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Mathematical modeling and system control are employed in many research prob-
lems, ranging from physical and chemical processes to biomathematics and life sciences.
Their theoretical description is closely connected with various areas of pure and applied
mathematics, including nonlinear modeling, integro-differential equations, nonlinear dy-
namics, pattern formation, non-Markovian processes, nonlinear and anomalous transport,
time-delay equations, and so on.

The aim of this Special Issue is to collect original and high-quality contributions
related to the mathematical theory of such processes and phenomena, including dy-
namic models, applied and computational algorithms, controller design, and mathematical
methods, regarded as new and prominent for understanding the problems that arise in
natural phenomena.

This Special Issue will cover new perspectives of the recent theoretical developments
in mathematical modeling and/or optimal control and their illustrative applications in
biology, engineering, finance, and health sciences. It aims to highlight new techniques that
can be applied to the real-life problems that are modeled and to introduce new constructed
effective models for the accurate prediction of infectious diseases, financial crises, etc., into
the literature by adopting suitable controls/control strategies. Moreover, it aims to provide
new analytical and numerical methods to propose appropriate solutions to the real-life
problems of both integer- and fractional-order differential equations and to understand
their complicated behaviors in nonlinear phenomena.

The Special Issue also proposes the latest developments in nonlinear dynamical mod-
eling, optimization, and solution strategies that can be applied to prominent problems in
engineering and biological systems.

Additionally, we will the reader learn new theories and new methods of nonlinear
dynamical systems with regard to modeling and controlling them. It will also help the
reader find new solutions to complex engineering, biological, financial, and life science
problems, providing readers with new insights for novel modeling and optimization
processes and underlining the relation between theory and practice. The topics of this
Special Issue include, but are not limited to, the following:

• Mathematical modeling in real-world phenomena;
• Optimal control strategies in biosystems;
• New analytical and numerical methods for fractional differential equations;
• Modeling of fractional-order systems with and without nonsingular kernels;
• Deterministic and stochastic differential equations arising in science;
• Applications in bioengineering, biology, and health sciences;
• Applications in finance and economic sciences;
• Optimal control problems of a fractional order;

1
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• Modeling of diffusion, heat, mass, and momentum transfer (fluid dynamics);
• Biomechanical and biomedical applications of fractional calculus;
• Impulsive systems;
• Fuzzy differential equations and their applications.

In this Special Issue, the contents of the selected studies that contributed to the topics
listed above can be synthesized as follows:

• Fractional-order approaches used to model and investigate several real-life problems:

– Tariq et al. [1] established new fractional identities and employed them, exploring
several extensions of the fractional H-H type inequality via generalized prein-
vexities. Then, they discussed some applications to the q-digamma and Bessel
functions via their obtained results.

– Adel M. Al-Mahdi [2] proposed a block triangular preconditioner as using the
exact triangular preconditioner leads to a preconditioned matrix with exactly two
distinct eigenvalues. In the algorithm they utilized, the authors used the flexible
preconditioned GMRES method for the outer iterations, the preconditioned
conjugate gradient (PCG) method for the inner iterations, and the fixed point
iteration (FPI) method to handle nonlinearity. Fast convergence was found in the
numerical results by using the proposed preconditioners.

– Debbouche et al. [3] set up a class of nonlinear fractional differential systems with
distributed time delays in the controls and impulse effects. The controllability
criteria for both linear and nonlinear systems were discussed. They also provided
an illustrative example supported by graphical representations to show the
validity of the obtained abstract results.

– Haq et al. [4] developed a within-host viral kinetics model of SARS-CoV-2 under
the Caputo fractional-order operator. They proved the results of the solution’s
existence and uniqueness by using the Banach mapping contraction principle.
Moreover, they provided approximate solutions for the nonlinear fractional
model using the modified Euler method (MEM).

– Rabah et al. [5] discussed a complex nonlinear fractional model of an enzyme
inhibitor reaction where reaction memory was taken into account. Analytical
expressions of the concentrations of the enzyme, substrate, inhibitor, product, and
other complex intermediate species were derived using Laplace decomposition
and differential transformation methods.

– Clemence-Mkhope and Gibson [6] proposed four discrete models, using the
exact spectral derivative discretization finite difference (ESDDFD) method for
a chaotic five-dimensional, conformable fractional derivative financial system,
incorporating ethics and market confidence.

– Clemence-Mkhope and Clemence-Mkhope [7] used the property of the con-
formable fractional derivative (CFD) to show the limitation of the method previ-
ously used in the literature, together with the integer definition of the derivative,
as well as to derive a modified conformable Euler method for the initial value
problem that was considered. A method of constructing generalized derivatives
from the solution of the non-integer relaxation equation was used to motivate
an alternate definition of the CFD and justify alternative generalizations of the
Euler method to the CFD.

