

Industrial
Artificial
Intelligence

Technologies
and
Applications

RIVER
PUBLISHERS
SERIES
IN
COMMUNICATIONS

AND
NETWORKING

Series
Editors

ABBAS
JAMALIPOUR

The
University
of
Sydney

Australia

MARINA
RUGGIERI

University
of
Rome
Tor
Vergata

Italy

The
 “River
 Publishers
 Series
 in
 Communications
 and
 Networking”
 is
 a

series
of
 comprehensive
academic
 and
professional
books
which
 focus
on

communication
and
network
systems.
Topics
range
from
the
theory
and
use

of
 systems
 involving
 all
 terminals,
 computers,
 and
 information
processors

to
wired
 and
 wireless
 networks
 and
 network
 layouts,
 protocols,
 architec
tures,
and
implementations.
Also
covered
are
developments
stemming
from

new
market
 demands
 in
 systems,
 products,
 and
 technologies
 such
 as
 per
sonal
 communications
 services,
 multimedia
 systems,
 enterprise
 networks,

and
optical
communications.

The
 series
 includes
 research
 monographs,
 edited
 volumes,
 handbooks

and
textbooks,
providing
professionals,
researchers,
educators,
and
advanced

students
 in
 the
field
with
an
 invaluable
 insight
 into
 the
 latest
 research
and

developments.

Topics
included
in
this
series
include:

•
Communication
theory

•
Multimedia
systems

•
Network
architecture

•
Optical
communications

•
Personal
communication
services

•
Telecoms
networks

•
Wi-Fi
network
protocols

For
a
list
of
other
books
in
this
series,
visit
www.riverpublishers.com

http://www.riverpublishers.com

Industrial Artificial Intelligence
Technologies and Applications

Editors

Ovidiu Vermesan
SINTEF, Norway

Franz Wotawa
TU Graz, Austria

Mario Diaz Nava
STMicroelectronics, France

Björn Debaillie
imec, Belgium

River Publishers

Published
2022
by
River
Publishers

River Publishers

Alsbjergvej 10, 9260 Gistrup, Denmark

www.riverpublishers.com

Distributed
exclusively
by
Routledge

4 Park Square, Milton Park, Abingdon, Oxon OX14 4RN

605 Third Avenue, New York, NY 10017, USA

Industrial Artificial Intelligence Technologies and Applications / by Ovidiu
Vermesan, Franz Wotawa, Mario Diaz Nava, Björn Debaillie.

ISBN: 978-87-7022-791-9 (hardback)
978-10-0085-203-5 (online)
978-10-0337-738-2 (master ebook)

DOI: 10.1201/9781003377382

© Ovidiu Vermesan, Franz Wotawa, Mario Diaz Nava, Björn Debaillie, 2022. This book is

Open
Access

This book is distributed under the terms of the Creative Commons Attribution

Non-Commercial 4.0 International License, CC-BY-NC 4.0) (http://creativecommons.org/

licenses/by/4.0/), which permits use, duplication, adaptation, distribution and reproduction

in any medium or format, as long as you give appropriate credit to the original author(s)

and the source, a link is provided to the Creative Commons license and any changes made

are indicated. The images or other third party material in this book are included in the work’s

Creative Commons license, unless indicated otherwise in the credit line; if such material is not

included in the work’s Creative Commons license and the respective action is not permitted by

statutory regulation, users will need to obtain permission from the license holder to duplicate,

adapt, or reproduce the material.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this

publication does not imply, even in the absence of a specific statement, that such names are

exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in

this book are believed to be true and accurate at the date of publication. Neither the publisher

nor the authors or the editors give a warranty, express or implied, with respect to the material

contained herein or for any errors or omissions that may have been made.

published open access.

http://www.creativecommons.org
http://www.riverpublishers.com
http://www.creativecommons.org

Dedication

“Without
change
there
is
no
innovation,
creativity,
or
incentive
for
improve
ment.
Those
who
initiate
change
will
have
a
better
opportunity
to
manage
the

change
that
is
inevitable.”

- William
Pollard

“The
brain
is
like
a
muscle.
When
it
is
in
use
we
feel
very
good.
Understand
ing
is
joyous.”

- Carl
Sagan

“By
far,
the
greatest
danger
of
Artificial
Intelligence
is
that
people
conclude

too
early
that
they
understand
it.”

- Eliezer
Yudkowsky

Acknowledgement

The
editors
would
 like
 to
 thank
all
 the
contributors
for
 their
support
 in
 the

planning
and
preparation
of
 this
book.
The
recommendations
and
opinions

expressed
 in
 the
 book
 are
 those
 of
 the
 editors,
 authors,
 and
 contributors

and
do
not
necessarily
 represent
 those
of
any
organizations,
employers,
or

companies.

Ovidiu
Vermesan

Franz
Wotawa

Mario
Diaz
Nava

Björn
Debaillie

https://taylorandfrancis.com

Contents

Preface

 xv

List
of
Figures

 xix

List
of
Tables

 xxv

List
of
Contributors

 xxix

1

 Benchmarking
Neuromorphic
Computing
for
Inference
 1

Simon
Narduzzi,
Loreto
Mateu,
Petar
Jokic,

Erfan
Azarkhish,
and
Andrea
Dunbar

1.1

 Introduction .
 2

1.2

 State of the art in Benchmarking

 3

1.2.1

 Machine Learning

 5

1.2.2

 Hardware
 .
 7

1.3

 Guidelines .
 9

1.3.1

 Fair and Unfair Benchmarking

 10

1.3.2

 Combined
KPIs
and
Approaches
for

Benchmarking
 .
 11

1.3.3

 Outlook
:
Use-case
Based
Benchmarking

 13

1.4

 Conclusion
 .
 15

References .
 16

2

 Benchmarking
the
Epiphany
Processor
as
a
Reference

Neuromorphic
Architecture
 21

Maarten
Molendijk,
Kanishkan
Vadivel,
Federico
Corradi,

Gert-Jan
van
Schaik,
Amirreza
Yousefzadeh,

and
Henk
Corporaal

2.1

 Introduction and Background

 21

vii

viii

 Contents

2.2

 Comparison
with
a
Few
Well-Known
Digital
Neuromorphic

Platforms
 .
 24

2.3

 Major
Challenges
in
Neuromorphic
Architectures

 26

2.3.1

 Memory Allocation
 26

2.3.2

 Efficient Communication
 28

2.3.3

 Mapping SNN onto Hardware

 29

2.3.4

 On-chip Learning
 29

2.3.5

 Idle Power Consumption

 30

2.4

 Measurements from Epiphany

 30

2.5

 Conclusion
 .
 32

References .
 33

3

 Temporal
Delta
Layer:
Exploiting
Temporal
Sparsity
in
Deep

Neural
Networks
for
Time-Series
Data
 35

Preetha
Vijayan,
Amirreza
Yousefzadeh,

Manolis
Sifalakis,
and
Rene
van
Leuken

3.1

 Introduction .
 36

3.2

 Related Works .
 37

3.3

 Methodology
 .
 39

3.3.1

 Delta Inference
 .
 39

3.3.2

 Sparsity
Induction
Using
Activation

Quantization
 .
 40

3.3.2.1
 Fixed
Point
Quantization

 41

3.3.2.2
 Learned
Step-Size
Quantization

 42

3.3.3

 Sparsity Penalty

 44

3.4

 Experiments and Results

 45

3.4.1

 Baseline .
 45

3.4.2

 Experiments
 .
 45

3.4.3

 Result Analysis
 .
 46

3.5

 Conclusion
 .
 49

References .
 50

4

 An
End-to-End
AI-based
Automated
Process

for
Semiconductor
Device
Parameter
Extraction
 53

Dinu
Purice,
Matthias
Ludwig,
and
Claus
Lenz

4.1

 Introduction .
 54

4.2

 Semantic Segmentation
 .
 56

Contents
 ix

4.2.1
 Proof
of
Concept
and
Architecture
Overview

 56

4.2.2
 Implementation
Details
and
Result
Overview

 61

4.3

 Parameter Extraction
 .
 64

4.4

 Conclusion
 .
 68

4.5

 Future Work .
 69

References .
 69

5

 AI
Machine
Vision
System
for
Wafer
Defect
Detection
 73

Dmitry
Morits,
Marcelo
Rizzo
Piton,
and
Timo
Laakko

5.1

 Introduction and Background

 73

5.2

 Machine
Vision-based
System
Description

 75

5.3

 Conclusion
 .
 78

References .
 79

6

 Failure
Detection
in
Silicon
Package
 81

Saad
Al-Baddai
and
Jan
Papadoudis

6.1

 Introduction and Background

 82

6.2

 Dataset Description
 .
 83

6.2.1
 Data
Collection
&
Labelling

 84

6.3

 Development and Deployment

 85

6.4

 Transfer Learning and Scalability
 86

6.5

 Result and Discussion .
 87

6.6

 Conclusion and Outlooks

 89

References .
 89

7

 S2ORC-SemiCause:
Annotating
and
Analysing
Causality

in
the
Semiconductor
Domain
 91

Xing
Lan
Liu,
Eileen
Salhofer,
Anna
Safont
Andreu,

and
Roman
Kern

7.1

 Introduction .
 92

7.2

 Dataset Creation .
 93

7.2.1
 Corpus
 .
 93

7.2.2
 Annotation Guideline
 93

7.2.3
 Annotation Methodology
 94

7.2.4
 Dataset Statistics

 95

7.2.5
 Causal Cue Phrases
 95

7.3

 Baseline Performance .
 96

7.3.1
 Train-Test Split
 .
 96

x
 Contents

7.3.2

 Causal Argument Extraction

 97

7.3.3

 Error Analysis
 .
 97

7.4
 Conclusions
 .
 99

References .
 99

8

 Feasibility
of
Wafer
Exchange
for
European
Edge
AI

Pilot
Lines
 103

Annika
Franziska
Wandesleben,
Delphine
Truffier-Boutry,

Varvara
 Brackmann,
 Benjamin
 Lilienthal-Uhlig,
 Manoj
 Jaysnkar,

Stephan
 Beckx,
 Ivan
 Madarevic,
 Audde
 Demarest,
 Bernd
 Hintze,

Franck
Hochschulz,
Yannick
Le
Tiec,
Alessio
Spessot,

and
Fabrice
Nemouchi

8.1

 Introduction .
 104

8.2

 Technical Details and Comparison

 105

8.2.1

 Comparison
TXRF
and
VPD-ICPMS
Equipment
for

Surface Analysis

 105

8.2.2

 VPD-ICPMS
Analyses
on
Bevel

 108

8.3

 Cross-Contamination
Check-Investigation

 109

8.3.1

 Example
for
the
Comparison
of
the
Institutes

 109

8.4

 Conclusiion
 .
 111

References .
 112

9

 A
Framework
for
Integrating
Automated
Diagnosis

into
Simulation
 113

David
Kaufmann
and
Franz
Wotawa

9.1

 Introduction .
 113

9.2

 Model-based Diagnosis
 .
 115

9.3

 Simulation
and
Diagnosis
Framework

 118

9.3.1

 FMU Simulation Tool

 118

9.3.2

 ASP Diagnose Tool
 120

9.4

 Experiment
 .
 121

9.5

 Conclusion
 .
 125

References .
 127

10
 Deploying
a
Convolutional
Neural
Network
on
Edge
MCU

and
Neuromorphic
Hardware
Platforms
 129

Simon
Narduzzi,
Dorvan
Favre,
Nuria
Pazos
Escudero

and
L.
Andrea
Dunbar

Contents
 xi

10.1 Introduction
 .
 129

10.2 Related Work
 .
 130

10.3 Methods
 .
 131

10.3.1
 Neural
Network
Deployment

 131

10.3.1.1
 Task and Model

 132

10.3.1.2
 Experimental
Setup

 132

10.3.1.3
 Deployment

 133

10.3.2
 Measuring
the
Ease
of
Deployment

 135

10.4 Results .
 136

10.4.1
 Inference Results

 136

10.4.2
 Perceived Effort

 137

10.5 Conclusion

 .
 137

References .
 138

11
 Efficient
Edge
Deployment
Demonstrated
on
YOLOv5

and
Coral
Edge
TPU
 141

Ruben
Prokscha,
Mathias
Schneider,
and
Alfred
Höß

11.1 Introduction
 .
 141

11.2 Related Work
 .
 142

11.3 Experimental Setup
 .
 143

11.3.1
 Google Coral Edge TPU

 143

11.3.2
 YOLOv5
 .
 145

11.4 Performance Considerations

 145

11.4.1
 Graph Optimization

 145

11.4.1.1
 Incompatible
Operations

 145

11.4.1.2
 Tensor
Transformations

 146

11.4.2
 Performance Evaluation

 147

11.4.2.1
 Speed-Accuracy
Comparison

 147

11.4.2.2
 USB
Speed
Comparison

 150

11.4.3
 Deployment Pipeline

 151

11.5 Conclusion and Future Work

 152

References .
 152

12
 Embedded
Edge
Intelligent
Processing
for
End-To-End

Predictive
Maintenance
in
Industrial
Applications
 157

Ovidiu
Vermesan
and
Marcello
Coppola

12.1 Introduction and Background

 158

xii

 Contents

12.2
 Machine
and
Deep
Learning
for
Embedded
Edge
Predictive

Maintenance .
 159

12.3
 Approaches
for
Predictive
Maintenance

 161

12.3.1

 Hardware
and
Software
Platforms

 162

12.3.2

 Motor
Classification
Use
Case

 163

12.4 Experimental Setup
 .
 163

12.4.1

 Signal
Data
Acquisition
and
Pre-processing

 164

12.4.2

 Feature
 Extraction,
 ML/DL
 Model
 Selection
 and

Training .
 165

12.4.3

 Optimisation
and
Tuning
Performance

 167

12.4.4

 Testing
 .
 169

12.4.5

 Deployment .
 170

12.4.6

 Inference
 .
 172

12.5 Discussion and Future Work

 173

References .
 174

13
 AI-Driven
Strategies
to
Implement
a
Grapevine
Downy

Mildew
Warning
System
 177

Luiz
Angelo
Steffenel,
Axel
Langlet,
Lilian
Hollard,

Lucas
Mohimont,
Nathalie
Gaveau,
Marcello
Copola,

Clément
Pierlot,
and
Marine
Rondeau

13.1 Introduction
 .
 177

13.2
 Research
Material
and
Methodology

 179

13.2.1

 Datasets .
 179

13.2.2

 Labelling Methodology
 180

13.3 Machine Learning Models

 180

13.4 Results .
 183

13.4.1

 Primary
Mildew
Infection
Alerts

 183

13.4.2

 Secondary
Mildew
Infection
Alerts

 184

13.5 Discussion .
 185

13.6 Conclusion

 .
 186

References .
 187

14
 On
the
Verification
of
Diagnosis
Models

 189

Franz
Wotawa
and
Oliver
Tazl

14.1 Introduction
 .
 189

14.2
 The Model Testing Challenge
 192

Contents
 xiii

14.3 Use Case
 .
 194

14.4 Open Issues and Challenges

 198

14.5 Conclusion
 .
 201

References .
 201

Index
 205

About
the
Editors
 207

https://taylorandfrancis.com

Preface

Industrial
Artificial
Intelligence
Technologies
and
Applications

Digitalisation
 and
 Industry
 5.0
 are
 changing
 how
manufacturing
 facilities

operate
 by
 deploying
 many
 sensors/actuators,
 edge
 computing,
 and
 IIoT

devices
and
forming
intelligent
networks
of
collaborative
machines
that
are

able
to
collect,
aggregate,
and
intelligently
process
data
at
a
network’s
edge.

Given
 the
vast
amount
of
data
produced
by
IIoT
devices,
computing
at

the
 edge
 is
 required.
 In
 this
 context,
 edge
 computing
 plays
 an
 important

role
 –
 the
 edge
 should
 provide
 computing
 resources
 for
 edge
 intelligence

with
 dependability,
 data
management,
 and
 aggregation
 provision
 in
mind.

Edge
 intelligence
–
for
example,
AI
 technologies
with
edge
computing
for

training/learning,
testing,
or
inference
–
is
essential
for
IIoT
applications
to

build
models
that
can
learn
from
a
large
amount
of
aggregated
data.

Edge
computing
is
a
distributed
computing
paradigm
that
brings
compu
tation
and
data
storage
closer
to
a
device’s
location.
AI
algorithms
process
the

data
created
on
a
device
with
or
without
an
internet
connection.
These
new

AI-based
algorithms
allow
data
 to
be
processed
within
a
few
milliseconds,

providing
real-time
feedback.

The
AI
models
operate
on
 the
devices
 themselves
without
 the
need
for

a
cloud
connection
and
without
 the
problems
associated
with
data
 latency,

which
results
in
much
faster
data
processing
and
support
for
use
cases
that

require
real-time
inferencing.

Major
challenges
remain
 in
achieving
 this
potential
due
 to
 the
 inherent

complexity
of
designing
and
deploying
energy-efficient
edge
AI
algorithms

and
 architectures,
 the
 intricacy
 of
 complex
 variations
 in
 neural
 network

architectures,
and
the
underlying
limited
processing
capabilities
of
edge
AI

accelerators.

Industrial-edge
AI
can
run
on
various
hardware
platforms,
from
ordinary

microcontrollers
(MCUs)
to
advanced
neural
processing
devices.
IIoT
edge

AI-connected
devices
use
embedded
algorithms
to
monitor
device
behaviour

and
collect
and
process
device
data.
Devices
make
decisions,
automatically

correct
problems,
and
predict
future
performance.

xv

xvi
 Preface

AI-based
 technologies
are
used
across
 industries
by
 introducing
 intelli
gent
techniques,
including
machine
and
deep
learning,
cognitive
computing,

and
computer
vision.
The
application
of
the
techniques
and
methods
of
AI
in

the
industrial
sector
is
a
crucial
reference
source
that
provides
vital
research

on
implementing
advanced
technological
techniques
in
this
sector.

This
 book
 offers
 comprehensive
 coverage
 of
 the
 topics
 presented
 at

the
 “International
Workshop
 on
Edge
Artificial
 Intelligence
 for
 Industrial

Applications
(EAI4IA)”
 in
Vienna,
25-26
July
2022.
EAI4IA
 is
co-located

with
the
31st
 International
Joint
Conference
on
Artificial
Intelligence
and
the

23rd
 European
Conference
on
Artificial
Intelligence
(IJCAI-ECAI
2022).
It

combines
the
ideas
and
concepts
developed
by
researchers
and
practitioners

working
 on
 providing
 edge
AI
methods,
 techniques,
 and
 tools
 for
 use
 in

industrial
applications.

By
highlighting
important
topics,
such
as
embedded
AI
for
semiconduc
tor
manufacturing
and
 trustworthy,
dependable,
and
explainable
AI
 for
 the

digitising
industry,
verification,
validation
and
benchmarking
of
AI
systems

and
technologies,
AI
model
development
workflows
and
hardware
target
plat
forms
deployment,
the
book
explores
the
challenges
faced
by
AI
technologies

deployed
in
various
industrial
application
domains.

The
 book
 is
 ideally
 structured
 and
 designed
 for
 researchers,
 develop
ers,
managers,
academics,
analysts,
post-graduate
students,
and
practitioners

seeking
current
 research
on
 the
 involvement
of
 industrial-edge
AI.
 It
com
bines
the
latest
methodologies,
tools,
and
techniques
related
to
AI
and
IIoT

in
a
joint
volume
to
build
insight
into
their
sustainable
deployment
in
various

industrial
sectors.

The
book
is
structured
around
four
different
topics:

1.
Verification,
 Validation
 and
 Benchmarking
 of
 AI
 Systems
 and

Technologies.

2.
Trustworthy,
Dependable
AI
for
Digitising
Industry.

3.
Embedded
AI
for
semiconductor
manufacturing.

4.
AI
 model
 development
 workflow
 and
 HW
 target
 platforms

deployment.

In
the
following,
the
papers
published
in
this
book
are
briefly
discussed.

S.
Narduzzi,
L.
Mateu,
P.
Jokic,
E.
Azarkhish,
and
A.
Dunbar:
“Bench

marking
Neuromorphic
Computing
 for
 Inference”
 tackle
 the
 challenge
 of

benchmarking
 aiming
 at
 providing
 a
 fair
 and
 user-friendly
 method.
 The

authors
 introduce
 the
 challenge
 and
 finally
 come
 up
 with
 possible
 key

performance
indicators.

Preface
 xvii

M.
 Molendijk,
 K.
 Vadivel,
 F.
 Corradi,
 G-J.
 van
 Schaik,
 A.
 Youse
fzadeh,
 and
 H.
 Corporaal:
 “Benchmarking
 the
 Epiphany
 Processor
 as
 a

Reference
Neuromorphic
Architecture”
compare
different
 implementations

of
neuromorphic
processors
and
present
suggestions
for
improvements.

P.
Vijayan,
A.
Yousefzadeh,
M.
Sifalakis,
and
R.
van
Leuken:
“Temporal

Delta
 Layer:
 Exploiting
 Temporal
 Sparsity
 in
 Deep
Neural
 Networks
 for

Time-Series
Data”
deal
with
improving
the
learning
of
time-series
data
in
the

context
of
deep
neural
networks.
In
particular,
the
authors
consider
sparsity

and
show
experimentally
overall
improvements.

D.
Purice,
M.
Ludwig,
and
C.
Lenz:
“An
End-to-End
AI-based
Automated

Process
for
Semiconductor
Device
Parameter
Extraction”
present
a
validation

pipeline
aiming
at
gaining
trust
in
semiconductor
devices
relying
on
authen
ticity
checking.
The
authors
further
evaluate
 their
approach
by
considering

several
artificial
neural
network
architectures.

D.
Morits,
M.
Rizzo
Piton,
and
T.
Laakko:
“AI
machine
vision
system
for

wafer
defect
detection”
discuss
the
use
of
machine
learning
for
fault
detection

based
on
images
in
the
context
of
semiconductor
manufacturing.

S.
Al-Baddai
and
J.
Papadoudis:
“Failure
detection
 in
silicon
package”

discuss
the
use
of
machine
learning
techniques
for
wire-bonding
inspection

occurring
during
the
packaging
of
semiconductors.
The
authors
report
on
the

accuracy
of
failure
detection
using
machine
learning
in
the
complex
industrial

environment.

X.
L.
Liu,
Eileen
Salhofer,
A.
Safont
Andreu,
 and
R.
Kern:
 “S2ORC
SemiCause:
 Annotating
 and
 analysing
 causality
 in
 the
 semiconductor

domain”
introduce
a
benchmark
dataset
to
be
used
in
the
context
of
cause-
effect
reasoning
for
extracting
causal
relations.

A.
Wandesleben,
D.
Truffier-Boutry,
V.
Brackmann,
B.
Lilienthal-Uhlig,

M.
Jaysnkar,
S.
Beckx,
I.
Madarevic,
A.
Demarest,
B.
Hintze,
F.
Hochschulz,

Y.
Le
Tiec,
A.
Spessot,
 and
F.
Nemouchi:
 “Feasibility
of
wafer
 exchange

for
European
Edge
AI
pilot
 lines”
 focus
on
 contamination
monitoring
 for

allowing
 to
 exchange
 wafers
 among
 different
 facilities.
 In
 particular,
 the

authors
presented
an
analysis
of
whether
such
an
exchange
would
be
feasible

considering
three
European
research
institutes.

D.
Kaufmann
and
F.
Wotawa:
”A
 framework
 for
 integrating
automated

diagnosis
 into
 simulation”
discuss
a
 framework
 that
allows
 the
 integration

of
model-based
diagnosis
algorithms
in
physical
simulation.
The
framework

can
be
used
for
verifying
and
validating
diagnosis
implementations
for
cyber-
physical
systems.

xviii
 Preface

S.
Narduzzi,
D.
Favre,
N.
Pazos
Escudero,
and
A.
Dunbar:
“Deploying
a

Convolutional
Neural
Network
on
Edge
MCU
and
Neuromorphic
Hardware

Platforms”
discuss
 the
deployment
of
neural
networks
 for
edge
computing

considering
 different
 platforms.
 The
 authors
 also
 report
 on
 the
 perceived

effort
of
deployment
for
each
of
the
platforms.

R.
Prokscha,
M.
Schneider,
 and
A.
Höß:
 “Efficient
Edge
Deployment

Demonstrated
on
YOLOv5
and
Coral
Edge
TPU”consider
 the
question
of

deployment
of
machine
learning
on
the
edge.

O.
Vermesan
and
M.
Coppola:
”Embedded
Edge
 Intelligent
Processing

for
 End-To-End
 Predictive
 Maintenance
 in
 Industrial
 Applications”
 pre
sented
the
use
of
machine
learning
for
edge
computing
supporting
predictive

maintenance
using
different
technologies,
workflows,
and
datasets.

L.
A.
Steffenel,
A.
Langlet,
L.
Hollard,
L.
Mohimont,
N.
Gaveau,
M.

Copola,
C.
Pierlot,
 and
M.
Rondeau:
 ”AI-Driven
Strategies
 to
 Implement

a
Grapevine
Downy
Mildew
Warning
System”
outline
 the
use
of
machine

learning
 for
 identifying
 infections
 occurring
 in
 vineyards
 and
 present
 an

experimental
evaluation
comparing
different
machine
learning
algorithms.

F.
Wotawa
and
O.
Tazl:
”On
the
Verification
of
Diagnosis
Models”
focus

on
challenges
of
verification
and
in
particular
testing
applied
to
logic-based

diagnosis.
The
 authors
 consider
 testing
 system
models
 and
 use
 a
 running

example
for
demonstrating
how
such
models
can
be
tested
and
come
up
with

open
research
questions.

List
of
Figures

Figure
1.1
 Benchmarking
 fairness.
 (a)
Unfair
benchmarking:

the
 KPIs
 are
 comparable,
 but
 the
 benchmarked

hardware
platforms
 are
not
 exploited
 to
 their
 full

potential.
(b)
Fair
benchmarking:
the
hardware
plat
forms
are
exploited
 to
 their
 full
potential,
but
 the

resulting
combined
KPIs
(KPICB)
are
not

comparable.
 .
 12

Figure
1.2
 Combined
KPIs
for
fair
benchmarking

 12

Figure
1.3
 Benchmarking
 pipeline
 based
 on
 use-cases.
 An

automated
 search
 finds
 the
 best
 possible
 model

exploiting
 the
performance
offered
by
each
 target

hardware
platforms.
The
resulting
combined
KPIs

are
comparable.

 14

Figure
2.1
 Overall
scalable
architecture
of
Epiphany-III.
 .
 .
 .
 22

Figure
2.2
 Adapteva
launched
an
$99
Epiphany-III
based
sin

gle
board
computer
as
their
first
product.

 23

Figure
2.3
 Flow
chart
of
processing
a
LIF
neuron
with
process

ing
time
measured
in
Epiphany.

 31

Figure
3.1
 (a)
 Standard
 DNN,
 and
 (b)
 DNN
 with
 proposed

temporal
delta
layer

 37

Figure
3.2
 Sparsity
 in
 activation
 (Δx)
 drastically
 reduce
 the

memory
 fetches
 and
 multiplications
 between
 Δx

and
columns
of
weight
matrix,
W,
that
correspond

to
zero.
 .
 38

Figure
3.3
 Demonstration
of
two
temporally
consecutive
acti
vation
maps
leading
to
near
zero
values
(rather
than

absolute
zeroes)
after
delta
operation.

 41

Figure
3.4
 Importance
of
step
size
in
quantization:
on
the
right

side,
in
all
three
cases,
the
data
is
quantized
to
five

bins
 with
 different
 uniform
 step
 sizes.
 However,

without
optimum
step
size
value,
 the
quantization

xix

xx
 List
of
Figures

can
detrimentally
alter
the
range
and
resolution
of

the original data.

 43

Figure
3.5

 Evolution
 of
 quantization
 step
 size
 from
 initial
ization
 to
 convergence
 in
LSQ.
As
 step-size
 is
 a

learnable
parameter,
it
gets
re-adjusted
during
train
ing
 to
 cause
 minimum
 information
 loss
 in
 each

layer.
 .
 48

Figure
4.1

 Overview of the architecture.

 56

Figure
4.2

 Examples
 showcasing
 different
 semiconductor

technologies .
 57

Figure
4.3

 Examples
of
labelled
data
showcasing
the
different

ROIs:
green
–
VIA;
yellow
–
metal;
 teal
–
 lateral

isolation;
red
–
poly;
blue
–
deep
trench
isolation
 .
 57

Figure
4.4
 Histograms
 of
 the
 investigated
 data
 grouped
 by

label of interest

 58

Figure
4.5
 Overview
of
the
U-net
architecture

 58

Figure
4.6
 Overview
of
the
FPN
architecture

 59

Figure
4.7
 Overview
of
the
GSCNN
architecture

 59

Figure
4.8
 Overview
of
the
PSPNet
architecture

 60

Figure
4.9
 Overview
of
the
Siamese
network
architecture
 .
 .
 60

Figure
4.10
 Average
Dice
Scores
(blue)
and
spread
(green)
per

investigated
 network
 architecture,
 along
 with
 the

final
chosen
architecture
(red)

 61

Figure
4.11
 An
overview
of
the
U-net
cascade
architecture,
con
sisting
of
a
2D
U-net
(top)
and
a
3D
U-net
(bottom)

which
takes
as
input
the
high
resolution
input
image

stacked
with
the
output
segmentation
of
the
first
stage
 63

Figure
4.12
 Utilised
cluster
evaluation
techniques.

 65

Figure
4.13
 Example
cross-section
image
with
annotated
metal

and contact/VIA features

 66

Figure
4.14
 Example
 cross-section
 image
 (upper
 left).
 The

polygonised
VIA
objects
are
shown
(lower
left).
A

dendrogram
 is
 shown
 for
 the
 relative
distances
of

the
y-coordinates
of
the
single
objects
(upper
right).

Finally,
the
results
of
the
utilised
cluster
evaluation

techniques
are
presented
(lower
right).

 67

Figure
5.1
 Examples
of
microscopic
images
of
various
super
conductor
and
semiconductor
devices
with
surface

defects .
 74

List
of
Figures
 xxi

Figure
5.2
 General
 architecture
 of
 the
 developed
 machine

vision
system
 .
 76

Figure
5.3
 A
scheme
of
the
image
dataset
preparation,
includ
ing
labelling,
cropping
and
data
augmentation
 .
 .
 .
 76

Figure
5.4
 Example
of
binary
classification
of
wafer
defects:

defect
vs
background

 78

Figure
6.1
 Left:
Curve
with
abnormal
minimum
position
(red)

in
comparison
 to
normal
ones
(white)
of
recorded

sensor
 data
 during
 wirebonding
 process.
 Right:

shows
 an
 example
 of
 abnormal
 OOI
 image
 with

shown
crack
on
the
surface.
.
 84

Figure
6.2
 Flow
 chart
 of
 development
 and
 deployment
 life

cycle
for
AI
solution
at
IFX.
In
development
phase

data
 scientists
 could
 use
 different
 programming

language
 as
 the
 final
 model
 can
 be
 converted
 to

ONNX.
In
deployment
phase,
the
vision
frame
can

simply
access
 to
ONNX
and
 run
during
 inference

time.
 .
 85

Figure
6.3
 Process
flow
integration
of
the
developed
AD
solu
tion
into
an
existing
IFX
infrastructure.

 86

Figure
6.4
 show
the
flow
processes
during
silicon
package,
the

backside
blue
arrow
shows
the
position
of
transfer

learning
from
OOI
backwards
to
taken
images
after

molding
process
.
 87

Figure
6.5
 shows
 an
 example
of
 the
OOI
 image
on
 left
 side

(This
 image
 is
 taken
 before
 shopping
 and
 after

electrical
test)
and
example
of
image
after
molding

process
on
right
side.

 87

Figure
7.1
 Causal
 cue
 phrases
 ranked
 by
 frequency
 for
 all

sentences
in
S2ORC-SemiCause
dataset.
.
 96

Figure
8.1
 Comparison
of
TXRF
LLDs
of
CEA
LETI
/
IMEC
 106

Figure
8.2
 Comparison
of
VPD-ICPMS
LLDs
of
CEA
LETI
/

IMEC
/
FhG
.
 106

Figure
8.3
 Schematic
of
the
VPD
bevel
collection
at
(a)
IMEC,

(b)
CEA-LETI
and
(c)
FhG
IPMS

 108

Figure
8.4
 Comparison
LLDs
CEA
LETI
 /
 IMEC
 for
VPD

ICPMS
Bevel
 .
 109

Figure
8.5
 Comparison
TXRF
 results
of
CEA
LETI
 /
 IMEC

for
IMEC
inspection
tool

 110

xxii
 List
of
Figures

Figure
8.6
 Comparison
VPD-ICPMS
 results
 of
CEA
LETI
 /

Figure
8.7

IMEC
/FhG
for
IMEC
inspection
tool

Comparison
 VPD-ICPMS
 bevel
 results
 of
 CEA

111

Figure
9.1

LETI
/
IMEC
for
IMEC
inspection
tool

A
simple
electric
circuit
comprising
bulbs,
a
switch

111

Figure
9.2

and
a
battery.
 .

Illustration
of
the
simulation
and
diagnose
environ

115

ment
as
well
as
the
overall
operating
principles.
The

framework
of
 the
FMU
Simulation
Tool
provides

an
 interface
 to
 enable
 the
 integration
 of
 a
 diag
nose
tool
and/or
other
methods.
The
models
can
be

Figure
9.3

substituted
by
any
others
in
the
provided
framework.

Simulation
showing
the
measured
signal
output
of

119

the
 two
 bulbs,
 switch
 and
 the
 battery.
 For
 this

example
a
fault
injection
(broken)
in
bulb
1
after

0.2
 seconds
 (red
 indicator)
 and
 a
 fault
 injection

(broken)
 to
 the
switch
after
0.3
seconds
(orange

Figure
9.4

indicator)
is
initiated.

Simulation
 and
 diagnose
 output
 results
 based
 on

124

the
electrical
two-lamps
circuit
with
a
broken
bulb

after
0.2
 seconds
and
a
broken
 switch
at
0.3
 sec
onds.
 The
 upper
 tables
 illustrate
 the
 simulation

input/output
signals,
which
are
used
as
observation

for
 the
diagnose
 (lower
 tables)
part.
Based
on
 the

given
observations
for
the
three
selected
time
steps,

Figure
10.1

Figure
10.2

different
diagnose
results
are
obtained.

Illustration
of
LeNet-5
architecture.

Deployment
 pipelines
 for
 all
 platforms.
 From

125

132

left
 to
 right:
 STM32L4R9,
 Kendryte
 K210
 and

DynapCNN.
For
DynapCNN,
 the
pipeline
 is
con
tained
 in
 a
 single
 Python
 script,
 while
 the
 other

Figure
11.1

relay
on
external
languages
and
tools.

Raspberry
Pi
4
with
Google
Coral
edge
TPU
USB

134

accelerator.
 .
 144

Figure
11.2

Figure
11.3

Quantized
edge
TPU
Models.
.

USB3
 speed-accuracy
 comparison
 of
 different

146

model
 types
 and
 configurations
 for
 edge
 TPU

deployment.
 .
 149

List
of
Figures
 xxiii

Figure
11.4
 YOLOv5s
 inference
 speed
 comparison
 between

USB2 and USB3

 150

Figure
11.5
 Micro
software
stack
for
fast
and
lightweight
edge

deployment.
 .
 151

Figure
12.1
 Industrial
motor
components

 160

Figure
12.2
 Micro-edge
AI
processing
flow

 162

Figure
12.3
 Visualisation
of
two
selected
classes
signals
in
both

temporal
and
frequency
domain
with
NEAI

 165

Figure
12.4
 Benchmarking with NEAI

 166

Figure
12.5
 Snapshots
of
Feature
Explorer
 in
EI
based
on
 the

pre-processing
block
early
in
the
process.

 167

Figure
12.6
 Confusion
Matrix
and
Data
Explorer
based
on
full

training
set:
Correctly
Classified
(Green)
and
Mis
classified (Red).
 168

Figure
12.7
 A
 comparison
 between
 int8
 quantized
 and
 unop
timized
versions
of
 the
 same
model,
 showing
 the

difference
in
performance
and
results.

 169

Figure
12.8
 Evaluation
of
trained
model
using
NEAI
Emulator

with live streaming.

 170

Figure
12.9
 EI
model
testing
with
test
datasets.

 171

Figure
12.10
 Live
classification
streaming
with
detected
state
and

confidence (with Tera Term)

 172

Figure
13.1
 Algorithm
for
primary
infection
alarms

 181

Figure
13.2
 Algorithm
for
secondary
infection
alarms

 182

Figure
14.1
 A
simple
electric
circuit
comprising
bulbs,
a
switch

and a battery.
 .
 191

Figure
14.2
 The
model-based
diagnosis
principle
and
informa

tion needed for testing.

 192

Figure
14.3
 A
 model
 for
 diagnosis
 of
 the
 two
 lamp
 exam

ple
 from
 Figure
 14.1
 comprising
 the
 behavior
 of

the
components
 (lines
1-7)
and
connections
 (lines

8-10),
and
the
structure
of
the
circuit
(lines
11-18).
 195

Figure
14.4
 Another
 simple
 electric
 circuit
 comprising
 bulbs,

switches
and
a
battery.
This
circuit
 is
an
extended

version
of
the
circuit
from
Figure
14.1.
On
the
right,

we
have
the
structural
model
of
this
circuit
in
Prolog

notation.
 198

https://taylorandfrancis.com

List
of
Tables

Table
1.1
 Relevant
 KPIs
 for
 tasks,
 models
 and
 hardware

domains.
We
 also
mention
 some
 combined
KPIs
 to

illustrate
the
inter-dependency
of
the
domains.

 4

Table
1.2
 Accuracy
(Acc)
for
different
object
detection
settings

on
COCO
test-dev.

 5

Table
1.3
 Representation
of
resource-constrained
KPIs.

 6

Table
1.4
 Typical
display
of
performance
comparison
of
neuro

morphic
hardware
platforms.

 9

Table
1.5
 Recent
display
of
performance
comparison
of
neuro

morphic
hardware
platforms.

 9

Table
2.1
 Memory
 fragmentations
 in
 some
 digital
 large-scale

neuromorphic
chips

 27

Table
2.2
 Mapping
 LeNet-5
 neural
 network
 (with
 binary

weights)
in
different
neuromorphic
architectures
 .
 .
 .
 28

Table
3.1
 Spatial
 stream
 - comparison
of
 accuracy
 and
 activa

tion
sparsity
obtained
through
the
proposed
scenarios

against
 the
baseline.
In
 the
case
of
fixed
point
quan
tization,
 the
 reported
 results
 are
 for
 a
 bitwidth
 of
 6

bits.
.
 46

Table
3.2
 Temporal
stream
- comparison
of
accuracy
and
activa
tion
sparsity
obtained
through
the
proposed
scenarios

against
the
benchmark.
In
the
case
of
fixed
point
quan
tization,
 the
 reported
 results
 are
 for
 a
 bitwidth
 of
 7

bits.
.
 46

Table
3.3
 Result
of
decreasing
activation
bitwidth
in
fixed
point

quantization
 method.
 For
 spatial
 stream,
 decreasing

below
6
bits
caused
the
accuracy
to
drop
considerably.

For
temporal
stream,
the
same
happened
below
7
bits.
 47

xxv

xxvi
 List
of
Tables

Table
3.4
 Final
 results
 from
 two-stream
network
 after
 average

fusing
the
spatial
and
temporal
stream
weights.
With

5%
accuracy
 loss,
 the
proposed
method
almost
dou
bles
the
activation
sparsity
available
in
comparison
to

the
baseline.
 .
 48

Table
4.1
 Obtained
 Dice
 Scores
 for
 each
 showcased
 network

architecture
.
 61

Table
4.2
 Averaged
Dice
Scores
for
each
label
of
interest

 64

Table
4.3
 Utilised
 cluster
 evaluation
 techniques.
 Notation:
 n:

number
of
objects
in
data-set;
c:
centre
of
data-set;
NC:

number
 of
 clusters;
Ci:
 the
 i-th
 cluster;
ni:
 number

of
 objects
 in
 Ci;
 ci:
 centre
 of
 Ci;
 Wk:
 the
 within-
cluster
 sum
of
 squared
distances
 from
cluster
mean;

W
∗
k
appropriate
null
reference;
B
reference
data-sets
 65

Table
6.1
 Show
 the
confusion
matrix
and
metrics
of
 the
CNN

model
on
productive
data
 for
BOT
and
TOP
of
OOI

images.
 .
 89

Table
6.2
 Show
 the
confusion
matrix
and
metrics
of
 the
CNN

model
on
productive
data
for
BOT
and
TOP
of
the
new

process.
.
 89

Table
7.1
 Inter-annotator
agreement
for
 the
first
 two
 iterations.

Arg1
(cause)
refers
to
the
span
of
the
arguments
that

lead
to
Arg2
(effect)
for
the
respective
relation
type.
 .
 94

Table
7.2
 Comparison
of
labels
generated
by
both
annotators
for

Iteration
2.
Examples
and
 total
counts
(in
number
of

arguments)
for
each
type
also
given.
.
 94

Table
7.3
 Descriptive
statistics
of
benchmark
datasets.
Overview

of
CoNLL-2003
(training
split)
and
BC5CDR
(train
ing
 split)
 for
 named
 entity
 recognition,
 as
 well
 as

causality
dataset
BioCause
(full
dataset),
and
S2ORC
SemiCause
(training
split).

 95

Table
7.4
 Descriptive
 statistics
 of
 S2ORC-SemiCause
 dataset.

#-sent:
 total
 number
 of
 annotated
 sentences,
 #-sent

no
 relations:
number
of
 sentences
without
 causality,

Argument:
total
amount
and
mean
length
(token
span)

of
 all
 annotated
 argument,
 Consequence/Purpose:

amount
and
mean
length
of
cause
and
effect
arguments

for
the
respective
relation
types.

 97

List
of
Tables
 xxvii

Table
7.5
 Baseline
performance
using
BERT
with
a
token
clas
sification
head.
Both
 the
F1
 scores
 and
 the
 standard

derivation
over
7
different
runs
are
shown.
Despite
the

small
sample
size,
the
standard
deviation
remain
low,

similar to previous work.

 97

Table
7.6
 Comparison
 of
 predicted
 and
 annotated
 argument

spans
for
the
test
split.
Examples
and
total
counts
(in

number
of
arguments)
 for
correct
prediction
and
 for

each error source are also given.
 98

Table
8.1
 Contamination
monitoring
techniques
LETI
/
IMEC
/

FhG
 .
 105

Table
8.2
 Overview
VPD-ICPMS
LLD
determination
and
tech
nical details for LETI / IMEC / FhG
 107

Table
9.1
 CPS
Model
component
state
description
for
the
light

bulb,
 switch
 and
 battery.
 All
 used
 states,
 including

fault
states
of
the
components
are
shown.

 123

Table
10.1
 Relevant
technical
specifications
of
the
devices
(from

constructor websites).

 134

Table
10.2
 Results
on
MNIST
dataset
 for
all
platforms.
For
 the

DynapCNN,
we
report
the
accuracy
and
latency
for
the

first
spike
prediction
and
over
the
entire
simulation.
 .
 136

Table
10.3
 Perceived
 effort
 for
 each
 stage
 of
 the
 inference.
 1:

small, 5: large.
 .
 137

Table
11.1
 Comparison
 of
 YOLOv5s
 model
 before
 and
 after

optimizations.
 .
 147

Table
11.2
 Model
comparison
 in
 regards
of
 input
size,
file
size,

operation .
 148

Table
12.1
 Frameworks
and
inference
engines
for
integrating
AI

mechanisms within MCUs
 161

Table
13.1
 Accuracy
of
2019
Primary
Infection
Models

 182

Table
13.2
 Accuracy
of
2020
Primary
Infection
Models

 182

Table
13.3
 Accuracy
of
2021
Primary
Infection
Models

 182

Table
13.4
 Accuracy
of
2021
Primary
Infection
Models

 183

Table
14.1
 All
eight
test
cases
used
to
verify
the
2-bulb
example

comprising
 the
 used
 observations
 and
 the
 expected

diagnoses.
 The
 P/F
 column
 indicates
 whether
 the
√

original
model
passes
(
)
or
fails
(×) the test.

 196

xxviii
 List
of
Tables

Table
14.2
 Running
7
model
mutations
Mi,
where
we
 removed

line
i
in
the
original
model
of
Figure
14.3,
using
the
8

test
cases
from
Table
14.1.

 197

Table
14.3
 Test
 cases
 for
 the
 extended
 two-bulb
 example
 from

Figure
 14.4
 and
 their
 test
 execution
 results.
 In
 gray

we
 indicate
 tests
 that
check
 the
expected
 (fault-free)

behavior
of
the
circuit.

 199

List
of
Contributors

Al-Baddai,
Saad,
Infineon
Technologies
AG,
Germany

Andreu,
Anna
Safont,
University
of
Klagenfurt,
Austria,
Infineon
Technolo
gies
Austria

Azarkhish,
Erfan,
CSEM,
Switzerland

Beckx,
Stephan,
imec,
Belgium

Brackmann,
Varvara,
Fraunhofer
IPMS
CNT,
Germany

Coppola,
Marcello,
STMicroelectronics,
France

Corporaal,
Henk,
Technical
University
of
Eindhoven,
Netherlands

Corradi,
Federico,
imec,
Netherlands

Demarest,
Audde,
Université
Grenoble
Alpes,
CEA-Leti,
France

Dunbar,
Andrea,
CSEM,
Switzerland

Escudero,
Nuria
Pazos,
HE-Arc,
Switzerland

Favre,
Dorvan,
CSEM,
Switzerland,
HE-Arc,
Switzerland

Gaveau,
Nathalie,
Université
de
Reims
Champagne
Ardenne,
France

Höß,
Alfred,
Ostbayerische
Technische
Hochschule
Amberg-Weiden,

Germany

Hintze,
Bernd,
FMD,
Germany

Hochschulz,
Franck,
Fraunhofer
IMS,
Germany

Hollard,
Lilian,
Université
de
Reims
Champagne
Ardenne,
France

Jaysnkar,
Manoj,
imec,
Belgium

Jokic,
Petar,
CSEM,
Switzerland

Kaufmann,
David,
Graz
University
of
Technology,
Austria

Kern,
Roman,
Graz
University
of
Technology,
Austria

xxix

xxx
 List
of
Contributors

Laakko,
Timo,
VTT
Technical
Research
Centre
of
Finland
Ltd,
Finland

Langlet,
Axel,
Université
de
Reims
Champagne
Ardenne,
France

Le
Tiec,
Yannick,
Université
Grenoble
Alpes,
CEA,
LETI,
France

Lenz,
Claus,
Cognition
Factory
GmbH,
Germany

Leuken,
Rene
van,
TU
Delft,
Netherlands

Lilienthal-Uhlig,
Benjamin,
Fraunhofer
IPMS
CNT,
Germany

Liu,
Xing
Lan,
Know-Center
GmbH,
Austria

Ludwig,
Matthias,
Infineon
Technologies
AG,
Germany

Madarevic,
Ivan,
imec,
Belgium

Mateu,
Loreto,
Fraunhofer
IIS,
Germany

Mohimont,
Lucas,
Université
de
Reims
Champagne
Ardenne,
France

Molendijk,
Maarten,
imec,
Netherlands,
Technical
University
of
Eindhoven,

Netherlands

Morits,
Dmitry,
VTT
Technical
Research
Centre
of
Finland
Ltd,
Finland

Narduzzi,
Simon,
CSEM,
Switzerland

Nemouchi,
Fabrice,
Université
Grenoble
Alpes,
CEA,
LETI,
France

Papadoudis,
Jan,
Infineon
Technologies
AG,
Germany

Pierlot,
Clément,
Vranken-Pommery
Monopole,
France

Piton,
 Marcelo
 Rizzo,
 VTT
 Technical
 Research
 Centre
 of
 Finland
 Ltd,

Finland

Prokscha,
Ruben,
Ostbayerische
Technische
Hochschule
Amberg-Weiden,

Germany

Purice,
Dinu,
Cognition
Factory
GmbH,
Germany

Rondeau,
Marine,
Vranken-Pommery
Monopole,
Reims,
France

Salhofer,
Eileen,
Know-Center
GmbH,
Austria,
Graz
University
of
Technol
ogy,
Austria

Schneider,
Mathias,
Ostbayerische
Technische
Hochschule
Amberg-Weiden,

Germany

Sifalakis,
Manolis,
imec,
Netherlands

List
of
Contributors
 xxxi

Spessot,
Alessio,
imec,
Belgium

Steffenel,
Luiz
Angelo,
Université
de
Reims
Champagne
Ardenne,
France

Tazl,
Oliver,
Graz
University
of
Technology,
Austria

Truffier-Boutry,
Delphine,
Université
Grenoble
Alpes,
CEA,
LETI,
France

Vadivel,
Kanishkan,
Technical
University
of
Eindhoven,
Netherlands

van
Schaik,
Gert-Jan,
imec,
Netherlands

Vermesan,
Ovidiu,
SINTEF
AS,
Norway

Vijayan,
Preetha,
TU
Delft,
Netherlands,
imec,
Netherlands

Wandesleben,
Annika
Franziska,
Fraunhofer
IPMS
CNT,
Germany

Wotawa,
Franz,
Graz
University
of
Technology,
Austria

Yousefzadeh,
Amirreza,
imec,
Netherlands

https://taylorandfrancis.com

1

Benchmarking
Neuromorphic
Computing

for
Inference

Simon
Narduzzi1,
Loreto
Mateu2,
Petar
Jokic1,

Erfan
Azarkhish1,
and
Andrea
Dunbar1

1CSEM,
Switzerland

2Fraunhofer
IIS,
Germany

Abstract

In
the
last
decade,
there
has
been
significant
progress
in
the
IoT
domain
due

to
the
advances
in
the
accuracy
of
neural
networks
and
the
industrialization

of
efficient
neural
network
accelerator
ASICs.
However,
 intelligent
devices

will
need
 to
be
omnipresent
 to
create
a
seamless
consumer
experience.
To

make
this
a
reality,
further
progress
is
still
needed
in
the
low-power
embedded

machine
 learning
domain.
Neuromorphic
computing
 is
a
 technology
suited

to
such
low-power
intelligent
sensing.
However,
neuromorphic
computing
is

hampered
today
by
the
fragmentation
of
the
hardware
providers
and
the
diffi
culty
of
embedding
and
comparing
the
algorithms’
performance.
The
lack
of

standard
key
performance
indicators
spanning
across
the
hardware-software

domains
makes
it
difficult
to
benchmark
different
solutions
for
a
given
appli
cation
on
a
fair
basis.
In
this
paper,
we
summarize
the
current
benchmarking

solutions
 used
 in
 both
 hardware
 and
 software
 for
 neuromorphic
 systems,

which
are
in
general
applicable
to
low-power
systems.
We
then
discuss
the

challenges
 in
 creating
 a
 fair
 and
user-friendly
method
 to
benchmark
 such

systems,
before
suggesting
a
clear
methodology
 that
 includes
possible
key

performance
indicators.

Keywords:
 neuromorphic,
 inference,
 accelerators,
 benchmarking,
 low

power,
IoT,
ASIC,
key
performance
indicators.

1

DOI: 10.1201/9781003377382-1
This chapter has been made available under a CC BY-NC 4.0 license.

2
 Benchmarking
Neuromorphic
Computing
for
Inference

1.1
 Introduction

The
performance
necessary
for
consumer
uptake
of
IoT
devices
has
not
been

achieved
yet.
Intelligent
always-on
edge
devices
and
sensors
powered
by
AI

and
running
on
ultra-low
power
devices
require
outstanding
energy
efficien
cies,
low
latency
(real-time),
high-throughput,
and
uncompromised
accuracy.

Neuromorphic
computing
rises
to
the
challenge;
however,
the
neuromorphic

computing
 landscape
 is
 fragmented
 with
 no
 universal
 Key
 Performance

Indicators
 (KPI),
and
comparison
on
a
 fair
basis
 remains
 illusive
 [1].
The

landscape
is
complex:
comparisons
should
consider
various
aspects
such
as

industrial
maturity,
CMOS
technology
implications,
arithmetic
precision,
sil
icon
area,
power
consumption,
and
accuracy
obtained
from
neural
networks

running
 on
 the
 devices.
Comparing
 target
 use-cases
 has
 the
 advantage
 of

looking
at
the
system-wide
requirements
but
adds
additional
complexity.
For

example,
 if
we
 take
 into
 account
 the
 inference
 frequency,
 this
 affects
 the

current
 leakage
 and
 active
power,
 significantly
 impacting
 the
mean
power

consumption
of
the
system.

The
most
commonly
accepted
quantitative
metrics
for
benchmarking
neu
romorphic
hardware
are
TOPS
(Tera
Operations
Per
Second)
for
throughput,

TOPS/W
for
energy
efficiency,
and
TOPS/mm2
for
area
efficiency.
Hardware

metrics
rarely
take
into
account
the
algorithmic
structure.
For
software,
the

performance
of
Machine
Learning
(ML)
algorithms
is
usually
defined
for
a

given
task.
Their
KPIs
generally
target
the
prediction
performance
in
terms
of

reached
objective
(often
accuracy).
Until
recently,
the
KPIs
rarely
accounted

for
 algorithm
 complexity,
 the
 computational
 cost,
 or
 the
 structure
 which

impacts
its
performance
on
a
given
hardware.

Moreover,
 these
 metrics
 are
 only
 applicable
 to
 traditional
 neural
 net
works,
 such
 as
Deep
Neural
Network
 (DNNs),
while
 for
 Spiking
Neural

Networks
 (SNN),
other
metrics
 such
 as
 energy
per
 synaptic
operation
 for

energy
efficiency
are
used.
Indeed,
the
very
nature
of
these
DNNs
and
SNNs

prohibits
a
comparison
based
on
standard
NN
parameters.

The
 main
 questions
 asked
 by
 end-users,
 system
 integrators,
 and
 sen
sor
 manufacturers
 are:
 what
 is
 the
 best
 solution
 for
 the
 application,
 and

whether
 a
 given
 neuromorphic
 processor
 provides
 some
 advantages
 over

the
 state-of-art
 microcontrollers.
 The
 inability
 to
 answer
 these
 questions

thwarts
 the
 industrial
 interest.
This
white
 paper
 provides
 a
 brief
 guide
 to

relevant
metrics
for
fair
benchmarking
of
neuromorphic
inference
accelerator

ASICs,
aiming
 to
help
compare
different
hardware
approaches
 for
various

use-cases.

1.2
 State-of-the-art
in
Benchmarking
 3

The
paper
is
organized
as
follows:
Section
1.2
provides
an
overview
of

the
state-of-the-art
benchmarking
of
inference
accelerators
at
algorithm
and

hardware
levels.
Then
we
look
specifically
at
the
KPIs
which
are
applicable

to
neuromorphic
or
power-sensitive
applications,
explaining
what
influences

the
metrics.
Section
1.3
explains
why
combining
KPIs
for
both
hardware
and

algorithms
 is
essential
 for
 fair
benchmarking
of
neuromorphic
computing.

Finally,
Section
1.4
summarizes
and
concludes
the
paper.

1.2
 State-of-the-art
in
Benchmarking

Benchmarking
of
NNs
 inference
performance
for
a
 task
occurs
at
both
 the

algorithm
 and
 hardware
 levels.
The
 use-case
 provides
 the
 constraints
 and

optimizations
 to
 be
 achieved
 through
 the
 combination
 of
 the
 ML
 model

and
 the
 hardware.
 Currently,
 ML
 algorithms
 and
 hardware
 are
 usually

benchmarked
independently
with
their
own
metrics.

For
ML
 algorithms,
 task-related
metrics
 are
 the
 standard.
Usually,
 the

task-related
metrics
 are
 independent
of
 the
nature
of
 the
ML
model
used,

allowing
 the
 comparison
 between
 the
 algorithmic
 techniques
 used
 to
 per
form
 the
 task:
 while
 the
 algorithm
 may
 change,
 the
 way
 to
 assess
 the

performance
of
 the
 algorithm
on
 a
 certain
 task
 (e.g.,
 image
 classification)

remains
 the
 same.
 This
 methodology
 allows
 rapid
 development
 of
 deep

learning
 techniques
 by
 comparing
 the
 performance
 of
 the
 algorithms
 on

a
 given
 task.
 In
 order
 to
 target
 resource-limited
 IoT
 applications,
metrics

measuring
the
complexity
of
the
model
exist,
such
as
the
number
of
param
eters,
 sparsity,
 depth,
 and
 (floating-point)
 operation
 counts,
 are
 taken
 into

account.
These
KPIs
are
measurable
via
simulation
of
the
model,
and
most

of
 the
 current
 deep
 learning
 libraries
 now
 provide
 functions
 that
 report

these
KPIs.

On
 the
 other
 hand,
 hardware
KPIs
 are
 extracted
 from
 the
 deployment

platform
 while
 running
 a
 certain
 algorithmic
 model.
 They
 can
 be
 either

simulated
or
computed
by
running
the
target
application
on
the
device.
These

KPIs
usually
include
power
consumption
(estimation),
latency,
and
memory

metrics.
In
other
words,
they
provide
performance
results
of
an
ML
algorithm

for
 a
 certain
use
 case
on
 a
 specific
hardware
platform.
This
gives
 a
good

representation
of
how
a
single
device
works
for
a
given
use-case
but
makes

benchmarking
difficult.
In
the
following
sections,
we
present
the
current
state
of-the-art
solutions
to
benchmarking
software
and
hardware
with
a
focus
on

low-power
devices.
A
summary
of
the
standard
KPIs
is
given
in
Table
1.1.

4

Table
1.1
 Relevant
KPIs
for
tasks,
models
and
hardware
domains.
We
also
mention
some
combined
KPIs
to
illustrate
the
inter-dependency
of
the
domains.

Metric
 Definition
 Unit

Objective
function
 Determines
and
measures
the
goal
of
a
given
task

(Balanced)
Accuracy
 Computes
the
ratio
of
correctly
classified
examples
over
the
dataset
(weighted
by
class
occurrences)
 %

Precision
 Computes
the
ratio
of
correctly
classified
samples
per
class
 %

True
Positive
Rate
(TPR)
/
Sensitivity
/
Recall
 Ratio
of
true
positives
over
the
total
number
of
samples
 %

True
Negative
Rate
(TNR)
/
Specificity
 Ratio
of
true
negatives
over
the
total
number
of
samples
 %

Task
KPIs

False
Positive
Rate
(FPR)
 Ratio
of
false
positives
over
the
total
number
of
samples
 %

Mean
average
precision
(mAP)
 The
mean
of
the
average
precision
per
sample
 %

F1-Score
 Harmonic
mean
of
the
precision
and
recall

Receiver
operating
characteristic
(ROC)
 Plot
the
true
positive
rate
against
the
false
positive
rate
of
a
class

Area
under
the
curve
(AOC)
 The
area
under
the
ROC
curve

Metric
 Definition
 Unit

Number
of
multiply-accumulate
(multiply-additions)
operations
 MACs
(MAdds)
Complexity

Number
of
(floating-point)
operations,
often
assumed
equivalent
to
2x
MACs
 (FL)OPs

Parameters
 Total
number
of
parameters
in
the
model
(weights,
biases,
etc.)

Precision
 Precision
of
the
parameters
and
activations
(floating
point,
integer,
etc.)
 bits

Structure
 Number
and
type
of
layers
(and
neurons)

Model
KPIs

Sparsity
 Ratio
of
sparse
values
 %

Maximum
Activation
 Maximum
activation
buffer
of
any
layer
in
the
network
Spike
Count
 Number
of
spikes
emitted

Spike
rate
/
Spike
Frequency
 Rate
at
which
the
spikes
are
emitted
(model
level
or
neuron
level)
 Hz

SynOps
 Number
of
synaptic
operations
produced
by
the
model
at
inference

Metric
 Definition
 Unit

(Idle/Peak)
Power
consumption
 Power
consumption
of
the
system
in
idle/peak
mode
 Watts
(W)

(Peak)
Number
of
operations
 Number
of
operations
per
second
(peak
over
short
period
of
time)
 TOPS
(TOPs/s)

2
Die
size
 Silicon
area
of
the
system
 mm

Memory
size
 On
chip
memory
size
 MB

Memory
bandwidth
 Maximum
data
rate
from
memory
(internal/external)
 bit/s

Energy
per
operation
 Energy
to
perform
one
operation
including
necessary
memory
transfers
 J/op

Hardware
KPIs
 Energy
per
synaptic
operations
 Energy
to
perform
one
synaptic
operation
including
necessary
memory
transfers
 J/SynOps

Mean
energy
per
spike
 Energy
required
to
execute
one
spike
 J/Spike

Energy
efficiency
 Tera
operations
per
second
per
watt
 TOPS/W

2

Area
efficiency
 Tera
operations
per
mm TOPS/mm2

Precision
 Precision
of
the
parameters
and
activations
(floating
point,
integer,
etc.)
 bits

Maximum
network
size
 Size
constraints
of
network
architecture
(number
of
neurons/synapses,
etc.)

Max.
Core
Frequency
 Maximum
frequency
of
the
hardware
 MHz

Metric
 Definition
 Unit

Wake-up
time
 Time
to
load
the
model
in
memory
and
make
it
ready
for
inference
 ms

Latency
 Time
needed
to
perform
inference
 ms

Combined

Inference
rate
/
Throughput
 Number
of
inferences
per
second
 Inference/s
Energy
per
inference
 Energy
consumed
by
the
system
when
running
an
inference
for
a
certain
model
 Joules
(J)

B
enchm

arking
N
eurom

orphic
C
om

puting
for
Inference

1.2
 State-of-the-art
in
Benchmarking
 5

1.2.1
 Machine
Learning

Machine
 learning
 techniques,
and
especially
deep
 learning
algorithms,
are

engineered
 iteratively
 for
 a
 given
 task’s
 performance.
ML
 algorithms
 are

typically
 compared
 in
 terms
 of
 accuracy
 for
 a
 given
 task,
 such
 as
 seg
mentation
 or
 classification
 on
 a
 specified
 dataset.
 The
 task
 performance

comparison
 is
nowadays
well
established
 in
 the
ML
community.
For
clas
sification
tasks,
accuracy,
precision,
recall,
receiver
operating
characteristics

(ROC),
and
area
under
the
curve
(AUC)
are
some
of
the
most
frequently
used

metrics.
A
 typical
example
of
a
 table
 is
 shown
 in
Table
1.2.
We
 refer
 the

reader
 to
 [2,
3,
4]
 for
a
more
detailed
overview
of
 relevant
metrics
 in
ML

tasks.

In
order
to
give
fair
comparison
for
different
domains
of
deep
learning,

training
and
 test
datasets
have
been
established.
According
 to
PapersWith-
Code
[6],
computer
vision-related
tasks
have
the
largest
number
of
datasets,

with
long-established
quasi-standards
such
as
CIFAR
[7],
ImageNet
[8],
and

COCO
[5].
Specific
computer
vision
tasks
have
their
own
standard
datasets,

such
 as
KITTI
 [10]
 for
 autonomous
driving
 and
FDDB
 [11]
 and
WIDER

Face
[12]
for
face
detection
applications.
Natural
Language
Processing
(NLP)

tasks
 are
 the
 second
 most
 popular
 tasks
 for
 machine
 learning,
 with
 near

2000
datasets
comprising
GLUE
[13]
and
SQuAD
[14]
benchmarks.
Audio,

biomedical
 and
 physics-related
 tasks
 equally
 have
 their
 own
 datasets.
 It

should
be
mentioned
that
other
ML
techniques
also
have
their
own
equivalent

dataset
 for
example
 reinforcement
 learning
 (RL)
 tasks
also
have
 their
own

standard
benchmarks
e.g.
OpenAI
Gym
 [15]
which
contains
a
set
of
 tasks

to
 test
 reinforcement
 learning
 algorithms.
 Here
 the
 tasks
 take
 place
 in
 a

virtual
environment,
and
all
the
physics
and
interactions
are
handled
by
the

environment.

Table
1.2
 Accuracy
(Acc)
for
different
object
detection
settings
on
COCO
test-dev.
Adapted

from
[9].

Model
 Acc
 Acc50
 Acc75
 AccS
 AccM
 AccL

YOLOv2
 21.6
 44.0
 19.2
 5.0
 22.4
 35.5

SSD513
 31.2
 50.4
 33.3
 10.2
 34.5
 49.8

DSSD513
 33.2
 53.3
 35.2
 13.0
 35.4
 51.1

RetinaNet
(ours)
 39.1
 59.1
 42.3
 21.8
 42.7
 50.2

6
 Benchmarking
Neuromorphic
Computing
for
Inference

The
importance
of
the
data
set

The
importance
of
the
datasets
can
clearly
be
seen
when
looking
at
SNNs.

Currently,
 the
 performance
 of
 SNNs
 does
 not
 reach
 DNN
 performance.

Research
in
SNNs
has
focused
on
the
structure
of
the
network
and
learning

algorithms
 rather
 than
 on
 task
 performance.
 Thus,
 the
 work
 used
 well-
known
datasets
for
DNNs
and
transformed
them
into
event-based
versions,

such
as
MNIST-DVS,
N-MNIST,
and
N-Caltech101[16].
Only
recently,
with

the
 technology
of
event-based
cameras,
have
SNN
been
applied
 to
adapted

datasets
for
various
use-cases
(e.g.,
DVS128[17]
and
TIDIGITS[18]).
These

new
datasets
will
now
 allow
us
 to
 see
 if
SNNs
 can
 truly
 rival
 their
DNN

counterparts.

The
 standard
 ML
 benchmarking,
 as
 discussed
 above,
 usually
 focuses

on
 accuracy.
This
means
 that
 the
 resources
 needed
 due
 to
 the
 underlying

algorithm
complexity,
and
thus
power
consumption,
are
ignored.
In
resource-
constrained
use
cases
 such
as
 those
 in
edge
ML,
 the
models
are
designed

to
 provide
 a
 computational
 advantage.
 For
 resource-constrained
 systems

assessing
 the
 algorithmic
performance
on
 a
 target
 task,
 algorithms
 can
be

compared
in
terms
of
complexity,
which
determines
the
runtime
constraints.

In
classical
machine
learning,
there
are
well-established
metrics
for
compar
ing
 the
 complexity
of
 algorithms.
For
 example,
decision
 trees
 are
defined

by
the
number
of
nodes
and
depth
of
the
tree
[19].
NNs,
on
the
other
hand,

are
usually
compared
in
terms
of
number
of
parameters
or
number
of
MAC

operations
[20,
21,
22].
We
refer
the
reader
to
the
survey
by
Hu
et
al.
[23]

for
 further
 discussion
 about
model
 complexity.
Table
 1.3
 shows
 a
 classic

representation
of
results
for
an
edge
ML
algorithm,
taking
into
account
the

resources
used:

In
 low
power
 systems,
 the
number
of
operations,
multiply-accumulate

(MAC),
or
multiply-add
(MAD)
are
also
used
as
an
NN
optimization
param
eter.
The
computation
latency
of
an
arithmetic
block
is
also
highly
dependent

Table
1.3
 Representation
of
resource-constrained
KPIs,
adapted
from
[20].

Network
 mAP
 Params
 MAdds
 CPU
inference
time

SSD300
 23.2
 36.1M
 35.2B
 -
SSD512
 26.8
 36.1M
 99.5B
 -
YOLOv2
 21.6
 50.7M
 17.5B
 -
MNetV1+SSDLite
 22.2
 5.1M
 1.3B
 270ms

MNetV2+SSDLite
 22.1
 4.3M
 0.8B
 200ms

1.2
 State-of-the-art
in
Benchmarking
 7

on
 the
 precision
 used
 to
 represent
 the
 weights
 and
 activation
 of
 the
 NN

(i.e.,
8bit
 computations
usually
 run
 at
higher
 frequencies
 than
 for
32bits).

For
 tiny
 devices,
 the
 type
 and
 number
 of
 layers
 of
 neural
 networks
may

be
 a
 metric
 of
 interest,
 as
 some
 hardware
 may
 be
 optimized
 for
 certain

architectures:
some
platforms
support
separable
convolutions,
while
others

do
not.
The
maximum
supported
activation
size
for
a
network
layer
can
also

be
a
limiting
factor
since
some
models
might
exceed
this
constraint
for
some

embedded
platforms.

Standard
SNN
 topologies
 have
 also
 been
 compared
 using
 frameworks

[24].
Among
the
metrics
that
can
be
used
to
compare
SNN
models,
the
type
of

neurons
and
synapses,
the
number
of
emitted
spikes
and
synaptic
operations,

and
the
rate
of
the
SNNs
are
the
most
often
used.

It
 remains
 difficult,
 however,
 to
 compare
 cross-paradigm
 algorithms,

especially
 when
 comparing
 deep
 learning
 with
 emerging
 paradigms
 like

SNNs.
While
some
efforts
have
been
made
to
compare
ANN
and
SNNs
[25],

a
standard
set
of
metrics
has
still
to
be
defined.

1.2.2
 Hardware

An
 increasing
 number
 of
 hardware
 evaluation
 tools
 aim
 at
 benchmarking

ML
 applications
 directly
 on
 the
 hardware.
 For
 example,
QuTiBench
 [37]

presents
 a
 benchmarking
 tool
 that
 takes
 algorithmic
 optimization
 and
 co
design
 into
account.
The
MLMark[27]
benchmark
 targets
ML
applications

running
 on
 MCUs
 at
 the
 edge.
 However,
 both
 QuTiBench
 and
 MLMark

models
 are
 too
 large
 for
 tiny
 applications
 and
 require
 large
 memories,

which
 are
 not
 available
 on
 tiny
 edge
 devices.
 TinyMLPerf
 [28]
 provides

benchmarks
 for
 tiny
 systems
 based
 on
 imposed
 models
 and
 tasks,
 yield
ing
 the
 latency
 and
 speed-related
KPIs.
Submission
of
 results
using
other

network
 architectures
 is
 allowed
 in
 its
 open
 division.
 Further
 tools,
 like

SMAUG
 [29],
 MAESTRO[30]
 and
 Aladdin[31],
 provide
 software
 solu
tions
 to
 emulate
 workloads
 on
 deep-learning
 accelerators
 using
 varying

topologies.

