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Daniel Flögel, Neel P. Bhatt and Ehsan Hashemi

Infrastructure-Aided Localization and State Estimation for Autonomous Mobile Robots
Reprinted from: Robotics 2022, 11, 82, doi:10.3390/robotics11040082 . . . . . . . . . . . . . . . . . 65

Panagiotis Vlantis, Charalampos P. Bechlioulis and Kostas J. Kyriakopoulos

Mutli-Robot Cooperative Object Transportation with Guaranteed Safety and Convergence in
Planar Obstacle Cluttered Workspaces via Configuration Space Decomposition
Reprinted from: Robotics 2022, 11, 148, doi:10.3390/robotics11060148 . . . . . . . . . . . . . . . . 81

Enrico Ferrentino, Federico Salvioli and Pasquale Chiacchio

Globally Optimal Redundancy Resolution with Dynamic Programming for Robot Planning: A
ROS Implementation
Reprinted from: Robotics 2021, 10, 42, doi:10.3390/robotics10010042 . . . . . . . . . . . . . . . . . 115
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Evaluation Criteria for Trajectories of Robotic Arms
Reprinted from: Robotics 2022, 11, 29, doi:10.3390/robotics11010029 . . . . . . . . . . . . . . . . . 159
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Robotics and intelligent systems are intricately connected, each exploring their re-
spective capabilities and moving towards a common goal. In industry, it is common to
see robotic systems aided by machine learning and vice versa in applications including
robot navigation, grasping, human–robot interaction/collaboration, safety and team man-
agement, among others. Achievements targeting the industrial domain can be directly
applied in robotic systems operating in other domains. While significant advances have
been made in the last few years, industrial robotics and intelligent systems face several
scientific and technological challenges related to their integration with other systems, inter-
action with humans, safety, flexibility, reconfigurability and autonomy. These challenges
are especially relevant for robots operating in unstructured industrial environments and
sharing a workspace with human coworkers and other robots.

This Special Issue presents recent research and technological achievements in the field
of advanced intelligent robotic systems. The contributions included cover the coordination
of multiple robots navigating a factory floor, path planning strategies, human–robot inter-
action, robot redundancy and kinematics, system integration, grasping and manipulation.

Mobile multi-robot systems able to operate on a factory floor have recently emerged.
This scenario brings several challenges, such as the coordination of the robots, path planning
and the robots’ behavior in reacting to communication faults [1]. An interesting study
presents a time-based algorithm able to dynamically control a fleet of Autonomously
Guided Vehicles (AGVs) in an automatic warehouse, integrating a routing algorithm based
on the A* heuristic search to generate collision-free paths and a scheduling module to
improve the routing results [2]. Since robots share the working space with humans, the
authors explored and evaluated humans’ perception of different autonomous mobile robots’
courtesy behaviors at industrial facilities, particularly at crossing areas [3]. Localization
and state estimation are key in developing autonomous mobile robots. In [4], a slip-aware
localization framework for mobile robots experiencing wheel slip is proposed, which fuses
infrastructure-aided visual tracking data and proprioceptive sensory data from a skid-steer
mobile robot to enhance accuracy. In another study, a team of mobile manipulators within
a compact planar workspace with obstacles is proposed to achieve autonomous object
transportation [5].

Recent advances in dynamic programming redundancy resolution, applied to generic
kinematic structures, are reported in [6]. In this study, a novel Robot Operating System
(ROS) architecture is proposed and demonstrated on a 7-DOF robot. In [7], a method of
calculating forward kinematics using a recursive algorithm that builds a 3D computational
model from the configuration of a human-inspired mobile manipulator is presented. Path
planning is studied in [8], addressing a complex trajectory evaluation of robotic arm trajecto-
ries containing only robot states defined in the joint space without any time parametrization
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(velocities or accelerations). In [9], a bin-picking solution that uses simulation to create
bin-picking environments in which a procedural generation method builds entangled tubes
is proposed. A new hyperloop transportation system design is proposed in [10]. The study
elaborates on the design and integration of propulsion components for a linear motion
system, providing high-speed transportation means for passengers and freights by utilizing
linear synchronous motors.
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Abstract: Most path planning algorithms used presently in multi-robot systems are based on of-
fline planning. The Timed Enhanced A* (TEA*) algorithm gives the possibility of planning in real
time, rather than planning in advance, by using a temporal estimation of the robot’s positions at
any given time. In this article, the implementation of a control system for multi-robot applications
that operate in environments where communication faults can occur and where entire sections of
the environment may not have any connection to the communication network will be presented.
This system uses the TEA* to plan multiple robot paths and a supervision system to control com-
munications. The supervision system supervises the communication with the robots and checks
whether the robot’s movements are synchronized. The implemented system allowed the creation
and execution of paths for the robots that were both safe and kept the temporal efficiency of the TEA*
algorithm. Using the Simtwo2020 simulation software, capable of simulating movement dynamics
and the Lazarus development environment, it was possible to simulate the execution of several
different missions by the implemented system and analyze their results.

Keywords: multi-AGV control; path planning; Timed Enhanced A*; tolerance to communication
faults

1. Introduction

The constant technological development felt at present creates a need for a constant
adaptation on the part of the industrial sector in order to fulfil the demands of the corporate
market. To remain competitive, industries must generate a demand for new innovative
solutions in an attempt to create value. These solutions do not always reflect a direct
valorization of the final product. In most industries, the production costs have a significant
impact in their market competitiveness, which leads to a significant evolution of the
automated systems. These systems grant the possibility of reducing the labour cost and
simultaneously optimizing production time. As a product of this evolution, Automated
Guided Vehicles Systems (AGV) were created and saw their first use in an industrial
environment in 1954. Since then, the use of this type of system has seen a steady increase,
and is a common sight in industry at present [1].

Currently, the AGV are predominantly used in the moving of products, being mainly
used as a mean of transporting material between the production lines and the storage
sectors. However, their use is not restricted to the industrial sector; AGV, for example,
can also be used in hospitals and distribution centres. The mass use of AGV creates
questions about their efficiency and productivity in scenarios where multiple robots are
operating in restricted environments and exposed to communications faults.

The coordination of a fleet of autonomous vehicles is a very complex task, most
multi-robot systems rely currently on static and pre-configured interactions between the
robots [2]. When the unpredictability associated with communication flaws is added,
this task becomes even more difficult. Due to this fact, the study of trajectory planning
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algorithms allied to methods of detection and mitigation of communication faults, has
increased in the later years. These algorithms use the robots’ localization information,
either predicted or measured, to control the traffic of the robot fleet, and attempt to plan
safe and optimized routes in an industrial environment.

This work provides an implementation of a traffic control system, in a multi AGV
environment, based on the TEA* algorithm [3] and robust communication faults. The main
focus consists of obtaining a cooperative movement between all robots that are part of
the system, avoiding, simultaneously, any situation that could lead to a mutual block and
subsequently lead to the not finishing all the assigned tasks. This system should also be
able to operate efficiently when subjected to communication faults of one or more robots.
This system should also keep the efficiency and time optimizations offered by the TEA*
in [4], expanding the use of this algorithm to environment where communication flaws
are common, by using binary semaphores [5] to control the access to areas affected by
communication faults.

Until this point, the TEA* algorithm has never been implemented in an industrial
environment where both delays in robots movements as well as communication faults are
common occurrence. As such, the paper’s main contribution is the implementation of a
traffic control system based on this algorithm capable of operating under these circum-
stances. This system will be composed of two parts: the TEA* planning algorithm and the
Supervision module.

The rest of this paper is organized as follows: Section 2 presents a brief overview
of other works related to the topic. Section 3 presents the overall system architecture as
well as the lower level control implemented in each robot. Section 4 details the modifica-
tions implemented to the TEA* algorithm. The supervision module will be presented in
Section 5. Section 6 will validate the performance of the implemented system. Finally, a few
concluding remarks are made in Section 7.

2. State of the Art

The coordination of a fleet of robots falls under the Multi-Agent Path Finding (MAPF)
category of problems. This problems comprise of finding a set of paths for the agents
that are encompassed by the system. These paths have the objective of moving the agents
from their current vertices to their targeted vertices while avoiding conflicts and reducing
as much as possible the cost for the movement of the agents [6]. MAPF has practical
applications in video games, traffic control, and robotics [7]. Solving MAPF problem in
an optimal way is NP-Hard (non-deterministic polynomial-time hardness) in terms of
complexity [8,9].

Presently, several different methods are commonly used to plan the movement and
actions of fleet of mobile robots. This methods can range from the use of potential
fields [10] to the use of Reinforcement Learning [11,12].

From all these methods, the ones based on Graph Search algorithms are of special
importance not just because they can discover the possible paths but also because they
allow the discovery of the most efficient possible paths for the robots [13].

As the name itself suggests, these methods consist of two stages: the initial de-
composition of the workspace into a graph, and the application of a graph search algo-
rithm in order to discover efficient paths for the robots. The initial decomposition of the
workspace, in most cases, can be easily achieved by either using an approach based on
Roadmaps [14,15] or Cell Decomposition [16].

After obtaining the graph, necessary the implementation of a method of searching it is
necessary. Of particular importance in this field is the A* algorithm and its derivatives [17].
The standard A* algorithm, introduced by [17], uses both the cost already incurred from
the initial node and the cost until the finish node. This characteristic allows this algorithm
to obtain optimal and complete solutions.

Later, new variants of the A* algorithm were developed with the intention of being
used in Multi-AGV systems. Such as the Dynamic A* algorithm proposed by [18], this
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algorithm stands out as it is capable of operating in situations where the environment is
unknown or just partially known.

Another notable variant is the Lifelong Planning A* algorithm, also called LPA*,
proposed by [19]. This algorithm allows the use of previous information in order to reduce
the processing time. More recently, in 2011, the 3D A* algorithm was introduced by [20],
which adds the temporal dimension, allowing for a coordinate representation of (x,y,t). This
detail allows for the representation of stationary movement, where the x and y coordinates
maintain the same through iterations and the t coordinate is increasing.

Another variant of the A* algorithm is the M* [21], this variant was created since
planning trajectories for large numbers of robots is very computationally expensive.
Therefore, the M* algorithm allows for the creation of a relatively cheap path for the
robots by sacrificing a small portion of the overall efficiency of the system. Although this
method does not generate the most efficient solution possible for the robot routing problem,
it generates good enough solutions that avoid conflicts between the robots.

Recently, a new graph search algorithm was introduced for the implementation in
Multi-AGV systems. The Time Enhanced A* algorithm, also known as TEA*, introduced
by [3] and later modified by [4], is a graph search algorithm created due to the need for
an algorithm suitable for Multi-AGV systems, which avoids collisions, deadlocks and
guarantees the efficient execution of a set of tasks [3]. The TEA* algorithm was created by
introducing the concept of temporal layers to the A* algorithm, which gives the possibility
of the algorithm of executing the path planning in an online mode [3] using the estimation
of the position of the robots for any given time instance. This makes the TEA* algorithm
capable of taking into account possible changes that can occur in the environment, unlike
its predecessor. The TEA* algorithm is also capable of dynamically shifting the priorities
of each robot in order to resolve possible conflict situations [4], unlike the static priorities
used by [22].

All the methods based on graph search algorithms referred to above rely on a central-
ized architecture [2,23], which expands on the idea of a decentralized multi-robot system
by using a service-oriented architecture. However, this idea is still in its infancy.

In the field of tolerance to communication faults, most advances are focused either
on regeneration of communication faults [24] or in applying estimation methods to deal
with sudden sporadic communication faults [25]. However, there are few studies on
multi robot systems that are capable of dealing both with sporadic faults, as well as,
dealing with entire zones of the environment where there is no communication with
the robots.

3. Overall System Architecture and Lower Level Control

To better comprehend the function and implementation of both the TEA* algorithm
and the supervision module, the system’s overall architecture is explained, as well as its
overall composition.

The implemented system is based on a centralized control architecture [23]. This con-
figuration was chosen, since the TEA* Graph Search Algorithm needs prior knowledge of
all the current robots positions in order to correctly generate a set of paths for all the robots
controlled by the systems [4].

The implemented system is responsible for controlling the movement of a team of
robots. This team of robots would consist of four robots similar to the ones used in the
Factory lite 2019 edition [26]. These robots locomotion system is made up of two differential
traction wheels and are simulated using the Simtwo2020 simulation software (CRIIS, Porto,
Portugal), created by Paulo Costa. This software is capable of simulating differential
traction robots [27], as well as already having implemented the simulation model for the
robots from the Factory Lite competition [26], these robots were developed and built by
Centre for Robotics in Industry and Intelligent Systems (CRIIS).

In Figure 1, a top level representation of the implemented system is shown. As seen in
this figure, the implemented control system is comprised by three core modules. The TEA*
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adapted library and supervisor modules located in an application that represents the
central control unit and the trajectory control module located in each robot control unit.
Information is transmitted between the four robots and the central controlling application
via the UDP/IP communication protocol.

Figure 1. Top level view of the Control system (TEA*—Time Enhanced A*).

The central control unit uses the interaction between the supervision module and the
modified TEA* algorithm, to control each robot planned path, this path is then transmitted
to the robot. The robot control algorithm is only responsible for controlling the velocities of
each of the robots wheels, so that it can accurately execute its assigned path.

The simulation of communication faults in this simulated environment was executed
by a special module that was implemented between the simulation platform and the
centralised control platform. In the case of static communication faults, this module
will analyze the position of the robot and checks if it is within the area defined by the
user. If this condition is verified, the module will not transmit any data regarding that
robot to the control system. For sporadic faults, this module uses a fixed probability to
decide whether to transmit or not the data to the central control unit. It is also capable of
simulating sporadic faults within a defined area or in the entire environment. All the data
used by this module is isolated from the rest of the system to maintain the validity of the
experiment results.

4. Modified TEA* Algorithm

As described before, several modifications to the algorithm presented by [4] were
implemented during the design and creation of the central control unit. Three major
modifications were implemented into this algorithm, these modifications are the following:

• Implementation of a Task Scheduling function;
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• Modification of the method that associates the current robot position with a node from
the graph;

• Implementation of an algorithm that creates a binary semaphore when a communica-
tion fault is detected.

These modifications had the objective of allowing the application of the algorithm
into industrial scenarios, and also allowing the system to safely plan paths for the robots
during communication faults.

4.1. Task Scheduling

The main difference between the method used by [4] and the implemented Task
Scheduling function, was that the later would move the robot to a charging post when
all of the tasks assigned to the robot were concluded. This would allow for the robot to
recharge while no new tasks are assigned to it.

To make the robots move to their charging stations when no tasks are assigned to
them, both the function that obtains the next task, as well as the function that adds new
tasks to the robot need to be modified.

When a robot reaches its target point, this new function checks if there are anymore
tasks assigned to the robot and in the case that there are no more missions, it orders
the robot to move to the closest recharging station; this attribution is represented via a
flowchart in Figure 2.

Figure 2. Flowchart representation of the attribution of charging stations to the robots

When a new task is added, the system checks whether the robot is either moving
to or stopped at a charging station or if the robot is executing another task. If it ends up
being the latter, it will add the new task to the subtask array as the last element and will
also increment the number of tasks. Otherwise, it will change the target point to the new
task node and add that task to the subtask array. It is also necessary to increment both the
current task point as well as the number of tasks.

At the beginning of each planning cycle the nodes corresponding to the positions
of all robots that are currently charging, will be considered to be “Obstacle Inaccessible
Robot”. This new node status represents a node that is currently occupied by a robot which
is currently recharging or that has suffered a communication fault, therefore meaning that
this robot cannot be moved to give way to another robot. This allows the planning of path
around the position of these robots and avoiding the movement of these robots.

For this reason, the recharging positions should be placed in locations where they
will not block traffic, such as at the extremities of dead end pathways. After a robot has
completed all of its tasks, the robot will move to the nearest unoccupied recharging station
and will remain there until another task is assigned to it.
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4.2. Planning during Communication Faults

It is also necessary to modify the TEA* library so that it is able to plan safe and efficient
paths even when one or more robots are experiencing communication faults. The library
created by [4] does not take into account this possibility, therefore, when one or more
robots are subjected to communication faults, it is not able to guarantee a safe and efficient
planning, having a high probability of occurring collisions and deadlocks.

The method implemented in this project, in order to create a system robust to commu-
nication faults and to areas where there is no communication, consists in the interaction
between both modules of the central control unit.

Each communication fault will have a set of nodes associated with it, these nodes are
generated by the supervision module and their generation is explained in Section 5. Then
the modified TEA* library places the nodes associated with the current active faults as
immovable obstacles, for all robots and during all steps of the planning, until the affected
robot exits the communication fault area and communication can be re-establish. This
prevents any other robot from entering the communication fault zone. Therefore, creating
a binary semaphore [28] that regulates the traffic of robots entering and leaving the zone.
The new library will also not plan any new paths for the robots experiencing communication
faults, this serves to reduce the risk of the TEA* algorithm inadequately assuming that these
robots are executing a different path than the one they are actually taking, which could lead
to a loss of efficiency when planning the paths of the remaining robots.

This additional control is important since when a robot is experiencing a commu-
nication fault situation there are no guarantees that any alterations to the planned path
will reach and be executed by the robot, therefore it is necessary to limit the presence of
several robots inside the same communication fault zone. However, in some cases this is
impossible as it is shown in Section 6.

5. Supervision Module

This module is responsible for controlling when the robots paths need to be replanned
and for detecting, measuring and handling communications faults. This module is com-
posed by two sub-modules hierarchically related with each other. Each of these sub-
modules is responsible for handling one of the tasks mentioned earlier. These sub-modules
will be referred as the Planning Supervision Sub-Module (PSSM) and the Communication
Supervision Sub-Module (CSSM), respectively.

The Figure 3 represents the hierarchical relation between all the parts that constitute
the implemented control system. Represented in blue in this figure are both the sub-
modules that constitute the System Supervision Module. In this figure, it is also possible to
observe that the CSSM is located above the PSSM, showing that the CSSM commands have
a higher authority than the PSSM ones.

The relation between the two sub-modules is based on a loop and interrupt-based
control. On environments where no communication faults occur the CSSM does not
intervene and the replanning of paths is handled by the PSSM. In this case the CSSM’s only
job is to detect that a communication fault is occurring. However if a communication fault
is detected, the PSSM is overruled and the replanning of the robots paths is then controlled
by the CSSM. When the fault has ceased, the control is handed back to the PSSM.
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Figure 3. Representation of the hierarchical relation between all the parts of the system.

5.1. Planning Supervision Sub-Module (PSSM)

This sub-module is responsible for controlling when the robots need to have their path
replanned in situations where no communication fault is detected. In order to accomplish
this task, it needs not only to detect when one of the robots is delayed or ahead of time but
also detect when a robot has completed the current step of his path.

Firstly, it is necessary to define when a robot is considered delayed or ahead of time.
When using the TEA* algorithm, it is necessary that all robots are synchronized, meaning
that all robots must be in the same step of their path, in order to avoid collisions and
deadlocks. Therefore, delayed and ahead of time robots are robots that are one or more
steps behind and one or more steps forward than the remaining robots.

However, in practice, this is not so linear since it would be impossible to synchronise
all the robots in the system, thereby originating a very ineffective system where the paths
are constantly being replanned. For this reason, a detection system must be created that
allows small delays when those delays do not constitute a problem for the overall safety of
the robot. To accomplish this goal, the PSSM executes three different verifications every
time the robots position is updated. These verifications are useful to decide if it is necessary
or not to replan the paths for all robots .

• Check whether any robots are too distant from their supposed position;
• Check whether the maximum difference between steps is 1;
• Check whether any robot is moving to a position currently occupied by another robot.

However, before any of these verifications can be executed it is necessary to know the
type of movement the robot is executing. This movement could be classified into one of
three categories:

• Robot is stopped;
• Robot is rotating;
• Robot is currently moving along a link.

After obtaining the type of movement of the robot, the sub-module checks all of the
robots current steps in order to obtain the lowest step value possible. It then compares the
current robot coordinates to the coordinates that the robot would have if it was currently
executing the same step as the robot with the lowest step value. If the distance between
this coordinates is greater than the stipulated threshold, the robots paths are replanned.

However, this function only checks for robots that are currently moving between
nodes, not taking into consideration any delays during the rotation or even during com-
munication with the robot. Another problem of this function is that it assumes that all the
links have a dimension superior to the stipulated threshold.

Therefore, another function is also required to guarantee that the robots that are
rotating or stopped are also synchronized with the other robots, as well as, guarantee that
the synchronization and safe planning of paths for the robots can also be executed, even if
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the link dimension is shorter than threshold distance. This function checks whether the
maximum step different between all the robots in the system is superior to one. If this
condition is verified it means that the robots are not synchronized therefore their paths must
be replanned.

Even in this example, the desynchronization was artificially induced; in an industrial
environment it can be caused by a lot of factors, from small differences in the wheels
diameter to differences in the grip coefficient.

In some cases, even a small desynchronization can cause a collision, as illustrated
in Figure 4. In these cases, the most viable solution in order to maintain the safety of the
system is to constantly replan the robots’ paths as soon as the position of one of the robots
is updated. Therefore the sub-module must detect these cases and act accordingly.

Figure 4. Example of a small desynchronization leading to a collision. The subfigures a,b show the
movement of the robot in this example, these subfigures use square to represent the location and
orientation of the different robots. In this figure the circles represent the different nodes associated
with that part of the map. (a) Initial position of the robots; (b) Collision originated by a delay of the
movement of the orange robot.

To detect these specific cases, a new function was implemented; this function checks
whether the node that corresponds to the current step of the robot path is equal to the
current position of any of the remaining robots. In the case of a robot being currently
located in a link between two nodes, the function checks the coordinates of both nodes
that are part of the link, in order to guarantee that no other robot is moving to those nodes.
If any of the described conditions happen, the robots paths are immediately replanned so
that collisions are avoided.

When no replanning of the robots path is being executed, this sub-module needs
to detect when a robot has completed its current path step and increment that step.
However, these points can be a problem in the case where some robots are waiting for
other robots to finish their movement. Therefore, it is necessary to stipulate when the steps
of these robots can be increment in a safe way.

If the robot movement is a rotation or if the robot is travelling between two nodes,
determining when the robot has finished its current step of the planned path can be done
by comparing the current robot position and orientation with the desired robot position
and orientation at the end of that step.

In the case where the robot has stopped and is waiting for other robots to finish their
movement, the robot step counter only increments when all moving robots have finished
that step, preventing the movement of the robot before the path is cleared. This method
assumes the worst case scenario where the movement of the stopped robot depends on
the movement of all the moving robots of the system. It would be relatively costly in
computational terms, to check all of the systems robots path and determine which robots
needs to move in order to allow the movement of the stopped robot.

5.2. Communication Supervision Sub-Module (CSSM)

In order to create a system robust to communication faults the Communication Super-
vision Sub-Module (CSSM) was implemented. It is responsible for detecting communica-
tion faults, calculating their size and forcing the replanning of the robots paths to take into
consideration said faults. This sub-module will predominantly be faced with two different
fault situations:

• Situations where one area in the factory floor map consistently has no communication
with the central control unit;

• Situations where temporary loss of connection happens with the central control unit.
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In either case, the system will not have any prior knowledge of the existence and
location of these faults. For this reason it will have to constantly map the factory floor map,
since faults can be dynamically created and destroyed. This allows the modified TEA*
algorithm to then plan a path accordingly, as explained in Section 4.2. Figure 5 shows a
flowchart of the normal functioning of this sub-module.

Figure 5. Flowchart representation of the Communication Supervision Sub-Module.

On the detection of a communication fault in one or more of the robots, the CSSM
generates an interrupt, where the normal functioning of the central control unit is halted
and the size of the fault is calculated. Afterwards, it forces a new replanning event, in order
to take into account the estimated fault size; and return the system back to its normal
functioning. During this replanning event, the nodes associated with the active faults are
placed as occupied, therefore preventing other robots’ entry into the zone affected by an
active fault.

As shown in Figure 5, while the robot is unaffected by communication faults the
current position of the robot is recorded has locations where it is possible to establish
communication with the robot. These nodes will be referred to as unfaulted nodes and
will be used in the estimation stage of the method to delimit the area subjected to faults.
However, this designation does not mean that it is always possible to establish communica-
tion with a robot located in them. These nodes can still suffer from sporadic faults, as well
as the appearance of new communication faults in areas where previously communication
could be established. Therefore, their status as unfaulted nodes may not be permanent.
Figure 6 shows an example of the mapping of unfaulted.

The estimation stage of this method happens when a robot enters a fault state.
When entering this stage there are three possible situations that can happen: either the
robot is entering a fault that is still not mapped, it is entering a fault that has already been
mapped previously, or it is entering a unmapped extension of a previously mapped fault.
Each of these situations is treated differently, as shown in Figure 7.
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Figure 6. Example the mapping of unfaulted nodes. The progression of this mapping is shown via
the subfigures a,b,c,d showing the Autonomous ground vehicle (AGV) movement on the left image
and the status of the mapped nodes on the right one. (a) Initial state of the system; (b)System state at
the end of the first step; (c)System state after the second step; (d) System state after the third step.

Figure 7. Flowchart representation of the different types of faults that the estimation method
can encounter.

To estimate the dimension of a fault, the planned path for the robot is analyzed, so
that it can determine the most likely exit node, node where communication can re-establish.
To achieve this, each of the nodes corresponding to the next step of the planned path is
sequentially compared with the records of the unfaulted nodes. This comparison goes
on until either one of the path nodes is found to be an unfaulted node or the planned
path ends. Afterwards, this method records all of the nodes that comprised the robot path
between the current robot position and the exit node as a set of faulted nodes. Each set of
faulted nodes therefore represents an area where no communication can be established
with the robots, and have associated with it an array of possible entry/exit nodes. After the
structure of nodes that represent the fault is created, the id value of the robot that detected
it is associated with the fault.

In this method, when a fault is detected in the middle of a link, the entry/exit points
of a fault zone are chosen in a worse case scenario; therefore these points are the last known
nodes with good communication with the robot and the first point where communication
could be re-established, respectively.

This method also accounts for the fact that a robot can exit sooner than the estimated
exit node, especially in a situation where only a small percentage of the graph node has
already been mapped. In these cases, an interrupt is generated when communication is
re-establish with the robot. During this interrupt, both the faulted node set, as well as the
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entry/exit node set associated with that fault are corrected. This correction is executed by
removing from the faulted node set all the robots path nodes that are between the actual
exit point and the estimated exit node. The status of the removed nodes are changed to
not mapped. Finally, the node where communication was re-established is placed into the
entry/exit set. On exiting the fault, the robot will no longer be associated with that fault.

Figure 8 shows an example of the detection and mapping of a new fault; in this
example the nodes represented in green are nodes considered to be unfaulted nodes, the
nodes represented in orange are part of the entry/exit set associated with this fault and
the nodes represented in red are faulted nodes associated with this fault. In this figure, the
button graph representation serves to illustrate the current status attributed to each node.

Figure 8. Example the mapping of a new fault. The progression of this mapping is shown via the
subfigures showing the robot movement on the top image and the status of the mapped nodes on
the bottom one. (a) Initial state of the system; (b) Mapping status and robot location at the end
of the first step; (c) Mapping status and robot location when the communication fault is detected,
initial estimation of the fault size; (d) Mapping status and robot location when communication is
reestablished, readjustment of the fault size.

After the estimation of the fault dimension, the group of nodes associated with that
fault is analyzed to see if they belong to an already existing fault or if they can be associated
with an already existing fault as an extension of it, as shown in Figure 7.

First, the method starts by checking whether at least two of the nodes marked as
entry/exit nodes are also entry/exit nodes of an already mapped fault. If this is not
the case, the method will analyze each of the nodes that comprise the affected node
set, individually and see if they belong to other already mapped faults. If any of these
conditions are true both node sets are merged. In the rare cases where the estimated fault
nodes sets are associated with more than one already mapped fault, all the faults associated
with the estimated fault are merged into only one fault.

The mapping methodology presented is a methodology where the efficiency is directly
proportional to the time spent, by moving the robots. An increased movement of the
robots to different nodes would lead to more nodes being mapped, therefore leading to a
more efficient estimation of the affected area upon the detection of a fault. To deal with
sporadic faults, this idea was of an increase in efficiency with the passing of time was
improved upon.

For starters, the CSSM would only assume that a robot is in a communication fault
status, if there is no new message received after a time equivalent to the execution to four
of the robot control cycles has passed since the last message from that robot was received.
In the implemented system, this means that a gap of approximately 400 ms elapsed, taking
into account the central unit control cycle period, before any action is taken. In terms of the
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robots’ movement, this gap is too small, when used in conjunction with the PSSM, to cause
any collisions or any significantly loss of efficiency, as shown in Section 6. Assuming a
linear nominal velocity of 10 cm per second the gap would correlate with a movement of
4 cm if the robot was going full speed.

During this gap, the robot currently experiencing the fault will attempt to resend its
data at least three times, therefore reducing any affect that random packet loss could induce
a communication fault situation.

Applying the idea of increasing the efficiency of the algorithm with the passing of time,
a method for dealing with sporadic faults was implemented. This method is comprised
of two parts, the first one is executed every time a communication is established with the
robot in a node that was previously flagged as suffering communication faults and the
second one is executed when a communication fault is detected in an unfaulted node.

The first part of this function verifies whether the node where the robot is commu-
nicating from is considered a faulted node. If so, the fault associated with that node is
removed and all the faulted nodes from that are placed as not mapped, except for the
node from where the communication originated which is placed as unfaulted. All the
entry/exit nodes associated with that fault are still kept as unfaulted nodes. Figure 9 shows
an example of the removal of a fault; in this figure both the faulted nodes, represented in
red, originated from to a sporadic fault that is currently inactive. Therefore, when a robot
enters this fault it does not experience any communication loss, this leads to all the nodes
being considered to be unfaulted nodes, represented in green.

Figure 9. Example of the removal of fault.(a) Initial state of the system; (b) Mapping status and robot
location at the end of the first step; (c) Mapping status and robot location after the robot enters the
area previously affected by a communication fault, the nodes associated with that fault are placed as
not mapped; (d) The robot proceeds to remap the nodes; (e) System state when the robot reaches its
target point with all of the nodes fully mapped.

This first part serves to remove any sporadic faults that might occur. This removal is
especially important for the efficient planning of the paths since it avoids the unnecessary
creation of binary semaphores.

In situations when a sporadic fault occurs on an entry/exit node of another already
mapped fault, the sporadic fault is associated with that fault. When the sporadic fault is
removed, the nodes of the already mapped fault are placed as not mapped. This allows for
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the storing of the dimension associated with that fault, permitting an efficient remapping
of the fault if a robot enters it.

The Figure 10e shows an example of the removal of a sporadic fault that has been
merged with a fault that corresponds to an area where there is no communication with the
robot. As with Figure 9, the robot starts by placing both the faulted nodes as unmapped
nodes. However, when the robot enters the second unmapped node it experiences a
communication fault for being in an area inaccessible by the communication network
Figure 10d, therefore the fault dimension estimation algorithm is called leading to the
remapping of that fault.

Figure 10. Example of the removal of a sporadic fault in an entry/exit node. (a) Initial state of the
system; (b) Mapping status and robot location at the end of the first step; (c)The robot enters an area
previously affected by a communication fault, since no fault is detected all nodes associated with the
previously mapped fault are placed has not mapped; (d) The robot proceeds to map the remaining
nodes that are still affected by communication faults; (e) Final system state, the new size of the fault
is now fully mapped.

The second part of this function runs when a fault is detected in an unfaulted node.
When this happens, this fault is assumed as a sporadic fault, so its dimension is limited to
the node where it happened. This node is removed from the unfaulted set and the mapping
methodology is applied. Similar to the static faults when communication is reestablished
with the robot, the size of the fault is updated.

6. Tests and Validation

In this section, all the implemented modules as well as the interaction between them
will be tested and validated. It will also present the situations where this system is incapable
of guaranteeing a safe execution of the mission.

These tests will be divided into two categories, those with static communication faults
and those with sporadic and static communication faults. The results of these tests, as well
as other tests executed to the system, are represented in the appendixes of this document.
For the representation of the results of these tests, a methodology where the robots are
represented by a full square, their destination point is represented by an empty square of
the same colour as the robot and their executed path between images is represented in the
same colour as the robot. For ease of comprehension, numbers with the same colour as
the robot have been added to the figures, in order to demonstrate the task order associated
with each robot.
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For these tests, four robots will be used. Each robot will be assigned a set of tasks
that it needs to complete. When all tasks assigned to all of the robots that comprise the
system are completed and all robots have reached their charging post the test is deemed
as finished.

All tests were executed using the same factory floor map. This layout was inspired by
a real-life factory.

6.1. Planning Supervision and Overall System Performance when Subjected to Static
Communication Faults

The first category will analyze the behaviour of the system when only exposed to
areas where there is no communication. The second set of tests will expose the system
not only to areas where there is no communication but also to packet loss and sporadic
communication faults.

For the first set of tests, the initial conditions represented in Figure 11 will be used.

Figure 11. Representation of the workstation distribution used in this set of tests. The coloured
squares indicate the initial position of the robots.

In this set of tests the no communication section chosen encompasses both worksta-
tions 10 and 11, this area is represented in Figure 12 by the colour red.

To test the system response, the creation of a new mission is also necessary. As the
intent of these tests is to analyze the implemented system response to areas where there is
no communication, a mission comprised of only one task to each robot is enough. Table 1
shows each robot assigned task as well as its initial priority.
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Figure 12. Representation of the chosen area where no communication can be established with
the robots.

Table 1. Tasks and initial priority of each robot. The numbers under the task column represent the
workstation, as identified in Figure 11, to which the robot is ordered to move to.

Id Robot Colour Initial Priority Task

1 Brown 1 9

2 Dark Green 2 10

3 Black 3 11

4 Red 4 5

Figure A4 shows the paths travelled by the robots during the execution of this mission,
as well as showing the mapping of the factory floor in order to determine which nodes are
experiencing communication faults. In this mapping, the nodes represented in green are
considered unfaulted nodes, the nodes represented in yellow are considered entry/exit
nodes of the faults that have been mapped, the nodes represented in purple are considered
possible entry/exit nodes of the faults that have yet to be mapped, and finally the red
nodes are the faulted nodes.

By analyzing Figure A4, it is possible to observe that the system managed to suc-
cessfully complete the assigned mission avoiding any collisions or deadlocks, even when
two of the tasks required the robots to travel through the area that wasn’t covered by the
communication network. The system was also capable of correctly mapping the fault by
using the data from the two robots that travelled through it.

The system first detected the fault in Figure A4e; initially the critical zone was consid-
ered to be part of the fault as seen in Figure A4f. On detecting this fault a replanning event
is triggered and this leads the black robot to stop and wait for the dark green robot to exit
the fault.

When the dark green robot exits the fault, Figure A4i, the fault dimensions are adjusted
and the status of the node representing workstation 10 is changed from faulted node to
an entry/exit node, as seen in Figure A4j. The black robot can now advance in its course,
since the fault is no longer occupied, therefore a new replanning event is executed given
the current position of the dark green robot, the black robot is now forced to plan a path
that accesses the area via the bottom side instead of using the top side as initially planned.

When the dark green robot re-enterw the fault, in Figure A4k, the fault is once again
placed as occupied. However, this time since the black robot is accessing the fault via the
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bottom side there is no need for it to stop immediately. An important thing to note is that
in this moment only the top node of the fault has been mapped as faulted node since it
was the only one used by the robots until this point, as seen in Figure A4l. This leads to
the black robot only stopping when it reaches the bottom entrance of the zone as seen in
Figure A4m.

After the dark green robot once again exits the fault, in Figure A4o, the black robot
enters the fault from the other side and therefore maps the other faulted node, as seen in
Figure A4p. Since one of the new mapped faulted nodes is the same as one of the possible
entry/exit nodes of the previously mapped fault, the system merges both faults.

A link to a video showing the execution of this test can be found in Appendix E.
This test was repeated 10 times in order to show that the presented sample was

not a sporadic success. Analyzing the data from these tests, it is possible to conclude
that the system is capable of successfully dealing with areas that are not covered by the
communication network, since in all samples the system executed the mission successfully.
It also allows for the stipulation of a baseline execution time for this mission of 1 min and
47 s. When this mission is executed without any communication faults, its mean execution
time is of 1 min and 34 s. As expected, the overall efficiency of the system decreases when
the system is exposed to communication faults.

6.2. Planning Supervision and Overall System Performance when Subjected to Static and Sporadic
Communication Faults

The second set of tests has the objective of verifying that the implemented system is
capable of completing an assigned mission, in a safe and efficient way, when exposed to
both sporadic faults, as well as, zones where there is no communication with the robot.

To accomplish this, the CSSM must first not only detect the area where there is no
communication but also detected the occasional loss of communication in a specific node.
After the detection, this sub-module must also check if any of the detected faults have
ceased to exist, as explained in Section 4.2.

In order to compare results of both sets of tests, the same mission and initial conditions
used in the first set will be used, as shown in Figure 13 and Table 2.

Figure 13. Representation of the workstation distribution as well as of the initial position of the
robots used in this set of tests. The coloured squares indicate the initial position of the robots.
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Table 2. Tasks and initial priority of each robot. The numbers under the task column represent the
workstation, as identified in Figure 13, to which the robot is ordered to move to.

Id Robot Colour Initial Priority Task

1 Purple 1 9

2 Yellow 2 10

3 Orange 3 11

4 Green 4 5

The sector of the map that is not covered by the communication network is also the
same as the one used in the previous set of tasks, as shown in Figure 14.

Figure 14. Representation of the chosen area where no communication can be established with
the robots.

These sets of tests will test the occurrence of a sporadic fault in an entry/exit node
of the fault that represents the area where no communication can be established with the
robot, this area is represented in orange in Figure 14.

The representation of the results of the first part of this set of tests is represented
in Figure A6. As with the previous tests, the nodes represented in green are considered
unfaulted nodes, the nodes represented in yellow are considered entry/exit nodes of the
faults that have been mapped, the nodes represented in purple are considered possible
entry/exit nodes of the faults that have yet to be mapped and finally the red nodes are the
faulted nodes.

By analyzing Figure A6, it is possible to observe that when the yellow robot moves to
the top entry node of the fault corresponding to the section of the factory that is not covered
by the communication network, referred as the static fault for brevity, a sporadic fault
occurs in this node. Since this fault occurs in an entry/exit node this node is associated
with the static fault, as seen in Figure A6a–f.

Similar to the previous tests, the orange robot advances until the edge of the fault
and then stops and waits for the yellow robot to exit the fault, and therefore places the
binary semaphore then corresponds to that fault in the free state before proceeding, seen in
Figure A6e.

On exiting the fault a second time, as shown in Figure A6g, the yellow robot sees
that the sporadic fault has ceased since the system can now communicate with the robot
in a zone where it previously couldn’t. This leads to the system reclassifying the node
where communication was re-established with the robot as an unfaulted node. The system
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also reclassifies the node belonging to the static fault as an unmapped node, due to the
impossibility of the system knowing if it belongs to the static fault or to the sporadic fault.

Similar to the previous tests after the yellow robot exits the fault, the orange robot is
cleared to proceed with the execution of its task. This leads to the orange robot entering the
static fault, as shown in Figure A6i. The executing of this robot tasks leads to the remapping
of the static fault and this time the dimension is correct since no sporadic fault occurs when
the orange robot exits the fault for a second time. This process is shown in Figure A6i–p.

A link to a video showing the execution of this test can be found in Appendix E.
The execution of this test was repeated 10 times. In all samples, the system was able

to successfully operate in environments where sporadic communication faults as well as
static communication faults can occur, and manage to safely execute its assigned tasks.

6.3. Cases Where the Implemented System Can’t Guarantee a Safe Execution of the Mission

Even due the overall results of the implemented system tests were very successful
there are some situations where the implemented system is incapable of guarantee a safe
execution of its assigned mission.

These situations normally occur due to either external interference or due to a com-
munication fault occurring in an unfortunate time or having a large dimension. These situ-
ations are the following:

• Two or more robots entering the same fault at the same time;
• Impossibility of a robot to move away from the exit node of a fault.

In the first one, if two or more robots enter the same unmapped static fault at the same
time, a collision can occur as the system has no way to control the synchronization between
robots as it is incapable of communicating with the robots. This normally occurs when a
communication fault has a large dimension.

The second situation where this may occur is if the entry/exit of a fault is located in
a link between two nodes. There is a chance of a situation where one robot is currently
traversing that link and another robot enters the fault through another entry point. The first
robot will be in a deadlock situation since both of its possible movements choices are now
locked until the second robot exits the fault.

7. Conclusions

The article presents the implementation of a control system capable of controlling
the traffic of a fleet of robots, i.e., plan and control the movement of a fleet of robots
that have multiple tasks assigned. The implemented system must plan safe and efficient
paths, avoid deadlocks and be immune to network failures. It uses the TEA* algorithm,
proposed in [4], as a base for the path planning and has a high tolerance to communication
faults. The implemented system is comprised of several modules. This system not only
planned the robots paths but also supervised their execution and was on guard against any
communication failures.

Several modifications of the TEA* algorithm, proposed by [4], were also implemented
in order to make it compatible with the new environment conditions that the algorithm
would have to face. This modifications also intended to move the TEA* algorithm closer to
a real life industrial application.

As shown in Section 6.2, the implemented system is capable of safely executing a
set of tasks in environments where both static and sporadic communication faults occur.
On previous implementations of the TEA* algorithm [4] , when the robots were subjected
to communication faults, there would be a high probability of the occurrence of deadlocks,
since the TEA* algorithm requires the synchronization of the movements and positions of
all the robots of the system in order to be effective.

Although the system has a good tolerance to communication faults, it still lacks total
effectiveness when dealing with communication faults, as demonstrated by in Section 6.3.
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Appendix A. Execution of the First Mission with no Communication Faults

Figure A1. Cont.
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Figure A1. Movement of the robots during the execution of the first mission, each robot as two
tasks assigned to it. In subfigures (a-r), the robot is represent by the full coloured square, while
its movement between each of the subfigures is represented by the outlined square of the same
colour. The numbers presented in the subfigures represent the task order assigned to each robot.
(a) Initial positions of the robots; (b) Positions of the robots after one task is completed by the yellow
robot; (c) Position and movement of the robots during the execution of the first task assigned to
both the red and blue robots; (d) The purple robot must wait until the red robot starts its movement
before it can advance; (e) A delay in the movement of the light blue robot originates a replanning
event; (f) The robots keep executing their planned paths without any need of replanning; (g) Position
and movement of the robots during the execution of the second tasks assigned to the yellow robot;
(h) The robots keep executing their planned paths without any need of replanning; (i) Position and
movement of the robots during the execution of the first tasks assigned to the purple; (j) The red
robot waits until the purple robot moves from its current stop to initiate its movement; (k) The red
robot shadows the movement of the purple robot until it reaches the entry node of its target point;
(l) Movement of the yellow robot into its charging post and execution of the second task assigned by
to the blue robot; (m) Movement of the blue robot into its charging post and execution of the second
task assigned by to the red robot; (n) Positions of the robots when the purple robot finishes its second
task; (o) All tasks are completed and the robots move to their charging posts; (p) Both robots move
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towards their charging stations; (q) Movement of the red and purple robots towards their charging
posts; (r) Final positions of the robots after all tasks are completed.

Appendix B. Execution of the Second Mission with no Communication Faults

Figure A2. Movement of the robots during the execution of the second mission, first figure. In
subfigures a–p, the robot is represent by the full coloured square, while its movement between each
of the subfigures is represented by the outlined square of the same colour. The numbers presented
in the subfigures represent the task order assigned to each robot. (a) Initial positions of the robots;
(b) All robots keep following their planned paths; (c) Since the brown robot has a higher priority than
the pink one, this last one is force to take the longer path in order to avoid any conflicts; (d) The light
blue robot had to stop and wait for the pink robot to move from the intersection before resuming its
movement; (e) Delays in the movement of the dark blue robot force the system to replan the path of
the pink robot to avoid pathing conflicts; (f) Delays in the rotation of the brown robot force further
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replanning of the robots paths; (g) No replanning is necessary since the robots are still synchronised;
(h) Both the brown and dark blue robot finish their fist task.

Figure A3. Cont.
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Figure A3. Movement of the robots during the execution of the second mission, second figure. In
subfigures a–p, the robot is represent by the full coloured square, while its movement between each
of the subfigures is represented by the outlined square of the same colour. The numbers presented in
the subfigures represent the task order assigned to each robot. (a) Futher delays in rotation of the
dark blue robot originate another replanning event; (b) The dark blue robot finishes its second task;
(c) The pink robot has to wait until the dark blue robot exits from that branch of the map; (d) The
light blue robot finishes its first task; (e) The robots keep executing their planned paths without any
need of replanning; (f) Given the position of the robots the risk of a delay causing a pathing conflict
is very low; (g) The robots keep moving to their target positions; (h) The dark blue robot and the pink
robot finish their second and first task, respectively; (i) The pink and dark blue robots start moving
to their charging positions; (j) The light blue robot and the brown robot finishes their second task;
(k) New replanning event occurs due to a delay in the light blue robot movement; (l) The dark blue
robot moves back in order to avoid a deadlock situation with the light blue robot; (m) The brown
and pink robots finish their third and second tasks, respectively; (n) All three robots move towards
their charging stations; (o) All robots move to their charging stations; (p) Final positions of all robots
after all tasks are completed.
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Appendix C. Execution of a Mission with Static Communication Faults

Figure A4. Cont.
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Figure A4. Cont.
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Figure A4. Behaviour of the system when subjected to an area without communication. In right
subfigures, the robot is represent by the full coloured square, while its movement between each of
the subfigures is represented by the outlined square of the same colour. The numbers presented in
the subfigures represent the task order assigned to each robot. In the left subfigures the status of
each node is displayed, blue equals unmapped, red equals faulted, yellow represents a entry/exit
node and green represents an unfaulted node. (a) Initial positions of the robots; (b) Initial status of
all the nodes of the system; (c) Position and movement of the robots during execution of the first
task by the brown robot; (d) Status of the nodes during the movement of the robots; (e) The brown
robot finishes its first task; (f) Status of the nodes during the after the brown robot finishes its first
task, several nodes are now mapped as unfaulted nodes; (g) Entry of the light brown robot into the
area affected by the communication fault; (h) Initial estimation of the size of the area affected by
the communication fault; (i) The light brown robot exits the fault, the red robot also finishes its first
task; (j) The size of the fault is now adjusted using the most recent data from the light brown robot;
(k) The light brown robot reenters the area affected by the fault; (l) Status of the nodes when the light
brown robot reenters the area affected by the fault; (m) The light brown robot moves through the
area affected by the fault; (n) The new data is analysed however no modifications to the fault size is
necessary; (o) The black robot is force to wait until the light brown robot exits the area affected by the
communication fault; (p) Status of the nodes during this wait; (q) The black robot now enters the
area affected by the fault via a previously unmapped entry; (r) The fault size is adjusted based on
the last know location of the black robot and its planned path; (s) Communication is reestablished
with the black robot; (t) The fault size is readjusted to take into account the new data; (u) The black
robot reenters the fault; (v) no adjustments are necessary since now the fault is fully mapped, all
of its entry/exit nodes have been mapped; (w) he black robot now moves to its charging station;
(x) No more faults are detected during this movement; (y) Final position of the robots in the system;
(z) Final status of all the nodes in the system.
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Appendix D. Execution of a Mission with Static and Sporadic Communication Faults

Figure A5. Behaviour of the system when subjected to a sporadic fault in an entry/exit node, first
image. In right subfigures, the robot is represent by the full coloured square, while its movement
between each of the subfigures is represented by the outlined square of the same colour. The
numbers presented in the subfigures represent the task order assigned to each robot. In the left
subfigures the status of each node is displayed, blue equals unmapped, red equals faulted, yellow
represents a entry/exit node and green represents an unfaulted node. (a) Initial positions of the
robots; (b) Initial status of all the nodes of the system; (c) The yellow robot enters the area affected by
the communication faults; (d) Status of the nodes before the yellow robot enters the fault.
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Figure A6. Cont.
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Figure A6. Behaviour of the system when subjected to a sporadic fault in an entry/exit node, second
image. In right subfigures, the robot is represent by the full coloured square, while its movement
between each of the subfigures is represented by the outlined square of the same colour. The numbers
presented in the subfigures represent the task order assigned to each robot. In the left subfigures
the status of each node is displayed, blue equals unmapped, red equals faulted, yellow represents a
entry/exit node and green represents an unfaulted node. (a) The yellow robot moves through the
faulted area; (b) Initial estimation of the fault size based on the path planned for the robot and the
already mapped nodes; (c) Communication is reestablished with the yellow robot; (d) The size of the
fault is adjusted; (e) The yellow robot reenters the fault, which forces the orange robot to wait until
communication can be reestablish; (f) Status of the nodes before communication is reestablished;
(g) The yellow robot moves through the faulted area; (h) No changes are executed to the size of the
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mapped fault; (i) Communication is reestablish with the yellow robot in a node that was previously
affected by a communication fault; (j) Since communication was establish in a previously faulted
node the nodes associated with that communication fault are placed as unmapped; (k) The orange
robot reenters the fault and starts remapping it; (l) Status of the nodes before the orange robot enters
the fault; (m) The orange robot moves through the fault remapping it; (n) Half of the fault size is
remapped; (o) The orange robot exits the fault and moves towards its charging station; (p) The fault
size is fully mapped; (q) Final position of the robots in the system; (r) Final status of all the nodes in
the system.

