
SECRETS OF A
CYBER SECURITY

ARCHITECT

http://www.taylorandfrancis.com

Boca Raton London New York

CRC Press is an imprint of the
Taylor & Francis Group, an informa business

A N A U E R B A C H B O O K

Brook S. E. Schoenfield

SECRETS OF A
CYBER SECURITY

ARCHITECT

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2020 by Brook S. E. Schoenfield
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper

International Standard Book Number-13: 978-1-4987-4199-6 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to
publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials
or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material repro-
duced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any
copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any
form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming,
and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copy-
right.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400.
CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have
been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identifica-
tion and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

http://www.copyright.com
http://www.copy-right.com
http://www.copy-right.com
http://www.taylorandfrancis.com
http://www.crcpress.com

Author Note

All references to Securing Systems throughout the book are from:

Schoenfi eld, B. (2015). Securing Systems: Applied Security Architecture and Th reat Models. Boca
Raton, FL: CRC Press.

All references to Core System Security throughout the book are from:

Schoenfi eld, B. (2014). Applying the SDL Framework to the Real World. In Ransome, J. and
Misra, A. Core Software Security: Security at the Source, Ch. 9, pp. 255–324. Boca Raton,
FL: CRC Press.

Trademarks Covered in This Book

Cisco and Infosec are registered trademarks of Cisco Systems, Inc. and/or its affi liates in the United
States and certain other countries.

FACEBOOK is a registered trademark of FACEBOOK in Menlo Park, CA.
LinkedIn is a registered trademark of LinkedIn Corporation in Sunnyvale, CA.
IOActive is a registered trademark of IOActive, Inc., in Seattle, WA.
ISO is a registered trademark of the International Organization for Standardization in Geneva, Switzerland.
Linux is a trademark of Torvalds, Linus in Boston, MA.
Microsoft and Windows are trademarks of Microsoft Corporation in Redmond, WA.
MITRE is a registered trademark and ATT&CK is a trademark of MITRE Corporation in Bedford, MA.
SOC 2 is a registered trademark of the American Institute of Certifi ed Public Accountants in New York, NY.

http://www.taylorandfrancis.com

vii

Dedication

Th is book is dedicated to the many security architects with whom I’ve worked and from whom
I’ve learned: mentors, mentees, peers, students, comrades, friends. Th e InfoSec architecture
team at Cisco (circa 2000–2011) and McAfee’s Product Security Champions (2012–2018)
deserve my special gratitude. Collectively, we’ve contributed to a discipline known now as
“security architecture.” Herein lie the many fruits harvested from our discussions, speculation,
and philosophizing; the trials and successes we’ve shared; and your many insights. Th ank you.

http://www.taylorandfrancis.com

ix

Contents

Author Note/Trademarks Covered in This Book v

Dedication vii

Contents ix

List of Figures and Tables xiii

Foreword xv

Preface xvii

Acknowledgments xxiii

About the Author xxvii

Chapter 1 The Context of Security Architecture 1
1.1 Omnipresent Cyber War 1
1.2 Know the Threat Actors 5

1.2.1 Useful Exploits Don’t Die 15
1.3 Everything Can Become a Target 16
1.4 Warlords and Pirates 20
1.5 What Is the Scope of a Security Architect? 22

1.5.1 Are There Really Two Distinct Roles? 22
1.6 Essential Technique 26

1.6.1 Threat Modeling: An Essential Craft 26
1.6.2 Architecture Is Primary 28

1.7 Aiming Design Toward Security 29
1.7.1 What Is Secure Software? 29
1.7.2 Secure Design Primer 30

1.8 Summary 31

x Secrets of a Cyber Security Architect

Chapter 2 What Is Security Architecture, and Why Should I Care? 33
2.1 Defi ne Security Architecture 33

2.1.1 Software Security 34
2.1.2 Security Architecture Practices 34

2.2 Relevant Knowledge Domains 35
2.3 More About Architecture 38
2.4 Architectures of Security 40
2.5 Architecture as a Part of Cyber Security 41
2.6 Security Architecture in Software Development 42
2.7 Generally, Experience Is a Teacher 44
2.8 Introducing Attack Methods 45
2.9 Speaking of Defense 47
2.10 More Precise Defi nition 48
2.11 Summary 49

Chapter 3 Architecture, Attacks, and Defenses 51
3.1 Yes, Exploit Details, But 51
3.2 Security Architects Must . . . 52
3.3 Understanding Categories of Attacks 53
3.4 Attack Knowledge for Defense 55
3.5 Example: Heartbleed Analysis 57

3.5.1 Heartbleed Technical Analysis 60
3.6 Analyze to Defend 66
3.7 Turn Off TLS? 69
3.8 Security Architecture Analyses 70

3.8.1 Some Cheap Risk Concepts 72
3.8.2 JGERR Risk Rating 72
3.8.3 At Base: Threat Model 73

3.9 Threat Modeling Defi nition 73
3.9.1 Alternate Defi nition 74
3.9.2 When Is My Threat Model Done? 74

3.10 Summary 76

Chapter 4 Culture Hacking 79
4.1 Team Tourism 79

4.1.1 Build and Maintain Trust 81
4.1.2 Don’t Squander Infl uence 84

4.2 Threat Modeling: Just Do It 86
4.2.1 “Trust Developers?” 87
4.2.2 Threat Model Training Is for Everyone 88

4.3 More Culture Hacks 89
4.3.1 Nimble Governance 90
4.3.2 Build Skills by Sharing 93
4.3.3 What to Do About “It Depends” 93

Contents xi

4.3.4 Is the Threat Model Finished? 94
4.3.5 Create a Security Contract 97
4.3.6 Threat Models Are Not Additive! 99
4.3.7 Audit and Security Are Not the Same Thing 100

4.4 From Program to Transformation 103
4.4.1 Pro-Social Modeling 103
4.4.2 Leaders Must Get Challenged 104
4.4.3 Hack All Levels 105
4.4.4 Coding Is Fraught with Error 108
4.4.5 Effective Secure Coding Training 109
4.4.6 Make Validation Easy 110

4.5 Summary 112
4.5.1 We All Can Use Some Feedback 114

Chapter 5 Learning the Trade 115
5.1 Attack Knowledge 116
5.2 Which Defenses for What System? 123
5.3 Threat Modeling: The Learning Method 126

5.3.1 How to Escalate for Management Decision 128
5.4 To Accelerate: Cross Pollinate 130
5.5 Build a Community of Practice 131
5.6 Support Learners’ Errors 134
5.7 Facilitate as Much as Lead 137
5.8 Summary 137

Chapter 6 Problem Areas You Will Encounter 141
6.1 What Does a Mature Practice Look Like? 141

6.1.1 Do We Add Value? 141
6.1.2 The War Is Over 142
6.1.3 Optimum Tool Use 142
6.1.4 You Know That You’re Maturing When 144
6.1.5 “Nothing Proves Architecture Like Nothing” 145
6.1.6 Get It in Writing! 147

6.2 Typical Problems Programs Encounter 147
6.2.1 Scale 147
6.2.2 Assessments Take Too Long 150
6.2.3 Late Engagement 156
6.2.4 Skill Churn 161
6.2.5 Exceptions 163
6.2.6 Fostering Innovation 164

6.3 Dealing with Chaotic Elements 166
6.3.1 There Are Differences 167
6.3.2 Translate and Generalize 168

6.4 Summary 170

xii Secrets of a Cyber Security Architect

Appendix A Heartbleed Exposure, What Is It Really? 173

Appendix B Developer-Centric Security 177

Appendix C Don’t Substitute CVSS for Risk: Scoring System Infl ates
Importance of CVE-2017-3735 179

Appendix D Security Architecture Smart Guide 185

Appendix E Threat Modeling’s Defi nition of Done 203

References 207

Index 213

xiii

List of Figures and Tables

Figure 5.1 MITRE ATT&CK™ Matrix 119

Figure 5.2 CAPEC Mechanisms of Attack 121

Figure 5.3 ATT&CK Headers Combined with CAPEC Categories 121

[Figure 11.3 Multitenant Data Encapsulations (from Securing Systems)] 169

Table 1.1 Summarized Threat Attributes 13

Table 1.2 High-Level Threat Agent Attribute Matrix 14

Table 4.1 Summation of Actions Described in This Chapter 112

Table 5.1 Organization Hierarchy and Potential Impact Relationship 130

Table 5.2 Summation of Actions Described in This Chapter 138

Table 6.1 Summation of Actions Described in This Chapter 170

http://www.taylorandfrancis.com

xv

Foreword

Th is week’s news includes that indicted Iranian hackers are still hard at work, a disruptive
cyber event impacted the US power grid, and a high-school dropout hacked a million devices.
It included brand-name companies in the headlines for security failures. And it looked very
much like other weeks.

Many of the systems whose security failed had compliance checklists. Products were sub-
jected to penetration testing, or ethical hacking, or dynamic testing. And they still failed,
because the security approach their creators used didn’t address the unique requirements of the
systems being built and deployed.

Security architecture is a set of structures for thinking about what we’re working on,
what can go wrong, and, most importantly, what are we doing about them? We’re infusing
security into the things we work on. We’re building features and worrying about the proper-
ties. Th e distinction is like this: a deadbolt is a security feature, and the steel it’s made from
has properties. If the steel of the deadbolt is brittle; if the receiver isn’t well mounted; if the
doorframe is weak, then the deadbolt will not deliver on the security goals for the door.
(Incidentally, my book on threat modeling is largely focused on what can go wrong, and as
such complements this one.)

Our software, like other things we build, has many interfaces to the world, and attackers
can pick and choose which ones to examine or attack.

For years, security has shown up as designs are fi nalized, and then complained about those
designs. It hasn’t delivered the security that our society needs, and it hasn’t led to eff ective
collaboration.

Architecture, like security, has a bit of a bad name amongst software engineers. Too often,
it’s people who can’t code, won’t make tradeoff s, and don’t ship, but do object—endlessly. Like
any aspect of software, architecture and security can be done well or poorly.

Th e book that you hold in your hands is about doing it well, but that’s not quite right. I
don’t care much about doing it well, in and of itself, and I don’t think Brook does either. I
care about helping the people I’m working with make better products, which includes ship-
ping and includes shipping with appropriate security. Let me be clear about what appropriate
means here: it means that the folks who make product decisions have the information they

xvi Secrets of a Cyber Security Architect

need to make those decisions. Sometimes you’re happy with the result, other times not, but you
shouldn’t be surprised by the security problems systems have once they ship.

Of course, I prefer to make things I can be proud of, and so I want to do things well, and I
hope you want the same. Th is book is about how to do that for security.

Adam Shostack
September 17, 2019

Seattle, WA

xvii

Preface

Context

As I wrote in Securing Systems, “It is a plain fact that as of this writing, we are engaged in a cyber
arms race of extraordinary size, composition, complexity, and velocity.” Securing Systems, p. 5

Th ere are more than three billion* people who use the Internet and whose lives are inter-
twined with their digital devices. Th ese connected people’s medical, fi nancial, and other per-
sonal data is spread out over hundreds if not thousands of systems run by a multitude of
organizations, many of whom do not necessarily have the data owners’ best interest at heart.
Pandora’s† cyber box has long since been opened, and the box’s “demons” have been loosed
upon the digital world. Indeed, most of us participants are attempting to get on with our lives,
making our way through the digital battle zone. A few of you readers may actually be engaged
in the cyber war in some professional or other capacity. But for the vast majority of us cyber-
citizens, we are the collateral damage to confl ict that has little to do with us on a personal level.

Like most war zones, in addition to the combatants, there always seem to be those out to
make a profi t amid the chaos. Th ere be pirates and warlords on these Internet seas, Matey. I
think that the current state of aff airs may be comparable to the 300 or so years when inter-
national commerce was highly dependent upon sea trade, approximately from the late 1500s to
the middle of the 19th century, the so-called “golden age of piracy.”

Not that we don’t have sea pirates today; of course we do. But, during the golden age
of piracy, shipping, which, as the main form of transport underpinning international com-
merce, was never safe from marauding pirates. City states were funded through piracy; piracy
made signifi cant contributions to the tax basis of several nations. Piracy, or more properly, the

* According to the United Nations population estimates, in 2020, there will be near to 7.8 billion people
on planet Earth. Please see https://population.un.org. Estimates of Internet users vary from 3.2 to 4.4.
Please see https://en.wikipedia.org/wiki/Global_Internet_usage and https://internetworldstats.com/
stats.htm for examples of estimates.

† Pandora, the Greek mythological character, not Pandora™, the music streaming company.

https://population.un.org
https://en.wikipedia.org
https://internetworldstats.com
https://internetworldstats.com

xviii Secrets of a Cyber Security Architect

privateer, served as a way to fortify a nation’s navy in times of war. At the same time, privateers
provided a needed boost in state revenue at the expense of a nation’s enemies.*

Th e age of piracy seems entirely analogous to the Internet Age’s quasi-state “cyber armies”
who attack, and sometimes plunder, digital commercial interests. As Dmitri Alperovitch so
wryly noted in 2011,

“I divide the entire set of Fortune Global 2,000 fi rms into two categories: those that know
they’ve been compromised and those that don’t yet know.”†

In other words, any organization with valuable data has been and will be attacked, prob-
ably successfully, at some point and with some damage. And, don’t all digitally connected
organizations have at least some data that can be considered “valuable”? If the data is not
intellectual property on which revenue is based, then the personal records of customers or
employees will be valuable to digital attackers. For so-called non-governmental organiza-
tions (NGOs), strategic plans or the names of operatives in countries in which any dis-
agreement with the local government raises suspicion or even sanction may be considered
valuable to those charged with preventing dissent. Can we declare that in the Age of the
Internet, no data is safe, no data is without value to attackers? On some days, this may seem
to be close to a truism. Isn’t this comparable to the golden age of piracy, when no ship in
transit was safe?

Th ere’s a great deal of money to be made through theft and fraud of one kind or another
on the Internet, which I liken to the great oceans of times past. And, there are large organiza-
tions and single actors who understand that “there’s a sucker born every minute”‡—that is, a
few billion unwitting potential victims to fl eece. A great advantage for these attackers is that,
mostly, the pirate does not have to come into physical contact with the victim. Many, if not
most, successful attacks are relatively§ anonymous. Which, one has to admit, is a big advantage
for attackers.

We, the Internet connected,¶ are the targets of all this cyber attack activity rather constantly
and continuously.

Of course, government cyber armies practice defensive maneuvers. Th at is to be expected.
Unfortunately, most government defense eff orts are not focused on protecting you and me or
the many independent or commercial organizations that hold our data as we blissfully go about
our digital lives. In the USA, where I live, certainly the federal government is highly concerned
about protecting not only its own resources, but also the nation’s critical infrastructure. Still,
despite the deep concern, most of that actual day-to-day protecting is done by the organiza-
tions, public and private, who run the infrastructure, not by the government. You may have

* Th is historical reference is drawn from my reading of historical analysis presented within Pirate
Utopias: Moorish Corsairs & European Renegadoes (Wilson, 2004).

† Alperovitch, 2011.
‡ Inconclusively attributed to P. T. Barnum.
§ As of this writing, retrieving any identifying information from sophisticated attacks requires expert

forensic analysis. Th e information retrieved is often quite piecemeal, at best. Th ere may be pointers to
the identities of attackers, but often there is no direct link from attack to person.

¶ About half or so of Earth’s human inhabitants do not use the Internet at the time of this writing. I
always try to bear this in mind.

Preface xix

read newspaper accounts about the diffi culties and gaps in those protections. Sadly, my profes-
sional opinion is that these media descriptions are more or (often) less accurate. I’m willing to
bet that the USA’s enemies are keenly aware of the situation. Many nations’ infrastructure is
equally at risk; the USA is not alone in this.

Cyber Defenders

To whom or what may a non-technical cyber-citizen turn?
During my 30+ year high-tech career, so called “computer security,” “information secu-

rity,” or “cyber security” has grown from a fl edgling group of interested amateurs who tried
to squeeze in some security work alongside their busy, high-tech day jobs into a full-blown
industry of thousands of professionals.

Many security companies have tried to steer clear of jingoistic association. Th e big vendors
often have customers in any number of governments, some of whom at any particular moment
will be in active cyber confl ict with each other. It seems an interesting turn of events that secu-
rity companies have to maintain a certain level of cyber neutrality in order to succeed. It turns
out that refusing to take sides is just good security business.

