eigenvalue

of (−∆s)3/2 is
(︂
2π
L

)︂3
.

3.4.1 The decomposition

The precise statement of the decomposition is as follows.

Theorem 3.4.1 ([10]). Assume that f satisfies the bi-Lipshitz estimate, and that it be-
longs to H3/2(R/LZ)∩W1,∞(R/LZ). Let τ(s) = f ′(s) be the unit tangent vector. Then,
it holds that

E(f ) = E1(f ) + E2(f ) + 4,

where

Ei(f ) =
∫︁∫︁

(R/LZ)2

Mi(f ) ds1ds2,

M1(f ) =
‖τ(s1) − τ(s2)‖2Rn
2‖f (s1) − f (s2)‖2Rn

,

M2(f ) =
2

‖f (s1) − f (s2)‖4Rn
det

(︃
τ(s1) · τ(s2)

(︀
f (s1) − f (s2)

)︀
· τ(s1)(︀

f (s1) − f (s2)
)︀
· τ(s2) ‖f (s1) − f (s2)‖2Rn

)︃
.

Proof. In order to deform the energy density, we first consider following integration
in the sense of Cauchy’s principal value,

lim
ε→+0

∫︁∫︁
|s1−s2|=ε

· · · ds1ds2,

and derive absolute integrability later. We differentiate D(f (s1), f (s2))2 with respect
to s2. In the sense of distributions, we have that

d
dx log |x| = p.v.1x ,

where
⟨p.v.1x , φ⟩ = lim

ε→+0

∫︁
|x|=ε

φ(x)
x dx

for φ ∈ C∞0 (R) (see [15]). Using the periodicity of D(f (s1), f (s2)), the distributional
derivative is given by

∂
∂s2

logD(f (s1), f (s2)) =

⎧⎪⎨⎪⎩
−p.v. 1

s1 − s2 − L
(s2 +

L

2 < s1 5 s2 + L (mod L)),

−p.v. 1
s1 − s2

(s2 5 s1 < s2 +
L

2 (mod L)).
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Regarding this as a distribution of s1, we have that it is differentiable for s1 ̸= s2 +L/2
in the weak sense, and we obtain that

∂2
∂s1∂s2

logD(f (s1), f (s2)) = p.v. 1
D(f (s1), f (s2))2

.

As a function of s2, ∂
∂s2 logD(f (s1), f (s2)) has a jump discontinuity at s2 = s1 + L/2

with gap−4/L. As functions of s2, ∂2
∂s1∂s2 log ‖f (s1)−f (s2)‖Rn is bounded at s2 = s1±

L
2 ,

and ∂
∂s1 log ‖f (s1)−f (s2)‖Rn is continuous at the samepoints. Therefore,weobtain that∫︁

ε5|s1−s2|5L
2

1
D(f (s1), f (s2))2

ds2

= lim
δ→+0

∫︁
ε5|s1−s2|5L

2 −δ

∂2
∂s1∂s2

(︂
log ‖f (s1) − f (s2)‖Rn − log ‖f (s1) − f (s2)‖Rn

D(f (s1), f (s2))

)︂
ds2

=
∫︁

ε5|s1−s2|5L
2

∂2
∂s1∂s2

log ‖f (s1) − f (s2)‖Rn ds2 +
[︂
∂
∂s1

log ‖f (s1) − f (s2)‖Rn
D(f (s1), f (s2))

]︂s2=s1+ε
s2=s1−ε

− 4
L
.

We integrate this with respect to s1. Using periodicity, we note that∫︁
R/LZ

[︂
∂
∂s1

log ‖f (s1) − f (s2)‖Rn
D(f (s1), f (s2))

]︂s2=s1+ε
s2=s1−ε

ds1

=
∫︁

R/LZ

[︂
(f (s1) − f (s2)) · τ(s1)
‖f (s1) − f (s2)‖2Rn

− 1
s1 − s2

]︂s2=s1+ε
s2=s1−ε

ds1

=
∫︁

R/LZ

{︂
(f (s1) − f (s1 + ε)) · τ(s1)
‖f (s1) − f (s1 + ε)‖2Rn

− (f (s1 + ε) − f (s1)) · τ(s1 + ε)
‖f (s1 + ε) − f (s1)‖2Rn

+ 2
ε

}︂
ds1

=
∫︁

R/LZ

{︂
− ∂
∂s1

log ‖f (s1) − f (s1 + ε)‖Rn +
2(f (s1 + ε) − f (s1)) · τ(s1)

‖f (s1 + ε) − f (s1)‖2Rn
+ 2
ε

}︂
ds1

=
∫︁

R/LZ

[︂
−2ε

(︂
1

‖f (s1 + ε) − f (s1)‖2Rn
− 1
ε2

)︂

+ 2
‖f (s1 + ε) − f (s1)‖2Rn

s1+ε∫︁
s1

(︀
1 − τ(s3) · τ(s1)

)︀
ds3

⎤⎦ds1.
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We have that ⃒⃒⃒⃒
2ε
(︂

1
‖f (s1 + ε) − f (s1)‖2Rn

− 1
ε2

)︂⃒⃒⃒⃒

= 2ε
ε2‖f (s1 + ε) − f (s1)‖2Rn

s1+ε∫︁
s1

s1+ε∫︁
s1

(︀
1 − τ(s3) · τ(s4)

)︀
ds3ds4

= 1
ε‖f (s1 + ε) − f (s1)‖2Rn

s1+ε∫︁
s1

s1+ε∫︁
s1

‖τ(s3) − τ(s4)‖2Rnds3ds4

and by applying the estimate ‖f (s1 + ε) − f (s1)‖Rn = λ−1ε, and changing the order of
integration, we obtain that∫︁

R/LZ

1
ε‖f (s1 + ε) − f (s1)‖2Rn

s1+ε∫︁
s1

s1+ε∫︁
s1

‖τ(s3) − τ(s4)‖2Rnds3ds4ds1

5
λ2
ε3

∫︁
R/LZ

s4+ε∫︁
s4−ε

s3∫︁
s3−ε

‖τ(s3) − τ(s4)‖2Rnds1ds3ds4

5 λ2
∫︁

R/LZ

s4+ε∫︁
s4−ε

‖τ(s3) − τ(s4)‖2Rn
D(f (s3), f (s4))2

ds3ds4.

Because
[f ′]2H1/2 =

∫︁∫︁
(R/LZ)2

‖τ(s3) − τ(s4)‖2Rn
D(f (s3), f (s4))2

ds3ds4

is finite, the absolute continuity of the integration yields that

lim
ε→+0

∫︁
R/LZ

1
ε‖f (s1 + ε) − f (s1)‖2Rn

s1+ε∫︁
s1

s1+ε∫︁
s1

‖τ(s3) − τ(s4)‖2Rnds3ds4ds1 = 0.

Similarly, we have that⃒⃒⃒⃒
⃒⃒⃒ ∫︁
R/LZ

2
‖f (s1 + ε) − f (s1)‖2Rn

s1+ε∫︁
s1

(︀
1 − τ(s3) · τ(s1)

)︀
ds3ds1

⃒⃒⃒⃒
⃒⃒⃒

5 λ2
∫︁

R/LZ

s1+ε∫︁
s1

‖τ(s3) − τ(s1)‖2Rn
D(f (s3), f (s1))2

ds3ds1 → 0 as ε → +0.

Hence, we obtain that∫︁
R/LZ

[︂
∂
∂s1

log ‖f (s1) − f (s2)‖Rn
D(f (s1), f (s2))

]︂s2=s1+ε
s2=s1−ε

ds1 → 0 as ε → +0,
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which leads to the expression

E(f ) = p.v.
∫︁∫︁

(R/LZ)2

(︂
1

‖f (s1) − f (s2)‖2Rn
− ∂2
∂s1∂s2

log ‖f (s1) − f (s2)‖Rn
)︂
ds1ds2 + 4.

By manipulating the log term in the above, we obtain that

E(f ) − 4 = p.v.
∫︁∫︁

(R/LZ)2

{︂
1 + τ(s1) · τ(s2)
‖f (s1) − f (s2)‖2Rn

−
2
{︀
(f (s1) − f (s2)) · τ(s1)

}︀{︀
(f (s1) − f (s2)) · τ(s2)

}︀
‖f (s1) − f (s2)‖4Rn

}︃
ds1ds2. (3.4.1)

The density of this integral can be expressed as

1 + τ(s1) · τ(s2)
‖f (s1) − f (s2)‖2Rn

−
2
{︀
(f (s1) − f (s2)) · τ(s1)

}︀{︀
(f (s1) − f (s2)) · τ(s2)

}︀
‖f (s1) − f (s2)‖4Rn

= 1 − τ(s1) · τ(s2)
‖f (s1) − f (s2)‖2Rn

+ 2τ(s1) · τ(s2)‖f (s1) − f (s2)‖2Rn
‖f (s1) − f (s2)‖4Rn

−
{︀
(f (s1) − f (s2)) · τ(s1)

}︀{︀
(f (s1) − f (s2)) · τ(s2)

}︀
‖f (s1) − f (s2)‖4Rn

= ‖τ(s1) − τ(s2)‖2Rn
2‖f (s1) − f (s2)‖2Rn

+ 2
‖f (s1) − f (s2)‖4Rn

× det

(︃
τ(s1) · τ(s2) (f (s1) − f (s2)) · τ(s1)

(f (s1) − f (s2)) · τ(s2) ‖f (s1) − f (s2)‖2Rn

)︃
= M1(f ) +M2(f ).

It remains to remove p.v. from in front of the double integral in (3.4.1). Because
M1(f ) is non-negative, the energy E1 is defined as the absolute integral for curves in
H 3

2 (R/LZ) with bi-Lipschitz continuity. Therefore, the absolute integrability ofM2(f )
follows from the fact that

M1(f ) +M2(f ) = 0,

which we will show below.
We use the notation ∆ to denote the difference between values at s = s1 and s2:

∆s = s1 − s2, ∆f = f (s1) − f (s2), etc.

For a function v on R/LZ, we define Rv = Rv(s1, s2) by

Rv = |∆s|(∆v)
‖∆f‖Rn∆s

and observe that Rf is clearly a unit vector field. By applying the Lagrange formula,
we have that

M2(f ) =
2

‖∆f‖2Rn
⟨︀(︀
τ(s1) ∧ Rf

)︀
,
(︀
τ(s2) ∧ Rf

)︀⟩︀
,
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where ∧ is the wedge product of vectors, and ⟨·, ·⟩ is the inner product on
⋀︀2Rn. It is

easy to see that for and any two vectors x, y ∈ Rn and any unit vector e ∈ Rn,

⟨(x ∧ e), (y ∧ e)⟩ = (P⊥e x) · (P⊥e y),

where
Pex = (x · e)e, P⊥e x = x − Pex.

Therefore,
M2(f ) =

2
‖∆f‖2Rn

(P⊥Rf τ(s1)) · (P⊥Rf τ(s2)).

On the other hand, the first density is given by

M1(f ) =
1
2
‖∆τ‖2Rn
‖∆f‖2Rn

.

Consequently, we obtain that

2‖∆f‖2Rn (M1(f ) +M2(f ))

= ‖∆τ‖2Rn + 4(P⊥Rf τ(s1)) · (P⊥Rf τ(s2))

= ‖PRf ∆τ‖2Rn + ‖P⊥Rf ∆τ‖2Rn + 4(P⊥Rf τ(s1)) · (P⊥Rf τ(s2))

= ‖PRf ∆τ‖2Rn + ‖P⊥Rf (τ(s1) + τ(s2))‖2Rn ,

which is non-negative.

As a consequence, we can provide an alternative proof for the following fact, which
has already been established. See, for example, [5].

Corollary 3.4.1. It holds that E(f ) = 4. Equality holds if and only of f is a right circle.

Proof. Theorem 3.4.1 and the non-negativity of M1(f ) + M2(f ) implies E(f ) = 4, and
equality holds if and only if M1(f ) +M2(f ) ≡ 0. This is equivalent to

PRf ∆τ ≡ 0, P⊥Rf (τ(s1) + τ(s2)) ≡ 0.

In particular, from the second relation we find a function µ such that

f (s1) − f (s2) = µ(s1, s2)(τ(s1) + τ(s2)). (3.4.2)
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Because aminimizer is smooth, so is µ. We differentiate the above relation three times
with respect to s1, to obtain that

τ(s1) =
∂µ
∂s1

(s1, s2)
(︀
τ(s1) + τ(s2)

)︀
+ µ(s1, s2)κ(s1), (3.4.3)

κ(s1) =
∂2µ
∂s21

(s1, s2)
(︀
τ(s1) + τ(s2)

)︀
+ 2 ∂µ∂s1

(s1, s2)κ(s1) + µ(s1, s2)κ′(s1), (3.4.4)

κ′(s1) =
∂3µ
∂s31

(s1, s2)
(︀
τ(s1) + τ(s2)

)︀
+ 3∂

2µ
∂s21

(s1, s2)κ(s1) (3.4.5)

+ 3 ∂µ∂s1
(s1, s2)κ′(s1) + µ(s1, s2)κ′′(s1).

Setting s1 = s2 = s in (3.4.2)–(3.4.5), we have that

µ(s, s) = 0, ∂µ
∂s1

(s, s) = 1
2 ,

∂2µ
∂s21

(s, s) = 0,

and
κ′(s) = −4∂

3µ
∂s31

(s, s)τ(s). (3.4.6)

Taking the inner product between each side of (3.4.6) and κ(s), we know that ‖κ(s)‖Rn
is independent of s, andwewrite this as κ. If κ = 0, then τ′(s) = κ(s) = 0, and therefore
τ(s) is a constant vector. This is impossible, because f is a closed curve. Consequently,
κ > 0. By taking the inner product between each side of (3.4.6) and τ(s), we know that

−4∂
3µ
∂s31

(s, s) = κ′(s) · τ(s) = −κ(s) · κ(s) = −κ2.

By inserting this into (3.4.6), we obtain that

κ′(s) + κ2τ(s) = 0

for every s ∈ R/LZ. Because τ(s) = f ′(s), there exists a constant vector c such that

κ(s) + κ2
(︀
f (s) − c

)︀
= 0. (3.4.7)

By integrating with respect to s on R/LZ, and dividing by L, we find that

c = 1
L

∫︁
R/LZ

f (s) ds.

We can rewrite (3.4.7) as the following second order differential equation:(︀
f (s) − c

)︀′′ + κ2(︀f (s) − c)︀ = 0.

The solution is given by

f (s) − c =
(︀
f (0) − c

)︀
cos κs + sin κs

κ τ(0).

That is, f is a right circle with center c and radius κ−1. Because the total length is L,
the radius is κ−1 = L

2π .
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3.4.2 Variational formulae

Let F (f ) be a geometric quantity determined by the closed curve f , and let φ and ψ
be functions from R/LZ to Rn. We use δ and δ2 to denote

δF (f )[φ] = d
dεF (f + εφ)

⃒⃒⃒⃒
ε=0

,

δ2F (f )[φ,ψ] = ∂2
∂ε1∂ε2

F (f + ε1φ + ε2ψ)
⃒⃒⃒⃒
ε1=ε2=0

.

Calculating the first and second variational formulae of the Möbius energy for-
mally, we have that

δE(f )[φ] =
∫︁∫︁ (︂

* * *
‖f (s1) − f (s2)‖4Rn

+ · · ·
)︂
ds1ds2,

δ2E(f )[φ,ψ] =
∫︁∫︁ (︂

* * *
‖f (s1) − f (s2)‖8Rn

+ · · ·
)︂
ds1ds2.

These expressions contain many terms that are not integrable. He [7] obtained these
formulae as the integral of Cauchy’s principal value. Ishizeki [8] investigates the ab-
solute integrability in the regularity class C3+α.

Theorem 3.4.2 ([8]). If f ,φ andψ ∈ C3+α(R/LZ), then the integrands of δE and δ2E
are absolutely integrable.

This result can be improved for the proper domain by using the decomposition.
Indeed, using this, we can derive the explicit expressions of variational formulae
and reasonable estimates in several function spaces, including absolute integrability
([11, 13]).

The first variation Gi and the second variation Hi of the decomposed energies Ei
are given by

Gi(f )[φ] ds1ds2 = δ(Mi(f ) ds1ds2)[φ],

Hi(f )[φ,ψ] ds1ds2 = δ2(Mi(f ) ds1ds2)[φ,ψ].

Next, we obtain the explicit expressions of variations. To present the corresponding
statement, we first introduce several notations. For a function v on R/LZ, the opera-
tions Q, Q̃i, S, and Si are defined as

Qv = ∆v′, Q̃iv = (−1)i−12{v′i − Rf · τi)Rv},

Rv = |∆s|∆v
‖∆f‖Rn∆s

, R̂v = 1
2(v

′
1 + v′2),

S(v,w) = R̂v · Qw + Qv · R̂w, S̃i(v,w) = Rv · Q̃iw + Q̃iv · Rw,

where the operation R is the same one as in the proof of Theorem 3.4.1.
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Proposition 3.4.1. We have that

G1(f )[φ] =
Qf · Qφ
‖∆f‖2Rn

− 2M1(f )∆f · ∆φ
‖∆f‖2Rn

,

G2(f )[φ] = − Q̃1f · Q̃2φ + Q̃2f · Q̃1φ
2‖∆f‖2Rn

− 2M2(f )∆f · ∆φ
‖∆f‖2Rn

and

H1(f )[φ,ψ] =
Qφ · Qψ
‖∆f‖2Rn

− S(f ,φ)S(f ,ψ)
‖∆f‖2Rn

− 2G1(f )[φ]∆f · ∆ψ
‖∆f‖2Rn

− 2G1(f )[ψ]∆f · ∆φ
‖∆f‖2Rn

− 2M1(f )∆φ · ∆ψ
‖∆f‖2Rn

,

H2(f )[φ,ψ] = − Q̃1φ · Q̃2ψ + Q̃2φ · Q̃1ψ
2‖∆f‖2Rn

+ S̃1(f ,φ)S̃2(f ,ψ) + S̃2(f ,φ)S̃1(f ,ψ)
2‖∆f‖2Rn

− 2G2(f )[φ]∆f · ∆ψ
‖∆f‖2Rn

− 2G2(f )[ψ]∆f · ∆φ
‖∆f‖2Rn

− 2M2(f )∆φ · ∆ψ
‖∆f‖2Rn

.

This is proven as follows. Set

Mi(f ) =
Ni(f )
‖∆f‖2Rn

.

Then, it holds that

N1(f ) =
1
2Qf · Qf , N2(f ) = −12 Q̃1f · Q̃2f .

The above relation for N1 is easy to prove. We have already demonstrated the one for
N2, in the proof of Corollary 3.4.1. Therefore, to obtain the expressions of Gi and Hi,
we require those of variations ofNi, ‖∆f‖2Rn , and ds1ds2. We beginwith the variations
of basic quantities.

Lemma 3.4.1. The following first variational formulae hold:
1. δτ[φ] = φ′ − (τ · φ′)τ.
2. δ‖∆τ‖2Rn [φ] = 2∆τ · ∆φ′ − ‖∆τ‖2Rn (τ1 · φ′

1 + τ2 · φ
′
2).

3. δ
(︂

1
‖∆f‖2Rn

)︂
[φ] = −2∆f · ∆φ

‖∆f‖4Rn
.

4. δ(dsj)[φ] = τj · φ′
j dsj.

Because the proof is not difficult, we omit it. As a consequence of this lemma, we ob-
tain that

δN1(f )[φ] = Qf · Qφ − (τ1 · φ′
1 + τ2 · φ

′
2)N1(f ),

δN2(f )[φ] = − 1
2(Q̃1f · Q̃2φ + Q̃2f · Q̃1φ) − (τ1 · φ′

1 + τ2 · φ
′
2)N2(f ).
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From Lemma 3.4.1, we have that

Gi(f )[φ] ds1ds2 = δMi(f )[φ] ds1ds2 +Mi(f ) δ(ds1ds2)[φ]

=
{︁
δMi(f )[φ] +Mi(f )(τ1 · φ′

1 + τ2 · φ
′
2)
}︁
ds1ds2,

i.e.,
Gi(f )[φ] = δMi(f )[φ] +Mi(f )(τ1 · φ′

1 + τ2 · φ
′
2).

Now, we are in the position to calculate Gi. Using Lemma 3.4.1 again, we have that

δMi(f )[φ] =
δNi(f )[φ]
‖∆f‖2Rn

+Ni(f ) δ
(︂

1
‖∆f‖2Rn

)︂
[φ]

= δNi(f )[φ]
‖∆f‖2Rn

− 2Mi(f )∆f · ∆φ
‖∆f‖2Rn

.

By inserting the expressions for δNi, we obtain Proposition 3.4.1.
Similarly, we can obtain the expressions for Hi. See [11] for details.

We can derive estimates of variational formulae in several function spaces.

Theorem 3.4.3. We set X = H 3
2 (R/LZ) ∩ W1,∞(R/LZ), and Y = H 1

2 (R/LZ) ∩
L∞(R/LZ). Assume that there exists a positive constant λ such that ‖∆f‖Rn =
λ−1|D(f (s1), f (s2))|.
1. If f ,φ, andψ ∈ X, thenMi(f ), Gi(f )[ψ], andHi(f )[φ,ψ] belong to L1((R/LZ)2).

Furthermore, there exists a positive constant C, depending on ‖f ′‖Y and λ, such
that

‖Mi(f )‖L1((R/LZ)2) 5 C,

‖Gi(f )[φ]‖L1((R/LZ)2) 5 C‖φ′‖Y ,

‖Hi(f )[φ,ψ]‖L1((R/LZ)2) 5 C‖φ′‖Y‖ψ′‖Y .

2. If f , φ, and ψ ∈ C1,1(R/LZ), then Mi(f ), Gi(f )[ψ], and Hi(f )[φ,ψ] belong
to L∞((R/LZ)2). Furthermore, there exists a positive constant C, depending on
‖f ′‖C0,1(R/LR), λ and L, such that

‖Mi(f )‖L∞((R/LZ)2) 5 C,

‖Gi(f )[φ]‖L∞((R/LZ)2) 5 C‖φ′‖C0,1(R/LR),

‖Hi(f )[φ,ψ]‖L∞((R/LZ)2) 5 C‖φ′‖C0,1(R/LR)‖ψ
′‖C0,1(R/LR).

3. If f , φ, and ψ ∈ C2(R/LZ), then Mi(f ), Gi(f )[ψ], Hi(f )[φ,ψ] can be extended
on the diagonal set {(s1, s2) | s1 ≡ s2 (mod LZ)} such that these functions are
continuous everywhere. The limits of sum vanish on the diagonal set:

lim
(s1 ,s2)→(s,s)

(M1(f ) +M2(f )) = 0,



On Möbius invariant decomposition of the Möbius energy | 51

lim
(s1 ,s2)→(s,s)

(G1(f )[φ] + G2(f )[φ]) = 0,

lim
(s1 ,s2)→(s,s)

(H1(f )[φ,ψ] +H2(f )[φ,ψ]) = 0.

Furthermore, there exists a positive constant C, depending on ‖f ′‖C1(R/LR), λ and
L, such that

‖Mi(f )‖C0((R/LZ)2) 5 C,

‖Gi(f )[φ]‖C0((R/LZ)2) 5 C‖φ′‖C1(R/LR),

‖Hi(f )[φ,ψ]‖C0((R/LZ)2) 5 C‖φ′‖C1(R/LR)‖ψ
′‖C1(R/LR).

The estimates in Theorem 3.4.3 follow from next lemma.

Lemma 3.4.2. 1. For v ∈ X, the following estimate holds:⃦⃦⃦⃦
Qv

D(f (s1), f (s2))

⃦⃦⃦⃦
L2((R/LZ)2)

5 ‖v′‖Y .

2. For v ∈ C1,1(R/LZ), the following estimate holds:⃦⃦⃦⃦
Qv

D(f (s1), f (s2))

⃦⃦⃦⃦
L∞((R/LZ)2)

5 ‖v′‖C0,1(R/LZ).

3. Assume that v ∈ C2(R/LZ). If we set Qv|s=s1=s2 = v
′′, then Qv is continuous ev-

erywhere, and ⃦⃦⃦⃦
Qv

D(f (s1), f (s2))

⃦⃦⃦⃦
C0((R/LZ)2)

5 ‖v′‖C1(R/LZ).

4. Assume that f ∈ X and that ‖∆f‖Rn = λ−1|D(f (s1), f (s2))|. Then, there exists a
positive constant C, depending on ‖f ′‖Y and λ, such that⃦⃦⃦⃦

Q̃iv
D(f (s1), f (s2))

⃦⃦⃦⃦
L2((R/LZ)2)

5 C‖v′‖Y

holds for all v ∈ X.
5. Assume that f ∈ C1,1(R/LZ) and that ‖∆f‖Rn = λ−1|D(f (s1), f (s2))|. Then, there

exists a positive constant C, depending on ‖f ′‖C0,1(R/LZ), λ, and L, such that⃦⃦⃦⃦
Q̃iv

D(f (s1), f (s2))

⃦⃦⃦⃦
L∞((R/LZ)2)

5 C‖v′‖C0,1(R/LZ)

holds for all v ∈ C1,1(R/LZ).
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6. Assume that f ∈ C2(R/LZ) and that f has no self-intersections. For v ∈
C2(R/LZ), Q̃iv is continuous everywhere by setting Q̃iv

⃒⃒⃒
s=s1=s2

= v′′. If we further

assume that ‖∆f‖Rn = λ−1|D(f (s1), f (s2))|, then, there exists a positive constant
C, depending on ‖f ′‖C1(R/LZ), λ, and L, such that⃦⃦⃦⃦

Q̃iv
D(f (s1), f (s2))

⃦⃦⃦⃦
C0((R/LZ)2)

5 C‖v′‖C1(R/LZ)

holds for all v ∈ C2(R/LZ).

Proof. Without loss of generality, we may assume that |s1 − s2| 5 L
2 , and for sim-

plicity we use |∆s| instead ofD(f (s1), f (s2)). The assertion for Qv almost matches the
definition of norms. Indeed, we immediately have that⃦⃦⃦⃦

Qv
∆s

⃦⃦⃦⃦
L2((R/LZ)2)

= [v′]
H

1
2 (R/LZ)

5 ‖v′‖Y

and ⃦⃦⃦⃦
Qv
∆s

⃦⃦⃦⃦
L∞((R/LZ)2)

= ‖v′‖Lip 5 ‖v′‖C0,1(R/LZ).

If v ∈ C2(R/LZ), then it is easy to see that

lim
(s1 ,s2)→(s,s)

Qv
∆s = v′′(s),

and ⃦⃦⃦⃦
Qv
∆s

⃦⃦⃦⃦
C0((R/LZ)2)

= max
|∆s|5L

2

⃦⃦⃦⃦
⃦⃦ 1
s1 − s2

s1∫︁
s2

v′′(s) ds

⃦⃦⃦⃦
⃦⃦
Rn

5 ‖v′‖C1(R/LZ).

To show that the assertion for Q̃iv holds,we decompose (−1)i−1
2 Q̃iv = v′i−(Rf ·τi)Rv

into

v′i − (Rf · τi)Rv =
(︂
v′i −

∆v
∆s

)︂
+
(︂
∆v
∆s − Rv

)︂
+ (1 − Rf · τi)Rv = V1 + V2 + V3.

We must derive L2, L∞, and C0 estimates for each Vi/∆s. Because these are rather
complicated, we refer the reader to [11].

We now present the proof of Theorem 3.4.3. Let Q̄ be Q or Q̃i. Then, we have that

|Mi(f )| 5
λ2
2

⃦⃦⃦⃦
Q̄f

D(f (s1), f (s2))

⃦⃦⃦⃦
Rn

⃦⃦⃦⃦
Q̄f

D(f (s1), f (s2))

⃦⃦⃦⃦
Rn
,

for i = 1, 2. Similarly, from Proposition 3.4.1 it can be derived that

|Gi(f )[φ]| 5 λ2
⃦⃦⃦⃦

Q̄f
D(f (s1), f (s2))

⃦⃦⃦⃦
Rn

⃦⃦⃦⃦
Q̄φ

D(f (s1), f (s2))

⃦⃦⃦⃦
Rn

+ 2λ|Mi(f )|
⃦⃦⃦⃦

∆φ
D(f (s1), f (s2))

⃦⃦⃦⃦
Rn

5 λ2
⃦⃦⃦⃦

Q̄f
D(f (s1), f (s2))

⃦⃦⃦⃦
Rn

⃦⃦⃦⃦
Q̄φ

D(f (s1), f (s2))

⃦⃦⃦⃦
Rn

+ 2λ|Mi(f )|‖φ‖Lip.
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Let R̄ be R̂ or R, and let S̄ be S or S̃i. Then, the definitions of these operations yield that⃒⃒⃒⃒
S̄(v,w)

D(f (s1), f (s2))

⃒⃒⃒⃒
5 ‖R̄v‖Rn

⃦⃦⃦⃦
Q̄w

D(f (s1), f (s2))

⃦⃦⃦⃦
Rn

+
⃦⃦⃦⃦

Q̄v
D(f (s1), f (s2))

⃦⃦⃦⃦
Rn

‖R̄w‖Rn

5 λ
(︂
‖v‖Lip

⃦⃦⃦⃦
Q̄w

D(f (s1), f (s2))

⃦⃦⃦⃦
Rn

+
⃦⃦⃦⃦

Q̄v
D(f (s1), f (s2))

⃦⃦⃦⃦
Rn

‖w‖Lip
)︂
.

Therefore, Proposition 3.4.1 implies that

|Hi(f )[φ,ψ]| 5 λ2
⃦⃦⃦⃦

Q̄φ
D(f (s1), f (s2))

⃦⃦⃦⃦
Rn

⃦⃦⃦⃦
Q̄ψ

D(f (s1), f (s2))

⃦⃦⃦⃦
Rn

+ λ4
(︂
‖f‖Lip

⃦⃦⃦⃦
Q̄φ

D(f (s1), f (s2))

⃦⃦⃦⃦
Rn

+
⃦⃦⃦⃦

Q̄f
D(f (s1), f (s2))

⃦⃦⃦⃦
Rn

‖φ‖Lip
)︂

×
(︂
‖f‖Lip

⃦⃦⃦⃦
Q̄ψ

D(f (s1), f (s2))

⃦⃦⃦⃦
Rn

+
⃦⃦⃦⃦

Q̄f
D(f (s1), f (s2))

⃦⃦⃦⃦
Rn

‖ψ‖Lip
)︂

+ 2λ2|Gi(f )[φ]|‖ψ‖Lip + 2λ2|Gi(f )[ψ]|‖φ‖Lip
+ 2λ2|Mi(f )|‖φ‖Lip‖ψ‖Lip.

Consequently, the estimates in Theorem 3.4.3 can easily be derived using Lemma 3.4.2.
If f ∈ C2(R/LZ), then Lemma 3.4.2 yields that

lim
(s1 ,s2)→(s,s)

(M1(f ) +M2(f )) =
1
2‖f

′′(s)‖2Rn −
1
2‖f

′′(s)‖2Rn = 0.

Similarly, we can show that both of the limits ofG1(f )+G2(f ) andH1(f )+H2(f ) vanish.

Theorem 3.4.3 shows that the first variation δEi(f )[·] is a linear form on the space
X = H 3

2 (R/LZ) ∩W1,∞(R/LZ). If f ∈ H3(R/LZ), then it seems that the first variation
can be extended into L2(R/LZ) as a linear form by a formal integration by parts.

Indeed, the principal term of δE1(f ) is∫︁∫︁
(R/LZ)2

(f ′(s1) − f ′(s2)) · (φ′(s1) − φ′(s2))
‖f (s1) − f (s2)‖2Rn

ds1ds2.

By considering bi-Lipschitz continuity, we replace the denominator with
D(f (s1), f (s2))2, so that∫︁∫︁

(R/LZ)2

(f ′(s1) − f ′(s2)) · (φ′(s1) − φ′(s2))
D(f (s1), f (s2))2

ds1ds2

= 2π
∫︁

(R/LZ)

(−∆s)
1
4 f ′ · (−∆s)

1
4φ′ ds.
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Here, ∆s = ∂2s is the Laplace operator with respect to s, not ∆s = s1 − s2. Integrating
by parts formally, we obtain that

2π
∫︁

(R/LZ)

(−∆s)
3
2 f · φ ds.

This seems to be meaningful for f ∈ H3(R/LZ) and φ ∈ L2(R/LZ). Indeed, we can
justify this for not only the principal term, but also all terms, including δE2.

Here, we define a new operation Tki in order to describe the L2-gradient of δEi as

Tki f :=
(︂

|∆s|
‖∆f‖Rn

)︂k ∆f
∆s − τi .

Theorem 3.4.4. Let f ∈ H3 be bi-Lipschitz. Then, for φ ∈ L2 it holds that

δEi(f )[φ] = ⟨Lif + N i(f ),φ⟩L2 ,

where

L1f = 2π(−∆s)
3
2 f − 4

∑︁
k∈Z

⃒⃒⃒⃒
2πk
L

⃒⃒⃒⃒3
si(|kπ|)⟨f , φk⟩L2φk +

8
L
∆s(f − f̌ ),

L2f = − 4
3π(−∆s)

3
2 f + 8

3
∑︁
k∈Z

⃒⃒⃒⃒
2πk
L

⃒⃒⃒⃒3
si(|kπ|)⟨f , φk⟩L2φk +

16
3L∆s f̌ +

128
3L3 (f − f̌ ),

si(t) = −
∞∫︁
t

sin λ
λ dλ, φk(s) =

1
L
exp
(︂
2πiks
L

)︂
, f̌ (s) = f (s + L

2 ),
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N1(f )(s1) = − 2
∫︁

R/LZ

{︂
2

(∆s)2 (T
4
1 f · τ1)∆τ −M (f )κ1

}︂
ds2

− 4
∫︁

R/LZ

[︂
M1(f )
∆s T21 f +

1
∆s

{︂
M1(f ) −

1
2‖κ1‖

2
R

}︂
τ1
]︂
ds2,

N2(f )(s1) = − 4
∫︁

R/LZ

1
(∆s)‖∆f‖2Rn

{︁
(T21 f · τ1)T02 f + (T22 f · τ2)T01 f

}︁
ds2

− 4
∫︁

R/LZ

1
(∆s)3

[︁
(T41 f · τ1)T02 f + (T01 f · τ2)T41 f

+2
{︁
(T02 f · τ2) + 1

}︁
(T21 f · τ1)T41 f

]︁
ds2

− 4
∫︁

R/LZ

1
(∆s)3

[︂
T41 f · τ1 − T42 f · τ2

+2
{︁
(T02 f · τ2) + 1

}︁
(T21 f · τ1) + T01 f · τ2

− (∆s)2
6 ‖κ1‖2Rn

]︂
τ1ds2

− 4
∫︁

R/LZ

[︂
M2(f )
∆s T21 f +

1
∆s

{︂
M2(f ) +

1
2‖κ1‖

2
Rn

}︂
τ1
]︂
ds2.

Furthermore, for α ∈ (0, 12 ) it holds that

‖N i(f )‖L2 5 Cα(‖f‖H3−α ).

Our strategy for proving the above theorem is as follows. Because C∞(R/LZ) is dense
in bothH3(R/LZ) and L2(R/LZ), we can assume that f andφ are sufficiently smooth.
According to Theorem 3.4.3, the first variation δEi(·)[·] can be expressed as

δEi(f )[φ] =
∫︁∫︁

(R/LZ)2

Gi(f )[φ] ds1ds2

=
2∑︁
j=1

∫︁∫︁
(R/LZ)2

Gij(f ,φ)(s1, s2) ds1ds2,

where

Gi1(f ,φ) =
Qi1f · Qi2φ + Qi2f · Qi1φ

2‖∆f‖2Rn

Gi2(f ,φ) = −2Mi(f )∆f · ∆φ
‖∆f‖2Rn

,

Q11 = Q12 = Q, Q2jv = 2{v′j − (Rf · τj)Rv}.
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We decompose these operations Qij as Qijv = Q̃ijv + Q̄ijv, where

Q̃1j = Q1j = Q, Q̄1j = 0, Q̃2jv = 2
(︂
v′j −

∆v
∆s

)︂
,

Q̄2jv = 2
{︂
∆v
∆s − (Rf · τj)Rv

}︂
= 2
{︂
1 − (Rf · τj)

|∆s|
‖∆f‖Rn

}︂
∆v
∆s .

Then, we have that

Gi1(f ,φ) =
3∑︁
k=1

Gi1k(f ,φ),

Gi11(f ,φ) =
Q̃i1f · Q̃i2φ + Q̃i2f · Q̃i1φ

2(∆s)2 ,

Gi12(f ,φ) =
1
2M (f )(Q̃i1f · Q̃i2φ + Q̃i2f · Q̃i1φ),

Gi13(f ,φ) =
Q̃i1f · Q̄i2φ + Q̄i1f · Q̃i2φ + Q̄i1f · Q̄i2φ

2‖∆f‖2Rn

+ Q̃i2f · Q̄i1φ + Q̄i2f · Q̃i1φ + Q̄i2f · Q̄i1φ
2‖∆f‖2Rn

.

We have that Gi11 is linear with respect to f , but, Gi12, Gi13, and Gi2 are not. Next, we
would like to write ∫︁∫︁

(R/LZ)2

Gi11(f ,φ) ds1ds2 = ⟨Lif ,φ⟩L2 ,

∫︁∫︁
(R/LZ)2

(Gi12(f ,φ) + Gi13(f ,φ) + Gi2(f ,φ)) ds1ds2 = ⟨N i(f ),φ⟩L2 ,

where Li andN i are linear and nonlinear operations fromH3 to L2, whichwewill then
estimate.

For the linear parts Li we use the Fourier expansion

f =
∑︁
k∈Z

φkak , φ =
∑︁
k∈Z

φkbk ,

where {φk} is a complete orthogonal basis of L2(R/LZ). Using the fact that

φ′
k(s) =

2πik
L

φk(s) and φk(s + h) = exp
(︂
2πikh
L

)︂
φk(s),

we have that

f ′(s1) − f ′(s1 + h) =
∑︁
k∈Z

2πik
L

{︂
1 − exp

(︂
2πikh
L

)︂}︂
φk(s1)ak ,

φ′(s1) − φ′(s1 + h) =
∑︁
k∈Z

2πik
L

{︂
1 − exp

(︂
2πikh
L

)︂}︂
φk(s1)bk .
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Consequently, orthogonality implies that∫︁∫︁
(R/LZ)2

G111(f ,φ) ds1ds2

=
∫︁

R/LZ

L
2∫︁

−L
2

(f ′(s1) − f ′(s1 + h)) · (φ′(s1) − φ′(s1 + h))
h2 dhds1

= 2
∑︁
k∈Z

(︂
2πk
L

)︂2
⎧⎪⎨⎪⎩

L
2∫︁

−L
2

1 − cos
(︁
2πkh
L

)︁
h2 dh

⎫⎪⎬⎪⎭ds1⟨ak , bk⟩C
= 2

∑︁
k∈Z

⃒⃒⃒⃒
2πk
L

⃒⃒⃒⃒3⎛⎜⎝ π|k|∫︁
−π|k|

1 − cos λ
λ2 dλ

⎞⎟⎠⟨ak , bk⟩C.

Similarly, we have that∫︁∫︁
(R/LZ)2

G211(f ,φ) ds1ds2

=
∑︁
k∈Z

⃒⃒⃒⃒
2πk
L

⃒⃒⃒⃒3⎡⎢⎣ π|k|∫︁
−π|k|

4{λ2 cos λ − 2λ sin λ + 2(1 − cos λ)}
λ4 dλ

⎤⎥⎦⟨ak , bk⟩C.
Thus, we arrive at

Lif =
∑︁
k∈Z

⃒⃒⃒⃒
2πk
L

⃒⃒⃒⃒3⎛⎜⎝ π|k|∫︁
−π|k|

zi(λ) dλ

⎞⎟⎠⟨f , φk⟩L2(R/LZ)φk ,

where

z1(λ) =
2(1 − cos λ)

λ2 , z2(λ) =
4{λ2 cos λ − 2λ sin λ + 2(1 − cos λ)}

λ4 .

It is not difficult to see that

π|k|∫︁
−π|k|

zi(λ) dλ = ai
(︀
π + 2si(|kπ|)

)︀
+ 2bi|kπ|zi(|kπ|),

where
a1 = 2, b1 = −1, a2 = −43 , b2 = −13 .
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From the definition of zi, it follows that

|kπ|z1(|kπ|) =
2{1 − cos(|kπ|)}

|kπ| = 2{1 − (−1)k}
|kπ| ,

|kπ|z2(|kπ|) =
4[−|kπ|2 cos(|kπ|) + 2|kπ| sin(|kπ|) − 2{1 − cos(|kπ|)}]

|kπ|3

= 4[−(−1)k|kπ|2 − 2{1 − (−1)k}]
|kπ|3 .

By combining these with the expression∑︁
k∈Z

⟨f , φk⟩L2(R/LZ)φk = f ,

∑︁
k∈Z

⃒⃒⃒⃒
2πk
L

⃒⃒⃒⃒2
⟨f , φk⟩L2(R/LZ)φk = − ∆sf ,∑︁

k∈Z
(−1)k⟨f , φk⟩L2(R/LZ)φk = f̌ ,

∑︁
k∈Z

⃒⃒⃒⃒
2πk
L

⃒⃒⃒⃒2
(−1)k⟨f , φk⟩L2(R/LZ)φk = − ∆s f̌

we obtain the same expressions for the linear parts Li as in Theorem 3.4.4.
Because the derivation of the nonlinear parts N i is considerably more compli-

cated, we only provide a sketch. For details, see [13].
We employ G(f ,φ) as one of Gi1k(f ,φ) (k = 2, 3) or Gi2(f ,φ), which then take

the form

G(f ,φ) = GA (f ) · ∆φ′ + GB (f ) · ∆φ + GC (f ) · φ′(s1) + GD (f ) · φ′(s2).

The following can be obtained through a simple calculation.

Lemma 3.4.3. The following relations hold:
1. ∫︁∫︁

|s1−s2|=ε

ζ (s1, s2) · φ′(s1) ds1ds2 =
∫︁

R/LZ

(︀
ζ (s, s + ε) − ζ (s, s − ε)

)︀
· φ(s) ds

−
∫︁∫︁

|s1−s2|=ε

∂
∂s1

ζ (s1, s2) · φ(s1) ds1ds2

2. ∫︁∫︁
|s1−s2|=ε

ζ (s1, s2) · φ′(s2) ds1ds2 =
∫︁

R/LZ

(︀
ζ (s + ε, s) − ζ (s − ε, s)

)︀
· φ(s) ds

−
∫︁∫︁

|s1−s2|=ε

∂
∂s2

ζ (s1, s2) · φ(s2) ds1ds2
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3. ∫︁∫︁
|s1−s2|=ε

ζ (s1, s2) · ∆φ ds1ds2 =
∫︁∫︁

|s1−s2|=ε

(︀
ζ (s1, s2) − ζ (s2, s1)

)︀
· φ(s1) ds1ds2

4. ∫︁∫︁
|s1−s2|=ε

ζ (s1, s2) · ∆φ′ ds1ds2

=
∫︁

R/LZ

(ζ (s, s + ε) − ζ (s + ε, s) − ζ (s, s − ε) + ζ (s − ε, s)) · φ(s) ds

−
∫︁∫︁

|s1−s2|=ε

∂
∂s1

(ζ (s1, s2) − ζ (s2, s1)) · φ(s1) ds1ds2.
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From Lemma 3.4.3, we obtain that∫︁∫︁
(R/LZ)2

G(f ,φ) ds1ds2 = lim
ε→+0

∫︁∫︁
|s1−s2|=ε

G(f ,φ) ds1ds2

= lim
ε→+0

⎛⎜⎝ ∫︁∫︁
|s1−s2|=ε

GA (f ) · ∆φ′ds1ds2 +
∫︁∫︁

|s1−s2|=ε

GB (f ) · ∆φ ds1ds2

+
∫︁∫︁

|s1−s2|=ε

GC (f ) · φ′(s1) ds1ds2 +
∫︁∫︁

|s1−s2|=ε

GD (f ) · φ′(s2) ds1ds2

⎞⎟⎠
= lim
ε→+0

⎧⎪⎨⎪⎩
∫︁

R/LZ

(︀
GA (f )(s, s + ε) − GA (f )(s + ε, s)

−GA (f )(s, s − ε) − GA (f )(s − ε, s)
)︀
· φ(s) ds

−
∫︁∫︁

|s1−s2|=ε

∂
∂s1

(︀
GA (f )(s1, s2) − GA (f )(s2, s1)

)︀
· φ(s1) ds1ds2

+
∫︁∫︁

|s1−s2|=ε

(︀
GB (f )(s1, s2) − GB (f )(s2, s1)

)︀
· φ(s1) ds1ds2

+
∫︁

R/LZ

(︀
GC (f )(s, s + ε) − GC (f )(s, s − ε)

)︀
· φ(s) ds

−
∫︁∫︁

|s1−s2|=ε

∂
∂s1

GC (f )(s1, s2) · φ(s1) ds1ds2

+
∫︁

R/LZ

(︀
GD (f )(s + ε, s) − GD (f )(s − ε, s)

)︀
· φ(s) ds

−
∫︁∫︁

|s1−s2|=ε

∂
∂s2

GD (f )(s1, s2) · φ(s2) ds1ds2

⎫⎪⎬⎪⎭
= (†).
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Here, we will prove that if f ∈ H3, then it holds that

(†) =
∫︁∫︁

(R/LZ)2

{︂
− ∂
∂s1

(︀
GA (f )(s1, s2) − GA (f )(s2, s1)

)︀
+GB (f )(s1, s2) − GB (f )(s2, s1)

− ∂
∂s1

GC (f )(s1, s2) −
∂
∂s1

GD (f )(s2, s1)
}︂
· φ(s1) ds1ds2

= (‡).

Furthermore, we shall verify that

N(f )(s) =
∫︁

R/LZ

{︂
− ∂∂s

(︀
GA (f )(s, s2) − GA (f )(s2, s)

)︀
+GB (f )(s, s2) − GB (f )(s2, s)

− ∂
∂sGC (f )(s, s2) −

∂
∂sGD (f )(s2, s)

}︂
ds2

is well-defined at L 1-a.e. s ∈ R/LZ, so that we can apply Fubini’s theorem, which
implies that

(‡) =
∫︁

R/LZ

N(f )(s) · φ(s) ds = ⟨N(f ),φ⟩L2(R/LZ).

We will also show that N(f ) is a lower order term, whose order is less than three,
and

‖N(f )‖L2 5 C(‖f‖H3−α , λ).

We employ N i1k or N i2 as counterparts of N when G = Gi1k or Gi2, respectively.
Here, wewill present details forN112 only. For this, we require the following facts,

which we state without their proof.

Lemma 3.4.4. Let κ ∈ L∞. Then, it holds that

T0i f = O(∆s), T0i f · τ(sj) = O(∆s)2, T0i f ·
∆f
∆s = O(∆s)2.

Suppose that f is bi-Lipschitz and κ ∈ L∞. For k = 1, it holds that

Tki f = O(∆s), Tki f · τ(sj) = O(∆s)2 Tki f ·
∆f
∆s = O(∆s)2.

Lemma 3.4.5. It holds that

∂
∂sj

M (f ) = 2(−1)j

(∆s)3 T
4
j f · τ(sj).
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It is easy to see that
G112(f ,φ) = g112(f ) · ∆φ

′,

where
g112(f )(s1, s2) = M (f )∆f ′.

In the following, we denote g112(f )(s1, s2) by g112(s1, s2), for convenience.

Lemma 3.4.6. Let α ∈ (0, 12 ). If f ∈ H
3−α(R/LZ), it follows that∫︁∫︁

(R/LR)2

G112(f ,φ)(s1, s2) ds1ds2 = ⟨N112(f ),φ⟩L2 ,

where
N112(f )(s1) = 2

∫︁
R/LZ

{︂
2

(∆s)3 (T
4
1 f · τ(s1))∆τ −M (f )κ(s1)

}︂
ds2,

‖N112(f )‖L2 5 C(‖f‖H3−α ).

Proof. Using Lemma 3.4.3, we have that∫︁∫︁
|s1−s2|=ε

G112(f ,φ) ds1ds2

=
∫︁∫︁

|s1−s2|=ε

g112(f ) · ∆φ
′ ds1ds2

=
∫︁

R/LZ

(g112(s, s + ε) − g112(s + ε, s) − g112(s, s − ε) + g112(s − ε, s)) · φ(s) ds

−
∫︁∫︁

|s1−s2|=ε

∂
∂s1

(g112(s1, s2) − g112(s2, s1)) · φ(s1) ds1ds2

= (*).

W remark that
g112(s1, s2) = M (f )∆f ′ = M (f )∆τ = O(∆s),

which implies that

g112(s, s + ε) − g112(s + ε, s) − g112(s, s − ε) + g112(s − ε, s) = O(ε) (ε → 0).

Note that O(ε) is uniform with regard to s ∈ R/LZ, and in the following, we employ
the above notation with this meaning. Because it holds that

g112(s1, s2) − g112(s2, s1) = 2M (f )∆τ,
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we can apply Lemmas 3.4.4–3.4.5 to infer that

∂
∂s1

{g112(s1, s2) − g112(s2, s1)}

= 2
(︂
∂M (f )
∂s1

∆τ +M (f )∂∆τ∂s1

)︂
= 2
{︂
− 2
(∆s)3 (T

4
1 f · τ(s1))∆τ +M (f )κ(s1)

}︂
= O(∆s)−3+2+1 + O(1)

= O(1) as ∆s → 0

which implies that ∂
∂s1

{g112(s1, s2) − g112(s2, s1)} ∈ L∞((R/LZ)2). Therefore, the
expression is absolutely integrable, andwe canuse Fubini’s theorem in order to obtain
that

(*) → −
∫︁∫︁

(R/LZ)2

2
{︂
− 2
(∆s)3 (T

4
1 f · τ(s1))∆τ +M (f )κ(s1)

}︂
· φ(s1) ds1ds2

=
∫︁

R/LZ

⎡⎢⎣2 ∫︁
R/LZ

{︂
2

(∆s)3 (T
4
1 f · τ(s1))∆τ −M (f )κ(s1)

}︂
ds2

⎤⎥⎦ · φ(s1) ds1
=
⟨︀
N112(f ),φ

⟩︀
L2 ,

by letting ε → +0 in (*). Because it holds that

‖κ‖L∞ = ‖f ′′‖L∞ 5 Cα‖f‖H3−α

for α ∈
(︀
0, 12

)︀
, the bound on the integrand of N112 follows from Lemma 3.4.4. Thus,

we have that
‖N112(f )‖L2 5 C‖f‖H3−α .

Although the proof is more complicated, a similar result holds for G212. Because
G113 = 0, no further work is necessary in this case. We must consider G213 very care-
fully. This is decomposed as

G213(f ,φ) = G213B(f ) · ∆φ + G213C(f ) · φ′(s1) + G213D(f ) · φ′(s2),
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where

G213B(f ) =
2

(∆s)‖∆f‖2Rn

{︂
(T21 f · τ(s1))

(︂
T01 f +

∆f
∆s

)︂
+ (T22 f · τ(s2))

(︂
T02 f +

∆f
∆s

)︂
+2(T21 f · τ(s1))(T22 f · τ(s2))

∆f
∆s

}︂
,

G213C(f ) = − 2
‖∆f‖2Rn

(T22 f · τ(s2))
∆f
∆s ,

G213D(f ) = − 2
‖∆f‖2Rn

(T21 f · τ(s1))
∆f
∆s .

Because none of G213B, G213C, and G213D are absolutely integrable, we must to com-
bine themappropriately.We require a similar treatment for Gi2, but the stuation is less
complex than that of G213. For details, see [13].

3.4.3 The Möbius invariance

The Möbius invariance of each decomposed energy Ei is discussed in [10, 12].

Theorem 3.4.5 ([10]). Each Ei is Möbius invariant in the following sense:
1. It is invariant under rigid motion and dilation.
2. Let

f ↦→ p = c + r2(f − c)
‖f − c‖2Rn

be the inversion with respect to sphere with center c and radius r.
(1) If f ∈ W1,1(R/LZ), then E1(f ) + E2(f ) = E1(p) + E2(p).
(2) If c ̸∈ Im f and if E(f ) < ∞, then E1(f ) = E1(p) and E2(f ) = E2(p).

Remark 3.4.1. In the assertion (1) we assume that neither c ̸∈ Imf nor E(f ) < ∞.

Because the invariance under rigidmotion and dilation can be easily proved, we focus
on the invariance under inversion with respect to the sphere. Although the invariance
of (M1 +M2) ds1ds2 was shown in [5], we priovide the proof here. First, we note that

M1(f ) +M2(f ) =
1 + τ(s1) · τ(s2)

‖∆f‖2Rn
−
2
(︀
∆f · τ(s1)

)︀(︀
∆f · τ(s2)

)︀
‖∆f‖4Rn

.

Even if s is an arc-length parameter for f , it is not necessarily one for p. Therefore, we
use a general parameter θ instead of s, and the energy density with respect to dθ1dθ2
is (︀

M1(f ) +M2(f )
)︀
‖ḟ (θ1)‖Rn‖ḟ (θ2)‖Rn =

‖ḟ (θ1)‖Rn‖ḟ (θ2)‖Rn + ḟ (θ1) · ḟ (θ2)
‖f (θ1) − f (θ2)‖2Rn

+ 1
2

(︂
∂
∂θ1

log ‖f (θ1) − f (θ2)‖2Rn
)︂(︂

∂
∂θ2

log ‖f (θ1) − f (θ2)‖2Rn
)︂
.
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Here ḟ means the differentiation of f with respect to the general parameter, and simi-
larly for other functions.

Theorem 3.4.6. Let
f ↦→ p = c + r2(f − c)

‖f − c‖2Rn
be an inversion with respect to the sphere with center c and radius r. Then, it holds
that(︀

M1(f ) +M2(f )
)︀
‖ḟ (θ1)‖Rn‖ḟ (θ2)‖Rn −

(︀
M1(p) +M2(p)

)︀
‖ṗ(θ1)‖Rn‖ṗ(θ2)‖Rn = 0

(3.4.8)

for θ1 and θ2 such that

f (θ1) ̸= f (θ2), f (θi) ̸= c (i = 1, 2).

Proof. We decompose the difference between the densities for f and for p as follows:(︀
M1(f ) +M2(f )

)︀
‖ḟ (θ1)‖Rn‖ḟ (θ2)‖Rn −

(︀
M1(p) +M2(p)

)︀
‖ṗ(θ1)‖Rn‖ṗ(θ2)‖Rn

= J1 + J2 + J3,

where

J1 =
‖ḟ (θ1)‖Rn‖ḟ (θ2)‖Rn
‖f (θ1) − f (θ2)‖2Rn

− ‖ṗ(θ1)‖Rn‖ṗ(θ2)‖Rn
‖p(θ1) − p(θ2)‖2Rn

,

J2 =
ḟ (θ1) · ḟ (θ2)

‖f (θ1) − f (θ2)‖2Rn
− ṗ(θ1) · ṗ(θ2)
‖p(θ1) − p(θ2)‖2Rn

,

J3 =
1
2

{︂(︂
∂
∂θ1

log ‖f (θ1) − f (θ2)‖2Rn
)︂(︂

∂
∂θ2

log ‖f (θ1) − f (θ2)‖2Rn
)︂

−
(︂

∂
∂θ1

log ‖p(θ1) − p(θ2)‖2Rn
)︂(︂

∂
∂θ2

log ‖p(θ1) − p(θ2)‖2Rn
)︂}︂

.