Appendix E. Video Links

Link to the video of the execution of the first mission by the implemented system, in an
environment where no communication faults occur: https://youtu.be/7MnuJ7nOKug
(accessed at 23 March 2021).

Link to the video of the execution of the second mission by the implemented system, in
an environment where no communication faults occur: https://youtu.be/oxt4x80ydPw
(accessed at 23 March 2021).

Link to the video of the execution of the a mission by the implemented system, in an envi-
ronment where only static communication faults occur: https://youtu.be/rlSbgYZXpAg
(accessed at 23 March 2021).

Link to the video of the execution of the a mission by the implemented sys-
tem, in an environment where both static and sporadic communication faults occur:
https://youtu.be/dl5ZbOh_vUg (accessed at 23 March 2021).
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Abstract: A multi-AGV based logistic system is typically associated with two fundamental problems,
critical for its overall performance: the AGV’s route planning for collision and deadlock avoidance;
and the task scheduling to determine which vehicle should transport which load. Several heuristic
functions can be used according to the application. This paper proposes a time-based algorithm
to dynamically control a fleet of Autonomous Guided Vehicles (AGVs) in an automatic warehouse
scenario. Our approach includes a routing algorithm based on the A* heuristic search (TEA*—Time
Enhanced A*) to generate free-collisions paths and a scheduling module to improve the results of the
routing algorithm. These modules work cooperatively to provide an efficient task execution time
considering as basis the routing algorithm information. Simulation experiments are presented using
a typical industrial layout for 10 and 20 AGVs. Moreover, a comparison with an alternative approach
from the state-of-the-art is also presented.

Keywords: multi-robot coordination; automated guided vehicles; routing; scheduling; motion
planning; simulation; robotics

1. Introduction

In recent years, and due to the mandatory need to continuously adapt the production
flow, industrial companies are increasingly adopting fully automated internal logistic
systems, namely based on AGVs, instead of manual or inflexible mechanical solutions (e.g.,
forklifts, conveyors, and others).

Considering the Industry 4.0 initiative, both AGVs, as well as mobile manipulators,
are seen as strategic tools in the Factories of the Future. In a very competitive industrial
environment, these can contribute to increase productivity and reduce the costs associated
with the internal logistic system, ensuring an efficient material flow. Likewise, their
introduction also allows human operators to be reallocated to more complex and ergonomic
tasks, with increasing value to the final product. These set of characteristic makes AGV’s
appealing for a wide range of industrial applications, such as goods transportation, end-of-
line automation chain, warehouse and distribution. However, and despite their versatility,
there is the need to deploy advanced multi-robot coordination algorithms in order to ensure
the AGV’s continuous operation, guaranteeing the minimum tasks execution time and the
smoothness of the vehicle’s movements.

The AGV’s fleet coordination problem has received wide attention from both the
research and industrial fields. Typically, two main systems comprise any multi-AGV
application: free-collision routing system [1,2] and scheduling system, that encompass
both task scheduling and dispatching [3]. The vehicle routing system is responsible for
computing trajectories that minimize the total distance traveled by AGVs considering
different constraints such as each vehicle’s carrying capacity and the plant layout where
vehicles can circulate, while ensuring free-collision routes. Some approaches are based on
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time windows as proposed by the authors in [4–8]. Here, the AGV route is constructed
considering that one point can only be visited one time for only one vehicle at a given time
interval. The feasibility of each route is evaluated, checking windows overlapping. In its
turn, the scheduling system is associated with the task scheduling and their attribution to
individual AGVs. This scheduling and dispatching should take into account some decision
criteria, namely the task deadlines and traffic status, among others.

Bearing these ideas in mind, this paper proposes an integrated approach for both AGV
route planning and task scheduling and dispatching. More in detail, the proposed routing
algorithm called Time Enhanced A* (TEA*) is an extension of our previous work addressed
in [9,10], that is, in this paper, further integrated with a scheduling module in order to
minimize the tasks execution time. The main feature of TEA* is the addition of a temporal
component to the known A* algorithm that generates routes efficiently, considering that
each robot knows other robots’ positions during the time. Furthermore, TEA* is an on-line
approach allowing its integration in dynamic environments.

The major contributions of our paper are to propose a Multi-Robot Coordination
System which includes a time-based algorithm to generate free-collision routes based on
the A* algorithm and a scheduling module that use the routing algorithm information to
minimize a cost function, dependent on the following parameters:

1. Average execution time of all tasks;
2. Number of stoppages;
3. Execution time for the last vehicle;

This paper is organized as follows. In Section 2 the state-of-the-art of path planning
algorithms and multi-robot systems are presented. Section 3 describes the proposed multi-
robot routing algorithm. Section 4 describes the industrial case scenario, followed by
the comparison between the proposed approach with an alternative state-of-the-art [11].
Sections 5 and 6 present the results achieved using Tabu-Search Method. Finally, some
conclusions and the contribution of this paper are presented in Section 7.

2. Related Work

In the last decade, the multi-robot coordination problem has been a target of many
scientific studies. To solve it, several authors have proposed the use of meta-heuristic
approaches to address both the problem of AGV routing and task scheduling. The au-
thors in [12–16], propose using a Genetic Algorithm to find the optimal or sub-optimal
solution, which satisfies the routing system goals, including the minimization of the tasks
completion time, minimal distance, among others. Likewise, ref. [17] proposes an in-
tegrated solution that comprises a routing module based on genetic algorithms and a
scheduling system based on bid auctions. Despite the potential of the proposed meth-
ods, normally these approaches treat each robot as an individual agent (without physical
constraints) [17,18], simplifying the problem at hand. Furthermore, the results do not in-
clude industrial case scenarios. Alternatively, particle swarm strategies can also be applied
to multi-AGV systems as in [19,20]. Ref. [21] proposes a Particle Swarm Optimization (PSO)
based algorithm, called Fractional Order Robotic Darwinian Particle Swarm Optimization
(FORDPSO), integrated with a fuzzy system to optimize the driving of multi-robots in
unknown environments. However, these methodologies are not yet sufficiently tested in
real industrial environments.

Considering solely the use of a bid auction strategy, the authors in [3,22] propose a
solution where each robot constructs ‘bids’ for each task and a central module receives
the bids and assigns tasks considering the fitness function’s maximization. Similarly,
ref. [23] proposed different combinatorial bidding strategies, comparing its performance
with single-item auctions.

Recognize the use of analytical methods, the authors in [24] define a robot mission
through Linear Temporal Logic formulas (LTL). An LTL approach considers that the truth
of a declaration can be changed during the time. This work focus on minimizing the
cost function, which is the maximum time between candidate solutions of an optimizing
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proposition. In [25] the authors use a model based on Integer Linear Programming (ILP) to
find paths that minimize the time until the last robot reaches its goal or minimizes the total
traveled distance.

Generally, two different approaches define the architecture of any multi-robot system:
a Centralized [26] or Distributed [27] methodology. The authors in [28,29] use a central-
ized architecture where one of the robots is the leader, and the others are the followers.
Here, the major challenges are related to ensuring communication robustness and the
algorithm flexibility to change the leadership. Other works use distributed architecture
like in [27,30], where each robot calculates its path independently using, for example, a
D* Algorithm [31] and then, the path is broadcast for all robots, making that every robot
knows all path information.

Regarding only task scheduling system, it typically aims for minimizing an objective
function which includes system characteristics, such as the number of vehicles, the order in
which the vehicles execute their missions, etc. In [32], Kelen et al. compares two scheduling
methods that determine the ideal number of vehicles for a given industrial scenario: the
Shortest Job First and Tabu Search. Additionally, a routing method based on an enhanced
Dijkstra algorithm, was used to manage the AGV’s path. The number of stoppages and the
time that each vehicle waits for the mission assignment was not measured.

In [20], Yu Zhang et al. proposes simple heuristics at the high-level layer, referred
to as the ‘coalition’ level, that creates an abstraction layer relatively to specific details in
robots’ specifications. Simple heuristics can be ‘MinProcTime’, that gives priority to the
missions with shorter processing times, and another one can be the ‘MinStepSum’, similar
to the ‘MinProcTime’, but determines the best solution incrementally when the ordering of
the assignment are not pre-determined. However, in the simulation experiments presented
were not considered an industrial scenario with real-world scheduling problems.

In the past half-decade, new approaches based on Artificial Intelligence (AI) are
emerging. AI addressed in [33,34], is the science that seeks to study and understand the
phenomenon of intelligence and, at the same time, a branch of engineering, as it seeks
to build instruments to support human intelligence. In practice, an AI system besides
storing and manipulate data can also acquire, represent, and manipulate knowledge.
This manipulation concerns the ability to deduce or infer new knowledge from existing
knowledge and use representation and manipulation methods to solve complex problems.
This area of engineering is vast and has been the subject of huge investment from both
business and research institutes. More specifically in Robotics, there is already a recent
line of work on Multi-Agent Path-Finding (MAPF) [35–38]. On AGVs, the MAPF problem
is to find the best paths, for a fixed number of agents, from their current locations to the
final task position, where all agents have a free-collision path, as it is described in [39–41].
Another use of AI in Robotics, is the combination of non-AI algorithms (time-window
based or greedy) for the AGV coordination with AI for the prediction of future tasks [42].

Despite the many scientific studies carried out, task scheduling solutions often resort to
small heuristics (First-in-First-Out, Shortest-Distance), often decoupled from the trajectory
planning system. In turn, trajectories are predefined in offline mode and designed to
prevent, as far as possible, the occurrence of deadlocks. This type of solution often leads to
the logistics system being oversized concerning the operation’s real needs.

3. Proposed Routing Algorithm

To overcome the challenges related with the multi-AGV coordination problem, pre-
sented in the previous sections, in this section a new methodology for AGV’s route planning
is proposed. This novel methodology is called TEA* Algorithm [9,10], in which the paths
are recalculated continuously, making it an online method. According to the vehicles’
movements and the environment changes, TEA* updates the paths of each AGV in order
to avoid collisions and to guarantee the continuous operation of the logistic system. In fact,
as in the majority of the industrial logistic systems, it is expectable that changes on initial
task information and/or unpredictable events, such as delays in the transportation system
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as a result of obstacles presence [21], can occur. In these scenarios, the adoption of online
path planning algorithms, capable of dealing with such events, becomes mandatory.

As referred before, TEA* is based on the traditional A*, where a third dimension was
added, the time. The input map has three dimensions: vertex’s coordinates (x and y) and a
representation of the time, as shown in Figure 1. The time is represented with temporal
layers given by k ∈ [0, kMax] (kmax denotes the maximum number of layers). Each temporal
graph is a set of free and occupied/obstacles vertexes.

Figure 1. Representation of the input map focusing the vertexes with the same position of the AGV
(over the time) denoted with different colors.

As far as computational complexity is concerned, many factors can influence the
system (RAM, CPU, others), however, through [43] where the test conditions are the same
for all algorithms, it is possible to validate that A* is the most suitable algorithm for robot
fleet management in different environments. Therefore, taking into account the case study
carried out in [43], and the results obtained in [9], it can be concluded that TEA* is a
practical, versatile and quite optimized algorithm in terms of path planning algorithms.

3.1. The TEA* Method

In multi-AGV systems, time is a crucial component for a better prediction of the
vehicles’ positions. Besides the constantly recalculated paths, TEA* determines the route
for each AGV during the temporal layers. This grants the identification of upcoming
collisions, allowing them to be avoided with considerable anticipation. The path informa-
tion for each AGV is converted to a busy vertex on the following robot’s map, allowing
collision avoidance.

Consider a graph G with a set of vertexes V = {0, 1, ..., NUM_VERTEXES} and edges
E = {0, 1, ...NUM_EDGES} (links between the vertexes), with a representation of the time
[ 0, 1, ..., kmax ] (as can be seen in Figure 1). Each AGV can only starts and stops in vertexes
and each vertex can only be occupied by only one vehicle at the time.

During the path search for a single AGV the neighboring vertexes are evaluated using
a similar approach as A* algorithm [44]. Moreover, each edge in each temporal layer, has a
cost function value, denoted as f (j, k), given by the sum of two terms (see Equation (1)).

f (j, k) = αg(j, k) + βh(j, k),

k ∈ [0, kmax], j ∈ [0, NUM_VERTEXES] (1)

Considering the path between j0 and j f , the first term αg(j, k), represents the distance
between the current vertex j to the initial vertex j0, in the k temporal layer. The second
term, denoted as βh(j, k), is a heuristic value that calculates the distance to the final vertex
j f . The terms α and β assign different weights to the distance and the heuristic function.

Each vertex, in each temporal layer, has different values of g(j, k) and h(j, k), according
with the Equation (2). Here, g(j, k) is given by the sum of the distance between the current
vertex j and the initial vertex j0, being the edge distance between j and its adjacent vertex
j + 1 denoted as dis(j, j + 1, k).
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g(j, k) = dis(j, j0, k) + dis(j, j + 1, k)

h(j, k) = dis(j, j f , k)
(2)

The main differences between TEA* and the known A* algorithm are mainly concerned
with the addition of the time component and can be defined as follows:

Definition 1. The neighbor vertexes belong to the next temporal layer. The neighbor vertexes of a
vertex j (vj

adj) are given by the set of all adjacent vertexes in the next time component (k + 1). The
number of temporal layers depends on the required iterations to achieve the final point of the mission
and the map dimensions. Note that the larger the map, more time layers are required.

Definition 2. The neighbor vertexes include the vertex containing the AGV’s current position. The
set of neighbor vertexes includes not only the adjacent vertexes but also the vertex corresponding to
the position in analysis. This property allows a vehicle to maintain its position between consecutive
time instants if any neighbor vertex is free. In this case, dis(j, j, k + 1) assumes a constant value
that corresponds to the cost of keeping its position.

The Algorithm 1 describes the TEA* approach for a single AGV with the following
parameters:

• valk
j : Value of vertex j in the time layer k (Free—0 or Occupied/Obstacle—1).

• posk
l,j: AGV l occupies the vertex j in the k time layer.

• O = {ok
j , ..}: Open list contains the vertex j in the k time instant. Each item contains

the respective cost value, ok
j .cost.

• j0: initial vertex.
• j f : final vertex.

• vj
adj: adjacent vertex of vertex j.

• pj,k = (i, τ): The vertex i in the time layer τ is the parent vertex of vertex j in the
instant k.

• hk
j : Heuristic Value for vertex j in k temporal layer.

• gk
j : Distance Value for vertex j in k temporal layer.

• dis(j1, j2): Distance value of the edge (j1, j2).

3.2. Smoothing Trajectories

For TEA* to be applied, the shop floor layout requires to be modeled as a set of
vertexes and edges (links between the vertexes). Each AGV travels on these graph paths,
from one node to another, through a pre-defined set of edges. Each edge is represented as
a cubic Bézier curve (as proposed in article [45]), given by Equation (3).

x(λ) = axλ3 + bxλ2 + cxλ + x0

y(λ) = ayλ3 + byλ2 + cyλ + y0
(3)

Here, λ denotes an integer value between 0 and 1 according with the AGV’s position
in the curve, (x0, y0) is the initial point of the curve, and ax, bx, cx, defines the spline’s
curvature. Figure 2 represents a portion of the map which contains Bézier curves and
straight lines.
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Algorithm 1: TEA* ALGORITHM

1 O ← o0
vi;

2 while OpenList.size() �= 0 do

3 j = minO{ok
j .cost};

4 if j == j f then

5 return

6 for vj
adj adjacent vertexes of j do

7 if valk+1
vj

adj

== 0 then

8 Only the non-visited vertexes have heuristic zero;
9 if hk+1

vj
adj

== 0 then

10 CalculateHeuristic(hk+1
vj

adj

);

11 pj,k = (vj
adj, k + 1);

12 CalculateCost(ok+1
vj

adj

);

13 O ← ok+1
vj

adj

;

14 else if gk+1
vj

adj

> gk
vj

adj

+ dis(j, vj
adj) then

15 UpdateCost(ok+1
vj

adj

);

16 O ← ok+1
vj

adj

17 return 0;

Figure 2. Cubic Bézier Curves Example.
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4. Industrial Layout and Comparison Scenario Description

In this section, the TEA*, based on Robot Operating System (ROS), is compared with
a state of the art alternative, namely the coordination algorithm presented in [46]. This
algorithm relies on coordination diagrams for planning the coordinated motion of a fleet of
AGVs. One of the contributions of [46] is the definition of a heuristic function that estimates
the number of times a vehicle starts and stops during its path execution.

For the comparison of the two algorithms, a set of experiments were conducted using
the same layout, the same number of vehicles and the same missions’ list used by the
authors of [11]. Each mission is defined by four tasks (Sn- Starting positions; Pn- Pick-up
Positions; Dn- Drop-off Stations; Rn- Rest Positions). The layout dimensions are 80 × 110 m
and 10 AGVs were used to generate the results of [11].

Figure 3 represents the input map of TEA* Algorithm. The graph was built using a
graph editor, which was created with the Robot Operating System Visualization (RVIZ)
platform and the Interactive Markers tool.

Figure 3. Layout Snapshot built in RVIZ.
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5. Routing Algorithms Comparison

Considering the industrial scenario previously presented, Table 1 illustrates the mis-
sion execution time for each vehicle with the TEA* Algorithm, using 10 AGVs and 30 tasks.
For each AGV, the time of advancement (Tadv) and the stopping time (Tstop) are reported. In
Figure 4 is illustrated the final solution found for each vehicle. Two black circles represent
possible collision points in different robot paths, but the third dimension of TEA* allows
AGVs to share the same trajectory by passing at different times at the common points, i.e.,
avoiding possible collisions.

Comparing the results achieved with the TEA* (Table 1), with the results presented by
the authors in [11] (Table 2), it is possible to conclude that TEA* is advantageous mainly
considering the Tadv of the last vehicles (AGVs 6, 7, 8, 9, 10). Conversely, the Tadv of the
AGVs 3, 4 and 5 surpasses the value of the same robots in Table 2. However, in these cases
the Taverage and the Tmax are lower in TEA*. Therefore, this algorithm presents itself as a
better solution for multi-robot path planning.

Figure 4. Routing Algorithm Results—10 AGVs.
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The average time (Taverage) to complete the missions list with TEA* is 116.7 s and in
the case of [11] this time is approximately 121.78 s. The last vehicle in [11] takes 144.2 s to
finish its tasks, while in TEA*, the last vehicle performs its tasks in 135.8 s.

To highlight the capability of TEA* Algorithm to optimize the routes even with
considerable workload in the system, Table 3 presents the same industrial scenario but
now with 20 AGVs and 60 tasks. Note that the difference in the average time between 10
and 20 AGVs are approximately 11 s. The fact that a vehicle considers the current and
future positions of each vehicle as obstacles during the discrete-time, gives it the possibility
to wait for some instants for the traveling of previous AGV, instead of calculating a
longer deviation.

Table 1. TEA* Results—10 AGVs.

Vehicle 1 2 3 4 5

Tadv(s) 123.5 110.3 135.8 134.2 91.6
Tstop(s) 0 0 6 0 3

Vehicle 6 7 8 9 10

Tadv(s) 129.0 103.4 105.4 108.6 125.6
Tstop(s) 0 0 6 0 0

Taverage(s) 116.7

Tmax(s) 135.8

Tstop(s) 15

Table 2. TRAFCON Results—10 AGVs, adapted from [11].

Vehicle 1 2 3 4 5

Tadv(s) 144.2 118.6 115.2 127 73.4
Tstop(s) 26.8 0 1.6 0 17

Vehicle 6 7 8 9 10

Tadv(s) 151 123 107 121.6 136.8
Tstop(s) 0 0 1.4 0 0

Taverage(s) 121.8

Tmax(s) 151

Tstop(s) 46.8

For the sake of completeness, it is important to refer that the TEA* Algorithm has
been designed to be integrated into dynamic industrial environments, thus allowing direct
scaling concerning the number of robots to be used. The structure of the algorithm itself is
already prepared for different exchanges of industrial scenarios.
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Table 3. TEA* Results—20 AGVs.

Vehicle 1 2 3 4 5

Tadv(s) 123.5 110.3 135.8 134.2 91.6
Tstop(s) 0 0 6 0 3

Vehicle 6 7 8 9 10

Tadv(s) 129.0 103.4 105.4 108.6 125.6
Tstop(s) 0 0 6 0 0

Vehicle 11 12 13 14 15

Tadv(s) 144.3 166.6 107.7 129.6 121.5
Tstop(s) 9 3 0 12 0

Vehicle 16 17 18 19 20

Tadv(s) 161.4 139.5 179.3 81.5 154.7
Tstop(s) 3 0 3 3 3

Taverage(s) 127.7

Tmax(s) 179.3

Tstop(s) 51

6. Task Scheduling Algorithm

As referred earlier, the problem of AGV coordination is not only closely related with
the route planning of the AGVs, but also with the task scheduling. The performance of the
routing algorithm can be improved. The AGV execution order affects the calculation of
routes since the path positions over time for a given vehicle are obstacles for the following
AGVs. If the execution order changes, the paths and respective task execution times for
each vehicle are different.

6.1. Tabu Search Method

The Tabu Search Method is a ‘meta-heuristic’ adaptive method of local search in
continuous exploration within a search space, moving from one solution to another, the
Tabu Moves, diversifying the solutions found in this process of the search for an improved
solution [47]. The best permissible movement is the one with the highest evaluation in the
vicinity of the current solution regarding target function value and taboo restrictions. Thus,
the ‘meta-heuristic’ Tabu Search is an iterative search algorithm characterized by dynamic
memory and consisting of two parts: initialization and search.

Starting from an initial randomly generated solution or using a heuristic, the Tabu
Search will evaluate a set of different mutations (neighborhood exploration) of the current
solution in each iteration. The best mutation will be accepted, and the changes made
saved in a Tabu List adopted to store the most used changes, which are classified as
prohibited in later iterations. This strategy is necessary to avoid a return to solutions
already checked previously.

Therefore, in this method, in each iteration, the evaluation function consists of vali-
dating a certain quantity of new solutions, where the best solution, based on the objective
function, is accepted, even if its cost is higher than the cost of the current solution. Thus,
the algorithm chooses the new solution that produces an improvement or the least dete-
rioration in the cost function (an attempt to evade minimal locations). The Tabu Search
algorithm runs until a stop criteria is reached.

Figure 5 presents the main blocks of the Tabu Search method.
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Figure 5. Tabu Search Diagram.

In the AGV scheduling problem presented, the final objective is the allocation of the n
sub-tasks by the j available AGVs, in order to minimize the total time for the overall task
completion. The main goal is to determine/distribute the best sequence of attendance of
the sub-tasks by the AGVs to minimize the total time of execution.

For the problem presented, the initial solution (sequence of sub-tasks assigned to each
AGV) is generated using the closest neighboring heuristic, as presented in Algorithm 2.
In other words, each AGV (and taking into account the last sub-task performed, which
influences its position on the map) is assigned to the next sub-task with lower cost (shorter
travel time/distance).

This process is executed cyclically until all sub-tasks have been assigned to one, and
only one, AGV.

Algorithm 2: CLOSEST NEIGHBOUR ALGORITHM—PSEUDO CODE

1 while AllSubTasksUnallocated do
2 for j = 1 to NumAGVs do
3 NewAGV(j)SubTask ← NeighbourNext <

SubTasksUnallocated, PreviousSubTaskAGV(j) >;
4 ListSubTasksAGV(j) ←< NewSubTaskAGV(j) >;
5 PreviousAGV(j)SubTask ← NewAGV(j)SubTask;
6 AllUnassignedSubTasks ← delete < NewSubTaskAGV(j) >;

The Algorithm 3, describes the implementation of the Tabu Search used in the pro-
posed approach.

6.2. TEA* Algorithm with Tabu Search Method—Results

The Tabu Search Method was implemented to find better vehicle configuration and to
schedule the order in which vehicles execute their tasks. A configuration comprises the
order in which vehicles should be processed by the TEA* Algorithm.
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Algorithm 3: ‘META-HEURISTIC’ TABU SEARCH—PSEUDO CODE

1 s ← s0;
2 BestSolution ← s;
3 for k = 1 to TabuSearchMaxIteration do
4 CandidateList ← null;
5 for sCandidate in sNeighborhood do
6 if not containsTabuElements < Candidate, tabuList > then
7 candidateList ← candidateList + sCandidate;

8 sCandidate ← LocateBestCandidate < candidateList >;
9 tabuList ← addFeatureDifferences < sCandidate, sBest >;

10 s ← sCandidate;
11 if f itness < s > < f itness < sBest > then
12 sBest ← s;

13 UpdateTabuList < tabuList >;

14 return sBest

The AGV execution order affects the calculation of routes since the path positions
over time for a given vehicle are obstacles for the following AGVs. If the execution order
changes, each vehicle’s paths and respective task execution times will be different.

The optimization goal is the minimization of the three following parameters:

1. Time of the last vehicle, denoted as Tmax in seconds;
2. Average Time of the missions execution, denoted as Taverage in seconds;
3. Number of Stoppages, denoted as nstop;

That were aggregated in the following cost function (Equation (4)):

c = γ × Tlast + ψ × Taverage + τ × nstop (4)

Here, γ, ψ and τ are components that are weighting parameters. In the simulation
experiments the following values were used, respectively 0.1, 0.7, 0.2. These were manually
defined considering an iterative and experimental way, with the main goal of minimizing
the cost function c.

The configuration that leads to the lowest cost function is chosen as the better so-
lution. In our approach is not required to achieve the optimal solution, a near-optimal
configuration that leads to an efficient TEA* execution is enough.

To obtain the initial configuration of the Tabu Search Method, a heuristic function
was defined. It consists of the path computation for each vehicle without consider the
other vehicles as obstacles (optimal solution) and ordering it by decreasing the order of
execution task times. The objective is to process firstly the longer paths minimizing the
number of stoppages. The candidate solutions are generated, changing two by two the
vehicle execution order from the current solution.

Table 4 presents the results for the TEA* Algorithm using the AGV configuration
solution found by the Tabu Search method. The average time for completing all tasks is
lower, but the more significant improvement was the waiting time. In Table 1 using as
initial configuration = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} AGVs were stopped 15 s. Using the Tabu
Search solution = {6, 2, 4, 3, 1, 10, 9, 7, 8, 5}, total waiting time was 6 s.

Considering 20 AGVs, besides the stoppage time to be higher, the task completion
time is lower than TEA* results without scheduling module. In Table 3 the total time to
complete all tasks was 179.3 s and in Table 5 this time was 159.1 s.
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Table 4. TEA* Results with the Tabu Search Configuration—10 AGVs.

Vehicle 6 2 4 3 1

Tadv(s) 129.0 110.3 133.7 122.6 125.4
Tstop(s) 0 0 0 0 0

Vehicle 10 9 7 8 5

Tadv(s) 124.2 108.6 103.4 105.4 91.3
Tstop(s) 0 0 0 3 3

Taverage 115.4

Tmax(s) 133.7

Tstop(s) 6

Table 5. TEA* Results with the Tabu Search Configuration—20 AGVs.

Vehicle 18 16 4 12 6

Tadv(s) 159.1 152.5 133.9 157.3 131.2
Tstop(s) 0 0 0 6 0

Vehicle 11 10 1 15 17

Tadv(s) 133.7 124.2 123.5 125.8 136.1
Tstop(s) 6 0 0 9 0

Vehicle 3 14 2 9 13

Tadv(s) 148.5 131.6 136.0 119.1 138.4
Tstop(s) 0 12 3 0 3

Vehicle 20 7 8 5 19

Tadv(s) 145.1 121.4 106.7 105.0 78.5
Tstop(s) 3 0 3 18 0

Taverage 130.4

Tmax(s) 159.1

Tstop(s) 63

7. Conclusions

This article proposes a multi-AGV system that comprises a routing algorithm based
on the search method A*. This algorithm is suitable for multi-robot applications, avoiding
collisions and deadlocks and guaranteeing any industrial scenario required safety levels. To
optimize the results achieved scheduling method (Tabu Search) minimizes a fitness function
defined by several parameters calculated by TEA*. The two modules work cooperatively,
sharing the TEA* information.

Our work’s major contributions are: (i) Presentation of a promising approach for multi-
AGV applications in warehouse environment, improving the flexibility and efficiency of
the complete system; (ii) Validation of an on-line Multi-Robot Coordination Algorithm
comparing it with a state-of-the-art alternative.

As future work, it will be interesting to validate the TEA* Algorithm in a real environ-
ment, with a real robotic system, by comparing it to the simulation results.
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Abstract: In environments shared with humans, Autonomous Mobile Robots (AMRs) should be de-
signed with human-aware motion-planning skills. Even when AMRs can effectively avoid humans, only
a handful of studies have evaluated the human perception of mobile robots. To establish appropriate
non-verbal communication, robot movement should be legible and should consider the human element.
In this paper, a study that evaluates humans’ perceptions of different AMR courtesy behaviors at in-
dustrial facilities, particularly at crossing areas, is presented. To evaluate the proposed kinesic courtesy
cues, we proposed five tests (four proposed cues—stop, deceleration, retreating, and retreating and
moving aside—and one control test) with a set of participants taken two by two. We assessed three
different metrics, namely, the participants’ self-reported trust in AMR behavior, the legibility of the
courtesy cues in the participants’ opinions, and the behavioral analysis of the participants related to each
courtesy cue tested. The retreating courtesy cue, regarding the legibility of the AMR behavior, and the
decelerate courtesy cue, regarding the behavioral analysis of the participants’ signs of hesitation, are
better perceived from the forward view. The results obtained regarding the participants’ self-reported
trust showed no significant differences in the two participant perspectives.

Keywords: human–robot interaction; AMR navigation; AMR safety; human perception; courtesy
cues; forward and backward scenarios; HTA questionnaire; shop floor configuration

1. Introduction

The implementation of collaborative robots is seen as one of the technologies enabling
Industry 5.0. This new industrial paradigm prioritizes essential needs and interests by
placing humans at the core of the industrial production processes. It recognizes the power
of the role of industry in achieving social and environmental objectives without setting
aside the role of human workers in this process [1]. In fact, along with this new industrial
paradigm, robots are no longer only programmable machines but are expected to be
recognized as co-workers, side by side with human workers [2]. This relationship should
increase production flexibility and efficiency while supporting the human workers in their
tasks [3]. One of these technologies already being introduced on the shop floor is Industrial
AMRs [4].

AMRs have evolved from Automated Guided Vehicles (AGVs), which are restricted to
predefined paths using magnetic/electrical wires, among other sensors [4,5]. Compared to
AGVs, AMRs are more flexible, collaborative, and cost-efficient [3]. This type of robot can
move autonomously without the help of external workers [6] and they can detect obstacles
and recalculate a new route around them [7]. The autonomy of AMRs implies continuous
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decision-making on how to behave according to their environment, with predefined rules
and constraints [4].

Cooperation between humans and robots sharing a workspace is becoming increas-
ingly common [8]. Human–Robot Collaboration (HRC) is the process wherein human
and robot agents work together to achieve shared goals. For any level of collaboration,
human safety has been a primary concern ever since robots were first created [8]. Beyond
physical safety, other aspects also need to be considered when humans and robots interact,
such as psychological aspects and mental stress [3]. In fact, when a robot comes close to a
human, the robot may generate negative feelings, such as stress, mistrust, and anxiety [9].
This may be linked with human nature. For instance, instinct may lead humans to take
evasive action when they perceive a threat due to approaching an unfamiliar object [10].
Therefore, foreseeing the humans’ acceptance, trust, and comfort requires us to take into
account the robots’ appearance, movement, and behavior [11,12]. Because most industrial
AMRs have non-humanoid features, the way to promote appreciation lies in non-verbal
communication linked to their movement and behavior [13]. Motion is a way of communi-
cation and not only an instrument to reach a goal position, and predictability is of much
importance for efficient human–robot interaction and collaboration [14]. Communication is
a key factor in HRC activities to achieve a common goal [15]. Friendly and comprehensible
AMR movements and behaviors are key factors for proper communication with the human
worker [16].

AMRs can emulate the social behavior of humans through kinesic courtesy cues. In
human–human interactions, kinesic courtesy cues promote social affiliation (e.g., physical
distance from others, postural orientation, smooth social encounters, and acceptance of
others) [13,17]. In the specific case of AMRs, legible kinesic cues can give, to humans,
information about granting them the privilege of first passage at a crossroads. To be legible,
AMRs’ kinesic courtesy cues need to be predictable and resemble human behavior [13].
Lichtenthäler et al. [14] showed that a good strategy for an AMR is moving as far as is
possible straight towards its goal and reacting as smoothly as possible to a human. Kaiser
et al. [13] showed that when robots present legible behaviors, they are better appreciated
by humans.

The assessment of humans’ perception of robot behavior is a non-trivial problem. In
industrial HRC scenarios, cognitive ergonomics deals with this issue. It is concerned with
principles of interaction acceptability by minimizing mental stress and psychological dis-
comfort, which could be felt by workers sharing a workspace with robots [18]. There is no
single best way to assess these psychological parameters because they depend on the pur-
pose of the assessment. According to Gualtieri et al. [19], there is a set of cognitive variables
related to HRC, namely, trust, usability, frustration, perceived enjoyment, satisfaction, and
acceptance. There are three categories of measurements available to measure these types of
variables: (i) performance measures, (ii) subjective measures, and (iii) psychophysiological
measures [20]. Performance measures are conducted based on reaction time and mistakes.
Subjective measures assess the workers’ opinions, providing information on how they
assess aspects of their interaction within the workspace. Psychophysiological measures
include direct measurement of cognitive variables, namely, heart rate variability (HRV),
galvanic skin response (GSR), and eye blink rate [20]. These technologies are more feasible
and capable of providing human cognitive status assessment and interpretation [8]. How-
ever, subjective measures are more often used because they show practical advantages, e.g.,
ease of implementation and non-intrusiveness. Additionally, previous research supports
their capacity to provide sensitive measures of the cognitive status of workers [21].

Hetherington et al. [22] highlighted the need to carry out in-person experiments with
mobile robots, in open spaces, and to apply courtesy cues in scenarios that include several
participants at the same time. These authors even wondered what the impact would be
of courtesy cues from the perspective of participants who have a view of the robot from
behind. Kaiser et al. [13] tested the legibility of two kinesic courtesy cues common in
human interaction with an autonomous mobile robot in two different situations, but not
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simultaneously: one participant and robot share the same trajectory next to each other
or moving from opposite ends. The authors also pointed out the need to explore other
courtesy cues.

Objectives

The current exploratory study intends to go a step further, recognizing the im-portance
of legible movements in the communication processes of AMRs. This study leads us to
create an experimental protocol on a real-industry in-person scenario and contribute with
some specific conditions not previously considered. Specifically, the aim is to investigate
how different kinesic courtesy cues (stop, decelerate, retreat, and retreat and move to the
left) would be understood in the view of two participants with different perspectives of
the robot (one with a frontward view and the other with a backward view) at an industrial
crossroad under the same test conditions, i.e., within one simultaneous scenario.

2. Materials and Methods

The following subsections provide the sample characterization, a description of the
AMR used and its operating conditions, the hypotheses and measures that we intended to
analyze, and an explanation of the experimental procedure and apparatus.

2.1. Participants

The participants collaborated voluntarily and signed an informed consent form in
agreement with the Committee of Ethics for Research in Social and Humans Sciences of
the University of Minho (approval number CEICSH 095/2019), in agreement with the
Declaration of Helsinki.

A total number of 34 participants were recruited, with 13 females (38.2%) and 21 males
(61.8%). To conduct each trial, two participants were required simultaneously. Participant
A has a backward perspective of the robot, where the robot is moving away from the
participant, and Participant B has a forward perspective of the robot, where the robot is
moving toward the participant. Regarding the characterization of the participants’ ages,
the average age was 29.8, with a standard deviation of 7.5, in the range of 21–46 years old.

2.2. Material and Experimental Setup
2.2.1. MiR 200 Specifications, Navigation, Control, and Safety

In this user study, an AMR, the MiR 200, and its automatic battery charging station,
the MiR Charge 24 V, were used (Figure 1). The main specifications of the MiR 200 used for
conducting the experiments are: weight (without load) of 65 kg; maximum speed forwards
of 1.1 m/s; maximum speed backwards of 0.3 m/s; battery running time 10 h (or 15 km
continuous driving); charging time with charge station up to 3.0 h ((0–80%): 2.0 h); charging
time with cable up to 4.5 h ((0–80%): 3.0 h) [23].

Figure 1. Principal dimensions of: (a) the MiR 200 robot; (b) the MiR Charge 24 V.

The MiR 200 is a nonholonomic wheeled mobile robot (WMR) with a rectangular
configuration, controlling its movement speed based on wheel odometry, with six wheels in

53



Robotics 2022, 11, 59

total: one omnidirectional swivel wheel in each corner; and two driving wheels (differential
control) in the center of the platform to ensure the stability of the mobile robot when it
rotates [24–28]. The robot adjusts how much power is sent to each motor based on sensory
input. The robot is equipped with two ISO 13849-certified SICK S300 safety laser scanners,
one in the front left corner and another one in the rear right corner, offering 360◦ visual
protection around the robot (Figure 2a); two Intel RealSenseTM D435 3D cameras on the
front of the robot for the detection of objects vertically up to 1800 mm at a distance of
1950 mm in front of the robot (Figure 2b), and with an angle of 118◦ in the horizontal field
of view (FoV) at 180 mm height from the floor (Figure 2c); and four ultrasound sensors,
two placed at the front of the robot and two placed at the rear of the robot [23,27,29].

Figure 2. (a) Top view of the SICK laser scanners; (b) Configuration of the 3D cameras and SICK laser
scanners, side view; (c) FoV of 118◦.

The SICK safety laser scanners provide the sensorial information for the collision
avoidance function. This function prevents the robot from colliding with a person or an
object by stopping it before a collision happens. To that end, the safety laser scanners are
programmed with two sets of protective fields, each one individually configured to contour
around the robot. One set is used when the robot is driving forward, and the other set
is used when the robot is driving backward. Based on the speed, the robot activates the
corresponding protective field. If an obstacle is detected, whether person or object, within
the active protective field, the robot enters a protective stop automatically (Figure 3) until
the protective field is cleared of obstacles for at least two seconds. The protective stop is
a state of the robot where a robot status light turns red, and it is not possible to move the
robot or send it on missions until it is brought out of the protective stop [27].
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Figure 3. MiR 200 protective field mechanism: (a) The robot drives when its path is clear; (b) the
robot activates the proactive stop when an obstacle is detected within its protective field.

According to [27], the velocity and the protective field ranges when the robot is driving
forward, i.e., in front of the robot, and backward, are different for specific cases. Each case
describes a velocity interval in which the robot may operate. Figure 4a shows a representation
of the protective field ranges according to five different forward robot velocities. For example,
when the robot is moving at a velocity between −0.14 to 0.20 m/s (1) the protective field range
is from 0 to 20 mm. The other velocity scenarios (2 to 5) are 0.21 to 0.40 m/s; 0.41 to 0.80 m/s;
0.81 to 1.10 m/s; and 1.11 to 2.00 m/s. The protective field range are respectively 0–120 mm;
0–290 mm; 0–430 mm; and 0–720 mm. Figure 4b shows the similar representation for when
the robot is driving backward. In this case, the four velocity scenarios are −0.14 to 1.80 m/s;
−0.20 to −0.15 m/s; −0.40 to −0.21 m/s; and −1.50 to −0.41 m/s. The protective field ranges
are (1 to 4), respectively, 0–30 mm; 0–120 mm; 0–290 mm; and 0–430 mm.

Figure 4. Range of the robot’s active protective field that changes with the robot’s speed, represented
in millimeters: (a) Forward driving direction; (b) Backward driving direction.

To execute the experiments, a 2D map of the test area was created through the cartog-
rapher algorithm available on the robot platform (Figure 5). The robot localization within
this map is determined by an adaptive Monte Carlo localization (AMCL) navigational
system combining wheel odometry, information from the inertial measurement unit (IMU)
encoders, and laser scanner data [27–31].

The kinesic courtesy cues were implemented on the robot through commands pro-
grammed in the software interface supplied by the respective vendor. During the tests, the
desired value for the robot’s linear speed was set to 0.6 m/s. According to Lauckner et al. [31],
speeds slower than 0.6 m/s are perceived as too slow. In terms of obstacle detection, the
higher the speed (forward and backward speed), the larger the protective safety range [27].
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Figure 5. Clean and edited map corresponding to the total industrial area used for the tests: the
arrows indicate the area in which the robot was allowed to circulate.

2.2.2. Experimental Setup

The experiments were conducted in an open space within an industrial environment,
in a crossroad-like configuration with simultaneous forward and backward scenarios
(Figure 6).

Figure 6. Industrial environment: A crossroad-like configuration with simultaneous forward and
backward scenarios.

A control courtesy cue, i.e., a control condition where the robot does not stop, and
another four courtesy cues—stop, decelerate, retreat, and retreat and move to the left—were
programmed into the MiR 200. For each courtesy cue, the MiR 200 moved towards the
crossing area with linear speed (v = 0.6 m/s) and then executed specific movements to
communicate to the participants that it was yielding the right of way at the intersection.
The crossing area is an interaction and decision area where Participants A and B outpace
the MiR 200, localized in the experimental apparatus between the end of the horizontal
paths for Participant A, the MiR 200, and Participant B and the beginning of the vertical
path. The four courtesy cues (Figure 7) tested were the following:

(i) “stop”: The AMR stopped suddenly before the crossing area, made a two-second
stop, and returned to its trajectory to the final position.

(ii) “decelerate”: The AMR started to slow down its linear speed (v = 0.6 m/s) to
v = 0.2 m/s at a distance of 1.0 m (represented by Xd in Figure 7) before stopping
before the crossing area. Then, it stopped for two seconds and returned to its trajectory
to the final position.

(iii) “retreat”: The robot stopped suddenly before the crossing area, then retreated 1.0 m (Xr
in Figure 7), stopped for two seconds, and returned to its trajectory to the final position.
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(iv) “retreat and move to the left”: The robot stopped suddenly before the crossing area,
then retreated 1.0 m, and moved to the left by 0.2 m (Xleft in Figure 7) relative to the
central point of the crossing area. Then, it stopped for two seconds and returned to its
trajectory to the final position.

Figure 7. Scheme of the four courtesy cues tested.

Participant A and the MiR 200 shared the trajectory from the position start, and
Participant B shared the trajectory with the MiR 200 from the crossing area, both passing
through the intersection. When the participants reached the crossing area, they were asked
to decide whether (or not) to overtake the robot, according to the kinesic courtesy cue of
the test in progress (Figure 8).

 

Figure 8. Experimental apparatus of the interaction’s HRC kinesic cue study conditions: Xd decelerate
distance, Xr retreat distance, Xleft move left distance; distances are represented in meters.

2.3. Procedure

The participants were informed about the scope of the study and the general instruc-
tions of the experiment; precisely, that the MiR 200 works autonomously, i.e., the robot
moves on a preprogrammed map and trajectory (Figure 5)—the robot does not collide
with any participant or any object due to its sensors that monitor the environment around
the robot [27]. Each participant completed five tests: one for the control courtesy cue
condition and the rest related to the other four courtesy conditions (see Section 2.2). The
total time for performing the five test conditions was 20 min. Participants were instructed
to start the test after hearing a “Beep” and seeing a green light. To ensure that they would

57



Robotics 2022, 11, 59

encounter the robot at a specific point on the navigation map (where the robot would
show the courtesy cue behavior), participants were also instructed to walk at the pace
imposed by the evaluators (about 1 m/s). They could also abandon the test if they felt
uncomfortable at any moment. After each courtesy cue condition, an appreciation of the
subjects’ perception, through an adapted version of the Human Trust in Automation ques-
tionnaire (HTA), was obtained. To reduce hysteresis phenomena, i.e., different responses to
identical inputs [32,33], the different kinesic courtesy cues were randomly assigned among
the participants.

2.4. Measures
2.4.1. Perceived Trust and Mistrust Assessment

To measure the participants’ perceived trust in the AMR behavior, we applied an
adapted version of the HTA questionnaire [34]. Comparatively to the original question-
naire, we replaced the word “system” by “robot”. Trust is an important factor in HRC. It
determines humans’ use of autonomy, and improper trust can lead to either over-reliance
or under-reliance on the robot [35]. The HTA is a validated questionnaire composed of
12 statements, assessed by a 7-point Likert scale (between 1 = “Totally disagree” and
7 = “Totally agree”). The subjects answered at the end of each interaction with the AMR
presenting the different courtesy cues. The first five statements have a negative connotation,
while the last seven statements have a positive connotation. We assessed the responses
to the negative connotation statements as mistrust and the others as trust in the robot. To
assess the condition of normality of the results, the Kolmogorov–Smirnov test was applied.
Additionally, a one-way ANOVA was applied to compare the results of trust and mistrust
with the conditions of different courtesy cues.

2.4.2. Legibility Assessment

To measure the legibility of the implemented kinesic courtesy cues tested, we asked the
participants to select one of eight options after the end of each trial. The options available
were: (i) the robot stopped; (ii) the robot decelerated and stopped; (iii) the robot stopped
and retreated; (iv) the robot stopped, then retreated, and then moved forward and moved
to the left/right; (v) the robot followed its path without stopping; (vi) the robot stopped
and nudged; (vii) the robot stopped and tilted to one side; (viii) none of the above options.
When the participant answered correctly, we considered the answer “true”. When the
participant answered wrongly but pointed out one of the courtesies used in the test (i, ii, iii,
iv, or v), we considered it “false”. If the participant answered wrongly and pointed out one
courtesy that was not in the scope of the experiment (vi, vii, or viii), we considered it “false
out of the test”. To assess the association between the levels of courtesy kinesic cues and
the answer to control questions, a Pearson’s chi-square test was applied.

2.4.3. Behavioral Analysis

Based on video recordings of each experimental trial, we assessed the lack of hesitation
with which the participants moved through the crossroad. For this purpose, two raters
assessed each video individually and inferred the participants’ lack of hesitation. To assess
this condition, we assumed that a person’s movement showed signs of hesitation if one of
the following situations was observed: slowed down, stopped, moved to the side, retreated,
granted the robot the right to pass, visually checked the robot, moved first but tentatively,
seemed somewhat forced by the robot to pass first, passed the bottleneck jointly with
the robot, or both got stuck in the crossroad [13]. To assess the association between the
robot’s kinesic courtesy cues and the observable participant’s signs of hesitation, Pearson’s
chi-square test was applied.

3. Results

We report our findings in three subsections. First, we tested the effect of the four
kinesic courtesy cues on subjects’ trust and mistrust. Second, we assessed the legibility of
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the kinesic courtesy cues via participants’ self-reporting. Third, we compared the hesitation
behavior of the participants when subjected to each kinesic courtesy cue from the point of
view of the participants concerning their relative position (behind/in front) to the robot.
We started from the assumption that an AMR without skills in non-verbal communication
will be hard to read by its human counterparts.