The
power
consumption
of
edge
ML
processing
hardware
 is
of
utmost

interest
 as
 it
 directly
 impacts
 the
 battery
 lifetime
 of
 a
 system.
 Dynamic

power
dominates
in
most
high-throughput
applications,
while
leakage
power

is
only
significant
 in
 low
duty
cycle
modes[32],
where
power
gating,
body

biasing,
 and
 voltage
 scaling
 techniques
 are
 employed
 to
 reduce
 leakage.

Peak
power
consumption
corresponds
to
the
maximum
power
consumption

8
 Benchmarking
Neuromorphic
Computing
for
Inference

measured,
which
becomes
relevant
for
battery- or
energy
harvesting-supplied

applications.

The
throughput
metric
indicates
the
number
of
operations
that
the
hard
ware
can
perform
per
second,
while
latency
is
the
time
needed
to
perform
an

entire
inference.
Note
that
the
peak
throughput
can
usually
not
be
reached
for

all
network
topologies,
and
latency
does
not
directly
scale
with
paralleliza
tion,
as
the
peak
throughput
does[33].
Thus,
latency
is
a
combined
HW/SW

metric.
 It
 can
 be
measured
 by
 running
multiple
 inferences
 and
 afterward

averaging
the
execution
time.
All
parameters
to
run
the
inference
should
be

loaded
before
measuring
the
inference
time.

The
CMOS
 technology
employed
 for
 the
hardware
design
 impacts
 the

die
 size
and
 the
area
efficiency,
and
 thus
also
directly
determines
 its
cost.

Area
efficiency
provides
a
figure
of
merit
between
 the
 throughput,
 limited

by
 hardware
 resources
 and
 frequency,
 that
 can
 be
 achieved
 per
 area.
On-
chip
memory
 size
provides
 a
 raw
 estimation
of
 the
number
of
parameters

of
 the
 NN
 that
 can
 be
 stored
 on
 the
 chip.
 In
 a
 multi-core
 architecture,

usually,
 both
 the
 number
 of
 neurons
 and
 number
 of
 synapses
 per
 core

are
given.

Energy
efficiency
refers
to
the
throughput
that
can
be
achieved
per
watt,

which
 is
 equivalent
 to
 the
 number
 of
 operations
 per
 Joule.
 For
 obtaining

this
KPI,
a
NN
is
deployed
to
an
inference
accelerator,
while
execution
time

and
power
consumption
are
measured
for
performing
inference.
In
the
case

of
NNs,
 the
multiply
and
accumulate
(MAC)
operation
corresponds
 to
 two

operations.
Note
 that
 the
 bit
 precision
 of
 each
 operation
 directly
 impacts

both
 the
accuracy
and
 the
energy
efficiency
 (e.g.,
32bits
float
versus
8bits

integer)
and
must
therefore
be
carefully
traded
off.
Energy
per
operation
and

energy
 per
 neuron
 are
 fair
metrics
 if
 the
 bit
 resolution
 is
 provided
 since

they
 are
 independent
 of
 the
 NN
 algorithm
 employed
 and
 therefore
 only

hardware-related.

Some
hardware
only
supports
a
limited
number
of
layers
and
layer
types

with
 restricted
 dimensions.
 Others
 provide
 optimizations
 and
 specialized

units.
These
optimizations,
while
not
being
directly
comparable,
have
a
strong

impact
on
the
hardware
KPIs.
Furthermore,
power
consumption
is
influenced

by
 the
core
voltage
supply,
which
depends
on
 the
CMOS
 technology
used

for
the
hardware
design.
Thus,
the
energy
efficiency
metric
(TOPS/W)
can
be

misleading
unless
all
hardware
restrictions
are
known.
The
same
applies
to

other
representations
like
GOPS/W.
Typical
display
of
performance
in
terms

of
OPS
 and
 associated
 power
 are
 presented
 in
Table
 1.4.
 and
 from
 these

1.3
 Guidelines
 9

Table
1.4
 Typical
display
of
performance
comparison
of
neuromorphic
hardware
platforms,

adapted
from
[34].

Accelerator
 Type
 Target
application
 Performance

NVIDIA
Jetson
Nano
 GPU
 Embedded
 472
GOPS @ 5 – 10 W

Nvidia
Jetson
TX2
 GPU
 Edge
 1,3
TOPS
@
7,5
W

NVIDIA
Jetson
AGX
Xavier
 GPU
 Edge
 30
TOPS
@
30
W

NVIDIA
Drive
AGX
Pegasus
 GPU
 Automotive
 320
TOPS

Intel
Movidius
Myriad
2
bzw.
Myriad
X
 Chip
 Embedded/Edge
DL/Vision
 4
TOPS @ 1 W
(Myriad
X)

MobilEye
EyeQ4
 Chip
 Automotive
 2.5
TOPS @ 3 W

GreenWaves
GAP8
 Chip
 Battery
powered
AI
 200
MOPS
bis
8
GOPS
@
<100mW

Canaan
Kendryte
K210
 Chip
 Embedded
Vision
&
Audio
 250
GOPS
@
300mW

Google
Coral
Edge
TPU
 Chip
 Edge
 4
TOPS
@
<2,5W

Lattice
sensAI
Stack
 Soft
IP-Core
 Embedded
 <1
mW – 1 W

Videantis
v-MP6000UDXM
 Soft
IP-Core
 Embedded
DL/Vision
 <6,6
TOPS
@
400
MHz

Table
1.5
 Recent
display
of
performance
comparison
of
neuromorphic
hardware
platforms,

adapted
from
[35].

Eyeriss
 ENVISION
 Thinker
 UNPU
 This
work

Technology
 65nm
 28nm
 65nm
 65nm
 65nm

1176k
gates
 1950k
gates
 2950k
gates
 4.0mm×4.0mm
 2695k
gates

Area

(NAND-2)
 (NAND-2)
 (NAND-2)
 (Die
Area)
 (NAND-2)

On-chip
SRAM
(kB)
 181.5
 144
 348
 256
 246

Max
Core
Frequency
(MHz)
 200
 200
 200
 200
 200

Bit
Precision
 16b
 4b/8b/16b
 8b/16b
 1b-16b
 8b

Num.
of
MACs
 168
(16b)
 512
(8b)
 1024
(8b)
 13824
(bit-serial)
 384
(8b)

DNN
Model
 AlexNet
 AlexNet
 AlexNet
 AlexNet
 sparse
AlexNet
 sparse
MobileNet

Batch
Size
 4
 N/A 15
 N/A
 1
 1

Core
Frequency
(MHz)
 200
 200
 200
 200
 200
 200

Bit
Precision
 16b
 N/A
 adaptive
 8b
 8b
 8b

(CONV
only)
 34.7
 47
 - 346
 342.4

Inference/sec

(Overall)
 - - 254.3
 - 278.7
 1470.6

(CONV
only)
 124.8
 1068.2
 - 1097.5
 743.4

Inference/J

(Overall)
 - - 876.6
 - 664.6
 2560.3

terms
the
TOPS/W
metric
can
be
extrapolated.
However,
recent
publications

provide
combined
metrics
as
it
is
shown
in
Table
1.5.

Processing
 hardware
 is
 limited
 by
 the
 supported
 arithmetic
 precisions

for
 parameters
 and
 activations,
 with
 the
 previously
 mentioned
 effects
 on

accuracy.
Some
hardware
implementations
allow
for
several
bit
resolutions,

allowing
to
dynamically
trade-off
throughput,
memory
needs,
and
accuracy.

Generally,
lower
precisions
lead
to
lower
algorithmic
accuracy.

1.3
 Guidelines

Benchmarking
of
ML
applications
cannot
be
tackled
as
a
standalone
problem

at
 the
 level
of
either
only
hardware
or
algorithms.
A
holistic
view
requires

a
wide
 range
of
expertise
and
domains.
 It
 requires
a
multidisciplinary
and

multidimensional
 approach
 considering,
 among
other
 things,
 the
hardware

platform,
the
NN
(model),
and
the
use-case
under
evaluation.
In
order
to
make

the
 right
choices
 for
building
blocks,
 the
 system
 integrator
needs
 to
know

10
 Benchmarking
Neuromorphic
Computing
for
Inference

the
KPIs
for
a
given
use-case
 that
different
NNs
will
be
able
 to
deliver
on

different
hardware
platforms.

This
section
explains
why
a
multidisciplinary
approach
combining
both

algorithms
 and
 hardware
 is
 needed
 to
 avoid
 drawing
 unfair
 and
 mis
leading
 conclusions
 and
 comparisons.
 In
 the
 following,
 we
 first
 describe

what
 is
 unfair
 and
 fair
 benchmarking
 in
 Section
 1.1,
 and
 then
 present
 a

combined
KPI
 approach
 and
 guidelines
 for
 benchmarking
 in
 sections
 1.2

and
1.3.

1.3.1
 Fair
and
Unfair
Benchmarking

With
 the
new
generations
of
hardware
accelerators,
many
optimizations
 in

hardware
try
to
co-optimize
energy
and
performance,
such
as
zero-skipping

components,
in-memory
computing,
and
multi-core
convolution
units.
How
ever,
 it
 is
 sometimes
 unclear
 if
 these
 optimization
 features
 are
 correctly

exploited
 when
 embedding
 complex
 deep
 learning
 models.
 This
 lack
 of

transparency
 in
 the
optimizations
 and
 embedding
processes
of
 the
models

results
in
sub-optimal
deployments
in
the
hardware.
Furthermore,
SDK
doc
umentation
 for
 a
 large
 number
 of
 accelerators
 is
 unclear
 or
 lacks
 critical

content
 for
high-level
developers
and
data
 scientists
 to
perform
 inference-
time
optimizations.
This
makes
 the
embedding
process
and
 the
subsequent

measurements
of
the
KPIs
difficult.

Today,
most
models
deployed
on
hardware
are
trained
on
GPU
machines

and
deployed
on
target
hardware
platforms
using
their
respective
optimiza
tions.
 The
 wide
 variety
 of
 optimizations
 employed
 in
 different
 hardware

implementations
[36,37]
target
specific
use-cases,
which
might
favor
one
or

the
other
(benchmarking)
algorithms
(and
the
underlying
layer
types),
further

complicating
fair
benchmarking.
Thus,
there
are
hardware
solutions
that
out
perform
others
by
orders
of
magnitude
for
specific
tasks
while
providing
poor

performance
 in
others.
This
 type
of
benchmarking
 is
unfair,
as
 the
models

are
 not
 optimized
 and
 thus
 do
 not
 take
 advantage
 fully
 of
 each
 platform.

Their
 KPIs
 are
 comparable,
 but
 the
 benchmarking
 is
 unfair
 with
 respect

to
 the
 hardware,
 as
 a
 specially
 designed
 model
 for
 a
 particular
 platform

could
be
more
performant
than
another
model
deployed
on
another
platform,

see
 Figure
 1.1a.
 This
 shows
 that
 use-case-agnostic
 benchmarking
 can
 be

misleading.
A
platform
might
receive
a
low
score
with
general
benchmarks,

while
performing
excellently
for
a
hardware-tailored
task.

In
contrast,
a
 fair
benchmarking
based
on
a
defined
use-case
 (indepen
dently
 of
 the
 model
 used)
 would
 exploit
 all
 the
 tools
 and
 optimizations

1.3
 Guidelines
 11

provided
 by
 the
 constructor
 to
 exploit
 the
 hardware
 to
 its
 full
 potential.

However,
 the
 results
 of
 the
 benchmarks
 can
 be
 challenging
 to
 compare,

as
 the
 base
model
 and
 optimizations
 are
 different
 between
 the
 compared

hardware,
see
Figure
1.1b.
If
we
compare
with
conventional
benchmarking

of
processors,
 the
benchmarks
do
not
account
for
 the
underlying
optimiza
tions;
a
superscalar
processor
will
be
benchmarked
against
a
non-superscalar

processor
using
the
same
tests.

One
particular
aspect
to
take
into
account
in
the
design
of
an
inference

accelerator
 is
 the
 selection
 of
 the
CMOS
 technology
 and
 embedded
 non
volatile
memory
 (eNVM).
 If
 eNVM
 is
 used
 for
 leveraging
 from
 the
 lack

of
 power
 consumption
 for
 retaining
 the
 stored
 values
 after
 writing,
 the

qualification
of
 the
memory
by
 the
 foundry
 in
 the
selected
CMOS
process

is
 necessary
 for
 its
 industrialization
 and
 therefore
 a
 crucial
 criterion.
The

selection
of
 the
CMOS
process
has
an
 impact
on
 the
cost
and
 size
of
 the

inference
accelerator
IP
 that
needs
 to
be
considered.
Moreover,
 the
CMOS

process
has
 also
 an
 impact
on
 the
 active
power
 and
 leakage
power
of
 the

inference
ASIC
and
needs
 to
be
part
of
 the
 information
provided
for
a
fair

comparison
 between
 inference
 accelerators
 fabricated
 in
 different
 CMOS

processes.

There
still
remain
challenges
in
the
method
of
comparison.
Benchmarking

approaches
 for
 Von-Neumann
 architectures
 are
 relatively
 widespread
 and

standardized
 [38,
39].
By
 contrast,
 clear
benchmarking
methodologies
 for

non-Von-Neumann
architectures
do
not
exist
yet,
making
 them
difficult
 to

compare.
In
particular,
neuromorphic
circuit
design
is
an
emerging
multidis
ciplinary
challenge
that
is
still
in
an
exploratory
phase
making
the
comparison

of
the
underlying
hardware
difficult
due
to
its
variety.
Although
many
existing

techniques
report
significantly
reduced
energy
consumption
figures,
they
still

compare
themselves
to
standard
low-power
microcontrollers.

Benchmarking
should
be
done
at
different
stages
and
abstraction
levels,

considering
various
aspects
such
as
the
algorithm
performance,
the
technical

characteristics,
the
architectural
parameters,
and
the
flexibility
and
amenities

hardware
provides
for
a
specific
use-case.
As
of
today,
different
KPI
values

can
be
obtained
with
the
same
algorithm
and
same
hardware
just
by
changing

the
use-case
from
always-on
to
event-based.

1.3.2
 Combined
KPIs
and
Approaches
for
Benchmarking

The
application
deployment
KPIs
are
at
the
intersection
of
the
performance

indicators
 required
 by
 a
 given
 use-case,
 the
 model
 solving
 the
 task,
 and

12
 Benchmarking
Neuromorphic
Computing
for
Inference

(a)
Unfair
benchmarking
 (b)
Fair
benchmarking

Figure
1.1
 Benchmarking
 fairness.
 (a)
Unfair
benchmarking:
 the
KPIs
 are
 comparable,

but
 the
 benchmarked
 hardware
 platforms
 are
 not
 exploited
 to
 their
 full
 potential.
 (b)
Fair

benchmarking:
the
hardware
platforms
are
exploited
to
their
full
potential,
but
the
resulting

combined
KPIs
(KPICB)
are
not
comparable.

the
hardware
system
on
which
 the
application
 is
deployed,
see
Figure
1.2.

Because
of
 the
 large
number
of
KPIs
 that
can
be
reported,
 it
 is
difficult
 to

have
an
objective
comparison
between
different
platforms,
as
a
platform
can

perform
well
on
certain
KPIs
and
poorly
on
others
(e.g.,
simulating
an
SNN

on
a
CNN
accelerator).
Furthermore,
not
all
platforms
report
the
same
set
of

metrics
and
the
metrics
are
not
usually
convertible
to
each
other
(e.g.,
energy

consumption
is
not
always
relying
only
on
MAC
operations).

Figure
1.2
 Combined
KPIs
for
fair
benchmarking

1.3
 Guidelines
 13

Some
task-related
metrics
heavily
depend
on
the
use-case
and
application

scenarios,
and
should
be
used
only
in
these
specific
cases.
For
example,
the

performance
of
a
keyword
spotting
algorithm
should
not
be
compared
with

the
one
of
an
object
classification
algorithm,
even
 though
both
aim
at
high

accuracy.
For
these
reasons,
a
(small)
set
of
KPIs
are
desirable
which
have

the
following
properties:

•
Orthogonality

•
Reproducibility

•
Objectiveness

•
Use-case
independence

To
 assess
 the
 performance
 of
 NN
 models
 running
 on
 hardware
 for
 a

certain
 use-case,
 the
 KPIs
 should
 be
 combined,
 as
 shown
 in
 Table
 1,
 to

express
 the
 performance
 of
 the
 application
 on
 the
 hardware
 platform.
 In

this
 regard,
 Fra
 et
 al.
 [40]
 have
 proposed
 a
multi-metric
 approach
 taking

into
account:
1)
accuracy,
2)
number
of
parameters
of
 the
NN,
3)
memory

footprint
in
MB.
These
three
metrics
provide
an
overview
of
the
NNs:
which

one
 provides
 better
 results
 in
 the
 classification
 task
 and
which
 one
 has
 a

smaller
memory
footprint.
Further
metrics
which
should
now
be
taken
into

consideration
are:
4)
Energy
consumption
per
 inference,
5)
 the
number
of

operations
per
second.

The
 resulting
KPIs
 of
 the
 deployment
 could
 also
 contain
 an
 indicator

about
the
flexibility
of
the
hardware
accelerator.
For
comparison
in
terms
of

flexibility,
it
is
necessary
to
indicate
the
supported
layer
types,
the
supported

bit
resolution
for
 inputs,
parameters
and
activation
functions,
and
 the
sizes

of
the
kernel
filters.
By
combining
metrics
that
depend
on
the
NN
algorithm

and
 the
hardware,
a
 fair
comparison
 for
a
use-case
can
be
achieved
 if
 the

number
of
parameters
of
 the
NN
 is
optimized
and
 the
dataset
employed
 is

the
same.

1.3.3
 Outlook
:
Use-case
Based
Benchmarking

A
solution
to
the
afore-mentioned
challenge
would
be
to
propose
a
use-case
dependent
benchmarking
that
does
not
rely
at
all
on
the
model
architectures

of
the
given
model.
For
an
industrial
setting,
it
is
interesting
to
obtain
high

performance
independently
of
the
techniques
used.
What
matters
is
that
the

application
performs
within
the
given
constraints
of
the
use-case.

A
 solution
 is
 illustrated
 in
 Figure
 1.3.
 In
 this
 paradigm,
 a
 use-case

would
be
defined
by
some
target
KPIs
to
reach,
such
as
minimum
accuracy

14
 Benchmarking
Neuromorphic
Computing
for
Inference

Figure
1.3
 Benchmarking
pipeline
based
on
use-cases.
An
automated
search
finds
the
best

possible
model
exploiting
 the
performance
offered
by
each
 target
hardware
platforms.
The

resulting
combined
KPIs
are
comparable.

and
 maximum
 energy.
 To
 benchmark
 the
 hardware,
 an
 automated
 search

technique,
 such
 as
Network
Architecture
Search
 (NAS),
would
 try
 to
find

the
model
that
fits
the
target
hardware
and
then
optimize
the
model
further

to
improve
the
latency
or
memory
use.
This
type
of
benchmarking
would
be

use-case
dependent
and
model
agnostic,
beside
 the
meta-model
composing

the
automated
search.
Such
benchmarking
method
would
output
comparable

(combined)
KPIs,
making
the
comparison
of
hardware
and
the
selection
of

the
best
one
possible.
Of
course,
an
extensive
benchmarking
suite
covering

several
use-cases
(audio-based,
image-based,
classification,
regression,
etc.)

is
necessary
to
ensure
fairness
across
domains.

Following
the
methodology
presented,
there
are
some
guidelines
to
follow

in
order
to
ensure
that
the
extracted
KPIs
respect
the
properties
presented
in

the
section
1.2.
In
addition
to
measuring
the
combined
KPIs,
it
is
necessary

to
provide
information
on
the
entire
deployment
pipeline.
Indeed,
the
KPIs

related
 to
 the
solved
 task,
 the
 (final)
model
deployed
on
 the
hardware,
 the

characteristics
of
the
hardware,
and
finally,
the
combined
KPIs
based
on
the

previous
information
can
be
calculated.

The
use-cases
should
be
clearly
defined
and
cover
several
machine
learn
ing
 tasks.
Although
 the
methodology
 can
 be
 applied
 to
 a
 single
 use-case

1.4
 Conclusion
 15

to
 compare
 a
 few
hardware
platforms,
 the
 industrial
 application
 cases
 are

generally
broad.
It
is,
therefore,
preferable
to
select
a
neuromorphic
platform

that
offers
the
best
performance
for
a
wide
range
of
tasks.
This
can
only
be

achieved
with
a
benchmarking
tool
that
is
diversified
in
terms
of
the
tasks
to

be
solved.

The
 methodology
 also
 requires
 a
 complete
 software
 tool
 chain
 to

have
 rapid
 and
 reproducible
 deployments
 of
 the
 NNs
 on
 the
 hardware.

Quantization-aware
 training
 tools
 or
 even
 better
 hardware-aware
 training

tools
 compatible
 with
 the
 target
 hardware
 platforms
 are
 beneficial.
 The

efficient
execution
of
algorithms
does
not
only
depend
on
the
hardware
archi
tecture,
 like
 the
processing
 resources,
but
equally
on
an
efficient
mapping

strategy
that
schedules
the
hardware
resources
for
high
throughput
and
low

power
consumption.
Depending
on
 the
architecture,
algorithm-to-hardware

compilers
or
on-board
schedulers
ensure
this
optimization.

Finally,
 adequate
 documentation
 about
 the
 hardware
 technology,
 the

search
algorithm
used
for
benchmarking,
the
use-case
realized
by
the
bench
mark,
 and
 the
 interpretation
 of
 the
 results
 provided
 by
 the
 benchmark
 is

necessary
to
empower
the
user
in
its
selection
of
the
most
suitable
hardware

platform.

1.4
 Conclusion

In
this
paper,
we
have
summarized
the
standard
techniques
for
benchmarking

NN
accelerator
hardware
and
ML
software,
in
addition,
we
have
specified
the

KPIs
 that
are
most
relevant
for
resource
aware
 inference.
We
have
 through

example
shown
that,
in
ultra-low-power
or
neuromorphic
systems,
separating

hardware
and
ML
algorithms
and
use-case
parameters
leads
to
an
ineffective

means
of
comparison.
Only
when
considering
these
three
in
a
holistic
manner,

can
system
be
benchmarked.
Integrating
KPIs
that
allow
benchmarking
at
the

system
level
in
this
way
is
complex.
It
is
important
to
do
this
as
the
inability
to

benchmark
the
IoT
systems
today
is
reducing
the
uptake
by
industry.
In
this

paper,
we
have
proposed
a
benchmarking
methodology
based
on
use-cases

where
the
ML
algorithm
is
adapted
to
the
hardware
to
allow
fair
comparison.

Finally,
we
provide
a
guideline
on
what
aspects
are
 important
 to
 take
 into

account
while
developing
such
benchmarking
tool
to
ensure
that
the
resulting

KPIs
are
comparable.

16
 Benchmarking
Neuromorphic
Computing
for
Inference

Acknowledgements

This
 work
 is
 supported
 through
 the
 project
 ANDANTE.
 ANDANTE
 has

received
funding
from
the
ECSEL
Joint
Undertaking
(JU)
under
grant
agree
ment
 No
 876925.
 The
 JU
 receives
 support
 from
 the
 European
 Union’s

Horizon
 2020
 research
 and
 innovation
 programme
 and
 France,
 Belgium,

Germany,
Netherlands,
Portugal,
Spain,
Switzerland.
ANDANTE
has
 also

received
 funding
 from
 the
 German
 Federal
 Ministry
 of
 Education
 and

Research
(BMBF)
under
Grant
No.
16MEE0116.
The
authors
are
responsible

for
the
content
of
this
publication.

References

[1]
M.
 Davies.
 Benchmarks
 for
 progress
 in
 neuromorphic
 computing.

Nature
Machine
Intelligence,
1(9):386–388,
2019.

[2]
B.
 J.
 Erickson
 and
 F.

Kitamura.
 Magician’s
 corner:
 9.
 performance

metrics
for
machine
learning
models.
Radiology:
Artificial
Intelligence,

3(3),
2021.

[3]
A.
 Rácz,
 D.
 Bajusz,
 and
 K.
 Héberger.

Multi-level
 comparison
 of

machine
learning
classifiers
and
their
performance
metrics.
Molecules,

24(15),
2019.

[4]
F.
Pedregosa,
G.
Varoquaux,
A.
Gramfort,
V.
Michel,
B.
Thirion,
O.

Grisel,
M.
Blondel,
P.
Prettenhofer,
R.
Weiss,
V.
Dubourg,
et
al.
Scikit
learn:
Machine
 learning
 in
 python.
 the
 Journal
 of
machine
Learning

research,
12:2825–2830,
2011.

[5]
T.-Y.
Lin,
M.
Maire,
S.
Belongie,
J.
Hays,
P.
Perona,
D.
Ramanan,
P.

Dollár,
and
C.
L.
Zitnick.
Microsoft
coco:
Common
objects
in
context.

In
European
conference
on
computer
vision,
pages
740–755.
Springer,

2014.

[6]
https://paperswithcode.com.
Website,
2021.

[7]
A.
Krizhevsky,
G.
Hinton,
 et
 al.
Learning
multiple
 layers
of
 features

from
tiny
images.
2009.

[8]
 J.
Deng,
W.
Dong,
R.
Socher,
L.-J.
Li,
K.
Li,
and
L.
Fei-Fei.
Imagenet:

A
 large-scale
 hierarchical
 image
 database.
 In
 2009
 IEEE
 conference

on
 computer
 vision
 and
 pattern
 recognition,
 pages
 248–255.
 Ieee,

2009.

[9]
T.-Y.

Lin,
 P.
 Goyal,
 R.
 Girshick,
 K.
 He,
 and
 P.
 Dollár.
 Focal
 loss

for
 dense
 object
 detection.
 In
Proceedings
 of
 the
 IEEE
 international

conference
on
computer
vision,
pages
2980–2988,
2017.

https://www.paperswithcode.com

References
 17

[10]
A.
 Geiger,
 P.

Lenz,
 and
 R.
 Urtasun.
 Are
 we
 ready
 for
 autonomous

driving?
 the
 kitti
 vision
 benchmark
 suite.
 In
 2012
 IEEE
 conference

on
computer
vision
and
pattern
recognition,
pages
3354–3361.
 IEEE,

2012.

[11]
V.
Jain
and
E.
Learned-Miller.
Fddb:
A
benchmark
 for
 face
detection

in
unconstrained
settings.
Technical
 report,
UMass
Amherst
 technical

report,
2010.

[12]
S.
Yang,
P.
Luo,
C.-C.
Loy,
and
X.
Tang.
Wider
face:
A
face
detection

benchmark.
In
Proceedings
of
the
IEEE
conference
on
computer
vision

and
pattern
recognition,
pages
5525–5533,
2016.

[13]
A.
 Wang,
 A.
 Singh,
 J.
 Michael,
 F.

Hill,
 O.
 Levy,
 and
 S.
 R.
 Bow
man.
Glue:
A
multi-task
benchmark
and
analysis
platform
 for
natural

language
understanding.
arXiv
preprint
arXiv:1804.07461,
2018.

[14]
P.

Rajpurkar,
 J.
 Zhang,
 K.
 Lopyrev,
 and
 P.
 Liang.
 Squad:
 100,000+

questions
 for
 machine
 comprehension
 of
 text.
 arXiv
 preprint

arXiv:1606.05250,
2016.

[15]
G.
Brockman,
V.
Cheung,
L.
Pettersson,
J.
Schneider,
J.
Schulman,
J.

Tang,
and
W.
Zaremba.
Openai
gym.
arXiv
preprint
arXiv:1606.01540,

2016.

[16]
G.
 Orchard,
 A.
 Jayawant,
 G.
 K.
 Cohen,
 and
 N.
 Thakor.

Converting

static
image
datasets
to
spiking
neuromorphic
datasets
using
saccades.

Frontiers
in
neuroscience,
9:437,
2015.

[17]
A.
 Amir,
 B.
 Taba,
 D.
 Berg,
 T.
 Melano,
 J.
 McKinstry,
 C.
 Di
 Nolfo,

T.
Nayak,
A.
Andreopoulos,
G.
Garreau,
M.
Mendoza,
 et
 al.
A
 low

power,
fully
event-based
gesture
recognition
system.
In
Proceedings
of

the
IEEE
conference
on
computer
vision
and
pattern
recognition,
pages

7243–7252,
2017.

[18]
 J.
Anumula,
D.
Neil,
T.
Delbruck,
and
S.-C.
Liu.
Feature
representations

for
neuromorphic
audio
spike
streams.
Frontiers
in
neuroscience,
12:23,

2018.

[19]
H.
Buhrman
and
R.
De
Wolf.
Complexity
measures
and
decision
 tree

complexity:
 a
 survey.
 Theoretical
 Computer
 Science,
 288(1):21–43,

2002.

[20]
M.
 Sandler,

A.
 Howard,
 M.
 Zhu,
 A.
 Zhmoginov,
 and
 L.-C.
 Chen.

Mobilenetv2:
Inverted
residuals
and
linear
bottlenecks.
In
Proceedings

of
 the
 IEEE
 conference
 on
 computer
 vision
 and
 pattern
 recognition,

pages
4510–4520,
2018.

[21]
N.
 Ma,
 X.
 Zhang,
 H.-T.

Zheng,
 and
 J.
 Sun.
 Shufflenet
 v2:
 Practi
cal
guidelines
 for
efficient
cnn
architecture
design.
 In
Proceedings
of

18

 Benchmarking
Neuromorphic
Computing
for
Inference

the
European
conference
on
computer
vision
(ECCV),
pages
116–131,

2018.

[22]
M.
 Tan
 and
 Q.
 Le.
 Efficientnet:
 Rethinking
 model
 scaling
 for
 con
volutional
 neural
 networks.
 In
 International
 conference
 on
 machine

learning,
pages
6105–6114.
PMLR,
2019.

[23]
X.
Hu,
L.
Chu,
J.
Pei,
W.
Liu,
and
J.
Bian.
Model
complexity
of
deep

learning:
A
survey.
Knowledge
and
Information
Systems,
63(10):2585–

2619,
2021.

[24]
S.
R.
Kulkarni,
M.
Parsa,
 J.
P.
Mitchell,
and
C.
D.
Schuman.
Bench
marking
the
performance
of
neuromorphic
and
spiking
neural
network

simulators.
Neurocomputing,
447:145–160,
2021.

[25]
S.
Narduzzi,
S.
A.
Bigdeli,
S.-C.
Liu,
and
L.
A.
Dunbar.
Optimizing

the
consumption
of
spiking
neural
networks
with
activity
regularization.

In
 ICASSP
 2022-2022
 IEEE
 International
 Conference
 on
 Acoustics,

Speech
and
Signal
Processing
(ICASSP),
pages
61–65.
IEEE,
2022.

[26]
M.
Blott.
Benchmarking
Neural
Networks
on
Heterogeneous
Hardware.

PhD
thesis,
Trinity
College,
2021.

[27]
P.

Torelli
 and
 M.
 Bangale.
 Measuring
 inference
 performance
 of

machine-learning
 frameworks
on
edge-class
devices
with
 the
mlmark

benchmark.
 Techincal
 Report.
 Available
 online:
 https://www.
 eembc.

org/techlit/articles/MLMARK-WHITEPAPERFINAL-1.
 pdf
 (accessed

on
5
April
2021),
2021.

[28]
C.
 R.
 Banbury,

V.
 J.
 Reddi,
 M.
 Lam,
 W.
 Fu,
 A.
 Fazel,
 J.
 Holle
man,
X.
Huang,
R.
Hurtado,
D.
Kanter,
A.
Lokhmotov,
et
al.
Bench
marking
 tinyml
 systems:
 Challenges
 and
 direction.
 arXiv
 preprint

arXiv:2003.04821,
2020.

[29]
S.
Xi,
Y.
Yao,
K.
Bhardwaj,
P.
Whatmough,
G.-Y.
Wei,
and
D.
Brooks.

Smaug:
End-to-end
full-stack
simulation
infrastructure
for
deep
learning

workloads.
ACM
Transactions
on
Architecture
and
Code
Optimization

(TACO),
17(4):1–26,
2020.

[30]
H.
 Kwon,
 P.

Chatarasi,
 M.
 Pellauer,
 A.
 Parashar,
 V.
 Sarkar,
 and
 T.

Krishna.
Understanding
reuse,
performance,
and
hardware
cost
of
dnn

dataflows:
A
data-centric
approach
using
maestro.
2020.

[31]
Y.
S.
Shao,
B.
Reagen,
G.-Y.
Wei,
and
D.
Brooks.
Aladdin:
A
pre-rtl,

power-performance
 accelerator
 simulator
 enabling
 large
design
 space

exploration
of
customized
architectures.
In
2014
ACM/IEEE
41st
Inter
national
Symposium
on
Computer
Architecture
(ISCA),
pages
97–108.

IEEE,
2014.

https://www.eembc.org
https://www.eembc.org

References
 19

[32]
F.
Fallah
and
M.
Pedram.
Standby
and
active
leakage
current
control
and

minimization
 in
cmos
vlsi
circuits.
IEICE
 transactions
on
electronics,

88(4):509–519,
2005.

[33]
 J.
Hanhirova,
T.
Kämäräinen,
S.
Seppälä,
M.
Siekkinen,
V.
Hirvisalo,

and
A.
Ylä-Jääski.
Latency
and
 throughput
characterization
of
convo
lutional
neural
networks
for
mobile
computer
vision.
In
Proceedings
of

the
9th
ACM
Multimedia
Systems
Conference,
pages
204–215,
2018.

[34]
M.
Breiling,
R.
Struharik,
and
L.
Mateu.
Machine
learning:
Elektronen
hirn
4.0.
2019.

[35]
Y.-H.
Chen,
T.-J.
Yang,
 J.
Emer,
 and
V.

Sze.
Eyeriss
 v2:
A
 flexible

accelerator
for
emerging
deep
neural
networks
on
mobile
devices.
IEEE

Journal
 on
 Emerging
 and
 Selected
 Topics
 in
 Circuits
 and
 Systems,

9(2):292–308,
2019.

[36]
P.
Jokic,
E.
Azarkhish,
A.
Bonetti,
M.
Pons,
S.
Emery,
and
L.
Benini.

A
construction
kit
 for
efficient
 low
power
neural
network
accelerator

designs.
arXiv
preprint
arXiv:2106.12810,
2021.

[37]
M.
Blott,
L.
Halder,
M.
Leeser,
and
L.
Doyle.
Qutibench:
Benchmarking

neural
networks
on
heterogeneous
hardware.
ACM
Journal
on
Emerging

Technologies
in
Computing
Systems
(JETC),
15(4):1–38,
2019.

[38]
EMBCC
ULPMark:
https://www.eembc.org/ulpmark/.
Website,
2021.

[39]
EMBCC
CoreMark:
https://www.eembc.org/coremark/.
Website,
2021.

[40]
V.
Fra,
E.
Forno,
R.
Pignari,
T.
Stewart,
E.
Macii,
and
G.
Urgese.
Human

activity
recognition:
suitability
of
a
neuromorphic
approach
for
on-edge

aiot
applications.
Neuromorphic
Computing
and
Engineering,
2022.

https://www.eembc.org
https://www.eembc.org

https://taylorandfrancis.com

2

Benchmarking
the
Epiphany
Processor

as
a
Reference
Neuromorphic
Architecture

Maarten
Molendijk1,2,
Kanishkan
Vadivel2,
Federico
Corradi2,1,

Gert-Jan
van
Schaik1,
Amirreza
Yousefzadeh1,
and
Henk
Corporaal2

1imec,
Netherlands

2Technical
University
of
Eindhoven,
Netherlands

Abstract

This
short
article
explains
why
 the
Epiphany
architecture
 is
a
proper
refer
ence
for
digital
large-scale
neuromorphic
design.
We
compare
the
Epiphany

architecture
with
several
modern
digital
neuromorphic
processors.
We
show

the
 result
of
mapping
 the
binary
LeNet-5
neural
network
 into
 few
modern

neuromorphic
architectures
and
demonstrate
the
efficient
use
of
memory
in

Epiphany.
 Finally,
we
 show
 the
 results
 of
 our
 benchmarking
 experiments

with
Epiphany
 and
propose
 a
 few
 suggestions
 to
 improve
 the
 architecture

for
neuromorphic
applications.
Epiphany
can
update
a
neuron
on
average
in

120ns
which
is
enough
for
many
real-time
neuromorphic
applications.

Keywords:
neuromorphic
processor,
 spiking
neural
network,
bio-inspired

processing,
artificial
intelligence,
edge
AI.

2.1
 Introduction
and
Background

Neuromorphic
sensing
and
computing
systems
mimic
the
functions
and
the

computational
primitives
of
the
nervous
systems.
Nevertheless,
state-of-the
art
Deep
Neural
Networks
(DNNs)
have
exceeded
the
accuracy
of
biological

brains
(including
the
human
brain)
in
specific
tasks
like
video/audio
process
ing,
 decision-making,
 planning
 and
 playing
 games.
However,
 all
 of
 these

21

DOI: 10.1201/9781003377382-2
This chapter has been made available under a CC BY-NC 4.0 license.

22
 Benchmarking
the
Epiphany
Processor
as
a
Reference
Neuromorphic

tasks
 are
 done
 without
 considering
 one
 of
 the
 main
 restrictions
 in
 bio
evolution,
the
"energy
consumption".
The
biological
restrictions
pushed
the

evolution
 toward
 power-efficient
 algorithms
 and
 architectures.
The
 human

brain
 is
an
extreme
example
 that
consumes
a
considerable
portion
 (around

20%)
 of
 the
 human
 body’s
 energy
while
 it
 has
 less
 than
 3%
 of
 the
 total

weight.

Even
 though
 the
 elements
of
 the
biological
 fabric
 in
 the
brain
 are
not

as
fast
and
arguably
as
power
efficient
as
our
modern
silicon
 technologies,

no
computing
platform
can
get
close
 to
 the
compute
efficiency
of
 the
bio
logical
brain
for
processing
natural
signals.
The
brain
 is
a
perfect
example

of
algorithm-hardware
co-optimization.
As
mentioned,
 the
ultimate
goal
of

bio-inspired
processing
is
to
process
the
raw
sensory
data
with
the
minimum

amount
of
power
consumption.

The
Epiphany
architecture
was
first
introduced
back
in
2009
[1]
as
a
high-
performance
 energy-efficient
many-core
 architecture
 suitable
 for
 real-time

embedded
 systems.
 Epiphany’s
 architecture
 contains
 many
 RISC
 proces
sor
 cores
 connected
 with
 a
 packet-based
 mesh
 Network-On-Chip
 (NoC).

Figure
5.1
shows
the
big
picture
of
the
Epiphany’s
architecture.
This
archi
tecture
 is
 different
 from
 the
 mainstream
 von-Neumann
 type
 multi-core

processors
 since
 in
Epiphany,
 the
 cores
 are
 connected
 directly
 via
 a
NoC

Figure
2.1
 Overall
scalable
architecture
of
Epiphany-III
[1].

2.1
 Introduction
and
Background
 23

without
using
 a
 single
 shared
memory
 to
 communicate.
The
mesh
packet

switch
network
in
Epiphany
results
in
highly
efficient
local
data
movement

between
 neighbouring
 processors.
However,
 it
 introduces
 a
 possible
 non
deterministic
behaviour
as
the
order
of
the
packets
in
the
mesh
network
is
not

guaranteed.
Despite
 implementing
a
synchronization
mechanism,
 the
RISC

processors
work
 individually,
and
 the
architecture
 is
not
designed
for
strict

synchronous
execution
 (since
 it
harms
 the
scalability
 feature).
Hence,
pro
gramming
epiphany
with
a
conventional
programming
model
is
challenging.

Therefore,
Epiphany
has
never
gained
enough
attention
 in
 the
mainstream

general-purpose
processor
market.

In
2011,
Adapteva,
a
kick-starter
company,
introduced
the
first
processor

based
on
the
Epiphany
architecture
(Figure
5.2).
It
contains
a
16
RISC
core

Epiphany
chip,
expandable
 to
be
used
 in
a
256
multi-chip
platform
 (4096

cores
 in
 total).
The
 chip
 is
 implemented
 in
 a
 65nm
 technology
 node
 and

consumes
less
than
2
Watts.
A
few
months
later,
Adapteva
introduced
a
bigger

version
of
the
processor
with
64
cores.
The
latest
version
of
the
processor
[2]

was
announced
in
2016
and
contains
1024
cores.

Despite
the
failure
of
Epiphany
in
the
general-purpose
compute
domain,

it
has
a
very
similar
architecture
to
the
neuromorphic
processors
which
were

introduced
a
few
years
later
(e.g.,
SpiNNaker
in
2013
[3],
IBM
TrueNorth
in

2015
[4],
Intel
Loihi
in
2018
[5],
BrainChip
AKIDA
in
2019
[6]
and
GML

NeuronFlow
 in
 2020
 [7]).
The
main
 goal
 of
 neuromorphic
 engineering
 is

to
build
a
brain-inspired
processor
 to
execute
variations
of
Spiking
Neural

Figure
2.2
 Adapteva
 launched
an
$99
Epiphany-III
based
single
board
computer
as
 their

first
product.

24
 Benchmarking
the
Epiphany
Processor
as
a
Reference
Neuromorphic

Network
(SNN)
algorithms
for
real-time
sensory
signal
processing.
Program
ming
to
implement
neural
networks
using
conventional
programming
models

and
compilers
is
difficult
(and
inefficient),
which
resulted
in
a
new
paradigm

shift
in
the
programming
models.
A
neural
network
usually
contains
neurons

(as
the
processing
unit)
and
weighted
synapses/axons
to
connect
the
neurons

in
a
graph
like
architecture.
Therefore,
several
new
graph-based
programming

models
 (like
 TensorFlow
 from
 Google
 and
 PyTorch
 from
 Facebook)
 are

introduced
to
efficiently
execute
such
applications.

The
architecture
is
made
up
of
eNode
processing
cores
and
eMesh
routers

to
 build
 connectivity
 networks.
 Each
 eNode
 contains
 a
 RISC
 processor

(1GHz,
with
an
integer
and
a
floating-point
ALU
and
a
64-word
register
file),

4
memory
banks
(each
64b
×
1024w)
to
store
data
(like
synaptic
weights
and

neuron
states),
and
the
instructions
(like
the
neuron
model)
locally,
a
Network

Interface
(NI),
Direct
Memory
Access
(DMA)
to
handle
incoming/outgoing

packets,
a
 few
general
 timers
(for
example
 to
 implement
periodic
 leakage)

and
a
memory
BUS
interconnect
which
allows
access
to
each
memory
bank

simultaneously.
 The
 eMesh
 routers
 handle
 3
 separate
 networks.
 A
 high-
performance
 network
 for
 sending
 one
 packet
 of
 data
 (spike)
 to
 the
 other

cores
with
the
maximum
speed
of
one
packet
per
clock
cycle)
and
two
lower

performance
networks
(one
for
reading
from
another
core’s
memory
and
one

for
off-chip
communication)
are
introduced
to
make
the
programming
easier.

These
 programming
models
 allow
 for
 easy
 splitting
 of
 the
 computational

load
over
 several
processing
units
 and
mapping
 synaptic
connectivity
 into

the
NoC.
Therefore,
they
are
a
good
fit
for
architectures
like
Epiphany.

Like
 the
other
neuromorphic
architectures,
Epiphany
 is
extremely
scal
able,
performs
near
memory
processing,
is
optimized
for
local
data
movement

(local
 connectivity)
 and
 asynchronous
 processing.
 The
 eMesh
 network
 is

flexible
enough
to
time
multiplex
any
arbitrary
synaptic
connections.
Besides,

the
eCores
are
flexible
enough
to
implement
different
neuron
models.
Most

importantly,
 the
 architecture
 is
 straightforward,
which
 allows
 easy
 design

space
exploration
and
benchmarking.
Finally,
unlike
all
the
other
neuromor
phic
platforms
it
is
accessible
and
affordable
which
makes
it
a
suitable
plat
form
for
benchmarking
new
neuromorphic
platforms
and
innovative
ideas.

2.2
 Comparison
with
a
Few
Well-Known
Digital

Neuromorphic
Platforms

Probably
the
SpiNNaker
architecture
[3]
(introduced
in
2013)
is
the
most
sim
ilar
neuromorphic
platform
to
Epiphany.
SpiNNaker
contains
several
ARM

2.2
 Comparison
with
a
Few
Well-Known
Digital
Neuromorphic
Platforms
 25

cores
as
the
processing
units
connected
through
an
advanced
asynchronous

packet-switched
network.

Therefore,
 like
Epiphany,
 the
 processing
 core
 is
 very
flexible
 and
 can

implement
different
neuron
models
with
various
mapping
schemes.
Unlike

Epiphany,
 each
 SpiNNaker
 chip
 contains
 only
 one
 router,
 with
 a
 higher

complexity
 level
 than
 the
Epiphany’s
eMesh
router.
The
SpiNNaker’s
NoC

allows
for
multi-casting
(using
source-based
addressing
with
a
programmable

routing
table),
which
is
an
optimization
on
top
of
the
plain
mesh
NoC.

Contrary
 to
SpiNNaker,
 IBM
TrueNorth
 [4]
 (introduced
 in
2015)
uses

a
plain
mesh
packet-switched
network
but
with
optimized
processing
cores.

Therefore,
the
NoC
in
IBM
TrueNorth
is
very
similar
to
the
Epiphany.
Each

core
 in
 the
 TrueNorth
 architecture
 is
 fixed
 to
 emulate
 256
 neurons,
 and

each
neuron
with
256
 input
 synapse
 (a
crossbar
architecture)
and
a
 single

output
axon
(connectable
to
256
neurons
in
any
other
core).
The
cores
update

all
 the
neurons
 every
1ms.
The
 synaptic
weights
 are
 limited
 to
be
binary.

This
optimized
processing
core
resulted
in
an
ultra-low-power
neuron
update

(about
26pJ).
However,
having
such
constrained
cores
makes
the
deployment

of
many
neuromorphic
applications
either
impossible
or
inefficient.

In
 Intel
Loihi
 [5]
 (introduced
 in
2018),
 the
processing
 cores
 are
more

flexible
 than
TrueNorth,
 and
 the
 interconnect
 is
 a
 simple
 packet-switched

mesh.
Each
core
in
Loihi
emulates
1024
neurons
with
a
fixed
neuron
model,

but
 the
 number
 of
 input
 synapses
 to
 each
 neuron
 and
 their
 resolution
 is

flexible
(1kb
of
synaptic
memory
per
neuron).
The
number
of
output
axons
is

also
flexible,
and
one
axon
can
be
shared
among
many
neurons.
Loihi
cores

accelerate
a
bio-inspired
 learning
algorithm.
The
cost
of
 these
flexibility
 is

having
a
higher
neuron
update
energy
(about
80pJ)
in
comparison
with
the

TrueNorth
(while
using
a
better
technology
node).

In
 addition
 to
 the
 three
 previous
 research
 platforms,
many
 companies

started
 to
 build
 neuromorphic
 processors
 for
 commercial
 purposes.
 For

example,
BrainChip
AKIDA
 (introduced
 in
 2019)
 and
GML
NeuronFlow

(introduced
in
2020)
have
similar
architectures
to
Loihi.

One
of
the
features
in
the
research
of
neuromorphic
chips
is
asynchronous

processing
and
communication.
In
Loihi,
the
asynchronization
level
is
inside

the
core’s
 logic
blocks.
 In
SpiNNaker
and
TrueNorth,
 the
cores
are
work
ing
 asynchronously
with
 each
 other
 in
 a
Globally
Asynchronous
 Locally

Synchronous
(GALS)
structure.
In
Epiphany,
NeuronFlow,
and
AKIDA,
the

asynchronousity
 level
 is
 pushed
 toward
 the
 boundaries
 of
 the
 chip
 (asyn
chronous
 chip
 to
 chip
 connectivity).
 Despite
 where
 is
 the
 boundary
 of

asynchronousity,
it
is
essential
for
scalability.

26
 Benchmarking
the
Epiphany
Processor
as
a
Reference
Neuromorphic

Nevertheless,
 in
 all
 the
 mentioned
 architectures,
 the
 cores
 still
 work

individually
with
 each
 other.
Therefore,
 the
 implementation
 of
 a
 globally

synchronous
algorithm
is
not
optimal
in
neuromorphic
architectures.

2.3
 Major
Challenges
in
Neuromorphic
Architectures

Since
neuromorphic
architecture
design
aims
to
follow
the
principles
of
bio
inspired
processing
mechanism
in
the
available
nano-electronic
technologies,

facing
several
challenges
that
result
from
the
platform
constraints
is
normal.

Many
 innovative
 schemes
 have
 been
 introduced
 to
 overcome
 the
 difficul
ties
 of
 developing
 neuromorphic
 technology
 and
 spiking
 neural
 network

algorithm
design.
These
challenges
are
discussed
below.

2.3.1
 Memory
Allocation

One
of
the
main
challenges
in
neuromorphic
design
is
the
available
amount

of
local
memory
near
or
inside
the
processing
element
where
the
data
is
con
sumed.
In
the
brain,
there
is
no
separation
between
memory
and
computation.

This
feature
eliminates
a)
the
memory
bandwidth
bottleneck
issue
and
b)
the

high
cost
of
data
movement
between
the
processing
and
a
far-away
memory

block.
To
mimic
this
feature,
neuromorphic
chips
use
distributed
memories

near
 or
 inside
 the
 processing
 elements
 (to
 keep
 the
 synaptic
weights
 and

neuron
 states
 close
 to
 the
 processing
 unit).
However,
 the
 onchip
memory

made
 by
 using
 the
 conventional
 SRAM
 memory
 technology
 is
 not
 area-
efficient
(compared
 to
DRAM
and
Flash)
and
 therefore
expensive.
Besides

using
a
new
denser
memory
technology
[8],
one
of
the
solutions
to
overcome

this
problem
is
the
proper
memory
management
and
maximum
reuse
of
the

memory
bits.

The
important
elements
to
be
stored
in
each
processing
core
are
the
spike

queue(s),
synaptic
weights,
neuron
states,
and
axons
(destination
addresses).

The
depth
and
width
of
 these
memories
heavily
depend
on
 the
executable

neuron
model
 and
 supported
 connectivities.
Table
 5.1
 shows
 the
memory

allocations
in
different
neuromorphic
chips.

Flexibility
 in
 the
memory
allocations
allows
 for
optimized
mapping
of

a
neural
network
 in
 the
processor.
Different
neurons
 in
 the
neural
network

have
a
different
number
of
inputs/outputs
and
different
amounts
of
activities.

Some
 neuromorphic
 chips
 allow
flexible
 parameter
 resolution
 to
 trade-off

accuracy
and
SNN
size
[5].
Since
the
range
of
the
parameters
is
sometimes

more
important
than
the
resolutions
of
the
parameters,
using
smaller
floating-
point
representations
(like
BrainFloat16
[9])
may
results
 in
better
accuracy

2.3
 Major
Challenges
in
Neuromorphic
Architectures
 27

Table
2.1
 Memory
fragmentations
in
some
digital
large-scale
neuromorphic
chips

Architecture
 Total

Memory

Spike

queue

Neurons
 Synapses
 Axons

TrueNorth
[4]
 110kb
fixed

allocations

256*16b
 256
fixed

neuron
type

256*256*1b
 256*26b

(1
per

(426b
per

neuron)

neuron)

Loihi
[5]
 2Mb
 N/A
 1024
fixed

neuron
type

1Mb

Flexible

resolution

4k

flexibly

shared

(1b
to
9b)

Weight

sharing

NeuronFlow
[7]
 120kb
 N/A
 1024
few

neuron

types

1k*8b

Weight

sharing

1k

flexibly

shared

SpiNNaker
[3]
 768kb

256kb

Flexible
 Flexible

pro-

Flexible

resolution

Flexible

instruction

memory

512kb
data

grammable

neuron
type

only

integer

ALU

memory

Epiphany
[1]
 256kb
in
4
 Flexible
 Flexible
 Flexible
 Flexible

banks,
each

with

64b
data

pro
grammable

neuron
type

resolution

Int/float

ALUs

width

and
 power/area
 performance
 than
 using
 a
 larger
 inter
 (like
 int32)
 format.

Therefore,
 it
 is
possible
 to
 trade-off
 the
memory
 footprint
and
complexity

of
the
operations.

Another
method
 to
use
 the
memory
space
efficiently
 is
 to
store
a
com
pressed
form
of
the
parameters
when
there
is
a
high
amount
of
sparsity
in
the

synaptic
weight
tensor
[10].
Weight
sharing
is
another
method
to
efficiently

use
the
memory
for
spiking
Convolutional
Neural
Networks
(sCNN)
[5]
[7].

The
Epiphany
contains
256kb
of
memory
per
core
and
is
the
most
flexible

architecture
in
Table
5.1.
In
the
table
N/A
means
we
could
not
find
the
data

publicly.
Axons
 are
 the
 destination
 core
 addresses
 to
 route
 spikes
 from
 a

neuron.
All
the
numbers
in
this
table
are
for
a
single
processing
core
inside

the
mentioned
neuromorphic
chip.
All
the
above-mentioned
schemes
can
be

implemented
in
Epiphany
to
optimally
use
the
memory
space.
To
demonstrate

28
 Benchmarking
the
Epiphany
Processor
as
a
Reference
Neuromorphic

Table
2.2
 Mapping
LeNet-5
neural
network
(with
binary
weights)
in
different
neuromorphic

architectures

Architecture
 Number
 Average
 Number
of
 Number
 Total

of
used
 number
of
 individual
 of
used
 memory

neurons
 synapses
per
 stored
weights
 cores
 used

neuron

LeNet-5
 6518
 144.5
 61k
 - -
(before

deployment)

TrueNorth
[4]
 40k
 256
 941k
 155
 17Mb

(144.5×6518)

Loihi
[5]
 6518
 1024
 61k
 7
 14Mb

NeuronFlow
[7]
 6518
 1024
 61k
 7
 840kb

SpiNNaker
[3]
 6518
 144.5
 61k
 1
 768kb

Epiphany
 6518
 144.5
 61k
 1
 256kb

the
value
of
flexibility
 for
 efficient
use
of
memory,
 in
Table
5.2
we
 show

the
 result
 of
 mapping
 the
 binary
 LeNet-5
 [11]
 into
 the
 above-mentioned

neuromorphic
architecture.
The
average
pooling
layers
are
optimized
out
in

the
mapping
(as
average
pooling
is
a
linear
operation
and
does
not
consume

stateful
 neurons).
 The
 mappings
 are
 hand
 optimized
 with
 only
 memory

constraint.
 In
TrueNorth,
 several
neurons
need
 to
be
 combined
 to
make
 a

single
neuron
with
enough
synapses
and
axons.
Also,
since
weight-sharing

is
not
used,
the
weight
for
each
synapse
needs
to
be
stored
individually.
In

the
flexible
architectures,
 the
neuron
states
are
assumed
 to
be
16b,
without

refractory
mechanism
and
with
a
single
 threshold
per
channel.
Mapping
 in

SpiNNaker
is
done
with
the
“Convnet
Optimized
Implementation”
which
is

described
in
[12].
Total
memory
used
is
(number
of
cores×memory
per
core).

2.3.2
 Efficient
Communication

Using
a
packet
to
communicate
spikes
between
cores
can
be
very
inefficient.

A
spike
packet
 that
carries
a
single
bit
of
data
(spike)
contains
several
bits

for
the
address.
For
example,
a
spike
packet
in
SpiNNaker
contains
44b
of

data
to
communicate
a
single
binary
spike
in
the
AER
format
[13].
There
are

several
possible
solutions
 to
 reduce
 the
number
of
bits
 for
communicating

spikes.
One
solution
 is
 to
use
a
more
complex
neuron
model
 (for
example

[14]
and
[15])
with
a
lower
firing
rate
(trading
off
operation
complexity
with

the
number
of
packets).
Another
solution
is
to
compress
several
spikes
into

one
event.
For
instance,
when
the
destination
core
for
several
packets
is
the

2.3
 Major
Challenges
in
Neuromorphic
Architectures
 29

same,
we
can
compress
them
easily
in
one
hyper-packet.
Epiphany’s
packets

are
fixed
 in
 size
 (104b
packet
with
a
64b
payload
data)
but
 the
 format
of

payload
data
is
programmable.

TrueNorth
 [4]
 and
 NeuronFlow
 [7]
 use
 a
 relative
 addressing
 scheme

which
allows
reducing
the
number
of
bits
for
the
destination
address
in
the

packet
when
a
limited
communication
range
is
acceptable.
For
example,
in
a

platform
with
4096
cores,
if
the
destination
address
contains
only
4b,
a
core

can
only
communicate
with
16
neighbouring
cores
which
might
be
sufficient

for
many
applications.
This
results
 in
a
saving
of
8b
per
packet
(from
12b

address
in
a
4096-cores
system
to
4b-address).
Another
method
to
reduce
the

number
of
packets
is
the
multi-casting
feature
which
is
used
in
SpiNNaker

[3].
In
 this
case,
a
core
can
only
send
one
spike
out
and
 this
spike
will
be

multicasted
 in
 the
NoC
 and
near
 the
destination
 cores.
Epiphany
uses
 the

basic
mesh
NoC
 interconnect
which
 is
a
shortcoming
but
contributes
 to
 its

simplicity.

2.3.3
 Mapping
SNN
onto
Hardware

An
optimized
mapping
algorithm
can
reduce
the
memory
footprint
(by
per
forming
maximum
sharing
of
parameters),
balance
the
loads
in
different
cores

(as
not
all
the
neurons
in
an
SNN
are
equally
active)
and
reduce
the
core-to
core
communications
(since
it
is
expensive
in
terms
of
power
consumption

and
 latency).
Having
 a
flexible
number
of
neurons
per
 core
 and
 synapses

per
 neuron
 allows
 the
 mapping
 optimizer
 to
 find
 a
 better
 solution.
 The

Epiphany
platform
can
be
used
to
benchmark
different
mapping
algorithms

in
 the
 neuromorphic
 domain
 because
 of
 its
 flexible
 and
 unified
 memory

architecture.

2.3.4
 On-chip
Learning

On-chip
 learning
 is
supported
as
a
futuristic
feature
 in
some
neuromorphic

chips
(like
Loihi
[5]
and
AKIDA
[16]).
However,
implementation
a
hardware

acceleration
for
on-chip
learning
is
challenging.
First,
because
the
algorithm

domain
 is
 very
 dynamic
 (experimental),
 it
 is
 difficult
 to
 find
 a
 suitable

algorithm
for
a
wide
range
of
applications.
Second,
many
applications
can

be
pre-trained
and
only
require
fine-tuning
after
deployment.
Therefore,
the

learning
acceleration
might
be
used
only
for
a
few
last
layers
of
the
neural

network
 (after
 general
 feature
 extraction
 layers).
Epiphany
 does
 not
 have

a
 hardware
 accelerated
 learning
 engine,
 but
 it
 allows
 for
 software
 imple
mentation
of
those
algorithms
and
therefore
benchmarking
the
new
learning

algorithms.

30
 Benchmarking
the
Epiphany
Processor
as
a
Reference
Neuromorphic

2.3.5
 Idle
Power
Consumption

One
of
the
challenges
in
event-based
neuromorphic
processors
is
the
power

consumption
when
the
cores
are
in
the
idle
state
(no
event
to
be
processed).

It
is
reported
that
around
30%
of
power
consumption
for
TrueNorth
[4]
and

Loihi
 [17]
 is
 the
 idle
power.
This
can
be
even
worse
when
 the
application

is
 sparser.
 It
 is
possible
 to
 reduce
 idle
power
consumption
by
using
asyn
chronous
design
or
clock
gating
when
no
input
spike
is
processed.
Also,
using

a
non-volatile
memory
 technology
helps
 to
 reduce
 leakage
 in
 the
memory

cells
 (since
 neuromorphic
 chips
 are
mostly
memory
 dominant).
Epiphany

supports
dynamic
clock
gating
for
the
processing
cores.
In
this
case,
a
core

can
only
wake
up
by
an
interrupt
(for
example,
receiving
a
new
input
packet).

2.4
 Measurements
from
Epiphany

In
 this
 section,
we
present
 some
of
our
measurements
using
 the
Epiphany

processor
 to
provide
a
sense
of
 its
performance
 for
possible
neuromorphic

applications.

We
 implemented
 a
 neural
 network
 with
 a
 Leaky
 integrate
 and
 Fire

(LIF)
 neuron
model
with
 different
 parameters
 in
Epiphany
 and
measured

processing
 time
 for
different
processes,
which
 can
be
used
 as
 a
 reference

for
 assessment
 of
Epiphany
when
 one
wants
 to
 use
 it
 as
 a
 neuromorphic

processor.
Our
measurements
in
this
work
consider
the
processing
time
(no

power
measurement)
and
are
performed
using
the
hardware
timers
inside
the

cores.

The
compiled
instructions
(not
hand-optimized)
for
our
experiments
took

around
52kb
of
the
used
cores’
memory.
Since
the
instruction
code
is
almost

similar
for
all
the
cores,
it
will
be
copied
in
each
core’s
memory.
It
is
therefore

recommended
 to
use
bigger
cores
 (more
memory),
 so
 instruction
memory

takes
 only
 a
 small
 fraction
 of
 the
 total
memory
 and
 is
 used
 for
 a
 higher

number
of
neurons.

Figure
5.3
shows
a
flowchart
of
our
neuron
model
with
 the
processing

cycle
time
attached
to
each
block,
where
N
is
the
number
of
neurons,
F
is
the

number
of
firings,
X
is
the
neuron
state,
W
is
the
synaptic
weight,
Thr
is
the

firing
threshold,
Time
is
the
current
time
(read
from
Timer),
LFT
is
the
last

firing
time
(stored
per
neuron),
Ref
is
the
refractory
time
and
LR
is
the
leak

rate.

An
input
spike
enters
the
eCore
through
the
DMA
and
interrupts
the
RISC

core.
Then
a
process
handles
 this
 spike
and
puts
 it
 in
a
FIFO
 (made
with

2.4
 Measurements
from
Epiphany
 31

Figure
 2.3
 Flow
 chart
 of
 processing
 a
 LIF
 neuron
 with
 processing
 time
 measured
 in

Epiphany.

a
 software
process).
Thereafter,
 the
 target
neurons
will
get
updated.
After

updates,
 the
 threshold
 of
 neurons
 is
 checked,
 and
 the
 refractory
 check
 is

executed
 for
each
firing.
 If
both
checks
pass,
 the
firing
process
 starts,
and

the
RISC
core
commands
to
the
DMA
to
transmit
a
spike
packet.
Membrane

leakage
is
also
an
independent
process
that
starts
with
a
timer
interrupt.

Each
cycle
takes
1ns
when
using
a
1GHz
clock
frequency.
For
example,

processing
a
single
spike
from
the
first
convolutional
layer
of
LeNet-5
to
the

second
convolutional
 layer
 requires
 to
update
16×5×5
neurons.
When
 the

second
layer
is
implemented
in
a
core
and
1%
of
the
updated
neurons
fire,
the

processing
time
takes
around
46us.
The
leak
process
on
all
these
400
neurons

takes
around
12us.
Our
measurements
are
averaged
over
many
experiments

and
 therefore
 the
numbers
 in
 this
figure
 are
 reasonable
 estimations.
Since

the
 neuron
 model
 is
 programmable,
 one
 may
 decide
 to
 remove
 some
 of

32
 Benchmarking
the
Epiphany
Processor
as
a
Reference
Neuromorphic

the
components
(like
refractory)
or
make
it
more
complex
(for
example
by

introduction
of
an
individual
threshold
for
every
neuron)

In
 Figure
 5.3
 we
 showed
 that
 updating
 a
 neuron
 with
 a
 single
 spike

takes
around
120ns
on
average.
We
know
 that
TrueNorth
can
update
all
of

the
neurons
 in
a
core
every
1ms,
 to
be
suitable
for
real-time
neuromorphic

applications.
If
we
assume
a
reasonable
sparsity
in
the
input
spikes
in
each

time-step
(32
input
spikes
per
neuron
with
256
input
synapses),
with
120ns

update
time,
Epiphany
can
also
process
the
256
neurons
in
less
than
1ms.

2.5
 Conclusion

This
article
demonstrates
that
the
Epiphany
processor
is
compatible
with
neu
romorphic
computing.
Overall,
it
has
a
similar
architecture
to
the
well-known

neuromorphic
processors
and
 is
flexible
enough
 for
 the
 implementation
of

new
 ideas.
 Unlike
 Epiphany,
 all
 the
 mentioned
 neuromorphic
 processors

contain
optimized
elements
that
add
complexity
to
the
architecture
and
make

it
 less
 flexible
 to
 be
 a
 reference
 benchmarking
 architecture
 (flexibility
 vs

efficiency
trade-off).
For
example,
having
a
fixed
number
of
neurons
per
core

(in
TrueNorth,
Loihi,
and
NeuronFlow)
does
not
allow
for
optimized
resource

management
during
mapping.
Also,
having
 an
 accelerated
 learning
mech
anism
 (in
Loihi)
may
be
unnecessary
 for
many
applications.
Additionally,

suppose
one
wants
to
know
the
performance
improvement
of
the
SpiNNaker

processor
due
 to
 its
optimized
NoC.
 In
 that
case,
Epiphany
 is
an
excellent

platform
to
compare
to,
due
to
its
simplicity
and
flexibility.

As
mentioned,
not
having
any
accelerator
makes
the
epiphany
less
effi
cient
compared
to
the
accelerated
architectures
(like
Loihi),
but
it
increases

its
value
for
benchmarking
the
performance
improvement
of
any
accelerators.

We
have
 implemented
a
neural
network
system
and
measured
 the
pro
cessing
time
for
different
components
of
the
LIF
neuron
model.
It
is
already

visible
 that
 some
 small
 improvements
 (like
having
 a
hardware
FIFO)
 can

improve
the
performance
of
the
system.
Increasing
the
size
of
the
core
results

in
better
memory
saving,
but
the
designer
should
scale
the
performance
of
the

cores
as
well
(by
the
implementation
of
the
schemes
like
multi-threading
[5]

and
SIMD,
as
it
is
implemented
in
the
forthcoming
SpiNNaker2.0
platform

[18]).
Other
 improvements
 (like
 adding
 a
more
 suitable
 interconnect)
 can

be
examined
and
is
a
topic
for
our
future
research.
All
source
code
used
to

benchmark
the
system
and
perform
hands-on
experiments
is
freely
available

upon
request
({amirreza.yousefzadeh,
gert-jan.vanschaik}@imec.nl)

mailto:gert-jan.vanschaik}@imec.nl
mailto:{amirreza.yousefzadeh

References
 33

Acknowledgements

This
 technology
 is
 partially
 funded
 and
 initiated
 by
 the
 Nether
lands
 and
 European
 Union’s
 Horizon
 2020
 research
 and
 innovation

projects
 TEMPO
 (ECSEL
 Joint
 Undertaking
 under
 grant
 agreement
 No

826655)
and
ANDANTE
(ECSEL
Joint
Undertaking
under
grant
agreement

No
876925).

References

[1]
A.
 Olofsson,

et
 al.,
 Kickstarting
 high-performance
 energy-efficient

manycore
architectures
with
epiphany,
 in
2014
48th
Asilomar
Confer
ence
on
Signals,
Systems
and
Computers,
IEEE,
2014,
pp.
1719–1726.

[2]
A.
Olofsson,
Epiphany-v:
A
1024
processor
64-bit
risc
system-on-chip,

arXiv
preprint
arXiv:1610.01832.

[3]
E.
 Painkras,

et
 al.,
 Spinnaker:
 A
 1-w
 18-core
 system-on-chip
 for

massively-parallel
neural
network
 simulation,
 IEEE
 Journal
of
Solid-
State
Circuits
48
(8)
(2013)
1943–1953.

[4]
F.

Akopyan,
 et
 al.,
 Truenorth:
 Design
 and
 tool
 flow
 of
 a
 65
 mw
 1

million
neuron
programmable
neurosynaptic
chip,
IEEE
transactions
on

computer-aided
design
of
integrated
circuits
and
systems
34
(10)
(2015)

1537–1557.

[5]
M.
Davies,
et
al.,
Loihi:
A
neuromorphic
manycore
processor
with
on-
chip
learning,
IEEE
Micro
38
(1)
(2018)
82–99.

[6]
M.
Demler,
Brainchip
 akida
 is
 a
 fast
 learner,
 spiking-neural-network

processor
 identifies
patterns
 in
unlabeled
data,
Microprocessor
Report

(2019).

[7]
O.
Moreira,
et
al.,
Neuronflow:
a
neuromorphic
processor
architecture

for
live
ai
applications,
in
2020
Design,
Automation
&
Test
in
Europe

Conference
&
Exhibition
(DATE),
IEEE,
2020,
pp.
840–845.

[8]
E.
Miranda,
J.
Suñé,
Memristors
for
neuromorphic
circuits
and
artificial

intelligence
applications
(2020).

[9]
N.
 P.

Jouppi,
 et
 al.,
 In-datacenter
 performance
 analysis
 of
 a
 ten
sor
processing
unit,
 in:
Proceedings
of
 the
44th
Annual
 International

Symposium
on
Computer
Architecture,
2017,
pp.
1–12.

[10]
V.
Sze,
Y.-H.
Chen,
T.-J.
Yang,
J.
S.
Emer,
Efficient
processing
of
deep

neural
networks,
Synthesis
Lectures
on
Computer
Architecture
15
 (2)

(2020)
1–341.

34

 Benchmarking
the
Epiphany
Processor
as
a
Reference
Neuromorphic

[11]
Y.

LeCun,
 et
 al.,
 Lenet-5,
 convolutional
 neural
 networks,
 URL:

http://yann.
lecun.
com/exdb/lenet
20
(5)
(2015)
14.

[12]
A.
 Yousefzadeh,
 et
 al.,
 Performance
 comparison
 of
 time-step-driven

versus
 event-driven
 neural
 state
 update
 approaches
 in
 spinnaker,
 in

2018
IEEE
International
Symposium
on
Circuits
and
Systems
(ISCAS),

IEEE,
2018,
pp.
1–4.