It holds that

‖p(θ1) − p(θ2)‖2Rn

=

⃦⃦⃦⃦
⃦ r2

(︀
f (θ1) − c

)︀
‖f (θ1) − c‖2Rn

−
r2
(︀
f (θ2) − c

)︀
‖f (θ2) − c‖2Rn

⃦⃦⃦⃦
⃦
2

Rn

= r4
{︃

1
‖f (θ1) − c‖2Rn

−
2
(︀
f (θ1) − c

)︀
·
(︀
f (θ2) − c

)︀
‖f (θ1) − c‖2Rn‖f (θ2) − c‖2Rn

+ 1
‖f (θ2) − c‖2Rn

}︃

= r4‖f (θ1) − f (θ2)‖2Rn
‖f (θ1) − c‖2Rn‖f (θ2) − c‖2Rn

.
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If we define the projection Pc(θ) and P⊥c (θ) for a vector v by

Pc(θ)v =
(︂
v · f (θ) − c

‖f (θ) − c‖Rn

)︂
f (θ) − c

‖f (θ) − c‖Rn
, P⊥c (θ) = I − Pc(θ),

then the derivative of p(θ) may be expressed as

ṗ(θ) = r2
[︃

ḟ (θ)
‖f (θ) − c‖2Rn

−
2{ḟ (θ) ·

(︀
f (θ) − c

)︀
}
(︀
f (θ) − c

)︀
‖f (θ) − c‖4Rn

]︃

= r2
‖f (θ) − c‖2Rn

(︁
P⊥c (θ) − Pc(θ)

)︁
ḟ (θ).

Therefore, we have that

‖ṗ(θ)‖2Rn =
r4

‖f (θ) − c‖4Rn

(︁
‖P⊥c (θ)ḟ (θ)‖2Rn + ‖Pc(θ)ḟ (θ)‖2Rn

)︁
= r4‖ḟ (θ)‖2Rn

‖f (θ) − c‖4Rn
.

As a straightforward consequence, we have that

‖ṗ(θ1)‖Rn‖ṗ(θ2)‖Rn
‖p(θ1) − p(θ2)‖2Rn

= r2‖ḟ (θ1)‖Rn
‖f (θ1) − c‖2Rn

r2‖ḟ (θ2)‖Rn
‖f (θ2) − c‖2Rn

‖f (θ1) − c‖2Rn‖f (θ2) − c‖2Rn
r4‖f (θ1) − f (θ2)‖2Rn

= ‖ḟ (θ1)‖Rn‖ḟ (θ2)‖Rn
‖f (θ1) − f (θ2)‖2Rn

,

which demonstrates that J1 = 0. By a similar calculation, it holds that

ṗ(θ1) · ṗ(θ2)
‖p(θ1) − p(θ2)‖2Rn

=

{︁(︀
I − 2Pc(θ1)

)︀
ḟ (θ1)

}︁
·
{︁(︀
I − 2Pc(θ2)

)︀
ḟ (θ2)

}︁
‖f (θ1) − f (θ2)‖2Rn

.

By observing that

(︀
I − 2Pc(θi)

)︀
ḟ (θi) = ḟ (θi) − 2

(︂
f (θi) − c

‖f (θi) − c‖Rn
· ḟ (θi)

)︂
f (θi) − c

‖f (θi) − c‖Rn

= ḟ (θi) −
(︂
∂
∂θi

log ‖f (θi) − c‖2Rn
)︂(︀
f (θi) − c

)︀
,
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we may write

J2 =
1

‖f (θ1) − f (θ2)‖2Rn

×
[︂
ḟ (θ1) · ḟ (θ2) −

{︂
ḟ (θ1) −

(︂
∂
∂θ1

log ‖f (θ1) − c‖2Rn
)︂(︀
f (θ1) − c

)︀}︂
·
{︂
ḟ (θ2) −

(︂
∂
∂θ1

log ‖f (θ2) − c‖2Rn
)︂(︀
f (θ2) − c

)︀}︂]︂
= 1

‖f (θ1) − f (θ2)‖2Rn

[︂(︂
∂
∂θ1

log ‖f (θ1) − c‖2Rn
)︂{︁(︀

f (θ1) − c
)︀
· ḟ (θ2)

}︁
+
(︂

∂
∂θ2

log ‖f (θ2) − c‖2Rn
)︂{︁(︀

f (θ2) − c
)︀
· ḟ (θ1)

}︁
−
(︂

∂
∂θ1

log ‖f (θ1) − c‖2Rn
)︂(︂

∂
∂θ2

log ‖f (θ2) − c‖2Rn
)︂

×
{︀(︀
f (θ1) − c

)︀
·
(︀
f (θ2) − c

)︀}︀]︂
.

Using the facts that(︀
f (θ1) − c

)︀
· ḟ (θ2) =

(︀
f (θ1) − f (θ2) + f (θ2) − c

)︀
· ḟ (θ2)

= 1
2
∂
∂θ2

(︁
−‖f (θ1) − f (θ2)‖2Rn + ‖f (θ2) − c‖2Rn

)︁
and (︀

f (θ2) − c
)︀
· ḟ (θ1) =

(︀
f (θ2) − f (θ1) + f (θ1) − c

)︀
· ḟ (θ1)

= 1
2
∂
∂θ1

(︁
−‖f (θ1) − f (θ2)‖2Rn + ‖f (θ1) − c‖2Rn

)︁
,

we arrive at(︀
f (θ1) − c

)︀
· ḟ (θ2)

‖f (θ1) − f (θ2)‖2Rn

= −12
∂
∂θ2

log ‖f (θ1) − f (θ2)‖2Rn +
1
2

‖f (θ2) − c‖2Rn
‖f (θ1) − f (θ2)‖2Rn

∂
∂θ2

log ‖f (θ2) − c‖2Rn ,(︀
f (θ2) − c

)︀
· ḟ (θ1)

‖f (θ1) − f (θ2)‖2Rn

= −12
∂
∂θ1

log ‖f (θ1) − f (θ2)‖2Rn +
1
2

‖f (θ1) − c‖2Rn
‖f (θ1) − f (θ2)‖2Rn

∂
∂θ1

log ‖f (θ1) − c‖2Rn .
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Thus, our previous expression for J2 becomes

J2 = −12

(︂
∂
∂θ1

log ‖f (θ1) − c‖2Rn
)︂(︂

∂
∂θ2

log ‖f (θ1) − f (θ2)‖2Rn
)︂

− 1
2

(︂
∂
∂θ1

log ‖f (θ1) − f (θ2)‖2Rn
)︂(︂

∂
∂θ2

log ‖f (θ2) − c‖2Rn
)︂

+ 1
2

(︂
∂
∂θ1

log ‖f (θ1) − c‖2Rn
)︂(︂

∂
∂θ2

log ‖f (θ2) − c‖2Rn
)︂

×
‖f (θ2) − c‖2Rn + ‖f (θ1) − c‖2Rn − 2

(︀
f (θ1) − c

)︀
·
(︀
f (θ2) − c

)︀
‖f (θ1) − f (θ2)‖2Rn

= −12

(︂
∂
∂θ1

log ‖f (θ1) − c‖2Rn
)︂(︂

∂
∂θ2

log ‖f (θ1) − f (θ2)‖2Rn
)︂

− 1
2

(︂
∂
∂θ1

log ‖f (θ1) − f (θ2)‖2Rn
)︂(︂

∂
∂θ2

log ‖f (θ2) − c‖2Rn
)︂

+ 1
2

(︂
∂
∂θ1

log ‖f (θ1) − c‖2Rn
)︂(︂

∂
∂θ2

log ‖f (θ2) − c‖2Rn
)︂
.

Finally, we have that

∂
∂θi

log ‖p(θ1) − p(θ2)‖2Rn =
∂
∂θi

(︁
log ‖f (θ1) − f (θ2)‖2Rn − log ‖f (θi) − c‖2Rn

)︁
,

and therefore

J3 =
1
2

(︂
∂
∂θ1

log ‖f (θ1) − c‖2Rn
)︂(︂

∂
∂θ2

log ‖f (θ1) − f (θ2)‖2Rn
)︂

+ 1
2

(︂
∂
∂θ1

log ‖f (θ1) − f (θ2)‖2Rn
)︂(︂

∂
∂θ2

log ‖f (θ2) − c‖2Rn
)︂

− 1
2

(︂
∂
∂θ1

log ‖f (θ1) − c‖2Rn
)︂(︂

∂
∂θ2

log ‖f (θ2) − c‖2Rn
)︂

= −J2.

Corollary 3.4.2. Let f ∈ H1,1(R/2πZ). Then it holds that

E1(f ) + E2(f ) = E1(p) + E2(p).

Remark 3.4.2. This corollary does not exclude that the case that both sides are infi-
nite.

Proof. First, let f ∈ H 3
2 (R/2πZ). If the 2-dimensional Lebesgue measure of

{(θ1, θ2) ∈ (R/2πZ)2 | f (θ1) = f (θ2)}

is positive, then so is that of

{(θ1, θ2) ∈ (R/2πZ)2 | p(θ1) = p(θ2)}.
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Therefore, E(f ) = E(p) = ∞, and we have that

E1(f ) + E2(f ) = E1(p) + E2(p) = ∞.

Thus, we assume that the 2-dimensional Lebesgue measure of

{(θ1, θ2) ∈ (R/2πZ)2 | f (θ1) = f (θ2)}

is 0, and we claim that the measure of

{(θ1, θ2) ∈ (R/2πZ)2 | f (θ1) = f (θ2) or f (θ1) = c or f (θ2) = c}

is also 0. In order to see this, considering f as a function of s on R/LZ, we need to
prove that

S = {s ∈ R/LZ | f (s) = c}

is a finite set. To argue by contradiction, we suppose that S is not a finite set. Then, by
the compactness ofR/LZ, there exists a sequence such that f (sj) = c and lim

j→∞
sj = s*.

From the fact that

0 = ‖f (sj+1) − f (sj)‖2Rn =
sj+1∫︁
sj

sj+1∫︁
sj

τ(s) · τ(s′) dsds′

= (sj+1 − sj)2 −
1
2

sj+1∫︁
sj

sj+1∫︁
sj

‖τ(s) − τ(s′)‖2Rndsds′,

it follows that
sj+1∫︁
sj

sj+1∫︁
sj

‖τ(s) − τ(s′)‖2Rn
(s − s′)2 dsds′ =

sj+1∫︁
sj

sj+1∫︁
sj

‖τ(s) − τ(s′)‖2Rn
(sj+1 − sj)2

dsds′ = 2.

However, considering the fact that τ ∈ H 1
2 (R/LZ) and the absolute continuity of in-

tegral, this implies that

2 5 lim
j→∞

sj+1∫︁
sj

sj+1∫︁
sj

‖τ(s) − τ(s′)‖2Rn
(s − s′)2 dsds′ = 0,

which is obviously a contradiction. By these arguments, we find that (3.4.8) holds for
L 2-a.e. (θ1, θ2), and the desired conclusion follows by integrating this expression.

Finally, we consider the case that f ̸∈ H 3
2 (R/2πZ), which implies that E(f ) = ∞.

Then, we will show that E(p) = ∞. Again, arguing by contradiction, we suppose that
E(p) < ∞ fromwhich we know that p does not have self-intersections. Furthermore, it
holds that p ∈ H

3
2
loc, and we remark that p ∈ H 3

2 if p does not pass through the point
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at infinity. If we turn p back by inversion with respect to the sphere with center c and
radius r, then it returns to f . Because f does not pass through the point at infinity, p
does not pass through c. Therefore the 2-dimensional Lebesgue measure of

{(θ1, θ2) | p(θ1) = p(θ2), or p(θ1) = c or p(θ2) = c}

is 0. This implies that (3.4.8) holds for L 2-a.e. (θ1, θ2), and by integrating this, we
obtain that

E1(f ) + E2(f ) = E1(p) + E2(p) = E(p) − 4 < ∞.

However, from this we obtain that∞ = E(f ) = E1(f )+E2(f )+4 < ∞,which is obviously
a contradiction. We can conclude that it holds that E(p) = ∞, and so E1(f ) + E2(f ) =
E1(p) + E2(p) = ∞, as desired.

We discuss the invariance of each energy Ei under the inversion f ↦→ p.

Theorem 3.4.7. Assume that the center c of the inversion is not in the image of f . We
also assume that the energy E(f ) is finite. Then, we have that

E1(f ) = E1(p), E2(f ) = E2(p).

Proof. In view of Corollary 3.4.2, it is sufficient to prove that E1(f ) = E1(p). Let J1 and
J2 be defined as in the proof of Theorem 3.4.6. It follows that

M1(f )‖ḟ (θ1)‖Rn‖ḟ (θ2)‖Rn −M1(p)‖ṗ(θ1)‖Rn‖ṗ(θ2)‖Rn = J1 − J2 = −J2.

We need to prove that the integration of this goes to 0. From this point on, we use the
arc-length variable sj.

Because we are assuming that E(f ) < ∞, we know that it holds that M1(f ) ∈
L1((R/LZ)2). Becuse M1(p) = 0, we may write

E1(f ) − E1(p) = − lim
ε→+0

∫︁∫︁
|s1−s2|=ε

J2
‖ḟ (θ1)‖Rn‖ḟ (θ2)‖Rn

ds1ds2,

where |s1 − s2| = ε is in the sense of mod L. We remark that

1
‖ḟ (θj)‖Rn

∂
∂θj

(· · · ) =
∂
∂sj

(· · · ),
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so we obtain that

− lim
ε→+0

∫︁∫︁
|s1−s2|=ε

J2
‖ḟ (θ1)‖Rn‖ḟ (θ2)‖Rn

ds1ds2

= lim
ε→+0

1
2

∫︁∫︁
|s1−s2|=ε

{︂(︂
∂
∂s1

log ‖f (s1) − c‖2Rn
)︂(︂

∂
∂s2

log ‖f (s1) − f (s2)‖2Rn
)︂

+
(︂
∂
∂s1

log ‖f (s1) − f (s2)‖2Rn
)︂(︂

∂
∂s2

log ‖f (s2) − c‖2Rn
)︂

−
(︂
∂
∂s1

log ‖f (s1) − c‖2Rn
)︂(︂

∂
∂θ2

log ‖f (s2) − c‖2Rn
)︂}︂

ds1ds2

= lim
ε→+0

1
2

L∫︁
0

∂
∂s1

log ‖f (s1) − c‖2Rn
s1+L−ε∫︁
s1+ε

∂
∂s2

log ‖f (s1) − f (s2)‖2Rnds2ds1

+ lim
ε→+0

1
2

L∫︁
0

∂
∂s2

log ‖f (s2) − c‖2Rn
s2+L−ε∫︁
s2+ε

∂
∂s1

log ‖f (s1) − f (s2)‖2Rnds1ds2

− 1
2

L∫︁
0

∂
∂s1

log ‖f (s1) − c‖2Rnds1
L∫︁
0

∂
∂θ2

log ‖f (s2) − c‖2Rnds2.

Furthermore, it holds that
s1+L−ε∫︁
s1+ε

∂
∂s2

log ‖f (s1) − f (s2)‖2Rnds2 = log ‖f (s1) − f (s1 − ε)‖2Rn
‖f (s1) − f (s1 + ε)‖2Rn

.

Moreover, the fact that E(f ) < ∞ implies that f ∈ H 3
2 (R/LZ), and thus

‖f (s1) − f (s1 ± ε)‖2Rn = ε2 + o(ε2)

uniformly with regard to s1 as ε → +0. Therefore, we have that
s1+L−ε∫︁
s1+ε

∂
∂s2

log ‖f (s1) − f (s2)‖2Rnds2 = log
(︀
1 + o(1)

)︀
= o(1)

holds uniformly with regard to s1. From this, and the fact that f does not pass through
c, it holds that⃒⃒⃒⃒

⃒⃒
L∫︁
0

∂
∂s1

log ‖f (s1) − c‖2Rn
s1+L−ε∫︁
s1+ε

∂
∂s2

log ‖f (s1) − f (s2)‖2Rnds2ds1

⃒⃒⃒⃒
⃒⃒

= o(1)
L∫︁
0

⃒⃒⃒⃒
∂
∂s1

log ‖f (s1) − c‖2Rn
⃒⃒⃒⃒
ds1

= o(1).



72 | Takeyuki Nagasawa

Then, we arrive at

lim
ε→+0

L∫︁
0

∂
∂s1

log ‖f (s1) − c‖2Rn
s1+L−ε∫︁
s1+ε

∂
∂s2

log ‖f (s1) − f (s2)‖2Rnds2ds1 = 0.

Similarly, we find that

lim
ε→+0

L∫︁
0

∂
∂s2

log ‖f (s2) − c‖2Rn
s2+L−ε∫︁
s2+ε

∂
∂s1

log ‖f (s1) − f (s2)‖2Rnds1ds2 = 0.

Finally, because f does not pass through c, we have that

L∫︁
0

∂
∂s1

log ‖f (s1) − c‖2Rnds1
L∫︁
0

∂
∂θ2

log ‖f (s2) − c‖2Rnds2 = 0

from which the desired conclusion E1(f ) = E(p) follows.

Assume that Imf = S1 and c ∈ Im f . Then, p is a straight line. Therefore E1(f ) = 2π
and E1(p) = 0. This shows that E1(f ) = E1(p) does not hold unless c ̸∈ Im f . In fact,
we have the following result.

Theorem 3.4.8 ([12]). Let f ∈ C1,1(R/LZ). Then, for an inversion with center c on
Im f , we have that

E1(f ) = E1(p) + 2π2, E2(f ) = E2(p) − 2π2.

Proof. We only provide a sketch of proof here. We refer the reader interested in the
details to [12]. Let θ be a general parameter, as above. Under our assumption, f has no
self-intersections, and so f passes through the center c only once at most per period.
Thus, we may assume that c = f (0). Then, if θ ̸= 0 (mod 2π), it holds that f (θ) ̸= c.
As shown in [10], we have that

M1(f )‖ḟ (θ1)‖Rn‖ḟ (θ2)‖Rn −M1(p)‖ṗ(θ1)‖Rn‖ṗ(θ2)‖Rn =
1
2 J(θ1, θ2), (3.4.9)

where

1
2 J(θ1, θ2) =

(︂
∂
∂θ1

log ‖f (θ1) − f (0)‖2Rn
)︂(︂

∂
∂θ2

log ‖f (θ1) − f (θ2)‖2Rn
)︂

+
(︂

∂
∂θ1

log ‖f (θ1) − f (θ2)‖2Rn
)︂(︂

∂
∂θ2

log ‖f (θ2) − f (0)‖2Rn
)︂

−
(︂

∂
∂θ1

log ‖f (θ1) − f (0)‖2Rn
)︂(︂

∂
∂θ2

log ‖f (θ2) − f (0)‖2Rn
)︂
.
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Because
∂
∂θi

(· · · ) dθi =
∂
∂si

(· · · ) dsi ,

it is easy to see that∫︁∫︁
(R/2πZ)2

J(θ1, θ2)dθ1dθ2 =
∫︁∫︁

(R/LZ)2

J (s1, s2) ds1ds2, (3.4.10)

where

J (s1, s2) =
(︂
∂
∂s1

log ‖f (s1) − f (0)‖2Rn
)︂(︂

∂
∂s2

log ‖f (s1) − f (s2)‖2Rn
)︂

+
(︂
∂
∂s1

log ‖f (s1) − f (s2)‖2Rn
)︂(︂

∂
∂s2

log ‖f (s2) − f (0)‖2Rn
)︂

−
(︂
∂
∂s1

log ‖f (s1) − f (0)‖2Rn
)︂(︂

∂
∂s2

log ‖f (s2) − f (0)‖2Rn
)︂

Here, we set s = 0 at θ = 0. We introduce a function F replacing the Euclidean
distance ‖ · ‖Rn in J with the intrinsic distance D:

F (s1, s2) =
(︂
∂
∂s1

logD(f (s1), f (0))2
)︂(︂

∂
∂s2

logD(f (s1), f (s2))2
)︂

+
(︂
∂
∂s1

logD(f (s1), f (s2))2
)︂(︂

∂
∂s2

logD(f (s2), f (0))2
)︂

−
(︂
∂
∂s1

logD(f (s1), f (0))2
)︂(︂

∂
∂s2

logD(f (s2), f (0))2
)︂
.

We can show that ∫︁∫︁
(R/LZ)2

F (s1, s2) ds1ds2 = 4π2 (3.4.11)

and ∫︁∫︁
(R/LZ)2

(J (s1, s2) −F (s1, s2)) ds1ds2 = 0. (3.4.12)

The assertion of Theorem easily follows from (3.4.9)–(3.4.12). There, we have used the
existence of a bounded κ almost everywhere, sowemust assume that f ∈ C1,1(R/LZ).

Corollary 3.4.3. Right circles are the only global minimizers of E1 in the class
C1,1(R/LZ).

Proof. Because M1(p) = 0, it is clear that E1(p) = 0. Hence, E1(f ) = E1(p) + 2π2 =
2π2. Furthermore, E1(f ) = 2π2 holds if and only if E1(p) = 0, which is equivalent to
M1(p) ≡ 0. This implies that p′(s) is a constant vector. That is, p is a straight line.
Consequently, the pre-image f is a right circle.
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As stated above, the lower bound ofE1 in C1,1(R/LZ) is 2π2. This estimate seems to be
related to thefirst eigenvalue of (−∆s)3/2,which is theprincipal part of the L2-gradient,

is
(︂
2π
L

)︂3
. Indeed, by the bi-Lipschitz continuity of f , we have that

E1(f ) =
1
2

∫︁∫︁
(R/LZ)2

‖∆τ‖2Rn
‖∆f‖2Rn

ds1ds2 ≃ 1
2

∫︁∫︁
(R/LZ)2

‖∆f ′‖2Rn
|∆s|2 ds1ds2

≃ π
∫︁

R/LZ

‖(−∆s)1/4f ′‖2Rnds = π
∫︁

R/LZ

‖(−∆s)3/4f‖2Rnds

= π
∫︁

R/LZ

f · (−∆s)3/2f ds = π
(︂
2π
L

)︂3 ∫︁
R/LZ

‖f‖2Rnds.

The equality in the above estimate implies that each component of f is the first eigen-
function. This means that f is a right circle with the center at the origin and perimeter
L. Therefore,

‖f‖Rn ≡
L

2π .

Consequently, we ontain that

π
(︂
2π
L

)︂3 ∫︁
R/LZ

‖f‖2Rnds = π
(︂
2π
L

)︂3
· L ·

(︂
L

2π

)︂2
= 2π2

The above is not a rigorous argument, but seems to the author to be of interest.
It is still an open problem whether Theorem 3.4.8 holds for f ∈ H3/2(R/LZ) ∩

W1,∞(R/LZ). However we know a (non-sharp) lower estimate of E1.

Proposition 3.4.2. We have that

E1(f ) = 2π
π∫︁

−π

1 − cos u
u2 du

for any f ∈ H3/2(R/LZ) ∩W1,∞(R/LZ).

Remark 3.4.3. Note that the estimate for curves of C1,1(R/LZ) can be written as

E1(f ) = 2π2 = 2π
∞∫︁

−∞

1 − cos u
u2 du.

Proof. Because the Euclidean distance cannot be longer than the intrinsic distance,
we have that

E1(f ) =
∫︁∫︁

(R/LZ)2

‖∆τ‖2Rn
2‖∆f‖2Rn

ds1ds2 =
∫︁∫︁

(R/LZ)2

‖∆τ‖2Rn
2D(f (s1), f (s2))2

ds1ds2.
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We insert the Fourier series
f =

∑︁
k∈Z

φkak

into the above. In a similar manner to derive the L2-gradient, we can obtain

∫︁∫︁
(R/LZ)2

‖∆τ‖2Rn
2D(f (s1), f (s2))2

ds1ds2 =
∑︁
k∈Z

⃒⃒⃒⃒
2πk
L

⃒⃒⃒⃒3
‖ak‖2Cn

π|k|∫︁
−π|k|

1 − cos u
u2 du.

By applying Parseval’s identity to

τ =
∑︁
k∈Z

2πik
L

φkak ,

we obtain that

‖τ‖2L2(R/LZ) =
∑︁
k∈Z

⃒⃒⃒⃒
2πk
L

⃒⃒⃒⃒2
‖ak‖2Cn .

On the other hand, because τ is a unit vector, it holds that

‖τ‖2L2(R/LZ) = L.

Therefore it holds that ∑︁
k∈Z

⃒⃒⃒⃒
2πk
L

⃒⃒⃒⃒2
‖ak‖2Cn = L.

Consequently, we arrive at

∑︁
k∈Z

⃒⃒⃒⃒
2πk
L

⃒⃒⃒⃒3
‖ak‖2Cn

π|k|∫︁
−π|k|

1 − cos u
u2 du =

2π
L

π∫︁
−π

1 − cos u
u2 du

∑︁
k∈Z

⃒⃒⃒⃒
2πk
L

⃒⃒⃒⃒2
‖ak‖2Cn

= 2π
π∫︁

−π

1 − cos u
u2 du.

From the above proof, we can see that the given estimate is not sharp. The author
expects that the lower bound of E1 in H3/2(R/LZ) ∩ W1,∞(R/LZ) is also 2π2, and
that right circles are the only minimizers. Blatt [3] helpfully informed the author that
the answer may be affirmatively.
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Pseudogradient Flows of Geometric Energies

Abstract: For differentiable functions on Riemannian manifolds, the gradient vector
field and its inducedgradient flowarewell-definedandwell-understood concepts.Un-
fortunately, many nonquadratic, infinite-dimensional optimization problems cannot
be formulated on Riemannianmanifolds in a convenient way.We introduce a category
of infinite-dimensional Banachmanifolds that allows us to define a generalized gradi-
ent. Moreover, we show short-time existence of the induced flows and apply their dis-
cretizations to the numerical minimization of various geometric energies of immersed
curves and surfaces.

Keywords: gradient flow, minimal surfaces, Euler elastica, Willmore energy

MSC: 49Q05, 49Q10

4.1 Introduction

Gradient flows are a popular tool for minimizing (or maximizing) continuously differ-
entiable functions, both theoretically and numerically. Algorithms derived from gra-
dient flows, often subsumed as methods of steepest descent, belong to virtually every
library for (smooth) numerical optimization. The idea behind gradient flows is very
intuitive and appealing:

Let (M, g) be a Riemannian manifold, F : M → R be a function of class C1, and
a ∈ M some point. A tangent vector u ∈ TaM of length r > 0 is called a direction of
steepest descent of F at the point a ∈ M of length r if it minimizes the slope S(u) :=
R(u)−1⟨dF|a , u⟩ among all tangent vectors of length r, where R(u) := g(u, u) 12 . That
means, u is a solution of the following constraint optimization problem:

Minimize S(u) over u ∈ TaM subject to the constraint R(u) = r. (4.1.1)

By introducing a scalar Lagrange multiplier λ ∈ R, we have to solve the system{︃
⟨dS|u , v⟩ + λ ⟨dR|u , v⟩ = 0 for all v ∈ TaM,

R(u) = r.

This system is equivalent to{︃
r2⟨dF|a , v⟩ − ⟨dF|a , u⟩g(u, v) + λ r2 g(u, v) = 0 for all v ∈ TaM,

g(u, u) = r2.

Testing with v = u leads to λ = 0. Afterwards, testing with all v ∈ ker(dF|a)
leads to u ∈ ker(dF|a)⊥. Thus, the system is solved by u = σ grad(F)|a with σ ∈

https://doi.org/10.1515/9783110571493-003
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{−r |dF|a|−1g , r |dF|a|−1g }. Here, the gradient grad(F)|a ∈ TaM is the vector defined by
the equation

g(grad(F)|a , v) := ⟨dF|a , v⟩ for all v ∈ TaM. (4.1.2)

Moreover, |dF|a|g is the Frobenius norm of the linear form dF|a : TaM → R with re-
spect to the inner product g. Summarized, the direction of steepest descent of length
r is given by

u = −r |dF|a|−1g grad(F)|a .

Usually, one chooses r = |dF|a|g and defines the direction of steepest descent by

u = −grad(F)|a .

We point out a simple but often forgotten fact: One needs a metric d on TaM in order
to be able to talk about the slope of a linear function ξ : TaM → R in direction u, the
slope being given by

⟨ξ , u⟩ − ⟨ξ , 0⟩
d(u, 0) .

In particular, the notion of steepest descent requires the specification of a metric, at
least on tangent spaces; different metrics will lead to different directions of steepest
descent. There is no such thing as a direction of steepest descent per se.

A flow 𝛷 : U × I ⊂ M × R → M is called a downward gradient flow of F if it is
generated by the vector field − grad(F), i.e., if it satisfies

d
dt𝛷(a, t) = − grad(F)|𝛷(a,t) and 𝛷(a, 0) = a for all (a, t) ∈ U × I. (4.1.3)

Analogously, an upward gradient flow of F is generated by grad(F). Under mild regu-
larity assumptions on F (e.g., dF is locally Lipschitz continuous), both the downward
and upward flow exist at least locally and for short times. Moreover, each of the flows
is unique.

This theory carries over to infinite-dimensional manifolds as far as only Rieman-
nian/Hilbert manifolds are considered. Unfortunately, many interesting variational
problems can only be formulated as differentiable variational problems on Hilbert
manifolds if one shrinks the feasible set to an extent that minimizers of the actual
problem of interest might be excluded. Many geometric variational problems involv-
ing nonquadratic energies and nonlinear constraints belong to this class; we discuss
several examples in Section 4.5.1 and Section 4.5.2. The essential reason for this phe-
nomenon is that the Sobolev spaces W s,2(Rn;R) do not embed continuously into
W1,∞(Rn;R) for moderate n ≥ 2 and small s ∈ [0, 1 + n

2 ]. Thus, a generic continuous
functional onW1,∞(Rn;R) can only be made continuous onW s,2(Rn;R) by choosing
s overly large.

This is why the generalization of gradients and gradient flows to more general
infinite-dimensional manifolds is a quite delicate business. As far as we know, there
have been the following two main approaches so far:
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1. One may generalize gradients as directions of steepest descent in the sense of
(4.1.1), using R(u) = ‖u‖TaM and r = ‖dF|a‖(TaM)′ . If the Banach space TaM is re-
flexive, this leads again to awell-defined gradient grad(F)|a ∈ TaM. However, this
gradient depends nonlinearly on dF|a. In practice, this means that a costly mini-
mization or root finding algorithm has to be used in order to determine grad(F)|a.
Moreover, evenmore costly algorithms have to be applied if the norm ‖·‖TaM is not
differentiable on TaM \ {0}. For more details on this kind of gradient flows and
for generalizations to more general metric spaces, we refer the reader to [1].

2. In some cases, one may exploit a Gelfand triple TaM →˓ Ha →˓ (TaM)′, i.e., a se-
quence of continuous, linear, and dense embeddings, where (Ha , ga) is a Hilbert
space. Then one may use (4.1.2) to define a “gradient” gradH(F)|a ∈ Ha. Since
gradH(F)|a ̸∈ TaM is not a tangent vector, the mapping a ↦→ gradH(F)|a cannot
be interpreted as a vector field so that (4.1.3) is no longer an ordinary differen-
tial equation. Under certain conditions on dF, (4.1.3) may still be formulated as a
parabolic partial differential equation; existence and uniqueness of the “gradient
flow” can be ensured for short positive times t ∈ ]0, ε[. Prominent examples are
the mean curvature flow (the L2-gradient flow of the surface area functional, see
[5]) and the Willmore flow (the L2-gradient flow of the Willmore functional). An
extensive overview and further literature on these flows can be found in [7].

In Section 4.4, we propose another way to define (pseudo)gradients for certain
classes of Banach manifolds. In contrast to the first of the two approaches mentioned
above, the pseudogradient grad(F) depends linearly on dF. In constrast to the second
approach, these pseudogradients form indeed a vector field grad(F) and this vector
field has the same regularity as dF. If F is of class C1,1loc , then the pseudogradient flow
defined by (4.1.3) exists locally and for small times, both in forward and in backward
direction (see 4.4.2). Of course, one cannot expect to obtain such a strong result for
arbitrary Banach manifolds and arbitrary functions. It turns out that the suitable cat-
egory of manifolds to consider is the category of Riesz manifolds which we introduce
in Section 4.3. We will also see there that the concept of Riesz manifolds is a bit richer
than the concept of Riemannian manifolds.

We aim at treating pseudogradient flows for quite general classes of infinite-
dimensional Banach manifolds—and not only for open sets in Banach spaces. Such
situations arise, e.g.,when treatingoptimizationproblemswithnonlinear constraints.
The class of examples we have primarily in mind is the minimization of knot energies
among knots in parameterization by arclength. The treatment of infinite-dimensional
Banach manifolds will inevitably involve certain infinite-dimensional vector bundles
so that we require the notion of a Banach bundle. This is why we give a very brief
introduction to fiber bundles in general and to Banach bundles in particular (see Sec-
tion 4.2).

Section 4.5 is devoted to applications of the developed theory. We consider vol-
ume functionals (Section 4.5.1) and certain functionals depending on extrinsic cur-
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vature (Section 4.5.2) and show that these functionals together with suitably chosen
domains belong to the category of Riesz manifolds (4.5.1 and 4.5.5). As a side effect,
we verify that the category of Riesz manifolds (i) is strictly larger than the category of
Riemannian manifolds and (ii) contains many examples of practical relevance. More-
over, we give several numerical examples of discretized pseudogradient descent for
the minimization of these energies subject to various constraints. In particular, these
examples will demonstrate the efficiency and robustness of pseudogradient methods
when applied to numerical minimization of geometric energies subject to nonlinear
equality constraints.

4.2 Banach Bundles

Fiber bundles of various types and in particular vector bundles are typical working
horses in algebraic topology, differential geometry, and global analysis. Since the
reader might not be familiar with the notion of a fiber bundle, we give a brief intro-
duction, being well aware that a thorough treatment of this matter may easily fill a
full-semester master course. A beautiful and short introduction to Banach manifolds
and vector bundles can be found in [13]. Moreover, we refer to [12], maybe the classi-
cal text on fiber bundles, and to [14], a rather modern exposition which also covers
great parts of the theory of partial differential equations for fields with values in fiber
bundles.

4.2.1 General Fiber Bundles

The central idea of a fiber bundle is that it looks locally like a product of a base space
and a fiber. The following definitions make this more precise.

Definition 4.2.1. LetM, E and X be topological spaces, let π : E → M be a continuous,
surjective map, and let U ⊂ M be an open set. We write E|U := π−1(U) ⊂ E. A local
trivialization of π : E → M on U with typical fiber X is a homeomorphism φ : E|U →
U × X such that the following diagram commutes

E|U U × X

U .

φ

π|E|U pr

Here, pr: U × X → U, (a, x) ↦→ a is the projection onto the first factor.

Definition 4.2.2. Let M, E and X be topological spaces and let π : E → M be a con-
tinuous, surjective map. A fiber bundle atlas on π : E → M with typical fiber X is a
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covering family of local trivializations (φi : E|Ui → Ui × X)i∈I in the sense that (Ui)i∈I
is an open covering of M.

Two fiber bundle atlantes with typical fiber X are called compatible if their union
is a fiber bundle atlas. A fiber bundle atlas is called maximal if it contains each com-
patible fiber bundle atlas.

A fiber bundle with typical fiber X is a continuous and surjective mapping π : E →
M togetherwith amaximal fiber bundle atlaswith typical fiberX.With a slight abuseof
notation, one usually omits mentioning the precise atlas and simply refers to π : E →
M or even to E as the fiber bundle. One refers to E as the total space, to M as the base
space, and to π as the bundle projection of the fiber bundle π : E → M. For a ∈ M, one
calls Ea := π−1({ a }) the fiber over a. Note that Ea is homeomorphic to X.

For each pair i, j ∈ I with Uij := Ui ∩ Uj ̸= ∅, the following commutative diagram
defines a homeomorphism 𝛷ij : Uij × X → Uij × X, the so-called transition map:

Uij × X E|Uij Uij × X

Uij .
prj

𝛷ij

π

φj|E|Uij φi|E|Uij

pri
(4.2.1)

Note that one has 𝛷ij = (𝛷ji)−1 and 𝛷ij ∘ 𝛷jk = 𝛷ik.
Let R ∈ { Ck,αloc | k ∈ N ∪ {0,∞}, α ∈ [0, 1] with k + α ≥ 1 }. If M and X are Banach

manifolds of class R and if each transition 𝛷ji is of class R, we say that π : E → M is a
fiber bundle of class R. Note that in this case, the total space E is a manifold of class R
and π is a submersion of class R.

Example 4.2.3. Let M and X be topological spaces. Then E := M × X together with
the projection π : E → M, (a, f ) ↦→ a is a fiber bundle with typical fiber X. Such fiber
bundles are called trivial, since there exists a global trivialization. By definition, every
fiber bundle restricted to a sufficiently small set is a trivial fiber bundle.

Example 4.2.4. Let E ⊂ R3 be the embedded Möbius strip depicted in Figure 4.1. Let
M ⊂ E be the centerline of the Möbius strip and π : E → M be the shortest distance
projection with respect to the intrinsic distance of E. Then π : E → M is a nontrivial
smooth fiber bundle with a closed interval as typical fiber.

Example 4.2.5. Let π1 : E1 → M and π2 : E2 → M be fiber bundles with typical fibers
X1 and X2 respectively. Then the product bundle π : E1 ×M E2 → M defined by

E1 ×M E2 := { (e1, e2) ∈ E1 × E2 | π1(e1) = π2(e2) } and

π : E1 ×M E2 → M, π(e1, e2) := π1(e1) = π2(e2).
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Fig. 4.1: An embedded Möbius strip as nontrivial fiber bundle over its centerline (white). Several
fibers are depicted in orange.

is a fiber bundle with typical fiber X1 × X2.

Definition 4.2.6. Let π : E → M be a fiber bundle with typical fiber X. A mapping
σ : M → E is called a section of the bundle E if it satisfies π ∘σ = idM, i.e., σmaps each
point a ∈ M into its fiber Ea. If both π : E → M and σ : M → E are of class R, we say
that σ is a section of class R.

Definition 4.2.7. Let π1 : E1 → M1 and π1 : E2 → M2 be fiber bundles and let
F : E1 → E2 and f : M1 → M2 be continuous maps. We say that F is a fiber bundle
morphism from E1 to E2 over f if the following diagram is commutative:

E1 E1

M1 M2 .

F

π1 π2
f

Thus one has well-defined and continuous fiber mappings Fa := F|(E1)a : (E1)a →
(E2)f (a) for each a ∈ M1. We say that F : E1 → E2 is an isomorphism of fiber bundles
over f , if both f and F are homeomorhisms. In that case, the inverse F−1 : E2 → E1 is
a fiber bundle morphism over f −1.
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4.2.2 Banach Bundles and Hilbert Bundles

Note that the transition maps 𝛷ij = Uij × X → Uij × X of a fiber bundle π : E → M are
of the special form

𝛷ij(a, x) = (a, φij(a)(x))

with some transition function φij : Uij → Homeo(X) into the group of homeomor-
phisms of X. Moreover, one has (φij(a))−1 = φji(a) and φij(a)φjk(a) = φik(a).

One may define various special types of fiber bundles in the following way: Let
X be a space with an additional structure that is compatible with the topology of X.
For example, X can be a topological vector space, a topological group, or a metric
space. Denote by G ⊂ Homeo(X) the group of continuous isomorphisms of X, i.e.,
those homeomorphisms of X that also respect the additional structure. By adding the
further requirement to a bundle atlas that its transition functions take only values in
this group G, one may define fiber bundles whose fibers exhibit the same structure as
its typical fiber X. In the following, we outline this construction for the special case
that the typical fiber X is a Banach space (or Hilbert space), leading to the notion of a
Banach bundle (or Hilbert bundle, respectively).

Definition 4.2.8. Let X be a Banach space and let π : E → M be a fiber bundle with
typical fiber X. A Banach bundle atlas on π : E → M with typical fiber X is a covering
family of local trivializations (φi : E|Ui → Ui ×X)i∈I such that each transition function
is a continuous map φij : Uij → L(X; X), where L(X; X) denotes the Banach algebra of
continuous linear operators from X to X.

A fiber bundle π : E → Mwith typical fiber X is called aBanach bundlewith typical
fiber X if its maximal bundle atlas of π : E → M contains a (maximal) Banach bundle
atlas.

Analogously, one defines the notion of a Hilbert bundle. The definitions are such
that each Hilbert bundle is also a Banach bundle and that each Banach bundle is also
a fiber bundle.

Proposition 4.2.9. Let π : E → M be a Banach bundle. Then each Ea, a ∈ M carries
the structure of a topological vector space in the following way: Choose a local trivial-
ization φ : E|U → U × X from a Banach bundle atlas of E such that a ∈ U. Then define
for v, v1, v2 ∈ Ea and λ ∈ R:

v1 (+)a v2 := φ−1(a, prX(φ(v1)) + prX(φ(v2))) and λ (·)a v := φ−1(a, λ · prX(φ(v))).
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By the special structure of Banach bundle atlantes (see 4.2.8), this is independent of the
choice of φ and the induced mappings4.1

+ : E ×M E → E, v1 + v2 := v1 (+)π(v1 ,v2) v2 and
· : R × E → E, λ · v := λ (·)π(v) v

are continuous.

Example 4.2.10. LetM be a Banachmanifold of class Ck,αloc , k+α ≥ 2. Then the tangent
bundle πTM : TM → M is a Banach bundle of class Ck−1,αloc . Sections of TM are precisely
the vector fields on M.

Example 4.2.11. Let πX : X → M and πY : Y → M be Banach bundles over M. Then
the space L(X; Y) :=

∐︀
a∈M { a } × L(Xa; Ya) together with πL(X;Y) : L(X; Y) → M,

(a, A) ↦→ a is a Banach bundle in a canonical way; a Banach bundle atlas for L(X; Y)
can be constructed from bundle atlantes for X and Y.

In particular, the dual bundle X′ := L(X;M ×R) is also a Banach bundle with fibers
(X′)a ∼= (Xa)′ for all a ∈ M.

Definition 4.2.12. Let π1 : E1 → M1 and π1 : E2 → M2 be Banach bundles, and let
F : E1 → E2 be a fiber bundle morphism over f : M1 → M2 (see 4.2.7). We say that F is
a Banach bundle morphism from E1 to E2 over f if for each a ∈ M1 the fiber mapping
Fa := F|(E1)a : (E1)a → (E2)f (a) induced by F is linear. We say that F : E1 → E2 is an iso-
morphism of Banach bundles over f , if it is also a fiber bundle isomorphism. Note that
in this case, the inverse F−1 : E2 → E1 is automatically a Banach bundle morphism
over f −1.

4.3 Riesz Structures

First, we introduce Riesz structures on Banach spaces (Section 4.3.1). To some extent,
Banach spaces with Riesz structures look and feel quite much like Hilbert spaces. For
example, 4.3.5 introduces the concept of a pseudoadjoint A* ∈ L(X2; X1) of a Riesz
morphism A ∈ L(X1; X2) (a concept which we utilize to introduce pseudogradients
in Section 4.4). The generalization of Riesz structures to Banach bundles is straight-
forward. Hence, a great deal of Section 4.3.2 will occupy us with producing a prac-
tically relevant example. Finally, we introduce the category of Riesz manifolds (Sec-
tion 4.3.3), a category that carries many desirable properties of the category of Rie-
mannian manifolds.

4.1 see 4.2.5 for the definition of the product bundle π : E ×M E → M
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4.3.1 Riesz Structures

Definition 4.3.1. Let X be a Banach space. A Riesz structure on X consists of
1. a continuous, linear and dense injection i : X →˓ H into a Hilbert space H;
2. a continuous, linear and dense injection j : H →˓ Y into a Banach space Y;
3. a fixed Hilbert norm ‖·‖H or equivalently, its Riesz isomorphism I : H → H′;
4. and of an isomorphism of Banach spaces J : X → Y ′

such that the following diagram commutes:

X Y ′

H H′ .

i

J
∼=

j′

I

∼=

(4.3.1)

We may call J a pseudo-Riesz isomorphism of X. Moreover, every Banach space X with
Riesz structure (i, j, I, J) exhibits a pre-Hilbert metric, which can be expressed by the
Riesz structure in the following ways

b(x1, x2) := ⟨i x1, i x2⟩H = ⟨I i x1, i x2⟩ = ⟨J x1, j i x2⟩, for all x1, x2 ∈ X.

Remark 1. At first glance, the notion of a Riesz structure seems to boil down to the
notion of a Gelfand triple, i.e., a topological vector space X, a Hilbert space H together
with linear, dense embeddings X →˓ H →˓ X′. However, this is not true, since Riesz
structures involve a third Banach space Y which need not coincide with X′, in partic-
ular if X is nonreflexive.

The prototypical Riesz structure is given by the following example.

Example 4.3.2. Let (𝛺,A, µ) be a finite measure space, let p ∈ [2,∞], and let q ∈
[1, 2] be theHölder conjugate of p. PutX := Lp(𝛺, µ),H := L2(𝛺, µ), Y := Lq(𝛴; µ), and
denote by i : Lp(𝛺, µ) →˓ L2(𝛺, µ), j : L2(𝛺, µ) → Lq(𝛺, µ) the canonical embeddings.
The Riesz isomorphism I : L2(𝛺, µ) → (L2(𝛺, µ))′ is given by ⟨I v1, v2⟩ :=

∫︀
𝛺
v1 v2 dµ

for v1, v2 ∈ H. Analogously, one may consider the operator J : Lp(𝛺, µ) → (Lq(𝛺, µ))′

defined by ⟨J u, w⟩ :=
∫︀
𝛺
u w dµ for u ∈ X and w ∈ Y. Observe that I ∘ i = j′ ∘ J. By the

Radon-Nikodym theorem, J is an isomorphism of Banach spaces, hence (i, j, I, J) is a
Riesz structure on X = Lp(𝛺, µ).

It is essential for our applications that Riesz structures are able to encode elliptic op-
erators.

Example 4.3.3. Let (𝛴, g) be a compact Riemannian manifold all whose connected
components have nontrivial boundary, let p ∈ [2,∞[, and let q ∈ ]1, 2] be the
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Hölder conjugate of p. Let X := W2,p(𝛴;Rm) ∩ W1,p
0 (𝛴;Rm), H := W1,2

0 (𝛴;Rm),
Y := Lq(𝛴;Rm) and let i : X →˓ H and j : H →˓ Y be the canonical embeddings. Let
0 < c ≤ C < ∞ be constants and let b ∈ W1,r(𝛴; Sym2(T𝛴)) with r > dim(𝛴) be a ten-
sor field of symmetric, bilinear forms with c g|a ≤ b|a ≤ C g|a for all a ∈ 𝛴. Thus, the
Laplace-Beltrami operator −∆b : W2,p(𝛴;Rm) → Lp(𝛴;Rm) with respect to the met-
ric b is well-defined and continuous (see 4.5.3). This allows us to define the operator
Jb : X → Y ′ by

⟨Jb u, w⟩ :=
∫︁
𝛴

g0(−∆bu, w) volb , u ∈ X, w ∈ Y ′,

where volb denotes the Riemannian volume density induced by b. Elliptic regular-
ity for the Dirichlet problem (see Theorem 9.15 in [10]) implies that Jb is an iso-
morphism provided that r ≥ p. Integration by parts leads to the weak formulation
Ib : W1,2

0 (𝛴;Rm) → (W1,2
0 (𝛴;Rm))′ of the Laplace-Beltrami operator:

⟨Ib v1, v2⟩ :=
∫︁
𝛴

⟨dv1, dv2⟩b volb for v1, v2 ∈ W1,2
0 (𝛴;Rm).

The condition c g ≤ b ≤ C g guarantees that Ib is both continuous and continuously
invertible. The fact that Ib and Jb are connected via integration by parts is reflected in
the equality Ib ∘ i = j′ ∘ Jb, showing that (i, j, Ib , Jb) constitutes a Riesz structure on X.

Definition 4.3.4. Let (X1, i1, j1, I1, J1) and (X2, i2, j2, I2, J2) be Banach spaces with
Riesz structure. We call a triple (A, B, C) with A ∈ L(X1; X2), B ∈ L(H1;H2), and C ∈
L(Y1; Y2) amorphism of Riesz structures or shorter, a Riesz morphism, if the following
diagram commutes:

X1 X2

H1 H2

Y1 Y2 .

i1

A

i2

j1

B

j2
C

Proposition 4.3.5. Let (X1, i1, j1, I1, J1) and (X2, i2, j2, I2, J2) be Banach spaces with
Riesz structure and let (A, B, C) be a Riesz morphism. We define the pseudoadjoint A*
of A by A* := J−11 C′ J2, where C′ ∈ L(Y ′2; Y ′1) denotes the dual map given by C′ ξ := ξ ∘C.
The pseudoadjoint has the following properties:
1. A* ∈ L(X2; X1).
2. A* is an adjoint with respect to the induced pre-Hilbert metrics b1 and b2, i.e., one

has

b2(A x1, x2) = b1(x1, A* x2) for all x1 ∈ X1 and x2 ∈ X2.
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3. A*A is symmetric and positive semi-definite with respect to b1.
4. AA* is symmetric and positive semi-definite with respect to b2.

Proof. Claim 1. Since C′, J−11 and J2 are continuous, A* is clearly continuous.
Claim 2. Observe

i1 A* = (i1 J−11 ) C′ J2 = I−11 (j′1 C′) J2 = I−11 B′ (j′2 J2) = I−11 B′ I2 i2 = B* i2.

With x1 ∈ X1 and x2 ∈ X2, the second statement follows from

b1(x1, A*x2) = ⟨i1 x1, B* i2 x2⟩H1 = ⟨B i1 x1, i2 x2⟩H1 = ⟨i2 A x1, i2 x2⟩H2 = b2(A x1, x2).

Claim 3. This follows from

b1(u, A*Av) = b2(A u, A v)

and

b1(u, A*Au) = b2(A u, A u) = ‖i2 A u‖2H2 ≥ 0

for all u, v ∈ X1.
Claim 4. One has b2(AA*u, v) = b1(A*u, A*v) and

b2(AA*u, u) = b1(A*u, A*u) = ⟨i1 A*u, i1 A*u⟩H1 = ‖B* i2 u‖2H1 ≥ 0

for all u, v ∈ X2.

4.3.2 Riesz Bundle Structures

Analogously to 4.3.1 and4.3.4,wedefineRiesz structures onBanachbundles andRiesz
bundle morphisms as follows.

Definition 4.3.6. Let πX : X → M be a Banach bundle. A Riesz structure on X consists
of
1. a continuous, linear, and dense bundle injection i : X →˓ H over idM into a Hilbert

bundle πH : H → M;
2. a continuous, linear, and dense bundle injection j : H →˓ Y over idM into a further

Banach bundle πY : Y → M;
3. a fixed Hilbert bundle norm ‖·‖H or equivalently, its Riesz isomorphism I : H →
H′;

4. and an isomorphism J : X → Y ′ of Banach bundles over idM
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such that the following diagram commutes.

X Y ′

M

H H′ .

πX

i

J
∼= πY ′

j′

πH

I

∼=

πH′

(4.3.2)

Let R ∈ { Ck,αloc | k ∈ N ∪ {0,∞} }, α ∈ [0, 1] with k + α ≥ 1 and suppose that
π : X → M is a Banach bundle of class R. We say that a Riesz structure (i, j, I, J) is of
class R, if
1. H and Y are Banach bundles of class R and
2. i, j, I, and J are Banach bundle morphisms of class R.

Example 4.3.7. Let 𝛴 be a connected, compact, n-dimensional manifold with non-
trivial boundary. Denote by g0 the Euclidean metric on Rm. For f ∈ W1,∞(𝛴;Rm),
denote by f #g0 := g0(df ·, df ·) the pullback of the bilinear form g0 and define the
space of Lipschitz immersions as

Imm1,∞(𝛴;Rm) := { f ∈ W1,∞(𝛴;Rm) | ∃C > 0: C−1 g ≤ f #g0 ≤ C g } , (4.3.3)

where g may be any smooth Riemannian metric on 𝛴. Note that Imm1,∞(𝛴;Rm) ⊂
W1,∞(𝛴;Rm) is an open set. For p > n, the Sobolev embedding theorem shows that
W2,p(𝛴;Rm) embedds continuously intoW1,∞(𝛴;Rm) which enables us to define

Imm2,p(𝛴;Rm) := Imm1,∞(𝛴;Rm) ∩W2,p(𝛴;Rm).

The trace theorem for Sobolev spaces states that the so-called trace operator
res: C∞(𝛴;Rm) → C∞(∂𝛴;Rm), res(f ) = f |∂𝛴 can be continuously extended to
res: W2,p(𝛴;Rm) → W2− 1

p ,p(∂𝛴;Rm). We fix an immersion 𝛾 ∈ Imm2− 1
p ,p(∂𝛴;Rm)

and consider the configuration space of immersed surfaces

C := Imm2,p
𝛾 (𝛴;Rm) := { f ∈ Imm2,p

𝛾 (𝛴;Rm) | res(f ) = 𝛾 } .

Analogously to 4.3.3, we define the (trivial) Banach bundles

X := C ×
(︀
W2,p(𝛴;Rm) ∩W1,p

0 (𝛴;Rm)
)︀
, H := C ×W1,2

0 (𝛴;Rm), Y := C × Lq(𝛴;Rm)

along with canonical injections i : X →˓ H and j : H →˓ Y. These mappings are fiber-
wise continuous and dense injections. We summarize the setting in the commutative
diagram

X H Y

C C C .

i

pr

j

pr pr

idC idC
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Each immersion f ∈ C induces aRiemannianmetric b := f #g0 of Sobolev classW1,p.4.2

Thus, the Laplace-Betrami operator ∆f := ∆b : W2,p(𝛴;Rm) → Lp(𝛴;Rm) is well-
defined. With the definitions and results of 4.3.3, we oberve that Jf := Jb : Xf → (Yf )′

and If := Ib : Hf → (Hf )′ are isomorphisms satifying If ∘ if = j′f ∘ Jf . Hence the data
(i, j, I, J) constitutes a Riesz structure on the Banach bundle X. Without going into
detail, we mention that (i, j, I, J) is even a Riesz structure of class C∞.

Definition 4.3.8. Let (X1, i1, j1, I1, J1, ) and (X2, i2, j2, I2, J2, ) be Banach bundles
with Riesz bundle structures. We call a triple (A, B, C) of Banach bundle morphisms
A : X1 → X2, B : H1 → H2, and C : Y1 → Y2 a Riesz bundle morphism, if (Aa , Ba , Ca)
is a Riesz morphism for each a ∈ M, i.e., if the following diagram commutes:

X1 X2

H1 H2

Y1 Y2 .

i1

A

i2

j1

B

j2
C

4.3.3 Riesz Manifolds

Definition 4.3.9. Let k ∈ N ∪ {∞ } and α ∈ [0, 1] with k + α ≥ 2. A Riesz manifold of
class Ck,αloc is a BanachmanifoldM of class Ck,αloc togetherwith a Riesz structure (i, j, I, J)
of class Ck−1,αloc on TM.

Definition 4.3.10. Let (M1, i1, j1, I1, J1) and (M2, i2, j2, I2, J2) be Riesz manifolds of
class Ck,αloc and let F : M1 → M2 be a mapping of class Ck,αloc . We say that F is a Riesz
morphism of class Ck,αloc if the tangent map TF : TM1 → TM2 induces a morphism of
Riesz bundles of class Ck−1,αloc . In particular, for a Riesz morphism F : M → R into the
real numbers, we also say that F is a Riesz function.