3.1. Perceived Trust and Mistrust

1. To assess perceived trust, the HTA was applied. A one-way ANOVA was applied,
and the application condition of homogeneity of variance was verified (p > 0.05).
Additionally, the Kolmogorov–Smirnov test was applied to assess the condition of
normality. The normality of the residuals was confirmed (p > 0.05). The results of
trust and distrust in the human counterpart are shown in Table 1.

Table 1. Results of one-way ANOVA related to the subjects’ perceived trust and distrust of the AMR
from both points of view (forward and backward).

Forward Backward

Trust F(4,80) = 1.082, p = 0.371 F(4,80) = 0.486, p = 0.746
Mistrust F(4,80) = 0.564, p = 0.689 F(4,80) = 0.966, p = 0.431

No statistically significant difference was found in the mean values of trust and
distrust from both points of view regarding the kinesic courtesy cues. The graphs in
Figure 9 illustrate these results.

Figure 9. Profile plots for trust (a) and mistrust (b) scores by kinesic courtesy cue and by point of view.

3.2. Legibility Assessment

Pearson’s chi-square test of independence revealed a statistically significant association
between the levels of courtesy kinesic cues and the answer to the control question for the
forward point of view (X2(8) = 16.316, p = 0.038). The graph in Figure 10a shows that the
courtesy cue that presented better legibility for the participants was retreat (with the same
percentage as the control situation) (64.7%). From this perspective, the courtesy cue less
understood by the participants was “retreat and move left” (11.8%).
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Figure 10. Legibility of the robot courtesy kinesic cues: (a) Forward view; (b) Backward view.

For the backward view, Pearson’s chi-square test did not reveal a statistically significant
association between the levels of courtesy kinesic cues and the answer to the control
question for the forward point of view (X2(8) = 11.308, p = 0.186). Figure 10b illustrates this
result, and it can be seen that the courtesy cue better understood by the participants was
the decelerate (also with the same percentage as the control situation) (47.1%). Regarding
the courtesy with less legibility for the participants, retreat and move left was the courtesy
cue with the lowest percentage of right answers (5.9%).

3.3. Behavioral Analysis

Pearson’s chi-square test revealed a statistically significant association (X2(4) = 12.143,
p = 0.016) between the robot courtesy cue and observable signs of hesitation in the par-
ticipant from the forward view. The graph in Figure 11a shows that the courtesy cue for
which the participants presented lesser signs of hesitation was decelerate (82.4%). On
the contrary, the control condition was the one that presented a greater percentage of
participant hesitation (70.6%).

Figure 11. Observable signs of hesitation in the participants’ behavior while encountering the AMR
related to each kinesic courtesy cue condition: (a) Forward view; (b) Backward view.

Related to the backward view, Pearson’s chi-square test did not detect a significant
association (X2(4) = 5.251, p = 0.263). Figure 11b illustrates that decelerate was the courtesy
cue with a lesser percentage of participant hesitation (52.9%). On the contrary, retreat and
move left was the courtesy with a greater percentage of participant hesitation behavior
when encountering the AMR.

Additionally, an exact Fisher test was conducted to evaluate the association between
the type of courtesy cue and the behavior of participants. The result (p = 0.014) revealed
a statistically significant association in the sense that a higher percentage of participants
showed hesitant behavior when they saw the robot from behind (61.2%) than when they
approached from the front (41.2%).
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4. Discussion

In this exploratory in-person experiment, we implemented four courtesy cues (stop,
decelerate, retreat, and retreat and move to the left) and one control courtesy cue (no stop)
on an AMR to investigate how these different kinesic courtesy cues would be understood in
the view of two participants with different perspectives of the robot. That is, we intended to
understand how participants’ behaviors were influenced by the courtesy cues of the robot,
in a simultaneous scenario, with a set of participants taken two by two. One participant
had a front-facing view of the robot, while the other had a back-facing view. The study
being simultaneous becomes important when the behavior of one participant affects the
behavior of the other. In environments where several participants simultaneously share
the space with each other and with the robot, it is very likely that there will be different
views. Different views imply different perceptions of the robot’s behavior and, therefore,
different behaviors on the part of the participants towards the robot. In turn, this also has
implications for the perception and behavior of other participants.

We tested three different metrics in our research, namely, the participants’ self-reported
trust in AMR behavior, the legibility of the courtesy cues in the participants’ opinions, and
behavioral analysis of the participants related to each courtesy cue tested. These metrics
were assessed via an experimental protocol that consisted of two participants interacting
with an AMR at an industrial crossroad.

The results of the participants’ self-reported trust showed no significant differences
from the two participants’ perspectives between the control situation and the four kinesic
courtesy cues implemented on the robot. This may be related to the fact that we measured
trust right after the interaction with the robot. As Hancock et al. [36] pointed out, this is
an issue that needs to be addressed in HRC because the process of trust development is
not clear and needs to be further studied. Kaiser et al. [13], in a study where two kinesic
courtesy cues were investigated (robot stop and robot stop and move to the side), found
that an AMR that presented polite behaviors was better accepted by its human counterpart
in an interaction, regardless of the specific courtesy cue. Here, we measured trust because
this parameter directly affects people’s acceptance of the robot [37], but we did not find
the same results. The fact of having two participants interacting simultaneously with the
robot may have influenced our results, leading to different conclusions. Additionally, trust
can be dynamically influenced by different factors, namely, the robotic system itself, the
surrounding operational environment, and the respective natures and characteristics of the
human team members [38].

Regarding the legibility of the robot behavior, we only found a statistically significant
association in the participants with the forward view. From this point of view, the results point
out that the users better perceived the robot behavior when it presented a retreating courtesy
cue, granting the human the right to pass first at the crossroad. Hetherington et al. [22]
presented results that are in agreement with our results. They explored the common human–
robot interaction at a doorway or bottleneck in a structured environment and found that a
robot’s retreating cue was the most socially acceptable cue and, therefore, the most legible.

Related to the behavioral analysis of the participants’ signs of hesitation, we also only
found a statistically significant association in the forward view. When a human interacts
with a robot and presents lesser patterns of hesitation, these interactions lead to less
cognitive effort to decide how to interact [13]. The results show that the decelerate courtesy
cue was the one with which the participants presented a lesser percentage of hesitation.
These results are in accordance with Dondrup et al. [39]. These authors showed that the
robot’s deceleration within the pedestrians’ personal space resulted in less disruption to
their movement.

It was expected that the lower the understanding of the robot behavior, the higher the
participants’ hesitancy [40]. Our results from the front view related to the retreat courtesy
cue show that more than half of the participants understood the robot behavior (64.7%),
and more than half of the participants showed no signs of hesitation (70.6%). However, the
other courtesy cues are not in accordance with this. For instance, the decelerate and the
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retreat and move left courtesy cues presented a lower percentage of legibility and, also, a
lower percentage of hesitance in the participants. This may indicate that a robot behavior
understood by humans may be not enough to present good communication of the robot’s
intentions. For that reason, further research should be carried out in this direction. Unlike
what was expected in the four courtesy cues tested, the control situation was designed for
the robot to not be polite and to thereby increase the participant’s hesitancy as the robot
does not stop at the crossroad. Our results show that the control situation was understood
by the majority of the participants (64.7%) and resulted in higher hesitance (70.6%), as
expected. The results related to the forward view of the robot show that less than half of
the participants did not understand the robot behavior, and this led to greater signs of
hesitation in the participants in all courtesy cues tested. This shows that further research
involving different perspectives of the robot needs to be carried out, to understand how
AMRs should behave in order to be accepted and understood by all humans that interact
with them.

Limitations and Future Work

This article addresses human perceptions of robot actions in a shared environment at
an industrial crossing area. While this is a relevant topic that provides insight into human–
robot interaction and human–robot collaboration research, some limitations that affected our
research work should be noted. We can point to restraints regarding the low number of
participants and the low variability in terms of the representativeness of the participants (the
participants were all recruited from the academic community). Another limitation is related
to the fact that there was no full human–robot interaction in play: the robot behavior was
indifferent to human presence, because the behaviors’ activation was hardcoded. However,
if proper human recognition were to be implemented, the outcome should be similar if full
human–robot interaction was implemented. Finally, it should be noted that to carry out this
exploratory study in an industrial environment and via in-person experiments, the parameters
(such as linear speed and test conditions for courtesy cues) were adapted from other related
works [22,31] using types of mobile robots other than the robot model under study (MiR 200),
which may have conditioned the results obtained.

These limitations pave the way to further research. That is, they illustrate the need
to develop an algorithm for the robot’s movement to be completely autonomous and
for it to show courtesy cues when it finds a person at any time during the execution
of its tasks, as suggested by Kaiser et al. [13]. This exploratory study already includes
a scenario for analysis of the forward and backward view configurations of a group of
two simultaneous participants with the robot. For that reason, it might be important to
understand which parameters intrinsic to the robot and to courtesy cues must be applied
in a scenario with more than two participants. We intend for future research to be applied
on a shop floor where the AMR has to share the same trajectory with more than two
workers, taking into account that the type of robot under study is intended for application
in dynamic environments (e.g., industrial sector, logistics, hospitals) with a significant
number of people in circulation [7,23]. On the other hand, by increasing the number of
participants, the results, especially concerning trust and distrust analysis in HRC, become
more difficult to analyze using only standard interviews and questionnaires [41]. Therefore,
the application of psychophysiological measures (e.g., eye-tracking systems) should be
a relevant measurement approach for this type of variable [42]. Another question that
arose during the experiments and that should be addressed in further research is how
the presence of a second co-actor (Participant A) affects the legibility of movements and
courtesy cues perceived by the first co-actor (Participant B) and vice versa.
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Abstract: A slip-aware localization framework is proposed for mobile robots experiencing wheel
slip in dynamic environments. The framework fuses infrastructure-aided visual tracking data (via
fisheye lenses) and proprioceptive sensory data from a skid-steer mobile robot to enhance accuracy
and reduce variance of the estimated states. The slip-aware localization framework includes: the
visual thread to detect and track the robot in the stereo image through computationally efficient 3D
point cloud generation using a region of interest; and the ego motion thread which uses a slip-aware
odometry mechanism to estimate the robot pose utilizing a motion model considering wheel slip.
Covariance intersection is used to fuse the pose prediction (using proprioceptive data) and the visual
thread, such that the updated estimate remains consistent. As confirmed by experiments on a skid-
steer mobile robot, the designed localization framework addresses state estimation challenges for
indoor/outdoor autonomous mobile robots which experience high-slip, uneven torque distribution
at each wheel (by the motion planner), or occlusion when observed by an infrastructure-mounted
camera. The proposed system is real-time capable and scalable to multiple robots and multiple
environmental cameras.

Keywords: indoor localization; state estimation; covariance intersection; uncertainty-aware state
observer

1. Introduction

Navigating mobile robots in dynamic environments with human presence makes
visual odometry challenging due to occlusion and dynamic features. This necessitates
multi-modal (e.g., camera, LiDAR, inertial) data fusion to identify and remove the dynamic
features for feature-based localization [1,2], address disturbance and model mismatch
challenges for LiDAR based localization [3,4], or tackle perceptually degraded condi-
tions through distributed estimation [5,6]. In this regard, multi-modal state estimation
approaches for mobile robots [7,8] are revolutionizing accurate navigation for indoor ap-
plications (e.g., warehouse robotics or service robots using on-board sensors) where the
loss of reception and low bandwidth of commercial Global Navigation Satellite Systems
(GNSS), inhibit reliable robot state measurements.

One of main challenges for the the existing multi-modal state estimators that utilize
on-board inertial measurement unit (IMU) data and visual odometry through monocu-
lar/stereo cameras is the wheel slip in the longitudinal and lateral directions. This is due
to: (i) Model uncertainties caused by the wheel force saturation in the robot dynamical
model (by various robot payloads, changing surface conditions, or harsh cornering sce-
narios) impacting estimation error and update frequency in real-time [9–11]; and (ii) The
real-time performance of state estimators for safe motion planning and controls in a scene
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with dynamic features [12,13]. Infrastructure-aided state estimation approaches which
leverage visual/radar data measured by fixed sensors and communication with the robot
are proposed in the literature to deal with perceptually degraded conditions and dynamic
features for navigation of mobile autonomous systems [14–16]. This is cost effective as it
reduces the number of on-board sensors, specially for large-scale networked robotic sys-
tems. In [17], cameras installed on the ceiling detect multiple robots with unique markers
and determine their position and heading states based on the distance to fixed markers on
the ground and known marker sizes. A stationary fisheye camera installed on the ceiling
is used in [14] for indoor robot localization, in which the pose is determined based on the
azimuth and elevation of the line of view (to the center of the segmentation). Multiple
fixed surveillance cameras are used in [18] to detect the robot and static objects to construct
a 2D map. Pose data from low-cost cameras mounted on ceiling is fused with on-board
LiDAR odometry data for robot state estimation in [19] where the fusion of camera and
odometry is performed in a map with an adaptive Monte Carlo approach. The existing
infrastructure-aided localization approaches require visual markers or free line of sight to
the robot [17,19], heavily rely on robot model, and are challenged by occluded scenes and
model uncertainties due to the wheel slip.

In order to compensate for the wheel longitudinal/lateral slip in robots with nonholo-
nomic constraints, kinematic- or dynamic-based slip estimation/compensation methods
have been adopted in the literature [20,21] using on-board sensory data. The dynamic-based
approaches require wheel stiffness properties and vertical forces that may change due to
various payloads and road surface conditions [22]. Kinematic-based methods, on the other
hand, use wheel odometry and inertial data to estimate the slip with upper bounded mean
square estimation error (MSE) through nonlinear or stochastic observers [12,23,24]. A high-
gain observer is designed in [25] to deal with unknown model parameters. To avoid model
complexities due to tire force nonlinearities (and the combined-slip effect), an empirical pa-
rameterized kinematic model is proposed in [26] for robot state estimation. An event-based
Kalman observer is designed in [27] to fuse IMU data and wheel odometry for heading
and speed estimation. However, the information from on-board state observers has not
been used for fusion with infrastructure sensing units to enhance reliability of the pose
estimation. In addition, the computational efficiency and accuracy are main challenges
for the existing infrastructure-mounted visual tracking and localization methods that use
low-cost wide-angle lenses.

To address computational time and accuracy challenges of the existing visual and
kinematic/dynamic model based localization methods (to be executed on embedded
systems and robot’s on-board processing units), this paper develops and experimentally
verifies a cooperative state estimator using: (i) Proprioceptive data from low-cost odometry
sensors of a skid-steer mobile robot; and (ii) Region of Interest (ROI)-based processing
and visual tracking on the 3D point clouds obtained from fixed sensing units. The main
contributions of the paper are summarized as:

• Design of a computationally efficient ROI-based pose estimator using 3D point clouds
from a stationary stereo camera with a wide-angle (fisheye) lens.

• Developing an infrastructure-aided localization framework which is scalable for large
systems with multiple robots using communication between a slip-aware onboard
observer and the stationary sensing unit.

2. Background and System Overview

The localization framework includes visual tracking through forming an ROI for
computationally enhanced processing at the edge (e.g., embedded Jetson Xavier) and a
slip-aware state observer at the robot using proprioceptive data. The visual tracking is
through a fixed low-cost stereo camera, Intel Realsense T265. As illustrated in Figure 1,
the system has independent visual tracking thread and ego motion thread.
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Figure 1. The slip-aware localization framework overview.

The state vector is defined by ξ(t) = [x(t), y(t), θ(t)]� for the proposed framework,
where the longitudinal position, lateral position, and heading of the robot in the reference
fixed frame {W} is denoted by x, y, and θ, respectively. The local robot body frame is
denoted by {b}, which is at the geometrical center of the robot and is depicted in Figure 2.
The reference coordinate system {W} is derived from {b} at time zero t0.

t=1

{W}
x y

z

{b}
x y

z

t=0

Figure 2. The mobile robot platform and the coordinates.

The visual tracking thread estimates the robot pose ξ̂v based on the captured im-
ages of the stationary stereo camera in the environment. The occlusion cases, in which
visual-based pose estimates are intermittent (or not available), will be addressed by the
Covariance Intersection (CI) fusion with the estimated states ξ̂ p from the slip-aware mo-
tion model. The updated pose by CI is then used as a corrected pose for the relative
motion prediction in the next sample time. The robot pose is a time-varying transformation
W Tb(t) =

[W Rb
W pb

0 1

]
where the rotation matrix W Rb with θ(t) is about the Z-axis of the

{W}, and the position vector W pb = [x, y, 0]� with x, y is the longitudinal and lateral robot
position in the reference frame {W}.

2.1. Visual Tracking Thread

The visual tracking thread includes frontend and backend modules as illustrated in
Figure 3. The frontend performs image processing and object detection. In the image
processing step, the stereo image pair is undistorted and rectified. The object detection
generates a boundingbox for the robot within the rectified stereo images. The area in the
images enclosed with the boundingbox is termed as region of interest. The undistorted and
rectified images, and image coordinates of the corresponding bounding box are used in the
backend to localize the robot using the 3D position of points on the robot.

Image 

Processing

Object 

Detection

Visual Tracking Thread

stereo 

images

3D Point 

Cloud

Post 

Processing
pose

Frontend Backend

Figure 3. The visual tracking thread with ROI.
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With the assumption of the pinhole model and known extrinsic parameters, the con-
straints for the projection of point clouds in {W} onto the two image planes are derived.
These constraints are described with epipolar geometry, and determine the area in the
image planes where the same point in {W} is mapped on. Figure 4 illustrates the epipolar
geometry for two non rectified images. The projection of the point m into the camera
centers C1 and C2 defines the epipolar plane which intersects the image plane P1 and P2
forming epipoles e1 and e2 for the left/right images. The homogeneous transformation
T = [R, p] ∈ SO(3) with the rotation matrix R and translation vector p between the camera
centers describes the extrinsic parameters [28].

Figure 4. Epipolar geometry for non-rectified stereo images.

The position of a point in {W} is determined with the intersection of the projection ray
in 3D from the left and right image plane for the same mapped world point. The mapping
of the x,y and z coordinate of a point from {W} onto the left and right rectified image
(Figures 5 and 6) plane as ū = [u, v, 1]� is described as zū = Kjx̄, j ∈ {l, r} (l, r denotes
the left and right sides, respectively) where x̄ = [x, y, z, 1]� and

Kl =

⎡⎣ f 0 cx1 0
0 f cy 0
0 0 1 0

⎤⎦, Kr =

⎡⎣ f 0 cx2 b · f
0 f cy 0
0 0 1 0

⎤⎦ (1)

are the extended camera matrix for the left and right image planes. The images have the
same focal length in X and Y direction as well as the same principal point in Y direction;
they are geometrically shifted with the baseline b in X direction. The radial distance r
for perspective pinhole projection between the principal point and image coordinates of
incoming ray of the point m is r =

√
u2 + v2 and the angle Ψ between the principal axis

and the ray is Ψ = tan−1(r). The radial fisheye distortion factor Ψd is modeled [29] as
Ψd = Ψ(1 + k1Ψ2 + k2Ψ4 + k3Ψ6 + k4Ψ8) with the individual lens distortion parameter
ki, i ∈ {1, . . . , 4}. The distorted image coordinates u

′
and v

′
are

u
′
=

Ψd
r

u v
′
=

Ψd
r

v, (2)

which are then converted into undistorted image coordinates

u = fx(u
′
+ αv

′
) + cx, v = fyv

′
+ cy, (3)

Subsequent to this, a Yolov4 object detector [30] is used for 2D detection of the robot
in the undistorted left image. The Yolov4 model is trained on a custom collected dataset of
the robot for identification of the robot as a class label since the state-of-the-art COCO class
labels have no training data corresponding to the robot.

Remark 1. The output of the Yolov4 custom training detector at k−th step is a bounding box Bd(k)
around the robot in the image yielding the extents of the box in the horizontal and vertical directions
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of the image. This enables an ROI which will be used to extract a frustum of the point cloud
representing the robot. Point cloud processing will then be applied exclusively to the ROI-based
frustum, i.e., interior Int(Bd(k)). This bounding box-informed frustum significantly reduces the
computational cost compared to processing the point cloud as a whole.

2.2. Point Cloud Computation and Post Processing

The feature extraction is restricted to the ROI, Int(Bd(k)), and is scalable for visual
tracking in multi-robot settings. The robot is depicted inside the ROI in the left and
right image plane of the undistorted and rectified images. The aim is to find the image
coordinates ul and v (in the left image) and ur (in the right image plane) of the world
point m, as see in Figures 5 and 6.

Figure 5. Unrectified stereo images with fisheye distortion.

Figure 6. Rectified and undistorted stereo images.

For feature extraction, ORB features [31,32] were used, where the extracted features
are matched within the stereo image pair and between subsequent captured image pairs.
It is assumed that the remaining image coordinates represent the same point on the robot
platform, then, these points’ 3D coordinates are reconstructed. Based on the epipolar
geometry, the depth z = b f

ul−ur
is computed for each match with the horizontal image

coordinates ul and ur of the left and right stereo image and the baseline b, as well as
the focal length f of the camera, then the depth is used for x = ul

f z and y = vl
f z with

the vertical image coordinate vl of the left stereo image plane as illustrated in Figure 7.
The coordinates are computed for every match and transformed into {W}. All points lead
to a point cloud assumed to be derived from the surface of the robot. The point cloud is
processed with the PCL library [33,34] and a statistical outlier filter. The filter rejects points
that are further away from their neighbors compared to the average of the point cloud.
The input parameters are the number of neighbors to calculate the average distance for
a given point and a ratio to set the threshold based on the standard deviation across the
point cloud.

The 2D projection of the point cloud is used to enhance the reliability of the 3D
point clouds for navigating the robot far from the stationary sensing unit (i.e., the stereo
visual node). The Euclidean center of the 2D points (which is less sensitive to outliers) is
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considered as an estimate of the position, i.e., ξ̂ p(k) at time step tk and will be corrected
using the slip-aware motion model, which is described in the next section.

Figure 7. Robot point cloud post processed by the statistical outlier filter. The robot is in the closest
position to the stereo camera. The outer dimension of the points is used for a Euclidean distance
based sparsity as a measure to be close to the actual geometry of the Jackal robot.

For orientation estimation, a linear regressor is used for a moving horizon Nh of the
estimated states. The angle between the estimated linear function and the world frame’s
longitudinal axis is then considered as the orientation of the robot. To cope with situations
when the robot is not driving or turning with zero radius, a plausibility check is applied.
The plausibility check rejects estimates if the linear regression is too short or the distance
between the position estimates and the line is greater than a threshold.

3. Infrastructure-Aided State Estimation

A kinematic model is introduced and parametrized to predict the motion in presence
of wheel skidding and slipping. A covariance intersection (CI) method is then used to
update the prediction.

3.1. Slip-Aware Motion Model

The autonomous mobile robot used to evaluate the localization approach is the
skid-steer Clearpath’s Jackal robot, which is subject to the large wheel longitudinal slip
in various cornering scenarios. The kinematic motion model in the following predicts
the robot states using the heading and wheel rotational speed in the robot body frame
{b}. The robot’s motion is defined based on the instantaneous center of rotation (IC) as
shown in Figure 8, assuming that the robot is a rigid body and has a planar motion with
nonholonomic constraints.

The longitudinal velocity, lateral velocity, and yaw rate are denoted by νx, νy, and θ̇ in
the body frame {b} and are expressed in terms of the left/right wheel rotational speeds
ωl , ωr as

v(t) = G(Λ)w(t) = G(Λ)

[
Reωl(t)
Reωr(t)

]
(4)

where v(t) = [νx(t), νy(t), θ̇(t)]�, the wheel rolling radius is denoted by Re, and G(Λ)
includes the model parameter vector Λ = [xIC, yIC,l , yIC,r, αl , αr] as follows

G(Λ) =
1
ỹ

⎡⎣−yIC,rαl yIC,lαr
−xICαl xICαr
−αl αr

⎤⎦, ỹ = yIC,l − yIC,r, (5)
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where IC, l is the instantaneous center of the front-left and rear-left tires of the robot and
IC, r denotes the instantaneous center of the front-right and rear-right tires of the robot.
In the schematic provided in Figure 8, due to nonholonomic constraints and since the
longitudinal speed on the right side (i.e., rotational speed multiplied by the effective rolling
radius Re) is larger than the robot speed vx, the instantaneous center IC, r is located on the
right side (i.e., yIC,r < 0 in the body frame).

x

y

{W}

{b}

x

y

Trajectory

Figure 8. IC-based skid steer kinematics for the motion model.

The instantaneous center is expressed in {b} as (xIC,v, yIC,v) ∈ R2, where yIC,v = νx
θ̇

[26].
The IC locations for the left and right wheels are expressed in {b} as (xIC,l , yIC,l) and
(xIC,r, yIC,r), respectively. It is assumed that the longitudinal position of ICs along the
x-axis lie all on a parallel line to the Y-axis, i.e., xIC = xIC,v = xIC,j =

νy

θ̇
, j ∈ {l, r} and

have the same angular velocity. The lateral IC locations, which are bounded variables, are
expressed as [21]:

yIC,j =
νx − Reωjαj

θ̇
, θ̇ =

Re(ωr − ωl)

yIC,l − yIC,r
(6)

where αl and αr are parameters accounting for model uncertainties (tire inflation and longi-
tudinal slip ratios at each corner of the robot) and Re is the tire rolling radius. The location
of IC is bounded, i.e., |xIC,v| < x̄ and |yIC,v| < ȳ even reached in the proximity of straight
trajectories where the numerator and denominator in (6) are of the same infinitesimal order
which leads to finite values for xIC , yIC,j.

The boundedness of yIC,v need to be guaranteed for lateral stability and minimizing
the robot’s sideslip angle in harsh turning. Using the transformation between {b} and the
world frame, the robot states in {W} are expressed as

ξ̇(t) = W Rb(t) · v(t) + �, W Rb =

⎡⎣cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

⎤⎦, (7)

where θ(t) is the robot heading and � ∈ R3 represents model uncertainties. Then, the pa-
rameter identification process consists of two steps: gathering representative data from
on-board and infrastructure-mounted sensory data; and developing an optimization pro-
gram to find the optimal parameter vector Λ∗ through data set. The data collection consists
of typically fast maneuvers on various surfaces in different trajectories based on the opera-
tional envelope of the mobile robot maintaining the lateral stability. The lateral stability
is defined by a bounded sideslip angle |β| < β̄ where β � tan−1(

νy
νx
) on various surface

conditions. The wheel rotational speed measurement at each front-left, front-right, rear-left,
and rear-right corners of the robot is used for the motion model by compensating the slip
ratio component. The training data set (i.e., 12 different step-steer to the left and right,
18 random cornering, and 10 full/circular rotations in large and small path curvatures
in indoor settings and on various surfaces) includes Nt independent segments with the
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training horizon dt. The measured wheel speeds of each segment are used to predict the
robot speeds in the body frame using (4) and determine the robot pose in {W} using (7).
The predicted pose ξ̂ ∈ R3 and the ground truth at the end of each segment are included in
the cost function

Λ∗ = min
Λ

J(Λ), J(Λ) =
Nh

∑
i=1

||ξ − ξ̂(Λ)i||2, (8)

where ξ̂(Λ) is the ground truth and ξ(k) is the predicted state based on the linearized
slip-aware motion model in discrete times. Minimizing J results in the optimal parameter
vector Λ∗. The trained model is evaluated over different data sets with the evaluation
horizon de. In this context, the evaluation horizon represents the prediction horizon for
specific applications. The evaluation horizon is the indication of the prediction horizon
of the model in the application. Assessing variable evaluation horizons with respect to
variable training horizons is reveals the impact of different prediction horizons in the
application compared to the parameter identification process.

To analyse the impact of different training and evaluation horizons, the mean relative
translation/rotation errors are provided in Figures 9 and 10. The analysis reveals that
the best performance is achieved if the evaluation horizon is equal to (or less than) 0.5 m.
The error increases for larger deviation but remains bounded and lower than 5%.

Figure 9. Relative translational error εp of the motion model parameter identification for varying
training and evaluation horizons on the same ground classification (i.e., gravel or asphalt).

Figure 10. Relative angular error εθ of the motion model parameter identification for varying training
and evaluation horizons on the same ground classification (i.e., gravel or asphalt).
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3.2. Pose Prediction

The prediction model in (7), with elements from (4)–(6), is linearized around the operating
point (ξp(k), w(k)) at each time step k in discrete times, where ξp(k) = [x(k), y(k), θ(k)]�

is the robot’s pose by the ego motion thread. The linear affine prediction model can be
written as:

ξ p(k + 1) = A(k)ξ p(k) + B(k)w(k) + �(k), (9)

whereas the zero-mean term � is due to model uncertainties. The discrete-time realization
is approximated by

A(k) := φAc

tk+1,tk
≈ eAc(tk)Ts ∈ R

3×3 (10)

and

B(k) :=
∫ tk+1

tk

φAc(tk+1),τ Bc(τ)dτ ≈
∫ tk+1

tk

eAc(tk)(tk+1−τ)dτBc(tk) (11)

whereas Ac, Bc are the continuous-time system and input matrices of the linearized pre-
diction model, and φAc

ti ,tj
for ti > tj is the continuous-time state transition matrix expressed

by the Peano-Baker series; the realization is assumed to not vary a lot in each interval
[tk, tk+1], which is valid for the proposed cooperative mobile robot localization model with
the sampling time Ts = 25 ms. As a result, the bound of uncertainty due to the sampling
time for discretization (in the slip-aware motion model) at the maximum speed of 1 m/s,
at which the robot may experience wheel longitudinal slip, is 25 mm. Then, the expected
state prediction from the ego motion thread is

ξ̄ p(k + 1) = A(k)ξ̄ p(k) + B(k)w̄(k), (12)

whereas ξ̄ p(k) = E{ξ p(k)} and w̄(k) = E{w(k)}; the joint covariance for x = [ξ p(k), w(k)]�

is then given by

cov(x) =
[

Qξ(k) 0
0 Qw(k)

]
= E

{[ξ p(k)− ξ̄ p(k)
w(k)− w̄(k)

][
(ξ p(k)− ξ̄ p(k))�, (w(k)− w̄(k))�

]}
. (13)

The predicted covariance is

Qξ(k + 1) = E{[ξ p(k + 1)− ξ̄ p(k + 1)][ξ p(k + 1)− ξ̄ p(k + 1)]�} (14)

in which

ξ p(k + 1)− ξ̄ p(k + 1) = A(k)[ξ p(k)− ξ̄ p(k)] + �(k). (15)

Then, by using cov(x), the predicted covariance from the slip-aware motion model
yields:

Qξ(k + 1) = A(k)Qξ(k + 1)A�(k) + B(k)Qw(k)B�(k). (16)

3.3. Augmented Localization

The visual thread and the ego motion thread communicate within the ROS framework
through WiFi for the specific mobile robot test platform. To ensure proper data synchroniza-
tion, time stamps are used to associate the visual-based localization (i.e., state estimation
of ξ̂v(k)) to the corresponding pose estimation ξ̂

p
k by the slip-aware model description.

Delay in the communication, which is less than 20 ms for the tests conducted within 10 m
of the stationary visual node (i.e., infrastructure-mounted stereo camera with the fisheye
lens), is ignored in this section for the CI fusion. This is a valid assumption considering
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the sampling time Ts = 25 ms for the pose prediction in the slip-aware motion model,
the fusion part’s sampling time (i.e., 50 ms), and the maximum robot speed of 1 m/s at
which the robot may experience wheel’s longitudinal slip. Denoting the estimation error in
the slip-aware motion model at time step k by ξ̃ p(k) = ξ p(k)− ξ̂ p(k), and the visual thread
by ξ̃v(k) = ξv(k)− ξ̂v(k), we utilize the covariance intersection method having the upper
bound of the mean square estimation error and the consistency condition.

Remark 2. The asymptotic stable state transition matrix of the error dynamics ξ̃ p in the motion
model (9), and the geometrical filters for the visual-based depth estimation guarantee that the mean
square estimation error (MSE) for the pose prediction model and the visual localization are upper
bounded, i.e., Q̃p(k) := E{ξ̃ p(k)ξ̃ p�(k)} ≤ Qp(k) and Q̃v(k) := E{ξ̃v(k)ξ̃v�(k)} ≤ Qv(k).
As a result, the error covariance Q̃v(k) and Q̃p(k) of the estimated states from the two threads
are consistent.

The estimated states from the ego motion thread and the visual thread are then
fused using CI which is a convex combination of the covariances of the estimated states
and guarantees a consistent error covariance (i.e., Q̃ f ≤ Q f ). The CI is a geometric
interpretation of

Q̃ f = WpQ̃pW�
p + WpQ̃pvW�

v + WvQ̃vpW�
p + WvQ̃vW�

v , (17)

in which for all choices of Q̃pv, the covariance ellipses of the bound Q f at level c,

E c
Q f

:= {z ∈ R : z�Q−1
f z < c}, (18)

lies within the intersection of covarinace ellipses of Qp and Qv, i.e., E c
Q f

⊂ E c
Qp

∩ E c
Qv

.
The weights Wp, Wv will be obtained by minimizing a performance index on the bound

Q f , e.g., tr(Q f ) or det(Q f ), and consequently the covariance Q̃ f . The CI update strategy
finds Q f which encloses the intersection area E c

Qp
∩ E c

Qv
and is consistent, although no

knowledge about Qpv is available. The upper bounds of the covariance matrix elements for
visual pose estimates is set to constant values derived from the error analysis (discussed in
the next section) For the case where Q̃pv �= 0, the covariance Q f can be given by

Q f = [Wp, Wv]

[
Qp Q̃pv
Q̃�

vp Qv

]
︸ ︷︷ ︸

Q

[
W�

p
W�

v

]
, (19)

in which the optimal Wp, Wv that minimize tr(Q f ) is obtained from the following con-
strained optimization program

min
W

tr(Q f )

s.t.:Wp,+Wv = I, (20)

where I is the identity matrix with the proper dimension. The trace minimization program
in (20) yields (Q f )

−1 = (Q−1
p Q̃pv − I)(Qv − Q̃�

pvQ−1
p Q̃pv)−1(Q̃�

pvQ−1
p − I) + Q−1

p . As a
result, the fusion of the estimated states from the ego motion and the visual threads is

ξ̂ f (k) = Q f (k)
[
Wp(Qp(k))−1ξ̂ p(k)

+ (1 − Wp)(Qv(k))−1ξ̂v(k)
]
,

[Q f (k)]−1 = Wp(Qp(k))−1 + (1 − Wp)(Qv(k))−1, (21)

where Wp ∈ [0, 1] adjusts the assigned weights to ξ̂ p and ξ̂v minimizing the performance
index tr(Q f ) of the updated covariance.
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According to the consistency in Remark 2 and the property of CI, it holds that

E{(ξ̂ f (k)− ξ̄(k))(ξ̂ f (k)− ξ̄(k))�} ≤ Q f (k). (22)

The heading of the robot is fused once the robot is close to the camera, thus, measure-
ments are more accurate and reliable. The slip-aware observer and fusion is described in
Algorithm 1.

Algorithm 1: Augmented Slip-Aware Localization
Input : Stereo image (with fisheye lens distortion), robot’s wheel speed,

and initial estimate ξ̂ f (0)
Output : Robot position and heading states ξ̂ f (k)
while k ≥ 0 do

1. Undistortion & object Detect.
(i) Use (3) for u, v;
(ii) zū = Kjx̄ with Kj in (1) for stereo images Ij(k), j ∈ {l, r};
(iii) Bd(k) ← detected bounding box by Yolov4;
2. ROI-based frustum for pointcloud (PC) processing (visual
thread)

if pi(k) ∈ Int(Bd(k)), pi(k) ∈ Il,r(k) then

(i) Extract ORB feat. { f i
j ∈ F| f i

j ∈ Int(Bd(k))};

(ii) Match features f i
l , f i

r to form the PC;
(iii) Calculate the depth and estimate ξ̂v(k) by 2D projection of PC;
(iv) Plausibility check on states over horizon Nh

else

Recheck for occlusion in long distances zi ≥ zth
end

3. Adaptive set allocation
For each wheel q ∈ S̄ , S̄ := {1, 2, 3, 4}
if |ω̇q(k)| ≥ ¯̇ω � 1

n ∑k
k−n+1 ω̇q(k) then

S p(k) ← S̄ \ {q} ;
end

4. Slip-aware pose estimation
if S p(k) �= then

(i) Form G(Λ) to estimate ξ̂ p on the discrete-time model of (7) (i.e., (9));
(ii) Use the trained model for Λ∗; MSE for the pose prediction model is

bounded, i.e., Q̃p(k) := E{ξ̃ p(k)ξ̃ p�(k)} ≤ Qp(k));
(iii) Use CI on ξ̂v(k) and ξ̂ p

Estimate ξ̂ f (k) by (21) with Q f (k) ← CI(Q−1
p,v(k)); with consistency

E{(ξ̂ f (k)− ξ̄(k))(ξ̂ f (k)− ξ̄(k))T} ≤ Q f (k)
else

ξ̂ f (k) ← ξ̂ f (k − 1)
end

end

4. Experiments and Discussion

The proposed infrastructure-aided localization framework is experimentally evaluated
in this section through tests with harsh turning, cornering with acceleration/deceleration,
and accelerated straight maneuvers which all include longitudinal slip at each wheel.
The reference measurement and system setup is first discussed, then the experimental
evaluations are provided. The wheel slip during harsh cornering, with nonholonomic
constraints, results is reduced pose estimation accuracy for the existing odometry-based
motion models which rely on wheel rotational speed. This has been addressed in this paper
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by the proposed slip-aware motion model (considering instantaneous centers of rotation)
and the a multi-modal data fusion with the visual thread (even with distortion challenges
imposed by low-cost fisheye lens).

The ground truth trajectory is recorded with the optical motion capture system Vicon
Vantage V5. The test setup is composed of the Vicon system, the autonomous mobile robot
(Jackal AGV), and the stationary stereo camera T265. The T265 is fixed mounted on a tripod
at a height of 2 m and capturing the whole area where the tests are conducted. The robot
is operating under the normal path-tracking mode and starting in front of the tripod of
T265, with the speed between 0.4 and 1 m/s, and mild and harsh cornering in tight and
wide trajectories. In the proposed motion model, the wheel slip is indirectly quantified as a
kinematic model parameter.

To detect the robot and initial setup of the stereo camera in the environment, passive
markers are mounted on top of the robot and the stationary stereo camera, as shown in
Figure 11, having sufficient distance for a rotation invariant geometry which is essential to
ensure a unique pose and proper localization results using the Vicon system.

Figure 12 shows the visual point cloud of the robot detected under occlusion (by a
human/user) in a long distance.

(a)

1

2
4

3

(b)

Figure 11. The experimental setup using Vicon (a) Clearpath’s Jackal robot equipped with 16-line
LiDARs (from RoboSense or Velodyne) for motion planning and controls in dynamic environments
(b) Infrastructure-mounted low-cost stereo vision for the augmented localization through dedicated
short-range communication with the on-board state estimator.

Figure 12. Robot point cloud with a statistical outlier filter for a detection with partial occlusion in a
dynamic environment in a far (i.e., 7.8 m) range. This depicts the effect of far detection and partial
occlusion (by an object/human) on the quality and sparsity of the point cloud used for clustering
and pose estimation; with a predicted longitudinal dimension of 2 m in x-direction, the point cloud
does not corresponds the robot dimension. The CI based fusion resolves partial occlusion/detection
as will be illustrated for pose estimation later in this section.
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The ROI-based point cloud processing, which generates point cloud within the 2D
bounding box of the detected robot, reduced computation time up to 67% as has experi-
mentally been tested with the robot in dynamic indoor environments with human presence.
The processing time for the pose prediction based on the slip-aware motion model is almost
<5 ms. There is no exhaustive recursive algorithm associate with the motion model part.
The visual thread with the ROI-based processing takes up to 16 ms in various harsh turn
and random cornering maneuvers. The fusion part with the trace optimization program
on the visual and motion threads take up to 35 ms on the utilized embedded system in
dynamic environments with human presence.

The position estimation error by the stereo visual thread is shown in Figure 13 for a ma-
neuver with several tight cornering. The largest error of 21 cm is for the situation in which
the robot is occluded (by a human/user in a shared working indoor environment) in a far
(i.e., 7.8 m) distance. The slip-aware motion model helps CI to recover the robot pose guar-
anteeing consistency of the estimation error covariance, i.e., E{(ξ̃ f (k)[ξ̃ f (k)]�} ≤ Q f (k).

Figure 13. Position estimation results based on Euclidean center of the point cloud from the mobile
robot. The T265 camera is located at position (0,0) facing the longitudinal x-direction. The largest
error occurs at the maximum relative position (indicated with a black ellipse) between the robot and
infrastructure-mounted stereo camera.

The heading fusion result is depicted in Figure 14, where the heading prediction
by the ego motion thread (without visual thread updates) is shown in dotted lines; this
heading has large estimation error due to the harsh cornering scenarios and inaccuracies in
the position of instantaneous center for the slip-aware ego motion model. The prediction
fused with pose update from the visual thread in Figure 14 confirms better performance
even with occlusion in this perceptually degraded test. This is due to the fact that the
heading estimator (by the visual thread) employs multiple geometrical and nonholonomic
constraints for the robot motion.
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Figure 14. Orientation estimation by the infrastructure-aided localization framework.

The position fusion results are illustrated in Figure 15 which confirms improvements
in the estimation error when CI is applied using the visual thread to address uncertainties
in the slip-aware ego motion thread in such arduous scenarios. The position prediction is
fused with visual thread data, intentionally at each 200 ms to evaluate the effectiveness
in large sample time updates or possible packet drop. Once the heading estimates are
corrected by CI, the localization data is accurate with the root mean square error (RMSE)
≤17% for several tests even with intermittent CI updates. The triangular shapes show the
effect of the fusion process in which the kinematic motion model has been corrected and
fused with the visual thread data. The kinematic model, a dead reckoning system, suffers
from fault propagation and has an higher uncertainty as well as biased position prediction.
Once the position is corrected with the visual localization, the corrected position and new
initial position for the dead reckoning system moves close to the ground truth. Increasing
the frequency of the update by the CI fusion will smooth the final estimates.

Figure 15. Position estimates by the infrastructure-aided localization; slip-aware motion model
handles occlusion and uncertainties in the point cloud computation for the robot detection in
far distances.
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5. Conclusions

An augmented state estimation framework was proposed for localization of au-
tonomous mobile robots in dynamic environments using infrastructure-mounted visual
sensors and on-board data. The proposed system is composed of a visual tracking thread
based on a stationary low-cost fisheye stereo camera mounted in the environment and
a slip-aware ego motion thread that uses proprioceptive sensory data from a skid-steer
mobile robot to enhance accuracy and reduce variance of the estimated states. The po-
sition and heading of the robot was estimated using the visual thread with a region of
interest-based 3D point cloud processing which reduced the computation up to 67% in
dynamic indoor environments with human presence. This significantly enhances the real-
time processing capability of the infrastructure-mounted sensing unit for localization and
tracking of multi robots in indoor settings. A slip-aware kinematic model was developed
for the ego motion thread to predict the robot pose, then, covariance intersection with
guaranteed consistency was used to update the pose prediction with visual estimates,
addressing slippage and occlusion for wheel odometry based state estimators and visual
based localization in dynamic environments. The experimental results confirmed RMSE
≤17% and an average position accuracy of 7 cm for various tests even with intermittent
(e.g., 0.2 s) CI updates. The real time capability of the state estimation framework was
confirmed by the computation time 35 ms for ROI-based visual processing and the fusion
(through trace minimization). The future avenues include: (i) Using a motion model in the
visual thread to enhance the consistency of the pose estimation; (ii) Integrating the IMU
data into the ego motion thread and developing a motion model connecting wheel speeds,
longitudinal slips, and robot dynamics within an optimization problem constrained to the
robot kinematic/dynamic constrains to enhance orientation estimation.
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Abstract: In this work, we consider the autonomous object transportation problem employing a
team of mobile manipulators within a compact planar workspace with obstacles. As the object is
allowed to translate and rotate and each robot is equipped with a manipulator consisting of one or
more moving links, the overall system (object and mobile manipulators) should adapt its shape in
a flexible way so that it fulfills the transportation task with safety. To this end, we built a sequence
of configuration space cells, each of which defines an allowable set of configurations of the object,
as well as explicit intervals for each manipulator’s states. Furthermore, appropriately designed
under- and over-approximations of the free configuration space are used in an innovative way to
guide the configuration space’s exploration without loss of completeness. In addition, we coupled
methodologies based on Reference Governors and Prescribed Performance Control with harmonic
maps, in order to design a distributed control law for implementing the transitions specified by the
high-level planner, which possesses guaranteed invariance and global convergence properties, thus
avoiding the requirement for synchronized motion as inherently dictated by the majority of the related
works. Furthermore, the proposed low-level control law does not require continuous information
exchange between the robots, which rely only on measurements of the object’s configuration and their
own states. Finally, a transportation scenario within a complex warehouse workspace demonstrates
the proposed approach and verifies its efficiency.

Keywords: object transportation; cooperative control; mobile manipulator

1. Introduction

Until recently, the most common type of robot used on a global scale was single
industrial-style arms operating on automated production lines and in well-defined and
protected obstacle-free environments. Their main advantages were robust and reliable
operation, high precision, and repeatability in their movement; consequently, they were
employed in repetitive and high-load manual tasks in order to reduce production costs and
increase the productivity. In recent years, however, the research activity shifted towards
pushing robots out of a “sterile” workplace and enabling them to co-exist with humans and
unknown obstacles in a fully functional industrial environment. Additionally, efforts have
been put to create multi-robot systems that exhibit collective and cooperative behavior,
since many practical problems are impossible to be solved with a single robot, either due
to physical limitations and/or due to limited resources or information. These reasons
highlight the importance of a cooperative behavior, where each member contributes to the
achievement of a final goal.

The present work focuses on the object transportation problem from an initial point to
an end point-goal within an arbitrary obstacle-cluttered indoor environment employing
multiple collaborative mobile manipulator systems. The problem at hand applies to a
variety of real-world applications in industry, such as moving objects on a production line
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or storing objects in a warehouse, particularly when the object to be transported is bulky or
heavy. Towards this direction, a cooperative multi-robot system is designed, which involves
a high-level planner that builds a sequence of intermediate configurations that are imple-
mented by local controllers based on the reference governor and prescribed performance
control techniques. In this way, the specifications of the problem are achieved, as each robot
is tasked with fulfilling the object trajectory plan by acting completely individually.

1.1. Related Work

Since 1960, significant progress has been made in the field of robotics and new func-
tionalities and capabilities have been added, with the direct consequence of ever expanding
the range of applications in which a robot can take part. One of them is the transportation
of an object from an initial point to an end-point within a workspace, which is the subject of
this work. This problem was originally defined in the framework of the multi-cooperative
robot system [1], with research oriented to the distribution of tasks and the cooperation
of the individual robotic systems. A problem of this kind has innumerable practical ap-
plications; the most widespread are the transport of dangerous objects, automation in an
industrial environment, the transport of very bulky objects, the rescue of injured people,
etc. Since then, various strategies have been proposed to solve the considered problem that
involves various sub-tasks such as trajectory planning, obstacle avoidance, robustness, etc.
The communication between the robots of the system has also been thoroughly studied.
Yamada states that, regardless of system configuration (centralized or decentralized), com-
munication needs may be omitted and replaced by specific behavioral mechanisms based
on local information [2]. However, such strategies have the disadvantage of requiring a
set of predefined behaviors to handle new challenges and obstacles. On the other hand,
Munoz claims that communication can significantly improve the performance of multi-
robot systems, positively influencing coordination, cooperation, and conflict resolution [3].
In particular, the object transportation problem has been addressed by the well-known
object closure strategy, in which a team of robots enclose the object so that the position
of the object can be controlled by reference to the position of each robot [4–8]. Another
widespread technique is that of leader–follower, where a robot determines the movement of
the object and defines the behavior of the others [9–13]. In addition, more recent strategies
make use of swarm intelligence, a variation of which is followed in this work, in which ho-
mogeneous robots are used, which are based on decentralized and collective behaviors [14].
Finally, techniques based on machine learning and artificial intelligence have also appeared,
which understandably require high computing power [15].