Computer security companies off er a dizzying array of technologies, products, and ser-
vices, many of which are marketed through some variation of “solves your security problems.”
Unfortunately, not.*

Part of the problem is that “security” is ill-defi ned and highly overloaded. Most security
products handle some portion of the computer security challenge. No product I know of comes
close to being a total package solution, taking care of all an organization’s or person’s computer
security needs, soup to nuts. Why? Because security is a big, messy, multivariate, multidi-
mensional arena. A reasonable “defense-in-depth” requires many technologies; smart, highly
skilled people; and deep and broad analysis—all of which must come together into some sort
of functioning whole, that whole often termed “a security architecture.”

Why “Security Architecture”

Architecture:

* Full disclosure: As of this writing, I work for one of these “security companies.” My comments do not
represent the opinions of my employer.

† Source: ISO/IEC/IEEE 42010:2011
‡ Th e Open Group, n.d.

1. Th e fundamental concepts or properties of a system in its environment embodied in its
elements, relationships, and in the principles of its design and evolution.†

2. Th e structure of components, their inter-relationships, and the principles and guidelines
governing their design and evolution over time.‡

xx Secrets of a Cyber Security Architect

“Traditionally, security architecture consists of some preventive, detective and corrective con-
trols that are implemented to protect the enterprise infrastructure and applications.” *

 “It is not possible to build a space ship without vision, goals, and specifi c objectives, which
are expressed in large-scale and also highly specifi c plans. Cyber security is much the same
thing, which is where the practice of security architecture comes into play.

 “One defi nition of security architecture might be, ‘applied information security.’ Or per-
haps, more to the point of this work, security architecture applies the principles of security to
system architectures.” Securing Systems, p. 14

* Ghaznavi-Zadeh, 2017.

My previous defi nition probably assumes far too much to be useful unless one is already
familiar with information security and the practice of architecture. By “system architectures”
I meant to include any system that requires digital security, be it the architecture of a discrete
application or program, a library or application programming interface (API), a global cloud,
an organization’s digital assets, etc. Th ough my defi nition may have suffi ced for the purposes
of a book on threat modeling, it still feels a bit too opaque, and I fear that it excludes some
important aspects.

Th is book is about security architecture. My goal is to refrain from theory and focus instead
on practice. You will not fi nd much theory in this book. I hope that I have provided just
enough theory to place the materials into suffi cient context for full understanding. For a deeper
explanation, I point the reader to any number of books on security architecture, including my
own, Securing Systems, although that book was also intended to remain grounded in the practi-
cal and proven rather than being overly theoretical.

Good security architects have dozens of tricks of their trade in their kips. Herein, you will
fi nd my tips and tricks, as well as myriad tried and true bits of wisdom that my colleagues have
been gracious enough to share with me.

I want to give these to you, the practitioner, to ease your way. Th is work can be hard, com-
plex, certainly frustrating. Seasoned architects know how to surmount individual, team, and
organizational resistance. Th ey know how to express security requirements in ways that will
make the requirements more palatable and, thus, get them accomplished.

Great security architects tend also to be masters of compromise, negotiation, and confl ict
management. In general, the people for whom I have the highest respect are consummate col-
laborators, as interested in understanding as providing their own solutions. Th e vast majority
of practitioners with whom I’ve had the privilege and honor of working have been and con-
tinue to be high-integrity individuals who want the best for their organizations and typically,
also, through their work, for the world at large. Of course, each of us gets to defi ne “best” for
ourselves.

Book Contents

Th e fi rst chapter of the book is focused on what security architecture is and the areas of exper-
tise a security architect will need in practice. Th e second chapter delves into the relationship

Preface xxi

between attack methods and the art of building cyber defenses. Security people must become
familiar with the many diff erent ways that human actors attack systems. For some branches
of digital security, the understanding of attack mechanisms must be deep and thorough. For
other areas—say, people managers and executives—perhaps only a glancing understanding of
attack methods is required, although often, these roles require a thorough understanding of the
potential organizational harm that may result from successful attacks of one kind or another.

For the security architect, the level of understanding will be more holistic. Each class of
attack involves a particular type of technical manipulation. Security architects typically must
have enough computer science background to understand the basic mechanism of manipula-
tion. Alongside this, an eff ective security architect will further have a command of the mecha-
nisms that will thwart each class of relevant attack. Plus, the architect will understand both
the eff ects of system attack on the system under attack and the potential repercussions to the
organization.

Still—this is important, and we will delve into this in some detail—a security architect will
typically not be required to hold the details of every variation of each class of attack, and not
required to command the specifi c technical details by which a particular instance of a class of
attacks will exercise a particular vulnerability. Th is level of detail is often irrelevant to imple-
menting a defense.

Th is isn’t to suggest that security architects cannot master the details of a particular attack;
usually, they will have to have explored at least one example of each type of attack in order to
understand its mechanism suffi ciently. And, of course, people move around. Th ere are plenty
of security architects who were once penetration testers and penetration testers who are com-
petent security architects. Th e point is, the exact assembler language to exploit each of a collec-
tion of particular heap overfl ows is not required for the memory be handled in a secure fashion
by a programmer. Th e literature and other training is full of examples of how memory is to be
handled correctly.

Importantly for this book’s tips and tricks to make as much sense as possible, Chapter 3
(Architecture, Attacks, and Defences) will explore the required attack knowledge set in some
detail—that is, why to use attacks and how to derive a set of mitigations and defenses.

Chapter 4, Culture Hacking, is a tour of the approaches, tricks, and yes, even a few manipu-
lations that have proven successful for practicing security architecture in the face of the sorts of
challenges most will meet. I also include bits about starting, maturing, and running eff ective
security architecture programs. At least, these things have worked for me and quite a few of the
people with whom I’ve worked. Your mileage, of course, may vary.

In Chapter 5 (Learning the Trade), the secrets of the trade revealed herein will be set out in
a series of short snippets, each hopefully delivering a bit of wisdom that can be applied as you,
the reader, practice security architecture.

Finally, in Chapter 6, I’ve tried to set down, as best that I can, a lot of the tricks that I’ve
used to surmount typical problems. Lucky for me, I get to interact with a lot of practicing secu-
rity architects. My network has provided me with strong anectodal evidence that most pro-
grams will encounter many, if not all, of the challenges that I list in Chapter 6 as they mature.
While not at all scientifi c, I’ve become convinced that there are milestone problems that crop
up for nearly every program. I hope that it would be helpful if I listed these and then provided
my methods for tackling them, for whatever worth you may get from these.

xxii Secrets of a Cyber Security Architect

Th ere are a few previously published pieces in the Appendices following the chapters that
have been referenced during the text. I provide these to fi ll in any questions you may have, and
for reference.

It is my sincere hope that Secrets of a Cyber Security Architect provides you a fun read, some
insight, and also that it’s organized well enough to be a desk reference as you proceed through
your security architecture career and practice.

 — Brook Schoenfi eld
 August, 2019

xxiii

 Acknowledgments

Hopefully, Secrets of a Cyber Security Architect is not a work of fi ction. Th e people mentioned
herein by name are most assuredly actual people, though a few are sadly no longer living. Th is
book concerns itself with practices that work versus practices that have proven counterproduc-
tive. Th e ideas, as Adam Shostack so wisely quips, “are abstract.” As such, this is a human work,
perhaps all to human? Unavoidably, the book is as much about people as technical matters.

Th ere are, indeed, a number of fairly technical discussions here, as may be expected. Still, a
great deal of the book is devoted to how people enact the abstract, how we move abstractions
expressed through the practice of security architecture from ideas to working software that
performs useful human functions and, at the same time, exhibits protective properties. With
any luck, this book will help avoid adversary exploitation of software weaknesses that result in
harm to the users and owners of the software. Make no mistake, adversaries are humans, too:
adaptive, creative humans. Which brings us back to the very humanness that must underlie
security architecture.

As I noted in the dedication to this work, hundreds of people at all skill levels contributed to
this work. Without those who’ve tolerated me enough to try to learn from me, who’ve humored
the many blind alleys that have eventually led to the teaching methods I employ today, this
book would most certainly not exist. Whatever success my current methods have is due in large
part to participants’ patience, endurance, and persistence.

I arrived at Cisco in 2000 an extensively experienced software programmer, designer, and
technical lead. Unfortunately, I was a rather less skilled security practitioner than I had believed
about myself before I met people who were steeping themselves in cyber security. Th anks to
Gil Daudistil and Doug Dexter for extending both their professional support and personal
friendship, so that I survived that fi rst year on Infosec’s architecture team. Th e WebArch team,
Steve Acheson, Laura Lindsey, Catherine Blackader Nelson, and Rakesh Bharania, may have
hazed me a bit, yes. But they also pushed me to extend my skills. All remain treasured friends.

Th e Cisco Infosec identity management working group, circa 2001–2002, lead by Michele
Guel, and including Steve Acheson, Steve Wright, Sergei Rousakov, and myself, grappled with
what was at that time a huge paradigm shift: identity as an organization’s “security perimeter.”*

* At that time, cyber security defense focused on network protections.

xxiv Secrets of a Cyber Security Architect

It was through that eff ort that I began to fi nd my feet as a security architect. We produced
formative results that are just now gaining recognition close to 20 years later.

Having left the safety of a small software company to jump into the roiling waters of Big
IT and Big Tech at Cisco, I was completely unprepared for the large number of highly skilled,
highly motivated, high-integrity people with whom I’ve had the privilege to interact for the
last 20 odd years. Th ere is not space to name them all. Th at so many of my co-workers would
become dear friends is the unexpected bonus of our shared passion to make people’s digital
lives just a wee bit safer. Or as John Stewart quipped one time when we were waiting for a plane
to a conference at which we were both speaking, “Simply make the Internet work.” Word!

John wrote one of the most lyric and beautiful Forwards I’ve ever read for my last book,
Securing Systems. Th anks for your leadership. You guided what had been a dysfunctional orga-
nization to excellence. Th anks for your friendship. Obviously, thanks for being willing to stick
your name onto my book. And, thanks for a few rides to the train, too. Th ose were important
conversations, I think? At least, I carry them with me.

Without managers who see the value in playing a “long game,” who’ve consistently seen
the value of building a team fi rst before focusing on delivery, much of what’s in this book
would not ever have been tried. Rob Rolfson, Michelle Koblas, Nasrin Rezai, the incomparable
Dr. James Ransome, Scott “Chopper” Walker, Steve Mori.

Th anks are due to the fi rst WebArch team that I led wherein we tried out the foundational
concepts that through refi nement blazed a trail to the material in this book. Vinay Bansal,
Justin Tang, Ove Hanson each need to be acknowledged. Plus, there were a few project man-
agers in that period who organized and supported the work: Caroline Th rasher, Ferris Jabri,
Julian Soriano, and Dan Burke. Aaron Sierra helped me validate that the techniques also work
for product security and cloud architectures.

Th e threat modeling exercises from which conclusions and suggestions herein are drawn
have been greatly improved in collaboration with Damilare Fagbemi, who ran around Ireland
and the United States co-teaching, and then incorporating class feedback into the class. A
couple of other contributors to the class are Luis Servin, David Wheeler, Sun Lee, and Tania
Skinner (though she may not realize the importance of her critique and validation).

James Ransome and I spent a couple of months in front of a whiteboard refi ning what we
knew about software security and identifying that which we didn’t. Th e proven ideas were then
captured in Core Software Security, Chapter 9. Since publication of that book, we each keep
honing those seminal concepts as well as fi nding new ones, a few of which are presented in this
book, and most of which will be in our next.

No technical book should complete without technical review. Th e ideas presented here have
received signifi cant review from peers and then have been proven through practice; much of
the practicing must be credited to the security architecture leaders of the programs I’ve led.
Th ere are too many peers to name: you know who you are.

Some of this work has been previously published in various forms: books, booklets, presen-
tations, papers, posts. Along the way, specifi c technical reviews were provided by Jack Jones
(risk), Izar Tarandach (security architecture and threat modeling), Blake E. Strom (unorthodox
use of ATT&CK), Cedric Cochin and Raj Samani (posts covering various discreet subjects),
Jon King and Celeste Fralick (continuing inspiration).

Acknowledgments xxv

Th is book has been immeasurably improved through suggestions from Adam Shostack.
Th anks to Adam for contributing his Forward, as well.

Th ank you to the MITRE® Corporation for allowing me to reprint several of their copy-
righted materials.

No book can move forward without the support of the publisher and publishing team: John
Wyzalek for confi dence in the concept. I apologize that the fi rst draft took so long: sometimes
the book I set out to write is not the book that emerges through my process. Th anks are due
to Th eron Shreve and his staff at Derryfi eld Publishing, with special acknowledgment for the
diligence of copyeditor and typesetter Susan Culligan, who also provided signifi cant project
management.

Finally, but no less important is my daughter, Allison, who follows in Da’s footsteps as a
security architect. Dinner conversations invariably descend into technical discussions. She then
continues to further prove these ideas through her work. My spouse, Cynthia, must lastly be
mentioned. For one thing, she puts up with these technical discussions at the dining table. “It’s
the alien-speak, again.” You have, with this one, suff ered through the pain of writing fi ve books
about computer security. Without your humor, insight, and forbearance, none of this would
unfold. Th ank you.

http://www.taylorandfrancis.com

xxvii

About the Author

Brook S. E. Schoenfi eld is the author of Securing Systems: Applied Security Architecture and
Th reat Models* and Chapter 9: Applying the SDL Framework to the Real World, in Core
Software Security: Security at the Source.† He has been published by CRC Press, SANS Institute,
Cisco, SAFECode, and the IEEE. Occasionally, he even posts to his security architecture blog,
brookschoenfi eld.com.

He is the Master Security Architect at a global cyber security consultancy, where he leads
the company’s secure design services. He has held security architecture leadership positions
at high-tech enterprises for nearly 20 years, at which he has trained and coached hundreds of
people in their journey to becoming security architects. Several thousand people have taken his
participatory threat modeling classes.

Brook has presented and taught at conferences such as RSA, BSIMM, OWASP, and SANS
What Works Summits on subjects within security architecture, including threat models,
DevOps security, information security risk, and other aspects of secure design and software
security.

Brook lives in Montana’s Bitterroot Mountains. When he’s not thinking about, practicing,
writing about, and speaking on secure design and software security, he can be found telemark
skiing, hiking, and fl y fi shing in his beloved mountains, exploring new cooking techniques, or
playing various genres of guitar—from jazz to percussive fi ngerstyle.

* Schoenfi eld, 2015.
† Schoenfi eld, 2014.

http://brookschoenfield.com

http://www.taylorandfrancis.com

1

Chapter 1

The Context of Security
Architecture

1.1 Omnipresent Cyber War

At the time of this writing, those of us participating in the digital (online) world are living in an
unprecedented age. Never before in human history have machines and the energy used to drive
them performed so much of the labor required to sustain human life.

Consider for a moment mechanizations used for farming: tractors that pull tillers that can
prepare hectares of soil for planting. Compare that to an 18th-century farmer who would hitch
a draft animal to a plow, turning a single furrow at a time. Now even seed can be dispersed from
a device pulled by the tractor.

What was once strictly the domain of human labor, perhaps including animal strength, can
now be accomplished with the right equipment by one determined person.

Th at is not to say that farming cannot be accomplished by human labor alone, nor to say that
it isn’t by the many subsistence farmers still active on Planet Earth; certainly, people continue to
farm with a stick or utilize animal power, if available and aff ordable.

I make this digression simply to illustrate the profound changes that have occurred over
the last few hundred years in nearly every domain of human production, including informa-
tion processing. Th e Computer Age (also called the Information Age and the Digital Age) has
blossomed to magnify technology’s reach and infl uence, for a computer can control a formally
manual manufacturing process.

Lots of skilled and unskilled jobs have been replaced, and more are on the block. Perhaps
truck/lorry drivers might be next? Anheuser-Busch has already delivered a load of beer with an
automated truck.*

* Isaac, 2016.