[13]
A.
 Yousefzadeh,
 et
 al.,
 Fast
 predictive

handshaking
 in
 synchronous

FPGAs
for
fully
asynchronous
multisymbol
chip
 links:
Application
 to

spinnaker
2-of-7
links,
IEEE
Transactions
on
Circuits
and
Systems
II:

Express
Briefs
63
(8)
(2016)
763–767.

[14]
A.
 Yousefzadeh,
 et
 al.,
 Asynchronous
 spiking
 neurons,
 the
 natural

key
 to
 exploit
 temporal
 sparsity,
 IEEE
 Journal
 on
 Emerging
 and

Selected
 Topics
 in
 Circuits
 and
 Systems
 9
 (4)
 (2019)
 668–678.

doi:10.1109/JETCAS.2019.2951121.

[15]
B.

Yin,
 et
 al.,
 Effective
 and
 efficient
 computation
 with
 multiple
timescale
 spiking
 recurrent
 neural
 networks,
 in
 International
 Con
ference
 on
 Neuromorphic
 Systems
 2020,
 ICONS
 2020,
 Associ
ation
 for
 Computing
 Machinery,
 New
 York,
 NY,
 USA,
 2020.

doi:10.1145/3407197.3407225.

[16]
S.
 Thorpe,
 et
 al.,
 Method,
 digital
 electronic
 circuit,
 and
 system
 for

unsupervised
detection
of
 repeating
patterns
 in
a
series
of
events,
US

Patent
App.
16/349,248
(Sep.
19,
2019).

[17]
P.
Blouw,
et
al.,
Benchmarking
keyword
spotting
efficiency
on
neuro
morphic
hardware,
 in:
Proceedings
of
 the
7th
Annual
Neuro-inspired

Computational
Elements
Workshop,
2019,
pp.
1–8.

[18]
C.
Mayr,
S.
Höppner,
and
S.
Furber
(2019).
SpiNNaker
2:
a
10
million

core
 processor
 system
 for
 brain
 simulation
 and
 machine
 learning-
keynote
presentation.
In
Communicating
Process
Architectures
2017
&

2018
277-280,
IOS
Press,
2019.

http://www.yann.lecun.com
https://www.doi.org/10.1109/JETCAS.2019.2951121
https://www.doi.org/10.1145/3407197.3407225

3

Temporal
Delta
Layer:
Exploiting
Temporal

Sparsity
in
Deep
Neural
Networks
for

Time-Series
Data

Preetha
Vijayan1,2,
Amirreza
Yousefzadeh2,

Manolis
Sifalakis2,
and
Rene
van
Leuken1

1TU
Delft,
Netherlands

2imec,
Netherlands

Abstract

Real-time
 video
 processing
 using
 state-of-the-art
 deep
 neural
 networks

(DNN)
has
managed
 to
achieve
human-like
accuracy
 in
 the
recent
past
but

at
 the
cost
of
considerable
energy
consumption,
 rendering
 them
 infeasible

for
deployment
on
edge
devices.
The
energy
consumed
by
running
DNNs
on

hardware
accelerators
 is
dominated
by
 the
number
of
memory
 read/writes

and
 multiply-accumulate
 (MAC)
 operations
 required.
 This
 work
 explores

the
 role
 of
 activation
 sparsity
 in
 efficient
 DNN
 inference
 as
 a
 potential

solution.
As
matrix-vector
multiplication
of
weights
with
activations
 is
 the

most
 predominant
 operation
 in
 DNNs,
 skipping
 operations
 and
 memory

fetches
 where
 (at
 least)
 one
 of
 them
 is
 a
 zero
 can
 make
 inference
 more

energy
efficient.
Although
spatial
sparsification
of
activations
 is
researched

extensively,
introducing
and
exploiting
temporal
sparsity
has
received
far
less

attention
in
DNN
literature.
This
work
introduces
a
new
DNN
layer
(called

temporal
delta
layer)
whose
primary
objective
is
to
induce
temporal
activation

sparsity
during
training.
The
temporal
delta
layer
promotes
activation
sparsity

by
performing
delta
operation
that
is
aided
by
activation
quantization
and
l1

norm
based
penalty
to
the
cost
function.
As
a
result,
the
final
model
behaves

like
 a
 conventional
quantized
DNN
with
high
 temporal
 activation
 sparsity

during
inference.
The
new
layer
was
incorporated
into
the
standard
ResNet50

architecture
to
be
trained
and
tested
on
the
popular
human
action
recognition

35

DOI: 10.1201/9781003377382-3
This chapter has been made available under a CC BY-NC 4.0 license.

36
 Temporal
Delta
Layer:
Exploiting
Temporal
Sparsity

dataset,
UCF101.
The
method
 resulted
 in
 a
 2x
 improvement
 in
 activation

sparsity,
with
a
5%
reduction
in
accuracy.

3.1
 Introduction

DNNs
have
 lately
managed
 to
 successfully
 analyze
video
data
 to
perform

action
 recognition
 [1],
 object
 tracking
 [2],
 object
 detection
 [3],
 etc.,
with

human-like
 accuracy
 and
 robustness.
Unfortunately,
DNNs’
high
 accuracy

comes
with
considerable
costs,
 in
 terms
of
computation
and
memory
con
sumption,
resulting
in
high
energy
consumption.
This
makes
them
unsuitable

for
always-on
edge
devices.

Techniques
 such
 as
 network
 pruning,
 quantization,
 regularization,
 and

knowledge
 distillation
 [4]
 [5]
 have
 helped
 reduce
 model
 size
 over
 time,

resulting
 in
 less
 compute
 and
memory
 consumption
 overall.
Sparsity
 is
 a

prominent
aspect
 in
all
of
 the
aforementioned
methods.
This
 is
 significant

because
sparse
 tensors
allow
computations
 involving
zero
multiplication
 to

be
skipped.
They
are
also
easy
to
store
and
retrieve
in
memory.
In
the
DNN

literature,
structural
sparsity
(of
weights)
and
spatial
sparsity
(of
activations)

are
well-studied
topics
[6].
However,
while
being
a
popular
concept
in
neuro
morphic
computing,
temporal
activation
sparsity
has
received
less
attention

in
the
context
of
DNN.

This
work
 applies
 the
 concept
 of
 change
 or
 delta
 based
 processing
 to

the
 training
 and
 inference
phases
of
deep
neural
networks,
drawing
 inspi
ration
 from
 the
 human
 retina
 [7].
 DNN
 inference,
 which
 processes
 each

frame
independently
with
no
regard
to
the
temporal
correlation
is
dense
and

obscenely
wasteful.
Whereas,
processing
only
the
changes
in
the
network
can

lead
 to
zero-skipping
 in
sparse
 tensor
operations
minimizing
 the
redundant

operations
and
memory
accesses.

Therefore,
the
proposed
methodology
in
this
work
induces
temporal
spar
sity
to
theoretically
any
DNN
by
incorporating
a
new
layer
(named
temporal

delta
 layer),
 which
 can
 be
 introduced
 in
 a
 DNN
 at
 any
 phase
 (training,

refinement,
or
inference
only).
This
new
layer
can
be
integrated
to
an
existing

architecture
by
positioning
it
after
all
or
some
of
the
ReLU
activation
layers

as
deemed
beneficial
(see
Figure
3.1).
The
 inclusion
of
 this
 layer
does
not

necessitate
any
changes
 to
 the
preceding
or
 following
 layers.
Furthermore,

the
new
 layer
adds
a
novel
 sparsity
penalty
 to
 the
overall
cost
 function
of

the
DNN
during
 the
 training
phase.
This
 l1
 norm
based
penalty
minimizes

the
 activation
density
of
 the
delta
maps
 (i.e.,
 temporal
difference
between

two
consecutive
feature
maps).
Apart
from
that,
the
new
layer
is
compared

Input Output

(a) Standard DNN

Input Output

(b) Proposed methodology

Conv layer with ReLU Temporal delta layer activation

Figure
3.1
 (a)
Standard
DNN,
and
(b)
DNN
with
proposed
temporal
delta
layer

3.2
 Related
Works
 37

in
conjunction
with
two
activation
quantization
methods,
namely
fixed-point

quantization
(FXP)
and
learned
step-size
quantization
(LSQ).

3.2
 Related
Works

Although
DNNs
are
in
essence
bio-inspired,
they
have
not
been
able
to
find

the
balance
between
power
consumption
and
accuracy
yet,
especially
while

dealing
with
computationally
heavy
streaming
signals.
On
the
other
hand,
the

brain’s
neocortex
handles
complex
 tasks
 like
sensory
perception,
planning,

attention,
and
motor
control
while
consuming
 less
 than
20
W
[8].
Scalable

architecture,
 in-memory
 computation,
 parallel
 processing,
 communication

using
 spikes,
 low
precision
 computation,
 sparse
distributed
 representation,

asynchronous
execution,
and
fault
 tolerance
are
some
of
 the
characteristics

of
the
biological
neural
networks
that
can
be
leveraged
to
bridge
the
energy

consumption
gap
between
 the
brain
and
DNNs
 [9].
Among
 these,
 the
pro
posed
methodology
focuses
on
the
viability
of
using
sparsity
within
DNNs

to
achieve
energy
efficiency.
During
a
matrix-vector
multiplication
between

a
weight
matrix
and
an
activation
vector,
zero
elements
in
the
tensor
can
be

skipped
 leading
 to
computational
as
well
as
memory
access
reduction
(see

Figure
1.2).

There
are
broadly
two
types
of
sparsity
available
in
DNNs:
weight
spar
sity
 (related
 to
 the
 interconnect
 between
 neurons)
 and
 activation
 sparsity

38
 Temporal
Delta
Layer:
Exploiting
Temporal
Sparsity

Figure
3.2
 Sparsity
in
activation
(Δx)
drastically
reduce
the
memory
fetches
and
multipli
cations
between
Δx
and
columns
of
weight
matrix,
W,
that
correspond
to
zero
[10].

(related
 to
 the
number
of
neurons).
Furthermore,
activation
sparsity
can
be

categorised
into
spatial
and
temporal
sparsity,
which
exploits
the
spatial
and

temporal
correlation
within
the
activations,
respectively,
[11].
Unlike
weight

and
 spatial
 sparsity
 [12,
 13,
 14,
 15],
 exploiting
 the
 temporal
 redundancy

of
 DNNs
 while
 processing
 streaming
 data
 as
 a
 means
 to
 reduce
 energy

consumption
is
a
relatively
less
explored
idea.
Exploiting
temporal
sparsity

translates
 to
 skipping
 re-calculation
 of
 a
 function
when
 its
 input
 remains

unchanged
since
the
last
update.

One
of
the
methods
to
exploit
temporal
sparsity
is
to
use
the
compressed

representation
(like
H.264,
MPEG-4,
etc.)
of
videos
at
the
input
stage
itself.

These
 compression
 techniques
 only
 retain
 a
 few
 key-frames
 completely

and
 reconstruct
others
using
motion
vectors
 and
 residual
 error,
 thus
using

temporal
 redundancy
 [16]
 [17].
 Another
 path
 includes
 finding
 a
 neuron

model
which
is
somewhere
in
between
“frame-based
DNN”
and
“event-based

spiking
 neural
 networks”.
This
work
 is
 an
 attempt
 in
 the
 aforementioned

direction.
A
similar
work,
CBInfer
[18],
proposes
replacing
all
spatial
con
volution
layers
in
a
network
with
change-based
temporal
convolution
layers

(or
 CBconv
 layers).
 In
 this,
 a
 signal
 change
 is
 propagated
 forward
 only

when
a
certain
 threshold
 is
exceeded.
Likewise,
 [19]
 tapped
 into
 temporal

sparsity
by
introducing
Sigma-Delta
Networks,
where
neurons
in
one
layer

communicated
with
neurons
in
the
next
layer
through
discretized
delta
acti
vations.
An
issue
when
it
comes
to
CBInfer
is
the
potential
error
accumulation

over
 time
 as
 the
 method
 is
 threshold-based.
 If
 the
 neuron
 states
 are
 not

reset
periodically,
this
threshold
can
cause
drift
in
the
approximation
of
the

activation
 signal
 and
 degrade
 the
 accuracy.
Whereas,
 sigma-delta
 scheme

3.3
 Methodology
 39

experiments
on
smaller
datasets
 like
 temporal
MNIST,
which
might
not
be

a
reliable
confirmation
of
the
method’s
effectiveness.

3.3
 Methodology

In
video-based
applications,
traditional
deep
neural
networks
rely
on
frame-
based
processing.
That
 is,
each
 frame
 is
processed
entirely
 through
all
 the

layers
of
the
model.
However,
there
is
very
little
change
in
going
from
one

frame
to
the
next
through
time,
which
is
called
temporal
locality.
Therefore,

it
 is
wasteful
 to
 perform
 computations
 to
 extract
 the
 features
 of
 the
 non-
changing
parts
of
the
individual
frame.
Taking
that
concept
deeper
into
the

network,
if
feature
maps
of
two
consecutive
frames
are
inspected
after
every

activation
layer
throughout
the
model,
this
temporal
overlap
can
be
observed.

Therefore,
 this
work
postulates
 that
 temporal
 sparsity
 can
be
 significantly

increased
by
focusing
the
inference
of
the
model
only
on
the
changing
pixels

of
the
feature
maps
(or
deltas).

3.3.1
 Delta
Inference

This
work
 introduces
 a
 new
 layer
 that
 calculates
 the
 delta
 (or
 difference)

between
two
temporally
consecutive
feature
maps
and
quantifies
the
degree

of
these
changes
at
only
relevant
locations
in
the
frame.
Since
zero
changes

are
not
propagated
through
the
layer,
the
role
of
this
layer
may
be
perceived
as

"analog
event
propagation".
It
is
considered
an
"analog
event"
as
it
is
not
the

presence
of
change,
but
the
magnitude
of
change
that
is
propagated
through.

To
 better
 understand
 it
 mathematically,
 in
 a
 standard
DNN
 layer,
 the

output
activation
 is
 related
 to
 its
weights
and
 input
vector
 through
Eq.
3.1

and
3.2.

Yt
=
WXt
+
B
 (3.1)

Zt
=
σ(Yt)
 (3.2)

where
W
and
B
represent
the
weights
and
bias
parameters,
Xt
represents
the

input
vector,
and
Yt
represents
the
transitional
state.
Then,
Zt
is
the
output

vector
which
is
the
result
of
σ(.)
- a
non-linear
activation
function.
t indicates

that
 the
 tensor
 has
 a
 temporal
 dimension.
However,
 in
 the
 temporal
 delta

layer,
weight-input
multiplication
transforms
into,

ΔYt
=
WΔXt
=
W (Xt
−
Xt−1)
 (3.3)

40
 Temporal
Delta
Layer:
Exploiting
Temporal
Sparsity

Yt

= ΔYt
+ Yt−1

= W (Xt
−
Xt−1) +W (Xt−1
−
Xt−2) + ...
+ Y0, where
Y0
= B

= WXt
+B,

(3.4)

ΔZt
= Zt
−
Zt−1
= σ(Yt)−
σ(Yt−1), where
σ(Y0) = 0
 (3.5)

In
 Eq.
 3.3,
 instead
 of
 using
 Xt
 directly,
 only
 changes
 or
 ΔXt
 are

multiplied
with
W.
Using
 the
 resulting
ΔYt,
 the
 corresponding
Yt
 can
 be

recursively
 calculated
 with
 Eq.
 3.4,
 where
 Yt−1
 is
 the
 transitional
 state

obtained
 from
 the
previous
calculation.
Eq.
3.5
 is
 the
final
delta
activation

output
that
is
passed
onto
the
next
layer.

Another
 notable
 difference
 between
 the
 standard
 DNN
 layer
 and
 the

proposed
layer
is
the
role
of
bias.
In
delta
based
inference,
bias
is
only
used

as
an
 initialization
 for
 the
 transitional
state,
Y0
 in
Eq.
3.4.
However,
since

bias
tensors
do
not
change
over
time,
their
temporal
difference
is
zero
and
is

removed
from
Eq.
3.3.

Now,
as
the
input
video
is
considered
temporally
correlated,
the
expec
tation
 is
 that
ΔXt
 and
by
 association
ΔZt
 are
 also
 temporally
 sparse.
 In

essence,
 the
 temporal
sparsity
between
consecutive
feature
maps
 is
cast
on

the
spatial
sparsity
of
the
delta
map
that
is
propagated.
Additionally,
Yt
 in
Eq.

3.1
and
3.4
are
always
equal.
This
indicates
that
as
long
as
the
input
is
the

same,
both
standard
DNN
and
temporal
delta
layer
based
DNN
provide
the

same
result
at
any
time
step.

3.3.2
 Sparsity
Induction
Using
Activation
Quantization

As
shown
in
Figure
3.3,
there
is
temporal
redundancy
evident
in
feature
maps

of
 two
consecutive
 frames.
However,
 if
 looked
closely,
 it
can
be
observed

that
these
feature
maps
are
similar
but
not
identical
as
shown
in
Figure
3.3a

and
 3.3b.
Therefore,
 if
 two
 such
 consecutive
 feature
maps
 are
 subtracted,

the
 resulting
 delta
 map
 has
 many
 near
 zero
 values,
 thus
 restricting
 the

potential
 increase
 in
 temporal
sparsity
(Figure
3.3c).
This
 is
mainly
due
 to

the
higher
precision
available
in
the
floating
point
representation
(FP32)
of

the
activations.
For
example,
in
IEEE
754
representation,
a
single-precision

32-bit
floating
point
number
has
1
bit
for
sign,
8
bits
for
 the
exponent
and

23
bits
for
the
significant.
It,
not
only,
leads
to
a
very
high
dynamic
range,

but
also,
 increases
 the
 resolution
or
precision
 for
numbers
close
 to
0.
The

number
nearest
to
0
is
about
±1.4 x
10−45.
Therefore,
due
to
high
resolution,

two
similar
floating
point
values
have
difficulty
going
to
absolute
zero
when

3.3
 Methodology
 41

(a)
 (b)
 (c)

Figure
3.3
 Demonstration
of
 two
 temporally
consecutive
activation
maps
 leading
 to
near

zero
values
(rather
than
absolute
zeroes)
after
delta
operation.

subtracted.
A
plausible
solution
to
decrease
the
precision
of
the
activations
is

to
use
quantization.

In
this
work,
a
post-training
quantization
method
(fixed
point
quantization

[20])
and
a
quantization
aware
training
method
(learnable
step
size
quantiza
tion
[21])
are
considered
for
comparison
as
a
temporal
sparsity
facilitator
for

the
new
layer.

3.3.2.1
 Fixed
Point
Quantization

In
this
method,
the
floating
point
numbers
are
quantized
to
integer
or
fixed

point
representation
[20].
Unlike
floating
point,
in
fixed
point
representation,

the
 integer
and
 the
fractional
part
have
fixed
 length.
This
 limits
both
range

and
precision.
That
is,
if
more
bits
are
used
to
represent
the
integer
part,
it

subsequently
decreases
the
precision
and
vice
versa.

Method:

Firstly,
a
bitwidth
is
defined
to
which
the
32-bit
floating
parameter
is
to
be

quantized,
BW.
Then,
the
number
of
bits
required
to
represent
the
unsigned

integer
part
of
the
parameter
(x)
is
calculated
as
shown
in
Eq.
3.6.

I
= 1 + log2
(max
 |x|
) (3.6)

1<i<N

A
 positive
 value
 of
 I
 means
 that
 I
 bits
 are
 required
 to
 represent
 the

absolute
value
of
 the
 integer
part,
while
 a
negative
value
of
 I
 means
 that

the
fractional
part
has
I
leading
unused
bits.
Now,
it
is
known
that
1
bit
is
for

sign,
so
the
number
of
fractional
bits,
F
,
is
given
by
Eq.
3.7.

F
= BW
−
I
−
1
 (3.7)

�

42
 Temporal
Delta
Layer:
Exploiting
Temporal
Sparsity

Considering
the
parameters,
BW
- bitwidth,
F
- fractional
bits,
I
- integer

bits,
and
S
- sign
bit,
Eq.
3.8
maps
the
floating
point
parameter
x
to
the
fixed

point
by,

C(R(x.2F
),
−t,
t)
Q(x) =
 (3.8)

F2

where
R(.) is
the
round
function,
C(x,
a,
b) is
the
clipping
function,
and
t
is

defined
as,

2BW−S , BW >
1

t
=

0
 BW
≤
1

Possible
Drawback
of
Fixed
Point
Quantization:

Fixed
point
quantization,
as
shown
above,
is
a
fairly
straightforward
mapping

scheme
 and
 is
 easy
 to
 be
 included
 in
 the
 model
 training
 process
 during

the
 forward
 pass
 before
 the
 actual
 delta
 calculation.
 However,
 it
 poses
 a

limitation
to
the
extent
of
quantization
possible
without
sacrificing
accuracy.

Typically,
an
8-bit
quantization
can
sustain
floating
point
accuracy
with
this

method,
but
if
the
bitwidth
goes
below
8
bits,
the
accuracy
starts
to
deteriorate

significantly.
This
 is
because,
unlike
weights,
activations
 are
dynamic
 and

activation
patterns
change
from
 input
 to
 input
making
 them
more
sensitive

to
harsh
quantization
 [22].
Also,
quantizing
 the
 layers
of
a
network
 to
 the

same
bitwidth
can
mean
that
the
inter-channel
behaviour
of
the
feature
maps

are
 not
 captured
 properly.
 Since
 the
 number
 of
 fractional
 bits
 is
 usually

selected
depending
on
 the
maximum
 activation
value
 in
 a
 layer,
 this
 type

of
quantization
tends
to
cause
excessive
information
loss
in
channels
with
a

smaller
range.

3.3.2.2
 Learned
Step-Size
Quantization

Quantization
aware
training
is
the
most
logical
solution
to
the
aforementioned

drawback
as
 it
can
potentially
 recover
 the
accuracy
 in
 low
bit
 tasks
given

enough
 time
 to
 train.
Therefore,
a
symmetric
uniform
quantization
scheme

is
 considered
 called
 Learned
 Step
 size
 Quantization
 (LSQ).
 This
 method

considers
 the
 quantizer
 itself
 as
 a
 trainable
 parameter
 which
 is
 trying
 to

minimize
the
task
loss
using
backpropagation
and
stochastic
gradient
descent.

This
serves
 two
purposes:
(a)
step
size,
which
 is
 the
width
of
quantization

bins,
 gets
 to
 be
 adaptive
 through
 the
 training
 according
 to
 the
 activation

distribution.
 It
 is
vital
 to
find
 an
optimum
 step
 size
because,
 as
 shown
 in

Figure
3.4,
if
the
step
size
is
too
small
or
too
large,
it
can
lead
to
the
quantized

3.3
 Methodology
 43

Quantized data

Raw data

0

0

Step size - Too small

0

Step size - Optimum

Step size - Too large

Raw value

Quantized value

0

Figure
3.4
 Importance
of
step
size
in
quantization:
on
the
right
side,
in
all
three
cases,
the

data
is
quantized
to
five
bins
with
different
uniform
step
sizes.
However,
without
optimum
step

size
value,
the
quantization
can
detrimentally
alter
the
range
and
resolution
of
the
original
data.

data
being
a
poor
representation
of
the
raw
data.
(b)
as
the
step
size
is
a
model

parameter,
 it
 is
also
directly
 seeking
 to
 improve
 the
metric
of
 interest,
 i.e.

accuracy.

Method:

Given:
x
- the
parameter
to
be
quantized,
s
- step
size,
QN
 and
QP
 - number

of
 negative
 and
 positive
 quantization
 levels
 respectively,
 and
 q(x;s)
 is
 the

quantized
representation
with
the
same
scale
as
x,
⎧

x
⎪
 l.s,
 if
 −QN
 ≤ x
 ≤ QP⎨
 s s

q(x; s) =
 −QN
.s,
 if
x
 ≤ −QN
 (3.9)
s
⎪
⎩

QP
.s,
 if
x
 ≥ QPs

where
 al rounds
the
value
to
the
nearest
integer.
Considering
the
number
of

bits,
b,
 to
which
 the
data
 is
 to
be
quantized,
QN
 =
0
for
unsigned
and
QN

=
2b−1
 for
signed
data.
Similarly,
QP
 =
2b−1
 for
unsigned
and
2b−1
− 1 for

signed
data.

Modified
LSQ:

In
this
work,
the
original
LSQ
method
is
slightly
modified
to
remove
the
clip
ping
function
from
the
equations
as
(a)
the
bitwidth,
b,
required
to
calculate

44
 Temporal
Delta
Layer:
Exploiting
Temporal
Sparsity

QN
 and
QP
 is
not
known.
This
 is
because
 the
bitwidth
 is
not
pre-defined

and
is
determined
using
the
activation
statistics
of
each
layer
while
training

which
leads
to
a
mixed
precision
model,
which
is
more
advantageous,
and
(b)

clipping
leads
to
accuracy
drop
as
it
alters
the
range
of
the
activation.
That

is,
if
activations
are
clipped
during
training,
there
could
be
a
significant
dif
ference
between
the
real-valued
activation
value
and
the
quantized
activation

value,
which
in
turn
affects
the
gradient
calculations
and,
therefore
the
SGD

optimization.

Thus,
 in
 temporal
 delta
 layer,
 the
 forward
 pass
 of
 the
 quantization

includes
only
 scaling,
 rounding
and
de-scaling
and
can
be
mathematically

expressed
as,

x

q(x; s) =
 l.s
 (3.10)

s

The
gradient
of
the
Eq.
3.10
for
backpropagation
is
given
by
Eq.
3.11.

x x
∇sq(x; s) =
 l −
 (3.11)

s s

3.3.3
 Sparsity
Penalty

Quantized
delta
map,
created
using
 the
above-mentioned
methods,
 in
 itself

has
a
 fair
number
of
absolute
zeroes
 (or
sparsity)
available.
However,
 like

the
 biological
 brain,
 learning
 can
 help
 in
 increasing
 this
 sparsity
 further.

The
inspiration
for
this
came
from
an
elegant
set
of
experiments
performed

by
Y.
Yu
et
al.
[23].
The
experiment
showed
a
particular
30
seconds
video

to
 rodent
 specimens
 and
 tracked
 their
 activation
 density
 during
 each
 pre
sentation.
 It
was
 found
 that
activation
density
decreased
as
 the
number
of

trials
increased,
i.e
as
the
learning
increased,
the
active
neurons
required
for

inference
decreases.

Adapting
 the
 said
 concept
 to
 this
 work,
 a
 l1
 norm
 based
 constraint

is
 introduced
 to
 the
 loss
 function.
This
 is
 termed
 as
 the
 sparsity
 penalty.

Therefore,
 the
new
cost
 function
can
be
mathematically
expressed
as
cost

function
=
task
loss
+
sparsity
penalty,
i.e,

l1
norm
of
active
neurons
in
delta
map

Cost
function
= T
ask
loss
+ λ
()

total
number
of
neurons
in
delta
map

(3.12)

where
task
loss
minimizes
the
error
between
the
true
value
and
the
pre
dicted
value
and,
sparsity
penalty
minimizes
the
overall
temporal
activation

3.4
 Experiments
and
Results
 45

density.
The
λ
mentioned
in
Eq.
3.12
refers
to
the
penalty
co-efficient
of
the

cost
 function.
 If
λ
 is
 too
 small,
 the
 sparsity
penalty
 takes
 little
 effect
 and

model
accuracy
is
given
more
priority
and
if
λ
is
too
large,
sparsity
becomes

the
priority
 leading
 to
very
sparse
models
but
with
unacceptable
accuracy.

The
key
is
to
find
the
balance
between
task
loss
and
sparsity
penalty.

3.4
 Experiments
and
Results

In
this
section,
the
proposed
methodology
explained
in
section
3.4
is
analyzed

to
study
how
it
helps
achieve
the
desired
temporal
sparsity
and
accuracy.

3.4.1
 Baseline

For
baseline,
the
two-stream
architecture
[24]
was
used,
with
ResNet50
as
the

feature
extractor
on
both
spatial
and
temporal
streams.
The
dataset
used
was

UCF101,
which
is
a
widely
used
human
action
recognition
dataset
of
‘in-the
wild’
action
videos,
obtained
 from
YouTube,
having
101
action
categories

[25].
The
spatial
stream
used
single-frame
RGB
 images
of
size
 (224,
224,

3)
as
the
input,
while
the
temporal
stream
used
stacks
of
10
RGB
difference

frames
of
size
(224,
224,
10
×
3)
as
the
input.
Also,
both
these
inputs
were

time
distributed
 to
apply
 the
same
 layer
 to
multiple
frames
simultaneously

and
produce
output
that
has
time
as
the
fourth
dimension.
Both
the
streams

were
 initialized
with
pre-trained
 ImageNet
weights
and
fine-tuned
with
an

SGD
optimizer.

Under
the
above-mentioned
setup,
spatial
and
temporal
streams
achieved

an
accuracy
of
75%
and
70%,
respectively.
Then,
both
streams
were
average

fused
to
achieve
a
final
classification
accuracy
of
82%.
Also,
in
this
scenario,

both
streams
were
found
to
have
an
activation
sparsity
of
∼
47%.

3.4.2
 Experiments

Scenario
1:
The
setup
consecutively
places
the
fixed
point
based
quantization

layer
and
temporal
delta
layer
after
every
activation
layer
in
the
network.
The

temporal
delta
layer
here
also
includes
a
l1
norm
based
penalty.
The
baseline

weights
were
used
as
a
starting
point,
and
all
the
layers
including
the
temporal

delta
layer
is
fine-tuned
until
acceptable
convergence.
The
hyper-parameters

specifically
 required
 for
 this
 setup
were
bitwidth
 (to
which
 the
activations

were
to
be
quantized)
and
penalty
co-efficient
to
balance
the
tussle
between

task
loss
and
sparsity
penalty.

46
 Temporal
Delta
Layer:
Exploiting
Temporal
Sparsity

Scenario
2:
The
setup
is
similar
to
the
previous
scenario
except
for
the
activa
tion
quantization
method
used.
The
previous
experiment
used
fixed
precision

quantization
where
all
 the
activation
 layers
 in
 the
network
were
quantized

to
 the
 same
 bitwidth.
 However,
 this
 experiment
 uses
 learnable
 step-size

quantization
 (LSQ),
which
 performs
 channel-wise
 quantization
 depending

on
the
activation
distribution
resulting
in
mixed-precision
quantization
of
the

activation
maps.

The
 layer
also
 introduces
a
hyperparameter
during
 training
(apart
from

the
 penalty
 coefficient
 mentioned
 earlier)
 for
 the
 step
 size
 initialization.

Then,
during
training,
the
step
size
increases
or
decreases
depending
on
the

activation
distribution
in
each
channel.

3.4.3
 Result
Analysis

Table
3.1
and
3.1
show
 the
baseline
accuracy
and
activation
sparsity
com
pared
against
the
two
scenarios
mentioned.

Firstly,
when
the
temporal
delta
layers
with
fixed
point
quantized
activa
tions
are
included
in
the
baseline
model,
it
can
be
observed
that
the
activation

sparsity
increases
considerably
with
a
slight
loss
in
accuracy
in
both
streams.

Table
3.1
 Spatial
stream
- comparison
of
accuracy
and
activation
sparsity
obtained
through

the
proposed
scenarios
against
the
baseline.
In
the
case
of
fixed
point
quantization,
the
reported

results
are
for
a
bitwidth
of
6
bits.

Model
setup

(Spatial
stream)

Accuracy
 Activation
sparsity

Baseline
 75%
 48%

Temporal
delta
layer
with

fixed
point
quantization

73%
 74%

Temporal
delta
layer
with

learned
step-size
quantization

69%
 86%

Table
 3.2
 Temporal
 stream
 - comparison
 of
 accuracy
 and
 activation
 sparsity
 obtained

through
the
proposed
scenarios
against
the
benchmark.
In
the
case
of
fixed
point
quantization,

the
reported
results
are
for
a
bitwidth
of
7
bits.

Model
setup

(Temporal
stream)

Accuracy
 Activation
sparsity

Baseline
 70%
 47%

Temporal
delta
layer
with

fixed
point
quantization

68%
 67%

Temporal
delta
layer
with

learned
step-size
quantization

65%
 89%

3.4
 Experiments
and
Results
 47

This
is
because
lowering
the
precision
from
32
bits
to
8
bits
(or
less)
leads
to

temporal
differences
of
activations
going
to
absolute
zero.

Additionally,
 the
 reason
 for
 close-to
 baseline
 accuracy
 in
 the
 method

involving
fixed
point
quantization
can
be
attributed
to
fractional
bit
allocation

flexibility.
That
is,
as
the
bitwidth
is
fixed,
the
number
of
integer
bits
required

is
decided
depending
on
the
activation
distribution
within
the
layer,
and
the

rest
of
the
bits
are
assigned
as
fractional
bits.
This
makes
sure
that
the
pre
cision
of
the
activation
is
compromised
for
range.
Also,
another
contributing

factor
for
accuracy
sustenance
is
that
the
first
and
the
last
layers
of
the
model

are
not
quantized,
 similar
 to
works
 like
 [26][27].
This
 is
because
 the
first

and
 last
 layer
has
a
 lot
of
 information
density.
Those
are
 the
 layers
where

input
 pixels
 turn
 into
 features
 and
 features
 turn
 into
 output
 probabilities,

respectively,
which
makes
them
more
sensitive
to
quantization.

Although
 the
activation
 sparsity
gain
 in
 the
case
of
 the
 temporal
delta

layer
with
fixed
point
quantization
 is
better
 than
 the
baseline,
 it
 is
still
not

sufficiently
high
as
required.
In
this
effort,
the
bitwidth
of
the
activations
are

decreased
in
the
expectation
of
increasing
sparsity.
However,
as
the
bitwidth

goes
below
a
certain
value
(6
bits
for
spatial
and
7
bits
for
temporal
stream),

sparsity
 increases,
 but
 accuracy
 starts
 to
 deteriorate
 beyond
 recovery,
 as

shown
in
Table
3.3.
This
is
because
quantizing
all
layers
of
a
network
to
the

same
bitwidth
can
mean
that
the
inter-channel
variations
of
the
feature
maps

are
not
 fully
 accounted
 for.
Since
 the
number
of
 fractional
bits
 is
usually

selected
to
cover
the
maximum
activation
value
in
a
layer,
the
fixed
bitwidth

quantization
 tends
 to
 cause
 excessive
 information
 loss
 in
 channels
with
 a

smaller
dynamic
 range.
Therefore,
 it
 can
be
 inferred
 that
mixed-precision

quantization
of
activations
is
a
better
approach
to
obtain
good
sparsity
without

compromising
accuracy.

Table
3.3
 Result
of
decreasing
activation
bitwidth
in
fixed
point
quantization
method.
For

spatial
stream,
decreasing
below
6
bits
caused
the
accuracy
to
drop
considerably.
For
temporal

stream,
the
same
happened
below
7
bits.

Spatial
stream
 Temporal
stream

Activation
 Accuracy
 Activation
 Accuracy
 Activation

bitwidth
 (%)
 sparsity
(%)
 (%)
 sparsity
(%)

32
 75
 50
 70
 47

8
75
68
70
65

7
 75
 71
 68
 70

6
73
75
61
 73

5
65
80
 - -

48
 Temporal
Delta
Layer:
Exploiting
Temporal
Sparsity

Figure
3.5
 Evolution
of
quantization
step
size
from
 initialization
 to
convergence
 in
LSQ.

As
step-size
 is
a
 learnable
parameter,
 it
gets
re-adjusted
during
 training
 to
cause
minimum

information
loss
in
each
layer.

Finally,
using
 the
 temporal
delta
 layer
where
 incoming
 activations
 are

quantized
using
learnable
step-size
quantization
(LSQ)
gives
the
best
results

for
both
spatial
and
temporal
streams.
As
the
step
size
is
a
learnable
param
eter,
 it
 gives
 the
 model
 enough
 flexibility
 to
 result
 in
 a
 mixed
 precision

model,
where
each
channel
in
a
layer
has
a
bitwidth
that
suits
its
activation

distribution.
This
kind
of
channel-wise
quantization
minimizes
the
impact
of

low-precision
 rounding.
 It
 is
also
evident
 in
Figure
3.5
 that
as
 the
 training

nears
convergence,
 the
values
of
 the
 step
 size
differ
according
 to
 the
acti
vation
distribution
and
bitwidth
required
to
represent
each
layer.
Moreover,

consistent
with
the
expectation,
the
first
and
last
layers
during
training
opts
for

smaller
step
sizes
implying
they
need
more
bitwidth
for
their
representation.

Table
3.4
 Final
results
from
two-stream
network
after
average
fusing
the
spatial
and
tempo
ral
stream
weights.
With
5%
accuracy
loss,
the
proposed
method
almost
doubles
the
activation

sparsity
available
in
comparison
to
the
baseline.

Baseline
 Proposed
method

Model
 Accuracy
 Activation
 Accuracy
 Activation

type
 (%)
 sparsity
(%)
 (%)
 sparsity
(%)

Spatial

stream

75
 50
 69
 86

Temporal

stream

70
 46
 65
 89

Two-stream

(Average
 82
 47
 77
 88

fused)

3.5
 Conclusion
 49

The
weights
generated
using
this
method
was
then
average
fused
to
find

the
final
 two-stream
network
 accuracy
 and
 activation
 sparsity
 (Table
3.4).

Finally,
the
proposed
method
can
achieve
an
overall
88%
activation
sparsity

with
5%
accuracy
loss.

3.5
 Conclusion

Intuitively,
 the
 proposed
 new
 temporal
 delta
 layer
 projects
 the
 temporal

activation
 sparsity
 between
 two
 consecutive
 feature
maps
 onto
 the
 spatial

activation
 sparsity
 of
 their
 delta
map.
When
 executing
 sparse
 tensor
mul
tiplications
 in
 hardware,
 this
 spatial
 sparsity
 can
 be
 used
 to
 decrease
 the

computations
and
memory
accesses.
As
 shown
 in
Table
3.4,
 the
proposed

method
 resulted
 in
88%
overall
 activation
 sparsity
with
 a
 trade-off
of
5%

accuracy
drop
on
UCF-101
dataset.

The
collateral
benefit
of
the
obtained
temporal
sparsity
is
that
the
compu
tations
does
not
increase
linearly
with
the
increase
in
frame
rate.
In
typical

DNNs,
doubling
the
frame
rate
would
automatically
necessitate
doubling
the

computations.
However,
 in
 the
 case
 of
 temporal
 delta
 layer
 based
model,

increasing
 the
 frame
 rate
will
not
only
 improve
 the
 temporal
precision
of

the
network
but
also
increase
its
temporal
sparsity
limiting
the
computations

required
[28].

The
downside
of
using
the
temporal
delta
layer
is
that
it
requires
keeping

track
 of
 previous
 activations
 in
 order
 to
 perform
 delta
 operations.
 As
 a

result,
the
overall
memory
footprint
grows,
putting
more
reliance
on
off-chip

memory.
However,
the
rising
popularity
of
novel
memory
technologies
(like

resistive
RAM
 [29],
embedded
Flash
memory
 [30],
etc.)
may
 improve
 the

cost
calculations
in
the
near
future.

Disclaimer:
This
paper
 is
a
distillation
of
 the
research
done
by
one
of
 the

authors
as
a
part
of
her
master
thesis
and
is
partially
published
in
chapter
3

of
[32].
The
complete
thesis,
along
with
the
results
and
analysis,
is
available

online
[31].

Acknowledgment

This
work
 is
partially
 funded
by
 research
and
 innovation
projects
TEMPO

(ECSEL
 JU
under
grant
 agreement
No
826655),
ANDANTE
 (ECSEL
 JU

under
grant
agreement
No
876925)
and
DAIS
(KDT
JU
under
grant
agree
ment
 No
 101007273),
 SunRISE
 (EUREKA
 cluster
 PENTA2018e-17004
SunRISE)
 and
 Comp4Drones
 (ECSEL
 JU
 grant
 agreement
 No.
 826610).

50
 Temporal
Delta
Layer:
Exploiting
Temporal
Sparsity

The
JU
receives
support
from
the
European
Union’s
Horizon
2020
research

and
innovation
programme
and
Sweden,
Spain,
Portugal,
Belgium,
Germany,

Slovenia,
Czech
Republic,
Netherlands,
Denmark,
Norway
and
Turkey.

References

[1]
L.
Wang,
Y.
Xiong,
Z.
Wang,
Y.
Qiao,
D.
Lin,
X.
Tang,
and
L.
Van
Gool,

“Temporal
segment
networks:
Towards
good
practices
for
deep
action

recognition,”
 in
European
conference
on
computer
vision,
pp.
20–36,

Springer,
2016.

[2]
K.
Chen
 and
W.
Tao,
 “Once
 for
 all:
 a
 two-flow
 convolutional
neural

network
for
visual
tracking,”
IEEE
Transactions
on
Circuits
and
Systems

for
Video
Technology,
vol.
28,
no.
12,
pp.
3377–3386,
2017.

[3]
K.
Kang,
H.
Li,
J.
Yan,
X.
Zeng,
B.
Yang,
T.
Xiao,
C.
Zhang,
Z.
Wang,

R.
Wang,
X.
Wang,
et
al.,
“T-cnn:
Tubelets
with
convolutional
neural

networks
for
object
detection
from
videos,”
IEEE
Transactions
on
Cir
cuits
and
Systems
for
Video
Technology,
vol.
28,
no.
10,
pp.
2896–2907,

2017.

[4]
S.
Han,
H.
Mao,
 and
W.
 J.
Dally,
 “Deep
 compression:
Compressing

deep
neural
networks
with
pruning,
 trained
quantization
and
huffman

coding,”
arXiv
preprint
arXiv:1510.00149,
2015.

[5]
G.
Hinton,
O.
Vinyals,
and
J.
Dean,
“Distilling
the
knowledge
in
a
neural

network,”
arXiv
preprint
arXiv:1503.02531,
2015.

[6]
W.
Wen,
C.
Wu,
Y.
Wang,
Y.
Chen,
 and
H.
Li,
 “Learning
 structured

sparsity
 in
 deep
 neural
 networks,”
 arXiv
 preprint
 arXiv:1608.03665,

2016.

[7]
M.
 Mahowald,
 “The
 silicon
 retina,”

in
 An
 Analog
 VLSI
 System
 for

Stereoscopic
Vision,
pp.
4–65,
Springer,
1994.

[8]
 J.
W.
Mink,
R.
J.
Blumenschine,
and
D.
B.
Adams,
“Ratio
of
central

nervous
 system
 to
body
metabolism
 in
vertebrates:
 its
 constancy
and

functional
basis,”
American
Journal
of
Physiology-Regulatory,
Integra
tive
 and
 Comparative
 Physiology,
 vol.
 241,
 no.
 3,
 pp.
 R203–R212,

1981.

[9]
A.
 Yousefzadeh,
 M.
 A.
 Khoei,
 S.
 Hosseini,
 P.
 Holanda,
 S.
 Leroux,

O.
Moreira,
J.
Tapson,
B.
Dhoedt,
P.
Simoens,
T.
Serrano-Gotarredona,

et
al.,
“Asynchronous
spiking
neurons,
the
natural
key
to
exploit
tempo
ral
sparsity,”
IEEE
Journal
on
Emerging
and
Selected
Topics
in
Circuits

and
Systems,
vol.
9,
no.
4,
pp.
668–678,
2019.

References
 51

[10]
C.
Gao,
D.
Neil,
E.
Ceolini,
 S.-C.
Liu,
 and
T.

Delbruck,
 “Deltarnn:

A
 power-efficient
 recurrent
 neural
 network
 accelerator,”
 in
 Proceed
ings
 of
 the
 2018
 ACM/SIGDA
 International
 Symposium
 on
 Field-
Programmable
Gate
Arrays,
pp.
21–30,
2018.

[11]
O.
Moreira,
A.
Yousefzadeh,
F.
Chersi,
G.
Cinserin,
R.-J.
Zwartenkot,

A.
Kapoor,
P.
Qiao,
P.
Kievits,
M.
Khoei,
L.
Rouillard,
et
al.,
“Neuron
flow:
a
neuromorphic
processor
architecture
for
live
ai
applications,”
in

2020
Design,
Automation
&
Test
 in
Europe
Conference
&
Exhibition

(DATE),
pp.
840–845,
IEEE,
2020.

[12]
 J.
Frankle
and
M.
Carbin,
“The
lottery
ticket
hypothesis:
Finding
sparse,

trainable
neural
networks,”
arXiv
preprint
arXiv:1803.03635,
2018.

[13]
H.
 Yang,
 W.

Wen,
 and
 H.
 Li,
 “Deephoyer:
 Learning
 sparser
 neural

network
 with
 differentiable
 scale-invariant
 sparsity
 measures,”
 arXiv

preprint
arXiv:1908.09979,
2019.

[14]
S.
Seto,
M.
T.
Wells,
and
W.
Zhang,
“Halo:
Learning
to
prune
neural
net
works
with
shrinkage,”
in
Proceedings
of
the
2021
SIAM
International

Conference
on
Data
Mining
(SDM),
pp.
558–566,
SIAM,
2021.

[15]
M.
Mahmoud,
K.
Siu,
and
A.
Moshovos,
“Diffy:
A
déjà
vu-free
differ
ential
deep
neural
network
accelerator,”
in
2018
51st
Annual
IEEE/ACM

International
Symposium
on
Microarchitecture
(MICRO),
pp.
134–147,

IEEE,
2018.

[16]
C.-Y.
 Wu,
 M.
 Zaheer,
 H.
 Hu,
 R.
 Manmatha,
 A.
 J.
 Smola,
 and

P.
Krähenbühl,
“Compressed
video
action
recognition,”
in
Proceedings

of
the
IEEE
Conference
on
Computer
Vision
and
Pattern
Recognition,

pp.
6026–6035,
2018.

[17]
M.
 Buckler,

P.
 Bedoukian,
 S.
 Jayasuriya,
 and
 A.
 Sampson,
 “Eva2:

Exploiting
 temporal
 redundancy
 in
 live
 computer
 vision,”
 in
 2018

ACM/IEEE
45th
Annual
International
Symposium
on
Computer
Archi
tecture
(ISCA),
pp.
533–546,
IEEE,
2018.

[18]
L.
Cavigelli,
P.
Degen,
and
L.
Benini,
“Cbinfer:
Change-based
inference

for
convolutional
neural
networks
on
video
data,”
in
Proceedings
of
the

11th
International
Conference
on
Distributed
Smart
Cameras,
pp.
1–8,

2017.

[19]
P.
O’Connor
and
M.
Welling,
“Sigma
delta
quantized
networks,”
arXiv

preprint
arXiv:1611.02024,
2016.

[20]
P.-E.
Novac,
G.
B.
Hacene,
A.
Pegatoquet,
B.
Miramond,
and
V.
Gripon,

“Quantization
and
deployment
of
deep
neural
networks
on
microcon
trollers,”
Sensors,
vol.
21,
no.
9,
p.
2984,
2021.

52
 Temporal
Delta
Layer:
Exploiting
Temporal
Sparsity

[21]
S.
 K.
 Esser,
 J.
 L.
 McKinstry,
 D.
 Bablani,
 R.
 Appuswamy,
 and

D.
 S.
 Modha,
 “Learned
 step
 size
 quantization,”
 arXiv
 preprint

arXiv:1902.08153,
2019.

[22]
R.
Krishnamoorthi,
“Quantizing
deep
convolutional
networks
for
effi
cient
inference:
A
whitepaper,”
arXiv
preprint
arXiv:1806.08342,
2018.

[23]
Y.

Yu,
R.
Hira,
 J.
N.
Stirman,
W.
Yu,
 I.
T.
Smith,
 and
S.
L.
Smith,

“Mice
use
robust
and
common
strategies
to
discriminate
natural
scenes,”

Scientific
reports,
vol.
8,
no.
1,
pp.
1–13,
2018.

[24]
K.
Simonyan
and
A.
Zisserman,
“Two-stream
convolutional
networks

for
action
recognition
in
videos,”
arXiv
preprint
arXiv:1406.2199,
2014.

[25]
K.

Soomro,
 A.
 R.
 Zamir,
 and
 M.
 Shah,
 “Ucf101:
 A
 dataset
 of

101
 human
 actions
 classes
 from
 videos
 in
 the
wild,”
 arXiv
 preprint

arXiv:1212.0402,
2012.

[26]
 J.
 Choi,
 Z.
 Wang,
 S.
 Venkataramani,
 P.

I.-J.
 Chuang,
 V.
 Srinivasan,

and
 K.
 Gopalakrishnan,
 “Pact:
 Parameterized
 clipping
 activation
 for

quantized
neural
networks,”
arXiv
preprint
arXiv:1805.06085,
2018.

[27]
S.
Zhou,
Y.
Wu,
Z.
Ni,
X.
Zhou,
H.
Wen,
 and
Y.
Zou,
 “Dorefa-net:

Training
low
bitwidth
convolutional
neural
networks
with
low
bitwidth

gradients,”
arXiv
preprint
arXiv:1606.06160,
2016.

[28]
M.
A.
Khoei,
A.
Yousefzadeh,
A.
Pourtaherian,
O.
Moreira,
and
J.
Tap-
son,
“Sparnet:
Sparse
asynchronous
neural
network
execution
for
energy

efficient
inference,”
in
2020
2nd
IEEE
International
Conference
on
Arti
ficial
 Intelligence
Circuits
and
Systems
 (AICAS),
pp.
256–260,
 IEEE,

2020.

[29]
S.
 Huang,
 A.
 Ankit,
 P.
 Silveira,
 R.
 Antunes,
 S.
 R.
 Chalamalasetti,

I.
El
Hajj,
D.
E.
Kim,
G.
Aguiar,
P.
Bruel,
S.
Serebryakov,
et
al.,
“Mixed

precision
 quantization
 for
 reram-based
 dnn
 inference
 accelerators,”

in
 2021
 26th
Asia
 and
 South
Pacific
Design
Automation
Conference

(ASP-DAC),
pp.
372–377,
IEEE,
2021.

[30]
M.
Kang,
H.
Kim,
H.
Shin,
J.
Sim,
K.
Kim,
and
L.-S.
Kim,
“S-flash:

A
nand
flash-based
deep
neural
network
accelerator
exploiting
bit-level

sparsity,”
IEEE
Transactions
on
Computers,
2021.

[31]
P.
Vijayan,
“Temporal
Delta
Layer.”
http://resolver.tudelft.nl/uuid:

0806241d-9037-4094-a197-6e65d6482f2b.

[32]
O.
 Vermesan

and
 M.
 Diaz
 Nava
 (Eds),
 Intelligent
 Edge-Embedded

Technologies
 for
 Digitising
 Industry
 ISBN:
 9788770226103,
 River

Publishers,
Gistrup,
Denmark,
2022.

http://www.resolver.tudelft.nl
http://www.resolver.tudelft.nl

4

An
End-to-End
AI-based
Automated

Process
for
Semiconductor
Device

Parameter
Extraction

Dinu
Purice1,
Matthias
Ludwig2,
and
Claus
Lenz1

1Cognition
Factory
GmbH,
Germany

2Infineon
Technologies
AG,
Germany

Abstract

In
this
work,
we
present
an
automated
AI-supported
end-to-end
technology

validation
 pipeline
 aiming
 to
 increase
 trust
 in
 semiconductor
 devices
 by

enabling
 a
 check
 of
 their
 authenticity.
 The
 high
 revenue
 associated
 with

the
 semiconductor
 industry
makes
 it
vulnerable
 to
counterfeiting
activities

potentially
endangering
safety,
reliability
and
trust
of
critical
systems
such
as

highly
automated
cars,
cloud,
Internet
of
Things,
connectivity,
space,
defence

and
 supercomputers
 [7].
The
 proposed
 approach
 combines
 semiconductor

device-intrinsic
features
extracted
by
artificial
neural
networks
with
domain

expert
knowledge
 in
a
pipeline
of
 two
 stages:
 (i)
a
 semantic
 segmentation

stage
based
on
a
modular
cascaded
U-Net
architecture
to
extract
spatial
and

geometric
 information,
and
(ii)
a
parameter
extraction
stage
 to
 identify
 the

technology
fingerprint
using
a
clustering
approach.
An
 in-depth
evaluation

and
 comparison
of
 several
 artificial
neural
network
 architectures
has
been

performed
 to
find
 the
most
suitable
solution
 for
 this
 task.
The
final
 results

validate
 the
 taken
 approach,
with
 deviations
 close
 to
 acceptable
 levels
 as

defined
by
existing
standards
within
the
industry.

Keywords:
Semantic
segmentation,
image
processing,
hardware
trust,
phys
ical
 inspection
of
electronics,
AI,
ML,
deep
 learning,
 supervised
 learning,

convolutional
neural
networks,
computer
vision.

53

DOI: 10.1201/9781003377382-4
This chapter has been made available under a CC BY-NC 4.0 license.

54
 An
End-to-End
AI-based
Automated
Process

4.1
 Introduction

Automation
 is
 one
 of
 the
 key
 parameters
 industries
 can
 approach
 to

strengthen
quality
and
lower
overall
costs.
The
improved
availability
of
data

and
 the
mainstream
 application
 of
 approaches
 relying
 on
 artificial
 intelli
gence
 (AI)
 pushes
 industries
 towards
 the
 adaption
 of
 these
 AI
 methods.

Nonetheless,
 practical
 implementations
 of
 these
 often
 seem
 to
 fail
 due
 to

inflated
 expectations.
Via
 a
use-case
 from
 the
 semiconductor
 industry,
we

show
various
practical
ways
to
overcome
these
potential
pitfalls.

The
 recently
 introduced
European
Chips
 act
 recognises
 the
paramount

importance
of
 the
semiconductor
 industry
within
 the
global
economy.
The

market
for
 integrated
electronics
was
at
$452.25B
 in
2021
and
 is
expected

to
grow
to
$803.15B
in
2028
[8].
The
high
revenue
potential
causes
extreme

cost
pressure
and
a
highly
competitive
market.
Consequently,
since
decades,

the
semiconductor
industry
is
driven
to
automation
along
the
complete
value

chain.
One
way
 to
differentiate
 from
competitors
 is
 through
 the
utilisation

of
 AI-powered
 manufacturing
 enhancements
 which
 have
 the
 potential
 to

gain
 $35B
 - $40B
 annually
 over
 the
 entire
 industry
 [10].
 Yet,
 not
 only

manufacturing
yields
the
potential
to
benefit
from
the
industries
push
towards

AI.
The
methods
 also
offer
 the
 chance
 to
be
used
 for
 trust
generation.
 In

the
aforementioned
staggering
market,
rogues
also
aim
 to
catch
 their
share

through
 counterfeiting,
 i.e.
 cloning,
 remarking,
 overproducing,
 or
 simply

reselling
 of
 used
 parts
 [9].
This
 leads
 to
 the
 use
 case
 discussed
 through
out
 this
work:
 via
 physical
 inspection
 and
 a
 fully
 integrated
AI
 flow
we

present
 a
 fully
 automated
 assessment
 of
 the
 technological
 properties
 of
 a

device.
The
 idea
 for
 such
 a
 pipeline
 has
 already
 been
 introduced
 in
 [15]

where
 it
 is
argued
 that
 through
a
subsequent
analysis
of
 the
cross-sections,

the
 authenticity
 of
 the
 manufacturing
 technology
 can
 be
 validated.
 Rele
vant
 features
 in
 this
case
 include
geometric
 shapes
and
dimensions
of
 the

constituent
structures,
as
well
as
material-related
properties.
Each
 technol
ogy
 can
 be
 interpreted
 as
 an
 individual
 fingerprint,
 such
 that
 deviations

from
specifications
can
be
reported
as
suspicious.
This
work
will
focus
on

the
 end-to-end
 application
 aspects
 of
 the
 use
 case
 and
 includes
 following

contributions:

•
We
will
introduce
an
end-to-end,
fully
automated
flow
for
semiconduc
tor
 device
 technological
 parameter
 extraction
 by
 image
 segmentation

and
pattern
recognition
as
an
exemplary
industrial
use-case.

•
We
 introduce
our
methodology
 that
 is
 tailored
 to
 the
 requirements
of

the
use
case.
This
 includes
an
 image
segmentation
approach
which
 is

4.1
 Introduction
 55

constituted
 of
 a
 set
 of
 specialised
U-net
 cascades,
 class-specific
 loss

functions,
and
an
evolution-based
training
approach.

•
The
 advantages
 of
 our
 design-decisions
 are
 quantitatively
 compared

to
 similar
 state-of-the-art
approaches
and
 important
 lessons
 learned
–

transferable
to
other
use-cases
–
are
summarised.

Related
work:
The
demand
for
measuring
structures
and
critical
dimensions

within
semiconductor
devices
is
ever-increasing.
While
manufacturing
relies

mostly
 on
 in-line
 metrology,
 a
 further
 possibility
 is
 the
 post-production

measurement.
The
databases
are
oftentimes
big
and
automating
of
these
flows

is
vital.
A
first
template-based
approach
has
been
shown
in
[30].
This
work

relies
 on
 template
matching
 and
 pattern
 recognition
 for
 the
 extraction
 of

profile
parameters.
Furthermore,
in
a
previous
work
[15],
we
have
proposed

how
the
flow
can
be
utilised
for
the
detection
of
counterfeit
electronics
[9]
by

comparing
the
extracted
parameters
against
a
database
of
known
parameters.

The
prospect
of
(semi)-automation
of
industrial
processes
through
the
use

of
machine
 learning-based
(ML)
methods
 is
further
gaining
 traction
due
 to

recent
advancements
 in
 the
field
of
ML
and
 the
uncovering
of
 its
unprece
dented
feature
extraction
and
generalisation
capabilities.
Further
accelerated

due
 to
 the
 abundance
 of
 data,
 the
 “smartisation”
 of
 industrial
 processes

through
ML
techniques
has
been
conceived
as
the
fourth
industrial
revolution

[6].

The
 data
 set
 involved
 in
 this
 application
 bears
 two
 important
 charac
teristics:
 it
 consists
 of
 grey-valued
 images,
 and
 more
 importantly
 has
 a

very
 limited
 availability
 of
 annotated
 data.
 The
 same
 characteristics
 are

typically
observed
in
medical
applications,
in
dealing
with
images
produced

by
computed
tomography
(CT),
cone
beam
computed
tomography
(CBCT),

as
well
 as
magnetic
 resonance
 imaging
 (MRI),
ultrasound,
X-ray,
 all
data

types
being
 scarcely
 available
 to
 the
public
due
 to
 the
 confidential
nature

of
 medical
 data.
 Nevertheless
 segmentation
 tasks
 have
 been
 successfully

tackled
by
ML-based
methods,
and
 in
particular
deep
 learning
approaches

which
 were
 proven
 to
 satisfy
 the
 high
 accuracy
 requirements
 typical
 to

applications
in
the
medical
field.
Of
particular
note
in
this
context
is
the
work

of
Ronneberger
et
al.
[22]
with
 the
 introduction
of
 the
U-net,
a
symmetric

network
consisting
of
a
encoding
and
a
decoding
arm
which
was
proved
to

possess
high
generalisation
 capabilities
 even
on
 relatively
 small
data
 sets.

The
 progress
 was
 further
 accentuated
 after
 the
 debut
 of
 Dice-based
 loss

functions,
first
introduced
by
Milletari
et
al.
[17],
which
have
been
proven
to

outperform
existing
alternatives
in
the
analysis
of
highly
skewed
data.
Based

56
 An
End-to-End
AI-based
Automated
Process

Figure
4.1
 Overview
of
the
architecture.

on
the
above-mentioned
innovations,
both
supervised
and
unsupervised
deep

learning-based
approaches
have
been
constantly
expanding
within
different

use
cases
in
the
medical
field,
as
shown
by
the
works
of
Kawula
et
al.
[11],

Wang
et
al.
[3]
or
Altaf
et
al.
[2].

The
following
chapters
describe
the
two
paramount
steps
of
this
applica
tion,
namely
 the
 Image
Segmentation
and
 the
Parameter
Extraction
stages,

respectively.
 Both
 stages
 are
 currently
 being
 fine-tuned
 and
 validated
 to

ensure
compliance
with
industry-defined
standards
of
operation.

4.2
 Semantic
Segmentation

4.2.1
 Proof
of
Concept
and
Architecture
Overview

As
a
first
step
of
development
a
benchmark
stage
was
conducted,
with
 the

goal
of
determining
the
viability
of
an
AI-based
approach
to
scanning
elec
tron
microscope
(SEM)
 image
segmentation
and
 identify
 the
most
suitable

architecture
for
the
task.
Considering
that
both
the
industrial
sector
and
the

academic
sector
lack
openly
available
annotated
semiconductor
cross-section

SEM
data,
a
custom
data
set
was
assembled
and
labelled.
The
data
set
consists

of
1024
by
685
grey-valued
images,
obtained
at
Infineon
Technologies
AG’s

failure
analysis
laboratories
and
represent
technology
nodes
from
500
nm
to

approximately
40
nm
with
copper
and
Al-Tu
technologies
included.
Devices

with
less
than
one
metal
layer
(e.g.
discrete
transistors)
were
excluded.
The

image
sources
are
state-of-the-art
SEMs
available
 in
semiconductor
 failure

analysis
laboratories.
For
the
purpose
of
this
stage
202
images
were
manually

sampled
and
labelled.

The
 images
were
 annotated
with
 5
 relevant
 labels
 of
 interest,
 namely

“metal”,
“VIA”,
“lateral
isolation”,
“poly”,
and
“deep
trench
isolation”
[25],

each
bearing
features
important
in
the
process
of
technology
identification.

The
selected
features
imbue
the
following
purposes
within
a
semiconductor

device:

•
Metal:
Low
 resistance
metallic
connections
between
devices.
Several

metallisation
layer
can
be
stacked
over
each
other
to
route
inter-device

connections.

4.2
 Semantic
Segmentation
 57

Figure
4.2
 Examples
showcasing
different
semiconductor
technologies

Figure
4.3
 Examples
of
labelled
data
showcasing
the
different
ROIs:
green
–
VIA;
yellow
–

metal;
teal
–
lateral
isolation;
red
–
poly;
blue
–
deep
trench
isolation

•
Vertical
 interconnect
 access
 (VIA)
 /
 contact:
 Low
 ohmic

interconnections
 between
 different
 metallisation
 layers
 (VIA)
 or

between
devices
and
the
lowest
metallisation
layer.

•
Lateral
isolation
(shallow
trench
isolation):
Electrical
lateral
isolation

between
devices
with
a
dioxide
trough
a
shallow
deposition.

•
Deep
trench
isolation:
Trenches
for
lateral
isolation
with
a
high
depth-
width
ratio.
Mostly
found
in
analogue
integrated
circuits.

•
Poly:
Poly-crystalline
silicon
which
is
used
as
gate
electrode.

For
the
benchmark
stage
however
only
two
regions
of
interest
(ROIs)
were

selected,
namely
“VIA”
and
“metal”.
The
two
ROIs
strongly
differ
in
terms
of

size
and
quantity,
with
the
pixel-wise
class-distribution
of
the
“metal”
objects

representing
13.61%,
while
“VIA”
objects
being
more
numerous
but
at
 the

same
time
smaller,
taking
up
2.5%.
Therefore,
they
reflect
the
two
important

properties
of
the
expected
data:
high
variability
and
high
skewness.

As
it
can
be
seen
in
Fig.
4.4
there
is
a
strong
overlap
in
intensity
between

the
various
regions
of
interest,
yielding
classical
segmentation
methods
such

as
thresholding
[21],
region-growing
[20],
watershed
[18]
and
k-means
clus
tering
 [19]
 ineffective.
 Instead,
 an
 effective
 segmentation
process
 requires

58
 An
End-to-End
AI-based
Automated
Process

Figure
4.4
 Histograms
of
the
investigated
data
grouped
by
label
of
interest

domain-expert
 knowledge
 –
 thus
 encouraging
 the
 use
 of
 deep
 learning-
based
methods
capable
of
extracting
spatial
and
semantic
 features.
Several

network
architectures
were
selected
as
candidates,
based
on
their
respective

performance
 in
similar
segmentation
 tasks.
An
overview
of
each
candidate

network
architecture
is
presented
below:

•
U-net
[22]

Introduced
by
Ronneberger
et
al.
[22]
as
a
solution
for
biomedical
image

segmentation,
 this
architecture
has
been
shown
 to
perform
reasonably
well

even
 when
 trained
 with
 small
 amounts
 of
 data.
 It
 consists
 of
 an
 down-
sampling
encoder
and
an
up-sampling
decoder
arm
enabling
efficient
spatial

context
capture.
The
arms
are
connected
with
skip
connection
which
acceler
ate
convergence
during
training
and
combat
vanishing
gradients.
The
U-net

achieved
an
averaged
Dice
score
of
0.76
on
the
test
subset.

•
Feature
Pyramid
Network
(FPN)
[13]

Figure
4.5
 Overview
of
the
U-net
architecture
[24]

4.2
 Semantic
Segmentation
 59

Figure
4.6
 Overview
of
the
FPN
architecture
[24]

The
FPN
follows
a
top-down
approach
with
skip
connections,
similar
to

the
previously
mentioned
U-net.
However
 instead
of
using
 the
final
output

as
 the
prediction,
 the
FPN
makes
predictions
 for
each
 stage
 (see
Fig.
4.6)

thus
combining
semantically
strong
low-resolution
features
with
semantically

weaker
high-level
features.
An
additional
segmentation
branch
is
used
to
then

merge
the
information
from
all
levels
into
a
single
output.
The
FPN
obtained

an
averaged
Dice
score
of
0.71
on
the
test
subset

•
Gated-Shape
Convolutional
Neural
Network
(GSCNN)
[27]

The
GSCNN
employs
a
two-stream
architecture,
with
the
shape-related
fea
tures
 focused
 in
 a
 dedicated
 stream
 that
works
 in
 parallel
 to
 the
 standard

Figure
4.7
 Overview
of
the
GSCNN
architecture
[24]

60
 An
End-to-End
AI-based
Automated
Process

Figure
4.8
 Overview
of
the
PSPNet
architecture
[24]

encoder.
A
key
characteristic
of
this
architecture
is
the
use
of
gated
convolu
tional
layers,
which
connect
intermediate
layers
of
both
streams,
facilitating

the
transfer
of
information
from
the
encoder
to
the
shape
stream
while
filter
ing
irrelevant
information.
The
information
of
both
streams
is
then
combined

within
 the
 fusion
 stage
 using
 an
Atrous
 Spatial
 Pyramid
 Pooling
module

(ASPP).
An
averaged
Dice
score
of
0.74
on
the
test
subset
was
obtained
by

the
GSCNN.

•
Pyramid
Scene
Parsing
Network
(PSPNet)
[31]

The
PSPNet
architecture
makes
use
of
a
Pyramid
Pooling
Module
(PPM)

to
capture
rich
context
information
from
the
output
of
the
encoder
arm.
The

capture
is
done
through
fusion
of
the
network’s
four
pyramid
scales,
as
seen

in
Fig.
4.8.
An
averaged
Dice
score
of
0.69
on
the
test
subset
was
obtained

using
the
PSPNet
architecture.

•
Siamese
network
[16]

The
Siamese
network
presents
another
approach
to
combine
the
features

extracted
at
low-resolution
and
high-resolution
levels,
namely
through
a
two

step
approach.
The
first
step
operates
on
 the
whole,
down-sampled
 image,

and
outputs
a
coarse
segmentation
map.
As
a
second
step
the
segmentation

Figure
4.9
 Overview
of
the
Siamese
network
architecture
[12]

Table
4.1
 Obtained
Dice
Scores
for
each
showcased
network
architecture

Architecture
 U-net
 PSPNet
 FPN
 GSCNN
 Siamese

Average
DSC
 0.76
 0.69
 0.71
 0.74
 0.78

DSC
range
 0.71
- 0.80
 0.63
- 0.72
 0.65
- 0.77
 0.69
- 0.79
 0.74
- 0.81

4.2
 Semantic
Segmentation
 61

map
 is
 then
fed
 into
a
Siamese
network
containing
 two
encoders
(as
show

in
 Fig.
 4.9),
 with
 the
 original
 high
 resolution
 image
 going
 through
 the

other
encoder
 in
patches.
Finally
 the
decoder
stitches
 together
 the
patches,

obtaining
a
segmentation
map
at
the
same
resolution
as
the
input
image.
The

Siamese
network
reached
an
averaged
Dice
score
of
0.78
on
the
test
subset.

4.2.2
 Implementation
Details
and
Result
Overview

To
 complete
 the
 benchmark
 stage,
 each
 network
 architecture
was
 trained

5
 times
on
 random
pre-sampled
 splits
of
 the
data
 set
 (60%
 training,
20%

validation,
20%
 test).
The
 resulting
Dice
 scores
 (averaged
over
 the
5
 tries

and
the
2
labels
of
interest)
and
their
respective
spread
is
presented
in
Fig.

4.10
below.
All
experiments
were
ran
on
a
server
equipped
with
Intel
Core

i9-9940x
(14
Cores,
3,30GHz),
4
RTX
5000
GPUs
and
128
GB
RAM.

The
 two
 best
 performing
 approaches
 are
 the
 Siamese
 (with
 a
 mean

Dice
 score
of
0.78)
 and
 the
U-net
 (with
 a
mean
Dice
 score
of
0.76).
The

performance
 of
 the
 Siamese
 approach
 can
 be
 explained
 by
 the
 two
 steps

Figure
 4.10
 Average
 Dice
 Scores
 (blue)
 and
 spread
 (green)
 per
 investigated
 network

architecture,
along
with
the
final
chosen
architecture
(red)

62
 An
End-to-End
AI-based
Automated
Process

analysis
employed
by
this
method,
which
segments
firstly
in
low
resolution

therefore
with
a
larger
perceptive
field,
followed
by
a
second
step
analysing

in
a
higher
resolution,
with
the
downside
of
having
a
lower
perceptive
field.

On
the
other
hand,
the
U-net
architecture
obtained
similar
results
with
much

lower
resource
consumption
during
training
and
inference.