The problem of cooperation is distinguished by increased complexity and requires the
combination of many individual research processes in order to achieve it [16]. The most
critical issue to be solved, without even the slightest discount, is that of safety, as the
robots’ operating space is now accessible by humans and other valuable equipment. It is
therefore necessary to develop reliable safety systems [17], either on the design via robots
with elastic and low-inertia moving parts or alongside algorithmic active solutions to avoid
collisions. Additionally, collaboration with physical contact involves the development of
forces between the robots and the commonly grasped, which affect both the safety as well
as the smooth operation of the robots. Until recently, industrial robots were in a protected
environment without obstacles. Therefore, only position control was effectively used for
their movement. However, when robots are introduced in unstructured and uncertain
environments, there are immediate effects on the safety and stability of the overall control
system. For example, a potential force applied to the robot’s body, depending on its magni-
tude and direction, will create a position error that the controller will try to compensate for
with unknown results. In general, the greater the stiffness of the environment is, the greater
forces and moments will be developed. Possible results of such an unavoidable scenario
include, among others, the breakdown of the robot and even injury of a human or damage
within the environment [18].
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Cooperative manipulation particularly has been well-studied in the literature, es-
pecially the centralized scheme. In [19], a hybrid position/force control was presented.
In [20], the overall closed-chain system is treated as an augmented object, with its inertial
properties expressed via a single inertia matrix. The authors in [21] propose a centralized
motion planning methodology based on dipolar navigation functions for nonholonomic
mobile manipulators. The concept of object impedance control is also presented in [22].
Nevertheless, despite its efficacy, centralized control is less robust, since all robots depend
on a central system and its complexity rises sharply and heavy inter-robot communication
is required, as the number of team-robots increases. On the other hand, decentralized
control usually depends on either explicit communication or off-line knowledge of the
desired object trajectory, e.g., [23,24]. Furthermore, position–force hybrid control schemes,
where the position of the object is controlled towards a given direction in the workspace and
the internal forces on the object are controlled close to the origin are presented in [25–27].
Moreover, in other leader–follower schemes, e.g., [28,29], the leader has to transmit on-line
the desired object trajectory to the follower.

Alternatively, implicit communication has been adopted in various decentralized
studies on mobile manipulators. Kosuge et al. [30], presented a leader-follower scheme for
holonomic manipulators in free space, where the leader implements a reference trajectory
through an impedance scheme, while the follower estimates it through the motion of the ob-
ject. However, the estimation error is kept small only for fixed velocity profiles. Regarding
non-holonomic mobile robots, the follower’s passive caster behavior was adopted in [31].
Although, the stability of the follower’s contact is established, it is not mentioned how the
object’s trajectory can be controlled. Alternatively, the authors in [32] designed a motion
coordination controller with no explicit communication for a group of physically connected
robots using only interaction force measurements. In a similar direction but following a
pushing-only strategy, refs. [33,34] employed a visual occlusion notion to guide the robot
swarm to the goal position without exchanging any information. Finally, in [35] the robots
coordinate their actions by sensing the motion of the object itself.

1.2. Contribution

In this work, we generalize our previous effort [36] by presenting a methodology for
coordinating the transportation of an object that is rigidly grasped by a team of mobile
manipulators, which operate within a compact planar workspace with obstacles of arbitrary
shape. Owing to the object rotation and the manipulators’ motion, our scheme takes into
consideration the varying configuration of the robotic system, as opposed to [36], in order
to build a plan that can safely drive the robotic system to the goal configuration. More
specifically, we devise a high-level planner which is tasked with building a sequence of
adjacent configuration space cells of the overall system (i.e., robots and object) that connect
the system’s initial and desired configurations, each of which defines an allowable set of
configurations for the object, as well as explicit intervals for each manipulator’s states.
The main contributions of this work are summarized as follows:

• Completeness: We innovatively introduce appropriately designed under- and over-
approximations of the free configuration space in order to guide the configuration
space’s exploration by selecting the cells that need further subdivision, thus establish-
ing the completeness of our approach (i.e., if there exists a feasible path to go to the
goal configuration, our algorithm will discover it, otherwise it halts when the problem
cannot be solved when the initial and the goal configurations belong to disconnected
parts of the workspace).

• Safety and Convergence: We combine methodologies based on Reference Governors
and Prescribed Performance Control with our recently proposed harmonic maps
approach [37] in order to design a distributed control law that implements specified
cell transitions with guaranteed invariance and convergence properties.

• Lean Communication: Contrary to majority of the related literature, the proposed
low-level control law does not require continuous information exchange between the
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robots (e.g., via a local network), thus rendering the expected latency negligible, since
it relies exclusively on measurements of the object’s current configuration and the
state of the corresponding robot in order to compute the respective control inputs.
Regarding potential delays in the local measurements since our approach is a feedback
control approach certain levels of robustness against measurement delays are expected.

To the best of our knowledge, there is no other approach that addresses the coupled
path and motion planning problems with guaranteed safety. For instance, probabilistic
methods can be employed for obtaining a trajectory of the states of the augmented robotic
system but the low-level controllers employed for realizing it would require exact coordi-
nation/synchronization of the independent units for tracking, otherwise the robots would
risk to collide with the obstacles and among them, because of the transient behavior of its
individual robot’s controller. On the contrary, our approach adopts a decentralized control
scheme that executes the transitions with provable guarantees of safety and convergence.

1.3. Outline

The outline of this work is given as follows. First, we present some preliminary
notation and definitions in Section 2. Next, the problem at hand is formulated in Section 3.
In Section 4, we present the control scheme that drives the robotic system to the specified
goal configuration while ensuring collision avoidance with the workspace boundary, and
we elaborate on the closed-loop system’s properties in Section 5. Finally, we provide
simulation results verifying the efficacy of our approach in Section 6.

2. Preliminaries

Throughout this chapter, we shall use R to denote the set of real numbers and
N to denote the set of natural numbers starting from zero. Moreover, we shall use
IN � {1, 2, . . . , N} (resp. I�N � {0, 1, 2, . . . , N}) to denote the set consisting of all nat-
ural numbers up to N, starting from 1 (resp. 0). Additionally, given sets A and B, we use
∂A, int(A), cl(A) to denote the boundary, interior, closure respectively, and A \ B to denote
the complement of B with respect to A.

Given a coordinate frame FO in R2 and two points PA, PB ∈ R2, we will use {O}
PA

PB to
denote the position of point PB relative to point PA, expressed with respect to FO . Given
frames FA, FB, FC, we will use {A}

{B}P{C} ∈ R2 to denote the position of the origin of frame
FC relative to the origin of frame FB, expressed with respect to FA. Accordingly, given
frames FA, FB, we will use {A}

{B}R ∈ R2×2 to denote the rotation matrix corresponding to the
relative orientation of FB with respect to FA.

Given a rotation angle θ, let R(θ) be the rotation matrix defined as

R(θ) �
[

cos θ − sin θ
sin θ cos θ

]
.

For two given coordinate frames FA, FB, we define {A}
{B}T as the homogeneous transforma-

tion from frame FB to FA, defined as

{A}
{B}T �

[
{A}
{B}R {A}

{A}P{B}
0 1

]
.

We recall that the following equation holds for any given point P:[
{A}
{A}P

1

]
= {A}

{B}T ·
[
{B}
{B}P

1

]

where {A}
{A}P is the position of P with respect to frame FA and {B}

{B}P is the position of P
with respect to frame FB. For brevity’s shake, we shall abuse notation slightly and write
{A}
{A}P = {A}

{B}T · {B}
{B}P instead of the above when convenient.
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3. Problem Formulation

We consider a compact workspace W ⊆ R2 enclosed by a static outer boundary ∂W0
and No inner static boundaries ∂Wi, i ∈ INo , with No ∈ N. More specifically, we assume
that W can be written as follows:

W � O0 \
⋃

i∈INo

Oi. (1)

where O0 denotes the area that lies outside of ∂W0 with O0 � R2 \ O0, and Oi denotes
the area enclosed by ∂Wi, for all i ∈ INo (see Figure 1). We shall also use W to denote
the complement of W with respect to R2, i.e., W � R2 \ W , which is assumed to be
closed. In addition, the workspace outer boundary ∂W0 � ∂O0 and its inner boundaries
∂Wi � ∂Oi, i ∈ INo are considered to be disjoint Jordan curves. Without loss of generality,
we assume that W is embedded with the arbitrarily positioned and oriented inertial frame
FW .

W
O0

O1

O2

∂W0

∂W2

∂W1

Figure 1. Typical workspace.

We now consider an object L ⊂ R2 whose body is a compact, closed, polygonal
2-manifold, able to translate and rotate freely within W as long as it is not in contact with
the workspace boundary. Let FL be a fixed coordinate frame arbitrarily embedded in L.
We shall use pL and θL to denote the current position and orientation of L with respect to
FW , i.e.,:

pL � {W}
{W}P{L} R(θL) � {W}

{L}R.

Object L is considered a rigid body and let ML, PL,com, IL denote the object’s mass, its
center of mass, and its moment of inertia about PL,com, respectively, expressed with respect
to frame FL. Assuming that PL,com coincides with the origin of FL, the dynamics of L is
given by:

ML · p̈L = τL,p

IL · θ̈L = τL,θ

where τL,p ∈ R2 and τL,θ ∈ R are the force and torque applied externally to the object.
Lastly, we define L(p, θ) as the footprint of L, i.e., the space of W that the body of L
occupies when pL = p and θL = θ.

In order to transport object L from an initial configuration to a desired one, a team
of NR ≥ 2 cooperating mobile manipulators is employed. More specifically, each robot
Ri, i ∈ INR consists of a holonomic base platform Bi and a manipulator Ai which is
attached to the base and is equipped with an end-effector Ai,E that rigidly grasps object L
at a specified point, and is thus able to exert a wrench onto it. The kinematics and dynamics
of each mobile manipulator Ri, i ∈ INR is described in detail in Section 3.1 and Section 3.2,
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respectively. It is also assumed that the bodies of Bi and Ai can be described by compact,
closed and connected 2-manifolds, for all i ∈ INR .

Thus, given an initial configuration qL,init = [pT
L,init, θL,init]

T and a desired configu-
ration qL,goal = [pT

L,goal, θL,goal]
T for the object L, our goal is to design a control scheme

for the mobile manipulators Ri, i ∈ INR which can drive the object to its destination, if a
path between the two configurations exists, while ensuring that neither the object not the
robots will collide with the workspace boundary ∂W. In addition, if the given problem is
infeasible (i.e., no collision-free path connecting the given configurations exists) our control
scheme should be able to conclude so in finite time.

3.1. Mobile Manipulator Kinematics

For each i ∈ INR , let FBi be a body-fixed frame arbitrarily embedded in Bi. Without
loss of generality, we assume that the origin of FBi coincides with the center of rotation
of the base platform Bi. For brevity’s shake, let pi and θi denote the current position and
orientation of FBi with respect to FW , i.e.,:

pi � {W}
{W}P{Bi} R(θi) � {W}

{Bi}
R.

Furthermore, we will use Bi(p, θ) to denote the footprint of the base platform of robot Ri
when it is centered at p with orientation θ.

Regarding the manipulator Ai affixed to robot Ri, we assume that it consists of
one or more links Ai,j, j ∈ NAi which are connected such that they form an open chain.
Furthermore, the first link Ai,1 is rigidly affixed to the base platform Bi, whereas the
end-effector is rigidly affixed to the last link Ai,NAi

, for all i ∈ INR . The indexing of the
remaining links of each manipulator is such that the body of link Ai,j+1 is able to either
rotate or slide about the joint it shares with link Ai,j. For each manipulator Ai, we shall
use qi,j and Dqi,j to denote the state and domain, respectively, of the j-th degree of freedom,
corresponding to the joint between links Ai,j and Ai,j+1, for all j ∈ INAi

−1 and i ∈ INR i. We

remark that each domain Dqi,j is a subset of either R or S1 depending on whether the joint
is prismatic or revolute, respectively. The augmented state vector zi of robot Ri as follows:

zi �
[
pT

i , θi, qT
i
]T

where qi is the stacked vector of joint states of manipulator Ai, for all i ∈ INR . Similarly,
for each i ∈ INR and j ∈ INAi

, let FAi,j be a body-fixed frame arbitrarily embedded in Ai,j.
Additionally, we affix an arbitrary coordinate frame FEi at the point of contact between the
end-effector of manipulator Ai and the object L. For the shake of simplicity and without
harming generality, we assume herein that a) the origin of frame FAi,j+1 lies on the axis
of rotation or sliding of the j-th joint, and b) the origin of frame FEi coincides with the
corresponding contact point (see Figure 2).

Regarding each robot’s forward kinematics, we shall use T Bi (p, θ) to denote the rigid
transformation from FBi to FW when the robot’s is placed at p with orientation θ, i.e.,
{W}
{W}P{Bi} = p and {W}

{Bi}
R = R(θ). Additionally, let T Ai (qi) be the forward kinematics of

manipulator Ai, i.e., T Ai (qi) � {Ai,1}
{Ei}

T . Since the manipulator of each robot is rigidly
attached to its base, there exists a fixed homogeneous transformation, denoted by T Bi ,Ai

,

between the base Bi and the manipulator’s first link Ai,1, i.e.,: T Bi ,Ai
� {Bi}

{Ai,1}
T . The forward

kinematics T Ri (p, θ, q) of robot Ri is given by:

T Ri (p, θ, q) � T Bi (p, θ) · T Bi ,Ai
· T Ai (q).
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FB1

FB2

FL

FE1

FE2

FA1,1

FA1,2

FA2,1

FA2,2

Figure 2. Example of robotic system consisting of two mobile manipulators carrying a rectangular
object. Each platform is equipped with a 2-link manipulator, which is able to rotate about the joint
with the base.

Lastly, for each i ∈ INR , we shall use JRi and JAi to denote the Jacobian matrices of
robot Ri and its manipulator Ai, i.e.,:[

{W}
{W}Ṗ{Ei}
{W}
{W}Ω{Ei}

]
= JRi (zi) · zi

and [{Bi}
{Bi}

Ṗ{Ei}
{Bi}
{Bi}

Ω{Ei}

]
= JAi (qi) · q̇i

where Ω{Ei} is the angular velocity of end-effector Ai,E.

3.2. Mobile Manipulator Dynamics

The dynamics of each robot Ri, i ∈ INR is assumed to obey the standard Euler–
Lagrange model, i.e.,:

MRi (zi) · z̈i + CRi (zi, żi) · żi + GRi (zi) = τm,i −
(
JRi (zi)

)T · τe,i (2)

where MRi , CRi , GRi ∈ R
(3+NAi

)×(3+NAi
) are the corresponding inertia, Coriolis and

gravity matrices, τm,i ∈ R
(3+NAi

) is the wrench applied by the robot’s actuators to the robot,
and τe,i ∈ R3 is the wrench applied by the robot to the object L via its end-effector.

4. Control Design

To address the aforementioned problem, we design a hybrid control scheme which
consists of:

(a) a high-level controller that given an initial configuration qL,init and a final configura-
tion qL,goal configuration, can compute a sequence of reachable intermediate goals
for the robotic system, if a solution to the above problem exists, or determine its
infeasibility otherwise (completeness), and

(b) a low-level controller which utilizes appropriate workspace transformations in order
to drive the object and the mobile manipulators from each goal to the next while
avoiding collisions with the workspace boundary (safety and convergence).

More specifically, the high-level controller, presented in Section 4.1, constructs a parti-
tioning of the system’s configuration space into cells by adaptively subdividing the domain
of the robotic system’s degrees of freedom until a sequence of connected cells containing
qL,init and qL,goal is found (if one exists). Then, for each cell, intermediate goals for the
object’s position pL and orientation θL are computed, as described in Section 4.2, and a
suitable low-level control law is employed for driving the system to the corresponding goal
configuration while ensuring forward invariance of the current configuration space cell.
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4.1. Configuration Space Decomposition

In this subsection, we present the hierarchical cell decomposition scheme that shall be
employed for designing a sequence of high-level, feasible instructions that define a “path”
leading to the desired configuration. Before doing so, we shall first take a closer look at the
configuration space C of the aforementioned robotic system. Throughout this subsection,
we shall model this system as one virtual robot R consisting of NR = 1 + ∑i∈INR

NAi

connected components, which correspond to the object L, the base platform Bi and the
links Ai,j of each mobile manipulator Ri, for all j ∈ INAi

and i ∈ INR .
One can readily see that the components of R form an undirected tree T(n, e), where

n is the set of components and e ⊂ n× n is the set of connections between the nodes. We
shall use Ri to denote the i-th component of R. A connection (i, j) ∈ e implies that the j-th
component is able to move (rotate, translate, slice) relative to the i-th component about
a pivot point Pi,j. Furthermore, given i ∈ INR

, we will use ni
c to denote the children of

component Ri, i.e., the set of components Rj such that (i, j) ∈ e, for all j ∈ INR
. Moreover,

ni
p will be used to denote the parent Rj of component Ri, i.e., the sole component such that

(j, i) ∈ e, if one exists. Accordingly, we define ni
d and ni

a as the set of descendants and ances-
tors, respectively, of component Ri. Without loss of generality, we can choose the indexing
of the components such that the first component of R is the root of T, corresponding to the
object L. For simplicity’s shake, we will use FRi , i ∈ INR

to denote the coordinate frames
embedded in each component of R and we shall refer to their origins as the reference point
of the corresponding component, respectively. Furthermore, let pR � [xR, yR]T ∈ R2 and
θR ∈ Dθ ⊆ S1 denote the relative position of the robotic system’s reference point and the
relative orientation of its coordinate frame FR0 with respect to the workspace’s coordinate
frame FW , respectively.

Regarding the coupling between components, we will refer to the joint between two
connected components as prismatic (resp. revolute) if the child is able to slide (resp. rotate)
about the corresponding pivot point. We will use qi and Dqi , i ∈ INq , to denote the
degree of freedom and its domain, respectively, corresponding to the joint between the i-th
component and its parent, where Nq � ∑j∈INR

(NAj − 1), Without loss of generality, since
each component other than the root has exactly one parent, we assume that each pivot Pi,j
coincides with the origin of frame FRj . Furthermore, by treating the orientation θL of the
object as a virtual joint state, the state z of the virtual robotic system R is defined as follows:

z � [pT
R, θR, qT ]T = [pT

R, qT ]T

where q � [qi]i∈I�
Nq

, is the stacked vector of virtual joint parameters with q0 � θR and

qi � qi for all i ∈ INq .
Let us now consider the footprint of the robotic system while it moves within the

workspace. We notice that, for each i ∈ INR
, the footprint of the individual component

Ri, i.e., the area occupied by it at a given configuration, is defined by the position of its
pivot point and the current value of its (virtual) joint parameter. We shall use Ri(p, q) to
denote the footprint when the pivot point is placed at p and the joint parameter value is q.
We also remark that, although each component may move freely with respect to its pivot
point, any motion of theirs propagates directly to their children, thus potentially inducing
a translation and/or rotation onto every one of its descendants ni

d. Thus, the footprint of
component Ri can also be defined in terms of the current position pR of the robotic system
and the (virtual) joint parameters of every component Rj belonging to ni

a. By remarking
that the footprint R(z) of the robotic system at a given configuration z is simply the union
of the footprints of its individual components, i.e.,:

R(pR, q) �
⋃

i∈INR

Ri

(
pR, [qj]

T
j∈ni

a∪i

)
(3)
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we are now ready to formally define the set of admissible configurations to our prob-
lem. For brevity, R(q) will be used instead of R(0, q) where is deemed preferable. By
noticing that the configuration space C of this robotic system is a manifold diffeomorphic
to R2 × S1 ×Dq1 × . . .DqNq

. and recalling that neither the object L nor any of the robots
Ri, i ∈ INR are allowed to collide with the workspace boundary ∂W, the set C f of collision
free configurations of R is given by:

C f = {z | W ∩R(z) = ∅ and z ∈ C}. (4)

Finally, let Co � C \ C f .
Now, in order to design a continuous “path” inside C f connecting the two given

configurations qL,init and qL,goal, we extend the methodology presented in [38]. More
specifically, by designing a suitable cover of the free configuration space via recursive
subdivision of the domain of q, our goal is to obtain a hierarchical partitioning of C f . For
each implicitly defined cell, we compute over suitable over- and under-approximations,
whose shape is much simpler than the shape of the corresponding exact cell, which are
used for both guiding the configuration space’s exploration, as well as designing a high-
level plan will drive the robotic system to its goal. To do so, we first consider the domain
Dqi of the joint state qi, for i ∈ I�Nq

. Furthermore, we shall refer to a set of the form
Sqi
[qi1,qi2]

as a simple slice of the parameter qi, where qi1, qi2 ∈ Dqi . Furthermore, a set

Si = {Sqi
j | j ∈ INSi

} consisting of NSi simple slices of qi shall be called a cover of Dqi if

Dqi =
⋃

j∈INSi

Sqi
j

for all k, � ∈ INSi
with k �= �. A compound slice Ŝ is defined as a set of simple slices of the

form Ŝ = {Sqi | i ∈ I�Nq
}. Respectively, a set Ŝ = {Si | i ∈ I�Nq

} is called a cover of the

free configuration space C f if each Si is a cover of Dqi . We note that a cover Ŝ induces a
partitioning of C f into regions

CŜ =
{
[pT

R, qT ]T | pR ∈ W and q ∈ Ŝ
}
∩ C f , Ŝ ∈ Ŝ (5)

each of which consists of NŜ ≥ 0 individually connected but pairwise disjoint subsets
ĈŜ ,i, i ∈ INCŜ

. Taking a closer look at the connectedness of these cells, one can readily

see that two configuration space cells ĈŜi
and ĈŜj

are connected iff Ŝi, Ŝj are adjacent and

the projections of ĈŜi
, ĈŜj

onto the plane intersect. We recall that two distinct simple

slices Sqk
i and Sqk

j are called adjacent if their intersection Sqk
i ∩ Sqk

j is not empty, whereas

two compound slices Ŝi = {Sqk
i | k ∈ I�Nq

}, and Ŝj = {Sqk
j | k ∈ I�Nq

}, are called adjacent if

Sqk
i , Sqk

j are adjacent, for all k ∈ I�Nq
.

Similarly to the method employed in [38], in order to avoid explicitly computing
the shape of a given configuration space cell, we shall define suitable over- and under-
approximations of it, which, in addition, shall be used for guiding the configuration space
exploration in a similar manner. In order to build these approximations of the set of free
configurations corresponding to the compound slice Ŝ = {Sqi | i ∈ I�Nq

}, we first compute

an over-approximation R
(
Ŝ
)

and an under-approximation R
(
Ŝ
)

of the robotic system’s
footprint as follows:

R
(
Ŝ
)
=

⋃
q∈IŜ

R(q)

R
(
Ŝ
)
=

⋂
q∈IŜ

R(q)
(6)
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where
IŜ = Sq0 × Sq1 × · · · × Sq . (7)

We remark that, although seemingly daunting at first sight, the computation of R
(
Ŝ
)

and

R
(
Ŝ
)

can be significantly simplified by recalling that the footprint of each component
does not necessarily depends on every component of q but only on those of its ancestors,
by virtue of the robotic system’s tree-like structure. An example of such over- and under-
approximation for a robotic system consisting of two connected components can be seen in
Figure 3.

Figure 3. Over- and under-approximations of a robotic system (a) consisting of two components
corresponding to slices: {0}× [2π − 1, 1] (b,f), {0}× [2π − 0.2, 0.2] (c,g), [3π/2, pi/2]× [2π − 0.2, 0.2]
(d,h), [2π − 0.2, 0.2]× [2π − 0.2, 0.2] (e,i).

Following these definitions, the over-approximation CŜ and the under-approximation
CŜ of a given partition CŜ , can be computed as follows:

CŜ �
{
[pT , qT ]T | p ∈ WŜ and q ∈ IŜ

}
CŜ �

{
[pT , qT ]T | p ∈ WŜ and q ∈ IŜ

} (8)
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where
WŜ � W �R

(
Ŝ
)

WŜ � W �R
(
Ŝ
) (9)

with A � B denoting the Minkowski difference of sets A and B, and IŜ = Sq0 × Sq1 ×
· · · × Sq . Obviously, each of CŜ and CŜ consists of individually connected but pairwise
disjoint cells CŜ ,i, i ∈ INCŜ

and CŜ ,i, i ∈ INCŜ
, respectively, which enclose or are enclosed

by the cells of CŜ .
At this point, we remark that the approximation of C f improves as one subdivides

the configuration space into more and finer slices. Thus, choosing a sufficiently fine
partitioning of C, a sequence of adjacent under-approximation cells connecting qL,init and
qL,goal will appear, as long as one exists in the first place. Instead of choosing such a fine
partitioning arbitrary, we design an adaptive subdivision scheme which makes also use
of the space’s over-approximations for choosing which slice to subdivide at each iteration.
More specifically, we design an algorithm which given compound cover Ŝ, it tries to
find a sequence Π of adjacent under-approximation cells connecting the initial and goal
configurations. If no such path can be found, then our algorithm tries to connect the two
given configurations with a sequence Π made of adjacent over-approximation cells instead.
If such a path exists, then a slice corresponding to a cell of Π is selected according to a
suitable heuristic and becomes subdivided, producing a new partitioning of C f . Otherwise,
if no such path can be found, then this obviously indicates that the problem at hand is
infeasible (i.e., the two given configurations exist in disjoint components of the robotic
system’s configuration space) and our algorithm terminates. In short, one can readily verify
that the following statements hold:

1. If there exists a path of adjacent under-approximation cells for a given cover Ŝ

containing qL,init and qL,goal, then a solution to our problem exists.
2. If there exists a path of adjacent over-approximation cells for a given cover Ŝ con-

taining qL,init and qL,goal, then whether our problem has a solution is unknown and
further expansion of Ŝ is in order.

3. If there is no path of adjacent over-approximation cells for a given cover Ŝ containing
qL,init and qL,goal, then our problem is infeasible.

The proposed algorithm can be seen in Algorithm 1. More specifically, we begin the
configuration space exploration with a rough partitioning of C induced by a compound slice
covering the entire domain of virtual joint parameters q. Then, we search for cells C init and
Cgoal containing the robot’s initial and final configurations, respectively, by subdividing
Ŝ. If no such pair of cells exists, our initial problem is obviously infeasible and the
algorithm terminates. Otherwise, we try to connect C init and Cgoal using the available
under-approximation cells corresponding to Ŝ. If this attempt fails, then we try instead to
find a path of over-approximation cells connecting C init and Cgoal. If such a path cannot be
found, this also implies that no solution exists and the algorithm terminates. Otherwise, a
heuristic is utilized for selecting a compound slice in Ŝ to be expanded and the process
starts anew. The heuristic used, which can be seen in Algorithm 2, selects which slice
of Ŝ to expand as follows. Given a path Π of over-approximation cells, it essentially
tries to construct a path made of the under-approximation cells that belong in the same
compound slices as the elements of Π. Failing to connect under-approximation cells
belonging in two adjacent compound slices Ŝi and Ŝj indicates that the connectedness of
the over- and under-approximation cells in this slices is not the same, which means that
these slices need to be further expanded. Thus, the largest simple slice of these compound
slices becomes subdivided and the function returns. Finally, we remark that the functions
CONNECTUACELLS and CONNECTOACELLS employ standard graph search algorithms
for constructing the corresponding paths based on a heuristic that penalizes cells with
smaller slices (i.e., cells corresponding to larger slices are preferred).
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Algorithm 1 Configuration space exploration algorithm.

function CONNECTCONFIGS(qL,init, qL,goal)

Ŝ ←
{
Dqi | i ∈ I�Nq

}
loop

Ŝ, C init, C init ← FINDENCLOSINGCELLS(qL,init, Ŝ)
Ŝ, Cgoal, Cgoal ← FINDENCLOSINGCELLS(qL,goal, Ŝ)

if C init is Nil or Cgoal is Nil then

return Nil
end if
Π ← CONNECTUACELLS(C init, Cgoal)
if Π is Nil then

Π ← CONNECTOACELLS(C init, Cgoal)
if Π is empty then

return Nil
else

Ŝ ← REFINE( Ŝ, Π, {C init}, {Cgoal})
end if

else
return Π

end if
end loop

end function

Algorithm 2 Heuristic choosing next simple slice for subdivision.

function REFINE(Ŝ, Π, src, dst)
if len(Π) = 1 then

return SUBDIVIDE(Ŝ, Π[0])
else

cells ← {}
connected ← {}
if len(Π) == 2 then

cells ← dst
else

CŜj
← Π[1]

for all CŜj
in CŜj

do

cells ← cells ∪ {CŜj
}

end for
end if
for all CŜi

in src do

for all CŜj
in cells do

if CŜi
∩ CŜj

�= ∅ then

connected ← connected ∪ {CŜj
}

end if
end for

end for
if len(connected) > 0 then

return REFINE(Ŝ, Π[1 :], connected, dst)
else

return SUBDIVIDELONGEST(Ŝ, Ŝi, Ŝj)
end if

end if
end function
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4.2. Distributed Control Law

Given now a path Π of cells obtained by the high-level planner described in the
previous sub-section, we shall now design a distributed control scheme for the mobile ma-
nipulators that ensures safe transitions from one cell to the next until the goal configuration
qL,goal is reached. Let CŜ be a cell in Π and let CŜ denote its the projection on the plane. We
recall that CŜ is an under-approximation of the actual free configuration space, constructed
by extruding WŜ , which implies that, as long as q ∈ Ŝ , then pL can safely occupy any
position of CŜ . We also note that CŜ is a non-empty, compact region of R2 with arbitrary
connectedness and shape. Exploiting this fact, we can decouple the low-level control laws
for: (a) the object’s position pL, (b) the object’s orientation θL, and (c) the joints qi of each
manipulator Ri, i ∈ INR , as explained in the following.

For each intermediate cell of Π, we can obtain goal sets corresponding to pL, θL
and q separately, by computing its intersection with the next one (which is non-empty by
construction of Π ), Let us consider a pair of consecutive cells CŜi

and CŜj
in Π. Regarding

the object’s position, in order to safely traverse from CŜi
to CŜj

, it is sufficient that pL
reaches the set

GpL

(
CŜi

, CŜj

)
� CŜi

∩ CŜj
. (10)

We also note that GpL

(
CŜi

, CŜj

)
is generally made of one or more disjoint subsets of arbitrary

connectedness and that, as long as the object’s position reaches either of these, the system
can cross to the next cell. Respectively, a goal set corresponding to the object’s orientation
can be obtained by computing the intersection of the corresponding simple slices of Ŝi and
Ŝj, i.e.,:

GθL

(
CŜi

, CŜj

)
� Sq0

i ∩ Sq0
j . (11)

Goal sets for the joints of each mobile manipulator can be computed in a similar manner.
Particularly, let PAk

(
CŜ
)

denote the projection CŜ along the dimensions corresponding to
the degrees of freedom of Ak. Obviously, PAk

(
CŜ
)

is equal to the product of the simple
slices of Ŝ corresponding to qk. Then, the corresponding goal set of qk is given by

GAk

(
CŜi

, CŜj

)
� PAk

(
CŜi

)
∩PAk

(
CŜj

)
, ∀k ∈ INR . (12)

Thus, for successfully driving the robotic system from CŜi
to CŜj

, we need to design

decoupled control laws for the mobile manipulators which:

• ensure invariance of the current cell, i.e., pL ∈ PpL

(
CŜi

)
, θL ∈ Sq0

i and qk ∈ PAk

(
CŜi

)
,

∀k ∈ INR , until the transition is complete, and

• ensure converge to the system’s states to the corresponding goals sets GpL

(
CŜi

, CŜj

)
,

GθL

(
CŜi

, CŜj

)
and GAk

(
CŜi

, CŜj

)
, k ∈ INR .

Finally, the transition is considered complete after all states have reached the corre-
sponding goal sets. We remark that, regarding the last cell of Π, the goal sets corresponding
to the object’s position and orientation can taken equal to {pL,goal} and {θL,goal}, respec-
tively, while the joints of the manipulators need only to remain within the bounds imposed
by the last cell.

Before we proceed with formulating the corresponding control laws, we must first
formally state the following assumptions about our system.

Assumption 1. Each robot Rk, k ∈ INR has exact knowledge of the object’s and its own dynamic
model, i.e., ML, IL, PL,com and MRk , CRk , DRk , GRk are known.

Assumption 2. Each robot Rk, k ∈ INR has full knowledge of its own state zk and the current
configuration qL of the object L.
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Assumption 3. The plan generated by the high-level planner is available to all robots. Furthermore,
each robot Rk, k ∈ INR is able to communicate with the others only for announcing that it is

ready to transition to the next cell, i.e., that pL ∈ GpL

(
CŜi

, CŜj

)
, θL ∈ GθL

(
CŜi

, CŜj

)
, and

qk ∈ GAk

(
CŜi

, CŜj

)
(lean communication).

Assumption 4. Each mobile manipulator Rk, k ∈ INR is sufficiently redundant, i.e., it can

independently apply a desired wrench to its end-effector while keeping qk in PAk

(
CŜi

)
. Addi-

tionally, the lower diagonal NAk − 1 × NAk − 1 block of
(

MRk

)−1
(

I −
(
JRk (zk)

)† · JRk (zk)
)

is non-singular.

4.2.1. Object’s Position

First, we shall design a suitable vector field for safely driving the object’s position pL to
GpL

(
CŜi

, CŜj

)
. To do so, we construct a transformation Ti of FpL

(
CŜi

, CŜj

)
� PpL

(
CŜi

)
\

GpL

(
CŜi

, CŜj

)
to the unit disk and collapse the selected component of GpL

(
CŜi

, CŜj

)
to a

point, using the procedure described in [37]. By recalling that Ti is a diffeomorphism that
collapses all inner obstacles of to isolated points, one can readily verify that the chance of a
line connecting the image q[i]L � Ti(pL) of the object’s current position to the image q[i]L,d of
the current cell’s goal is zero [39,40]. Therefore, the following velocity control law would
safely drive the object’s position to the goal set for almost all initial configurations:

v[i]pL(pL) �
(

JTi (pL)
)−1 ·

(
q[i]L,d − q[i]L

)
(13)

where JTi is the Jacobian matrix of Ti. In order to design a law for the desired force to be
applied to the object L by the robots, we employ a novel methodology presented in [41]
which allows us to extend the vector field from Equation (13) to second-order dynamics.
The corresponding control law for the desired force applied to the object is formed by a
term proportional to the error with respect to the reference governor’s state (to keep it
small) plus a damping term to avoid oscillations, as follows:

τdes
L,p = −ML ·

(
K[i]

pL ·
(

pL − p[i]L,G

)
+ ζ

[i]
pL · ṗL

)
ṗ[i]L,G = K[i]

pL ,G ·
v[i]pL

(
p[i]L,G

)
‖v[i]pL

(
p[i]L,G

)
‖
·

min

(
‖v[i]pL

(
p[i]L,G

)
‖,
√

ΔE[i]
pL

(
pL, p[i]L,G

)
/K[i]

pL

) (14)

where
ΔE[i]

pL(pL, p[i]L,G) � K[i]
pL · d

(
p[i]L,G, ∂FpL

(
CŜi

, CŜj

))
− E[i]

pL(pL, p[i]L,G) (15)

E[i]
pL(pL, p[i]L,G) �

1
2
·
(
‖ ṗL‖2 + K[i]

pL · ‖pL − p[i]L,G‖
2
)

(16)

p[i]L,G is the (virtual) state of the reference governor, d(x,X ) is the distance of x from the set

X , K[i]
pL , K[i]

pL ,G are fixed, positive gains and ζ
[i]
pL is a virtual damping.

4.2.2. Object’s Orientation

To drive the orientation θL of the object to the specified goal set GθL

(
CŜi

, CŜj

)
while

ensuring that it remains within Sq0
i =

[
θ
[i]
l , θ

[i]
l

]
, we design the desired torque τL,θ applied

to the object based on the Prescribe Performance Control (PPC) methodology. We assume
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that GθL

(
CŜi

, CŜj

)
is of the form

[
θ
[i]
l,G, θ

[i]
u,G

]
, which can be ensured by designing the parti-

tioning scheme of the configuration space planner described in Section 4.1 such that the
compound slices which form a valid cover are overlapping. We now define the following
two performance functions:

ρ[i]
θL
(t) � θ

[i]
l,G +

(
θ
[i]
l − θ

[i]
l,G

)
· e−λθL ·t

ρ
[i]
θL
(t) � θ

[i]
u,G +

(
θ
[i]
l − θ

[i]
u,G

)
· e−λθL ·t

(17)

where t denotes the time and λθL is a positive constant. The corresponding control law is
given by

τdes
L,θ = IL ·

⎛⎝−K[i]
θL ,2 ·

(
θ̇L − v[i]θL

)
+ v̇[i]θL

− a[i]θL
· ln

⎛⎝ θL − ρ
[i]
θL

ρ
[i]
θL

− θL

⎞⎠⎞⎠ (18)

v[i]θL
�

b[i]θL
− K[i]

θL ,1 · ln

(
θL−ρ

[i]
θL

ρ
[i]
θL

−θL

)
a[i]θL

(19)

a[i]θL
� 1

θL − ρ
[i]
θL

+
1

ρ
[i]
θL

− θL

b[i]θL
�

ρ̇
[i]
θL

θL − ρ
[i]
θL

+
ρ̇
[i]
θL

ρ
[i]
θL

− θL

(20)

with K[i]
θL ,1 and K[i]

θL ,2 being positive gains. Notice that the logarithmic term attains a high
positive or negative value, when the orientation of the object approaches the upper or lower
performance function defined in (17), thus confining it strictly within them. Hence, the ori-
entation never escapes the set of viable orientations of the cell and moreover converges to
the set of orientations requested by the planner.

4.2.3. Manipulators

Considering now the control scheme for the mobile manipulators, we remark that, by
virtue of Assumption 1 and Assumption 2 and assuming a common initialization policy
for the virtual states of the reference governors corresponding to the object’s position and
orientation, respectively, each robot is able to compute the desired total force τL,p and
torque τL,θ that should be applied to the object. Thus, the wrench τe,k that each robot
Rk, k ∈ INR should apply to the object via its end-effector is given by

τe,k =
1

NR
·
[

τL,p

τL,θ −
(
τL,p

)T · {Ek}
P⊥
L,com

]
(21)

where {Ek}
P⊥
L,com = R

(
π
2
)
·R(θL) · {Ek}

PL,com with {Ek}
PL,com being the position of the object’s

center of mass relative to the contact point of manipulator Ak. Furthermore, each robot
must also ensure that qk ∈ PAk

(
CŜi

)
while driving qk to GAk

(
CŜi

, CŜj

)
. To do so, we shall

exploit the redundancy of each robot to design a force in the null-space of JRk which can
ensure that the aforementioned specifications are met without affecting the force applied to
the object. We now recall the dynamics of mobile manipulator Rk:

MRk (zk) · z̈k + CRk (zk, żk) · żk + GRk (zk) = τm,k −
(
JRk (zk)

)T · τe,k (22)
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Assuming known dynamic parameters and state, we can design

τm,k = CRk (zk, żk) · żk + GRk (zk) + τm,k,1 +
(

I −
(
JRk (zk)

)† · JRk (zk)
)
· τm,k,2 (23)

where τm,k,1 and τm,k,2 are new virtual inputs to be defined later and
(
JRk

)† denotes the
pseudo-inverse of JRk . Substituting the above in Equation (22) yields:

MRk (zk) · z̈k = τm,k,1 +
(

I −
(
JRk (zk)

)† · JRk (zk)
)
· τm,k,2 −

(
JRk (zk)

)T · τe,k (24)

We now consider the above dynamical model in the robot’s task-space:

M′
Rk

·
[

p̈Ek
θ̈Ek

]
+ C′

Rk
·
[

ṗEk
θ̇Ek

]
=
(
J T
Rk

)†
· τm,k,1 − τe,k (25)

where p̈Ek and θ̈Ek are the position and orientation of the corresponding end-effector’s
contact point and

M′
Rk

=
(
J T
Rk

)†
· MRk ·

(
JRk

)†

C′
Rk

= −
(
J T
Rk

)†
· MRk ·

(
JRk

)† · J̇Rk ·
(
JRk

)†.
(26)

Let
[

pT
Ek

θEk

]T
= TL,Ek (pL, θL) be the rigid transformation between the positions and

orientations of the corresponding points. It holds that[
ṗEk
θ̇Ek

]
= JL,Ek (pL, θL) ·

[
ṗL
θ̇L

]
(27)

[
p̈Ek
θ̈Ek

]
= JL,Ek (pL, θL) ·

[
p̈L
θ̈L

]
+ J̇L,Ek (pL, θL) ·

[
ṗL
θ̇L

]
(28)

with JL,Ek denoting the Jacobian matrix of this rigid transformation. Therefore, Equation (25)
can be re-written with respect to to the object’s state as follows

M′′
Rk

·
[

p̈L
θ̈L

]
+ C′′

Rk
·
[

ṗL
θ̇L

]
=
(
J T
Rk

)†
· τm,k,1 − τe,k (29)

with
M′′

Rk
= M′

R· JL,Ek

C′′
Rk

= C′
Rk

· JL,Ek + M′
Rk

· J̇L,Ek .
(30)

We notice that achieving our indented behavior, i.e., the object obeying the dynamics
imposed by Equations (14) and (18) while distributing the load equally between the robots,
is equivalent to

τe,k =
1

NR

[
ML · p̈L

IL · θ̈L − ML · ( p̈L)
T · {Ek}

P⊥
L,com

]
=

1
NR

ML,Ek ·
[

p̈L
θ̈L

]
(31)

where ML,Ek is the fragment of the object’s inertia, as perceived by the manipulator Rk.
Substituting the above into Equation (25) yields(

M′′
Rk

+
1

NR
· ML,Ek

)
·
[

p̈L
θ̈L

]
+ C′′

Rk
·
[

ṗL
θ̇L

]
=
(
J T
Rk

)†
· τm,k,1. (32)
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As such, we can see that selecting

τm,k,1 � JRk ·
((

M′′
Rk

+
1

NR
· ML,Ek

)
·
[

τdes
L,p/ML
τdes
L,θ/IL

]
+ C′′

Rk
·
[

ṗL
θ̇L

])
(33)

will achieve the desired behavior, assuming all NR robots execute the same control law.
Considering again Equation (24), we shall now design τm,k,2 appropriately in order

to satisfy the manipulator joint limit specifications. We recall that the projection of τm,k,2

with respect to I −
(
JRk (zk)

)† · JRk (zk) has no effect on the wrench applied to the attached
object. Now, let LA,k, LB,k, LC,k, LD,k be matrices such that LA,k ∈ R3×3 and

Lk � M−1
Rk

·
(

I −
(
JRk (zk)

)† · JRk (zk)
)
=

[
LA,k LB,k
LC,k LD,k

]
. (34)

By recalling that LD,k is assumed to be invertible according to Assumption 4, we employ
the Prescribed Performance Control method along with back-stepping to design τm,k,2
as follows:

τm,k,2 �

⎡⎢⎢⎣
0
0
0

(LD,k)
−1 · vk,B

⎤⎥⎥⎦ (35)

where

vk,B �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−(q̇k,1 − vk,b,1) + v̇k,b,1 − aqk,1 · ln
( qk,1−ρ

qk,1
ρqk,1

−qk,1

)
−(q̇k,1 − vk,b,1) + v̇k,b,2 − aqk,2 · ln

( qk,2−ρ
qk,2

ρqk,2
−qk,2

)
...

−
(

q̇k,NAk
−1 − vk,b,NAk

−1

)
+ v̇k,b,NAk

−1 − aqk,NAk
−1 · ln

( qk,NAk
−1−ρ

qk,NAk
−1

ρqk,NAk
−1

−qk,NAk
−1

)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(36)

vk,b,� �
bqk,� − ln

( qk,�−ρ
qk,�

ρqk,�
−qk,�

)
aqk,�

(37)

aqk,l �
1

qk,l − ρ
qk,l

+
1

ρqk,l
− qk,l

bqk,l �
ρ̇

qk,l

qk,l − ρ
qk,l

+
ρ̇qk,l

ρqk,l
− qk,l

(38)

is the reference velocity control law, ρ
qk,�

and ρqk,�
are performance functions which smoothly

“shrink” PAk

(
CŜi

)
to GAk

(
CŜi

, CŜj

)
, given by

ρ
qk,�

(t) � qG,k,� +
(

qk,� − qG,k,�

)
· e−λq ·t

ρqk,�
(t) � q

G,k,�
+
(

q
k,�

− q
G,k,�

)
· e−λq ·t

(39)

with qk,�, q
k,�

and qG,k,�, q
G,k,�

being the lower and upper bounds of the joint parameters of

Ak corresponding to PAk

(
CŜi

)
and GAk

(
CŜi

, CŜj

)
, respectively. Similar to the orientation

control design, the input control signal τm,k,2 was designed to constrain the evolution of the
manipulators state within the corresponding upper and lower performance functions to
enforce the necessary safety and convergence properties.
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5. Stability Analysis

In this section, we provide an analysis of the robotic system’s stability properties under
the proposed control scheme.

Proposition 1. (Safety). Given two adjacent under-approximation cells CŜi
and CŜj

, the ob-

ject’s configuration will asymptotically converge to GpL

(
CŜi

, CŜj

)
× GθL

(
CŜi

, CŜj

)
for almost

all initial configurations under control laws in Equations (14) and (18). Furthermore, the set
FpL

(
CŜi

, CŜj

)
× Sq0

i is invariant.

Proof. We begin this proof by first recalling that, as long as object’s orientation and robot
joints remain within the bounds imposed by CŜi

, control of the object’s position and
orientation can be safely decoupled. Regarding the object’s position, one can readily
verify that since Ti is a diffeomorphism in FpL

(
CŜi

, CŜj

)
(see [37]), the reference velocity

control law i is Lipschitz, has exactly one critical point which is located at the transformed
goal configuration and is inward pointing at the outer boundary of FpL

(
CŜi

, CŜj

)
. Then,

by invocation of Theorem 2 in [41], the control law in Equation (14) ensures invariance of
cell and convergence to the goal set of pL for almost all initial configurations.

Regarding the object’s orientation, we define the following coordinate transformation:

z1,i = ln

⎛⎝ θL − ρ
[i]
θL

ρ
[i]
θL

− θL

⎞⎠
z2,i = θ̇L − v[i]θL

(40)

and consider the following Lyapunov candidate:

V =
1
2
· z2

1,i +
1
2
· z2

2,i. (41)

The time derivatives of z1,i and z2,i are given by

ż1,i = a[i]θL
· z2,i + a[i]θL

· v[i]θL
− b[i]θL

ż2,i =
τL,θ

IL
− v̇[i]θL

(42)

Thus, computing the derivative of V with respect to time yields

V̇ = z1,i · ż1,i + z2,i · ż2,i

= a[i]θL
· z1,i · z2,i + z1,i ·

(
a[i]θL

· v[i]θL
− b[i]θL

)
+ z2,i ·

(
τL,θ

IL
− v̇[i]θL

) (43)

Noting that a[i]θL
· v[i]θL

− b[i]θL
= −K[i]

θL ,1z2
1,i and substituting the control law for τL,θ to the

above, we obtain
V̇ = −

(
K[i]

θL ,1 · z2
1,i + K[i]

θL ,2 · z2
2,i

)
. (44)

Since V̇ is negative definite, assuming that the initial value of θL lies within the specified
bounds, the proposed control law ensures that Sq0

i remains invariant and that θL will

asymptotically converge to
(

θ
[i]
l,G + θ

[i]
u,G

)
/2.