Example 4.3.11. Let (M, g) be a Riemannian manifold, i.e., a (smooth) Banach man-
ifold together with a (smooth) section g of Sym2(TM) such that for each a ∈ M, the
symmetric bilinear form ga : TaM × TaM → R is positive-definite and generates the
topology on TaM. In particular, (TaM, ga) is a Hilbert space and Ia : TaM → T ′aM,
⟨Iau, v⟩ := ga(u, v) is a Riesz isomorphism. With TM = H = Y, and J = I, i = j = idTM,
we observe that (M, i, j, I, J) is a Riesz manifold in a natural way. Note that a smooth
mapbetweenRiemannianmanifolds induces also a (unique)Rieszmorphismbetween
the induced Riesz manifolds.

4.2 Since f #g0 depends quadratically on df , the condition p > n in necessary here.
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Example 4.3.12. Let (M, i, j, I, J) be a smooth Riesz manifold. Then one may define a
section g of Sym2(TM) by

ga(u, v) := ⟨Ja u, j i v⟩ = ⟨Ia i u, i v⟩ for u, v ∈ TaM.

Since Ia is a Riesz isomorphism, ga is a symmetric and positive-definite bilinear form.
Thus, (TaM, ga) is a pre-Hilbert space with completion (Ha , ⟨Ia ·, ·⟩). If TaM is not iso-
morphic to a Hilbert space, (TM, g) is not a Riemannian manifold. In general, there is
no chance to complete (M, g) to a Hilbert manifold (M̃, g̃). Moreover, in the rare cases
where this is possible, many continuous (or even differentiable) functions on M can-
not be extended continuously (differentiably) to M̃.

These examples show that Riemannian manifolds form a (proper) full subcategory
of the category of Riesz manifolds in the sense that the functor described in 4.3.11
is injective (but not surjective) on objects and fully faithful. Still, the latter category
shares many useful properties with the former (see Section 4.4 below for a few exam-
ples). Forgetting the underlying Riesz structure induces a forgetful functor from the
category of Riesz manifolds to the category of Banach manifolds. In this sense, Riesz
manifoldsmaybe consideredas lying somewherebetweenRiemannianmanifolds and
arbitrary Banach manifolds. More precisely, we have the following commutative dia-
gram of functors{︃

Riemannian
manifolds

}︃ {︃
Riesz

manifolds

}︃

{︃
Banach
manifolds

}︃
.

(M,g)↦→(M,id,id,I,I)

(M,g)↦→M (M,i,j,I,J)↦→M

4.4 Pseudogradient Flow

Nowwehave all necessary ingredients for defining the pseudogradient of a Riesz func-
tion.

Definition 4.4.1. Let (M, i, j, I, J) be a Riesz manifold of class Ck,αloc and let F : M → R
be aRieszmapping of class Ck,αloc .We define the pseudogradient field grad(F) : M → TM
by setting grad(F) := (TF)*.

Compared to the elaborate theory that is needed for the treatment of nonlinear flows of
parabolic type, the existence theory of pseudogradient flows relies on quite elemen-
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tary principles. We gather the central properties of pseudogradient fields and their
flows in the following theorem.

Theorem 4.4.2. Let k ∈ N ∪ {∞ } and α ∈ [0, 1] with k + α ≥ 2.
Let M be a Riesz manifold of class Ck,αloc and let F : M → R be a Riesz function of class
Ck,αloc . Then one has
1. For all a ∈ M: ⟨dF|a , grad(F)|a⟩ ≥ 0.
2. Let a ∈ M. Then grad(F)|a = 0 if and only if dF|a = 0.
3. The pseudogradient field grad(F) is a vector field of class Ck−1,αloc .
4. For each interior point a0 ∈ M \ ∂M there is a neighborhood U of a0 and an ε > 0

such that there is a unique flow 𝛷 : U × ]−ε, ε[ → M with
d
dt𝛷(a, t) = − grad(F)|𝛷(a,t) and 𝛷(a, 0) = a for all (a, t) ∈ U × ]−ε, ε[.

5. For each interior point a ∈ M \ ∂M, the function t ↦→ F ∘ 𝛷(a, t) is monotonically
decreasing.

Proof. Denote the Riesz structure on M with

i : TM →˓ H, j : H →˓ Y , I : H → H′ and J : TM → Y ′

and let B : H → TR and C : Y → TR be the Banach bundle morphisms over F of class
Ck−1,αloc with iR TF = B i and jR iR TF = C j i.
Claim 1. Denote by bR the Euclidean inner product on TR. By 4.3.5, we have for each
a ∈ M that

⟨dF|a , grad(F)|a⟩ = bR(1, TaF grad(F)|a · 1) = ‖B*a · 1‖2Ha ≥ 0.

Claim 2. Note that dF|a = 0 is equivalent to TaF = 0. On the one hand, the definition
of grad(F) implies immediately that grad(F)|a vanishes if TaF vanishes (see 4.4.1). On
the other hand, the inequality above shows that grad(F)|a = 0 implies B*a = 0 and thus
Ba = 0. We have (iR)aTaF = Ba ia = 0 and since (iR)a is an isomorphism, we obtain
TaF = 0 and hence dF|a = 0.
Claim 3. With J also J−1 is of class Ck−1,αloc . Moreover, continuous bilinear combina-
tions of Banach-space valuedmappings of class Ck−1,αloc are again of class Ck−1,αloc . Hence
grad(F) = J−1 C is a section of class Ck−1,αloc in the Banach bundle TM, hence a vector
field of class Ck−1,αloc .
Claim 4. Note that a ↦→ −grad(F)|a is a vector field at least of class C0,1loc . Hence the
statement follows from the Picard-Lindelöff theorem.
Claim 5. This follows from Claim 2 and from the chain rule:

d
dt F(𝛷(a, t)) = −⟨dF|𝛷(a,t), grad F|𝛷(a,t)⟩ ≤ 0.

If the initial condition is not a critical point, the function t ↦→ F(𝛷(a, t)) is even stricly
monotonically decreasing, since stationary points cannot be reached within finite
time.
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4.5 Applications

Geometric functionals for curves and surfaces, such as those we discuss in this sec-
tion, play a major role in the field of geometry processing and are applied to a variety
of tasks. Since reducing computational time is a specific objective in this field, it is no
wonder that the advantages of H1- and H2-gradient flows have already been observed
and utilized within this community (see [9]). Our aim here is to give some more theo-
retical justification on these flows, even for the pre-discretized, infinite-dimensional
setting, which is often not covered appropriately.

4.5.1 Minimal Surfaces

Let us return to the setting of 4.3.7. Observe that X = TC is precisely the tangent bun-
dle of C = Imm2,p

𝛾 (𝛴;Rm), the configuration space of immersions subject to Dirichlet
boundary conditions. As we have seen in 4.3.7, the data (i, j, I, J) represents a smooth
Riesz structure on the Banach bundle TC, hence (C, i, j, I, J) is a smooth Riesz mani-
fold. Now consider the volume functional

F : C → R, F(f ) :=
∫︁
𝛴

volf #g0 .

Theorem 4.5.1. The volume functionalF is a smoothRiesz function on the smoothRiesz
manifold Imm2,p

𝛾 (𝛴;Rm).

Proof. One has

D(f ↦→ volf #g0 ) u = ⟨df , du⟩f #g0 volf #g0 (4.5.1)

for each Lipschitz immersion f ∈ Imm1,∞(𝛴;Rm) and each u ∈ Tf Imm(𝛴;Rm) =
W1,∞(𝛴;Rm). Hence, the volume functional is differentiable and its differential
dF : C → T ′C is given by

⟨dF|f , u⟩ :=
∫︁
𝛴

⟨df , du⟩f #g0 volf #g0 for u ∈ TfC = W2,p(𝛴;Rm) ∩W1,p
0 (𝛴;Rm).

Extending dF|f continuously toHf leads to the smooth section B : C → H′ given by

⟨Bf , v⟩ :=
∫︁
𝛴

⟨df , dv⟩f #g0 volf #g0 for v ∈ Hf = W1,2
0 (𝛴;Rm).

Via integration by parts, we obtain

⟨dF|f , u⟩ =
∫︁
𝛴

g0(−∆f f , u) volf #g0 .
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Since ∆f f ∈ Lp(𝛴;Rm), this leads to the smooth section C : C → Y′ given by

⟨Cf , w⟩ :=
∫︁
𝛴

g0(−∆f f , w) volf #g0 for w ∈ Yf = Lq(𝛴;Rm).

Moreover, the family (Cf )f∈C induces a smoothBanachbundlemorphism C : Y → C×R
and one has jR iR TF = C j i, hence F is a Riesz function on C.

Combining 4.4.2 and 4.5.1 allows us to discuss the pseudogradient flow of the volume
function F. For an immersion f ∈ C, the defining equation for the pseudogradient
u = gradF|f can be written as∫︁

𝛴

⟨du, dv⟩f #g0 volf #g0 =
∫︁
𝛴

⟨df , dv⟩f #g0 volf #g0 , for all v ∈ Hf = W1,2
0 (𝛴;Rm).

(4.5.2)

Note that the weak formulation of the Laplace-Beltrami operator occurs on both sides
of the equation. For numerical optimization, we have to discretize the configuration
space C and the objective function. To this end, we may fix a triangulation T of 𝛴
and define the discrete configuration space CT as the set of all immersions that are
piecewise-linear with respect to T and that restrict to 𝛾 on all boundary vertices of T.
This way, the image f (𝛴) of an element f ∈ CT is an immersed simplicial mesh whose
boundary complex is inscribed into 𝛾(∂𝛴). A discrete volume function FT can be de-
fined straight-forwardly as the restriction of the volume function to CT . Since CT is fi-
nite dimensional, it is a Riemannian manifold when equipped with the discretization
of the weak formulation of the Laplace-Beltrami operator and the discretized pseudo-
gradient u = grad(FT)|f can be defined by∫︁

𝛴

⟨du, dv⟩f #g0 volf #g0 = ⟨dFT |f , v⟩ =
∫︁
𝛴

⟨df , dv⟩f #g0 volf #g0 , for all v ∈ TfCT .

(4.5.3)

The pseudogradient descent algorithm consists now in choosing an initial guess f0 ∈
CT and by computing recursively

fn+1 = fn − τn grad(FT)|fn , for n ∈ N ∪ {0}, (4.5.4)

where gradFT |fn has to be computed from (4.5.3) and τn ≥ 0 is a step size parameter
that has to be chosenappropriately. Again, the (discretized) Laplace-Beltrami operator
occurs on both sides of the equation. This comes in handy, as it has to be reassembled
in each iteration and this way, it can be used at least twice: once for computing dFT |f
and once for solving for the pseudogradient. Since assembling the discrete Laplace-
Beltrami operator is a standard task, the implementation is pleasantly easy. We point
out that this algorithm has already been introduced in [15], however, from a different
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Fig. 4.2: From left to right: initial surface (512 faces); surface after a single explicit Euler step in
negative discrete mean curvature direction; surface after a single explicit Euler step in negative
discrete pseudogradient direction.

Fig. 4.3: The same as in Figure 4.2 with the same step sizes, but with refined mesh (32 768 faces).

perspective. The mentioned article is also a good reference for the assembly details of
discrete Laplace-Beltrami operators on discrete surfaces.

When τn is chosen to be independent of n, (4.5.4) boils down to an explicit Euler
scheme for the (discrete) pseudogradient flow. In principle, one may apply also more
sophisticated step size rules for line search, such as the Armijo algorithm or theWolfe-
Powell algorithm.

In the case of the area functional, it turns out that one can go quite well with con-
stant step size of magnitude τ = 1 and this is essentially independent of the mesh
resolution. In our experiments, we rarely needed more than two dozen pseudogradi-
ent steps in order to reach a configuration from which Newton’s algorithm converged
within several steps to a critical point—no matter if the discrete surface consisted of a
few thousand or amillion triangles. As Figure 4.4 suggest, the discrete pseudogradient
flow performs well and is very robust even in cases where minimizers do not exist.

These findings are in strong contrast to the step size rules for discrete mean cur-
vature flow, the L2-gradient flow of the volume functional: As discrete mean curva-
ture flow is a parabolic partial differential equation (in time and space), the step size
has to be decreasing along with the mesh size, even if more sophisticated integration
schemes such as (semi-)implicit methods are employed. As a comparison, we include
Figure 4.2 and Figure 4.3, each depicting a step of discrete L2-gradient descent and
discrete pseudogradient descent at different mesh resolutions. We can also see there
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Fig. 4.4: Diverging pseudogradient flow of area functional in the absence of minimizers. It seems to
converge to a minimizer in another topological class.

that the L2-gradient is increasingly localized with raising L∞-norm as themesh size is
decreased. Of course, the reason is that the initial surface is not twice differentiable so
that its mean curvature is a vector-valued distribution with support concentrated on
the creases. Hence the discrete mean curvature, trying to approximate this distribu-
tion, blows up under mesh refinement. In order to obtain a stable algorithm, the step
size has to be decreased accordingly.

On the other hand, the information contained in the mean curvature distribution
is spread out over the whole surface when solving for the pseudogradient.4.3 In par-
ticular, points in medium distance to an “incident” get informed immediately during
the next pseudogradient step so that they have the opportunity to “react” just-in-time.
See also Figure 4.5 for a typical example of an “incident” that occurs quite frequently
with discrete mean curvature flows but considerably less often with discrete pseu-
dogradient flows. We point out that this behavior is primarily an artifact of the time
discretization: Mean curvature flows with infinitesimal step size have infinite prop-
agation speed and this infinite speed is hard to capture by a discrete time stepping
algorithm.

4.3 Note that the pseudo-Riesz isomorphism is still an elliptic operator such its inverse is smoothing.
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Fig. 4.5: L2-gradient descent (first column) and pseudogradient descent (second column), both for
the area functional, with explicit Euler scheme and constant step sizes.
First row: initial surfaces; second row: after first step; third row: after nine steps.
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4.5.2 Elasticae

Curvature dependent energies such as the elastica functional can also be well-
formulated on the space Imm2,p(𝛴;Rm), when p is suitably chosen. While the dis-
cussion of the volume functional was dominated by the Laplacian operator, it turns
out that a suitable operator for defining a Riesz structure for curvature energies is the
bi-Laplacian. If p > dim(𝛴), the discussion is even simplified as we do not need to
resort to the space Imm4,p(𝛴;Rm), where the strong formulation of the bi-Laplacian
resides.

Let 𝛴 be an n-dimensional, compact, and connected smooth manifold. In order
to keep the exposition as brief as possible, we focus our attention to manifolds with
nontrivial smooth boundary and to the space

C := Imm2,p
𝛾 (𝛴;Rm), p ∈ [2,∞[ ∩ ]n, ∞[

for a given 𝛾 ∈ Imm2− 1
p ,p(𝛴;Rm).4.4 From now on we use the Banach bundles

X := TC = C ×
(︀
W2,p(𝛴;Rm) ∩W1,p

0 (𝛴;Rm)
)︀
,

H := C ×
(︀
W2,2(𝛴;Rm) ∩W1,2

0 (𝛴;Rm)
)︀
, and

Y := C ×
(︀
W2,q(𝛴;Rm) ∩W1,q

0 (𝛴;Rm)
)︀
,

where q is the Hölder conjugate of p.4.5 Note that p is chosen such that the canonical
injections i : X →˓ H and j : H →˓ Y are dense in each fiber. From 4.3.3, we recall that
the Laplace-Beltrami operator ∆f mapsW2,r(𝛴;Rm) ∩W1,r

0 (𝛴;Rm) isomorphically to
Lr(𝛴;Rm) for r ∈ ]1, p] such that we obtain a Riesz structure (i, j, I, J) with the iso-
morphisms

I : H → H′, ⟨If v1, v2⟩ :=
∫︁
𝛴

g0(∆f v1, ∆f v2) volf #g0 , (4.5.5)

J : X → Y′, ⟨Jf u, w⟩ :=
∫︁
𝛴

g0(∆f u, ∆fw) volf #g0 . (4.5.6)

In order to define the elastica functional, we have to introduce the second fundamen-
tal form of an immersion. Therefore, we make a short excursion to the Hessian of a
function on a Riemannian manifold.

Proposition 4.5.2. Let f ∈ C, r ∈ [1,∞], and u ∈ W2,r(𝛴;Rm). Define the Hessian
Hessf (u) of u with respect to f by

Hessf (u)(X, Y) = (d(du df †) X) · (df Y), for all X, Y ∈ Ta𝛴.

4.4 The case of manifolds without boundary can be treated, e.g., by imposing the nonlinear barycen-
ter constraint

∫︀
𝛴 f volf #g0 = 0.

4.5 We point out that the analogous Banach bundles for treating the case ∂𝛴 = ∅ would not be mere
products anymore.
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One has Hessf (u) ∈ Lmin(p,r)(𝛴; Sym2(T𝛴;Rm)) and Hessf is a continuous linear oper-
ator4.6

Hessf : W2,r(𝛴;Rm) → Lmin(p,r)(𝛴; Sym2(T𝛴;Rm)).

Proof. Let u ∈ W2,r(𝛴;Rm) so that du is an element of W1,r(𝛴; Hom(T𝛴;Rm)). The
Moore-Penrose pseudoinverse restricted to linearmaps of fixed rank is a smooth trans-
formation. A concise treatment can be found, e.g., in [11] which allows us to deduce

D(f ↦→ df †) u = −df † du df † + df †(du df †)*(idR −df df †). (4.5.7)

Hence one has df † ∈ W1,p(𝛴; Hom(Rm; T𝛴)) and 4.5.3 below completes the proof.

Lemma 4.5.3. Let E1, E2, and E3 be smooth Banach bundles over the compact, smooth
manifold𝛴, let µ : E1 ×M E2 → E3 be a locally Lipschitz continuous bilinear bundle map
and let p > dim(𝛴).

Then µ ∘ (σ1, σ2) ∈ W1,min(p,r)(𝛴; E3) holds for all sections σ1 ∈ W1,p(𝛴; E1) and
σ2 ∈ W1,r(𝛴; E2). Moreover, the induced bilinear map

A : W1,p(𝛴; E1) ×W1,r(𝛴; E2) → W1,min(p,r)(𝛴; E1)

is continuous.

Proof. It suffices to perform the regularity analysis locally. Thus, we may focus our
attention to an open set U ⊂ 𝛴 andwemay assume that Ei|U ∼= U ×Rmi , i ∈ {1, 2, 3 }
are trivial vector bundles. Moreover, wemaywrite σ1(x) = (x, f1(x)), σ2(x) = (x, f2(x)),
and µx = Bx for all x ∈ U with f1 ∈ W1,p(𝛴;Rm1 ), f2 ∈ W1,r(𝛴;Rm2 ), and B ∈
W1,∞(U; Bil(Rm1 ×Rm2 ;Rm3 )).

The Sobolev embedding W1,p(𝛴;Rm1 ) →˓ L∞(𝛴;Rm1 ) shows that
B(f1, f2) ∈ Lr(𝛴;Rm3 ). With n := dim(𝛴), one has the Sobolev embedding
W1,r(𝛴;Rm2 ) →˓ L r̄(𝛴;Rm2 ) where

r̄ ∈

⎧⎪⎪⎨⎪⎪⎩
[1, n rn−r ], r < n,
[1,∞[, r = n,
[1,∞], r > n.

For each smooth vector field X on U, we obtain

d(B(f1, f2)) X = (dB X)(f1, f2) + B(df1 X, f2(x)) + B(f1, df2 X)

4.6 Wepoint out for geometers that the sectionHessf (u) coincideswith theHessian∇f #g0du, provided
that f and u are sufficiently smooth. Here,∇f #g0 denotes the Levi-Civita connection of the Riemannian
metric f #g0
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and this together with the Hölder inequality implies d(B(f1, f2)) ∈
Lmin(s,r)(𝛴; Hom(T ′𝛴;Rm3 )), hence B(f1, f2) ∈ W1,min(s,r)(𝛴;Rm3 ), where s =
( 1p +

1
r̄ )
−1. We analyse the following three cases:

Case 1.: r < n. Because of p > n > r, we have

s = 1
1
p +

1
r −

1
n
> 1

1
n +

1
r −

1
n
= r,

so that min(s, r) = r = min(p, r).
Case 2.: r = n. One may write r = n = (1 + ε)−1p < p with some ε > 0. Choosing
r̄ = p

ε < ∞, we obtain

s = 1
1
p +

ε
p
= p
1 + ε = r.

This shows min(s, r) = r = min(p, r).
Case 3.: r > n. Then one has r̄ = ∞ and s = p, leading directly to min(s, r) = min(p, r).
The continuity of A follows from the already mentioned Hölder and Sobolev inequal-
ities.

Definition 4.5.4. The second fundamental form II(f ) of f can be written as II(f ) :=
Hessf (f ) so that one has

II(f ) ∈ Lp(𝛴; Bil(T𝛴 ×𝛴 T𝛴;Rm)) ⊂ L2(𝛴; Bil(T𝛴 ×𝛴 T𝛴;Rm)).

We define the elastica functional F : C → R by

F(f ) = 1
2

∫︁
𝛴

|II(f )|2f #g0 volf #g0 .

Theorem 4.5.5. For p ∈ [2,∞[ ∩
]︀
dim(𝛴), ∞

[︀
, the elastica functional F and the Will-

more energy W are smooth Riesz functions on the smooth Riesz manifold (C, i, j, I, J)
from (4.5.5) and (4.5.6).

Proof. Fix f ∈ C and let u ∈ TfC ⊂ W2,p(𝛴;Rm). From (4.5.7), we may deduce

D II(f ) u =
(︀
idRm −df df †

)︀
Hessf (u) + (du df †)* II(f ).

Equation (4.5.1) provides us with a formula for the derivative of f ↦→ volf #g0 . More-
over, we have |S|2f #g0 = |S(df † ·, df † ·)|2g0 for S ∈ Lr(𝛴; Bil(T𝛴 ×𝛴 T𝛴;Rm)). This would
allow us to compute a precise expression for ⟨dF|f , u⟩, but it already suffices for our
considerations to observe that dF is of the form

⟨dF|f , u⟩ =
1
2

∫︁
𝛴

(︁
⟨II(f ), Hessf (u)⟩f #g0 + µ(II(f ), df , df

†, du)
)︁
volf #g0 ,
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where µ(II(f ), df , df †, du) is a polynomial expression in II(f ), df , df †, duwith constant
coefficients in which II(f ) occurs with order two and du occurs with order one.

Now let w ∈ Yf = W2,q(𝛴;Rm). Note that we have II(f ) ∈ Lp, df ∈ L∞, and df † ∈
L∞, hence µ(II(f ), df , df †, ·) ∈ Lp/2. In the case n = 1, we have dw ∈ W1,q →˓ L∞. For
n ≥ 2, we have dw ∈ W1,q →˓ Lr with r ≥ p

p−1− p
n
. Because of p > n, we obtain

r ≥ p
p − 1 − p

n
> p
p − 2 = (p/2)′,

thus dw ∈ L(p/2)
′
. In any case, we obtain µ(II(f ), df , df †, dw) ∈ L1. This shows

that dF|f can be continuously extended to Cf : Yf → R so that jR iR TF = C j i
holds. Hence, F is a Riesz function. The statement for W follows from the identity
Hf = 1

dim(𝛴)
∑︀m

i=0 II(f )(df
†ei , df †ei) for any g0-orthonormal basis e1, . . . , em of Rm

and from the above discussion.

4.5.3 Euler-Bernoulli Energy and Euler Elastica

The elastica functional is well-known under different names in dimensions one and
two. For dim(𝛴) = 1, the functional F is identical to the Euler-Bernoulli bending energy

F(f ) = 1
2

∫︁
𝛴

|κf |2f #g0 volf #g0 ,

where κf is the curvature of the regular curve f : 𝛴 → Rm. Let𝛴 be a compact interval
equipped with the Euclidean metric g, let 𝛾 : ∂𝛴 → Rm, and 𝜈 : ∂𝛴 → Sm−1 ⊂ Rm be
given.

The critical points of the Euler-Bernoulli bending energy F on the set{︀
f ∈ C

⃒⃒
volf #g0 = volg , f |∂𝛴 = 𝛾, n(f ) = 𝜈

}︀
(4.5.8)

are called Euler elasticae (with clamped ends)where the outward unit normals are de-
noted with n(f ) : ∂𝛴 → Sm−1. While f |∂𝛴 = 𝛾 is clearly an inhomogeneous Dirichlet
boundary condition, one may call n(f ) = 𝜈 a Neumann-type boundary condition. Note
that n(f ) depends nonlinearly on f . The constraint volf #g0 = volg amounts to the re-
quirement that all curves f in the feasible set shall be in arclength parameterization
(with respect to the given metric g).

With Figure 4.6 and Figure 4.7, we provide two numerical examples of discretized
pseudogradient flows for the Euler-Bernoulli bending energy subject to arclength pa-
rameterization constraints. We discretize the space C by polygonal lines. Since polyg-
onal lines are almost never elements of W2,2(𝛴;Rm) (unless they are straight lines),
we have to discretize the energy F as well. Our choice is

F(f ) = 1
2

n∑︁
i=1

(︂
2 arctan(φi/2)

ℓi

)︂2
ℓi ,
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where φi denotes the turning angle of the polygonal line f at vertex i (i.e., π minus the
angle enclosed by the neighboring edges) and where ℓi is the average of the lengths of
contiguous edges. As discrete pseudo-Riesz isomorphism, we use (4.5.5) and (4.5.6),
where ∆f is replaced by the discrete Laplace-Beltrami operator. Strictly speaking, this
is not justified by the smooth theory of pseudogradient flows as the discretization is
nonconforming. However, pseudogradient search using this discretization performs
surprisingly well as the figures attest. For comparison, we refer the reader to [3] and
[4], where the L2-gradient flow of the Euler-Bernoulli energy is treated.

We point out that the presented flows preserve the parameterization by arclength.
This was achieved by

– projecting the pseudogradient to the tangent space of the constraint manifold;
– performing an Armijo line search on the osculating circle of the constraint mani-

fold in pseudogradient direction;
– and projecting the result onto the constraint manifold via a Newton-type algo-

rithm involving a pseudoinverse of the linearized constraint map.

Of course, each of these steps involves operations that are usually only available for
Riemannian manifolds. The methods go through numerically as (i) the discretized
pseudo-Riesz isomorphism actually induces a Riemannian structure on the discrete
configurations space CT and (ii) the Euler-Bernoulli energy can be formutated on the
Riemannianmanifold Imm2,2(𝛴;Rm). However, we believe that at least some of these
operations can also be established for general Riesz manifolds.

4.5.4 Willmore Energy

Asmentioned before, the case dim(𝛴) = 1 is very special in that the elastica functional
can be well-formulated on the Riemannian manifold Imm2,2(𝛴;Rm). Therefore, we
also consider the case dim(𝛴) = 2. One has the relation |II(f )|2 = κ21 + κ22, Kf = κ1 κ2,
and |Hf |2 = 1

4 (κ1 + κ2)
2 for the the principle curvatures κ1 and κ2, the Gauss curva-

ture Kf , and themean curvature vector Hf of the immersed surface f . This leads to the
identity

F(f ) =
∫︁
𝛴

(2 |Hf |2 − Kf ) volf #g0 .

In the case that ∂𝛴 = ∅, the Gauss-Bonnet theorem and denseness considerations
imply that ∫︁

𝛴

Kf volf #g0 = 2 π χ(E) (4.5.9)
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(a) (b)

(c) (d)

(e) (f)

Fig. 4.6: Discrete elastic figure eight knot (2000 edges): (a) initial condition; (b)–(e) the first four
iterations of pseudogradient flow with Armijo line search; (f) ultimate minimizer (the round circle),
obtained after 6 pseudogradient steps in total and 3 Newton iterations.
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(a) (b)

(c) (d)

(e) (f)

Fig. 4.7: Three discrete elastic threads (6000 edges in total) joint together with clamped boundary
conditions imposed at the free ends: (a) initial condition; (b)–(e) the first four iterations of pseudo-
gradient flow with Armijo line search; (f) ultimate minimizer, obtained after 4 pseudogradient steps
in total and 4 Newton iterations.
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with the Euler characteristic of 𝛴. Hence, F is essentially identical to the Willmore
energy

W(f ) := 1
2

∫︁
𝛴

|Hf |2 volf #g0 .

Different scaling conventions for Hf and equation (4.5.9) lead to a confusing variety
of definitions for the Willmore energy in the literature, another favorite variant be-
ing

∫︀
𝛴
|Hf |2 volf #g0 =

∫︀
𝛴
(κ1 − κ2)2 volf #g0 . In general, all these energies differ by a

total Gauss curvature expressions and by boundary integrals involving Dirichlet and
Neumann boundary data and thus lead to essentially the same optimization problems
when subject to both Dirichlet and Neumann-type boundary conditions.

With Figure 4.8 and Figure 4.9, we provide twonumerical examples for discretized
pseudogradient flows for the Willmore functional subject to constrained total area.
We use triangle meshes as discrete surfaces, so that the Willmore energy has also to
be discretized (see [8] for details on the discretized Willmore energy that we used ).

The numerical experiments we have conducted so far indicate that pseudogra-
dient search provides a quite efficient and robust method for minimizing curvature
dependent energies—at least if compared to the Willmore flow, the L2-gradient flow
of the Willmore energy. The latter is a forth-order parabolic flow and it suffers even
more severely from the time discretization issues discussed at the end of Section 4.5.1.
More details on theWillmore flow alongwith numerical examples for comparison can
be found, e.g., in [2] and [8].

Concerning theminimization of theWillmore energy of surfaces,we point out that
there is a further very efficient method which involves an L2-gradient descent in “cur-
vature space” (see [6]). However, this method is heavily based on the very special re-
lationship between mean curvature and conformal geometry and it is not clear if and
how this method can be carried over to other geometric energies.

4.6 Final Remarks

Another interesting feature of pseudogradient flows is that all points of a flow tra-
jectory have regularity not below the initial condition, provided that the used Riesz
structure is defined by an elliptic operator. This does not directly imply that critical
points are arbitrarily smooth (since they will usually be obtained only as limit of the
trajectory for t → ∞), but, maybe, this can exploited for regularity theory in cases
where long time existence and a priori bounds for the behavior along the flow (e.g., in
the spirit of Grönwall’s inequalities) can be provided.

We plan to apply the presented techniques to knot energies such as the Möbius
energy and integral Menger curvatures. Their L2-gradient flows (if existent) would be
parabolic of fractional order somewhere between 2 and 4. The Möbius energy is best
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(a) (b)

(c) (d)

(e) (f)

Fig. 4.8: Discrete surface (∼ 93k faces) relaxing under the pseudogradient flow of the Willmore
energy subject to an equality constraint on total area: (a) initial condition; (b)–(e) iterations 6, 12,
18, 24, and 30 of the flow. Initial model kindly provided to the public by Keenan Crane.
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(a) (b)

(c) (d)

(e) (f)

Fig. 4.9: Discrete surface (∼ 42k faces) relaxing under the pseudogradient flow of the Willmore
energy subject to an equality constraint on total area: (a) initial condition; (b)–(e) iterations 6, 12,
18, 24, and 30 of the flow. Initial model kindly provided to the public by Keenan Crane.
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described on the constraint manifold of an arclength parametrization constraint.4.7

Moreover, integral Menger curvatures become arbitrarily small when scaling the knot
with large factors (the same occurs for the Euler-Bernoulli energy), and constraints
such as total length or parameterization by arclength have to be imposed in order to
obtain a well-posed optimization problem. Thus, both energies require, in one way
or the other, a nonlinear constraint for using smooth optimization techniques. We ex-
pect that their analysis might benefit significantly from pseudogradient descent with
respect to suitable (yet to be found) Riesz structures.
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Sebastian Scholtes
Discrete knot energies

Abstract: The present chapter gives an overview on results for discrete knot ener-
gies. These discrete energies are designed to make swift numerical computations and
thus open the field to computational methods. Additionally, they provide an indepen-
dent, geometrically pleasing and consistent discrete model that behaves similarly to
the original model. We will focus on Möbius energy, integral Menger curvature and
thickness.

Keywords:Möbius energy, thickness, ropelength, ideal knot,Menger curvature, polyg-
onal knot, knot energy, Γ-convergence, discrete energy, knots

MSC: 49J45, 57M25, 49Q10, 53A04

5.1 Introduction

In classic knot theory, mathematicians are often interested in knot classes and how to
distinguish between them, for example via knot invariants. Contrary to this approach,
geometric knot theory deals with the specific shape of knots and how to find or com-
pute particularly nice representatives of a given knot class. The exact meaning of nice
depends on the context and can vary from applied (see the section on thickness) to
theoretical considerations (see the section on integral Menger curvature). To capture
the “quality ” of a knot, Fukuhara introduced the concept of a knot energy (see [27]). An
optimal representative is then said to be aminimizer of this energy among all curves of
a given knot class. Later on, this approachwas further developed by other authors (see
[76, 17, 88]) and by now, a functional on the space of knotted curves that is bounded
from below and gets infinite as curves approach a self intersection is called a knot en-
ergy (see [53]). This definition already includes some helpful ingredients to show that,
indeed, minimizers of the energy exist. TheMöbius energy

E(𝛾) :=
∫︁
SL

∫︁
SL

(︃
1⃒⃒

𝛾(t) − 𝛾(s)
⃒⃒2 − 1

dSL (t, s)2

)︃
ds dt,

for arc length curves 𝛾, is a particular example of such an energy (see [49]). In this
chapter, we additionally consider integral Menger curvature and thickness. Each of
these three energies is connected to curvature. For an overview of regularizing and
knot theoretic properties of different curvature energies see [84, 86, 87, 11, 12].
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One way to think about knot invariants vs. knot energies is that the first one gives
rough information about the shape of the knot, for example, by restricting the knot to
belong to a certain knot class, while the energy resolves the finer details. For instance,
an energy bound can in turn give bounds on the curvature, bi-Lipschitz constant, av-
erage crossing number or stick number.

The explicit shapeof energyminimizingknots is only known in case of theunknot.
For most energies, the energy optimal unknot is proven or expected to be the round
circle (see [1]). Therefore, it is important to know how to make the energies accessible
to computers and approximate such minimizers. One approach is to investigate so-
called discrete knot energies, that is energies which are defined on polygonal knots.
Here, the goal is to minimize these discrete energies in the class of polygonal knots
of a fixed knot class and fixed number of vertices and then prove that these minimiz-
ers converge to the minimizer of a “smooth” knot energy within the same knot class.
When trying to find such a discrete energy, themost obvious approach would be to re-
strict the original energy to the space of polygonal knots. However, such an approach
does not work, as polygons have infinite energy. This is related to the fact that all three
energies are regularising, i.e. curves of finite energy are more regular than the curves
for which the energy is well-defined. By borrowing appropriate concepts of curvature
from discrete geometry and replacing smooth notions by discrete ones (for example
integrals by sums), it is possible to define discrete energies in the same spirit as the
original energies. Hence, these energies are notmerely discretisations but discrete ver-
sions of the original energy. A suitable convergence of energies, which to some extent
already includes the convergence of minimizers, is Γ-convergence.

For each of the three energies, there is a section in which we first consider the
history of the energies and comment on recent developments. Then we introduce the
appropriate discrete energies and explain the connections to the original energies. For
the sake of clarity, we present most results for curves of length 1. In the appendix, we
give a short introduction to Γ-convergence.

5.1.1 Notation

In the following sections,C is the space of closed arc length curveswith length one and
Pn the subspace of equilateral polygons with n segments. Furthermore, we abbreviate
Ck,p := C∩ (Ck∪

⋃︀
n∈N Pn), where Ck is the class of k-times continuously differentiable

functions. We write Ck,α for the class of functions in Ck whose derivatives are Hölder
continuouswith exponent α and Lq for the Lebesgue spaces of q-integrable functions.
ByWk,qwedenote the standardSobolev spaces of k-timesweaklydifferentiable closed
curves with q-integrable weak derivative. Adding a knot class K in brackets to a set
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of curves restricts this set to the subset of curves that belong to the knot classK. The
circle of length L > 0 is denoted by SL.

5.2 Möbius Energy

TheMöbius energy

E(𝛾) :=
∫︁
SL

∫︁
SL

(︃
1⃒⃒

𝛾(t) − 𝛾(s)
⃒⃒2 − 1

dSL (t, s)2

)︃
ds dt,

is defined on closed rectifiable arc length curves 𝛾 of length L. Here, dSL is the intrinsic
metric on SL. This energy was introduced by O’Hara (see [49]) and has the interesting
property that it is invariant under Möbius transformations, hence its name. O’Hara
could show that finite energy prevents the curve from having self intersections. Later
on, the existence of energyminimizers in prime knot classeswas proven by Freedman,
He andWang (see [26]), while there is a folklore conjecture, usually attributed to Kus-
ner and Sullivan, questioning the existence in composite knot classes based on com-
puter experiments (see [41]). Additionally, it was shown that the unique absolutemin-
imizer is the round circle (see [26]). Similar uniqueness results are known for broader
classes of energies (see [1]). The regularity of minimizers and, more generally, of criti-
cal points was investigated and smoothness could be proven (see [26, 32, 63, 64, 14]).
Furthermore, it was shown that the Möbius energy of a curve is finite if and only if the
curve is simple and the arc length parametrisation belongs to the fractional Sobolev
space W3/2,2 (see [4]). The gradient flow of the Möbius energy was investigated (see
[5, 8]) and results for the larger class of O’Hara’s knot energies (see [51, 50, 52]) are
available (see [9, 65, 10, 7]).

A discrete version of the Möbius energy, calledminimum distance energy, was in-
troduced by Simon (see [74]). If p is a polygon with n consecutive segments Xi this
energy is defined by

Emd,n(p) := Umd,n(p) − Umd,n(gn) (5.2.1)

with

Umd,n(p) :=
n∑︁
i=1

n∑︁
j=1

Xi ,Xj not adjacent

|Xi|
⃒⃒
Xj
⃒⃒

dist (Xi , Xj)2
,

where gn is the regular n-gon. Note, that this energy is scale invariant. Similar energy
functionals for polygons were considered previously (see [27, 16]). There is also a vari-
ant of the Möbius energy for graphs (see [36]) and for curves with self intersections
(see [24]). It is know that the minimum distance energy is Lipschitz continuous on
sublevel sets:
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Theorem 5.2.1 (Minimum distance energy is Lipschitz continuous, [75]). The mini-
mum distance energy Emd,n is continuous on the space of nonsingular polygons with
n segments. Moreover, it is Lipschitz continuous on the subspace of polygons of length
at least ℓ, whose energy is bounded by a constant E.

Furthermore, the existence of minimizers for every tame knot class was established:

Theorem 5.2.2 (Existence of discrete minimizers for Emd,n, [75]). For every tame knot
classK there is a minimizer of Emd,n in the set of all polygons with n vertices that belong
toK.

For this energy, approximation results for suitably inscribedpolygons could be shown:

Theorem 5.2.3 (Convergence for inscribed polygons, [61]). Let 𝛾 ∈ C ∩ C2 and let pn
be inscribed polygons that divide 𝛾 in n arcs of length 1

n . Then⃒⃒
E(𝛾) − Emd,n(pn)

⃒⃒
≤ C(𝛾)
n 1

4
.

If n is large enough, the constant C(𝛾) can be chosen as

C(𝛾) = 290
∆[𝛾] 14

,

where ∆[𝛾] is the thickness of 𝛾 (see Section 5.4). Hence,

Emd,n(pn) → E(𝛾).

Furthermore, an explicit error boundon the difference between theminimumdistance
energy of an equilateral polygonal knot and the Möbius energy of a smooth knot, ap-
propriately inscribed in the polygonal knot, could be established in terms of thickness
and the number of segments:

Theorem 5.2.4 (Energy bound for inscribed knots, [62]). Let p be an equilateral poly-
gon of length 1. Then there is an “inscribed” C2 knot 𝛾p such that⃒⃒

Emd,n(p) − E(𝛾p)
⃒⃒
≤ C1(p)

n 1
4

+ C2(p)n + C3(p)
n 5

4
+ C4(p)

n 7
4

+ C5(p)n2

and the constants Ci(p) depend in an explicit way on negative powers of ∆n[p].

However, from these results it is not possible to infer that the minimal minimum dis-
tance energy converges to the minimal Möbius energy in a fixed knot class. For the
overall minimizers of the minimum distance energy the following result is known:

Theorem 5.2.5 (Minimizers of md energy, [89, 78, 79]). The minimizers of the mini-
mum distance energy Emd,n are convex and for n ∈ {4, 5} these minimizers are the
regular n-gon.
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This evidence supports the conjecture that the regular n-gonminimizes the minimum
distance energy in the class of n-gons. Numerical experiments regarding theminimum
distance energy under the elastic flow were carried out (see [33]).

Another,more obvious, discrete version of theMöbius energywas used for numer-
ical experiments (see [39]). This energy, defined on the class of arc length parametri-
sations of polygons of length L with n segments, is given by

En(p) :=
n∑︁

i,j=1
i ̸ =j

(︃
1⃒⃒

p(aj) − p(ai)
⃒⃒2 − 1

d(aj , ai)2

)︃
d(ai+1, ai)d(aj+1, aj), (5.2.2)

where the ai are consecutive points on SL and p(ai) the vertices of the polygon. Also
this energy is scale invariant and it is easily seen to be continuous on the space of
nonsingular polygonswith n segments. The relationship between this discreteMöbius
energy and the classicMöbius energy could be established in terms of a Γ-convergence
result:

Theorem 5.2.6 (Möbius energy is Γ-limit of discrete Möbius energies, [68]). For q ∈
[1,∞], ‖·‖ ∈ {‖·‖Lq(S1 ,Rd), ‖·‖W1,q(S1 ,Rd)} and every tame knot classK holds

En
Γ−→ E on

(︀
C1,p(K), ‖·‖

)︀
.

Since we already know that minimizers of E in prime knot classes exist and are
smooth, Theorem A.1.2 implies the convergence of discrete almost minimizers:

Corollary 5.2.7 (Convergence of discrete almost minimizers, [68]). Let K be a tame
prime knot class, pn ∈ Pn(K) with⃒⃒⃒

inf
Pn(K)

En − En(pn)
⃒⃒⃒
→ 0 and pn → 𝛾 ∈ C(K) in L1(S1,Rd).

Then 𝛾 is a minimizer of E in C(K) and lim
n→∞

En(pn) = E(𝛾).

The result remains true for subsequences, where the number of edges is allowed
to increase by more than one for two consecutive polygons. Since all curves are
parametrised by arc length, it is not hard to find a subsequence of the almost mini-
mizers that converges in C0, but generally this does not guarantee that the limit curve
belongs to the same knot class or is parametrised by arc length. For polygons inscribed
in a C1,1 curve, there is an estimate on the order of convergence:

Proposition 5.2.8 (Order of convergence for Möbius energy, [68]). Let 𝛾 ∈
C1,1(SL ,Rd) be parametrised by arc length and c, c > 0. Then for every ε ∈ (0, 1)
there is a constant Cε > 0 such that⃒⃒

E(𝛾) − En(pn)
⃒⃒
≤ Cε
n1−ε
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for every inscribed polygon pn given by a subdivision bk, k = 1, . . . , n of SL such that

c
n ≤ min

k=1,...,n

⃒⃒
𝛾(bk+1) − 𝛾(bk)

⃒⃒
≤ max
k=1,...,n

⃒⃒
𝛾(bk+1) − 𝛾(bk)

⃒⃒
≤ cn .

This is in accordance with the data from computer experiments, which suggests that
the order of convergence should be roughly 1 (see [39]). If no regularity is assumed,
the order of convergence might not be under control, but still, the energies converge:

Corollary 5.2.9 (Convergence of Möbius energies of inscribed polygons, [68]). Let
𝛾 ∈ C with E(𝛾) < ∞ and pn as in Proposition 5.2.8. Then limn→∞ En(pn) = E(𝛾).

In contrast to the situation for the minimum distance energy, the overall minimizers
of the discrete Möbius energy are known:

Lemma 5.2.10 (Minimizers of discrete Möbius energy, [68]). The unique minimizer of
En in Pn is the regular n-gon.

An immediate consequence is the convergence of overall discrete minimizers to the
round circle:

Corollary 5.2.11 (Convergence of minimizers to the round circle, [68]). Let pn ∈ Pn
bounded in L∞ with En(pn) = infPn En. Then there is a subsequence with pnk → 𝛾 in
W1,∞(S1,Rd), where 𝛾 is a round unit circle.

One of the main differences between the discrete Möbius energy (5.2.2) and the mini-
mum distance energy (5.2.1) is that boundedminimum distance energy avoids double
point singularities, while for (5.2.2) this is only true in the limit. This avoidance of sin-
gularities permits to prove the existence of minimizers of the minimum distance en-
ergy (5.2.1) via the direct method. This might be harder or even impossible to achieve
for the energy (5.2.2). Nevertheless, the relation between the discrete Möbius energy
(5.2.2) and the smooth Möbius energy is more clearly visible than for the minimum
distance energy (5.2.1), as reflected in Theorem 5.2.6 and Corollaries 5.2.7-5.2.11.

5.3 Integral Menger Curvature

The integral Menger curvaturewas first considered byMel’nikov (see [47]) as a concept
of curvature of ameasure that is naturally connectedwith the Cauchy transformof this
measure. For closed arc length curves 𝛾 of length L, the integral Menger curvature is
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given by

Ms(𝛾) :=
∫︁
SL

∫︁
SL

∫︁
SL

κs
(︀
𝛾(t), 𝛾(u), 𝛾(v)

)︀
dt du dv,

where s ∈ (0,∞) and κ(x, y, z) is the inverse of the circumradius r(x, y, z) of the three
points x, y and z. The integral Menger curvature for s = 2 played an important role
in the solution of the Painlevé problem, i.e. to find geometric characterisations of re-
movable sets for bounded analytic functions, see [54, 23, 90] for a detailed presenta-
tionand references. There is a remarkable theorem,which states that one-dimensional
Borel sets in Rd with finite integral Menger curvature M2 are 1-rectifiable (see [42]).
These results for M2 were later extended to sets of fractional dimension and metric
spaces (see [43, 31]). As a consequence, this theorem also ensures that anH1 measur-
able set E ⊂ Rd withM2(E) < ∞ has approximate 1-tangents atH1 a.e point.

Complementary to this research, where highly irregular sets are permitted, is the
investigation of rectifiable curves with finite Ms energy. These curves have a classic
tangentH1 a.e. to begin with. It turns out that for s > 3 this guarantees that the curve
is simple and that the arc length parametrisation is of class C1,1−3/p, which can be in-
terpreted as a geometric Morrey-Sobolev imbedding (see [83]). It could be shown that
the space of curves with finiteMs for s > 3 is that of Sobolev-Slobodeckij embeddings
of classW2−2/s,s (see [6]) and that polygons have finite integral Menger curvatureMs
exactly for s ∈ (0, 3) (see [66]). Furthermore, results regarding optimal Hölder regular-
ity could be obtained (see [40]). Related energies have been investigated with regard
to their regularizing properties (see [85, 82, 13]).

The movement of quadrilaterals according to their Menger curvature was inves-
tigated (see [35]) and computer experiments for the gradient flow of integral Menger
curvature were carried out (see [34]). Besides the ad hoc method used there, the only
theoretical results regarding discrete versions of the integral Menger curvature that
we are aware of can be found in the thesis of the author (see [70]). These results are
still subject to ongoing research and are soon to be extended in an article of the author
(see [71]). There, the discrete integralMenger curvature of a polygon pwith consecutive
vertices p(ai) = xi is defined by

Ms,n(p) :=
n∑︁

i,j,k=1
#{i,j,k}=3

κs(xi , xj , xk)
∏︁

l∈{i,j,k}

|xl − xl−1| + |xl+1 − xl|
2

if xi ̸= xj for i ̸= j andMs,n(p) = ∞ else. It is easily seen, that this energy is continuous
on the space of nonsingular polygonswith n segments. As for theMöbius energy, there
is a Γ convergence result:
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Theorem 5.3.1 (Menger curvature is Γ-limit of discrete energies, [70]). For q ∈
[1,∞], ‖·‖ ∈ {‖·‖Lq(S1 ,Rd), ‖·‖W1,q(S1 ,Rd)} and every tame knot classK holds

Ms,n
Γ→ Ms on (C2,p(K), ‖·‖).

Additionally, it could be shown that the energies of inscribed polygons converge to the
energy of the curve if the number of vertices increases:

Corollary 5.3.2 (Convergence for inscribed polygons, [70]). Let s ∈ (0,∞), 𝛾 ∈
C ∩ C2 embedded and pn be inscribed equilateral polygons with n segments. Then
limn→∞Ms,n(pn) = Ms(𝛾).

5.4 Thickness

The thickness ∆[𝛾] of a curve 𝛾 was introduced by Gonzalez and Maddocks (see [29])
as

∆[𝛾] := inf
s ̸ =t ̸ =u ̸ =s

r
(︀
𝛾(s), 𝛾(t), 𝛾(u)

)︀
and is equivalent to Federer’s reach (see [25]). As in the previous section, r(x, y, z)
is the circumradius of the three points x, y and z. Geometrically, the thickness of a
curve gives the radius of the largest uniform tubular neighbourhood about the curve
that does not intersect itself. The ropelength, which is length divided by thickness, is
scale invariant and a knot is called ideal if it minimizes ropelength in a fixed knot
class or, equivalently, minimizes this energy amongst all curves in this knot class
with fixed length. Ideal knots are of great interest, not only to mathematicians but
also to biologists, chemists and physicists, since they exhibit interesting physical fea-
tures and resemble the time-averaged shapes of knotted DNA molecules in solution
(see [80, 37, 38] and [81, 77] for an overview of physical knot theory with applica-
tions). The existence of ideal knots in every knot class was settled by different teams
of authors (see [19, 30, 28]) and it was found that the unique absolute minimizer is
the round circle. Furthermore, this energy is self-repulsive, meaning that finite en-
ergy prevents the curve from having self intersections. By now it is well-known that
thick curves, or in general manifolds of positive reach, are of class C1,1 and vice versa
(see [45, 25, 72, 46, 67]). It was shown that ideal links must not be of class C2 (see
[19]) and computer experiments suggest that C1,1 regularity is optimal for knots, too
(see [88]). Further computer experiments were carried out with the software packages
SONO, libbiarc and ridgerunner (see [55, 20, 2]). A previous conjecture (see [19, Con-
jecture 24]) that ropelengthminimizers are piecewise analytic seems to be reversed by
numerical results, which indicate that there might be more singularities than previ-
ously expected (see [3, 56]). Further interesting properties of critical points as well as
the Euler-Lagrange equation were investigated (see [72, 73, 18]).
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Another way to write the thickness of a thick arc length curve is

∆[𝛾] = min
{︁
minRad(𝛾), 2−1 dcsd(𝛾)

}︁
(5.4.1)

(see [44, Theorem 1]). The minimal radius of curvature minRad(𝛾) of 𝛾 is the inverse
of the maximal curvature

maxCurv(𝛾) := ||κ||L∞ and dcsd(𝛾) := min
(x,y)∈dcrit(𝛾)

|y − x|

is the doubly critical self distance. The set of doubly critical points dcrit(𝛾) of a C1

curve 𝛾 consists of all pairs (x, y) where x = 𝛾(t) and y = 𝛾(s) are distinct points on 𝛾

so that

⟨𝛾′(t), 𝛾(t) − 𝛾(s)⟩ = ⟨𝛾′(s), 𝛾(t) − 𝛾(s)⟩ = 0,

i.e. s is critical for u ↦→
⃒⃒
𝛾(t) − 𝛾(u)

⃒⃒2 and t for v ↦→ ⃒⃒
𝛾(v) − 𝛾(s)

⃒⃒2.
The discrete thickness ∆n, derived from the representation in (5.4.1), was intro-

duced by Rawdon (see [57]). The curvature of a polygon, localized at a vertex y, is
defined by

κd(x, y, z) :=
2 tan(φ2 )
|x−y|+|z−y|

2

,

where x and z are the vertices adjacent to y and φ = ](y− x, z− y) is the exterior angle
at y. We then set

minRad(p) := maxCurv(p)−1 := min
i=1,...,n

κ−1d (xi−1, xi , xi+1)

if thepolygon p has the consecutive vertices xi, x0 := xn, xn+1 := x1. Thedoubly critical
self distance of a polygon p is given as for a smooth curve ifwedefinedcrit(p) to consist
of pairs (x, y) where x = p(t) and y = p(s) and s locally extremizes u ↦→

⃒⃒
p(t) − p(u)

⃒⃒2
and t locally extremizes v ↦→

⃒⃒
p(v) − p(s)

⃒⃒2. Now, ∆n is defined analogous to (5.4.1) by
∆n[p] = min

{︁
minRad(p), 2−1 dcsd(p)

}︁
if all vertices are distinct and ∆n[p] = 0 if two vertices of p coincide. In a series of
works (see [57, 58, 59, 60, 48]) alternative representations and properties of the dis-
crete thickness were established. For example, it was shown that the discrete thick-
ness is continuous:

Theorem 5.4.1 (Discrete thickness is continuous, [57]). The discrete thickness ∆n is
continuous on the space of simple closed polygons with n-segments with regard to the
metric

d(p, q) :=
n∑︁
i=1

|xi − yi|,

where p and q are polygons with vertices xi and yi.
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Another important result is the existence of discrete minimizers:

Theorem 5.4.2 (Existence of discrete minimizers for ∆n, [60]). For every tame knot
classK there is an ideal polygonal knot in Pn(K).

More generally, the result remains true if instead of equilateral polygons one takes the
space of polygons with a uniform bound on longest to shortest segment length. These
results were then used to prove the convergence of ideal polygonal to smooth ideal
knots, a result that could later be improved from C0 convergence to C0,1 convergence.

Corollary 5.4.3 (Convergence of ideal polygonal knots, [60, 69]). Let K be a tame
knot class and pn ∈ Pn(K) bounded in L∞ with

⃒⃒
infPn(K) ∆−1n − ∆n[pn]−1

⃒⃒
→ 0. Then,

there is a subsequence

pnk
W1,∞(S1 ,R3)−−−−−−−−→

k→∞
𝛾 ∈ C(K) with ∆−1[𝛾] = inf

C(K)
∆−1 = lim

k→∞
∆−1nk [pnk ].

The relationship on a functional level is again captured by a Γ-convergence result:

Theorem 5.4.4 (Inverse thickness is Γ-limit of discrete energies, [69]). For every
tame knot classK holds

∆−1n
Γ−→ ∆−1 on (C(K), || · ||W1,∞(S1 ,R3)).

Similar questions for more general energies were considered (see [21, 60]). If the knot
class is not fixed, the unique absolute minimizers of ∆−1n is the regular n-gon:

Proposition 5.4.5 (Minimizers of inverse discrete thickness, [69]). The unique mini-
mizer of ∆−1n in Pn is the regular n-gon.

A.1 Appendix: Postlude in Γ -convergence

In this section, we repeat some relevant facts on Γ-convergence. For more details, we
refer to the books by Dal Maso and Braides (see [22, 15]). This notion of convergence
for functionals was introduced by DeGiorgi and is devised in a way, as to allow the
convergence of minimizers and even almost minimizers.