Based
 on
 this
 performance,
 a
 branched
U-net
 cascade
was
 chosen
 as

the
preferred
architecture,
combining
both
the
two
step
analysis
at
different

resolution
levels,
as
well
as
the
generalisation
power
associated
with
the
U-
net.
The
chosen
architecture
consists
of
independent
branches
targeting
each

ROI.
For
each
branch,
a
2D
U-net
takes
the
down-sampled
image
as
input
and

produces
an
intermediate,
rough
segmentation,
which
is
then
up-sampled
to

the
dimensions
of
the
original
input
image.
The
intermediate
segmentation
is

then
aggregated
with
the
original
high-resolution
input
image
to
be
fed
into
a

3D
U-net
(as
introduced
by
Milletari
et
al.
[17]),
which
then
outputs
a
high-
resolution
segmentation
map.
Some
practical
advantages
of
such
a
modular

architecture
are
the
possibility
to
update
each
branch
individually
in
case
of

additional
data
being
available,
as
well
as
to
allow
scaling
up
with
additional

branches
 targeting
 new
 labels
 without
 having
 to
 update
 each
 branch.
 An

overview
 of
 the
 described
 architecture
 for
 a
 given
 branch
 is
 presented
 in

Fig.
4.11.
Repeating
the
experiment
in
benchmark
conditions
has
yielded
an

averaged
Dice
score
of
0.84
(shown
in
red
in
Fig.
4.10),
outperforming
all
the

other
candidate
architectures.

Typical
to
deep
learning
applications
with
limited
data
sets
and
despite
the

use
of
data
augmentation
techniques,
overfitting
was
proven
to
be
an
issue.

This
could
be
clearly
seen
in
the
discrepancy
between
the
Dice
scores
on
the

train
and
test
subsets
respectively.
Having
chosen
an
architecture
for
the
fine-
tuning
stage,
additional
effort
was
invested
in
expanding
the
data
set
from
202

to
2192
images.
For
this
stage
of
the
application
all
five
previously
mentioned

labels
of
interest
were
trained
on.

Due
 to
 the
 relatively
 large
 number
 of
 hyper-parameters
 to
 be
 tuned
 a

population-based
 training
 method
 was
 used,
 consisting
 of
 two
 evolution

phases:
exploration
and
exploitation.
During
 the
exploration
phase
 the
net
works
are
trained
with
randomly
sampled
hyper-parameters
sets.
During
the

following
 exploitation
phase
 the
best
performing
 sets
of
hyper-parameters

are
 identified,
 and
 new
 sets
 are
 sampled
 in
 close
 proximity
 within
 the

hyper-parameter
space.

Although
Dice
loss
has
proven
itself
effective
in
segmentation
tasks,
the

high
 skewness
 and
 variability
 as
 well
 as
 low
 availability
 of
 data
 require

additional
 compensatory
mechanisms.
 For
 this
 purpose
 several
 alternative

4.2
 Semantic
Segmentation
 63

Figure
4.11
 An
overview
of
the
U-net
cascade
architecture,
consisting
of
a
2D
U-net
(top)

and
a
3D
U-net
(bottom)
which
takes
as
input
the
high
resolution
input
image
stacked
with
the

output
segmentation
of
the
first
stage

loss
functions
were
investigated
as
hyper-parameters,
including
Focal
Tver
sky
 loss
 [1],
Combo
Loss
 [26],
Unified
 Focal
Loss
 (LogCoshDSC)
 [29].

Training
 experiments
 indicated
 that
 the
 loss
 function
 is
 the
 paramount

hyper-parameter,
having
the
most
impact
upon
the
resulting
accuracy
of
the

network.
Furthermore,
different
labels
have
been
shown
to
benefit
differently

from
 each
 loss
 function.
For
 example
 the
 network
 trained
 on
 the
 “metal”

label,
which
has
 the
highest
pixel-wise
distribution
of
all
classes
and
 typi
cally
large
structures
on
each
image,
performed
best
when
trained
using
the

LogCoshDSC
loss.
At
the
same
time
the
“VIA”
and
“poly”
labels,
both
with
a

very
low
pixel-wise
distribution
(<
2.5%)
were
segmented
best
by
networks

trained
with
the
Focal
Tversky
loss.
The
Combo
loss
on
the
other
hand
was

most
effective
for
the
networks
targeting
the
“lateral
iso”
and
“deep
trench”

labels,
which
have
an
average
pixel-wise
distribution
but
are
the
most
difficult

to
identify
visually.

The
average
Dice
scores
obtained
on
the
test
set
for
each
label
of
interest

are
presented
in
the
table
below.

The
“metal”
and
“VIA”
 labels
obtained
 the
highest
Dice
scores,
with
a

substantial
 increase
 in
accuracy
of
about
10%
compared
 to
 the
benchmark

stage.
Also
of
particular
note
is
the
“deep
trench”
case.
Despite
being
the
class

with
the
lowest
pixel-wise
distribution,
only
appearing
in
58
of
the
images,

64
 An
End-to-End
AI-based
Automated
Process

Table
4.2
 Averaged
Dice
Scores
for
each
label
of
interest

Label
 Metal
 VIA
 Poly
 Lateral
iso
 Deep
trench

Loss
function
 LogCosh
 Foc.
Tversky
 Foc.
Tversky
 Combo
 Combo

Average
DSC
 0.93
 0.91
 0.88
 0.82
 0.76

the
proposed
network
 architecture
was
 able
 to
 segment
 it
with
 reasonable

accuracy
to
make
use
of
the
extracted
information.

4.3
 Parameter
Extraction

The
 process
 following
 the
 semantic
 image
 segmentation
 is
 the
 extraction

of
 the
 technological
 device
 parameters.
 The
 overview
 of
 the
 algorithmic

approach
 is
 shown
 in
 algorithm
 1.
The
 inputs
 are
 the
 image
meta-data
 –

with
the
sole
relevant
information
being
the
pixel
size
per
image
–
and
the

segmented
image.
In
a
first
step
the
segmented
are
written
to
polygon
while

retaining
their
class-labels.
Subsequently,
the
polygons
of
every
class
(C)
are

retrieved.
From
this
set
of
polygons,
polygons
below
a
statistically
evaluated

threshold
 (area
of
a
polygon
 instance
 lower
 than
five
 times
 the
mean
of
a

polygon
 instances
within
 this
class)
are
 removed
 from
 the
 list
From
 these

cleaned
 polygons,
 the
 centroids
of
 the
 single
objects
 are
 computed
which

are
 utilised
 for
 clustering.
The
 customised
 clustering
method
 is
 shown
 in

table
4.3.

4.3
 Parameter
Extraction
 65

Table
4.3
 Utilised
cluster
evaluation
techniques
[14].
Notation:
n:
number
of
objects
in
data-
set;
c:
centre
of
data-set;
NC:
number
of
clusters;
Ci:
the
i-th
cluster;
ni:
number
of
objects

in
Ci;
ci:
centre
of
Ci;
Wk:
the
within-cluster
sum
of
squared
distances
from
cluster
mean;

W∗
k
 appropriate
null
reference;
B
reference
data-sets

Method
 Definition
 Value

CH
[4]

Gap
[28]

DB
[5]

i
ni
 ·
d2(ci, c)/(NC
−
1)

i

x∈Ci

d2(x, ci)/(n
−
NC)

log

(

W
∗

kb)

1/B

Wk

1

NC

· i

⎧
⎪
⎪
⎨

⎪
⎪

1

ni

x∈Ci

d(x, ci) +

1

nj

x∈Cj

d(x, cj
)

d(ci, cj
)

⎫
⎪
⎪
⎬

⎪
⎪

Elbow

Elbow

Min
⎩
 ⎭

DB2
 [5]

1

NC

· i

⎧
⎪
⎪
⎨

⎪
⎪

1

ni

x∈Ci

d(x, ci) +

1

nj

x∈Cj

d(x, cj
)

d(ci, cj
)

·
i2

⎫
⎪
⎪
⎬

⎪
⎪

Min
⎩
 ⎭

Sil.
[23]

1

NC i

1

ni

x∈Ci

b(x)
−
a(x)

max[b(x), a(x)]

Max

Figure
4.12
 Utilised
cluster
evaluation
techniques.

Different
cluster
evaluation
techniques
–
namely
Calinski-Harabasz
(CH)

[4],
gap
 [28],
Davies-Bouldin
 (DB)
 [5],
a
custom
 squared
Davies-Bouldin

(DB2)
 [5],
 and
 silhouette
 (Sil.)
 [23]
 –
 are
 conducted
 on
 one-dimensional

feature
vectors
which
are
constituted
of
 the
y-share
of
 the
centroid
coordi
nates.
The
previous
clustering
 is
done
via
 trough
k-means
clustering
while

the
k
is
kept
–
adapted
to
the
use
case
–
between
2
and
10.
For
the
different

evaluation
 techniques
optimal
number
of
 clusters
 (k)
 are
 reported
 through

different
metrics
(minimum,
maximum,
elbow).
This
computationally
costly

approach
 is
suitable
for
 the
use
case
since
 the
vectors
are
one-dimensional

and
 the
 total
number
of
polygon
objects
 to
be
evaluated
 is
relatively
small

(<
100).
 In
 the
final
 step
of
 the
vertical
clustering,
 the
optimal
number
of

66
 An
End-to-End
AI-based
Automated
Process

clusters
is
inferred
through
a
majority
voting
among
the
individual
evaluation

techniques.

Figure
4.13
 Example
cross-section
image
with
annotated
metal
and
contact/VIA
features

Since
the
polygon
objects
are
now
vertically
assigned,
a
clustering
in
the

horizontal
dimension
is
the
next
step.
The
procedure
is
the
same
as
previously

discussed
for
the
vertical
clustering.
For
the
vertically
and
horizontally
clus
tered
 elements,
 the
 technological,
geometrical
parameters
 can
be
 inferred.

These
 are
 illustrated
 via
 figure
 4.13
 for
 the
 metal
 and
 VIA
 classes.
 The

vertical
height
is
determined
for
metallisation
layers
and
height,
width,
and

pitches
 for
 the
 interconnecting
contact
and
VIA
 layers.
After
 the
polygons

objects
 are
 assigned
 to
 classes,
 these
 attributes
 can
 be
 calculated
 through

trivial
mathematical
operation.
Height
is
the
difference
of
the
bounding
box

maximum
and
minimum
in
vertical
dimension.
Width
is
the
difference
of
the

bounding
box
in
horizontal
dimension,
and
pitches
are
the
differences
of
the

x-coordinate
of
the
centroid
of
two
adjacent
polygon
objects.
The
values
are

respectively
averaged
within
all
classes.

An
example
 is
 shown
 for
 the
VIA
class
 through
 the
example
 in
figure

4.14.
After
segmentation
of
the
grey-scale
image,
the
individual
segmented

classes
 are
 inferred
 into
 polygon
 objects.
Here
 the
VIA
 class
 is
 exempli
fied.
The
vertical
clustering
process
is
shown
through
the
two
right
images.

The
 dendrogram
 visualises
 the
 linkage
 of
 the
 different
 clusters
which
 are

subsequently
 optimised
 via
 discussed
 approach.
 The
 optimum
 number
 of

clusters
 are
 shown
 in
 the
 bottom
 right
 figure.
 An
 evaluation
 techniques

report
an
optimum
of
four
(different
values
constitute
the
optimum)
clusters.

Following
this,
these
four
are
subsequently
clustered
in
horizontal
dimension

and
respectively
geometrically
inferred.
Following
results
were
obtained
for

this
example
(besides
the
absolute
values,
the
relative
deviation
to
a
manual

measurement
is
given):

4.3
 Parameter
Extraction
 67

Figure
4.14
 Example
cross-section
 image
 (upper
 left).
The
polygonised
VIA
objects
are

shown
(lower
left).
A
dendrogram
is
shown
for
the
relative
distances
of
the
y-coordinates
of

the
single
objects
(upper
right).
Finally,
the
results
of
the
utilised
cluster
evaluation
techniques

are
presented
(lower
right).

•
Contact
 (height,
width,
pitch):
 942
 nm
 (+9.66%),
 319
 nm
 (+5.98%),

525
nm
(+12.42%)

•
VIA1
(h,
w,
p):
870
nm
(+26.82%),
319
nm
(n.a.),
545
nm
(n.a.)

•
VIA2
(h,
w,
p):
898
nm
(+14.83%),
319
nm
(n.a.),
542
nm
(n.a.)

•
VIA3
(h,
w,
p):
1086
nm
(+16.27%),
434
nm
(n.a.),
750
nm
(n.a.)

Within
the
technology
validation
use
case,
the
inferred
technological
features

are
 tested
against
 the
designed
and
manufactured
 technological
properties.

This
 is
computed
via
multi-dimensional
distance
matching
(e.g.
Euclidean,

rectilinear
 distance)
 of
 both
 vectors.
 The
 validation
 accuracy
 depends
 on

several
different
factors
which
are
the
segmentation
quality,
parameter
extrac
tion
accuracy
and
image
acquisition
completeness.
Experiments
have
shown

68
 An
End-to-End
AI-based
Automated
Process

that
the
current
automated
end-to-end
flow
reaches
75%
accuracy
for
previ
ously
known
Al-Tu
technologies.
Improvement
is
necessary
for
copper
(Cu)

technologies
 which
 are
 more
 complex
 to
 segment.
 According
 to
 existing

procedures
within
 the
 industry,
deviations
of
 less
 than
5%
 for
pitches
and

deviations
of
less
than
25%
for
all
other
geometrical
measurements
compared

to
 a
ground
 truth,
 i.e.
 the
designed
 technology
parameters
 are
 acceptable.

The
same
requirements
have
been
used
as
a
benchmark
for
the
validation
of

this
application.
The
high
deviations
are
a
consequence
attributed
to
process

variances
during
device
manufacturing
and
de-processing.
Presented
image

shows
a
single
 frame
which
was
acquired
 in
a
sub-optimal
zoom
 level
 for

measuring
discussed
 features.
Yet,
 almost
 all
 requirements
were
 achieved.

In
summary
it
can
be
stated
that
the
proof-of-concept
presented
in
this
work

displays
strong
potential
to
satisfy
existing
industrial
requirements,
especially

when
 adequate
 zooms
 levels
 are
 chosen
 for
 the
 particular
 technological

parameters.

4.4
 Conclusion

The
 settings
 for
AI
 implementation
 in
an
 industrial
 setting
are
often
com
pletely
different
from
consumer
applications.
Data
being
scarce
the
design
of

productive
AI
application
is
forcibly
data-driven,
or
more
specifically
data-
adapted.
Industrial
parameters
are
manifold,
and
the
requirements
typically

impose
 the
need
 to
 automate,
 improve,
or
 even
 enable
new
processes.
To

make
an
AI-based
 solution
viable
 these
 requirements
must
be
met.
 In
 this

work,
 we
 have
 shown
 through
 an
 end-to-end
 technology
 demonstrator
 –

incorporating
deep
learning
and
cluster
evaluation
–
showcasing
the
automa
tion
of
semiconductor
technology
identification
based
on
SEM
cross-section

analysis.
A
comparison
of
different
convolutional
neural
network
architec
tures
was
presented,
and
a
candidate
best
suited
for
the
SEM
segmentation

task
was
drafted.
The
proposed
candidate
architecture
represents
a
cascade

of
2D
and
3D
Unets,
arranged
in
branches
each
dedicated
to
a
single
label

of
interest.
Following
a
pragmatic
perspective,
a
modular
design
is
proposed,

ensuring
scalability
and
ease-of-maintenance.
Trained
on
a
custom-created

data
set
of
2192
 images,
 the
proposed
architecture
obtained
Dice
scores
 in

the
range
of
0.76-0.93
for
 labels
of
different
complexity,
arguing
 in
favour

of
the
employment
of
supervised
deep
learning-based
methods
even
in
appli
cations
with
strongly
 limited
amounts
of
available
 labelled
data.
Based
on

the
obtained
results,
a
parameter
extraction
algorithm
is
proposed,
aimed
at

exploiting
 the
obtained
segmentation
maps
with
 the
purpose
of
 identifying

http:0.76-0.93

References
 69

and
 validating
 the
 technology
 of
 the
 investigated
 semiconductor
 devices.

The
obtained
 results
were
 in
 the
 range
of
ground
 truth
measurements
with

deviations
 in
 an
 acceptable
measuring
 range.
The
 potential
 for
 narrowing

down
these
uncertainty
ranges
were
outlined.

4.5
 Future
Work

Following
the
development
and
validation
steps
described
above,
a
produc
tion
test
stage
will
determine
the
potential
of
the
segmentation
component
of

the
process
to
be
used
in
other
applications
of
semiconductor
analysis.
Aside

from
a
high
degree
of
automation
and
the
mandatory
fulfilment
of
functional

requirements,
 industry
 has
 established
 high
 thresholds
 for
 non-functional

requirements.
 Maintainability,
 system
 up
 time,
 extensibility,
 usability,
 or

updateability
 are
 just
 some
 of
 the
 potential
 requirements
 across
 different

industries.
Such
requirements
are
addressed
by
specialised
frameworks
such

as
Ray
and
TorchServe.
Combined
with
the
advantages
of
a
modular
archi
tecture,
they
enable
the
possibility
to
update
each
network
with
virtually
no

down-time.
Additional
investigations
are
conducted
in
the
expansion
of
the

data
augmentation
pipeline,
with
the
goal
of
increasing
the
exploitation
of
the

available
data
set
regardless
of
its
relatively
small
size.

Acknowledgment

This
work
is
conducted
under
the
framework
of
the
ECSEL
AI4DI
“Artificial

Intelligence
for
Digitising
Industry”
project.
The
project
has
received
funding

from
the
ECSEL
Joint
Undertaking
(JU)
under
grant
agreement
No
826060.

The
JU
receives
support
from
the
European
Union’s
Horizon
2020
research

and
 innovation
 programme
 and
Germany,
Austria,
Czech
Republic,
 Italy,

Latvia,
Belgium,
Lithuania,
France,
Greece,
Finland,
Norway.

References

[1]
N.
Abraham
and
N.
Mefraz
Khan.
 A
novel
focal
tversky
loss
function

with
improved
attention
u-net
for
lesion
segmentation.
2019
IEEE
16th

International
 Symposium
 on
Biomedical
 Imaging
 (ISBI
 2019),
 pages

683–687,
2019.

[2]
F.
Altaf,
S.
M.
S.
Islam,
N.
Akhtar,
and
N.
Khalid
Janjua.
 Going
deep

in
medical
 image
analysis:
Concepts,
methods,
challenges,
and
 future

directions.
 IEEE
Access,
7:99540–99572,
2019.

70
 An
End-to-End
AI-based
Automated
Process

[3]
S.
Budd,
E.
C.
Robinson,
and
B.
Kainz.
A
survey
on
active
learning
and

human-in-the-loop
deep
learning
for
medical
image
analysis.
 Medical

Image
Analysis,
71:102062,
2021.

[4]
T.
Calinski´

and
 J.
Harabasz.
 A
dendrite
method
 for
cluster
analysis.

Communications
 in
 Statistics
 - Theory
 and
 Methods,
 3(1):1–27,
 01

1974.

[5]
D.
L.
Davies
and
D.
W.
Bouldin.
 A
cluster
separation
measure.

IEEE

Transactions
 on
 Pattern
 Analysis
 and
 Machine
 Intelligence,
 PAMI
1(2):224–227,
1979.

[6]
A.
 Diez-Olivan,
 J.
 Del
 Ser,
 D.
 Galar,

and
 B.
 Sierra.
 Data
 fusion

and
machine
learning
for
industrial
prognosis:
Trends
and
perspectives

towards
industry
4.0.
 Information
Fusion,
50:92–111,
2019.

[7]
European
Commision.
A
chips
act
for
europe.

[8]
Fortune
Business
Insights.
 Semiconductor
market
size,
share
&
covid

19
impact
analysis,
2021-2028.
FBI102365.

[9]
U.
Guin,
K.
Huang,
D.
DiMase,
 J.
M.
Carulli,
M.
Tehranipoor,
 and

Y.
Makris.
 Counterfeit
integrated
circuits:
A
rising
threat
in
the
global

semiconductor
supply
chain.
 Proceedings
of
 the
 IEEE,
102(8):1207–

1228,
2014.

[10]
S.
Göke,
K.
Staight,
and
R.
Vrijen.
Scaling
ai
in
the
sector
that
enables

it:
Lessons
for
semiconductor-device
makers.

[11]
M.
Kawula,
D.
Purice,
M.
Li,
G.
Vivar,
S.-A.
Ahmadi,
K.
Parodi,
C.

Belka,
G.
Landry,
and
C.
Kurz.
 Dosimetric
 impact
of
deep
 learning-
based
ct
auto-segmentation
on
radiation
therapy
treatment
planning
for

prostate
cancer.
Radiation
Oncology,
17,
01
2022.

[12]
G.-M.
Konnerth.

 Exploring
application-oriented
methods
 to
 improve

cnn-based
 segmentation
 of
 sem
 microchip
 images.
 Master’s
 thesis,

Technical
University
of
Munich,
2020.

[13]
X.

Li,
 T.
 Lai,
 S.
 Wang,
 Q.
 Chen,
 C.
 Yang,
 R.
 Chen,
 J.
 Lin,

and
 F.
 Zheng.
 Weighted
 feature
 pyramid
 networks
 for
 object

detection.
 In
 2019
 IEEE
 Intl
 Conf
 on
 Parallel
 Distributed
 Pro
cessing
 with
 Applications,
 Big
 Data
 Cloud
 Computing,
 Sustain
able
 Computing
 Communications,
 Social
 Computing
 Networking

(ISPA/BDCloud/SocialCom/SustainCom),
pages
1500–1504,
2019.

[14]
Y.
Liu,
Z.
Li,
H.
Xiong,
X.
Gao,
and
J.
Wu.

Understanding
of
internal

clustering
validation
measures.
 In
2010
IEEE
International
Conference

on
Data
Mining.
IEEE.

[15]
M.

Ludwig,
 B.
 Lippmann,
 A.-C.
 Bette,
 and
 C.
 Lenz.
 Demo:

A
 fully
 automated
 process
 for
 semiconductor
 technology

References
 71

analysis
through
SEM
cross-sections.
 In
25th
International
Conference

on
Pattern
Recognition
(ICPR).

[16]
K.
Martin,
N.
Windunga,
S.
Sani,
S.
Massie,
and
 J.
Clos.

 A
convo
lutional
 siamese
 network
 for
 developing
 similarity
 knowledge
 in
 the

selfback
dataset,
2017.

[17]
F.
Milletari,
N.
Navab,
and
S.-A.
Ahmadi.
 V-Net:
Fully
Convolutional

Neural
Networks
for
Volumetric
Medical
Image
Segmentation.
 In
2016

Fourth
International
Conference
on
3D
Vision
(3DV),
pages
565–571.

IEEE,
10
2016.

[18]
L.
Najman
and
M.
Schmitt.
Watershed
of
a
continuous
function.
Signal

Processing,
 38(1):99–112,
 1994.
 Mathematical
Morphology
 and
 its

Applications
to
Signal
Processing.

[19]
D.
Nameirakpam,
K.
Singh,
and
Y.
Chanu.
 Image
segmentation
using

k
 -means
 clustering
 algorithm
 and
 subtractive
 clustering
 algorithm.

Procedia
Computer
Science,
54:764–771,
12
2015.

[20]
R.
Nock
 and
F.
Nielsen.

 Statistical
 region
merging.
 IEEE
Transac
tions
on
Pattern
Analysis
and
Machine
Intelligence,
26(11):1452–1458,

2004.

[21]
N.
Otsu.
A
threshold
selection
method
from
gray
level
histograms.
IEEE

Transactions
on
Systems,
Man,
and
Cybernetics,
9:62–66,
1979.

[22]
O.
Ronneberger,
P.
Fischer,
and
T.
Brox.
U-net:
Convolutional
networks

for
biomedical
image
segmentation.
 In
Nassir
Navab,
Joachim
Horneg
ger,
William
M.
Wells,
and
Alejandro
F.
Frangi,
editors,
Medical
Image

Computing
and
Computer-Assisted
Intervention
–
MICCAI
2015,
pages

234–241,
Cham,
2015.
Springer
International
Publishing.

[23]
P.
Rousseeuw.

 Silhouettes:
A
graphical
 aid
 to
 the
 interpretation
 and

validation
 of
 cluster
 analysis.
 J.
Comput.
Appl.
Math.,
20(1):53–65,

November
1987.

[24]
F.
Schiegg.

 Boundary
 detection
 and
 semantic
 segmentation
 of
 sem
images.
Master’s
thesis,
Technical
University
of
Munich,
2020.

[25]
S.
M.
Sze
and
K.
K.
Ng.

 Physics
of
Semiconductor
Devices.
 Wiley,

2006.

[26]
S.
A.
Taghanaki,
Y.
Zheng,
S.
K.
Zhou,
B.
Georgescu,
P.
Sharma,
D.

Xu,
D.
Comaniciu,
and
G.
Hamarneh.
Combo
loss:
Handling
input
and

output
imbalance
in
multi-organ
segmentation.
 Computerized
Medical

Imaging
and
Graphics,
75:24–33,
2019.

[27]
T.
Takikawa,
D.
Acuna,
V.
Jampani,
and
S.
Fidler.

Gated-scnn:
Gated

shape
cnns
for
semantic
segmentation.
In
2019
IEEE/CVF
International

Conference
on
Computer
Vision
(ICCV),
pages
5228–5237,
2019.

72
 An
End-to-End
AI-based
Automated
Process

[28]
R.
Tibshirani,
G.
Walther,
 and
T.
Hastie.

 Estimating
 the
 number
 of

clusters
in
a
data
set
via
the
gap
statistic.
63(2):411–423.

[29]
M.
Yeung,
E.
Sala,
C.-B.
Schönlieb,
and
L.
Rundo.
A
mixed
focal
loss

function
 for
 handling
 class
 imbalanced
medical
 image
 segmentation.

ArXiv,
abs/2102.04525,
2021.

[30]
X.
 Zhang,
 Z.
 Fu,
 Y.

Huang,
 A.
 Lin,
 Y.
 Shi,
 and
 Y.
 Xu.
 Effective

method
 to
automatically
measure
 the
profile
parameters
of
 integrated

circuit
from
SEM/TEM/STEM
images.
 In
2017
China
Semiconductor

Technology
International
Conference
(CSTIC).
IEEE,
3
2017.

[31]
H.
Zhao,
 J.
Shi,
X.
Qi,
X.
Wang,
and
 J.
 Jia.

 Pyramid
 scene
parsing

network.
 In
2017
 IEEE
Conference
on
Computer
Vision
and
Pattern

Recognition
(CVPR),
pages
6230–6239,
2017.

5

AI
Machine
Vision
System
for
Wafer
Defect

Detection

Dmitry
Morits,
Marcelo
Rizzo
Piton,
and
Timo
Laakko

VTT
Technical
Research
Centre
of
Finland
Ltd,
Finland

Abstract

Surface
defects
generated
during
semiconductor
wafers
processing
are
among

the
main
challenges
in
micro- and
nanofabrication.
The
wafers
are
typically

scanned
 using
 optical
 microscopy
 and
 then
 the
 images
 are
 inspected
 by

human
experts.
That
tends
to
be
a
quite
slow
and
tiring
process.
The
devel
opment
of
a
reliable
machine
vision-based
system
for
correct
identification

and
classification
of
wafer
defect
types
for
replacement
of
manual
inspection

is
 a
 challenging
 task,
 due
 to
 the
 variety
 of
 possible
 defects.
 In
 this
work

we
developed
a
machine
vision
system
for
the
inspection
of
semiconductor

wafers
 and
 detection
 of
 surface
 defects.
The
 system
 integrates
 an
 optical

scanning
microscopy
 system
 and
 an
AI
 algorithm
 based
 on
 the
Mask
R
CNN
 architecture.
The
 system
was
 trained
using
 a
dataset
of
microscopic

images
of
wafers
with
Micro
Electro-Mechanical
Systems
(MEMS),
silicon

photonics
and
superconductor
devices
at
different
fabrication
stages
including

surface
defects.
The
achieved
accuracy
and
detection
speed
makes
the
system

promising
for
cleanroom
applications.

Keywords:
 AI,
 machine
 vision,
 semiconductor
 wafer,
 defect
 detection,

convolutional
neural
network,
Mask
R-CNN.

5.1
 Introduction
and
Background

One
of
the
main
challenges
in
micro- and
nanofabrication
is
the
identification

and
classification
of
surface
defects.
The
defects
are
unavoidably
generated

73

DOI: 10.1201/9781003377382-5
This chapter has been made available under a CC BY-NC 4.0 license.

74
 AI
Machine
Vision
System
for
Wafer
Defect
Detection

during
processes
such
as
chemical-mechanical
polishing,
photolithography,

etching,
diffusion
and
ion
implantation,
oxidation,
metallization,
and
others

[1][2].
The
increasing
complexity
and
density
of
semiconductor
devices
leads

to
an
increase
of
the
number
of
surface
defects
and
dictates
stricter
require
ments
 for
defect
detection.
For
 example,
 contamination
particles
harmless

for
 some
 design
 rules
 at
 the
 same
 time
 could
 be
 critical
 as
 the
 device

dimensions
 grow
 smaller.
The
 defect
 criteria
 are
 also
 varying
 in
 different

locations
of
devices:
for
example,
defects
in
a
movable
part
or
in
the
hermetic

bond-sealing
 frame
 of
 a
 MEMS
 device
 are
 usually
 more
 severe
 than
 in

secondary
structures.
Figure
5.1
illustrates
microscopic
images
with
surface

defects
generated
during
the
microfabrication
of
different
superconductor
and

semiconductor
devices.
Typical
types
of
defects
include
particles,
photoresist

spots,
edge
defects,
scratches,
etc.
It
becomes
evident
 that
defect
detection

is
an
extremely
 important
procedure,
especially
at
 the
critical
areas
of
 the

devices.

Figure
5.1
 Examples
of
microscopic
images
of
various
superconductor
and
semiconductor

devices
with
surface
defects

5.2
 Machine
Vision-based
System
Description
 75

VTT
Micronova
semiconductor
fab
is
a
Finnish
national
research
infras
tructure
 for
 micro-,
 nano- and
 quantum
 technology.
 The
 research
 areas

include
MEMS,
photonic,
quantum
and
other
specialty
components
that
can

be
used
to
create
a
wide
range
of
sensors
and
devices.
At
VTT,
the
current

visual
 inspection
 process
 of
 the
 wafer
 surface
 is
 manually
 performed
 by

human
experts.
The
wafers
are
scanned
using
optical
microscopy,
and
then

the
 images
 are
 inspected
by
 the
human
 experts.
Since
 the
 inspection
 task

requires
extreme
concentration,
the
time
that
an
expert
can
perform
the
task

is
quite
limited.
Additionally,
it
tends
to
be
a
quite
slow,
tiring
process
and

susceptible
to
human
mistakes.
Identification
of
defects
by
experts
alone
can

potentially
result
in
false
identifications
due
to
fatigue
and
lack
of
objectivity.

The
goal
of
this
work
is
the
development
of
a
reliable
machine
vision-based

system
for
the
correct
identification
of
wafer
defects
in
the
hope
of
replacing

manual
 inspection.
Moreover,
 this
 system
would
 be
 directly
 integrated
 in

the
wafer
 inspection
 production
 line.
 Such
 a
 system
would
 speed
 up
 the

defect
 inspection,
simplify
 the
analysis
and
eventually
help
 to
 improve
 the

fabrication
yield.

5.2
 Machine
Vision-based
System
Description

The
general
architecture
of
 the
developed
machine
vision
system
 is
shown

in
 Figure
 5.2.
The
wafers
 are
 inspected
 by
 a
 semi-automatic
microscopy

scanning
system.
In
this
work
we
tested
both
IJ
13
IR-inspector
and
Muetec

CD3000
optical
scanning
system.
The
system
produces
a
set
of
microscopic

images,
covering
the
full
area
of
the
wafer.

For
the
training
of
neural
networks,
we
prepared
an
image
dataset
using

microscopic
 images
 of
 wafers
 with
 MEMS,
 silicon
 photonics
 and
 super
conductor
devices
at
different
 fabrication
 stages
 including
 surface
defects.

The
 initial
set
 included
 images
of
different
 resolutions
and
magnifications.

First,
we
manually
labelled
the
defects
on
each
image
and
then
cropped
the

areas
with
 defects.
The
 cropping
 allowed
 the
 increase
 of
 the
 dataset
 size

and
provided
faster
and
more
consistent
training.
Next,
a
data
augmentation

technique
was
used
to
increase
the
amount
of
data
by
adding
slightly
modified

copies
of
already
existing
data,
or
newly
created
synthetic
data
from
existing

data.
That
 procedure
 acts
 as
 a
 regularizer
 and
 helps
 to
 reduce
 overfitting

when
training
a
machine
learning
model
[3].
In
this
case,
the
augmentation

included
mirror
and
 rotation
 image
 transformation,
as
well
as
a
change
of

the
RGB
spectre
of
the
images.
The
full
procedure
of
dataset
preparation
is

76
 AI
Machine
Vision
System
for
Wafer
Defect
Detection

Physical field:

Monitoring/Supervision:

Operations:

Applications:
Application: Wafer defects detection

VTT Server with GPU: image analysis

Database of wafer images with defects

VTT internal network

Optical scanning microscopy system

Figure
5.2
 General
architecture
of
the
developed
machine
vision
system

schematically
shown
 in
Figure
5.3.
The
dataset
was
split
 into
 training
and

validation
sets,
containing
935
and
165
images
each.

Here
we
used
 a
Convolutional
Neural
Network
 (CNN):
 a
 special
 type

of
deep
 learning
algorithm,
used
primarily
 for
 image
 recognition
and
pro
cessing.
CNNs
are
 inspired
by
 the
organization
of
 the
animal
visual
cortex

[4][5]
and
are
designed
to
learn
spatial
hierarchies
of
features,
from
low- to

high-level
patterns.
We
developed
an
algorithm
based
on
the
Mask
R-CNN

architecture
 [6],
which
 is
a
state-of-the-art
algorithm
 for
object
detection

a
computer
vision
 technique
 that
enables
 the
 identification
and
 location
of

objects
 in
an
 image
or
video.
Mask
R-CNN
 is
 the
 latest
stage
of
evolution

of
CNNs,
providing
high
detection
accuracy.
At
 the
same
 time,
 it
 requires

more
computational
resources
compared
to
faster
algorithms,
such
as
YOLO

[7].
Mask
R-CNN
 consists
of
 two
 stages.
The
first
 stage,
 called
 a
Region

Original image Defect labelling and image crop Data augmentation

Figure
5.3
 A
scheme
of
 the
 image
dataset
preparation,
 including
 labelling,
cropping
and

data
augmentation

5.2
 Machine
Vision-based
System
Description
 77

Proposal
Network,
proposes
candidate
object
bounding
boxes.
The
 second

stage
 extracts
 features
 using
Region
 of
 Interest
Pool
 from
 each
 candidate

box,
 then
performs
classification
and
bounding-box
 regression
and
outputs

a
 binary
mask
 for
 each
Region.
The
ResNet-101
 [8]
 convolutional
 back
bone
architecture
was
used
for
feature
extraction
over
an
entire
image.
The

algorithm
was
optimized
for
so-called
binary
classification,
which
provides

results
 in
“defect
vs
background”
 format,
without
classification
of
defects,

shown
in
Figure
5.4.
The
general
comparison
of
the
algorithm’s
performance

to
other
object
detection
algorithms
can
be
found
in
Refs
[6]
and
[9].

Among
the
main
requirements
for
the
system
are
the
functional
suitability

for
defect
detection,
the
integration
of
the
scanning
optical
microscope
and

the
server
with
the
AI
software,
the
usability
for
cleanroom
users
who
are
not

familiar
with
the
details
of
implementation,
and
the
readability
and
visualiza
tion
of
the
detection
results
for
the
users.
The
main
KPIs
for
the
system
were:

detection
accuracy,
time
of
processing
a
single
image
and
evaluation
by
the

cleanroom
users
from
 the
points
of
usability
and
result
readability.
The
AI

algorithm
based
on
the
Mask
R-CNN
architecture
passed
several
rounds
of

optimization
and
testing
using
microscopic
images
of
various
microelectronic

devices.

There
has
been
a
significant
progress
in
the
application
of
deep
learning

techniques
for
wafer
defect
detection
and
classification
[10].
The
main
inno
vation
elements
of
this
work
compared
to
the
state
of
the
art
is
the
integration

of
 the
algorithm
with
 the
scanning
microscopy
system,
and
 training
of
 the

system
using
 the
dataset
containing
 images
of
various
devices
at
different

stages
of
processing,
instead
of
standard
image
databases
available
online.
It

allows
the
system
to
better
distinguish
between
wafer
defects
and
features
of

the
devices
and
provides
reliable
detection
of
wafer
defects
for
a
wide
range

of
semiconductor
components.

To
 improve
 the
 system
 usability
 for
 the
 end-users,
we
 implemented
 a

Graphical
User
Interface
adapted
for
cleanroom
personnel
not
familiar
with

AI
systems.
The
software
was
installed
on
a
PC/server
with
NVIDIA
Quadro

RTX
5000
16GB
GPU
at
the
VTT
Micronova
cleanroom.
Then
the
algorithm

was
integrated
with
the
optical
scanning
microscopy
system
Muetec
CD3000

by
connection
 through
 the
 internal
network.
To
 improve
 the
 readability
of

the
 results,
 the
 system
provides
binary
classification
defect
vs
background

with
results
available
in
both
graphical
and
text
formats.
The
feedback
from

the
cleanroom
experts
helped
 in
 the
 improvement
of
system
usability
after

several
 iterations
 of
 optimization.
 The
 testing
 results
 at
 the
 latest
 dataset

with
192
 images
of
1600x1200px
 resolution
and
5x
optical
magnification,

78
 AI
Machine
Vision
System
for
Wafer
Defect
Detection

Figure
5.4
 Example
of
binary
classification
of
wafer
defects:
defect
vs
background

demonstrated
86%
accuracy
with
a
detection
time
of
1÷2
seconds
per
image.

The
 accuracy
 of
 the
 system
 is
 approximately
 on
 the
 same
 level
 as
 that

of
 a
 human
 operator,
 although
 it
 also
 depends
 a
 lot
 on
 the
 experience
 of

the
 operators
 and
 their
 tiredness.
The
 experts
 estimated
 86%
 accuracy
 as

sufficient
for
applications
at
VTT
cleanroom
but
mentioned
that
only
about

15%
of
the
detected
defects
were
critical
for
wafer
processing.
Unfortunately,

the
criteria
of
a
defect
being
critical
or
non-critical
is
very
device-specific
and

cannot
be
easily
generalized.
After
the
system
provides
the
detection
results,

the
final
decision
on
the
importance
of
the
defects
for
processing
had
to
be

made
by
the
cleanroom
experts.

Regarding
 the
 system
 scalability,
 in
 the
 current
work
we
did
not
have

the
goal
of
moving
towards
smaller
technology
nodes,
although
such
scaling

might
 require
 utilization
 of
 faster
 neural
 networks,
 like
 one-stage
 YOLO

detectors.
In
general,
 the
main
expected
 impact
of
 the
system
development

is
the
reduction
of
the
overall
working
time
required
for
wafer
defect
inspec
tion.
We
believe
 that
 the
system
will
help
saving
valuable
working
 time
of

cleanroom
experts,
improve
fabrication
yield
and
reduce
fabrication
cost.

5.3
 Conclusion

We
developed
a
system
for
the
detection
of
wafer
surface
defects.
The
system

integrates
an
optical
scanning
microscopy
system
and
an
AI
algorithm
based

on
 the
Mask
R-CNN
architecture.
The
 image
dataset
used
for
 training
and

testing
 the
 system
 included
 microscopic
 images
 of
 wafers
 with
 MEMS,

silicon
photonics
and
superconductor
devices
at
different
fabrication
stages

References
 79

including
surface
defects.
The
system
demonstrated
functional
suitability
for

defect
detection,
high
accuracy,
and
 reasonable
detection
 speed,
making
 it

suitable
for
potential
cleanroom
applications.

Acknownledgements

This
work
is
conducted
under
the
framework
of
the
ECSEL
AI4DI
“Artificial

Intelligence
for
Digitising
Industry”
project.
The
project
has
received
funding

from
the
ECSEL
Joint
Undertaking
(JU)
under
grant
agreement
No
826060.

The
JU
receives
support
from
the
European
Union’s
Horizon
2020
research

and
 innovation
 programme
 and
Germany,
Austria,
Czech
Republic,
 Italy,

Latvia,
Belgium,
Lithuania,
France,
Greece,
Finland,
Norway.

References

[1]
H.
J.
Queisser,
E.
E.
Haller,
“Defects
 in
Semiconductors:
Some
Fatal,

Some
Vital”,
Science,
281,
945–
950,
1998.

[2]
T.
Yuan,
W.
Kuo,
and
S.
J.
Bae,
“Detection
of
spatial
defect
patterns
gen
erated
in
semiconductor
fabrication
processes”,
IEEE
Trans.
Semicond.

Manuf.,
vol.
24,
no.
3,
pp.
392–403,
Aug.
2011.

[3]
A.
Buslaev,
V.
I.
Iglovikov,;
E.
Khvedchenya,
A.
Parinov,
M.
Druzhinin,

A.
 A.
 Kalinin,
 “Albumentations:
 Fast
 and
 Flexible
 Image
 Aug
mentations”,
 Information
 11,
 2,
 2020.
 https://www.mdpi.com/2078
2489/11/2/125.

[4]
S.
Albawi,
T.
A.
Mohammed,
S.
Al-Zawi,
“Understanding
of
a
convo
lutional
neural
network”,
International
Conference
on
Engineering
and

Technology
(ICET),
IEEE,
pp.
1-6,
2017.

[5]
W.
Liu,
Z.
Wang,
X.
Liu,
N.
Zeng,
Y.
Liu,
F.E.
Alsaadi,
“A
survey
of

deep
neural
network
architectures
and
 their
applications”,
Neurocom
puting,
234,
pp.
11-26,
2017.

[6]
K.
 He,
 G.
 Gkioxari,
 P.
 Doll
́a
r,
 R.
 Girshick,
 “Mask
 R-CNN”.

arXiv:1703.06870,
2018.

[7]
M.

Carranza-Garćia,
 J.
 Torres-Mateo,
 P.

Lara-Beńitez,
 J.

Garćia-
Gutiérrez,
 “On
 the
Performance
of
One-Stage
 and
Two-Stage
Object

Detectors
in
Autonomous
Vehicles
Using
Camera
Data”,
Remote
Sens.

13,
89,
2021.

[8]
K.
He,
X.
Zhang,
S.
Ren,
J.
Sun,
“Deep
Residual
Learning
for
Image

Recognition”,
Proceedings
of
the
IEEE
Conference
on
Computer
Vision

and
Pattern
Recognition,
770-778,
2016.

https://www.mdpi.com
https://www.mdpi.com

80
 AI
Machine
Vision
System
for
Wafer
Defect
Detection

[9]
Z.
Zhao,
P.
Zheng,
S.
Xu,
X.
Wu,
“Object
Detection
With
Deep
Learn
ing:
A
Review”,
IEEE
Transactions
on
Neural
Networks
and
Learning

Systems,
30,
11,
2019.

[10]
U.
 Batool,
 M.
 I.
 Shapiai,
 M.
 Tahir,
 Z.
 H.
 Ismail,
 N.
 J.
 Zakaria,
 A.

Elfakharany,
“A
Systematic
Review
of
Deep
Learning
for
Silicon
Wafer

Defect
Recognition”,
IEEE
Access,
9,
116573,
2021.

6

Failure
Detection
in
Silicon
Package

Saad
Al-Baddai
and
Jan
Papadoudis

Infineon
Technologies
AG,
Germany

Abstract

In
an
ever
more
connected
world,
semiconductor
devices
represent
the
core
of

every
technically
sophisticated
system.
The
desired
quality
and
effectiveness

of
such
a
system
through
assembly
and
packaging
processes
is
high
demand
ing.
In
order
to
achieve
an
expected
quality,
the
output
of
each
process
must

be
 inspected
 either
manually
or
 rule-based.
The
 latter
would
 lead
 to
high

over-reject
rates
which
require
a
 lot
of
additional
manual
effort.
Moreover,

such
an
inspection
is
sort
of
handcrafted
by
engineers,
who
can
only
extract

shallow
features.
As
a
result,
either
more
yield-losses
due
to
an
increase
in
the

rejection
rate
or
more
products
with
low
quality
will
be
shipped.
Therefore,

the
demand
for
advanced
image
inspection
techniques
is
constantly
increas
ing.
Recently,
machine
learning
and
deep
learning
algorithms
are
playing
an

increasingly
critical
role
to
fulfil
this
demand
and
therefore
have
been
intro
duced
in
multiple
applications.
In
this
paper,
an
overview
of
the
potential
use

of
advanced
machine
learning
techniques
is
explored
by
showcasing
of
image

and
wirebonding
inspection
in
semiconductor
manufacturing.
The
results
are

very
promising
 and
 show
 that
AI
models
 can
find
 failures
 accurately
 in
 a

complex
environment.

Keywords:
 anomaly
 detection,
 labelling,
 manufacturing
 AI
 solutions,
 AI

integration,
transfer
learning,
scalability.

81

DOI: 10.1201/9781003377382-6
This chapter has been made available under a CC BY-NC 4.0 license.

82
 Failure
Detection
in
Silicon
Package

6.1
 Introduction
and
Background

Semiconductor
manufacturing
produces
the
most
highly
advanced
microchips

in
 the
world.
A
manufacturing
 process
 of
 these
 chips
 goes
 through
mul
tiple
 sequences
 and
 interacting
 sub-processes
 and
 during
 that
 operates
 in

extreme
quality-demanding
conditions.
Thus,
it
has
an
increasing
complexity

and
demand
on
quality
requirements,
as
electronics
increasingly
become
an

important
part
of
modern
society.
In
principle
semiconductor
manufacturing

is
equipped
with
lots
of
sensors
to
monitor
the
processes
but
it
lacks
a
suitable

way
to
make
use
of
this
data.
However,
due
to
the
complexity
of
the
processes

and
 unknown
 correlation
 among
 the
 collected
 data,
 such
 traditional
 tech
niques
become
quite
limited.
Here’s
where
AI
takes
the
initiative
and
offers

a
promising
solution
 for
 feature
extraction,
condition
monitoring
and
 fault

modelling
 for
anomaly/defect
detection
using
sophisticated
algorithms
 [5].

Therefore,
one
of
the
success
factors
in
optimizing
the
industrial
processes
is

either
automatic
anomaly
detection,
supervised
learning
or
both,
which
leads

to
prevent
production
flaws,
herewith
 improving
quality,
 increasing
yields

and
 making
 benefits.
 The
 popular
 way
 of
 anomaly
 detection
 in
 many
 of

industrial
 application
 is
by
 adjusting
digital
 camera
parameters
or
 sensors

during
collecting
 images
or
 time
series
data.
This
 is
basically
an
 image
or

signal
anomaly
detection
problem
that
is
searching
later
on
for
patterns
that

are
different
from
normal
data
[4].
As
a
human
one
can
easily
manage
such

task
 by
 recognizing
 of
 normal
 patterns,
 but
 this
 is
 relatively
 not
 easy
 for

machines.
Unlike
other
classical
approach,
 image
anomaly
detection
 faces

some
of
the
following
difficult
challenges:
class
imbalance,
quality
of
data,

and
unknown
anomaly
 [4].
A
prevalence
of
abnormal
events
are
generally

exception,
whereas
normal
events
account
for
a
significant
proportion.
Some

techniques
usually
handle
 the
anomaly
detection
problem
as
a
“one-class”

problem.
Here
models
 learn
by
using
 the
normal
data
as
 truth
ground
and

afterwards
 evaluates
whether
 the
 new
 data
 belong
 to
 this
 truth
 ground
 or

not,
by
the
degree
of
similarity
to
the
truth
ground.
In
the
early
applications

of
surface
defect
detection,
 the
background
 is
often
modeled
by
designing

handmade
features
on
defect-free
data.
For
example,
Bennatnoun
et
al.
used

blobs
technique
[3]
to
characterize
the
correct
texture
and
to
detect
deviations

through
 changes
 in
 the
 charter
 ships
 of
 generated
 blobs.
 Amet
 et
 al.
 [2]

used
wavelet
 filters
 to
 extract
 different
 scales
 of
 defect-free
 images,
 then

extracted
 the
 informative
 features
of
different
 frequency
 scales
of
 images.

However,
most
 of
 these
methods
 focus
 can
work
with
 homogeneous
 date

with
good
quality
and
would
require
a
prior
knowledge.
Generally,
still
some

6.2
 Dataset
Description
 83

challenges
which
strongly
depend
on
the
field
of
application.
Thus,
there
is
no

universal
pattern
or
system,
which
does
not
directly
allow
to
use
techniques

developed
for
one
application
to
another.
Thus,
machine/deep
learning
offers

promising
solutions
in
such
complex
environment.
However,
the
former
can

be
adapted
or
scaled
to
other
application
or
use
cases.
Due
to
these
above-
mentioned
challenges
unsupervised
anomaly
detection
on
multi-dimensional

data
is
very
highly
demanding
in
machine
learning
and
business
applications

[6].
Please
note,
 this
paper
 is
 extended
of
 the
published
work
 in
 [1].
The

latter
focused
on
the
data
preparation,
labelling
techniques
and
preliminary

results.
 A
 new
 contribution
 related
 to
 quantities,
 framework
 and
 transfer

learning
and
scalability
is
presented.
Therefore,
a
short
description
about
the

data
is
introduced.
Then,
labelling
approach
is
shortly
discussed.
Afterwards,

framework
is
depicted
and
effective
of
transfer
learning
is
discussed.
Finally,

the
results
are
showed
and
conclusion
is
drawn.

6.2
 Dataset
Description

This
manuscript
 showcases
 dealing
with
 time
 series
 data
 as
well
 as
with

images
at
different
processes
during
packaging.
The
data
 for
 the
first
case

is
 collected
 in
 the
 early
 phase,
 at
 wirebonding
 process.
 These
 data
 are

collected
 from
 three
different
 sensors.
Namely
a
current
 sensor,
 located
at

the
transducer,
a
displacement
sensor
measuring
the
deformation
of
the
wire

respectively
the
path
of
the
bonding
tool
and
a
frequency
sensor,
also
located

at
 the
 transducer
of
 the
wirebonder.
Each
of
 these
sensors
collects
roughly

432
features
during
143
timestamps.
However,
the
collected
data
are
highly

redundant
(see
Figure
6.1).
This
is
because
there
is
multiple
bond
connection

on
one
device
which
 share
 the
 same
process
parameters
and
behave
quite

similar.
However,
sometimes,
contamination
of
the
device
or
a
misadjusted

machine
would
cause
misaligned
or
deformed
bonds,
see
Figure
6.1.
Here,

there
is
a
need
to
develop
a
ML
solution
for
detecting
such
deviations.
Sim
ilarly,
the
biggest
challenge
of
the
outgoing
optical
inspection
(OOI),
in
the

second
use
case,
is
the
defect
detection
on
the
heatsink,
see
Figure
6.1,
which

consists
of
a
rough
copper
surface.
It
needs
to
inspected
for
scratches,
metal

or
mold
particles
as
well
as
for
mechanical
damage
like
imprints.
However,

this
surface
shows
a
very
high
variety
in
appearance,
as
it
is
oxidized
during

preceding
high
 temperature
 testing
 steps.
Hence,
 the
 inspection
 cannot
be

carried
 out
 using
 rule-based
 algorithms,
 as
 the
 oxidized
 areas
 cannot
 be

distinguished
 clearly
 from
 true
 defects
 by
 a
 rule-based
 algorithm.
 In
 this

84
 Failure
Detection
in
Silicon
Package

Figure
6.1
 Left:
Curve
with
 abnormal
minimum
position
 (red)
 in
 comparison
 to
normal

ones
(white)
of
recorded
sensor
data
during
wirebonding
process.
Right:
shows
an
example
of

abnormal
OOI
image
with
shown
crack
on
the
surface.

context,
trained
personnel
took
care
of
the
heatsink
inspection
and
was
used

to
label
the
image
data,
roughly
300
images,
for
supervised
learning.

6.2.1
 Data
Collection
and
Labelling

Data
 labelling
 is
 an
 essential
 step
 in
 a
 machine
 learning
 area.
 Here,
 the

common
phrase
“Garbage
in
- Garbage
out”
is
used
very
commonly
in
the

ML
 community,
 that
means
 the
quality
of
 the
model
 strongly
depends
on

the
quality
of
the
(labelled)
training
data.
In
this
work,
two
approached
are

considered:

•
X
→
Y

Indeed,
data
 labelling
 is
 a
 task
 that
 requires
 a
 lot
of
manual
work.
 In

this
 approach,
 labelling
data(images)
 is
done
based
on
human
 experience.

Luckily,
only
 few
percent
of
data
had
 to
 reviewed
 after
 applying
 the
 tool

introduced
 in
 [1]
 for
 reducing
 the
 effort.
This
 process
 is
 done
 by
 review

the
sorted
data
of
historical
images
and
recognize
on
the
defects
by
looking

closely
at
heat
sink
surface.
Thus,
there
is
no
need
for
prior
knowledge
about

the
status
of
Y
machine
to
sort
out
X
data.
Afterwards,
simply,
the
data
can

be
categorized
into
two
categories
as
either
healthy(good)
or
unhealthy(fail).

These
data,
then,
can
be
used
for
training
the
AI
model.
This
approach
is
used

for
labelling
the
first
case
OOI.

•
Y
→
X

Contrary
to
the
first
approach,
in
this
approach
human’s
experience
unfor

tunately
 is
not
fully
helpful
for
 labelling
data,
as
 the
data
 is
very
complex.

Hence,
the
design
of
experiment
(DOE)
is
set
by
checking
the
machine
status

while
collecting
data.
Therefore,
a
predefined
mis-adjustment
in
Y
wire
bond

should
be
known
to
get
deviation
on
X
data.

6.3
 Development
and
Deployment
 85

Figure
6.2
 Flow
chart
of
development
and
deployment
 life
cycle
 for
AI
solution
at
 IFX.

In
development
phase
data
scientists
could
use
different
programming
language
as
the
final

model
can
be
converted
to
ONNX.
In
deployment
phase,
the
vision
frame
can
simply
access

to
ONNX
and
run
during
inference
time.

6.3
 Development
and
Deployment

In
 order
 to
 satisfy
 the
 robustness
 requirements
 of
AI
model,
we
 propose

the
AI
 framework
 to
 be
 adapted
 to
 the
 best
 practices
with
 the
 following

characteristics

•
Short
adaption
cycles.

•
Testing
in
every
stage
and
automatically
integration
and
deployment.

•
Reproducible
processes
and
reliable
software
releases.

Figure
6.2
shows
a
typical
DevOps
process
which
is
the
basis
for
contin
uous
integration
and
delivery.
Thus,
the
following
feedback
loops
are
added

to
the
process
in
order
to
integrate
central
ML
lifecycle
steps:

•
Define
and
build
a
suitable
model
and
improve
it
based
on
demo
feed
back
through
experiments
using
any
suitable
programming
language.

•
Converting
the
optimal
model,
based
on
observed
model
performance,

into
ONNX
(or
other
suitable
format)
and
integrating
it
to
the
target
AI

platform.

•
Retrain,
when
it
is
needed,
an
operational
model
based
on
new
real-life

data
and
report
the
performance.

•
Adapt
 result
 of
 the
 whole
 process
 based
 on
 the
 performance
 of
 the

models
on
productive
data.

However,
 for
deployment,
 it
gets
more
complex,
because
of
additional

types
of
IFX
infrastructure
must
be
considered.
Here,
Figure
6.3
shows
the

process
which
 is
 extended
 by
 the
 new
 development
 into
 the
 existing
 IFX

86
 Failure
Detection
in
Silicon
Package

Figure
 6.3
 Process
 flow
 integration
 of
 the
 developed
AD
 solution
 into
 an
 existing
 IFX

infrastructure.

infrastructure.
From
the
perspective
of
a
classic
ML
lifecycle,
the
role
setting

of
Business
Analysts
 together
with
Data
Scientists
 and
Data
Engineers
 is

sufficient
for
conducting
a
working
ML
solution
which
proves
to
deliver
all

required
benefits.

6.4
 Transfer
Learning
and
Scalability

Transfer
learning
is
simply
fine-tuning
previously
trained
neural
networks.
In

this
context
we
transfer
the
trained
model
on
OOI
data
into
other
processes

of
packaging,
 see
Figure
6.4
Thus,
 instead
of
 creating
 an
AI
model
 from

scratch,
only
 a
 few
 images
of
 the
new
process
 are
 enough
 for
fine
 tuning

the
pre-trained
model
of
OOI
 images.
 Interestingly,
not
only
 the
collected

images
from
new
process
are
similar
to
the
OOI
images
but
the
defect
types

as
well.
As
a
result,
the
model
reports
a
high
accuracy
as
is
shown
in
Table
??.

The
 anomaly
 detection
 for
 the
wire
bonding
 process
has
 a
wide
 range
of

application,
 as
 there
 are
multiple
 Infineon
 sites
 and
multiple
machines
 of

the
same
type.
The
training
of
an
anomaly
detection
model
can
benefit
from

unlabelled
data
under
 the
assumption
 that
 the
majority
of
 the
data
 is
good.

Given
the
general
high
yield
this
assumption
is
valid.
Given
multiple
similar

machines
there
are
two
approaches
to
scale
one
model
to
multiple
machines.

•
Using
data
 from
multiple
machines
 for
 the
 training.
Thus,
 the
model

implicitly
learns
differences
between
the
machines
and
the
same
model

can
be
used
for
multiple
machines.

•
Using
an
anomaly
detection
model,
which
was
trained
on
a
prior
defined

machine
and
setting
up
all
other
machines
to
behave
most
similar
to
the

selected
machine.
Thus,
all
other
machines
generate
raw
data
of
the
same

input
space
as
the
selected
machine.

6.5
 Result
and
Discussion
 87

Figure
6.4
 show
the
flow
processes
during
silicon
package,
the
backside
blue
arrow
shows

the
position
of
transfer
learning
from
OOI
backwards
to
taken
images
after
molding
process,

see
Figure
6.5

Figure
6.5
 shows
an
example
of
 the
OOI
 image
on
 left
side
 (This
 image
 is
 taken
before

shopping
and
after
electrical
test)
and
example
of
image
after
molding
process
on
right
side.

With
 this
 procedure
 it
was
 possible
 to
 scale
 one
model
 to
 s
 complete

production
line
with
more
than
30
machines.

6.5
 Result
and
Discussion

For
wire
 bonding
 use
 case,
 two
 different
 approaches
 to
 validate
 the
 sys
tem
 were
 made.
 The
 first
 one
 was
 to
 simply
 calculate
 the
 percentage
 of

devices
which
 showed
 an
 anomaly
 in
 the
dataset
 and
 compare
 this
 to
 the

process
 yield.
 If
 these
 percentages
 align
 this
 is
 a
 good
 indicator
 that
 the

anomaly
detection
 represents
 the
product
quality.
Additionally,
a
statistical

significantly
 correlation
 between
 high
 anomaly
 values
 and
 bad
 electrical

test
 results
 is
 considered.
 For
 the
 second
 approach,
we
 gathered
multiple

devices
which
showed
a
high
anomaly
value
and
examined
them
thoroughly.

In
 all
of
 the
 cases
different
 influences
 could
be
 found
on
 the
device,
 like

a
 contaminated
 device,
 reduced
 shear
 value
 or
 input
 material
 which
 was

out
 of
 specifications.
 But
 not
 all
 findings,
 even
 though
 varying
 from
 the

normal,
will
lead
to
a
malfunctioning
device.
However,
an
important
aspect

88
 Failure
Detection
in
Silicon
Package

of
 the
 used
 anomaly
 detection
 was
 that
 the
 result
 is
 an
 anomaly
 score,

indicating
how
different
the
raw
data
from
normal
is
not
a
Boolean
indication

anomaly
/
no
anomaly.
Thus,
it
is
necessary
to
find
an
optimal
threshold
on

which
 the
difference
 in
 the
 raw
data
 influences
 the
quality
of
 the
product.

An
 important
 impact
of
 the
work
was
also
 the
adaptation
of
 the
approach

to
 a
 performant
 data
management
 infrastructure;
 i.
 e.
 the
 development
 of

automatable
methods
for
the
detection
of
conspicuous
parameter
behaviour

and
its
marking
and
storage.
The
evaluation
was
based
on
sample
data
and

statistical
 analysis
 of
 standard
 deviations
 considering
Nelson’s
 rules.
 The

work
carried
out
covers
both
the
familiarization
with
the
various
technologies

and
 their
 variants,
 the
 adaptation
 of
 the
methods
 to
 the
 subject
 area,
 and

the
prototypical
implementation
and
testing
of
the
algorithms
by
embedding

them
 in
automated
analysis
pipelines.
Currently
 the
anomaly
detection
 for

wirebonding
is
running
on
over
40
machines
on
3
different
IFX
sites.
During

a
runtime
of
4
months,
several
misadjusted
bonders
were
detected,
random

errors
 and
 contaminated
 devices.
However,
 currently
 a
 big
 focus
 is
 set
 to

fully
integrate
the
model
not
only
in
the
infrastructure
but
also
in
the
day
to

day
workflow
of
the
operators,
this
also
includes
a
clear
definition
of
action

plans
for
found
deviations
and
trainings
of
operators.
For
OOI
use
case,
after

collecting
images,
the
labeled
images
are
pre-processed
first
by
cropping
the

region
of
 interest
and
normalization
 the
 intensity
values
between
0
and
1.

These
 images
 are
 sent
 to
CNN
 for
 training
purpose.
The
CNN
 consist
of

100
 layers.
The
 latter
 consisting
 of
 different
 blocks.
Each
 block
 contains

the
convolutional,
pooling
and
ReLU
layer.
Also,
before
the
last
layer,
fully

connected
layer,
a
strict
regularization
factor
is
added
in
order
to
avoid
over-
fitting
issue
by
adding
dropout
layer
with
value
0.6.
The
data
was
splited
into

80%
 training
 and
20%
validation
data.
The
model
 reported
with
 accuracy

higher
 than
99%.
Afterwards,
 the
model
 is
 tested
on
productive
data
with

roughly
25k
images.
Table
6.1
 shows
the
confusion
matrix
with
the
important

measures,
sensitivity,
specificity
and
accuracy.
As,
one
can
see
that
model
to

follow
 zero
defect
philosophy,
 as
 sensitivity
value
 is
100%.
The
 accuracy

also
is
less
than
1%.
Hence,
only
the
latter
have
to
be
reviewed
by
an
expert.

Moreover,
the
performance
model
after
scaling
to
anew
process
is
still
very

robust.
As
one
can
see
in
the
Table
6.2,
which
shows
the
reported
results
by

a
model
when
run
on
productive
data
of
the
new
process.
Although,
one
can

see
 there
 is
one
escapee
 in
bottom
surface
 (BOT),
but
 the
accuracy
 is
still

higher
than
99%.

References
 89

Table
6.1
 Show
the
confusion
matrix
and
metrics
of
the
CNN
model
on
productive
data
for

BOT
and
TOP
of
OOI
images.

Table
6.2
 Show
the
confusion
matrix
and
metrics
of
the
CNN
model
on
productive
data
for

BOT
and
TOP
of
the
new
process.

6.6
 Conclusion
and
Outlooks

In
this
paper,
two
use
cases
show
the
potential
benefits
of
using
AI
models
in

detecting
abnormalities
 in
 industrial
packages.
Moreover,
 the
methodology

shows
 the
possibility
of
scaling
such
solutions
 to
new
similar
use
cases
or

machines
with
minimum
effort.
As
a
result,
not
only
the
manual
effort
would

significantly
be
reduced,
but
also
costs
and
the
quality
of
the
products
would

be
improved.
Additionally,
the
long-term
goal
is
not
only
to
find
the
deviation

but
to
detect
exactly
the
root
cause
behind
it.
However,
there
is
still
a
lot
of

work
left,
unrealized
potentials
benefit
of
AI
solutions,
but
IFX
has
already

taken
a
step
forward
in
the
right
direction.
Thus,
semiconductor
community

is
 investing
 more
 with
 AI
 to
 harvest
 its
 benefits
 in
 the
 short
 and,
 most

importantly,
long
term.
Generally,
the
results
are
promising
and
would
be
a

good
alternative
to
classical
approaches.
The
next
steps
are
monitoring,
opti
mization
and
more
validation
for
both
solutions
in
a
productive
environment.

Acknowledgements

AI4DI
receives
funding
within
the
Electronic
Components
and
Systems
for

European
Leadership
Joint
Undertaking
 (ECSEL
JU)
 in
collaboration
with

the
 European
 Union’s
Horizon2020
 Framework
 Programme
 and
National

Authorities,
under
grant
agreement
n◦
826060.

References

[1]
S.
Al-Baddai,
M.
 Juhrisch,
 J.
Papadoudis,
A.
Renner,
L.
Bernhard,
C.

Luca,
F.
Haas,
and
W.
Schober.
Automated
Anomaly
Detection
through

Assembly
and
Packaging
Process,
pages
161–176.
09
2021.

90
 Failure
Detection
in
Silicon
Package

[2]
A.
 Amet,
 A.
 Ertuzun,
 and
 A.
 Ercil.
 Texture
 defect
 detection
 using

subband
domain
co-occurrence
matrices.
pages
205
–
210,
05
1998.

[3]
A.
Bodnarova,
M.
Bennamoun,
and
K.
Kubik.
Automatic
visual
inspec
tion
and
flaw
detection
in
textile
materials:
A
review.
pages
194–197,
01

2001.

[4]
T.
Ehret,
A.
Davy,
J.
M.
Morel,
and
M.
Delbracio.
Image
anomalies:
a

review
and
synthesis
of
detection
methods.
08
2018.

[5]
G.
A.
Susto,
M.
Terzi,
and
A.
Beghi.
Anomaly
detection
approaches
for

semiconductor
manufacturing.
Procedia
Manufacturing,
11:2018–2024,

12
2017.

[6]
B.
Zong,
Q.
Song,
M.
R.
Min,
W.
Cheng,
C.
Lumezanu,
D.
Cho,
and

H.
Chen.
Deep
autoencoding
gaussian
mixture
model
 for
unsupervised

anomaly
detection,
2018.

7

S2ORC-SemiCause:
Annotating
and

Analysing
Causality
in
the
Semiconductor

Domain

Xing
Lan
Liu1,
Eileen
Salhofer1,2,
Anna
Safont
Andreu3,4,

and
Roman
Kern2

1Know-Center
GmbH,
Austria

2Graz
University
of
Technology,
Austria

3University
of
Klagenfurt,
Austria

4Infineon
Technologies
Austria

Abstract

For
 semiconductor
manufacturing,
 easy
 access
 to
 causal
knowledge
docu
mented
 in
 free
 texts
 facilitates
 timely
Failure
Modes
and
Effects
Analysis

(FMEA),
which
plays
an
 important
 role
 to
 reduce
 failures
and
 to
decrease

production
cost.
Causal
relation
extraction
is
the
tasks
of
identifying
causal

knowledge
 in
natural
 text
and
 to
provide
a
higher
 level
of
structure.
How
ever,
 the
 lack
 of
 publicly
 available
 benchmark
 causality
 datasets
 remains

a
bottleneck
 in
 the
 semiconductor
domain.
This
work
 addresses
 this
 issue

and
presents
 the
S2ORC-SemiCause
benchmark
dataset.
 It
 is
based
on
 the

S2ORC
 corpus,
 which
 has
 been
 filtered
 for
 literature
 on
 semiconductor

research,
and
consecutively
annotated
by
humans
 for
causal
 relations.
The

resulting
dataset
differs
from
existing
causality
datasets
of
other
domain
 in

the
long
spans
of
causes
and
effects,
as
well
as
causal
cue
phrases
exclusive

to
the
domain
semiconductor
research.
As
a
consequence,
this
novel
datasets

poses
challenges
even
for
state-of-the-art
token
classification
models
such
as

S2ORC-SciBERT.
Thus
this
dataset
serves
as
benchmark
for
causal
relation

extraction
for
the
semiconductor
domain.

Keywords:
causality,
relation
extraction,
information
extraction,
bertology,

annotation.

91

DOI: 10.1201/9781003377382-7
This chapter has been made available under a CC BY-NC 4.0 license.

92
 S2ORC-SemiCause:
Annotating
and
Analysing
Causality

7.1
 Introduction

Although
causality
 represents
a
simple
 logical
 idea,
 it
becomes
a
complex

phenomenon
when
appearing
 in
 textual
 form.
Natural
 language
provides
a

wide
variety
of
structures
to
represent
causal
relationships
that
can
obfuscate

the
causal
relations
expressed
via
cause
and
effect.
The
task
of
causal
rela
tion
extraction
aims
at
extracting
sentences
containing
causal
language
and

identifying
causal
constituents
and
their
relations
[17].

In
 the
 last
 years
 significant
 progress
 have
 been
made
 in
 automatizing

the
 identification
 of
 causal
 cues
 and
 extraction
 of
 causal
 relation
 in
 natu
ral
 language,
defining
 it
as
a
multi-way
classification
problem
of
semantic

relationships
 [6],
 designing
 a
 lexicon
 of
 causal
 constructions
 [2,
 3],
 and

insights
 how
 to
 achieve
 high
 inter-rater
 agreement
 [13].
Approaches
 have

been
developed
in
scientific
domains
traditionally
dominated
by
textual
infor
mation,
such
as
biomedical
sciences.
Here,
models
to
process
causal
relations

are
facilitated
and
accelerated
with
the
development
of
benchmark
datasets

such
 as
BioCause
 [10].
Such
 datasets
 not
 only
 allow
 for
 comparison
 and

automatic
evaluation
of
custom
causal
extractors,
but
also
allow
for
training

high
performing
supervised
models.