Proposition 2. (Safety). Given two adjacent under-approximation cells CŜi
and CŜj

, under
the control law Equation (23), the joint states qk of mobile manipulator Rk will converge to
GAk

(
CŜi

, CŜj

)
. Furthermore, the set PAk

(
CŜi

)
is invariant.
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Proof. We consider once again Equation (24). Since MRk is an inertia matrix, we know

that its inverse exists, thus multiplying both sides with
(

MRk

)−1 and substituting Equa-
tion (35) yields:

z̈k =
(

MRk (zk)
)−1 ·

(
I −

(
JRk (zk)

)† · JRk (zk)
)
· τm,k,2 +(

MRk (zk)
)−1 · τm,k,1 −

(
MRk (zk)

)−1 ·
(
JRk (zk)

)T · τe,k

=

[
LB,k · (LD,k)

−1

I

]
· vk,B +

(
MRk (zk)

)−1 · τm,k,1 −
(

MRk (zk)
)−1 ·

(
JRk (zk)

)T · τe,k

(45)

We note that the term τm,k,2, which is designed to ensure satisfaction of joint parameter
specifications, has no effect on the stability properties involving the object’s position pL
and orientation θL by virtue of I −

(
JRk (zk)

)† · JRk (zk). Therefore, the last two r.h.s.
terms of Equation (45) are bounded by design and vanish as the object approaches the
specified configuration corresponding to the current cell. As such, the dynamics of the joint
parameters can be written as:

q̈k = vk,B + wB (46)

where the term wB corresponding to τm,k,1 and τe,k and can be viewed as a bounded and
vanishing disturbance. We now define the following coordinate transformation for each
joint value qk,�, � ∈ INAk

−1:

zq,1,� = ln

( qk,� − ρ
qk,�

ρqk,�
− qk,�

)
zq,2,� = q̇k,� − vk,b,�

(47)

and consider the Lyapunov candidate

V� =
1
2
· z2

q,1,� +
1
2
· z2

q,2,�. (48)

Following the same procedure as above, we derive that

V̇� = −
(

z2
q,1,� + z2

q,2,�

)
+ zq,2,� · wB,�

≤ −z2
q,1,� − z2

q,2,� + |zq,2,�| · |wB,�|
≤ −z2

q,1,� − |zq,2,�| · |wB,�|+ (wB,�)
2

(49)

which implies that zq,1,�, zq,2,� and the control law are globally uniformly bounded
(Lemma 2.28 [42]), and, thus, concludes the proof.

Theorem 1. (Convergence). The robotic system under the distributed control law in Equation (23)
will successfully drive the object L to its goal configuration qL,init, from almost all initial configurations.

Proof. First, we note that, by virtue of Equation (4) and the design of Equation (23), the total
force and torque applied to the object’s center of mass by the robotic system is equal to the
desired ones specified by Equation (14) and Equation (18), since the remaining terms either
cancel the robot’s dynamics or are projected along the kernel space of JRk , , respectively.
As such, according to Proposition 1, the object is guaranteed traverse from one cell to
another till it arrives to the desired configuration qL,goal, starting from almost any initial
configuration qL,init, as long as the robots do not collide with the workspace boundary.
However, according to Proposition 2, the configurations of the mobile manipulators remain
within the bounds specified by the under-approximation cell CŜi

, which, by design of
the high-level planner, implies that the robotic system’s footprint cannot intersect the
workspace’s boundary.
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6. Simulation Results

To demonstrate the efficacy of the proposed control scheme, we consider a robotic
system consisting of two mobile manipulators holding a rectangular object within the
workspace depicted in Figure 4. The robotic system was initialized at qL,init = [0.9, 2, 1.57]T

and q1,1 = q2,1 = 0 whereas the desired configuration of the object was set to
qL,goal = [5, 8, 4.663]T . The intervals for the object’s orientation and robot joints gener-
ated by the high-level planner can be seen in Table 1, whereas the control parameters
selected during this simulation are given in Table 2. Notice that our planner extracted a
viable sequence of configuration cells despite the fact that the feasible configuration space
becomes very narrow particularly when the robotic systems has to transverse a corner,
thus verifying the completeness of our approach. Figure 5 shows the trajectory executed
by the robotic system under the proposed control law, whereas plots of the object’s posi-
tion, orientation and corresponding rates can be seen in Figure 6, Figure 7, Figure 8, and
Figure 9, respectively. It should be noted that the transition between successive cells is
executed by the proposed low level control algorithms without harming either the safety
or the convergence properties. Accordingly, Figures 10 and 11 show the evolution of each
manipulator’s state, as well as the computed lower and upper bounds corresponding to
each cell. The total force and torque applied to the object is also displayed in Figure 12
and Figure 13, respectively. As one can verify from the aforementioned figures, the robotic
system successfully reaches the goal configuration while satisfying the specifications corre-
sponding to θL, q1,1, q2,1. A video of the aforementioned transportation task can be found
in the following url: https://youtu.be/AQ_8z3tysRo (accessed on 6 December 2022).

Figure 4. Initial and goal configuration of the robotic system and object, respectively.
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Notice that the simulated workspace consists of both narrow and wide areas, which
results in both situations that the robotic system needs to undergo major reconfiguration
and situations where the system can navigate without the need to alter its configuration,
demonstrating the adaptive nature of the algorithm. Adding more than two robots in
this example would render the overall space around the object overcrowded by the robots
carrying it, thus limiting its flexibility and not demonstrating the searching capabilities
of the proposed algorithm with respect to the shape of the robotic system that leads to
feasible paths. In other words, when multiple robots, grasping the object uniformly at its
boundary, are adopted, the expected motion of each robot with respect to the object would
be very constrained in order to avoid collisions with neighboring robots, i.e., the robotic
system would travel as a rigid formation. Consequently, we selected to demonstrate the
most reconfigurable case in order to show how the proposed algorithm seeks and finds
viable configurations in the workspace that avoid inter-robot collisions and collisions with
the environment and fulfill the transportation task.

Table 1. Lower and upper bounds of the intervals corresponding to each cell, as generated by
the planner.

Cell ID θl θu q1,1 q
1,1

q2,1 q
2,1

1 1.470 1.867 −0.100 0.567 −0.100 0.567
2 1.667 2.065 −0.100 0.567 −0.567 0.100
3 1.863 2.456 −0.100 0.567 −1.035 0.367
4 1.863 2.456 −0.100 0.333 −1.870 −0.835
5 2.256 2.652 −0.100 0.333 −1.503 −0.835
6 2.452 2.849 −0.100 0.333 −1.035 −0.368
7 2.649 2.947 −0.100 0.217 −0.567 0.100
8 2.747 3.045 −0.050 0.108 −0.050 0.108
9 2.895 3.191 −0.050 0.108 −0.050 0.108
10 3.091 3.388 −0.050 0.158 −0.158 0.050
11 3.287 3.584 0.067 0.284 −0.284 −0.067
12 3.484 3.781 0.184 0.518 −0.518 −0.184
13 3.681 3.977 0.418 0.985 −0.985 −0.418
14 3.877 4.172 0.651 0.984 −0.984 −0.651
15 4.072 4.370 0.418 0.985 −0.985 −0.418
16 4.270 4.576 0.184 0.518 −0.518 −0.184
17 4.476 4.762 0.067 0.284 −0.284 −0.067
18 4.564 4.762 0.067 0.284 −0.284 −0.067
19 4.564 4.762 −0.050 0.108 −0.108 0.050
20 4.564 4.762 −0.050 0.108 −0.108 0.050
21 4.564 4.762 −0.985 0.050 −0.108 0.050
22 4.564 4.762 −1.453 −0.885 −0.108 0.050
23 4.564 4.762 −1.687 −1.353 −0.108 0.050
24 4.564 4.762 −1.687 −1.528 −0.108 −0.050
25 4.564 4.762 −1.687 −1.528 −0.168 −0.008
26 4.564 4.762 −1.687 −1.528 −0.284 −0.067
27 4.564 4.762 −1.687 −1.528 −0.518 −0.184
28 4.564 4.762 −1.687 −1.528 −0.985 −0.418
29 4.564 4.762 −1.687 −1.528 −1.453 −0.885
30 4.564 4.762 −1.687 −1.528 −1.687 −1.353
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Table 2. Simulation parameters.

Parameter Value

ML 1 kg
IL 1 kg m2

KpL 50
ζpL 5
KpL ,G 5
λθL 2
KθL ,1 1
KθL ,2 1
λq 2

Figure 5. Path executed by the robotic system during the simulations (blue line), as well as the
footprint of the robotic system at various instants.
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Figure 6. Evolution of the object’s position pL over time. The vertical dashed lines indicate transitions
between consecutive cells.
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Figure 7. Evolution of the object’s orientation θL over time (solid line), as well as the corresponding
performance functions ρ

θL
and ρθL

.
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Figure 8. Object’s linear velocity ṗL.

105



Robotics 2022, 11, 148

Figure 9. Object’s angular velocity θ̇L.
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Figure 10. Evolution of joint value q1,1 with corresponding lower and upper bounds.
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Figure 11. Evolution of joint value q2,1 with corresponding lower and upper bounds.
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Figure 12. Total force τdes
L,p applied to the object by the robots.
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Figure 13. Total torque τdes
L,θ applied to the object by the robots.
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7. Conclusions and Future Directions

In this work, we presented a hybrid control scheme for addressing the cooperative
transportation problem for a team of mobile manipulators carrying an object within a
planar workspace. Particularly, a high-level planner was designed for computing a se-
quence of feasible cells by adaptively subdividing the system’s configuration space using a
hierarchical cell decomposition scheme. In addition, a distributed low-level control law
was employed for realizing the given plan with guaranteed collision avoidance and con-
vergence properties. Finally, simulation results validating the proposed scheme’s efficacy
were provided. Future research efforts will be devoted towards extending the proposed
framework for human–robot collaborative transportation tasks within obstacle cluttered
workspaces, where the robots are in charge of taking over the load while avoiding collisions
and the human performs only high-level planning. More work is also needed towards
devising optimal performance criteria to quantify the achieved response and guide appro-
priately the selection of the control parameters as well as to evaluate the robustness level
against actuation limitations, disturbances, measurement delays, and noise.
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Abstract: Dynamic programming techniques have proven much more flexible than calculus of
variations and other techniques in performing redundancy resolution through global optimization of
performance indices. When the state and input spaces are discrete, and the time horizon is finite,
they can easily accommodate generic constraints and objective functions and find Pareto-optimal
sets. Several implementations have been proposed in previous works, but either they do not ensure
the achievement of the globally optimal solution, or they have not been demonstrated on robots of
practical relevance. In this communication, recent advances in dynamic programming redundancy
resolution, so far only demonstrated on simple planar robots, are extended to be used with generic
kinematic structures. This is done by expanding the Robot Operating System (ROS) and proposing a
novel architecture meeting the requirements of maintainability, re-usability, modularity and flexibility
that are usually required to robotic software libraries. The proposed ROS extension integrates
seamlessly with the other software components of the ROS ecosystem, so as to encourage the reuse
of the available visualization and analysis tools. The new architecture is demonstrated on a 7-DOF
robot with a six-dimensional task, and topological analyses are carried out on both its state space and
resulting joint-space solution.

Keywords: dynamic programming; redundancy resolution; redundant robot; inverse kinematics;
ROS; industrial manipulator

1. Introduction

When a robot is redundant with respect to its task, the inverse kinematics problem ad-
mits an infinite set of solutions almost everywhere in its workspace. It results in augmented
dexterity that can be exploited to achieve several objectives, which are usually desirable
for a multitude of real applications, such as obstacle avoidance and constrained motions,
improvement of manipulability and local or global optimization of generic performance
indices [1]. Choosing the joint-space configuration in agreement with the criteria above for
each point of the given end-effector trajectory is usually referred to as redundancy resolution.

Redundancy resolution via global optimization of performance indices is of particular
interest in real applications as it allows saving resources, such as energy and time, and
consequently maximizing the use of the robotic asset. On the other hand, such a technique
requires time to provide a solution, therefore it is only suited for off-line planning scenarios.
In space applications of exploration and construction, the minimization of energy translates
into increasing the number of operations that can be completed within the available energy
budget. In manufacturing industries, redundancy can be exploited to perform tasks as fast
as possible, so as to increase the plant throughput. Both applications are characterized by an
off-line programming approach, where the controller references either are generated a long
time before they are executed, as in space applications with windowed communications, or
are computed once and executed several times, as in automated manufacturing.
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If the environment in which the robotic asset operates is subject to contingencies, there
still is a chance to optimize the resources by coupling the off-line planner with an on-board
planner. The latter should allow for the execution of the trajectory computed off-line, so
that resources are still globally optimized, until some unplanned event arises, in which case
the plan has to be modified. Yet the modifications could be implemented in a neighborhood
of the globally optimal solution.

In the literature, the problem of maximizing or minimizing an integral function, subject
to geometric or differential constraints, is addressed by making use of calculus of varia-
tions, either through the Euler-Lagrange formulation [2] or the Pontryagin’s maximum
principle [3], dynamic programming (DP) [4,5], or other numerical optimization techniques,
as by Shen et al. [6], among the others. Calculus of variations only provides necessary
conditions for optimality and is, therefore, prone to sub-optimal solutions. Such conditions
are given in the form of second-order differential equations and related boundary condi-
tions. When initial and final joint positions are not assigned, velocities are constrained at
the beginning and at the end of the trajectory. This results in a Two-Point Boundary Value
Problem (TPBVP) made of a system of non-linear differential equations. Such problems
rarely have a closed-form solution and numerical methods are usually employed [7,8].
Unfortunately, on the practical side, off-the-shelf numeric solvers do not guarantee the
achievement of a solution, if it exists, and the successful computation might depend on a
suitable choice of an initial guess [7]. Lastly, the equations that make up the TPBVP can be
derived from Euler-Lagrange or Pontryagin’s Maximum Principle necessary conditions
only for some specific objective functions and constraints. Real applications, foreseeing
the employment of industrial robots with state and actuation limits performing complex
tasks, usually require the definition of more complex objectives and constraints. Limiting
our analysis to geometric and kinematic considerations, typical real-world constraints
include joint mechanical limits, maximum/minimum velocities and accelerations, as well
as collisions and self-collisions. There exist both unilateral and bilateral constraints, which
are defined on the state variables and their derivatives (up to the second order). Fitting
such constraints in a mathematical formulation based on calculus of variations is not
straightforward [9]. For all these reasons, numerical approaches and, in particular, discrete
dynamic programming ones, proved to be much more promising in solving redundancy in
real scenarios, because of their flexibility [4,5,10–12].

Guigue et al. [4] first applied a dynamic programming algorithm to an industrial use
case, where a 7-DOF manipulator is inserted in a supersonic wind tunnel and a trajectory is
planned to Pareto-optimize the square norm of velocities and the aerodynamic interference.
In a later work [12], by using the same use case, they confirmed the superiority of the
dynamic programming method over calculus of variations in approximating the Pareto
optimal set. Other examples of similar DP-inspired redundancy resolution algorithms
concern applications of laser cutting and fiber placement [5,10,11]. They adopt a discrete
representation, which is used to demonstrate that a formulation of the problem in terms
of graph theory is possible, through which the search space can be modeled as an acyclic
directed graph and the so-called dynamic programming algorithm is, in truth, an optimal
path search algorithm [11]. Dynamic programming has been also successfully employed
for redundancy resolution of parallel kinematic machines (PKM) [13].

In a previous work [14], we demonstrated that the achievement of the globally optimal
solution is subject to building a complete representation of the state space and designing
an algorithm capable of transiting between posture sets, crossing singularities or semi-
singularities. Building upon a topological analysis of the inverse kinematics mapping, we
adopted a formulation of the problem based on multiple state space grids and developed a
procedure to perform a simultaneous optimal search on these grids. Although the presence
of multiple grids had already been discussed in previous works, no evidence was given on
the possibility of exploring them together, possibly compromising the global-optimality
of the solution. On the other hand, our algorithms [9,14], which boast the capability of
returning the globally optimal solution, have only been demonstrated on simple planar
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robots. We remark that, since they are based on a discretization of the state space, global
optimality should be intended here as resolution-optimality, i.e., the solution is globally
optimal, across all homotopy classes, within the finite set of feasible trajectories in the
discretized state space. For small discretization steps, the DP redundancy resolution
algorithm returns a solution that is homotopic to the real global optimum. As clarified next,
because of the characteristics of the problem, a resolution-optimal solution can be found
even though the local optimization problems are not convex.

The objective of this communication is to provide an implementation for complex
robotic structures, effectively turning in practice the outcomes of our topological anal-
ysis [14]. At the same time, a unified architecture, built upon the Robot Operating Sys-
tem (ROS) [15], is proposed so as to respect the usual requirements of maintainability,
re-usability, modularity and flexibility of a robotic software library. To the best of our
knowledge, ROS is not currently equipped with a globally optimal inverse kinematics
library for redundant manipulators: our aim is to fill this gap. Furthermore, since pre-
vious implementations were application-specific, thereby requiring specific coding for
accommodating generic constraints and objective functions, we aim at overcoming this
limit by the design of suitable interfaces allowing for an easy integration of custom re-
quirements. Being the underlying methodology introduced in previous works [9,14], the
main contribution of this paper is on the application. First, a topological analysis is car-
ried out of a realistic 7-degrees-of-freedom redundant industrial manipulator, then, we
design an efficient trajectory planner/inverse kinematics solver for spatial robots, based on
dynamic programming, considering actuation constraints. We show that the algorithm is
able to compute resolution-optimal solutions in a time frame that is compatible with the
considered off-line applications.

In Section 2 we recall the fundamental traits of the problem formulation based on
multiple state space grids and dynamic programming. Therein, we give some notions
of topology that are necessary to the comprehension of the problem. In Section 3, we
first describe how redundancy resolution is addressed in ROS and what the extension
points are for the design of our modules. Then, we present a modular architecture of
a resolution-optimal DP-inspired redundancy solver integrated in ROS, where the user
can plug custom objective functions and constraints. In Section 4, we demonstrate the
capabilities of the solver on a 7-DOF robot and give a topological interpretation of the
results. We discuss about the advantages of the proposed architecture in Section 5 and also
highlight its limitations. The conclusions of the work are drawn in Section 6, where we
also propose some lines of development for the future.

2. Materials and Methods

2.1. Discrete Dynamic Programming

Although a continuous time formulation of the dynamic programming problem is
possible, this communication is limited to the discrete time systems, as the objective here is
to propose a solution that can be directly implemented on digital hardware.

A trajectory x(t) ∈ Rm, with t ∈ [0, T], is given in the task space. Assume to discretize
[0, T] such that t = iτ, where τ is the sampling interval, i = 0, 1, 2..Ni and Ni =

T
τ . The

following discrete time system is given with its initial conditions:

q(i + 1) = f
(
q(i), u(i)

)
, q(0) = q0, (1)

where q ∈ Rn, i.e., the joint positions, represents the state vector of the system, u is the input
vector, and f is a generic discrete-time first-order inverse kinematics expression containing
the constants x(i). The dimension of u depends on the particular inverse kinematics model
and it is u ∈ Rn−m for minimal representations [16]. The objective is to find the optimal
sequence of inputs that minimizes or maximizes a given cost function defined, in general,
on both the state and input vectors and their derivatives.
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Usually, u is not free, but constrained to belong to a certain time-variant domain Ai.
Its time derivative u̇ may also be limited to a given domain Bi(u(i)), which is, in principle,
time-variant as well as input-variant [4]:

u(i) ∈ Ai,

u̇(i) ∈ Bi(u(i)).
(2)

Thus, at each i, the set of admissible values of u(i), from which it is possible to reach
u(i + 1), is given by the intersection between Ai and the set of u-values respecting the
constraint on the derivative, i.e.,

Ci = Ai ∩
{

u(i) :
u(i + 1)− u(i)

τ
∈ Bi(u(i)), with u(i + 1) ∈ Ai+1

}
, (3)

where the Euler approximation has been used in place of u̇. More in general, the definition
above could be extended to represent the intersection of all the constraints on u and its
higher-order derivatives.

Let the objective function to optimize be

I(0) = ψ
(
q(Ni)

)
+

Ni−1

∑
j=0

l
(
q(j), q̇(j), u(j), u̇(j)

)
, (4)

where ψ is the cost of the final configuration. The assumption is made that the cost function
computed locally l only depends on the states, on the inputs and on their first-order
derivatives, but in general, more complex functions could be defined.

Rewrite the cost function in a recursive form and use the Euler approximation for q̇

and u̇:

I(Ni) = ψ
(
q(Ni)

)
I(i) = I(i + 1) + l

(
q(i), q(i + 1), u(i), u(i + 1)

)
.

(5)

Assume that the optimization criterion is to minimize I(0). By using the Bellman
principle, we could then write:

I(Ni) = ψ
(
q(Ni)

)
Iopt(i) = min

u∈Ci

[
l
(
q(i), q(i + 1), u(i), u(i + 1)

)
+ I(i + 1)

]
,

(6)

where Iopt(i) is the optimal return function and Iopt(0) the optimal cost.

2.2. State Space Grids

In the majority of the works mentioned in Section 1, the input vector u is defined
using the joint selection method (or joint space decomposition), which foresees the selection
of r = n − m variables from the joint position vector. Alternatively, the joint combination
method requires the definition of r functions of the joint positions, which is a more generic
setup that also includes joint selection [16]. For instance, for Guigue et al. [12], u is of
dimension one and corresponds to the sum of two joint variables. If k : Rn → Rm is
the direct kinematics function, the inclusion of r additional functions ku(q) yields the
augmented kinematics ka : Rn → Rn, i.e.,[

x

u

]
= ka(q) =

[
k(q)
ku(q)

]
. (7)

In this case, when the redundancy parameter u is given, the remaining joint positions
can be computed as
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q(i) = k−1
a
(
x(i), u(i)

)
. (8)

To deal with a problem that is computationally feasible, it is convenient to discretize
the state space, instead of the input space, so that the admissible inputs are only those that,
once plugged into the dynamic system (1), yield states in the discrete domain. However,
if (8) is considered, the discretization of the state space can be obtained through the
discretization of the input space. Furthermore, let us assume to adopt a joint selection
parametrization, whose practical advantages will be clarified in Section 3. The selected joint
domains are thus discretized according to u = j ◦ Δqu, where ‘◦’ represents the Hadamard
product and Δqu = [Δqu,1, ..., Δqu,r]T is the vector of the sampling intervals, defined on
each axis of the domain and j ∈ Nr. Because of (8), the state space is also discretized. This
allows building a grid of r + 1 dimensions in ti and uj, where i is the stage index, or waypoint
index, and j is the vector of the redundancy parameters indices. Each node (i, j1, j2, ..., jr) in the
grid contains a configuration computed as

qj(i) = k−1
a
(
x(i), uj

)
, (9)

with i ∈ [0, Ni] ⊂ N and j ∈ {[1, Nu,1]× ...× [1, Nu,r]} ⊂ Nr. A pictorial view of this process
is given in Figure 1 for the case j = j ⊂ N (one degree of redundancy, i.e., r = 1): each
column in the grid corresponds to a waypoint on the path and the nodes in a column span
the self-motion manifold(s) lying in the null-space. Grids combine self-motions with path
tracking and are, therefore, the pre-image of the workspace path in the configuration space.

Figure 1. Mapping of the workspace path in the joint space yielding the state space grids.

The “augmented” kinematic function k−1
a in (9), also termed node function, is equiva-

lent to a standard inverse kinematic function of a non-redundant manipulator, meaning
that qj(i) is not unique, but a finite set of solutions exists. The number of such solutions Ng
only depends on the mechanical characteristics of the manipulator and is equal to 2, 2, 4
and 16 for planar, spherical, regional and spatial manipulators respectively [17,18]. How-
ever, for some specific kinematic structures, as well as for some specific trajectories [19],
the actual number of solutions could be less than the maximum theoretical value. For
instance, for most six-axis industrial manipulators, the number of distinct configurations is
equal to 8 [11]. Multiple inverse kinematic solutions imply the existence of multiple grids.
Therefore, let us rewrite Equation (9) to make the grid index g explicit:

q
(g)
j (i) = k−1

a
(
x(i), uj

)
, with g = 1..Ng. (10)
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All the inverse kinematic solutions along the assigned path can be classified so as
to ensure continuity for each single grid, determining a continuous posture set. For a
redundant planar manipulator with Denavit-Hartenberg reference frames, such a classi-
fication reduces to testing the sign of the “elbow” joint, so that one grid represents the
elbow-down configurations and the other the elbow-up ones. If the kinematic chain is made
of many joints, identifying the elbow could be not immediate. Indeed, the elbow itself
depends on the chosen redundancy parameter: it will be the joint variable nullifying the
extended (or augmented) Jacobian’s determinant; its sign will mark the separation between
elbow-down and elbow-up inverse kinematic solutions [14]. In general, if the redundancy
parameter changes, the extended Jacobian changes too, and the joint variable nullifying its
determinant could be different, as well as the criterion to distinguish between continuous
posture sets. For a generic redundant manipulator, the extended Jacobian determinant
could be made of several factors. From the topological point of view, all the solutions deter-
mining the same signs for such factors are said to belong to the same extended aspect [20]
and constitute a continuous posture set. If a grid contains solutions from one and only
one extended aspect, it is said to be homogeneous [14]. This concept will be useful in the
discussion that follows in Section 2.3.

As a concluding remark on state space grids, it is important to highlight that, although
an extended Jacobian is virtually defined once the redundancy parameter is selected, it is
never used for kinematic inversion. In agreement with (10), inverse kinematics is always
positional, so that the optimization is immune to singularities and algorithmic singularities.
As will be clarified next, transitions through singularities are nominal in a discrete dynamic
programming approach and, indeed, this is a relevant advantage of this technique over
others, including calculus of variations.

2.3. DP-Inspired Search Algorithm

If all the states by which the manipulator can transit are available in the grids, the
optimization problem reduces to the selection of the nodes that provide the minimum cost.
In this case, the problem is equivalent to that of finding the optimal path on an acyclic
directed graph [11], which means that an optimal solution can be found regardless of
the Bellman optimality principle, which would rather be necessary if the state set was
continuous. Thus, we keep the problem decomposition typical of dynamic programming,
where the local optimization problem is simply a node selection problem, which is typical of
search algorithms on trees and graphs [21]. With this formulation, several implementations
are possible. For instance, we proposed a forward (i.e., from the first waypoint to the last)
iterative implementation [14], but alternatives exist to proceed backward (i.e., from the last
waypoint to the first) and/or using recursive approaches. It has to be noted that if a forward
implementation was chosen, Equation (6) should be rewritten as

I(0) = ψ
(
q(0)

)
Iopt(i) = min

ui−1∈Ci−1

[
I(i − 1) + l

(
q(i), q(i − 1), u(i), u(i − 1)

)]
.

(11)

In this case it is convenient to redefine u̇(i) as:

u̇(i) =
u(i)− u(i − 1)

τ
(12)

and Ci−1 as:

Ci−1 = Ai−1 ∩
{

u(i − 1) :
u(i)− u(i − 1)

τ
∈ Bi(u(i)), with u(i) ∈ Ai

}
. (13)
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The choice between forward and backward implementation is not, in general, arbitrary,
as it often depends on considerations about performance and on the hardware architecture
used, as well as on the boundary conditions of the problem.

To better understand how boundary conditions affect the choice, we could highlight
that the optimal cost function Iopt(0) (backward) or Iopt(Ni) (forward) are conditioned by the
sequence of inputs enabled Ai at each i. In many practical cases, unless the environment
in which the robot moves is particularly constrained, applications require that either the
initial joint positions or the final ones or both are assigned or otherwise constrained (e.g.,
cyclic joint trajectories). The optimal solution and the value of the cost function will then
vary together with the initial or final set of inputs. So we may write Iopt as a function of
such sets [4], having Iopt(0,ANi ) or Iopt(Ni,A0).

Assume to run our forward dynamic programming algorithm once, starting with
inputs in A0 and ending with inputs in ANi . One execution of the algorithm is sufficient to
provide the solution together with its cost for the optimal joint-space paths ending in each
single element of ANi . From the practical standpoint, the upside is that one may decide to
select a sub-optimal solution if its cost does not vary too much from the optimal cost, while
the final joint positions are much more favorable for the particular task the robot has to
execute.

On the other hand, if one asked for a solution starting from a specific u(0), this may
require an additional execution of the algorithm, either proceeding backward or by explicitly
forcing the initial condition at the moment A0 is defined. In other words, one execution of
the forward algorithm with free initial conditions does not guarantee the computation of a
solution for each input in A0, as well as one execution of the backward algorithm with free
final conditions does not guarantee the computation of a solution for each input in ANi .

Considering the grid representation of Section 2.2, and assuming a forward implemen-
tation, we may rewrite Equation (11) as

I(g)
j (0) = ψ

(
q
(g)
j (0)

)
I(g)
j (i) = min

k,h

[
I(h)k (i − 1) + l(h→g)

k→j

(
q(i), q(i − 1), ..., q(i − d)

)]
, for i > 0

Iopt(Ni) = min
j,g

[
I(g)
j (Ni)

]
,

(14)

where l(h→g)
k→j is the local cost to move from node (i − 1, k) on grid h to the node (i, j) on

grid g, while d ∈ N is the maximum order derivative for which a constraint is defined; for
instance, if acceleration constraints are imposed, d = 2. A pictorial view is given in Figure 2
for r = 1. For each enabled node at i + 1 (in blue), an optimal predecessor is selected among
those that belong to Ci (in green) by solving the local optimization problem in (14). Higher-
order constraints yielding Ci are checked by using the chain of d predecessors represented
by the red arrows, which allows computing the discrete approximations of derivatives.

In case Pareto-optimal solutions have to be found, the cost comparison cannot be
performed, for each pair of nodes at subsequent stages, on the basis of a scalar cost function.
The minimization in (14) is replaced by the dominance rule [4]. Said z the number of
performance indices in the Pareto-optimal setup, an objective vector I∗ is Pareto-optimal if
there does not exist another objective vector I such that Ii ≤ I∗i ∀i = 1, . . . , z and Ij < I∗j for
at least one index j. This definition allows defining the dominance rule: given two nodes
(i − 1, k1) and (i − 1, k2), for which the cumulative cost is computed in transiting towards
the same node (i, j), (i − 1, k1) is said to dominate (i − 1, k2) if (i − 1, k1) improves the
vectorial cost function of (i − 1, k2) for at least one performance index, without worsening
the others. As a consequence, the optimal predecessor of a given node at i is not a single
node at i − 1 (the predecessor is not unique), as each node might improve the objective
vector in a different direction. Every time a dominating node is identified, it enters the list
of the optimal predecessors of (i, j) and the dominated nodes are removed from the same
list. As for the scalar objective case, the process is repeated for each i and j.
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Figure 2. Pictorial representation of the local optimization problem.

With respect to previous implementations, our algorithms [9,14] provide the evidence
that the resolution-optimal solution can be achieved by applying (14) onto all the Ng grids
at the same time, i.e., exploring the whole configuration space, and transiting between
such grids when necessary, through singularities or semi-singularities of the kinematic
chain, using configurations from different extended aspects. They differ in that the former
does not make any specific assumption on the homogeneity of the grids, while the latter
assumes to work with homogeneous grids to reduce the computational complexity. Both
algorithms adopt a forward iterative implementation since, in practical situations, it is more
convenient to compute an optimal solution for each single final configuration, starting
from one initial configuration, corresponding to the current state of the system. In this
communication, we do not make any prior assumption on the grids [9]. However, if we
can ensure or detect that grids are homogeneous, we can exploit this information to speed
up the search [14].

The computational complexity of the algorithm [9], assuming that the same number
of samples Nu is chosen for all the redundancy parameters, is O(Ni N2r

u N2
g). This is due to

the fact that for each waypoint (Ni waypoints overall) and for each node in the grids (Nr
uNg

nodes for each waypoint), a comparison shall be made with each node at the next waypoint
(Nr

uNg overall). If the grids are homogeneous, transition points (i.e., nodes corresponding
to singularities or semi-singularities where the transition between grids/extended aspects
is possible) are clearly identified and the comparisons with the nodes at the next waypoint
are only performed within the same grid, lowering the computational complexity to
O(Ni N2r

u Ng). For a given manipulator, Ng is constant, regardless of the trajectory and, in
general, Ng << Nu. Thus, the computational complexity can be approximated, in most
of the cases, to O(Ni N2r

u ). Also, homogeneous grids are characterized by continuity of
solutions, meaning that, if a certain node does not satisfy the velocity constraints, a farther
node will not satisfy them either: this is the assumption at the basis of our optimization [14].
In other words, the velocity constraints allow reducing the number of comparisons for
each couple of waypoints to a limited window of nodes, whose cardinality is Nr

w, with
Nw << Nu. Therefore, the computational complexity reduces to O(Ni Nr

uNr
w).
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Since all the nodes satisfying the constraints are tested to find the optimum at each
stage, resolution-optimality is guaranteed even though the problem in (14) is not convex.
Indeed, our method is based on the Bellman optimality principle, ensuring that the solution
of the lowest cost is returned for a given discretization of the state space. The compliance
of our method to the necessary conditions of calculus of variations has been verified in [9],
for a much simpler use case (a planar robot), for which a formulation based on calculus of
variations can be obtained straightforwardly.

While this approach might sound demanding in terms of CPU time and memory
occupancy, the results of the computational complexity analysis, as well as the specific
topological features of spatial robots subject to real-world constraints suggest that solving
problem (14) is doable within a time horizon that is compatible with the off-line planning
applications mentioned in Section 1. This is shown in Section 4 with an example.

3. ROS Implementation

3.1. Designing an Extension for MoveIt!

MoveIt! [22] is the planning framework of ROS, including several libraries for motion
planning, manipulation, 3D perception, kinematics, control and navigation. To the pur-
pose of extending it to perform resolution-optimal inverse kinematics along a specified
workspace trajectory, we focus on the analysis of three concepts of interest, which are
capabilities, planners and inverse kinematics.

For a robotic manipulator, the MoveIt! user can plan joint-space trajectories and
perform several other actions through capabilities, exposed by the move_group node. For
instance, the MoveGroupCartesianPathService is used to plan Cartesian paths (straight lines)
passing by pre-defined waypoints, the MoveGroupPlanService performs the point-to-point
trajectory planning in the joint space, the MoveGroupKinematicsService computes direct and
inverse kinematics, and so on.

Except for the MoveGroupCartesianPathService, the move_group node does not allow for
any other form of planning in the joint space along a constrained end-effector trajectory.
MoveIt! provides several planners, such as OMPL and STOMP [23], just to mention some,
which are typically employed in a point-to-point planning scenario, i.e., move the end-
effector to a new location along an arbitrary path. Additional constraints can be specified in
the Motion Plan Request [24] for any link in the kinematic chain, including the end-effector,
but planning for complex paths may not be straightforward and just a few possibilities
exist to tune the process to work with generic (possibly multiple) objective functions and
application-specific constraints. As far as the MoveGroupCartesianPathService is concerned,
the user defines the workspace waypoints, then the end-effector trajectory is simply cal-
culated by first order interpolation. The joint-space planning consists of computing the
inverse kinematics for each single waypoint in the interpolated set, but, for a redundant
manipulator, no mean exists to control the optimality of the solutions in the joint space
along the whole trajectory.

On the other hand, since the dynamic programming algorithm presented in Section 2
is no more than a resolution-optimal inverse kinematic procedure, we may think to extend
the inverse kinematics capabilities of MoveIt!. Nonetheless, the resolution-optimal planning
is defined on a pre-defined set of waypoints, so that the objective function and constraints
can regard the derivatives of the joint position variables, which will depend on the time
law defined at the end-effector.

The algorithm we aim to extend MoveIt! with is a planner in that it computes a joint-
space trajectory from infinite possible solutions, but, at the same time, it is an IK solver,
as it works with an assigned workspace trajectory. Because resolution-optimal inverse
kinematics is different from other capabilities of the framework, we believe that providing
the functionality as a new move_group capability is the most seamless solution.
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3.2. Requirements

On the basis of the considerations above, let us consider the following requirements
for our extensions:

Req. 1: to allow for a seamless integration with the ROS ecosystem, so as to reuse,
as much as possible, the available technologies (e.g., visualization and analy-
sis tools);

Req. 2: to support the generation of multiple homogeneous grids;
Req. 3: to perform a search on such grids to find the resolution-optimal joint-space

solution [9];
Req. 4: to support the optimization for homogeneous grids [14];
Req. 5: to allow for the addition of user-defined constraints and objective functions;
Req. 6: to allow for the topological analysis of the state space and the resolution-optimal

trajectory.

3.3. Context

Our moveit_dp_redundancy_resolution package, publicly available on the Internet [25],
constitutes an additional move_group capability, which is offered to the MoveIt! users through
a ros::ServiceServer. Specific messages, called GetOptimizedJointsTrajectory, are exchanged through
the service interface. The user can be any ROS node that implements a ros::ServiceClient interface
and is able to assembly and send a GetOptimizedJointsTrajectoryRequest.

To exploit, as much as possible, the available visualization and analysis tools, i.e.,
Req. 1:, the results of the computation performed by the resolution-optimal planner are
published through ros::Publisher objects on specific pre-existing topics, so that other nodes
from the ROS ecosystem, such as RViz and rqt_multiplot, can be used to animate the
robot along the assigned trajectory and to plot the resulting joint position, velocity and
acceleration curves respectively.

Furthermore, in order to satisfy Req. 6:, several functions are provided to export the
data structures of interest to the filesystem, to be later imported by additional analysis
tools, such as MATLAB functions/scripts or replayed through ROS bagfiles.

The moveit_dp_redundancy_resolution context is reported in Figure 3, where the exten-
sions are drawn in red. Together with the main ROS developments, additional analysis
functions have been developed in MATLAB to perform the off-line topological analysis of
both the state space and the resulting resolution-optimal joint-space trajectory. State space
grids are exported to custom binary formats, while optimal trajectories are exported to
bagfiles and imported in MATLAB through the rosbag interface.

Figure 3. Context diagram.
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3.4. Architectural Design

Internally, the ros::ServiceServer is hosted in the MoveGroupDPRedundancyResolution-
Service class, which constitutes the capability plugin. It is in charge of receiving requests,
calling the lower level functions, building up responses and disseminating them through
publishers, as well as generating bagfiles. It is instantiated at run-time, depending on the
configured move_group capabilities and usually stands next to other default capabilities, as
mentioned in Section 3.1. Its client counterpart, the robot_controller node, can call its service
or other move_group capabilities, covering a broad range of planning scenarios. For example,
one may request a point-to-point planning to OMPL and then use the generated workspace
trajectory to issue a resolution-optimal redundancy resolution request. The same could
be done with a workspace trajectory generated with the MoveGroupCartesianPathService
capability, as will be shown in Section 4.

Behind the MoveGroupDPRedundancyResolutionService, several other objects interact
to satisfy the requirements of Section 3.2. In particular, the StateSpaceGrid is the class
implementing the data structure representing the joint space along the assigned trajectory.
It provides import/export functions for the grid’s custom binary file format as well as
the generation of colormaps in the form of raster images that can be directly interpreted
by the human user for quicklook purposes. To deal with homogeneous grids, state space
grids cannot be generated independently, as it is necessary that the multiple IK solutions
are classified per extended aspect, as observed in Section 2.2. For this reason, multiple
grids are created by a single execution of the IK solver, supervised by a StateSpaceMultiGrid
object. Its primary objective is to control the non-redundant IK solver implementing (10)
and to classify the solutions, so as to satisfy Req. 2:.

To speed up the calculation of the state space grids, it is convenient to adopt an analytic
inverse kinematic solver that is several orders of magnitude faster than numeric solvers. In
the ROS framework, a possibility is given by IKFast, which can find all the IK solutions on
the order of 6 microseconds, while most numeric solvers may require even 10 milliseconds
or longer, and convergence is not certain [26]. IKFast performs an off-line analytic kinematic
inversion and generates a C++ library containing the algebraic IK solver, able to return all
the solutions for given end-effector pose. The off-line process may require several minutes,
but is independent from the assigned trajectory and, thus, needs to be executed only once
for a given kinematic chain. Currently, IKFast is able to manage open kinematic chains with
one degree of redundancy. The value of the redundancy parameter has to be provided at
the time the algebraic solver is called, which is the case of the DP grids considered in this
communication. Nonetheless, it is worth observing that, in this context, it is not necessary
that the IK solver natively supports redundant inverse kinematics, as the redundancy
parameters are given for each single grid node and the inverse kinematics always involve a
non-redundant kinematic chain. This means that our solution is scalable with respect to an
arbitrary redundancy degree and IKFast can always be used, provided a suitable definition
of the redundant (i.e., including the redundant joints) and non-redundant (i.e., excluding
the redundant joints) planning groups.

The equations in (14) are implemented by the DynamicProgrammingSolver class, sup-
porting multi-grid search, thereby satisfying Req. 3:. Since state space grids are added to
the solver one by one, specific posture sets can be excluded by not passing them to the
solver. To satisfy Req. 4:, the optimization can be explicitly enabled/disabled, depending
on whether homogeneous grids can be obtained.

The moveit_dp_redundancy_resolution package provides two extension points, which
are the abstract classes PerformanceIndex and StateSpaceNode. The former allows for the
definition, through a specific XML-based language, of custom performance indices that can
be combined together in an ObjectiveFunction. This is done offline, through configuration
files. Optionally, performance indices can be characterized by a weight, used for weighted
optimization. Otherwise, they are inserted in a vector and the solution will be Pareto-
optimal (in a discrete sense, as discussed above). On the other hand, the StateSpaceNode
class allows for the definition of application-specific semantics (even beyond resolution-
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optimal inverse kinematics) and related constraints. For instance, one may think of using
the same classes for time-optimal planning along specified paths, provided that a specific
StateSpaceNode implementation is given. These two classes allow satisfying Req. 5:.

The structure of the described classes is reported in the hybrid decomposition/class
diagram of Figure 4, while its dynamic behavior, for the operations yielding the dynamic
programming redundancy resolution, is represented in the sequence diagram of Figure 5.

Figure 4. Hybrid decomposition/class diagram.

3.5. Use of Numeric Solvers

IKFast is characterized by the nice property of returning all the IK solutions in a
single call to the solver. Furthermore, under certain circumstances, such solutions could be
returned in the same order with respect to the extended aspects. When this happens, no
post-processing is required on the IK solutions to generate homogeneous grids. Otherwise,
either an explicit analytic factorization of the Jacobian is available, or numeric techniques
are employed in order to ensure continuity in the state space.

If an analytic solution cannot be computed at all, or is hard to obtain, numeric solvers
can be used instead. They are characterized by the property of returning one or no solution
for each single call to the solver and their processing is notoriously time-consuming. To
still have some control on the execution time, it is extremely important that the conditions
characterizing the extended aspects are known beforehand, so that the search space of the
solver can be drastically reduced. If this is not the case, the employment of numeric solvers
practically rules out the usage of dynamic programming, as multiple IK searches do not
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guarantee the achievement of solutions in different extended aspects, but, worse, the same
solution may be returned multiple times, making inverse kinematics a time-consuming
try-and-error process.

Figure 5. Sequence diagram representing dynamic programming redundancy resolution.

In our implementation, we also provide the possibility of using the numeric solver
KDL [27], but with planar manipulators only, where we know the condition separating the
(two) extended aspects. This capability is transparently provided by the MoveGroupDPRe-
dundancyResolutionService class. In our experience, for more complex cases where the
Jacobian’s factorization is not available, the grids generation time becomes much greater
than the time needed for the DP search itself and, consequently, the algorithm becomes
unusable in any case of practical relevance.

We have been using the KDL-based implementation for planar robots to validate our
implementation against a known use case employed in previous works [2,14,28] and have
kept this capability for further similar cases involving planar manipulators.
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4. Results

4.1. Use Case Description

To demonstrate that the methodology developed in the previous sections can be
effectively applied to a real scenario, let us consider a real robotic arm with 7 degrees of
freedom, to which a task constrained in position and orientation is assigned, with a time
law. In a first trial, the objective is to reduce the energy consumption indirectly through
the minimization of the square norm of joint velocities. Sub-optimal solutions are not of
interest, hence the globally optimal one must be found. In a second trial, while minimizing
the energy consumption as before, in a Pareto-optimal setup, the distance between the
elbow (corresponding to the fourth joint) and an obstacle in the workspace is maximized so
as to find a collision-free joint-space trajectory. Since the Panda robot by Franka Emika [29]
has 7 degrees of freedom and is the flagship robot of MoveIt!, it is a convenient choice for
the experiment at hand.

The modified Denavit-Hartenberg parameters [30] of the Panda robot [31] are reported
in Table 1. Let us set the joint position, velocity and acceleration limits according to the
datasheet. Limits on the jerk are not considered, but, as noticed by Gao et al. [5], they
contribute to generating smoother solutions, which is necessary in all the cases where the
resulting trajectory has to be executed on real hardware.

Table 1. Panda modified Denavit-Hartenberg parameters.

di θi ai αi

J1 0.333 q1 0 0
J2 0 q2 0 −π/2
J3 0.316 q3 0 π/2
J4 0 q4 0.0825 π/2
J5 0.384 q5 −0.0825 −π/2
J6 0 q6 0 π/2
J7 0 q7 0.088 π/2
Flange 0.107 0 0 0

The workspace path is defined in terms of position and orientation and is depicted in
Figure 6, together with the base reference frame and the obstacle. The axes x, y and z are in
red, green and blue respectively. The planning is performed for the end-effector’s flange
that has to visit five waypoints, in the order xA, xB, xC, xD and xE, describing the corners of
a rectangle in the y-z plane, with variable orientation. Their values with respect to the base
reference frame, considering a roll-pitch-yaw representation for the orientation, are

xA =

⎡⎢⎢⎢⎢⎢⎢⎣

0.3
−0.3
0.8
0

−π/2
0

⎤⎥⎥⎥⎥⎥⎥⎦ xB =

⎡⎢⎢⎢⎢⎢⎢⎣

0.3
−0.3
0.4
0

−π/2
0

⎤⎥⎥⎥⎥⎥⎥⎦ xC =

⎡⎢⎢⎢⎢⎢⎢⎣

0.3
0.3
0.4
0
−π

0

⎤⎥⎥⎥⎥⎥⎥⎦ xD =

⎡⎢⎢⎢⎢⎢⎢⎣

0.3
0.3
0.8
0

π/2
0

⎤⎥⎥⎥⎥⎥⎥⎦ xE =

⎡⎢⎢⎢⎢⎢⎢⎣

0.3
−0.3
0.8

π/2
π/2

0

⎤⎥⎥⎥⎥⎥⎥⎦. (15)

128



Robotics 2021, 10, 42

Figure 6. Workspace path assigned to the Panda arm, together with the base reference frame
and obstacle.

All the points in between each pair of waypoints are obtained by linear interpolation,
with a linear resolution not exceeding 0.01 m. A time law is defined so as to complete the
whole trajectory in 60 s, with a constant time offset between consecutive points. The total
number of points is Ni = 203.

4.2. Grids Computation

As mentioned above in Section 3.4, grids are computed through the StateSpaceMulti-
Grid class, making use of the IKFast kinematic plugin. The plugin is based on a C++ solver
generated off-line, which requires to select a redundant joint with respect to which inverse
kinematics expressions are computed. In general, the choice of the redundancy parameter
is not arbitrary, for two reasons:

• inverse kinematics in (10) foresees the availability of an analytical IK solver: in order
for the solver to exactly implement (10), it must be parametrized with respect to the
same parameter u;

• when fixing the redundant joints to specific values, the manipulator must be no longer
redundant in order for (10) to return a finite number of solutions: at algorithmic
singularities, i.e., configurations nullifying the determinant of the extended Jacobian,
this is not the case.

Both issues are beyond the scope of this paper, but we note that solutions exist to
select redundant joints in view of performing inverse kinematics, as well as correctly repre-
senting internal motions [32]. In our case, we can obtain an IKFast solver by selecting the
redundancy parameter u = q4. In fact, since joint 4 is in the middle of the kinematic chain
and its axis does not intersect any other joint axis, we minimize the chances of encountering
degenerate cases and of handling more complicated expressions [26]. A posteriori, we
verify that the selected parameter is representative of the internal motion for the assigned
path, i.e., state space grids do not degenerate to lines.

The redundancy parameter can be discretized so that Nu = 2880, either between
−180 deg and 180 deg, which yields a resolution of 0.125 deg, or between its physical
limits, i.e., −176 deg and −4 deg, which yields a resolution of about 0.06 deg. The Panda
manipulator has 8 IK solutions, i.e., Ng = 8, for all the points on the trajectory, but in
practice, because of joint limits, some points have less. The “slices” corresponding to q1 of
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the grids computed with IKFast are reported in Figure 7, while those computed neglecting
joint limits, for comparison purposes, are reported in Figure 8.