Definition A.1.1 ( Γ-convergence). Let X be a topological space, F,Fn : X → R :=
R ∪ {±∞}. Then Fn Γ-converges to F, if
– for every xn → x holds F(x) ≤ lim infn→∞ Fn(xn),
– for every x ∈ X there are xn → x with lim supn→∞ Fn(xn) ≤ F(x).
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The first inequality is usually called lim inf inequality and the second one lim sup in-
equality. If the functionals are only defined on subspaces Y and Yn of X andwe extend
the functionals by plus infinity on the rest of X, it is enough to show that the lim inf
inequality holds for every xn ∈ Yn, x ∈ X and the lim sup inequality for x ∈ Y and
xn ∈ Yn to establish Γ-convergence.Wewant to use Γ-convergence to ensure thatmini-
mizers of the discrete functionalFn converge tominimizers of the “smooth” functional
F.

Theorem A.1.2 (Convergence of minimizers, [22, Corollary 7.17, p.78]). Let Fn ,F :
X → R with Fn

Γ→ F. Let εn > 0, εn → 0 and xn ∈ X with | inf Fn − Fn(xn)| ≤ εn.
If xnk → x, then

F(x) = inf F = lim
k→∞

Fnk (xnk ).

Note, that the previous theorem does not imply convergence of a subsequence, but
instead assumes that we already have such a sequence to begin with. This fact is often
taken care of by an accompanying compactness result.

We prove that the integral Menger curvature converges to the inverse thickness,
to acquaint the reader with a particularly simple case of such a convergence theorem:

Lemma A.1.3 (Convergence of integral Menger curvature to inverse thickness). The
integral Menger curvature converges to inverse thickness

M
1
s
s

Γ−→ ∆−1 on (C(K), ‖·‖L∞ ).

Let K be a tame knot class and let s ∈ (3,∞). Then, there are minimizers 𝛾s of Ms in
C(K). Moreover, we have that

inf
C(K)

M1/s
s −−−→

s→∞
inf
C(K)

∆−1

and, after translating the minimizers if necessary, there is subsequence such that

𝛾sk
C1−−−→

k→∞
𝛾 ∈ C(K),

where 𝛾 is an ideal knot, i.e.

∆[𝛾]−1 = inf
C(K)

∆−1.

Proof. Using the Hölder inequality, it is easy to see the monotonically increasing con-
vergence

M
1
s
s (𝛾) =

⃦⃦
κ(𝛾, 𝛾, 𝛾)

⃦⃦
Ls([0,1]3) −−−→s→∞

⃦⃦
κ(𝛾, 𝛾, 𝛾)

⃦⃦
L∞([0,1]3) = ∆[𝛾]

−1.
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An application of Fatou’s Theorem shows that the functionals are lower semi-
continuous with regard to uniform convergence. Hence, we immediately have Γ con-
vergence (see [15, Remark 1.40 (ii), p.35]). For s > 3, curves of finite energy are of
class C1 (see [83]), so that we can restrict to this topology. Minimizers of the energies
are known to exist and the monotonicity from above gives a uniform bound on, say,
M4(𝛾s). These facts together with the L∞ bound imply C1 subconvergence to a simple
arc length curve of the same length which belongs to the same knot class (see [83]).
Now, the result is a consequence of Theorem A.1.2.
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Abstract: This article offers an introduction to Khovanov homology with a brief
overview of the developments in low dimensional topology it has inspired, and rela-
tions with other link homology theories. The emphasis is placed on the role of torsion
in Khovanov homology and several open problems.
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6.1 Introduction

Categorification is a powerful approach to solving problems inmany different areas of
mathematics. The core idea is that classical objects endowedwith some integral struc-
ture (integers, polynomials with integer coefficients, vector spaces, etc.) can some-
times be viewed as shadows of new, algebraically richer objects [1, 23]. These newly
constructed objects, whichwe refer to as categorifications, should containmore infor-
mation than the ones we started with. Often categorifications are interesting on their
own, leading to beautiful and structurally deep mathematics.

Since the discovery of the Jones polynomial in 1984 [18], the theory of quantum
invariants for knots, links and 3-manifolds has been developed rapidly, first through
many generalizations such as the HOMFLY-PT polynomial, then via representation-
theoretical interpretations and Reshetikhin-Turaev invariants. At the end of the twen-
tieth century, M. Khovanov [20] constructed a new kind of link invariant: a homology
theorywhich lifts the properties of the Jones polynomial and carries an additional rich
algebraic structure.

Khovanovhomology is a stronger knot invariant than the Jones polynomial, better
at distinguishing knots than the Jones polynomial it categorifies. It turns out that the
Khovanov homology of an alternating knot is determined by the Jones polynomial
and the signature of the knot. Khovanov homology contains more information than
the Jones polynomial when it comes to non-alternating knots.

In 2010 P. Kronheimer and T. Mrowka proved that Khovanov homology distin-
guishes the unknot [27], that is, any knot K whose Khovanov homology is trivial is
an unknot. The corresponding question for the Jones polynomial remains open. Al-
though the Jones polynomial is known not to distinguish the 2-component unlink,
Khovanov homology does [13].
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Among the first of many notable applications of Khovanov homology we empha-
size J. Rasmussen’s [37] concordance invariant, called the s-invariant, that enabled
him to give a purely combinatorial proof of the Milnor conjecture, also known as the
Kronheimer-Mrowka theorem.

Theorem 6.1.1 (J. Rasmussen). The s-invariant provides a lower bound on the slice
genus of a knot.

Theorem 6.1.2 (Milnor conjecture). The slice genus of the T(p, q) torus knot is equal
to 1

2 (p − 1)(q − 1).

Using the same s-invariant A. Shumakovitch improved the slice-Bennequin inequality
for some classes of knots [40].

Khovanov’s construction led to many significant advances and new discoveries.
There are several extensions of Khovanov homology, including odd and reduced Kho-
vanov homology, as well as symplectic and bordered Khovanov homologywhich have
been studied since. Other knot polynomials such as HOMFLYPT, Kauffman 2-variable,
and sl(N) link polynomial have also been categorified. Motivated by the Floer homol-
ogy, Ozsváth, Szabó, and Rasmussen constructed knot Floer homology that categori-
fies the Alexander polynomial. Soon after, this categorification was given a purely
combinatorial description by Manolescu, Ozsvath and Sarkar [30]. This abundance
of new structures has provided many answers to classical questions in 3- and 4-
dimensional topology.

6.2 Definition and structure of Khovanov link
homology

Khovanov link homology is a functor that assigns to every link L bigraded homol-
ogy groups Kh(L) whose Euler characteristic is the Jones polynomial of L, and to link
cobordisms homomorphisms of homology groups. Here we define Khovanov homol-
ogy in broad strokes, mostly relying on Bar Natan’s cube construction [3]. For details
check one of the following excellent resources [1, 3, 44, 45, 43], each of which empha-
sizes different aspects of Khovanov link homology.

This construction is based on the Kauffman state sum expression for the Jones
polynomial, knownas theKauffmanbracket polynomial [19]. This formula canbeused
instead of the skein relation to express the Jones polynomial as a sum of powers of
binomials (q + 1

q ), which is the Jones polynomial of the unknot.
LetD be ann-crossing diagramof a knot K. A Kauffman state s of the knot diagram

D is a function from the set of crossings {Ci}ni=1 of D to the set {0, 1}. Diagrammati-
cally, we assign to each crossing of D a marker according to the convention in Figure
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A B

Fig. 6.1: The smoothings of a crossing and the corresponding arcs in the Kauffman state circles.

6.1, where each crossing is replaced by two parallel arcs. The Kauffman state can be
viewed as a collection of circles Ds embedded in the plane obtained by smoothing
each crossing in D. Let |Ds| be the number of circles in Ds.

There are 2n Kauffman states that can be conveniently organized as the vertices of
an n-dimensional unit cube In = [0, 1]n. Each vertex V ∈ In of the cube corresponds
to one Kauffman state s: the state that associates a 0 or 1 smoothing to a crossing Ci
depending on whether the i-th coordinate of that vertex is 0 or 1.

A⊗2 A⊗2→ →

 
00                    11

01

10

m Δ

m

⨁2A0                                                                      0

Fig. 6.2: Cube of resolutions in Khovanov homology of a Hopf link.

Let A2 = Z[x]/(x2 = 0) be a graded module with 1 in bidegree (0, 1) and x in
bidegree (0, −1). A2 has the Frobenius algebra structure including the multiplication



128 | R. Sazdanovic

and comultiplication maps:

m : A2 ⊗A2 → A2 1⊗ 1 ↦→ 1

1⊗ x, x ⊗ 1 ↦→ x
x ⊗ x ↦→ 0

∆ : A2 → A2 ⊗A2 1 ↦→ 1⊗ x + x ⊗ 1

x ↦→ x ⊗ x

To each vertex assign a module C(Ds) = C(D(V)) = A
⊗|Ds|
2 [h(s)]{q(s)} with ap-

propriate homological [h(s)] and height (quantum) {q(s)} shifts [3]. Next, let e be
the edge of the cube In between vertices V and W whose coordinates are the same
except in one place where W has entry 1 and V has 0. We define the per edge map
de : C(D(V)) → C(D(W)) for each such edge e in the following way:

– if the number of Kauffman circles in the Kauffman state of vertexW is smaller than
the number of circles in the state associated to V then de is amultiplication on the
corresponding copies ofA2

– otherwise de is a comultiplication ∆ on the respective tensor factors and all other
tensor factors are mapped by the identity map.

The structure we have described is referred to as the cube of resolutions and the
Khovanov chain complex is its total complex, Figure 6.2. The Khovanov chain groups
KhCi(D) are obtained by taking direct sums of modules along the hyperplanes orthog-
onal to the main diagonal and defining the differential di : KhCi(D) → KhCi+1(D) to
be a signed sum of edge maps de connecting vertices in In with i ones in their Kauff-
man states to the ones with i + 1 ones that differ only in one value of the Kauffman
state. The homology of the Khovanov chain complex for a link L is called Khovanov
link homology and denoted by Kh(L).

Theorem 6.2.1. Khovanov homology Kh(L) of a link L is independent of the choice of
diagram i.e. Khovanov homology is a link invariant.

Kh(L) recovers information about L known from the Jones polynomial, for example:

– The span of the Jones polynomial of L gives a lower bound on the crossing number
of L. The span of Kh(L), the difference between the highest and the lowest non-
trivial quantum grading, gives a lower bound on the crossing number as well.

– Not only does the Euler characteristic of the Khovanov homology equal the Jones
polynomial; in fact, there is a long exact sequence in Khovanov homology which
lifts the skein relation which defines the Jones polynomial.

Khovanov homology is indeed much richer in structure than the Jones polyno-
mial. In particular, it carries the following additional structures:
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– torsion, applications of which are discussed in the remainder of this article;
– the Lee and other spectral sequences;
– Steenrod squares and other higher homological operations by Lipshitz-Sarkar,

Kriz-Kriz-Po;
– due to the functorial nature of Khovanov homology, invariants of cobordisms ex-

ploited by M. Jacobson, D. Bar Natan, M. Khovanov, and Clark-Morrison-Walker.

Khovanov homology also appears in mathematical physics in the work of Gukov,
Schwarz, Vafa, and Witten, where it admits a description in terms of so-called BPS
states.

6.3 Torsion of Khovanov link homology

Recall that the Jones polynomial equals the Euler characteristic of Khovanov homol-
ogy, so the Jones polynomial depends only on the free part of Khovanov homology.
This section is devoted to results concerning torsion of Khovanov homology inter-
twinedwith the ideas andmethods that could be useful in advancing our understand-
ing of torsion and the additional information it may carry about knots and their cobor-
disms. Although computations hint at the abundance of torsion, describing and un-
derstanding torsion in Khovanov homology is still elusive. A great deal has been writ-
ten about torsion of order 2; however, torsion of higher order is still amystery [3, 5, 11].
Torsion in Khovanov homology is understood only for some classes of knots and links
[2, 34, 36, 41, 42].

Conjecture 6.3.1 (A. Shumakovitch). The Khovanov homology of every link except the
unknot, the Hopf link, their disjoint unions and connect sums, has torsion of order 2.

As another illustration of the importance of torsion in Khovanov homology, note
that the affirmative resolution of Shumakovitch’s conjecture would provide a new
proof that the Khovanov homology is an unknot-detector. The only currently known
proof of this fact due to P. Kronhaimer and T. Mrowka [27] relies on the relations with
the instanton Floer homology.

Goal 1. Characterize and compute torsion in Khovanov homology.

Approach 1. Spectral sequences for constructing odd torsion in link homology
A first step to understanding the torsion in Khovanov homology is to construct links
whose Khovanov homology has torsion of a prescribed order. A. Shumakovitch re-
cently used the Bockstein spectral sequence to compute all of the torsion in the Kho-
vanov homology of alternating knots. In particular, he proves Conjecture 6.3.1 for al-
ternating knots and shows that Khovanov homology of thin knots has onlyZ2-torsion.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

43 13

41 1 1

39 1215 1

37 12 2 1

35 2 12 1215 1

33 1 1, 12 1

31 1 1, 12 2

29 1 1 12 1

27 1 1 1

25 12 1

23 1

21 1

19 1

Fig. 6.3: Khovanov homology of torus knot T (6, 5). Integer entry represents the rank of the group;
integer with subscript stands for torsion of that order. For example, Kh11,35(T (6, 5)) = Z2 ⊕ Z5 .

Example 1. Examples of knots with Z5-torsion in their Khovanov homology in-
clude the 5-strand torus knots: T(6, 5), T(7, 5), T(8, 5) and T(9, 5) but in gen-
eral appear to be quite rare, see Figure 6.3. Based on the results in [36], J. Przy-
tycki and the author predicted in 2012 that the Khovanov link homology of
the positive adequate 36-crossing knot K given by the closure of the braid
s21s22s31s22s1s3s22s24s3s21s22s31s32s21s3s22s34s23 will contain Z5 torsion. This conjecture was
confirmed by A. Shumakovitch using JavaKh [5].

D. Bar-Natan showed that Khovanov homology of the T(8, 7) torus knot contains
Z7, Z5, Z4, and Z2-torsion. This 48 crossing knot reaches the limits of current com-
putational resources [26, 6]. Extending theoretical results to non-alternating links in
order to findZp-torsion for odd primes pwill require either amore sophisticated spec-
tral sequence or perhaps arguments of a different nature altogether.

Approach 2. Relations between Khovanov link, Hochschild algebra and chro-
matic graph homology theories

Hochschild homology is a well-understood cyclic homology theory of associative
algebras. Przytycki observed, somewhat surprisingly, that Khovanov homology and
Hochschild homology share a common structure [35]. The limit of the Khovanov ho-
mology of T(2, n) torus links when n is large can be interpreted as the Hochschild
homology of the algebra A2 = Z[x]/(x2 = 0) and some of the torsion of Hochschild
homology can be seen in Khovanov homology of T(2, n).

The cyclic nature of Hochschild homology can be interpreted pictorially. The n-th
chain group can be pictured as an n-cycle. The differential corresponds to contracting
the edges of n-cycle one by one to get an (n −1)-cycle andmultiplying the elements in
the copies ofA labelling the endpoints of the contracted edge.
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For every planar diagram D of a link L there exists an associated planar graph
Γ(D) obtained via the checkerboard black and white coloring of regions of D. Vertices
of Γ(D) are black regions of D and edges correspond to crossings of D. We generalize
this construction in the following way.

Let D be a knot diagram. The Kauffman state graph Γ(DA)/Γ(DB) contains a ver-
tex for each circle in the all-A/all-B Kauffman state DA/DB and an edge if two circles
in DA/DB have arcs obtained by smoothing a single crossing in D. Checkerboard col-
orings of an alternating knot diagram correspond to Γ(DA) and Γ(DB).

The graph Γ(DA) corresponding to the T(2, n) torus link and Kauffman state send-
ing all crossings to 1 is just an n-cycle. The chromatic graph homology HGRA2 (Γ) is
one of several categorifications of polynomial graph invariants, and one of two cate-
gorifications of the chromatic polynomial [10, 15]. Given a graph Γ the chromatic graph
polynomial P(Γ) satisfies the recursive deletion-contraction relation

P(Γ) = P(Γ − e) − P(Γ/e), (6.3.1)

where Γ − e is the graph obtained by deleting an edge e from a graph Γ, and Γ/e is the
graph obtained by contracting the same edge. After categorification, this relation lifts
to long exact sequence of chromatic graph cohomology groups [15]:

. . . → HGRiA2 (Γ) → HGRiA2 (Γ − e) → HGRiA2 (Γ/e) → HGRi+1A2 (Γ) → . . . (6.3.2)

The construction of HGRA2 (Γ) follows that of Khovanov: a bigraded homology theory
HGRi,j

A2
(Γ) is associated to a graph Γ and a commutative (graded) algebraA2, in such

a way that its (graded) Euler characteristic is the value of the chromatic polynomial at
the graded dimension of the algebraA2.

In terms of the chromatic graph homology, the relation between Khovanov and
Hochschild homology can be expressed by saying that the chromatic graph homology
of the cycle of length n is the Hochschild homology of algebra A2 = Z[x]/(x2 = 0)
through a range of dimensions increasing with n.

Theorem 6.3.2 (Correspondence between Khovanov and chromatic homology). Let
Γ(DA) be the graph associated to diagram D of a link L whose girth, the length of the
shortest cycle, ℓ = ℓ(G) > 1. Then the first ℓ Khovanov homology Kh(L) groups of L and
chromatic graph homology HGRA2 (Γ(DA)) have isomorphic torsion [34].

This point of view enables us to describe some Z2-torsion in the Khovanov ho-
mology of certain classes of links via torsion in chromatic homology [2, 14, 34, 36]
expressed in terms of combinatorial data of one of the corresponding graphs. For ex-
ample, the torsion depends on the cyclomatic number that is the rank of the first ho-
mology of that graph as a 1-dimensional CW-complex.

Proposition 6.3.1. Given a diagram D of a knot or link L such that the corresponding
graph Γ(DA) is a connected graphwith no loops. Let Γ ′(DA) be the graph obtained from
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Γ(DA) by removing all multiple edges and p1 = p1(Γ ′(DA)) be the cyclomatic number
of Γ ′(DA). Then

torHn−2,n+2|Ds+ |−4(L) =

{︃
Z2, if Γ(DA) has an odd cycle;
0, if Γ(DA) is a bipartite graph.

torHn−4,n+2|Ds+ |−8(L) =

{︃
Zp1−12 , if Γ ′(DA) has an odd cycle;
Zp12 , if Γ ′(DA) is a bipartite graph.

This proposition establishes Shumakovitch’s conjecture for all adequate and
semi-adequate knotswhose corresponding graphs have odd cycles. Chromatic homol-
ogy, like Khovanov homology of alternating links, is supported only along two diag-
onals [9], with torsion appearing only on one. An interesting computational problem
would be to explicitly compute all torsion along the whole diagonal in chromatic ho-
mology; pulling this information back via Theorem 6.3.2 would greatly extend our cur-
rent knowledge of the torsion in Khovanov homology.

Approach 3. Compute torsion via Khovanov tangle invariants
In what we have described so far, computing Khovanov homology requires global
knowledge of the topology of Kauffman states. Instead, one can take a different ap-
proach and decompose a link diagram into local pieces called tangles. While it is
straightforward to piece together tangles to obtain a link, it is quite challenging to
piece together any of the existing Khovanov tangle invariants [21, 22, 4] to obtain the
Khovanov homology of the link. Roberts [38, 39] constructs a Khovanov tangle invari-
ant whose algebraic structure is inspired by the bordered Heegaard Floer homology.
Most importantly, Roberts obtains gluing formulaswhichheuses to construct theKho-
vanov homology of a link from the Khovanov invariants of the tangles in its decom-
position. This approachmay bemost suitable for studying the Khovanov homology of
classes of linkswith especially nice tangle decompositions, such as almost-alternating
links and closed 3-braids.

Goal 2. Describe topology of the link in terms of torsion of Khovanov homology
With a discovery of the new knot invariant one of the most intriguing questions is de-
termining how much it can tell us about knots. In our framework, this translates into
the question:what does torsion in Khovanov homology reveal about topological prop-
erties of the link. As mentioned above, it is conjectured that the existence of torsion
in the Khovanov homology of a knot implies the knot is nontrivial. Moreover, com-
putations indicate a potential relationship between the existence of Zp-torsion in the
Khovanov homology of a link and the braid index of the link. However, the infinite
family of links with braid index four containing Z2s -torsion with s ≤ 23 constructed
in [31] provides a counterexample to the PS-conjecture [36] and hints that such a rela-
tion, if it exists, will be more subtle.
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saddle cobordism

smoothing

unsmoothing

Death

Birth

Fig. 6.4: Cobordisms of smoothings of a crossing.

6.4 Homological invariants of alternating and
quasi-alternating cobordisms

Khovanov homology is functorial, up to overall minus sign, under link cobordisms.
However, in general, it is extremely difficult to compute homomorphisms of Khovanov
homology induced by link cobordisms.

Notice that the number of spanning trees s(Γ) in a graph Γ satisfies a recursive re-
lation similar to the deletion-contraction formula for the chromatic polynomial (6.3.2):

s(Γ) = s(Γ − e) + s(Γ/e). (6.4.1)

Spanning trees of Γ(DA) play a fundamental role in link homology [8, 46]. The
reduced Khovanov homology of L can be computed via a complex generated by span-
ning trees of Γ(DA) but the combinatorial formof thedifferential is currently unknown.
The same property holds for the knot Floer homology of L. When D is a minimal al-
ternating diagram, differentials in both complexes are zero, and the rank of reduced
Khovanov and knot Floer homologies of L equals the number of spanning trees in
Γ(DA), and also the determinant of L [32].

Goal 3. Compute homomorphisms of Khovanov homology induced by “alter-
nating" cobordisms between alternating links
The spanning tree model gives a good inductive realization of Khovanov homology,
and maps induced by alternating cobordisms could be effectively computable.
The alternating cobordisms are those generated by the cobordisms illustrated in 6.4:
they arise from smoothing a crossing, saddles, and births and deaths of circles.

Khovanov-Rozansky sl(n) link homology [24, 25] and its variation due toMackaay,
Stošić, Vaz [28], are based on homology theories of planar graphs, functorial under
foam cobordisms (inR2 × [0, 1]) between these graphs. Similarly one could search for
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an interpretation of alternating cobordisms, which are realized by surfaces embedded
in R4, in terms of cobordisms between checkerboard graphs of alternating diagrams.
Cobordisms between planar graphs induced by alternating cobordisms will resemble
foams. The same idea could be employed towards computingmaps between link Floer
homologies of alternating links induced by alternating cobordisms, or the maps in-
duced by lifts of alternating cobordisms to the double branch cover.

Goal 4. Find a combinatorial framework for quasi-alternating knots
Quasi-alternating links are generalizationsof alternating links, defined inan inductive
way.

The setQof quasi-alternating links is the smallest set of links including theunknot
and satisfying the followingproperty: If a link L has adiagramDwith a crossing c such
that both smoothings, L0 and L1, of c are in Q, and det(L)=det(L0)+det(L1), then L is
in Q [33, 7, 29].

The notion of quasi-alternating link is hard to capture combinatorially. The initial
search for quasi-alternating link families was performed using the knot theory soft-
ware LinKnot [17, 16] and the computational results have already been used to show
that certain knots and links are not quasi-alternating [12]. It would be very exciting to
find a combinatorial model for some large class of quasi-alternating links, incorporat-
ing inductive steps in their construction. Such a combinatorial model should also give
a generalization of planar graphs (checkerboard graphs of alternating link diagrams)
to more subtle higher-dimensional structures.

Furthermore, the Khovanov and knot Floer homology of quasi-alternating links
are easy to compute, due to the vanishing of the differentials in short exact sequences
that build up to homology groups of these links. Quasi-alternating cobordisms be-
tween quasi-alternating links can be defined as compositions of cobordisms built out
of quasi-alternating crossings.
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Quadrisecants and essential secants of knots
with applications to the geometry of knots

Abstract: A quadrisecant line is one which intersects a curve in at least four points,
while an essential secant captures something about the knottedness of a knot. This
survey article gives a brief history of these ideas, and shows how they may be applied
to questions about the geometry of a knot via the total curvature, ropelength and dis-
tortion of a knot.
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7.1 Introduction

In this survey article, we consider the ways in which lines intersect knots. Some of
these capture the knottedness of a knot. Trisecant and quadrisecant lines are straight
lines which intersect a knot in at least three, respectively four distinct places. It is
clear that any closed curve has a 2-parameter family of secants. A simple dimension
count shows there is a 1-parameter family of trisecants and that quadrisecants are
discrete (0-parameter family). A planar circle unknot does not have any trisecants
and quadrisecants, however nontrivial tame knots must have them. In general, we
do not expect knots to have quintisecants (or higher order secants), they exist only for
a codimension 1 (or higher) set of knots. Note that these statements are only valid for
generic knots (for example, polygonal knots with extra conditions like no four points
are coplanar).

The existence of quadrisecants and essential secants gives insight into the geom-
etry of knots. Section 7.2 gives definitions of quadrisecants and essential secants and
a brief history of known results. It ends with a discussion of the open question of find-
ing bounds on the number of quadrisecants for a given knot type. Section 7.3 gives a
brief outline of the tools used in many of the proofs of results about quadrisecants.
Section 7.4 shows how the ideasmay be applied to results about the geometry of knots
via the total curvature, second hull, ropelength and distortion of a knot.
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7.2 Quadrisecants

Recall that a knot is a homeomorphic image of S1 in R3, modulo reparametrizations,
and a tame knot is one that is ambient isotopic to a polygonal knot.

Definition 7.2.1. Given a knot K, an n-secant line is an oriented line which intersects
K in at least n components. An n-secant is an ordered n-tuple of points of K (no two of
which lie in a common straight subarc of K) which lie in order along an n-secant line.

As previously described, by a secant we mean a 2-secant, by a trisecant a 3-secant,
and by a quadrisecant a 4-secant. For a closed curve K, any two distinct points de-
termine a straight line. These points are a secant if and only if they do not lie on a
common straight subarc of K. Thus the set of secants S = K2 r ∆̃ is topologically an
annulus. (Here ∆̃ denotes the set of n-tuples in which some pair of points lie in a com-
mon straight subarc of K.)

We now consider the set of trisecants of a knot, denoted T ⊂ K3 r ∆̃. For any
trisecant abc, there are |S3/C3| = 2 cyclic orderings of the oriented knot and trisecant.
We could label these by their lexicographically least elements (abc or acb), butwe call
them direct and reversed respectively. Figure 7.1 illustrates the two types of trisecant.
Flipping the orientation of the knot or the trisecant would change its type.

a b c a b c

Fig. 7.1: These trisecants are reversed (left) and direct (right) because the cyclic order of the points
along K is acb and abc respectively.

Just aswith trisecants,wemay compare thepoints of a quadrisecant linewith their
ordering along the knot. For quadrisecant abcd, the order along K is a cyclic order,
and ignoring the orientation of K is just a dihedral order. Thus there are |S4/D4| = 3
dihedral orderings of a quadrisecant and non-oriented knot. We can represent these
equivalence classes by abcd, abdc and acbd, where we have again chosen the lexi-
cographically least order as the name for each. Figure 7.2 illustrates these orderings.

Definition 7.2.2. Quadrisecants of type acbd are called alternating quadrisecants.
Quadrisecants of types abcd and abdc are called simple and flipped respectively.
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a b c d a b c d a b c d

Fig. 7.2: From left to right, quadrisecants abcd are simple, flipped and alternating.

When discussing quadrisecant abcd, we will usually choose to orient K so that b ∈
𝛾ad. This means that the cyclic order of points along K will be abcd, abdc, or acbd,
depending on the type of quadrisecant.

7.2.1 Essential secants

Before discussing known results about quadrisecants, we pause to introduce the no-
tion of an essential secant. (The definitions in this subsection can all be found in
Denne et al. [14].) G. Kuperberg [38] first introduced this idea (which he called “topo-
logically nontrivial”) in his paper about quadrisecants. Being essential captures part
of the knottedness of the knot.

Generically, the knot K together with the secant segment between two points on
K forms a knotted Θ-graph in space (that is, a graph with three edges connecting the
same two vertices).

Definition 7.2.3. Suppose α, β and 𝛾 are three disjoint simple arcs from points a to b,
forming a knotted Θ-graph, as illustrated in Figure 7.3. Let X := R3 r (α ∪ 𝛾), and let
δ be a parallel curve to α ∪ β in X. (By parallel we mean that α ∪ β and δ cobound an
annulus embedded in X.) We choose δ to be homologically trivial in X (that is, so that
δ has zero linking number with α ∪ 𝛾). Let h = h(α, β, 𝛾) ∈ π1(X) denote the (free)
homotopy class of δ. Then (α, β, 𝛾) is inessential if h is trivial. We say that (α, β, 𝛾) is
essential if it is not inessential.

In other words, the ordered triple (α, β, 𝛾) is inessential if there is a disk D bounded by
α ∪ β having no interior intersections with the knot α ∪ 𝛾. (We allow self-intersections
of D, and interior intersections with β, as will be necessary if α ∪ β is knotted.)

This notion is clearly a topological invariant of the (ambient isotopy) class of the
knotted Θ-graph. We apply this definition to arcs of a knot K below. But first, some
useful notation. Let a, b ∈ K. The arc from a to b following the orientation of the knot
is denoted 𝛾ab and has length ℓab. The arc from b to a, 𝛾ba, with length ℓba is similarly
defined. The secant segment from a to b is denoted ab.
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α

a bβ

𝛾

δ

Fig. 7.3: In the knotted Θ-graph α∪β∪𝛾, the ordered triple (α, β, 𝛾) is essential. To see this, we find
the parallel δ to α ∪ β which has linking number zero with α ∪ 𝛾 and note that it is homotopically
nontrivial in the knot complement R3 r (α ∪ 𝛾). In this illustration, β is the straight segment ab, so
we may equally say that the arc α = 𝛾ab of the knot α ∪ 𝛾 is essential.

Definition 7.2.4. Assume K is a nontrivial tame knot, a, b ∈ K, and ℓ = ab. We say
𝛾ab is essential if for every ε > 0 there exists some ε-perturbation of ℓ (with endpoints
fixed) to a tame curve ℓ′ such that K ∪ ℓ′ forms an embedded Θ in which (𝛾ab , ℓ′, 𝛾ba)
is essential.

Note that this definition is quite flexible, as it allows for the situation where K inter-
sects ℓ. In [14] Proposition 6.2, we show that it also ensures that the set of essential
secants is closed in S.

Definition 7.2.5. Asecant ab of K is essential if both subarcs 𝛾ab and 𝛾ba are essential.
Otherwise it is inessential. Let ES be the set of essential secants in S.

It is straightforward to see that if K is an unknot, then any arc 𝛾ab is inessential. (Be-
cause the homology and homotopy groups of X := R3 r K are equal for an unknot,
then any curve having zero linking number with K is homotopically trivial in X.) We
can use Dehn’s Lemma to prove a converse statement: if a, b ∈ K and both 𝛾ab and
𝛾ba are inessential, then K is unknotted. (See for instance [10, 14].)

Later, in applications of these ideas,weneed tofind the least length of an essential
arc, and use this to get better bounds on ropelength and distortion. This leads us to
consider what happens when arcs change from inessential to essential.

Theorem 7.2.6 ([14] Theorem 7.1). Suppose 𝛾ac is in the boundary of the set of essen-
tial arcs for a knot K. (That is, 𝛾ac is essential, but there are inessential arcs of K with
endpoints arbitrarily close to a and c.) Then K must intersect the interior of segment ac,
and in fact there is some essential trisecant abc.



142 | Elizabeth Denne

Finally, to call a quadrisecant abcd essential, we could follow Kuperberg and require
that the secants ab, bc and cd all be essential. But instead, we require this only of
those secants whose endpoints are consecutive along the knot

Definition 7.2.7. An n-secant a1a2 . . . an is essential if we have aiai+1 essential for
each i such that one of the arcs 𝛾aiai+1 and 𝛾ai+1ai includes no other aj.

That is, for simple quadrisecants, all three secants must be essential; for flipped
quadrisecants the end secants ab and cd must be essential; for alternating quadrise-
cants, the middle secant bc must be essential.

7.2.2 Results about quadrisecants

The simple dimension count outlined in Section 7.1 means that we expect nontrivial
tame knots to have quadrisecants. Indeed, in 1933, E. Pannwitz [44] first showed that
every nontrivial generic polygonal knot inR3 has at least 2u2 quadrisecants, where u
is the unknotting number of a knot7.1. (It is entirely possible that Heinz Hopf suggested
this problem to her. In the endnote to his paper, I. Fáry [22] mentions that Hopf used
quadrisecants to prove that knots have total curvature greater than or equal to 4π.)

In the early 1980’s, H.R. Morton and D.M.Q. Mond [40] rediscovered Pannwitz’
result. They independently proved that every nontrivial generic knot has a quadrise-
cant, and they conjectured that a generic knot with crossing number n has at least

(︀n
2
)︀

quadrisecants. It was not until 1994 that Kuperberg [38] managed to extend the re-
sult and showed that all (nontrivial tame) knots inR3 have a quadrisecant. To do this,
he introduced the notion of an essential secant. In 1998, C. Schmitz [48] nearly proved
that alternating quadrisecants exist for nontrivial tame knots inHadamardmanifolds,
but in his proof some quadrisecants may degenerate to trisecants.

In 2004, the following result was proved in my PhD thesis.

Theorem 7.2.8 ([16]). All nontrivial tame knots have at least one alternating quadrise-
cant. All nontrivial knots of finite total curvature have at least one essential alternating
quadrisecant.

Also in 2004, R. Budney, J. Conant, K.P. Scannell and D. Sinha [6] gave a geometric
interpretation of the second order Vassiliev invariant. To do this, they used the tech-
niques of compactified configuration spaces andGoodwillie calculus to show that this
invariant can be computed by counting alternating quadrisecants with appropriate

7.1 She actually stated her result in terms of the knottedness of K, which is the minimal number of
singular points on theboundaryof locally flat singular spanningdisks ofK, and is twice theunknotting
number.
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multiplicity (both for long knots and closed knots). This result implies the existence
of alternating quadrisecants for many knots, while Theorem 7.2.8 shows existence for
all nontrivial tame knots.

Later in 2013, Budney’s Master’s student G. Flowers [25] gave a natural extension
of the quadrisecant count formula found in [6] to closed knots. Here, Flowers counts
five- and six-point cocircularities instead of counting quadrisecant lines. The relative
ordering of the knot and intersecting circle are again central to the arguments, and
the idea of an alternating quadrisecant becomes that of either a ‘satanic’ or ‘thelemic’
circle.

In 2007, M. Sommer developed a wonderful jReality application Visualization in
Geometric Knot Theory [50] as part of his Diploma Thesis [51]. This program allows the
user to view the set of trisecants for polygonal knots, and even see how it changes as
a vertex is moved. The program also shows the different projections of this set onto
different planes, from which the user can read off the different quadrisecants.

In 2008, T. Fiedler and V. Kurlin [24] viewed quadrisecants in a different way. They
fixed a straight line inR3 and a fibration around it by half-planes, and studied knots in
general position with respect to this fibration using secants and quadrisecants lying
in fibers. They give the minimum number of all fiber quadrisecants and fiber extreme
secants which occur during an isotopy from one knot to another in terms of a sum of
unordered and coordinated writhes of a particular kind of projection.

In 2009, J. Viro [54] estimated frombelow the number of linesmeeting each of four
disjoint smooth curves in both RP3 and R3. In R3 her arguments may be translated
to quadrisecant lines, however her count involves linking numbers and appears to be
different from the one in [6].

7.2.3 Counting quadrisecants and quadrisecant approximations.

For a generic nontrivial knot, we expect that there are a finite number of quadrise-
cants. (Indeed, this was one of the results of Budney et al. [6].) The open and very
challenging problem is to give bounds on the number of quadrisecants for a given knot
type. Many of the papers cited in the previous section relate the number of quadrise-
cants to some topological invariant of knots (unknotting number, finite type invari-
ants, writhe), or give conjectures about what this might be. However none of the
known results seem to be close to the number of observed quadrisecants for knots
with large crossing number. Indeed, there are not even conjectures about asymptotic
bounds for the number of quadrisecants for particular families of knots.

There have been several papers which have grappled with this question for knots
with small crossings. In 2005, G.T. Jin [35], gave trigonometric parametrizations of the
31, 41, 51 and 52 knots and found all quadrisecants for these parametrizations. He
also defined the quadrisecant approximation of a knot K.
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Definition 7.2.9. Let K be a knot with finitely many quadrisecants intersecting K in
finitely many points. These points divide K into a finite number of subarcs. Replacing
the subarcs by straight lines gives a polygonal closed curve called the quadrisecant
approximation of K.

Jin then conjectured the following.

Conjecture 7.2.10 ([35]). If a knot K has finitelymany quadrisecants, then the quadrise-
cant approximation K̂ has the knot type of K. Furthermore, K and K̂ have the same set
of quadrisecants.

In 2011, Jin and S. Park [36] proved that every hexagonal (6-sided) trefoil knot has
exactly three alternating quadrisecants. They then proved that the quadrisecant ap-
proximation of a hexagonal trefoil knot is also a trefoil knot, and moreover has the
same three alternating quadrisecants as the original knot.

Most recently, S. Bai, C. Wang and J. Wang [3] proved that the Conjecture 7.2.10
is false. They gave two examples of an unknot: the first has a quadrisecant approx-
imation which is not even an embedded curve, and the second has a quadrisecant
approximation which is a left-handed trefoil knot. They then used a particular type
of connected sum operation to show that there is a polygonal knot in every knot type
whose quadrisecant approximation is either not embedded, or contains a trefoil sum-
mand.

There are still many interesting questions to explore here. For example, it is en-
tirely possible that Conjecture 7.2.10 is true for polygonal knots which have minimum
stick number, or for ideal knots (those which minimize some kind of energy like rope-
length).

Returning to the question of counting quadrisecants, A. Cruz-Cota and T. Ramirez-
Rosas [12] recently proved the first result giving an upper (rather than a lower) bound
on the number of quadrisecants.

Theorem 7.2.11 ([12]). Let K be a polygonal knot in general position, with exactly n
edges. Then K has at most n12(n − 3)(n − 4)(n − 5) generic quadrisecants.

Wefinish this section by noting that the results of [6] are the only ones relating a count
of alternating quadrisecants to a knot invariant. We have work-in-progress [13] show-
ing that there is at least u(K) number of alternating quadrisecants of a knot K, where
u(K) is the unknotting number of K. Examples from [35] have lead us to conjecture the
following (say for knots of finite total curvature).

Conjecture 7.2.12. The figure-8 knot has at least one essential flipped quadrisecant.
The 52 knot has at least one essential simple quadrisecant.
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7.3 Key ideas in showing quadrisecants exist

Observe that quadrisecants are formedwhen several trisecants share common points.
Quadrisecant abcd includes four trisecants (1)abc, (2)abd, (3)acd, (4)bcd. Pan-
nwitz [44] showed quadrisecants exist by looking for pairs of trisecants like (1)abc
and (3)acd, where the first and third points of trisecant abc are the same as the first
and second points of trisecant acd. Kuperberg [38] showed that quadrisecants exist by
looking for pairs of trisecants like (2)abd and (3)acd, where the first and third points
of the trisecants are the same. We proved [16] that alternating quadrisecants exist by
looking at families (1)abc and (2)abd, where the first and second points of the trise-
cants are the same. The quadrisecant count in Budney et al. [6] boiled down to looking
at linking numbers of these sets of trisecants in the 3rd associahedron (Stasheff poly-
tope) — a compactified configuration space.

All of these arguments presuppose that nontrivial knots have trisecants. Fortu-
nately this is easy to prove, as was originally shown by Pannwitz.

Lemma 7.3.1 ([44]). Each point of a nontrivial tame knot K is the first point of at least
one trisecant.

Proof. Suppose there is a point a ∈ K which is not the start point of any trisecant.
The union of all chords ab for b ∈ K is a disk with boundary K. If two chords ab
and ac intersect at a place other than a, then they overlap and one is a subinterval
of another. They form a trisecant (abc or acb), contrary to the assumption. Thus the
disk is embedded and K unknotted, a contradiction.

The structure of the set of trisecants (and quadrisecants) can be understoodmore eas-
ilywhenwe restrict the class of knots considered, such that the restricted class is dense
in the set of tame knots. All of the previous work on quadrisecants we have discussed
does this, exactly how depends on the context chosen. We choose to work with polyg-
onal knots with some extra assumptions.

Definition 7.3.2. We say that the polygonal knot K in R3 is generic if the following
conditions are satisfied
– No four vertices of K are coplanar, no three vertices of K are collinear.
– Given three pairwise skew edges of K, no other edge of K is contained in the

quadric surface generated by those edges.
– There are no n-secants for n ≥ 5.

Once the existence of essential quadrisecants is established for generic knots, a limit
argument (see [38]) is used to show that any nontrivial tame knot has a quadrisecant.
The key point here is that the limit of an essential secant remains a secant — it does
not degenerate in the limit.
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7.3.1 Trisecants and quadrisecants.

We now discuss how trisecants and quadrisecants can arise in generic polygonal
knots. The first condition in Definition 7.3.2 means that three (or more) adjacent edges
cannot be coplanar. Suppose ei and ei+1 are adjacent edges. A 1-parameter family
of trisecants arises when a third edge ej of the knot intersects certain parts of the
plane spanned by ei and ei+1. This family is either homeomorphic to [0, 1] or [0, 1)
depending on which region ej intersects (see Figure 7.4). A quadrisecant is formed
when a fourth edge intersects one of the trisecant lines. Genericity implies that two
non-adjacent edges cannot be coplanar, thus there can be at most one quadrisecant
in this case.

ei ei+1

(*)

(*)

(*)

(*)

(*)

ei
ei+1

ej
ek

Fig. 7.4: The planes are spanned by edges ei , ei+1, On the left, there are trisecant lines intersecting
ei , ei+1 if the third edge intersects any one of the five regions marked (*), otherwise there are no
trisecants. On the right, the family of trisecants intersecting ei , ej , ei+1 is homeomorphic to [0, 1],
while the family intersecting ei , ei+1 , ek is homeomorphic to [0, 1).

Before moving on to the next case, we pause to remind the reader about some
well known facts about doubly ruled surfaces (see for instance [31, 47, 43]). A triple of
pairwise skew lines l1, l2, l3 determines aunique quadric, a doubly ruled surfaceH (as
in the blue lines in Figure 7.5). This is either a hyperbolic paraboloid, if the three lines
are parallel to one plane, or a hyperboloid of one sheet, otherwise. Each point ofH lies
on a unique line from each ruling. The lines l1, l2, l3 belong to one of the rulings of the
surface, and every line intersecting all three lines belongs to the other. Thus a fourth
line l4 intersecting H yields two (or one) quadrisecant line(s) intersecting l1, l2, l3,
and l4. There are an infinite number of quadrisecants only when l4 is contained in H.

Returning our attention to generic polygonal knots, we see that a pairwise skew
triple of edges ei , ej , ek either has 0 or 1 trisecant, or has a 1-parameter family of trise-
cants. A quadrisecant is formed when a fourth edge intersects the quadric in a trise-
cant line. There are 1 or 2 quadrisecants in this case, since the second condition in
Definition 7.3.2 means that there cannot be an infinite number of quadrisecants.
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l1
l2

l3 l1

l2

l3

Fig. 7.5: Doubly ruled surfaces produced inMathematica. On the left a hyperboloid of one sheet, on
the right a hyperbolic paraboloid. The three blue lines l1 , l2 , l3 lie in one ruling, the cyan trisecant
line in the other ruling.

7.3.2 Structure of the set of trisecants.

Using the ideas from above, we can piece together the structure of the set of trisecants
T ⊂ K3. Indeed this approach has been used to understand (and compute) T and
the set of quadrisecants in many papers (such as [3, 12, 16, 36, 51]). We expect that
generically, T is a 1-manifold. Of course, we can add more (generic) conditions to Def-
inition 7.3.2 to give even more control over T (for example those in [16, 51]). We omit
these details here, and also the many technical but straightforward details needed to
prove the following two results.

Proposition 7.3.3 (c.f. [16, 51]). Let K be a nontrivial generic polygonal tame knot. In
K3, T is a compact 1-manifold with boundary, embedded in K3 in a piecewise smooth
way with T ⊂ K3 r ∆̃ and ∂T ⊂ ∆. Moreover, each component of T is either a simple
closed curve or a simple open arc.

Proposition 7.3.4 (c.f. [16]). Let K beanontrivial generic polygonal tame knot. The pro-
jection πij : K3 → K2 (i < j and i, j = 1, 2, 3) is a piecewise smooth immersion of T into
the set of secants, and T = πij(T) intersects itself (transversally) at double points.

The astute reader will have realized that we really need to work with essential trise-
cants if we are to find essential (alternating) quadrisecants. Recall that the set of es-
sential secants ES is a subset of S. In order to find essential alternating quadrisecants,
we restrict our attention to the trisecants abc which are essential in the second seg-
ment bc. Thus ET = π−123(ES)∩T, and we define ETd and ETr to be the sets of essential
trisecants of direct and reversed orderings in K3. Since we are interested in finding
essential trisecants which share the first two points, we project ET to S in a particular
way.
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Definition 7.3.5 ([16]). Let ET = π12(ET) be the projection of the set of essential trise-
cants to the set of secants S and similarly define ETd := π12(ETd) and ETr := π12(ETr).

We can easily prove that a version of Proposition 7.3.4 holds for ET: For a nontrivial
generic polygonal tame knot, ET is a piecewise immersed 1-manifold which intersects
itself transversally at double points ([16]). Finally, we observe that (essential) alter-
nating quadrisecants occur precisely when direct and reversed (essential) trisecants
intersect in S.

Lemma 7.3.6 ([16]). Let ab ∈ ETd ∩ETr in S. This means that there exists c and d such
that abc ∈ ETr and abd ∈ ETd. Then either abcd or abdc is an essential alternating
quadrisecant.

The proof of the existence of alternating quadrisecants, Theorem 7.2.8, follows the
same pattern as the proof of Lemma 7.3.1. We proceed by contradiction, and assume
that ETd ∩ ETr = ∅ in S. We then show that K has to be unknotted, a contradiction.
The details of proving that K is unknotted are quite involved and sowe omit themhere.
[However, very briefly, since K is a polygonal knot, we can show that ETd, respectively
ETr, stay at least the minimum edge length away from the bottom, respectively top,
boundary of S. Since ETd and ETr do not intersect, we use a Meyer-Vietoris argument
to construct a loopwinding once around Swhich avoids the set of essential trisecants.
We thenuse this loop to find a spanning diskwhose boundary is the knot. After further
technicalities, the loop theorem is invoked to show that this disk is embedded.]

7.4 Applications of essential secants and
quadrisecants

7.4.1 Total curvature

For smooth closed curves, the total curvature can be thought of as the total angle
through which the unit tangent vector turns (or the length of the tangent indicatrix).
J.W. Milnor [39] defined the total curvature κ(𝛾) of an arbitrary closed curve 𝛾 to be
the supremal total curvature of inscribed polygons (where the total curvature is the
sum of the exterior angles), and showed the two definitions are equivalent. In 1929,
W. Fenchel [23] proved that the total curvature of a closed curve in R3 is greater than
or equal to 2π, equality holding only for plane convex curves. In 1947, K. Borsuk [4]
extended this result to Rn and conjectured the following.

Theorem 7.4.1. A nontrivial tame knot in R3 has total curvature greater than 4π.
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This result was first proved around 1949 by both Milnor [39] and Fáry [22]. It has since
become known as the Fáry-Milnor theorem. In Cantarella et al. [10], the theorem was
proved using the nonemptiness of the second hull for a knotted curve (defined be-
low). In 1998, the Fáry-Milnor theoremwas independently extended to knotted curves
in Hadamard7.2 manifolds by Schmitz [48] and S.B. Alexander and R.L. Bishop [2]. In-
terestingly, in their proof, Alexander and Bishop show that a simple curve of finite
total curvature is isotopic to an inscribed (geodesic) polygonal curve, fixing a mistake
in [39]. They show that for any nontrivial knot K, some doubly covered bigon is in-
scribed in a polygon inscribed in K. This doubly covered bigon is an idea somewhat
close to the midsegment of an alternating quadrisecant.

A new proof of the Fáry-Milnor theorem is given by the existence of alternating
quadrisecants for any nontrivial tame knot K. An alternating quadrisecant can be
thought of as an inscribed polygon in K, and has total curvature 4π. Thus by defi-
nition, κ(K) ≥ 4π. To get a strict inequality, simply observe that a knot is not coplanar.

More recently, H. Gerlach, P. Reiter, and H. von der Mosel [26] have written about
elastic knots, which are limit configurations of energyminimizers of an energy consist-
ing of the classic bending energy and a small multiple of ropelength (defined below).
One of the many results in this paper is an extension of the classic Fáry-Milnor theo-
rem on total curvature to the C1-closure of the knot class. The proof of this result also
relies on the existence of alternating quadrisecants.

7.4.2 Second Hull

The convex hull of a connected set K inR3 is characterized by the fact that every plane
through a point in the hull must intersect K. If K is a closed curve, then a generic
plane must intersect K an even number of times. Thus every generic plane through
each point of the convex hull is cut by K at least twice. In proving the total curvature
result above, Milnor observed that for a nontrivial tame knot, there are planes in ev-
ery direction which cut the knot four times. More generally, there are points through
which every plane cuts the knots four times. This idea was formalized by Cantarella,
Kuperberg, R. Kusner and J.M. Sullivan in [10], where they defined these points as the
second hull of a knot.

Definition 7.4.2 ([10]). Let K be a closed curve in R3. Its nth hull hn(K) is the set of
points p ∈ R3 such that K cuts every generic plane P through p at least 2n-times.

Cantarella et al. [10] proved that the second hull of a nontrivial tame knot in R3 is
nonempty. This paper also conjectured the existence of alternating quadrisecants for

7.2 A Hadamard manifold is a complete simply-connected Riemannian manifold with non-positive
sectional curvature.
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nontrivial tame knots in R3. The existence of alternating quadrisecants gives another
way of proving that the second hull is nonempty. This is because the mid-segment bc
of alternating quadrisecant abcd is in the second hull.

7.4.3 Ropelength

The ropelength problem asks to minimize the length of a knotted curve subject to
maintaining an embedded tube of fixed diameter around the tube; this is a mathe-
matical model of tying the knot tight in a rope of fixed thickness.

More technically, the thickness τ(K) of a space curve K is defined (O. Gonzalez and
J.H. Maddocks [27]) to be twice the infimal radius r(a, b, c) of circles through any three
distinct points of K. It is known ([11]) that τ(K) = 0 unless K is C1,1 (meaning that its
tangent direction is a Lipschitz function of arclength). When K is C1, we can define
normal tubes around K, and then indeed τ(K) is the supremal diameter of such a tube
that remains embedded.We note that in the existing literature thickness is sometimes
defined to be the radius rather than diameter of this thick tube. Following others lead,
we define the ropelength as follows.

Definition 7.4.3. The ropelength of a knot K is the (scale-invariant) quotient of length
over thickness, Rop(K) = len(K)/τ(K).

Cantarella, Kusner and Sullivan [11] proved that any (tame) knot or link type has a ro-
pelength minimizer and gave certain lower bounds for the ropelength of links; these
are sharp in certain simple cases where each component of the link is planar. In this
section we outline our joint work [14], showing how essential alternating quadrise-
cants are used to prove that nontrivial knots have ropelength at least 15.66. This is an
improvement on the bound of 12 from Y. Diao [18] and is greater than the conjectured
bound of 15.25 from [11].

7.4.3.1 Ropelength basics

Because the ropelength problem is scale invariant, we find it most convenient to
rescale any knot K to have thickness (at least) 1. This implies that K is a C1,1 curve
with curvature bounded above by 2. For any point a ∈ R3, let B(a) denote the open
unit ball centered at a. We now give several well known results about the local struc-
ture of thick knots (see for instance [19, 11] and [14]). Most proofs are elementary and
we omit them here.

Lemma 7.4.4. Let K be a knot of unit thickness. If a ∈ K, then B(a) contains a single
unknotted arc of K; this arc has length at most π and is transverse to the nested spheres
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centered at a. If ab is a secant of K with |a−b| < 1, then the ball of diameter ab intersects
K in a single unknotted arc (either 𝛾ab or 𝛾ba) whose length is at most arcsin |a − b|.

As an immediate corollary, we see that if K has unit thickness, a, b ∈ K and p ∈ 𝛾ab
with a, b /∈ B(p), then the complementary arc 𝛾ba lies outside B(p).

Lemma 7.4.5. Let K be a knot of unit thickness. If a ∈ K, then the radial projection of
K r {a} to the unit sphere ∂B(a) does not increase length.

Lemma 7.4.6. Suppose K has unit thickness, and p, a, b ∈ K with p /∈ 𝛾ab. Let ∠apb
be the angle between the vectors a − p and b − p. Then ℓab ≥ ∠apb. In particular, if apb
is a reversed trisecant in K, then ℓab ≥ π.

Given a thick knot K with quadrisecant abcd, we can bound its ropelength in terms of
the distances along the quadrisecant line. Whenever we discuss such a quadrisecant,
we will abbreviate these three distances as r := |a − b|, s := |b − c| and t := |c − d|. We
start with some lower bounds for r, s and t for alternating quadrisecants.

Lemma 7.4.7 ([14] Lemma 4.2). If abcd is an alternating quadrisecant for a knot of unit
thickness, then r ≥ 1 and t ≥ 1. With the usual orientation, the entire arc 𝛾da thus lies
outside B(b) ∪ B(c). If s ≥ 1 as well, then 𝛾ac lies outside B(b) and 𝛾bd lies outside
B(c).

As suggested by the discussion above, we will often find ourselves in the situation
where we have an arc of a knot known to stay outside a unit ball. We can compute
exactly the minimum length of such an arc in terms of the following functions.

Definition 7.4.8. For r ≥ 1, let f (r) :=
√
r2 − 1+arcsin(1/r). For r, s ≥ 1 and θ ∈ [0, π],

the minimum length function is defined by

m(r, s, θ) =
{︃√

r2 + s2 − 2rs cos θ, if θ ≤ arccos(1/r) + arccos(1/s).
f (r) + f (s) + (θ − π), if θ ≥ arccos(1/r) + arccos(1/s).

The function f (r) will arise again in other situations. The function m was defined ex-
actly to make the following bound sharp:

Lemma 7.4.9. Any arc 𝛾 from a to b staying outside B(p) has length at least
ℓab ≥ m(|a − p|, |b − p|,∠apb).

An important special case is when θ = π. If a and b lie at distances r and s along
opposite rays from p (so that∠apb = π) then the length of any arc from a to b avoiding
B(p) is at least

ℓab ≥ f (r) + f (s) =
√
r2 − 1 + arcsin(1/r) +

√︀
s2 − 1 + arcsin(1/s).
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Fig. 7.6: The shortest arc from a to b avoiding the ball B(p) consists of straight segments and an arc
of the ball.

7.4.3.2 Length of essential secants and quadrisecants

We will improve our previous ropelength bounds by getting bounds on the length of
an essential arc. Intuitively, we expect an essential arc 𝛾ab of a knot to “wrap at least
halfway around” some point on the complementary arc 𝛾ba. Althoughwhen |a−b| = 2
we can have ℓab = π, when |a − b| < 2 we expect a better lower bound for ℓab. Even
though in fact an essential 𝛾ab might instead “wrap around” some point on itself, we
can still derive the desired bound.