For
 semiconductor
manufacturing,
much
of
existing
knowledge
can
be

considered
to
be
causal,
highlighted
by
approaches
like
Ishikawa
causal
dia
grams
as
well
as
the
Failure
Modes
and
Effects
Analysis
(FMEA)
tool
which

captures
root
causes
of
potential
failures.
Even
though
such
FMEA
document

provides
more
structure
than
natural
language
text,
dedicated
pre-processing

is
 required
before
 further
processing
 [12].
A
 signification
 amount
of
 such

causal
 knowledge
 is
 captured
 in
 textual
 documents,
 such
 as
 reports
 and

knowledge
bases.
However,
there
is
no
publicly
available
annotated
dataset

for
causal
relation
extraction
yet.
As
a
consequence,
in
this
work
we
propose

such
a
dataset,
named
S2ORC-SemiCause.
The
source
for
the
documents
of

this
novel
dataset
is
the
S2ORC
academic
corpus,
which
has
been
filtered
for

documents
of
 relevance
 for
 the
 semiconductor
domain.
Human
 annotators

identified
causal
cues
and
causal
 relations
 in
 the
documents
of
 the
corpus.

To
achieve
consistent
and
reproducible
results,
an
annotation
guideline
was

created
and
 the
annotation
processes
was
conducted
 in
multiple
phases.
To

provide
 baseline
 performance,
 the
 pre-trained
 language
model
BERT
 [1],

which
 is
 currently
 considered
 state
 of
 the
 art
 for
 many
 natural
 language

processing
 (NLP)
 tasks
was
 adapted
 for
 the
 task.
An
 error
 analysis
 gives

insights
on
the
challenges
of
future
causal
relation
extraction
methods.

7.2
 Dataset
Creation
 93

In
summary,
our
main
contributions
are:

•
S2ORC-SemiCause,
a
causality
dataset
 for
 the
 semiconductor
domain

that
aims
to
provide
a
benchmark
for
causal
relation
extraction
perfor
mances
and
facilitate
research
on
dedicated
methods;

•
Practical
 annotation
 guidelines
 designed
 to
 yield
 high
 inter-annotator

agreement
for
semiconductor
literature,
to
enable
the
creation
of
further,

similar
datasets;

•
 Identified
the
key
differences
of
S2ORC-SemiCause
compared
to
other

domains,
 and
 highlighted
 the
 resulting
 challenges
 for
 state-of-the-art

NLP
models.

7.2
 Dataset
Creation

7.2.1
 Corpus

Our
 semiconductor
 corpus
 is
 selected
 from
 the
 24
 million
 papers
 in
 the

engineering
 and
 related
 domains
 from
 the
 S2ORC
 corpus
 [8]
 (total
 81.8

million
papers).
The
subdomain
is
further
filtered
using
a
series
of
keywords

specific
 for
 the
 semiconductor
domain,
 such
as
device
 locations,
electrical

and
physical
faults,
technologies
(e.g.
SFET),
Focused
Ion
Beam,
etc.
For
a

paper
to
be
selected,
it
needs
to
include
at
least
four
of
these
keywords.

From
 the
 resulting
subset
of
21
 thousand
papers,
400
abstract
and
400

paragraphs
are
randomly
sampled,
among
which
600
sentences
are
selected

randomly
for
annotation.

7.2.2
 Annotation
Guideline

We
have
adapted
the
annotation
guidelines1
 from
the
creation
of
BECauSE

Corpus
2.0
[3].
The
main
differences
are
(1)
the
relation
types
"Motivation"

and
"Purpose"
are
further
merged
into
one
type
(name
"Purpose")
since
it
is

found
from
previous
work
[5]
that
annotators
have
difficulty
distinguishing

these
 two
 types;
(2)
"max-span"
rule,
namely,
 the
span
should
 include
full

phrase
 or
 clause.
The
 "max-span"
 rule
 not
 only
 retains
 important
 context

information
for
 the
causal
relations,
but
also
enables
higher
 inter-annotator

agreement.
This
was
 also
motivated
 that
 it
 assumed
 to
 be
 easier
 to
 auto
matically
reduce
a
phrase
to
its
heads,
instead
of
expanding
a
short,
existing

annotation.

1The
annotation
guideline
will
be
make
public
at
https://github.com/tugraz-isds/kd.

https://www.github.com

94
 S2ORC-SemiCause:
Annotating
and
Analysing
Causality

Table
7.1
 Inter-annotator
agreement
for
 the
first
 two
 iterations.
Arg1
(cause)
refers
 to
 the

span
of
the
arguments
that
lead
to
Arg2
(effect)
for
the
respective
relation
type.

Iteration
1
 Iteration
2

Relation
classification
Cohen’s
κ
 0.65
 0.80

Consequence
Arg1
F1
 0.55
 0.71

Consequence
Arg2
F1
 0.60
 0.81

Purpose
Arg1
F1
 0.00
 0.92

Purpose
Arg2
F1
 0.00
 0.80

F1
micro
average
 0.49
 0.78

Table
 7.2
 Comparison
 of
 labels
 generated
 by
 both
 annotators
 for
 Iteration
 2.
Examples

and
 total
 counts
 (in
 number
 of
 arguments)
 for
 each
 type
 also
 given.
 Arg1
 and
 Arg2

are
highlighted
with
blue
and
yellow
background,
respectively.
 Partial
overlapped
texts
 are

highlighted
with
green
background.

Type
 #
 Example
sentence

In
fact,
and
for
the
soil
in
question,
 the
capillary
rise
process
is
low
 ,
so
Exact
match
 54

the
indirectly
loss
by
evaporative
loss
is
low
too
 .

Partial
 8
 This
 result
 suggests
 a
 possible
 dynamical
 influence

overlap
 of
 the
mesospheric
layers
 on
 the
lower
atmospheric
levels
 .

Only
 one
 14
 The
wing
displaces
away
from
the
ground
 ,
 as
 a
 result
 of

annotator
 the
reduction
in
(-ve)
lift
 .

7.2.3
 Annotation
Methodology

Since
the
annotations
should
contain
as
little
ambiguity
as
possible,
we
aimed

to
design
a
methodology
to
achieve
consistent
annotations.
To
this
end,
the

dataset
was
annotated
 in
a
 total
of
3
 iterations.
For
 the
first
 two
 iterations

with
 50
 sentences
 each,
 both
 annotators
 label
 the
 same
 set,
 so
 that
 inter-
annotator-agreement
(IAA)
can
be
evaluated.
Between
the
two
iterations,
the

two
annotators
discussed
the
results
and
updated
the
guideline.

Table
7.1
shows
that
there
are
significant
improvement
in
Inter-Annotator

Agreement
(IAA)
from
iteration
1
to
iteration
2,
both
in
terms
of
Cohen’s
κ,

and
F1.
The
main
improvement
comes
from
(1)
direction
for
Purpose
relation

(namely,
arg2
should
be
the
purpose);
(2)
"max-span"
rule,
namely,
the
span

should
include
full
phrase
or
clause.

With
 Iteration
 2,
 the
 two
 annotators
 reached
 a
 substantial
 agreement,

where
both
Cohen’s
κ
for
relation
classification
and
F1
 for
argument
spans

are
around
0.8.
For
reference,
in
Dunietz
et
al.
[3]
a
Cohen’s
κ
of
0.70
was

reported
for
the
relation
type.
Results
of
detailed
inspection
are
summarized

7.3
 Baseline
Performance
 95

Table
7.3
 Descriptive
statistics
of
benchmark
datasets.
Overview
of
CoNLL-2003
(train
ing
 split)
 and
BC5CDR
 (training
 split)
 for
 named
 entity
 recognition,
 as
well
 as
 causality

dataset
BioCause
(full
dataset),
and
S2ORC-SemiCause
(training
split).

CoNLL-2003
 BC5CDR
 BioCause
 S2ORC-SemiCause

#sentences
 14,042
 4,612
 37,422
 360

Avg.
sentence
length
(in
tokens)
 14.5
 25.0
 7.8
 32.0

Avg.
argument
length
(in
tokens)
 1.4
 1.5
 3.6
 9.5

in
 Table
 7.2.
 For
 54
 arguments,
 both
 annotators
 agree
 in
 both
 span
 and

argument
 type.
 The
 remaining
 disagreements
 are
 from
 (1)
 one
 annotator

misses
a
relation
(14
occurrences);
(2)
only
partial
overlap
of
the
annotated

spans
by
both
annotators
(8
occurrences).

Based
on
the
insights
from
the
updated
baseline,
the
first
set
of
document

was
revisited
and
both
set
of
annotations
from
 the
first
 two
 iterations
were

then
merged
manually.
In
addition,
for
the
3rd
iteration,
two
extra
sets
of
250

sentences
were
annotated
by
each
annotators.
As
a
result,
our
dataset
consist

of
600
sentences
annotated
with
Consequence
and
Purpose
relations.

7.2.4
 Dataset
Statistics

We
 notice
 that
 compared
 to
 other
 benchmark
 NER
 datasets,
 such
 as

CoNLL2003
[4],
BC5CDR
[7],
and
BioCause
[10]
(see
Table
7.3),
S2ORC
SemiCause
dataset
differs
 in
 terms
of
 (1)
smaller
size;
 (2)
 longer
sentence

length;
(3)
longer
argument
length.
While
data
size
is
found
to
be
generally

sufficient
 for
 entity
 recognition
 tasks
 [14],
 and
 longer
 sentence
 length
 is

found
to
be
preferred
[14],
the
effect
of
longer
argument
length
remains
to

be
evaluated.

7.2.5
 Causal
Cue
Phrases

When
present,
the
causal
cue
phrases
are
also
annotated.
Figure
7.1
depicts

the
 most
 common
 cue
 phrases
 for
 both
 relation
 types.
 "To"
 is
 the
 most

frequently
occurring
cue
because
it
is
by
far
the
most
dominating
cue
phrase

for
relation
type
purpose.
The
cue
phrases
for
consequence
are
much
more

diverse.
Compared
 to
other
 corpus
of
general
domain
 [9,
11],
 in
S2ORC
SemiCause
dataset,
cue
words
such
as
 increase,
decrease,
 improve,
reduce

are
also
ranked
very
high.

96
 S2ORC-SemiCause:
Annotating
and
Analysing
Causality

Figure
 7.1
 Causal
 cue
 phrases
 ranked
 by
 frequency
 for
 all
 sentences
 in
 S2ORC
SemiCause
dataset.

7.3
 Baseline
Performance

To
establish
a
point
of
 reference
 for
 the
community,
we
provide
an
 initial

baseline
performance.
For
 the
baseline
approach
we
considered
 the
causal

relation
 extraction
 task
 as
 an
 sequence
 classification
 task.
As
 a
 technical

realisation,
 we
 fine-tuned
 BERT
 on
 the
 down-stream
 task
 of
 token-level

classification
 [1].
An
error
analysis
 is
 then
performed
 to
 identify
 the
main

challenges
 in
 extracting
 causal
 relations
 from
 scientific
 publications
 in

semiconductor
research.

7.3.1
 Train-Test
Split

The
total
600
sentences
are
split
into
training,
validation,
and
test
sets,
with

the
 ratio
 60
 :
 20
 :
 20,
 stratified
 on
 relation
 type2.
 In
 addition,
 also
 the

iterations
were
 stratified
 evenly
 to
 avoid
unwanted
biases.
The
descriptive

statistics
for
each
split
is
listed
in
Table
7.4.

7.3.2
 Causal
Argument
Extraction

As
recommended
in
[1],
which
describes
a
similar
scenario,
we
considered

the
task
as
a
token-level
classification.
Namely,
a
pretrained
BERT
model
is

stacked
with
a
 linear
 layer
on
 top
of
 the
hidden-states
output,
before
fine-
tuned
on
training
examples.
And
the
pretrained
S2ORC-SciBERT
model
[8]

is
selected
for
fine-tuning
using
transformers
library
from
Hugging
Face
[16].

2We
release
all
data
for
future
studies
at
https://github.com/tugraz-isds/kd

https://www.github.com

7.3
 Baseline
Performance
 97

Table
7.4
 Descriptive
statistics
of
S2ORC-SemiCause
dataset.
#-sent:
total
number
of
anno
tated
sentences,
#-sent
no
relations:
number
of
sentences
without
causality,
Argument:
total

amount
 and
 mean
 length
 (token
 span)
 of
 all
 annotated
 argument,
 Consequence/Purpose:

amount
and
mean
length
of
cause
and
effect
arguments
for
the
respective
relation
types.

#-sent

#-sent

no
relations

Argument

count
 mean

Consequence

cause
 effect

count
 mean
 count
 mean

Purpose

cause
 effect

count
 mean
 count
 mean

overall

train

dev

test

600

360

120

120

291

174

55

62

670

405

122

143

9.4

9.5

9.3

9.3

258

155

49

54

8.4

8.5

8.1

8.3

290

178

52

60

9.2

9.1

8.8

9.9

58

34

10

14

10.8

11.1

9.7

10.9

64

38

11

15

12.9

13.5

16.1

8.9

Table
7.5
 Baseline
performance
using
BERT
with
a
token
classification
head.
Both
the
F1

scores
and
the
standard
derivation
over
7
different
runs
are
shown.
Despite
the
small
sample

size,
the
standard
deviation
remain
low,
similar
to
previous
work
[14].

Relation
 Argument
 #
 F1
 F1-filter
 F1-filter
partial

Consequence
 Arg1
 54
 0.43
±
0.03
 0.48
±
0.02
 0.59
±
0.01

Consequence
 Arg2
 60
 0.45
±
0.03
 0.50
±
0.03
 0.62
±
0.02

Purpose
 Arg1
 14
 0.20
±
0.07
 0.25
±
0.10
 0.50
±
0.05

Purpose
 Arg2
 15
 0.31
±
0.06
 0.36
±
0.08
 0.57
±
0.07

micro
average
 143
 0.39
±
0.02
 0.45
±
0.02
 0.59
±
0.01

The
resulting
F1
scores3
are
shown
in
Table
7.5
and
is
remarkable
lower
than

for
other
benchmark
NER
datasets
when
down-sampled
to
similar
size
[14].

7.3.3
 Error
Analysis

In
order
to
understand
the
causes
for
the
low
F1
 score
of
the
baseline
model,

an
error
analysis
is
performed.

Length
of
Argument
Span

Firstly,
a
manual
 inspection
revealed
 that
for
30
±
4
(out
of
 the
 total
120)

sentences,
 the
fine-tuned
model
predicts
sequences
similar
 to
 [O I I
· · ·
],

i.e.,
the
models
did
not
learn
that
an
argument
must
always
start
with
a
"B"

type
with
the
IOB
(Inside–Outside–Beginning)
notation.

We
hypothesize
that
this
might
be
because
our
argument
spans
are
much

longer
than
other
datasets
(see
Table
7.4
and
Table
7.3).
As
a
result,
either
the

self-attention
might
no
longer
efficiently
keep
track
of
the
[B
 I
 · · ·]
pattern,

or
the
over-abundant
"I"
class
might
bias
the
model
loss.

3The
best
performance
is
found
using
learning
rate
1.5e
−
4,
batch
size
8,
warm
up
steps

10,
and
10
epochs.

98
 S2ORC-SemiCause:
Annotating
and
Analysing
Causality

Table
7.6
 Comparison
of
predicted
and
annotated
argument
spans
for
the
test
split.
Exam
ples
 and
 total
 counts
 (in
 number
 of
 arguments)
 for
 correct
 prediction
 and
 for
 each
 error

source
are
also
given.
 Arg
1
 and
 Arg
2
 are
highlighted
with
blue
and
yellow
background,

respectively.
 Partial
overlapped
texts
 are
highlighted
with
green
background.

Type
 #
 Example
sentence

Exact
match
 68
 is
due
to

Partial
 41
 These
safe
zones
are
provided
 to
a
model
predictive
controller
as

overlap
 reference
 to
 generate
feasible
trajectories
for
a
vehicle
 .

The
broad
peak
at
5
eV
 N(2p)
electrons
 .

Spurious
 46
 The
 roles
 of
 initial
concentrations
 ,
 space
 dimension
 and
 ratio
 of
 the

reactant
diKusinties
 in
 the
modification
of
the
reaction
rate
 by
many

particle
eMects
are
compared
with
computer
simulations.

Missed
 34
 This
 result
 validates
 the
bolometric
IR
luminosities
 derived
 from

MIR
luminosities
 .

Following
 this
 hypothesis,
 we
 expect
 better
 performances
 for
 shorter

arguments
 than
 for
 longer.
 Indeed
we
observe
 that
 correct
predictions
 are

shorter
by
2.7
tokens
on
average
(p_value
= 0.008).

To
quantify
 the
effect
of
 such
 incorrect
 [O I I · · ·] sequences,
we
 re
evaluated
F1
 score
after
filtering
out
such
predictions.
The
results
are
shown

in
 Table
 7.5
 as
 "F1-filter",
 and
 an
 improvement
 of
 6
 points
 is
 observed

compared
to
the
F1
score
before
filtering.

Predictions
with
Partial
Overlap

Out
of
the
predicted
argument,
41
were
counted
as
incorrect,
but
overlapped

partially
(see
example
in
Table
7.6),
and
manual
inspection
suggest
that
they

often
contain
valid
causal
information.

Following
 [15],
 the
 model
 performance
 can
 be
 evaluated
 taking
 into

account
 partial
 overlaps.
 The
 results
 are
 listed
 in
 Table
 7.5
 as
 "F1-filter

partial",
 and
 the
 average
 F1
 score
 becomes
 0.59,
which
 is
 about
 80%
 of

human
performance
(inter-annotator
F1
value
of
0.78),
and
is
inline
with
the

sample-size
scaling
as
reported
previously
[14].

Spurious
and
Missed
Predictions

Spurious
examples
(false
positives)
are
 the
cases
where
 the
model
predicts

a
relation
while
annotators
do
not
label.
After
manual
inspection,
we
find
it

arguable
 that
some
spurious
predictions
made
by
 the
model
might
actually

be
valid
causal
relations
as
well.
For
example,
the
spurious
example
shown

in
Table
7.6
 is
arguably
causal
as
well
 following
 the
 (The
role
of
 ...
 in
 ...)

construct.

References
 99

Missed
examples
 (false
negatives)
are
 the
cases
where
annotators
have

labelled
while
the
model
fails
to
predict
a
relation.
For
example,
the
missed

example
shown
in
Table
7.6
uses
the
rare
causal
trigger
derived
from,
which

might
be
the
reason
why
the
model
failed
to
recognize.

7.4
 Conclusions

Causality
is
critical
knowledge
in
semiconductor
manufacturing.
In
order
to

enable
 automatic
 causality
 recognition,
we
 created
 the
S2ORC-SemiCause

dataset
 by
 annotating
 600
 sentences
 with
 670
 arguments
 for
 causal
 rela
tion
 extraction
 from
 a
 subset
 of
 semiconductor
 literature
 taken
 from
 the

S2ORC
dataset.
This
unique
dataset
challenges
established
 state-of-the-art

techniques,
because
of
 its
 long
 spans
 for
 each
 argument.
This
benchmark

dataset
 is
 intended
 to
 spur
 further
 research,
 fuel
 development
 of
machine

learning
models,
and
to
provide
benefit
to
the
NLP
research
in
semiconductor

domain.

Acknowledgements

The
research
was
conducted
under
the
framework
of
the
ECSEL
AI4DI
"Arti
ficial
Intelligence
for
Digitising
Industry"
project.
The
project
has
received

funding
from
the
ECSEL
Joint
Undertaking
(JU)
under
grant
agreement
No

826060.
The
Know-Center
is
funded
within
the
Austrian
COMET
Program–

Competence
Centers
 for
Excellent
Technologies
under
 the
auspices
of
 the

Austrian
 Federal
 Ministry
 of
 Transport,
 Innovation
 and
 Technology,
 the

Austrian
Federal
Ministry
of
Economy,
Family
and
Youth
and
by
the
State

of
Styria.
COMET
is
managed
by
the
Austrian
Research
Promotion
Agency

FFG.
We
acknowledge
useful
comments
and
assistance
from
our
colleagues

at
Know-Center
and
at
Infineon.

References

[1]
 J.
 Devlin,
 M.
 W.

Chang,
 K.
 Lee,
 and
 K.
 Toutanova.
 BERT:
 Pre-
training
of
deep
bidirectional
transformers
for
language
understanding.

NAACL
HLT
2019
- 2019
Conference
of
 the
North
American
Chapter

of
 the
 Association
 for
 Computational
 Linguistics:
 Human
 Language

Technologies
 - Proceedings
 of
 the
 Conference,
 1(Mlm):4171–4186,

2019.

100
 S2ORC-SemiCause:
Annotating
and
Analysing
Causality

[2]
 J.
 Dunietz,
 L.
 Levin,
 and
 J.
 Carbonell.
 Annotating
 causal
 language

using
corpus
lexicography
of
constructions.
The
9th
Linguistic
Annota
tion
Workshop
held
in
conjunction
with
NAACL
2015,
(2014):188–196,

2015.

[3]
 J.
 Dunietz,
 L.
 Levin,
 and
 J.
 G
 Carbonell.
 The
 because
 corpus
 2.0:

Annotating
causality
and
overlapping
 relations.
 In
Proceedings
of
 the

11th
Linguistic
Annotation
Workshop,
pages
95–104,
2017.

[4]
E.
F.
Tjong
Kim
Sang,
and
F.
De
Meulder.
Introduction
to
the
CoNLL
2003
shared
 task:
Language-independent
named
entity
recognition.
In

Proceedings
of
the
Seventh
Conference
on
Natural
Language
Learning

at
HLT-NAACL
2003,
pages
142–147,
2003.

[5]
D.
Gaerber.
Causal
information
extraction
from
historical
german
texts,

2022.

[6]
 I.
Hendrickx,
S.
N.
Kim,
Z.
Kozareva,
P.
Nakov,
D.
Ó
Séaghdha,
S.

Padó,
M.
Pennacchiotti,
L.
Romano,
and
S.
Szpakowicz.
SemEval-2010

task
8:
Multi-way
classification
of
semantic
relations
between
pairs
of

nominals.
 In
Proc.
of
 the
5th
 Int.
Workshop
on
Semantic
Evaluation,

pages
33–38,
Uppsala,
Sweden,
2010.
Association
 for
Computational

Linguistics.

[7]
 J.
Li,
Y.
Sun,
R.
J.
Johnson,
D.
Sciaky,
C.-H.
Wei,
R.
Leaman,
A.
P.

Davis,
C.
J.
Mattingly,
T.
C.
Wiegers,
and
Z.
Lu.
Biocreative
V
CDR
task

corpus:
a
 resource
 for
chemical
disease
 relation
extraction.
Database,

2016.

[8]
K.
Lo,
L.
L.
Wang,
M.
Neumann,
R.
Kinney,
and
D.
Weld.
S2ORC:

The
 semantic
 scholar
 open
 research
 corpus.
 In
 Proceedings
 of
 the

58th
Annual
Meeting
of
the
Association
for
Computational
Linguistics,

pages
 4969–4983,
Online,
 July
 2020.
Association
 for
Computational

Linguistics.

[9]
Z.
Luo,
Y.

Sha,
K.
Q.
Zhu,
 S.
W.
Hwang,
 and
Z.
Wang.
Common
sense
causal
reasoning
between
short
texts.
Proc.
Int.
Workshop
Tempor.

Represent.
Reason.,
pages
421–430,
2016.

[10]
C.
Mihˇ a,
T.
Ohta,
S.
Pyysalo,
and
S.
Ananiadou.
BioCause:
Annotatailˇ
ing
and
analysing
causality
 in
 the
biomedical
domain.
BMC
Bioinfor
matics,
14,
2013.

[11]
S.
Pawar,
R.
More,
G.
K.
Palshikar,
P.
Bhattacharyya,
and
V.
Varma.

Knowledge-based
Extraction
of
Cause-Effect
Relations
from
Biomedi
cal
Text.
2021.

References
 101

[12]
H.
Razouk
and
R.
Kern.
Improving
the
consistency
of
the
failure
mode

effect
 analysis
 (fmea)
 documents
 in
 semiconductor
 manufacturing.

Applied
Sciences,
12(4),
2022.

[13]
 I.
Rehbein
and
J.
Ruppenhofer.
A
new
resource
for
German
causal
lan
guage.
In
Proceedings
of
the
12th
Language
Resources
and
Evaluation

Conference,
pages
5968–5977,
Marseille,
France,
May
2020.
European

Language
Resources
Association.

[14]
E.
Salhofer,
X.
L.
Liu,
and
R.
Kern.
Impact
of
training
instance
selection

on
domain-specific
entity
extraction
using
bert.
In
NAACL
SRW,
2022.

[15]
 I.
Segura-Bedmar,
P.
Martínez,
 and
M.
Herrero-Zazo.
SemEval-2013

task
 9
 :
 Extraction
 of
 drug-drug
 interactions
 from
 biomedical
 texts

(DDIExtraction
2013).
 In
Proc.
of
 the
7th
 Int.
Workshop
on
Semantic

Evaluation
(SemEval
2013),
2013.

[16]
T.

Wolf,
L.
Debut,
V.
 Sanh,
 J.
Chaumond,
C.
Delangue,
A.
Moi,
 P.

Cistac,
T.
Rault,
R.
Louf,
M.
Funtowicz,
J.
Davison,
S.
Shleifer,
P.
v.

Platen,
C.
Ma,
Y.
Jernite,
J.
Plu,
C.
Xu,
T.
L.
Scao,
S.
Gugger,
M.
Drame,

Q.
Lhoest,
and
A.
Rush.
Transformers:
State-of-the-art
natural
language

processing.
In
Proc.
of
the
2020
Conf.
on
Empirical
Methods
in
NLP:

System
Demonstrations,
2020.

[17]
 J.
Yang,
S.
C.
Han,
and
J.
Poon.
A
survey
on
extraction
of
causal
rela
tions
from
natural
language
text.
Knowledge
and
Information
Systems,

pages
1–26,
2022.

https://taylorandfrancis.com

8

Feasibility
of
Wafer
Exchange
for
European

Edge
AI
Pilot
Lines

Annika
Franziska
Wandesleben1*,
Delphine
Truffier-Boutry2*,

Varvara
Brackmann1,
Benjamin
Lilienthal-Uhlig1,
Manoj
Jaysnkar3,

Stephan
Beckx3,
Ivan
Madarevic3,
Audde
Demarest2,
Bernd
Hintze4,

Franck
Hochschulz5,
Yannick
Le
Tiec2,
Alessio
Spessot3,

and
Fabrice
Nemouchi2

1Fraunhofer
IPMS
CNT,
Germany

2Université
Grenoble
Alpes,
CEA-Leti,
France

3imec,
Belgium

4FMD,
Germany

5Fraunhofer
IMS,
Germany

∗Equal
contribution

Abstract

This
 paper
 compares
 the
 contamination
 monitoring
 of
 the
 three
 largest

microelectronics
 research
 organizations
 in
 Europe,
 CEA-Leti,
 imec
 and

Fraunhofer.
The
aim
is
to
align
the
semiconductor
infrastructure
of
the
three

research
institutes
to
accelerate
the
supply
to
European
industry
for
disruptive

chip
processing.
To
offer
advanced
edge
AI
systems
with
novel
non-volatile

memory
 components,
 integration
 into
 state-of-the-art
 semiconductor
 fab
rication
 production
 flow
 must
 be
 validated.
 For
 this,
 the
 contamination

monitoring
is
an
essential
aspect.
Metallic
impurities
can
have
a
major
impact

on
expensive
and
complex
microelectronic
process
flows.
Knowing
this,
it
is

important
to
avoid
contamination
of
process
lines.
In
order
to
benefit
from
the

combined
infrastructure,
expertise
and
individual
competences,
the
feasibility

of
wafer
loops
needs
to
be
investigated.

Through
 a
 technical
 comparison
 and
 a
 practical
 analysis
 of
 potential

cross-contaminations,
 the
 correlation
 of
 the
 contamination
 measurement

103

DOI: 10.1201/9781003377382-8
This chapter has been made available under a CC BY-NC 4.0 license.

104
 Feasibility
of
Wafer
Exchange
for
European
Edge
AI
Pilot
Lines

results
 of
 the
 research
 institutes
 is
 investigated.
 The
 results
 demonstrate

that
 the
 three
 institutes
 are
 able
 to
 analyse
 metallic
 contamination
 with

comparable
Lower
Limits
of
Detection
 (LLDs).
This
 result
 sets
 the
 foun
dations
 for
 smooth
 and
 fast
wafer
 exchange
 for
 current
 and
 future
 needs,

potentially
 not
 only
 within
 research
 institutes
 as
 well
 as
 with
 industrial

and
 foundry
 partners.
 The
 present
 work
 pays
 attention
 to
 both
 surface

and
 bevel
 contamination.
 The
 latter
 requires
 very
 specific
 contamination

collection
which
was
 also
 compared.
Nevertheless,
 some
 challenges
 need

to
 be
 addressed
 in
 the
 future
 to
 advance
 and
 accurate
 contamination

monitoring.

Keywords:
 contamination,
 contamination
 monitoring
 and
 management,

TXRF,
VPD-ICPMS,
surface,
bevel,
wafer
loops.

8.1
 Introduction

The
 aim
 is
 to
 align
 the
 semiconductor
 infrastructure
 of
 the
 three
 largest

microelectronics
research
institutions
in
Europe,
CEA-Leti,
imec
and
Fraun
hofer,
 in
 order
 to
 accelerate
 supply
 to
 European
 industry
 for
 disruptive

chip
 processing.
 Contamination
 monitoring
 is
 an
 essential
 aspect
 of
 this

alignment.
Metallic
 impurities
 can
have
 a
major
 impact
on
 expensive
 and

complex
microelectronic
process
flows.
Therefore,
 it
 is
 important
 to
avoid

contamination
 of
 the
 process
 lines.
 To
 benefit
 from
 the
 semiconductor

infrastructure,
expertise
and
 individual
skills,
 the
feasibility
of
wafer
 loops

needs
 to
be
 investigated.
Additionally,
 to
offer
 advanced
 edge
AI
 systems

with
novel
non-volatile
memory
 components,
 integration
 into
 state-of-the
art
 semiconductor
 fabrication
 production
flow
must
 be
 validated.
Metallic

contamination
can
have
a
major
 impact
within
 the
microelectronic
process

flow,
whereby
 the
different
chemical
elements
have
various
effects.
There
fore,
 contamination
 of
 the
 process
 lines
 must
 be
 avoided
 (Bigot,
 Danel,

&
 Thevenin,
 2005;
 Borde,
 Danel,
 Roche,
 Grouillet,
 &
 Veillerot,
 2007).

To
 simplify
 the
 future
 exchange
 of
 wafers
 in-between
 research
 institutes

and
between
 institutes
 and
 semiconductor
 fabs,
 it
 is
necessary
 to
find
out

more
 about
 contamination
 monitoring
 and
 possible
 cross-contamination.

For
 this
 purpose,
 a
 technical
 comparison
 and
 a
 practical
 analysis
 of
 the

possible
cross-contaminations
 is
carried
out
 in
order
 to
 furthermore
 inves
tigate
the
correlation
of
the
contamination
measurement
results
of
the
three

institutes.

8.2
 Technical
Details
and
Comparison
 105

Table
8.1
 Contamination
monitoring
techniques
LETI
/
IMEC
/
FhG

Technique

VPD

LETI

Wafer
surface

IMEC

Wafer
surface

FhG

Wafer
surface

ICPMS
 analysis

Back
side

analysis

Back
side

analysis

Back
side

Front
side
 Front
side
 Front
side

Bevel
 Bevel
 Bevel
under

TXRF
 Wafer
surface

analysis

Back
side

Front
side

Wafer
surface

analysis

Back
side

Front
side

development

For
wafer
fragments

and
not
yet
available,

under
development

Bevel/Edge
 Edge

8.2
 Technical
Details
and
Comparison

The
common
techniques
for
contamination
monitoring
are
TXRF
and
VPD
ICMPS.
The
three
largest
microelectronics
research
organizations
in
Europe,

CEA-Leti,
imec
and
Fraunhofer,
are
equipped
with
VPD-ICPMS
while
imec

and
CEA-Leti
additionally
use
TXRF
tools.
The
type
of
tool,
its
set
up
and

qualification
depend
on
the
contamination
management
strategy
developed
in

each
clean
room.

The
capabilities
of
the
individual
institutes
are
summarised
in
the
follow
ing
Table
8.1.

8.2.1
 Comparison
TXRF
and
VPD-ICPMS
Equipment
for
Surface

Analysis

TXRF
 is
 ideal
 for
 high
 throughput
 applications
 as
 the
measurements
 are

based
on
the
interaction
of
electron
beams
and
silicon
surfaces,
without
chem
ical
manipulation.
This
technique
allows
to
analyse
fast
enough
both
standard

and
noble
 elements
 in
 automatic
mode
with
 the
possibility
 to
 localize
 the

contamination
on
wafer
with
 the
mapping
option.
However
 lower
 limits
of

detection
(LLD)
are
quite
high,
from
1E+9 to 1E+11
at/cm2
.

Concerning
 the
VPD-ICPMS
 technique,
 it
 requires
 different
 chemical

solutions
 for
 the
 collection
of
 standard
 and
noble
 elements,
 so
 campaigns

need
to
be
planned
and
there
is
no
local
resolution
of
contaminants.
However,

the
collection
of
all
metallic
contaminants
 in
a
 small
droplet
of
chemistry

induces
significantly
improved
LLD
values
for
all
elements.

106
 Feasibility
of
Wafer
Exchange
for
European
Edge
AI
Pilot
Lines

Figure
8.1
 Comparison
of
TXRF
LLDs
of
CEA
LETI
/
IMEC

Figure
8.2
 Comparison
of
VPD-ICPMS
LLDs
of
CEA
LETI
/
IMEC
/
FhG

To
compare
metallic
contamination
results
obtained
by
the
different
insti
tutes,
the
first
goal
was
to
compare
LLDs
of
each
element
of
each
institute
and

how
it
is
experimentally
determined.
Indeed,
LLD
is
the
lowest
concentration

at
 which
 an
 element
 can
 be
 reliably
 detected
 and
 is
 a
 key
 point
 for
 the

control
of
 the
metallic
contamination
at
very
 low
 level.
Depending
on
 the

equipment,
there
are
several
ways
to
determine
the
LLD,
and
hence
the
need

for
comparing
the
capabilities
of
each
institute.

For
TXRF,
LLD
values
are
nearly
identical
for
each
element,
as
shown

in
Figure
8.1.
As
 this
 technique
 is
based
on
physical
principles
 and
 since

both
institutes
have
the
same
equipment
(Rigaku
TXRF),
capabilities
of
both

institutes
are
the
same.
All
LLDs
are
between
5E+9
and
5E+10
at/cm2.
Only

Ca
and
Ag
are
a
little
bit
higher
because
Ca
comes
from
the
manual
wafer

manipulation
 and
Ag
 results
 from
 a
high
background
noise
on
 the
TXRF

spectrum
near
3
keV
(Lα1
ray
of
Ag
at
2.983
keV).

In
 case
 of
VPD-ICPMS
 technique,
 the
 LLD
 results
 are
 not
 the
 same

across
the
three
institutes.
This
can
be
explained
by
the
fact
that
the
technique

is
based
on
chemical
collection
and
each
institute
has
its
own
specific
system

with
different
approaches
to
the
analysis
and
calculation
of
LLDs,
as
shown

in
Table
8.2.

8.2
 Technical
Details
and
Comparison
 107

Table
 8.2
 Overview
 VPD-ICPMS
 LLD
 determination
 and
 technical
 details
 for
 LETI
 /

IMEC
/
FhG

Aligned
Data
 LETI
 IMEC
 FhG
IPMS
CNT

Determination
 LLD
 Calculated
from
 For
complete
process

of
LLD
 VPD-ICPMS
=
 3xstandard
 VPD-ICPMS

(VPD 3xSigma
for
 deviation
of
 permanent
blank

ICPMS)
 each
elements
 calibration
blank
 method.

and
slope
of

calibration
curve.

VPD
 Rigaku
 IAS
ExpertTM
 External
source:
no

Brand
and
 VPD300A,
 VPD
system
 data

type
 stand
alone
 CNT:
TePla
System

stand
alone

ICP-MS

brand
and

Agilent
8800,

three

Perkin-Elmer

NexionTM

External
source:
no

data

type
 quadrupoles
 ICP-MS
 CNT:
Thermo

Fischer
RQ,
single

quadrupole

Exclusion
 7 mm
 1 mm
 External
source:
no

size
VPD
 data

CNT:
5 mm

(planned)

Figure
 8.2
 shows
 that
 the
 VPD-ICPMS
 LLDs
 of
 each
 institute
 are

between
1E+6
and
5E+9
at/cm2,
more
or
less
three
decades
lower
than
TXRF

ones.

Differences
observed
across
LLDs
of
each
institute
are
due
to
the
different

techniques
 used
 and
 the
 different
 environments.
The
 collection
 system
 at

CEA-Leti
 is
 not
 full
 automatic
 and
 technicians
 have
 to
 transfer
 a
 small

container
containing
the
chemical
droplet
from
the
VPD
to
the
ICPMS.
This

container
has
to
be
manually
cleaned
between
collection
and
all
these
manual

steps
 contribute
 to
 the
 increased
Na,
Mg
 and
Ca
 levels
 of
 contamination.

However,
 these
specific
LLDs
are
still
 lower
 than
1E+10
at/cm2
 and
 these

elements
are
usually
not
critical
for
the
microelectronic
device
performances.

For
imec,
high
values
of
Ti
and
V
seem
to
be
due
to
specific
detector
settings

that
 favours
minimal
 peak
 interference
 for
Ti
 and
V.
 For
 other
 elements,

all
imec
LLDs
are
lower
as
they
use
a
fully
automatic
tool
without
manual

steps.
Fraunhofer
has
a
comparable
system
to
CEA-Leti,
but
it
is
still
in
the

method
development
process
and
the
current
analyses
are
done
externally
on

an
automated
system.

108
 Feasibility
of
Wafer
Exchange
for
European
Edge
AI
Pilot
Lines

Figure
8.3
 Schematic
of
the
VPD
bevel
collection
at
(a)
IMEC,
(b)
CEA-LETI
and
(c)
FhG

IPMS

Overall,
 the
 VPD-ICPMS
 LLDs
 of
 each
 institute
 are
 very
 low
 and

comparable
 to
 industry
 standards
 and
 thus
 are
 sufficient
 for
 the
 metallic

contamination
control
in
the
microelectronic
environment.
One
other
impor
tant
 parameter
 is
 the
 recovery
 rate
 that
 has
 to
 be
 more
 than
 95
 %
 for

each
 of
 the
 elements.
 As
 each
 institute
 use
 the
 same
 chemical
 solution

for
 the
 collection
 step,
 recovery
 rates
 are
 nearly
 the
 same
 and
 are
 very

good
(>95
%).

8.2.2
 VPD-ICPMS
Analyses
on
Bevel

For
several
years,
wafer
bevel
contamination
has
become
a
challenge
in
the

industry
and
it
is
therefore
an
increasing
issue
for
R&D
institutes.
Actually,

in
 order
 to
 increase
 device
 density
 on
 a
 wafer,
 individual
 chips
 need
 to

be
 placed
 closer
 to
 the
 edge
 of
 a
wafer
 limiting
 the
waste
 of
 surface.
 In

addition,
wafers
are
increasingly
processed
by
physical
contact
at
the
bevel,

so
this
particular
part
of
the
wafer
will
need
to
be
precisely
controlled
in
the

future.
The
full
bevel
area
can
only
be
analysed
by
VPD-ICPMS
on
bare
Si

wafers.
Effectively,
TXRF
analysis
of
 the
 full
bevel
 is
 impossible
because

this
 technique
 is
 too
 sensitive
 to
 the
 topography
 and
 cannot
 quantify
 the

metallic
contamination
 localized
on
 the
fall
of
 the
bevel.
The
collection
of

contaminants
at
the
bevel
is
a
key
point
and
each
institute
had
to
develop
a

specific
system
 for
 the
analysis.
Thus,
 there
are
major
 technical
variations

between
the
collection
systems
used
by
the
three
institutes
for
the
analysis
of

the
bevel.

The
Figure
8.3
shows
the
different
techniques
used
by
each
institute
for

VPD
 collection
 on
 the
 bevel
 and
 the
 resulting
 different
 analysis
 surface.

Therefore
 differences
 are
 also
 expected
 for
 the
 results
 of
 the
VPD
 bevel

analysis.
 Imec
analyses
 the
 same
area
 front
 side
and
back
 side
1
mm
and

the
bevel,
CEA-Leti
analyses
5
mm
front
side,
bevel
and
1
mm
back
side.
In

Fraunhofer
institute,
the
area
is
not
defined
yet
as
the
method
is
still
under

8.3
 Cross-Contamination
Check-Investigation
 109

Figure
8.4
 Comparison
LLDs
CEA
LETI
/
IMEC
for
VPD-ICPMS
Bevel

development.
The
monitoring
of
 the
bevel
 is
 another
promising
 analytical

technique
and
will
be
mandatory
for
the
safe
exchange
of
wafers,
as
with
this

control
the
probability
of
cross-contamination
is
further
reduced.

Comparison
of
the
LLDs
for
VPD-ICPMS
bevel
are
shown
in
Figure
8.4.

It
 shows
 that
 the
LLDs
 are
higher
 than
 those
of
 the
VPD-ICPMS
 surface

since
they
are
in
the
range
of
1E+8
and
1E+11
at/cm2.
However,
the
values

are
quite
similar
and
only
Ti
and
V
are
noticeable
again
for
imec
due
to
their

specific
ICPMS
detector
setting.

8.3
 Cross-Contamination
Check-Investigation

In
 the
 frame
 of
 the
 present
 study,
 one
 equipment
 of
 each
 institute
 was

selected
for
the
control
of
the
metallic
contamination.
Therefore,
each
insti
tute
chooses
the
tool
that
is
regularly
involved
in
the
production
memory
flow

and
most
critical
in
terms
of
contamination.

So
 called
 “witness
wafers”
were
 generated
 by
 each
 institute
with
 the

selected
 tool
by
handling
bare
Si
wafers
 through
 the
 tool.
 In
 this
way,
 the

wafers
 are
 subjected
 to
 the
 specific
 tool
 contamination
process.
The
 anal
ysis
 of
 the
 backside
 delivers
 information
 about
 the
 contamination
 by
 the

handling
system
(chuck
and
robot).
The
analysis
of
 the
front
side
provides

information
about
a
possible
contamination
of
the
chamber.
Afterwards,
each

institute
characterises
the
metallic
contamination
of
the
wafers
with
their
own

techniques
and
finally,
the
analysis
results
are
comprehensively
evaluated.

8.3.1
 Example
for
the
Comparison
of
the
Institutes

For
 the
 practical
 comparison
 of
 the
measurement,
 the
 results
 of
 the
 three

research
 institutes
 for
 a
 tool
 from
 Imec
 are
presented
 as
 an
 example.
The

tool
is
a
multi-module
macro
inspection,
metrology
and
review
tool
for
the

front
side
of
200
mm
and
300
mm
wafers
and
additionally
for
the
back
side

110
 Feasibility
of
Wafer
Exchange
for
European
Edge
AI
Pilot
Lines

Figure
8.5
 Comparison
TXRF
results
of
CEA
LETI
/
IMEC
for
IMEC
inspection
tool

and
edge
of
300
mm
wafers.
The
 tool
supports
 the
 inspection
of
patterned

and
unpatterned
wafers.

Figure
 8.5
 shows
 the
 comparison
 of
TXRF
measurement
 obtained
 by

CEA-Leti
and
imec
for
the
inspection
tool.
There
is
a
high
agreement
between

the
values,
demonstrating
the
comparability
of
the
measurement
results.
The

Ti
measured
by
imec
is
assumed
to
be
a
handling
contamination
during
the

measurement.
Nevertheless,
the
concentration
is
low.

Figure
8.6
shows
the
comparison
of
the
VPD-ICPMS
data
for
the
back

side
 surface
 of
wafers.
 For
 the
VPD-ICPMS,
 the
 results
 show
 noticeable

differences.
On
Figure
8.6,
only
detected
element
at
concentrations
higher

than
the
LLD
are
reported;
i.e.
if
an
element
is
not
detected
in
one
of
institute,

it
is
not
mentioned
in
the
graph.
The
first
conclusion
is
that
more
elements

are
detected
by
VPD-ICPMS
due
to
the
lower
LLDs.
All
the
concentrations

are
 lower
 than
 1E+11
 at/cm2
 and
 are
 in
 accordance
 with
 TXRF
 results.

The
second
conclusion
 is
 that
 the
 three
analysed
wafers
have
not
 the
same

contamination.
If
CEA-Leti
and
imec
found
Ga,
Ge
and
Sb,
Fraunhofer
did

not
detect
these
elements.
Imec
and
Fraunhofer
quantified
Al,
Fe,
Ti
and
W

whereas
CEA-Leti
did
not
find
these
elements.
The
analysed
wafers
are
not

twins
because
the
cross-contamination
process
do
not
allow
to
contaminate

each
wafers
at
 the
same
concentration.
Moreover,
some
wafers
were
more

handled
 and
 shipped
 than
 other
 and
 these
 differences
 impact
 the
metallic

contamination.

Figure
8.7
shows
the
results
obtained
on
the
bevel.
Contamination
levels

on
the
bevel
are
higher
than
those
measured
on
the
surface.
In
this
example,

results
obtained
by
CEA-Leti
and
imec
are
in
agreement
when
the
elements

are
detected
by
both
institutes.
Concentrations
measured
by
imec
are
almost

higher
 than
 those
 of
CEA-Leti,
 probably
 due
 to
 the
 different
 influencing

factors.
At
first,
collection
techniques
are
different
and
the
droplet
scanned

areas
 are
not
 the
 same.
Moreover,
 the
bevel
of
 each
wafers
was
probably

contaminated
by
the
handling
and
the
shipping.
That
is
why
concentrations

8.4
 Conclusiion
 111

Figure
 8.6
 Comparison
 VPD-ICPMS
 results
 of
 CEA
 LETI
 /
 IMEC
 /FhG
 for
 IMEC

inspection
tool

Figure
 8.7
 Comparison
 VPD-ICPMS
 bevel
 results
 of
 CEA
 LETI
 /
 IMEC
 for
 IMEC

inspection
tool

obtained
on
the
bevel
were
always
higher
than
those
obtained
on
the
surface.

The
study
of
the
bevel
is
very
challenging
and
these
results
show
the
metallic

contamination
due
 to
 the
process
 in
 the
selected
equipment,
but
also
 those

brought
by
the
handling
and
the
shipping.

8.4
 Conclusiion

This
 study
 confirms
 that
 the
 three
 different
 institutes
 are
 able
 to
 analyse

metallic
 contamination
 either
 by
TXRF
 or
VPD-ICPMS
with
 comparable

LLDs.
This
result
is
very
promising
for
the
exchange
of
wafers
in
the
future.

TXRF,
with
higher
LLDs,
did
not
show
metallic
contamination
above
1E+11

at/cm2.
On
the
other
side,
due
to
very
low
limits
of
detection,
VPD-ICPMS

allows
to
observe
different
concentrations
obtained
by
the
different
institutes.

Nevertheless,
these
concentrations
are
very
low.
The
cross-contamination
in
a

tool
do
not
allow
to
contaminate
wafers
at
the
same
level.
Hence
in
the
future,

in
 order
 to
 compare
 more
 reliably
 the
 capabilities
 of
 different
 institutes,

an
inter-laboratory
test
with
intentionally
standardised
contaminated
wafers

would
be
necessary.
Moreover,
all
the
measurements
were
done
on
“witness

wafers”
 and
 not
 on
 product-wafers.
 In
 the
 future,
 it
will
 be
 necessary
 to

develop
techniques
able
to
analyse
the
metallic
contamination
on
real
wafers

112
 Feasibility
of
Wafer
Exchange
for
European
Edge
AI
Pilot
Lines

during
their
flow.
In
this
way,
CEA-Leti
has
developed
a
new
system
allowing

the
metallic
contamination
control
of
the
bevel
of
product
wafers.
(Boulard,

et
al.,
2022)
(FR
Patentnr.
U.S.
Patent
No
20200203190
A1,
2020).

Although
 some
additional
 improvement
 is
 required
 to
create
a
 smooth

loop
between
 the
research
 institutes,
 this
work
makes
wafer
exchange
flow

much
easier
due
to
the
first
experiences
and
contribute
to
the
strengthening

of
the
collaboration
in
current
and
future
projects.
Moreover,
the
conclusion

of
this
study
broadens
the
capabilities
in
terms
of
tool,
process
and
expertise

access
for
potential
industrial
partners.
Thus,
an
important
milestone
has
been

reached
in
aligning
the
three
research
institutes
to
offer
advanced
AI
systems

with
novel
non-volatile
memory
components.

Acknowledgements

This
 study
 was
 fully
 financed
 by
 TEMPO
 project.
 The
 TEMPO
 project

has
 received
 funding
 from
 the
 Electronic
 Components
 and
 Systems
 for

European
Leadership
Joint
Undertaking
under
grant
agreement
No
826655.

This
 Joint
Undertaking
 receives
 support
 from
 the
European
Union’s
Hori
zon
2020
research
and
innovation
program
and
Belgium,
France,
Germany,

Switzerland,
The
Netherlands.

References

[1]
C.
Bigot,
A.
Danel,
S.
Thevenin
 (2005).
 Influence
of
Metal
Contam
ination
 in
 the
Measurement
of
p-Type
Cz
Silicon
Wafer
Lifetime
and

Impact
on
the
Oxide
Growth.
Solid
State
Phenomena
(Vols.
108-109),

S.
297–302
doi:10.4028/www.scientific.net/SSP.108-109.297

[2]
Y.
Borde,
A.
Danel,
A.
Roche,
A.
Grouillet,
M.
Veillerot
(2007).
Esti
mation
of
Detrimental
 Impact
of
New
Metal
Candidates
 in
Advanced

Microelectronics.
 Solid
 State
 Phenomena
 (Vol.
 134),
 S.
 247–250

doi:10.4028/www.scientific.net/SSP.134.247

[3]
F.
Boulard,
V.
Gros,
C.
Porzier,
L.
Brunet,
V.
Lapras,
F.
Fournel,
N.

Posseme
(21.
Mai
2022).
Bevel
contamination
management
in
3D
inte
gration
by
localized
SiO2
deposition.
SSRN
Journal
(SSRN
Electronic

Journal)

[4]
D.
Autillo,
et
al.
(June
2020).
FR
Patentnr.
U.S.
Patent
No
20200203190

A1

https://www.doi.org/10.4028/www.scientific.net/SSP.108-109.297
https://www.doi.org/10.4028/www.scientific.net/SSP.134.247

9

A
Framework
for
Integrating
Automated

Diagnosis
into
Simulation

David
Kaufmann
and
Franz
Wotawa

Graz
University
of
Technology,
Austria

Abstract

Automatically
detecting
and
locating
faults
in
systems
is
of
particular
interest

for
mitigating
undesired
effects
during
operation.
Many
diagnosis
approaches

have
been
proposed
including
model-based
diagnosis,
which
allows
to
derive

diagnoses
from
system
models
directly.
In
this
paper,
we
present
a
framework

bringing
together
simulation
models
with
diagnosis
allowing
for
evaluating

and
testing
diagnosis
models
close
to
its
real
world
application.
The
frame
work
makes
use
of
functional
mock-up
units
for
bringing
together
simulation

models
and
enables
their
integration
with
ordinary
programs
written
in
either

Python
or
Java.
We
present
the
integration
of
simulation
and
diagnosis
using

a
two-lamp
example
model.

Keywords:
model-based
diagnosis,
fault
detection,
fault
localization,
phys
ical
simulation.

9.1
 Introduction

To
keep
systems
operational,
we
need
to
carry
out
diagnoses
regularly.
Diag
nosis
includes
the
detection
of
failures,
the
localization
of
corresponding
root

causes,
and
repair.
We
carry
out
regular
maintenance
activities
that
include

diagnosis
and
predictions
regarding
the
remaining
lifetime
of
components
to

prevent
systems
 from
breaking
during
use.
However,
 there
 is
no
guarantee

113

DOI: 10.1201/9781003377382-9
This chapter has been made available under a CC BY-NC 4.0 license.

114
 A
Framework
for
Integrating
Automated
Diagnosis
into
Simulation

that
system
components
are
not
breaking
during
operation,
even
when
carry
ing
out
maintenance
as
requested.
In
some
cases,
it
is
sufficient
to
indicate

such
a
 failure,
 i.e.,
via
presenting
a
warning
or
error
message
and
passing

mitigation
measures
 to
someone
else.
Unfortunately,
 there
are
systems
 like

autonomous
systems
where
we
can
hardly
achieve
such
a
mitigation
process.

For
 example,
 in
 fully
 autonomous
driving,
 there
 is
no
driver
 anymore
 for

passing
 control.
Therefore,
 there
 is
 a
 need
 for
 coming
 up
with
 advanced

diagnosis
solutions
that
cover
detection,
localization,
and
repair.
A
practical

real
world
problem
demonstration
of
an
on-board
control
agent
was
validated

in
the
year
1999,
within
the
scope
of
Deep
Space
One,
a
space
exploration

mission,
carried
out
by
NASA.
Regarding
this,
the
authors
of
the
paper
[4]

describe
developed
methods
related
to
model-based
programming
principles,

including
the
area
of
model-based
diagnosis.
The
methods
were
applied
on

autonomous
systems,
designed
for
high
reliability,
operating
as
subject
of
a

spacecraft
system.

When
we
want
to
integrate
advanced
diagnosis
into
systems,
we
need
to

come
up
with
means
for
allowing
us
to
easily
couple
monitoring
with
diagno
sis.
As
stated
by
the
authors
in
[3],
the
coupling
enables
the
diagnosis
method

to
detect
and
localize
faults
based
on
observations,
obtained
by
monitoring
a

cyber-physical
system
 (CPS).
Furthermore,
we
 require
close
 integration
of

today’s
development
processes,
which
rely
on
system
simulation.
The
latter

aspect
is
of
uttermost
importance
for
showing
early
that
diagnosis
based
on

monitoring
can
improve
the
overall
behaviour
of
a
system
even
when
working

not
 as
 expected.
We
 contribute
 to
 this
 challenge
 and
present
 a
 framework

for
 integrating
different
 simulation
models
 and
diagnoses.
The
 framework

utilizes
combining
functional
mock-up
units
(FMUs)
that
may
originate
from

modeling
environments
like
OpenModelica1
with
ordinary
programming
lan
guages
like
Java
or
Python.
We
use
these
language
capabilities
to
integrate

diagnosis
 functionality.
The
architecture
of
our
 framework
 is
based
on
 the

client-server
pattern
and
implemented
using
Docker
containers.

Using
 our
 framework,
 we
 can
 easily
 add
 diagnoses
 into
 systems.
 In

addition,
we
can
use
this
framework
for
carrying
out
verification
and
valida
tion
of
the
system
functionality
enhanced
with
diagnosis
capabilities.
In
this

manuscript,
we
present
the
framework
and
show
the
integration
of
diagnosis.

For
 the
 latter
 purpose,
we
make
 use
 of
 a
 simple
 example.
We
will
make

the
framework
and
the
underlying
diagnosis
engine
available
for
free
and
as

open-source.
The
framework
contributes
to
research
area
of
Edge
Artificial

1see
https://openmodelica.org

https://www.openmodelica.org

S

B
 L1
 L2

Figure
9.1
 A
simple
electric
circuit
comprising
bulbs,
a
switch
and
a
battery.

9.2
 Model-based
Diagnosis
 115

Intelligence
because
it
enables
the
direct
use
of
diagnosis
functionality
that
is

based
on
Artificial
Intelligence
methodology
in
systems
without
the
necessity

for
communication
with
other
systems.

We
 structure
 the
 paper
 as
 follows.
 First,
 we
 discuss
 the
 foundations

behind
the
used
diagnosis
method,
i.e.,
model-based
diagnosis.
Afterwards,

we
describe
the
simulation
framework
that
is
based
functional
mock-up
units

using
a
small
example.
We
further
show
how
diagnosis
can
be
integrated
into

this
framework,
and
finally
we
conclude
the
paper.

9.2
 Model-based
Diagnosis

Diagnosis,
i.e.,
the
detection
of
failures
and
the
identification
of
faults,
have

been
of
interest
for
several
decades.
In
the
early
eighties
of
the
last
century,

Davis
 and
 colleagues
 [1][2]
 introduced
 the
 basic
 concepts
 behind
model-
based
 diagnosis.
The
 idea
 is
 to
 utilize
 a
model
 of
 the
 system
 directly
 for

detecting
and
 locating
 faults.
Reiter
 [5]
 formalized
 the
 idea
utilizing
first-
order
logic.
For
a
more
recent
paper
we
refer
to
Wotawa
and
Kaufmann
[8]

where
the
authors
introduced
how
advanced
reasoning
systems
can
be
used

for
computing
diagnosis.
For
recent
applications
of
diagnosis
in
the
context

of
CPS
have
a
look
at
[3][9][7][6].

In
the
following,
we
illustrate
the
basic
concepts
using
a
small
example

circuit
comprising
a
battery
B,
a
switch
S,
and
two
bulbs
L1,
L2.
The
bulbs

are
put
in
parallel
and
both
should
provide
light
when
the
switch
is
turned
on

and
the
battery
is
not
empty.
Otherwise,
both
bulbs
do
not
deliver
any
light.

We
depict
the
circuit
in
Figure
9.1.
If
we
know
that
the
switch
S
is
on,
and
the

battery
is
working
as
expected,
then
we
also
would
expect
both
bulbs
to
be

illuminated.
In
case
one
bulb
is
emitting
light
but
the
other
is
not,
we
would

immediately
to
derive
that
the
bulb
with
no
transmitting
light
is
broken.

116
 A
Framework
for
Integrating
Automated
Diagnosis
into
Simulation

To
 compute
diagnoses
 from
 system
models,
we
first
need
 to
 come
up

with
a
model
of
the
system
that
we
want
to
diagnose.
Such
models
comprise

components
 and
 their
 connections,
via
ports.
Hence,
 in
 the
 following,
we

discuss
the
component
models,
and
a
model
of
connections
separately.
For
the

electric
circuit,
we
simplify
modelling
by
only
considering
that
components

like
 batteries
 are
 providing
 electrical
 power,
 some
 are
 transferring
 power

like
switches,
and
others
are
consuming
power.
Furthermore,
we
utilize
first-
order
 logic
 for
 formalization
where
we
 follow
Prolog
 syntax2.
For
 all
 the

component
models
we
describe
how
values
are
computed
assuming
that
the

component
is
of
a
particular
type
and
that
it
is
working
as
expected.
For
the

type
we
use
a
predicate
type\2
and
for
stating
the
component
to
be
correct
a

predicate
nab\1.

Battery
A
component
X
that
is
a
battery
is
when
working
correctly
providing

a
nominal
power
at
its
output.

val(pow(X),nominal)
:- type(X,bat),
nab(X).

Switch
A
 component
X
 that
 is
 a
 switch
works
 as
 follows.
 If
 it
 is
on
 and

working
as
expected,
then
the
output
must
have
the
same
value
as
the

input
port
and
vice
versa.
If
it
is
off,
the
switch
is
not
transferring
any

power.

val(out_pow(X),V)
:- type(X,sw),
on(X),

val(in_pow(X),V),
nab(X).

val(in_pow(X),V)
:- type(X,sw),
on(X),

val(out_pow(X),V),
nab(X).

val(out_pow(X),zero)
:- type(X,sw),
off(X),
nab(X).

Lamp
A
 lamp
X
 is
on,
whenever
 there
 is
a
power
on
 its
 input.
 If
 it
emits

light,
then
there
must
be
power
on
its
input.
If
there
is
no
power
at
the

input
of
X,
then
the
light
must
be
off.

val(light(X),on)
:- type(X,lamp),
val(in_pow(X),

nominal),
nab(X).

val(in_pow(X),
nominal)
:- type(X,lamp),

val(light(X),on).

val(light(X),off)
:- type(X,
lamp),

val(in_pow(X),zero),
nab(X).

2We
 are
 using
 Prolog
 syntax
 because
 recent
 solvers
 like
 Clingo
 (see

https://potassco.org/clingo/)
are
relying
on
it.

https://www.potassco.org

9.2
 Model-based
Diagnosis
 117

For
completing
 the
model,
we
 introduce
connections
using
a
predicate

conn\2
 that
allows
 to
state
 two
ports
 to
be
connected.
The
behaviour
of
a

component
comprises
 the
 transfer
of
values
 in
both
directions,
and
 stating

that
it
is
impossible
to
have
different
values
at
a
connection.
The
following

rules
are
covering
this
behaviour:

val(X,V)
:- conn(X,Y),
val(Y,V).

val(Y,V)
:- conn(X,Y),
val(X,V).

:- val(X,V),
val(X,W),
not
V=W.

To
use
a
model
for
diagnosis
we
only
need
to
define
the
structure
of
the

system
making
use
of
the
component
models.
For
the
two
bulb
example,
we

define
a
battery,
a
switch,
and
 two
bulbs
 that
are
connected
accordingly
 to

Figure
9.1.

type(b,
bat).

type(s,
sw).

type(l1,
lamp).

type(l2,
lamp).

conn(in_pow(s),
pow(b)).

conn(out_pow(s),
in_pow(l1)).

conn(out_pow(s),
in_pow(l2)).

To
use
this
model
for
diagnosis,
we
further
need
observations.
We
might

state
that
the
switch
s
is
on,
bulb
l1
is
not
on
but
l2
is.
Again
we
can
make
use

of
Prolog
to
represent
this
knowledge
as
facts:

on(s).

val(light(l1),off).

val(light(l2),on).

When
using
a
diagnosis
engine
like
described
in
[8]
we
obtain
one
single

fault
diagnosis
{l1}.
But
how
is
this
working?
The
diagnosis
engine
makes

use
 of
 a
 simple
 mechanism.
 It
 searches
 for
 a
 truth
 setting
 to
 the
 nab\1

predicates,
such
that
the
model
together
with
these
assumptions
is
not
leading

to
a
contradiction.
When
assuming
l1
to
be
not
working,
the
fact
that
lamp

l2
is
on
can
be
derived.
However,
we
cannot
derive
anything
else
that
would

lead
to
a
contradiction.

118
 A
Framework
for
Integrating
Automated
Diagnosis
into
Simulation

Note
 that
 this
 simple
model
 is
 also
working
 in
 other
more
 interesting

cases.
Let
us
assume
 that
 the
switch
 is
on
but
no
 light
 is
on.
For
 this
case,

the
diagnosis
engine
delivers
three
diagnoses:
{b},
{s},
and
{l1,
l2}
stating

the
either
 the
battery
 is
empty,
 the
switch
 is
broken,
or
both
 lamps
are
not

working
at
the
same
time.
Another
interesting
case
that
might
occur
is
setting

the
switch
to
off,
put
still
one
lamp,
i.e.,
l1
is
on.
In
this
case
we
only
obtain

a
 double
 fault
 diagnosis
 {s,
l2}
 stating
 that
 the
 switch
 is
 not
working
 as

expected
and
lamp
l2
as
well.

9.3
 Simulation
and
Diagnosis
Framework

In
 the
 following
 section,
 we
 introduce
 a
 framework
 making
 use
 of
 two

collaborating
 tools,
 comprising
 a
 simulation
 environment
 for
 function

mock-up
 unit
 (FMU)3
 models
 and
 a
 diagnose
 application
 based
 on
 the

theorem
solver
Clingo4.
Figure
9.2
gives
a
brief
overview
of
the
framework

and
 the
 operating
 principles.
 The
 FMU
 simulation
 tool
 server
 is
 utilized

to
 run
 a
 CPS
 model
 within
 the
 given
 simulation
 environment,
 whereas

the
 client
 enables
 to
 control
 the
 simulation.
 The
 separation
 enables
 to

execute
other
applications,
tools
and
methods
after
each
simulation
time
step

update,
as
 the
ASP
Diagnose
Tool
(see
Section
9.3.2).
The
mentioned
 tool

receives
the
observations
provided
by
the
simulation
framework
and
a
settings

configuration
 to
 compute
 the
 diagnose
 of
 a
 system,
 based
 on
 an
 abstract

model,
developed
with
the
declarative
programming
language
ASP
(Answer

Set
Programming).
Further,
the
diagnose
may
be
used
to
control
the
inputs

and
parameter
to
restore
a
safe
operating
system
or
to
bring
the
system
in
a

state
to
prevent
harm
to
the
system
or
environment.

9.3.1
 FMU
Simulation
Tool

The
developed
application
provides
an
entire
environment
to
load,
configure,

run,
 observe
 and
 control
 simulations
 related
 to
 CPS
 models.
 In
 general,

the
application
is
set
up
as
a
client-server
system
to
distribute
the
structure

between
 the
 provider
 of
 a
 service,
 the
 server,
 and
 the
 service
 requester,

the
 client.
The
 service
 executed
 on
 the
 server
 is
 defined
 as
 the
 simulator

environment
 providing
 the
 options
 to
 observe
 and
 control
 the
 simulation

by
 client
 requests
 during
 run-time.
 The
 reason
 of
 using
 a
 client-server

3see
https://fmi-standard.org

4see
https://potassco.org/clingo/

https://www.potassco.org
https://www.fmi-standard.org

9.3
 Simulation
and
Diagnosis
Framework
 119

Figure
9.2
 Illustration
of
 the
simulation
and
diagnose
environment
as
well
as
 the
overall

operating
principles.
The
 framework
of
 the
FMU
Simulation
Tool
provides
an
 interface
 to

enable
the
integration
of
a
diagnose
tool
and/or
other
methods.
The
models
can
be
substituted

by
any
others
in
the
provided
framework.

system
is
to
detach
the
simulation
environment
and
the
observation/control

process.
The
separation
enables
 the
user
 to
utilize
 individual
programming

environments/languages
as
client,
whereas
 the
server
works
 independent
 to

the
selected
client
environment,
receiving
and
sending
the
control
commands

and
 simulation
observations
via
 a
REST
 (Representational
State
Transfer)

application
programming
 interface.
 In
order
 to
 run
 a
 simulation
of
 a
CPS

model
 with
 the
 described
 application,
 a
 fundamental
 requirement
 is
 to

generate
 a
 standardized
 FMU
 from
 the
 given
 model.
 Common
 modeling

software
as
OpenModelica
or
Matlab5
 have
a
FMU
generation
tool
already

implemented,
 but
 there
 are
 also
 other
 applications,
 as
 e.g.
 UniFMU
 6,

which
 are
 capable
 of
 generating
 a
 FMU
 from
 different
 language
 source

code
(Python,
Java
or
C/C++).
A
FMU
enables
to
use
a
general
simulation

environment
 for
 all
 kind
 of
 models,
 although
 they
 are
 build
 on
 different

sources.
The
simulation
environment
is
developed
to
execute
a
step
by
step

5see
https://de.mathworks.com/products/matlab.html

6see
https://github.com/INTO-CPS-Association/unifmu

https://www.github.com
https://www.de.mathworks.com

120
 A
Framework
for
Integrating
Automated
Diagnosis
into
Simulation

(for
a
given
time
step)
simulation.
To
enable
that
feature,
it
is
essential
that

the
FMU
is
generated
as
a
co-simulation
model.
Within
a
co-simulation
setup,

the
numerical
solver
is
embedded
and
supplied
by
the
generated
FMU.
By
the

provided
interface
methods,
the
FMU
can
be
controlled
by
setting
the
inputs

and
 parameter,
 computing
 the
 next
 simulation
 time
 step,
 and
 reading
 the

resulting
observations.
The
given
setup,
enables
to
execute
tools
and
methods

while
the
simulation
is
paused
after
a
simulated
time
step.

9.3.2
 ASP
Diagnose
Tool

To
 enable
 diagnoses
 based
 on
 observations
 of
 a
 given
 CPS
 model,

we
 developed
 a
 diagnose
 tool.
 This
 tool
 is
 built
 up
 on
 the
 theorem

solver
 Clingo
 and
 makes
 use
 of
 the
 provided
 methods
 within
 a
 Python

environment.
 In
 addition
 the
 tool
 provides
 extended
 functionalities,
 e.g.

including
observations
as
simulation
outputs,
 inputs,
states,
modes
or
 time

and
 applying
 optional
 settings
 as
 limiting
 the
 number
 of
 required
 answer

sets,
setting
 the
maximum
fault
size
search
space
for
abnormal
component

behaviour,
considering
additional
fault
modes
and
adding
other
constraints
to

be
considered.

The
tool
is
designed
to
iterate
through
each
fault
size
in
ascending
order,

whereas
fault
size
zero
indicates
a
normal
operating
system
without
detecting

any
 abnormal
 behaviour
 in
 the
 diagnosed
 components.
 The
 procedure
 is

repeated
 for
 each
 fault
 size,
 except
when
 the
model
 is
 satisfied
 for
 fault

size
zero,
what
 is
 interpreted
as
no
abnormal
component
 is
present
 for
 the

given
observation.
The
detailed
 theorem
solver
 implementation
structure
 is

shown
in
algorithm
1,
which
was
initially
introduced
and
applied
by
Wotawa,

Nica
and
Kaufmann
 [3].
 In
 the
 following,
we
briefly
describe
 the
setup
of

the
stated
algorithm.
First
the
input
model
is
initiated,
defined
as
an
abstract

model
(M),
comprising
the
system
description
(SD),
observations
(Obs)
and

additional
fault
modes
(FM)
to
guide
the
diagnosis
search.
We
start
with
an

empty
diagnosis
set
(DS)
and
compute
diagnosis
of
a
certain
size,
iterating

from
0
 to
n.
Line
4
shows
how
 the
 limitation
of
 the
number
 for
abnormal

predicates
 is
 applied
 to
 the
model
 (Mf
),
 before
 the
 solver
 is
 called
 (line

5).
A
 specified
answer
 set
 is
 returned
and
filtered
 for
abnormal
predicates

(S)
only.
To
prevent
 the
multiple
occurrence
of
abnormal
elements
 (C) in

the
iterations,
the
corresponding
integrity
constraints
are
added
to
the
model

(Mf
)
as
stated
 in
 line
12.
 In
 relation
 to
 the
given
example
 in
Section
9.2,

a
 integrity
constraint
at
fault
size
1
could
be
stated
as
:- ab(l1).
for
a

detected
abnormal
behaviour
of
the
component
lamp
1.