The first interesting thing to notice about these grids is that they are homogeneous,
as evident from those of Figure 8. The extended Jacobian Ja, obtained from the 6 × 7
rectangular Jacobian by adding the row [0 0 0 1 0 0 0], cannot be easily factorized, implying
that we are not provided with analytic conditions to classify the solutions of IKFast. For this
reason, the following three conditions are used, obtained from an a-posteriori numerical
analysis of the solution sets:

• |J(4)r | > 0;
• q2 > 0;
• q5 > 0.

Each of the grids in Figures 7 and 8 corresponds to a different combination of the
conditions above, providing an homogeneous classification of the solutions. It is possible to
demonstrate that both q2 and q5 are factors of |Ja| and, being the “augmented” Panda ma-
nipulator of type 1, according to Wenger [19], they are sufficient conditions for classifying
the solutions.

The second trait of interest is that there might exist redundancy parameters other than
q4 that are more representative of the internal motion, for the trajectory assigned. In fact,
by looking at the grids of Figure 8 (without joint limits), a large portion of the joint domain
does not contain any solution. This means that large variations of the other joints shall
be expected for little variations of the redundancy parameter: a fine discretization of the
redundancy parameter is needed for the dynamic programming algorithm to provide a
smooth solution. We recall that, in our case, the selection of q4 is unavoidable for IKFast to
produce an anlytical IK solver.

Lastly, it is worth noting that joint limits, in real scenarios, notably reduce the search
space, giving a chance to the dynamic programming algorithm to find the resolution-
optimal solution in a short time. Also, because of joint limits, the Panda is not able to
track the assigned trajectory remaining in the same extended aspect, as none of the grids
admits a feasible joint-space path from xA (corresponding to i = 0) to xE (corresponding
to i = 203). Hence, the robot will need to reconfigure its posture on the way by passing
through singularities of its kinematic subchains.

4.3. Globally Optimal and Pareto-Optimal Solution

Since grids are homogeneous, the search can be optimized. Thus, both our algo-
rithms [9,14] can be executed to find the resolution-optimal solution on the grids of Figure 7.
Table 2 reports the execution time of both algorithms and different discretization steps of
the redundancy parameter, together with the associated cost function, for the case where
only energy minimization is considered. Tests have been executed on a 64-bit Ubuntu
16.04 LTS OS running on an Intel® CoreTM i7-2600K CPU @ 3.40GHz × 8. No multi-core
execution model has been used in the tests.
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Figure 7. Panda grids (each corresponding to a different extended aspect) representing q1 for the trajectory described in
Section 4.1 considering joint limits.
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Figure 8. Panda grids (each corresponding to a different extended aspect) representing q1 for the trajectory described in
Section 4.1 neglecting joint limits.
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Table 2. Cost function and performance of DP redundancy resolution algorithm for the Panda
example, minimizing the square norm of velocities.

Nu
Redundancy Parameter

Resolution
Non-Optimized

Algorithm [9]
Optimized

Algorithm [14]
Cost

360 0.48 deg 11 s 11 s 4.27
720 0.24 deg 54 s 54 s 2.76
1440 0.12 deg 4 min 4 min 2.44
2880 0.06 deg 14 min 13 min 2.16
4000 0.04 deg 27 min 26 min 2.04

It is interesting to notice that there is not any considerable improvement in the per-
formance by using the optimized algorithm in place of the unoptimized algorithm. This
means that either position or acceleration limits are almost everywhere stricter than velocity
limits for the assigned trajectory. This is in contrast to the use cases where the existence of
much less unfeasible cells (i.e., white regions) allows velocity constraints activate first [14].

The convergence rate that we may estimate from the values of the cost function,
compared to our previous use case [14], is a confirmation that q4 is very sensitive for the
considered trajectory, meaning that small variations of q4 yield considerable changes in the
solution for the other joints and, as consequence, in the final value of the cost function.

The solution obtained for Nu = 4000 is reported in Figure 9 (left). It starts from grid 5
(i.e., |J(4)r | < 0, q2 < 0, q5 > 0), then, at t = 3.3 s (i = 12), it jumps to grid 6 (i.e., |J(4)r | > 0,
q2 < 0, q5 > 0) and, at t = 14.6 s (i = 50), to grid 1 (i.e., |J(4)r | < 0, q2 < 0, q5 < 0).
For the majority of the trajectory, up to t = 48.7 s (i = 165), the solution lies on grid 1.
Afterwards, it transits to grid 2 (i.e., |J(4)r | > 0, q2 < 0, q5 < 0) and terminates, achieving 3
posture reconfigurations in total and visiting 4 different extended aspects. As commented
in Section 2.3, posture reconfigurations always happen on the boundaries of the feasible
(non-white) regions, where two or more of the maps have the same color for all the joints
(only q1 is shown in Figure 7). It is easy to verify that this is the case for the sequence of
grids visited by the algorithm and transitions at the stages mentioned above.

In the Pareto-optimal setup, in order to provide the solver with a unique optimization
criterion (minimization or maximization), the distance from the obstacle is maximized by
minimizing the distance between joint 4 and the point p = [0,−2, 0.5], lying on the opposite
side with respect to the robot, with the effect of “pulling” it away from the obstacle. Among
the solutions in the Pareto set, we select the one that minimizes the norm of the objective
vector. For Nu = 4000, the cost is [3.20, 191.33], corresponding to square norm of velocities
and distance from p respectively, while the joint-space solution is shown in Figure 9 (right).
As shown in the video [33], the dynamic programming algorithm achieves the computation
of an obstacle-free trajectory, while the robot collides if only the square norm of velocities
is minimized.

As far as the solutions of Figure 9 are concerned, the reader may clearly notice the
discontinuities in the derivative of the joint positions at each of the three intermediate
corners of the trajectory. In between these points the curves are not everywhere smooth.
As commented by Gao et al. [5], either a post-processing step or the introduction of jerk
constraints would be desirable to allow for the execution on real hardware.
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Figure 9. Discrete globally optimal (left) and Pareto-optimal (right) solution for the Panda example.

5. Discussion

With respect to previous works using a similar DP-based problem formulation, we
focused on the design of a maintainable, re-usable, modular and flexible ROS extension
that can be generic enough to be employed in a broad range of applications. We provided
clear extension points to adapt the software to specific scenarios and introduce custom
requirements, such as specific constraints and objective functions. Our solution foresees
the development of a minimal amount of code to introduce such modifications, because,
when possible, they are enforced through configuration files.

The whole extension is provided in the form of a new move_group capability, meaning
that the already existing interfaces are reused as much as possible, so that the user can ben-
efit from already available analysis and visualization tools. Also, we implemented several
file export functions, relying as much as possible on existing formats, e.g., bagfiles, so that
further tools can be developed even in environments outside of ROS, such as MATLAB.

We emphasized the capability of our algorithm of exploring multiple grids at the
same time, which was not evident in previous works, thus ensuring the achievement of
the resolution-optimal solution. In our treatment, we did not renounce to the topologi-
cal analysis of both the manipulator’s null space along the trajectory and the resulting
reslution-optimal joint-space solution. Although this is more complicated for spatial ma-
nipulators than planar ones, some key features of the problem can be highlighted, as the
feasibility of the task and the necessity of traversing singularities or semi-singularities to
complete it. Attention was paid to the computational complexity and, in fact, we extended
previous algorithms [9,14] to be applied to real robots and demonstrated that, depending
on the chosen redundancy parameter and joint limits, not necessarily homogeneous grids
yield lower computation times. However, on the other hand, we showed that for real
manipulators, dynamic programming is perfectly suited for redundancy resolution as the
constraints characterizing real applications drastically reduce the search space and yield a
fast convergence.

In our implementation, inverse kinematics plays an important role. First of all, it
only concerns position kinematics, thus the robot is free to pass through its singularities
as no Jacobian inversion is performed. Second, if an analytic IK solver is available, state
space grids can be computed without any knowledge of the extended aspects, and their
homogeneity can be imposed numerically. On the contrary, if an analytic solver is not
available, and the extended Jacobian cannot be factorized, finding all the possible solutions
could be cumbersome, especially in the presence of joint limits. If there is not any certainty
that the state space is completely represented, the global optimality of the solution could
be affected as well.
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Beside possible application-specific extensions, several improvements are possible
for our ROS-based implementation. For instance, because the state space is discretized,
it might be possible that the solution resulting from the application of the algorithms
described in Section 2.3 is not feasible on real hardware. Rather, in other circumstances, it
might happen that the trajectory is feasible, but it is not smooth enough to be repeated over
and over again without damaging the mechanical parts on the long run. The proposed
formulation is straightforward, but, in practice, is not enough to ensure that the motion is
always feasible and smooth. In fact, on one hand, the output joint trajectory could exceed
joint torque capacities and, on the other, could result in oscillations of the joints because of
its non-smoothness. Indeed, while the usage of acceleration constraints allows for smooth
joint position functions, it might not be enough to guarantee smoothness at velocity level.
In such cases, it might be suitable considering additional constraints on the derivative of
the acceleration, which could also be provided in the robots datasheets [5].

Together with the imposed constraints, the discretization step of the redundancy pa-
rameter also plays an important role in the generation of smooth joint-space trajectories. It
is clear that the finer the discretization is, the smoother the trajectory can be, but this comes
to the detriment of time. Indeed, some redundancy parameters have a lower sensitivity
with respect to the motion to be performed, meaning that for large changes of their value,
all the other variables in play, such as the joint position variables, change less. If this is
the case, a coarser discretization can be used for the redundancy parameter, as it is very
representative of the motion, resulting in a smooth trajectory, still at a reasonable computa-
tion time. Alternatively, an iterative approach can be used, where a finer discretization is
performed in the neighborhood of a solution obtained with a coarser discretization at the
previous iteration [5]. This technique yields satisfactory results, but may compromise the
optimality of the solution if the first discretization is too coarse.

In some other works [10,11], the trajectory smoothness has also been explicitly in-
cluded in the performance index to optimize. Specific smoothness measures can be suitably
combined with other performance indices of interest for the specific application, but the
result will always be a sub-optimal solution with respect to each of the indices. Gao et al. [5]
consider a different approach, which is based on the post-processing of the solution. In
particular, the redundancy parameter curve is smoothened by applying a fifth-order poly-
nomial approximation. Then, in order to guarantee that the trajectory is exactly tracked,
inverse kinematics is solved again with the new values of the redundancy parameter.

6. Conclusions

In this paper we proposed a novel architecture to perform redundancy resolution
through the global optimization of performance indices, employing a dynamic program-
ming formalism. In particular, the problem formulation foresees the discretization of the
state space and its representation in the form of multiple grids. Then, a DP-inspired graph
search algorithm is used to ensure the achievement of the resolution-optimal solution.

The developed software components extend the open-source framework ROS, and
integrate seamlessly with the existing packages so as to promote the reuse of the available
visualization and analysis tools. On the other hand, they provide clear extension points
that can be used to introduce user-specific requirements, so that the new capability can be
easily adopted in a broad range of applications, with a minimum development effort, even
beyond redundancy resolution.

If the underlying state space grids are characterized by continuity, i.e., they are homo-
geneous, the developed algorithm can exploit this feature to optimize the multi-grid search.
This is particularly advantageous when the velocity limits are stricter than other constraints.
Moreover, the proposed architecture provides the means to analyze the intermediate and
final products of the computation from the topological point of view, and further analysis
tools can be developed in MATLAB or other languages.

Nonetheless, our architecture does not guarantee that the resolution-optimal joint-
space solution can be directly sent to a real robot controller, although additional con-
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straints and/or processing steps can be defined either through our extension points or the
ROS ecosystem.

Future work may concern the introduction of parallel computational models, which
would further improve the performance of the algorithm, as well as the extension toward
other problems/semantics, such as time-optimal planning along specified paths.
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Abstract: Forward kinematics is one of the main research fields in robotics, where the goal is
to obtain the position of a robot’s end-effector from its joint parameters. This work presents a
method for achieving this using a recursive algorithm that builds a 3D computational model from
the configuration of a robotic system. The orientation of the robot’s links is determined from the
joint angles using Euler Angles and rotation matrices. Kinematic links are modeled sequentially,
the properties of each link are defined by its geometry, the geometry of its predecessor in the
kinematic chain, and the configuration of the joint between them. This makes this method ideal for
tackling serial kinematic chains. The proposed method is advantageous due to its theoretical increase
in computational efficiency, ease of implementation, and simple interpretation of the geometric
operations. This method is tested and validated by modeling a human-inspired robotic mobile
manipulator (CHARMIE) in Python.

Keywords: forward kinematics; computational mechanics; robot manipulator kinematics; 3D
robot modeling

1. Introduction

The control of robotic manipulators is strongly linked to the study of their motion.
Forward kinematics refers to the process of determining the position and orientation of a
robotic end effector with known joint parameters [1]. Although by definition, the position
and orientation of all links are not required to solve a forward kinematics problem, in
this paper, the goal is to obtain the complete definition of all the link’s orientations and
positions to fully describe the robot’s 3D configuration.

The most used method for the kinematic analysis of robotic manipulators is the
Denavit–Hartenberg parameters [1]. This approach concisely allows the characterization
of each link using four parameters, providing a compact definition of a robot’s kinematic
structure. However, this methodology has two drawbacks. The first is fixing the choice
of axes, which is defined by the orientation of the joints. This prevents researchers from
picking a more natural axes orientation based on the configuration of the kinematic links,
where each axis could be associated with a specific physical meaning (for example, using
the z-axis for heights, or the length of parts). The second is that calculations are made based
on homogeneous transformations. These [4 × 4] matrices define rotations and translations
in a single operation, however, the last line of the matrix does not contain any relevant
information, being constituted by 0 s and 1 s to allow algebraic operations. These additional
multiplications reduce the computational efficiency of the forward kinematics analysis.
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A known solution to this problem is to divide translations and rotations into different
operations [2].

This paper presents an alternative generalizable methodology that intends to deal
with both of these limitations. This method is based on a recursive algorithm that builds
a 3D model of the robot from its base, to its end-effector. The algorithm progresses along
the kinematic chain, determining the rotation matrix R0

i that defines the orientation of
each link i. This matrix is obtained from the orientation of the preceding link R0

i−1, and
the relative orientation between the current link and its predecessor Ri−1

i . The rotation
between consecutive links is defined using Euler Angles. After the orientation of a link
is determined, its position is obtained from the joint coordinates resulting from the 3D
modeling of its predecessor i − 1. This process provides the necessary information for the
definition of the geometry of each of the robot’s links, the determination of the position
and orientation of these links, and their three-dimensional representation.

This method was implemented in Python using the numpy library for matrix and trigonom-
etry operations, and Matplotlib for the 3D plotting of the robot’s points to allow the observation
of its behavior in a 3D graphical interface. For validation, the algorithm was used to analyze
CHARMIE [3], a human-inspired mobile manipulator robot (Figure 1). This robot also serves as
an example throughout the paper to better explain the developed algorithm.

Figure 1. 3D model of the CHARMIE mobile manipulator in a CAD software (left) and in the
developed kinematics simulation environment (right). On the left, the robot’s kinematic links are
color coded and named.

In Figure 1 the robot’s base is shown as a single kinematic link. At this stage, the
behaviour of the omnidirectional locomotive system was not considered (the wheels and
suspension system are represented, but they do not move in relation to the robot). In-
stead, as a simplification, the robot was modeled as having its base sliding (in the x and
y axes) about the floor using two linear actuators, and rotating (around the z-axis) using
a revolute actuator. The arms and end-effector shown in the CAD model are mere place-
holdes, since one of the results from this kinematic analysis is the study responsible for
dimensioning them.

The main contribution of this paper is the presentation and explanation of a methodol-
ogy for the study of forward kinematics. This methodology produces a computationally
defined 3D model of a robot, which can be used for a set of relevant analyses in the field of
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robotics. Two examples of these applications are the studies being conducted in CHARMIE,
where this kinematic model is being used not only as the starting point to build a simu-
lation environment for the training of a neural network to control the robot’s motion and
trajectories, but also for multibody dynamics analysis, where the recursive Newton Euler
algorithm described in [4] is used to compute the robot’s inverse dynamics. The cited
Newton Euler algorithm is fully compatible with the methodology presented in this paper,
directly using the information obtained from it (positions, configuration of each link, and
orientations between consecutive bodies in the form of rotation matrices).

To fully describe and validate this methodology, the paper is structured as follows: in
Section 2 a Literature Review is provided, where several methods for the 3D representation
of rotations are listed and described, followed by a justification of the choice of method for
this paper; Section 3 presents, formulates, explains and describes the recursive algorithm
developed in this paper, dividing it into three simple steps; Section 4 provides an example
of application of this methodology, using it to build a 3D model of the CHARMIE mobile
manipulator, defining the robot and explaining how the modeling of some of its particu-
larities was dealt with; Section 5 finishes the paper discussing results and commenting on
possible future works.

2. Literature Review

The forward kinematic analysis can be tackled as a matter of obtaining the 3D configu-
ration of a group of bodies (links) from a set of known conditions (joint parameters). It is
possible to fully define a rigid body in 3D space with its orientation and the coordinates
of one of its points. The position of a point, in Euclidian space, is easily described using
three coordinates: x, y, and z, however, defining three-dimensional rotations, often denoted
SO(3), is a more complex topic. Several formalisms have been developed for this purpose,
they can be used together, and the conversion between them is a well-studied process.
In this Literature Review, some of the main notations used in the field of robotics for the
description of 3D rotations are listed and described, followed by a few examples of works
that use them. This section finishes by presenting and justifying the method chosen for
this paper.

Rotation Matrices are [3 × 3] matrices commonly used to define the rotation between
two coordinate frames i and j. A rotation matrix Ri

j describes the rotation from frame i
to frame j. These matrices represent the dot product between the basis vectors [x̂i, ŷi, ẑi]
and [x̂j, ŷj, ẑj] of the two considered frames [2]. When multiplying the coordinates of
a point P with the rotation matrix Ri

j, the result is a transformation which follows the
rotation defined between frames i and j. This can be used to convert the coordinates of
points between references with different orientations. Rotation matrices can be combined
by simple matrix multiplication (Ri

k = Ri
j Rj

k), allowing the representation of a limitless
sequence of rotations. Due to the simplicity of their manipulation, they are often used
to describe rotations obtained from the application of different formalisms, such as Euler
Angles [5].

The Denavit—Hartenberg convention is one of the most used notations for the kine-
matic analysis of serial manipulators. Four parameters are used to describe the transforma-
tions between each consecutive element of the kinematic chain: ai and αi describe the link’s
length and twist; di and θi describe the joint’s offset and angle [6]. To apply this method, a
set of reference axes are attached to the links of the kinematic chain. The definition of these
references is based on the orientation and position of the joints and follows a set of rules
and conventions usually described by a set of steps (such as presented in [1]), to guarantee
the cohesion of the resulting Denavit–Hartenberg parameters. From these four parameters,
a [4 × 4] homogeneous transformation matrix is constructed containing information re-
garding the rotation and translation between each consecutive pair of links. These matrices
can be combined, multiplied, and easily manipulated like the aforementioned rotation
matrices. Mostly used for serial manipulators, this method is highly advantageous due
to: representing robot kinematics in a compact form; producing consistent results thanks
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to the rigid and detailed methodology; the vast amount of algorithms and works already
developed for it. Examples of papers using this notation are available in [7–9].

Euler angles represent any rotation of a three-dimensional object as a sequence of three
consecutive rotations. These rotations can be extrinsic (around the fixed motionless original
xyz axes) or intrinsic (around the rotating coordinate axes of the considered body). The
sequence of rotations uses proper Euler angles if the first and third rotations are around the
same axis, or Tait–Bryan angles if all three rotations are around different axes. Depending
on the research field, different authors use different names, and axes, to define Euler angles,
so it is important to verify the nomenclature used in each work. There are two well-known
limitations related to the use of Euler angles. The first is the Euler Angle singularity, which
occurs when the angle of the second rotation is π/2 or −π/2. In these cases, the first and
third Euler Angles can vary independently, both controlling the same degree of freedom,
resulting in an infinite number of possible combinations for defining a single orientation.
The second problem, gimbal lock, also occurs for the same values of the second rotation.
Due to two rotation axes being aligned, a degree of freedom is lost, which prevents the
system from immediately doing determined motions. These limitations can be corrected,
or become severe problems, depending on the intended applications. An explanation of
these limitations, and ways to address them, is available in [10]. Some examples of works
using the Euler-Angles notation are [11–13].

A quarternion is a four-dimensional vector, represented by 4 scalar entities, which can
be harnessed to compute rotations on points and vectors in three dimensions. They are one
of the major alternatives to rotation matrices, and are commonly used due to their high
efficiency in computer calculations and their ease of interpolation. They also avoid both
previously described problems related to Euler Angles. It should be noted that quarternions
have their limitations, such as a reduce in efficiency when calculating the rotation of a
vector [14]. The formulas required for the use of quaternions are well-known, but the
understanding of these formulas, and underlying principles, is complex [14]. Some works
allow a deeper understanding of quaternions, such as the paper [14], and the books [15,16].
A survey is presented in [17] which reviews and compares methods for the computation of
quaternions from rotation matrices. Quaternions are used in the following works: [18,19].

Another possible method for the computational analysis of multi-body kinematics is
screw theory (usually alongside Lie groups). In screw theory, two three-dimensional vectors
are used to represent: the position and orientation of a rigid body; the linear and angular
velocity of a rigid body; a force and a couple [20]. The two vectors define the Plücker
coordinates of a line in space (the position and direction of the screw axis), the magnitude
of the screw, and its pitch. These four factors completely define a screw [20]. Using screw
theory in conjunction with Lie algebra se(3), associated with Lie group SE(3) [21], it is
possible to develop recursive algorithms that solve the kinematics of multi-body problems
with high computational efficiency [22]. Some examples of works that use Screw Theory
are [23–25].

Regarding the methodology used in this paper, the rotation between two consecutive
bodies is defined using ZXZ intrinsic Euler angle rotations. These rotations can be easily
converted into other formalism [5] (such as rotation matrices that can be more conveniently
manipulated), the comprehension of their geometry is straightforward, and they allow
a free choice of local axes for each link (it may become beneficial to program a constant
rotation to guarantee convenient axes orientation). Since most used joints in robotics rotate
around a single axis (revolute joints), problems regarding singularities and the gimbal
lock are easily avoided with the choice of local orientation. More complex joints (such
as spherical joints) can be modeled using a single complex Euler angle rotation, or as a
sequence of rotations with one degree of freedom around the same point. The rotations
obtained from the Euler angles are converted into rotation matrices, and all following
mathematical operations are made using said matrices.
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3. Recursive Algorithm for the Computation of Forward Kinematics

The structure of the developed recursive forward kinematics algorithm is illustrated
in Figure 2. This algorithm computes the positions of the robot’s links from known joint
configurations. After running this algorithm from link 0 (the global reference) to the robot’s
end-effector, the coordinates and orientations of all bodies in the kinematic chain are fully
defined. The calculations are made sequentially, using information regarding both the
current link i and the previous link i − 1.

Figure 2. Flowchart of the developed recursive algorithm for the computation of forward kinematics.

In Figure 2, the boxes with stronger outlines represent the steps where the orientation
(in the form of a rotation matrix) and position (in the form of coordinates) of the link are
defined. With this information, additional data (such as linear and angular velocities and
accelerations) can be calculated.

The algorithm is divided into three main steps, which are described in greater detail—
accompanied by an example—in the following subsections:

1. Definition of the geometry of link i;
2. Rotation of link i into its current orientation;
3. Translation of link i into its current position.

The following terms are used to define and name points and axes in this paper:

• x′iy
′
iz
′
i—The local coordinate axis of link i;

• x′′i y′′i z′′i —The coordinate axis of link i after considering the link’s rotation to its ac-
tual orientation;

• xyz—The global reference axis;
• Ai—The origin of link i, placed on the connection point between link i and link i − 1;
• Bi—The connection point between link i and link i + 1;
• Ci—The link’s center of mass (important for posterior dynamics calculations);
• Di—The position of the joint between link i and link i + 1 considering a linear joint

displacement di+1 of 0.
• Pi—Refers to all points of link i.

If the joint after a link is revolute, point B′
i is fixed and equal to D′

i . However, if this
joint is prismatic, this point will move based on the position of the linear actuator. These
calculations must be made in local coordinates when analyzing link i, so that when iteration
i + 1 begins, the position of the origin of link i + 1 in global coordinates is already known.
This is done using the equation:
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B′
i = D′

i + di+1v′di+1
, (1)

where di+1 is the linear displacement of the prismatic joint between link i and link i + 1,
and v′di+1

the unit vector defining the orientation of this prismatic joint in relation to the
x′iy

′
iz
′
i local axes.
The rotation matrix associated with an intrinsic ZXZ Euler rotation, defined by the

angles (Z1, X2, and Z3), is obtained from [5]:

ZXZEuler(Z1, X2, Z3) =

⎡⎣c1c3 − s1c2s3 −c1s3 − s1c2c3 s1s3
s1c3 + c1c2s3 c1c2c3 − s1s3 −c1s2

s2s3 s2c3 c2

⎤⎦, (2)

where c represents a cosine function, s a sine function, and the indexes 1, 2, and 3 the
corresponding angles (angle of the 1st rotation around the z-axis, angle of the 2nd rotation
around the new x-axis, angle of the 3rd rotation around the z-axis after the first two rotation
are applied).

If the local coordinate axes for two consecutive links are aligned when the associ-
ated joint rotation angle θi is 0, the rotation matrix Ri−1

i between them can be directly
determined using:

Ri−1
i =

⎧⎨⎩
ZXZEuler(0, θi, 0) if rotation axis is x
ZXZEuler(π/2, θi, 0) if rotation axis is y
ZXZEuler(0, 0, θi) if rotation axis is z

, (3)

in this equation, the orientation of the joint axis and the joint rotation angle θi are used to
define the inputs for Equation (2).

The orientation of link i, defined by R0
i , is then determined using:

R0
i = R0

i−1Ri−1
i , (4)

where the rotation matrix R0
i−1, which defines the orientation of link i − 1 in relation to

reference 0 (already determined in iteration i − 1 of the algorithm), is multiplied by the
rotation matrix Ri−1

i determined in the previous Equation (3).
The P′′

i points of link i rotated into its current orientation (expressed in the x′′i y′′i z′′i
axes) are obtained using: ⎡⎣P′′

i x
P′′

i y
P′′

i z

⎤⎦ = R0
i

⎡⎣P′
i x

P′
i y

P′
i z

⎤⎦, (5)

where the rotation matrix R0
i is used to rotate the P′

i points in the local axes of link i around
point A′

i.
A last equation then determines the coordinates of the points Pi of link i expressed in

the xyz global axes: ⎡⎣Pix
Piy
Piz

⎤⎦ =

⎡⎣P′′
i x

P′′
i y

P′′
i z

⎤⎦+

⎡⎣Bi−1x
Bi−1y
Bi−1z

⎤⎦, (6)

where the coordinates of point Bi−1 (determined in the previous iteration of the algorithm)
are used to translate the P′′

i points of the rotated axes of link i into their correct position
and orientation.

In particular cases, a joint may not be directly actuated, and additional calculations
are required based on the geometry of the robot. Examples of this are given in Section 4.2.

This simple algorithm can model robots with different configurations and purposes.
Besides CHARMIE, studied in the following sections, Figure 3 shows three examples of
kinematic models obtained using this method: (a) a mobile quadruped robot similar to
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SPOT from Boston Dynamics [26]; (b) a fixed serial manipulator similar to KUKA KR
500-3 [27]; and (c) a mobile hexapod similar to the one presented in [28].

Figure 3. Examples of robots modeled using the proposed recursive algorithm: (a) a quadruped
robot; (b) a fixed serial manipulator; (c) a hexapod robot.

These three models were made as follows:

• Quadruped robot—First, the main body of the robot was created. Then, a single leg
was modeled. The leg model was replicated four times, and each of them was placed
in its respective connection point to the body (a constant rotation altered the origin
orientation between legs on the left and the right side of the robot). This resulted in a
fully defined kinematic model controlled by 12 joint angles (3 for each leg). To study
the robot’s locomotion, the model can be placed in a simulation environment that
considers the dynamic interactions between the feet and the floor.

• Fixed serial manipulator—To build this model, each body was created in local coordi-
nates, and then the robot was assembled with the proposed algorithm. This model is
controlled by the angles of the 6 revolute joint. This analysis is similar to problems
commonly tackled using Denavit-Hartenberg parameters.

• Hexapod robot—Modeling the hexapod was similar to the quadruped robot, with the
main difference being the use of a π/3 rotation between each leg in relation to the
body. The resulting kinematic model is controlled by 18 joint angles (3 for each leg).
Similar to the quadruped robot, after interaction with the floor is defined, this model
can be used to study locomotion.

The use of this algorithm provides the same advantages for the study of these three
robots as for CHARMIE. Besides the resulting models being compatible with other methods,
they are inherently parametric and modular. As an example, this allows doing a parametric
study of the limb length for the mobile robots to minimize actuator torque or maximize
locomotion velocity. All shown models can also be used for machine learning applications.

The algorithm’s behaviour will now be explained and illustrated by using it to model
the head (link 8c) of the CHARMIE robot. At this iteration, the algorithm has already finish
running for all links leading to link 8c, which produces the model shown in Figure 4.

145



Robotics 2022, 11, 15

Figure 4. Starting configuration for the application example of the recursive algorithm. The robot has
been completely modeled with the exception of its head (link 8c).

3.1. Modeling Link i in Its Local Coordinates Axis

The first step is the construction of a 3D model of the link being analyzed in its local
coordinates. The origin of each link, identified as point A′

i, is placed on the point where
link i is connected to link i − 1. The geometry of each link can be defined by any number of
points (or other methods, such as surfaces or equations).

A coherent choice of local axes orientation for the 3D models facilitates the implemen-
tation of the algorithm. In this example, z′i represents the positive height of complex parts,
or the length of tubes, the positive y′i points to the front of the part, and the x′i axis points
from left to right.

To demonstrate this step, Table 1 shows the local coordinates of the CHARMIE robot’s
head (link 8c). Since this is the end of a kinematic chain, point B′

i corresponds to the
end-effector (in this example, it is a point in the top of the robot’s head, but the position of
a camera could also be considered). Equation (1) defines the position of B′

8c being the same
as D′

8c because the joint after link 8c has no motion (in this case, it is a fixed point).

Table 1. Coordinates (in millimeters) of the relevant points of the robot’s head (link 8c) in the x′8cy′8cz′8c
local axes.

Point x y z Point x y z Point x y z

A′
8c 0 0 0 G′

8c −84.75 0 41 M′
8c −84.75 110 −9

B′
8c −14.75 20 201 H′

8c 55.25 0 −9 N′
8c 55.25 110 201

C′
8c −11.83 15.23 75.68 I′8c −84.75 0 −9 O′

8c 55.25 −70 201
D′

8c −14.75 20 201 J′8c 55.25 110 −9 Q′
8c −84.75 −70 201

E′
8c 0 0 41 K′

8c 55.25 −70 −9 R′
8c −84.75 110 201

F′
8c 55.25 0 41 L′

8c −84.75 −70 −9

Figure 5 shows the 3D model obtained from the points of Table 1. The head is
represented in a 3D plot by drawing lines between the relevant points. Points B′

8c to
D′

8c were not illustrated since they are only relevant for internal calculations, not for the
graphical representation of the head.
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Figure 5. 3D Model of the robot’s head (link 8c) in CAD (left), and in the computational simulation in
the x′8cy′8cz′8c local axes (right). With the exception of the axes of the global reference (xyz), represented
points and axes have sub-index (8c) but this notation was omitted for simplification.

It should be noted that if the goal is to obtain the solution of the forward kinematics
with maximum computational efficiency, each link can be simplified to only contain points
B′

i and D′
i (when the following joint is revolute, only B′

i is needed).

3.2. Rotating Link i to Its Current Orientation

In the second step of the algorithm, the orientation of link i is determined. In this
work, intrinsic proper Euler rotations along the ZXZ axes are used to describe the rotation
between each pair of consecutive links.

Since the local axes were chosen fulfilling the conditions for Equation (3), it can be used
together with Equation (2) to obtain the rotation matrix R7c

8c. If the axes were not aligned,
constant angles could be added to Equation (3) to include the change of orientation.

Knowing the orientation of link 7c about the global reference R0
7c, which was deter-

mined in the previous iteration of the algorithm, and the rotation between link 7c and link
8c, the orientation R0

8c of link 8c is obtained using Equation (4).
With the orientation of link 8c determined, it is now possible to rotate it to its current

configuration. A new auxiliary reference, x′′8cy′′8cz′′8c, is created to represent link 8c after its
rotation. This rotation is applied to all P′

8c points of the link using Equation (5).
Figure 6 shows the robot’s head, and its corresponding points, after being rotated to a

specific configuration. This orientation is calculated using data resulting from all iterations
until the current one is reached, indirectly utilizing information from the rotation of all
revolute joints along the kinematic chain.

3.3. Moving Link i to Its Current Position

With link 8c in its correct orientation, the only step left is the translation to its current
position. The coordinates of the connecting point B7c between link 7c and link 8c in the xyz
global axes were already determined in iteration 7c of the algorithm. Since the model of
link 8c was built around this same connection point in its local reference (A′

8c), the global
coordinates are obtained by adding the coordinates of point B7c to all previously rotated
points P′′

8c using Equation (6).
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Figure 6. 3D Model of the robot’s head in the computational simulation in the rotated x′′8cy′′8cz′′8c axes.
The labeling of points A–G was omitted. The non-rotated position of the head is shown in dotted
grey lines. With the exception of the axes of the global reference (xyz), all points and axes represented
have sub-index (8c) but this notation was omitted for simplification.

The coordinates of B7c are used for all P8c points since they all follow the same
translation. With this step finished, link 8c becomes modeled in its current position with its
current orientation, as shown in Figure 7.

Figure 7. 3D Model of the robot’s head in the computational simulation in the xyz global axes. The
labeling of points A–I was omitted. The head after rotation, but before translation, is shown in dotted
grey lines (left). On the (right), the head is shown with the whole robot also being visible. With the
exception of the axes of the global reference (xyz), all points and axes represented have sub-index (8c)
but this notation was omitted for simplification.
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4. Application of the Algorithm for the CHARMIE Robot

To validate the proposed algorithm, and provide a further understanding of how it
is applied to a practical example, this section describes the process of using it to model
CHARMIE [3], a human-inspired mobile manipulator robot (Figure 1).

The application of the algorithm to an ongoing project also proved its usefulness by
successfully serving as a basis for two studies:

• Develop a 3D environment for multibody dynamic analysis—Using the recursive
Newton-Euler algorithm for the inverse dynamics analysis presented in [4], together
with the algorithm described in this paper, a 3D multibody dynamic analysis of the
CHARMIE robot has been built. This study was fundamental for the mechanical
project of the robot and the choice of actuators. Results from this methodology were
validated both using benchmarks from literature, and comparing results to other
multibody simulation software (WorkingModel4D and CoppeliaSim).

• Analyse and train neural network solutions for trajectory control—The forward kine-
matic analysis defines the robot’s configuration as a function of its joint positions.
After defining limits for the joints, and a set of conditions that determine the success
and failure of a trajectory generation (example: a collision is a failure, and getting into
an intended position is a success), a neural network can be trained to control the joint
actuators to find optimal trajectories. By hiding the visual interface of the developed
algorithm, high computational efficiency is achieved, optimal for neural network train-
ing. By also including contact between bodies (using, for example, the mathematical
models in [29]) this method will be used to train CHARMIE for manipulation tasks,
such as picking and placing of objects.

In the following subsections, CHARMIE’s kinematic structure is described, followed
by an explanation of the auxiliary calculations required to both correctly model the robot’s
forward kinematics, and to extract data regarding the configuration of components that
were not modeled directly. This section finishes by presenting a comparative study, made
using WorkingModel4D, to validate the obtained results.

4.1. Definition of the Robot’s Kinematic Chain

The first step for analyzing CHARMIE was organizing its kinematic structure by
defining and naming its links and joints. The result from this process is shown in Figure 8,
which schematically represents the kinematics of the robot. The manipulator was modeled
as a single serial kinematic chain from the global reference to its upper body and then split
into three different serial kinematic chains, one for the left arm (chain a), one for the right
arm (chain b), and one for the head (chain c). The end of both arms also splits into the two
halves of the end effectors claws. The motion of both halves of each claw is controlled by a
single actuator (joint 13a and joint 13b).

Next, all information required to run the algorithm was prepared and computed. This
includes the coordinates of the points considered for each link in their local coordinates,
and the Ri−1

i matrices obtained using Equation (3). This information is listed in Table 2. For
simplicity, only the coordinates of points B′

i (enough to model the robot’s kinematics) are
shown. Since link 5 is connected to three different links, it has three different B′

i associated.
Despite being connected to two links, links 12a and 12b have a single B′

i due to both halves
of the end effector having the same origin. Links 13a1, 13a2, 13b1, 13b2, and 9c have no B′

i
because they are end effectors, not connected to any following link.

This information (and the coordinates of the other points to draw each link) was
enough to build the model of Figure 1. The only exceptions were Joints 4 and 5 which, due
to not being directly actuated, required additional calculations.
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Figure 8. Schematic representation of the kinematic chain of the CHARMIE mobile manipulator.

Table 2. Information regarding the coordinates of the B′
i points (in millimeters) and the Ri−1

i rotation
matrices for the kinematic model of the CHARMIE robot. Variables marked with * were determined
indirectly using the methods described in Section 4.2.

Iteration (i) B′
i Ri−1

i

0 [0; 0; 36.8] + d1[1; 0; 0] ZXZEuler(0, 0, 0)
1 [0; 0; 0] + d2[0; 1; 0] ZXZEuler(0, 0, 0)
2 [0; 0; 0] ZXZEuler(0, 0, 0)
3 [0; 0; 290] + d4* [0; 0;−1] ZXZEuler(0, 0, θ3)
4 [0; 0; 434] ZXZEuler(0, 0, 0)

5
B5a = [−200; 3; 460];
B5b = [200; 3; 460];

B5c = [0; 0; 495]
ZXZEuler(0, θ5*, 0)

6a [0; 0; 30] ZXZEuler(π/2,−π/2, 0)
7a [0; 0; 61.5] ZXZEuler(0, 0, θ7a)
8a [0; 0; 145] ZXZEuler(0, θ8a, 0)
9a [0; 0; 145] ZXZEuler(0, 0, θ9a)
10a [0; 0; 140] ZXZEuler(0, θ10a, 0)
11a [0; 0; 140] ZXZEuler(0, 0, θ11a)
12a [0; 0; 15] ZXZEuler(0, θ12a, 0)
13a1 X ZXZEuler(π/2, θ13a, 0)
13a2 X ZXZEuler(π/2,−θ13a, 0)
6b [0; 0; 30] ZXZEuler(π/2, π/2, 0)
7b [0; 0; 61.5] ZXZEuler(0, 0, θ7b)
8b [0; 0; 145] ZXZEuler(0, θ8b, 0)
9b [0; 0; 145] ZXZEuler(0, 0, θ9b)
10b [0; 0; 140] ZXZEuler(0, θ10b, 0)
11b [0; 0; 140] ZXZEuler(0, 0, θ11b)
12b [0; 0; 15] ZXZEuler(0, θ12b, 0)
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Table 2. Cont.

Iteration (i) B′
i Ri−1

i

13b1 X ZXZEuler(π/2,−θ13b, 0)
13b2 X ZXZEuler(π/2, θ13b, 0)
6c [0; 0; 46.3] ZXZEuler(0, 0, 0)
7c [14.8;−5.3; 18.3] ZXZEuler(0, 0, θ7c)
8c [−14.8; 20; 201] ZXZEuler(0, θ8c, 0)
9c X ZXZEuler(0, 0, 0)

4.2. Auxiliary Calculations for Complex Joints

The recursive algorithm presented in Section 3 can model any link from known joint
values. However, in some practical examples, joints are not directly actuated, and it is
necessary to establish the correspondence between the actuator position and the joint value.
This happens in two joints of CHARMIE: joint 4, a prismatic joint actuated indirectly by
a linear actuator; and joint 5, a revolute joint controlled by a linear actuator. Since these
calculations can be applied to similar situations in other robots, they are explained in detail.

4.2.1. Joint 4

Joint 4 of CHARMIE is a prismatic joint indirectly actuated by a linear actuator. The
goal is to establish a relation between the length of the linear actuator c3 and the linear
displacement of joint 4 d4. The relevant geometric features for this calculation are shown in
Figure 9.

Figure 9. Schematic representation of the geometry of joint 4 between link 3 and link 4 of the
CHARMIE robot.
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For these calculations, global coordinates from link 4 cannot be used (because at this
stage of the algorithm, this link is not modeled yet), but the local coordinates can since
they only depend on the link’s geometry, which is constant. First, an auxiliary point F3
was included in link 3, which corresponds to the endpoint of the linear actuator. The y′

coordinate of this point is fixed, and can be used to determine a3 using the expression:

a3 = F′
3y − E′

3y. (7)

With this value and the current lenght of the actuator c3, the auxiliary angle α3 can
be determined:

α3 = acos(
a3

c3
). (8)

This angle allows the height b3 to be obtained:

b3 = c3sin(α3), (9)

which then allows the height of the auxiliary point F′
3z to be determined:

F′
3z = E′

3z + b3. (10)

With F′
3z determined, and D′

3 being a known and fixed point, e3 is calculated using:

e3 = F′
3z − D′

3z. (11)

The height b4 is only dependant on the geometry of link 4, and is calculated using:

b4 = F′
4z − A′

4z. (12)

It then becomes possible to calculate d4 using:

d4 = b4 − e3. (13)

By combining Equations (7)–(13), the relation between d4 and c3 is obtained, resulting
in equation:

d4 = F′
4z − E′

3z − c3sin
(

acos
(

F′
3y − E′

3y
c3

))
+ D′

3z. (14)

Point A′
4z was removed from this equation since its value is 0. To allow reproducibility

of results, the required geometric values for this step are shown in Table 3.

Table 3. Coordinates (in millimeters) of the relevant points for the calculations of joint 4 in their
respective local coordinates.

Point x y z Point x y z

D′
3 0 0 290 F′

3 0 162.5 -Calculated-
E′

3 0 257.5 99.5 F′
4 0 162.5 383

4.2.2. Joint 5

Joint 5 of CHARMIE is a revolute joint actuated by a linear actuator between links 4
and 5. The goal is to establish the relation between the configuration of the linear actuator
c4 and the rotation of the joint θ5. The geometric features used in this calculation are
represented in Figure 10.
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Figure 10. Schematic representation of the geometry of joint 5 between link 4 and link 5 of the
CHARMIE robot.

As in the previous example, only local coordinates (related to the parts’ geometry)
or lengths (constant regardless of the chosen reference) are used. The angle θ5 can be
determined from two auxiliary angles, α4 and β5, using the expression:

θ5 = α4 + β5 − π/2 , (15)

where α4 can be calculated using:

α4 = atan
(

H′
4z − B′

4z
H′

4y − B′
4y

)
, (16)

and β5 using the expression:

β5 = atan
(

E′
5y − A′

5y
E′

5z − A′
5z

)
. (17)

The points required for obtaining β5 are only dependant on the geometry of link 5,
therefore, they can be determined directly. However, α4 requires the coordinates of point H′

4,
which are dependant on the geometry of link 4, the geometry of link 5, and the length of
the actuator c4.

The coordinates of H′
4 were calculated as the intersection between two circumferences,

one with its center on point G′
4 and radius c4, and the other centered on point B′

4 with
radius a5. Radius c4 is obtained from the actuator length, and a5 from the expression:

a5 =
√
(E′

5y − A′
5y)2 + (E′

5z − A′
5z)2 . (18)

To calculate the intersection between two circumference, the distance between their
centers e4 is also needed, given by the expression:

e4 =
√
(B′

4y − G′
4y)2 + (B′

4z − G′
4z)2 . (19)
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To facilitate the formulation of the intersection, two auxiliary mathematical parameters
were used. The first is l4, given by the expression:

l4 =
c4

2 − a5
2 + e4

2

2e4
, (20)

and the second is h4, calculated from the expression:

h4 = c4
2 − l42 , (21)

The coordinates of H′
4 can then be determined using the pair of equations:

H′
4y =

l4
e4
(B′

4y − G′
4y) +

h4

e4
(B′

4z − G′
4z) + G′

4y , (22)

H′
4z =

l4
e4
(B′

4z − G′
4z) +

h4

e4
(B′

4y − G′
4y) + G′

4z . (23)

By combining Equations (15)–(23), the expression establishing the relation between θ5
and e4 is obtained. This expression is not be presented in its extended form due to its size,
which would hinder its comprehension.

To allow the results to be reproducible, Table 4 shows the coordinates of all geometric
features used for this calculation.

Table 4. Coordinates (in millimeters) of the relevant points for the calculations of joint 5 in their
respective local coordinates.

Point x y z Point x y z Point x y z

B′
4 0 0 434 G′

4 0 87.5 383 E′
5 0 122.5 380

4.3. Auxiliary Calculations to Extract Relevant Data from the Model

After the model is obtained, a set of data not modeled directly can be obtained from it.
One example for this, in the CHARMIE robot, is the configuration of the springs

included between links 4 and 5. The connection points between these springs, S′
4 and

S′
5, are placed on the local coordinates, but the global configuration of the spring is not

explicitly defined. After the recursive algorithm runs, the spring length ls can be easily
obtained by calculating the distance between the two connection points S4 and S5 in the
global coordinate reference, as shown in the following equation:

ls =
√
(S5x − S4x)2 + (S5y − S4y)2 + (S5z − S4z)2 . (24)

Any angle αs can also be calculated by defining a triangle using three distances: ls; as;
bs. The value of these distances can be determining using Equation (24), and the value of
the angle is then calculated by applying the law of cossines in the form:

αs =

(
l2
s + b2

s − a2
s

2lsbs

)
, (25)

where as is the opposite side of the triangle to the internal angle being calculated.
Using integration, it becomes possible to evaluate problems over time. A possible

method for obtaining the angular velocity, angular acceleration, and linear acceleration
of all links is to use the forward iterations of the recursive algorithm from chapter 7.5.2
of [4]. The inputs of this method are the information obtained in this algorithm (rotation
matrices and coordinates of points A′

i, B′
i and C′

i ), and the known inputs from the forward
kinematics analysis (joint orientation, position, velocity, and acceleration).
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4.4. Validation of Results

To validate the developed algorithm, the CHARMIE robot was also modeled in the
multibody simulation software WorkingModel4D. The same problem, a simple motion that
requires the movement of all joints, was solved using both methods to compare and verify
the results.

All actuators started with a position/angle of 0, except for d4 and θ5, actuated by the
linear actuators c3 and c4, which started in the positions c3 = 400 mm and c4 = 350 mm. All
joints were defined with a constant velocity. The angular velocity considered for the directly
actuated revolute joints was π/36 rad/s, and the linear velocity for the linear actuators
5 mm/s. The three exceptions were joints θ7c and θ8c, both with an angular velocity of
π/72 rad/s, and the linear actuator c4, with a linear velocity of 2.5 mm/s. To analyse a
single set of coordinates, the claw end effectors were replaced with a point at their center—
this corresponds to changing Table 2 by: removing rotations θ13a and θ13b; and changing
the value of B′

12a and B′
12b to [0; 0; 140]. The robot was simulated under these conditions for

a period of 20 s. Figure 11 shows a side-by-side comparison of frames captured from both
simulation environments, and Figure 12 compares the extracted coordinates of the center
of the left arm end effector (link 13a).

Figure 11. Comparison of the robot’s configuration for the same problem analysed using the recursive
algorithm presented in this paper (left), and WorkingModel4D (right).
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Figure 12. Comparison between the results for the end-effector position 13a for the same conditions
analysed using both the recursive algorithm and WorkingModel4D.

The figures illustrate that the robot’s behavior was identical in both environments.
The results from the extracted data are indistinguishable, with a complete overlap between
the graphic’s lines. This data compares positions directly, not orientations (due to the many
different notations available to define them), however, similar results for the positions
could only be obtained with the correct definition of all the angles in the kinematic chain
leading up to link 13a. The similar configuration of both robots, in Figure 11, further proves
the cohesion between the orientations defined in the two methods.

With these two unrelated sources providing the same results for the robot’s forward
kinematics, the validity of the proposed algorithm is proven.