2 Secrets of a Cyber Security Architect

In the context of farming, imagine that many (perhaps most?) farmers on the planet embed
cheap moisture sensors in their soil, which they could monitor from their mobile phone. Since
cell towers have long since leap-frogged land-line infrastructures in the Th ird World, there are
mobile services available to many fairly remote areas. It is conceivable that even relatively poor
people may have mobile phones in the near future.* Th is isn’t idle speculation; I had this precise
conversation with a principal of Th e Climate Corporation in 2015.

Computers are being adapted to either perform or assist with tasks, both new and old, at a
dizzying and increasing rate; computers are everywhere surrounding us. Th ose of us living in the
connected world are surrounded by an aura of radio frequencies the like of which has never been
experienced, so far as we know. Th is bombardment with radio waves at many frequencies at the
same time constitutes an unfolding experiment in human (and our animal companions’) tolerance
for radio transmissions. [Time will tell if we can actually tolerate the bombardment or what the
eff ects may be. Perhaps evolution will step in with a genetic mutation for radio wave tolerance?]

I believe that we’ve really only scratched the surface in this transformation.† It is likely that
computation capabilities will increase dramatically (quantum computation?) while at the same
time size and power requirements will drop. Sensors of nearly everything sensible by computers
will surround us, just as some futurists have imagined.‡ It is quite likely that computers will
start to write computer programs—at least, those parts of programs that are suffi ciently deter-
ministic and formulaic to be programmed algorithmically or heuristically (at least to start). [It
is certainly within the realm of possibility that machine learning or artifi cial intelligence might
be applied to the generation of software algorithms.]

I can imagine a digital world far more complex and rich than exists today, which is far
beyond what I imagined possible 40 years ago, when I was introduced to programming. A great
deal has changed. I think that far more is in front of us than behind. Our lives are incredibly
dependent upon computers and the software that they run.

We also know that the software we depend upon is riddled with errors, whose correctness
cannot be automatically proven (that is to say that at this moment, the Turing Proof still holds
true). Which brings us squarely to the security problem those of us in the connected world must
face, every day, sometimes many times a day: Th ere be pirates on these digital waters, Matey.

Our ability to develop complex software vastly exceeds our ability to prove its correctness or test
it satisfactorily within reasonable fiscal constraints . . . complex software is difficult to write
and to test, and will therefore contain numerous unintentional ‘bugs’[.] It would be extremely
difficult and expensive to determine with certainty that a piece of software is free of bugs[.]
Given the relatively small amounts of funding allocated for developing and testing . . . software,
we may safely consider it as effectively impossible.§

A couple of quotes from the Forwords to Securing Systems may help to illustrate our digital
dependence:

* Ogundeji, 2015.
† Osborne, 2018.
‡ For instance, the nano digital world imagined in Neal Stephenson’s Diamond Age (Stephenson, 1995).
§ Rivest and Wack, n.d., pp. 3–4.

The Context of Security Architecture 3

“We are struggling as a security industry now, and the need to be successful is higher than it has
ever been in my twenty-five years in it. It is not good enough just to build something and try and
secure it, it must be architected from the bottom up with security in it, by professionally trained
and skilled security architects, checked and validated by regular assessments for weakness, and
through a learning system that learns from today to inform tomorrow. We must succeed.” *

* John N. Stewart SVP, Chief Security & Trust Offi cer Cisco Systems, Inc.
† Dr. James F. Ransome, CISSP, CISM.
‡ Please see brookschoenfi eld.com/?p=219 for more discussion on THE HOME DEPOT’s large breach.
§ WebTitan, 2017.

“Virtually every aspect of global civilization now depends on interconnected cyber systems to
operate. A good portion of the money that was spent on offensive and defensive capabilities
during the Cold War is now being spent on cyber offense and defense. Unlike the Cold War,
where only governments were involved, this cyber challenge requires defensive measures for
commercial enterprises, small businesses, NGOs, and individuals.” †

Failure to understand that the dependence that we have not just on our obvious digital
devices—smart phone, laptop, tablet, fancy fi tness bling on your wrist—but also on a matrix
of interconnection tying all these devices and billions more together will land you in the
hot seat; consider what happened to THE HOME DEPOT®, whose management actively
resisted understanding their business’s interconnectivity.‡ When THE HOME DEPOT’s
security folk pointed out the glaring weaknesses in the company’s cyber defenses, an execu-
tive is quoted as declaring, “we sell hammers, not computers.” Th e sad truth is that even a
hammer and nail company must still account for its digital operations, which nearly always
imply maintaining a cyber security defense posture. Th e breach occurred in 2014. By 2017,
that breach had cost the company $179 million.§ Not exactly chump change, even for a
global corporation.

For more than three billion out of the seven billion people on this planet, we have long since
passed the point at which we are isolated entities who act alone and in some measure of uncon-
nected global anonymity. For most of us, our lives depend not just upon technology itself,
but also on the capabilities of innumerable, faceless business entities and those entities’ digital
systems that act upon our digital behalf.

Consider the following common, but trivial,
example: When I swipe my credit card at the pump
to purchase petrol, that transaction passes through
any number of computation devices and applica-
tions operated by a chain of business entities. Th e
following is a typical scenario (an example fl ow—
but not the only one, of course):

• Th e point-of-sale device itself (likely supplied
by a point-of-sale provider) (see inset)

• Th e networking equipment at the petrol sta-
tion (see inset next page)

My friend and former colleague Lucy
McCoy wrote the communications code
in the first generation of gas pump pay-
ment terminals. At that time, terminals
communicated via modem and phone
line. She was a serial communications
wiz. I remember the point-of-sale ter-
minal laid out in her lab area. Lucy has
since passed away. She was a brilliant
engineer; she gave my code the best
testing that any code I’ve written has
ever received.

http://brookschoenfield.com

4 Secrets of a Cyber Security Architect

• Th e station’s Internet provider’s equipment (networking, security, applications—you have
no idea!)

• One or more telecom company’s networking infrastructure across the Internet backbone
• Th e point-of-sale company or their proxy
• More networking equipment and Internet providers
• A credit card payment processor
• Th e card issuer who must validate the card and

agree to pay the transaction for me

* http://brookschoenfi eld.com/?p=219

And so on . . . all just to fi ll my fuel tank. It’s seamless
and invisible—the communications between entities
usually bring up an encrypted tunnel, although the
protection off ered is not as solid as you may hope; it
is invisible and seamless, except when the processing
is not so invisible, such as during a compromise and
breach. [On a trip through Idaho several years ago,
a fuel pump in a remote station from which I fueled
had a card skimmer attached to it. My credit card was
then used for fraudulent activity.]

Every one of these invisible players has to have good enough security to protect me, and you,
if you also use some sort of payment card for your petrol.*

Th e foregoing is one of many examples:

• Medical gear and the networks that support them.
• Your fi nancial institution’s systems (where your “deposits” are really just digital data).
• Th e 100–200 processors in your car, with the stack of software that runs on them.
• Your Bluetooth headset—a Linux computer, as is that webcam watching your front door.
• Your smart TV—another Linux computer, as is your printer, the thermostat, Alexa, Echo;

even your landline’s handset may very well be another Linux system.

Is there nothing sacred? Probably not. And all of it is attack surface if there’s anything worth
stealing, learning, coercing, infl uencing, misusing, or disrupting to be found. Such has become
the nature of the Connected World: it’s all attackable given suffi cient motivation.

Th e art of security architecture plays a part in the dance between adversaries and defenses.
Th e security architect attempts to align defenses to expected attacks. As we shall see in Chapter 3,
Attacks and Defenses, the security architect seeks to understand relevant attackers, their meth-
ods, and their goals. At the same time, they must also understand how particular types of attacks
work such that appropriate defense mechanisms can be specifi ed, implemented, and deployed.

Security architects may be thought of as software and system architects who specialize in
attacks and defenses, who are profi cient enough with architecture techniques to specify defenses
as part of the structure of a system or software architecture.

I don’t believe that our present and future digital security rests solely on this one discipline;
that would be incredibly arrogant and also quite unfair to the many other disciplines that have
emerged within the digital security space, such as:

The transactions have to get from sta-
tion to payment processing, right? Who
runs those cable modems and routers
at the station? Could be the Internet
provider, or maybe not. I run my own
modem/routers/switches at home to
which I have sole admin access. An em--
ployee might easily slip a router under
their control between terminals and
provider; who’s to know? You don’t walk
up to the payment kiosk and demand to
see the routing gear, do you?

http://brookschoenfield.com

The Context of Security Architecture 5

• Exploit and vulnerability research
• Analysis of the dynamics of the threat landscape and human adversaries (“threat research”)
• Malware analysis
• Incident response
• Risk analysis
• Defensive programming
• Vulnerability and error discovery tools and automation
• Constructing easier-to-secure programming languages and environments
• Th e defensive software industry
• Management of the problem space’s complexity
• And so forth

* NIST, 1996.
† One recent example of such weaponization is SpookFlare 2.0, available from public GitHub servers

for download at https://github.com/hlldz/SpookFlaref6e0>

Still, as was noted in NIST 800-14 in 1996,* if we cannot uncover appropriate security
requirements during system design cycles, we have already lost an important—nay, key—
opportunity. We leave ourselves with the diffi cult (and usually far more expensive) challenge to
amend insecure software late in the game, perhaps even after deployment. Th at is the essence
of this book: to add to a growing body of practice and, I hope, wisdom about what security
architecture is, why it’s important, and how to practice it successfully.

In the following chapters, sections, and pages, I hope by collecting some of the bits and
pieces that I’ve found useful into one volume, I can contribute in some small way to the art and
science, the practice of this thing that’s become known as “security architecture,” to which I’ve
given some of the best of my professional life and quite a bit of my thinking.

Some of the following has been pulled from other works of mine. To that material, I’ve
added additional thoughts and learnings derived since those publications. I’ve also tried to
augment ideas that I’ve touched on in passing with greater depth. Let me know what you fi nd
useful, as always.

1.2 Know the Threat Actors

Attack and the subsequent “compromise”—that is, complete control of a system on the Internet—
is utterly pervasive: constant and continual. And this has been true for quite a long time. Many
attackers are intelligent and adaptive. If defenses improve, attackers will change their tactics to
meet the new challenge. At the same time, attack methods that were once complex and techni-
cally challenging are routinely “weaponized”: turned into point-and-click tools that the relatively
technically unsophisticated can easily use.† Th is development has exponentially expanded the
number of attackers. Th e result is a broad range of attackers, some highly ingenious alongside the
many who can and will exploit well-known vulnerabilities if these are left without remediation.

Th e chance of an attempted attack of one kind or another is certain. Th e probability of a web
attack is 100 percent; systems are being attacked and will be attacked regularly and continually.
Most of those attacks will be “doorknob rattling”—reconnaissance probes and well-known,

https://github.com

6 Secrets of a Cyber Security Architect

easily defended exploit methods. But out of the fi fty
million attacks each week that most major websites
must endure (see inset), something like one or two
within the mountain of attack events will likely be
highly sophisticated and tightly targeted at that
particular set of systems. And the probability of a
targeted attack goes up exponentially when the web
systems employ well-known operating systems and
execution environments.

A web server listening for connections from the Internet must remain open to all Internet
traffi c [unless IP address restrictions are put into place such that only some networks or even
particular hosts can access the web server], which means that any attacker can probe the inter-
face, at least at the network protocol level, if not deeper. Th e constant doorknob- rattling sweeps
of the Internet will surely fi nd and investigate whatever interfaces are open and available to
unrestricted traffi c.

Once an interested attacker fi nds and catalogs the open HTTP port, then the fun really
begins. Like web vulnerability scanners, the attacker will probe every reachable page with every
attack variation possible. Th ese probes (and possibly downloads of portions of the site) will be
unrelenting. To prevent restriction of the attacker’s address, they may use multiple addresses or
even shift attacking addresses on the fl y (e.g., fast fl ux DNS).

In contrast, security architects must use their understanding of the currently active threat
agents and their techniques in order to apply these appropriately to a particular system. Whether
a particular threat agent will aim at a particular system is as much a matter of understanding,
knowledge, and experience as it is cold hard fact. Considering the potential eff ects of threat
agents and their capabilities to attack any particular system is an essential activity within the art
of threat modeling. Hence, a security assessment of an architecture is an act of craft that wields
engineering as the tool set.

Although in practice the order in which we consider diff erent aspects of attacks and defenses
doesn’t materially aff ect the quality of the output, let’s start with threat agents (actors, adversar-
ies). Th e goals and capabilities of each type of actor profoundly aff ect how deep and thorough
a defense must be. I explained this in Securing Systems at some length: some actors seek a quick
return on eff ort. Others will work on a compromise until successful, no matter the time and
cost. Some adversaries mean to cause harm, some mean to cause no harm, and some don’t care
about what harm may ensue, so long as a goal is achieved.

Th ere are other dimensions to consider. I’ve settled on fi ve areas:
1. Final goal of the attacker
2. Technical ability
3. Risk tolerance
4. Work factor
5. Activity level
Th ere’s nothing sacred about my categories. Th ese threat actor attributes are the ones that

allow me to set priorities when analyzing a system. If you don’t like these or see holes in my
thinking, then by all means use your own categories.

Fifty million is a number given to me by
intrusion analysts at a major high-tech
company. At these levels, it doesn’t
really matter if the number is more
like 30 million or even 100 million. The
number of attacks overwhelm even
the best staff unless they have signifi-
cant automation.

The Context of Security Architecture 7

After years of refi ning the matrix, years of teaching threat modeling to diverse groups of
people (from groups of a few individuals to 120 participants), and several years of having par-
ticipants in my sessions build their own matrices, this set of categories seems to work fairly well.
Still, I remain open to other approaches. Th ere is probably a better way; if you fi nd a system that
works better for you, please let me know.

Below, I briefl y explain each of these threat actor attributes or behavioral dimensions:

• Goal. Many successful compromises depend on the successful execution of a set of
exploits, one after the other. From reconnaissance, to establishment of a presence, to privi-
lege escalation, on through establishment of command-and-control and persistence, none
of these is typically the ultimate goal of an adversary [except for vulnerability hunters
and security researchers, who may be satisfi ed with establishing proof that an exploitable
condition exists in isolation]. For real-world attackers, the adversary is after something;
perhaps stealing credentials or controlling the host so that it may be employed as part
of a botnet, stealing information, disrupting operations, or just plain and simple theft of
money or other assets—attackers have many goals. In order to identify which assets may
be valuable to the set of attackers who are likely adversaries, it helps to understand what
results diff erent classes of attackers expect to achieve.

• Technical ability. Not every class of attacker wishes to employ highly sophisticated,
resource-intensive techniques. For a moment, ignore the potential for any attacker to be
highly sophisticated and to have access to powerful compute resources; there are classes of
attackers who, even if they had such resources at their disposal, might not bring them to
bear simply because it’s too expensive. For this reason, it’s useful to understand the sorts of
technical capabilities, the sort of exploits, that a particular class of adversary is likely to use.

• Risk tolerance. What I mean by this attribute is how willing or unwilling a particular
attacker may be to getting caught or to having the attack discovered and when. Spies tend
to be highly secretive. Th e best outcome is if the activity is never uncovered or, if discov-
ered, that it is diffi cult to attribute to any particular group or state, and the goal of the
action should certainly be obscured as much as possible. Cyber criminals without a doubt
know that once your account has been drained, you will notice. Th e thief doesn’t care that
you fi nd out, only that the thief doesn’t get caught—or at least, only low-level participants
in a crime organization get caught; the upper level management must be protected, usually
at all costs. On the other hand, security researchers are generally not breaking any laws, so
they expect to publish the results with no risk. Security researchers may then be thought
of as having zero risk tolerance.

• Work factor. Th is attribute is an estimation of how hard a particular class of adversaries
will work toward achieving their goal. For instance, the United States National Security
Agency had, at one time, a $60 billion so-called “black budget.” Th at seems to me to be an
enormous amount of resources to apply to any particular cyber action. I assume that other
major powers have similar budgets. Contrast this with a cybercrime business that needs to
maximize the amount of profi t from each operation. As I noted in Securing Systems, cyber
criminals tend to focus on the poorly defended, spending as little on research and develop-
ment of new techniques as possible. Th is is a vastly diff erent approach than would be taken
by a well-funded superpower’s off ensive cyber activities.