Lemma 7.4.10 ([14]). If 𝛾ab is an essential arc in a knot K of unit thickness, then |a−b| ≥
1 and ℓab ≥ g(|a − b|), where

g(|a − b|) =
{︃
2π − 2arcsin(|a − b|/2), if 0 ≤ |a − b| ≤ 2.
π, if |a − b| ≥ 2.

Proof. (Sketch) If |a − b| < 1, then by Lemma 7.4.4 the ball of diameter ab contains a
single unknotted arc of K, and thus 𝛾ab is inessential.

Knowing that sufficiently short arcs starting at any point a are inessential, con-
sider the shortest arc 𝛾aq which is essential. From Theorem 7.2.6 there is a trisecant
apq with both secants ap and pq essential, thus a and q are outside B(p). Since ap is
essential, apq is reversed and by Lemma 7.4.6 we get ℓab ≥ ℓaq ≥ π.

Note that |a − b| ∈ [1, 2], so 2π − arcsin(|a − b|/2) ≤ 5π/3. Considering again
𝛾aq with reversed trisecant apq, we have b /∈ 𝛾aq and ℓaq ≥ π, so we may assume
ℓqb ≤ 2π/3 or the bound is trivially satisfied.

The remainder of the proof involves finding a bound on ℓqb using the fact that 𝛾qp
is essential. There are two cases. The first is where b /∈ B(p) and the whole arc 𝛾aqb
stays outside B(p). Thus ℓab is greater than the length of the radial projection of the
arc onto ∂B(p), giving the result. The second case is where b ∈ B(p). Here, we let 𝛾qy
be the shortest essential arc starting at q and use a short argument (omitted) to show
that ℓab ≥ 5π/3.
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Fig. 7.7: The projection of 𝛾ab to the ball B(p) does not increase the length ℓab.

It is now straightforward to compute a lower bound of the ropelength of a unit thick-
ness knot K with an essential quadrisecant abcd. There are three cases, depending
on the type of quadrisecant.

1. When K has an essential simple quadrisecant, it has length ℓab + ℓbc + ℓcd + ℓda ≥
(g(r) + f (r)) + (g(s) + s) + (g(t) + f (t)). By minimizing each term separately, we find
that K has ropelength at least 10π/3 + 2

√
3 + 2 > 15.936.

2. When K has an essential flipped quadrisecant, it has length ℓab + ℓbd + ℓdc + ℓca ≥
(g(r) + f (r)) + 2f (s) + (g(t) + f (t)). By minimizing each term separately, we find that
K has ropelength at least 10π/3 + 2

√
3 > 13.936.

3. When K has an essential alternating quadrisecant, the length of K is ℓac+ℓcb+ℓbd+
ℓda ≥ 2f (r) + (2f (s) + g(s) + s) + 2f (t). Again, by minimizing each term separately,
we find K has ropelength at least 15.66.

Together with Theorem 7.2.8, we conclude the following.

Theorem 7.4.11 ([14]). Any nontrivial knot has ropelength at least 15.66.

Several independent numerical simulations (see for instance [46, 52]) have found
a trefoil knot with ropelength less than 16.374, which is presumably close to themin-
imizer. This is about 5% greater than our bound, so there is not much room for im-
provement, although a careful analysis based on tangent directions at b and c could
yield a slightly better bound.

As a final remark,wenote that the ropelength problem is still open for all knot and
most link types — it is a rich source of open questions. For example, there are many
results relating ropelength to other knot invariants, in particular to crossing number,
for instance [5, 7, 20, 17, 21, 32]. More recently, there have been several papers giving
a set of necessary and sufficient conditions for ropelength criticality, for example [49,
8, 53, 9].
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7.4.4 Distortion

Gromov introduced the notion of distortion for curves (see [28, 29, 30]).

Definition 7.4.12. If 𝛾 is a rectifiable curve in R3, then its distortion is defined to be
the quantity:

δ(𝛾) = sup
p,q∈𝛾

d𝛾(p, q)
dR3 (p, q)

≥ 1.

where d𝛾 denotes the arclength along 𝛾 and dR3 denotes the Euclidean distance inR3.

Gromov showed that for any simple closed curve 𝛾, we have δ(𝛾) ≥ 1
2π, with equality

if and only if 𝛾 is a circle, thus determining δ(unknot). He then asked whether every
knot type can be built with say, δ ≤ 100. In [15], we proved that for any nontrivial tame
knot we have δ(K) ≥ 5

3π. To do this, we first showed that any nontrivial tame knot has
a shortest essential secant. Then, borderline-essential arcs and their lengths (namely
Theorem 7.2.6 and Lemma 7.4.9) were key tools used in our distortion computations.
Our bound is of course not sharp, but numerical simulations [41] have found a trefoil
knot with distortion less than 7.16, so we are not too far off. We expect the true mini-
mum distortion for a trefoil is closer to that upper bound than to our lower bound.

In 2011, J. Pardon [45] proved that the distortion of Tp,q, a (p, q) torus knot, is
δ(Tp,q) ≥ 1

160 min(p, q). This shows the answer to Gromov’s question is no. Pardon’s
main theorem considers isotopy classes of simple loops in a piecewise-linear embed-
ded surface of genus g ≥ 1, and his inequality involves certain minimum geometric
intersection numbers of these loops.

In general, distortion is quite tricky to get a handle on. In [15] we give an example
of a wild knot, the connected sum of infinitely many trefoils, with distortion less than
10.7. Unlike the ropelength case, having finite distortion does not put any regularity
conditions on the curve. Because of this, it is an open problem to establish the exis-
tence ofminimizers of δ in any nontrivial knot class. In 2007, C. Mullikin [42] started to
develop a calculus of variations theory for distortion. However, it is not clear whether
the techniques developed for ropelength criticality can be easily applied to this situa-
tion.

7.4.5 Final Remarks

Quadrisecants have made an appearance in other parts of knot theory as well. For ex-
ample, they give a starting place to finding information about two “super-invariants”
of knots.

Recall that the bridge index of a knot is defined to be the minimum number of
bridges in all possible diagrams of a knot in its knot type. The superbridge index was
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first defined by N.H. Kuiper [37], and is

sb[K] = min
K′∈[K]

max
v⃗∈S2

bv⃗(K
′),

where bv⃗(K) is the number of bridges (or local maxima) of an orthogonal projection
K → Rv⃗. Kuiper then computed the superbridge index for all torus knots. Later, [33, 34]
used quadrisecants to show that there are only finitely many knot types with super-
bridge index 3.

The supercrossing index of a knot is related to crossing index in the sameway that
superbridge index is related to bridge index. Namely, the supercrossing index of K is

sc[K] = min
K∈[K]

max
v⃗∈S2

(# of crossings).

More simply, we maximize the number of crossings we see generated by a given con-
formation of a knot, and then minimize over all conformations. This invariant was
studied by C. Adams et al. [1] and was related to other knot invariants like stick index.
The existence of quadrisecants means that every nontrivial tame knot has supercross-
ing index at least 6. To see this, simply perturb the projection along the quadrisecant
line to find six crossings.

In summary, quadrisecants and essential secants appear in many different parts
of knot theory. They are a useful tool in understanding many phenomena of knots
and links, as they form a bridge between topological and geometric properties. For
all this, quadrisecants are still not completely understood. One of the more important
open problems is to give bounds on the number of quadrisecants for knot and link
types.

Acknowledgment: I first worked on quadrisecants as part of my PhD thesis, and I am
forever grateful to my advisor John M. Sullivan for introducing me to them. I am also
deeply appreciative of the many helpful conversations I have had over the years with
Stephanie Alexander, Ryan Budney, Jason Cantarella, and Cliff Taubes about this ma-
terial. Thanks also go tomy coauthor YuananDiao for first realizing that quadrisecants
could be applied to the ropelength problem. I am very thankful to the referee for help-
ing me find and correct many small mistakes — any remaining are my own.

Bibliography

[1] Colin Adams, Jonathan Othmer, Andrea Stier, Carmen Lefever, Sang Pahk, and
James Tripp. An introduction to the supercrossing index of knots and the crossing
map. J. Knot Theory Ramifications, 11(3):445–459, 2002. Knots 2000 Korea, Vol. 1
(Yongpyong).

[2] Stephanie B. Alexander and Richard L. Bishop. The Fáry-Milnor theorem in
Hadamard manifolds. Proc. Amer. Math. Soc., 126(11):3427–3436, 1998.



156 | Elizabeth Denne

[3] Sheng Bai, Chao Wang, and Jiajun Wang, Counterexamples to the quadrisecant
approximation conjecture. J. Knot Theory Ramifications, 27(2):1850022, 16, 2018.

[4] Karol Borsuk. Sur la courbure totale des courbes fermées. Ann. Soc. Polon. Math.,
20:251–265 (1948), 1947.

[5] Gregory Buck and Jonathan Simon. Thickness and crossing number of knots.
Topology Appl., 91(3):245–257, 1999.

[6] Ryan Budney, James Conant, Kevin P. Scannell, andDev Sinha. Newperspectives
on self-linking. Adv. Math., 191(1):78–113, 2005.

[7] Jason Cantarella, X. W. C. Faber, and Chad A. Mullikin. Upper bounds for rope-
length as a function of crossing number. Topology Appl., 135(1-3):253–264, 2004.

[8] Jason Cantarella, Joseph H. G. Fu, Rob Kusner, John M. Sullivan, and Nancy C.
Wrinkle. Criticality for the Gehring link problem. Geom. Topol., 10:2055–2116
(electronic), 2006.

[9] Jason Cantarella, Joseph H. G. Fu, Robert B. Kusner, and John M. Sullivan. Rope-
length criticality. Geom. Topol., 18(4):1973–2043, 2014.

[10] Jason Cantarella, Greg Kuperberg, Robert B. Kusner, and John M. Sullivan. The
second hull of a knotted curve. Amer. J. Math., 125(6):1335–1348, 2003.

[11] Jason Cantarella, Robert B. Kusner, and JohnM. Sullivan. On the minimum rope-
length of knots and links. Invent. Math., 150(2):257–286, 2002.

[12] Aldo-Hilario Cruz-Cota and Teresita Ramirez-Rosas. An ElementaryUpper Bound
For the Number Of Generic Quadrisecants Of Polygonal Knots. App. Math. E-
Notes, 17:268-276, 2017.

[13] Elizabeth Denne. Quadrisecants and the unknotting number of knots. In prepa-
ration, 2015.

[14] Elizabeth Denne, Yuanan Diao, and John M. Sullivan. Quadrisecants give new
lower bounds for the ropelength of a knot. Geom. Topol., 10:1–26, 2006.

[15] Elizabeth Denne and John M. Sullivan. The distortion of a knotted curve. Proc.
Amer. Math. Soc., 137(3):1139–1148, 2009.

[16] Elizabeth Denne. Alternating quadrisecants of knots. ProQuest LLC, Ann Arbor,
MI, 2004. Thesis (Ph.D.)–University of Illinois at Urbana-Champaign.

[17] Y. Diao and C. Ernst. Total curvature, ropelength and crossing number of thick
knots. Math. Proc. Cambridge Philos. Soc., 143(1):41–55, 2007.

[18] Yuanan Diao. Minimal knotted polygons on the cubic lattice. J. Knot Theory Ram-
ifications, 2(4):413–425, 1993.

[19] Yuanan Diao. The lower bounds of the lengths of thick knots. J. Knot Theory
Ramifications, 12(1):1–16, 2003.

[20] Yuanan Diao and Claus Ernst. Hamiltonian cycles and rope lengths of Conway
algebraic knots. J. Knot Theory Ramifications, 15(1):121–142, 2006.

[21] Yuanan Diao, Claus Ernst, and Uta Ziegler. The linearity of the ropelengths of
Conway algebraic knots in terms of their crossing numbers. Kobe J. Math., 28(1-
2):1–19, 2011.



Quadrisecants and essential secants of knots | 157

[22] István Fáry. Sur la courbure totale d’une courbe gauche faisant un nœud. Bull.
Soc. Math. France, 77:128–138, 1949.

[23] W. Fenchel. Uber Krummung und Windung geschlossener Raumkurven. Math.
Ann., 101:238–252, 1929.

[24] T. Fiedler and V. Kurlin. Fiber quadrisecants in knot isotopies. J. Knot Theory
Ramifications, 17(11):1415–1428, 2008.

[25] G. Flowers. Satanic and Thelemic circles on knots. J. Knot Theory Ramifications,
22(5):1350017, 16, 2013.

[26] Henryk Gerlach, Philipp Reiter, andHeiko von derMosel. The elastic trefoil is the
twice covered circle. H. Arch Rational Mech Anal, 225(1):89–139, 2017.

[27] OscarGonzalez and JohnH.Maddocks. Global curvature, thickness, and the ideal
shapes of knots. Proc. Natl. Acad. Sci. USA, 96(9):4769–4773 (electronic), 1999.

[28] Mikhael Gromov. Homotopical effects of dilatation. J. Differential Geom.,
13(3):303–310, 1978.

[29] Mikhael Gromov. Structures métriques pour les variétés riemanniennes, volume 1
of Textes Mathématiques [Mathematical Texts]. CEDIC, Paris, 1981. Edited by J.
Lafontaine and P. Pansu.

[30] Mikhael Gromov. Filling Riemannianmanifolds. J. Differential Geom., 18(1):1–147,
1983.

[31] D.Hilbert andS. Cohn-Vossen. Geometry and the imagination. ChelseaPublishing
Company, New York, N. Y., 1952. Translated by P. Neményi.

[32] Youngsik Huh, Kyungpyo Hong, Hyoungjun Kim, Sungjong No, and Seungsang
Oh. Minimum lattice length and ropelength of 2-bridge knots and links. J. Math.
Phys., 55(11):113503, 11, 2014.

[33] Choon Bae Jeon and Gyo Taek Jin. A computation of superbridge index of knots.
J. Knot Theory Ramifications, 11(3):461–473, 2002. Knots 2000 Korea, Vol. 1 (Yong-
pyong).

[34] Gyo Taek Jin. Superbridge index of knots. Kobe J. Math., 18(2):181–197, 2001.
[35] Gyo Taek Jin. Quadrisecants of knots with small crossing number. In Physical

and numerical models in knot theory, volume 36 of Ser. Knots Everything, pages
507–523. World Sci. Publ., Singapore, 2005.

[36] Gyo Taek Jin and Seojung Park. Quadrisecant approximation of hexagonal trefoil
knot. J. Knot Theory Ramifications, 20(12):1685–1693, 2011.

[37] Nicolaas H. Kuiper. A new knot invariant. Math. Ann., 278(1-4):193–209, 1987.
[38] Greg Kuperberg. Quadrisecants of knots and links. J. Knot Theory Ramifications,

3(1):41–50, 1994.
[39] J. W. Milnor. On the total curvature of knots. Ann. of Math. (2), 52:248–257, 1950.
[40] H. R. Morton and D. M. Q. Mond. Closed curves with no quadrisecants. Topology,

21(3):235–243, 1982.
[41] Chad A. S. Mullikin. On length minimizing curves with distortion thickness

bounded below and distortion bounded above. PhD thesis, University of Georgia,
2006.



158 | Elizabeth Denne

[42] Chad A. S. Mullikin. A class of curves in every knot type where chords of high
distortion are common. Topology Appl., 154(14):2697–2708, 2007.

[43] J.-P. Otal. Une proprété de géométrie élémentaire des noeds. Le journal de maths
des élèves, 1(2):34–39, 1994.

[44] Erika Pannwitz. Eine elementargeometrische Eigenschaft von Verschlingungen
und Knoten. Math. Ann., 108(1):629–672, 1933.

[45] John Pardon. On the distortion of knots on embedded surfaces. Ann. of Math. (2),
174(1):637–646, 2011.

[46] Piotr Pierański. In search of ideal knots. In Ideal knots, volume 19 of Ser. Knots
Everything, pages 20–41. World Sci. Publ., River Edge, NJ, 1998.

[47] Helmut Pottmann and JohannesWallner. Computational LineGeometry. Springer
Verlag, 2 edition, 2010.

[48] Carsten Schmitz. The theorem of Fáry and Milnor for Hadamard manifolds.
Geom. Dedicata, 71(1):83–90, 1998.

[49] Friedemann Schuricht and Heiko von der Mosel. Characterization of ideal knots.
Calc. Var. Partial Differential Equations, 19(3):281–305, 2004.

[50] M. Sommer. Visualization in geometric knot theory. http://www3.math.tu-
berlin.de/geometrie/lab/curvesnsurfaces.shtml#knots, 2007.

[51] M. Sommer. Visualization in geometric knot theory. Master’s thesis, TU Berlin,
2007.

[52] John M. Sullivan. Approximating ropelength by energy functions. In Physical
knots: knotting, linking, and folding geometric objects inR3 (Las Vegas, NV, 2001),
volume 304 of Contemp. Math., pages 181–186. Amer. Math. Soc., Providence, RI,
2002.

[53] JohnM. Sullivan andNancyC.Wrinkle. Some ropelength-critical clasps. InPhysi-
cal and numericalmodels in knot theory, volume 36 of Ser. Knots Everything, pages
565–580. World Sci. Publ., Singapore, 2005.

[54] Julia Viro. Lines joining components of a link. J. Knot Theory Ramifications,
18(6):865–888, 2009.



Gyo Taek Jin
Polygonal approximation of unknots by
quadrisecants

Abstract: If a knot K in R3 has only finitely many quadrisecants which meet K at
finitely many points, we use these points to form a polygonal approximation called
the quadrisecant approximationwhich is denoted by ̂︀K. The quadrisecant approxima-
tion conjecture states that ̂︀K has the knot type of K if K is nontrivial. We give examples
of unknots, some polygonal and some smooth, having finitely many but at least two
quadrisecants, for which the conjecture holds.

Keywords: knots, quadrisecants, polygonal approximation

MSC: 57M25

8.1 Introduction

A knot K is the image of a locally flat embedding of S1 in R3, i.e., we do not consider
wild knots. A quadrisecant of a knot K is a straight line which meets K at four distinct
places. The existence of quadrisecants for nontrivial knots was first announced by
Pannwitz in 1933 for polygonal knots and later by Morton and Mond for smooth knots
and by Kuperberg for tame knots.

Fig. 8.1: A quadrisecant

Theorem 8.1.1 ([10, 9, 8]).
Every nontrivial knot has a quadrisecant.

It is not hard to see that every knot can be perturbed to have infinitely many quadrise-
cants. On the other hand, every knot can be perturbed to have only finitely many
quadrisecants which meet the knot at finitely many points.
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Theorem 8.1.2 ([1, 6]).
A polygonal knot satisfying the following conditions has only finitely many quadrise-
cants8.1.
1. No four vertices are coplanar.
2. No three edges are parallel to a single plane.
3. No four edges lie on a single hyperboloid of one sheet.

Definition 8.1.3. A polygonal knot is said to be in general position if it satisfies the
three conditions mentioned in Theorem 8.1.2.

8.2 Quadrisecant approximation of knots

Definition 8.2.1. Let α : [a, b] → R3 be a parametrization of a knot K and let a ≤ t1 <
· · · < tn = t0 < b, for some n ≥ 3. Then the polygonal closed curve

K′ = α(t0)α(t1) ∪ α(t1)α(t2) ∪ · · · ∪ α(tn−1)α(tn)

is called a polygonal approximation, or simply, an approximation of the knot K. It may
happen that K′ has one or more self intersection points. We say that the polygonal
approximation K′ of K is a good approximation if K′ is a knot which has the knot type
of K.

Definition 8.2.2. Suppose that K is a knot having only finitely many quadrisecants
which intersect K in finitely many points. The polygonal approximation of K using
the points on the quadrisecants is called the quadrisecant approximation of K and is
denoted by ̂︀K.

Fig. 8.2: A good approximation and a bad approximation

8.1 Possibly no quadrisecants in the case of an unknot



Polygonal approximation of unknots by quadrisecants | 161

Fig. 8.3: The quadrisecant approximation of a smooth trefoil knot

Figure 8.3 shows that the quadrisecant approximation of a smooth trefoil is a good
approximation and Figure 8.4 shows that the quadrisecant approximations of a polyg-
onal trefoil and a polygonal figure eight knot are good approximations.
Conjecture 8.2.3 (Quadrisecant approximation conjecture8.2).
Let K be a nontrivial knot having only finitely many quadrisecants which intersect K in
finitely many points. Then
1. ̂︀K is a good approximation of K.
2. The quadrisecants of ̂︀K are those of K.

Theorem 8.2.4 ([7, 11]).
The quadrisecant approximation conjecture holds for
1. hexagonal trefoil knots and
2. heptagonal figure eight knots in general position.

Fig. 8.4: The quadrisecant approximations of a polygonal 31 and a polygonal 41

8.2 In the original statement of the conjecture in [6], the word ‘nontrivial’ is missing.
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8.3 Quadrisecants of Polygonal Unknots

In this part, we examined the part 1 of the quadrisecant approximation conjecture for
133 polygonal unknots of which the vertex data were supplied by Claus Ernst [4]. It is
explained in Section 8.5 how we obtained quadrisecants, and in Section 8.6 how we
confirmed quadrisecant approximations are good.

Example 8.3.1. We examined thirty 10-gonal unknots. They have 9.1 quadrisecants
in average. Except the four cases of less than 2 quadrisecants, the quadrisecant ap-
proximations are unknots. The quadrisecant approximation is not defined or not em-
bedded if there exist less than two quadrisecants. Figure 8.6 shows twounknotswhich
have no quadrisecant and only one quadrisecant. In each of Figures 8.7 and 8.8, the
quadrisecants are shown on the left and the quadrisecant approximation is shown on
the right.

0

2

28

0 10 20 30

Fig. 8.5: Distribution of quadrisecants of thirty 10-gonal unknots

Fig. 8.6: 10-gonal unknots with 0 and 1 quadrisecant

Fig. 8.7: A 10-gonal unknot with 9 quadrisecants and its quadrisecant approximation
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Fig. 8.8: A 10-gonal unknot with 28 quadrisecants and its quadrisecant approximation

Example 8.3.2. We examined thirty 20-gonal unknots. They have 305.5 quadrise-
cants in average. All quadrisecant approximations are unknots. Figures 8.10 and 8.11
show two of them.

83

764

0 200 400 600 800

Fig. 8.9: Distribution of quadrisecants of thirty 20-gonal unknots

Fig. 8.10: A 20-gonal unknot with 83 quadrisecants and its quadrisecant approximation
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Fig. 8.11: A 20-gonal unknot with 764 quadrisecants and its quadrisecant approximation

Example 8.3.3. We examined thirty 30-gonal unknots. They have 1577.4 quadrise-
cants in average. All quadrisecant approximations are unknots. Figure 8.13 shows one
of them; the knot, its quadrisecants, and its quadrisecant approximation with those
quadrisecants incident to the new vertices.

847

2395

0 500 1000 1500 2000 2500

Fig. 8.12: Distribution of quadrisecants of thirty 30-gonal unknots

Fig. 8.13: A 30-gonal unknot with 1,431 quadrisecants and its quadrisecant approximation
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Example 8.3.4. We examined thirty 40-gonal unknots. They have 5317.1 quadrise-
cants in average. All quadrisecant approximations are unknots. Figure 8.15 shows one
of them.

3560

7724
0 2000 4000 6000 8000

Fig. 8.14: Distribution of quadrisecants of thirty 40-gonal unknots

Fig. 8.15: A 40-gonal unknot with 6,275 quadrisecants and its quadrisecant approximation

Example 8.3.5. We examined thirteen 50-gonal unknots. They have 13161.4
quadrisecants in average. All quadrisecant approximations are unknots. Figure 8.17
shows one of them.

9175

15920
0 4000 8000 12000 16000

Fig. 8.16: Distribution of quadrisecants of thirteen 50-gonal unknots
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Fig. 8.17: A 50-gonal unknot with 15,920 quadrisecants and its quadrisecant approximation

8.4 Quadrisecants of Smooth Unknots

We constructed seven smooth unknots to examine the part 1 of the quadrisecant ap-
proximation conjecture. It is explained in Section 8.5 howwe obtained quadrisecants,
and in Section 8.6 how we confirmed quadrisecant approximations are good.

Example 8.4.1. Figure 8.18 shows a smooth unknot, its quadrisecants and the
quadrisecant approximation. With a = 1, 000 random choices of four points on this
knot, we performed Newton’s method and obtained b = 184 quadrisecants. Reduc-
ing duplicates, we obtained c = 99 quadrisecants as shown in the middle. Among the
a−b = 816 failures, d = 27 cases diverged and e = 789 cases convergedwith less than
four secant points. The approximation shown on the right is a good approximation.

Fig. 8.18: A smooth unknot with 99 quadrisecants and its quadrisecant approximation
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Example 8.4.2. Figure 8.19 shows a smooth unknot.We performedNewton’smethod
with a = 1, 000, b = 143, c = 107, d = 28, and e = 829 as in Example 8.4.1, and
obtained a good approximation.

Fig. 8.19: A smooth unknot with 107 quadrisecants and its quadrisecant approximation

Example 8.4.3. Figure 8.20 shows a smooth unknot.We performedNewton’smethod
with a = 1, 000, b = 54, c = 31, d = 19, and e = 927 as in Example 8.4.1, and obtained
a good approximation.

Fig. 8.20: A smooth unknot with 31 quadrisecants and its quadrisecant approximation
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Example 8.4.4. Figure 8.21 shows the smooth unknot parametrized by⎧⎪⎪⎨⎪⎪⎩
x =

(︀1
2 cos 3 t + 4 + cos 2 t

)︀
cos 6 t

y =
(︀1
2 cos 3 t + 4 + cos 2 t

)︀
sin 6 t 0 ≤ t ≤ 2π

z = 4 sin 2 t − 1
2 sin 3 t

We performed Newton’s method with a = 1, 000, b = 129, c = 51, d = 6, and e = 865
as in Example 8.4.1, and obtained a good approximation.

Fig. 8.21: A smooth unknot with 51 quadrisecants and its quadrisecant approximation

Example 8.4.5. Figure 8.22 shows the smooth unknot parametrized by⎧⎪⎪⎨⎪⎪⎩
x =

(︀1
2 cos 5 t + 4 + cos 3 t

)︀
cos 9 t

y =
(︀1
2 cos 5 t + 4 + cos 3 t

)︀
sin 9 t 0 ≤ t ≤ 2π

z = 4 sin 3 t − 1
2 sin 5 t

We performed Newton’s method with a = 1, 000, b = 152, c = 121, d = 44, and
e = 804 as in Example 8.4.1, and obtained a good approximation.

Fig. 8.22: A smooth unknot with 121 quadrisecants and its quadrisecant approximation
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Example 8.4.6. Figure 8.23 shows the smooth unknot parametrized by⎧⎪⎪⎨⎪⎪⎩
x =

(︀1
2 cos 8 t + 4 + cos 3 t

)︀
cos 12 t

y =
(︀1
2 cos 8 t + 4 + cos 3 t

)︀
sin 12 t 0 ≤ t ≤ 2π

z = 4 sin 3 t − 1
2 sin 8 t

We performed Newton’s method with a = 1, 000, b = 217, c = 197, d = 37, and
e = 746 as in Example 8.4.1, and obtained a good approximation.

Fig. 8.23: A smooth unknot with 197 quadrisecants and its quadrisecant approximation

Example 8.4.7. Figure 8.24 shows the smooth unknot parametrized by⎧⎪⎪⎨⎪⎪⎩
x =

(︀1
2 cos 7 t + 4 + cos 2 t

)︀
cos 10 t

y =
(︀1
2 cos 7 t + 4 + cos 2 t

)︀
sin 10 t 0 ≤ t ≤ 2π

z = 4 sin 2 t − 1
2 sin 7 t

We performed Newton’s method with a = 1, 000, b = 145, c = 117, d = 46, and
e = 809 as in Example 8.4.1, and obtained a good approximation.

Fig. 8.24: A smooth unknot with 117 quadrisecants and its quadrisecant approximation
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8.5 Finding Quadrisecants

For a polygonal knot K, we parametrize four distinct edges by

α, β, 𝛾, δ : [0, 1) → R3

which have constant tangent vectors coherent with an orientation of K. A line passing
through α(t1) and β(t2) can be parametrized by

q(s) = (1 − s)α(t1) + sβ(t2), s ∈ R. (8.5.1)

✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭

☎
☎
☎
☎
☎☎

❉
❉
❉
❉
❉❉

❈
❈
❈
❈
❈

q(s)
s = 0

s = 1
s = s3

s = s4
α(t) β(t) 𝛾(t) δ(t)

It is a quadrisecant of K if it also intersects 𝛾 and δ. If the system

q(s3) = (1 − s3)α(t1) + s3β(t2) = 𝛾(t3)
q(s4) = (1 − s4)α(t1) + s4β(t2) = δ(t4)

can be solved for the six variables s3, s4 ∈ R, t1, t2, t3, t4 ∈ [0, 1) then each solution
determines a quadrisecant parametrized by (8.5.1).

For a smooth knot K, we consider a parametrization by a differentiable map
f : [a, b] → R3 which is one-to-one for a ≤ t < b and f (a) = f (b). If there exist
t1, t2, t3, t4 ∈ [a, b) such that the four points f (t1), f (t2), f (t3), f (t4) are distinct and
collinear, then there exist nonzero real numbers λ and µ satisfying

f (t3) − f (t1) = λ(f (t2) − f (t1)), f (t4) − f (t1) = µ(f (t2) − f (t1))

Therefore, finding a quadrisecant of K is equivalent to finding a zero of the vector val-
ued map F = (F1, F2, F3, F4, F5, F6) : R6 → R6 given by

F1(t1, t2, t3, t4, λ, µ) = x(t3) − λ x(t2) + (λ − 1)x(t1)
F2(t1, t2, t3, t4, λ, µ) = x(t4) − µ x(t2) + (µ − 1)x(t1)
F3(t1, t2, t3, t4, λ, µ) = y(t3) − λ y(t2) + (λ − 1)y(t1)
F4(t1, t2, t3, t4, λ, µ) = y(t4) − µ y(t2) + (µ − 1)y(t1)
F5(t1, t2, t3, t4, λ, µ) = z(t3) − λ z(t2) + (λ − 1)z(t1)
F6(t1, t2, t3, t4, λ, µ) = z(t4) − µ z(t2) + (µ − 1)z(t1)
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where f (t) = (x(t), y(t), z(t)) for t ∈ [a, b]. With an initial guess v0 ∈ R6 for a solution
of the equation F(v) = 0, the sequence

vn+1 = vn − (DF(vn))−1F(vn)

may converge to a solution. This is Newton’s method we used to find quadrisecants in
Examples 6–12.

8.6 Test for Good Approximations

Let K be a polygonal knot. If there is a triangular disk ∆ which intersects K along two
of its edges and nowhere else, then the portion of K along the two edges of ∆ can be
replaced by the third edge of ∆ without changing the knot type. Such a move is called
a triangular move if ∆ contains three vertices of K, and a corner move if ∆ contains a
single vertex of K. If ∆ contains two vertices of K, then it can be described as a combi-
nation of a corner move followed by a triangular move.

Fig. 8.25: A triangular move

Fig. 8.26: A corner move

After finding each quadrisecant approximation, we obtained a sequence of trian-
gular moves and corner moves to deform the polygonal curve into a triangle; which
shows that the quadrisecant approximation is an unknot. We first scanned through
the vertices at which the corner moves can be performed. If we ran out of such ver-
tices, we broke the edges to perform corner moves. Such processes were successfully
performed to result in triangles.

We used Maple 18.02 to draw knots and unknots, to find quadrisecants, to con-
struct quadrisecant approximations, and to find sequences of triangular moves and
corner moves to show quadrisecant approximations are unknots.



172 | Gyo Taek Jin

Acknowledgment: Theauthorwould like to thankClausErnst for supplying these ran-
dom unknot data [4], and the reviewer for valuable comments and suggestions.

Funding: This work was supported by the National Research Foundation of Ko-
rea(NRF) grant funded by the Korea government (No. 2011-0027989).

Appendix

The vertices of the 10-gonal unknots of Figure 8.6

(Left Figure)
[0, 0, 0],
[0.26079016715637726, −0.6651136228131733, 0.6997230576898867],
[0.3851146726381711, 0.32376039919446953, 0.6180432809080222],
[0.29607875594678595, −0.26743750167257857, −0.18355365493275347],
[−0.5165348788026222, −0.4202409485147839, −0.7459682593417223],
[−0.2605699687081926, 0.5310040460410358, −0.5738783841809526],
[−0.21143605902512672, 0.4897806885652303, 0.4240627431996551],
[−0.9792224753363977, 0.030222606418956677, −0.02237917694442637],
[−0.3139988528585777, 0.30446438577681256, 0.6720767097410592],
[0.6397169293922946, 0.5647064005590116, 0.5214105210067966]

(Right Figure)
[0, 0, 0],
[0.8284426241853787, −0.13711967475775255, −0.5430294773096314],
[0.45649991860657285, 0.5694289821222773, 0.05900675019478009],
[0.5844719512915223, −0.22266670353456428, −0.5378245355253136],
[−0.20529732546788465, 0.28931020656749296, −0.19997230005946198],
[−0.5958278971220673, 0.28647492442354117, 0.7206132927990302],
[0.3237832719482289, 0.3557541454361506, 0.3339407087475498],
[−0.5730602105134658, 0.5135412952370683, −0.07930859049406143],
[−0.5605933955343954, −0.3916939036304804, 0.3454193380148927],
[0.33521831640868194, −0.5627213045367457, 0.7556278275477895]
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The vertices of the 10-gonal unknot of Figure 8.7

[0, 0, 0],
[0.2599759088879847, 0.7063479811963731, −0.658395820352525],
[0.3232460020389661, −0.0708267405320456, −0.03229970375458519],
[−0.3890093612580253, −0.577239084649801, 0.45374436336261653],
[0.5985360102269767, −0.43015793235373406, 0.39787600113666116],
[−0.335615146452009, −0.4896887492626049, 0.7497533921601192],
[0.16214824879081988, 0.2326112149861075, 0.269634277770117],
[−0.17941933018462342, 0.5192489431721007, −0.6254469485849145],
[0.10970548156622802, −0.07398668530301361, 0.1258707820309488],
[0.2805221340395753, 0.8722168474076153, 0.40068079990461647]

The vertices of the 20-gonal unknot of Figure 8.10

[0, 0, 0],
[0.8482169711790621, 0.40732568763520016, −0.338546531508343],
[−0.08769695736784196, 0.0951362437632568, −0.501650392550402],
[−0.41095356729969773, −0.3391937227912085, 0.33910084550290054],
[0.16559924648720026, −0.2840335049210709, −0.4760949612079347],
[0.5670984753772971, 0.3329930052222135, 0.2007186431035161],
[−0.11690921121550236, −0.21262685423432814, 0.684900895616545],
[−0.05162718976454717, 0.670660755319105, 0.22063668583437912],
[0.22992403518773627, 0.24603905626447556, −0.6398430178308662],
[−0.5451058080348717, 0.13296592839047053, −0.01811702523675838],
[−0.38299286673662986, −0.2901069529831363, 0.8733585668631414],
[0.07820219100325038, −0.5735108573538344, 0.032536739301705614],
[−0.8321749557919547, −0.1981170757345217, −0.1415119875381466],
[−0.15270625050450992, −0.7460520028999029, −0.6294562406319523],
[−0.658560049051659, 0.0931762686547083, −0.4299372121688003],
[−0.3760613614914784, 0.4254692083888686, 0.46993827573472363],
[−0.18227772625757413, 0.6421489541499391, −0.48687821162972966],
[0.6200378545169324, 0.059516981894417724, −0.6166075211634959],
[0.15289516739144102, −0.8197458643172172, −0.5234702185560548],
[0.4288551720589901, 0.06413567871531958, −0.9010936999635384]
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The vertices of the 30-gonal unknot of Figure 8.13

[0, 0, 0],
[0.9559164467618607, −0.25443934965439446, 0.1465754555088525],
[0.02804655254704769, −0.3985822747142186, −0.19734354158928644],
[0.2230273288845479, 0.34936016038878287, 0.43713625370053855],
[−0.1423832631217396, 0.7875966440994483, −0.3840968944337329],
[0.30538251681348216, −0.10105737443120202, −0.4830910441009188],
[0.3012109144597282, 0.8341007496167119, −0.12888505775824197],
[0.3461536690536176, 0.2106052374462082, −0.9094191666303365],
[0.13644196659122435, 0.867317947629769, −0.18502326787490653],
[0.6159415857389964, 0.06346331321990045, −0.5370145205715016],
[−0.07459829470376207, −0.5849247254798481, −0.21647181703702034],
[−0.6456744097860264, −0.11645100799238642, 0.4576234631764124],
[0.013065275565096495, 0.6158901155248228, 0.6300720228951164],
[0.3257452740151201, −0.3163186077957065, 0.44781364933054646],
[−0.3692232349170414, 0.3650512940457395, 0.21813163336676566],
[0.5962648581644622, 0.522606432033769, 0.4255180374809578],
[0.4216649068013401, −0.4357824399672629, 0.19967378360544916],
[0.6891481900165033, 0.5134219687382546, 0.03395207804324586],
[0.48005323271764483, −0.34986327834578396, 0.4933189042282012],
[−0.07222465637064997, −0.5869713688224925, −0.30591127954532604],
[−0.1301082479344901, 0.2085509519106162, 0.29724187434104754],
[0.485784516741387, 0.19721675867335445, −0.49050658708783085],
[−0.41900114810318617, 0.2874375363705996, −0.07430577982832054],
[−0.5142445788646942, −0.6836888594256834, −0.2930344068630529],
[−0.13620686745409896, −0.6200714061477229, 0.6305674058191582],
[0.49847904544111116, −0.324346799305082, −0.0833798953734013],
[0.1741444901061093, 0.6016937970515704, −0.2763977963957214],
[−0.7272768925103164, 0.5408356549693376, 0.1522463188143096],
[−0.24741374056874957, −0.3060880701790464, 0.38126937265275906],
[0.646115226201013, −0.7282664692363255, 0.2283923471950623]
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Erin Brine-Doyle, Madeline Shogren, Emily Vecchia, and Eric
J. Rawdon
Open knotting

Abstract: Traditional topological knot theory mainly studies knotting within closed
curves. However, much of what people consider knotting in everyday life, e.g. in
shoelaces, involve tangled open rope-like materials with two free ends. Furthermore,
knottinghas beendiscovered in openDNAandprotein chains. Several notions of open
knotting have been defined and applied in different situations. In this paper, we sur-
vey the different techniques used for measuring knotting in open chains, including
some discussion of different properties of the techniques. We present the knotting fin-
gerprint, a means for visualizing the knotting of subchains of open and closed chains
via image matrices. Finally, we show image matrices for some random closed knots
and relate features of the matrices with features of the configurations.

9.1 Introduction

From tying shoelaces to detangling headphone cables, knotting is ever-present in
modern day life. Knotting can be decorative (as in Celtic art and architecture), pro-
vide utility (as in boating applications and the manufacturing of clothing), and be
used for safety (as in recreational climbing and surgical sutures). In addition to the
human scale, knotting is present at microscopic scales (in DNA [35, 37] and proteins
[3, 18, 26, 38, 44]), and may even be present at the subatomic scale in tightly knot-
ted glueballs [5, 6, 7]. In many of these applications, the knotting is in an open arc
(which we will call an open chain), i.e. the knotting occurs in a non self-intersecting
arc with two free ends. Traditional knot theory, however, works predominantly with
closed curves, i.e. curves that form loops. So while there is a long and rich history of
studying knots mathematically, little of that work involves open chain knotting which
might, indeed, be most relevant scientifically.

Knotting has been studied mathematically since the 1800s with Gauss’s integral
tomeasure the amount of interlinking between two loops [15]. Perhapsmost famously,
Lord Kelvin proposed that atoms were vortices in the æther (a hypothetical material
that was thought to permeate the universe) forming different types of knots [45]. This
hypothesis (which, ultimately, was discredited) inspired Peter Guthrie Tait to develop
the first table of mathematical knots [40, 41, 42]. A mathematical knot is a simple
closed curve, a one-dimensional non self-intersecting loop with no free ends. Given a
mathematical knot, one can deform space (including the knot) continuously to obtain
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equivalent knots. These topological deformations are akin to manipulating a piece of
knotted rope, although the “rope” is infinitely stretchy, infinitely thin, and cannot be
fully pulled tight. This equivalence then divides mathematical knots into classes of
curves called knot types, which are the objects studied in knot tables.

Applying the standard knot theory equivalence to open chains (with two free
ends) turns out to be quite unrewarding since any open chain can be deformed topo-
logically to a straight line segment, and thus all open curves are equivalent. So while
we may perceive knotting in an open curve, the traditional mathematical techniques
are not capable of classifying that entanglement. Still, as humans, we know knots
when we see them, even if the curve happens to be open. This human intuitive notion
of knottingwas originally referred to as the “reasonable-person test” byMansfield [25].
The question is how to take this human intuitive notion of knotting and make it con-
sistent with the mathematical theory. In other words, how can we define knotting in
open chains so that it coincides with the opinion of a reasonable person?

While it is interesting, intellectually, to consider how onemightmeasure knotting
in open curves, the desire to formally analyze these structures has been enhanced by
the discovery of entanglements within proteins. In particular, anyonewith an internet
connection nowhas access to the geometric structure of a dizzying number of proteins
via the Protein Data Bank (PDB) [2]. Currently, the KnotProt database [18] lists over
1200 structures that havebeen classified as containing some sort of knotting (although
wewait for the next section to discussmore specifically about howknotting is detected
in proteins). Proteins are chains of (typically hundreds of) amino acids. Each amino
acid contains an alpha carbon.When researchers talk about knotting in proteins, they
are really talkingabout knottingwithin the alpha carbonbackbone (i.e. theopenchain
polygonwith alpha carbons as vertices and edges joining alpha carbons whose amino
acids are joined by peptide bonds).

To provide a brief history of knotting in proteins, the first knotted protein was dis-
covered by Richardson in 1977 [34]. In 1994, Mansfield surveyed known protein struc-
tures (≈ 400 from the Brookhaven Protein Database) [25] in an attempt to find knots,
but concluded “In summary, none of the 400 protein structures analyzed were found
to have knots. Only one, human carbonic anhydrase B, comes close.” He also ques-
tioned how one should define knotting in proteins, since proteins are open chains. In
1997, Mansfield used a different technique [26] to identify two knotted proteins (one
being Richardson’s knot [34], the other having been identified by Takusagawa and
Kamitori in 1996 [43]). However, both of these knots were “shallow”, i.e. the removal
of a few amino acids on either end would remove the knot. Later, Taylor [44] discov-
ered a “deep” knot (meaning that the knotting occurs away from the endpoints, deep
into the protein), which cemented the idea that knotting could exist in proteins. The
most complicated knot seen to date is the Stevedore knot, 61, from [3]. See [12] for a
recent survey on knotting in proteins.

In Mansfield’s second paper on protein knotting [26], he made use of the fact that
the ends of the proteins are on or near the “exterior” (i.e. the endpoints lie on the
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convex hull), in which case one can unobtrusively close the protein chain via a simple
arc that avoids the entangled portion (as in Figure 9.1A). If one were interested only
in classifying knotting in such open chains, then the classification is straightforward
and relatively unambiguous.

However, the knotting of an entire structuremaynot reveal all of the entanglement
within a curve. The primary example of this behavior is with slipknots, where the en-
tire chain is unknotted but there are subarcs of the chain (which we call subchains)
which are knotted. Yeates’s group did the first PDB search for slipknots, detecting 37
slipknotted protein chains [20]. Currently, the KnotProt [18] database has cataloged
over 400 slipknotted structures in the PDB. When analyzing subchains, we necessar-
ily enter into situationswhere the endpoints are no longer on the “outside”, but rather
are embedded directly in the complexity that defines the entanglement. In such cases,
the classification of the knotting in the open chain ismore ambiguous, oftentimes very
ambiguous.

The purpose of this note is to survey the different notions that have been proposed
formeasuring knotting in open chains. In Section 2, we introduce the several different
definitions and discuss some of the advantages and disadvantages of each approach.
In Section 3, we present image matrices which communicate the knotting seen within
subchains of open and closed chains. In Section 4, we show some examples of im-
agematrices for random closed chains and discuss some of the relationships between
features of the image matrices and features of the corresponding configurations.

9.2 Defining open knotting

We should begin by saying that there is no universally agreed upon definition for knot-
ting in open chains. Knotting traditionally has been studied on closed curves and an-
alyzed topologically, in which case the equivalence allows a sort of movement of the
configurations. For open chains, we enter into more of a static state where small per-
turbations of a configuration can immensely change our perception of the knotting
present in the curve. This paradigm shift is not unprecedented; the study of knot-
ting in physical systems is replete with examples of searching for and studying certain
special configurations, e.g. the minimizing configurations of the Möbius Energy (see
e.g. [14, 22, 31]) or ropelength (see e.g. [4, 16, 23]). One of the reasons that there is no
agreed upon definition is because different research groups from different disciplines
have had different goals at different times. Currently, a main (and classic) tension is
the balance between a definition having attractive properties versus being quick to
compute. Having a “bad” definition that can be computed easily is not optimal, nor is
having a “good” definition which is incomputable. So a compromise must be reached
between the speed of computability and acceptance of limitations in the approach,
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A B C

Fig. 9.1: Three examples of open chains that should be classified as being knotted by a reasonable
classification scheme. The example in A is what most people would consider to be a knot. This is
known as an overhand knot and when closed in a simple fashion becomes a trefoil knot, 31. In B
and C, we have closed knots from which a small part of the curve has been removed. Here again, we
would expect a reasonable classification scheme for open chains to count these as being knotted,
although the more precarious positioning of the opening in C may make us think that it is not as
robustly knotted as B or A.

and that delicate balance leads to different opinions depending on the goals of the
research.

In an attempt to define a mathematical notion of knotting for open chains, we be-
gin by imagining properties that one might like the definition to satisfy. We discuss
four such properties. First, the definition should be consistent with our intuition. In
particular, the classification of the knotting in open entangled chains should roughly
match the opinion of a reasonable person. For example, an overhand knot pulled
tightly should correspond to a trefoil knot (as in Figure 9.1A). Second, open knotting
should converge in some fashion to the classical knot theory of closed curves. In other
words, by removing an arbitrarily short portion of a closed knot (see Figure 9.1, B and
C), the definition should classify the open chain as the same knot type as the knot type
of the original closed knot. Third, the definition should be well-defined, computable
on a computer (at least for polygons), and not rely on any human interaction. Fourth,
the classification should be stable in some sense. For example, an arbitrarily small
perturbation of the endpoints of a given chain should not change the classification.
Furthermore, a good classification scheme should minimize the effect of small per-
turbations on the classification. Millett mentioned two of these properties in [29] (he
called the second property “continuity” and the fourth property “robustness”).

Specifically, our goal should be to define a notion of open knotting that is applica-
ble to all open chains, not just a subclass of open chains (like full protein-like chains).

Researchers have defined several notions of knotting for open curves. In the re-
mainder of this section, we introduce several different techniques used to measure
knotting in open chains and discuss some of the properties of these techniques. In
particular, we focus on how these algorithms behave on polygons, since this is the
class of curves onwhich the algorithms are typically applied. All of the techniques de-
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fined to date have relied (to some extent, at least) on closing the open chain in one or
more ways and using the knot type classifications from traditional mathematical knot
theory. We discuss two different classes of techniques, single closure and stochastic,
as well as some related techniques and the traditional topological approach to study-
ing knotted arcs in the subsections below. Figures 9.6 and 9.7 show examples of the
single closure and stochastic techniques applied to a common open chain.

9.2.1 Single closure techniques

For the single closure techniques, a single closed knot is generated for a given open
chain, and the knot type of the open chain is classified as being the knot type of this
closed knot. The techniques in this class have the advantage that they are quick to
compute. For chains with the endpoints near the “outside”, e.g. most proteins, the
single closure techniques (with the exception of direct closure) are consistent with
the more involved techniques of the following section. When the endpoints are well
within the convex hull of an open chain, the classifications via single closure tech-
niques could very well anger our reasonable person, i.e. the knot type classifications
of open chains do not match our intuition. Since there is no agreed upon definition of
open knotting, these classifications are not “wrong” per se, but wemight be able to do
better in some situations. However, for the evaluation of knottingwithin large samples
of open chains, the statistical differences between single closure techniques andmore
complicated schemes may justify (depending on one’s goals) the speedup gained by
employing single closure techniques. For example, in [19], the authors estimated the
error in using a single closure technique for 500-edge freely fluctuating polygons by
measuring the probability of finding a “knotted domain” within subarcs of random
closed unknots. They report an estimated ≈ 3% error, although we note that some of
these knotted domains within the unknots may not actually be “errors” but rather de-
tected slipknotting. Using a single “topological neutral closure” and the same error
estimation on lattice polygons of length 500, an error of ≈ 0.2% was reported in [27].
Because of the self-avoiding nature of lattice polygons (i.e. the chains have an inherent
thickness and, thus, tend to be more spread out), one might expect smaller errors in
analyzing lattice polygons. Aswith the case of freely fluctuating chains, the algorithms
may be detecting slipknotting. Also, lattice polygons with 500 edges are considerably
more constrained than 500-edge freely fluctuating polygons, so these errors should
not be compared directly. It is not clear exactly how to extrapolate the errors to other
types of knots or to polygons with more edges, but the reported errors suggest that
single closure techniques can be effective if one is willing to tolerate some error.
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A

B

Fig. 9.2: Direct closure oftentimes does not match our intuition for knotting, even when the end-
points lie on the convex hull. The closing segment (in blue) can seemingly remove (A) or add (B)
knotting.

9.2.1.1 Direct closure

The easiest way to close an open chain is to simply connect the two endpoints with
a straight line segment. The main disadvantage is that the closing line segment can
interact with the knotting (and can be much longer than the segment length of the
polygons), and thus can introduce knotting or remove knotting that, intuitively, one
expects the technique to capture. Arguably the simplest example of real-life knotting
is shown in Figure 9.1A where an overhand knot has been tied and the ends have
been pulled away from the entangled portion of the curve. Most reasonable people
would say that this configuration is knotted. However, by joining the endpoints with
a straight line segment, one obtains an unknot (see Figure 9.2A). Similarly, one can
construct configurations that most people would classify as unknotted but whose di-
rect closure is arbitrarily complex (see Figure 9.2B). In particular, this technique often
does not match our intuition for open chains whose endpoints lie on the “outside”
of the chain. Note that no one has used this technique as is and we mention it here
only for its simplicity. However, in a future paper we show that direct closure actually
coincides with other notions more often than one might expect.
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Fig. 9.3: For the center of mass technique, a subchain obtained by removing an arbitrarily short
arc from a closed chain can yield a different knot type than the closed chain. In this example, the
subchain of the KnotPlot 41 knot yields an unknot when the center of mass technique is employed.

9.2.1.2 Center of mass

For this technique [24], the center of mass of the open chain (the mass of which is
assumed to be equally distributed at the vertices of the polygon) is computed. Two rays
are then created, starting at the two endpoints of the chain. The direction in which the
ray extends from each endpoint is given by the vector from the center of mass to that
endpoint. The closed knot is defined by connecting the rays at infinity. On a practical
note, we really do not need to connect the rays at infinity: once the rays have pierced
the convex hull of the chain, we can cut the rays and connect via a simple polygonal
arc that lies outside of the convex hull. This technique, at least in part, is an attempt
to remedy the problems of direct closure with the examples of Figure 9.2, and indeed
this technique is successful in doing so.

One disadvantage of this technique is that when an endpoint of the chain is near
the center of mass, a small perturbation of the endpoint will wildly affect the direc-
tion of its associate ray, and thus the perceived knot type. In the non-generic situation
where the endpoint is at the center of mass, the technique is undefined. Also, there
are a number of situations where this techniquemight not match our intuition or con-
verge to standard knot theory. For example, in Figure 9.3, a closed 41 knot has a small
portion of the curve removed and is classified as an unknot.
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9.2.1.3 Minimal interference

Theminimal interference technique [46] might be thought of as an attempt to wed the
best of the previous two techniques. A main problematic situation for direct closure
is when the two endpoints are far away from each other. On the other hand, it seems
somewhat silly to extend rays to infinity (as in the center of mass technique) when the
two endpoints are close together. In theminimal interference technique, theminimum
distance from each endpoint to the convex hull is computed. If the sum of those two
distances is less than the distance between the endpoints, then edges are added from
the endpoints to the closest points on the convexhull and the chain is closedbyadding
a simple arc on the outside of the convex hull between these points on the convex hull.
If the distance between the endpoints is smaller than the sum of the two distances to
the convex hull, then direct closure is used.

From a practical standpoint, this technique seems quite reasonable. The main
problem comes from instability and not being well-defined. First, the distance from
a point to the convex hull need not be realized uniquely, and the knots obtained by
connecting to the different faces, in these cases, need not all have the same knot type.
So defining the knot type via the closure on the convex hull is not well-defined. Note,
however, this property is non-generic, and so this is not likely to be a problem com-
putationally. Second, when the distance between the endpoints is equal to the sum of
the distances to the convex hull, one has to decide which of the two choices to make,
although, again this is a non-generic property. Third, when the sum of the distances
to the convex hull is very close to the distance between the endpoints, a small pertur-
bation of the chain can create a transition between the two protocols. For example,
in Figure 9.4, we have removed a small portion of a KnotPlot 92 knot [36] where the
straight line distance and sumof the distances to the convex hull are nearly equal. The
direct closure creates a 92 knot, but the arc proceeding to the convex hull creates an
unknot. Similarly, we could create configurations where a small perturbation creates
an arbitrarily large difference in the complexity detected by the two protocols.

9.2.1.4 Simplification schemes

For the analysis of protein knotting, one of the earliest (andmost popular) techniques
involves simplifying the chain and is referred to as the KMT algorithm [21, 44] (al-
though the ideas trace back at least to [33]). Protein chains are complicated. Trying
to find a knot visually in the alpha carbon backbonewill quickly leave the viewer with
a headache. The goal of the simplification schemes is to eliminate unnecessary detail,
reducing the number of vertices and edges to create an equivalent, yet much shorter,
chain which is much easier on the human visual cortex. This simplication is accom-
plished by searching for triangles formed by consecutive edges that are not pierced by
any edge of the chain. When such a triangle is not pierced, one can remove the mid-
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92 01

Fig. 9.4: For the minimal interference technique, a small perturbation of the vertices can lead to
large differences in the knot detected. In this example of a KnotPlot 92 knot [36], a 92 knot is de-
tected when closed directly (left, red arc), but an unknot, 01, is detected when the arc is closed via
proceeding to the convex hull (right, blue arc).

dle vertex of the consecutive edges and replace the pair of consecutive edges with one
edge between the two remaining endpoints (see Figure 9.5). For polygons whose end-
points are on the “outside” (as is typically the case in proteins), this scheme seems to
work quite well. One (usually) obtains a simple chain and connecting the endpoints
via a large external loop provides a closed knot for classification. However, when the
endpoints are not on the “outside”, such as in the search for slipknots or any sort of
analysis of knotting in subchains, simplification is not effective. Furthermore, the or-
der in which the delta moves are performed can affect the knot type classification of
the chain, even when the endpoints are on the outside [28]. As such, classification
by simplification is not well-defined mathematically and, thus, is not a good choice
for classifying knotting in all open chains (although, to be fair, it was not designed to
perform that task).