5. Conclusions

In this paper, a simple, intuitive, and theoretically computational efficient three-step
recursive algorithm is presented to analyze the kinematics of robotic manipulators. From
known joint values, the algorithm fully defines the 3D configuration of a kinematic chain,
returning the orientation and position of each link described by rotation matrices and
Cartesian coordinates. This methodology was further explained by successfully applying
it to model CHARMIE, a mobile manipulator with a relatively high degree of complexity.
The results were validated by comparing them with the multibody dynamics software
WorkingModel4D.

All input data required to define the given example is provided with full transparency,
guaranteeing its replicability. This both exposes the results to external validation and allows
the presented problem to serve as a benchmark for 3D kinematic analysis.

After using this methodology, the following key advantages were identified:

• Modularity—Due to its recursive structure, models constructed with the proposed
algorithm have high modularity. Entire sections in the middle of the kinematic chain
can be altered with minimal effort, simplifying any changes made to both links
and joints.

• Speed of implementation—After the initial equations are defined, this method allows
a fast modeling of different kinematics structures. For reference, each of the models
shown in Figure 3 was made in approximately four hours (including the modeling of
each link in local coordinates and defining the 3D drawing of the visual interface).

• Full definition of the link’s models—The algorithm contains information regarding the
geometry of each of the links. This can be used for studies such as collision detection.

• Versatility—As previously stated, the implementation of this algorithm is less rigid
then the Denavit–Hartenberg parameters, freeing the choice of axes orientation for
each of the links. Any rotation and translation can be programmed between each of
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the links, allowing the definition of any type of joint. More complex mechanisms can
be analysed using a process homologous to example (Section 4.2).

• Compatibility—This algorithm outputs: the Cartesian coordinates of each point in
each link in local coordinates; the Cartesian coordinates of each point in each link in
global coordinates; the orientation between each pair of successive links in the form
of rotation matrices; the orientation of each links in relation to the global reference
in the form of rotation matrices. This information can be inputted into a set of
already defined algorithms, such as the aforementioned example of inverse multibody
dynamic analysis [4].

With the increasing interest in robotics, the presented method can become a powerful
tool for computational analysis. It can be used to define a wide array of robots in three
dimensions, and the resulting models can act as a starting point for a set of more advanced
studies. In the CHARMIE project, this algorithm already functions as the basis for a
multibody dynamic analysis environment and will be used for neural network training.

Theory corroborates that this algorithm increases computational efficiency in com-
parison to using the Denavit–Hartenberg parameters [2], however, a relevant future study
would be running a set of tests to prove and quantify this improvement.
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Abstract: This paper presents a complex trajectory evaluation framework with a high potential for use
in many industrial applications. The framework focuses on the evaluation of robotic arm trajectories
containing only robot states defined in joint space without any time parametrization (velocities or
accelerations). The solution presented in this article consists of multiple criteria, mainly based on
well-known trajectory metrics. These were slightly modified to allow their application to this type of
trajectory. Our framework provides the methodology on how to accurately compare paths generated
by randomized-based path planners, with respect to the numerous industrial optimization criteria.
Therefore, the selection of the optimal path planner or its configuration for specific applications is
much easier. The designed criteria were thoroughly experimentally evaluated using a real industrial
robot. The results of these experiments confirmed the correlation between the predicted robot
behavior and the behavior of the robot during the trajectory execution.

Keywords: trajectory optimization criteria; robotic arms; trajectory evaluation; path planning

1. Introduction

In many modern applications of robotic arms, there is a need to compute collision-free
trajectories with variable start and goal positions. An example of such application is the
problem of bin-picking, where the main goal is to pick randomly placed objects from within
the bin. This problem is described in the literature as a problem of dynamic path planning.
Several solutions to this problem have been proposed and applied over the past decade.

Many of these popular methods are based on randomized sampling, such as proba-
bilistic roadmap methods (PRM) [1] or rapidly random trees (RRT) [2]. Another approach
to path planning is using optimization-based methods. Algorithms such as covariant
Hamiltonian optimization for motion planning (CHOMP) [3] or stochastic trajectory opti-
mization for path planning (STOMP) [4] belong to this group. Most of the methods utilize
random exploration of configuration space to speed up the computation. The disadvan-
tage of such algorithms is their non-deterministic behavior. The repeated path planning
computation from the same start state to the same goal state could yield different results.
Furthermore, attributes of the calculated paths depend dramatically on the chosen path
planning algorithm and its configuration. The trajectories can differ in the distance traveled
by the endpoint of the robotic arm, energy consumption, or maximal joint accelerations
achieved during the motion execution. Several metrics were proposed for the measurement
of difference between two robot states.

Many path planner comparisons and path planner articles for specific applications
evaluate mainly planning time and success rate. In their paper [5], Rodriguez and Suarez
(2015) provide a comparison of sampling-based algorithms, which is based on planning
time, success rate, and number of samples. Likewise, Paulin et al. (2015) [6] compare
path planners for grape vine pruning application, but the trajectory quality is not consid-
ered. Magyar et al. (2019) proposed a modified version of the STOMP algorithm called
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GSTOMP [7] and use the term “smoothness”, which represents a cumulative function of
the end effector’s linear and angular accelerations. Similarly, in their study [8] De Maeyer
and Demeester (2021) are focused on benchmarking path planning for robotic arc welding,
where path length is computed as the cumulative sum of joint differences. On the other
hand, Larsen et al. (2017) [9] used the Euclidean distance of a tool center point for the path
length calculation. In all of these algorithms factors/characteristics such as tool orientation,
acceleration or jerks are neglected. In our previous research [10], we attempted to compare
the quality of paths computed by various path planners and their configurations. However,
we were not able to find any common framework for evaluation of the quality of the path.

It is hard to define what is the best universal trajectory, but it is possible to determine
which trajectory is better with respect to a selected criterion or their combinations for specific
setup and production type. It makes little sense to talk of the best universal trajectory,
however it is possible to determine which trajectory is best suited depending on a selected
criterion (or a combination of several criteria) for a specific setup and production type.
Optimization typically aims to minimize the production cycle time, based on the robot’s
velocity and the total trajectory length. Other optimization criteria could be maximizing
the durability of the robot gearing or decreasing energy consumption. [11]

In this article we formulate a complex trajectory evaluation framework consisting
of multiple criteria. The objective of this article is not to provide a comparison of path
planning algorithms, but to provide a methodology to compare the resulting paths. For the
purpose of this article, the result of a path planner is a path defined as a set of robot states
in the robot joint space.

In order to ensure a smooth motion execution, the robot control system needs to
post-process the given path and execute its approximation. Therefore, it will not traverse
all the positions precisely. Some of our criteria try to predict how the robot will behave
during the execution. Therefore, in experimental evaluation of our framework, we tried to
find the correlation between the planned and performed trajectory for each criterion.

The evaluation criteria are fully described in Section 2 “Criteria” and they are validated
in Section 3 “Validation of criteria” with data measured using a real robot. These measure-
ments are also used for evaluation of the aforementioned hypotheses about prediction of
path execution, where the measured and predicted data are compared. Section 4 “Usage of
criteria” provides criteria examples and an introduction on how to use them. The impact
of environment complexity and the position of the bin were investigated and analyzed
as well. Finally, Section 5, Results, summarizes and recapitulates the findings reported in
previous sections.

2. Criteria

The first trivial criterion often used by manufacturers is the Cartesian distance of
tool center point (TCP) between each waypoint of the path. This means that the sum of
the Euclidean distance between each consecutive TCP position in R3 should be minimal.
In many cases programmers try to optimize the robotic program in order to reduce the
production cycle time [12] in specific applications like spot welding [13], where the TCP
path must be minimal. In the joint space, we could define the joint distance criterion,
which is very closely related to the Cartesian distance criterion. The joint distance uses
an accumulated summary of differences for each joint value. An interesting application is
collaborative robotics, because robots must indicate appropriate proxemic behavior, and
unnecessarily long and nonsensical trajectories could evoke fear [14].

x =
n

∑
i=2

m

∑
j=1

||qi,j − qi−1,j || (1)

x =
n

∑
i=2

||pi − pi−1 || (2)
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The score of the joint distance criterion is calculated using (1), where qi,j is joint value,
i is waypoint ID of n waypoint, and j is the joint ID of m robot joints. Equation (2) is used
for the calculation of the Cartesian distance score, where instead of the accumulated sum
of joint values, the tool point position pi is used.

The Cartesian distance does not include orientation, although in specific types of
production the tool point orientation is fundamental e.g., in grinding, cutting, milling,
or painting [15,16]. In the cases of object handling with pneumatic or magnetic grippers,
picked objects could be lost during a move. Another interesting and practical example is
object handling in the human environment [17,18] or liquid handling [19]. It follows then
that the orientation change is the next crucial criterion. It is defined by (3), where qxi, qyi,
qzi, qwi are values of tool point quaternion on i waypoints.

x =
n

∑
i=2

cos−1(qxi ∗ qxi−1 + qyi ∗ qyi−1 + qzi ∗ qzi−1 + qwi ∗ qwi−1
)

(3)

The joint distance criterion could be modified by weights, which multiply each joint
value, thus achieving optimization of selected joints [20]. In this article, we call this criterion
control pseudo-cost.

x =
n

∑
i=2

m

∑
j=1

wj
(
||qi,j − qi−1,j||

)
(4)

The definition (4) of this feature is similar to joint distance, with the added multi-
plication by wj which represents the weight in the range between 0 and 1. This could
simplify energy consumption in the application, where the actual energy consumption
often remains unknown before the trajectory is executed [21,22]. The computation of the
energy for each robot link is dependent on weight and inertia. A great example is an arm on
a mobile platform where the power is limited by a battery [23]. There are many approaches
to trajectory planning for energy efficiency [24,25], where this criterion can prove useful for
comparison and evaluation of planned paths.

In addition to control pseudo-cost, in [20] the robot displacement metric is mentioned
that could be used as a relevant criterion. It could also be applicable in collaborative
robotics, similarly as the joint distance and the Cartesian distance criteria. Definition of
criterion by [20]: for any two configurations q1 and q2, a robot displacement metric is
defined as (5),

x =
n

∑
i=2

max
aεA

{||a(qi)− a(qi−1)||} (5)

In which a(qi) is the position of the point a in the world when the robot A is at
configuration qi.

The aforementioned criteria are solely focused on robot states and positions, but do
not include any robot dynamics. Industrial programmers often teach robots smooth tra-
jectories without any high jerks, which have the potential to damage mechanical units
or stop movement. Less jerk reduces the steadfastness and increases the robot’s durabil-
ity, which can economize production costs. Jerk is defined as the third time-derivation
of position, which is applied in research for optimal time-jerk trajectory planning, as
shown in Huang et al. (2017) [26]. However our current research does not include any
time-parametrization of trajectories, therefore we propose four criteria hypotheses that
focus on jerk and are calculated solely using robot positions. One of these hypotheses is the
joint jerk, defined as a summary of jerks on each joint (6):

x =
n

∑
i=2

m

∑
j=1

||qi,j − qi−1,j||di3 (6)
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Similar to the above, the next criterion: the Cartesian jerk; is also defined as the third
derivation of the tool point position, and its score equals the sum of all jerks between each
waypoint (7):

x =
n

∑
i=2

||pi − pi−1||di3 (7)

The criterion is important in applications requiring gripper load, where higher jerk on
the load is undesirable. Consider situations such as using soft robotic grippers [27] or a
robot handling fragile materials or food [28].

Alternatively, another approach could be employed by finding the maximal jerk
between waypoints, which could be applicable as a safety threshold. Therefore, this is
defined as joint max jerk in the joint space, as opposed to Cartesian max jerk in the Cartesian
space of the tool [29,30]. Joint max jerk is defined by (8) and Cartesian max jerk by (9) below.

x = max
qiεQ

{
m

∑
j=1

||qi,j − qi−1,j||di3
}

(8)

In which qi is a joint state on i waypoint, and Q represents all joint states of a path.

x = max
piεP

{
m

∑
j=1

||pi − pi−1||di3
}

(9)

In which pi is tool position on i waypoint, and P represents all tool positions of a path.

3. Validation of Criteria

It is essential to verify the validity of the stated criteria as well as that of the hypothesis
that criteria could predicate trajectory execution. The verification was carried out by
planning and executing the trajectories using a real robot. Firstly, the paths are planned
by the STOMP algorithm using FCL (Flexible Collision Library) [31]. The selection of
the path planner is not relevant in this section and, therefore, the specific parameters of
the path planner are not presented. Subsequently, these planned paths are executed on a
real KUKA KR120 robot with gripper (see in Figure 1), controlled by KRC4.As the robot
performs the motion measurements on positions and energy consumption are sampled in
time and collected.

 

Figure 1. Kuka KR120 with gripper, used to executed planned paths in a series of criteria-
validating experiments.

For the purpose of criteria validation an experiment was designed, where the robot
moves from the start state [0.455, −1.506, 1.885, 0.0, 1.17, 0] to the goal state [−0.498, −1.543,
1.924, 0.0, 1.17, −1.061] with an obstacle added to its path. The path is illustrated in Figure 2.
The dataset consists of 30 different paths between the start and the goal states, generated
by the STOMP algorithm using FCL collision checking [31].
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Figure 2. The path between the start state and the goal state.

The first four criteria joint distance, Cartesian distance, orientation change and robot
displacement are directly related to the position of the robot in the joint space and of the
Cartesian space of its tool point. As for the next set of criteria—joint jerk, joint max jerk,
Cartesian jerk, Cartesian max jerk, and control pseudo-cost—these are evaluated separately,
as they require the use of specific measurement procedures. The equations for criteria were
applied to the entire dataset of planned paths. To provide a clear comparison, they were
applied to the joint and Cartesian positions measured during planned path executions as
well. Figure 3 shows the differences between planned and executed positions for all paths
in the form of a histogram.

  
(a) (b) 

  
(c) (d) 

Figure 3. Histograms of differences between planned paths and executed trajectories, compared for
the following criteria: (a) joint distance; (b) Cartesian distance; (c) orientation change; (d) robot dis-
placement.
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For further illustration, the averages and variances in Table 1 show that discrepancies
between planned and executed trajectories are correlated.

Table 1. The average and the variance differences between planned path and executed trajectory.

Criterions Average Variance

Joint Distance [rad] −5.75 × 10−3 3.76 × 10−4

Cartesian Distance [m] −4.09 × 10−3 2.22 × 10−5

Orientation Change [rad] −1.24 ×10−2 3.09 × 10−3

Robot Displacement [m] −3.75 × 10−3 2.52 × 10−5

3.1. Control Pseudo-Cost

Energy consumption is an excellent example of where the control pseudo-cost criterion
can play a part. It could simplify dynamic robot parameters for each arm joint, or these
parameters could be replaced by criterion weights as seen in (4). However, the problem
is that the weights are unknown, as they need to be calculated from the dynamic robot
model. Unfortunately, not all robot vendors provide parameters such as weights, center of
gravity, or an inertial matrix for each robot link. A further difficulty arises from the fact
that the parameters in the whole robot workspace are not constant. They need be variable,
depending on the type of movement, load, etc.

It is essential to ensure that the measuring process is not compromised by systematic
error. Therefore, the robot is allowed to “warm up” as its energy consumption tends to
be higher immediately after start-up. (The decreased energy consumption is illustrated in
Figure 4). Variable velocity and acceleration could also affect the measurement adversely,
therefore these and other robot parameters are kept constant.
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Figure 4. Energy consumption after a cold start of the robot.

The KUKA KRC4 controller allows for the measurement of consumed energy during a
single trajectory execution. These measured values are used as a target for our optimization.
As we do not possess all the robot parameters for the calculation of the criterion constants,
we instead implement some simplifications. We employ the brute force method to deter-
mine the constants calculated on a specific set of paths, meaning that the paths will be
planned between the same start and goal state. In our case, they are the positions defined in
the introduction of the section “Validation of Criteria” (Figure 2). The robot will perform a
“horizontal” movement (movement of the TCP of the robot will approximately correspond
to the y-axis), and in this section, the experimental setup is denoted as no. 1.

Our working hypothesis is that the calculated constants will be suitable for use in
similar robot motion. To prove this hypothesis, four experiments were prepared, where the
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first three are identical trajectories no.2 (Figure 5a “Longer” trajectories), no.3 (Figure 5b
“Shorter” trajectories), and no.4 (Figure 5c TCP is further on the x-axis). The last trajectory,
no.5. (Figure 5d “vertical” trajectory), is of a different type. A deviation between the
actual energy consumption and criterion validity is increased, because the robot executes a
different set of trajectories (“vertical movement” the TCP of the robot is moving along the
z-axis).

  
(a) (b) 

  
(c) (d) 

Figure 5. Illustration of one trajectory, which is executed in experiments 2–5: (a) experiment no. 2
the “longer” trajectory (b) experiment no. 3. the “shorter” trajectory; (c) experiment no. 4 the TCP is
further on the x-axis trajectory; (d) experiment no 5. the “vertical” trajectory.

The brute force method for finding of constants requires the following steps:

1. Warm-up of the robot;
2. Generate paths between the same start and the same goal using a path planner;
3. Execute the generated trajectories on a real robot and measure energy consumption;
4. Make cycles through the whole constant space, in which constants are gradually changed:

a. Compute the criterion score using current constants for each path;
b. Normalize the measured energy with the criterion score;
c. If the summary of differences between measured energy and criterion score on

each trajectory is lower than the minimum (from previous cycles), store this
value as a new minimum.

The output from the brute force method are the constants (0.94736842, 0.21052632,
0.42105263, 0.15789474, 0.05263158, 0.21052632) and Figure 6 shows the histogram of
differences between the measured energy consumption and the criterion validity.
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Figure 6. The histogram of differences between predicted and measured energy consumption in
experiment 1, which has been used to find control cost constants.

In the next step these constants are validated in experiments 2–5. The results from
experiments 2, 3, and 4 are very similar. However, the output from experiment 5 shows
an increased deviation, as we anticipated. The results are reported in Figure 7. Figure 8
shows a comparison of results on the boxplot, and finally, the variances and averages for
each experiment are compared in Table 2.

  
(a) (b) 

  
(c) (d) 

Figure 7. Histograms of the differences between predicted and measured energy consumption:
(a) experiment no. 2; (b) experiment no. 3; (c) experiment no. 4; (d) experiment no. 5.
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Figure 8. Boxplot comparing the results from Experiments 1–5.

Table 2. Averages and variances for each experiment.

Experiment No. Average Variance

1 −3.38 × 10−3 1.25 × 10−4

2 −2.20 × 10−2 1.14 × 10−3

3 −3.58 × 10−3 2.28 × 10−3

4 −5.67 × 10−2 2.42 × 10−3

5 8.08 × 10−2 5.25 × 10−3

3.2. Jerk-Based Criteria

The path is planned in the joint space of the robot where the path planner generates a
set of waypoints. The motion between these waypoints is dependent on the robot controller.
We expect that the waypoints are correctly distributed and that the path is always collision-
free. Since the path planner only generates positions the jerk is unknown. It can be
calculated as the third derivation of the position. This calculation returns an estimated jerk
between two waypoints (Figure 9). However, it is not precisely a jerk because the planned
path is not sampled in time, and therefore the unit cannot be rad/sˆ3 but just rad. Let us
denote this jerk as a pseudo jerk. For the purpose of criterion validation, let us use the same
calculation on the trajectories performed by the real robot. However, there is a drawback
with this approach, namely that the measured positions are sampled in time (Figure 10).
Due to the difference in sampling method and the density of waypoints the pseudo jerk
calculated from the planned path and the jerk measured from the robot trajectory differ.

The real jerk is firmly dependent on the robot controller and the control parameters.
In this experimental setup, we are using the KUKA KR120 robot and the KRC4 controllers.
The motion command PTP_SPLINE is used; its explanation is available in the KUKA
reference manual [32]. The velocity was set to 100% of the maximum speed for each joint,
while acceleration was limited to 40% of maximum acceleration. The aim is to try to find
a correlation between the completed movement and the expected jerk derived from the
planned path. Our dataset consists of 30 different paths with different pseudo jerks.

Figure 11 shows pseudo jerk between each waypoint, calculated as joint jerk criterion
by Formula (6). Between each waypoint the jerk is the Euclidean distance of the third
derivation of joint positions. Therefore, the jerks are non-negative.
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Figure 9. Pseudo jerk calculated from the planned path.

Figure 10. Jerk calculated from positions on the executed trajectory.

Interestingly, the jerk computed from measured robot positions does not correlate to
the pseudo-jerk defined on the planned path. However, this highlights another aspect of
the robot’s motion. In each peak of a pseudo jerk (Figure 11) there is a notable change in the
density of the measured robot positions around the planned waypoint. This is indicative of
the evolution of the robot’s velocity. Where the density of positions is higher, the robot’s
movement slows down and conversely, sparser density of positions signifies that the robot
was moving faster.

Let us denote X(i) as a count of measured robot positions around the waypoint in
the planned path. When the X(i) is calculated for each waypoint, then the minimum is
denoted as MIN_DENSITY, and we expect that the velocity is the highest in this segment.
Let us define the function:

f (i) =
X(i)

MIN_DENSITY
(10)

Function (10) represents a relation between X(i) and MIN_DENSITY, as shown in
Figure 12. This function defines the notion of robot “slowdown” and the higher the value
of the function, the higher the rate of robot “slowdown”.
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Figure 11. The calculated pseudo-jerk between each waypoint with marked local peaks.

Figure 12. The “slowdown” of the robot with marked local peaks.

Our next goal is to find a relation between the calculated jerk and the robot “slow-
down”. The first step is to select peaks (local maximal jerks) on each path and assign
a waypoint to each of these peaks. For the selection of peaks, a threshold of 0.4 rad is
used, and the peaks are located where the derivation of the jerk is zero. The threshold has
been found to be empirical on a series of datasets, but it can be modified depending on
the indented application. When using a lower threshold the criterion is more sensitive to
finding peaks. On the other hand, if the threshold is set to higher value the criterion picks
out only relevant higher jerks. These peaks with their appointed waypoint id can then
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be assigned a value derived from Function (10) from Figure 11. Figure 13 below shows
the selected peaks (blue dots) and the correlated robot “slowdown”. This set of peaks is
approximated by the function:

y = 3 log10 x + 4 (11)

Figure 13. The dependency of the pseudo-jerk and real robot “slowdown”.

The x stands for the pseudo-jerk peak on the planned path and y is the robot “slow-
down” in the joint space. The function and the constants have been found by regression
analysis. The function describes the correlation between pseudo-jerk and the robot “slow-
down,” which is rendered as a curved red line in Figure 13. Figure 14 shows the differences
between the calculated and actual robot “slowdown.”

 

Figure 14. The histogram of differences between the predicated (function (11) and the curved red
line in Figure 13) and the real measured (blue dots on Figure 13) robot “slowdown”.
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A similar approach is utilized for the Cartesian jerk criterion, where the Cartesian
pseudo-jerk peaks were found using a threshold 0.002 m.

y = 1000

√
2

2
√

x +
3√4 (12)

In Function (12) above the x stands for a Cartesian pseudo-jerk on the planned path
and y is the “slowdown” of the tool point in Cartesian space. The correlation between the
pseudo-jerk and the robot “slowdown” in Cartesian space rendered as a curved red line in
Figure 15. Figure 16 shows differences between the predicated and real measured values.

 

Figure 15. The dependency of the expected Cartesian pseudo-jerk and real robot “slowdown” in
Cartesian space of the tool point.

 

Figure 16. The histogram of differences between the predicated (function (12) and the curved red
line in Figure 15) and the real measured (blue dots on Figure 15) robot “slowdown”.
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Our results show that the joint jerk, joint max jerk, Cartesian jerk, and Cartesian max
jerk criteria cannot be compared with real jerk. For this reason, the above criteria were
modified and will from now on be considered under the umbrella term joint jerk peaks.
This new criterion still computes pseudo jerks, however it looks only for local pseudo jerk
peaks. The score of this criterion equals the sum of all peaks, once Equations (11) and (12)
have been run. The joint jerk peaks is defined as:

x =
n

∑
i=1

3 log10 Pi + 4 (13)

and the Cartesian jerk peaks is defined as:

x =
n

∑
i=1

1000

√
2

2

√
Pi +

3√4 + 4 (14)

Both in (13) and (14) i represents the peak id of n local pseudo jerk peaks and Pi is
the peak value. Additionally, these modified criteria allowed us to compare whether the
duration of the executed trajectory correlates with the jerk predicated in the planned path.

4. Criteria Usage

Now that the criteria are validated, our next step is a demonstration of the criteria
being utilized in evaluating paths in different environmental setups. This step will be tested
on a real robot. We will assess the impact an environment change will have on the path
planner. Paths are generated by the STOMP path planner with the same configuration as
in the section “Validation of criteria” [4]. In this section, however, we use an additional
criterion “Duration”, which represents measurement of computation time. The criterion
“Duration” does not evaluate the quality of the path, nevertheless an assessment of the
path planner’s computation time is key when evaluating the impact caused by a change
in the environment. Our hypothesis is that a complicated environment requires longer
computation time.

4.1. The Impact of the Environment’s Complexity on the Path Planner

The first setup simulates a common process in the industry—a pick and place process.
The path will be computed between two robot states (−0.527, 0.498, 0.244, −0.103, 0.983,
−0.462) (Figure 17a) and (0.465, 0.451, 0.312, 0.097, 0.965, 0.405) (Figure 17b), in both of
which the robot tool is located inside a bin and the path planner must return a collision-
free path.

  
(a) (b) 

Figure 17. Illustration of the first experimental setup and robot states: (a) the start state; (b) the
goal state.
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In the second setup, the environment is more complicated. The robot must avoid an
added simple wall embedded between the bins from the previous setup (Figure 18a). This
situation is a non-standard situation in industry. However the goal of these experimental
setups is to monitor the impact on path quality when the planner must avoid more obstacles
on the scene. The third setup exhibits the worst traversability, as there is an extra wall
inserted (Figure 18b). Start and goal states are the same as in the first setup.

 
(a) (b) 

Figure 18. Experimental setups in which extra obstacles are added: (a) the second experiment; (b) the
third experiment.

Our proposed criteria evaluate the environment complexity. Control pseudo-cost
criteria use the same constants, calculated in Section 3.1 “Control Pseudo-Cost”. In Sec-
tion 3.2. “Jerk-based Criteria,” the threshold for the criterion Joint Jerk Peaks 0.4 rad could
not determine any peaks in experiments. Therefore, the threshold was decreased to 0.08 rad
in these experimental setups, which means that the criterion is more sensitive to finding
pseudo-jerk peaks. In the case of Cartesian jerk peaks, the threshold of 0.002 m is preserved.
The histograms in Figure 19a–h show the score of each criterion. The results are described
in the Section 5 “Results”.

  
(a) (b) 

Figure 19. Cont.
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(c) (d) 

  
(e) (f) 

  
(g) (h) 

Figure 19. Histograms depicting the score for each criterion (blue—no.1, orange—no.2, green—no.3):
(a) joint distance; (b) Cartesian distance; (c) robot displacement; (d) orientation change; (e) joint jerk
peaks; (f) Cartesian jerk peaks; (g) control pseudo-cost; (h) duration.

4.2. The Impact on the Path Planner of the Bin’s Position

This experimental setup is focused on the bin position and the behavior of the
path planner as well as how the quality of the generated paths is evaluated in differ-
ent workspaces. The movement is similar to the first experimental setup and the robot
moves from bin A to bin B. The experiment consists of three scenarios, and in each scenario,
the bins are reallocated on the x-axis of the robot’s coordinate system. The layout of each
scenario is illustrated in Figure 20a–c.
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(a) 

(b) (c) 

Figure 20. Experimental setups: (a) the first setup; (b) the second setup; (c) the third setup.

Our criteria evaluate the impact of the change in the layout and the impact of the
bins’ position. Control pseudo-cost, joint jerk peaks, and Cartesian jerk peaks use the
same constants and parameters as were used in the previous section of this research paper.
The histograms in Figure 21a–h show the score of each of these criteria. The results are
described in Section 5 “Results”.
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 21. Cont.
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(g) (h) 

Figure 21. Histograms depicting the score for each criterion (blue—no.1, orange—no.2, green—no.3):
(a) joint distance; (b) Cartesian distance; (c) robot displacement; (d) orientation change; (e) joint jerk
peaks; (f) Cartesian jerk peaks; (g) control pseudo-cost; (h) duration.

5. Results

The criteria joint distance, Cartesian distance, orientation change, and robot displace-
ment are based on the robot positions within the planned path. To validate these, they
were compared with the positions on trajectory executed by a real robot. The differences
between the planned and executed trajectories are recapitulated in Table 3, lines 1–4, where
the averages and variances for each criterion respectively are shown. These four criteria
correlate and we can, therefore, accept them as valid.

Table 3. Recapitulation of criteria validation.

Criterions Average Variance

Joint Distance [rad] −5.75 × 10−3 3.76 × 10−4

Cartesian Distance [m] −4.09 × 10−3 2.22 × 10−5

Orientation Change [rad] −1.24 × 10−2 3.09 × 10−3

Robot Displacement [m] −3.75 × 10−3 2.52 × 10−5

Control Pseudo Cost 1 −2.20 × 10−2 1.14 × 10−3

Control Pseudo Cost 2 8.08 × 10−2 5.6 × 10−3

Joint Jerk Peaks [rad] 0.3344 0.8290
Cartesian Jerk Peaks [m] 5.1 × 10−3 0.6036

1 The results of experiment no. 2 in Section 3.1. 2 The results of experiment no. 5 in Section 3.1.

The criterion control pseudo-cost is not directly compared with the measured robot
positions, however the KUKA robot program provides the measurement of energy con-
sumption as each trajectory is being executed. Firstly, the control pseudo-cost constants of
each robot link have been calculated using the brute force method on one dataset consisting
of 30 different trajectories carried out between the same start and goal states. As demon-
strated on other datasets, the constants and the criteria are applicable to similar movements.
The results of the second dataset are recapitulated in Table 3 below. In the table, line 5
depicts the average and the variance of differences between the consumed energy and the
criterion score. Notably, the average and the variance increased significantly in line 6 when
the robot was performing different movements. For more detailed results from further
datasets, consult the section “Control Pseudo-Cost” above.

It was found that the jerk-based criteria—joint jerk, joint max jerk, Cartesian jerk, and
Cartesian max jerk do not correlate with the executed trajectory. However we observed
a different correlation, namely that the pseudo-jerk peaks calculated on a planned path
corresponded to a higher density of measured robot positions in time. This correlation is
discussed in more depth in the section “Jerk-Based Criteria”. While the joint jerk calculates
the sum of jerks along the whole path and the joint max jerk uses just one maximum jerk
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for the entire path, the experiments proved it would be more advantageous as combined
criteria, termed joint jerk peaks and Cartesian jerk peaks respectively. These two criteria
can be defined by (13) in joint space and by (14) in Cartesian space and their goal is to
find all local pseudo-jerk peaks. The statistical indicators of the differences between the
function’s output and the jerks calculated from the measured robot positions are shown in
Table 3, in lines 7 and 8.

These criteria are applied, and their usage is demonstrated in Section “Criteria Usage”
in two experimental setups. In the first experiment three different environments with
increasing levels of complexity are compared, and the presented criteria are used to evaluate
the planned paths generated to navigate these environments. As expected, the simplest
environment achieves the best scores while with increasing complexity, i.e., more obstacles,
we see the scores dropping. Naturally, the third and the most challenging environment has
the worst scores. In several attempts, the path planner fails to find a collision-free path.
The scores are compared and recapitulated in Table 4 below.

Table 4. Recapitulation of the impact of environment complexity per each criterion.

Criterion
Experiment No.1 Experiment No.2 Experiment No.3

Average Variance Average Variance Average Variance

1 Joint Distance [rad] 3.699 0.1511 4.9824 0.51754 10.456 1.544
2 Cartesian Distance [m] 3.6277 0.2882 5.107 0.7206 7.6689 1.3505
3 Orientation Change [rad] 1.6659 0.199 2.8288 0.3863 4.6727 1.64228
4 Robot Displacement [m] 3.6315 0.2800 5.1134 0.7182 7.753 1.307
5 Control Pseudo Cost 1.6349 0.0208 2.0629 0.0870 4.3652 0.3606
6 Joint Jerk Peaks [rad] 0.0022 0.0103 0.0575 0.1551 2.824 9.454
7 Cartesian Jerk Peaks [m] 2.42 10.5699 6.7953 60.34 31.2399 943.78
8 Duration [s] 8.02 × 10−2 4.5 × 10−4 8.6 × 10−2 9.2 × 10−4 1.44 0.2

In the second experimental setup, the behavior of the path planner and the quality
of the generated paths are evaluated in different workspaces. On the surface, the robot
performs a movement similar to that in the first experimental setup. The difference in this
case comes in the position of the bins which are moved further along the X-axis of the
robot’s coordinate system in each scenario. The goal is to evaluate the impact of this change
on the resulting paths. Each experiment has a 100% success rate of path computation. The
Cartesian distance and robot displacement criteria have the same results in each scenario,
and the position of bins does not change the length of the Cartesian path. The same result
can be seen for the duration criterion, which means that the computation time does not
dependent on the change in the reachable position of the bins. However, the criterion joint
distance shows that the trajectories are longer when the bin is placed closer to the robot
base. This behavior is echoed by the outcomes observed for the orientation change criterion.
They display a frequent change in the orientation of the tool point in the scenario where
the bins are placed closer to the robot base. The scores for the criteria joint jerk peaks and
Cartesian jerk peaks prove that the change of the bin position has no impact on path jerks.
Our results show that most of the paths have no significant jerk, and are therefore mostly
smooth. These results are recapitulated in Table 5.

Table 5. Recapitulation of the impact of bin position per each criterion.

Criterion
Experiment No.1 Experiment No.2 Experiment No.3

Average Variance Average Variance Average Variance

1 Joint Distance [rad] 6.2858 0.3452 4.9181 0.4432 3.729 0.3086
2 Cartesian Distance [m] 4.797 0.730 4.328 0.7535 4.737 0.897
3 Orientation Change [rad] 2.974 0.4137 2.2203 0.518 1.804 0.368
4 Robot Displacement [m] 4.810 0.707 4.337 0.7435 4.7405 0.894
5 Control Pseudo-Cost 2.9122 0.0518 2.0887 0.0584 1.4711 0.0431
6 Joint Jerk Peaks [rad] 0.049 0.1156 0.0651 0.1909 0.0148 0.0347
7 Cartesian Jerk Peaks [m] 5.2656 30.308 5.43026 47.276 4.8859 38.443
8 Duration [s] 0.082 0.0011 0.078 0.0011 0.0719 0.0010
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6. Discussion

In this paper, we presented a complex trajectory-evaluation framework based on seven
criteria. Firstly, we introduced nine hypotheses, mostly based on well-known trajectory
metrics. However, following the outcome of our experiments and subsequent modifica-
tions, we formulated a total of seven criteria to be used in comparison of trajectories. Each
hypothesis was meticulously tested on a real robot, and thus proved to be a valid criterion.
There is abundant research into the planning time and success rate of path planners which
are viewed as important benchmarks for many industrial applications. Our research, how-
ever, focused on the quality of the path planners’ output, namely a path defined as a set of
robot states. When looking at the minimization of trajectory length, there are several criteria
that need to be considered. A well-known approach is to assess the length of a trajectory
by finding the sum of joint differences, as demonstrated in [8]. Similarly, [9] employs the
tactic to compute the cumulative sum of the tool point’s Euclidean distances between each
waypoint. Therefore, these criteria (joint distance, Cartesian distance, orientation change,
and robot displacement) were included in our trajectory-evaluation framework and were
assessed experimentally using a real robot. We confirmed our expectations that these
criteria are valid, given that the planned trajectories correspond with the robot-executed
trajectories (Table 1). The aim of the research was to consider advanced metrics, energy
consumption being one of those. The hypothesis we formulated posits that it is possible
to predict which trajectory consumes more energy. Our findings show that by selecting a
combination of weights for the control pseudo-cost criterion (4) we can approximate the
energy consumption. We investigated the correlation between this criterion’s score and
the measured consumed energy during the trajectory execution on the real robot. The
results confirmed this hypothesis: the higher the criterion’s score, the more energy a given
trajectory will consume. However, it is important to note that the set of weights is only
suitable for sets of similar movements (Experiments no. 1–4 in Section 3.1). The difference
between real consumed energy and the criterion’s score becomes a less reliable prediction
tool in case of significantly different movements (Experiment no. 5 in Section 3.1). This
difference is clearly illustrated in a box plot in Figure 8. Another key metric to consider
is the smoothness of a trajectory, as smooth motion puts less stress on mechanical units.
Smoothness can be computed as the accumulated sum of linear and angular accelerations
of the end effector, as presented in [7]. An optimal time-jerk trajectory planning, as sug-
gested in [26], minimizes jerk which is defined as the cumulative sum of time-derivation of
accelerations on each joint. Unlike the aforementioned studies, we presented a different
approach of trajectory comparison. Our approach considers only robot positions, neglecting
properties such as time-parametrization, velocities or accelerations, which are all unknown.
We propose that many path planners generate trajectories primarily as positions only, while
velocities or accelerations may not necessarily be computed. With this hypothesis in place
we formulated the criteria joint jerk, joint max jerk, Cartesian jerk, and Cartesian max jerk
which were all based on the computation of the pseudo-jerk. However, the experiment
detailed in Section “Jerk-Based Criteria” showed that these criteria are not suitable for
trajectory comparison without the trajectories being time-parametrized. Figures 9 and 10
demonstrate the lack of correlation between pseudo-jerk and real jerk. However, we were
able to observe a different phenomenon. The local peaks of the pseudo-jerk (Figure 11)
showed correlation with observed robot “slowdowns” (Figure 12). Therefore, we designed
new criteria, the joint jerk peaks and Cartesian jerk peaks which can be used as a prediction
tool for which trajectory will take more time to be executed. Finally, we demonstrate the
possible applications of these criteria in Section 4 “Criteria Usage”. Due to the proven
validity of our criteria, these can now be simply applied in trajectory comparison, without
the need for executions on a real robot. This presents a major advantage, as trajectories can
now be compared in simulation mode, foregoing the need to collect any measurements
from real robot performances. Furthermore, we applied these criteria experimentally to
investigate what impact does a change in environment have on a path planner. Our as-
sumption was a straightforward one, namely that the generated trajectories will be of a
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worse quality in a more complex environment (Table 4). In line with our expectations, the
most complicated environment (Experiment no. 3) rendered the highest criterion scores,
meaning the quality of trajectories here was the worst.

7. Conclusions

Due to the non-deterministic behavior of randomized path planning algorithms, it
is difficult to compare the resulting paths between multiple implementations or changes
in configuration.

Path planners usually generate paths as sets of robot states in joint space. Trajectory
attributes (e.g., velocity and acceleration) could not be calculated by every path planner,
but they could be calculated by a robot control system during their execution. In our work,
we focused on paths containing only position data. It is important to note that trajectory
analysis with regard to dynamics would constitute an entirely different task, as this type of
path does not contain all the necessary information.

In this article, we presented a novel approach for the evaluation and comparison
of paths computed by randomized path planners. Nine hypotheses, mostly based on
well-known trajectory metrics, were suggested and evaluated with experiments. On the
basis of the test results, we formulated seven criteria that can be used for the comparison of
the computed paths with respect to multiple production demands.

The evaluation of the criteria joint distance, Cartesian distance, orientation change,
and robot displacement confirmed that the planned paths correspond with the executed
trajectories. We can confirm that these represent a valid metric for path comparison, and
they will be valid in all situations except for situations when the robot executes a completely
different trajectory than requested.

The criterion control pseudo-cost is used as a prediction of which paths could consume
more energy. This criterion simplifies the dynamics of each robot link by replacing it with
a simple constant. For every link, these constants have been calculated using the brute
force method on a reference dataset, consisting of 30 different trajectories between the
same start and goal states. Our assumption was that the constants are applicable to similar
motions and for other groups of motions the constants should be recalculated. Two types
of experiment were conducted to verify this hypothesis (described in Section 3.1 Control
Pseudo-Cost). For experimental evaluation, we measured the real energy consumption of
the robot during the trajectory execution and compared it with the predicted results. Our
results confirmed this hypothesis. The difference between consumed energy and criterion
scores is more accurate in the group of similar motions. The error is increased in the case of
significantly different motions.

Criteria based on the jerk, namely joint jerk, joint max jerk, Cartesian jerk, and Carte-
sian max jerk, cannot be directly compared with the executed robot motions due to the
missing information in trajectories such as velocity and acceleration. However, in our
experiments, we noticed that the local peaks of the predicted pseudo-jerk correlate with
observed “slowdowns” of the robot. For this reason, we designed the new joint jerk peaks
criterion for the joint space and its corresponding counterpart for the Cartesian space,
Cartesian jerk peaks. These new criteria could be used as a prediction of which path takes
more time. This hypothesis was successfully confirmed in our experiments.

The proposed criteria can serve as a tool for deciding which path planner generates
better paths. Likewise, the environment complexity has an impact on path planners and
the criteria could assist in the decision of which layout is better or which path planner is
appropriate for the chosen layout. Our experiments confirmed that if the environment is
more complex, the quality of trajectories is worse.

In our future work, we will focus on in-depth comparison of path planners in different
production types with the help of the criteria-based framework presented in this article.
Furthermore, it must be stated that the criteria joint jerk peaks and Cartesian jerk peaks
have been validated just on the one robot model and, therefore, we would like to investigate
the behavior of jerk peaks on other robots as well.

180



Robotics 2022, 11, 29

Author Contributions: Conceptualization, P.B. and M.D. (Martin Dekan); methodology, M.D.
(Martin Dekan); software, M.D. (Martin Dekan) and M.D. (Michal Dobiš); validation, M.D.
(Michal Dobiš); formal analysis, M.D. (Martin Dekan) and M.D. (Michal Dobiš); investigation,
M.D. (Martin Dekan) and M.D. (Michal Dobiš); resources, P.B.; data curation, M.D. (Michal Dobiš);
writing—original draft preparation, M.D. (Michal Dobiš); writing—review and editing, P.B. and F.D.;
visualization, M.D. (Michal Dobiš); supervision, P.B.; project administration, P.B.; funding acquisition,
A.B. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by VEGA, grant number VEGA 1/0049/20 and by the European
Regional Development Fund, Grant Number 313012P386 and by Horizon 2020, Grant Number
824964.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This research was partially sponsored by Photoneo company. (http://www.
photoneo.com, accessed on 16 January 2022). VEGA 1/0049/20 and DIHˆ2 supported this work.
Operational Program Integrated Infrastructure created this publication for the project: “Robotic
workplace for intelligent welding of small-scale production,” code ITMS2014+: 313012P386, and it is
co-sponsored by the European Regional Development Fund.).

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References

1. Kavraki, L.E.; Svestka, P.; Latombe, J.-C.; Overmars, M.H. Probabilistic roadmaps for path planning in high-dimensional
configuration spaces. IEEE Trans. Robot. Autom. 1996, 12, 566–580. [CrossRef]

2. Lavalle, S.M. Rapidly-Exploring Random Trees: A New Tool for Path Planning. 1998. Available online: http://citeseerx.ist.psu.
edu/viewdoc/summary?doi=10.1.1.35.1853 (accessed on 14 February 2022).

3. Zucker, M.; Ratliff, N.; Dragan, A.D.; Pivtoraiko, M.; Klingensmith, M.; Dellin, C.M.; Bagnell, J.A.; Srinivasa, S.S. CHOMP:
Covariant Hamiltonian optimization for motion planning. Int. J. Robot. Res. 2013, 32, 1164–1193. [CrossRef]

4. Kalakrishnan, M.; Chitta, S.; Theodorou, E.; Pastor, P.; Schaal, S. STOMP: Stochastic trajectory optimization for motion planning.
In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011.

5. Rodriguez, C.; Suárez, R. Comparison of motion planners in an environment with removable obstacles. In Proceedings of the 2015
IEEE 20th Conference on Emerging Technologies & Factory Automation (ETFA), Luxembourg, 08–11 September 2015; pp. 1–7.
[CrossRef]

6. Paulin, S.; Botterill, T.; Lin, J.; Chen, X.; Green, R. A comparison of sampling-based path planners for a grape vine pruning robot
arm. In Proceedings of the 2015 6th International Conference on Automation, Robotics and Applications (ICARA), Queenstown,
New Zealand, 17–19 February 2015; pp. 98–103.

7. Magyar, B.; Tsiogkas, N.; Brito, B.; Patel, M.; Lane, D.; Wang, S. Guided Stochastic Optimization for Motion Planning. Front. Robot.
AI 2019, 6, 6. [CrossRef]

8. De Maeyer, J.; Demeester, E. Benchmarking framework for robotic arc welding motion planning. Procedia CIRP 2021, 97, 247–252.
[CrossRef]

9. Larsen, L.; Kim, J.; Kupke, M.; Schuster, A. Automatic Path Planning of Industrial Robots Comparing Sampling-based and
Computational Intelligence Methods. Procedia Manuf. 2017, 11, 241–248. [CrossRef]
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Abstract: Bin picking is a challenging problem that involves using a robotic manipulator to remove,
one-by-one, a set of objects randomly stacked in a container. In order to provide ground truth data for
evaluating heuristic or machine learning perception systems, this paper proposes using simulation to
create bin picking environments in which a procedural generation method builds entangled tubes
that can have curvatures throughout their length. The output of the simulation is an annotated point
cloud, generated by a virtual 3D depth camera, in which the tubes are assigned with unique colors. A
general metric based on micro-recall is proposed to compare the accuracy of point cloud annotations
with the ground truth. The synthetic data is representative of a high quality 3D scanner, given that
the performance of a tube modeling system when given 640 simulated point clouds was similar to
the results achieved with real sensor data. Therefore, simulation is a promising technique for the
automated evaluation of solutions for bin picking tasks.

Keywords: bin picking; industrial robots; modeling; pose estimation; robot vision; simulation

1. Introduction

Bin picking consists of using a robotic manipulator to remove, one-by-one, a set of
objects that are randomly stacked in a container. It is a complex problem faced by many
manufacturing and production systems. One of the main challenges of bin picking is
handling objects that are occluded or entangled. When items are entangled, the robot is
prone to picking multiple units at once rather than a single one as expected, which can
cause disruptions in assembly lines, namely by having objects fall outside the working
area. Therefore, bin picking systems dealing with this sort of objects must be able to detect
entanglement issues, so that they can operate reliably. This detection can be performed
using depth sensors.

In order to accurately evaluate the performance of a robot perception algorithm, it
is necessary to use a ground truth system, which consists of meta-data associated with
the measurements acquired by a sensor. This meta-data allows for the comparison of the
output of a perception algorithm with information that is known to be correct. For the
particular case of the perception of the contents of a bin, the ground truth data consists of a
point cloud, where each point is associated with the identifier of the object it belongs to.
The meta-data can also include a geometric representation of each object.

This paper proposes using simulation to generate ground truth data for bin picking
scenarios. Many state-of-the-art research publications on robotics conduct real-world
experiments in order to evaluate the efficiency of their solutions. Using a simulator is an
attractive alternative since a large quantity of experiments can be conducted in a much
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shorter amount of time and without the need for expensive robot hardware or manual
annotation. Annotated data generated via simulation can be used as input and validation
for various methods based on Artificial Intelligence (AI) for bin picking, namely those
based on heuristics or machine learning.

This paper focuses on the case of bin picking of entangled tubes that can have multiple
curvatures throughout their length. As an alternative to using fixed Computer-aided
design (CAD) models of the items, a procedural generation algorithm is presented to
randomly create curved tubes, which fall inside a virtual bin. This enables the creation of
scenarios where there is intra-class variation of the items to be picked and allows for a first
approximation of flexible objects. The Gazebo simulator, coupled with the Open Dynamics
Engine (ODE), is responsible for ensuring the tubes’ movements and spatial configurations
are realistic. A virtual 3D scanner is responsible for acquiring point clouds of the scene.

On previous research, a perception algorithm that estimates the pose and shape of a
set of curved tubes was evaluated manually by human annotators [1]. In order to present
a practical application of the generator, synthetic point cloud data was used to evaluate
this solution in an automated manner. A performance metric is proposed to compare
how accurate the perception algorithm is, by comparing its output with the ground truth.
A rigorous evaluation of the perception algorithm using real-life sensors would require
manually annotating a large amount of point clouds, which would be highly impracticable
and thus justifies the need for simulation.