8 Secrets of a Cyber Security Architect

Th e foregoing categorization is entirely stereotypic. It must be understood that an individual
actor can be an outlier; it is important to know that aggregating behaviors as I’m doing implies
beyond any doubt that some threat agents in each group will not fi t the profi le in one manner
or another.

Th e advantage of stereotyping and aggregating is to allow us to step away from a widely held
fallacy of practice: that every actor is either a creative, innovating genius or a so-called “script
kiddie” of no signifi cant technical capability. Th ere is a continuum of capabilities and clusters
of attributes into which particular actors tend to fall. Even technically sophisticated actors may
have very good reasons for using readily available, well-known, and understood exploits: new
vulnerability discovery and subsequent exploit development for that vulnerability is expensive.
When trying to maximize profi t, businesspeople try to minimize research and development. As
a profi t-seeking business, cybercrime is no diff erent from any other profi t-seeking enterprise.

Along with the fallacy of either unlimited technical capability or zero knowledge comes
another: it is widely believed that every vulnerability/exploit pair is equally valuable to every
actor. As I demonstrated in a series of analyses published on McAfee’s Securing Tomorrow blog
in November 2017,* vulnerabilities fi rst must off er an attacker something of attacker-value that
will advance toward the attacker’s ultimate goal.

My classic example is a buff er overfl ow requir-
ing high privileged access before it can be exercised
(see inset). A buff er overfl ow allows the attacker to
execute code of the attacker’s choosing. However,
having obtained high system privileges, attackers can
already execute code of their choosing. Th ey have
no need to exploit yet another condition. With high
privileges, not only can code be executed, but the
attacker has access to all of the monitoringand

logging capabilities on the system, such that their code can be hidden (with whatever facilities
are available) and persisted through restarts of the operating system. Th ere is no value to further
exploitation of memory; the attacker already owns all memory on the system.

Once an attacker can insert her/him/themself into the kernel, it’s “game over.” Th e attacker
has the run of the system to perform whatever actions and achieve whatever goals are intended by
the attack. For system takeover, the kernel is the target. Th e highest operating system privileges
typically allow access to the kernel. Hence, high privileges generally mean that the system’s kernel
is “owned”—or in the parlance, “pwned”: compromised, under the control of the attacker.

Th e foregoing is basic risk analysis that every security practitioner ought to be able to per-
form. Still, I have seen precious few methodologies for including attacker value in the risk
analysis equation. Th at’s why I like the term “impact” vs. “loss.” Impact is broader, such that
it includes the possibility that an attacker has moved one step closer to their goal rather than
focusing solely on the harm if the attacker should ultimately be successful.

Neither of these fallacies serve defense well, because they are both demonstrably untrue and
create a situation (or mindset, unfortunately rather widely held) that implies that all issues must
be defended against equally well (or worse, “fi xed immediately”!).

* Schoenfi eld and Quiroa, 2017.

This is not a hypothetical example. I
have entered into discussions many
times with security professionals who
didn’t seem to understand the under-
lying lack of attacker value of addi-
tional memory manipulation after an
attacker has gained full control of an
operating system.

The Context of Security Architecture 9

Because few organizations and few systems can be successfully built and maintained to
defend against every possible and imagined attack, the practitioner is thus rendered ineff ective
as a direct result of the two misconceptions expressed above. Th at is, smart engineers will see
through “all or nothing” arguments as technically invalid and impossible. Smart engineers want
to know where to place the most effi cacious defenses; they want to have solid reasons for imple-
mentation before they will agree to implement anything. When a security practitioner insists
upon defenses that seem unreasonable to those who must implement them, then security’s
infl uence has been squandered. I have seen it over and over again; once developers no longer
trust security, they will evade security requirements as often as they can.

Please don’t mistake my meaning. It is possible to make mistakes and then to admit error. In
fact, doing so builds the required trust between security and developers. Th at is very diff erent
from insisting on defenses that have little chance of being tested by real attackers simply because
it feels safer to a security practitioner or because some book or standard said that these defenses
were “always required for every situation.” As far as I know from my 20 years of security prac-
tice, there is no “always” in defenses; each defense is contextual.

It’s just not true that every nation-state cyber army is gunning for every connected person. Th ere
are distinctions, and applying these distinctions allows us to focus on the most likely attacks, at the
most likely levels of sophistication, from actors who have readily observable levels of risk tolerance
and who will expend varying levels of eff ort to achieve goals. Th e astute defender usually needn’t
pay attention to everything, all the time—which is in any case an impossible charge (see inset).

If I pull my fi ve threat actor attributes together into a set of four attack pre-conditions, I
come up with the following:

• Th ere must be active, motivated threat agents who are interested in attacking systems of
the sort under assessment.

• Th e attack methods required must lie within the technical capabilities of the attacker and
be well enough understood by the attacker to be useful.

• Th e attack must not expose the attacker to negative consequences beyond the attacker’s
tolerance for exposure.

• Th e eff ort needed to complete the attack must
be less than the expected rewards of success.

Still, and nonetheless, if successful compromise
by an attacker has no impact or loss to the owner of
the system—the organization whose goals the sys-
tem is intended to further—or the system’s users,
then there can be no risk. Without impact, there
can be no risk to an organization, even in the face of
an easy-to-exploit condition.

In the foregoing discussion, three often over-
looked attributes of an attack emerge:

• Impact
• Attacker value
• Required eff ort

Except perhaps defenders whose adver-
saries include dedicated nation-state
actors. For this select set, the defender
must implement as much as possible,
knowing that every defense will likely
eventually fail against the onslaught
of highly resourced and sophisticated
adversaries. The concept in this case is
to slow the attacker down sufficiently
that there may be time to catch the
attack as it unfolds. In addition, each
defense should add detail to the
emerging picture of the attack, even
as it may fail.

10 Secrets of a Cyber Security Architect

Th e fi rst two, impact and attacker value, are not necessarily equivalent, although sometimes
that which an attacker intends is, in fact, the impact to the victim: bank accounts drained,
services disrupted. Sometimes, though, the relationship between the value of an exploit and the
attacker’s ultimate goal is more tenuous.

Consider the formation of the Mirai camera botnet* that was used to disrupt Internet com-
munications through a DNS service distributed denial of service (DDOS) attack. Compromise
of each Mirai camera quite likely was not even noticed by the camera’s owner. Th e camera
appeared to be functioning in whatever capacity for which it was installed.

Although the controller of the botnet (the “attacker”) could capture images from cameras
and may very well have, there is no indication that owners of the cameras were particularly
inconvenienced, even during the DDOS attack.

Th e victim of the attack seems to have been a company called DYN, whose DNS services
were disrupted. Alongside DYN were some users of a few major Internet services in select
regions. Very likely, some of those who couldn’t access FaceBook® during the attack owned one
or more of the cameras causing the attack.

Still, the loss of trust in DYN’s services and lost advertising revenues to Facebook are the
organizational costs, while inconvenience from prevention of use of services would be another
impact. Th ese are quite disconnected from compromise of tens of thousands of Mirai’s under-
lying Linux® operating system—which was the attacker value: controlling thousands of Internet-
connected Linux devices.

To focus on either impact or attacker value in isolation without considering the other attri-
butes paints an incomplete picture. We must understand whether an attack scenario will help
advance the attacker’s goals. And, we also must consider whether attacker success will aff ect
something that system stakeholders care about protecting.

Th e third item above, “required eff ort,” can often help us to understand the attacker’s work/
reward ratio. How much is a successful attack going to deliver for the eff ort?

For exploits that require a great deal of setup and perhaps are only a stepping stone, the
reward has to justify the entire set of actions. Plus, if any of the preconditions are generally
unknown to attackers, they will need time to discover these for themselves (unless all the neces-
sary steps and preconditions get published in a research paper).

In the Mirai camera case, the eff ort was next to nothing: the default password was well
known. Th e password was used via a well documented protocol (SSH) to access the camera at
high privilege. Setting up the botnet was only a matter of discovering eligible targets [At which,
it must be said, attackers, professional bug hunters, penetration testers, and security researchers
are all very good. Th ese all use an intersecting and constantly improving suite of tools, tools
which are readily available, often open source].

In contrast, the WiFi authentication attacks named “KRACK Attacks” (Key Reinstallation
Attacks) discovered by Mathy Vanhoef, published in October of 2017,† require fairly deep
understanding of the intricacies of WiFi’s WPA2 key interchanges. As I wrote in my blog just
after publication of the new technique:

“However key reinstallation depends on either working with the inherent timing of a Wi-Fi
during a discreet, somewhat rare (in computer terms) exchange or the technique depends upon

* Fruhlinger, 2018.
† Vanhoef, 2017.

The Context of Security Architecture 11

the attacker forcing the vulnerable exchange through some method (see below for examples).
Both of these scenarios take a bit of attacker eff ort, perhaps more eff ort than using any one of
the existing methods for attacking users over Wi-Fi?”*

Whenever a new attack’s value overlays existing, well-known, perhaps already weaponized
eff orts, then the attack’s eff ort versus gain equation becomes important. Is the new attack
method easier or harder? Is it more easily coded into a repeatable, automated form (“weapon-
ized”)? Is it harder or easier to detect? Does the new method extend in some way the reach of
the attacker?

Attacker eff ort to pull off a successful KRACK seems to have been greater than the use of any
number of other, readily available methods. So far (up to this writing), KRACK doesn’t seem to
have received much threat actor usage, as interesting as it may be from a computer science and
security perspective. Of course, such research can lead to much tighter security implementa-
tions, which is precisely what has happened in this case; my thanks to Mr. Vanhoef for excellent
research.

Th e foregoing examples, I hope, help to clarify dimensions that can be used to understand
attackers and how they work, as well as to analyze and qualify issues as they arrive—these activi-
ties, I believe lie within the expertise that security architects must master.

As we consider diff erent threat agents, their typical methods, and most importantly the goals
of their attacks, I hope that you’ll see that some attacks are irrelevant against some systems:
these attacks are simply not worth consideration. Th e idea is to fi lter out the noise such that the
truly relevant, the importantly dangerous, get more attention than anything else.

An astute reader might question why I have proposed yet another threat system?
Th e answer is simple: extant methods such as the Diamond Method,† MITRE’s CRITS,‡

and the UCO ontology,§ to name a few, are focused on the problem of analyzing artifacts of an
attack or an attack campaign.

Th ese existing approaches are useful, certainly; I encourage readers to follow the references.
Th ere’s a great deal to be learned from the study that’s been put into helping analysts fi gure out
what threat actors are doing and why. An attack might be a singleton, perhaps highly targeted,
or it might be one part of a campaign against numerous targets. When reacting to a potential
attack, and for researchers who are trying to attribute attacks to particular actors, graphing
malware samples, targets, period of attack, originations, etc. (please see any of the references,
above) will be critical.

But for security architecture, it is suffi cient, I believe, to know that such attacks occur and
to generalize about what diff erent classes of attackers seek. Th at is the knowledge set that is
wielded to assess the potential for successful compromise:

• What does the attacker ultimately want to achieve?
• What are the attacker’s methods, both known and probable?
• How are the attacker’s methods applied to vulnerabilities, both known and potential?

* http://brookschoenfi eld.com/?tag=kracks-attacks
† http://www.activeresponse.org/wp-content/uploads/2013/07/diamond.pdf
‡ https://crits.github.io
§ https://github.com/ucoProject/UCO

http://brookschoenfield.com
http://www.activeresponse.org
https://crits.github.io
https://github.com

12 Secrets of a Cyber Security Architect

• How will a successful attack aff ect assets, users, owners, and ultimately the organization
that must be protected?

• What steps can be taken to thwart attack? Th at is, what are the best defensive measures
against likely attacks?

Th ese are the questions that need to be answered by security architects. We have to be con-
versant with those attacks that will be levied against systems under analysis, and the sorts of
defenses that have been eff ective against such attacks. Th is is a set of knowledge that overlaps
something like MItre’s CRITS, but which must do two diff erent things:

1. Attacks must be grouped into methods that obtain attacker intermediate or ultimate
goals and their targets.

2. Th e security architect makes an educated guess, as highly informed a guess as possible,
about what might happen; security architecture is meant to be proactive—before attack,
not during or after.

Th ere is guesswork involved—hopefully before entering the real world of probing for cyber
weakness—that is, before attackers begin to probe the system under analysis. Plus, threat modeling
will be improved markedly through a feedback loop between the informed guesses used during the
threat modeling analysis and validation (or not) of the guesses by penetration testing (see inset).

Th reat modeling and penetration testing might
be considered bookend techniques for a robust and
mature software security practice. Th reat modeling
(really, any and all architecture analysis for security,
whatever it may be called, started at an early stage of
structural conception) is an up-front analysis meant
to strongly infl uence the structure (architecture) and
design of systems as they are being built and imple-
mented. Penetration testing “proves” the security
posture that was intended to be built.

Can you perhaps see how these two activities would
infl uence each other? Penetration testers, at the very
least, must understand the visible and accessible archi-
tecture of a system in order to probe its defenses and
identify its weaknesses. If weaknesses are found, then
the threat model must be updated to account for any missing defenses that then can be added.

Penetration testers act as a proxy for real-world adversaries. Hopefully, before the system is
exposed to adversaries, penetration testers can fi nd any holes in the required defenses so that
those holes can be plugged enough to suffi ciently resist attacks by those who intend to damage
the system and/or its owners.

Th reat modelers—that is, security architects—must understand attackers, their tech-
niques, and their goals (both short-term and ultimate). Th ese so-called “guesses” must be
made suffi ciently accurately such that defenses will be built as the system is being built.
Th is early analysis is an attempt to avoid so-called “bolt-on” additions of security defenses
after implementation, or worse, after go-live, or worse still, after compromise. “Built-in” is

These two processes—threat model-
ing and penetration testing—are too
often conducted by separate entities
who are not working in concert. It
was Eoin Carroll, in his capacity as a
Senior Security Architect at McAfee,
who helped me to understand the
importance of tying these activities
tightly together. Threat models can
and should be proved through testing
of many sorts. Please see Chapter 9
in Core Software Security for more
about the use of various software
security testing techniques.

The Context of Security Architecture 13

much cheaper than bolt-on. Built-in will presumably fi t the overall plan of the system (its
architecture).

Hence, the foregoing is the purpose of my high-level tables; they provide a quick reference
frame for making stronger guesses.

Table 1.1 Summarized Threat Attributes

Threat Agent Goals
Risk

Tolerance Work Factor Methods

Cyber criminals Financial Low Low to medium Known proven

Industrial spies Information and
disruption

Low High to extreme Sophisticated and
unique

Hacktivists Information,
disruption, and
media attention

Medium to
high

Low to medium System admini-
stration errors and
social engineering

Table 1.1, copied from Securing Systems, and its completion in Table 1.2 are meant to assist in
the previously described process of analytical educated guessing (see inset). Security architecture
should be applied before the system is completely implemented, if possible, while there is still
room for change (to account for new defenses). Th us, the analyst is, in my humble opinion,
greatly aided by bearing in mind just who will attack, why, and what techniques they are likely
to employ in their eff orts. Since these are (highly) educated guesses, it is, again, in my humble
experience, not necessary to fully understand each attacker’s strengths and weaknesses in detail;
a stereotypic picture of types of attackers is generally all that is required, such as in the tables
presented herein.

Penetration testing against a complete or nearly complete system can then test the security
architect’s guesses, as my friend and colleague Eoin
Carroll likes to say. Eoin has shown me that there’s a
natural feedback loop between a security architect’s
threat model and a subsequent penetration test. Th e
penetration test can prove that the threat model has
been thorough enough. Or, if it has not, whatever
penetrations (that is, successful attack tests) have
occurred must improve the threat model.

In Securing Systems, I examined in some depth three types or classes of threat agents:

1. Cyber criminals
2. Industrial spies
3. Hacktivists

I did not complete the matrix, because Securing Systems was meant to be as much a series of
exercises in threat modeling analysis as a defi nitive work on security architecture knowledge and
patterns. I left the remainder of the matrix as an exercise for the reader.

In Securing Systems, I dive deeply into
the threat modeling process, hope-
fully putting flesh onto the bare bones
laid out in this book. Readers are
encouraged to peruse any of the six
full system analyses contained in that
work for more information.

14 Secrets of a Cyber Security Architect

As I began to incorporate some of the new mate-
rial that I developed from Securing Systems into my
classes {see inset next page], I brought the exercise of
building a threat agent matrix as a part of the course-
work. Very quickly, class participants requested a
completed matrix.