9.2.2 Stochastic techniques

For the stochastic techniques, the overall philosophy is that the open chain is an in-
complete form, having the potential to be mathematically knotted but not, at this
stage, having achieved its potential. The open chain is seen as a subchain of a class
of closed knot configurations, where the class of configurations depends on the tech-
nique. As such, the “knot type” of the chain is a probability distribution of knot types
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Fig. 9.5: A delta move can simplify a configuration to make it easier to see the underlying knotting in
a chain. If the shaded triangle is not pierced by any edge from the polygon, then the two edges can
be replaced with the dashed edge. Note, however, that Millett et al. [28] showed that the order of
the delta moves can affect the knot type classification of open chains.

from the given class, and this probability distribution is approximated by sampling
from the distribution. The stochastic techniques match our four criteria quite well.
The main disadvantages are that 1) wemust approximate the probability distribution,
and 2) the algorithms can be orders of magnitude slower than the single closure tech-
niques. Still, the authors hope to convince the reader that the stochastic techniques
are the right way to think about open knotting.

9.2.2.1 Uniform closure

The idea here is to extend parallel rays from the endpoints of an open chain to infinity
(like in the center of mass technique) and connect the rays at infinity. In particular,
for a given open chain and a given direction (seen as a point on the unit sphere S2),
parallel rays are extended from both of the endpoints in the given direction and the
configuration is closed at infinity. The “knot type” of the open chain is then the prob-
ability distribution of knot types obtained by completing this closure over all points
on S2. Millett, Dobay, and Stasiak [28] defined the original version of this technique
with a slight alteration: in their computations, they chose points on a large sphere
containing the open chain. The differences between connecting at infinity and via a
large sphere are likely negligible. Still, connecting to a large sphere requires the choice
of a center for the sphere and a radius and, therefore, requires some human choices
that we would like to avoid [30].

Note that one could choose to send the rays to infinity in independent directions
(S2 × S2 worth of choices) instead of one common direction (S2 worth of choices).
In fact, S2 × S2 was Mansfield’s choice in his first knotted protein paper [25]. In
[17, 18, 32, 38], we use one common direction. This decision is duemostly to computa-
tion speed. Typically,wehaveused 100 closure directions to obtain our approximation
of the probability distribution. Sampling fromaprobability distribution, instead of us-
ing a single closure, already puts the stochastic techniques at a significant disadvan-
tage speed-wise. To get a similar density of sampling on S2 × S2, we would need 1002

sample directions. There might be some advantages of sampling from S2 × S2 in terms
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of matching our intuition for knotting, although, to date, no one has systematically
analyzed the differences.

Also, there are somehistorical reasons for using commondirections. In particular,
the average crossing number is computed by averaging the number of crossings seen
as a configuration is projected over all directions in S2 (writhe is another example).
Therefore, using common directions is akin to computing the average knotting of the
given chain.

Because this is the technique we have used in [17, 18, 32, 38], we discuss briefly
its implementation. We use a fixed set of 100 directions (i.e. 100 points on S2) that are
roughly uniformly spread over the unit sphere. The early papers (e.g. [24, 25, 28]) used
random directions. Unfortunately, random is seldom uniform and the goal in sam-
pling the directions is to get a good approximation of the probability distribution of
knot types. So we have chosen uniform fixed directions (which also guarantees con-
sistent results). We have computed the spherical Vornoi cells associated with these
fixed directions and we weight the knot types obtained from the closure in a given
direction by the relative surface area of the Vornoi cell for the corresponding point
on S2. The choice of 100 directions is somewhat arbitrary, but we did do some analy-
sis of the effect. More specifically, in the summer of 2012 undergraduate University of
St. Thomas students Nicole Lopez and Elizabeth Annoni explored the effect of using
different numbers of closures and different algorithms for generating roughly uniform
sets of points on the sphere inmeasuring the knotting of open chains.Without getting
into the details, we found that the roughly uniform set of points using Martin’s Poly-
hedra [1] has good uniformity and usingmore than 100 closures has a negligible effect
on the approximation of the probability distribution. The students also computed the
relative surface area of the Vornoi cells that we use. In addition, as mentioned above,
we do not really close the knot at infinity.We compute themaximumdistance between
any two vertices on the knot, and then extend the rays twice that distance in the given
directions and connect with an arc of line segments that avoids piercing through any
of the entanglement.

Once one obtains an approximation of the probability distribution, there is still
the question of what “knot type” to call a given chain. Certainly, it is not efficient to
report a probability distribution as the knot type classification for an open chain. For
the sake of definiteness, it is desirable in many situations to choose a classification of
the knot type of an open chain. In such cases, we typically classify the knot type of
a given open chain as the knot type that appears most frequently [17, 18, 32, 38]. The
advantage of assigning the knot type with the highest probability to the open chain
is that every open chain gets a classification as a knot type. The main disadvantage
is that sometimes there are two (or more knot types) with similar probability values.
In such cases, our approximation of the probability distribution might not be precise
enough to truly classify the predominant knot type within the closures. One could
samplemore directions for these open chains. This adaptive approachhas somemerit,
although it is not something that we have implemented. However, most open chains
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have one knot type that appears more than 50% of the time, and typically even at
much higher percentages. For example, in a sample of 1000 random equilateral open
chainswith 300 edges,Millett [29] reported that 99.6%of the chains had one knot type
which appearedwith over 50%probability (note that Millett used the original strategy
of closing to points on a large sphere with random directions for closure, although
this approach is not likely to alter the statistics considerably). Using the 50% cutoff
also seems like a reasonable approach to classifying the knot type of an open chain,
although it leaves the classification of some open chains as being ambiguous (i.e. no
classification).While we have used the predominant knot type for classification, there
certainly are contexts where a 50% cutoff might be preferable.

9.2.2.2 Random arc closure

Recall that the strategy with the stochastic techniques is to approximate a probabil-
ity distribution one obtains by closing the configuration in some fashion. Perhaps the
most natural way to generate such an ensemble is by closing the configuration by
connecting the endpoints with random arcs. Cantarella et al. [9] have created an algo-
rithm (and software) for efficiently generating random equilateral polygons and ran-
dom equilateral arcs with a given distance between the endpoints. The main problem
with this approach is that one must choose the length of the random chain (i.e. the
number of edges) with which to close a given open chain.

Note that in an upcoming sequence of yet untitled papers, the authors of this pa-
per, in collaboration with Cantarella and Shonkwiler, are analyzing how well some
of the different strategies presented here predict the knot type of a closed knot given
some subchain portion of the knot. In such a case, we knowprecisely howmany edges
have been removed to extract the open chain from the closed knot, so we can replace
themissing portion of the knotwith randomarcswith the correct number of edges. For
a randomopen chain (or a protein, for example), it is not so clear howonemight deter-
mine an appropriate number of edges with which to connect the endpoints with ran-
dom arcs. However, this issue might not be insurmountable. For example, Zirbel and
Millett [47] determined the average distance between the endpoints of differing length
subchains for closed polygons. Onemight use that information to devise a scheme for
choosing the number of edges in the replacement arcs.

9.2.3 Other closure techniques

For the sake of completeness, we mention other techniques (mainly variations of the
ideas presented above) that have been employed in some papers. In [19], the authors
attach an “almost complete circle” to the endpoints of an open chain in a random
way to obtain a closed knot. In [27], the authors connect the endpoints at infinity us-
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A B C
Fig. 9.6: The closed chains coming from single closure techniques associated with a subchain of the
98-edge KnotPlot +75 knot [36]. From left to right, we have (A) direct closure, (B) center of mass, and
(C) minimal interference.

A B
Fig. 9.7: The closed chains coming from stochastic closure techniques associated with a subchain of
the 98-edge KnotPlot +75 knot [36]. For (A) uniform and (B) random arc, we show three examples of
closures from the technique.
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ing a pair of directions which is chosen “to minimize the risk of knot modifications or
disentanglements”. In [20], the authors use a combination of random closures (seem-
ingly from S2 × S2), the center of mass technique, and a deterministic technique. In
the deterministic approach, they extend interior endpoints to the exterior by adding
length to the chain as if it is “repelled from the protein surface, until they reach an
outer sphere”. We guide the reader to these articles for more details.

9.2.4 Topology of knotted arcs

Because the standard deformations used to define closed knot equivalence can turn
any embedded open arc into a straight line segment, different techniques are required
to study knotted arcs topologically. Classically, this topological description has been
in the form of the so-called ball-arc pair [8]. The ball-arc pair consists of an open
(non self-intersecting) chain c and an oriented topological ball B (which need not be
“round”)with the property that the endpoints of the chain lie on the surface of the ball
and the interior of the chain lies in the interior of the topological ball. Then two ball-
arc pairs (B1, c1) and (B2, c2) are equivalent if there exists an orientation-preserving
homeomorphism between B1 and B2 which takes c1 to c2. In [39], the authors use
the ball-arc pair to define when an open lattice chain forms a “tight knot”, a concept
which was critical in the proof that long lattice knots are almost always knotted.

For a given open chain, the assignment of a topological ball (to create a ball-arc
pair) is equivalent to the assignment of a corresponding set of closures for the chain,
all of which have the same knot type. To see this, suppose we are given a ball-arc
pair (B, c). If we join the two endpoints of c via simple arcs lying on the boundary of
B, we will obtain closed knots with a common knot type. These simple arcs are the
corresponding set of closures.

Conversely, the assignment of a closing arc to a given open chain is equivalent
to the assignment of a corresponding set of topological balls, namely the set of balls
whose 1) interiors contain the interior of the chain, 2) boundaries contain the end-
points of the chain, and 3) boundaries contain the closing arc. The ball-arc pairs from
this set of balls with the given chain are all equivalent as ball-arc pairs.

For any open arc and any knot type, one can construct a topological ball so that
the closed knot obtained via a simple arc along the boundary of the ball results in the
given knot type. Similarly, for any given open arc and any knot type, one can construct
a closed knot of the given knot type which contains the arc as a subchain. All of the
techniques presented in this section essentially restrict the set of closures, and thus,
the set of ball-arc pairs from which one is sampling in a particular fashion. It may
be possible to define the knotting in open chains by restricting to a given set of balls
for the ball-arc pair instead of working at the level of closures, although it is not clear
how onemight do so. Still, whilemuch of themodern literature on open knotting does
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not specificallymention the ball-arc pair, it is important to acknowledge the historical
topological contributions and note the connections to current work.

9.3 Visualizing knotting in open chains using the
knotting fingerprint

In this section, we introduce the knotting fingerprint as a means of visualizing the
knotting in open subchains of an open or closed chain. The knotting fingerprint can be
used with any of the above techniques. The basic idea is to generate an image matrix,
where each subchain is associated with a unique cell in the matrix, and use colors in
the cells to communicate the knotting within the subchain. The first such fingerprints
were seen in [20], in their work to find slipknots within proteins. For open chains, the
fingerprint takes the form of a triangle, where the position along the x-axis indicates
the starting vertex index of the given subchain and the position along the y-axis in-
dicates the ending vertex index. Since the ending vertex index must be greater than
the starting index, the portion of the matrix above the main diagonal (i.e. the diago-
nal from upper left to lower right) is empty and the diagonal indicates the behavior
of zero-length subchains. The entire chain is associated with the sector in the lower
left corner. The triangular fingerprint also has been used in [18, 38] and seems to be
accepted as the standard. An example of the image matrix for the DehI protein (PDB
code 3bjx), the protein forming the most complicated knot yet seen (+61), is shown
in Figure 9.8 using the uniform closure technique. The knot type of a subchain is the
knot type appearing with the highest percentage in the closures of the subchain and
the opacity of the coloring within the cells is that percentage. The ordering of the key
(from top to bottom) is by the length of subchain at which the knot type first appears.
We discuss the coloring of the cells more belowwhere we compare the images coming
from the different approaches.

To illustrate different ways of visualizing the knotting of subchains, in Figures
9.9, 9.11, and 9.12, we analyze a relatively nice configuration, the KnotPlot +75 [36], an
image ofwhich appears in the right picture of Figure 9.9. This knotwas chosenbecause
the resulting pictures have some, but not too much, complexity.

For closed chains, using the square image matrix is a little awkward (see the left
image of Figure 9.9). The problem is that there is a subchain from every vertex to ev-
ery other vertex, so this is like S1 × S1 (which, topologically, is a torus) or S1 × [0, l]
(where l is the length, which gives us a cylinder). In [46], the authors adapt the open
chain approach for closed chains: the x-axis indicates the starting vertex index and
the y-axis indicates the ending vertex index. As such, the blank part of the matrix
for open chains gets filled in with subchains that include the vertex with index zero.
This approach is perfectly reasonable, although thematrices become hard to read due
to periodic nature of S1 × S1. In particular, just below the diagonal, one has length
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Fig. 9.8: The image matrix for the DehI protein (PDB code 3bjx) using the uniform closure technique.

one subchains, but right above the diagonal, one has the whole chain minus an edge.
Furthermore, there is a vertical wrapping of the image from bottom to top. One could
“fix” the diagonal issue by having the x-axis indicate the starting vertex index and
the y-axis indicate the length of the subchain (see the right image of Figure 9.9). There
would still be awrapping from left to right (or one could show the image on a cylinder),
but this approach would be easier on the eye. This approach has not been employed,
seemingly due to the desire to be consistent with the original triangular matrix used
for proteins in [20]. The mathematically correct way to show the image would be on
a torus or cylinder, although 3D images are not easy to see or manipulate and it is
not clear that there would by any unique insight from putting the image on a torus or
cylinder.

In Figure 9.10, we show the disk matrix [17, 32] for an 81-edge KnotPlot +52 knot.
For the sake of the disk matrix, the polygon is an oriented based list of n coordinates
in 3D space, i.e. we specify a first vertex (the base vertex) and a second vertex (which
uniquely determines the orientation) to the list. The disk matrix is most easily de-
scribed in terms of polar coordinates: the polar θ value indicates the midpoint of the
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Fig. 9.9: Two square image matrices for the 98-edge KnotPlot +75 knot [36] (configuration shown
on the right image) that communicate the knotting within its subchains using the uniform closures
technique. On the left, the x-axis indicates the starting vertex index and the y-axis indicates the
ending vertex index. On the right, the x-axis indicates the starting vertex index and the y-axis indi-
cates the number of edges in the subchain.

subchain and the r value indicates the length. The disk matrix has a sort of brick pat-
tern since open chains with odd numbers of vertices have a vertexmidpoint, but open
chains with even numbers of vertices have a midpoint which is between two vertices.
Adjacent to the center of the disk are all length one subchains, which are too short to
be knotted, and so are all colored as the unknot, 01, in light gray. As wemove out from
the center, we are seeing the knot type of longer and longer subchains, until the last
stripe which contains subchains with n vertices and n − 1 edges. Let us fix a particu-
lar vertex v of the configuration. One can add an edge on both sides of v to obtain a
subchain with two edges, do this again to obtain a subchain with four edges, etc. All
of these subchains have a common midpoint, namely v. In Figure 9.10, the polar sec-
tors associated with these subchains have been colored black. The orange and green
sectors correspond to the subchains that have v as a starting and ending vertex, re-
spectively. Since we can add one edge on either end as opposed to whenwe add edges
at both ends, the orange and green sectors appear at every radius whereas the black
sectors appear at every other discretized radius. In the next section, we will see the
orange and green spiral patterns appear frequently. We compute the knot types only
for the subchains ending at vertex points. One could subdivide the edges to get a finer
image disk matrix and this would provide more detail. Note that changing the orien-
tation of the knot would have the effect of flipping the disk matrix across the x-axis
and changing the identification of the base vertexwould have the effect of rotating the
matrix.

For the single closure techniques, one has a single “knot type” for any given sub-
chain. For the stochastic techniques, the “knot type” of a subchain is a probability
distribution. In [17, 32], and even our work with open chains [18, 38], we assign the
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Fig. 9.10: The disk matrix for the 81-edge KnotPlot +52 knot [36] using the uniform closures tech-
nique. On the left, the disk matrix is shown with the configuration superimposed. On the right, the
black sectors correspond to subchains with a fixed vertex midpoint. The orange and green sectors
correspond to subchains with the same vertex as the starting and ending vertices, respectively. The
polar θ value indicates the midpoint of the corresponding subchain and the polar r indicates the
length of the corresponding subchain. Each sector is colored by the knot type which appears most
frequently when closed via the uniform closure technique, with the opacity of the coloring set to
the percentage of closures with that knot type. The key to the right of each disk matrix shows the
color associated with each knot type that appears in the matrix along with a swatch of that color at
opacities 10%, 20%, · · · , 100%.

knot type of an open chain to be the knot type appearingmost often in the distribution
of closure knot types. Clearly, we are losing information here, although, as mentioned
above, for the great majority of open chains there is one knot type that appears in over
50% of the closures. To give a sense for the dominance of the knot type, we set the
opacity of the color within each cell to be the percentage of closures that are the given
knot type (swatches of the colors at opacities 10%, 20%, · · · , 100% appear in the key
to the right of each disk matrix). Thus, light coloring indicates a low percentage and
dark coloring indicates a high percentage for the dominant knot type seen amongst
the closures. Like with the open chain triangular/squarematrices, the key on the right
is ordered by the length of the subchain at which the knot type first appears.

KnotPlot +75 disk matrices for the single and stochastic closure techniques are
shown in Figures 9.11 and 9.12, respectively. Because this configuration is relatively
spread out and smooth, we would expect a higher level of agreement between the dif-
ferent techniques than for less well-behaved configurations. By eye, the images look
similar in some ways and different in others. The direct closure technique is the out-
lier here, although it might be more consistent with the other techniques than one
would expect, especially when compared to the disk matrices for the stochastic tech-
niques. The disk matrices for the center of mass and minimal interference techniques
share features and the uniform and random arc closure disks share features, although
many of the features differ between the two pairs. The single closure techniques tend
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direct center of mass minimal
interference

Fig. 9.11: Disk matrices for the 98-edge KnotPlot +75 knot [36] using single closure techniques:
direct closure (left), center of mass (middle), and minimal interference (right).

uniform closures random arc closures

Fig. 9.12: Disk matrices for the 98-edge KnotPlot +75 knot [36] using stochastic closure techniques:
uniform closures (left) and random arc closures (right).

to introduce more subchain knot types than the stochastic techniques, as is seen in
this example where +62 and +71 appear for the single closure techniques but not
the stochastic techniques. Furthermore, the single closure techniques tend to have
sharper features than the stochastic techniques.

9.4 Features of knotting fingerprints, knotted cores,
and crossing changes

In this section, we show some examples of disk matrices, using the uniform closure
technique, for several randomknot configurations.Wemake some observations about
the relationship between the configurations and their diskmatrices. This section is by
no means comprehensive, but rather we hope that it whets the reader’s appetite for
understanding how open knotting manifests itself in closed chains.
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We begin with a highly localized knot in Figure 9.13. We know that the −31 knot is
highly localized because the knotting appears near the center of the disk and persists
at longer lengths (i.e. near the edge of the disk). In general, when the subchains have
sufficient length to change the knot type, we see cusp-like widow’s peaks appearing
with a new color. Note that there are some cells on the edge of the disk matrix that
are gray, indicating that the corresponding 149-edge subchains are unknotted. In this
case, this behavior occurs because the polygonpasses very close to itself at the borders
of the teal region of the configuration (the minimal knotted region). The removal of
one edge here is enough to see the subchain as unknotted. If one were to subdivide
the polygon’s edges, the gray regions would not occur on the border, so this behavior
is an artifact of the discretization of the disk matrix.

Fig. 9.13: The disk matrix for a highly localized 150-edge −31 knot, with an image of the configura-
tion superimposed over the disk matrix. The teal region of the configuration is the shortest sub-
chain that is knotted.

In Figure 9.14, we see a disk matrix that has two clear peaks. This behavior is not
unusual and we often seen disk matrices with multiple widow’s peaks. In this config-
uration, there are two simple loops (on the left in a gray colored arc and on the right
in a green colored arc) and a core red arc region. To form the −31, the subchain must
pass fully through the redmiddle region and one of the green or gray regions. The two
peaks correspond to the red+green and red+gray subchains. So, in general, a peak
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occurs when the arc has completed some, but not all, of the knotting, and an unknot-
ted arc wanders away before coming back to complete the knotting. In fact, we see
the same behavior in Figure 9.13 on the very left portion of the disk matrix. However,
in Figure 9.13, the knotting is so tight in this area of the polygon that this wandering
region is very short.

Fig. 9.14: The disk matrix for a 50-edge −31 knot with double peaks.

Typically, we see a lot of different knot types appear in the disk matrix. Some of
these knot types are intermediate entanglement in subchains needed to create the
more complicated knotting of the entire knot (which will be discussed in more detail
below). However, oftentimes the knot types are not “contributing” to the knotting of
thewhole curve. The simplest such example is the case of a slipknot, i.e. an unknotted
closed curve that contains knotted subchains. A knotted subchain within an unknot-
ted closed curve was termed an ephemeral knot by Millett [29]. For the sake of our
discussion, we consider ephemeral knots to be knotted subchains whose knotting is
not a key feature to the knotting of the entire closed knot.

In Figure 9.15, we see an example of a configuration with ephemeral knots [29]. It
is difficult to see anything within the configuration, but we include a picture for the
sake of completeness. There are (at least) three green streaks that are ephemeral −31
knots. Note that these green streaks can be broken for a number of cells, forming an
unknot or some other type of knot in the mean time. When the streak is broken, it is
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unclear whether tomentally join them or to call them new ephemeral knots (although
we leave that discussion for the next paragraph). In this example, the −31 slipknots
have only one cell depth (although in Figure 9.16, we see more robustness along these
lines), so the removal of one vertex on one of the ends is enough to unknot the arc.
On the other hand, adding vertices to the other end keeps the knotting for a number
of vertices.

In addition, there is one very short (lasting only for a single edge) +31 slipknot
with a black arrow pointing to it in the image. The subchain corresponding to this cell
is a +31 knot, but it seems safe to assume that the knotting of this subchain is not
a key feature to the knotting of the base +31 knot (although that could be debated).
In some cases, like Figure 9.13, it is pretty clear where the core of the knotting is. But
in many/most cases, finding the core is not so simple. Tubiana et al. [46] defined the
bottom-up and top-down procedures to define the knotted core (which they called
the shortest knotted arc). In the bottom-up procedure, one searches for the shortest
subchain with the same knot type as the base knot. In the top-down procedure, one
searches for the shortest subchain that has the knot type of the base knot and is a
subchain of increasing length subchains that also have the same knot type as the
base knot. In the disk matrix, this is akin to searching from the center outwards (for
bottom-up) and searching for the widow’s peak closest to the center (for top-down).
The example of Figure 9.15 shows that the bottom-up procedure might not provide the
information one expects. On the other hand, thinking of the subchain corresponding
to the peak closest to the center (the one above and slightly to the right of center), the
+31 becomes unknotted for some longer chains containing that subchain. One might
be tempted to forgive the +31 for this slight transgression and declare that subchain
as the core. Or we might forgive the +31 for having longer subchains that form the 41
knot since, in some sense, the 41 is more complicated that the +31. Ultimately, we do
not have answers to these questions, but rather wish to illuminate the reader about
some of the issues in defining the knotted core.

Also note that the configuration from Figure 9.15 has a number of different knot
types that appear in only a few cells, which is typical for random knot configurations
using any of the notions of open knotting.

Ephemeral knotting also can form after the creation of a given knot. In Figure 9.16,
we have a −31 knot which adds an ephemeral −31 knot (golden region) to form a com-
posite knot. The extra −31 persists nearly to the entire length of the configuration.Here
the ephemeral knotting is more robust than in Figure 9.15 in that there are subchains
where both endpoints can be removed and the −31# − 31 knot remains.

One might label the core as the subchain associated with the green cell closest
to the center. However, note that there is a streak of gray cells signifying unknotted
chains. As mentioned above, one might forgive this transgression as it only has depth
one. Still, if we forgive the depth one transgression, then why not depth two, or three,
or more? Certainly the composition of −31 with the additional −31 would seem to be
a forgivable offense, as well as the smattering of −819 subchains.
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Fig. 9.15: The disk matrix for a 150-edge +31 knot with ephemeral knotting.

Fig. 9.16: The disk matrix for a 150-edge −31 knot with ephemeral knotting in the form of knot com-
position.

One way of “adding” ephemeral knotting is in the form of knot composition, as
is seen in Figure 9.16. However, one can also add knotting by introducing additional



Open knotting | 199

entanglement in the form of a more complicated knot. In Figure 9.17, we have a +31
which becomes additionally tangled to form a +52 knot. This additional entanglement
eventually disappears, leaving only the +31. In [17, 32], we introduced the idea of sub-
knotting (here +31 would be considered a subknot of +51).Wemight also consider +51
to be a superknot of +31. In fact, one might consider creating a family tree of knotting
using the idea of subknots and superknots. Not surprisingly, the creation of such a
family tree is not clear cut, although we guide the interested reader to [17, 32] for some
discussion along these lines.

Fig. 9.17: The disk matrix for a 150-edge +31 knot with ephemeral knotting in the form of more com-
plicated knotting.

The idea of a family tree (or, similarly, a graph connecting certain knots) has been
explored, most notably with regards to crossing changes (see e.g. [10, 11, 13]). In [32],
we showed that subknotting is similar to, but not the same as, crossing changes per-
formed on a projection of a configuration. The knot type +52 has unknotting number
one, meaning that it is possible to perform one crossing change and transition from
an unknot to a +52 knot, or vice versa. In Figure 9.18, we see a +52 knot that is created
by transitioning straight from an unknot. The +52 knot also can be created bymaking
a +31 knot and then adding complexity, as can be seen in Figure 9.19.

Figure 9.20 has a number of interesting features. First, we see the creation of the
+52 via +31 transitioning to +51, which then transitions to +73 (getting more compli-
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Fig. 9.18: The disk matrix for a 150-edge +52 knot whose subchains transition straight from an un-
knot to a +52 knot.

Fig. 9.19: The disk matrix for a 150-edge +52 knot whose subchains form +31 knots before transition-
ing to the +52 knot.

cated) and then down to the +52. Second, we see an ephemeral 41. This 41 is likely
not as ephemeral as itmight appear since, despite the unknotted padding between the
regions, the 41 likely creates twisting that is later needed in the transition to the +52.
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Finally, we see transitions from the unknot straight to +52, and also passing through
intermediate +31 and 41 states.

Fig. 9.20: The disk matrix for a 50-edge +52 knot with a complex transition from unknot to +52.

9.5 Conclusions

We have presented the definitions of the commonly used notions of open knotting,
including some discussion of desirable and undesirable properties of each. We intro-
duced different matrix representations of the knotting within subchains of open and
closed chains. Finally, we showed some examples of disk matrices for random knots
and highlighted the relationships between some features of the disk matrices and the
configurations.

We believe that the uniform closure method provides the most desirable prop-
erties for analyzing knotting in open chains. The main disadvantage is computation
speed, and, indeed, with respect to speed, uniform closure is at a significant disad-
vantage to the single closure techniques. Furthermore, we believe that the diskmatrix
provides an intuitive means for the viewer to glean information about the knotting
within a closed chain.
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While researchers might not agree on which notion of open knotting to use, we
hope the discussion here will inform future decisions.
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Abstract: It is well known that knots exist in natural systems. For example, in the case
of (mutant) bacteriophage P4, DNA molecules packed inside the bacteriophage head
are considered to be circular since the two sticky ends of the DNA are close to each
other. The DNAs extracted from the capsid, without separating the two ends, can pre-
serve the topology of the (circular) DNAs, and hence are well-defined knots. Further-
more, knots formed within such systems are often varied and different knots occur
with different probabilities. Such information can be important in biology. Mathemat-
ically, wemay view (andmodel) such a biological system as (by) a random knot space
and attempt to obtain information about the system via mathematical analysis and
numerical simulation. The question here is to find the probability that a randomly
(and uniformly) chosen knot from this space is of a particular knot type. This is equiv-
alent to finding the distribution of all knot typeswithin this randomknot space (called
the knot spectrum in an earlier paper by the authors). In this paper, we examine the
behavior of the knot spectrums for knots up to 10 crossings. Using random polygons
of various lengths under different confinement conditions as the random knot spaces
(model biological systems), we demonstrate that the relative spectrums of the knots,
when divided into groups by their crossing numbers, remain surprisingly robust as
these knot spaces vary. For a given knot type K, we let PK(L, R) be the probability
that an equilateral random polygon of length L in a confinement sphere of radius R
has knot typeK. We give a model for the family of functions PK(L, R) and show that
our model function fits the random polygon data we generated. For a fixed crossing
number Cr, 3 ≤ Cr ≤ 10, let SCr be the subspace consisting of random polygons which
form knots that have crossing number Cr. We study the relative distribution of all the
different knot types within SCr and illustrate how this distribution changes if we keep
the length L fixed (or the confinement radius R fixed) and vary the confinement radius
R (or the length L). We observe that this distribution is quite robust and remains es-
sentially unchanged under length and confinement radius variation, especially if one
concentrates on subfamilies such as alternating prime knots, non-alternating prime
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10.1 Introduction

In the world of pure mathematics, or more specifically knot theory, one typically con-
siders the space of knots as the entire collection of all knots, with each distinct knot
type as an element of this discrete space. It is commonly agreed that some knots are in
general “more complicated” than other knots, although there aremany different ways
to define knot complexity and sometimes a knot more complicated with one complex-
ity measure may be simpler in terms of a different complexity measure. For example,
some knots with high crossing numbers have small bridge numbers and some knots
with relatively small crossing numbers have high bridge numbers. One could imagine
that in an ideal knot space, each knot type is no more probable than any other knot
type. However, this is not the case for knots occurring in the world of nature. For ex-
ample, if one is to tie a knot with a rope of some fixed length, then one can only tie
finitely many different types of knots ([4, 10, 11, 25]). Furthermore, if one is to tie a
knot with a rope in a random fashion, then one will inevitably reach the conclusion
that some knots are “easier” to tie than other knots (meaning some knots will be tied
more often than other knots if the experiment is repeated). Some important biologi-
cal problems concerning subjects such as DNA packing are also related to this topic.
In DNA research, a relatively simple virus called bacteriophage is commonly used to
study the DNA packingmechanism. This virus keeps its genome in a spherical protein
container called a capsid. Although the packing of the DNA inside the capsids cannot
be directly observed, DNA extracted from the capsids without being broken retains its
topological information and this information is used as a probe in studying the DNA
packing mechanism [2]. It is reported that many different DNA knots form within the
capsids of bacteriophages, with certain knot types appearing with much higher fre-
quencies [2].

Mathematically, a biological system such as the DNA knots within the bacterio-
phage head is really just a “knot space” whose elements are geometric closed curves
with a certain (continuous) probability distribution. If one is to randomly and uni-
formly sample a knot from this space, the probability that one gets a particular knot
type is the same as the percentage of knots of this knot type within the space. The
distribution of the knot types within the space is called the knot spectrum in [12, 16].
In a sense, the knot spectrum (of a knot space) measures how easily a knot type can
be realized by a randomly chosen knot in that space and provides a knot complexity
measure. While it is quite conceivable that specific knot spaces can be constructed to
favor a particular type of knots, we are interested in the following question: Are there
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knots that are intrinsically easier to form inmost randomknot spaceswithout obvious
topological biases? For example, in the space of random equilateral polygons with a
fixed length, it is known that composite knots have higher frequencies than the prime
knots when the polygons are long (in fact the probability of getting a prime knot goes
to zero as the length of the polygon goes to infinity [9]).

In this paper, we study the above problem by examining the behavior of the knot
spectrum for knots up to 10 crossings. Using random polygons of various lengths un-
der different confinement conditions as the random knot spaces (model biological
systems), we demonstrate that the relative spectrums of the knots, when divided into
groups by their crossing numbers, remain surprisingly robust as these knot spaces
vary. For a given knot type K, we let PK(L, R) be the probability that an equilateral
random polygon of length L in a confinement sphere of radius R has knot typeK. We
give amodel for the family of functions PK(L, R) and show that ourmodel function fits
data we generated from a large sample of random polygons. Furthermore, for a fixed
crossing number Cr (3 ≤ Cr ≤ 10) we consider the knots space SCr of random poly-
gons that form knots with Cr crossings. We observe how the frequency distribution of
knots in SCr changes under various lengths and confinement conditions. One of the
main findings in this article is that this distribution is quite robust and remains es-
sentially unchanged under length and confinement radius variation, especially if one
concentrates on subfamilies such as alternating prime knots, non-alternating prime
knots, or composite knots. The support of the previous statement is given by the data
we collected. The details of the data collection will be explained in Section 10.3. Even
though our data set is quite large, it does not allowus to support any statements on the
individual knot typedistributions for knotswithmore than 10 crossings since there are
very few samples per knot type for crossing numbers above 10. Furthermore, already
for nine and 10 crossings, the natural sampling error is large enough to only weakly
support any conjecture about the independence of knot type distributions on polygon
length and confinement radius. As a final remark, we need to acknowledge that we do
not see any way to prove any statement on knot distributions. At this point we cannot
even prove much simpler statements like: The probability that a random polygon is
knotted is larger if the polygon is confined when compared to an unconfined random
polygon of the same length.

This article is organized as follows: In Section 10.2 we introduce some basic ter-
minology in knot theory. In Section 10.3 we outline the size of our random polygon
sample and how the knot types in our sample were determined. In Sections 10.4 and
10.5 we explain the choice of a model function for PK(L, R) and show how well our
data fits the model. Next, in Sections 10.6 and 10.7 we study how the confinement ra-
dius R and the polygon length L affect the distribution of the different knot types in
SCr. Finally, in Section 10.8 we summarize our findings.
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10.2 Basic mathematical background in knot theory

For the convenience of our reader, we outline and discuss briefly a few topological
concepts that are most relevant to this paper. For a more detailed exposition, please
refer to a standard text on knot theory such as [1, 6, 21, 26].

A knot K is a simple closed curve in R3. Here we assume that such a curve is a
piece-wise smooth curve (this includes a space polygon without self-intersections).
Two knots are considered topologically equivalent if one can be continuously de-
formed, together with the entire R3 space surrounding it and without being broken
or causing self-intersection in the process, to the other. The class of all knots equiva-
lent to a knot is called a knot type. The knot type that contains the unit circle is called
the trivial knot (type). For a fixed knot K, a regular projection of K is a projection of
K onto a plane such that no more than two segments of K cross at the same point
in the projection. At each intersection point of a regular projection of K, it is usually
marked which strand is over and which strand is under. These intersection points are
called crossings. A regular projection with this over/under information marked at the
crossings is also called a knot diagram. The minimum number of crossings among all
possible knot diagrams of knots with the same knot type as K is called the crossing
number of K (and is usually denoted by Cr(K)). A knot diagram is alternating if at the
crossings under and over alternate as one travels along the knot projection. A knot
type is alternating if it has an alternating diagram and is non-alternating if it does not
have any alternating diagram. A knot is called a composite knot if it is realized by con-
necting two nontrivial knots as shown in Figure 10.1. If a knot is not a composite knot,
then it is a prime knot.

Fig. 10.1: A composite knot from two non-trivial knots K1 and K2.

One fundamental problem in knot theory is to determine the knot type of a given
knot. The most common and powerful tools for this purpose are various knot poly-
nomials. The well-known knot polynomials include the Alexander polynomial, the
Jones polynomial, and the HOMFLYPT polynomial. These polynomials can be com-
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puted from any knot diagram and remain unchangedwhen computed from a different
knot diagram of the same knot type. In this paper, the authors rely on the HOMFLYPT
polynomial and the knot table for knots up to 16 crossings for knot identification. For
the definition of the HOMFLYPT polynomial and its properties, onemay refer to [24]. It
is important to note that the knot polynomials are not sufficient to distinguish all knot
types and the tabulation of knots remains a difficult question in general. Furthermore,
only prime knots up to 16 crossings have been completely tabulated [20].

10.3 Spaces of random knots, knot sampling and
knot identification

In a series of papers, three authors of this paper have developed algorithms for several
models to generate equilateral random polygons that are confined inside a sphere of
fixed radius [13, 14, 15, 17]. The model presented in [14] is the one chosen for the study
presented in this paper. The model can be described as follows: Consider equilateral
random polygons that are “rooted” at the origin and assume that there is an algo-
rithm that samples such objects with uniform probability. Now consider a confine-
ment sphere SR of radius R ≥ 1 with its center at the origin. We keep those randomly
generated equilateral polygons that are contained in the confinement sphere SR. Note
that the algorithm used in [14] to generate polygons in confinement is not based on
a direct accept-reject method (since such a method is extremely inefficient). Instead,
it uses conditional probability density functions that can be explicitly formulated to
guide the generation process. Each polygon is generated one edge at a time and there
is no rejection involved. Furthermore, this algorithm generates polygons that are to-
tally independent of each other so no de-correlation is necessary. Interested readers
please refer to [14] for a detailed description of this algorithm. There is no biological
or other reason for the polygons to be rooted at the center. It is rather a choice for sim-
plicity: as it turns out, equilateral random polygons defined this way are much easier
to generate due to the symmetry of the confining sphere (relative to the root) imposed
on the equilateral random polygons. In order to obtain statistically significant results,
it is necessary to use large samples and the simplicity of this model allows the compu-
tations to be feasible. We want to point out to the reader that, recently, a different and
very efficient method to generate such confined polygons (also centered at the origin)
was developed, see [7].

Our knot space consists of all random equilateral polygons of a given length and
a given radius of confinement. By varying these two parameters, we obtain a family
of knot spaces. Notice that the differences among these knot spaces are imposed by
different geometric conditions and no explicit topological constraints exist. The data
set used for our analysis in this paper comes from two sources.
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The larger portion of the data is new and we describe how it is obtained here.
To trace the effect of polygon length on knotting, we fixed the confinement radius at
R = 3 and used a range of lengths of the random polygons from 10 to 90 in incre-
ments of 10. We used a maximal polygon length of 90 steps and a confinement radius
R = 3 to ensure that, even for the longest sample, we can still identify the knot type
for most polygons. This means that many of the knots that are generated must have at
most 16 crossings so they are in the current knot table. From our past experience [12],
we know that if we choose a confinement radius that is smaller than R = 3, then we
would not be able to identify the knot types for the longer lengths. To trace the effect of
the confinement radius, we fixed the polygon length at 30 steps and used radii of con-
finement ranging from R = 1 to R = 4.5. In more detail, between R = 1 and R = 3 the
confinement radius increases with an increment of 1/10, while from R = 3 to R = 4.5
the confinement radius increases with an increment of 1/2. The reason for the wider
spacing of the larger radii is that the confinement effect diminishes rather quickly for
the polygons within the length-range of this study. The polygon length of 30 is cho-
sen so that sufficiently many different knot types populate our knot spaces and that
we are able to identify the knot type for most polygons. For each knot space (with a
fixed confinement radius and a given polygon length), we sampled 100, 000 differ-
ent polygons. In total, this sample space consists of 32 sets, each containing 100, 000
polygons (24 samples of length 30 with varying confinement and 9 samples of vary-
ing length with confinement R = 3), yielding a total of 3, 200, 000 random polygons
(since one sample is in both sets).

A smaller portion of the data (1, 640, 000 polygons) is from one of our earlier
papers [12]. We basically took the same set of radii (24 values) as described above and
the same set of different length (9 values). For each combination of a radius and length
10, 000 polygonswhere collected. However, for some of the larger lengths and smaller
confinement radii, we could not identify the knot types reliably. The knots are too
complex for our knot identification process to work – see the description below. Thus,
some of these data sets were not used.We refer the reader to [12] for information about
the exact description of the data. It is enough to know that this data set is grouped into
subsets of size 10, 000 for each fixed (L, R) pair, where 1 ≤ R ≤ 4.5 and 10 ≤ L ≤ 90.
Moreover, data points that are collected from this older data set have a larger error
margin since the sample size is much smaller (10, 000 versus 100, 000 polygons).

As a final remark, our combined data set contains almost fivemillion polygons. In
the following sectionswewill refer to the two data sets as the old data (the 1, 640, 000
polygons) and the new data (the 3, 200, 000 polygons).

In the following we briefly outline our procedure of knot identification for a given
polygon P. The polygon P is projected onto a plane to obtain a knot diagram. Then un-
raveller [28] is used to (potentially) simplify the crossing information via a collection of
simplification operations based on Reidemeistermoves. The code unraveller produces
two types of output: a DT-codewhich is used by knotfind [19] and crossing information
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which is used to compute the HOMFLYPT polynomial H using a program written by
Ewing and Millett [18]. We have a table of HOMFLYPT polynomials for all chiral knot
types, prime and composite, with 16 or fewer crossings (under the generally accepted
assumption that the crossing number of composite knots is additive). For each P, we
obtain a list of chiral knot types {K1, . . . , Ks} from the table, all of which have H as
their HOMFLYPT polynomial. Note that if this list is empty then the polygon does not
represent any prime or composite knot with fewer than 17 crossings. In addition to the
HOMFLYPT polynomial calculation, for each polygonwe also use knotfind to compute
the (non-chiral) knot type. We use the simplified DT-code D generated by unraveller,
which might be the DT-code of a minimal diagram or might be the DT-code of a dia-
gram close to the minimal diagram. Then knotfind takes D and creates a “canonical”
DT-code D′. If D′ represents a knot within the DT-code knot table (which only con-
tains prime knot types) then that uniquely identifies that knot (up to chirality). If both
methods agree then we claim that the knot type of P is identified. If the two methods
disagree, that is one method produces a knot that we should be able to identify, but
we cannot confirm this with the other method, then we resolve this issue as follows:
Either we start over using a different projection of the polygon P or we run another
diagram simplification program written by some of the authors. In this way, all such
conflicts were resolved. Thus, we claim that with very high probability we identified
all knots that are in the current knot table [16].

However there are still several additional issueswhichweaddress in the following
paragraphs.

(i) The polygon P might represent a knot that is not prime and therefore is not in
the DT-code knot table. At every stage of the simplification process using DT-codes,
knotfind attempts to identify factors of composite knots. If there is an “obvious” con-
nected sum then a part of the DT-code maps onto itself. If such a situation is detected,
the simplification process is applied separately to each DT-code of the two factors. In
the end, we obtain a collection of simplified DT-codes from which it is possible to re-
construct the original composite knot type. If theHOMFLYPTpolynomial of this recon-
struction agrees with the originally computed HOMFLYPT polynomial of the polygon
then we identify P as the appropriate composite knot.

(ii) If the initial calculation of H indicates that P does not represent a knot in the
table, then the simplified DT-code (or the set of simplified DT-codes in the case that
an obvious connected sum was identified) provides an upper bound on the crossing
number. In these cases, we double-checked by computing the HOMFLYPT polynomial
from the simplified DT-code(s) to ensure that it matchesH. We identify P as having the
crossing number provided by the simplified DT-code.

We observed that the approach to knot simplification based on DT-codes is ex-
tremely reliable for the knots that are within the knot table. There is no reason to be-
lieve that the simplification of DT-codes becomes suddenly unreliable once the actual
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crossing number exceeds 16. Thus, we believe that a simplified DT-code, while tech-
nically only providing an upper bound on the actual crossing number, gives a value
that, inmost cases, is actually the topologicalminimal crossing number. In particular,
this is true for crossing numbers that are not far above 16 (the largest crossing number
in the knot table). Thereforewe report these approximated crossing numbers as if they
are the actual crossing numbers. We also report a knot as prime if no composition was
detected during the simplification process.

10.4 An analysis of the behavior of PK with respect
to length and radius

Let PK(L, R) denote the probability that a randomly selected polygon in the set of
equilateral random polygons of length L in a confinement sphere of a fixed radius R
has knot typeK. In this section, we analyze the dependence of PK(L, R) on the poly-
gon length L (for fixed R values) and on the confinement radius R (for fixed polygon
lengths L). At the end of the section we view PK(L, R) as a function of both L and R.

10.4.1 PK(L, R) as a function of length L for fixed R

For each knot typeK, it is obvious that there is a minimal length L0 such thatK can
be realized by an equilateral polygon of length L0 but not by any equilateral polygon
of length less than L0 (L0 is called the equilateral stick number of the knot type K

[22, 27]). Thus, PK(L, R) = 0 for L < L0. For all the data analyzed in this study, we have
2R < L which means that the polygons were generated under confinement pressure
(though very light pressure for the data set for L = 10 and R = 4.5). Our numeri-
cal results strongly support the following conjecture: for any fixed R, as L increases,
PK(L, R) increases to a single maximum at length LK, and then declines to zero as L
approaches infinity, see the left of Figure 10.2. Notice that a similar phenomenon has
been observed in [8] in the absence of confinement. We further conjecture that the
rate of the decline is exponential in terms of some positive power of L. This conjecture
has been proven when the polygons are not confined [9]. In that proof [9], it is shown
that as L increases, the number of connected sum components in the equilateral ran-
dom polygon increases with a probability that goes to one, hence the probability for
the polygon to be of a given knot type goes to zero. Unfortunately, this argument may
not be applicable to confined knots since a long confined random equilateral polygon
may not have many connected sum components. However, it is quite plausible and
intuitive that the overall knot complexity of a confined polygon increases as its length
increases and thus knots with a lower complexity become less likely. This is strongly
supported by our numerical results.
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Fig. 10.2: On the left: A hypothetical curve PK(L, R) with fixed R. On the right: A hypothetical curve
PK(L, R) with fixed L.

10.4.2 PK(L, R) as a function of confinement radius R for fixed L

Here we assume that the fixed L value is large enough so that a knot of type K can
be easily formed. Since we can only model confinement radii R ≥ 1, we assume that
PK(L, 1) > 0 is a positive number. We can only speculate on the behavior of PK(L, R)
for R < 1. Clearly no knots can exist for R ≤ 1/2, so PK(L, R) = 0 for R ≤ 1/2. However,
the behavior of PK(L, R) for 1/2 < R < 1 could be different for different knot types.
Extreme confinement may favor certain knot types, so it is conceivable that, for some
knot type K, we have PK(L, R) = 0 for all R ≤ R0 for some value R0 > 1/2. Moreover
the value R0 could depend on the knot type and have different values for different
knot types. Since we have no data for R < 1, we only stipulate that PK(L, 1) > 0
is a positive number in our model. Just as in the case of dependence on length, we
propose that with increasing radius PK(L, R) rises to a single maximum at radius RK,
and then declines. However, this time PK(L, R) becomes a positive constant UL(K)
once R becomes large enough (say R > L/2). This is because, for large R, the effect
of confinement disappears and PK(L, R) is simply the probability for an unconfined
equilateral randompolygon of length L to be of knot typeK. By our initial assumption
on L, this probability is positive and we denote it with UL(K).

10.4.3 Modeling PK as a function of length and radius.

Based on known rigorous results and our numerical results, we propose the following
model function for PK(L, R):

PK(L, R) = a
(︂
d +

(︂
L − L0(K)
R − 0.6

)︂e)︂
exp
(︂
− L
bR − c

)︂
,

where L0(K) is the equilateral stick number ofK, L ≥ L0(K), R ≥ 1, R > c/b, and a, b,
c, d, e > 0 are positive constants depending on the knot typeK. The condition R > c/b
insures that the exponential term decreases with L. In addition we set PK(L, R) = 0
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for L < L0(K). Notice that for a given fixed R value, PK(L, R) is a function of L with
the following properties:

1. limL→∞ PK(L, R) = 0; and
2. PK(L, R) has a single maximum point.

On the other hand, for a fixed L value, PK(L, R) is a function of R with the properties:

1. limR→∞ PK(L, R) = ad > 0; and
2. PK(L, R) has a single maximum point.

10.5 Numerical results

10.5.1 The numerical analysis of PK(L, R) based on the old data

We fitted the above model function PK(L, R) to knot data of several knots up to seven
crossings. Herewe used the older data set, where each data point is based on a sample
of 10, 000 polygons. Three examples are shown in Table 10.1 with the corresponding
fitting parameters and R2 values:

Tab. 10.1: The parameters for the model PK(L, R) for various knot types

parameter 31 52 62

a 0.000205 2.17277 × 10−7 1.73334 × 10−9
b 5.95573 4.28009 3.85288
c 2.2024 1.3623 1.31161
d 124.299 9736.84 335759.
e 3.43966 5.66256 7.09841
R2 .996 .986 .982

Figure 10.3 is a plot of the fitting function P31 (L, R) together with the actual data
points from twodifferent viewpoints.Here L0(31) = 6. Themaximal z-value of thedata
points is ≈ 0.21 and the average value is ≈ 0.108. If we compute the absolute value of
the difference between the z-values of the data points and the best fit function, we get
a maximal value of ≈ 0.026 and an average value of ≈ 0.0067.

In Figure 10.4 we show the fitting functions for P52 (L, R) and P62 (L, R) together
with the actual data points. Note that for both of these knots L0(52) = L0(62) = 8
[27]. The maximal z-value of the data points for 52 (62) is ≈ 0.059 (≈ 0.027) and the
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Fig. 10.3: Two different views of the surface P31 (L, R) together with the actual data points. The
slightly different coloring of the data points indicates if the points are above or below the surface.

Fig. 10.4: Left: The plot of the fitting function P52 (L, R) together with the actual data points; Right:
The plot of the fitting function P62 (L, R) together with the actual data points. The slightly different
coloring of the data points indicates if the points are above or below the surface.
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average value is ≈ 0.022 (≈ 0.0088). The maximum difference between the z-values
of the data points for 52 (62) and the best fit function is ≈ 0.011 (≈ 0.0055) while the
average difference is ≈ 0.0026 (≈ 0.0011).
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Fig. 10.5: Comparison of the fitting function PK(L, R) obtained from the newer data and the older
data for the knots 31, 41, 51, and 52. Left: Fixed R; Right: fixed L. The solid curves are based obtained
by connecting the new data points by line segments. The circles are the old data and the dashed
lines represent a cross section through the surface PK(L, R) fitted to the old data.

10.5.2 The numerical analysis of PK(L, R) based on the new data

Overall, thenewer and larger data sets didnot produce any surprises in termsof thebe-
haviors of the PK(L, R) functions, in fact there is an amazingly good agreement. Here
we show two examples. In Figure 10.5 on the left we compare the new data points with
the old data points and with the slices for R = 3 from the surfaces PK(L, R) obtained
from the old data. The figure shows the data for the first four non-trivial knot types in
the knot table. Here each round data point is based on the old data set (from a sam-
ple of 10, 000 polygons), whereas the solid lines are connecting the data points from
the new data (from a sample of 100, 000 polygons). Each of the two dashed curves
shows the slice for R = 3 of PK(L, R) when fitted to the 164 data points of the old
data for knot types 31 and 41. Similarly, Figure 10.5 on the right shows a comparison
for L = 30 based on the new data (solid curves) with their counterparts based on the
old data (circles) and of two fitting functions PK(L, R) (dashed curves) based on the
old data. The R2 values for the fitting functions based on the new data points are all
≥ 0.999.

10.5.3 The location of local maxima of PK(L, R)

Themaximal points of PK(L, R) for a fixed knot typeK lie on a line in the (L, R) plane
as shown in Figure 10.6 on the left using the example of the four knots 31, 41, 52, and
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62. The points shown in the figure are computed from the model PK(L, R) obtained
from fitting the older data. The slope of these lines increases with knot complexity
from about ≈ 20.41 for the trefoil knot to about ≈ 27.35 for the knot 62. Furthermore,
for a fixed radius R, it takes more and more length for the maximum to occur as the
knot complexity increases.

++
++

++
++

++
++

++
++

++
++

++
++

++
++

++
++

++
++

××
××

××
××

××
××

××
××

××
××

××
××

××
××

××
××

××
××

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

■■
■■

■■
■■

■■
■■

■■
■■

■■
■■

■■
■■

■■
■■

■■
■■

■■
■■

1.5 2.0 2.5 3.0 3.5 4.0 4.5
R

20

40

60

80

100

120

L
Positions of Max on P (L,R)

+ 31

× 41

● 52

■ 62

+
+++++++++++++++++

++++++++++++++++++

××××××××××××××××××××××
××××××××××××××

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■

1.5 2.0 2.5 3.0 3.5 4.0 4.5
R

0.05

0.10

0.15

0.20

max(P (L,R))
Max on P (L,R) vs radius

+ 31

× 41

● 52

■ 62

Fig. 10.6: The maxima of the fitted surfaces PK(L, R) from the older data for the knots 31, 41, 52,
and 62. Left: Dependence of the length on where the maxima occur on R. Right: Dependence of the
magnitude of the maxima on R.

In Figure 10.6 on the right, we show the relationship of the maximal value of
PK(L, R) and the (L, R) plane using the same four examples of 31, 41, 52, and 62.
Here we see that the height of the maxima rapidly declines as the knot complexity
increases. It appears that as the radius (and length) increases, the maximal value of
PK(L, R) initially drops slightly and then remains roughly constant. In Figure 10.7 we
show each of these curves in a coordinate system by itself and now it appears that the
value of eachmaximum of PK(L, R) slightly increases for increasing R after the initial
drop.

10.6 The influence of the confinement radius on the
distributions of knot types

In this section we consider only the new data, and we would like the reader to recall
that these are all polygons of length 30. A recurring observation made in this section
is that the relative distribution of knots in a given group of knots (e.g the group of
7-crossing alternating knots, or the 8-crossing composite knots) is remarkably steady
formany different confinement radii. The last few subsections in this section illustrate
this visually.

Many of the figures presented in Sections 10.6 and 10.7 contain error bars to in-
dicate the reliability of the data. Usually the error bars are only added to some of the
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Fig. 10.7: The plot of the heights of the maxima of the fitting function PK(L, R) depending on R for
the knots 31 (top left), 41 (top right), 52 (bottom left) and 62 (bottom right).

curves of each graph so that the graph remains intelligible. The error bars were deter-
mined using the standard interval estimation for binomial proportions (see [3]). The
standard confidence interval is computed as CIs = p̂ ± zα/2 n−1/2 (p̂q̂)1/2 with p̂ = X

n
where n is the sample size, X is the number of successes (occurrences of knots of in-
terest) in the sample and q̂ = 1 − p̂. The value zα/2 is the 100(1 − α/2)-th percentile of
the standard normal distribution. In this article we use α = 0.05.

10.6.1 3-, 4-, and 5-crossing knots

Our data contains 501, 838 knots with three, four, or five crossings. There are
322, 609 31 knots, 85, 134 41 knots, 35, 184 51 knots, and 58, 911 52 knots. There is
a maximum of 21, 291 knots at radius R = 1.0 and a minimum of 6, 951 knots at ra-
dius R = 4.5.We note that, for all radii, the order of the knot types (from least frequent
to most frequent) is consistent, as shown in Figure 10.5 on the right.