The efficiency of the entangled tubes dataset generator was measured by creating
two datasets, each one having 320 point clouds and different types of tubes. In addition,
in order to assess the realism of the generated point clouds, the performance of the tube
perception algorithm was compared with the results of previous work [1].

The rest of the paper is organized as follows. Section 2 presents related work on
synthetic 3D data generation and simulation for bin picking. Section 3 presents the proposed
system to generate synthetic point clouds of entangled tubes. Section 4 provides a summary
of the tube modeling algorithm that was developed on previous work, while Section 5
presents the proposed method to evaluate its performance. Section 6 provides experimental
results of the tube generator and the evaluation of the tube perception algorithm. Finally,
Section 7 summarizes the contributions of this work, the main results and several lines of
future research.

2. Related Work

2.1. Synthetic 3D Data Generation

The need for the generation of synthetic 3D data is not restricted to the field of robotics.
Other areas include autonomous driving [2,3] and machine learning [3]. There are two
main approaches to generating 3D synthetic data: using probabilistic models and sensing a
point cloud from a simulated environment. The work presented in this paper falls into the
second category.

Constructing 3D data with the aid of probabilistic models allows for more efficient
memory representation (than using point clouds). Niemeyer et al. build 3D models
using RGB images and implicit differentiation [4], while Yang et al. learn a probabilistic
distribution for shapes which is then used to learn a distribution for the point cloud
associated with the shape [5].

When generating point clouds using simulation, a virtual sensor is commonly used to
capture 3D information of the scene. The simulation setting can be a video game [2,6], such
as Grand Theft Auto V, or an open-source sandbox, such as Blender [7] or Unity [3]. On the
one hand, acquiring 3D point clouds using video games has the strength of a large amount
of content being readily available [6]. In order to validate the synthetic ground truth data,
Yue et al. compare the data acquired by the sensor with an in-game camera, both placed in
the same 3D position [2], whereas Richter et al. analyze the game’s communication with
the graphics hardware [6]. On the other hand, using an open-source simulator typically
has the advantage of being relatively simple to parameterize the settings for the data
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collection (which allows for a more flexible generation of datasets). Wang et al. [7] use the
descriptions returned by a ray casting algorithm in Blender to extract the points’ labels.

2.2. Simulation for Bin Picking

There already exists some published work on dataset generation for bin picking
using simulation. Schyja et al. [8] propose a framework for generating bins filled with
objects using the DirectControl 3 simulation system that lacks the simulation of a 3D sensor.
Kleeberger et al. [9] use the V-Rep simulator alongside the Bullet physics engine and change
the pose of their bin between the generation of successive test cases. Matsumura et al. [10]
perform simulation using the PhysX physics engine to generate datasets with annotations
of whether a picking attempt was successful or not. This work presents some novelties
with respect to the existing literature:

• All of these works resort to predefined 3D models of the items to be added to the bin,
unlike this work where the shape of the items can be procedurally generated based on
some parameters defined by the user.

• None of these works discuss in detail the time required for dataset generation with
respect to the number of items and their shape.

The utility of simulation is not restricted to dataset generation. When facing the many
challenges of bin picking, simulation techniques are often employed to solve one or more
of its sub-tasks, including grasp planning [11,12], where grasp configurations are generated
and evaluated, and motion planning [13,14], that determines how the robotic manipulator
should move.

3. Entangled Tube Dataset Creation

The generation of labeled point clouds is performed using a plugin for Gazebo [15],
a 3D simulator commonly used by the robotics community and maintained by Open
Robotics. The virtual world created in Gazebo contains a 3D scanner that is positioned
looking downwards towards a bin. This sensor is responsible for acquiring point clouds of
the scene, using methods that are built-in in Gazebo.

A simulated tube is composed of a linked list of cylinders which are connected by
their endpoints. Using multiple cylinders allows for the emulation of curved tubes. The
cylinders have a constant radius. To ensure a tube’s surface is smooth, a sphere with the
same radius as the cylinders is created for each endpoint that connects two cylinders.

In order to create a point cloud for the dataset, the simulated world is initialized with
an empty bin. Algorithm 1 is then called in order to create each tube. This algorithm
calls two auxiliary methods: Algorithm 2 is used to randomly determine the amount and
length of each cylinder of a tube, while Algorithm 3 randomly defines the exact position of
each cylinder endpoint. Figure 1 depicts an example of the main steps of the procedural
generation of a tube. As it can be seen in the input for Algorithm 1, the generator is
highly flexible due to a high amount of parameters that can be adjusted for different bin
picking scenarios. Moreover, the dimensions of the bin and the pose of the virtual sensor
are customizable.

Each tube is spawned at a certain height above the bin and at a position that enables it
to fall inside the bin. After spawning all of the tubes, the plugin waits for all of them to stop
moving by checking that the linear and angular velocity of their center of mass is below a
certain threshold. This increases the stability of the generation. Making the tubes drop into
the bin rather than simply spawning them without gravity provides much more realism for
the tubes’ spatial configurations. Moreover, spawning all the tubes at once above the bin
replicates the strategy employed by manufacturers to fill the bins, which increases the cases
of entanglement and makes the test cases more similar to reality. The simulator detects and
corrects possible overlaps between tubes.
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Algorithm 1 Tube random generation algorithm.
Input:

n—Number of tubes to generate
r—Tube radius
l—Tube length
clmin—Min cylinder length
cnmin, cnmax—Min/max number of cylinders
θmin, θmax—Min/max angle between two consecutive cylinders

Output:
tubes—Set of generated tubes

1: tubes ← ∅
2: for m ∈ {0, . . . , n − 1} do

3: tube ← ∅
4: cn ← RandomInteger(cnmin, cnmax)
5: lengths ← GenerateLengths(cn, l, clmin)
6: endpoints ← GenerateEndpoints(lengths, θmin, θmax)
7: for i ∈ {0, . . . , cn − 1} do

8: tube ← tube ∪ CreateCylinderWithRadiusAndEndpoints(r, endpoints[i], endpoints[i + 1])
9: if i > 0 then

10: tube ← tube ∪ CreateSphereWithRadiusAndCenter(r, endpoints[i])
11: tubes ← tubes ∪ tube
12: return tubes

Algorithm 2 Cylinder lengths generation algorithm.
Input:

cn—Number of cylinders
l—Tube length
clmin—Min cylinder length

Output:
lengths—Sequence of cylinder lengths

1: lengths ← []
2: remainingLength ← l
3: for i ∈ {0, . . . , cn − 2} do

4: cl ← RandomInteger(clmin, remainingLength − (cn − 1 − i) ∗ clmin)
5: lengths.Push(cl)
6: remainingLength ← remainingLength − cl
7: lengths.Push(remainingLength)
8: return lengths

Algorithm 3 Cylinder endpoints generation algorithm.
Input:

lengths—Sequence of cylinder lengths
θmin, θmax—Min/max angle between two consecutive cylinders

Output:
endpoints—Sequence of cylinder endpoints

1: previousEndpoint ← (0, 0, 0)
2: endpoints ← [previousEndpoint]
3: for i ∈ {0, . . . , Length(lengths)− 1} do

4: φ ← RandomFloat(0, 2π)
5: if i = 0 then

6: θ ← RandomFloat(0, π)
7: unitDirection ← (sin(θ) ∗ cos(φ), sin(θ) ∗ sin(φ), cos(θ))
8: else

9: θ ← RandomFloat(θmin, θmax)
10: unitDirection ← (sin(θ) ∗ cos(φ), sin(θ) ∗ sin(φ), cos(θ))
11: unitDirection ← RotateVectorAroundAxisWithAngle(unitDirection,

CrossProduct((0, 0, 1), previousDirection), DotProduct((0, 0, 1), previousDirection))
12: nextEndpoint ← previousEndpoint + lengths[i] ∗ unitDirection
13: previousDirection ← nextEndpoint − previousEndpoint
14: previousEndpoint ← nextEndpoint
15: endpoints.Push(nextEndpoint)
16: endpoints ← ApplyRandomTranslation(endpoints)
17: return endpoints
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Figure 1. An example of the main steps of the procedural generation of a tube.

A unique color is assigned to each tube that is created. This color is used as a ground
truth system to indicate to which tube each point of the cloud belongs. Shadows and light
sources are disabled (with the exception of an ambient light) to ensure that only (n + 1)
different colors are present in a scene with n tubes: one for each tube and one for the bin.

4. Tube Modeling Algorithm

The tube modeling algorithm that was evaluated was proposed and implemented by
Leão et al. [1]. It receives as input a point cloud of the bin and its contents. The algorithm
has two outputs:

• A data structure that describes the shape and spatial configuration of the tubes (a set
of linked lists of cylinders).

• A subset of the input point cloud where each point is labeled with a color that is
unique to each tube that was constructed. The points of the input point cloud that are
not present in this output correspond to those for which it is not clear to which tube
they belong.

For the purposes of performance evaluation, the latter output was used.
The algorithm was implemented using Point Cloud Library (PCL) [16], a modular C++

library with a vast array of helpful functions for point cloud processing.
The solution performs four main steps: filtering, segmentation, cylinder fitting and

tube joining. Figure 2 presents an example of each step of the algorithm. Figure 3 contains
the color image of the tubes corresponding to the (uncolored) input point cloud (which is
not used by the modeling algorithm).

The filtering step removes the points from the point cloud which do not belong to
any of the tubes, but rather to the bin’s walls and bottom. In addition, the cloud may be
downsampled in order to reduce the processing time of the following steps, and the surface
normals may be estimated.

The segmentation step clusters the point cloud into disjoint piece-wise smooth regions,
which correspond to visible portions of a tube. This step uses a region-growing algorithm
based on the surface normals.

The cylinder fitting step associates a set of cylinders to each cluster obtained from
the previous set. Cylinder fitting is performed using a Random Sample Consensus
(RANSAC) algorithm.
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Figure 2. An example of the result of each step of the tube modeling solution.

Figure 3. Corresponding color image of the picking scene for the tube modeling example of Figure 2.

The tube joining step combines the cylinders to form into increasingly longer, more
complete tubes. This is performed using a greedy method that considers all pairs of
endpoints of distinct cylinders, and orders these pairs using a cost function that considers
their Euclidean and angular distance. The pairs are then processed in increasing order of
cost. Each virtual tube created by this step has a unique color assigned to it, the label color.

This modeling solution is described in greater detail in its original publication from
2019 [1].

In order to prepare the labeled point cloud, for each point that was left unlabeled after
the tube joining step, it is determined if they are sufficiently close to a cylinder or joint of
one of the tubes. If they are close to at least one of the objects, then the point is labeled with
the color of the tube that has the closest cylinder or joint to it.
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5. Evaluation

The evaluation of the modeling algorithm’s accuracy is done by comparing two point
clouds returned by this solution: the filtered cloud, which is the result of the filtering step,
and the labeled cloud, which only contains points that were fitted into one of the cylinders.
The points of the former cloud have the same color as the input cloud (i.e., the ground truth
colors), while those from the latter have the same color as the object/tube they belong to
(i.e., the label colors).

The labeled cloud is a subset of the filtered cloud, since some points may not be
used by any of the calls to RANSAC to form a cylinder and may be too far away from
all cylinders and joints. These points are labeled with a null color c∅, which is different
from those of the virtual tubes. Pairs of corresponding points between the two clouds
(i.e., points with the same position) have different colors. Thus, the first step needed to
compare both clouds is to establish a mapping between the ground truth and label colors.
This corresponds to the well-known maximum-cost unbalanced assignment problem in
a weighted bipartite graph, where an edge connecting a ground truth color C to a label
color c has a weight equal to the number of corresponding points with these colors in their
respective clouds. The assignment problem is solved using the Hungarian method [17].

For illustrative purposes, Figure 4 depicts a simplified example of a point cloud with
72 points obtained from scanning a scene with two tubes. The left-hand image contains the
point cloud labeled with two ground truth colors, one for each tube. The right-hand image
contains one possible labeling of the same point cloud by the tube modeling algorithm,
where four colors were defined. Three of these colors are associated with virtual tubes,
which means that the tube modeling algorithm (incorrectly) determined that the scene
contains three tubes, while the fourth color is the null color. For increased clarity, in both
images, distinct shapes are used to represent the points labeled with each color. Figure 5
shows the corresponding bipartite graph for the example, where the edges whose weight is
outlined by rectangles represent the optimal assignment: the ground truth colors C1 and
C2 were associated with the label colors c1 and c2, respectively.

Let M be the inferred matching function between the two color spaces and C the
number of ground truth colors. For the i-th ground truth color Ci, the corresponding label
color is ci = M(Ci). For all i ∈ [1, C], the matched label color ci is never equal to the null
color c∅. If the modeling solution creates too many tubes, some of the label colors may not
be matched with any of the ground truth colors. Conversely, if too few virtual tubes are
built, some of the ground truth colors may not be matched.

Figure 4. Example of a small point cloud with ground truth and label colors.
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Figure 5. Bipartite graph of Figure 4, which represents the matching between the two sets of colors.

The value used to compute the tube modeling algorithm’s performance is presented
in Equation (1). It corresponds to the micro-recall metric recallμ used for multi-class classi-
fication [18]. This metric was used for evaluation since it provides a more intuitive value
for the ratio of points that were correctly labeled with respect to other classic alternatives
used in multi-class classification.

recallμ =
number of correctly labeled points

total number of points
=

∑C
i=1 tpi

∑C
i=1(tpi + f ni)

(1)

In Equation (1), tpi denotes the amount of points whose colors in the ground truth
and labeled cloud are respectively Ci and ci = M(Ci), and f ni are the points with the color
Ci and a label color distinct from ci. In other words, the micro-recall metric divides the
number of correctly labeled points by the total amount of points in the filtered cloud. The
labeled cloud is compared with the filtered cloud and not with the one used as input for
the modeling algorithm to avoid penalizing the solution unfairly for filtering points it does
not require for its computations (during the filtering step). In the example from Figure 5,
the value for the micro-recall is equal to 26 + 24

26 + 2 + 11 + 24 + 2 + 7 = 50
72 ≈ 0.694.

It should be noted that the performance metric proposed in this section is generic
and can be applied to the result of any algorithm that labels the elements of a point cloud
according to which item they belong to, by comparing it with the ground truth.

6. Results

Two sets of experiments were conducted. The first set aims to assess the efficiency of
the simulator on creating datasets. The second set aims to apply the created datasets to
evaluate in a more rigorous manner the tube perception solution described in Section 4.

All of the results were obtained with an Intel Core i7-8750H processor (2.20 GHz), a
32 GB DDR4 RAM (2667 MHz), and a NVidia GeForce GTX 1050 Ti GPU.

6.1. Dataset Generation Efficiency

Figure 6 depicts two examples of simulated scenes in Gazebo with bins filled with
7 randomly generated tubes. As shown in the figure, two datasets were created, each one
with a set of tubes with different properties: sets A and B. For each dataset, 20 point clouds
(i.e., test cases) were created for different amounts of tubes, ranging from 1 to 15 tubes. In
addition, for each dataset, 20 test cases of clouds with 20 tubes were created, to further
test the generator’s capacities. As a result, each dataset contains 320 test cases. All of the
generated datasets were made publicly available: the Entangled Tubes Bin Picking dataset
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is available at https://github.com/GoncaloLeao/Entangled-Tubes-Bin-Picking-Dataset
(accessed on 13 January 2022).

(a) Set A (b) Set B

Figure 6. Example of a set of 7 tubes for each synthetic dataset.

The tubes of sets A and B have similar properties to the real-life tubes made of
Polyvinyl Chloride (PVC) used on the experiments of previous research [1], which are
depicted in Figure 7. Point clouds of these tubes captured by real-life sensors on previous
work are also publicly available (within the Entangled Tubes Bin Picking dataset). These tubes
have a diameter of 2.5 cm and a length of 50 cm. They do not contain any bifurcations and
are bent with arbitrary angles. The difference between sets A and B lies on the minimum and
maximum angle between consecutive cylinders (parameters θmin and θmax of Algorithm 3).
For set A, the angles range from 0◦ to 30◦, and for set B, they range from 0◦ to 45◦. Thus,
the tubes of set B have more curvatures throughout their length than those of set A.

Figure 7. PVC tubes used on previous research [1] and geometrically similar to those of sets A and B.

For the generation of all the datasets, the dimensions of the bin were 55 cm (length) ×
37 cm (width) × 20 cm (height). The bin was slightly larger than the one used on previous
research to better accommodate larger amounts of tubes. To allow the virtual 3D scanner to
perceive the whole working area, it was positioned looking downwards towards the bin,
with a vertical distance of 2 m relative to the bin’s bottom. The model of the virtual sensor
was set to mimic the properties of a Zivid One Plus L scanner, which was used on previous
work [1]. It produces depth images with dimensions 1920 × 1200.
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Gazebo’s dynamics engine was set to run three times faster than real-time. This factor
was set empirically to balance simulation stability and the time needed for the tubes in the
bin to stop moving.

As expected, according to Table 1, the time needed to generate a point cloud increases
with the amount of tubes in the bin, since more time is needed to allow the tubes to stabilize
after being dropped in the bin. On average, set B requires slightly less time than set A to
generate a test case. The authors theorize this is due to the tubes of set B occupying, on
average, a smaller bounding box than those of set A, due to having larger curvatures. This
may reduce the amount of collisions between the tubes, and thus decrease the time needed
for the items to stabilize within the bin.

Table 1. Average time needed to generate a test case for each dataset with respect to the number
of tubes.

Number of Tubes Set A Set B

1 3.13 s 2.68 s
2 6.32 s 5.84 s
3 8.86 s 7.39 s
4 8.77 s 7.57 s
5 8.25 s 8.90 s
6 11.41 s 9.21 s
7 10.39 s 9.81 s
8 10.58 s 10.75 s
9 10.82 s 10.95 s

10 14.20 s 13.73 s
11 14.95 s 13.45 s
12 16.54 s 15.48 s
13 14.53 s 15.85 s
14 16.16 s 16.81 s
15 16.73 s 16.78 s
20 28.10 s 25.02 s

Increasing the simulation speed tends to decrease the tube stabilization time, but using
overly large values causes the simulation to become unstable and raises the likelihood of a
tube clipping through the bin and falling out of bounds, which invalidates a generation
attempt. Thus, fine-tuning the simulation speed may increase substantially the efficiency of
this dataset generator.

6.2. Tube Modeling Algorithm Performance

Sets A and B were used to evaluate the performance/accuracy of the tube modeling
solution. The parameters used to test the modeling algorithm are identical to the ones used
on previous research [1], with the exception of the filtering step. Since the exact position
and dimensions of the bin are known, a crop box filter was used to remove the points
belonging to the bin, leaving only the points that belong to the tubes. A second filter is
then applied to randomly downsample the point cloud by a fixed ratio, in order to reduce
the computational effort of the solution. For each of the 20 point clouds of sets A and B
with each value for the number of tubes, the tube modeling solution was executed 10 times
with a distinct ratio for the downsampling filter between 0.1 and 1.0 (where the cloud is
not downsampled), with a step of 0.1.

As depicted in Figure 8, the performance of the perception algorithm is reduced
linearly as the number of tubes increases, since the number of cases of occlusions and
entanglement increases, making it harder to accurately construct the tubes. This effect was
also observed on previous research. In addition, the solution consistently performed better
on set A than on set B. This is most likely due to the shape of the tubes on set B being
more complex.
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Figure 8. Average micro-recall for sets A and B with respect to the number of tubes using a down-
sampling ratio of 0.3.

It is interesting to note that the performance of set B for the cases with a single tube
has a significantly lower performance than the cases with 2 to 4 tubes, with an approximate
value of 0.867. The authors hypothesize this is due to issues related to the segmentation
step of the solution that were observed during the experiments, where the region-growing
algorithm was occasionally not able to associate many of the points to a cluster. This
prevented the fitting step from creating a sufficient amount of cylinders to cover the whole
tube. Since the micro-recall metric gives equal weight to all the points, on clouds with a
single tube, the occurrence of this issue is more prevalent on the performance metric, than
on larger point clouds.

The issue with the segmentation step problem can be considerably mitigated by fine-
tuning the parameters of the region-growing algorithm. A calibration procedure could be
developed to adjust the perception algorithm’s parameters according to the geometrical
properties of the tubes.

This particular case of the performance of the solution being considerably lower on
cases with a single tube was also observed on previous research, where the performance
metrics were estimated manually by human annotators:

• According to Table 2 of the previous publication by Leão et al. [1], the ratio of “correctly
labeled tubes” (obtained by dividing the accuracy metric “Number of correctly labeled
tubes” by the actual number of tubes) increased by 25% from 1 to 2 tubes (the largest
relative increase from two consecutive tube amounts) and decreased by 12.5% from 1
to 10 tubes, reaching the lowest accuracy value of those between 1 and 10 tubes.

• In a similar trend, the micro-recall for Set B with a downsampling ratio of 0.3 increased
by approximately 3.9% from 1 to 2 tubes (also the largest relative increase from two
consecutive tube amounts) and decreased by approximately 4.1% from 1 to 10 tubes,
also reaching the lowest accuracy value of those between 1 and 10 tubes.

This helps to establish that the micro-recall metric allows for a reliable evaluation of
the modeling algorithm, or, at the very least, it contributes to show that it has a similar
bias to the performance metrics of previous work. Moreover, the results suggest that
using synthetic datasets allows one to reach similar conclusions as those obtained with
real sensors.

According to Figure 9, as expected, for both sets, as the downsampling ratio increases
(i.e., as the number of points used in the segmentation step increases), the performance of
the solution also increases, since the algorithm has more data to work with. Rather than the
performance increasing linearly with the ratio, it is particularly sensitive to lower values for
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the downsampling ratio. For ratios above 0.6 for set A and 0.7 for set B, further increasing
the ratio does not lead to significant increases on the micro-recall.

Figure 9. Average micro-recall for sets A and B with respect to the downsampling ratio for bins with
10 tubes.

As shown in Table 2, the execution time of the modeling algorithm increases with both
the downsampling ratio and the number of tubes, since increasing any of these parameters
leads to the point cloud provided to the segmentation step being larger. This behavior is
similar for set B. The increase of the execution time with the number of tubes was also
observed on previous work, thus reinforcing the similarities in the results between using
simulated and real sensors:

• According to Table 1 of the previous publication by Leão et al. [1], the execution time
increased by approximately 38.6% from 1 to 5 tubes and by 32.0% from 5 to 10 tubes.

• In a similar trend, according to Table 2, the execution time for Set A with a downsam-
pling ratio of 0.1 increased by approximately 68.4% from 1 to 5 tubes and by 50.0%
from 5 to 10 tubes.

By combining the observations from Figure 9 and Table 2, it can be concluded that
there is a trade-off between execution time and modeling accuracy that is regulated by the
size of the input point cloud. Thus, it is important to fine-tune the downsampling ratio
with respect to the application domain.

Table 2. Average execution time of the tube modeling algorithm for set A with respect to the
downsampling ratio and number of tubes.

Ratio

Number of
Tubes 1 5 10 15 20

0.1 0.19 s 0.32 s 0.48 s 0.60 s 0.78 s
0.2 0.19 s 0.41 s 0.69 s 0.90 s 1.23 s
0.3 0.21 s 0.49 s 0.85 s 1.19 s 1.69 s
0.4 0.23 s 0.55 s 1.02 s 1.43 s 2.06 s
0.5 0.24 s 0.61 s 1.12 s 1.69 s 2.37 s
0.6 0.26 s 0.68 s 1.25 s 1.90 s 2.50 s
0.7 0.27 s 0.73 s 1.40 s 2.21 s 2.81 s
0.8 0.29 s 0.82 s 1.56 s 2.43 s 3.11 s
0.9 0.31 s 0.88 s 1.54 s 2.71 s 3.38 s
1 0.32 s 0.91 s 1.65 s 2.84 s 3.66 s
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7. Conclusions

The main contribution of this work is a flexible solution that generates labeled point
clouds of entangled tubes procedurally. This allows for variations on the shape of each tube
in the point cloud, thus producing rich ground truth data. Experimental results showed
that it takes less than 15 seconds to generate a bin with 10 tubes. Therefore, in a single
hour, a high-quality dataset of 240 point clouds can be built, which makes this generator
suitable for input to a wide variety of robotic and AI-based systems, namely those that use
heuristics or machine learning.

The second main contribution is a general metric based on micro-recall to evaluate the
accuracy of an algorithm that labels each point of a point cloud according to which item it
belongs to, such as the tube perception solution developed in previous research [1]. This
metric constitutes a significant improvement over the one proposed by previous work, since
it is objective and can be performed automatically. Experiments with synthetic datasets and
the micro-recall metric produced similar results to those found in previous work, where
the data was acquired by physical sensors and the performance was evaluated manually
with human annotators. This suggests that the generated point clouds are realistic and that
the micro-recall metric is reliable.

This work opens several lines for future research. Firstly, the procedural generator
could be extended to generate objects with other shapes, such as tubes with bifurcations,
spherical items or objects with holes in them. The evaluation metric proposed in this
work is already generic enough to cope with these shapes. Secondly, the dataset generator
could be used to further improve the tube modeling solution by providing input to a
parameter calibration procedure that takes into account the geometric properties of the
items. Finally, as alternatives or complements to the tube modeling solution, supervised
learning systems (namely deep learning systems) could be developed to create a model of
the objects inside the bin using the test cases provided by the generator for training. These
alternative solutions can be capable of modeling a wider variety of objects.
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Abstract: This paper introduces a new Hyperloop transportation system’s design and implementation.
The main contribution of this paper is the design and integration of propulsion components for a
linear motion system, with battery storage. The proposed Hyperloop design provides a high-speed
transportation means for passengers and freights by utilizing linear synchronous motors. In this
study, a three-phase inverter was designed and simulated using PSIM. A prototype of this design
was built and integrated with a linear synchronous motor. The operation of full system integration
satisfies a proof-of-concept design. A study of the inverter system in conjunction with a linear
synchronous motor for a ridged Hyperloop system is made. The prototype of this system achieves
propulsion for the bidirectional movements. Battery state of charge simulation results are given in a
typical motoring and braking scenario.

Keywords: three-phase inverter; linear synchronous motor (LSM); magnetic levitation; magnetic
propulsion; permanent magnet motors

1. Introduction

Today, transportation is a major tool for a growing economy, ranging from daily com-
mutes to large scale freight transportation. However, with the ever-growing increase in
population and thus the demand for high-speed transportation raises issues regarding air
pollution and climate change. According to data for global emissions in 2020, it was found
that 24% of the global greenhouse gas emission is due to fuel dependent transportation [1].
Energy security and climate change are major challenges that need to be addressed for
the future generation. In 2016, the Paris Agreement was officially instated for the par-
ties in the agreement to address the climate change problem. This agreement is only a
stepping stone to combat this issue. This paper studies the design of a conceptual, novel,
and electric mode of transportation known as the Hyperloop. Companies such as Virgin
Hyperloop One, Transpod Hyperloop, and HyperloopTT are investing in the research
and development of the proposed Hyperloop technology. The Hyperloop system offers a
promising alternative to conventional train transportation, presenting a safer, faster, more
reliable, and environmentally friendly method of transportation in contrast to conventional
transportation. Hyperloop transport is a method of passenger and freight transport that
uses vactrain design, incorporating low pressure and air resistance within a tube. Vari-
ous studies such as [2,3] propose the concepts of utilizing linear motors to facilitate the
propulsion and levitation force. The study in [3] presents a Hyperloop system based on
electromagnetic propulsion of vehicles (similar technology in magnetic levitated trains)
in vacuum tubes to reduce air pressure. Levitation is achieved by generating a repulsive
force from the tube levitation system onto the vehicle. Additionally, propulsion is achieved
through a traction force generated by moving magnetic field created by linear multi-pole
motors [3]. The propulsion force is generated through a spatially moving magnetic field.
This is achieved by a three-phase inverter powering and controlling the linear motor [3].

Robotics 2022, 11, 23. https://doi.org/10.3390/robotics11010023 https://www.mdpi.com/journal/robotics197



Robotics 2022, 11, 23

The levitation of a Hyperloop can be achieved either by electromagnetic suspension (EMS)
or electrodynamic suspension (EDS) [4]. Due to the complexity of EMS [5], the design
discussed in this paper utilizes the concepts of EDS [6]. However, in practicality there
are many other factors, such as cost, that come into play. Thus, the use of EDS may not
be recommended for a full-scale system. There are two types of linear motors that are
commonly studied regarding magnetic levitation trains: the linear induction motor (LIM),
such as the one employed in [3], and the linear synchronous motor (LSM). Historically,
the LIM is a popular choice for magnetic levitation train. It has attractive features such
as cost and low complexity. However, LSM has a high-power factor and provides higher
efficiency [7–9]. The magnetic levitation system uses sets of superconducting magnets to
create repulsion and attractive forces allowing for levitation and propulsion in conjunction
with a linear synchronous motor [10]. The pod (vehicle) in this system travels along a
guideway of magnets. Stability and speed control is facilitated by sophisticated control
algorithms such as field-oriented control [5,10–12]. The foundation of this system is the
use of electromagnetism concepts as applied to thrust generation. The magnetic fields are
produced by permanent and superconducting magnets and electromagnets in a static or
dynamic mode. Superconducting electromagnets require an electric current that is signifi-
cantly less than conventional electromagnets [13]. The repulsive and attraction forces allow
for levitation and propulsion without contact. A higher lift force to magnetic ratio is ideal
for efficient energy consumption. Forces created depend on the placement of polarities of
the magnets. Lastly, the control system for the LSM drive follows the field-oriented control
approach. This popular control approach has been studied in various papers such as [5,14].
The study in [14] develops electromagnetic thrust and levitation force via field-oriented con-
trol. Various other papers, such as the one reported in [15], study the control of AC motors
using the d-q axes model. The dynamic model of a permanent magnet linear synchronous
motor (PMLSM) is reported in [16]. Hyperloop topics have been reported in some literature
works such as [17,18]. The work in [17] reports the achievability of a Hyperloop system.
They present the technical issues in building such an infrastructure. They estimate that a
Hyperloop pod traveling at 1200 km/h for an estimated weight of 26,000 kg would require
689 kW of power. Additionally, they calculated that the cost for building the Hyperloop
infrastructure in Poland of 3000–30,000 km long tracks would cost over $50 billion. In [18],
the authors discuss the electric power requirements for a full-scale Hyperloop. Currently,
there is limited research on the topic of integration of Hyperloop propulsion and levitation
system via linear synchronous motors. This paper is uniquely structured to give the design
of the inverter, linear motor, and overall integration of the system.

2. LSM Model and Controller Design

2.1. Modeling of the Linear Synchronous Motor

The core structure of the prototype is the linear synchronous motor (LSM) which
makes up the pod and the track. A diagram for an LSM is shown in Figure 1, which is
an unrolled form of a traditional rotary motor which consists of a stator and a rotor. The
symbol ‘τ’ represents the pole pitch. It is important to understand the rotary synchronous
machine and its properties to correctly form mathematical equations describing the motor
characteristics. In terms of rotary machines, characteristics such as torque, angular velocity,
and number of pole pairs can be defined. The linear machine can be defined with similar
characteristics; however, in respect to the linear machine, the terms are defined as thrust,
linear speed, and pole pitch. The stator is powered with three-phase AC current to produce
alternating magnetic fields. The rotor is a line of permanent magnets [19]. The referred
study uses an LSM that has an ironless core motor ideal for linear motion. The rotor is
the moving part (also known as the mover or the pod) lined with permanent magnets
and the stator is fixed on the track made up of coils (between the slots shown in Figure 1)
receiving the three-phase AC currents [20]. When the stator produces magnetic fields, there
are alternating attraction and repulsion forces created between the track and the pod. This
allows the pod to propel back and forth on the track without any additional assistance.
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To model the linear synchronous motor, the mathematical model studied in [5,10–12,21]
was incorporated. For generic analysis, permanent magnet synchronous motor equations
were used as an equivalent to the linear synchronous motor. Additionally, this was done
because PSIM does not have a linear synchronous motor model and remodeling an LSM
was out of scope of this research. However, it is important to note the differences between
the linear synchronous motor and its rotary counterpart. The linear motor has different
mechanical properties such as thrust force and linear velocity as opposed to torque and
angular velocity. In terms of performance, linear motor has non idealities such as the end
effect. This is caused by the unrolled, opened structure of the motor. The end effect in
linear motors influences the propulsion force and motor efficiency [22–24]. However, the
end effect was neglected in this study. The justification for this is because the influence of
end effect is not as significant for long primary linear motors moving at high speed [24].
This further simplifies the linear synchronous motor model. The permanent magnet linear
synchronous motor (PMSM) voltage equation in ‘abc’ form is given in (1).

 
Figure 1. Block diagram for LSM, adapted from [25].

[uabc] = [Rabc][iabc] +
d[Labc]

dθr
ωr[iabc] + [Labc]

d[iabc]

dt
+

d[ψMabc]

dθr
ωr (1)

where Labc is the stator a, b, and c phase self-mutual inductance matrix. This is shown in (2).

Labc =

⎡⎣ Laa(θr) Mab(θr) Mac(θr)
Mba(θr) Lbb(θr) Mbc(θr)
Mca(θr) Mcb(θr) Lcc(θr)

⎤⎦ (2)

Additionally, ΨMabc is the stator a, b, and c phase flux linkages due to the permanent
magnets and damper windings on the rotor. This is shown in (3).

ΨMabc =

⎡⎣ ΨMa(θr)
ΨMab(θr − 2π)
ΨMc

(
θr +

2π
3
)
⎤⎦ (3)

As seen in (1), the voltage is dependent on the phase self-inductance, which respects
the rotor position of the PMSM. The solution of the system can be simplified by using the
reference frame theory. This is achieved by taking one set of variables and transforming
it to another [11]. To transform the a, b, and c stator variables into rotor dqo axis, the
transformation in (4) is used.

TR
qdo =

2
3

⎛⎝ cos(θr) cos
(
θr − 2π

3
)

cos
(
θr +

2π
3
)

sin(θr) sin
(
θr − 2π

3
)

sin
(
θr +

2π
3
)

1
2

1
2

1
2

⎞⎠ (4)
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The new, transformed dqo voltages are given in (5)–(7).

usq = Rsisq +
dΨsq

dt
+ ωrΨsd (5)

usd = Rsisd +
dΨsq

dt
− ωrΨsd (6)

uso = Rsiso +
dΨso

dt
(7)

Using the equivalent circuits, the electromagnetic torque can be derived. However, to
simplify the equation, some assumptions can be made. For surface mounted rotors, the
reluctance torque of the motor is zero. This is because the stator q and d axis inductances
are equal. Assuming the PMSM does not have any damper windings and only built of
surface mounted magnets, then only the excitation torque will be present [11]. Thus, the
final derived equation for the electromagnetic torque is given in (8). As it can be seen, the
electromagnetic torque is dependent on the q – axis component of the stator current.

Te =
3
2

p
{

ψsdisq
}

(8)

2.2. Permanent Magnet Configuration

For the pod, one important consideration is the permanent magnets’ arrangement. This
paper studies the use of the Halbach arrangement. The Halbach Array is an arrangement
of permanent magnets in such a way that the magnetic field is stronger on one side than
the other. This phenomenon can be realized by rotating each magnet 90 degrees from the
previous orientation so that the polarities of the magnets do not repeat. This causes each
magnet to strengthen the magnetic field on one side while a single magnet or multiple
magnets facing the same orientation would have uniform magnetic field strength around
the cluster of magnets. Employing the Halbach Array theory, the magnetic force of a linear
motor can be increased without increasing the size of the permanent magnets. The Halbach
Array is optimal for linear motors as only one side of the stator is used for levitation and
linear motion. The prototype was built in a way that the permanent magnets are placed
near the top and underside of the primary element (rotor) using a ‘C”-shaped frame. The
magnetic fields of the top and bottom magnet sets were aimed towards each other so that
the rotor could achieve higher speed, acceleration, travel accuracy, positioning accuracy,
and cycle times through combined attractive and repulsive forces.

2.3. Field Oriented Control

The design of FOC is based on the mathematical model of PMSM mentioned previ-
ously. The controller design topology is a closed loop system that includes proportional
integral (PI) regulators. More specifically, it includes a speed regulator and two current
controllers [5,11]. The block diagram for the control scheme is seen in Figure 2. The block
diagram also gives a general overview of the circuit design. The PMSM is controlled and
powered via the three-phase inverter. The inverter’s source voltage is an external dc voltage
source, either from a battery or from the utility rectified to a dc source. At the output of the
load there is a speed sensor. The remaining blocks are part of the controller. The process
of FOC is straightforward. As it is a closed loop design, it relies on various sensor data to
appropriately reach steady state. The steps are as follows. First, set a reference or desired
motor speed. Next, obtain three-phase current (ia, ib, and ic) readings to convert it to qd0
form. Additionally, for the transformation, the rotor position of the PMSM is required. This
can be obtained by first reading the speed sensor value to obtain the angular velocity.
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Figure 2. Block diagram for FOC control scheme.

Next integrate the velocity to get position (rotor position θr). These four inputs provide
the quadrature, direct, and zero currents (iq, id, i0). These are the measured values. The
reference Id current is set to zero. This allows the control of q-axis current (torque). The
reference iq is obtained by first calculating the error signal of the speed (measure the
difference) then place the error signal into a PI regulator (speed regulator). For the FOC of
the PMSM design, the output of the regulator is the iq reference. The error signal of the
reference iq and the measured iq is calculated. This is then placed into another regulator
(current regulator). A similar process for the Id loop is done. Finally, the resultant signals
are placed into an inverse transformation block (dq0 to abc). These signals are now the
reference voltage for the PWM signals controlling the switching sequence of the inverter.
Additionally, space vector pulse width modulation (SVPWM) technique was implemented
for this study. It works by obtaining an optimal switching sequence for the inverter switches.
This can be obtained by taking the signals into the alpha beta frame of reference [26]. The
inverter output voltages are shown in (9).⎡⎣ Va

Vb
Vc

⎤⎦ =
Vdc

3

⎛⎝ 2 −1 −1
−1 2 −1
−1 −1 2

⎞⎠⎡⎣ C1
C2
C3

⎤⎦ (9)

Vs = Vα + jVβ =

√
2
3

(
Va + Vbe

j2π
3 + Vce

j4π
3

)
(10)

The final signals after the PI regulator go into the SVPWM block. This facilitates an
optimal switching sequence for the PMSM control. The parameters of the regulator are
calculated by using smart control in PSIM and analyzing the system performance.

2.4. LSM Formulas to Generate Specifications

The power can be expressed in terms of the thrust force and the synchronous speed
given in Equation (11). The velocity for a linear synchronous motor is given by the frequency
and pole pitch of the motor. The thrust can be calculated by determining the mass and
acceleration of the linear motor.

Pthrust = Fx,thrust·vs = ma·2 f τ (11)

201



Robotics 2022, 11, 23

Additionally, the thrust density (N/m2) is described by Equation (12). Where ‘p’ is the
pole pairs, and Li is the armature stack length.

fx,thrust =
Fx,thrust

2pτLi
= ma·2 f τ (12)

The efficiency and the power factor of the system are given respectively by the follow-
ing Equations (13) and (14).

η =
Fxvs

Fxvs + 3I2R
(13)

PF =
Fxvs + 3I2R

3VI
(14)

The motor parameters used for simulation are provided in Table 1.

Table 1. Motor parameters.

Symbol Quantity Description

p 8 Poles
Rs 0.065 Stator Resistance
Ld 0.001916 d-axis inductance
Lq 0.005 q-axis inductance

Pmax 50,000 Max motor power
nmax 5000 Maximum rpm

2.5. Modeling of Battery and Bidirectional Converter

The DC voltage source is provided by a lithium-ion battery. Accumulative Parameter
values can be calculated using (15)–(17). The parameters for a singular battery are given in
Table 2. The rated value can be looked up from the manufacture data sheets. Ks and Kp are
voltage and capacity derating factors which are set to 1.

Erated_total = NS·KS·Erated (15)

Qrated_total = Np·Kp·Qrated (16)

Rbattery_total =
Ns

Np
·Rbattery (17)

Table 2. Battery Parameters.

Parameters Value Units

Ns No. of cells in series 70 cells
Np No. of cells in parallel 60 cells

Erated Rated voltage 3.6 V
Ecut Discharge cut-off voltage 2.5 V

Qrated Rated capacity 3.35 Ah

The parameters for the battery were calculated based on a prototype design for a
130-kW inverter system, with 750 VDC to power the linear motor. A typical bidirectional
DC/DC converter is implemented to observe the generating and motoring modes and its
effect on the modeled battery. The converter operates in the boost mode when the PMSM
is in the motoring mode of operation (i.e., battery discharging). In regenerative mode of
operation, the converter is the buck mode (i.e., battery charging). The block diagram for
the control setup is given in Figure 3. The output to this controller determines the mode of
operation of the buck-boost DC-DC converter.
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Figure 3. Bidirectional DC-DC Converter Control System.

3. Simulation Results

The simulation setup is provided in Figure 4. The power stage includes a lithium-ion
battery pack, a bidirectional dc-dc converter, a three-phase inverter, and the motor. Since
the PSIM motor library was limited to only rotary motors, a permanent magnet linear
synchronous motor (PMSM) was used. Thus, the angular velocity (as opposed to a linear
velocity for an LSM) provided by the PMSM block was used to sense the speed for the
controller. In terms of the control stage, typical FOC algorithm was used. However, to
implement the regeneration system, a torque estimate was required to sense if the motor
was in regenerative breaking or motoring mode. Thus, the additional control algorithm
provided by PSIM was used.

Figure 4. Circuit setup for FOC of PMSM.
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The controller will then provide the required PWM signals to produce a three-phase
current waveform with minimum harmonics and to acquire a wave that looks as sinusoidal
as possible. The following figures are simulation results of the power inverter. Figure 5
shows the simulation results of the AC currents in motoring mode. The speed response is
given in Figure 6.

 

Figure 5. Three-phase AC line currents (amperage vs. time).

 

Figure 6. Speed response (rads/s vs. time).

Figure 7 highlights the directionality of the current in relation to the battery. This
direction is dependent on if the pod is in fact driving, regenerative braking, or idling. For
example, beginning at 0.5 s when the vehicle enters regenerative braking, we can see the
current flowing into the battery and therefore returning energy to the system.

In Figure 8 the waveform represents the SOC during the various drive states of the
simulation. The figure first shows a decreasing SOC which indicates that the vehicle is
drawing current from the battery to drive. An increase in SOC then occurs as regenerative
braking is employed returning potential energy to the battery module. Lastly, we see that
a period of minimal drain upon the SOC in this time frame is representative of the LSM
idling until driving is resumed.
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Figure 7. Battery current for regenerative breaking (amperage vs. time).

 

Figure 8. SOC of the battery.

Finite element analysis of the pod is given in Figure 9 and shows magnetic field safe
values for humans as per IEEE C95.1.

Next, the simulation is run so that the ideal distance can be determined. Once the
single coil is set up, the simulation is expanded to four coils as shown in Figure 10. The
effect of the adjacent coils can be observed and recorded accordingly. Figure 11 illustrates
the magnetic field strength of the active coils. These levels adhere to the IEC-60118 used in
North America and Europe.
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Figure 9. Single Coil Setup in ANSYS Maxwell.

 

Figure 10. Four coil simulations.

 

Figure 11. Magnetic field strength across Z distance.
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4. Experimental Analysis

Autodesk Eagle was used to design the printed circuit board (PCB). The hardware
prototype of the inverter is circuit driven by the MIC4609 driver. A Texas Instrument
microcontroller (TMS320F2808) was used to generate the PWM signals based on the pro-
posed FOC. This prototype design was done to provide a proof of concept. The controller
and the PCB circuit have similar components to the original proposed design. The proto-
type for the power inverter is shown in Figure 12. It consists of 6 surface mount IGBTs
(RGT50NS65DGT) connected in a typical inverter circuit orientation. Using the data sheet
bootstrap capacitors and diodes were chosen as recommended.

 

Figure 12. Three-phase inverter prototype.

The waveforms generated by the output of the inverter are given in Figures 13 and 14.
Figure 13 shows the preliminary inverter output voltage. In Figure 14 the purple waveform
is the voltage line feeding the load (linear motor). The green sinusoidal waveform below
it is the AC current waveform of a single phase. The results are what is expected for the
circuit output. The interface for controlling the linear motor was created using C++. It
allows the control of position, velocity, and acceleration. It also provides real-time feedback
of the motor’s status.

The developed inverter circuit was used to power and control the linear motor (pro-
vided by Bosch Rexroth). The prototype of the integration is shown in Figures 15 and 16.
Communication with the synchronous linear motor was achieved through Ethernet Proto-
cols. The MCP015A-L040 drive was used to facilitate prototype integration.
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Figure 13. Line to line voltage waveform (Vab); before the dv/dt filter of the motor.

Figure 14. Prototype inverter circuit waveforms.

 

Figure 15. Prototype linear motor.
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Figure 16. Prototype linear motor with test pod.

5. Conclusions

A successful component design and system integration of the Hyperloop pod’s func-
tionality is presented using PSIM simulation, C++ software interface, and a prototype
hardware from “off-the-shelf” components. Simulations of field-oriented control for an
equivalent rated rotary synchronous motor was built in PSIM. With intensive hardware
and software integration methods, the goal to provide linear bidirectional movement for
the prototype was achieved. The integrated system includes the linear synchronous motor,
three-phase power inverter, and a battery pack. This was implemented on a small-scale
prototype model. The three-phase inverter was designed using PSIM’s platform and tested
by generating case study simulations that validated its functionality before integration.
Additionally, the battery model was also implemented in PSIM and sized accordingly.
Measured results from the inverter prototype are in good agreement with the simulation
results. The operation of the full system integration proves that the design of the inverter
and linear synchronous motor achieve a linear motion, with bidirectional movement for
the pod prototype, in motoring and braking modes. The presented design provides a good
starting point for a linear synchronous motor-based Hyperloop. However, the scale it
was designed for is currently not capable of a full-sized passenger transportation. The
nature of the system comes with high infrastructure build time and costs. Thus, various
design trade-offs were needed to be made in terms of cost, size, power capabilities, etc.
Nonetheless, future work for this study includes improving the design in various aspects
such as fine-tuning and verifying the system in a hardware in the loop environment, de-
signing it for a larger test track, and improving the prototype design capabilities to include
additional data such as speed and acceleration. Hardware in the loop technology will be
used in the hopes to reduce cost and prototyping time. A longer test track would provide a
better understanding of the performance and efficiency. Additionally, this test track would
provide a better study for the dynamic characteristics. This would require an improved
prototype design with additional sensors to provide speed and acceleration values. Lastly,
as this is the first iteration of the prototype, the design choices and trade-offs were very
minimal. The prototype was designed for a proof of concept. The next iteration will be
designed and better engineered to achieve an optimal design. Future work will also detail
mechanical modeling and passenger ride comfort calculations. To summarize, the scope of
this study is to provide some insight on the propulsion system design methodology and
initial prototype results for the novel Hyperloop transportation system.
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Nomenclature

LIM Linear Induction Motor
LSM Linear Synchronous Motor
PMSM Permanent Magnet Synchronous Motor
EMS Electromagnetic Suspension
EDS Electrodynamic Suspension
POD Referring to Hyperloop Capsule/Vehicle
FOC Field Oriented Control
SVPWM Space Vector Pulse Width Modulation
uabc Stator a, b, c phase to neutral voltages
Rabc Stator a, b, c phase resistances
iabc Stator a, b, c phase currents
Labc Matrix of stator phase self and mutual inductances
Laa, Lbb, Lcc Stator a, b, c phase self-inductances
Mab, Mac, Mba, Mbc, Mca, Mcb Mutual inductances of stator a, b, c phases
ΨMabc Stator a, b, c phase flux linkages from PMSM
Te Electromagnetic Torque
SOC State of Charge
Erated Rated voltage of battery cell
Qrated Rated capacity of battery cell
Rbattery Internal resistance of the battery cell
Np Number of cells in parallel of battery pack
Np Number of cells in parallel of battery pack
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