In my classes, I hand out the matrix after each
team has completed their very own threat agent
attribute table for themselves, and after each team
has presented their matrix to the other teams.
Th e exercise seems to be quite powerful, in that
it gets everyone in the class thinking about who

Table 1.2 High-Level Threat Agent Attribute Matrix

Threat Agent Goals
Technical

Ability
Risk

Tolerance
Work
Factor Activity Level

Cybercrime Monetary Low (known
proven)

Low to
medium

Low Very high,
continual

Industrial
espionage

Information Medium to
medium-high

Low Medium Low. For enter-
prises, medium

Nation-states Information
disruption

Very high Very low Very high Medium but
constant

Law enforce-
ment/gov-
ernment
compliance

Compliance
information

Medium None—they
are the law

Medium Intermittent

Insider Monetary Varies Low None Occasional

Insider Revenge Varies Very high None Occasional

Usage abusea Unauthorized use Low Low Low Constant

Hacktivists Media attention
for cause

Low to medium Used to be
high, now
much lower

Medium Intermittent

Hackers Status Often very low Low Low Low

Security
Researcher

Career
enhancement

High None High Medium

a I’m indebted to my students who added this important adversary, users who seek to obtain more services
than those for which they’ve contracted. Users are not in the same technical category as cyber criminals,
though their acts may be criminal, depending upon the jurisdiction. They aren’t generally making a living
through their attempts to enhance their services. They often simply feel entitled to “more.” Consider
abusers seeking more content streaming than that for which they’ve paid.

Damilare Fagbemi, Senior Security
Architect at Intel, Inc., helped refine
the third version of the threat mod-
eling class that I continue to give.
Damilare delivers a similar class for
Intel. We regularly discuss our various
teaching discoveries and challenges.
Damilare’s continuing support has
been critical to whatever success my
threat modeling classes achieve. His
contributions remain vital, not just to
our classes, but to the industry as a
whole.

The Context of Security Architecture 15

their adversaries are and what are their typical attributes. Th e very act of considering these
problems sets up participants with the correct mindset to play adversary to systems under
consideration.

Because the exercise has proven so eff ective, I’m quite hesitant to put a completed threat agent
matrix into a published work. Th e matrix has to be a “living” document; the cyber adversary
threat landscape is dynamic and constantly changing. Classes of actors and their typical attri-
butes are going to change over time. In no way should Table 1.2 be considered canonical.

Plus, your experience with your adversaries may be diff erent than mine. Please take Table 1.2
as a suggestion on how this problem might be approached, an attempt to build a high-level
picture of types of threat actors, what each type’s stereotypical goals are, and something about
their capabilities and tolerances. Please do not take my threat agent matrix as gospel. Instead,
treat the matrix as a pointer, as an exercise in assigning some order for a dynamic and somewhat
opaque problem space. Make your own table; decide upon attributes that bring order to your
threat landscape.

1.2 Useful Exploits Don’t Die

In fact, it may be said that, “Old exploits don’t die, they just fade away,” with ever diminishing
use. Unfortunately, as a defender, one can never toss an aging and seemingly forgotten exploit
technique into the dustbin of history. Attackers will use anything at hand—old, new, whatever.
Just because many target systems have been upgraded to plug a vulnerability doesn’t imply that
there aren’t existing systems that are still vulnerable. For many attacker goals, a step forward
may be achieved via a single, vulnerable system.

Importantly, not much seems to completely disappear from the Internet. Old machines,
running long unsupported, end-of-life software get sold, donated, or given away. Th ese sys-
tems still remain connected somewhere, and thus remain potential victims of exploits suppos-
edly long past. Th e grim reality is that these systems and their pirated knockoff s make up some
part of the complete Internet demographic, often being used in poorer areas and/or by less
knowledgeable people.

It may be impossible for users’ systems at the bottom of this chain of reuse to fi x the existing
vulnerabilities on their systems since much or even all of the software on the systems may be
past support—long past. Th at is, the makers of the software no longer fi x issues, even newly
discovered issues. Th e owners of the systems are often just out of luck.

Th e nasty truth of this situation is that there always remains a vulnerable population against
whom old exploits may successfully be employed. So, why should the builders of exploit kits
(“EK” in security parlance) remove old exploits? Th ere’s no compelling reason to.

Th us, EK are additive. New exploits are added, but old ones are not removed. EK are the
workhorses of attackers; some EK are maintained by the developers of the adversarial world.
[Some EK are maintained by security researchers for the benefi t of researchers and penetration
testers. Th at does not prevent these EK from also being used by adversaries.] Th e developers
may not use their kits against victims; their business model is as a support to actual attackers.
Attackers well supplied with already programmed—that is, pre-canned, also called “weapon-
ized”—exploit code are then freed up to concentrate on their attack campaigns rather than
mucking about identifying code to exercise particular vulnerabilities.

.1

16 Secrets of a Cyber Security Architect

Attackers work within their own rich ecosystem of researchers, developers, service off erings,
consultants, etc., which mirrors the legal software business ecosystem. It’s a strange and com-
plex digital world that we live in.

1.3 Everything Can Become a Target

I’ve been declaring for years that, “whatever can be
engineered by humans can be reverse engineered by
humans.” Th at is, in this context, whatever protec-
tions we build can ultimately, with enough resources,
time, and eff ort, be undone (see inset). Th is is an
essential piece of the probability puzzle when calcu-
lating or rating computer security risk. Th e fact that
the attackers can learn, grow, and mature, and that

they will rapidly shift tactics, indicates a level of heuristics to the defense of systems: expect the
attacks to change, perhaps dramatically.

A (hopefully) informative example of the above truism might be taken from a pair of proces-
sor (CPU) issues named Spectre* and Meltdown.†

As Adam Shostack, author of Th reat Modeling: Designing for Security,‡ so succinctly put it:
“Th e back and forth of design and critique is not only a critical part of how an individual design
gets better, but fi elds in which such criticism is the norm advance faster.”

Th e Spectre/Meltdown issues are the result of just such a design critique process as Shostack
describes in the pithy quote given above (see inset).

Let’s look at some of the headlines from before
the offi cial issue announcement by the researchers:

Th e Register: Kernel-memory-leaking Intel processor
design fl aw forces Linux, Windows redesign.§

Wired Magazine: A Critical Intel Flaw Breaks
Basic Security for Most Computers.”¶

Th ere were dozens of these headlines (many merely repeating the fi rst few, especially, Th e
Register’s), all declaiming a “fl aw” in CPUs. I want to draw the reader’s attention to the word
“fl aw.” We shall dig into the applicability of that designation to these particular issues in order
to highlight a constructive dialog that should occur around designs as our understanding of
the design’s security posture matures over time. Th e Register reporting was based largely upon
speculation that had been occurring among the open source community supporting the Linux
Kernel following a couple of changes that had been made to kernel code. It was clear that
something was amiss, likely in relation to something in CPUs; concerned observers were
guessing what the motivation for those code changes might be.

* Kocher, P., Genkin, D., Gruss, D. et al., 2018.
† Lipp, Schwarz, Gruss et al., 2018.
‡ Shostack, 2014
§ Leyden and Williams, 2018.
¶ Greenberg, 2018.

My assertion lies at the heart of modern
cryptography. Cryptographic strength
is measured in “work-years” to decrypt
without the keying materials. The
assumption being that there is no
encryption that cannot be undone,
given sufficient time and resources.

In my humble experience, Adam is par-
ticularly good at expressing complex
processes briefly and clearly—one of his
many gifts as a technologist and leader
in the security architecture space.

The Context of Security Architecture 17

It may help to step back just a moment from Spectre/Meltdown details to see how a
report of issues is typically (though far from always) handled. One approach is known as
“responsible disclosure.” But not all researchers believe in responsible disclosure (more on
that below). Th e supposedly “responsible” process involves embargoing (preventing from
inadvertent revelation) the existence of the issues and their technical details until a fi x can be
readied by those responsible to produce fi xes. Th at is, issues are to be kept secret until users
can be protected.

If the facts of the issues’ existence—or worse, the technical details—are made known ahead
of the availability of a fi x, then attackers have a terrible advantage. Attacks can proceed without
even the hope of a direct defense. Hence, the “responsible” in “responsible disclosure”: don’t
give attackers any help.

How anyone could argue with the logic of responsible disclosure is beyond me, frankly,
though I’ve listened to arguments against it. Th ese make no sense to me, except from what
appears to be a self-righteous and/or completely disconnected perspective. “Do no harm” is one
of my main aspirational dictums in life. However, there are those who believe otherwise, who
believe in immediate, “zero day” disclosure, users’ protections be damned.

Th ere appears to me to be some sense that so-called “full disclosure” is the only weapon
researchers have to somehow force software makers to deliver fi xes. Having lived on the other
side of that argument, I can assure my readers (at least) that any honest software maker (I
wouldn’t work with dishonesty) often has many business drivers with which to contend. Plus,
not every fi x is a few lines of code. If a major product needs to be redesigned, there isn’t any way
to deliver a “fi x” immediately. Spectre and Meltdown actually fi t into this case: they are artifacts
of design decisions not easily remedied with a few lines of code.

Th ere is so much arrogance on each side of this debate that I cannot see a reasonable solu-
tion emerging any time soon. A few researchers routinely disparage developers as incompetents
whose software shouldn’t be made available—even comparing developers to dogs (yes, that has
happened at major security conferences). Some on the other side routinely disparage legitimate
and highly valuable research as the product of a few “yahoos” who lack a moral compass or are
even “criminals.” Th ere seems no likely meeting of minds between these poles.

I’ve set out the context in which researchers and designers exist in order to frame the impor-
tant dialog between security research aimed at discovering new attack techniques and the
designers of the systems and protocols upon which that research is carried out. As Adam noted
so wryly, achieving solid designs, even great ones, and most importantly, resilient designs in the
face of omni present attack requires a dialog, an interchange of constructive critique. Th at is
how Spectre and Meltdown were discovered and presented.

Neither of this collection of (at the time of announcement) new techniques involved exercis-
ing a fl aw—that is, a design error; in other words, the headlines quoted just above were errone-
ous and rather misleading [although salacious headlines apparently increase readership and thus
advertising revenue. Hence, the misleading but emotion-plucking headlines].

Speculative execution and the use of kernel mapped user memory pages by operating systems
were intentional design choices that had been working as designed for more than 10 years.
Taken together, at least some of the increases in CPU performance over that period can directly
be tied to these design choices.

Furthermore, and quite importantly to this discussion, these design choices were made
within the context of a rather diff erent threat landscape. Th at is, consider my matrices above.

18 Secrets of a Cyber Security Architect

Some of the actors didn’t really exist, or at least, were not nearly as active and certainly not as
technically sophisticated circa 2005 as they are at the time of this writing (2019).

If I recall correctly (and I should be able to remember, since I was the technical lead for
Cisco’s web infrastructure and application security team at that time), in 2005, network attacks
were being eclipsed by application-focused attack methods, especially web attack methods.

Today, web attacks are very “ho, hum,” very run of the ordinary, garden variety. But in 2005,
when the fi rst speculative execution pipelines were being put into CPUs, web applications were
targets of choice at the cutting edge of digital security. Endpoint worms and gaining entrance
through poor network ingress controls had been security’s focus up until the web application
attack boom (if I may title it so?). Th e web application was fast displacing these concerns as
attackers shifted to targets that were always available via the Internet.

Indeed, as we learned at the time, attacks hidden within web application messages might get
shuttled through applications to richer internal and backend systems, as web front ends were
being attached to existing backend resources. It took a few successful compromises to under-
stand that a web application that passes data through defenses to other systems has to act as the
“fi rewall”—the message protection layer for those secondary and tertiary systems laying behind
web layers, perhaps deep within the supposedly protected layers of an organization’s network.

In other words, the threat landscape changed dramatically over the years since the initial
design of speculative execution CPUs, as it must continue to evolve. Alongside the changes in
types of attackers as well as their targets, attacker and researcher sophistication has grown, as
has the available toolset for examining digital assets—that is, systems, software, hardware; 2018
is a diff erent security world than 2005. I see no end to this curve of technical growth in my
crystal ball.

Th e problem is, when threat modeling in 2005, one looked at the attacks of the past, those
of moment, and tried to project from this knowledge to those of the foreseeable future. Ten or
12 years seems an awfully long horizon of prescience, especially when considering the rate at
which technical change continues to take place.

Still, as new research begins to chew at the edges of design, I believe that the wise and
diligent practitioner revisits existing threat models in light of developments. If I were to fault
the CPU and operating system makers whose products are subject to Spectre or Meltdown, it
would be for a failure to anticipate where research might lead as research has unfolded. CPU
threat modelers could have taken into account advances in research indicating unexpected uses
of cache memory that contains remnants of a speculative execution branch. Such examination
of the unfolding train of research might very well have led those responsible for updating CPU
threat models to a potential for something like Spectre and Meltdown.

Was there such research? Indeed, there was, with publications starting three years previous
pointing perhaps somewhat indirectely toward the new techniques. Spectre and Meltdown are
not standalone discoveries but stand on a body of CPU research that had been ongoing and
published regularly for several years.

As I wrote for McAfee’s Security Matters blog in January of 2018, “Meltdown and Spectre
are new techniques that build upon previous work, such as ‘KASLR’ and other papers that
discuss practical side-channel attacks. Th e current disclosures build upon such side-channels
attacks through the innovative use of speculative execution . . . An earlier example of side-
channel based upon memory caches was posted to Github in 2016 by one of the Spectre/

The Context of Security Architecture 19

Meltdown researchers, Daniel Gruss.”* Reading these earlier papers, it appears to me that some
of the parent techniques that would be used for the Spectre and Meltdown breakthroughs could
have been read (should have been read?) by CPU security architects in order to re-evaluate the
CPU’s threat model. Th at previously published research was most certainly available.

Of course, hindsight is always 20/20; I had the Spectre and Meltdown papers in hand as I
reviewed previous research. Going the other way might be more diffi cult.

Spectre and Meltdown did not just spring miraculously from the head of Zeus, as it were.
Th ey are the results of a fairly long and concerted eff ort to discover problems with, and thus,
hopefully, improve, the designs of modern processors. Indeed, the researchers engaged in
responsible disclosure, not wishing to publish until fi xes could be made available.

To complete our story, the driver that tipped the researchers to an early, zero-day disclosure
(that is, disclosure without available mitigations or repairs) were the numerous speculative (if
you’ll forgive the pun) journalism (see headlines quoted above) that gained traction based upon
misleading, at best, or simply wrong conclusions. Claiming a major design “fl aw” in millions of
processors is certainly a reader-catching headline. But, unfortunately, these claims were vastly
off the mark, because no fl aw existed in the CPU or operating system designs.

While it may be more “interesting” to imagine a multi-year conspiracy to cover up known
design issues by evil CPU makers, no such cover up and conspiracy appears to have taken place.

Rather, in the spirit of responsible disclosure, the researchers were waiting for mitigations to
be made available to customers; CPU manufacturers and operating system coders were heads
down at work fi guring out what appropriate mitigations might be, and just how to imple-
ment these with the least amount of disruption (see
inset). None of these parties was publicly discussing
just why changes were being made, especially to the
open source Linux kernel.

Which is precisely what one would expect:
embargo the technical details to foil attackers and
to protect users. Th ere is actually nothing unusual
about such a process unfolding; it’s all very normal
and typical, and unfortunately for news media, quite banal. [Disclosure: I’ve been involved in
numerous embargoed issues over the years.]

What we see through the foregoing example about Spectre and Meltdown is precisely the
sort of rich dialog that should occur between designers and critics (researchers, in this case).

Designs are built against the backdrop and within the context of their security “moment.”
Our designs cannot improve without collective critique among the designers; that such dialog
remains internal to an organization, or at least a development team, is essential. I have spoken
about this process repeatedly at conferences: “It takes a village to threat model.”

But, there’s another level, if you will, that can be achieved for greater constructive critique.
Once a design is made available to independent critics—that is, security researchers—research
discoveries can and, I believe, should become part of an ongoing re-evaluation of the threat
model—that is, the security of the design. In this way, we can, as an industry, reach for the
constructive critique called for by Adam Shostack.