9.4
 Experiment
 121

Besides
 the
main
diagnose
algorithm,
 the
 tool
enables
different
output

options
to
simplify
the
evaluation
of
the
received
diagnose.
Thus,
the
received

data
 can
 be
 exported
 in
 a
 JSON
 file,
 CSV
 file
 or
 directly
 printed
 in
 the

terminal
 during
 run-time.
 The
 output
 results
 are
 the
 detailed
 computed

diagnose,
the
total
number
of
found
diagnosis
for
each
fault
size,
an
indicator

for
strong
faults
and
 the
diagnose
 time
separated
for
each
fault
size
and
 in

total.
As
input,
the
tool
requires
the
Prolog
model,
representing
the
CPS
as

abstract
model
(see
Section
9.2),
and
 the
related
observation/constraint
file

with
all
necessary
input
information
to
execute
the
diagnose
process.

In
 reference
 to
 Figure
 9.2,
we
 show
 the
 simulation
 tool
 update
 loop,

where
an
update
 is
 triggered
and
 the
observations
are
received.
Further
 the

observations
are
passed
by
the
method
interface
as
input
to
the
implemented

diagnose
tool.
Before
calling
the
diagnose,
some
configurations
are
specified,

as
the
abstract
model,
the
maximum
number
of
computing
answer
sets,
the

maximum
 fault
 size
of
 interest
 and
 the
observations,
which
 are
generated

based
on
the
simulation
output
information.
In
addition,
the
diagnose
output

format,
e.g.,
JSON
or
CSV
can
be
selected.
Last,
 the
ASP
 theorem
solver

with
the
given
model,
configuration
and
simulation
observations
is
executed.

After
receiving
the
diagnose
result
of
the
current
time
frame,
it
is
stored
in

the
defined
 format
 structure
and
 the
 simulation
 is
continued
with
 the
next

time
step
in
the
loop.

9.4
 Experiment

To
 show
 the
 applicability
 of
 the
 framework,
 we
 make
 use
 of
 the

two-lamps-model
 concept
 as
 shown
 in
 Figure
 9.1.
 For
 the
 simulation,
 a

model
of
the
two-lamps-model
(see
Listing
1)
is
generated
in
OpenModelica

comprising
a
battery
 (5.0V
),
a
closing
switch
and
 two
 light
bulbs
 (100Ω).

Besides
the
connection
of
each
component,
the
model
also
describes
inputs,

which
can
be
set
during
the
simulation.
These
inputs
are
covering
the
fault

type
of
each
component
and
the
operational
switch
logic.
To
give
an
example

of
 the
component
programming,
 the
switch
model
 is
shown
 in
more
detail

at
Listing
2.
Besides
the
component
mode,
the
equations
also
represent
the

behaviour
based
on
different
 fault
states,
e.g.
a
broken
switch,
 resulting
 in

an
 infinite
 high
 internal
 resistor
 value
 equal
 to
 an
 open
 electrical
 circuit.

An
equivalent
 fault
 state
 is
 implemented
 for
each
component
as
 shown
 in

Table
9.1.

Moreover
 the
 OpenModelica
 model
 is
 converted
 into
 a
 co-simulation

FMU,
which
enables
to
use
the
model
in
the
described
FMU
simulation
tool.

model
 Two_Lamp_Circuit

Physica lFaultModel ing
.PFM_Bulb
 bulb1
(
r
 =
 100 .0)
;

Physica lFaultModel ing
.PFM_Bulb
 bulb2
(
r
 =
 100 .0)
;

Physica lFaultModel ing
. PFM_Switch
 sw ;

Physica lFaultModel ing
.PFM_Ground
 gnd
;

Physica lFaultModel ing
. PFM_Battery
 bat (vn
 =
 5 . 0)
;

equat ion

connect
(gnd
. p
,
 bat
.m)
;

connect
(
bat
. p
,
 sw .
p)
;

connect
(sw
.m,
 bulb1
.
p)
;

connect
(sw
.m,
 bulb2
.
p)
;

connect
(
bulb1
.m,
 gnd
. p)
;

connect (bulb2 .m,
 gnd . p) ;

end
 Two_Lamp_Circuit
;

model
 Two_Lamp_Circuit_Testbench

Physica lFaultModel ing
.
Two_Lamp_Circuit
 sut
;

input
 FaultType
 bat_state
(
s t a r t=FaultType
.
ok)
;

input
 OperationalMode
 switch_mode (
s t a r t=OperationalMode
.
c l o s e
)
;

input
 FaultType
 switch_state
(
s t a r t=FaultType
.
ok)
;

input
 FaultType
 bulb1_state
(
s t a r t=FaultType
.
ok)
;

input
 FaultType
 bulb2_state
(
s t a r t=FaultType
.
ok)
;

equat ion

sut
. sw
. mode
 =
 switch_mode
;

sut
.
bat
.
s t a t e
 =
 bat_state
;

sut
. sw .
s t a t e
 =
 switch_state
;

sut
.
bulb1
.
s t a t e
 =
 bulb1_state
;

sut
.
bulb2
.
s t a t e
 =
 bulb2_state
;

end
 Two_Lamp_Circuit_Testbench
;

Listing
 1
 OpenModelica
 model
 of
 a
 two-lamp
 electrical
 circuit
 with
 fault
 injection

capability
to
each
used
component.
The
component
connections
are
specified
to
describe
the

same
electrical
circuit
as
given
in
Figure
9.1.

122
 A
Framework
for
Integrating
Automated
Diagnosis
into
Simulation

Algorithm
1
ASPDiag(SD,Obs, FM, n)

For
a
more
detailed
description
of
the
algorithm
see
[3].

Input:
An
ASP
diagnosis
model
M ,
and
the
desired
cardinality
n

Output:
All
minimal
diagnoses
up
to
n

1:
 Let
DS
be
{}
2:
 Let
Mf
 be
M .

3:
 for
i
= 0
to
n do

4:
 Mf

j =
Mf
 ∪ {
:- not
numABs(i).
}()
5:
 S
=
F
 ASPSolver(Mf

j)
6:
 if
i is
0
and
S
is
{{}}
then

7:
 return
 S

8:
 end
if

9:
 Let
DS
be
DS ∪
S.

10:
 for
Δ
in
S
do

11:
 Let
C
=
AB(Δ)
be
the
set
{c1, . . . , ci}
12:
 Mf
 =
Mf
 ∪ {
:- ab(c1),
 . . .,
ab(ci).
}.

13:
 end
for

14:
 end
for

15:
 return
 DS

9.4
 Experiment
 123

model
 PFM_Switch

extends
 Physica lFaultModel ing
.PFM_Component ;

Physica lFaultModel ing
.
OperationalMode
 mode(
s t a r t=OperationalMode
.
open) ;

Modelica
.
Units
.
SI
.
Res i s tance
 r_int
;

equat ion

v
 =
 r_int
 *
 i
;

i f
 s t a t e
 ==
 FaultType
.
ok
 then

i f
 mode
 ==
 OperationalMode
.
open
 then

r_int
 =
 1e9
;

e l s e

r_int
 =
 1e
- 9 ;

end
 i f
;

e l s e i f
 s t a t e
 ==
 FaultType
.
broken
 then

r_int
 =
 1e9
;

e l s e

r_int
 =
 1e
- 9 ;

end
 i f
;

end
 PFM_Switch ;

Listing
 2
 OpenModelica
 model
 of
 a
 switch
 component
 including
 a
 mode
 {open,

close}
and
fault
state
{ok,
 broken,
 short}
implementation
logic.

Table
9.1
 CPS
Model
component
state
description
for
the
light
bulb,
switch
and
battery.
All

used
states,
including
fault
states
of
the
components
are
shown.

Component
 State
 Description

light
bulb
(bulb),

switch
(sw)

ok

broken

short

ordinary
behaviour

open
connection
in
eletrical
circuit

short
in
the
electrical
circuit

battery
(bat)

ok

empty

ordinary
behaviour

empty
battery
fault

In
order
to
simulate
the
model
behaviour
in
detail,
the
update
time
step
is
set

to
0.01
seconds.
In
addition,
the
fault
injection
during
run-time
is
configured

to
trigger
a
single
light
bulb
fault
at
0.2
seconds
and
a
switch
fault
after
0.3

seconds,
which
is
described
in
detail
at
the
simulation
part
of
Figure
9.4.

For
the
diagnose
part,
we
make
use
of
the
described
abstract
model
of
the

electrical
two-lamps
circuit
(see
Section
9.2).
The
overall
framework
is
built

up
in
a
way,
that
a
diagnose
is
computed
after
each
simulated
time
step
and
is

based
on
the
actual
observations
(simulation
outputs,
parameter
and
inputs).

The
use
of
a
co-simulation
FMU,
allows
a
 step-by-step
 simulation,
which

enables
to
pause
the
simulation
during
the
diagnose
process
and
continuing

afterwards.
Therefore,
the
diagnose
time
effort
has
no
impact
on
the
overall

simulation
results.

Figure
9.3
shows
the
observed
signals
for
the
current
flow
in
the
battery,

light
bulb
1
and
2
as
well
as
the
actual
switch
mode.
Further
the
injected
faults

are
highlighted
at
the
correlated
time
point.
In
Figure
9.4
a
table
represents
the

observations
for
the
three
interesting
time
sections,
as
the
normal
behaviour,

a
broken
light
bulb
and
a
broken
switch.
After
reaching
simulation
time
0.05

124
 A
Framework
for
Integrating
Automated
Diagnosis
into
Simulation

Figure
9.3
 Simulation
showing
the
measured
signal
output
of
the
two
bulbs,
switch
and
the

battery.
For
this
example
a
fault
injection
(broken)
in
bulb
1
after
0.2
seconds
(red
indicator)

and
a
fault
injection
(broken)
to
the
switch
after
0.3
seconds
(orange
indicator)
is
initiated.

seconds,
the
switch
mode
is
changed
from
open
to
closed
and
the
model

shows
 the
expected
ordinary
behaviour
without
any
abnormal
components.

Both
light
bulbs
are
operating
at
an
expected
current
consumption
of
0.05
A.

These
observations
are
translated
to
a
readable
input
format
for
the
diagnose

tool,
 which
 is
 shown
 in
 the
 corresponding
 status
 row
 "Observation"
 (see

Figure
9.4).
In
regards
 to
 the
abstract
model
and
 the
observation
 input,
 the

diagnose
tool
computed
a
satisfied
model
at
fault
size
zero,
which
concludes

an
expected
ordinary
behaviour
of
all
considered
components.

The
 time
 section
 at
 0.2
 seconds
 shows
 the
 behaviour
 with
 a
 broken

light
 bulb.
Thus
 the
 current
 consumption
 of
 bulb
 1
 immediately
 drops
 to

0.0
A
and
 the
diagnose
observation
changes
 from
mode
on
 to
off.
Since

the
main
power
switch
 is
still
closed
and
bulb
2
 is
 in
active
mode
on,
 the

diagnose
model
 concludes
 component
 bulb
 1
 as
 abnormal
 ab(l1).
 The

next
investigated
fault
(broken)
is
injected
to
the
closed
switch.
Since
the

power
 supply
 for
 both
 light
 bulbs
 is
 not
 given,
 the
 current
 consumption

drops
 to
 0.0
A.
The
 diagnose
model
 concludes
 as
 expected
 an
 abnormal

switch
 (ab(s))
 or
 battery
 (ab(b))
 based
 on
 the
 given
 observations
 for

single
 faults.
Under
consideration
of
double
 faults,
 the
computed
diagnose

9.5
 Conclusion
 125

Figure
9.4
 Simulation
and
diagnose
output
results
based
on
the
electrical
two-lamps
circuit

with
a
broken
bulb
after
0.2
seconds
and
a
broken
switch
at
0.3
seconds.
The
upper
 tables

illustrate
the
simulation
input/output
signals,
which
are
used
as
observation
for
the
diagnose

(lower
tables)
part.
Based
on
the
given
observations
for
the
three
selected
time
steps,
different

diagnose
results
are
obtained.

shows
 a
 combination
 of
 an
 abnormal
 behaviour
 of
 light
 bulb
 1
 and
 bulb

2 ({ab(l1),
 ab(l2)}),
which
 is
also
a
possible
solution
for
 the
given

observation.

9.5
 Conclusion

In
 this
paper,
we
have
 shown
how
 to
use
 an
 automated
diagnosis
method

within
a
simulation
framework
for
a
CPS
(cyber-physical
system).
For
 this

purpose
we
 introduced
 the
 foundations
 behind
 the
model-based
 diagnosis

method
based
on
a
simple
electric
circuit
model
comprising
two
light
bulbs,

a
 switch
 and
 battery.
 Next
 we
 describe
 a
 framework
 for
 simulating
 the

developed
CPS
model
with
the
ability
of
fault
injection
during
run-time.
In

order
 to
run
 the
model
 in
 the
given
framework,
 it
 is
essential
 to
generate
a

functional
mock-up
unit
(FMU)
based
on
the
developed
electrical
two
lamp

circuit
model.
By
 providing
 the
 FMU
 in
 co-simulation
 configuration,
 the

simulation
can
run
in
a
step-by-step
mode
(time
steps),
which
enables
to
call

other
functions,
as
for
example
the
diagnose
method,
while
the
simulation
is

paused
and
continued
with
the
next
time
step.

126
 A
Framework
for
Integrating
Automated
Diagnosis
into
Simulation

Besides
 the
 physical
 electrical
 circuit
 model,
 an
 abstract
 model
 for

diagnosis
is
developed
in
the
declarative
programming
language
Prolog.
For

computing
 the
 diagnose
 based
 on
 observations
 of
 the
 model
 simulation,

we
 introduce
 a
 tool
 which
 uses
 the
 theorem
 solver
 Clingo
 and
 offers

additional
productive
options.
The
tool
is
developed
to
automate
the
process

of
searching
for
abnormal
components
at
each
fault
size
(in
ascending
order).

To
prevent
multiple
occurrence
of
abnormal
components
in
higher
fault
sizes,

the
derived
results
are
continuously
added
as
constraints
to
the
model.

In
order
to
demonstrate
the
concept
of
the
simulation
framework
with
the

automated
diagnose
tool,
we
executed
an
experiment
based
on
the
described

electrical
 two-lamps
 circuit
model
with
 the
 capability
of
 fault
 injection
 to

the
light
bulbs
and
switch.
After
each
time
step
of
simulation,
the
received

observations
are
forwarded
as
input
to
the
diagnose
tool.
The
diagnose
tool

enables
to
detect
the
injected
faults
in
a
fast
and
accurate
way,
as
a
single
bulb

fault
or
even
the
more
interesting
case,
when
a
switch
erroneously
indicates

a
closed
position
although
both
light
bulbs
are
powered
off.
In
this
case,
we

obtain
a
single
fault
for
an
abnormal
switch
or
battery
behaviour,
and
a
double

fault
stating
an
abnormal
behaviour
for
both
light
bulbs
in
combination.

For
the
purpose
of
deploying
the
diagnose
tool
on
a
system
applied
under

real
environmental
conditions,
validation
and
verification
 is
a
 fundamental

process.
Thus
we
make
use
of
a
simulated
environment
framework,
enabling

a
high
test
case
coverage
of
scenarios
with
abnormal
component
behaviour
of

the
system
under
test.
In
addition,
the
required
time
to
conclude
a
diagnose,

may
also
lead
to
issues
and
need
to
be
considered
in
the
evaluation.
Future

research
 includes
 investigating
more
 complex
CPSs
by
making
use
of
 the

discussed
simulation
framework
in
combination
with
the
diagnose
tool
and

further
development
of
both
tools.

Acknowledgments

The
research
was
supported
by
ECSEL
JU
under
the
project
H2020
826060

AI4DI
- Artificial
Intelligence
for
Digitising
Industry.
AI4DI
is
funded
by
the

Austrian
Federal
Ministry
of
Transport,
Innovation
and
Technology
(BMVIT)

under
the
program
"ICT
of
the
Future"
between
May
2019
and
April
2022.

More
 information
 can
 be
 retrieved
 from
 https://iktderzukunft.at/en/

.

https://www.iktderzukunft.at
https://www.iktderzukunft.at

References
 127

References

[1]
R.
Davis,
H.
Shrobe,
W.
Hamscher,
K.
Wieckert,
M.
Shirley,
and
S.
Polit.

Diagnosis
based
on
structure
and
function.
In
Proceedings
AAAI,
pages

137–142,
Pittsburgh,
August
1982.
AAAI
Press.

[2]
R.
Davis.
Diagnostic
reasoning
based
on
structure
and
behavior.
Artificial

Intelligence,
24:347–410,
1984.

[3]
D.
Kaufmann,
 I.
Nica,
and
F.
Wotawa.
 Intelligent
agents
diagnostics

enhancing
cyber-physical
systems
with
self-diagnostic
capabilities.
Adv.

Intell.
Syst.,
3(5):2000218,
2021.

[4]
N.
Muscettola,
P.
Pandurang
Nayak,
B.
Pell,
and
B.
C.
Williams.
Remote

agent:
 to
 boldly
 go
 where
 no
 ai
 system
 has
 gone
 before.
 Artificial

Intelligence,
103(1):5–47,
1998.
Artificial
Intelligence
40
years
later.

[5]
R.
Reiter.
A
 theory
of
diagnosis
 from
first
principles.
Artificial
 Intelli
gence,
32(1):57–95,
1987.

[6]
F.
 Wotawa.
 Reasoning
 from
 first
 principles
 for
 self-adaptive
 and

autonomous
systems.
In
E.
Lughofer
and
M.
Sayed-Mouchaweh,
editors,

Predictive
Maintenance
in
Dynamic
Systems
–
Advanced
Methods,
Deci
sion
Support
Tools
and
Real-World
Applications.
Springer,
2019.

[7]
F.

Wotawa.
 Using
 model-based
 reasoning
 for
 self-adaptive
 control
 of

smart
battery
systems.
In
Moamar
Sayed-Mouchaweh,
editor,
Artificial

Intelligence
 Techniques
 for
 a
 Scalable
Energy
 Transition
 –
Advanced

Methods,
 Digital
 Technologies,
 Decision
 Support
 Tools,
 and
 Applica
tions.
Springer,
2020.

[8]
F.
Wotawa
and
D.
Kaufmann.
Model-based
reasoning
using
answer
set

programming.
Applied
Intelligence,
2022.

[9]
F.

Wotawa,
 O.
 A.
 Tazl,
 and
 D.
 Kaufmann.
 Automated
 diagnosis
 of

cyber-physical
systems.
In
IEA/AIE
(2),
volume
12799
of
Lecture
Notes

in
Computer
Science,
pages
441–452.
Springer,
2021.

https://taylorandfrancis.com

10

Deploying
a
Convolutional
Neural
Network

on
Edge
MCU
and
Neuromorphic
Hardware

Platforms

Simon
Narduzzi1,
Dorvan
Favre1,2,
Nuria
Pazos
Escudero2

and
L.
Andrea
Dunbar1

1CSEM,
Switzerland

2HE-Arc,
Switzerland

Abstract

The
rapid
development
of
embedded
technologies
in
recent
decades
has
led

to
 the
advent
of
dedicated
 inference
platforms
for
deep
 learning.
However,

unlike
 development
 libraries
 for
 the
 algorithms,
 hardware
 deployment
 is

highly
fragmented
in
both
technology,
tools,
and
usability.
Moreover,
emerg
ing
paradigms
such
as
spiking
neural
networks
do
not
use
the
same
prediction

process,
making
 the
comparison
between
platforms
difficult.
 In
 this
paper,

we
 deploy
 a
 convolutional
 neural
 network
 model
 on
 different
 platforms

comprising
microcontrollers
with
and
without
deep
learning
accelerators
and

an
event-based
accelerator
and
compare
their
performance.
We
also
report
the

perceived
effort
of
deployment
for
each
platform.

Keywords:
neuromorphic
computing,
IoT,
kendryte,
DynapCNN,
STM32,

performance,
comparison,
benchmark.

10.1
 Introduction

Edge
 computing
 is
 a
 key
 tool
 in
 harnessing
 the
 possibilities
 of
 artificial

intelligence.
Some
advantages
of
edge
over
cloud
processing
are
low
latency,

allowing
real-time
application
and
connectivity
 independence,
 i.e.,
no
need

129

DOI: 10.1201/9781003377382-10
This chapter has been made available under a CC BY-NC 4.0 license.

130
 Deploying
a
Convolutional
Neural
Network
on
Edge
MCU

of
 infrastructure
 and
no
 transmission
of
 sensitive
data,
 allowing
 improved

security
 and
 privacy-preserving
 applications.
 However,
 perhaps
 the
 most

important
 and
 as
 yet
 untapped
 potential
 of
 edge
 computing
 is
 in
 the
 low

power
possibilities.
Low
power
allows
always-on
IoT
devices
for
seamlessly

integrated
intelligent
systems.
Creating
edge-based
IoT
devices
often
requires

limited
hardware
resources,
both
in
terms
of
power
and
on-device
memory.

Today’s
intelligence
is
mainly
based
on
Deep
Learning
(DL)
networks
which

are
power
and
memory
hungry.
This
conflict
has
resulted
in
several
emerging

technologies
and
platforms
to
perform
efficient
inference
at
the
edge.

Established
 companies
 have
 both
 targeted
 the
 IoT
 device
 by
 creating

ultra-low-power
processors
 (Intel
Loihi,
STM32
Cortex-M4),
but
 there
are

also
several
other
innovative
platforms
such
as
DynapCNN[1]
and
Kendryte

K210[2]
 specialized
 for
 deep
 neural
 network
 inference
 with
 a
 very
 little

power
budget.
The
specialized
nature
and
variety
of
products
and
platforms

require
 platform-specific
 software
 tools,
 making
 the
 deployment
 of
 one

model
on
several
platforms
cumbersome
and
creating
a
barrier
to
technology

adoption.
Moreover,
 the
 lack
of
hardware
standardization
coupled
with
 the

necessary
customization
of
 the
software
makes
 it
difficult
 to
compare,
and

thus
choose,
the
best
technology.

To
 remove
 this
 barrier,
 it
 is
 essential
 to
 facilitate
 access
 to
 platforms

to
non-hardware
experts.
Indeed,
 the
success
of
DL
 is
essentially
 linked
 to

the
acceleration
provided
by
graphical
processing
units
 (GPUs).
Currently,

only
a
very
small
proportion
of
users
have
mastered
the
CUDA
programming

language
used
by
the
majority
of
GPUs.
In
most
DL
libraries,
mobilization

of
the
necessary
resources
can
be
called
in
a
single
command
line,
without

the
user
having
to
understand
the
technology
behind
it.
This
kind
of
single

instruction
would
empower
the
data
scientists
in
the
porting
to
edge
devices.

In
 this
short
paper,
we
give
a
brief
summary
of
works
 that
address
 the

challenges
of
implementing
DL
on
different
hardware
platforms.
Initially,
we

present
our
results
on
a
basic
neural
network
deployment
on
edge
devices,
and

then
we
compare
the
performance
of
3
selected
devices.
Finally,
we
describe

the
lessons
learned
and
present
solutions
to
facilitate
the
deployment
of
these

models
in
the
future.

10.2
 Related
Work

Benchmarking
 low-resource
platforms
 is
 a
necessary
process
 to
 select
 the

best
platforms
 to
embed
algorithms.
It
 is
a
 tricky
procedure,
as
 the
perfor
mance
of
a
platform
depends
on
several
aspects:
the
available
memory
and

10.3
 Methods
 131

processing
units,
 the
 technology
of
 the
hardware,
and
 the
 frameworks
and

tools
used
during
the
deployment
of
the
models
to
benchmark.
To
harmonize

the
performance
assessment,
benchmarking
suites
such
as
TinyMLPerf
 [3]

have
been
created.
Recently,
a
benchmarking
suite
has
been
developed
 for

event-based
neuromorphic
hardware
[4].
However,
both
these
solutions
still

need
manual
 adaptation
 of
 the
 code
 to
 run
 on
 new
 platforms.
 While
 the

benchmarking
gives
good
 insights
about
which
and
why
 to
select
a
certain

platform.
 It
 still
 remains
 the
 question
 of
 how
 to
 use
 the
 benchmarking

tools
 itself.
Each
platform
comes
with
 its
own
SDK,
conversion
 tools,
and

constraint
of
utilization,
which
in
turn
limits
the
possibility
of
comparing
the

platforms
between
them.

Today,
many
benchmarks
are
therefore
performed
on
just
a
few
hardware

platforms
 and
 comparing
 only
 a
 single
 use-case,
 as
 alternatives
 are
more

cumbersome.
Furthermore,
it
is
easier
to
benchmark
and
compare
platforms

from
 the
same
constructor,
as
 the
deployment
pipelines
are
usually
similar

between
devices.
In
this
regard,
standard
architectures
LeNet-5
and
ResNet
20
have
been
benchmarked
on
a
few
STM32
boards
[5].
Machine
 learning

algorithms
have
also
been
compared
on
Cortex-M
processors
[6][7].
Some

efforts
of
cross-constructor
benchmarking
have
also
been
made.
For
example,

a
recent
work
deployed
a
gesture
recognition
and
wake-up
words
application

on
 an
 Arduino
 Nano
 BLE
 and
 a
 STM32
 NUCLEO-F401RE
 [8]
 using
 a

convolutional
neural
network.

While
 the
 above
 research
 focuses
 on
 the
 established
 STM32
 Cortex-
M
 based
 MCUs,
 some
 emerging
 processors
 are
 also
 explored
 [9],
 but

the
 research
 in
 this
 domain
 remains
 scarce.
 Furthermore,
 the
 deployment

pipelines
are
not
documented,
which
limits
the
reproducibility
of
the
results.

In
 our
 research,
 we
 deploy
 a
 single
 neural
 network
 on
 three
 different

platforms
and
observe
 their
performance.
We
also
highlight
 the
difference

between
 the
 deployment
 pipelines
 of
 each
 constructor,
 and
we
 perform
 a

qualitative
study
of
the
easiness
of
deployment
on
each
system.

10.3
 Methods

In
this
section,
we
present
the
selected
task
and
associated
experimental
setup,

and
a
method
to
evaluate
the
effort
of
the
deployment.

10.3.1
 Neural
Network
Deployment

In
our
experiment,
we
use
3
different
boards.
We
select
boards
from
different

constructors
to
show
the
(large)
variety
of
tools
and
processing
available
in

132
 Deploying
a
Convolutional
Neural
Network
on
Edge
MCU

Figure
10.1
 Illustration
of
LeNet-5
architecture.

edge
devices
today.
These
sample
devices
are
a
very
small
subset
of
the
large

variety
of
devices
today,
but
they
show
that
with
only
three
different
board

manufacturers,
an
extensive
adaptation
of
the
deployment
pipeline
is
neces
sary.
The
selected
3
devices
for
our
experiments
are
the
following:
a
Kendryte

K210
from
Canaan,
a
dual-core
RISC-V
processor
with
floating-point
units;

an
STM32L4R9
 from
STMicroelectronics
 (ST)
with
 an
ARM
Cortex-M4

core
also
including
floating-point
unit,
and
SynSense
DynapCNN,
an
event-
based
processor.
Table
10.1
summarizes
the
major
differences
between
these

platforms.

10.3.1.1
 Task
and
Model

We
tested
the
selected
platforms
on
a
simple
LeNet-5
[10]
networks
trained

on
MNIST,
which
 architecture
 is
 displayed
 in
Figure
 10.1.
This
 architec
ture,
composed
of
convolutions
layers,
average
pooling
and
dense
layers,
is

compatible
with
all
selected
platforms.
The
architecture
was
 trained
for
30

epochs
with
a
learning
rate
1e
−
4.
Tensorflow
2.9.1
was
used
to
define
the

H5
model
running
on
the
Sipeed
and
ST
boards,
while
PyTorch
1.11.0
was

used
for
DynapCNN.
Unfortunately,
our
efforts
to
transfer
the
weights
from

the
Tensorflow
model
to
the
PyTorch
failed,
and
we
had
to
train
the
models

separately.
The
Keras
and
PyTorch
models
reached
an
accuracy
of
99.44%

and
99.38%
on
the
train
set,
respectively.
We
perform
inference
on
the
first

1000
images
of
the
test
dataset.

10.3.1.2
 Experimental
Setup

For
each
platform,
we
used
the
latest
tools
available
at
the
time
at
which
this

article
was
written.

Kendryte
K210

The
Kendryte
K210
 is
 used
with
 the
 Sipeed
MaixDock
M1.
 The
Neural

networks
embedded
in
this
device
were
converted
from
Keras
H5
file
format,

10.3
 Methods
 133

using
Tensorflow
2.9.1
and
associated
TFLite.
The
firmware
version
of
the

Kendryte
is
0.6.2,
and
the
version
of
the
NNCase
package
used
for
conversion

is
0.2.

STM32L4R9

The
STM32L4R9
board
with
 an
Arm
Cortex-M4
 core
processor
 from
ST

is
programmed
 in
C.
Due
 to
 the
complexity
of
hardware
 initialization,
ST

provides
 a
 tool,
STM32CubeMX
 6.5.0,
which
 automatically
 generates
 an

initial
C
project
 for
a
 specific
board.
The
 tool
X-CUBE-AI
7.1.0
converts

TFLite
models
into
C
files
which
are,
alongside
the
X-CUBE-AI
inference

library,
 added
 to
 the
 project.
 The
 Keras
 H5
 file
 network
 is
 converted
 to

TFLite
 format
using
Tensorflow
2.8.2
and
Python
3.6.
Gcc-arm-none-eabi

15:10.3-2021.07-4
and
Make
4.2.1
are
used
 to
compile
 the
whole
project,

and
STM32CubeProgrammer
2.10.0
 is
used
 to
upload
 the
binaries
on
 the

device.

DynapCNN

The
SynSense
DynapCNN
processor
was
programmed
using
Python
3.7.13

with
 PyTorch
 1.11.0,
 Sinabs
 0.3.3
 (and
 underlying
 Sinabs-DynapCNN

0.3.1.dev3),
 and
Samna
0.14.33.0
 libraries.
The
neural
network
 is
written

in
PyTorch
and
converted
 to
a
 spiking
version
using
Sinabs,
while
Samna

is
used
to
map
the
network
to
the
hardware.
The
inputs
are
presented
to
the

network
using
a
preprocessing
function
that
generates
spikes1
 from
random

sampling
of
the
image,
using
the
following
function,
where
tWindow
is
the

duration
of
the
spiking
frame
and
img
has
shape
[channels,
width,
height]:

def

to_spikes(img,
 tWindow=100):

rnd
 =
 (np.random.rand(self.tWindow,
 *img.shape)

img
 =
 rnd
 <
 img.numpy()/255.0).astype(float)

return
 torch.from_numpy(img).float()

During
our
simulation,
we
found
100
timesteps
to
be
sufficient
to
reach

equivalent
accuracy
between
the
spiking
and
non-spiking
version
of
MNIST.

10.3.1.3
 Deployment

For
 standalone
platforms,
 the
network
was
 converted
 and
uploaded
 to
 the

platform.
For
Kendryte,
the
inference
script
was
written
such
that
the
model

1Spikes
are
binary
events
(on
or
off)
distributed
in
input
space
and
time.

134
 Deploying
a
Convolutional
Neural
Network
on
Edge
MCU

Table
10.1
 Relevant
technical
specifications
of
the
devices
(from
constructor
websites).

Board
 Kendryte
K210
 STM32L4R9
 DynapCNN

Processor
ISA
 Dual-core
RISC-V
64b
 ARM
Cortex-M4
 Event-based

Power
Consumption
 300mW
 66mW
 1mW

Max
Frequency
(MHz)
 900
 120
 -
TOPS/W
 3.3
 - -
Standalone
 Yes
 Yes
 No

Event-based
 No
 No
 Yes

Language
 MicroPython
 C
 Python

Figure
 10.2
 Deployment
 pipelines
 for
 all
 platforms.
 From
 left
 to
 right:
 STM32L4R9,

Kendryte
K210
and
DynapCNN.
For
DynapCNN,
the
pipeline
is
contained
in
a
single
Python

script,
while
the
other
relay
on
external
languages
and
tools.

is
 loaded
at
 the
beginning
of
 the
 script
and
processes
 images
one
by
one.

The
images
are
transmitted
via
serial
communication
and
inferred
by
infer
ence
 script.
 In
 X-CUBE-AI,
 this
 is
 automatically
 done,
 while
 Kendryte

requires
a
script
that
sends
batches
of
images
and
obtains
the
predictions.
For

DynapCNN,
the
images
are
predicted
by
sending
the
corresponding
events
to

the
device
and
reading
the
output
events
from
the
buffer
of
the
board.

The
prediction
time
is
provided
automatically
by
the
X-CUBE-AI
plat
form,
 while
 Kendryte
 requires
 to
 time
 the
 prediction
 manually.
 In
 the

MicroPython
script
used
for
inference
on
Kendryte,
we
put
a
counter
around

the
line
performing
the
inference.
For
DynapCNN,
the
reported
times
corre
sponds
to
the
timestamp
of
the
first
output
event
and
the
final
output
event,

respectively.
Both
times
are
averaged
over
the
test
samples.
The
computation

of
the
key
performance
indicators
(accuracy,
mean
time)
is
performed
offline.

Figure
10.2
illustrates
the
pipelines
for
all
platforms.

10.3
 Methods
 135

10.3.2
 Measuring
the
Ease
of
Deployment

One
 of
 the
 major
 criteria
 for
 the
 adoption
 of
 a
 product
 is
 the
 ease
 of

use,
meaning
how
much
one
user
 is
autonomous
 in
using
 the
device.
This

highly
depends
on
the
user
skills,
but
also
on
the
quality
of
the
documenta
tion.
For
embedded
machine
 learning,
 the
documentation
should
explicitly

describe
 the
 procedure
 to
 deploy
 a
model
 once
 the
 user
 receives
 the
 new

platform.
We
have
identified
5
different
phases
that
are
required
when
using

a
microcontroller
product
for
AI
acceleration.

•
Acquisition
(A):
this
phase
comprises
the
effort
needed
to
place
an
order

for
the
device
and
the
time
necessary
to
ship
the
device.
A
small
effort

would
correspond
to
ordering
the
platform
from
a
website
and
receiving

it
within
the
next
week.
A
large
effort
requires
to
contact
the
company

by
phone
or
email
and
wait
for
two
month
to
receive
the
device.

•
Setup
(S):
this
phase
comprises
the
effort
needed
to
install
the
required

environment.
A
small
effort
would
require
installing
a
python
package

from
pip
or
an
executable
available
from
the
constructor
website.
A
large

effort
 requires
 installing
multiple
packages
which
versions
depend
on

the
firmware
of
 the
device
or
 the
version
of
Python
packages
used
 to

train
the
model,
as
well
as
dependencies
on
external
tools.

•
Getting
 started
 (G):
 this
 phase
 is
 the
 effort
 needed
 to
 replicate
 the

examples
given
in
the
documentation.
A
small
effort
would
correspond

to
a
full
deployment
example
done
within
one
hour.
A
large
effort
would

require
support
from
the
constructor.

•
Model
 preparation
 (M):
 this
 phase
 comprises
 the
 effort
 needed
 to

convert
 a
PyTorch/Tensorflow
model
 to
 the
proprietary
 format
of
 the

device.
A
small
effort
would
correspond
to
a
single
command
line
with

arguments.
A
 large
effort
corresponds
 to
manually
writing
 the
neural

network
 in
 the
 proprietary
 format
 and
 transferring
 the
weights,
with

limited
help
from
the
conversion
tool,
or
requiring
intervention
from
the

constructor.

•
 Inference
(I):
this
phase
comprises
the
effort
needed
to
perform
infer
ence
once
 the
model
 is
embedded
 to
 the
device.
A
small
effort
would

correspond
to
a
single
command
line
or
instruction
to
perform
inference,

a
 medium
 effort
 requires
 writing
 an
 inference
 script
 and
 deploying

it
 manually
 on
 the
 hardware
 platform.
 A
 large
 effort
 would
 require

intervention
from
the
constructor.

Each
phase
is
assigned
with
a
number
between
1
and
5.
The
total
score

represents
the
complexity
of
deployment.
A
low
value
(5)
corresponds
to
a

136
 Deploying
a
Convolutional
Neural
Network
on
Edge
MCU

small
effort
necessary
to
deploy
a
model
on
a
never-used
platform,
while
25

corresponds
to
a
large
effort.

10.4
 Results

In
this
section,
we
present
the
results
and
metrics
recorded
for
each
platform,

and
the
effort
perceived
by
the
team
to
perform
the
experiments.

10.4.1
 Inference
Results

The
models
were
 successfully
deployed
on
all
platforms.
Table
10.2
 sum
marizes
 the
results
on
 the
1000
first
samples
of
MNIST
 test
dataset.
It
can

be
 observed
 that
 the
 balanced
 accuracy
 is
 not
 homogeneous
 between
 the

platforms.
This
difference
is
certainly
caused
by
the
different
transformations

affecting
the
models
during
the
deployment
(conversion).
While
we
initially

tried
 to
deploy
 full-precision
models
and
a
quantized
version
of
 them,
we

only
had
time
to
deploy
it
on
the
ST
platform.
The
evaluation
of
quantized-
aware
trained
models
and
evaluation
DynapCNN
and
Kendryte
K210
using

integer
weights
 is
 a
 future
work.
The
models
 run
 faster
when
using
 8-bit

integer
precision
on
STM32
 (even
 if
 the
platform
 is
made
 to
compute
32
bit
floats).
The
Kendryte
K210
is
the
fastest
to
compute
synchronous
frames

while
DynapCNN
 is
 the
 fastest
 to
 provide
 a
 result
 in
 a
 32-bit
 precision,

with
98.79%
precision
using
only
 the
first
 spike2.
Unfortunately,
only
 the

DynapCNN
provides
an
estimation
of
the
energy
consumption,
obtained
with

Sinabs
 by
 computing
 the
 average
 number
 of
 synpatic
 operations
 over
 the

course
of
the
simulations.
All
the
metrics
are
averaged
over
the
test
partition.

Table
10.2
 Results
on
MNIST
dataset
for
all
platforms.
For
the
DynapCNN,
we
report
the

accuracy
and
latency
for
the
first
spike
prediction
and
over
the
entire
simulation.

Platform
 Kendryte
K210
 STM32L4R9
 DynapCNN

Bit
Precision
 float-32
 float-32
 int-8
 float-32

Size
(KB)
 94.2
 359.2
 90.5
 -
Accuracy
 97.23%
 98.26%
 94.07%
 98.79%
/
99.09%

Latency
(ms)
 54.17
 80.82
 36.23
 41.3
/
294.9

Energy
(μJ)
 - - - 144.5

2Some
samples
(with
indices
[18,
247,
493,
495,
717,
894,
904,
947]
in
test
set)
did
not

produce
any
spikes
for
an
unknown
reason.
In
that
case,
we
removed
the
associated
labels
and

compute
the
balanced
accuracy
on
the
992
remaining
samples.

10.5
 Conclusion
 137

Table
10.3
 Perceived
effort
for
each
stage
of
the
inference.
1:
small,
5:
large.

Board
 A
 S
 G
 M
 I
 Total

Kendryte
 1
 3
 2
 3
 3
 12

STM32L4R9
 1
 2
 4
 3
 2
 12

DynapCNN
 3
 1
 3
 1
 1
 9

10.4.2
 Perceived
Effort

Table
10.3
 summarizes
 the
 team
perceived
effort
 for
each
of
 these
phases

in
a
qualitative
manner.
We
observe
a
high
variation
in
the
effort
perceived

for
each
platform.
The
model
preparation
phase
seems
 to
be
critical.
In
all

the
platforms,
 this
phase
 is
perceived
as
 requiring
a
great
effort.
Kendryte

K210
 and
 STM32L4R9
 require
 the
 most
 human
 intervention
 to
 build
 a

complete
deployment
pipeline,
while
the
deployment
pipeline
of
DynapCNN

is
automated.

10.5
 Conclusion

Although
 the
 development
 of
 embedded
 machine
 learning
 holds
 great

promise,
 the
 lack
of
consistency
and
standardization
across
devices
makes

development
 extremely
 platform-dependent.
 Deploying
 a
 model
 on
 these

devices
requires
to
use
of
low-level
tools,
such
as
C
language.
However,
most

models
are
developed
using
(high-level)
Python-based
tools.
The
deployment

process
of
a
model
therefore
requires
adaptation
of
the
model
from
Python

to
C,
which
 is
 time-consuming
 and
 is
 prone
 to
 errors
 and
 artifacts
 in
 the

final
implementation.
Platform
providers
are
aware
of
this
problem
and
have

started
putting
effort
into
facilitating
the
deployment
by
providing
automated

tools
and
interfaces
with
DL
frameworks.
Specifically,
for
the
platforms
used

in
 these
 experiments,
 Sipeed
 has
 ported
MicroPython
 to
 the
Maix
Dock,

allowing
 to
write
code
close
 to
 the
one
used
 to
 train
 the
model;
SynSense

provides
a
library
that
allows
interaction
with
the
DynapCNN
directly
from
a

Python
script,
and
allow
simulation
of
the
model
before
deployment,
to
get
a

quick
idea
of
performance.
Finally,
the
well-established
ST-Microelectronic

provides
 the
X-CUBE-AI
 tool,
which,
 in
 addition
 to
 analyzing
 the
model

before
deployment,
offers
the
possibility
of
validating
the
model
on
the
target

and
retrieves
relevant
metrics
without
writing
a
single
line
of
code.

However,
these
tools
are
recent
and
standards
are
not
yet
established.
To

promote
and
accelerate
the
development
of
machine
learning
on
embedded

interfaces,
it
is
necessary
to
provide
standardized
tools
accessible
to
model

138
 Deploying
a
Convolutional
Neural
Network
on
Edge
MCU

developers,
where
a
minimum
of
knowledge
about
the
platform
is
required.

This
 will
 increase
 the
 adoption
 of
 the
 technologies.
 Some
 points
 seem

essential
to
facilitate
the
adoption
of
low-power
technologies,
in
particular:

•
Up-to-date
documentation:
documents
specifying
platform
schematics,

APIs
and
dependencies
on
external
tools
must
be
carefully
maintained.

•
The
documentation
should
contain
examples
for
each
API
call.

•
Model
conversion
tools
should
be
compatible
with
most
deep
learning

libraries
(Tensorflow
and
PyTorch)
and
should
detail
which
version
and

which
 operations
 (layers)
 are
 supported
 by
 each
 version
 of
 the
 tool.

Ideally,
conversion
tools
should
be
based
on
community
standards,
such

as
the
ONNX
format.

•
Model
conversion
 tools
should
be
automated
and
provide
understand
able
warnings
and
error
messages.

To
reduce
the
entry
barrier
for
these
low-power
platforms
for
developers

of
Deep
Learning
models
the
following
interfaces
would
be
beneficial:

•
A
hardware
simulation
interface,
in
order
to
obtain
a
quick
feedback
on

the
feasibility
of
deploying
the
model
on
the
platform,
and
to
provide
an

interpretable
error
in
case
of
memory
exhaustion
or
unsupported
layer.

•
An
evaluation
of
the
key
performance
indicators
relevant
for
edge
com
puting,
such
as
memory
consumption,
model
speed
(number
of
cycles

per
inference)
and
energy
used
during
inference.

These
interfaces
will
enable
rapid
prototyping
and
comparison
of
models

for
the
Edge,
while
providing
a
solid
foundation
for
iterating
and
developing

new
inference
techniques.

Acknowledgements

This
 work
 is
 supported
 through
 the
 project
 ANDANTE.
 ANDANTE
 has

received
funding
from
the
ECSEL
Joint
Undertaking
(JU)
under
grant
agree
ment
 No
 876925.
 The
 JU
 receives
 support
 from
 the
 European
 Union’s

Horizon
2020
research
and
innovation
programme
and
France,
Belgium,
Ger
many,
Netherlands,
Portugal,
Spain,
Switzerland.
The
authors
are
responsible

for
the
content
of
this
publication.

References

[1]
Q.
 Liu,
 O.
 Richter,
 C.
 Nielsen,
 S.
 Sheik,
 G.
 Indiveri,
 and
 N.
 Qiao.

Live
demonstration:
face
recognition
on
an
ultra-low
power
event-driven

References
 139

convolutional
 neural
 network
 asic.
 In
 Proceedings
 of
 the
 IEEE/CVF

Conference
on
Computer
Vision
and
Pattern
Recognition
Workshops,

pages
0–0,
2019.

[2]
Canaan
website.
Kendryte
K210
description
page,
2022.

[3]
C.
 R.
 Banbury,

V.
 J.
 Reddi,
 M.
 Lam,
 W.
 Fu,
 A.
 Fazel,
 J.
 Holle

man,
X.
Huang,
R.
Hurtado,
D.
Kanter,
A.
Lokhmotov,
et
al.
Bench
marking
 tinyml
 systems:
 Challenges
 and
 direction.
 arXiv
 preprint

arXiv:2003.04821,
2020.

[4]
C.
Ostrau,
C.
Klarhorst,
M.
Thies,
and
U.
Rückert.
Benchmarking
of

neuromorphic
hardware
systems.
In
Proceedings
of
the
Neuro-inspired

Computational
Elements
Workshop,
pages
1–4,
2020.

[5]
L.
 Heim,
 A.

Biri,
 Z.
 Qu,
 and
 L.
 Thiele.
 Measuring
 what
 really

matters:
 Optimizing
 neural
 networks
 for
 tinyml.
 arXiv
 preprint

arXiv:2104.10645,
2021.

[6]
V.

Falbo,
 T.
 Apicella,
 D.
 Aurioso,
 L.
 Danese,
 F.
 Bellotti,
 R.
 Berta,

and
A.
D.
Gloria.
Analyzing
machine
 learning
on
mainstream
micro-
controllers.
In
International
Conference
on
Applications
in
Electronics

Pervading
Industry,
Environment
and
Society,
pages
103–108.
Springer,

2019.

[7]
R.
 Sanchez-Iborra
 and
A.
 F.

Skarmeta.
 Tinyml-enabled
 frugal
 smart

objects:
 Challenges
 and
 opportunities.
 IEEE
 Circuits
 and
 Systems

Magazine,
20(3):4–18,
2020.

[8]
A.
Osman,
U.
Abid,
L.
Gemma,
M.
Perotto,
and
D.
Brunelli.
Tinyml

platforms
benchmarking.
In
International
Conference
on
Applications

in
Electronics
Pervading
Industry,
Environment
and
Society,
pages
139–

148.
Springer,
2022.

[9]
M.
 de
Prado,
M.
Rusci,
A.
Capotondi,
R.
Donze,
L.
Benini,
 and
N.

Pazos.
Robustifying
the
deployment
of
tinyml
models
for
autonomous

mini-vehicles.
Sensors,
21(4):1339,
2021.

[10]
Y.

Lecun,
 L.
 Bottou,
 Y.
 Bengio,
 and
 P.
 Haffner.
 Gradient-based

learning
 applied
 to
 document
 recognition.
 Proceedings
 of
 the
 IEEE,

86(11):2278–2324,
1998.

https://taylorandfrancis.com

11

Efficient
Edge
Deployment
Demonstrated

on
YOLOv5
and
Coral
Edge
TPU

Ruben
Prokscha,
Mathias
Schneider,
and
Alfred
Höß

Ostbayerische
Technische
Hochschule
Amberg-Weiden,
Germany

Abstract

The
 recent
 advancements
 towards
 Artificial
 Intelligence
 (AI)
 at
 the
 edge

resonate
 with
 an
 impression
 of
 a
 dichotomy
 between
 resource
 intensive,

highly
abstracted
Machine
Learning
(ML)
research
and
strongly
optimized,

low-level
embedded
design.
Overcoming
such
opposing
mindsets
is
imper
ative
 for
 enabling
 desirable
 future
 scenarios
 such
 as
 autonomous
 driving

and
smart
cities.
edge
AI
must
incorporate
both
straightforward
streamlined

deployments
 together
with
 resource
 efficient
 execution
 to
 achieve
 general

acceptance.
This
research
aims
to
exemplify
how
such
an
endeavour
could
be

realized,
utilizing
a
novel
low
power
AI
accelerator
together
with
a
state-of
the-art
object
detection
algorithm.
Different
considerations
regarding
model

structure
 and
 efficient
 hardware
 acceleration
 are
 presented
 for
 deploying

Deep
Learning
(DL)
applications
in
resource
restricted
environments
while

maintaining
 the
 comfort
of
operating
 at
 a
high
degree
of
 abstraction.
The

goal
is
to
demonstrate
what
is
possible
in
the
field
of
edge
AI
once
software

and
hardware
are
optimally
matched.

Keywords:
 edge
 AI,
 object
 detection,
 deep
 learning,
 YOLO,
 embedded

systems,
tensor
processing
unit.

11.1
 Introduction

With
AI
shifting
 from
a
simple
 research
subject
 towards
end
user
applica
tions,
 the
 issue
 of
 efficient
 deployment
moves
 into
 focus.
ML
workloads

141

DOI: 10.1201/9781003377382-11
This chapter has been made available under a CC BY-NC 4.0 license.

142
 Efficient
Edge
Deployment
Demonstrated
on
YOLOv5
and
Coral
Edge
TPU

are
decidedly
different
 from
 average
 computing
 tasks.
Hence,
GPUs
were

the
 common
 solution
 for
 such
 undertakings.
 Realizing
 mobile
 intelligent

appliances,
 requires
 even
more
 specialized,
 low
 power
 accelerators
which

can
be
integrated
into
embedded
environments.
Such
edge
solutions
attracted

increasing
interest
within
the
last
years.
The
European
Strategic
Research
and

Innovation
Agenda
 (SRIA)
 [1]
concretizes
 the
 term
even
 further
by
 intro
ducing
the
terms
Micro-,
Deep- and
Meta-edge.
There
are
several
different

solutions
 available
which
 target
 this
new
 frontier.
Most
prominent
 are
 the

NVIDIA
Jetson
family,
which
utilizes
optimized
embedded
GPUs,
the
Intel

Neural
Compute
Stick
2
which
is
comprised
of
a
specialized
Vision
Process
ing
Unit
(VPU)
and
the
Google
Coral
edge
Tensor
Processing
Unit
(TPU),

which
will
be
the
focus
of
this
work.
As
such,
its
impact
on
related
research

is
presented
in
the
following
section.
The
task
of
object
detection
was
chosen

to
be
part
of
the
experimental
test
setup
for
evaluating
the
accelerator.
You

Only
Look
Once
 (YOLO)
version
5
 [2]
 serves
 as
delegate
 for
 these
 class

of
 networks
 in
 the
 upcoming
 section.
 It
 is
 evaluated,
 how
models
 can
 be

modified
to
facilitate
edge
TPU
characteristics.
Furthermore,
it
is
shown
how

this
optimized
solution
compares
to
models
provided
by
Google.
With
a
focus

on
 deployment,
 a
 lightweight
 software
 stack
 is
 introduced
which
 enables

efficient
AI
solutions
without
sacrificing
high-level
development.
Finally,
a

conclusion
 is
 provided
 giving
 a
 synapsis
 of
 the
 key
findings
 and
 offering

points
of
interest
for
future
work.

11.2
 Related
Work

In
 recent
 years,
 the
 usage
 of
 decentralized
AI
 at
 the
 edge
 has
 become
 a

progressively
relevant
research
topic.
Thereby,
besides
GPU
acceleration,
the

energy-efficient
edge
TPU
was
of
special
 interest
by
 research
 fellows.
For

applications
with
strict
power
or
battery
limitation,
such
as
in
the
area
of
UAV,

the
usage
of
the
edge
TPU
is
evaluated
in
recent
work.
Thereby,
applications

comprise
indoor
person-following
systems
[3],
vision-based
trash
and
litter

detection
[4],
and
lightweight
odometry
estimation
[5].
Using
a
U-Net
net
work
architecture,
Roesler
et
al.
leverage
their
edge
AI
setup
combining
the

edge
accelerator
with
a
STM32MP157C-DK2
board
for
the
yield
estimation

of
grapes
in
an
agriculture
use
case
[6].
But
also,
other
application
domains

are
explored,
e.g.,
in
[7],
which
utilizes
the
edge
TPU
to
process
time-series

data
 to
 determine
 the
 remaining
 useful
 life.
 Since
 at
 that
 time
Recurrent

Neural
Networks
 (RNNs)
were
not
yet
 supported
by
 the
 accelerator,
 their

model
architecture
employs
a
deep
Convolutional
Neural
Network
(CNN).
It

11.3
 Experimental
Setup
 143

is
worth
mentioning
that
their
experiments
included
measurements
for
models

using
quantization-aware
training
as
well
as
post-training
quantization,
which

outperformed
reference
CPU
and
GPU
deployments
in
terms
of
latency
and

accuracy.
 The
 authors
 in
 [8]
 examine
 the
 potential
 of
 the
 edge
 TPU
 for

detecting
network
intrusion
to
ensure
security
at
the
edge
using
feed
forward

and
CNN
architectures.
They
elaborate
their
classification
scores
on
a
public

benchmark
dataset,
and
further
investigate
the
energy
efficiency
of
their
DL

algorithms
 in
 comparison
 to
 traditional
CPU
 processing.
Their
 studies
 on

the
 effects
 of
 larger
model
 sizes
 reveal
 a
 bimodal
 behaviour
 of
 the
 edge

accelerator,
 indicating
a
decline
of
 the
energy
efficiency
 ratio
as
soon
as
a

certain
model
size
is
exceeded.
This
finding
is
the
focus
of
their
consecutive

work
and
is
confirmed
by
more
refined
experiments
[9].

Besides
this
applied
research
of
utilizing
the
edge
accelerator
for
a
ded
icated
application,
more
 theoretical
research
was
conducted
 to
explore
and

demarcate
TPU
capabilities.
Therefore,
several
benchmarks
were
performed

to
determine
its
performance
empirically
using
various
setups
differing
in
the

models
under
test,
obtained
metrics,
or
compared
edge
devices
[10,
11,
12].

Providing
micro-architectural
insights,
Google
researcher,
Yazdanbakhsh
et

al.,
elaborate
an
extensive
evaluation
covering
different
structures
in
CNNs

and
 their
 effects
 on
 latency
 and
 energy
 consumption
 [13].
With
 a
 similar

level
 of
 hardware
 details,
 the
 authors
 in
 [14]
 analysed
 the
 inference
 of

24
 Google
 edge
 models,
 revealing
 major
 shortcomings
 of
 the
 edge
 TPU

architecture
which
must
be
taken
into
account
for
efficient
deployment.
Fur
thermore,
they
incorporate
the
results
into
their
framework
for
heterogeneous

edge
ML
accelerators
called
Mensa,
 improving
 the
edge
TPU
performance

significantly.

11.3
 Experimental
Setup

Figure
11.1
depicts
the
setup
used
for
this
research.
A
Raspberry
Pi
4
Model

B
with
4
GB
memory
served
as
base
platform.
The
Google
Coral
edge
TPU

accelerator
was
connected
either
to
a
USB2
or
USB3
port
for
performance

and
accuracy
evaluation.

11.3.1
 Google
Coral
Edge
TPU

Google
developed
a
custom
Application
Specific
Integrated
Circuit
(ASIC)

for
edge
inference.
This
specialized
TPU
can
be
connected
to
existing
sys
tems
utilizing
a
USB,
(m)PCIe
or
M.2
interface.
Figure
11.1
depicts
the
USB

144
 Efficient
Edge
Deployment
Demonstrated
on
YOLOv5
and
Coral
Edge
TPU

Figure
11.1
 Raspberry
Pi
4
with
Google
Coral
edge
TPU
USB
accelerator.

dongle
variant
of
 the
 accelerator
with
 is
 advertised
 to
perform
up
 to
 four

trillion
operations
per
 second.
Approximately
8
MB
 ‘scratchpad’
memory

is
available
per
unit
and
 the
peak
power
consumption
 is
rated
at
2
W
[15].

Additionally,
 multiple
 of
 these
 coprocessors
 can
 be
 chained
 together
 for

handling
 bigger
workloads.
The
TPU
 hardware
 operates
 on
 8
Bit
 integer

variables.
Both
performance
and
power
consumption
benefit
from
a
reduced

complexity
in
the
hardware
design.
However,
this
introduces
weight
quantiza
tion
as
an
additional
step
before
deployment.
The
reduction
in
precision
from

floating
point
to
8
Bit
integers
variables
subsequently
leads
to
a
deterioration

of
accuracy.
Further
overhead
is
introduced
by
the
addition
of
quantization

operations
to
the
execution
graph.

Deploying
a
model
for
this
device
entails
several
pitfalls
due
to
a
rather

convoluted
 development
 pipeline.
Google
 necessitates
 its
 own
Tensorflow

(TF)
framework
as
starting
point.
Hence,
models
from
other
frameworks
must

be
converted
by
means
of
e.g.,
Open
Neural
Network
Exchange
 (ONNX).

There,
a
quantization
step
is
performed
alongside
a
conversion
to
the
TFLite

format.
 The
 final
 step
 involves
 a
 proprietary
 edge
 TPU
 compiler,
 which

translate
 the
TFLite
 instructions
 for
 the
edge
TPU.
 Inference
on
 the
other

hand
 is
 straight
 forward.
 The
 TFLite
 runtime
 provides
 the
 interfaces
 for

loading
 and
 executing
 the
model
 file,
while
 the
 libedgetpu
 is
 responsible

for
handling
the
low-level
communication
with
the
accelerator.
This
allows

for
 a
 very
 lightweight
 deployment
 of
 10
MB
 to
 20
MB
 (without
model)

compared
to
conventional
GPU
solutions,
which
can
require
over
a
gigabyte

disk
storage
for
the
libraries
alone.

11.4
 Performance
Considerations
 145

11.3.2
 YOLOv5

The
original
You
Only
Look
Once
 (YOLO)
 architecture
was
proposed
by

Joseph
Redmon
in
2016
[16].
It
performs
both
object
detection
and
classifi
cation
in
a
single
model.
This
resulted
in
a
significant
performance
increase

compared
 to
classical
 two
stage
designs
(e.g.,
Region
Based
Convolutional

Neural
Networks
(R-CNNs)
[17]).
Since
the
original
design,
many
improve
ments
were
made.
YOLOv5
[2]
is
based
on
the
YOLOv3
[18]
architecture.
It

is
under
constant
open-source
development
by
Ultralytics,
who
shifted
 the

focus
 from
 academic
 research
 to
 accessible
 deployment.
They
 provide
 an

end-to-end
solution
which
allows
for
training,
testing
and
exporting
models
to

a
variety
of
different
deployment
frameworks.
This
includes
the
integration

of
 the
previously
described
pipeline
for
generating
edge
TPU
models
from

version
6.1
onward.

11.4
 Performance
Considerations

The
Coral
accelerator
achieves
its
low
energy
footprint
and
high
performance

by
 sacrificing
 flexibility.
 This
 manifests
 itself
 in
 a
 significantly
 reduced

instruction
set
 [19].
The
edge
TPU
compiler
 is
a
black
box
which
aims
 to

aggregate
 as
much
 operations
 as
 possible
 and
 convert
 them
 into
 a
 binary

which
 can
be
 executed
by
 the
 coprocessor.
Every
operation,
which
 is
not

mapped
accordingly,
must
therefore
run-on
CPU.
This
section
aims
to
pro
vide
guidance
for
optimizing
a
model
for
edge
TPU
execution
exemplified

on
YOLOv5
(release
6.1).

11.4.1
 Graph
Optimization

Figure
11.2
depicts
the
graphs
of
two
edge
TPU
models.
Figure
11.2a
shows

the
small
variant
of
the
YOLOv5
model
with
additional
optimizations.
The

EfficientDet
Lite0
[20]
model
in
Figure
11.2b
was
taken
from
the
Coral
model

zoo
[21].
Most
of
the
graph
is
mapped
to
the
edgetpu-custom-op,
while
some

operations
are
still
executed
by
the
main
processor.
In
the
following,
possible

issues
are
shown
when
compiling
a
model
and
ways
to
improve
the
mapping

are
elaborated.

11.4.1.1
 Incompatible
Operations

The
 compiler
only
maps
operations
until
 it
 encounters
 an
 incompatibility.

Everything
after
that
is
executed
on
the
CPU.
This
is
especially
critical
for

activation
 functions
 (e.g.,
LeakyReLU,
Hardswish),
as
 they
are
distributed

146 Efficient Edge Deployment Demonstrated on YOLOv5 and Coral Edge TPU

(a) YOLOv5s (b) EfficientDet Lite0

Figure 11.2 Quantized edge TPU Models.

throughout the graph. While it is possible to create multiple TPU subgraphs,
the overhead of transferring intermediate tensors several times between CPU
and TPU usually eliminates any benefits. It is therefore advisable to use
compatible activation functions (e.g., ReLU, Logistic). Furthermore, binary
operations (e.g., AND, OR) are also not supported.

11.4.1.2 Tensor Transformations
The reshape and transpose operation are not mapped once their input tensor
exceeds a certain soft threshold. There is no documentation on how this limit
is calculated and it seems to be dependent on the general model structure.
However, it could be observed, that this threshold is significantly smaller for
the transpose operation. A possible explanation for this behaviour could be an
inability of the accelerator to address memory in a different order. A transpose
operation on CPU would imply a change in the direction (column/row wise)
memory is read from the same location. If this is not supported by the TPU,
memory reallocation is required.

There are several ways for addressing this issue. One approach is to
reduce the size of the input tensor. In CNNs the size is proportionally

11.4
 Performance
Considerations
 147

Table
11.1
 Comparison
of
YOLOv5s
model
before
and
after
optimizations.

YOLOv5s
(6.1)
 YOLOv5s
(6.2dev)

Input
Size
 Speedup
TPU/CPU
 USB3
Speed
 TPU/CPU
 USB3
Speed

320x320
 245/40
 30.10ms
 253/3
 24.27ms
 19.37%

640x640
 225/59
 427.48ms
 240/16
 178.67ms
 58.20%

propagated
 through
 the
network.
Hence,
 reducing
 the
 input
 size
 results
 in

smaller
 intermediate
 tensors.
Further
 reduction
can
be
 induced
by
 limiting

the
number
of
output
classes.
If
graph
modifications
are
viable,
a
divide
and

conquer
strategy
can
be
used
to
split
tensors
before
the
operation
and
merging

afterwards.
Moving
these
operations
to
the
bottom
of
the
graph
can
also
be
an

option
as
the
instruction
are
fast
on
CPU.
A
last
option
is
using
mathematical

transformation
to
change
the
graph
beneficially.

Some
 of
 these
 strategies
were
 used
 to
 optimize
 the
YOLOv5
models

which
are
evaluated
further
in
this
research.
All
changes
were
committed
to

the
open-source
project
in
a
pull
request
[22]
and
are
part
of
the
next
major

release
(6.2).
Table
11.1
shows
the
performance
impact
for
the
demonstrator

setup.
Both
model
variants
 experienced
 a
 significant
 speedup
 in
 inference

time.
The
variant
with
the
larger
input
size
improves
significantly.

11.4.2
 Performance
Evaluation

In
 the
 following,
 different
 variants
 of
 the
 optimized
YOLOv5
models
 are

compared
to
other
object
detectors
supplied
by
Google.
All
numerical
values

can
be
found
in
Table
11.2.
The
inference
speed
was
evaluated
utilizing
the

Google
benchmark
model
tool
[23].
Version
16
of
libedgetpu-max
was
used,

and
each
inference
was
repeated
100
times
with
a
previous
warm-up
phase.

Accuracy
was
determined
by
pycocotools
and
the
Common
Objects
in
Con
text
(COCO)
evaluation
dataset
[24].
The
input
images
were
proportionally

scaled
 to
 input
size
with
bilinear
 interpolation.
The
Google
models
have
a

postprocessing
operation
 integrated
 in
 the
model
graph
(ref.
Figure
11.2b).

It
 was
 evaluated
 separately
 for
 inference
 speed
 and
 fast
 Non-Maximum

Suppression
(NMS)
[25]
was
used
for
all
models
as
it
is
the
default
setting
of

this
custom
operation.
Furthermore,
the
threshold
for
confidence
was
set
to

0.001
and
overlap
to
0.65.

11.4.2.1
 Speed-Accuracy
Comparison

Figure
 11.3
 shows
 the
mean
 average
 precision
 (mAP50:95)
 of
 each
 tested

model
in
relation
to
the
inference
speed.
It
can
be
observed
that
the
edge
TPU

Table
11.2
 Model
comparison
in
regards
of
input
size, file
size,
operation
Input
Size
 Size
in
MB
 Ops
 Accuracy

 Speed
in
ms

TPU/CPU
 mAP50:95
 mAP50
 mAP75
 mAPS
 mAPM
 mAPL
 USB2
 USB3

EfficientDet
Lite0
 320x320
 5.93
 260/7
 24.30
 39.10
 25.40
 5.50
 27.30
 42.20
 164.06
 +21.6
 57.57
 +21.79

EfficientDet
Lite1
 384x384
 8.01
 315/7
 28.90
 45.10
 30.70
 8.80
 33.20
 47.00
 243.16
 +30.57
 81.43
 +31.03

EfficientDet
Lite2
 448x448
 10.67
 349/8
 32.30
 48.90
 34.80
 12.20
 37.10
 49.60
 490.06
 +40.44
 152.77
 +39.58

SSD
Mobilenetv2
 300x300
 7.08
 99/3
 15.50
 27.20
 15.30
 1.20
 10.90
 34.30
 31.68
 +2.01
 10.90
 +2.06

SSDLite
MobileDet
 320x320
 5.4
 134/3
 22.50
 38.30
 23.30
 2.50
 19.40
 48.20
 34.98
 +8.77
 9.56
 +5.93

320x320
 2.38
 253/3
 18.10
 32.40
 18.10
 3.00
 17.60
 32.60
 64.35
 24.64

YOLOv5n

 480x480
 2.47
 240/16
 22.20
 39.60
 22.50
 6.10
 24.60
 34.40
 127.57
 50.41

640x640
 2.43
 240/16
 22.70
 41.10
 22.80
 8.90
 26.70
 31.00
 262.79
 93.60

320x320
 7.84
 253/3
 26.10
 43.50
 27.00
 6.40
 27.80
 45.10
 67.76
 24.27

400x400
 7.96
 240/16
 28.50
 47.40
 29.40
 8.90
 31.60
 45.10
 162.15
 49.42

YOLOv5s

480x480
 8.09
 240/16
 29.80
 49.20
 31.30
 11.30
 33.70
 44.70
 238.43
 77.77

640x640
 8.78
 240/16
 30.20
 50.50
 31.60
 14.10
 35.00
 41.10
 711.97
 178.67

240x240
 22.13
 325/3
 28.80
 46.70
 30.30
 6.80
 31.00
 51.10
 460.60
 63.61

YOLOv5m
 320x320
 22.32
 325/3
 32.40
 51.30
 34.40
 10.40
 36.10
 53.60
 542.08
 85.98

480x480
 23.33
 313/16
 36.90
 58.00
 39.10
 16.20
 41.90
 53.30
 1268.55
 238.90

YOLOv5l
 320x320
 47.77
 399/3
 35.40
 55.10
 37.60
 12.70
 40.00
 56.60
 1296.39
 177.60

148

E
fficient
E

dge
D
eploym

ent
D
em

onstrated
on
YO
L
O
v5
and
C

oral
E
dge
T

P
U

11.4
 Performance
Considerations
 149

Figure
11.3
 USB3
speed-accuracy
comparison
of
different
model
types
and
configurations

for
edge
TPU
deployment.

works
best
 lower
 input
sizes,
while
 larger
 inputs
cause
an
unproportionate

slowdown
compared
to
the
benefit
in
accuracy.
Interesting
are
the
nano
and

small
models
with
320
px
 input.
They
have
 an
 almost
 identical
 inference

time,
while
the
accuracy
of
the
s-model
is
significantly
better.
They
share
the

same
vertical
graph
structure,
while
the
larger
one
is
scaled
horizontally
by

a
factor
of
two.
Hence,
the
small
variant
has
twice
as
many
weights
for
each

convolutional
 layer.
This
aligns
with
 the
 insights
 from
 [12]
 that
horizontal

scaling
 is
preferable.
The
model
 should
be
very
close
 to
a
 sweet
 spot,
 for

which
all
weights
are
cached
within
 the
8
MB
device
memory.
Sacrificing

some
model
vertical
space
 for
more
width
could
 theoretically
 improve
 the

accuracy
even
further.

In
 general,
YOLOv5
 performs
 better
 than
 the
 other
models.
Only
 the

nano
model
has
 issues,
which
 is
probably
caused
by
 its
particularly
 small

file
 size.
 If
 speed
 is
 the
deciding
 factor,
SSDLite
MobileDet
 [26]
 [27],
 is

still
 the
preferable
solution.
The
classical
SSD
Mobilenetv2
[26]
[28]
does

not
seem
to
be
competitive
anymore.
The
EfficientDet
models
perform
rea
sonable,
however
considering
the
additional
overhead
by
a
particularly
slow

postprocessing
operation,
YOLOv5
should
be
considered
the
better
solution.

All
models
share
a
low
accuracy
for
small
objects,
which
could
be
an
issue

inflicted
by
quantization.

150
 Efficient
Edge
Deployment
Demonstrated
on
YOLOv5
and
Coral
Edge
TPU

Figure
11.4
 YOLOv5s
inference
speed
comparison
between
USB2
and
USB3

11.4.2.2
 USB
Speed
Comparison

Considering
the
purpose
of
edge
accelerators
to
allow
for
AI
deployment
on

low
power
devices,
USB3
might
not
always
be
an
option.
Hence,
it
should

be
evaluated
whether
a
deployment
utilizing
USB2
 is
a
viable
option.
The

maximum
speed
for
such
a
connection
is
rated
at
60
MB/s,
while
USB3
is

specified
at
almost
ten
times
this
value.

Figure
11.4
depicts
the
speed
comparison
the
small
model
with
varying

input
size.
A
considerable
difference
for
the
inference
speed
can
be
observed.