• Heat and Fluid Dynamics

– Eswaramoorthi and Loganathan [8] investigated the numerical computation of
Ag/Al2O3 nanofluid over a Riga plate with injection/suction. The energy equa-
tion was formulated using the Cattaneo–Christov heat flux, nonlinear thermal
radiation, and heat sink/source.

– Hossain et al. [9] developed a model to discover the effects of heated cylin-
der configurations in accordance with the magnetic field on natural convective
flow within a square cavity. In the cavity, four types of configurations—left
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bottom-heated cylinder (LBC), right bottom-heated cylinder (RBC), left top-
heated cylinder (LTC), and right top-heated cylinder (RTC)—were considered in
the investigation.

– Eswaramoorthi et al. [10] scrutinized the Darcy–Forchheimer flow of Casson–
Williamson nanofluid in a stretching surface with nonlinear thermal radiation,
suction, and heat consumption. In addition, this investigation assimilated the
influence of Brownian motion, thermophoresis, activation energy, and binary
chemical reaction effects.

• Convection in Porous Mediums

– Ramchandraiah et al. [11] analyzed the thermal instability of rotating convection
in a bidispersive porous layer. Linear stability analysis was employed to examine
the stability of the system.

– Reddy et al. [12] studied the effect of vertical rotation and the magnetic field
on dissolution-driven convection in a saturated porous layer with a first-order
chemical reaction. The system’s physical parameters depended on the Vadasz
number, the Hartmann number, the Taylor number, and the Damkohler number.

– Tamilzharasan et al. [13] developed a mathematical simulation of the steady
mixed convective Darcy–Forchheimer flow of Williamson nanofluid over a linear
stretchable surface. In addition, the effects of Cattaneo–Christov heat and mass
flux, Brownian motion, activation energy, and thermophoresis were also studied.

Therefore, as the editors of this volume, we wish to convey our profound gratitude for
the opportunity to collaborate with MDPI to publish this Special Issue. Our acknowledg-
ment extends with sincere appreciation to the MCA Editorial Office, whose unwavering
support was invaluable throughout this process. It was a pleasure to work under such favor-
able conditions, and we eagerly anticipate the prospect of future collaborations with MCA.

Conflicts of Interest: The authors declare no conflicts of interest.
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Abstract: A method recently advanced as the conformable Euler method (CEM) for the finite differ-
ence discretization of fractional initial value problem Dα

t y(t) = f (t; y(t)), y(t0) = y0, a ≤ t ≤ b,
and used to describe hyperchaos in a financial market model, is shown to be valid only for α = 1. The
property of the conformable fractional derivative (CFD) used to show this limitation of the method is
used, together with the integer definition of the derivative, to derive a modified conformable Euler
method for the initial value problem considered. A method of constructing generalized derivatives
from the solution of the non-integer relaxation equation is used to motivate an alternate definition of
the CFD and justify alternative generalizations of the Euler method to the CFD. The conformable
relaxation equation is used in numerical experiments to assess the performance of the CEM in
comparison to that of the alternative methods.

Keywords: conformable fractional derivative (CFD); conformable Euler method (CEM); modified
conformable Euler method (MCEM); difference quotient representation (DQR); generalized frac-
tional derivative

1. Introduction

Termed the conformable Euler method (CEM), a finite difference discretization method
is adopted in [1] and justified by applying the fractional power series expansion. The
method is proposed to solve equations of the form

Tα
t y(t) = f (t; y(t)), y(t0) = y0, a ≤ t ≤ b (1)

where Tα
t y(t) denotes the conformable fractional derivative (CFD) of order α introduced

in [2], since most differential equations using the CFD do not have exact analytic solu-
tions, so that numerical approximation methods must be developed. The method has the
following form:

α
yk+1 − yk

hα
= f (tk, yk), 0 ≤ k ≤ N, where h =

b − a
N

. (2)

In [1], the method is used to solve conformable fractional differential equation systems
with time delays and in [3], it is used to calculate numerical solutions for testing the
hyperchaos of conformable derivative models for financial systems with market confidence
and ethics risk. The purpose of the present article is to show that, while the CEM (2) clearly
reduces to the ordinary Euler method, it is not valid as a generalization of the standard
forward Euler method to the CFD for 0 < α < 1, and to propose alternative generalizations.
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The CFD was introduced in [2] and is defined as

Tα
t f (t) = lim

ε→0

f
(
t + εt1−α)− f (t)

)
ε

, α ∈ (0, 1]. (3)

Among its basic properties given in [2] is that if both Tα
t f (t) and d

dt f (t) exist, then the
following identity holds:

Tα
t f (t) = t1−α d

dt
f (t). (4)