* Gruss, Maurice, Fogh et al. 2016.

As a part of my role at the time, I was
privy to the embargoed details of
Spectre and Meltdown before the
researchers’ disclosure. Hence, I was
aware of how engaged at least one
CPU manufacturer was in developing
fixes for the issues.

20 Secrets of a Cyber Security Architect

1.4 Warlords and Pirates

“A former FBI offi cial says the sprawling Russian black-market forum for illegal hacking and
fraud services known as Infraud Organization—its motto was “In Fraud We Trust”—was oper-
ated like a ‘dark-web cousin of major commercial marketplace sites.’ Th e offi cial said it shows
one thing: that we’re clearly not just fi ghting solo hackers at this point.” *

Cybercrime, as I have been saying for some time, is a business. Although there are single
practitioners, lone wolves, much of the activity is a part of larger crime organizations’ busi-
ness model.

No matter how comfortable any organization is with its current security posture, everyone
should remember that sophisticated adversaries will be studying current practices for weaknesses,
continually poking at these on a regular basis. In other words, attackers are intelligent and adaptive.

Th e wise security practitioner will also keep abreast of the development of analysis tools. In
my fi rst response to a security incident (I think it was circa 1992 or 1993), there were virtu-
ally no tools that might be applied beyond those used to develop software, source and assem-
bly debuggers, binary fi le editors, etc. I ended up removing a worm by manually rewriting a
Macintosh executable’s process jump table (the off sets in the binary fi le at which various func-
tions happened to be stored after the linking process). Luckily, by that time, I possessed enough
computer science understanding to fi gure out how the worm was propagating and how to stop
the propagation.

Today’s toolset makes my 1993 collection look like paleolithic stone tools by comparison.
One can stop a binary for which one has no source code upon any logic condition. Tools will
attempt to decompile the code back to a reasonable approximation of the original source code.
One can inject code into the binary and run scripts based upon data conditions, poke and prod
the code and data nearly as one wishes. It’s a completely diff erent ballgame, aff ording attackers
and researchers far more access, far more information than we dared to dream might be possible
in the foreseeable future back in 1993.

We felt lucky enough when we could get source debugging to help us fi gure out coding
problems. Today, that’s almost a given, even if the decompilation is merely an approximation.
Th e available tools are rich in functionality and deep in analysis in the hands of a skilled techni-
cian. To paraphrase myself, “Any software that can be engineered by humans can be reversed by
humans.” Th ose of us on the defensive side must understand the level of adversary sophistica-
tion brought against our defenses.

 Given a rich set of available resources, it should be no surprise that some humans would wish to
take advantage of others. Humans have been taking advantage of other humans ever since the fi rst
band of humans fi gured out that stealing from their neighbors, and quite possibly, getting those
neighbors to do much of the dirty work of life (we call it “slavery” today) was easier than eking
out a living through some labor-intensive combination of hunting, gathering, horticulture, animal
stewardship—whatever the local mix might be. I’ll opine that thieving is as much a human activity
as is toil; humans seem to me to be quite good at inventing a rationale as to why theft has moral
validity: “We’re civilized, they aren’t,” “We’re civilizing them,” “We’re smarter,” “We’re ‘humans’,
they aren’t”—pick your favorite justifi cation; they’ve all been tried. Cybercrime seems to be yet
another in the long series of opportunistic, if highly amoral (to my sense), manner of getting.

* Vaas, 2018.

The Context of Security Architecture 21

To me, cybercrime seems precisely analogous to piracy. Or rather, cybercrime may very
well be the 21st century’s version of piracy. Cybercrime attacks have the same opportunistic,
hit-and-run quality. Th e Internet is a common resource, big enough to off er a similar type of
anonymity as was once provided by the oceans. Th ere are safe-haven localities that are loath
to prosecute cyber criminal activity, just as there once existed pirate cities, ports, enclaves, and
islands where stolen goods could be traded and some much-needed rest and relaxation could
be had for sea-tired crews.

Analogously, pirates also formed teams, partnerships, even navies under the command of a
single leader. We have exactly that scenario today: major criminal networks retain cybercrime
divisions. Th ese criminal enterprises can garner signifi cant revenue; it’s big (criminal) business.*†

But cybercrime activity is not limited solely to criminal networks. Or rather, the distinction
between crime for purely business gain and that for national interest is fuzzy at best for some
countries and some gangs.

“Th e North Korean government uses a shadowy network of cyberactors to conduct fi nancial
crimes on behalf of Kim Jong Un’s regime that have attempted to steal over $1.1 billion in
‘particularly aggressive’ attacks on global banks.” ‡

North Korea may be at the far side of a continuum between purely state-sponsored crime
and purely business driven. Still, other countries have made use of purely criminal enterprises,
quasi-governmental groups, and so forth; the picture is indeed fuzzy (see inset). If the attacking
organization is large enough, I think of these as governed by a “warlord”—that is, by a person
or persons who maintain a private, non-governmental army which is used for the enrichment
of the warlord and her/his/their retainers.

Th e upshot for those of us not aligned with a
warlord or pirate navy, not conducting governmen-
tal or quasi-governmental cyber operations, is that
we’re the collateral damage of a very confusing mix
of governments and gangs sometimes operating
independently and sometimes coordinating. Ugh.
It’s not pretty.

Most importantly, these actors have at their disposal:

• Weaponized attack code
• Exploit kits (EK)
• A rich and robust vulnerability and exploit development tool set
• A burgeoning knowledgebase on cyber attack techniques
• A fl ourishing marketplace in exploits and cyber attack services

Which all comes together to make a defender’s life “interesting,” at best. Welcome to my
world, and the world of what Gary Berman (entrepreneur and comic book author) calls, Th e
Cyber Heroes, those who’ve dedicated themselves to protecting “us” from becoming further col-
lateral damage in an ongoing cyber war (even if not all involved are state actors).

* Ismail, 2015.
† FBI, 2019.
‡ Cohen, Marquardt, and Crawford, 2018.

The current picture is again analogous
to the famous pirates of the Barbary
Coast during the 17th–19th centuries.
Governments along the North African
Mediterranean coast offered shelter
to pirates or even allowed their own
navies to pirate so long as the tax on
pirated booty was properly paid.

22 Secrets of a Cyber Security Architect

1.5 What Is the Scope of a Security Architect?

Security architecture—that is, the application of information security to systems—may be
called the art of securing systems. As we will see in Chapter 2,* security architecture applies a
particular set of knowledge to systems—relevant attacks and the defenses that will mitigate or,
hopefully, prevent those attacks that seem relevant from succeeding.

1.5.1 Are There Really Two Distinct Roles?

In Securing Systems, I made a distinction between the practice of security architecture as applied
to systems that aren’t to be a part of an organization’s protections and to those that are intended
to form a defense. In practice, this distinction exists, and practitioners sometimes, perhaps
often, specialize in one side of the art or the other. Th at is, security architects might be special-
ists in building an organization’s defenses and reactive structures, the organization’s security
architecture. Alternatively, an architect might specialize in analyzing systems to identify security
needs, security requirements that should be built in order to protect the system and its organiza-
tion’s goals for that system.

For instance, Th e Open Group proposed a number of security reference architectures (see
inset) that directly address an organization’s need for sound advice on how to build a set of
defenses that rest on strong and battle-tested security principles.

As far as I know, Th e Open Group’s only off ering in the system analysis arena is Factor
Analysis of Information Risk (FAIR): a risk standard that can be applied to systems, and really,
any digital security problem.

Risk Must Be Fundamental

Surely, every system analysis for security, threat
model, should be based upon a solid risk methodol-
ogy such as FAIR, which is my personal favorite as
well as the theoretical basis for Just Good Enough
Risk Rating (JGERR),† authored by myself and
Vinay Bansal (Distinguished Engineer at Cisco
Systems, Inc.). JGERR may be thought of as a
quick-and-dirty child of FAIR meant for the dozens
of quick risk ratings that usually come up during
threat modeling.

Whatever approach a security architect chooses to
base risk ratings upon, it must have a fi rm theoretic
basis. Too often, risk is measured by the discomfort
of the analyst, which leads to mushy, inconsistent

* Chapter 3 will provide an analysis of attacks and defenses for a well-known vulnerability, Heartbleed
to put the technical fl esh on the bones of what is presented in Chapter 2.

† JGERR is described in some depth in Securing Systems, Chapter 4.

The last time I checked the progress
of The Open Group’s reference archi -
tectures for security, these had been
integrated into a set of enterprise
reference architectures. I believe that
this is an important step, reflecting
how the enterprise security archi-
tect should approach the problem
of a security architecture: as a key
component of the enterprise’s archi-
tecture—“enterprise” in this use
should be taken as equal to “orga-
nization of sufficient size to warrant
an organization architecture,” which
is a much broader categorization
than the commonly used definition
of “enterprise.”

The Context of Security Architecture 23

risk ratings, which then may propagate into poor organization risk metrics, usually infl ating the
metrics, leading to a sense of an increased, perhaps unreal amount of risk being carried.

Teams subject to poor risk rating methods may “shop” for the best rating, because they don’t
trust the higher, perhaps infl ated ratings. Or, as Jack Jones (author of FAIR) once told me,
executives may feel inclined to accept nearly every risk in the absence of solid and consistent
risk assessment.

Readers can probably draw the line from poor risk rating to organizational distrust of secu-
rity architecture, maybe even all of the security function? Certainly, organizational friction lies
down that slippery slope. As you may see, choice of risk rating methodology is a critical com-
ponent for any mature and robust security practice; Th e Open Group is to be applauded for
standardizing FAIR and making it available to organizations.

Still, risk assessment is only one portion of the security architecture of systems large and
small, of system assessment for security. Since Th e Open Group hasn’t had much help in this
area, the vacuum has been fi lled by materials from the Open Web Application Security Project
(OWASP),* SAFECode,† and similar organizations. Of course, a few practitioners have tried to
set down their thoughts, methods, and experiences for threat modeling in a few books, includ-
ing yours truly (please see bibliography).

I’ve personally lived both of these roles in my career; the distinction exists, but I wonder if
this distinction is more an artifact of organization structures rather than a real divergence in
practice.

Analyzing a discreet system or set of systems performing a particular function indeed requires
a diff erent focus from thinking through the structure of an organization’s entire security imple-
mentation. Still, in both instances, one must consider the sorts of attacks most likely to occur
and how these will be prevented, or if successful, dealt with. Th e art which ties both these
strands together is the art which we have proposed here to lie at the heart of security architec-
ture: attacks and their defenses.

It seems to me that the diff erent specialties in security architecture appear to be more a diff er-
ence in kind, in degree, in scope, rather than some fundamental split in practice. Both analyses
must base themselves fi rmly upon solid risk methodology. Both must understand the desired
risk posture of the organization as well has have a reasonable feel for the amount of risk the
organization is willing to carry (“risk tolerance”).

Again: Attacks and Defenses

For system assessment, one must consider attacks relevant to that system in the context of the
security architecture, if any, that may surround that system. To build a security architecture for
an organization, the security architect must consider the attacks to which any and all systems of
the organization may be subject. Th is organization analysis should be more holistic to the threat
landscape in which the organization exists.

On the other hand, every system analysis must be holistic to that system. Th e details of exist-
ing network protections, incident response capabilities, access controls, etc. will be taken into
account in both analyses, what I called “Mitigations” in the “ATASM” mnemonic (Architecture,

* OWASP.org
† Th e author is a co-author of SAFECode’s Th reat Modeling Guide

http://OWASP.org

24 Secrets of a Cyber Security Architect

Th reats, Attack Surface, Mitigations): the existing
protections. Such protections would be a part of the
organization’s security architecture. I hope that you
see that these two seemingly distinct practices are
really views of the same coin from its diff erent faces.

Th e analysis that leads one to the contextually
relevant attacks, let’s call that “threat modeling”
for the sake of discussion, is best done as an early
part of any development process, as well as being
an ongoing conversation as architectures, designs,
and implementations evolve. Certainly, there is very
little that an architectural risk assessment of a sys-
tem can do if the system cannot be changed (see inset). Consequently, threat modeling is an
activity that starts early in the development cycle.

Patterns, Standards, and Context

Th e art of architecture involves the skill of recognizing and then applying abstract patterns
while, at the same time, understanding any local details that will be ignored through the
strict and infl exible application of patterns. Any unique local circumstances are also important
and will have to be attended to properly. It is not that locally specifi c details should be com-
pletely ignored; rather, in the interest of achieving an “architectural” view, these implementa-
tion details are overlooked until a broader view can be established. Th at broader view is the
architecture.

Th ere is a dance between adhering to standards and fostering innovation. New technolo-
gies come along that disrupt standards. Th ese innovations may provide signifi cant benefi t if
adopted. Usually, there are early adopters who help prove the usefulness and benefi ts (or not)
of new technologies. Th e successes of the early adopters help to drive adoption through an
organization.

“Computer security exists as an attribute, an emerging property (or not!) of systems that
exist within an extremely rapidly changing context, that is, digital technology. It is simply too
diffi cult to anticipate all circumstances, external and internal, in a policy at this time. Rather,
policy becomes the bedrock to which many systems can mostly conform. Th e standards that
set out how the policy will be enacted create an easy path, a reasonably secure path that can be
followed. At the same time, policy and standards help to defi ne areas and situations that will
require creativity—those systems, connections, technologies that are necessary, but which can-
not conform: the exceptions to standards. Sometimes, these exceptions will reduce the security
posture. Sometimes, exceptions will off er an opportunity to mature security in new ways or
open opportunities to adopt new technologies.” Securing Systems, p. 354

Imagine an organization that insists upon strict adherence to a standard of one application
server per application. Th at was a very durable model in the mid-2000s. Th at model forced
an operating system and application server sandbox around each application (or set of inter-
operating “applications”). In the days before proven web application fi rewalls and in the con-
text of poor understanding by developers of secure web coding techniques, strictly separating

I do not mean to imply that the risk
assessment portion of a threat model
of a production system that has no
further intended changes is useless.
Risk assessment can help an organiza-
tion build a picture of risk “debt”—the
risks that have already been taken and
are carried forward. At the very least,
building this risk knowledge may help
make better decisions about what fur-
ther risk to add to existing risks car-
ried forward.

The Context of Security Architecture 25

applications at a level below the application code made a lot of security sense. At the very
least, a compromised application couldn’t disrupt other applications; the sandbox prevented the
attacker from breaching each application’s sandbox boundaries.

One of the downsides engendered by an application server sandbox was that providing each
single application with its own, individual application server required a rather large investment
in virtual machines on top of signifi cant physical server resources. Th at was the cutting-edge
model at the time. Th ere was no cloud into which to expand; clouds as we now know them
didn’t exist.*

If an organization insisted upon never allowing any new technologies beyond the model
described above, that organization would have missed containerization completely. DevOps
tooling tends to be built around containers and/or clouds (which also can off er highly con-
tainerized solutions). Consider just those two developments: Th ey’ve greatly disrupted the
architectures and methods by which we deploy web applications. Th e movement to serverless
architectures is a currently (as of this writing) unfolding disruption.

Failure to account for experimentation with new and disruptive technologies is a massive
error in the service of a surer security path. It is my strong experience and opinion that, along-
side standards that make the “easy path the secure path,”† the mature—actually, the wise—
organization provides for experimentation with new, potentially disruptive technologies and
techniques.

However, the wise security architect will bear in mind that sometimes a developer does not
follow the easy path to security but employs a new technology in a place where it is not needed
or does not really fi t. Th e developer insists upon the use of the inappropriate technology so that
it may be included on her, his, their resume. Th is use case has nothing to do with the fi tness
of the technology or the “easy” path; the use is intended to enhance the programmer’s career.

Identifying an inappropriate application of a technology can be tricky. One of the obvious
giveaways is if the requested technology will have obvious negative eff ects. For instance, many
years ago, when web services using SOAP (Simple Object Access Protocol [XML protocol]) were
in vogue, I found a few teams using them when doing so might add signifi cant performance
degradation. SOAP calls must all occur in ASCII (American Standard Code for Information
Interchange). Binary data must be converted to ASCII for transmission over SOAP and then
converted back to binary after communication. Th at may make perfect sense for transactions
that occur at human pace, but it’s a huge performance hit for data exchanges meant to proceed
as quickly as computers can process them.