The
USB2
 interface
 causes
 a
 slowdown
 by
 a
 factor
 of
 three.
The
model

parameters
 should
fit
entirely
 into
 the
device
memory.
Therefore,
only
 the

data
 transfer
should
 impact
 the
speed.
Equation
(11.1)
shows
how
 the
data

flowing
 to
 and
 from
 the
 device
 is
 calculated.
 datain
 only
 depends
 on
 the

input
 size,
while
 dataout
 also
 considers
 the
 number
 of
 anchor
 boxes
 (3),

strides
 for
 multi
 scale
 outputs
 (8,
 16,
 32)
 and
 class
 count.
 For
 the
 320

px
model,
 this
 results
 in
 842.7
KB
 of
 data
 flow
 per
 inference,
while
 the

640
px
 input
 increases
 this
value
 to
3.37
MB.
Additional
data
flow
 could

arise
 due
 to
 intermediate
 tensors,
 which
 are
 too
 large
 to
 be
 buffered
 on

the
 device.
 Whether
 this
 is
 an
 issue
 here
 must
 be
 determined
 in
 future

research.

datain
 = 3xinyin

1 1
 1

dataout
= 3 + +
 xinyin
∗
(5
+
ncls)
 (11.1)

82
 162
 322

11.5
 Conclusion
and
Future
Work
 151

Figure
11.5
 Micro
software
stack
for
fast
and
lightweight
edge
deployment.

11.4.3
 Deployment
Pipeline

An
AI
application
can
be
considered
a
data
pipeline
of
the
steps.
At
first
data

must
be
loaded
and
pre-processed
to
comply
with
the
model.
In
the
context
of

object
detection,
this
implies
loading
and
scaling
a
jpeg
image.
The
following

steps
are
inference
and
postprocessing.
The
latter
takes
the
raw
model
output

and
transforms
into
a
usable
form.
This
could
involve
thresholding,
NMS
and

coordination
transforms.
The
pipeline
is
executed
for
each
inference,
hence

all
steps
should
be
highly
optimized.
Most
efforts
are
usually
focused
towards

optimizing
 the
model
while
neglecting
everything
else.
This
 section
 intro
duces
a
small
deployment
stack
for
object
detection,
which
is
both
optimized

and
allows
for
the
usage
of
well-established
high-level
frameworks.

The
software
stack
depicted
in
Figure
11.5
shows
a
simple
layer
model

for
a
lightweight
deep
vision
deployment.
The
part
concerning
the
TPU
was

previously
elaborated.
Loading
and
transforming
images
is
often
handled
by

OpenCV
[29].
It
uses
shared
low-level
libraries
to
perform
these
operations.

Providing
an
optimized
image
loader,
such
as
libjpeg-turbo
[30]
can
therefore

accelerate
 the
 whole
 pipeline.
 Similar
 is
 true
 for
 Numpy
 [31],
 which
 is

responsible
for
performing
mathematical
tensor
operations
on
CPU.
A
dedi
cated
math
library
such
as
OpenBLAS
[32]
makes
use
of
Single
Instruction

Multiple
Data
 (SIMD)
which
 performs
 vector
 operations
 faster
 and
more

efficient.
Such
a
software
stack
is
similarly
fast
compared
to
a
solution
written

in
 a
 compiled
 language,
while
 being
way
more
 flexible.
 It
 could
 also
 be

viable
 to
package
such
an
application
 into
a
 lightweight
container
for
easy

deployment
using
virtualization
technologies.

152
 Efficient
Edge
Deployment
Demonstrated
on
YOLOv5
and
Coral
Edge
TPU

11.5
 Conclusion
and
Future
Work

This
research
demonstrated
how
efficient
edge
AI
applications
can
be
imple
mented
in
a
feasible
manner.
It
was
shown
that
a
high
degree
of
optimization

is
required
to
make
the
best
use
of
limited
computing
resources.
Additionally,

a
 lightweight
 software
 stack
 was
 presented,
 which
 can
 be
 used
 as
 basis

for
building
high
 level
ML
applications.
A
paradigm
 shift
 towards
a
more

deployment
driven
AI
development,
as
portrait
by
YOLOv5,
 is
mandatory

for
making
ubiquitous
AI
possible.
The
Google
Coral
edge
TPU
offers
high

potential
 for
enabling
 real-time
object
detection
 for
common
video
 stream

rates
on
embedded
systems,
however
there
are
several
pitfalls
associated
with

the
device.
The
 limited
opset
 requires
models
 to
be
designed
accordingly,

which
must
be
in
the
interest
of
the
developers.
Another
issue
is
the
USB2

performance.
Future
research
must
evaluate,
what
exactly
causes
this
drastic

slowdown.
 If
 the
TPU
 should
 be
 used
 in
 ultra-low
 power
 segments
 (e.g.,

Micro
Controller
Units),
USB3
will
not
be
viable.
Changing
 the
model
 to

reduce
the
amount
of
data
flowing
to
and
from
the
device
could
alleviate
this

shortcoming.

Acknowledgements

This
 work
 has
 been
 financially
 supported
 by
 the
 AI4DI
 project.
 AI4DI

receives
funding
within
the
Electronic
Components
and
Systems
For
Euro
pean
 Leadership
 Joint
 Undertaking
 (ESCEL
 JU)
 in
 collaboration
 with

the
European
Union’s
Horizon
2020
Framework
Programme
and
National

Authorities,
under
grant
agreement
n◦
826060.

References

[1]
AENEAS,
 Inside
 Industry
Association,
 and
EPOSS.
ECS
–
Strategic

Research
 and
 Innovation
 Agenda
 2022.
 en.
 Jan.
 2022.
 URL:

https://ecscollaborationtool.eu/publication/download/slides-ovidiu
vermesan.pdf
(visited
on
03/31/2022).

[2]
G.

 Jocher
 et
 al.
 ultralytics/yolov5:
 v6.1
 - TensorRT,
 TensorFlow

Edge
 TPU
 and
 OpenVINO
 Export
 and
 Inference.
 Feb.
 2022.
 URL:

https://zenodo.org/record/6222936
(visited
on
03/30/2022).

[3]
A.
Boschi
et
al.
“A
Cost-Effective
Person-Following
System
for
Assis
tive
 Unmanned
 Vehicles
 with
 Deep
 Learning
 at
 the
 Edge”.
 en.
 In:

Machines
8.3
(Aug.
2020),
p.
49.

https://www.zenodo.org
https://www.ecscollaborationtool.eu
https://www.ecscollaborationtool.eu

References
 153

[4]
M.

Kraft
 et
 al.
 “Autonomous,
 Onboard
 Vision-Based
 Trash
 and

Litter
 Detection
 in
 Low
 Altitude
 Aerial
 Images
 Collected
 by
 an

Unmanned
Aerial
Vehicle”.
en.
In:
Remote
Sensing
13.5
(Mar.
2021),

p.
965.

[5]
N.
 J.
 Sanket
 et
 al.
 “PRGFlow:
Benchmarking
 SWAP-Aware
Unified

Deep
Visual
 Inertial
Odometry”.
en.
 In:
 arXiv:2006.06753
 [cs]
 (June

2020).

[6]
M.
Roesler
et
al.
“Deploying
Deep
Neural
Networks
on
Edge
Devices

for
Grape
Segmentation”.
en.
In:
Smart
and
Sustainable
Agriculture.
Ed.

by
Selma
Boumerdassi,
Mounir
Ghogho,
and
Éric
Renault.
Vol.
1470.

Cham:
Springer
International
Publishing,
2021,
pp.
30–43.

[7]
C.
Resende
 et
 al.
 “TIP4.0:
 Industrial
 Internet
of
Things
Platform
 for

Predictive
Maintenance”.
en.
In:
Sensors
21.14
(July
2021),
p.
4676.

[8]
S.
Hosseininoorbin
et
al.
“Exploring
Edge
TPU
for
Network
Intrusion

Detection
in
IoT”.
en.
In:
arXiv:2103.16295
[cs]
(Mar.
2021).

[9]
S.
Hosseininoorbin
et
al.
“Exploring
Deep
Neural
Networks
on
Edge

TPU”.
en.
In:
arXiv:2110.08826
[cs]
(Oct.
2021).

[10]
M.
Alnemari
and
N.
Bagherzadeh.
“Efficient
Deep
Neural
Networks
for

Edge
Computing”.
en.
In:
2019
IEEE
International
Conference
on
Edge

Computing
(EDGE).
Milan,
Italy:
IEEE,
July
2019,
pp.
1–7.

[11]
M.
Antonini
et
al.
“Resource
Characterisation
of
Personal-Scale
Sensing

Models
on
Edge
Accelerators”.
en.
In:
Proceedings
of
the
First
Interna
tional
Workshop
on
Challenges
 in
Artificial
Intelligence
and
Machine

Learning
for
Internet
of
Things.
New
York
NY
USA:
ACM,
Nov.
2019,

pp.
49–55.

[12]
A.
A.
Asyraaf
 Jainuddin
 et
 al.
 “Performance
Analysis
of
Deep
Neu
ral
Networks
 for
Object
Classification
with
Edge
TPU”.
 In:
2020
8th

International
Conference
on
 Information
Technology
 and
Multimedia

(ICIMU).
Aug.
2020,
pp.
323–328.

[13]
A.
Yazdanbakhsh
et
al.
An
Evaluation
of
Edge
TPU
Accelerators
 for

Convolutional
Neural
Networks.
Feb.
2021.

[14]
A.
Boroumand
et
al.
“Google
Neural
Network
Models
for
Edge
Devices:

Analyzing
 and
Mitigating
Machine
Learning
 Inference
Bottlenecks”.

en.
In:
arXiv:2109.14320
[cs]
(Sept.
2021).

[15]
USB
Accelerator
datasheet.
en-us.
URL
:
https://coral.ai/docs/accelera

tor/datasheet/
(visited
on
03/31/2022).

[16]
 J.
Redmon
 et
 al.
 “You
Only
Look
Once:
Unified,
Real-Time
Object

Detection”.
In:
2016
IEEE
Conference
on
Computer
Vision
and
Pattern

Recognition
(CVPR).
June
2016,
pp.
779–788.

https://www.coral.ai
https://www.coral.ai

154
 Efficient
Edge
Deployment
Demonstrated
on
YOLOv5
and
Coral
Edge
TPU

[17]
R.
 Girshick

et
 al.
 “Rich
 Feature
 Hierarchies
 for
 Accurate
 Object

Detection
and
Semantic
Segmentation”.
In:
2014
IEEE
Conference
on

Computer
Vision
and
Pattern
Recognition.
June
2014,
pp.
580–587.

[18]
 J.
Redmon
and
A.
Farhadi.
“YOLOv3:
An
Incremental
Improvement”.

In:
(Apr.
2018).

[19]
TensorFlow
models
 on
 the
Edge
TPU.
 en-us.
URL:
 https://coral.ai
 /

docs
 /
edgetpu
 /
models
 - intro
 /
#supported
–
operations
 (visited
on

03/30/2022).

[20]
M.
Tan,
R.
Pang,
and
Q.
V.
Le.
“EfficientDet:
Scalable
and
Efficient

Object
Detection”.
In:
arXiv:1911.09070
[cs,
eess]
(July
2020).
arXiv:

1911.09070.

[21]
Models
- Object
Detection.
en-us.
URL:
https://coral.ai/models/object
detection/.

[22]
EdgeTPU
 optimizations
 by
 paradigmn

Pull
 Request
 #6808
 ultra
lytics/yolov5.
en.
URL:
https://github.com/ultralytics/yolov5/pull/6808

(visited
on
03/31/2022).

[23]
Performance
measurement
—
TensorFlow
Lite.
en.
URL
:
https://www.

tensorflow.org/lite/performance/measurement
(visited
on
03/30/2022).

[24]
T.-Y.
Lin
et
al.
“Microsoft
COCO:
Common
Objects
in
Context”.
en.
In:

Computer
Vision
–
ECCV
2014.
Ed.
by
David
Fleet
et
al.
LectureNotes

in
Computer
Science.
Cham:
Springer
 International
Publishing,
2014,

pp.
740–755.

[25]
 J.
Hosang,
R.
Benenson,
and
B.
Schiele.
“Learning
Non-maximum
Sup
pression”.
In:
2017
IEEE
Conference
on
Computer
Vision
and
Pattern

Recognition
(CVPR).
ISSN:
1063-6919.
July
2017,
pp.
6469–6477.

[26]
W.
L.
et
al.
“SSD:
Single
Shot
MultiBox
Detector”.
en.
In:
Computer

Vision
 –
ECCV
 2016.
Ed.
 by
Bastian
Leibe
 et
 al.
Lecture
Notes
 in

Computer
Science.
Cham:
Springer
International
Publishing,
2016,
pp.

21–37.

[27]
Y.
Xiong
et
al.
“MobileDets:
Searching
for
Object
Detection
Architec
tures
for
Mobile
Accelerators”.
In:
arXiv:2004.14525
[cs]
(July
2020).

arXiv:
2004.14525.

[28]
M.
Sandler
 et
 al.
 “MobileNetV2:
 Inverted
Residuals
 and
Linear
Bot
tlenecks”.
 In:
 2018
 IEEE/CVF
Conference
 on
Computer
Vision
 and

Pattern
Recognition.
June
2018,
pp.
4510–4520.

[29]
G.
Bradski.
“The
OpenCV
Library”.
In:
Dr.
Dobb’s
Journal
of
Software

Tools
(2000).

[30]
 libjpeg-turbo.
original-date:
2015-07-27T07:11:54Z.
Mar.
2022.
URL:

https://github.com/libjpeg-turbo/libjpeg-turbo
(visited
on
03/31/2022).

https://www.github.com
https://www.github.com
https://www.coral.ai
https://www.coral.ai
https://www.coral.ai
https://www.coral.ai
https://www.tensorflow.org
https://www.tensorflow.org

References
 155

[31]
C.
R.
Harris
et
al.
“Array
programming
with
NumPy”.
en.
 In:
Nature

585.7825
(Sept.
2020),
pp.
357–362.

[32]
Q.
 Wang
 et
 al.

“AUGEM:
 automatically
 generate
 high
 performance

dense
linear
algebra
kernels
on
x86
CPUs”.
en.
In:
Proceedings
of
the

International
Conference
on
High
Performance
Computing,
Network
ing,
 Storage
 and
 Analysis.
 Denver
 Colorado:
 ACM,
 Nov.
 2013,
 pp.

1–12.

https://taylorandfrancis.com

12

Embedded
Edge
Intelligent
Processing
for

End-To-End
Predictive
Maintenance
in

Industrial
Applications

Ovidiu
Vermesan1
and
Marcello
Coppola2

1SINTEF
AS,
Norway

2STMicroelectronics,
France

Abstract

This
article
advances
innovative
approaches
to
the
design
and
implementation

of
 an
 embedded
 intelligent
 system
 for
 predictive
 maintenance
 (PdM)
 in

industrial
applications.
 It
 is
based
on
 the
 integration
of
advanced
artificial

intelligence
 (AI)
 techniques
 into
micro-edge
 Industrial
 Internet
 of
Things

(IIoT)
 devices
 running
 on
 Arm�
 Cortex�
 microcontrollers
 (MCUs)
 and

addresses
the
impact
of
a)
adapting
to
the
constraints
of
MCUs,
b)
analysing

sensor
 patterns
 in
 the
 time
 and
 frequency
 domain
 and
 c)
 optimising
 the

AI
model
architecture
and
hyperparameter
 tuning,
stressing
 that
hardware–

software
co-exploration
is
the
key
ingredient
to
converting
micro-edge
IIoT

devices
 into
 intelligent
PdM
 systems.
Moreover,
 this
article
highlights
 the

importance
of
end-to-end
AI
development
solutions
by
employing
existing

frameworks
and
inference
engines
that
permit
the
integration
of
complex
AI

mechanisms
within
MCUs,
such
as
NanoEdgeTM
 AI
Studio,
Edge
Impulse

and
STM32
Cube.AI.
Both
quantitative
and
qualitative
insights
are
presented

in
complementary
workflows
with
different
design
and
learning
components,

as
well
 as
 in
 the
 backend
 flow
 for
 deployment
 onto
 IIoT
 devices
with
 a

common
inference
platform
based
on
Arm�
Cortex�-M-based
MCUs.
The

use
case
is
an
n-class
classification
based
on
the
vibration
of
generic
motor

rotating
equipment.
The
results
have
been
used
to
lay
down
the
foundation

157

DOI: 10.1201/9781003377382-12
This chapter has been made available under a CC BY-NC 4.0 license.

158
 Embedded
Edge
Intelligent
Processing
for
End-To-End
Predictive
Maintenance

of
the
PdM
strategy,
which
will
be
included
in
future
work
insights
derived

from
anomaly
detection,
regression
and
forecasting
applications.

Keywords:
predictive
maintenance,
smart
sensors
systems,
industrial
internet

of
things,
industrial
internet
of
intelligent
things,
vibration
analysis,
machine

learning,
deep
learning
architecture,
edge-embedded
devices.

12.1
 Introduction
and
Background

Leveraging
AI
methods
 and
 techniques
 at
 the
 edge
 is
 vital
 for
 increasing

the
performance
and
capabilities
of
 the
 intelligent
sensor
systems
and
IIoT

devices
used
in
industrial
manufacturing.
For
many
intelligent
applications,

the
 edge
AI
 processing
 concept
 is
 reflected
 in
 the
 emergence
 of
 different

edge
 layers
 (micro-,
 deep-,
 meta-edge).
 The
 edge
 processing
 continuum

includes
 the
 sensing,
processing
 and
 communication
devices
 (micro-edge)

close
 to
 the
physical
 industrial
 assets
under
monitoring,
 the
gateways
 and

intelligent
 controllers
 processing
 devices
 (deep-edge),
 and
 the
 on-premise

multi-use
computing
devices
 (meta-edge).
This
continuum
creates
a
multi
level
 structure
 that
moves
 up
 in
 processing,
 intelligence,
 and
 connectivity

capability.

Micro-edge
devices
are
 typically
 small
 sensors
and
actuators
equipped

with
microcontrollers
(MCUs)
based
on
Arm�
Cortex�-M
cores
(e.g.,
M0,

M0+,
 M3,
 M4,
 M7)
 or
 open-source
 RISC-V
 instruction
 set
 architecture,

circuits
with
memory,
serial
ports,
peripherals,
and
wireless
capabilities
and

designed
to
perform
and
extend
the
specific
tasks
of
embedded
systems.

Developing
 AI
 functionalities
 for
 micro-edge
 devices
 is
 a
 com
plex
 process
 that
 has
 increased
 potential
 in
 various
 industrial
 applica
tions,
 including
 manufacturing.
 In
 industrial
 manufacturing,
 the
 imple
mentation
 of
 machine
 learning
 (ML)
 and
 deep
 learning
 (DL)
 models

on
 micro-edge-embedded
 devices
 has
 an
 absolute
 advantage
 for
 condi
tion
 monitoring
 and
 PdM/prescriptive
 maintenance
 (PsM)
 operations
 for

industrial
 motors/equipment.
 Using
 AI-enabled
 micro-edge
 devices
 for

motors/equipment
monitoring
in
industrial
processes
can
prevent
downtime

by
alerting
users
 to
perform
preventative
maintenance
based
on
equipment

real-time
conditions.

There
are
several
works
that
provide
a
comprehensive
review
of
frame
works
available
in
the
market
that
currently
permit
the
integration
of
complex

ML
and
DL
mechanisms
within
MCUs
[1][4].

12.2
Machine
and
Deep
Learning
for
Embedded
Edge
Predictive
Maintenance
 159

This
article
researches
and
investigates
different
approaches
to
using
ML

and
 DL
 technologies
 to
 bring
 AI
 capabilities
 to
 micro-edge
 devices
 and

applies
 these
capabilities
 for
classification
 for
PdM
 industrial
applications.

The
 goal
 is
 to
 implement
ML
 and
DL
 techniques
 in
 low-energy
 systems,

including
sensors,
to
perform
intelligent
automated
tasks,
such
as
PdM
and

PsM.

The
approaches
used
in
this
article
illustrate
how
to
optimise
ML
and
DL

models
for
resource-constrained
micro-edge-embedded
devices.
The
article

gives
an
overview
of
the
data
acquisition
and
prediction
aspects
of
ML
and

DL,
discusses
how
to
build
ML
and
DL
models
targeting
micro-edge
devices

and
presents
the
experimental
results
using
different
tools
and
approaches.

The
 article
 is
 organised
 into
 five
 sections.
 The
 introduction
 on
 intel
ligent
 edge
 processing
 real-time
 maintenance
 systems
 and
 description
 of

data-,
model- and
knowledge-driven
methods
for
 time
series
 is
 included
 in

Section
12.1.
Section
12.2
describes
 the
 architecture
 and
design
of
motor

classification
for
PdM,
including
methods
and
possible
end-to-end
flows
and

presents
 the
use
case,
 i.e.,
motor
classification.
Section
12.3
 introduces
 the

implementation
of
the
classification
use
case
using
three
existing
platforms.

Section
12.4
highlights
specific
experiments
performed
and
 the
results
 that

were
achieved
 through
 the
 lens
of
employing
different
 tools.
Section
12.5

addresses
future
research
challenges
and
discusses
the
key
open
issues
related

to
AI
 techniques
and
methods
 in
 implementing
 intelligent
edge
processing

real-time
maintenance
systems
for
the
purposes
of
industrial
applications.

12.2
 Machine
and
Deep
Learning
for
Embedded
Edge

Predictive
Maintenance

For
 industrial
manufacturing
facilities
using
motors
 in
 the
process
 line,
 the

maturity
of
maintenance
practices
 is
a
crucial
determinant
of
 the
ability
 to

operate
 reliably
and
profitably
without
 interruption.
Condition-based
mon
itoring
 maintenance
 (CBM)
 addresses
 uptime
 and
 maintenance
 costs
 by

monitoring
 one
 or
 several
 critical
 measurements
 for
 the
 motors,
 such
 as

temperature,
vibration,
oil
analysis
and
current,
which
are
used
as
indicators

of
an
out-of-specification
condition.
Maintenance
tasks
are
performed
when

needed.
PdM
applies
a
more
extensive
set
of
input
data
and
more
analysis
to

provide
a
more
reliable
 indicator
of
 the
overall
health
and
condition
of
 the

motor
as
well
as
a
more
accurate
prediction
of
a
possible
failure
and
what

action
should
be
considered
to
prevent
it.

160
 Embedded
Edge
Intelligent
Processing
for
End-To-End
Predictive
Maintenance

With
PdM,
the
motors
are
serviced
considering
the
actual
wear
and
tear

and
 service
 needs,
 reducing
 unexpected
 outages,
making
 fewer
 scheduled

maintenance
repairs
or
replacements,
and
using
fewer
maintenance
resources

(including
spare
parts
and
supplies)
while
simultaneously
decreasing
failures.

PdM
provides
 the
prerequisite
 foundation
 for
PsM
and
autonomous
main
tenance
 (by
 executing
 actions
 automatically,
without
human
 intervention).

PsM
builds
on
the
infrastructure
and
data
collected
for
PdM,
following
the

various
corrective
actions
taken
by
maintenance
personnel
and
the
resulting

outcomes.

Figure
 12.1
 illustrates
 a
 typical
 industrial
 motor
 with
 a
 rotor,
 stator,

bearings,
and
shaft
as
essential
components
for
the
engine’s
normal
operation.

The
various
components
conditions
and
operations
are
possible
causes

that
can
generate
anomalous
behaviour,
thus
defining
various
abnormal
states

(classes).
A
large
amount
of
historical
and
real-time
information
is
required

to
identify,
classify,
and
predict
motor’s
possible
failures.
AI-based
ML
and

DL
algorithms
are
suitable
to
deal
with
these
types
of
tasks.

This
 paper
 focuses
 on
 AI-based
 PdM
 approaches,
 which
 learn
 from

historical
and
real-time
data
and
recommend
 the
best
 timing
and
course
of

action
for
a
given
set
of
conditions
and
sub
conditions
employing
ML
and

DL
models
implemented
using
micro-edge-embedded
devices.
For
example,

the
 implementation
 of
 an
 ML
 solution
 into
 a
 PdM
 application
 includes

several
steps:
data
preparation,
feature
engineering,
algorithm
selection
and

parameter
tuning.

The
interaction
between
the
edge
IIoT
devices,
ML
and
DL
have
opened

opportunities
for
new
data-driven
approaches
for
PdM
solutions
in
industrial

processes.
 In
 this
 paper,
 different
 techniques
 and
 tools
 were
 successfully

tested
 using
 various
 methods
 based
 on
 ML
 and
 DL
 to
 predict
 the
 state

of
 industrial
 motors
 and
 to
 detect
 and
 classify
 motors
 conditions
 based

on
 trained
 data.
 The
 PdM
 monitoring
 has
 been
 tested
 on
 measurements

Figure
12.1
 Industrial
motor
components
[5]
[6]

12.3
 Approaches
for
Predictive
Maintenance
 161

performed
on
bench
motors
using
computation
at
the
micro-edge,
allowing

real-time
acquisition,
processing,
and
wireless
communication.

12.3
 Approaches
for
Predictive
Maintenance

AI-based
PdM
approaches
[2][3][7],
employing
ML
and
DL
models
imple
mented
 using
 micro-edge-embedded
 devices,
 are
 designed
 on
 different

hardware
 platforms
 and
 software
 suites,
 generating
 embedded
 code,
 and

performing
 learning
and
 inference
engine
optimisations.
Depending
on
 the

application
 and
 the
 frameworks
 and
 inference
 engines
 for
 integrating
 AI

mechanisms
within
MCUs,
several
variants
of
the
workflows
are
used.

This
 paper
 focuses
 on
 NanoEdgeTM
 AI
 (NEAI)
 Studio
 [14],
 Edge

Impulse
(EI)
[8][10]
and
STM32
Cube.AI
[10][13].

Table
12.1
gives
an
overview
of
the
features
of
these
frameworks,
which

support
the
workflows
of
ML
and
DL
model
development
and
deployment
on

microcontroller
class
devices.
AI/
ML
models
work
on
frameworks
such
as

Keras,
ONNX,
Lasagne,
Caffe,
Convetjs
etc.

Table
12.1
 Frameworks
and
inference
engines
for
integrating
AI
mechanisms
within
MCUs

Framework

Edge
Impulse

Platforms

Arm®
Cortex®-M,

Models

NN,
k-means,

Training
Libraries

Tensor
Flow,

(EI)
 TI
CC1352P,

Arm®
Cortex®-M

regressors

(including
feature

Scikit-Learn

-A,
Espressif
 extraction)

ESP32,
Himax

WE-I
Plus,

TENSAI
SoC

Nano
Edge
AI
 Arm®
Cortex®-M
 Unsupervised
 -
Studio
 (STM32
series)
 learning

(NEAI)

STM32Cube.AI
 Arm®
Cortex®-M
 NN,
k-means,
 PyTorch,

(STM32
series)
 SVM,
RF,
kNN,
 Scikit-Learn,

DT,
 Tensor
Flow,
Keras,

NB,
regressors
 Caffe,
MATLAB,

Microsoft

Cognitive
Toolkit,

Lasagne,

ConvNetJS

162
 Embedded
Edge
Intelligent
Processing
for
End-To-End
Predictive
Maintenance

12.3.1
 Hardware
and
Software
Platforms

The
 experiments
 in
 this
paper
perform
 the
processing
of
various
 types
of

input
data,
including
three-axis
vibration,
temperature,
and
device
logs.
The

data
for
 the
experiments
was
collected
from
bench
motors
using
a
STWIN

Sensor
Tile
Wireless
Industrial
Node
IIoT
device.

This
micro-edge
IIoT
device
comprises
of
three
axis
ultrawide
bandwidth

(DC
 to
 6
 kHz)
 acceleration
 sensor
 (ISM330DHCX),
 a
 12-bit
 analog-to
digital
converter,
a
user-configurable
digital
filter
chain,
a
temperature
sensor,

and
 a
 serial
 peripheral
 interface.
 The
 micro
 electro
 mechanical
 systems

(MEMS)
vibration
sensor
has
a
selectable
sensitivity
(±2,
±4,
±8,
or
±16

g)
and
processing
capabilities
ensured
by
an
Arm�
 Cortex�-M4
processor

(120
 MHz,
 640
 KB
 RAM,
 2
 MB
 Flash).
 The
 micro-edge
 device
 can
 be

powered
externally
or
by
an
 internal
 lithium-ion
battery
and
has
BLE
and

Wi-Fi
connectivity.

The
design
flow
allows
collecting
or
uploading
training
data
from
micro-
edge
devices,
 labelling
 the
data,
 training
an
ML
model,
and
 launching
and

monitoring
ML
models
in
a
production
environment.

The
PdM
AI-based
design
flow
uses
the
sensors
and
hardware
platforms,

software
 development
 kits
 (SDKs),
 frameworks
 and
 inference
 engines
 for

integrating
AI
mechanisms
within
MCUs
 to
generate
code
 to
be
deployed

on
MCUs
that
allow
running
AI
models
in
embedded
systems
by
performing

predictions
at
the
edge.
The
ML
and
DL
models
deployed
on
the
micro-edge

devices
become
part
of
the
firmware
flashed
into
the
MCUs.

A
micro-edge
AI
processing
flow
is
illustrated
in
Figure
12.2.

The
AI-based
flow
uses
an
embedded
compiler
that
can
convert
models
to

C/C++
to
increase
the
efficiency
of
models
trained
on
the
edge
platform
and

reduce
RAM,
storage
usage
and
code
size
by
tens
of
percent.

Figure
12.2
 Micro-edge
AI
processing
flow

12.4
 Experimental
Setup
 163

12.3.2
 Motor
Classification
Use
Case

The
use
case
analysed
in
this
article
is
the
classification
of
the
state
of
a
motor

based
on
the
vibration
measurements
using
an
accelerometer
sensor
from
an

IIoT
device.
The
 signals
covering
all
 states
 to
be
classified
were
collected

using
 a
 built-in
 three-axis
 accelerometer
 (ISM330DHCX)
 to
measure
 the

accelerations
of
three
orthogonal
directions.

In
general,
the
n-class
classification
of
n
different
states
uses
static
models

with
pretrained
libraries.

The
classes
were
defined
based
on
conditions
 (motor
speeds)
and
sub-
conditions
(malfunctions).
The
motor
was
operating
at
fixed
speeds,
which

were
divided
 into
 three
classes
based
on
various
percentages
of
 the
maxi
mum
speed
(50%,
75%
and
100%).
A
malfunction
of
the
motor
(motor
fan

trepidations)
was
added
to
the
second
class
to
obtain
a
new
class.
The
classes

defined
are:

•
MOTOR_OFF:
just
record
signals
when
nothing
is
happening

•
MOTOR_ON_NORMAL_50:
 the

motor
 is
 running
 at
 50%
 of
 the

maximum
speed

•
MOTOR_ON_NORMAL_75:
 the

motor
 is
 running
 at
 75%
 of
 the

maximum
speed

•
MOTOR_ON_NORMAL_75_B:
 the

motor
 fan
 produces
 additional

trepidations
 to
 the
motor,
while
 the
motor
 is
 running
 at
 75%
 of
 the

maximum
speed

•
MOTOR_ON_NORMAL_MAX:
motor
is
running
at
maximum
speed.

12.4
 Experimental
Setup

The
 design
 and
 implementation
 steps
 and
 the
 experimental
 setup
 of
 the

end-to-end
 (E2E)
 classification
 application
 use
 two
 main
 primary
 flows,

including
NEAI
Studio
and
EI.
The
former
creates
ML
static
libraries
based

on
unsupervised
algorithms,
while
 the
 later
employs
deep
neural
networks

(NNs)
for
the
classification
task.
A
third
flow
was
branched
out
from
EI
into

Python
using
Tensor
Flow’s
Keras
API,
and
the
resulted
model
was
fed
onto

STM32Cube.AI.

The
experimental
process
started
by
collecting
the
vibration
signals
from

the
micro-edge
 IIoT
device
mounted
on
 the
motor,
 through
a
simple
data-
logger
application
in
real-time.
The
recorded
signals
were
then
analysed
in

both
the
time
and
frequency
domain,
filtrated,
and
datasets
were
prepared
for

each
flow.
The
classification
AI
models
were
then
built
in
each
flow,
using

http:STM32Cube.AI

164
 Embedded
Edge
Intelligent
Processing
for
End-To-End
Predictive
Maintenance

the
accelerometer
spectral
features
(e.g.,
root
mean
square
(RMS),
frequency

and
amplitude
of
spectral
power
peaks,
etc.)
and
optimise
the
performance.

In
the
end
the
three
models
were
deployed
and
integrated
with
the
firmware

using
STM32
CubeIDE.
Finally,
inference
classifications
were
run
to
note
the

performance
of
the
implementations
and
deployments.

12.4.1
 Signal
Data
Acquisition
and
Pre-processing

Prior
 to
acquiring
 the
signals,
a
 thorough
analysis
of
 the
vibration
patterns

of
 the
motor
have
been
conducted,
 landing
 to
 the
conclusion
 that
 the
most

suitable
sampling
frequency
to
capture
vibration
patterns
is
1667
Hz.

Both
NEAI
 and
EI
offer
 several
ways
 to
 take
 the
measurements
 from

the
 sensor
 IIoT
device
directly
 from
within
 their
GUIs.
Acquiring
 signals

with
datalogger
functionality
in
NEAI
seemed
to
be
the
most
straightforward

data
acquisition
approach
as
it
only
requires
the
SD
card.
In
the
experimental

use
case,
a
simple
 logger
application
was
used
 that
reads
and
 logs
 the
raw

accelerometer
 sensor
 data
 directly
 on
 the
 serial
 port,
 so
 that
 logs
 can
 be

retrieved
from
a
computer
using
serial
tools
such
as
Tera
Term
or
from
the

console
of
the
integrated
development
environment
(IDE).

For
 the
 three-axis
 accelerometer
 sensor,
 a
 collection
 of
 signals
 (split

in
 60%
 training,
 20%
 validation
 and
 20%
 test)
was
 acquired
 for
 each
 of

the
 classes,
with
 a
buffer
 size
of
512
 samples
on
 each
 axis,
 in
 total
1536

values
per
signal.
Thus,
with
a
sampling
frequency
of
1667
Hz,
each
buffer

represents
a
snapshot
of
approximately
300
milliseconds
of
the
accelerometer

temporal
vibration
data,
which
is
sufficient
to
capture
the
essence
of
the
motor

vibration
patterns.
The
vibration
 signals
 collected
 are
visualised
 as
 shown

in
Figure
12.3,
 in
both
 temporal
and
frequency
plots
for
 the
accelerometer

sensor
Z-axis
for
each
of
the
two
classes.

To
be
able
 to
better
differentiate
 the
 individual
classes
and
 thus
ensur
ing
high
accuracy
score,
 the
 recorded
signals
were
processed
 in
 frequency

domain.
Filter
settings
was
activated
in
the
signals
pre-processing
steps.
By

providing
filtering,
only
the
frequencies
that
represent
the
characteristics
of

the
motor
vibration
are
kept,
and
the
rest
are
attenuated.
Filtering
techniques

also
help
to
eliminate
high
frequency
noise
that
interfere
with
the
vibration

signal,
and
eliminate
frequencies
for
transitions
between
states,
which
would

normally
yield
unknown
class.

The
recorded
signals
for
each
class
were
downloaded
and
then
converted

into
a
format
accepted
by
EI,
to
ensure
the
same
signals
are
being
used
for

the
signal
processing,
thus
yielding
similar
results.

12.4
 Experimental
Setup
 165

Figure
12.3
 Visualisation
of
 two
selected
classes
signals
 in
both
 temporal
and
 frequency

domain
with
NEAI

Till
 acceptable
 quality-labelled
 data
 sets
 were
 arrived
 at,
 several
 iter
ations
 were
 performed,
 and
 this
 included
 recording
 new
 signals
 without

background
noise,
collecting/recording
longer
signals
and
even
changing
the

categorisation
of
classes.

12.4.2
 Feature
Extraction,
ML/DL
Model
Selection
and
Training

Both
NEAI
 and
EI
 offer
 an
 automated
mechanism
 for
 generating
 the
AI

model
architecture
and
training,
although
the
mechanisms
differ
since
NEAI

employs
unsupervised
algorithms,
whereas
EI
employs
DL
NNs.

The
benchmarking
process
for
n-class
classification
with
NEAI
involves

searching
through
a
pool
of
ML
algorithms
and
tests
combinations
of
three

elements:
 pre-processing,
ML
 algorithms
 (e.g.,
 random
 forest-RF,
 support

vector
 machines-SVM,
 etc.)
 and
 hyper-parameters
 for
 each
 model.
 Each

combination
 results
 in
 a
 library
 that
 is
 evaluated
 for
 accuracy,
 confidence

and
 memory
 usage,
 and
 the
 results
 provide
 a
 ranking
 of
 these
 libraries.

Accuracy
reflects
the
library’s
ability
to
correctly
attribute
each
signal
to
the

correct
class,
whereas
confidence
reflects
the
library’s
ability
to
separate
the

n-classes.

Figure
12.4
shows
that
the
top
library
for
the
PdM
classification
case
has

an
accuracy
of
100%,
confidence
99.94%,
uses
the
RF
algorithm,
and
takes

6.2kB
RAM
and
8.3
kB
Flash.
100%
means
that
all
classes
are
completely

separated,
there
is
no
overlap.

In
the
“Confusion
Matrix”,
the
200
number
means
that
the
performance

for
each
class
is
100%,
i.e.,
all
200
signals
extracted
from
initial
data
(20%

of
1000
signals)
have
been
properly
classified.

166 Embedded Edge Intelligent Processing for End-To-End Predictive Maintenance

Figure 12.4 Benchmarking with NEAI

In the EI platform, a Spectral Analysis signal processing block was used
to apply a filter, perform spectral analysis, and extract frequency and spectral
power data. A useful aspect of the platform is the possibility to visualise
and explore the features (Figure 12.5). The fact that the features are visually
clustered is a good indication that the model can be trained to perform
the classification. During the first iterations, the features overlapped to a
significant degree and were intertwined, and the trained model had difficulties
differentiating between classes. This problem was addressed by collecting
more signals and increasing the size of the sampling signal to better capture
signal patterns.

It is also possible to calculate and visualise feature importance when
generating the features, indicating how important the features are for each
class compared with all other classes. RMS and peak values of vibration
along the three-axis proved to be the most important features in determining
the class in this case. Based on this information, the dimension reduction
algorithms can be used to simplify the model by deleting the less important
or redundant information from the data set to make it manageable while
maintaining relevance and performance.

To implement the solution in EI, a classification learning block was used,
which employs TensorFlow with Keras. It takes the features from Spectral
Analysis signal processing block and learns to distinguish between the five
classes. The strategy adopted was to start with a small deep NN model and
experiment with it, i.e., two dense layers, using EI graphical user interface
(GUI). Most of the experimentations have been performed around an archi-
tecture consisting of multiple dense layers and dropout layers. Convolutional
layers were also included.

12.4
 Experimental
Setup
 167

Figure
12.5
 Snapshots
of
Feature
Explorer
in
EI
based
on
the
pre-processing
block
early
in

the
process.

At
 the
end
of
 the
 training,
 the
model’s
performance
and
 the
confusion

matrix
of
the
validation
data
can
be
evaluated.
Figure
12.6
shows
an
accuracy

and
a
loss
on
the
training
and
validation
datasets,
comparable
with
the
results

obtained
with
NEAI
with
a
different
model
architecture.
To
avoid
overfitting,

the
learning
rate
was
reduced,
and
more
data
was
collected,
and
the
model

was
re-trained.

12.4.3
 Optimisation
and
Tuning
Performance

Developing
the
most
efficient
ML/DL
flows
for
the
classification
PdM
appli
cation
was
challenging.
It
required
many
iterative
experiments
and
insights

into
 the
workings
of
motor
vibration
patterns,
digital
signal
processing,
AI

algorithms,
architectures,
and
microcontrollers.
Nevertheless,
both
NEAI
and

EI
 provided
 automation
 and
 transparency
 for
 these
 processes,
 though
 to

varying
degrees.

168
 Embedded
Edge
Intelligent
Processing
for
End-To-End
Predictive
Maintenance

Figure
 12.6
 Confusion
 Matrix
 and
 Data
 Explorer
 based
 on
 full
 training
 set:
 Correctly

Classified
(Green)
and
Misclassified
(Red).

For
 the
NEAI
 classification,
 the
 learning
 is
fixed
 at
 library
generation

based
on
the
data
provided
for
each
class.
The
benchmarking
implementation

includes
patented
elements;
 thus,
 the
 internal
working
of
 the
engine
 is
not

transparent.
Nevertheless,
multiple
benchmarks
can
be
created,
and
a
high

degree
of
automation
allows
for
 the
best
results
 to
be
obtained
from
signal

capturing
and
formatting.
The
benchmarking
process
takes
around
60
minutes

when
running
on
a
processing
unit
with
6
CPU
cores.

EI
 offers
 a
 higher
 degree
 of
 transparency
 and
 control
 over
 the
model

architecture
 and
hyperparameters.
The
 strategy
 adopted
 for
 the
 case
of
EI

was
 to
 start
 from
 a
 simple
model,
 experiment
with
 it
 and
 improve
 it
 into

a
 deeper
 and
wider
model.
 For
 this
 improvement
 step
 and
 for
 validation

purposes,
 a
 parallel
 sub-flow
was
 branched
 out
 from
 the
 flow
with
EI
 to

conduct
experiments
 in
a
Python
framework.
The
 training
was
 launched
 in

both
EI
and
Python
and
compared
throughout.
The
updated
architecture
and

12.4
 Experimental
Setup
 169

Figure
12.7
 A
comparison
between
 int8
quantized
and
unoptimized
versions
of
 the
same

model,
showing
the
difference
in
performance
and
results.

hyperparameters
were
exchanged
back
and
forth
between
the
EI
and
Python

frameworks.

The
improvements
consisted
in
making
the
model
deeper
by
adding
more

layers,
 and
wider
by
 increasing
 the
number
of
hidden
units,
 changing
 the

activation
and
optimisation
functions,
learning
rate,
fitting
more
data.

While
 the
 improvement
process
was
 run
manually
 in
Python,
 the
EI’s

Edge
 Optimized
 Neural
 (EONTM)
 Compiler
 [9]
 can
 be
 used
 to
 find
 the

best
solution
for
the
Arm�
Cortex�-M-based
MCUs,
i.e.,
the
most
optimal

combination
of
processing
block
 and
ML
model
 for
 the
given
 set
of
 con
straints,
including
latency,
RAM
usage,
and
accuracy.
Currently,
there
are
a

limited
number
of
MCUs
that
are
supported
and
does
not
include
the
MCU

of
 STWIN
 IIoT
 device
 (Arm�
 Cortex�-M4
 MCU
 STM32L4R9),
 which

operates
at
a
 frequency
of
up
 to
120MHz.
Nevertheless,
 the
estimated
on-
device
performance
could
be
evaluated
for
Cortex-M4F
80MHz,
to
determine

the
impact
of
optimisations
such
as
quantisation
across
different
slices
of
the

datasets
(Figure
12.7).

12.4.4
 Testing

ML/DL
model
 testing
usually
refers
 to
 the
evaluation
of
 the
 trained
model

on
the
testing
dataset
to
analyse
how
well
the
model
performs
against
unseen

data.
However,
model
testing
in
NEAI
and
EI
provide
more
than
that.
Both

platforms
provide
a
microcontroller
emulator
to
test
and
debug
the
generated

model
prior
to
its
deployment
on
the
device.

As
part
of
the
NEAI
toolkit,
a
microcontroller
emulator
is
provided
for

each
 library
 to
 test
 and
 debug
 the
 generated
 model
 without
 the
 need
 to

download,
link
or
compile.
Test
signals
can
be
imported
from
file;
however,

170
 Embedded
Edge
Intelligent
Processing
for
End-To-End
Predictive
Maintenance

Figure
12.8
 Evaluation
of
trained
model
using
NEAI
Emulator
with
live
streaming.

the
signals
were
imported
live
from
the
same
datalogger
application
through

serial
port,
 in
 this
way
 ensuring
 completely
new
 signals,
not
 seen
before.

The
classification
is
automatically
run
using
the
live
signals,
while
changing

motor
speeds
and
triggering
shaft
disturbances,
to
switch
between
classes
and

cover
all
five
states
and
classes.

The
results
are
presented
in
Figure
12.8,
showing
that
the
classifier
man
aged
 to
properly
reproduce
and
detect
all
classes
with
reasonable
certainty

percentages.

In
EI,
 the
 trained
model
was
evaluated
by
assessing
 the
accuracy
using

the
test
dataset.
To
ensure
unbiased
evaluation
of
model
effectiveness,
the
test

samples
were
not
used
directly
or
indirectly
during
training.
The
EI
emulator

took
 care
 of
 extracting
 the
 features
 from
 the
 test
 set,
 running
 the
 trained

model,
and
 reporting
 the
performance
 in
 the
confusion
matrix.
The
 results

are
shown
in
Figure
12.9.

12.4.5
 Deployment

In
the
context
of
micro-edge
embedded
systems,
model
deployment
is
depen
dent
on
the
hardware/software
platform
and
is
more
or
less
automated,
and

in
 essence
 comprises
 three
 steps:
 the
 first
 is
 a
 format
 conversion
 of
 the

fully
trained
model;
the
second
is
a
weight/model
compression
to
reduce
the

amount
of
memory
to
store
the
weights
in
the
target
hardware
platform
and

to
simplify
the
computation
so
it
can
run
efficiently
on
target
processors.
The

third
entails
compiling
 the
model
and
generating
 the
code
 to
be
 integrated

with
the
MCUs
firmware.

12.4
 Experimental
Setup
 171

Figure
12.9
 EI
model
testing
with
test
datasets.

The
back-end
flow
consists
of
wrapping
an
STM32CubeIDE
project
with

the
generated
files
from
the
three
deployed
models,
adding
functionality
on

top
such
as
retrieving
the
accelerometer
values
to
be
fed
to
the
classification

function
and
displaying
the
result,
then
compiled,
built,
and
flashed
onto
the

MCU
target.

The
 flow
 exhibits
 some
 particularities
 in
 the
 case
 of
 the
 three
 model

deployments.

In
the
case
of
NEAI,
the
selected
model
is
deployed
in
the
form
of
a
static

library
 (libneai.a),
 an
AI
header
file
 (NanoEdgeAI.h)
 containing
 functions

and
variable
definitions,
and
a
knowledge
header
file
(knowledge.h)
contain
ing
the
model’s
knowledge.
In
this
case,
first
the
knowledge
was
initialised,

then
the
NanoEdge
AI
classifier
was
run,
and
the
output
was
print
to
the
serial

port.

For
the
EI
deployment,
the
CMSIS-PACK
[11][12]
for
STM32
packaged

all
 signal
 processing
 blocks,
 configuration
 and
 learning
 blocks
 up
 into
 a

single
library
(.pack
file),
which
was
then
added
to
the
STM32
project
using

the
CubeMX
packages
manager.
This
 is
currently
only
 supported
 for
C++

applications
using
CubeIDE.

172
 Embedded
Edge
Intelligent
Processing
for
End-To-End
Predictive
Maintenance

Figure
12.10
 Live
classification
 streaming
with
detected
 state
and
confidence
 (with
Tera

Term)

The
 third
 flow
was
 branched
 out
 from
EI
 and
 further
 developed
 in
 a

Python
framework
using
TensorFlow’s
Keras
API.
The
resulted
model
was

converted
into
optimised
C
code
with
STM32
Cube.AI,
an
extension
of
the

CubeMX
 tool,
which
offers
simple
and
efficient
 interoperability
with
other

ML
frameworks.

12.4.6
 Inference

Inference
classifications
have
been
conducted
with
all
applications
running

directly
from
the
target
hardware
platform
on
the
micro-edge
IIoT
devices,

producing
classification
in
real-time.

The
state
machine
consists
mainly
of
two
states
with
two
functions
“init”

and
 “inferencing”,
 respectively,
 with
 the
 former
 initialising
 the
 deep
 NN

model
 and
 the
 latter
 being
 a
 continuously
 running
 function
 for
 collecting

raw
data
from
the
sensors
on
the
micro-edge
IIoT
device
and
making
clas
sifications
in
real-time.
A
snapshot
from
the
classification
based
on
the
NEAI

model
is
shown
in
Figure
12.10.

12.5
 Discussion
and
Future
Work
 173

The
“?”
 indicate
 the
 state
 switching,
which
happens
after
 several
con
secutive
confirmations
of
 inference
 result
 is
encounter,
and
 this
number
 is

programmable.

12.5
 Discussion
and
Future
Work

Embedding
trained
models
into
the
firmware
code
enables
AI/ML
capabilities

of
 intelligent
 edge
 devices.
 Employing
 different
 frameworks
 that
 permit

the
 integration
of
 complex
AI
mechanisms
within
MCUs
 - such
 as
NEAI

Studio,
EI
 and
 STM32
Cube.AI
 - for
 deploying
AI-based
 PdM
 solutions

into
micro-edge
 embedded
 devices
 provides
 designers
with
 the
 flexibility

to
optimise
implementation
by
experimenting
with
deployment
on
the
same

hardware
platform
 target
using
 several
 frameworks
 and
 inference
 engines.

The
different
workflows
can
be
matched
to
the
PdM
application
requirements

for
generating
embedded
code
and
performing
learning
and
inference
engine

optimisations.

ML
and
NNs
can
now
be
efficiently
deployed
on
 resource-constrained

devices,
 which
 enable
 cost-efficient
 deployment,
 widespread
 availability,

and
 the
 preservation
 of
 sensitive
 data
 in
 PdM
 applications.
However,
 the

trade-offs
associated
with
optimisation
methods,
 software
 frameworks
and

hardware
architecture
on
performance
metrics,
such
as
inference
latency
and

energy
consumption,
are
yet
to
be
studied
and
researched
in
depth.

This
preliminary
work
allowed
for
the
exploration
of
different
scenarios

to
evaluate
trade-offs
between
computational
cost
and
performance
on
actual

classification
tasks,
laying
the
foundation
for
further
investigations
of
more

complex
PdM
systems
using
various
AI-based
techniques.
Future
work
will

aim
to
enlarge
comparison
and
benchmarking
by
considering
more
edge
ML

and
DL
technologies,
workflows,
and
datasets.
A
more
generic
and
complete

PdM
strategy
must
include
insights
from
other
applications,
such
as
anomaly

detection,
regression,
and
forecasting.

Acknowledgements

This
work
is
conducted
under
the
framework
of
the
ECSEL
AI4DI
“Artificial

Intelligence
for
Digitising
Industry”
project.
The
project
has
received
funding

from
the
ECSEL
Joint
Undertaking
(JU)
under
grant
agreement
No
826060.

The
JU
receives
support
from
the
European
Union’s
Horizon
2020
research

174
 Embedded
Edge
Intelligent
Processing
for
End-To-End
Predictive
Maintenance

and
 innovation
 programme
 and
Germany,
Austria,
Czech
Republic,
 Italy,

Latvia,
Belgium,
Lithuania,
France,
Greece,
Finland,
Norway.

References

[1]
R.

 Sanchez-Iborra
 and
 A.F.
 Skarmeta,
 “TinyML-Enabled
 Frugal

Smart
Objects:
Challenges
 and
Opportunities,”
 in
 IEEE
Circuits
 and

Systems
 Magazine,
 vol.
 20,
 no.
 3,
 pp.
 4-18,
 third
 quarter
 2020.

https://doi.org/10.1109/MCAS.2020.3005467

[2]
T.
Hafeez,
L.
Xu
and
G.
Mcardle,
“Edge
Intelligence
for
Data
Handling

and
Predictive
Maintenance
in
IIoT,“
in
IEEE
Access,
Vol.
9,
pp.
49355
49371,
2021.
https://doi.org/10.1109/ACCESS.2021.3069137

[3]
Y.

Liu,
 W.
 Yu,
 T.
 Dillon,
 W.
 Rahayu
 and
 M.
 Li,
 “Empowering

IoT
 Predictive
 Maintenance
 Solutions
 With
 AI:
 A
 Distributed
 Sys
tem
for
Manufacturing
Plant-Wide
Monitoring,“
in
IEEE
Transactions

on
 Industrial
 Informatics,
 vol.
 18,
 no.
 2,
 pp.
 1345-1354,
 Feb.
 2022.

https://doi.org/10.1109/TII.2021.3091774

[4]
H.
Wang,
H.
Sayadi,
S.M.
Pudukotai
Dinakarrao,
A.
Sasan,
S.
Rafatirad

and
 H.
 Homayoun,
 “Enabling
 Micro
 AI
 for
 Securing
 Edge
 Devices

at
Hardware
Level,“
 in
IEEE
Journal
on
Emerging
and
Selected
Top
ics
 in
Circuits
 and
 Systems,
 vol.
 11,
 no.
 4,
 pp.
 803-815,
Dec.
 2021.

https://doi.org/10.1109/JETCAS.2021.3126816

[5]
F.
Cipollini,
L.
Oneto,
A.
Coraddu,
et
al.
“Unsupervised
Deep
Learning

for
Induction
Motor
Bearings
Monitoring”.
Data-Enabled
Discov.
Appl.

3,
1,
2019.
https://doi.org/10.1007/s41688-018-0025-2

[6]
M.
Guenther.
6
Ways
to
Improve
Electric
Motor
Lubrication
for
Better

Bearing
Reliability.
Available
online
at:
https://blog.chesterton.com/lu

brication-maintenance/improving-electric-motor-lubricaiton/

[7]
C.
Kammerer,
M.
Gaust,
M.
Küstner,
P.
Starke,
R.
Radtke,
and
A.
Jesser,

“Motor
Classification
with
Machine
Learning
Methods
 for
Predictive

Maintenance,“
 IFAC-PapersOnLine,
 vol.
 54,
 no.
 1,
 pp.
 1059–1064,

2021.
https://doi.org/10.1016/j.ifacol.2021.08.126

[8]
Edge
Impulse.
Available
online
at:
https://www.edgeimpulse.com

[9]
EON
Tuner.
Available
online
at:
https://docs.edgeimpulse.com/docs/eon

tuner

[10]
 J.

 Jongboom,
 2020.
 “Learning
 for
 all
 STM32
 developers
 with

STM32Cube.AI
 and
Edge
 Impulse”.
Available
online
 at:
https://ww

w.edgeimpulse.com/blog/machine-learning-for-all-stm32-developers

-with-stm32cube-ai-and-edge-impulse

https://www.docs.edgeimpulse.com
https://www.edgeimpulse.com
https://www.doi.org/10.1016/j.ifacol.2021.08.126
https://www.blog.chesterton.com
https://www.doi.org/10.1007/s41688-018-0025-2
https://www.doi.org/10.1109/JETCAS.2021.3126816
https://www.doi.org/10.1109/TII.2021.3091774
https://www.doi.org/10.1109/ACCESS.2021.3069137
https://www.doi.org/10.1109/MCAS.2020.3005467
https://www.blog.chesterton.com
https://www.docs.edgeimpulse.com
https://www.edgeimpulse.com
https://www.edgeimpulse.com

References
 175

[11]
ARM-NN.
2020.
Available
online
at:
https://github.com/ARM-softwar

e/armnn

[12]
CMSIS-NN.
2020.
Available
online
at:
https://arm-software.github.io/C

MSIS_5/NN/html/

[13]
STM32Cube.AI
2020.
Available
online
at:
https://www.st.com/en/embe

dded-software/x-cube-ai.html

[14]
NanoEdgeTM
 AI
Studio.
Automated
Machine
Learning
(ML)
 tool
for

STM32
developers.
Available
online
at:
https://www.st.com/en/develo

pment-tools/nanoedgeaistudio.html

https://www.st.com
https://www.st.com
https://www.arm-software.github.io
https://www.github.com
https://www.github.com
https://www.arm-software.github.io
https://www.st.com
https://www.st.com

https://taylorandfrancis.com

13

AI-Driven
Strategies
to
Implement
a

Grapevine
Downy
Mildew
Warning
System

Luiz
Angelo
Steffenel1,
Axel
Langlet1,
Lilian
Hollard1,

Lucas
Mohimont1,
Nathalie
Gaveau1,
Marcello
Copola2,

Clément
Pierlot3,
and
Marine
Rondeau3

1Université
de
Reims
Champagne
Ardenne,
France

2STMicroelectronics,
France

3Vranken-Pommery
Monopole,
France

Abstract

In
this
paper,
we
assess
the
usage
of
machine
learning
techniques
to
predict

the
 infection
events
of
Downy
Mildew.
Every
year,
Champagne
vineyards

are
 exposed
 to
 grapevine
 diseases
 that
 affect
 the
 plants
 and
 fruits,
 most

caused
by
fungi.
Using
data
from
an
agro-meteorological
station,
we
compare

machine
 learning
 performances
 against
 traditional
 prediction
methods
 for

Downy
Mildew
(Plasmopara
viticola)
infections.
Indeed,
depending
on
the

year,
we
 obtain
 82
 to
 97%
 accuracy
 for
 primary
 infections
 and
 98%
 for

secondary
infections.
These
results
may
guide
the
development
of
Edge
AI

applications
integrated
to
meteorological
stations
and
agricultural
sensors,and

help
winegrowers
 to
 rationalize
 the
vine’s
 treatment,
 limiting
 the
damages

and
the
usage
of
fungicide
or
chemical
products.

Keywords:
 artificial
 intelligence,
 Downy
 Mildew,
 CNN,
 random
 forest,

SVM.

13.1
 Introduction

Every
year,
Champagne
vineyards
are
exposed
to
grapevine
fungal
diseases

that
 affect
 the
 plants
 and
 fruits.
Black
 rot
 (Guignardia
 bidwellii),
Downy

177

DOI: 10.1201/9781003377382-13
This chapter has been made available under a CC BY-NC 4.0 license.

178
 AI-Driven
Strategies
to
Implement
a
Grapevine
Downy
Mildew

mildew
 (Plasmopara
 viticola),
 Powdery
 mildew
 (Erysiphe
 necator),
 and

Graymold
(Botrytis
cinerea)
are
examples
of
diseases
 that
can
affect
grape

quality
 and
 hinder
 the
 productivity.
 Each
 fungus
 develops
 under
 certain

environmental
conditions
and
detecting
favourable
conditions
for
the
spread

of
the
diseases
may
lead
to
proactive
actions
to
prevent
its
dissemination.

In
the
specific
case
of
the
Downy
Mildew
caused
by
Plasmopara
viticola,

there
are
two
cycles
of
infestation
that
affect
the
grapevine.
The
first
one
is

caused
by
sexual
spores
(called
primary
infections)
and
the
second
one
by
the

dissemination
of
asexual
(secondary
 infections)
[4].

The
mechanical
identification
of
the
fungus
development
cycles
and
their

forecast
has
already
been
 the
 subject
of
 several
works,
 including
 [8][5]
or

[7].
Indeed,
several
of
these
works
define
algorithms
to
identify
the
primary

or
 secondary
 infection
 events
using
 a
 combination
of
weather
 and
ground

observed
 variables,
which
 led
 to
 the
 creation
 of
 decision-support
 systems

for
 the
vine-growers.
However,
 these
algorithms
are
 limited
 to
 strict
 input

parameters,
which
are
not
always
available,
and
do
not
explore
the
potential

of
 hidden
 correlations
with
 other
 data
 variables
 such
 as
 dew
 point,
 cloud

coverage
or
vapor
pressure
deficit.

Artificial
intelligence,
on
the
other
side,relies
only
on
the
dataset
rather

than
on
models.
It
uses
computing
power
to
expand
the
search
for
patterns

and
correlations
among
a
broader
and
richer
dataset,
often
reaching
similar

or
better
results
than
existing
models.

Despite
its
potential,
artificial
intelligence
has
been
rarely
used
to
identify

Downy
Mildew
 infections.
Among
 the
precursor
works,
we
can
cite
Chen

et
al.
[3],
which
applied
several
regression
models
as
well
as
random
forest

and
gradient
boost
 to
predict
severe
 infection
events
 in
 the
Bordeaux
vine
yard.
Volpi
et
al.
[9]
also
use
decision
 trees
and
random
forests
 to
 identify

different
diseases
in
Tuscany,
Italy,
but
relying
on
meteorological
data
from

ERA5-Land
instead
of
in-site
sensors.

Interestingly,
artificial
intelligence
is
more
used
to
monitor
crops
through

image
systems
 rather
 than
weather
sensors.
For
 instance,
 [1][2]
use
 image

recognition
 techniques
 to
 identify
 the
 intensity
of
 the
 infections
on
water
melon
or
squash
crops
using
hyperspectral
images
from
aerial
views.
Another

work
[6]
uses
Convolutional
Neural
Networks
to
detect
Plasmopara
viticola

spores
in
microscopic
images.

In
this
paper,
we
explore
the
interest
of
using
machine
learning
techniques

to
 identify
Downy
Mildew
 infections
using
datasets
obtained
 from
 regular

agro-meteorological
sensors.
Our
aim
 is
both
 to
 identify
 the
most
efficient

13.2
 Research
Material
and
Methodology
 179

and
robust
methods
and
to
prepare
the
path
to
their
implementation
on
Edge

AI
devices
deployed
directly
on
the
vineyards.

The
remainder
of
this
paper
is
organized
as
follows:
Section
13.2
presents

the
datasets
and
research
methodology
used
in
this
work.
Section
13.3
intro
duces
the
different
machine
learning
techniques
used
in
this
work,
as
well
as

their
implementation
specifications.
In
Section
13.4
we
present
a
comparative

study
of
machine
learning
strategies,
aiming
at
their
accuracy
as
well
as
their

robustness
over
 the
years.
Section
13.5
goes
beyond
 the
 simple
 results
by

discussing
 the
 impact
of
AI-based
 algorithms
on
 the
monitoring
of
 crops.

Finally,
Section
13.6
concludes
this
work.

13.2
 Research
Material
and
Methodology

13.2.1
 Datasets

The
data
used
in
this
paper
was
obtained
from
a
Promété
AGRI-300
weather

station
installed
at
“Moulin
de
la
Housse”
vineyard
from
Vranken-Pommery

group
in
Reims1.
This
station
provides
hourly
readings
from
several
features

of
interest:

•
Wind
speed
[Km/h]
(max,
average)

•
Wind
gust
[Km/h]
(max)

•
Relative
humidity
[%]
(max,
min,
average)

•
Pluviometry
[l/m2]

•
Leaf
wetting
duration
[min]

•
Dew
point
[C]
(min,
average)

•
Solar
radiation
[W/m2]
(average)

•
Air
temperature
[C]
(max,
min,
average)

•
Vapor
press
deficit
[kPa]
(min,
average)

More
than
20k
entries
were
recorded
for
each
feature
from
2019
to
2021,

except
for
the
Leaf
wetting
duration
that
could
only
be
recorded
in
2019/2020

as
the
sensor
stop
working
in
February
2021.

The
presented
machine
learning
approaches
are
implemented,
optimized

and
 evaluated
 on
 a
 Nvidia
 DGX1
 server
 that
 includes
 eight
 Tesla
 V100

GPUs
connected
through
an
NVlink
network
supporting
up
to
40
GB/s
bidi
rectional
bandwidth.
Regarding
programming
 tools,
we
have
 implemented

our
approaches
using
the
Python
language
with
scikit-learn,
Tensorflow
and

Keras
libraries.

1Data
could
be
provided
upon
request

180
 AI-Driven
Strategies
to
Implement
a
Grapevine
Downy
Mildew

13.2.2
 Labelling
Methodology

To
train
machine
learning
models
to
identify
Mildew
favourable
situations,

we
 adopted
 a
 supervised
 learning
 approach.
To
 label
 the
 training
 dataset,

we
applied
the
algorithms
proposed
by
[7].
Two
different
Mildew
infection

alert
situations
are
identified
in
that
work,
each
one
with
strict
requirements.

Hence,
 primary
 infections
 are
 related
 to
 the
 conditions
 for
winter
 spores’

germination,
which
may
occur
when
the
average
daily
temperature
exceeds

10
◦C
and
 the
precipitation
within
 the
 last
48h
 reaches
10
mm
 (called
“3
10”
flag).
If
rainfall
or
gentle
breeze
(i.e.,
wind
of
speed
greater
than
3.4m/s)

occurs
at
night
within
the
following
48h,
primary
infection
has
presumably

occurred,
causing
the
start
of
the
incubation
period
of
Plasmopora
viticola.

Figure
13.1
schematizes
this
algorithm.

Second
mildew
infections
may
happen
when
the
incubation
period
from

the
first
infection
has
been
completed.
It
depends
on
favourable
night
condi
tions
(FNCs)
conditions
where
the
weather
is
humid
(relative
humidity
(RH)

>80%),
and
the
temperature
is
higher
than
12◦C
for
at
least
2h.
In
such
case,

the
secondary
 infection
warning
 is
 raised
 if
we
also
observe
more
 than
2h

of
uninterrupted
leaf
wetness
(LW)
and
average
temperature
(T)
above
10◦C,

with
precipitation
or
strong
wind
that
can
increase
spore
spread.
Figure
13.2

schematizes
this
algorithm.

Thanks
to
these
two
algorithms,
we
create
two
binary
labels,
one
for
pri
mary
alert
and
the
other
for
secondary
alert,
used
in
independent
classification

models.
These
labels
are
only
used
during
the
training
phase,
as
our
objective

is
to
obtain
accurate
predictions
based
on
the
raw
input
data
from
the
weather

station
sensors.

13.3
 Machine
Learning
Models

This
section
presents
different
strategies
to
model
the
Downy
Mildew
warn
ing
system
using
machine-learning
techniques.
As
presented
in
Section
13.2,

our
 dataset
 covers
 three
 years
 (2019-2021)
 and
 includes
 several
 features

directly
 related
 to
 the
 algorithms
 from
 [7]
 such
 as
 temperature,
 relative

humidity,
pluviometry,
wind
 speed
or
 leaf
wetness.
Other
algorithms
vari
ables
 were
 adapted
 from
 existing
 data,
 so
 the
 absence
 of
 solar
 radiation

(provided
by
 the
weather
 station)
was
used
 as
 an
 indicator
 for
night
 time

instead
of
a
calculation
based
solely
on
the
date.

We
deliberately
kept
other
variables
not
cited
in
the
original
algorithms,

such
as
the
dew
point
and
the
vapor
press
deficit.
As
stated
before,
our
aim

13.3
 Machine
Learning
Models
 181

Figure
13.1
 Algorithm
for
primary
infection
alarms
[7]

is
to
explore
potential
correlations
with
additional
variables.
Similarly,
we
do

not
compare
the
accuracy
with
the
real
risks
in
the
vineyard
but
only
with
the

expected
labels.
Performing
such
comparison
requires
on-site
evaluation
and

a
separate
tagging
from
a
human
operator,
which
is
part
of
our
future
works.

Another
point
to
consider
is
how
to
enter
the
dataset
as
alerts
depend
on

historical
events
from
at
 least
 the
 last
48h.
Instead
of
using
mode
complex

time-series
models
such
as
LSTM
or
GRU,
we
chose
to
feed
the
algorithms

with
a
concatenation
of
the
features
recorded
in
the
last
48h.
This
approach

allows
us
 to
express
 the
problem
 in
a
simpler
way
 that
can
be
approached

using
 a
wider
 range
 of
machine
 learning
 techniques,
 including
 some
 best

adapted
to
constrained
environments
such
as
those
in
a
Edge
AI
scenario.

As
a
result,
we
model
the
problem
as
a
binary
classification
problem,
i.e.,

for
each
level
of
infection
alert
(primary
or
secondary),
we
create
separated
“

182
 AI-Driven
Strategies
to
Implement
a
Grapevine
Downy
Mildew

Figure
13.2
 Algorithm
for
secondary
infection
alarms
[7]

alert”/
“not
alert”
labels.
We
decided
to
split
it
into
two
binary
classification

problems
instead
of
a
multi-class
classification
problem
to
favour
each
alert

type’s
accuracy.
Henceforth,
we
choose
to
compare
five
well-known
binary

classification
techniques:

•
Decision
trees

•
Random
forest

•
Support
Vector
Machines
(SVM)

•
Dense
Neural
Networks
(DNN)

•
Convolutional
Neural
Networks
(CNN)

Decision
 Trees
 and
 Support
 Vector
 Machine
 predictors
 use
 the
 basic

scikit-learn
 implementation
 (DecisionTreeClassifier
and
SVC,
 respectively)

13.4
 Results
 183

with
no
additional
optimisation.
Random
Forests
(RandomForestClassifier)

were
trained
with
the
parameter
n
iterators
=
1000.

The
Dense
Neural
Network
 implemented
 in
Keras
 using
 seven
Dense

layers
with
 respectively
200,
100,
100,
50,
50,10,
and
2
outputs.
Activator

ReLU
was
used
in
all
but
the
last
layer
(None);
the
model
was
compiled
with

Binary
Crossentropy
 (from
 logits=True)
 loss,
Adam
optimizer,
and
Binary

Accuracy
metrics.

Finally,
 the
Convolutional
Neural
Network
was
 implemented
 in
Keras,

using
at
the
input
two
conv2D
layers
(32
and
64
outputs,
respectively),
with

3x3
padding,
0.2
dropout
and
ReLU
activation.
Once
flatted,
a
Dense
network

with
100
outputs,
0.5
dropout
and
ReLU
activation
 sits
 just
before
a
final

Dense
network
with
2
outputs
(Sigmoid
activation).

As
 the
 dataset
 only
 covers
 three
 years,
we
 adopted
 a
 cross-validation

approach
where,
for
each
technique,
we
generated
a
different
model
for
each

respective
year
(2019,
2020
or
2021).
Therefore,
each
model
was
trained
only

with
the
data
from
its
own
year,
split
into
90%
training
and
10%
testing
parts

(randomly
shuffled)
and
later
submitted
to
cross-validation
against
the
other

years.
Not
only
the
cross-validation
helps
identifying
the
most
robust
model

but
also
allows
to
investigate
the
impact
of
the
2021
weather
profile,
which

differed
 from
 the
 two
 previous
 ones
 due
 to
 several
 climatic
 events
 (early

crop
 freeze,
 rainy
weather)
 that
 favoured
 the
spread
of
diseases
and
 led
 to

a
massive
reduction
in
crop
production
and
quality.