As stated in [4], “there is a debate among contemporary mathematicians about what it
really means by a fractional derivative . . . as a consequence of introducing” the CFD. While
several mathematical reasons drive this debate, the main one is the identity Equation (4),
which renders questionable the fractionality of the CFD. The following titles capture the
main problem with fractional derivatives and enumerate some of the arguments against
the fractionality of the CFD and its generalizations: What is a Fractional Derivative? [5],
No violation of the Leibniz rule. No fractional derivative [6], Local Fractional Derivatives of
Differentiable Functions are Integer-order Derivatives or Zero [7], No Nonlocality, No Fractional
Derivative [8], The flaw in the conformable calculus: It is conformable because it is not fractional [9]
(see also [10–12]). This has led to the conclusion that “from mathematical point of view the
introduced conformable derivatives does not provide any real improvement to the theory
of fractional calculus in compare with the classical fractional derivatives. Furthermore,
they bring nothing new at least as mathematical advantages in the field of the ordinary
differential equations with fractional derivatives” [10].

Such debate on its nature notwithstanding, the CFD appears to have removed a hurdle
for the use of fractional derivatives, that of being very complex for applications and not easy
to master or use (see [13]) and spurred brisk activity in studies of previously un-explored
phenomena, as is evident from the number of references in for example [12,14]. While the
debate about the “mathematical fractionality” of the CFD continues, the CFD is being used
in applications to arrive at conclusions about, among others, systems with time delays [1],
economic models of financial systems [3], classic games [15], electrical circuits [16,17],
Newtonian [18] and quantum [19] mechanics, HIV therapeutic interventions [20], general
biological modeling [21], and general sub-diffusion processes [14,22]. These continued
uses of the CFD, because of its ease of implementation, to describe various phenomena
considered important make necessary the development of tools for its use. A method has
already been devised as a generalization of the Euler method for the CFD [1] and is being
applied to problems of consequence (e.g., [1,3,15]): it is important therefore that, regardless
of its classification as fractional or not, all methods being developed with such use of
the CFD must be properly examined and benchmarked like any other for all derivative
concepts. It is in this spirit that the work presented in this article offers an assessment of
the CEM and suggests alternative methods for the generalization of the standard forward
Euler method to the CFD.

Motivated in part by dismissals of the CFD as referenced above and the reality that
phenomena are being described with methods employing the CFD, the exact spectral deriva-
tive discretization finite difference (ESDDFD) method was introduced in [23], wherein
fractionality is determined by wave type behavior of processes under study and locality is
defined by the relaxation pattern as follows:

• The Euler (ordinary) exponential function ez ≡ ∞
∑

k=0

zk

k! is local, whereas the Mittag-

Leffler generalized exponential function Eα(z) ≡ Eα,1(z) =
∞
∑

k=0

zk

Γ(αk+1) is non-local

(see, e.g., [24]).
• Debye exponential wave patterns, described by Φ(t) = Φ(t0) exp(−ct) and are not

fractional, whereas Kohlrausch–Williams–Watts (KWW) stretched exponential wave
patterns, described by Φ(t) = Φ(t0) exp(−cαtα) and Φ(t) = Φ(t0)Eα(−cαtα) are
fractional (see, e.g., [25]).
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In that viewpoint, the generalized Caputo derivative can be expressed in terms of
the generalized CFD, just as the Caputo derivative can be expressed in terms of the CFD
(see, e.g., [26]). Further, the generalized RL derivative can be expressed in terms of the
generalized Caputo derivative (which is parallel to the case for the classic Caputo and RL
derivatives (see, e.g., [27]), as well as their Atangana–Baleanu extensions [28], and a parallel
RL extension of the CFD can also be constructed [23]. The ESDDFD method of constructing
generalized non-integer derivatives (NIDs) from the solution of the non-integer relaxation
equation (NIRE), wherein fractionality is determined by wave type behavior as stated
above and the CFD serves as a foundation for NIDs of both Caputo and RL types, is used
in this article to motivate and justify the suggested alternatives for the generalization of the
Euler method for the CFD.

The rest of this article is organized as follows. In the next section, the derivation of the
CEM from [1] is recalled and it is shown that the CEM is valid only for α = 1. In Section 3,
the relationship (4) is used to describe the ordinary Euler method (OEM) for the IVP (1)
and to derive a modified CEM (MCEM). Section 4 recalls the ESDDFD method, and the
exact discretization of the conformable relaxation equation (CRE) is used to justify the
MCEM as well as to motivate an ESDDFD Euler method (EDM). Numerical experiments
are presented in Section 5 assessing the accuracy, against the analytic solution of the CRE,
of the CEM, MCEM, EDM, and OEM. A discussion in Section 6 of the theoretical and
experimental results presented, as well as of recommendations based on those results,
conclude the article.