ASCII conversion can cause data to balloon up to eight times larger. So, such a conver-
sion should be thought through thoroughly. It’s particularly troubling when both sides of the
web service, client and server, are to be located on the same machine, when the SOAP server
is implementing a simple, atomic Application Programming Interface (API). SOAP services
should be transactional, not atomic, if possible.

Th ese were all red fl ags to me that somehow the proposed design didn’t make sense. After
all, simply linking a library, either statically as a part of the executable or dynamically, would be
orders of magnitude faster. Data could be exchanged with a library in its binary form without

* Or rather, clouds as we use them today were in consideration, a few were being designed.
† As Steve Acheson so sagely advised me many years ago.

26 Secrets of a Cyber Security Architect

any conversions. When reviewing a design that
screams, “there is a simpler, more eff ective way that
is well understood,” the security architect may well
have encountered one of these situations in which
there is another reason (often that cannot be named
safely) for making poor choices.

When my “Spidey sense” is screaming that
something doesn’t make sense, I’ve now learned to
step back from security issues to question what the
reason might be for doing something that obviously
doesn’t make design sense. Quite often, the designer
has ulterior motives, like trying to squeeze in tech-
nologies that will bolster her or his resume.

What does one do in such a situation? I question
directly the choice and my reasons why it appears
to be odd or just plain wrong, why there appears to
be an easier or more elegant solution. Sometimes,
that’s eff ective. But, in some organization cultures
(highly empowered at the team level) there may be
nothing one can do about it.

If reasoning with the team fails, one can always
go up the team’s management chain. Also, the
executives who are sponsoring the development, or
who are the customer, may wish to understand that
I have serious concerns about the way the software
is designed. I’ve won internal awards for exposing

poor design choices (see inset).
As always, analysis and discernment are critical: I don’t want to stop useful experimentation

with new, promising technologies. At the same time, if something doesn’t seem right, I believe
it’s my duty to question choices, even if I must step beyond the scope of security.

At the most essential, all security architecture activity can be reduced to analysis of attacks,
rated by solid risk rating, leading to defenses, as we shall hopefully see in the next section and
throughout this book in various ways.

1.6 Essential Technique

1.6.1 Threat Modeling: An Essential Craft

Attacks and their defenses are the value proposition that security architects bring to the design
and implementation of software—that is, development, engineering, or research and develop-
ment. Over the years, “threat modeling” has gone by various names:

• Architecture risk assessment (ARA)
• Architecture review or security architecture review

It’s one thing to blow the whistle on
a situation that one believes might
expose the organization to poor per-
formance or higher costs. It’s quite
another when dealing with those
who are solely working for personal
benefit. That is, when one is working
with those of low moral standard, who
lack integrity, proceed with caution!
Exposing people of this nature to
management can be tricky; one may
expect such individuals to protect
themselves with every tool they can
muster. An unmask must be thought
through; who protects the person?
Who are my allies and what is their
relation, if any, to the project in ques-
tion? I do try to prevent great harm
from taking place. But I also try to
remember that low-integrity people
may move to something new soon
enough to give me a greater hand
to undo damage, or they may fail of
their own accord. This situation hasn’t
arisen often in my 30+ years in high
tech, but it has come up a few times,
which has been a great teacher about
organization politics.

The Context of Security Architecture 27

• Security architecture assessment
• Security engineering
• [Secure] design review
• Secure design checkpoint
• Security requirements

And quite possibly, a few other terms that are, by now, lost in the mists of time.
Although practitioners are certainly free to disagree with my collapsing all the above terms into

one analysis that in their processes seem quite distinct, I came to realize how threat modeling analy-
sis actually rather completely underlies what appear to be diff erent analyses. Th reat modeling is the
method that practitioners must apply no matter at what point in development a security analysis is
taking place, no matter whether completed or initial or infl ight a project or eff ort may be.

For a couple of years, my duties as a Principal Engineer for software security at Intel®
included sitting on Intel’s software security review panel, SAFE (Security Architecture Forum).
We reviewed projects from initial concept through the completion of the design. At Intel, there
are several review stops for security; more or less the same body of people would engage across
projects and at these diff erent review points during development.

Of course, I was a full participant, attempting to apply my best understanding of security
architecture to each project as it came before the SAFE board. At the same time, as I often do,
I was a participant observer, considering what I heard during the interactions between devel-
opment teams and board members, assessing the effi cacy of our process (or not) as reviews
proceeded. I found the experience of watching my peers—that is, other Principle Engineers—
practice security architecture very enlightening—
not only to refi ne my own craft, but also in stepping
back from the content of the work to observe how
we do what we do. Th e projects ranged across myr-
iad and often vastly diff erent architecture types,
projects at every stage of development, using nearly
every type of software development methodology
(waterfall, Agile, Extreme, etc.) (see inset). SAFE
would typically interact with two to four projects
each week of the year. Th at’s a lot of projects in any
given month, quarter, or year to observe and from
which to learn.

As I watched the SAFE review process unfold, it
became crystal clear to me that no matter at what
stage or in which review point we board members
were with a project, in order to complete the review, we were all threat modeling in our heads,
call the review what you will. Th is was quite a revelation.

What diff ered was the level at which the threat model analysis occurred.
For instance, during an offi cial threat model review, we had to dig deep, to attempt to cover

every credible attack via every reachable attack surface (exposure) and fi nd reasonable, work-
able, implementable defenses that could be built by the team presenting their project.

However, if a project had just been initiated, the level of threat modeling was vastly diff erent.
All we needed was to think through a few gross possibilities in order to derive the very broad

I encourage every serious practitioner
to work at a really large development
organization at least once in a career.
First, one gets to rub shoulders with
some of the very best in each dis-
cipline. Further, one learns how to
meet the challenges of scale: huge
projects combining the work of many
sub-teams, application of security
methods to vastly different develop-
ment approaches, and, perhaps most
importantly, finding the essences that
lie beneath or at the heart of varied
expressions of technique and process.

28 Secrets of a Cyber Security Architect

security requirements and to understand the risk posture that the eff ort would need in its usage
and deployment context.

Th e architecture assessment phase in the Intel Secure Development Lifecycle (SDL) is
intended to identify those eff orts that will require deeper security analysis, while at the same
time passing those eff orts whose security architecture needs will likely be (comparatively) minor.
Th e threat model analysis for this review needs only to determine the credibility of a signifi -
cantly impactful successful attack. One credible attack that might cause Intel’s or the product’s
stakeholders signifi cant harm is all that was required to fl ag the project for further engagement.
Th e analysis technique is threat modeling, nevertheless.

I don’t mean overstate the importance of threat modeling, call it what you will. Rather, as I’ve
written and as I hope that you see in succeeding chapters in this book, security architects must
wield attacks and their defenses as a primary knowledge set that is applied to software systems.
Th reat modeling lies at the heart of the practice of security architecture.

But threat modeling is not the only skill that is applied. Security architects, as I have written,
must fi rst and foremost be architects.

1.6.2 Architecture Is Primary

“I would suggest that architecture is the total set of descriptive representations relevant for
describing something, anything complex you want to create, which serves as the baseline for
change if you ever want to change the thing you have created.”*

I would go further than Zachman to state that understanding, ability to discuss, and potential
change are the benefi ts derived from architecture.

To understand a thing, we must be able to describe it in simple enough terms to grasp it;
to discuss it intelligently, we must be able to name its parts, explain their function and their
interactions. Th at is what architecture aff ords us through the clever and judicious application
of abstraction. I like to explain that architecture is a practice whose main tool is abstraction.

In order to reduce complexity suffi ciently for comprehension, architects abstract structures
for analysis while obscuring detail which may mask underlying structure or which is not rele-
vant to structural comprehension. Th is is abstraction: drawing out some information in favor of
other information that is unnecessary. Identifying and (conceptually) manipulating structures
is the goal; abstraction is the technique of architecture.

Hence, security architects must be skilled in highlighting those structures that have security
implications (typically, functions of a system, its software units of implementation, often called
“components,” and the communications between these structural elements). Like any architect,
we may obscure or elide (leave out) extraneous detail that is unnecessary to understanding and
analysis (the analysis is often threat modeling). By the application of judicious abstraction,
security architects are no diff erent than any other type or level of system, software, integration,
or enterprise architect.

Because the nature of the analysis (attacks and defenses) is diff erent, what structure is
abstracted and what detail eliminated may diff er, even radically, from that which is useful to
* Zachman, 2007.

The Context of Security Architecture 29

architects charged with other aspects of a system’s developing architecture. But the mental pro-
cess is the same, even if the working diagram diff ers.

1.7 Aiming Design Toward Security

Although any particular branch of architectural analysis may be focused on diff erent results,
there is one aspect of the practice of architecture that must be precisely the same: We all have
to have a fi rm and precisely communicable idea about what must be achieved by a system. In
order to architect, we have to know what we are building, what goals we are trying to achieve.

1.7.1 What Is Secure Software?

In the practice of security architecture, we must then understand what software security looks
like. What are the behaviors that secure systems must exhibit? How is a “secure system” defi ned?

Over the years that I’ve been practicing, as I open a discussion about security with develop-
ment teams, I’ve noticed that quite often (not every time, but regularly), team members will
immediately jump to one of four aspects of software security:

• Protection of data (most often via encryption techniques)
• Implementations errors (most often, coding securely)
• Authentication and/or authorization of users of the system
• Network-level protection mechanisms

Th is set of responses has been remarkably stable for the last nearly 20 years, which is interest-
ing to ponder all by itself. Despite the dramatic shift in attacker capabilities and techniques over
the last 20 years—a huge shift in attacker objectives—developers seem to be thinking about
one of the above aspects of the security picture. I don’t know why development has not kept
pace with the expansion of adversarial thinking, but apparently it hasn’t (though, of course, my
evidence here is completely anecdotal and not at all scientifi cally validated).

Lately in my threat modeling classes (and sometimes other presentations), I’ve been polling
my audiences about what jumps fi rst to mind when I say, “software security.” Not surprisingly,
members of my audiences typically fi nd themselves considering one of the above categories
unless a participant has broader security exposure. My informal polls underline a need to estab-
lish a baseline defi nition of just what software security must include, the fi eld’s breadth, its scope.

To address the challenge that development teams often lack a suffi ciently complete picture of
what software security entails, as well as to provide a set of secure design goals, I came up with
the following secure software principles. “Secure” software must:

• Be free from implementation errors that can be maliciously manipulated: ergo, vulnera bilities
• Have the security features that stakeholders require for intended use cases
• Be self-protective; resist the types of attacks that will likely be attempted against the software
• In the event of a failure, must “fail well”—that is, fail in such a manner as to minimize

consequences of successful attack
• Install with sensible, “closed” defaults

30 Secrets of a Cyber Security Architect

Th e foregoing are the attributes that “secure software” displays, to one extent or another, as
it runs. Th ese principles are aspirational, in that no running system will exhibit these behaviors
perfectly; these cannot be implemented to perfection. Indeed, so far as exploitable conditions
are concerned, whether from implementation, from a failure to identify the correct security
requirements, or a failure to design what will be implanted correctly, software, at its current
state of the art, will contain errors—bugs, if you will. Some of those errors are likely to have
unintended security consequences—that is, vulnerabilities allowing adversaries leverage or
access of one kind or another. Th is truism is simply a fact of building software, like it or not.

Th en there is the matter of security context and desired security defensive state: a system or
organization’s security posture. Not every system is expected to resist every attack, every adver-
sary, every level of adversary sophistication and level of eff ort that can be expended (given the
universe of various threat agents; please see my discussion of adversary types elsewhere in this
book as well as in Securing Systems).

Hence, presence and robustness of the above secure software behaviors must vary, system to
system, implementation to implementation.

Still, I expect software to account for the above behaviors, even if by consciously accepting
the risks generated by a considered absence or weakness of one or more of the principles given
above. My software principles are meant to drive secure design decisions, to be goals to reach
for. None of these principles is built as stated. Th ese principles don’t tell you how to protect a
credential that must be held by a system. Rather, from these principles, design choices can be
evaluated. Th ese are guideposts, not design standards.

1.7.2 Secure Design Primer

We know with fair certainty that credentials (secrets) that are placed in the binary executable of
software are relatively easy to uncover, given today’s reverse engineering tools. For commercial
software whose distribution involves execution within third-party environments—say, com-
mercial, off -the-shelf (COTS) software that is run by the purchaser, distributing a secret tucked
away in the static data of an executable—has proven to be a very poor design choice.

Such packaged secrets are routinely discovered by both attackers and researchers. Once held
by an attacker (whether through discovery or published research), the attacker then has the
ability to wield the secret successfully against whatever challenge it was meant to protect. If
there are 10,000 copies of that executable in use, attackers can undo at least some aspect of the
security for all 10,000 of those installations. Unfortunately, this design mistake happens far too
often, with the resulting consequences.

How do our secure software principles apply? If programmers have coded the credential into
the binary with correct language semantics (easily coded—for most languages, this is just a dec-
laration), then there is no “implementation error.” Th is is a design error. It’s a failure to have the
security features that stakeholders expect—that is, credentials have suffi ciently been protected.

Furthermore, attempting to “hide” a secret as static data in an executable isn’t self-protective.
Quite the reverse, given the binary exploration and execution analysis tools that exist today.

Often this design miss assumes that the credential is “safe enough,” so the use of the creden-
tial (which is legal) and the actions taken after the challenge has been passed will not be moni-
tored; there is no failure—the credential is working as expected, but in the hands of adversaries.

The Context of Security Architecture 31

So the “fail well/fail closed” principle doesn’t really apply. It would depend upon the installation
and confi guration sequences of the software as to whether the placement of the credential in the
binary is a “sensible, closed default.”

I hope that the preceding trivial example demonstrates how the software security principles are
meant to provide appropriate targets for deriving a secure architecture. Th e design patterns that
will achieve these results require quite a bit more detail, which then must be applied in context.

A high-level set of secure design patterns and their application can be found in IEEE Center
For Secure Design’s “Avoiding the Top 10 Software Security Design Flaws.”* Th is booklet is free,
under Th e Creative Commons license. (Disclosure: I’m one of the the co-authors.†) Th e design
patterns discussed in the booklet are:

• Earn or give, but never assume, trust
• Use an authentication mechanism that cannot be bypassed or tampered with
• Authorize after you authenticate
• Strictly separate data and control instructions, and never process control instructions

received from untrusted sources
• Defi ne an approach that ensures all data are explicitly validated
• Use cryptography correctly
• Identify sensitive data and how they should be handled
• Always consider the users
• Understand how integrating external components changes your attack surface
• Be fl exible when considering future changes to objects and actors

Each of the design patterns explained in the booklet is meant to fulfi ll one or more of the
software security principles listed above. First, we defi ne how we intend secure software to
behave (secure software principles) and then set out the means through which those aims are to
be achieved (secure design patterns). With software security principles and design patterns, we
know what we are to build when we wish to build “secure software.”

1.8 Summary

We’ve explored the societal context of an unfolding “Computer Age” and the eff ects on the
people in what I call the “connected life.” Th is context points to a need for a general improve-
ment in computer security if we are not to fall prey to cyber pirates, warlords, and armies.
In order to build suffi cient security into software, there exists a specifi c job role: the security
architect. Th is book attempts to address what security architecture practice is, what we do
(essentially, threat modeling) and how we do it, and to off er a few tricks of the trade achieved
through many mistakes and missteps, a great deal of help from brilliant practitioners, and a
lot of diligent practice.

* IEEE, 2014.
† Iván Arce, Kathleen Clark-Fisher, Neil Daswani, Jim DelGrosso, Danny Dhillon, Christoph Kern,

Tadayoshi Kohno, Carl Landwehr, Gary McGraw, Brook Schoenfi eld, Margo Seltzer, Diomidis
Spinellis, Izar Tarandach, and Jacob West.

32 Secrets of a Cyber Security Architect

Th e following chapters examine more closely the art and some considerable computer sci-
ence of attacks and defenses. As well, I will try to off er suffi cient views of security architecture
such that it may fi nally be more fi rmly defi ned. Once in command of what security architecture
might actually be, the remainder of the book will concern itself with the practice thereof, from
the perspective of the learner, the practitioner, and the strategist. I hope that these explanations
will prove useful to your practice.