13.4
 Results

13.4.1
 Primary
Mildew
Infection
Alerts

As
stated
above,
we
create
three
different
training-validation
datasets,
one
for

each
year.
Therefore,
Table
13.1
compares
the
accuracy
score
from
the
2019’s

model
when
applied
to
2020
and
2021.
The
best
scores
are
presented
in
bold,

showing
that
two
techniques
detach
from
the
others:
CNN
and
SVM.
CNN

shows
slight
better
scores
in
the
2021
dataset
but
is
closely
followed
by
SVM.

In
the
case
of
the
2020’s
model,
Random
Forest
and
SVM
perform
well

for
the
2019
case,
and
almost
all
techniques
(except
simple
Decision
Tree)

present
similar
results
for
the
2021
case
(see
Table
13.2).
Finally,
the
2021’s

model
Random
Forest
seems
the
best
technique
for
the
2019
dataset,
while

SVM
is
better
in
the
case
of
the
2020
dataset
(Table
13.3).
We
can,
however,

point
out
that
Random
Forest
achieves
good
results
in
this
latter
case,
even
if

not
as
good
as
the
SVM
scores.
If
the“
best”
technique
varies
from
year
to

184
 AI-Driven
Strategies
to
Implement
a
Grapevine
Downy
Mildew

Table
13.1
 Accuracy
of
2019
Primary
Infection
Models

2019
 2020
 2021

Decision
Tree
 - 0.607
 0.597

Random
Forest
 - 0.841
 0.743

Support
Vector
Machines
 - 0.978
 0.821

Dense
Neural
Network
 - 0.909
 0.815

Convolutional
Neural
Network
 - 0.978
 0.822

Table
13.2
 Accuracy
of
2020
Primary
Infection
Models

2019
 2020
 2021

Decision
Tree
 0.925
 - 0.797

Random
Forest
 0.935
 - 0.821

Support
Vector
Machines
 0.935
 - 0.821

Dense
Neural
Network
 0.925
 - 0.821

Convolutional
Neural
Network
 0.932
 - 0.821

Table
13.3
 Accuracy
of
2021
Primary
Infection
Models

2019
 2020
 2021

Decision
Tree
 0.921
 0.881
 -
Random
Forest
 0.938
 0.961
 -
Support
Vector
Machines
 0.935
 0.974
 -
Dense
Neural
Network
 0.910
 0.849
 -
Convolutional
Neural
Network
 0.915
 0.895
 -

year,
both
SVM
and
CNNs
show
robust
results,
closely
followed
by
Random

Forest.The
choice
reposes
therefore
in
the
computing
capabilities
available
to

the
devices.

We
can
also
see
that
2021
was
different
from
the
previous
ones.
If
models

from
2019
or
2020
achieve
lower
scores
when
predicting
2021
alerts,
we
can

also
say
 that
models
 trained
with
2021
data
are
among
 the
best
ones
when

predicting
alerts
for
the
previous
years.
This
was
somehow
expected,
as
2021

was
rich
in
favourable
events
for
spreading
diseases
in
the
vineyard.

13.4.2
 Secondary
Mildew
Infection
Alerts

As
 the
meteorological
 station
 stopped
 recording
 leaf
wetness
 in
February

2021,
we
could
not
 tag
Secondary
Mildew
 Infections
on
 the
2021
dataset.

Nonetheless,
we
compare
both
2019
and
2021
models
in
cross-validation,
as

we
previously
did
for
the
Primary
Mildew
Infection.

Hence,
Table
13.4
condenses
the
results
from
all
machine
learning
tech
niques
when
cross
validating
each
year’s
models.
Secondary
Infection
alerts

13.5
 Discussion
 185

Table
13.4
 Accuracy
of
2021
Primary
Infection
Models

2019
(model
2020)
 2020
(model
2019)

Decision
Tree
 0.960
 0.895

Random
Forest
 0.979
 0.988

Support
Vector
Machines
 0.979
 0.991

Dense
Neural
Network
 0.932
 0.991

Convolutional
Neural
 0.980
 0.991

Network

seem
much
easier
to
identify,
with
higher
accuracy
scores.
Unfortunately,
the

absence
of
a
2021
dataset
does
not
allow
a
broader
comparison
under
different

weather
conditions
(2021
presented
the
lowest
accuracy
in
the
Primary
Alert

experiments).

Once
again,
CNN
presents
the
highest
accuracy
scores,
closely
followed

by
 SVM
 and
 Random
 Forest.
 Indeed,
 we
 shall
 point-out
 that
 SVN
 and

Random
Forest
are
good
candidates
when
considering
 the
 implementation

on
environments
with
performance
restrictions,
such
as
in
the
case
of
IoT
/

Edge
AI.

13.5
 Discussion

The
 results
 obtained
 here
 are
 encouraging
 but
 shall
 be
 considered
 in
 the

context
 of
 the
 reduced
 span
 of
 the
 dataset
 gathered
 from
 a
 single
 agro
meteorological
station
installed
since
2019.
A
deeper
analysis
would
require

several
years
of
data,
as
performed
by
[3]
or
[9].

However,
our
main
objective
was
to
conceive
a
proof
of
concept
inscribed

in
the
efforts
of
the
European
project
AI4DI
to
develop
and
disseminate
an

environmental
monitoring
system
based
on
different
industrial
sensors
(e.g.,

TEROS,
 Bosch
 BME68x,
 ST
 Microelectronics)
 connected
 to
 STM32WL

enhanced
by
a
machine
learning
core.
These
sensors
are
expected
to
enable

continuous
monitoring
of
 the
environment,
 the
 soil,
meteorological
condi
tions,
and/or
plant
performances.

Besides
 implementing
AI
models
on
 the
STM32WL,
some
sensors
can

also
be
enriched
with
a
machine
learning
core.
This
is
the
case
of
the
LSM6D

SOX
sensor
from
ST
Microelectronics,
which
comprises
a
set
of
configurable

parameters
and
decision
trees
able
to
run
AI
algorithms
in
the
sensor
itself.

Hence,
this
environment
would
benefit
from
simpler
models
such
as
random

forest
and
SVM,
rather
than
CNN.

186
 AI-Driven
Strategies
to
Implement
a
Grapevine
Downy
Mildew
Warning
System

Today,
while
many
agricultural
weather
meteorological
stations
are
avail
able
on
the
market,
innovation
comes
from
implementing
Edge
AI
directly

on
the
sensors
or,
in
some
cases,
in
the
gateways.
Therefore,
the
current
work

represents
a
primary
effort
to
identify
good
and
robust
models
that
could
be

deployed
in
an
edge
AI
environment.

13.6
 Conclusion

Every
 year,
Champagne
 vineyards
 are
 exposed
 to
 grapevine
 diseases
 that

affect
the
plants
and
fruits,
and
the
Downy
Mildew,
caused
by
Plasmopara

viticola
 is
 a
 common
 disease.
 Forecasting
 the
 infection
 events
 of
Downy

Mildew
 may
 help
 vine
 growers
 to
 rationalize
 the
 treatment
 of
 the
 vine,

limiting
the
damages
and
the
usage
of
fungicide
or
chemical
products.

In
 this
 paper,
 we
 compare
 the
 accuracy
 of
 several
 machine
 learning

techniques
when
applied
to
datasets
from
the
Champagne
region.
By
creating

multiple
models
and
using
cross-validation
across
different
years,
we
were

able
to
identify
three
candidate
techniques
with
close
results,
namely
Convo
lutional
Neural
Networks,
Support
Vector
Machines
and
Random
Forest.

If
CNN
 seems
 to
 be
more
 robust
 across
 different
 years,
 the
 accuracy

difference
is
minimal,and
the
other
techniques
present
an
interest
in
the
case

of
deployment
over
 an
Edge
AI
 infrastructure.
 Indeed,
we
 aim
 to
prepare

the
path
to
the
implementation
of
Downy
Mildew
forecast
models
on
Edge

AI
sensing
devices
that
will
be
deployed
directly
on
the
vineyards
to
closely

monitor
the
crops.

Acknowledgements

This
work
has
been
performed
 in
 the
project
AI4DI:
Artificial
Intelligence

for
 Digitizing
 Industry,
 under
 grant
 agreement
 No
 826060.
 The
 project

is
 cofunded
 by
 grants
 from
 Germany,
 Austria,
 Finland,
 France,
 Norway,

Latvia,
 Belgium,
 Italy,
 Switzerland,
 and
 the
 Czech
 Republic
 and
 - Elec
tronic
 Component
 Systems
 for
 European
 Leadership
 Joint
 Undertaking

(ECSEL
JU).

We
want
to
thank
Vranken-Pommery
Monopole
for
providing
the
datasets

for
the
training.
We
also
thank
the
ROMEO
Computing
Center2
of
Université

de
Reims
Champagne
Ardenne,
whose
Nvidia
DGX-1
server
allowed
us
to

accelerate
the
training
steps
and
compare
several
model
approaches.

2https://romeo.univ-reims.fr

https://www.romeo.univ-reims.fr

References
 187

References

[1]
 J.
Abdulridha,
Y.
Ampatzidis,
J.
Qureshi,
and
P.
Roberts.
Identification

and
classification
of
downy
mildew
severity
stages
in
watermelon
utiliz
ing
aerial
and
ground
remote
sensing
and
machine
learning.
Frontiers
in

Plant
Science,
13,
2022.

[2]
 J.
 Abdulridha,
 Y.

Ampatzidis,
 P.
 Roberts,
 S.
 C.
 Kakarla.
 Detecting

powdery
mildew
disease
 in
squash
at
different
stages
using
UAV-based

hyperspectral
 imaging
 and
 artificial
 intelligence.
Biosystems
Engineer
ing,
197:135–148,
2020.

[3]
M.
Chen,
F.
Brun,
M.
Raynal,
and
D.
Makowski.
Forecasting
severe
grape

downy
mildew
attacks
using
machine
learning.
PLOS
ONE,
15:1–20,
03

2020.

[4]
C.
Gessler,
 I.
Pertot,
and
M.
Perazzolli.
Plasmopara
viticola:
A
 review

of
 knowledge
 on
 downy
 mildew
 of
 grapevine
 and
 effective
 disease

management.
PhytopathologiaMediterranea,
50:3–44,
04
2011.

[5]
E.
Gonzalez-Domínguez,
T.
Caffi,
N.
Ciliberti,
and
V.
Rossi.
A
mecha
nistic
model
of
botrytis
cinerea
on
grapevines
that
includes
weather,
vine

growth
stage,
and
the
main
infection
pathways.
PLOS
ONE,
10(10):1–23,

10
2015.

[6]
 I.
 Hern
 guez,
 I.
 Barrio,
 and
 J.

Tardaguila.
 Artificial
 intelligence
 and
 novel
 sensing
 technologies
 for

assessing
downy
mildew
in
grapevine.
Horticulturae,
7(5),
2021.

[7]
 I.
 Mezei,
 M.
 Lukic,
 L.
 Berbakov,
 B.
 Pavkovic,
 and
 B.
 Radovanovic.

Grapevine
downy
mildew
warning
 system
based
on
nb-iot
 and
 energy

harvesting
technology.
Electronics,
11(3),
2022.

[8]
V.

Rossi,
 T.
Caffi,
 S.
Giosue,
 and
R.
Bugiani.
A
mechanistic
model‘

simulating
primary
infections
of
downy
mildew
in
grapevine.
Ecological

Modelling,
212(3):480–491,
2008.

[9]
 I.
Volpi,
D.
Guidotti,
M.
Mammini,
and
S.
Marchi.
Predicting
symptoms

of
downy
mildew,
powdery
mildew,
and
graymold
diseases
of
grapevine

through
machine
 learning.
 Italian
Journal
of
Agrometeorology,
 (2):57–

69,
Dec.
2021.

ín
éández,
 S.
 Guti rrez,
 S.
 Ceballos,
 R.
 I˜

https://taylorandfrancis.com

14

On
the
Verification
of
Diagnosis
Models

Franz
Wotawa
and
Oliver
Tazl

Graz
University
of
Technology,
Austria

Abstract

Enhancing
 systems
 with
 advanced
 diagnostic
 capabilities
 for
 detecting,

locating,
and
compensating
faults
during
operation
increases
autonomy
and

reliability.
To
assure
that
the
diagnosis-enhanced
system
really
has
improved

reliability,
we
need
–
besides
other
means
–
to
check
the
correctness
of
the

diagnosis
 functionality.
 In
 this
 paper,
we
 contribute
 to
 this
 challenge
 and

discuss
the
application
of
testing
to
the
case
of
model-based
diagnosis,
where

we
 focus
on
 testing
 the
 system
models
used
 for
 fault
detection
and
 local
ization.
We
present
a
simple
use
case
and
provide
a
step-by-step
discussion

on
introducing
testing,
its
capabilities,
and
arising
issues.
We
come
up
with

several
challenges
that
we
should
tackle
in
future
research.

Keywords:
model-based
diagnosis,
testing,
verification
and
validation.

14.1
 Introduction

Every
system
comprising
hardware
faces
the
problem
of
degradation
under

operation,
which
impacts
its
behavior
over
time.
To
prevent
unwanted
behav
ior
 that
may
 lead
 to
harm,
we
have
 to
carry
out
regular
maintenance
 tasks.

Maintenance
 includes
 preventive
 activities
 like
 changing
 the
 tires
 of
 cars

when
 their
surfaces
do
not
meet
regulations
anymore
and
 looking
at
errors

occurring
during
operation.
The
latter
requires
root
cause
identification,
i.e.,

searching
 for
 components
we
have
 to
 repair
 for
 failure
 recovery.
There
 is

no
doubt
 that
 the
maintenance
and
diagnosis
of
engineered
systems
are
of

practical
importance
and,
therefore,
worth
being
considered
in
research.

189

DOI: 10.1201/9781003377382-14
This chapter has been made available under a CC BY-NC 4.0 license.

190
 On
the
Verification
of
Diagnosis
Models

If
we
aim
to
support
maintenance
personnel
carrying
out
diagnoses,
we

need
 to
 automate
 the
 fault
 detection
 and
 localization
 activities.
 Since
 the

beginning
of
artificial
intelligence,
diagnosis
has
been
an
active
research
field

leading
to
expert
systems
and
later
to
model-based
diagnosis.
The
idea
behind

model-based
diagnosis
is
to
use
system
models
for
localizing
the
root
causes

of
detected
 failures.
Early
work
 includes
Davis
 and
 colleagues
 [3]
papers

discussing
the
basic
ideas
and
concepts
behind
model-based
reasoning.
Later,

Reiter
 [15]
 formalized
 the
 idea
 utilizing
 first-order
 logic.
Based
 on
 these

foundations,
 several
authors
have
discussed
 several
applications
of
model-
based
 reasoning
 for
 solving
 real-world
problems.
Applications
 range
 from

power
supply
networks
[1],
the
automotive
domain
[13],
space
probes
[14],

robotics
[7],
self-adaptive
systems
[16],
to
debugging
[6].
For
a
more
recent

paper,
we
refer
to
Wotawa
and
Kaufmann
[22],
where
the
authors
introduced

how
advanced
reasoning
systems
can
be
used
for
computing
diagnosis.
For

recent
applications
of
diagnosis
in
the
context
of
cyber-physical
systems,
have

a
look
at
[9,
23,
21,
20].

In
the
following,
we
illustrate
the
basic
ideas
and
concepts
of
model-based

reasoning
using
a
small
example
circuit
comprising
a
battery
B,
a
switch
S,

and
two
bulbs
L1,
L2.
We
depict
the
circuit
in
Figure
14.1.
If
we
switch
on

S,
we
expect
both
bulbs
to
transmit
light
when
we
assume
the
correctness
of

every
component.
It
is
important
to
consider
such
correctness
assumptions.

For
example,
if
we
switch
on
S,
and
only
one
bulb
(e.g.,
L1)
is
on,
and
the

other
(e.g.,
L2)
is
not,
we
conclude
a
broken
bulb.
But
how
can
we
do
this?

We
may
consider
a
model
for
each
component,
e.g.,
a
correct
battery
provides

electricity,
a
switch
in
the
on
state
takes
the
electricity
from
the
battery
and

transmits
it
to
the
bulbs,
and
a
correct
bulb
produces
light
if
there
is
electricity

available.
When
we
assume
 that
all
components
are
working,
we
receive
a

contradiction
 from
 this
model.
This
 is
due
 to
bulb
L2
 that
should
produce

light
but
we
do
not
observe
it.
If
we
assume
all
components
except
L2
 to
be

correct,
 there
 is
no
contradiction
anymore,
and
we
have
 identified
 the
 root

cause,
i.e.,
L2.

A
prerequisite
of
model-based
diagnosis
 is
 the
availability
of
a
system

model
(or
model
 in
short).
Modeling
 is
not
a
 trivial
 task.
For
model-based

diagnosis,
we
need
models
formulated
in
a
language
that
a
reasoning
system

can
use
for
deriving
logical
conclusions.
Models
are
abstract
representations

of
 the
 system
 structure
 and
 behavior.
Only
 parts
 of
 the
 system
 classified

as
components
 in
 the
model
can
be
part
of
a
derived
 root
cause.
Wires
or

connectors
need
to
be
stated
as
components
if
we
want
to
have
them
included

in
a
diagnosis.
In
model-based
diagnosis,
only
components
used
 in
models

S

B
 L1
 L2

Figure
14.1
 A
simple
electric
circuit
comprising
bulbs,
a
switch
and
a
battery.

14.2
 The
Model
Testing
Challenge
 191

can
be
part
of
a
root
cause.
It
is
also
worth
noting
that
we
can
use
uncertainty

in
model-based
 diagnosis.
De
Kleer
 and
Williams
 [4]
 formalized
 the
 use

of
 fault
 probabilities
 of
 components
 for
 searching
 for
 the
 most
 probable

diagnosis.
 In
addition,
de
Kleer
and
Williams
 introduced
an
algorithm
 for

selecting
 the
 optimal
 probing
 locations
 for
 minimizing
 probing
 steps
 for

identifying
a
single
diagnosis.

In
 this
 manuscript,
 we
 do
 not
 focus
 on
 the
 diagnosis
 methods
 and

processes
 themselves.
 Instead,
 we
 provide
 a
 discussion
 on
 how
 to
 verify

diagnosis
models.
The
challenge
of
model
verification
is
of
uttermost
impor
tance
for
assuring
 that
systems
equipped
with
diagnosis
functionality
work

correctly.
Although
we
may
use
some
of
the
presented
results
for
verifying

diagnosis
models
generated
 by
machine
 learning,
we
 consider
models
 for

model-based
 reasoning
 in
 the
 context
 of
 this
 paper.
 For
 testing
 machine

learning,
we
refer
the
interested
reader
to
a
recent
survey
[24].

The
challenge
of
model-based
diagnosis
and
other
logic-based
reasoning

systems
is
not
that
novel.
Wotawa
[17]
introduced
the
use
of
combinatorial

testing
and
fault
injection
for
testing
self-adaptive
systems
based
on
models.

The
same
author
also
discussed
 the
use
of
combinatorial
 testing
and
meta
morphic
testing
for
theorem
provers
in
[18]
and
the
general
challenge
[19].

In
any
of
 these
papers,
 the
 focus
 is
on
 testing
 the
 implementation
and
not

the
 underlying
models.
Koroglu
 and
Wotawa
 [10]
 also
 contributed
 to
 the

challenge
of
verifying
 the
 reasoning
system
but
 focused
on
 the
underlying

compiler
 that
allows
 reading
 in
 logic
 theories,
 i.e.,
system
models.
Hence,

testing
the
system
models
used
for
diagnosis
is
still
an
open
challenge
worth

tackling
for
quality
assurance.

We
 organize
 this
 paper
 as
 follows:
 In
 Section
 14.2,
we
 introduce
 the

testing
challenge
 in
detail
 including
a
first
solution.
Afterward,
we
present

the
results
when
using
the
provided
solution
in
a
small
case
study.
Finally,
we

discuss
open
issues,
and
further
challenges,
and
conclude
the
paper.

192
 On
the
Verification
of
Diagnosis
Models

Figure
14.2
 The
model-based
diagnosis
principle
and
information
needed
for
testing.

14.2
 The
Model
Testing
Challenge

Before
discussing
the
model
testing
challenge
in
detail,
we
briefly
summarize

model-based
diagnosis
and
the
required
information.
In
Figure
14.2
we
depict

the
basic
architecture
behind
every
model-based
diagnosis
 system.
On
 the

right
side,
we
have
a
(physical)
system
from
which
we
extract
observations.

On
 the
upper
 left
 side,
we
have
 a
model
of
 the
 system.
This
model
 shall

represent
the
system
in
a
way
such
that
expected
observations
can
be
derived.

The
model
 and
 the
 observations
 are
 passed
 to
 a
 diagnosis
 engine,
which

tries
 to
 find
 an
 arrangement
 of
 health
 states
 to
 components
 such
 that
 no

contradiction
can
be
derived.
In
the
simplest
case,
we
only
know
the
correct

behavior
of
components.
We
use
a
 logic
predicate
nab\1
 to
 represent
 the

corresponding
 health
 state.
 The
 diagnosis
 engine
 itself
 is
 assumed
 to
 be

based
on
either
a
 theorem
prover
or
a
constraint
solver.
It
delivers
a
set
of

diagnoses.
Each
diagnosis
 itself
 is
a
set
of
faulty
components.
If
 the
set
of

diagnoses
comprises
the
empty
set,
we
know
that
all
components
are
working

as
expected.

It
is
worth
noting
that
in
the
context
of
this
paper,
we
are
not
interested

in
outlining
the
details
regarding
model-based
diagnosis,
the
modeling
prin
ciples,
and
algorithms.
We
solely
focus
on
testing,
and
specifically
on
testing

the
system
model.
What
we
can
take
with
us
from
Figure
14.2
are
the
inputs

and
outputs
to
the
diagnosis
engine
comprising
the
model,
the
observations,

and
 the
 computed
 diagnoses.
 If
we
want
 to
 verify
 the
 implementation
 of

14.2
 The
Model
Testing
Challenge
 193

the
 diagnosis
 engine,
 we
 can
 use
 models
 and
 observations
 together
 with

the
corresponding
expected
diagnoses
to
define
a
test
case.
However,
when

we
want
 to
 test
 the
models,
which
 are
usually
divided
 into
 two
parts,
 the

component
models,
and
the
structure
of
the
system,
we
have
to
further
think

about
underlying
assumptions
and
prerequisites.

First,
we
have
to
assume
that
the
diagnosis
engine
itself
is
correct.
This

means
that
the
diagnosis
engine
is
delivering
the
right
diagnoses
for
a
given

model
and
observations.
Testing
the
implementation
of
the
diagnosis
engine

might
 also
 comprise
 testing
 the
 underlying
 theorem
 prover
 or
 constraint

solver,
the
implementation
of
the
diagnosis
algorithm,
and
the
compiler
that

is
used
to
load
a
model
and
the
observations
into
the
diagnosis
engine.

Second,
 the
 observations
 themselves
 describe
 the
 data
 that
 have
 been

observed
from
the
system.
Usually,
we
do
not
use
the
raw
data
obtained
from

the
 system
directly.
The
data
 is
usually
mapped
 to
 logical
 representations.

Because
we
are
only
focusing
on
the
verification
of
models
used
for
diagno
sis,
there
might
also
be
faults
occurring
that
originate
from
the
mapping
of

data
to
their
logical
representations.
For
verifying
the
model,
we
do
not
need

to
deal
with
 this
 topic.
We
can
stay
with
 the
abstract
representation
of
real

observations
for
testing.

Finally,
we
assume
 that
models
can
be
divided
 into
component
models

and
 structural
models.
We
 further
 assume
 that
 the
 component
models
 are

generally
valid
and
can
be
used
 in
 several
 systems.
This
assumption
 is
of

particular
 importance
because
one
argument
 in
 favor
of
model-based
diag
nosis
 is
 its
flexibility
 in
adapting
 to
different
systems
and
 its
model
 re-use

capabilities.

Let
us
now
come
up
with
a
definition
of
the
challenge
of
testing
diagnosis

models
where
we
have
the
following
information
given:

1.
A
model
M
 for
components
of
given
types
and
their
connections.

For
testing
we
want
to
have
the
following:

1.
A
set
of
systems
Σ
and
for
each
system
S
∈
Σ
a
model
MS
 representing

the
structure,
i.e.,
its
components
and
connections.

2.
For
 each
 system

S,
 we
 want
 to
 have
 a
 set
 of
 inputs,
 i.e.,
 possible

observations,
and
a
 set
of
expected
diagnoses.
Note
 that
observations

include
 inputs
 and
 outputs
 of
 a
 system,
 and
 control
 commands
 (like

opening
or
closing
a
switch).

Note
that
the
systems,
as
well
as
their
inputs,
must
be
obtained
such
that

they
may
lead
the
diagnosis
engine
to
compute
different
values.
This
principle

194
 On
the
Verification
of
Diagnosis
Models

is
well-known
 in
 testing
where
 testers
 focus
on
 revealing
 faults
and
 try
 to

bring
an
implementation
into
a
state
of
failure.
For
stating
the
problem,
we

do
not
rely
on
automation.
Test
cases
for
diagnosis
models,
and
in
particular

the
behavioral
 part,
may
be
developed
manually
or
using
 any
method
 for

automated
test
case
generation
(if
possible).

In
practice,
we
might
be
interested
in
testing
a
particular
model
compris
ing
a
structural
and
behavioral
part
of
a
given
system.
For
this
variant
of
the

general
model
testing
challenge,
we
only
need
to
come
up
with
observations

and
expected
diagnoses.
In
the
next
section,
we
discuss
generating
test
cases

using
the
two-bulb
example
as
a
use
case.

14.3
 Use
Case

In
 this
 section,
 we
 use
 the
 two-bulb
 example
 from
 Figure
 14.1
 as
 a
 use

case
 for
diagnosis
model
 testing.
We
developed
 the
diagnosis
model
using

the
 input
 format
 of
 the
 Clingo1
 theorem
 prover
 that
 relies
 on
 the
 logic

programming
language
Prolog.
In
Figure
14.3
we
see
the
source
code
of
the

model.
 In
Line
1,
 the
ordinary
behavior
of
 a
battery
 is
given.
 In
 case
 the

battery
 is
correctly
working
 (and
 the
predicate
nab\1
 is
 true),
 the
battery

provides
a
nominal
output
at
 the
pow
port.
 In
 lines
2-4,
we
 formalize
 the

model
of
a
switch.
A
switch
 is
 transferring
 the
power
 from
 the
 in_pow

to
the
out_pow
port
and
vice
versa
if
it
is
correctly
working
an
on. If the

switch
is
off,
there
is
no
power
at
the
output.
Similarly,
in
lines
5-7,
we
see

the
behavior
model
of
bulbs.
If
there
is
nominal
power
on
the
input,
and
the

bulb
is
working
fine,
then
the
bulb
is
shining.
If
there
is
no
power,
there
is
also

no
light.
If
there
is
a
light,
we
know
that
there
must
be
electricity
provided.

In
lines
8-10,
we
have
the
connection
model,
stating
that
there
is
a
transfer

from
one
port
of
a
component
to
another,
and
their
values
must
be
the
same.

The
 latter
 is
stated
 in
Line
10.
Afterward,
we
have
 the
structural
model
of

the
circuit.
First,
we
define
 the
components
of
 the
circuit
b,
s,
l1,
l2
for

the
battery,
 switch,
 lamp
1
 and
 lamp
 2
 respectively.
Second,
we
 state
 the

connections
between
the
ports
of
the
components.

For
 testing
 the
 model
 of
 the
 particular
 two-bulb
 system,
 we
 have
 to

provide
test
cases
comprising
observations
(which
work
as
the
inputs
to
the

model)
and
the
expected
diagnoses
(which
are
the
expected
outputs).
For
the

two
bulb
example,
the
position
of
the
switch
(on,
off),
and
the
state
of
the

1see
https://potassco.org

https://www.potassco.org

14.3
 Use
Case
 195

1.
 val(pow(X),nominal)

:- type(X,bat),
 nab(X).

2.

 val(out_pow(X),V)
 :- type(X,sw),
 on(X),

val(in_pow(X),V),
 nab(X).

3.

 val(in_pow(X),V)
 :- type(X,sw),
 on(X),

val(out_pow(X),V),
 nab(X).

4.
 val(out_pow(X),zero)
 :-
 type(X,sw),
 off(X),
 nab(X).

5.

 val(light(X),on)
 :- type(X,lamp),

val(in_pow(X),nominal),
 nab(X).

6.

 val(light(X),off)
 :- type(X,
 lamp),

val(in_pow(X),zero),
 nab(X).

7.

 val(in_pow(X),
 nominal)
 :- type(X,lamp),

val(light(X),on).

8.
 val(X,V)
 :- conn(X,Y),
 val(Y,V).

9.
 val(Y,V)
 :- conn(X,Y),
 val(X,V).

10.
 :- val(X,V),
 val(X,W),
 not
 V=W.

11.
 type(b,
 bat).

12.
 type(s,
 sw).

13.
 type(l1,
 lamp).

14.
 type(l2,
 lamp).

15.
 conn(in_pow(s),
 pow(b)).

16.
 conn(out_pow(s),
 in_pow(l1)).

17.
 conn(out_pow(s),
 in_pow(l2)).

Figure
14.3
 A
model
for
diagnosis
of
the
two
lamp
example
from
Figure
14.1
comprising

the
behavior
of
the
components
(lines
1-7)
and
connections
(lines
8-10),
and
the
structure
of

the
circuit
(lines
11-18).

two
bulbs
regarding
light
emission
(on,
off)
serve
as
the
inputs.
It
is
worth

noting
that
the
power
supply
of
the
battery
might
also
be
observed.
However,

for
the
initial
testing,
we
only
consider
those
observations
where
we
do
not

require
additional
equipment
for
measurement
in
practice.
Nevertheless,
for

testing,
we
may
also
consider
more
observations.

When
having
3
observations
each
having
a
domain
comprising
2
values,

we
finally
obtain
8
test
cases
covering
all
combinations.
We
depict
this
test

cases
in
Table
14.1.
Note
that
the
first
two
test
cases
(which
are
highlighted

in
gray)
cover
the
correct
behavior
of
the
system,
where
the
switch
is
used

to
 turn
on
and
off
 lamps.
Therefore,
we
see
 the
empty
set
as
 the
expected

diagnosis
 in
 the
 corresponding
 column.
The
 other
 test
 cases
 formalize
 an

incorrect
behavior
of
the
two-bulb
circuit.

For
testing
the
model,
we
run
our
diagnosis
engine
model_diagnose

using
the
observations
of
a
test
case.
In
Clingo
adding
observations
to
models

can
 be
 simple
 done
 via
 linking
 the
model
 into
 a
 file
where
we
 state
 the

2

Table
 14.1
 All
 eight
 test
 cases
 used
 to
 verify
 the
 2-bulb
 example
 comprising
 the
 used

observations
 and
 the
 expected
 diagnoses.
The
P/F
 column
 indicates
whether
 the
 original
√

model
passes
(
)
or
fails
(×)
the
test.

Observations
 Expected
diagnoses
 P/F

1
 on(s).
 val(light(l1),on).
 {{}}

√

{{}}

√

√

val(light(l2,on)).

off(s).
 val(light(l1),off).

val(light(l2,off)).

3
 off(s).
 val(light(l1),on).
 {{s,
l2}}

val(light(l2,off)).
 √

4
 off(s).
 val(light(l1),off).
 {{s,
l1}}

val(light(l2,on)).
 √

5
 off(s).
 val(light(l1),on).
 {{s}}

val(light(l2,on)).
 √

6
 on(s).
 val(light(l1),on).
 {{l2}}

val(light(l2,off)).
 √

7
 on(s).
 val(light(l1),off).
 {{l1}}

val(light(l2,on)).
 √

8
 on(s).
 val(light(l1),off).
 {{b},
{s},
{l1, l2}}

val(light(l2,off)).

196
 On
the
Verification
of
Diagnosis
Models

observations.
For
 the
first
 test
case
 the
file
tle_obs1.pl
comprises
 the

following
statements:

#include
 ¨ .two_lamps_example.pl¨
on(s).

val(light(l1),on).

val(light(l2),on).

The
 first
 line
 includes
 the
 model
 we
 show
 in
 Figure
 14.3,
 which
 we

store
 in
 the
 file
 two_lamps_example.pl.
 For
 executing
 a
 test
 case,

we
 run
 the
 diagnosis
 engine
 in
 a
 shell
 using
 the
 following
 command:

./model_diagnose
 -f
 tle_obs1.pl
 -fault
 2.
In
this
call,
we

ask
for
diagnoses
comprising
up
to
two
components,
which
we
do
via
setting

the
parameter
-fault
to
2.
Finally,
we
used
a
shell
script
to
carry
out
all

test
cases.
We
see
the
outcome
of
testing
in
column
P/F
in
Table
14.1.
The

model
passes
all
tests
successfully.

After
checking
the
correctness
of
diagnosis
results
obtained
when
using

the
model,
we
wanted
 to
evaluate
 the
quality
of
 the
 test
suite.
 In
software

engineering,
measures
 like
 code
 coverage
 or
 the
mutation
 score
 are
 used

for
 this
purpose.
Estimating
 code
 coverage,
 i.e.,
 the
number
of
 rules
used

to
derive
a
contradiction
 for
diagnosis
 is
difficult
because
 theorem
provers

14.3
 Use
Case
 197

Table
14.2
 Running
7
model
mutations
Mi,
where
we
removed
line
i
in
the
original
model

of
Figure
14.3,
using
the
8
test
cases
from
Table
14.1.

M1
 M2
 M3
 M4
 M5
 M6
 M7√ √ √ √ √ √ √

1

2

3

4

5

6

7

8

√
 √

√
 √

√
 √

√
 √

√
 √

√
 √

×
 ×

√

√

√

√

√

√

√

√

×

×

×√

√

√

√

×

×√

×

×

×

√

√

√

√

√

√

√

√

×

×

×

×

×√

usually
do
not
provide
this
information.
Therefore,
we
focused
on
mutation

testing
[2,
12].
The
underlying
idea
is
to
modify
a
program
and
to
have
a
look

at
whether
this
modification
can
be
detected
by
the
test
suite.
The
mutation

score
is
defined
as
the
fraction
of
the
detected
and
all
mutations.
There
are

some
 issues
when
 computing
 the
mutation
 score,
 for
 example,
 equivalent

mutants,
i.e.,
changes
of
the
program
that
are
not
changing
the
behavior.

For
languages
like
Java,
there
are
tools,
e.g.,
[8].
In
our
case,
because
of
a

lack
of
tools,
we
only
removed
rules
as
modification
operators.
In
particular,

we
were
 interested
 in
 looking
at
 the
consequences
 to
 the
diagnosis
 results

when
removing
a
rule
from
a
component
model.
We
define
a
mutant
Mi
as
the

original
program
(from
Figure
14.3)
where
we
removed
the
rule
in
Line
i. In

Table
14.2
we
find
the
results
obtained
for
each
mutant.
We
see
that
there
are

two
mutants
M3
and
M6
that
cannot
be
detected
by
any
test
cases.
Hence,
the

mutation
score
for
our
test
suite
is
 5
 = 0.7143.
To
clarify
the
reason
behind
7

not
having
a
mutation
score
of
1.0
we
analyzed
 the
corresponding
rules
of

mutant
M3
and
M6.
M3
allows
transferring
electricity
also
from
the
output
to

the
input,
which
might
be
appropriate
when
dealing
with
other
circuits.
M6

covers
the
case
where
there
is
zero
power
on
the
input.
Because
there
are
no

other
rules
allowing
to
derive
zero
power,
this
rule
does
not
provide
anything

for
the
reasoning
process
for
this
use
case
and
can
be
removed.
Please
note

that
the
rule
might
be
introduced
again
when
considering
a
different
use
case

where
we
have
to
deal
with
zero
power
at
the
input.

The
question
that
remains
is
whether
the
component
models
can
be
used

for
 other
 systems
 as
 well.
 To
 verify
 the
 corresponding
 property,
 i.e.,
 the

component
models
are
generally
applicable,
we
have
to
come
up
with
new

systems
and
apply
 test
case
generation
again.
 In
 this
use
case,
we
slightly

modified
the
original
two-bulb
example.
We
added
another
switch
in
parallel

such
that
both
provide
the
functionality
of
an
or-gate.
The
lamps
have
to
be

198
 On
the
Verification
of
Diagnosis
Models

S2

S1

L1
 L2B

type(b,
bat).

type(s1,
sw).

type(s2,
sw).

type(l1,
lamp).

type(l2,
lamp).

conn(in_pow(s1),
pow(b)).

conn(out_pow(s1),
in_pow(l1)).

conn(out_pow(s1),
in_pow(l2)).

conn(in_pow(s2),
pow(b)).

conn(out_pow(s2),
in_pow(l1)).

conn(out_pow(s2),
in_pow(l2)).

Figure
14.4
 Another
simple
electric
circuit
comprising
bulbs,
switches
and
a
battery.
This

circuit
 is
 an
 extended
 version
 of
 the
 circuit
 from
Figure
 14.1.
On
 the
 right,
we
 have
 the

structural
model
of
this
circuit
in
Prolog
notation.

off
only
if
both
switches
are
open,
i.e.,
in
their
off
state.
See
Figure
14.4
for

the
schematics
of
the
extended
two-bulb
circuit.

For
testing
the
extended
two-bulb
circuit,
we
have
to
introduce
test
cases.

Similar
to
the
original
circuit,
we
use
all
combinations
of
input
values,
and

manually
computed
the
expected
diagnoses.
We
depict
the
whole
test
suite
in

Table
14.3.
There
we
also
see
the
obtained
results
after
automating
the
test

execution
using
shell
scripts.
For
many
 test
cases,
 the
computed
diagnoses

are
not
equivalent
to
the
expected
ones.
We
conclude
that
the
provided
model

is
not
generally
applicable.

After
carefully
analyzing
the
root
cause
behind
this
divergence,
we
iden
tified
 the
 rule
 in
 Line
 4
 of
 the
 component
 model
 (from
 Figure
 14.3)
 as

problematic.
This
 rule
 states
 that
 an
 open
 switch
 assures
 that
 there
 is
 no

power
on
the
output
of
the
switch.
Unfortunately,
there
might
be
electricity

available
because
of
another
power
supplying
component
 like
given
 in
 the

extended
 two-bulb
example.
Unfortunately,
we
are
also
not
able
 to
remove

this
 rule
because
otherwise,
 the
behavior
of
 the
original
 two-bulb
example

would
change
(see
Table
14.2).
A
solution
would
be
to
introduce
a
specific
or-
component
that
takes
the
outputs
of
the
two
switches
as
inputs
and
provides

power
whenever
at
least
one
power
output
has
a
nominal
value.

14.4
 Open
Issues
and
Challenges

We
can
identify
the
following
results
and
issues
from
the
use
case
discussed

in
the
previous
section.

14.4
 Open
Issues
and
Challenges
 199

Table
14.3
 Test
cases
 for
 the
extended
 two-bulb
example
 from
Figure
14.4
and
 their
 test

execution
results.
In
gray
we
indicate
tests
that
check
the
expected
(fault-free)
behavior
of
the

circuit.

Observations
 Expected
diagnoses
 P/F

1
 on(s1).
 on(s2).
 {{}}

√

val(light(l1,on)).
 val(light(l2),on).

2
 off(s1).
 on(s2).
 {{}}
 ×

val(light(l1,on)).
 val(light(l2),on).

3
 on(s1).
 off(s2).
 {{}}
 ×

val(light(l1,on)).
 val(light(l2),on).

4
 off(s1).
 off(s2).
 {{}}

√

val(light(l1,off)).
 val(light(l2),off).
 √

5
 on(s1).
 on(s2).

val(light(l1,off)).
 val(light(l2),on).

6
 on(s1).
 on(s2).

val(light(l1,on)).
 val(light(l2),off).

7
 on(s1).
 on(s2).

val(light(l1,off)).
 val(light(l2),off).

8
 on(s1).
 off(s2).

val(light(l1,off)).
 val(light(l2),on).

9
 on(s1).
 off(s2).

val(light(l1,on)).
 val(light(l2),off).

10
 on(s1).
 off(s2).

val(light(l1,off)).
 val(light(l2),off).

11
 off(s1).
 on(s2).

val(light(l1,off)).
 val(light(l2),on).

12
 off(s1).
 on(s2).

val(light(l1,on)).
 val(light(l2),off).

13
 off(s1).
 on(s2).

val(light(l1,off)).
 val(light(l2),off).

14
 off(s1).
 off(s2).

val(light(l1,on)).
 val(light(l2),off).

15
 off(s1).
 off(s2).

val(light(l1,off)).
 val(light(l2),on).

16
 off(s1).
 off(s2).

val(light(l1,on)).
 val(light(l2),on).

{{l1}}

√
{{l2}}

√
{{b}, {s1, s2}{l1, l2}}

{{l1}}
 ×

{{l2}}
 ×

{{b}, {s1}{l1, l2}}
 ×

{{l1}}
 ×

{{l2}}
 ×

{{b}, {s2}, {l1, l2}}

 ×

√
{{s1, s2, l2}}

√
{{s1, s2, l1}}

√
{{s1, s2}}

•
Testing
 a
model
 for
 a
 particular
 system
 that
 is
 based
 on
 component

models
 and
 a
 structural
 part
 is
 possible
 but
 requires
 to
 identify
 (i)

the
 input,
 i.e.,
observations
given
 to
 the
system,
and
 (ii)
 the
expected

diagnosis.
From
this
result
the
following
issues
arise:

–
We
 have
 to
 identify
 the
 observations
 given
 to
 the
 system.
This

might
not
be
an
obvious
task
requiring
to
analyse
the
functionality

of
the
system.
We
may
start
with
observations
of
the
input
and
the

output
of
 the
system.
But
 this
might
not
be
a
complete
 test
suite

when
considering
the
mutation
score.

200
 On
the
Verification
of
Diagnosis
Models

–
Furthermore,
we
have
to
consider
different
observations.
We
may

make
use
of
all
combinations
as
we
did
in
the
case
study.
However,

for
 a
 larger
 system,
 this
 is
 infeasible,
 and
 other
 approaches
 are

required.
Combinatorial
testing
[11]
might
be
a
good
starting
point

for
future
research.

–
The
expected
diagnoses
have
to
be
computed
manually.
This
is
a

time-consuming
task.
Hence,
any
means
for
automating
this
step

would
be
highly
appreciated.

•
The
generated
 test
suite
may
not
 lead
 to
one
 that
allows
for
detecting

all
 faults.
Fault
detection
 capabilities
 are
usually
measured
using
 the

mutation
score.
From
the
use
case
discussed
in
the
previous
section,
we

see
that
the
mutation
score,
even
when
considering
only
one
mutation

operator,
 might
 be
 less
 than
 1.0.
 Related
 issues
 and
 future
 research

activities
include:

–
We
need
to
come
up
with
a
well-founded
theory
of
mutation
test
ing
for
logic
rules.
This
also
includes
considering
more
mutation

operators.

–
There
 is
 a
 need
 for
 generating
 test
 cases
 for
 diagnosis
 models

automatically
such
that
the
mutation
score
can
be
maximized.

•
Testing
should
be
extended
to
check
whether
the
component
models
can

be
used
in
other
systems
as
well.
What
is
missing
in
this
context
is:

–
The
automated
generation
of
different
but
still
relevant
systems
for

practical
applications
is
an
open
research
question.
For
each
of
the

generated
systems,
we
need
to
compute
test
suites
and
check
the

correctness
of
the
computed
diagnosis.
Note
that
in
principle,
we

have
an
infinite
number
of
such
systems.
We
have
to
think
about

when
to
stop
testing.

–
 In
 case
 of
 deviations
 between
 the
 expected
 diagnoses
 and
 the

computed
ones,
 someone
 is
 interested
 in
 identifying
 the
 reasons

behind
them.
Hence,
we
need
debugging
functionality
that
may
be

similar
to
previous
work
on
debugging
knowledge
bases
[5].

In
 summary,
 the
main
 challenge
 relies
 on
 the
 automation
 of
 test
 case

generation.
Test
 cases
 or
 at
 least
 the
 expected
 diagnoses
 have
 to
 be
 gen
erated
manually.
Moreover,
we
need
 to
adapt
existing
 testing
methods
and

techniques
for
logic
representations.
Partially
there
is
related
work
someone

can
 start
 with.
 But
 when
 compared
 to
 corresponding
 work
 for
 ordinary

programming
languages,
available
knowledge
can
be
considered
minor.

References
 201

14.5
 Conclusion

In
this
paper,
we
discussed
the
use
of
testing
for
model-based
diagnosis.
We

focused
on
 assuring
 the
quality
of
 system
models
used
 for
 fault
detection

and
 localization.
 We
 discussed
 how
 to
 test
 models
 and
 identified
 arising

shortcomings,
and
future
research
directions.
Testing
a
system
model
comes

in
 two
 flavors:
 (i)
 testing
 a
model
 of
 a
 particular
 system
 and
 (ii)
 testing

component
models
used
 in
different
 system
models.
For
both,
we
need
 to

define
test
cases
comprising
observations
and
expected
diagnoses.
For
testing

component
models,
in
addition,
we
need
to
come
up
with
different
systems.

Issues
and
challenges
include
providing
means
for
answering
the
question
of

when
 to
stop
 testing,
giving
quality
guarantees,
and
 the
automation
of
 test

case
generation.

Acknowledgments

The
 research
 was
 supported
 by
 ECSEL
 JU
 under
 the
 project
 H2020

826060
 AI4DI
 - Artificial
 Intelligence
 for
 Digitising
 Industry.
 AI4DI
 is

funded
 by
 the
 Austrian
 Federal
 Ministry
 of
 Transport,
 Innovation,
 and

Technology
 (BMVIT)
 under
 the
 program
 "ICT
 of
 the
 Future"
 between

May
 2019
 and
 April
 2022.
 More
 information
 can
 be
 retrieved
 from

https://iktderzukunft.at/en/
 .

References

[1]
A.
Beschta,
O.
Dressler,
H.
Freitag,
M.
Montag,
and
P.
Struss.
A
model-
based
 approach
 to
 fault
 localization
 in
power
 transmission
networks.

Intelligent
Systems
Engineering,
1992.

[2]
T.
Budd,
R.
DeMillo,
R.
Lipton,
and
F.
Sayward.
Theoretical
and
empir
ical
studies
on
using
program
mutation
to
test
the
functional
correctness

of
programs.
 In
Proc.
Seventh
ACM
Symp.
on
Princ.
of
Prog.
Lang.

(POPL).
ACM,
January
1980.

[3]
R.
Davis,
H.
Shrobe,
W.
Hamscher,
K.
Wieckert,
M.
Shirley,
and
S.
Polit.

Diagnosis
based
on
structure
and
function.
 In
Proceedings
AAAI,
pages

137–142,
Pittsburgh,
August
1982.
AAAI
Press.

[4]
 J.
de
Kleer
and
B.
C.
Williams.
 Diagnosing
multiple
faults.

Artificial

Intelligence,
32(1):97–130,
1987.

[5]
A.
Felfernig,
G.
Friedrich,
D.
Jannach,
and
M.
Stumptner.

Consistency

based
diagnosis
of
configuration
knowledge
bases.
In
Proceedings
of
the

https://www.iktderzukunft.at

202
 On
the
Verification
of
Diagnosis
Models

European
Conference
on
Artificial
Intelligence
(ECAI),
Berlin,
August

2000.

[6]
G.
Friedrich,
M.
Stumptner,
and
F.
Wotawa.
 Model-based
diagnosis
of

hardware
designs.
Artificial
Intelligence,
111(2):3–39,
July
1999.

[7]
M.
 W.

Hofbaur,
 J.
 Köb,
 G.
 Steinbauer,
 and
 F.
 Wotawa.
 Improving

robustness
 of
mobile
 robots
 using
model-based
 reasoning.
 J.
 Intell.

Robotic
Syst.,
48(1):37–54,
2007.

[8]
R.
Just.
The
Major
mutation
framework:
Efficient
and
scalable
mutation

analysis
 for
Java.
 In
Proceedings
of
 the
 International
Symposium
on

Software
Testing
and
Analysis
(ISSTA),
pages
433–436,
San
Jose,
CA,

USA,
2014.

[9]
D.
Kaufmann,
I.
Nica,
and
F.
Wotawa.

Intelligent
agents
diagnostics

enhancing
cyber-physical
systems
with
self-diagnostic
capabilities.
Adv.

Intell.
Syst.,
3(5):2000218,
2021.

[10]
Y.

Koroglu
 and
 F.
 Wotawa.
 Fully
 automated
 compiler
 testing
 of
 a

reasoning
 engine
 via
 mutated
 grammar
 fuzzing.
 In
 In
 Proc.
 of
 the

14th
IEEE/ACM
International
Workshop
on
Automation
of
Software
Test

(AST),
Montreal,
Canada,
27th
May
2019.

[11]
D.
R.
Kuhn,
R.
N.
Kacker,
and
Y.
Lei.

Introduction
to
Combinatorial

Testing.
 Chapman
&
Hall/CRC
 Innovations
 in
Software
Engineering

and
Software
Development
Series.
Taylor
&
Francis,
2013.

[12]
 J.
A.
Offutt
and
S.
D.
Lee.
 An
empirical
evaluation
of
weak
mutation.

IEEE
Transactions
on
Software
Engineering,
20(5):337–344,
1994.

[13]
C.
 Picardi,
 R.
 Bray,
 F.
 Cascio,
 L.
 Console,
 P.
 Dague,
 O.
 Dressler,

D.
Millet,
B.
Rehfus,
P.
Struss,
and
C.
Vallée.
Idd:
Integrating
diagnosis

in
the
design
of
automotive
systems.
 In
Proceedings
of
the
European

Conference
 on
 Artificial
 Intelligence
 (ECAI),
 pages
 628–632,
 Lyon,

France,
2002.
IOS
Press.

[14]
K.
Rajan,
D.
Bernard,
G.
Dorais,
E.
Gamble,
B.
Kanefsky,
J.
Kurien,

W.
Millar,
N.
Muscettola,
P.
Nayak,
N.
Rouquette,
B.
Smith,
W.
Taylor,

and
Y.-w.
Tung.
 Remote
Agent:
An
Autonomous
Control
System
for

the
New
Millennium.
 In
Proceedings
of
the
14th
European
Conference

on
Artificial
Intelligence
(ECAI),
Berlin,
Germany,
August
2000.

[15]
R.
 Reiter.

 A
 theory
 of
 diagnosis
 from
 first
 principles.
 Artificial

Intelligence,
32(1):57–95,
1987.

[16]
G.
Steinbauer
and
F.
Wotawa.
Model-based
reasoning
for
self-adaptive

systems
- theory
and
practice.
 In
Assurances
for
Self-Adaptive
Systems,

volume
7740
of
Lecture
Notes
 in
Computer
Science,
pages
187–213.

Springer,
Switzerland,
2013.

References
 203

[17]
F.

Wotawa.
 Testing
 self-adaptive
 systems
 using
 fault
 injection
 and

combinatorial
testing.
 In
Proceedings
of
the
Intl.
Workshop
on
Verifica
tion
and
Validation
of
Adaptive
Systems
(VVASS
2016),
pages
305–310,

Vienna,
Austria,
2016.
IEEE.

[18]
F.
Wotawa.

Combining
combinatorial
testing
and
metamorphic
testing

for
testing
a
logic-based
non-monotonic
reasoning
system.
 In
In
Pro
ceedings
of
 the
7th
 International
Workshop
on
Combinatorial
Testing

(IWCT)
/
ICST
2018,
April
13th
2018.

[19]
F.
Wotawa.

On
the
automation
of
testing
a
logic-based
diagnosis
sys
tem.
 In
In
Proceedings
of
the
13th
International
Workshop
on
Testing:

Academia-Industry
Collaboration,
Practice
 and
Research
Techniques

(TAIC
PART)
/
ICST
2018,
April
9th
2018.

[20]
F.

Wotawa.
 Reasoning
 from
 first
 principles
 for
 self-adaptive
 and

autonomous
systems.
 In
E.
Lughofer
and
M.
Sayed-Mouchaweh,
edi
tors,
Predictive
Maintenance
in
Dynamic
Systems
–
Advanced
Methods,

Decision
Support
Tools
and
Real-World
Applications.
Springer,
2019.

[21]
F.
 Wotawa.
 Using
 model-based
 reasoning
 for
 self-adaptive
 control

of
 smart
 battery
 systems.
 In
 Moamar
 Sayed-Mouchaweh,
 editor,

Artificial
 Intelligence
 Techniques
 for
 a
 Scalable
Energy
 Transition
 –

Advanced
Methods,
Digital
Technologies,
Decision
Support
Tools,
and

Applications.
Springer,
2020.

[22]
F.
Wotawa
and
D.
Kaufmann.
Model-based
reasoning
using
answer
set

programming.
Applied
Intelligence,
2022.

[23]
F.
Wotawa,
O.
A.
Tazl,
 and
D.
Kaufmann.

 Automated
 diagnosis
 of

cyber-physical
systems.
In
IEA/AIE
(2),
volume
12799
of
Lecture
Notes

in
Computer
Science,
pages
441–452.
Springer,
2021.

[24]
 J.
M.
Zhang,
M.
Harman,
L.
Ma,
and
Y.
Liu.

Machine
 learning
 test
ing:
Survey,
landscapes
and
horizons.
 IEEE
Transactions
on
Software

Engineering,
48(1):1–36,
2022.

https://taylorandfrancis.com

Index

A

accelerators
3,
7,
32,
129,
154

AI
2,
54,
68,
73,
85,
152,
181

annotation
92,
93,
94,
95

anomaly
detection
82,
86,
88,
173

artificial
intelligence
54,
69,
99,
126,

141,
157,
201

ASIC
1,
11,
143

B

benchmark
7,
29,
46,
91,
95,
131,
147

benchmarking
1,
3,
5,
10,
14,
32,
173

bertology
91

bevel
104,
105,
108,
111,
112

bio-inspired
processing
22

C

causality
91,
95,
97,
100

CNN
12,
76,
88,
89,
143,
182,
186

comparison
2,
9,
24,
46,
84,
105,
185

computer
vision
5,
76,
154

contamination
74,
83,
103,
112

contamination
monitoring

and
management
104

convolutional
neural
networks
27,

145,
182,
186

D

deep
 learning
 3,
 55,
 76,
 129,
 158,

159,
174

deep
learning
architecture
158

defect
detection
73,
77,
82,
83

Downy
Mildew
177,
180,
186,

187

DynapCNN
130,
132,
134,
137

E

edge
AI
103,
141,
161,
179,
186

edge-embedded
 devices
 158,
 159,

161

embedded
systems
22,
152,
162

F

fault
detection
189,
190,
201

fault
localization
113,
201

H

hardware
trust
53

I

image
processing
53

industrial
internet
of
intelligent

things
158

industrial
internet
of
things
157,

158

inference
1,
4,
85,
130,
136,
157,
161,

173

information
extraction
91,
100

IoT
1,
130,
157,
185

205

206
 Index

K

kendryte
130,
132,
134,
139

key
Performance
Indicators
2,
5,
6,
7,

138

L

labelling
76,
84,
180

low
power
3,
130,
141

M

machine
learning
5,
75,
81,
158,
177,

180,
191

machine
vision
73,
76

manufacturing
AI
solutions
81

Mask
R-CNN
76,
77,
78

ML
2,
55,
141,
161,
183

model-based
 diagnosis
 113,
 114,

125,
189,
192

N

neuromorphic
1,
9,
21,
24,
129

neuromorphic
computing
1,
32,
36

neuromorphic
processor
2,
23,
25,
32

O

object
detection
5,
36,
77,
141,
151

P

performance
2,
6,
9,
130,
145,
168,

185

physical
inspection
of
electronics
53

physical
simulation
113

predictive
maintenance
157,
159,
161

R

random
 forest
 165,
 178,
 182,
 183,

186

relation
extraction
91

S

semantic
segmentation
53,
56

semiconductor
wafer
73

smart
sensors
systems
158

spiking
neural
network
26,
38,
129

STM32
129,
130,
157,
171

supervised
learning
82,
84,
161,
180

surface
73,
74,
105,
189

SVM
161,
177,
182,
185

T

tensor
processing
unit
142

testing
77,
113,
169,
171,
189,
201

transfer
 learning
 and
 scalability
 83,

85,
86

TXRF
105,
110,
111

V

verification
and
validation
114,
189,

203

vibration
analysis
158

VPD-ICPMS
105,
106,
107,
111

W

wafer
loops
103,
104

Y

YOLO
76,
78,
141,
145

About
the
Editors

Ovidiu
Vermesan
 holds
 a
 PhD
 degree
 in
microelectronics
 and
 a
Master

of
 International
Business
 (MIB)
 degree.
He
 is
Chief
Scientist
 at
SINTEF

Digital,
Oslo,
Norway.
His
research
interests
are
in
smart
systems
integration,

mixed-signal
embedded
electronics,
analogue
neural
networks,
edge
artificial

intelligence
 and
 cognitive
 communication
 systems.
Dr.
Vermesan
 received

SINTEF’s
2003
 award
 for
 research
 excellence
 for
his
work
on
 the
 imple
mentation
of
a
biometric
sensor
system.
He
is
currently
working
on
projects

addressing
nanoelectronics,
integrated
sensor/actuator
systems,
communica
tion,
cyber–physical
systems
(CPSs)
and
Industrial
Internet
of
Things
(IIoT),

with
applications
in
green
mobility,
energy,
autonomous
systems,
and
smart

cities.
He
has
 authored
or
 co-authored
over
100
 technical
 articles,
 confer-
ence/workshop
papers
and
holds
several
patents.
He
 is
actively
 involved
 in

the
activities
of
European
partnership
for
Key
Digital
Technologies
(KDT).

He
has
coordinated
and
managed
various
national,
EU
and
other
international

projects
related
to
smart
sensor
systems,
integrated
electronics,
electromobil
ity
and
intelligent
autonomous
systems
such
as
E3Car,
POLLUX,
CASTOR,

IoE,
MIRANDELA,
IoF2020,
AUTOPILOT,
AutoDrive,
ArchitectECA2030,

AI4DI,
AI4CSM.
Dr.
Vermesan
 actively
 participates
 in
 national,
Horizon

Europe
 and
 other
 international
 initiatives
 by
 coordinating
 and
 managing

various
projects.
He
is
the
coordinator
of
the
IoT
European
Research
Cluster

(IERC)
and
a
member
of
the
board
of
the
Alliance
for
Internet
of
Things
Inno
vation
(AIOTI).
He
is
currently
the
technical
co-coordinator
of
the
Artificial

Intelligence
for
Digitising
Industry
(AI4DI)
project.

Franz
Wotawa
 received
 a
M.Sc.
 in
Computer
Science
 (1994)
 and
 a
PhD

in
1996
both
 from
 the
Vienna
University
of
Technology.
He
 is
currently
a

professor
of
software
engineering
at
the
Graz
University
of
Technology.
From

the
 founding
of
 the
 Institute
 for
Software
Technology
 in
2003
 to
 the
year

2009
and
starting
in
2020
Franz
Wotawa
has
been
the
head
of
the
institute.

His
research
interests
include
model-based
and
qualitative
reasoning,
theorem

proving,
mobile
robots,
verification
and
validation,
and
software
testing
and

debugging.
Besides
theoretical
foundations,
he
has
always
been
interested
in

207

208
 About
the
Editors

closing
the
gap
between
research
and
practice.
Starting
from
October
2017,

Franz
Wotawa
 is
 the
head
of
 the
Christian
Doppler
Laboratory
for
Quality

Assurance
Methodologies
for
Autonomous
Cyber-Physical
Systems.
During

his
career,
Franz
Wotawa
has
written
more
 than
430
peer-reviewed
papers

for
journals,
books,
conferences,
and
workshops.
He
supervised
100
master’s

and
 38
 Ph.D.
 students.
 For
 his
 work
 on
 diagnosis,
 he
 received
 the
 Life
time
Achievement
Award
of
the
Intl.
Diagnosis
Community
in
2016.
Franz

Wotawa
has
been
a
member
of
a
various
number
of
program
committees
and

organized
several
workshops
and
special
issues
of
journals.
He
is
a
member

of
the
Academia
Europaea,
the
IEEE
Computer
Society,
ACM,
the
Austrian

Computer
Society
(OCG),
and
the
Austrian
Society
for
Artificial
Intelligence

and
a
Senior
Member
of
the
AAAI.

Mario
Diaz
Nava
has
 a
PhD,
 and
M.Sc.
both
 in
 computer
 science,
 from

Institut
National
Polytechnique
de
Grenoble,
France,
 and
B.S.
 in
 commu
nications
 and
 electronics
 engineering
 from
 Instituto
 Politecnico
 National,

Mexico.
He
has
worked
in
STMicroelectronics
since
1990.
He
has
occupied

different
 positions
 (Designer,
 Architect,
 Design
 Manager,
 Project
 Leader,

Program
Manager)
in
various
STMicroelectronics
research
and
development

organisations.
His
selected
project
experience
is
related
to
the
specifications

and
design
of
communication
circuits
(ATM,
VDSL,
Ultra-wideband),
digital

and
analogue
design
methodologies,
system
architecture
and
program
man
agement.
He
currently
has
 the
position
of
ST
Grenoble
R&D
Cooperative

Programs
Manager,
and
he
has
actively
participated,
for
 the
 last
five
years,

in
several
H2020
IoT
projects
(ACTIVAGE,
IoF2020,
Brain-IoT),
working

in
key
areas
such
as
Security
and
Privacy,
Smart
Farming,
IoT
System
mod
elling,
and
edge
computing.
He
is
currently
leading
the
ANDANTE
project

devoted
to
developing
neuromorphic
ASICS
for
efficient
AI/ML
solutions
at

the
edge.
He
has
published
more
than
35
articles
in
these
areas.
He
is
currently

a
 member
 of
 the
 Technical
 Expert
 Group
 of
 the
 PENTA/Xecs
 European

Eureka
 cluster
 and
 a
Chapter
 chair
member
of
 the
ECSEL/KDT
Strategic

Research
Innovation
Agenda.
He
is
an
IEEE
member.
He
participated
in
the

standardisation
of
several
communication
 technologies
 in
 the
ATM
Forum,

ETSI,
ANSI
and
ITU-T
standardisation
bodies.

Björn
Debaillie
 leads
 imec’s
collaborative
R&D
activities
on
cutting-edge

IoT
 technologies
 in
 imec.
 As
 program
 manager,
 he
 is
 responsible
 for

the
 operational
 management
 across
 programs
 and
 projects,
 and
 focusses

on
 strategic
 collaborations
 and
 partnerships,
 innovation
management,
 and

public
 funding
 policies.
As
 chief
 of
 staff,
 he
 is
 responsible
 for
 executive

About
the
Editors
 209

finance
and
operations
management
and
transformations.
Björn
coordinates

semiconductor-oriented
public
funded
projects
and
seeds
new
initiatives
on

high-speed
communications
and
neuromorphic
sensing.
He
currently
 leads

the
35Me
TEMPO
project
on
neuromorphic
hardware
technologies,
enabling

low-power
 chips
 for
 computation-intensive
 AI
 applications
 (www.tempo
ecsel.eu).
Björn
holds
patents
 and
 authored
 international
papers
published

in
 various
 journals
 and
 conference
 proceedings.
 He
 also
 received
 several

awards,
was
elected
as
IEEE
Senior
Member
and
is
acting
in
a
wide
range

of
expert
boards,
technical
program
committees,
and
scientific/strategic
think

tanks.

http://www.tempoecsel.eu
http://www.tempoecsel.eu

	Cover
	Half Title
	Series Page
	Title Page
	Copyright Page
	Dedication
	Acknowledgement
	Table of Contents
	Preface
	List of Figures
	List of Tables
	List of Contributors
	Chapter 1: Benchmarking Neuromorphic Computing for Inference
	1.1: Introduction
	1.2: State of the art in Benchmarking
	1.2.1: Machine Learning
	1.2.2: Hardware

	1.3: Guidelines
	1.3.1: Fair and Unfair Benchmarking
	1.3.2: Combined KPIs and Approaches for Benchmarking
	1.3.3: Outlook : Use-case Based Benchmarking

	1.4: Conclusion
	References

	Chapter 2: Benchmarking the Epiphany Processor as a Reference Neuromorphic Architecture
	2.1: Introduction and Background
	2.2: Comparison with a Few Well-Known Digital Neuromorphic Platforms
	2.3: Major Challenges in Neuromorphic Architectures
	2.3.1: Memory Allocation
	2.3.2: Efficient Communication
	2.3.3: Mapping SNN onto Hardware
	2.3.4: On-chip Learning
	2.3.5: Idle Power Consumption

	2.4: Measurements from Epiphany
	2.5: Conclusion
	References

	Chapter 3: Temporal Delta Layer: Exploiting Temporal Sparsity in Deep Neural Networks for Time-Series Data
	3.1: Introduction
	3.2: Related Works
	3.3: Methodology
	3.3.1: Delta Inference
	3.3.2: Sparsity Induction Using Activation Quantization
	3.3.2.1: Fixed Point Quantization
	3.3.2.2: Learned Step-Size Quantization

	3.3.3: Sparsity Penalty

	3.4: Experiments and Results
	3.4.1: Baseline
	3.4.2: Experiments
	3.4.3: Result Analysis

	3.5: Conclusion
	References

	Chapter 4: An End-to-End AI-based Automated Process for Semiconductor Device Parameter Extraction
	4.1: Introduction
	4.2: Semantic Segmentation
	4.2.1: Proof of Concept and Architecture Overview
	4.2.2: Implementation Details and Result Overview

	4.3: Parameter Extraction
	4.4: Conclusion
	4.5: Future Work
	References

	Chapter 5: AI Machine Vision System for Wafer Defect Detection
	5.1: Introduction and Background
	5.2: Machine Vision-based System Description
	5.3: Conclusion
	References

	Chapter 6: Failure Detection in Silicon Package
	6.1: Introduction and Background
	6.2: Dataset Description
	6.2.1: Data Collection & Labelling

	6.3: Development and Deployment
	6.4: Transfer Learning and Scalability
	6.5: Result and Discussion
	6.6: Conclusion and Outlooks
	References

	Chapter 7: S2ORC-SemiCause: Annotating and Analysing Causality in the Semiconductor Domain
	7.1: Introduction
	7.2: Dataset Creation
	7.2.1: Corpus
	7.2.2: Annotation Guideline
	7.2.3: Annotation Methodology
	7.2.4: Dataset Statistics
	7.2.5: Causal Cue Phrases

	7.3: Baseline Performance
	7.3.1: Train-Test Split
	7.3.2: Causal Argument Extraction
	7.3.3: Error Analysis

	7.4: Conclusions
	References

	Chapter 8: Feasibility of Wafer Exchange for European Edge AI Pilot Lines
	8.1: Introduction
	8.2: Technical Details and Comparison
	8.2.1: Comparison TXRF and VPD-ICPMS Equipment for Surface Analysis
	8.2.2: VPD-ICPMS Analyses on Bevel

	8.3: Cross-Contamination Check-Investigation
	8.3.1: Example for the Comparison of the Institutes

	8.4: Conclusiion
	References

	Chapter 9: A Framework for Integrating Automated Diagnosis into Simulation
	9.1: Introduction
	9.2: Model-based Diagnosis
	9.3: Simulation and Diagnosis Framework
	9.3.1: FMU Simulation Tool
	9.3.2: ASP Diagnose Tool

	9.4: Experiment
	9.5: Conclusion
	References

	Chapter 10: Deploying a Convolutional Neural Network on Edge MCU and Neuromorphic Hardware Platforms
	10.1: Introduction
	10.2: Related Work
	10.3: Methods
	10.3.1: Neural Network Deployment
	10.3.1.1: Task and Model
	10.3.1.2: Experimental Setup
	10.3.1.3: Deployment

	10.3.2: Measuring the Ease of Deployment

	10.4: Results
	10.4.1: Inference Results
	10.4.2: Perceived Effort

	10.5: Conclusion
	References

	Chapter 11: Efficient Edge Deployment Demonstrated on YOLOv5 and Coral Edge TPU
	11.1: Introduction
	11.2: Related Work
	11.3: Experimental Setup
	11.3.1: Google Coral Edge TPU
	11.3.2: YOLOv5

	11.4: Performance Considerations
	11.4.1: Graph Optimization
	11.4.1.1: Incompatible Operations
	11.4.1.2: Tensor Transformations

	11.4.2: Performance Evaluation
	11.4.2.1: Speed-Accuracy Comparison
	11.4.2.2: USB Speed Comparison

	11.4.3: Deployment Pipeline

	11.5: Conclusion and Future Work
	References

	Chapter 12: Embedded Edge Intelligent Processing for End-To-End Predictive Maintenance in Industrial Applications
	12.1: Introduction and Background
	12.2: Machine and Deep Learning for Embedded Edge Predictive Maintenance
	12.3: Approaches for Predictive Maintenance
	12.3.1: Hardware and Software Platforms
	12.3.2: Motor Classification Use Case

	12.4: Experimental Setup
	12.4.1: Signal Data Acquisition and Pre-processing
	12.4.2: Feature Extraction, ML/DL Model Selection and Training
	12.4.3: Optimisation and Tuning Performance
	12.4.4: Testing
	12.4.5: Deployment
	12.4.6: Inference

	12.5: Discussion and Future Work
	References

	Chapter 13: AI-Driven Strategies to Implement a Grapevine Downy Mildew Warning System
	13.1: Introduction
	13.2: Research Material and Methodology
	13.2.1: Datasets
	13.2.2: Labelling Methodology

	13.3: Machine Learning Models
	13.4: Results
	13.4.1: Primary Mildew Infection Alerts
	13.4.2: Secondary Mildew Infection Alerts

	13.5: Discussion
	13.6: Conclusion
	References

	Chapter 14: On the Verification of Diagnosis Models
	14.1: Introduction
	14.2: The Model Testing Challenge
	14.3: Use Case
	14.4: Open Issues and Challenges
	14.5: Conclusion
	References

	Index
	About the Editors