10.6.2 6-crossing knots

Our data contains 69, 080 6-crossing knots (all polygons are of length 30). There are
17, 940 61 knots, 21, 077 62 knots, 12, 620 63 knots, and 17, 443 31#31 composite
knots. There is a maximum of 7, 065 knots at radius R = 1.0 and a minimum of 205
knots at radius R = 4.5. We note that we do not distinguish the square and the granny
knot – instead the two different composite knots are grouped together as 31#31. The
four functions PK(30, R) are shown in Figure 10.8 on the left. The figure shows that
the order of knot types is not the same for all radii, unlike for the smaller knot types
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shown in Figure 10.5 on the right. The order of the four knot types seems to be the
same for the smaller radii 1 ≤ R ≤ 1.5, while it is hard to see what happens for the
larger radii. In order to make this more visible, we show the relative percentage of the
four different knot types, see Figure 10.8 on the right. Here, for each fixed R-value,
the y-values of the four data points add up to one. This kind of normalization is done
frequently in the following sections of this article. In order to make the differences of
probabilities between different knot types more visible for a particular family of knots
(for example knots with a fixed crossing number or knots with a particular property
such as 9-crossing composite knots)we scale the actual percentages such that the sum
of the scaled percentages adds up to one for all knots in this family. This new quantity
is called relative percentage and in Figure 10.8 on the right we see this for the first
time. Most noticeable in this figure is the relative decline of the composite knots as
the confinement radius decreases. This is not really surprising as it has been shown
in [12, 16] that tighter confinement suppresses composite knots. We also observe that
the order of the alternating knots (from least frequent to most frequent) is consistent,
except when the error bars become too large, and that the knot 63 occurs with the
smallest frequency. This is due to the fact that 63 is achiral and achiral knots have
been observed with a lower frequency than chiral knots of the same crossing number
[12].
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Fig. 10.8: On the left: The percentage (or actual probability) of the four different 6-crossing knots.
On the right: the relative percentage distribution of the four knot types. For a fixed R, the frequen-
cies of all data points for that R add up to one.

10.6.3 7-crossing knots

Ourdata contains 40, 071 7-crossing knots. There are 2, 58771 knots, 5, 12572 knots,
4, 763 73 knots, 2, 835 74 knots, 6, 497 75 knots, 7, 665 76 knots, 3, 717 77 knots,
and 6, 882 31#41 composite knots. There is a maximum of 5, 775 knots at radius
R = 1.1 (there are 5, 745 at radius R = 1.0) and a minimum of 47 knots at radius
R = 4.5. Since the values of PK(30, R) are quite small, we only display the relative
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percentages of all 7-crossing knots in Figure 10.9. As before, we observe that the rel-
ative percentage of the composite knot 31#41 declines with decreasing confinement
radius. In addition, for radii R < 2, the order of the relative percentage of the 7-crossing
prime knots seems to be independent of the radius. The knot 76 is the most frequent,
followed by 75, 72 or 73, 77, and 74 or 71. At this point, we have no explanation of
why the data shows this ordering of the knot types. We have compared this order with
the order of knot energies [23] and ropelength [5], however we found no correlation at
all (see Table 10.2).
Tab. 10.2: The order of 7-crossing knots based on various measures.

knot PK(30, R) ropelength Möbius energy approximation

71 7 1 1
72 3 or 4 3 2
73 3 or 4 2 3
74 5 or 6 4 4
75 2 5 5
76 1 7 6
77 5 or 6 6 7
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Fig. 10.9: The relative percentage of the different 7-crossing knot types on the vertical axis as a
function of the confinement radius R.

10.6.4 8-crossing knots

In the following, we investigate the knot type distribution for 8-crossing knots. Our
sample contains 42, 711 knots with eight crossings, with a maximum of 7, 301 knots
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at radius R = 1 and a minimum of 38 knots at radius R = 4.5. As the number of knot
types increases, the graphs become more and more complicated. There are 21 prime
knot types and 3 composite knot types to consider. A figure similar to Figure 10.9would
be too crowded and so we display the information in a different way.

First, we claim that the knot type distributions are remarkably consistent regard-
less of the radius of confinement. In other words, while the exact value of the rela-
tive percentage is not the same, the order of the knot types (from smallest to largest
relative percentage) is often the same. To support this, we no longer show a curve
for each knot type versus the radius since this would be 24 curves (21 prime and 3
composite). Instead we combine the knots of 4 consecutive radii and show one curve
for each group of radii reducing the number of curves to plot to six. That is we com-
bine R = {1.0, 1.1, 1.2, 1.3}, R = {1.4, 1.5, 1.6, 1.7}, R = {1.8, 1.9, 2.0, 2.1},
R = {2.2, 2.3, 2.4, 2.5}, R = {2.6, 2.7, 2.8, 2.9}, and R = {3.0, 3.5, 4.0, 4.5}. For
each of the groups of four radii, we tabulate the distribution of each of the 24 knot
types by using relative percentages as before. Thus for each of the six curves the total
sumof the values over all 8 crossingknot types equals to one. In effect, in Figures 10.10,
10.11, and 10.13 the information plotted vertically for each knot type is a compressed
version of what Figure 10.9 shows (for 7-crossing knots) with each curve. Finally, we
split the data into two groups, and display the data for the knot types on the x-axis,
see Figures 10.10 and 10.11.
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Fig. 10.10: The relative percentages of the different 8-crossing knots from 81 to 813 grouped into six
groups by the different radii. In each group, the smallest radius is shown as a plot label.

The most striking feature of Figures 10.10 and 10.11 is how much more likely the
non-alternating knot types 819, 820, and821 arewhen compared to all other knot types
(prime and composite). This property is independent of the radius of confinement.
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Fig. 10.11: The relative percentages of the different 8-crossing knots from 813 to 41#41 grouped into
six groups by the different radii. In each group, the smallest radius is shown as a plot label.

However, the larger confinement radii favor non-alternating knots evenmore than the
smaller confinement radii. If one looks closely at Figure 10.11 then one can see that for
the non-alternating knots 819, 820, and 821 the order of the curves (from the small-
est relative percentage to the largest relative percentage) is by the size of the radius.
That is, the smallest group of confinement radii leads to the least relatively frequent
occurrence of the knot type and the largest group of confinement radii leads to the
most relative frequent occurrences of the knot types. For prime knots, the order of the
curves is often the opposite, the curve representing the smallest group of confinement
radii is on the top for many knots and the curve with the largest group of confinement
radii is on the bottom.We suspect that this inconsistency in the order of curvesmaybe
due the fact that our sample is not large enough, so that for knot types that have a
much smaller frequency, the sample error could be large enough to create a different
order. For the three composite knots 31#51, 31#52, and 41#41 in Figure 10.11, we no-
tice that the curve for the largest radii is on the bottom (smallest relative percentage).
However, the order of the other curves is not clear and the data points are very close
to each other.

The least likely knot type is 818 whose standard diagram is based on the basic
Conway polyhedron 8*, which has already been observed in [12]. More precisely, the
knot 818 appears only 49 times in our sample, while the next lowest occurrence is an
order of magnitude larger (the knot 83 with 557 cases). The knot that occurs the most
is 820 with 6, 964 cases. In order to get more insight, we look at some subsets of the
knot types. Figure 10.12 on the left shows that 31#52 is more likely than 31#51, which
in turn is more likely than 41#41. The curve for 31#51 has statistical error bars which
are similar to those of the other two curves. This distribution of the composite types
is expected since 52 is more likely than 51 and the composite 41#41 is achiral, and
therefore less likely. The figures hint that this distribution is largely independent of
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the confinement radius. Figure 10.12 on the right shows the frequencies of the three
non-alternating knot types 819, 820, and 821. The figure shows that 820 is more likely
than the other two,which have about the same frequency,with 821 being slightlymore
likely than 819.
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Fig. 10.12: On the left, the relative percentages of 8-crossing composites versus the confinement
radius. On the right, the relative percentages of 8-crossing non-alternating prime knots versus the
confinement radius.

10.6.5 9-crossing knots

In Figure 10.13, we show the 9-crossing knot spectrum in the same way as we showed
the knot spectrum for the 8-crossing knots. Since there are many more knot types (49
prime and 6 composite) the knot types are not labeled on the horizontal axis. However
we indicate the extent of the three knot groups: prime alternating knot types, prime
non-alternating knot types, and composite knot types. Our sample contains 26, 742
knots with nine crossings, with a maximum of 5, 665 random knots at radius R = 1
and a minimum of 18 knots at radius R = 4.5. The total of 26, 742 random knots is
about 63% of the number of 8-crossing random knots while the number of knot types
is twice as large (24 versus 55 knot types). Thus as expected, the fluctuations due to the
smaller random samplemuddle the picture. Nevertheless, the curves (maybe with the
exception of the curve for the largest radii) are still roughly parallel. Here, by roughly
parallel, we mean that the six curves could be put into a relatively narrow band –
it does not mean that the curves cannot intersect each other. The reader should also
keep inmind that the smaller the radius themore actual knots are represented by such
a curve. Thus the curve representing the largest radii has the largest statistical error,
which is reflected by the fact that it often crosses through all the other curves. The
smallest numbers of knots occur for 940 (6 knots), 941 (39 knots), 935 (46 knots) and
934 (60 knots). We also note that the standard diagrams of the knots 940 and 934 are
based on the Conway basic polyhedra 9* and 8* respectively, see also [12]. The largest
numbers of knots occur for 942 (2, 604 knots), 944 (2, 585 knots), 945 (2, 028 knots),
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and 943 (1, 799 knots). The next knot in the frequency list drops bymore than 600. As
in Figure 10.11, there is a large increase in the number of non-alternating knots. The
same observations we made for 8-crossing knot types about the order of the different
curves according to size of the confinement radius could be true. However, the picture
is less clear, which could be due to the larger sample variance caused by the larger
number of knot types and the smaller overall knot sample.
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Fig. 10.13: The relative percentages of the different 9-crossing knots grouped into six groups by the
different radii. In each group, the smallest radius is shown as a plot label.

In order to get more insight, we investigate some subsets of the knot types: com-
posite knot types and non-alternating knot types. Figure 10.14 on the left shows that
31#62 is more likely than 31#61, which in turn is more likely than 31#63. This is as ex-
pected since 62 ismore likely than 61, which in turn ismore likely than 63. We also see
that 41#52 is more likely 41#51, which is as expected since 52 is more likely than 51.
The curve for 31#31#31 has statistical error bars which are similar to the other curves.
The frequency of 31#31#31 is about the same as that of 41#51. This shows that this
distribution is largely independent of the confinement radius. Figure 10.14 on the right
shows the relative frequencies of the eight non-alternating knots 942 to 949. It shows
that 947, 948, and 949 are much less likely than any of the others. We also note that a
standard diagram of the knots 947 is based on the Conway basic polyhedra 8*.
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Fig. 10.14: On the left, the relative percentages of 9-crossing composites versus the confinement
radius. On the right, the relative percentages of 9-crossing non-alternating prime knots versus the
confinement radius.

10.6.6 10-crossing knots

In Figure 10.15 we show the relative percentages of the 10-crossing spectrum. Since
there are many knot types (165 prime and 14 composite), the knots are not labeled on
the x-axis. Our sample contains 24, 277 knots with 10 crossings, with a maximum of
6, 021 knots at radius R = 1 and a minimum of 9 knots at radius R = 4.5. There are
about as many 10-crossing random knots as 9-crossing random knots but the number
of knot types is more than three times as large. Thus, we expect the fluctuations due
to the smaller random sample to be even larger than it was for 9-crossing knots. There
are very few knots for the larger radii, thus it makes very little sense to use the data
for the large radii. As a result, in Figure 10.15 we only show three curves, the first for
radii R = 1.0 − 1.3 contains 18, 118 random knots, the second for radii R = 1.4 − 1.7
contains 4, 647 random knots, and the third for radii R = 1.9 − 2.1 contains 1, 004
random knots. (The fourth would only contain 310 knots and therefore does not yield
a useful distribution.)

If we look at the five knots that have the lowest frequency, then four of these have
a standard diagram based on Conway basic polyhedra: 10123 (2 knots and 10* polyhe-
dra), 10115 (3 knots and 8* polyhedra), 10121 (4 knots and 9* polyhedra), and 10122 (4
knots and 9* polyhedra). In fifth place is 1099 (8 knots) which is not based on Conway
basic polyhedra. As in the previous figures, we can see the large increase in the num-
ber of non-alternating knots. The non-alternating knots with the largest frequencies
are as follows: 10132 (1007 knots), 10133 (762 knots), 10124 (596 knots), 10128 (596
knots), and 10137 (585 knots).

It is impossible to see in Figure 10.15 if the curves are still roughly parallel. To get
a feeling of how similar the curves are, in Figure 10.16 we show a zoomed in version
of the first two curves in Figure 10.15 using only the alternating knots of 10 crossings.
Here we can see that there is still a lot of similarity between the two curves.

The error bars for most of the individual knot types are too large to allow definite
conclusions. We illustrate this by just looking at the 10-crossing composites in Figure
10.17. Thefigure on the right shows the 10-crossing composite knotswhich include a31
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Fig. 10.15: The relative percentages of the different 10-crossing knots grouped into three groups by
the different radii. In each group, the smallest radius is shown as a plot label.
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component. Their relative percentages seem to be determined by the relative percent-
ages of the associated 7-crossing knots, with 75 and 76 the most likely, causing 31#75
and 31#76 to be the most likely composite knots. Similarly, 71 and 74 are the least
likely, causing 31#71 and 31#74 to be the least likely composite knots in the graph
(see Figure 10.9 and Table 10.2). On the right part in Figure 10.17, a similar observation
holds for 10-crossing composite knots which contain a 41 component.
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Fig. 10.17: On the left, the relative percentages of 10-crossing composites with 31, and, on the right,
the relative percentages of 10-crossing composites with 41 versus the confinement radius.

10.7 The influence of polygon length on the
distributions of knot types in the presence of
confinement

In this section, we discuss the dependence of the distribution of knot types on length
in the presence of confinement. We want to remind the reader that we consider only
the new data, and all polygons are in a sphere with confinement radius R = 3. This
investigation is similar to that of Section 10.6. Intuitively, we expect that keeping the
confinement radius fixed and increasing the length of the polygons has an analogous
effect to keeping the length of polygons fixed and decreasing the confinement radius.
Thus many of the results are similar to those of the last section. This includes the ob-
servations that the relative distributionof knots in a givengroupof knots is remarkably
steady for many different confinement radii.

10.7.1 3-, 4-, and 5-crossing knots

Our data contains 184, 517 knots with three, four, or five crossings. There are
117, 059 31 knots, 31, 827 41 knots, 13, 075 51 knots, and 22, 556 52 knots. There is
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a maximum of 32, 711 knots at length L = 70 and a minimum of 666 knots at length
L = 10. We note that for all lengths the order (frommost frequent to least frequent) of
knot types is consistent, as shown in Figure 10.5 on the left.

10.7.2 6-crossing knots

Our data contains 33, 161 6-crossing knots (all in a confinement sphere of radius R =
3). There are 7, 351 61 knots, 8, 311 62 knots, 5, 107 63 knots, and 12, 392 31#31
composite knots. There is a maximum of 7983 knots at length L = 90 and aminimum
of 2 knots at length L = 10. The four functions PK(L, 3) are shown in Figure 10.18 on
the left. The figure shows that the order of the four knot types remains unchanged,
with 31#31 having the highest frequency, followed by 62, 61, and 63 with the lowest
frequency. Figure 10.18 on the right shows the relative frequency of the four different
knot types. Here for each fixed value L, the y-values of the four data points add up to
one.

The most noticeable difference to the case in the previous section is the relative
stability of the knot distribution, that is for length L ≥ 30 the four functions in Figure
10.18 on the right look basically constant. The previous section shows that stronger
confinement causes a relative decline in the number of composite knots leading to
the expectation of a decline of composite knots for increased polygon lengths (and
fixed confinement radius). Figure 10.18 indicates that this is not the case. It has already
been observed in [12, 16] that for composite knots, the analogy between decreasing
the radius of the confinement sphere for polygons and increasing the length of the
polygons in a fixed confinement sphere breaks down.We also observe that the relative
order of the prime knot types is the same in both cases (see Figure 10.8 for the smaller
confinement radii) and that the achiral knot 63 occurs with the smallest frequency.
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Fig. 10.18: On the left: The relative percentages of the four different 6-crossing knots versus length.
On the right: the relative percentages of the four knot types versus length.
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10.7.3 7-crossing knots

Figure 10.19 shows the dependence of the distribution of 7-crossing knot types in the
presence of a confinement sphere of radius R = 3. Our sample contains 19, 971 7-
crossing knots. There are no 7-crossing knots of length 10 in our sample and the data
starts with 15 knots of length 20, rising to 5, 587 knots of length 90. The least likely
knot is 74 which occurs 1063 times in the sample, while the composite knot 31#41
occurs with the largest frequency of 5, 769. It appears that the relative distribution
of 7-crossing knots varies only slightly with the length of the polygons for L ≥ 40.
From the data for 6-crossing knots (see Figure 10.18), one can speculate that the rela-
tive distribution of 7-crossing knots is also independent of the lengths of the polygons.
There are significant similarities between this relative percentage distribution and the
data for the dependence of the relative percentage of 7-crossing prime knots on the
radius of confinement as shown in Figure 10.9: The curves show that 76 is the most
frequent, followed by 75. Next are 72 and 73 which are again approximately equally
likely. This is followed by 77 and at the end we have 71 and 74 (again approximately
equally likely). Just as in the case of the 6-crossing knots, the difference between the
two distributions shown in Figures 10.19 and 10.9 is the relative percentage of the com-
posite knot 31#41, which for small radii has a frequency similar to 75 (or 76), but for
radius R = 3 is the most likely.
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Fig. 10.19: The relative percentages of the different 7-crossing knot types versus length.

10.7.4 8-crossing knots

Nextwe look at 8-crossing knot types in thepresence of a confinement sphere of radius
R = 3. Our sample contains 20, 921 8-crossing knots. There is a single knot of length
10, 12 knots of length 20, rising to 6, 475 knots of length 90. The least likely knot is
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818 which occurs 19 times in the sample, while the composite knot 31#52 occurs with
the largest frequency of 3, 486. The prime knot with the largest frequency is the non-
alternating knot 820, which occurs 2, 521 times.

It again appears that the relative distribution of 8-crossing knots varies little with
the length of the polygons once the polygons are long enough. Data supporting this
claim is presented in several graphs. For Figures 10.20 and 10.21, all polygons up to
length 50 are combined into one group since, for the smaller lengths, there are not
many 8-crossing knots. As before we show relative percentages, that is for each curve
(representing different lengths) the sumof the percentages over all knot types adds up
to one. Similar to the data for the dependence of the relative percentages of 8-crossing
knots on the radius of the confinement sphere, there are many more non-alternating
prime knots than alternating prime knots, although there are alsomanymore compos-
ite knots. Just as in the case of 7-crossing knots, the composite knots behave differently
with increasing polygon length than they do with decreasing confinement radius. We
also note that for the non-alternating prime knots, the curves are strictly ordered by
length, with the shortest length leading to the largest relative frequency (on top) and
the longest length leading to the lowest relative frequencies (on the bottom). The be-
havior for the alternating prime knots and composite knots is inconsistent but the
order of curves is mostly reversed. Thus with the exception of the composite knots,
this behavior is similar to the behavior of the 8-crossing knot types with a changing
confinement radius.
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Fig. 10.20: The relative percentage of the 8-crossing knots from 81 to 813 grouped into six groups by
the different lengths.

Figure 10.22 shows the relative percentages of non-alternating knots (right) and
the composite knots (left). It is remarkable how close the relative percentages for
composite knots of length 90 (R = 3) ({0.32, 0.58, 0.1} rounded to the nearest per-
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Fig. 10.21: The relative percentages of the 8-crossing knots from 813 to 41#41 grouped into six
groups by the different lengths.

cent) are to the relative percentages for composite knots at radius R = 1 (L = 30)
{0.34, 0.56, 0.1}. For the non-alternating knot types, the data for polygons of length
90 is (R = 3) {0.21, 0.49, 0.30} compared to (L = 30) {0.24, 0.47, 0.29} for length
30 polygons in confinement of radius R = 1.
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Fig. 10.22: The relative percentages of the different 8-crossing knot types on the vertical axis and
its dependence on the polygon length. On the left: composite knots; on the right: non-alternating
knots. The frequencies are normalized so that adding all values for a fixed length yields one.

For alternating prime knots of eight crossings, the picture is not clear since the
error bars are too large to draw reliable conclusions about the frequency of all knot
types. This is shown in Figure 10.23. Clearly, the knots that are the most frequent, 88
and 814, are also on the top of the knot type distribution for a fixed length and varying
confinement radius, see Figures 10.10 and 10.11.
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Fig. 10.23: The relative percentages of 8-crossing alternating prime knot types versus length.

10.7.5 9-crossing knots

Our sample contains 14, 406 9-crossing knots. There are no knots of length 10, 4 knots
of length 20, rising to 4, 913 knots of length 90. The least likely knot is 940 which oc-
curs 6 times in the sample, while the composite knots 31#61 and 31#62 occur with the
largest frequency of 1, 007 and 1, 115 respectively. The prime knot with the largest
frequency is the non-alternating knot type 944, which occurs 971 times. The most fre-
quent alternating prime knot is 98, which occurs 307 times. There are 5, 925 alternat-
ingprimeknots (91 to 941), 3, 836non-alternatingprimeknots (942 to 949), and4, 645
composite knots. This shows again that the frequency of non-alternating knot types
and composite knot types is larger than the frequency of alternating prime knot types.
Similar to the last two subsections, the data suggests that the relative distribution of
9-crossing knots varies little with changes of the polygon length once the polygons are
long enough (L ≥ 50). Data to support this claim is presented in two graphs. Figure
10.24 shows the relative percentage of non-alternating knots (right) and of composite
knots (left). It is remarkable how close the percentages for composite knots of length
90 (and radius R = 3.0), rounded to the nearest percent, are to the percentages for
composite knots at radius R = 1 (and length L = 30) (see Table 10.3). Just like in the
section about the dependence of the knot distribution on the confinement radius, the
order of the relative frequencies of 9-crossing composite knots is strongly related to
the relative frequencies of the 6- and 5-crossing prime knots. Similar results are ob-
tained for the non-alternating prime knot types of length 90 in confinement of radius
R = 3 compared with length 30 polygons in confinement of radius R = 1 (see Table
10.3).
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Tab. 10.3: Similar relative percentages for polygons of length 90 (and radius R = 3.0) and polygons
in confinement radius R = 1.0 (and length L = 30). On the left for composite knots and on the right
for non-alternating knots.

knot length 90 R = 1 knot length 90 R = 1
R = 3 L = 30 R = 3 L = 30

31#31#31 0.17 0.07 942 0.24 0.22
31#61 0.22 0.22 943 0.18 0.16
31#62 0.25 0.27 944 0.24 0.25
31#63 0.14 0.20 945 0.18 0.21
41#51 0.08 0.08 946 0.10 0.08
41#52 0.15 0.15 947 0.01 0.02

948 0.03 0.04
949 0.02 0.02
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Fig. 10.24: On the left the relative percentages of different 9-crossing composite knot types versus
length. On the right, the relative percentages of different 9-crossing non-alternating prime knot
types versus length.

10.7.6 10-crossing knots

Our sample of knots with 10 crossings contains 12, 326 knots. There are no knots of
length 10, one knot of length 20, rising to 4, 739 knots of length 90. The least likely
knot is 10123, which is the only knot that does not occur in the sample. A minimal
standard diagram of 10123 is based on the 10* basic Conway polyhedron. We note
that this is the only knot type with less or equal to 10 crossings that was not observed
in the old data set either [12]. This confirms the observation that knots whoseminimal
standard diagrams are based on basic Conway polyhedrons occur with a probability
that is much lower than the probability of other knot types [12]. The composite knot
31#31#41 occurswith the largest frequency of 457. Theprimeknotwith the largest fre-
quency is the non-alternating knot 10132, which occurs 379 times. The most frequent
alternating prime knot is 1020, which occurs 81 times. There are 3, 751 alternating
prime knots (101 to 10123), 5, 520 non-alternating prime knots (10124 to 10165), and
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3, 055 composite knots. This shows, just as for other crossing numbers, that the fre-
quency of non-alternating knot types and composite knot types is larger than the fre-
quency of alternating prime knot types. The relative distributions of 10-crossing knots
in our data seems to vary more than for other graphs with the length of the polygons
(once the polygons are long enough), however this is due to the large error bars. Thus,
the authors claim that for a large enough sample, the statements of the previous sec-
tions would still hold: The relative distributions vary only slightly with changes in the
length of the polygons. To support this, we show the non-alternating knots and the
composite knots. The reader should compare Figure 10.25 with Figure 10.17 to follow
the discussion in this paragraph. In the figure on the left are the composite knots with
a 31 component. Their frequency seems to be determined by the frequency of the 7-
crossing knots, with 75 and 76 the most likely knots, causing 31#75 and 31#76 to be
the most likely composite knots. Similarly 71 and 74 are the least likely knots, caus-
ing 31#71 and 31#74 to be the least likely composite knots, see Figure 10.9. On the
right are the results for composite knots with a 41 component. Here we would expect
that 41#61 occurs with the highest frequency – but this does not always happen. How-
ever, as the error bar on the knot 41#62 indicates, the curves do not allow any definite
conclusions.
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Fig. 10.25: On the left, the relative percentages of 10-crossing composites with a 31-component ver-
sus length. On the right, the relative percentages of 10-crossing composites with a 41-component
versus length.

10.8 Conclusions

We finish this chapter with several conjectures. Here R is the radius of confinement
and n is the length of a polygon P in our sample. We also want to remind the reader
that the evidence collected in this article is restricted to 1 ≤ R ≤ 9/2 and 10 ≤ L ≤ 90.
Furthermore our sample does not contain enough knots for large crossing numbers
Cr > 10 to draw conclusions about the frequencies of individual knot types.
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• The distributions of different prime knot types are virtually independent of the
confinement radius and length. To be more precise, we claim that if K1 and K2 are
two prime knot types in a knot space SCr (that is both knots have the same cross-
ing number Cr) and if PK1 (L0, R0) << PK2 (L0, R0) for some confinement radius R0
and some length L0 (where L0 is big enough so that both knots can be formed) then
PK1 (L, R) << PK2 (L, R) for all confinement radii R ≥ 1 and all lengths L ≥ L0. Simi-
larly if PK1 (L0, R0) ≈ PK2 (L0, R0) for some confinement radius R0 and some length L0
(where L0 is big enough so that both knots can be formed) then PK1 (L, R) ≈ PK2 (L, R)
for all confinement radii R ≥ 1 and all lengths L ≥ L0.

• The above property also holds if both knot types in SCr are composite knots.

• The relative probabilities of a composite knot type versus the probabilities of
a prime knot type are virtually independent of the length but not independent of
the confinement radius. To be more precise, we claim that if K1 is a prime knot and
K2 a composite knot in a knot space SCr (that is both knots have the same cross-
ing number Cr) and if PK1 (L0, R0) << PK2 (L0, R0) for some confinement radius R0
and some length L0 (where L0 is big enough so that both knots can be formed) then
PK1 (L, R0) << PK2 (L, R0) for all lengths L ≥ L0. Similarly if PK1 (L0, R0) ≈ PK2 (L0, R0)
for some confinement radius R0 and some length L0 (where L0 is big enough so that
both knots can be formed) then PK1 (L, R0) ≈ PK2 (L, R0) for all lengths L ≥ L0.

• For afixed crossingnumber Cr theprobability that a polygon represents a knot in
SCr eventually decreases in strong confinement. That is to say, provided that the length
L is long enough so thatK can easily be formed, the function PK(L, R) is initially an
increasing function in R considering R = 1/2 as a starting point. For composite knots
K this increase is more pronounced than for prime knotsK.
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Kyle Chapman, Kenneth C. Millett, and Laura Plunkett
Sampling Spaces of Thick Polygons

Abstract: Open and closed polygons provide an attractive coarse grained model for
many molecular structures. The random selection of polygons of a specified thick-
ness is, however, an objective that has not been achievable until very recently. Here,
we give an elementary description of the distinct sampling strategies that have been
employed, their limitations, and the new algorithms that now allow one to randomly
sample the spaces of open and closed polygons with specified thickness. We observe
that the introduction of even a verymodest thickness has an immediate and profound
effect on the shape, the size, and the type of knot formed.

11.1 Introduction

A polygon in three dimensional Euclidean space consists of a finite sequence of
straight line segments, called edges, meeting only at the endpoints of adjacent edges,
called vertices. Polygons are closed if they form a loop and are, otherwise, open. Anal-
ogous to the ball and rodmolecularmodels, polygons have provided scientifically use-
ful coarse grained models of locally linear molecular structures. These polygons have
provided productive coarse grained models of a wide range of molecules: rubber, am-
ber, polyethylene, or other polymer melts or individual DNA chains, or proteins. In
some cases, the edge lengths are allowed to vary in length according to a given dis-
tribution and, in others, they are required to have a constant length, in some cases
reflecting the monomers and bonds of the structure while, in others, reflecting the
homogeneity of the persistence (or Kuhn) length of themodeledmacromolecule. Sim-
ilarly, the bending angles between adjacent edges reflect the curvature character of
the molecule and a triple of adjacent edges can be used to measure the intrinsic tor-
sion of the chain. Another facet of the modeling challenge is to capture the thickness
of the macromolecule or, similarly, the excluded volume of the modeled chains. The
notion of excluded volume, introduced by Kuhn [10], was employed by Paul Flory [6]
to explain that certain fundamental aspects of polymer physics are a consequence of
the fact that a portion of a long polymer can not occupy the same space as another
portion of the same polymer. As a result, for example, circular polymer chains can not
change their topological knot type, i.e. “crossings are forbidden,” and, furthermore,
their properties are distinct from those of infintesimal mathematical polygonal rings.
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Theproperties of excluded volumeand thickness haveproved to be aparticularly chal-
lenging facet of the structure to simulate, even in a coarse grained manner, across a
meaningful physical range of values.

Our focus will be on the available methods to sample the sets of open and closed
polygons with which one may try to access structural information related to the thick-
ness of the configuration. After an overview of how one may define the thickness of
a polygon, we will describe these ways in sufficient detail that one may develop an
algorithm to implement these methods. The first topic will be the ways in which one
samples open and closed polygons without thickness constraints. These are subse-
quently sorted by thickness with the hope of generating a statistically robust sample
for each range of thickness. Unfortunately, the rapid decay of sample sizewith increas-
ing thickness limits the effectiveness of this method. We will next discuss two new
methods that allow one to randomly sample collections of open and closed polygons
having any desired thickness and, in conclusion, briefly describe some observations
resulting from these new methods.

11.2 Classical Perspectives

The concept of excluded volume was introduced by Kuhn [10] and applied by Flory in
the study of polymers [6, 21]. For example, the Kuhn length of polyethylene (PE) is 14
angstroms. Of coarse, the molecule has a cross-sectional molecular diameter as well
as steric forces that give it an effective thickness that must be taken into consideration
in amodel. As noted, this has proved to be quite challenging due to the computational
cost of amolecularmodel and the lack of a cruder, coarse grained, simulationmethod.
If the effects of the excluded volume are neutralized in a given situation, described as
being at the theta point, one ignores these interactions and employs the ideal chain
model. These are defined as freely joined polygonal chains in which one ignores in-
teractions between edges. We will now describe how one measures the thickness of
polygonal chains, how such chains can be easily generated, and the character of the
resulting thickness distribution.

11.2.1 Thickness of polygons

We employ the ideas of Rawdon [12, 20], to define the thickness of a polygon in 3-
space (which Rawdon calls its injectivity radius). The underlying concept is that of a
tubular neighborhood of a smooth curve consisting of the embedded family of discs of
radius r at each point of the curve. The supremumof the radii of the embedded tubular
neighborhoods is called the thickness of the curve. Rawdon extended this concept
to polygons by taking the minimum, over all vertex angles, of a curvature constraint,
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Fig. 11.1: Tubular neighborhoods of the unit equilateral triangle including one of maximal radius
√
3

6

tan[ α2 ]
2 , and half the minimum distance between distant edges, taken over all pairs of

distant edges, the distal distance constraint. Tubular neighborhoods of an equilateral
triangle are illustrated in Figure 11.1 and, of random walks, in Figure 11.2.

11.2.2 Self-avoiding random walks

An embedded open chain with n unit edge lengths and random vertex angles is a self-
avoiding randomwalk, shown in Figure 11.2, is given by a sequence of vertices, vi with
i = 0, 1, ...n or, equivalently, a sequence of edge vectors, ej with j = 1, ...n. These
are related by v0 = {0, 0, 0} and vi =

∑︀i
j=1 ej. To randomly generate an n step ran-

dom walk (or n edge random open polygon) it is sufficient to individually generate
the corresponding n edge vectors as follows: select θ = 2 π randomreal[0, 1] and φ =
ArcCos[2 randomreal[0, 1]−1] to define ej = (Sin(θ) Sin(φ), Cos(θ) Sin(φ), Cos(φ)).

11.2.3 Closed polygons: fold algorithm

An embedded closed chain with n unit edge lengths and random vertex angles is a
self-avoiding polygon constrained by the requirement that the initial and terminal ver-
tex are equal, i.e. the closure constraint. The satisfaction of the closure constraint is
the critical feature of sampling algorithms. The fold method preserves the closure by
randomly selecting a pair of non-adjacent vertices to define an axis dividing the poly-
gon into two arcs. One of these arcs is rotated through a random angle and adjoined to
the complementary arc to define, following confirmation that resulting configuration
is embedded by directly checking for possible edge intersections between edge seg-
ments, a new polygon, see Figure 11.3. We also show the result of 100 random folds
applied to the 10 edge regular polygon.While its randomness is an open question, the
fold algorithm is known to be a transitive algorithm, i.e. one capable of taking any con-
figuration to any other configuration, whose resulting statistics, for example those of
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Fig. 11.2: A 20 step random walk: curvature constraint is 0.041 and the distal distance constraint
is 0.071. The 100 step random walk has angle constraint of 0.054 and distal distance constraint
0.026.

observed knot types or average radius of gyration, are consistent with being random
[16, 17].

11.2.4 Closed polygons: crankshaft algorithm

The crankshaft method is a computationally attractive algorithm that has also been
shown to be transitive and having statistics consistent with randomness [1]. This al-
gorithm randomly selects a pair, larger subset if desired, of edge vectors of an equilat-

Fig. 11.3: A regular 10 edge polygon, a first fold, and one created from the regular polygon using 100
random folds along axes such as the one indicated.
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Fig. 11.4: A regular 10 edge polygon, a first crankshaft, and one created from the regular polygon
using 100 random crankshaft modifications.

eral polygon and defines a segment based at the origin using this ordered sequence
of vectors. Following a random rotation about the axis defined by the origin and the
endpoint of the segment, one replaces the originally selected edge vector by the cor-
responding one in the resulting segment. Since the sum of these edge vectors has not
changed, the newly defined polygon is closed. If it is embedded, the result is the new
polygon, see Figure 11.4. The fact that one only has tomodify a small collection of edge
vectors, in our case just two, makes the calculations fast as they are explicit as shown
in the following formulae.

ei ↦→ crank(ei , ej , θ) =
ei + ej
2 + cos(θ)

ei − ej
2 + sin(θ)

ei × ej
||ei + ej||

(11.2.1)

ej ↦→ crank(ej , ei , θ) =
ej + ei
2 + cos(θ)

ej − ei
2 + sin(θ)

ej × ei
||ej + ei||

(11.2.2)

11.2.5 Quaternionic Perspective

Building upon a construction by Hausmann and Knutson [8], it is possible to describe
a natural measure on open and closed polygons in 3-space [2, 3]. This is based on a
map from the complex Stiefel manifold of 2-frames in n-space to the space of closed
n edge polygons in 3-space of total length 2 whose construction employs the Hopf
map on quaternions. In the setting of equilateral n edge polygons, this approach al-
lows one to randomly sample these polygons by jointly sampling the polyhedron de-
termined by a complete set of secants and n − 3 dihedral space angles between the
triangles formed by the secants and the edges of the polygon, each with the uniform
measure. Data generated from this approach is consistent with the data from the ran-
dom fold and crankshaft methods and, therefore, provides evidence that both the fold
and crankshaft algorithms sample the space of n edge equilateral polygons randomly.
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Fig. 11.5: A thickness distribution of a random sample of 250000 twenty edge equilateral polygons.

11.3 Sampling Thick Polygons

A consequence of the desire to understand the geometric and topological conse-
quences of excluded volume on the average character on n edged open and closed
polygons, i.e. thick coarse grained models of polymers, one is led to use the methods
we’ve discussed to acquire data that gives insight into theworld of thick polygons. Un-
fortunately, the proportion of a random sample decays so rapidly that this approach
means that generating sufficient data required to give robust estimates as thickness in-
creases, see Figure 11.5, is unreasonable. This is especially true if one wishes to study
the average properties of, for example, trefoil knots. In this section, we describe two
new sampling algorithms that permit one to randomly sample the sets of open and
closed polygons of a specified thickness. They were first presented in the the PhD dis-
sertations of Laura Plunkett, for open polygons, and Kyle Chapman, for closed poly-
gons [4, 19] at University of California, Santa Barbara. They are described below.

11.3.1 Primer on Probability Theory

Much of the value of the following algorithms comes from being able to use them to
prove a Markov chain arising from the moves involved can be used to determine a
probability measure on various sets. In order to motivate these algorithms, we start
with some of the key definitions involved.

We consider a space of states, X. We have a space of movesM, which gives a map
F : X × M → X. If we choose a starting point x0, then a random sequence in M gives
a random sequence in X. This is a Markov chain which gives a sequence of probabil-
ity distributions Pn(x0, A) on our space X defined by the probability of starting at x0
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and landing in the Borel set A after n moves coming from M. The goal is to show that
this sequence of probability distributions Pn(x0, A) converges to a limiting probability
distribution P(A).

The first step is knowing that there isn’t some lower dimensional subset we are
restricted to. This is given by the notion of Forward Accessible, which means that
independent of the choice of x0 the orbit under M has non-empty interior. While any
single sequence only reaches a countable number of points, the set of all possible
sequences can reach a full dimensional set.

The next step is knowing that the topology of the space is sufficiently well re-
spected. We have the sequence of probability distributions Pn, so given any distri-
bution on the natural numbers a, we get a new probability distribution Ka(x, A) =∑︀∞

n=1(a(n) · P
n(x, A)). Our Markov chain is a T-chain if there is some measure T on

X with T(x, A) ≤ Ka(x, A) for all A, T(x, X) > 0 for all x and T(x, A) lower semi-
continuous in x for all A. This is a complex and difficult to show directly, but having
other properties, we use Lemma 11.3.1. (See below.) A Markov chain which is forward
accessible and with M having a lower semi-continuous probability density function
is a T-chain. In our cases, moves from M are being chosen uniformly, so it has the
required PDF, and so we have a T-chain.

Having a reachable state x0 for our space, and we having a T-chain allows us to
assert that there is an invariantmeasure on X, but it may not be a probabilitymeasure.
For example, if we consider a randomwalk on the line or in the plane, the sequence Pn

spreads steadily over the whole region, and the invariant measure is Lebesgue mea-
sure. Thepropertywhich shows this issuedoesnot happenand that the invariantmea-
sure P is a probability measure is bounded in probability on average. This says that
for every ε there is a compact set Cwith Pn = 1

n
∑︀n

i=1 P
i satisfying lim inf Pn(C) ≥ 1− ε.

Essentially this amounts to showing that the probability of going to “∞” is zero. We
will be dealing with state spaces X which are compact, so this issue is automatically
resolved, and so the invariant measure P is a probability distribution.

Finally, these can be combined to allow the use of the aperiodic ergodicity theo-
rem to get the desired result. Letting B(X) denote the Borel subsets of X,

supA∈B(X)|P
n(x, A) − P(A)| → 0.

11.3.2 Open polygons: Plunkett algorithm [18]

We would like to generate random elements from the set of walks with n edges and
thickness t. We will call the set of these walksW(n, t). To sample this space, we will
start with a walk in the space,W ∈ W(n, t), and modify it, while ensuring we always
have a thickness of at least t, until the resulting walk,W ′, is independent of the origi-
nal.
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Our method is inspired by the pivot method, a Monte Carlo method proposed
by Lal, and later implemented and proven to be ergodic by Madras and Sokal. The
pivot method generates self-avoiding walks on the lattice by applying successive lat-
tice symmetries at randomly selected vertices along the walk and accepting the new
walk if it was not self-intersecting [13, 11]. Analogously, we perform reflections at ver-
tices to portions of the walk.

– A single reflection will consist of selecting a random vertex and a random plane
through that vertex. One portion of the walk will be reflected through the plane,
and the other will remain fixed. If the new walk is still in W(n, t), we accept the
move and continue. If it is not, we return to the walk before our reflection and try
again with a new vertex and a new plane.

– A double reflection will consist of selecting two random vertices and a random
plane through each vertex. The reflections are performed successively, and if the
end result is a walk inW(n, t), we accept the change and continue. If it is not, we
return to the walk before our reflections and try again.

– The acceptance probability of a reflection move varies with the thickness and
length of walk. For example, for random walks of length 1000 and thickness of
1.00, the acceptance rate is 25.59% [18].

After a sufficient number of single anddouble reflections,wehave anewwalk,W ′,
independent of the startingwalkW.What remains is to show that thismethod samples
the spaceW(n, t) ergodically [14]. Informally, this means that the Monte Carlo Markov
Chain gives a sampling method that converges to the probability measure on, in this
case, a continuous state space. The first requirement in showing that ourmethod is er-
godic is to show it is transitive. A transitiveMonte Carlomethod is capable of sampling
(or visiting) every state in the state space. For our method, proving transitivity would
require showing we can go from any walk, W0, to any other, W1, through a finite se-
ries of single and double reflections with each intermediate walk inW(n, t). Because
these reflections are reversible, this is equivalent to showing that we can get from any
configuration,W0, to the straight configuration,Ws, a straight rod of length n.

So suppose we start with a walk W0 ∈ W(n, t). We find a path to the straight
configuration,Ws, by the following steps:

– we will perform single reflections on the outside of the convex hull of our walk
until the ends of the walk determine the diameter of the convex hull, then

– wewill use double reflections to remove critical points (maximaandminima) from
the walk, and lastly

– we will perform more single reflections to straighten the configuration until we
arrive atWs.
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If we have a walk, Wi, then we may perform any reflection through a vertex on
the surface of the convex hull by a plane incident with only the surface of the convex
hull. No reflection of this type will decrease the thickness of the resulting walk, as all
pairs of edges either remain in the same position relative to each other, or the distance
between them is sufficiently increased so as to never be less than 2t. We will begin by
reflecting in this way until both ends of the walk are on the surface of the convex hull
and, further, that the two ends determine the diameter of the convex hull, as in Figure
11.6.

Fig. 11.6: Here we have three successive reflections through planes incident with points vi on the
convex hull. The end result is that the two ends of the chain have been moved to the surface of the
convex hull, and determine the diameter of the convex hull. While the represented case is two di-
mensional, the application is in three dimensions.

Now we will remove pairs of maxima and minima (relative to the diameter of the
convexhull, d*, from the last step) througha series of double reflections. If ourwalkWi
has no critical points, we may move on to the last step, the straightening. If there are
critical points, each critical point (with respect to this diameter of the convex hull),
is either at a vertex vi or an edge si. There is a plane through the critical point and
perpendicular to the diameter, which we will call Pi.
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We will select our maximum and minimum very carefully. First, We select the
highest localmaximum, that is, the localmaximummi such that the distance between
its plane Pi and the plane Pn containing the terminal and highest point is minimized,
as in Figure 11.7. Between this maximummi and the end of the walk vn there is at least
one local minimum. We will select the local minimum nj, i < j < n, such that the dis-
tance between the plane containing nj, Pj, and the plane containing vi, Pi, is greatest,
as in Figure 11.7.

First, we will reflect the terminal end of the walk from mi to vn through the plane
Pi. Then, we will reflect the terminal end of our modified chain, from n̂j to v̂n through
the plane P̂j, the reflection of Pj. As in Figure 11.7, we have eliminated a pair of critical
points. We now have three subsections of the walk to consider: from v0 to mi, mi to
n̂j and n̂j to ^̂vn. Between v0 to mi and mi to n̂j, we have performed a reflection similar
to part 1, and no thickness reducing interactions have been introduced. Similarly for
the interaction between mi to n̂j and n̂j to ^̂vn. For the interaction between the first
and third segments, from v0 to mi and n̂j to ^̂vn, the third segment has been translated
further away from the first segment. This increased distance is enough to verify that
the thickness of the resulting walk has not been decreased.

Lastly, we will straighten this configuration by performing single reflections. As-
sumewe have straightened the segments from vj+1 to vn andwewish to straighten the
next edge sj between vj and vj+1. As in Figure 11.8, we perform a reflection so that the
straight segment from vj+1 to vn is in line with the edge sj. We proceed until we have
the straight configuration.

To prove that this method is ergodic, in addition to being transitive, we need the
following lemmas about Markov chains.

Lemma 11.3.1. The Markov Chain F being forward accessible and the state space X
having a probability density function implies that F is a T-chain.

These are modifications of the arguments in Meyn and Tweedie [14]: Propositions 7.1.5
and 6.2.4.

Lemma 11.3.2. A T-chain with a reachable state is bounded in probability on average
if and only if it is positive Harris recurrent.

This is proposition 18.3.2 in Meyn and Tweedie [14].

Lemma 11.3.3. F is aperiodic.

Sketch of Proof Seeking a contradiction, suppose there exist Ci, subsets of the state
space X or in this caseW(n, t), such that i ∈ Zn, the cyclic group of order n, and they
are a collection of disjoint non-empty closed sets with the probability of going from Ci
to Ci+1 is one. Let w ∈ Ci. In our context, if we apply a pair of reflections at the second
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Fig. 11.7: Here we have a typical double reflection move for part two of the proof. First, we iden-
tify the local maximum, mi, and local minimum, mj such that mi is the highest maximum and nj is
the lowest minimum, relative to the axis selected at the beginning of this step. The first reflection
through the plane Pi reflects the segments between mi and vn. The reflection through P̂j, the re-
flected image of Pj, reflects the segments between n̂j and v̂n. This gives us our new configuration,
with two fewer critical points and with the same (or greater) thickness.
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Fig. 11.8: In the previous step, we eliminated pairs of maxima and minima relative to d*, the diam-
eter of the convex hull in the first step. Now, via a single reflection reflection, we straighten the
segments sj+1 , ..., sn to be in line with sj.

to last vertex throughplanes containing the last edge, thenw is left fixedby this double
reflection. Therefore there is a double reflection move r with r(w) = w /∈ Ci+1. Since
Ci+1 is closed, there is an open neighborhood of w which is not in Ci+1 so there is a
positive probability of landing in this open neighborhood of w. This contradicts the
requirements of periodicity. Thus, F is aperiodic.

Theorem 11.3.1. The Markov chain on walks in W(n, t), as described above, is er-
godic.

Proof. From our work showing transitivity, we have that for any walk there is a se-
quence of finitelymany single and double reflectionswhich can transform thiswalk to
the straightwalk, and each single and double reflection in this sequence is on the inte-
rior of a smooth section of F. Then, by concatenating this sequence with the reverse of
another such sequence, we can connect any two walks on the interior ofW(n, t) with
a sequence of reflections on the interior of a smooth section of F. Therefore F creates a
forward accessible Markov chain. Next, since our noise parameter M has a probability
density function, namely a constant,we can combine thiswith forward accessibility to
get that theMarkov chain is a T-chain.Weget that any sequence of probability distribu-
tions is tight, so in particular ourMarkov chain F is bounded in probability on average
because our state space is compact. Because there is a sequence of reflections ensur-
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Given Convex
Projection

Made Planar

Made Regular

Fig. 11.9: An example of the three aspects being applied to a hexagon

ing that everywalk can bemodified to bewithin anyneighborhood of the straightwalk
with positive probability, we conclude that F has a reachable state. Therefore F, being
a T-chain with a reachable state which is bounded in probability on average, must be
positive Harris recurrent. Finally, since there is a fixed point at the interior of a smooth
section, F cannot be periodic and so the aperiodic ergodicity theorem [14] tells us that
F is ergodic.

11.3.3 Closed polygons: Chapman algorithm

We work in the space R(n, t) of polygonal rings with n unit length edges and a thick-
ness of greater than or equal to t. We show that any knot K ∈ R(n, t) has a sequence of
polygonal folds which brings it to the regular planar polygon Pn, without having the
thickness be less than t. Note that this algorithm unknots the polygon and, therefore,
may not preserve the topological knot type of the polygon. The overall structure for
making these choices has 3 aspects. The first aspect is being able to expand the knot
until its orthogonal projection to the x−y plane is a convex projection, without chang-
ing the number of minimal height vertices, with respect to the orthogonal projection.
The second aspect is being able to take a knot with convex projection and increase the
number of minimal height vertices, with respect to the orthogonal projection. These
two actions are combined and alternated so as to allow one to make the knot planar
and convex. The third aspect is to take a planar and convex polygon and make it reg-
ular.

A key piece for the first aspect, making the projection convex, is the fact that a re-
flection move across a plane which does not intersect the interior of the convex hull,
does not increase the thickness. This is a special example of the fact that if no two ver-
tices aremade closer together, then the thickness in not increased. Formaking the pro-
jection convex,weutilize the argument of theGrünbaum-Zaks theorem [7]. Toproperly
state this theorem we use need a weakened notion of convexity called exposed which
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Non-Convex Nearly Convex Exposed Convex

Fig. 11.10: Examples of the types of convexity. Overlapping edges are separated for clarity.

is shown in Figure 11.10. While a polygon in the plane is convex if it is an embedding
onto the boundary of the convex hull, it is exposed if the image is the boundary of
the convex hull and the pre-image of each vertex is connected. This means that the
polygon might double back over an edge, but still cycles around the convex hull. The
Grünbaum-Zaks theorem says that any polygon can be made exposed using a finite
sequence of reflections across edges of the convex hull.

The Grünbaum-Zaks theorem allows us to make the projection exposed, so we
need to make the projection convex. For that, we consider an edge of the convex hull
which is not hit injectively. Taking the pre-image of that edge we get a strip, with an
arc of the knot moving from one side of the strip to the other, as in Figure 11.11. Look-
ing at the convex hull of this arc we can find a sub arc which has end points which
share a bottom edge of that convex hull. This sub arc can be pushed out slightly using
a rotation about the line labeled l through a small angle, which can be done with a
pair of reflections. This makes the projection more injective and so alternating with
Grünbaum-Zaks theorem completes the first aspect.

The second aspect is much simpler. Since the knot is not planar, we can find a sub
arc which is above the minimum height except at the endpoints which are minimal
height vertices. This arc canbe rotated downuntil another vertex has reachedminimal
height, as in Figure 11.12.

The final aspect uses a special move which consists of six reflections. Within the
planar convex polygon, we choose an inscribed quadrilateral, which has two oppo-
site corners which correspond to vertices at which the interior angles are smaller than
the regular angle, and the complementary two corners correspond to vertices at which
the interior angles are larger than regular the regular angle. Focusing on the inscribed
quadrilateral, two reflections can give a new planar quadrilateral with different an-
gles. This leaves four flaps in the form of the arcs connecting the vertices of the in-
scribed quadrilateral, and so an additional four reflections will make the whole knot
planar. Intermediate value theorem allows this collection of six reflections to be cho-
sen so one additional angle is regular.



252 | Kyle Chapman, Kenneth C. Millett, and Laura Plunkett

Fig. 11.11: An example of the pre-image of an edge of the convex hull. α denotes a vertex which is
strictly above another point in the arc. α± denote the vertices in either direction which are on the
bottom of the convex hull of the arc. l is the boundary line of this convex hull shared by α±

Fig. 11.12: An example of a rotation which increases the number of minimum height vertices, shown
from a projection which is parallel to the axis of rotation.
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Fig. 11.13: An example of applying the six reflection move to a decagon. The initial diagram has four
distinguished vertices connected by dotted lines.

We now let F denote the Markov chain arising from applying sequences of 6 re-
flection moves at a time to a closed polygon x in the state space X = R(n, t) of n edge
rings with thickness at least t.

Lemma 11.3.4. The Markov chain F is ergodic

The algorithm we described shows that any point x can be brought to the regular pla-
nar polygon with a finite sequence of moves, so by using this and its reverse, we can
connect any two points in the state space. This means that we can utilize the same
argument for R(n, t) as for W(n, t). The algorithm shows forward accessibility and a
reachable point. This lets us claim that it is a T-chain. Since it is a compact state space
we get an invariant probability measure. Finally, since there exists moves which take
a point to itself, the Markov chain is aperiodic, so the aperiodic ergodicity theorem
applies.

11.4 Discussion and Conclusions

Considering open polygons, we generated a data set consisting of 5000 samples for
each of the following pairs of lengths and thicknesses:

– lengths, N: 100 to 1000 in steps of 100.
– thicknesses: 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1 (Note, these correspond

tominimal interior angles of about 0∘, 23∘, 44∘, 62∘, 77∘, 90∘, 100∘, 109∘, 116∘,
122∘, and 127∘.)

Even for the thickest and longest of these samples, the acceptance rate for a pro-
posed reflection or double reflection was above 25%. From this data we examined
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squared radius of gyration, squared end to end distance, and for the length 300 sam-
ples, knotting in the open walks [15].

Fig. 11.14: Knot probability as a function of thickness for self avoiding walks of length 300. For each
0.1 thickness is increased, the probability of knot formation is cut by 50% or more, up to t = 0.5. For
t > 0.5, the probability of knot formation is constant.

As we see in Figure 11.14, the probability of knot formation for walks with length
300 is quite highwithout the introduction of thickness,withmore thanhalf of samples
having a dominant, nontrivial knot type, i.e. a specific knot type appearingmore than
half the time. For each 0.1 (to be compared to the length of each segment, 1,) that
the thickness is increased, the probability of knot formation is cut in half until the
thickness is at 0.5 after which this probability is constant. We conclude that the intro-
duction of thickness has an immediate and profound effect on knot formation, andwe
expect that further studies will confirm that this effect persists to longer length scales
and in both thicker and thinner walks.

We also analyzed the growth exponent for the thicknesses from 0.0 to 1.0 by find-
ing the average radius of gyration squared, RG2n, for each data set, and performing a
linear regressionwith vertical offsets on the log of the data. Assuming that RG2n ∝ N𝜈 ,
this allowed us to solve for 𝜈 as a function of thickness.

For ideal chains it has been shown that RG2N ∝ N, where N is the number of
segments. It is easy to verify that for t = ∞ we have the straight configuration and
RG2N ∝ N2 [22]. Excluded volume has been classically characterized by the estimate
𝜈 = 1.2 [5]. Inwet experiments and numerical simulation for good solvent polymers, 𝜈
hasbeen estimatedbetween1.1 and1.2,with2(0.588) = 1.18 inwalks on the simple,
cubic lattice [5]. We can see that there is an immediate impact of thickness: the scal-
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ing exponent increases to the [1.14, 1.17] interval almost immediately, as predicted
by Vologodskii’s simulations of very thin walks and rings [9].

For comparison, we will refer to 𝜈t as the scaling exponent for the self avoiding
walk with thickness t, and µt as the scaling exponent for the family of walks with only
a bending constraint for adjacent edges, and no restrictions equivalent to excluded
volume.

Fig. 11.15:We analyzed how the squared radius of gyration scaled as a function of N. Assuming that
RG2

N ∝ N𝜈 , we solved for 𝜈 and plotted it as a function of thickness for self avoiding walks (red,
solid). The exponent, as expected for the ideal case, was close to 1 for thickness 0.0 and increased
to 1.16 where it was fairly stable (±.01) for thicknesses t ∈ [0.2, 1.0].