References

Alperovitch, D. (2011, August 2). Revealed: Operation Shady RAT. McAfee, Inc. White Paper.

Greenberg, A. (2018, January 3). A Critical Intel Flaw Breaks Basic Security for Most Com -
puters. Wired Magazine. Retrieved from https://www.wired.com/story/critical-intel-fl aw-
breaks-basic-security-for-most-computers/

Bonardon, O. (2018) Retrieved from https://docbox.etsi.org/Workshop/2018/201806_etsi
securityweek/middlebox/s03_joint_efforts/encrypted_traffic_inspection_mcafee_
bonorden.pdf

Bureau of Labor Statistics. (n.d.). US Dept. of Labor Statistics for Job Class “Security Analyst.”
Retrieved from https://www.bls.gov/ooh/computer-and-information-technology/information-
security-analysts.htm

Cerbin, W. (2011). Understanding Learning Styles: A Conversation with Dr. Bill Cerbin. Inter-
view with Nancy Chick. UW Colleges Virtual Teaching and Learning Center.

Chandra, B. (2014, May 13). A Technical View of the OpenSSL “Heartbleed” vulnerability, Ver-
sion 1.2.1. A Security on DeveloperWorks Community Whitepaper. ibm.biz/dwsecurity.
Retrieved from https://www.ibm.com/ developerworks/community/fi les/basic/anonymous/
api/library/38218957-7195-4fe9-812a-10b7869e4a87/document/ab12b05b-9f07-
4146-8514-18e22bd5408c/media

Cohen, Z., Marquardt, A., and Crawford, J. (2018, October 3, 12:44 PM ET). North Korean
Hackers Tried to Steal over $1 Billion, Report Says. CNN. Retrieved from https://www.
cnn.com/2018/10/03/politics/north-korea-hackers-cybercrimes/index.html

Doyle, J. (1998). Routing TCP/IP, Vol. I, Cisco Press, MacMillan Technical Publishing, p. 41.

Ducklin, P. (2014, April 8). Anatomy of a Data Leakage Bug—Th e OpenSSL “Heartbleed”
Buff er Overfl ow. Naked Security by Sophos. Retrieved from https://nakedsecurity.sophos.
com/2014/04/08/anatomy-of-a-data-leak-bug-openssl-heartbleed/

Eadicicco, L. (2014, May 15). Photos of Th e NSA’s Secret Workshop Where It Intercepts
Packages and Plants Bugs in Electronics. Business Insider. Retrieved from https://www.
businessinsider.com/nsa-tao-intercepting-packages-2014-5

https://www.wired.com
https://docbox.etsi.org
https://www.bls.gov
https://www.bls.gov
http://ibm.biz
https://www.ibm.com
https://www.cnn.com
https://www.cnn.com
https://nakedsecurity.sophos.com
https://nakedsecurity.sophos.com
https://www.businessinsider.com
https://www.businessinsider.com
https://www.wired.com
https://docbox.etsi.org
https://docbox.etsi.org
https://www.ibm.com
https://www.ibm.com

Edwards, B. (1989). Drawing on the Right Side of the Brain. Tarcher-Perigree.

FBI. (2019, April 22). 2018 Internet Crime Report, Federal Bureau of Investigation, Cyber
Division. Retrieved from: https://pdf.ic3.gov/2018_IC3Report.pdf

Fruhlinger, J. (2018). Th e Mirai Botnet Explained: How Teen Scammers and CCTV Cam-
eras Almost Brought Down the Internet. Retrieved from https://www.csoonline.com/
article/3258748/the-mirai-botnet-explained-how-teen-scammers-and-cctv-cameras-
almost-brought-down-the-internet.html?

Fuller, M. (2008). Software Studies: A Lexicon, p. 170. MIT Press.

Ghaznavi-Zadeh, R. (2017). ISACA Journal, Vol. 4. Retrieved from https://www.isaca.org/
Journal/Archives/2017/Volume-4/Pages/enterprise-security-architecture-a-top-down-
approach.aspx?utm_referrer=&utm_referrer=

Grobman, M. (2016, November 3). Focus Keynote, Chief Technology Offi cer (CTO), McAfee,
Inc. Focus Conference, Las Vegas NV.

Gruss, D., Maurice, C., Fogh, A., et al. (2016). Prefetch Side-Channel Attacks: Bypassing
SMAP and Kernel ASLR. Graz University of Technology, G DATA Advanced Analytics.
Retrieved from: https://gruss.cc/fi les/prefetch.pdf

IEEE (2014). Avoiding the Top 10 Software Security Design Flaws. IEEE Center for Secure
Design, p. 2. Retrieved from https://cybersecurity.ieee.org/blog/2015/11/13/avoiding-the-
top-10-security-fl aws/

Intel. (2015). Protect, Detect, Correct: Security Connected for Healthcare Providers. Intel Secu-
rity. Retrieved from http://www.mcafee.com/us/resources/brochures/br-protect-detect-
correct-security-connected-healthcare.pdf

Isaac, M. (2016, October 25). Self-Driving Truck’s First Mission: A 120-Mile Beer Run. New York
Times. Retrieved from https://www.nytimes.com/2016/10/26/technology/self-driving-
trucks-fi rst-mission-a-beer-run.html

Ismail, N. (2018, April 24). Global Cybercrime Economy Generates over $1.5TN, According
to New Study. Tech Nation. Retrieved from https://www.information-age.com/global-
cybercrime-economy-generates-over-1-5tn-according-to-new-study-123471631/

Johnson, S. (1836). Th e Poetical Works of Alexander Pope, Esq., to Which Is Prefi xed: A Life of the
Author, Vol. 1, p. 89. J. Gladding & Co.

Kocher, P., Horn, J., Fogh, A., et al. (2018). Spectre Attacks: Exploiting Speculative Execution.
Retrieved from https://spectreattack.com/spectre.pdf

Leyden, J. (2005, August 3, 15:37). Cisco Portal Password Security Compromised. Precautionary
Reset Fails to Run Smoothly. Retrieved from https://www.theregister.co.uk/2005/08/03/
cisco_password_security_fl ap/

Lipp, M., Schwarz, M., Gruss, G., et al. (2018). Meltdown: Reading Kernel Memory from
User Space. Retrieved from https://meltdownattack.com/meltdown.pdf

Maruoka, A. (2011). Concise Guide to Computation Th eory, p. 167. Springer-Verlag.

https://pdf.ic3.gov
https://www.csoonline.com
https://www.csoonline.com
https://www.csoonline.com
https://www.isaca.org
https://www.isaca.org
https://www.isaca.org
https://gruss.cc
https://cybersecurity.ieee.org
https://cybersecurity.ieee.org
http://www.mcafee.com
http://www.mcafee.com
https://www.nytimes.com
https://www.nytimes.com
http://rst-mission-a-beer-run.html
https://www.information-age.com
https://www.information-age.com
https://spectreattack.com
https://www.theregister.co.uk
https://www.theregister.co.uk
https://meltdownattack.com

McClue, S. (1999, September 10). Hacking Exposed: Network Security Secrets & Solutions.
Computing. McGraw-Hill.

McGeehan, R. (2019, April 23). Describing Vulnerability Risks. Medium.com. Retrieved from
https://medium.com/@magoo/describing-vulnerability-risks-3a78c2e352d8

Mehta, N. (2014, April 8, 1:08 pm). Twitter.

Michlin, I. (n.d.) DevOps Trainer and Principal Security Consultant at NCC Group, quoted
by Robert Lemos. Th reat Modeling and DevOps: 3 Lessons from the Front Lines.
Tech Beacon. Retrieved from https://techbeacon.com/security/threat-modeling-devops-
3-lessons-front-lines

Microsoft. (n.d.) Simplifi ed Implementation of the SDL. Microsoft SDL documentation,
p. 6. Retrieved from: https://download.microsoft.com%2Fdownload%2FF%2F7%2F
D%2FF7D6B14F-0149-4FE8-A00F-0B9858404D85%2FSimplifi ed%2520Implemen
tation%2520of%2520the%2520SDL.doc&usg=AOvVaw3UCYwxZwcaPbQoTPkFL
Q1Q

Microsoft (2014, June 13). Th e OSI Model’s Seven Layers Defi ned and Functions Explained,
Rev. 2. Microsoft Inc. Retrieved from https://support.microsoft.com/en-us/kb/103884)

MITRE. (n.d.). CWE-888: Software Fault Pattern (SFP) Clusters. MITRE Corporation.
Retrieved from https://cwe.mitre.org/data/graphs/888.html

NATO. (1969, October). NATO Science Committee. Software Engineering Techniques.
Report on a Conference Sponsored by the NATO Science Committee, p. 16. Quote
from Edsger Dijkstra, Rome, Italy. Retrieved from http://homepages.cs.nci.ac.uk/brian.
randell/NATO/nato 1969.PDF

NIST 800-14 in 1996. Retrieved from https://csrc.nist.gov/publications/detail/sp/800-14/archive/
1996-09-03

Ogundeji, O. A. (2015, August 18). Google Launches Android One Smartphone Program
in Africa. PCWorld. Retrieved from https://www.pcworld.com/article/2972741/android/
google-launches-android-one-phone-in-africa.html

Osborne, C. (2018, January 23). Artifi cial Synapse Creation Makes Brain-on-a-Chip Tech Closer to
Reality. Retrieved from: http://www.zdnet.com/article/artifi cial-synapse-creation-makes-
brain-on-a-chip-tech-closer-to-reality/#ftag=RSSbaff b68

Romeo, C. (n.d.) CEO of Security Journey. Quoted by Vijayan, J. 6 DevSecOps Best Prac-
tices: Automate Early and Often. Tech Beacon. Retrieved from https://techbeacon.com/
security/6-devsecops-best-practices-automate-early-often

Rosen, M. (2008, October 1). 10 Key Skills Enterprise Architects Must Have to Deliver Value.
Retrieved from https://www.cutter.com/article/10-key-skills-enterprise-architects-must-
have-deliver-value-469471

Schoenfi eld, B. (2014). Applying the SDL Framework to the Real World. In Ransome, J. and
Misra, A. Core Software Security: Security at the Source, Ch. 9, pp. 255–324. Boca Raton,
FL: CRC Press.

http://Medium.com
https://medium.com
https://techbeacon.com
https://techbeacon.com
https://download.microsoft.com%2Fdownload%2FF%2F7%2F
https://support.microsoft.com
https://cwe.mitre.org
http://homepages.cs.nci.ac.uk
http://homepages.cs.nci.ac.uk
https://csrc.nist.gov
https://csrc.nist.gov
https://www.pcworld.com
https://www.pcworld.com
http://www.zdnet.com
https://techbeacon.com
https://techbeacon.com
https://www.cutter.com
https://www.cutter.com
http://www.zdnet.com
https://download.microsoft.com%2Fdownload%2FF%2F7%2F
https://download.microsoft.com%2Fdownload%2FF%2F7%2F

Schoenfi eld, B. and Quiroga, D. (2017, November 24). Don’t Substitute CVSS for Risk:
Scoring System Infl ates Importance of CVE-2017-3735. Securing Tomorrow McAfee
Blog. Retrieved from https://securingtomorrow.mcafee.com/other-blogs/mcafee-labs/dont-
substitute-cvss-for-risk-scoring-system-infl ates-importance-of-cve-2017-3735/

Schoenfi eld, B. (2015). Securing Systems: Applied Security Architecture and Th reat Models. Boca
Raton, FL: CRC Press.

Seggleman, R., Tuexin, M., and Williams, M. (2012, February). Request for Comment
RFC 6520 “Transport Layer Security (TLS) and Datagram Transport Layer Security
(DTLS) Heartbeat Extension.” ISSN: 2070-1721. Retrieved from https://tools.ietf.org/
html/rfc6520

Shankland, S. (2014, April 8, 2:55 am pdt). “Heartbleed” Bug Undoes Web Encryption,
Reveals Yahoo Passwords. Retrieved from https://www.cnet.com/news/heartbleed-bug-
undoes-web-encryption-reveals-user-passwords/

Shankland, S. (2014, April 8, 2:55 am pdt). Cost of a Retail Data Breach: $179 Million
for Home Depot. WebTitan. Retrieved from https://www.webtitan.com/blog/cost-retail-
data-breach-179-million-home-depot/

Shostack, A. (2014). Security Engineering: Computers versus Bridges. Adam Shostack and Friends.
https://adam.shostack.org/blog/2018/04/security-engineering-computers-versus-bridges/

Stephenson, N. (1995) Th e Diamond Age. Bantam Books.

Swiderski, F. and Snyder, W. (2004, July 14). Th reat Modeling. Microsoft Professional. Microsoft
Press.

Tarandach, I. and Schoenfi eld, A. (2019, May 30). Continuous Th reat Modeling Handbook.
continuous-threat-modeling/Continuous_Th reat_Modeling_Handbook.md, GitHub.
Retrieved from https://github.com/Autodesk/continuous-threat-modeling/blob/master/
Continuous_Th reat_Modeling_Handbook.md)

Th e Open Group. (2011). An Example of Enterprise Security Th inking Can Be Found in
Open Enterprise Security Architecture. Retrieved from https://publications.opengroup.
org.G112

Th e Open Group. (n.d.) Th e Open Group TOGAF Standard, Version 9.2. Retrieved from https://
pubs.opengroup.org/architecture/togaf9-doc/arch/chap03.html

Tipton, H. F. (2000, October 20). Information Security Management Handbook, 4th Edition,
Vol. 2, p. 581. Boca Raton, FL: CRC Press.

Vaas, L. (2018, February 26). In Fraud We Trust—Cybercrime Org Bust Shows We’re Fight-
ing Pros. Naked Security by Sophos. Retrieved from https://nakedsecurity.sophos.com/
2018/02/26/in-fraud-we-trust-cybercrime-org-bust-shows-were-fi ghting-pros/

Vanhoef, M. (2017). Key Reinstallation Attacks: Breaking WPA2 by Forcing Nonce Reuse.
[Discovered by Mathy Vanhoef of imec-DistriNet, KU Leuven]. Retrieved from https://
www.krackattacks.com/

https://securingtomorrow.mcafee.com
https://securingtomorrow.mcafee.com
https://tools.ietf.org
https://tools.ietf.org
https://www.cnet.com
https://www.cnet.com
https://www.webtitan.com
https://www.webtitan.com
https://adam.shostack.org
https://github.com
https://github.com
https://publications.opengroup.org.G112
https://publications.opengroup.org.G112
https://pubs.opengroup.org
https://pubs.opengroup.org
https://nakedsecurity.sophos.com
https://nakedsecurity.sophos.com
https://www.krackattacks.com
https://www.krackattacks.com

Williams, C. (2018, January 2). Kernel-Memory-Leaking Intel Processor Design Flaw Forces
Linux, Windows Redesign. Th e Register. Retrieved from https://www.theregister.co.uk/
2018/01/02/intel_cpu_design_fl aw/

Wilson, P. L. (1995, 2004). Pirate Utopias: Moorish Corsairs & European Renegadoes. AbeBooks.

Zachman, J. A. (2007). Foreword. In: Handbook of Enterprise Systems Architecture in Practice.
(P. Saha, Ed.) pp. xv–xvi. IGI Global.

Zeigler-Hill, V., Welling, L. M., and Shackleford, T. K. (Eds.). (2015). Evolutionary Perspectives
on Social Psychology Evolutionary Psychology, p. 231. Springer International Publishing.

https://www.theregister.co.uk
https://www.theregister.co.uk

	Half Title
	Title Page
	Copyright Page
	Author Note/Trademarks Covered in This Book
	Contents
	Dedication
	List of Figures and Tables
	Foreword
	Preface
	Acknowledgments
	About the Author
	Chapter 1 The Context of Security Architecture
	1.1 Omnipresent Cyber War
	1.2 Know the Threat Actors
	1.2.1 Useful Exploits Don’t Die

	1.3 Everything Can Become a Target
	1.4 Warlords and Pirates
	1.5 What Is the Scope of a Security Architect?
	1.5.1 Are There Really Two Distinct Roles?

	1.6 Essential Technique
	1.6.1 Threat Modeling: An Essential Craft
	1.6.2 Architecture Is Primary

	1.7 Aiming Design Toward Security
	1.7.1 What Is Secure Software?
	1.7.2 Secure Design Primer

	1.8 Summary

	References