For those walks without long range or excluded volume interaction the growth
exponent is, as expected, close to 1 as these walks should scale like ideal chains. The
thick walks behave very differently. The growth exponents for families of walks with
very small thicknesses immediately jumps to 1.16 where it was fairly stable (±.01) for
thicknesses t ∈ [0.2, 1.0]. Therefore the effect of excluded volume is as immediate
and profound on growth exponent as it is for knot formation: even the introduction of
very modest thicknesses has a profound effect on shape, size and knotting.
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Eugene L. Starostin and Gert H.M. van der Heijden
Equilibria of elastic cable knots and links

Abstract: We present a theory for equilibria of geometrically exact braidsmade of two
thin, uniform, homogeneous, isotropic, initially-straight, inextensible and unshear-
able elastic rods of circular cross-section. We formulate a second-order variational
problem for an action functional whose Euler–Lagrange equations, partly in Euler–
Poincaré form, yield a compact system of ODEs for which we define boundary-value
problems for braids closed into knots or links. The purpose of the chapter is to present
a pathway of deformations leading to braids with a knotted axis, thereby offering a
way to systematically compute elastic cable knots and links. A representative bifurca-
tion diagram and selected numerical solutions illustrate our approach.

Keywords: elastic knots and links, cable knots, equilibria, variational problem, bifur-
cation

MSC: 74K10, 74G60, 65L10

12.1 Introduction

Contact problems in the theory of elasticity have seen a surge of interest recently. They
are challenging because of the one-sided constraints they introduce. Determining the
topology and geometry of the contact set given the boundary conditions is probably
the hardest part of any contact problem. Although progress has beenmade in some of
the 1D continua problems [8], [5], [13], we are still far from a full understanding of the
solutions of the Euler–Lagrange equations for general contact problems. The theory
of elastic braids in [12] deals with a special type of (self-)contact problems of elastic
rods involving only equality constraints.

In thisworkwe focus our attentionon closedbraidswhose axesmake a torus knot,
i.e., so-called cable knots or links [2]. Such knots or links form naturally in (virtual)
experiments with elastic torus knots/links if they are made to buckle under the inser-
tion of twist and then allowed to go through a (multiple) self-intersection (the simplest
example being the passage through a figure-8 with a single self-intersection). We do
not intend to present in this chapter a global classification of all equilibria of knot-
ted 2-braids; rather we explain a particular scenario of how they appear in a typical
bifurcation diagram as a control parameter (such as the twisting moment) is varied.
Wemake no assumptions on either the topology or the geometry of the contact set ex-
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cept that it is closed on itself. We obtain the shape of the contact curve as part of the
solution.

In Section 2 we first recall the essential equations of the elastic 2-braid theory [12]
specialised to the present case of (n, 2)-cable knots/links. Then, in Section 3, we for-
mulate boundary conditions that smoothly seal the ends of the rods so that a knot
or a link is formed and discuss a bifurcation diagram and numerical solutions before
closing this study, in Section 4, with some concluding remarks.

12.2 Theory of elastic braids made of two
equidistant strands

12.2.1 Equidistant curves, reference frames and strains

Consider a pair of smooth curves r1(s) ∈ R3, s ∈ [0, L1], r2(σ) ∈ R3, σ ∈ [0, L2], both
parametrised by arclength, that serve as centrelines of two inextensible and unshear-
able elastic rods of length L := L1 and L2, respectively. We denote by t1(s) = dr1(s)

ds
and t2(σ) = dr2(σ)

dσ the unit tangents to each of the curves. We define the point-to-
point squared distance function D2(s, σ) = ρ2(s, σ), where ρ(s, σ) = r2(σ) − r1(s)
is a chord vector connecting the two curves. We assume that there is a one-to-one
mapping [0, L1] ↔ [0, L2] : s ↔ σ(s) between the two curves such that D2 is bi-
critical at corresponding points, i.e., ∂D2

∂s (s, σ)
⃒⃒⃒
σ=σ(s)

= −2ρ(s, σ(s)) · t1(s) = 0 and
∂D2
∂σ (s, σ)

⃒⃒⃒
σ=σ(s)

= 2ρ(s, σ(s)) · t2(σ(s)) = 0. Then D2(s, σ(s)) is constant, say equal

to ∆2, and the two curves are said to be at constant distance ∆. Moreover the chords
ρ(s, σ(s)) are orthogonal to the curve tangents at both ends. Because of the one-to-
onemapping there exists a commonparametrisation for both curves. Taking arclength
along the first curve as the common parameter, we can introduce the unit chord vector
d1(s) = 1

∆ρ(s, σ(s)) =
1
∆
[︀
r2(σ(s)) − r1(s)

]︀
. We shall henceforth write expressions like

r2(s) instead of r2(σ(s)).
Along each curve we define two moving frames as follows (Fig. 12.1). We define

u1 := t1 × d1 so that the vectors t1, d1 and u1 form an orthonormal frame that we call
the first braid frame. We also define an orthonormal material frame on the first rod:
{t1, d0, v1} (d0 pointing in an arbitrary normal direction). The two frames differ by a
rotation about t1 through an angle ξ1 measured from d0 to d1. Correspondingly, we
define two moving orthonormal frames on the second curve r2. The first one (called
the second braid frame) is made up of the vectors t2, d1 and u2 := t2 × d1, while the
second one (called the secondmaterial frame) is {t2, d2, v2}. They differ by a rotation
about the tangent vector t2 through an angle ξ2, measured from d1 to d2.
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Fig. 12.1: A braid made of two rods. Centrelines are drawn as thick blue curves while red helices
show how the material twists. For clarity the rods are shown with smaller diameter.

After choosing a coordinate system we may identify the orientations of the above
four reference frames with elements of the group of orthogonal 3 × 3 matrices:

Rij(s) :=(tj(s), di(s), βij(s)) ∈ SO(3),

βij(s) =tj(s) × di(s) = i(2 − i)uj(s) + |i − 1|vj(s),

where i ∈ {0, 1, 2}, j ∈ {1, 2}, ij ̸= 02, 21. These define four skew-symmetric 3 × 3
matrices in the Lie algebra so(3) as follows:

̂︀ω = Rᵀ
11R

′
11, ̂︀Ω = Rᵀ

12R
′
12, ̂︀̃︀ω = Rᵀ

01R
′
01,

̂︀̃︀Ω = Rᵀ
22R

′
22, (12.2.1)

where we have introduced the ‘hat’ isomorphism between skew-symmetric matrices

̂︀w =

⎛⎜⎝ 0 −w3 w2
w3 0 −w1
−w2 w1 0

⎞⎟⎠ in so(3) and axial (rotation) vectors w = (w1, w2, w3)ᵀ in
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R3. 12.1 Here and in the following a prime denotes differentiation with respect to s.
Thus we have defined four axial vectors ω = (ω1, ω2, ω3)ᵀ, Ω = (Ω1, Ω2, Ω3)ᵀ, ̃︀ω =
(̃︀ω1, ̃︀ω2, ̃︀ω3)ᵀ and ̃︀Ω = (̃︀Ω1, ̃︀Ω2, ̃︀Ω3)ᵀ, which are the rotation vectors of, respectively,
the braid frames {t1, d1, u1}, {t2, d1, u2} and the material frames {t1, d0, v1} and
{t2, d2, v2}.

The orthonormal frames form a sequence under consecutive rotations about t1,
d1 and t2. Thus

R11 = R01R1(ξ1), R12 = R11R2(η), R22 = R12R1(ξ2), (12.2.2)

where

R1(ξi) = exp(ξi ̂︀e1) =
⎛⎜⎝1 0 0
0 cos ξi − sin ξi
0 sin ξi cos ξi

⎞⎟⎠ ∈ SO(3), i = 1, 2, e1 = (1, 0, 0)ᵀ,

R2(η) = exp(η ̂︀e2) =
⎛⎜⎝ cos η 0 sin η

0 1 0
− sin η 0 cos η

⎞⎟⎠ ∈ SO(3), e2 = (0, 1, 0)ᵀ,

and η is the angle, about d1, from the first tangent, t1, to the second, t2 (see Fig. 12.1).
From Eqs. (12.2.1), (12.2.2) it follows that the rotation vectors of the material and braid
frames are related as

̂︀ω = Rᵀ
1 (ξ1)̂︀̃︀ωR1(ξ1) + Rᵀ

1 (ξ1)R
′
1(ξ1), (12.2.3)̂︀Ω = Rᵀ

2 (η)̂︀ωR2(η) + Rᵀ
2 (η)R

′
2(η), (12.2.4)̂︀̃︀Ω = Rᵀ

1 (ξ2)̂︀ΩR1(ξ2) + Rᵀ
1 (ξ2)R

′
1(ξ2). (12.2.5)

Owing to the inextensibility condition | dr2dσ | = 1, the arclength parameter σ along
the second centreline satisfies

σ′ =
√︀
(∆ω1)2 + (∆ω3 − 1)2. (12.2.6)

We express the angle η as a function of the components of ω as

sin η = −∆ω1/σ′, cos η = (1 − ∆ω3)/σ′, (12.2.7)

and hence
ω1 =

(︂
ω3 −

1
∆

)︂
tan η. (12.2.8)

12.1 Throughout we adopt the notation that for any vector v ∈ R3 the sans-serif symbol v denotes
the triple of components (v1 , v2 , v3)ᵀ = (v · t1 , v · d1 , v · u1)ᵀ in the first braid frame. An excep-
tion is however made for sans-serif rotation vectors, which are always triples of components in their
corresponding frames.
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Eqs. (12.2.3)–(12.2.5) allowus to express the strand strains (̃︀ω1, ̃︀ω2, ̃︀ω3, ̃︀Ω1, ̃︀Ω2, ̃︀Ω3)
in terms of the variables (ω1, ω2, ω3, ξ1, ξ2), which we shall call the braid strains. In
much of the following it will be convenient to use Eq. (12.2.8) to eliminate ω1 in favour
of the angle η, which also has an intuitive physicalmeaning as braid angle.With either
choice of variables we have an unconstrained description in which, by construction,
the constant-distance constraint is automatically satisfied.

We note that if ω1 = 0 and ω3 ̸= 1/∆, then η = 0 and the two strands are parallel
(this condition does not restrict in any way the shape of the first centreline). When
ω3 = 1/∆, and ω1 ̸ = 0, the second strand becomes orthogonal to the first one (η =
±π/2). If both ω1 = 0 and ω3 = 1/∆ then σ′ = 0, i.e., the induced parametrisation of
the second centreline is singular. The angle η is then not defined. We need to rule out
this case.

For a non-selfintersecting braid, tubes of radius ∆/2 around each of the centre-
lines must not overlap. Locally this means that points connected by the bicritical
chords must be closest-approach points of the centrelines. It may be shown that this
requires η ∈ (−π/2, π/2) [12].

12.2.2 Equations for the standard 2-braid

For the elastic energy we make the usual assumption of frame indifference, i.e., the
energy is invariant under Euclidean motions. It will then depend only on the strains
(and possibly arclength) and not, for instance, on the centreline r1. We have already
assumed both rods in the braid to be inextensible and unshearable, so there is no
elastic energy on account of stretches. Apart from this restrictionwe allow for arbitrary
hyperelastic rods [1] and write

U1 =
L1∫︁
0

f1(̃︀ω) ds and U2 =
L2∫︁
0

f2(̃︀Ω(σ)) dσ = L1∫︁
0

f2(̃︀Ω/σ′) σ′ ds (12.2.9)

for the elastic strain energy of the first and second rod, respectively, where f1 and f2
are the strand strain energy densities, and the explicit argument of ̃︀Ω in the σ integral
emphasises that ̃︀Ω is to be regarded as a function of arclength σ of the second rod in
this integral.

Assuming fixed ends of the first strand, we add −F · [r1(L) − r1(0)] = −
∫︀ L
0 F · t1 ds

as an isoperimetric constraint expression with F a (constant) Lagrange multiplier (to
become the internal force in the braid). Also, by inextensibility of the second rod we
require the length of the second strand

L2 =
L2∫︁
0

dσ =
L∫︁

0

σ′ ds =:
L∫︁

0

fσ(ω1, ω3) ds (12.2.10)

to be constant, giving a second isoperimetric constraint.
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We can express the arguments of the integrands in Eqs. (12.2.9) and (12.2.10) in
terms of the braid strains (ω, ξ1, ξ2) and their derivatives by using Eqs. (12.2.3)–(12.2.5)
and (12.2.6) and thus formulate a second-order variational problem for the reduced
functional l : 2so(3)×R3×TS1×TS1 → R, l(ω, ω′, F, ξ1, ξ ′1, ξ2, ξ ′2) = f1(̃︀ω)+ f2(̃︀Ω(σ))+
hσ′ − F · t1,

δ
L∫︁

0

l(ω, ω′, F, ξ1, ξ ′1, ξ2, ξ ′2) ds = 0, (12.2.11)

for variations that keep the end positions and orientations of the rods fixed; h is a
(constant) Lagrange multiplier.

The Euler–Lagrange equations are derived partly in Euler–Poincaré form and
comprise

(a) balance equations for the components of the overall braid force F = (F1, F2, F3)ᵀ

and braid moment M = (M1,M2,M3)ᵀ expressed in the first braid frame [12]

F′ + ω × F = 0 , (12.2.12)

M′ + ω ×M + t1 × F = 0 , (12.2.13)

(b) the ‘constitutive’ equations
M = Eω(l) , (12.2.14)

where Eζ (k) := ∂k
∂ζ −

(︁
∂k
∂ζ ′
)︁′
is the Euler-Lagrange operator for the variable ζ ,

(c) the phase equations for the twist angles of the rods

Eξi (l) = 0, i = 1, 2. (12.2.15)

Equations (12.2.12) and (12.2.13) are themoving-frame (advected) versions of the famil-
iar balance equations F′ = 0,M′ + r′1 × F = 0 expressed in an inertial frame. It follows
that |F| and F ·M are first integrals.

Equations (12.2.15) can be written as a set of four first-order equations by intro-
ducing new variables (the strand torques) Ti, i = 1, 2:

Ti =
∂l
∂ξ ′i

, T ′i =
∂l
∂ξi

. (12.2.16)

If we eliminate the variable ω1 in favour of η by using η = η(ω1, ω3) given in
Eq. (12.2.7), the reduced density l takes the form

l = g(ω2, ω3, η, η′, F1, ξ1, ξ ′1, ξ2, ξ ′2), (12.2.17)
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while Eq. (12.2.14) transforms into [11]

M1 =
∂η
∂ω1

Eη(g) =
∆ cos2 η
∆ω3 − 1

[︂
∂g
∂η − d

ds

(︂
∂g
∂η′

)︂]︂
, (12.2.18)

M2 =
∂g
∂ω2

, (12.2.19)

M3 =
∂g
∂ω3

+ ∂η
∂ω3

Eη(g) =
∂g
∂ω3

− ∆ sin η cos η∆ω3 − 1

[︂
∂g
∂η − d

ds

(︂
∂g
∂η′

)︂]︂
(12.2.20)

(cf. the equations for an elastic strip reduced to the centreline in [10]).
We now specialise our theory to the case where the two strands are linearly elas-

tic, uniform, isotropic, initially-straight rodswith bending stiffness B1 and B2 and tor-
sional stiffness C1 and C2, respectively.We allow the strands to be intrinsically twisted
with twist rates ω01 and ω02. We call this special case the standard 2-braid. The den-
sity g in Eq. (12.2.17) then takes the form

g = ge(ω2, ω3, η, η′, ξ ′1, ξ ′2) + h(1 − ∆ω3)/ cos η − F1, (12.2.21)

with the elastic energy density ge (= f1 + f2), the sum of bending and torsional energy
densities of the two strands, given by (using Eqs. (12.2.3)–(12.2.5))

ge =
1
2

[︂
B1(̃︀ω2

2 + ̃︀ω2
3) +

B2
σ′ (
̃︀Ω2
2 + ̃︀Ω2

3) + C1(̃︀ω1 − ω01)2 +
C2
σ′
(︁̃︀Ω1 − σ′ω02

)︁2]︂
=

= 1
2

{︂
B1(ω2

2 + ω2
3) + B2

[︂
cos η

1 − ∆ω3
(ω2 + η′)2 +

(ω3 − sin2 η/∆)2
(1 − ∆ω3) cos η

]︂
+

+ C1
[︂(︂
ω3 −

1
∆

)︂
tan η − ξ ′1 − ω01

]︂2
+

+C2

[︃
cos η

1 − ∆ω3

(︂
sin η
∆ − ξ ′2

)︂2
+ 2ω02

(︂
sin η
∆ − ξ ′2

)︂
+ ω2

02
1 − ∆ω3
cos η

]︃}︃
. (12.2.22)

This gives a systemof 13ODEs in (F1, F2, F3,M1,M2,M3, η, ω2, ω3, ξ1, T1, ξ2, T2):
Eqs. (12.2.12), (12.2.13), (12.2.16), (12.2.18), (12.2.19) and (12.2.20). The last three in fact
contain two algebraic equations because g does not depend on ω′

2 and ω′
3, but these

can be turned into ODEs by differentiation (and the algebraic equations used to solve
for η′ and h). Also note that since g does not depend on the phase angles ξ1 and ξ2,
the strand torques Ti are constants.

12.2.3 Kinematics equations

Reconstruction of the centreline of the first strand requires solving for the tangent t1
and integrating this to get r1. We choose a parametrisation of the first braid frame {t1,
d1, u1} in terms of four Euler parameters (or quaternions) q = (q0, q1, q2, q3) subject
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to the normalisation condition q20 + q21 + q22 + q23 = 1 [6] and write

t1 =

⎛⎜⎝q20 + q21 − q22 − q232q1q2 + 2q0q3
2q1q3 − 2q0q2

⎞⎟⎠, d1 =

⎛⎜⎝ 2q1q2 − 2q0q3
q20 − q21 + q22 − q23
2q2q3 + 2q0q1

⎞⎟⎠,

u1 =

⎛⎜⎝ 2q1q3 + 2q0q2
2q2q3 − 2q0q1
q20 − q21 − q22 + q23

⎞⎟⎠.

These Euler parameters, unlike Euler angles, give a singularity-free description of ar-
bitrary rotations in space and are therefore convenient for numerical computations.
The kinematics equations are obtained by differentiating the above vectors and using
Eq. (12.2.1):

d
ds

⎛⎜⎜⎜⎝
q0
q1
q2
q3

⎞⎟⎟⎟⎠ = 1
2

⎛⎜⎜⎜⎝
0 −ω1 −ω2 −ω3
ω1 0 ω3 −ω2
ω2 −ω3 0 ω1
ω3 ω2 −ω1 0

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
q0
q1
q2
q3

⎞⎟⎟⎟⎠, (12.2.23)

where we recall from Eq. (12.2.8) that ω1 =
(︀
ω3 − 1

∆
)︀
tan η. It is straightforward to

verify that q · q is a first integral of this system of equations. To find the centreline r1
we solve Eq. (12.2.23) in conjunction with the equation r′1 = t1. The second centreline
is then given by r2 = r1 + ∆d1.

12.3 Numerical solution

In this section we present results obtained by numerically solving boundary-value
problems for the standard 2-braid equations developed in Section 2 using the contin-
uation and bifurcation code AUTO [3]. AUTO solves ODEs using collocation and uses
pseudo-arclength continuation to advance solutions as a control (or bifurcation) pa-
rameter is incremented. The code is also able to detect pitchfork or other bifurcation
points along a solution branch where this branch intersects another solution branch
and to switch to and compute this second branch. In this work we choose the strand
torque as a bifurcation parameter.

Here we consider only the closed braid problem where the two rods form a torus
knot or link.Wedefine a linking number to distinguish between topologically different
types of such 2-braid solutions by following Fuller’s extension of the concept of a link-
ing number to a (not necessarily closed) ribbon [4]. By a ribbon is here meant a curve
with a field of normal vectors of constant length. First note that the contact curve of
our knot 1

2 [r1(s) + r2(s)] = r1(s) +
∆
2d1(s), s ∈ [0, L], is a (smoothly) closed curve and

the director ∆2d1(s) is an orthogonal vector defined for all s ∈ [0, L]. It therefore forms
a non-closed ribbon. The linking number of this ribbon is defined as Lk = Tw +Wr,
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whereWr is the writhing number of the contact curve and Tw = 1
2π
∫︀ L
0 tw(s) ds is the

total twist (the twisting number) of the braidwith twist rate tw. To have a closed single
centreline, Lk has to be semi-integer, Lk = n/2, n ∈ Z. Alternatively, if we think of
the ribbon as extended in both ± ∆2d1 directions, we may say that, for our knots, this
ribbon is one-sided (like a Möbius strip [10]) and its edge (given by the centreline of
the rod) is a single knotted curve.

We start from an analytical solution (two linked equidistant circular rings) and
perform continuations mimicking the cutting, twisting and resealing of the rings to
obtain different torus knots (and links) [12] and eventually, after torsionally buckling
these knots/links, cable knots/links. The braid axis (contact curve) of this starting so-
lution is an unknot. We compute solutions with different linking numbers for which
we derive boundary conditions that ensure smooth closure of the braid into a knot (for
semi-integer linking number of the braid) or a link (for integer linking numbers).

In addition to the 13-dimensional systemofODEsderived in Section 12.2.2we solve
the 7 kinematics equations for q and r1 of Section 12.2.3, so as to be able to apply dis-
placement boundary conditions and plot solution shapes, and Eq. (12.2.6) to compute
the second arclength. Integration of this last equation allows us to impose the total-
length constraint Ltot := L + L2 = const., the natural constraint to consider for knot
solutions. Since q · q is an integral of the kinematics equations, the quaternion nor-
malisation condition |q| = 1 can simply be imposed by choosing boundary conditions
for the qi that satisfy it.

All numerical runs are for elastic parameters B1 = B2 = 1, C1/B1 = C2/B2 =
1/(1+𝜈), where Poisson’s ratio 𝜈 = 0.3, and in all cases we set ω01 = ω02 = 0. Given a
solution of the 21D system of ODEs we can compute other properties such as the nor-
mal contact pressure p or the curvature κc of the contact curve (see details in [12]). Here
wemake the assumption of frictionless hardcore contact inwhich the only distributed
force acting between the two contacting strands is the normal pressure directed along
the chord vector d1. First integrals are monitored throughout to keep track of the nu-
merical accuracy of solutions.

12.3.1 Torus knots

12.3.1.1 Boundary conditions

To compute knot solutions of total length Ltot we apply the following boundary con-
ditions
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x1(0) = 0, (12.3.1)

y1(0) = 0, (12.3.2)

z1(0) = 0, (12.3.3)

q0(0) = 0, (12.3.4)

q1(0) = −1/
√
2, (12.3.5)

q2(0) = −1/
√
2, (12.3.6)

q3(0) = 0, (12.3.7)

ξ1(0) = 0, (12.3.8)

ξ2(0) = 0, (12.3.9)

T1(0) = t10, (12.3.10)

T2(0) = t20, (12.3.11)

σ(0) = 0, (12.3.12)

x1(L) − x1(0) = ∆, (12.3.13)

y1(L) = 0, (12.3.14)

z1(L) = 0, (12.3.15)

q0(L) = q3(L), (12.3.16)

q1(L) = −q2(L), (12.3.17)

4q0(L)q1(L) = sin η(L), (12.3.18)

η(L) = η(0), (12.3.19)

[M2(0) − B1ω2(0)]/B2 = −ω2(L), (12.3.20)

(1 − ∆ω3(0))/ cos η(0) = cos η(L)/(1 − ∆ω3(L)),
(12.3.21)

σ(L) = L2, (12.3.22)

L + L2 = Ltot, (12.3.23)

where t10 and t20 are constants. Since for a knot the two strands are part of a single
closed rod, it only makes good sense to take t20 = −t10 and also B2 = B1, C2 = C1.

Conditions Eqs. (12.3.1)–(12.3.7), (12.3.13)–(12.3.21) ensure smooth closure of the
braid into a doubly-covered ring, smooth here meaning continuity up to second
derivatives of ri, i.e., curvatures. Conditions Eqs. (12.3.13)–(12.3.15) place the end of the
first centreline r1 at the beginning of the second centreline r2, both strands thus form-
ing a single closed rod. Conditions Eqs. (12.3.16) and (12.3.17) imply d1(L) = −d1(0).
Condition Eq. (12.3.18) guarantees that t1(L) makes an angle η(L) with t1(0) of the
same strand. Together with condition Eq. (12.3.19) this ensures matching of the tan-
gents: the tangent at s = L of the first strand aligns with the tangent at s = 0 of
the second strand, and vice versa. Conditions Eqs. (12.3.19)–(12.3.21) are equivalent to
Ω1(0)/σ′(0) = ω1(L), Ω2(0)/σ′(0) = −ω2(L) and Ω3(0)/σ′(0) = −ω3(L), which ensure
that the curvatures at the end of the first strandmatch the curvatures at the beginning
of the second strand.

The total number of boundary conditions is 23 and the three free parameters re-
quired for solution branches are L, L2 and t10. Note that the material frames of these
knot solutionswill in general not be closed. This is not different from similar studies of
closed single rods (see, e.g., [9, 7]). Material closure requires ξ1(0)+ξ2(L) = π (mod2π)
and can be achieved by inserting the right amount of twist by adjusting t10 (= −t20).
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Fig. 12.2: Partial bifurcation diagram for the (7, 2) torus knot with the first four bifurcation points
(marked with solid black circles) and bifurcating branches. ∆ = 0.0051364907419, Ltot = 1.98889.
Empty circles mark particular cable knots whose shapes are shown separately in the following fig-
ures.

12.3.1.2 Examples of cable knots

Cable knots [2] can be obtained by inserting twist into the torus knots computed using
the above boundary conditions thereby forcing them to buckle (bifurcate). The bifur-
cation diagram in Fig. 12.2 shows how cable knots appear along bifurcating solution
branches. The figure presents a (T, F) diagram, where T := t10 = T1 = −T2 is the com-
mon strand torque and F = |F| is the magnitude of the constant braid force as a char-
acteristic solution measure. The diagram is for the (right-handed) (7, 2) torus knot.
The trivial branch, representing unbuckled knots with unknotted braid axis, makes
an infinite v-shaped curve (only part of this branch, marked 1 − 2 − 3 − 4, is shown
in Fig. 12.2). The solutions along the v-branch are D7-symmetric with the cenral axis
alignedwith the force vector.We shall refer to them as ‘flat’ solutions because inmany
ways they behave like twisted planar circular isotropic rods (which have linear F-T re-
lationship for branches of planar equilibria [7]). This is despite the fact that neither
the contact curve of the braid nor the centreline of the rod is a plane curve.
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Fig. 12.3: Figure-8-shaped (11, 2) torus knot. T = −2.10752, F = 171.50131 ((a) in Fig. 12.2). ∆ =
0.0051364907419, Ltot = 1.98889.

Fig. 12.4: Buckled right-handed cable knot formed by knotting a right-handed (13, 2) torus knot
into a right-handed trefoil. T = −9.89105, F = 368.075 ((b) in Fig. 12.2). ∆ = 0.0051364907419,
Ltot = 1.98889.
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Fig. 12.5: Buckled right-handed cable knot formed by knotting a right-handed (7, 2) torus knot
into a right-handed (4, 3) torus knot. T = −10.97932, F = 634.5698 ((c) in Fig. 12.2). ∆ =
0.0051364907419, Ltot = 1.98889.

Fig. 12.6: Buckled right-handed cable knot formed by knotting a right-handed (7, 2) torus knot into a
right-handed (5, 4) torus knot. T = −15.51471, F = 942.989 ((d) in Fig. 12.2). ∆ = 0.0051364907419,
Ltot = 1.98889.
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There exist critical torque levels T, corresponding to bifurcation points
1, 2, 3, 4, . . . in the diagram,where newbranches ofmorewarped (buckled) solutions
begin. This sequence of buckling modes is again similar to the behaviour of a single
closed elastic rod (cf. Fig. 3 in [7]). Figure 12.2 shows branches for the first four bifur-
cating modes, with the bifurcation points marked by solid black circles. As we move
further away from the right side of the v-branch, shapes become more warped and at
some point begin to self-overlap. The braid axis exhibits a multiple self-intersection
depending on the mode, becoming knotted for modes 2 and higher. Continuing along
the branch we come to an interval where the shape becomes free of self-overlapping,
see points a, b, c and d in Fig. 12.2 (this may not happen if the rod is too thick). These
solutions are cable knots, examples of which are shown in Figs. 12.3–12.6.

The braid axis of the first mode shape in Fig. 12.3, going through a single figure-8-
type self-intersection, remains unknotted; we present it here only for completeness of
the picture.We see that the right-handed (7, 2) torus knot becomes a (11, 2) torus knot
after self-crossing. The linking number of the shape shown is 3.5 + 2 = 5.5. Each of
the curves corresponding to the various modes ends at another v-branch (only parts
of which are shown in Fig. 12.2). These represent multi-covered ‘flat’ solutions also
having their own bifurcation points. As they are self-overlapping for modes higher
than one, we do not explore them further.

All solutions inFigs. 12.3–12.6havebeen computedby continuation from the (7, 2)
torus knot and have the same total length Ltot (= 1.98889). (The shape in Fig. 12.6
has a small overlapping domain because the chosen value of ∆ is just too large.) In
particular, the trefoil cable in Fig. 12.4 is obtained by continuation of a right-handed
(7, 2) torus knot that after a triple self-crossing becomes a (13, 2) torus knot tied into
a right-handed trefoil. Thus, the torus knot (inside the tubular neighbourhood of the
companion trefoil knot) has linking number 3.5 + 3 = 6.5. The corresponding linking
numbers for the cable knots in Figs. 12.5 and 12.6 are 7.5 and 8.5, respectively.

The set of all knot solutions breaks down into two components. A disjoint bifurca-
tion diagram, the mirror image of the present diagram under reflection in the F-axis,
consists of all solutions connected to the left-handed (7, 2) torus knot (hence, the left-
handed trefoil).

The contact pressure profile is drawn in white for s ∈ [0, L] and in black for
s ∈ [L, Ltot] in Figs. 12.3–12.6. This allows one to see the differences for both contact-
ing strands. The profile differences are larger for thicker rods. We observe that for all
solutions shown the contact pressure is non-negative and increases with the mode.

12.3.2 Torus links

12.3.2.1 Boundary conditions

To compute link solutions we apply the following boundary conditions:
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x1(0) = 0, (12.3.24)

y1(0) = 0, (12.3.25)

z1(0) = 0, (12.3.26)

q0(0) = 0, (12.3.27)

q1(0) = −1/
√
2,
(12.3.28)

q2(0) = −1/
√
2,
(12.3.29)

q3(0) = 0, (12.3.30)

ξ1(0) = 0, (12.3.31)

ξ2(0) = 0, (12.3.32)

T1(0) = t10, (12.3.33)

T2(0) = t20, (12.3.34)

σ(0) = 0, (12.3.35)

x1(L) = x1(0), (12.3.36)

y1(L) = y1(0), (12.3.37)

z1(L) = z1(0), (12.3.38)

q0(L) = q3(L), (12.3.39)

q1(L) = q2(L), (12.3.40)

q0(L) + q1(L) = − sin(Φ/2 − π/4), (12.3.41)

ω2(0) fixed, (12.3.42)

ω2(L) = ω2(0) cosΦ + ω3(0) sinΦ, (12.3.43)

σ(L) = L2, (12.3.44)

where t10 and t20 are constants and ω2(0) is fixed at whatever value the starting solu-
tion has.

The qi conditions at s = 0 imply that t1 is alignedwith the y axis, d1 is alignedwith
the x axis and u1 is aligned with the −z axis. Conditions Eqs. (12.3.39) and (12.3.40)
ensure alignment of the tangents t1(0) and t1(L). Φ is the angle between d1(0) and
d1(L) in the plane normal to these tangents. Closed links have Φ = ±2πn, where n is
a non-negative integer. By using parameter continuation inΦ solutions with different
linking numberLk = ±nmay be obtained, positive linking numbers corresponding to
right-handed and negative linking numbers corresponding to left-handed links.

This gives a total of 21 conditions for a 21-dimensional system of equations. To
compute branches of solutions for a given link wemay vary one of the parameters, for
example t10 or ∆. For equal twisting of the two strands (in the same direction), t20may
be taken equal to −t10. Note that closure of the material frames of these link solutions
requires ξi(L) = ξi(0) (mod2π), i = 1, 2, which will not in general be satisfied.

12.3.2.2 Examples of cable links

Similar tohowwecomputed cable knots,wefirst compute a trivial branchof ‘flat’ torus
links with unknotted contact curve. Then, following the branches of post-buckled
solutions of different modes, we observe knotting of the braid axis by multiple self-
intersection, thus forming what we call cable links. Figs. 12.7–12.9 present, respec-
tively, mode-2, -3 and -4 cable links with equal-length components (L1 = L2). The
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Fig. 12.7: Buckled right-handed cable link formed by knotting a left-handed (6, 2) torus link into a
right-handed (3, 2) torus knot. T1 = −T2 = −11.46623, F = 364.061, ∆ = 0.016016913268,
L1 = L2 = 1.

shape in Fig. 12.7 is obtained by taking a left-handed ‘flat’ torus link (6, 2) and fol-
lowing the second bifurcating branch. After self-intersection, the axis of the braid be-
comes a right-handed trefoil (a companion knot). As can be verified directly from the
image in Fig. 12.7, the two strands are not linked inside a tube imagined around the
knotted braid axis. The linking number of this link equals 3. A similar procedure ap-
plied to a ‘flat’ torus link emanating from a third mode bifurcation, results in a cable
of a right-handed (4, 3) torus knot (Fig. 12.8). The two components form a 1-link inside
an imaginary tube around the knotted axis of the braid. The linking number of the link
is 9. The fourth mode bifurcating branch of the initial ‘flat’ torus link (10, 2) leads to a
cable of a right-handed (5, 4) torus knot (Fig. 12.9) and the two strands are not linked
inside the knotted tube. The linking number of this link is 15.

In all Figs. 12.7–12.9, the contact pressure profiles are displayed as functions of
arclength s along the first strand, in white for the pressure on the first strand and in
black for the pressure on the second strand. Note that for all three examples the con-
tact pressure changes sign, which means that the physical realisation would require
a mechanism (e.g., glue or a clamp) to keep the strands together.

12.4 Concluding remarks

We have shown how the simplest cable knots and links emerge as equilibrium config-
urations of closed braids made of two equidistant elastic strands. Cable links present
an obvious generalisation of cable knots when there is more than one component. A
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Fig. 12.8: A cable of a right-handed (4, 3) torus knot. T1 = −T2 = −14.49330, F = 633.545, ∆ =
0.006, L1 = L2 = 1.

Fig. 12.9: Buckled right-handed cable link formed by knotting a left-handed (10, 2) torus link into a
right-handed (5, 4) torus knot. T1 = −T2 = −14.63829, F = 946.310, ∆ = 0.002, L1 = L2 = 1.
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further natural extension of this mechanical problem would be to increase the num-
ber of strands in the braid, which requires the development of a multi-strand elastic
braid theory. Although this calls for a more sophisticated technique to account for
equidistant constraints on multiple strands, we do not expect a significant difference
in qualitative geometrical properties ofmechanical equilibriumsolutions for thin elas-
tic rods.
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Abstract: In this paper we review recent results on the groundstate energy spectra
of magnetic knots and links and compare these results with new results on bending
energy of tight knots and links obtained by using RIDGERUNNER data on curvature. Re-
markable similarities between the two systems are found. Comparative analysis be-
tween magnetic and bending energy at groundstate energy level shows that informa-
tion based on bending energy provides a very good proxy for magnetic end-states.
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ation, bending energy, topological fluid mechanics.
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13.1 Introduction

In recent years much progress has been done in applications of knot theory to mathe-
matical physics, from classical to quantumfield theory, and in physical and biological
sciences as well. This has led mathematical research to explore new territories at the
cross-roadof several, different disciplines. One interestingproblemhere is the studyof
minimum energy states of physical knots and links subject to continuous relaxation
(through diffeomorphisms) of some energy functional. Magnetic relaxation of knots
and links embedded in an ideal fluid provides indeed a prototype example of mini-
mization useful to explore and understand similar features present, for instance, in
elastic systems. Here we present a brief review of results on the groundstate energy
spectra of magnetic knots and links (published in J. Phys. A: Math. & Theor. [20]) that
sheds light on similar aspects when we consider elastic, rather than magnetic knots
and links. Indeed proof of how good this analogy can be is given by comparing, as
we do here, those results with new results based on bending energy estimates of tight
knots and links obtained by using data readily available from RIDGERUNNER [1].

The material is presented as follows. In Sec. 13.2 we consider magnetic knots and
links as tubular embeddings in idealmagnetohydrodynamics and introduce basic def-
initions. The prototype problem ofmagnetic relaxation under constraints is discussed
in Sec. 13.3. A solution to the problem of magnetic relaxation of (zero-framed) knots
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and links is presented in Sec. 13.4. By using RIDGERUNNER data the groundstate mag-
netic energy spectra of the first 250 prime knots and 130 prime links are presented
(Sec. 13.5). Similar spectra for the bending energy of tight knots and links are pre-
sented in Sec. 13.6. A comparative analysis of these results ismade in Sec. 13.7. Finally,
conclusions are drawn in Sec. 13.8.

13.2 Magnetic knots and links in ideal conditions

We consider magnetic knots and links in an ideal, incompressible, perfectly conduct-
ing fluid in S3 (i.e. R3 ∪ {∞}, simply connected). Let u = u(x, t) be the fluid velocity,
smooth function of the position vector x and time t, with∇ · u = 0 in S3 and u = 0 at
infinity. The magnetic field B = B(x, t) is frozen in the fluid and has finite energy, that
is

B ∈ {∇ · B = 0, ∂tB = ∇ × (u × B), L2−norm} . (13.2.1)

A magnetic knot is a magnetic flux tube prescribed by the knot type K and the mag-
netic field B, defined on a regular tubular support T(K) centered onK. We assumeK
to be a C3-smooth, closed loop (i.e. a submanifold of S3 homeomorphic to S1), sim-
ple (i.e. non-self-intersecting) and parametrized by arc-length s. The tube T = K⊗ S,
given by the cartesian product of K and the circular disk S, is centered on the knot,
whose total length is L = L(K) (hence s ∈ [0, L]), local radius of curvature ρ > 0, and
cross-sectional area A = πR2 of radius R > 0.

Since the magnetic knot is a physical tube, it is useful to introduce the volume
V(T), the magnetic flux Φ and the magnetic energy M. The total volume is given by
V = V(T) = πR2L, with tubular boundary ∂T a magnetic surface, i.e.

supp(B) := T(K) , B · 𝜈⊥ = 0 on ∂T , (13.2.2)

where 𝜈⊥ is a unit normal to ∂T. The existence and regularity of non-self-intersecting
nested tori, support of themagnetic field inside T, is guaranteed by the tubular neigh-
borhood theorem [22], provided ρ ≥ R all along K. The magnetic flux Φ is defined
by

Φ =
∫︁
S

B · 𝜈 d2x , (13.2.3)

where now 𝜈 is the unit normal to S; the magnetic energy M is given by

M = 1
2

∫︁
V(T)

‖B‖2 d3x . (13.2.4)
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13.3 The prototype problem

For a magnetic knot, whose field is confined to a single tube of signature (V ,Φ),
the combined action of magnetic stresses and Lorentz force induces the field lines
to shrink like elastic bands, by shortening the knot, while conserving volume and
flux [12]. Magnetic energy gets gradually converted into kinetic energy, and eventu-
ally dissipated by viscosity or other dissipative effects, if present. As the relaxation
progresses, the average cross-section increases proportionately, and the tubular knot
becomes thicker and tighter, until knot topology prevents any further adjustment: the
final state is ultimately reached when the relaxation comes to a complete stop (see
figure 13.1). During this process the knot is also gradually deformed by the action of
a signature-preserving flow (through diffeomorphisms), that governs the relaxation
from the initial configuration. Since the tight configuration of the end-state resembles
that of an ideal knot of platonic features [23], magnetic relaxation provides physical
mechanism to investigate optimal geometric properties of ideal knots.

Let (r, ϑR , s) denote an orthogonal, curvilinear coordinate system centered on K

(see [11]); r ∈ [0, R] and ϑR ∈ [0, 2π] are the radial and azimuthal coordinates in the
cross-sectional plane of S, with origin O at s = 0 and ϑR = 0 given by the direction
of the principal normal toK at O. The metric is orthogonal, with scale factors hr = 1,
hϑR = r

2, hs = 1 − cr cos ϑ, where c = c(s) is curvature,

ϑ = ϑ(ϑR , s) = ϑR −
s∫︁

0

τ(s̄) ds̄ , (13.3.1)

and τ = τ(s) torsion.Orthogonality is ensuredby eq. (13.3.1),whichprovides theneces-
sary correction to the standard azimuthal angle by the torsion contribution (see details
in [11], Sec. 3). The results presented here are derived by using this metric.

The magnetic field Bmay be decomposed into meridian and longitudinal compo-
nents, that is

B = (0, BϑR (r), Bs(r)) , (13.3.2)

and in general we assume that the longitudinal field is far greater than the meridian
field, i.e. Bs ≫ BϑR . This is consistent with the usual definition of twisted flux tube,
whose field lines wind around the knot axis in the longitudinal direction. By using
the solenoidal condition ∇ · B = 0, the magnetic field can be expressed in terms of
poloidal (meridian) and toroidal (longitudinal) fluxes ΦP and ΦT , i.e.

B =
(︂
0, 1L

dΦP
dr , 1

2πr
dΦT
dr

)︂
+

(︃
0, ∂

̃︀ψ
∂s , −

∂̃︀ψ
∂ϑR

)︃
, (13.3.3)

where the total field is given by the sumof an average field plus a fluctuating fieldwith
zero net flux, in terms of the flux function ̃︀ψ = ̃︀ψ(r, ϑR , s). The twist h = ΦP/ΦT of the
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Fig. 13.1: Ideal relaxation of a magnetic trefoil knot and a Hopf link.

field lines provides the magnetic field framing given by (2π)−1 times the turns of twist
required to generate poloidal field from toroidal field, starting from ΦP = 0.

According to the process described above, knot topology dictates a lower bound
on the relaxation of magnetic energy M, which must be bounded from below by a
minimum Mmin > 0, that on dimensional grounds is given by (see [13])

Mmin = m(h)Φ2V−1/3 , (13.3.4)

where m(h) is a positive, dimensionless function of the internal twist h. Of particular
interest is the value of h for which m(h) is minimal (mmin). A fundamental problem is
this:

Problem 1 ([14]). Determine mmin for knots of minimum crossing number 3, 4, 5, . . . .

If cmin denotes the topological crossing number of the knot and h = 0 (a condition
referred to as zero-framing), one can prove the following result:

Theorem 1 ([16]). Let K be a zero-framed magnetic knot with signature {V ,Φ}. We
have m(0) = (2/π)1/3cmin; hence

Mmin =
(︂
2
π

)︂1/3
cminΦ2V−1/3 . (13.3.5)

For a signature-preserving flow, eq. (13.3.5) establishes a correspondence between
minimum energy levels and topology. However, Mmin ∝ cmin is a rather loose result.
From a direct inspection of the knot table (see, for instance, the standard tabulation
in [21]) with the exception of the trefoil and the 4-crossing knot, for all other values of
cmin > 4 there are several distinct knot types for each given cmin, and the number gets
exponentially large for increasing values of cmin (2 for cmin = 5, 3 for cmin = 6, 7 for
cmin = 7, 21 for cmin = 8, and so on). Hence, the question is to determine whether a
one-to-one relationship between energyminima and different knot types of same cmin
may exist or not.
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13.4 Relaxation of magnetic knots and constrained
minima

To explore this problem let us consider the relaxation of a magnetic flux tube in some
generality. Let Vr = πr2L be the partial volume of the tubular neighborhood of radius
r; the ratio of thepartial to total volume is givenbyVr/V(T) = (r/R)2. Now, let f (r/R) be
a monotonically increasing function of r/R; for example f (r/R) = (r/R)𝛾 , with 𝛾 > 0;
𝛾 = 2 defines the standard flux tube. A detailed analysis of the relaxation of mag-
netic flux tube with twist is done in [11]. By using the orthogonal, curvilinear system
(r, ϑR , s) and the magnetic field decomposition given by (13.3.3), standard minimiza-
tion of (13.2.4) is carried out and under the periodicity of ϑR and s, subject to these
assumptions:

(i) {V ,Φ} is invariant;
(ii) the circular cross-section is independent of s;
(iii) ̃︀ψ is independent of s;
(iv) the knot length is independent of h.

We have:

Theorem 2 ([11]). LetKbe an essentialmagnetic knotwith signature {V ,Φ} andmag-
netic field given by (13.3.3). Constrained minimization of magnetic energy yields

M* =

(︃
𝛾2L*2

8(𝛾 − 1)V + 𝛾πh2
2L*

)︃
Φ2, (13.4.1)

where L* is the minimal tube length of the tight knot.

For a standard flux tube (𝛾 = 2), (13.4.1) reduces to

M* =

(︃
L*2

2V + πh
2

L*

)︃
Φ2. (13.4.2)

This result is equivalent to the eq. (4.2) of [7] (coefficients left undetermined). Note that
because of the constraints, for any given knot family we have that ⟨M*⟩cmin ≥ Mmin,
where angular brackets denote averaging over the number of knots of the same cmin
family.

In order to investigate the relation between energy and knot topology, let us refer
to standard flux tubes; it is useful to rewrite eq. (13.4.2) in terms of ropelength, a useful
measure of knot complexity [4]: this is defined by λ = L*/R*, where L* is the minimal
length and R* themaximal cross-sectional radius of the knot in tight configuration. In
the case of the unknot, the least possible value of λ (say λ0) is that given by the tight
torus; hence λ ≥ λ0 = 2π. By using V = πR*2L* = cst., and after some straightforward
algebra, we have

M* =

(︃
λ4/3

2π2/3
+ π

4/3h2

λ2/3

)︃
Φ2V−1/3 . (13.4.3)
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Fig. 13.2: Influence of twist h on the energy function m(λ, h), plotted against ropelength λ, accord-
ing to eq. (13.4.4). The absolute minimum is given by the tight torus, for which λ = λ0 = 2π and
m∘ ≈ 2.70 (from [20]).

By comparing (13.3.4) and (13.4.3), andunder the above assumptions,we can state that

m(λ, h) = λ4/3

2π2/3
+ π

4/3h2

λ2/3
, (13.4.4)

showing the explicit dependence of minimum energy on ropelength and framing

13.5 Groundstate magnetic energy spectra

Let us first investigate the minima mmin = mmin(h) by plotting (13.4.4) against λ for
h = 0, 1, 2, 3, . . . (see figure 13.2). The absolute minimumm∘ corresponds to the zero-
framed unknot (tight torus), given by h = 0 and λ = λ0 = 2π: m∘ = (2π2)1/3 ≈ 2.70.
The groundstate energy of zero-framed flux tubes provides the absolute minimum en-
ergy level;m(h) remains a monotonic increasing function of λ for h ≤ 2: at λ0 = 2π we
have m(h = 1) = 4.05 and m(h = 2) = 8.11. For h ≥ 2 the energy minima are attained
at h = λ/π; thus, by substituting the optimal value λ = πh in (13.4.4), we have

mmin(h) =
3
2π

2/3h4/3 (h ≥ 2) . (13.5.1)

For h > 2 (and λ ≥ λ0) the functional dependence of m(h) on λ ceases to be mono-
tonic. The same h4/3 power–law of eq. (13.5.1) was also found by [7] (p. 206, eq. 4.15,
by scaling arguments).

The minimum energy spectra of the first prime knots and links is determined by
setting h = 0 in (13.4.4) and by using ropelength data (λK) of each knot/link type K ob-
tained by RIDGERUNNER, a tightening algorithm developed by [1]. A particularly simple
expression is obtained by normalizing m(λK , 0) with respect to the minimum energy
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Fig. 13.3:Magnetic energy spectrum m̃ = m̃(#K ) of tight knots (top) and tight links (bottom) plot-
ted against the knot/link number #K , given by the position of the knot/link K listed according to
increasing value of ropelength λK = λ(#K ) (from [20]).

value m∘ of the tight torus; thus, we have

m̃(K) = m(λK , 0)m∘
=
(︂
λK
2π

)︂4/3
, (13.5.2)

that gives a one-to-one relationship between minimum energy level and knot rope-
length. Since the relation λK = λ(K) is not known analytically, it must be recon-
structed fromnumerical data.We take λK = λ(#K),where #K denotes thepositionof the
knot/link K listed according to increasing values of ropelength given by RIDGERUNNER.
Hence, instead of tabulating energy levels as function of the knot/link position given
by standard knot tabulation, by taking λK = λ(#K) we plot m̃ = m̃(#K), according to in-
creasing ropelength data. The energy spectra are shown in figure 13.3 for the first 250
prime knots up to 10 crossings (top diagram) and 130 prime links up to 9 crossings
(bottom diagram). Remarkably, magnetic energy levels of knot and link types seem
to follow an almost identical logarithmic law given by the best fit curve shown in the
plots.
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Fig. 13.4: Bending energy spectrum ẽ = ẽ(#K ) of tight knots (top) and links (bottom) plotted against
the knot/link number #K , given by the position of the knot/link K listed according to increasing
values of ropelength λK = λ(#K ).

13.6 Bending energy spectra

It is interesting to compare groundstate magnetic energy spectra with the correspond-
ing bending energy spectra obtained by considering bending energy in place of mag-
netic energy. Since magnetic relaxation is driven by the Lorentz force, that is mainly
a curvature force, computation of the elastic energy due solely to curvature (bending
energy) provides an interesting comparison. Bending energy is defined by

Eb =
1
2

∮︁
C

Kb[c(s)]2 ds , (13.6.1)

where Kb is bending rigidity and c(s) is local curvature. By normalizing this quantity
with respect to the reference value E∘ = πKb/R* = Kb21/3π5/3 of the tight torus, we
have the normalized bending energy given by

ẽ = EbE∘
=
∮︀
C
[c(s)]2 .ds
24/3π5/3

. (13.6.2)

By using curvature data of tight knots obtained by RIDGERUNNER, we can easily plot the
energy spectrum ẽ = ẽ(#K) according to increasing ropelength data. The correspond-
ing energy spectra are shown in figure 13.4. Remarkably, and similarly to themagnetic



284 | R.L. Ricca and F. Maggioni

Fig. 13.5: Ratio of magnetic to bending energy χ = m̃/ẽ of tight knots (top) and tight links (bottom)
plotted against the knot/link number #K , given by the position of the knot/link K listed according to
increasing value of ropelength λK = λ(#K ).

case, bending energy levels of knot and link types seem to follow an almost identical
logarithmic law given by the best fit curve shown in the plots.

13.7 Magnetic energy versus bending energy

Let us compare the energy values by taking the ratio of magnetic to bending energy
χ = m̃/ẽ and plot for comparison χ = χ(#K) according to increasing ropelength data.
Results are presented in figure 13.5. As we see, with a few exceptions, ratios tend to
level up around a constant value that for sufficiently large cmin for tight knots is given
by χ̄ = 21.62 and for tight links is given by χ̄ = 21.42. Thus, on average, for complex
topologies we see that information on bending energy is proportional to magnetic en-
ergy. This is actually in good agreement with expectations: since magnetic relaxation
is driven by the Lorentz force, which to a first approximation is a curvature force, it is
not so surprizing to discover that relaxedmagnetic states are, on average, proportional
to bending energy end-states of tight knots and links. Departure from average values
is greater at lower cmin, where, probably, the constraints imposed by the assumptions
affect the most the results.

Let us now re-examine a common feature of the plots of figures 13.3-13.4. The
curves dotted by circles results from a linear fit made over each cmin–family, while
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the continuous curve is the best-fit interpolation over all available data. To the first
decimal digit, we find that best-fit interpolations follow an almost identical logarith-
mic law, given by

m̃(#K) = a ln #K + b , (13.7.1)

with a = 4.5, b = 10.5 for magnetic knots and a = 4.5, b = 9.3 for magnetic links,
and similarly

ẽ(#K) = a ln #K + b , (13.7.2)

with a = 0.2, b = 0.6 for elastic knots and a = 0.2, b = 0.5 for elastic links. These
unexpected results are quite remarkable and call for some justification.

Ropelength is certainly an increasing function of topological complexity (given by
cmin), also because an increasing number of crossings implies an increasing minimal
length necessary to tie a flux tube into a knot or a link. Results on ropelength bounds
[4, 6, 8, 9] show that

O(c3/4min) ≤ λK ≤ O(cmin ln5 cmin) , (13.7.3)

where O(·) denotes order of magnitude. From (13.5.2) we have that m̃(#K) ∝ [λ(#K)]4/3;
by combining this with (13.7.2), we have

[λ(#K)]4/3 ∝ a ln #K + b . (13.7.4)

Now, ifwe assume that thenumber of knots grows exponentiallywith cmin (a plau-
sible assumption), then #K ∼ Ccmin for some constant C. Hence, by (13.7.4) we have
[λ(#K)]4/3 ∝ cmin, or

λ(#K) ∝ c3/4min , (13.7.5)

a result that, if not true in full generality, is certainly in good agreement with the lower
estimate given by (13.7.3). Furthermore, let us set (for simplicity) V = Φ = 1 in (13.3.5),
and define

m(cmin) ≡
Mmin
m∘

= 1
π cmin . (13.7.6)

We can then relate (13.3.5) to (13.5.2), and write

⟨m̃(K)⟩cmin ≥ m(cmin) =
1
π cmin , (13.7.7)

since for any given K m̃(K) can be further decreased to its actual minimumby relaxing
the constraints (i)-(iv) of Theorem 2. Similar considerations apply to ẽ(K). By writing
(13.5.2) in terms of #K and substituting this latter into the above equation, we have

⟨λ(#K)⟩cmin ≥ 2π1/4c3/4min , (13.7.8)

that gives a new relation between ropelength, averaged over each cmin–family, and
cmin. Note that the coefficient 2π1/4 ≈ 2.66 is independent of the knot family, and this
result, in good agreement with (13.7.3), is still one of the best analytical results valid
for any cmin to date (see, for instance, [4]).
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13.8 Conclusions

By using analytical results for the constrained minimum energy of magnetic knots
obtained in [11], we have established a general functional relationship between min-
imum energy levels of knots and links and internal twist h, given by an h4/3-power
law. In the case of standard flux tubes our result is in good agreement with an earlier
result by [7] obtained by a scaling argument. By using ropelength data obtained by the
RIDGERUNNER tightening algorithmdevelopedby [1]wehave computed the groundstate
energy spectra of the first 250 prime knots and 130 prime links; we have shown that
the two spectra follow an almost identical logarithmic law. We have then extracted
data on curvature and by computing the bending energy we have comparedmagnetic
andbending energy spectra, finding a remarkable proportionality between end-states.
By assuming that the number of knot types grows exponentially with the topological
crossing number cmin, we have shown that this generic behavior can be justified by
a general relationship between ropelength and crossing number, that is independent
of the number of components (knots or links). Moreover, by considering ropelength
averaged over a given knot family, we have established a new relation between this
averaged ropelength and c3/4min, valid for knots/links of any cmin. However, as recent
analytical work shows [9], these results cannot be considered fully general and fur-
ther improvements are expected. In the context ofmagnetic relaxation, corrections are
expected to come from finer realization of the analytical constraints (for instance, by
allowing the cross-section to adapt to optimal shape) and from further improvements
of the tightening procedure. In any case, our results demonstrate the great potential
of magnetic energy methods to investigate and establish new relationships between
energy contents and topological properties of complex systems. Moreover, by using
curvature information of tight knots and links we can also estimate optimal proper-
ties of 3D–packing and global geometry. These results can find useful applications
in many disparate fields, from the study of structural complexity of physical and bi-
ological filamentary systems [10, 18, 5], to applications in plasma physics and solar
physics [15, 19]. They may also provide new insight into the ongoing search for funda-
mental aspects in the mass-energy relations of high-energy theoretical physics [3, 2].
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