2. The Conformable Euler’s Method

In this section, the derivation of the CEM is recalled and its validity is discussed.

2.1. Derivation of the Conformable Euler’s Method

The method (2), referred to in [1,3,15] as the conformable Euler’s method for (3), is
obtained from truncation of a power series expansion as follows. Since h = tk+1 − tk, it is
assumed that there exist θk where 0 < θk < 1 is such that

y(tk+1)− y(tk) =
1
α

hα(Dα
t y)(tk) +

1
2α2 h2α

(
D2α

t y
)
(tk + θkh). (5)

Letting y(tk+1)− y(tk) −→ yk+1 − yk and substituting (Dα
t y)(tk) = f (tk, yk) into (5)

results in
yk+1 − yk =

1
α

hα f (tk, yk) +
1

2α2 h2α
(

D2α
t y
)
(tk + θkh),

or, equivalently

α
yk+1 − yk

hα
= f (tk, yk) +

1
2α

hα
(

D2α
t y
)
(tk + θh). (6)

For small enough h, ignoring the second term on the right-hand side of (6) yields the
conformable Euler’s method (2):

α
yk+1 − yk

hα
= f (tk, yk), (7)

which reduces to the usual Euler’s method for α = 1.

2.2. Validity of the Conformable Euler’s Method

Since the CFD satisfies property (4), substituting (Dα
t y)(tk) = (tk)

1−α dy
dt (tk) into (5)

results in
yk+1 − yk =

1
α

hα(tk)
1−α dy

dt
(tk) +

1
2α2 h2α

(
D2α

t y
)
(tk + θkh),

7
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or, equivalently

α
yk+1 − yk

hα
= (tk)

1−α dy
dt

(tk) +
1

2α
hα
(

D2α
t y
)
(tk + θh). (8)

For small enough h, ignoring the second term on the right-hand side of (8) yields

α
yk+1 − yk

hα
= (tk)

1−α dy
dt

(tk),

and therefore
α

hα−1
yk+1 − yk

h
= (tk)

1−α yk+1 − yk
h

,

from which it follows that
αh1−α = (tk)

1−α. (9)

Next, let us consider separately the cases of (9) (a) t0 = 0 and (b) t0 �= 0

(a) If t0 = 0, then tk = kh, so that

αh1−α = (tk)
1−α = (kh)1−α = k1−αh1−α,

from which we conclude that
α = k1−α,

whose only constant solution is α = 1.

(b) If t0 �= 0, then tk = t0 + kh, so that

αh1−α = (tk)
1−α = (t0 + kh)1−α = h1−α

(
t0

h
+ k
)1−α

,

from which we conclude that

α =

(
t0

h
+ k
)1−α

, (10)

whose only constant solution is α = 1. Note that, if α < 1 is assumed on the right-hand
side of (10), then for fixed t0, k, and writing the left-hand side as α(h), results in α(h) → ∞
as h → 0 , a contradiction.

Since (9) holds if, and only if, both (2) and (4) hold, we conclude therefore that both (2)
and (4) hold if, and only if, α = 1.

3. The Ordinary Euler’s and Modified Conformable Euler’s Methods

Next, the ordinary Euler method (OEM), obtained by re-writing the CFD in terms of
the integer-order derivative, and a modified Euler method proposed in [29] are described.

3.1. The Ordinary, Integer-Order Euler’s Method

As mentioned in the introduction, one of the main reasons for the dismissal of the
CFD as an NID is the property (4), which may be used to re-write Equation (1) in the
following form,

d
dt

y(t) = tα−1 f (t; y(t)), y(t0) = y0, a ≤ t ≤ b. (11)

However, because of the singularity at t = 0, the re-written problem (11) is ill-posed
and its ordinary Euler method (OEM) representation,

yk+1 − yk
h

= tα−1
k f (tk, yk), (t0, y0), (12)

8
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cannot be implemented on any interval of the form [0, b] without input additional to that
of the given IVP (1). It can therefore be argued that the problem solved by implementing
(12) with such additional information, such as

yk+1 − yk
h

= tα−1
k f (tk, yk), (t0, y0), (t1, y1), (13)

which is used in Section 4, is not the same as (12).

3.2. The Modified Conformable Euler’s Method

In [29], a method consistent with the definition of the CFD and property (4) is obtained
by rewriting t1−α as a derivative and then using the α = 1 definition of the derivative as
follows:

Tα
t y(t) = t1−α d

dt y(t) =
(

d
dt y(t)

)
/
(

1
α

d
dt (t

α)
)

= lim
h→0

(
y(t+h)−y(t)

h

)
/
(

1
α
(t+h)α−tα

h

)
= αlim

h→0

(
y(t+h)−y(t)
(t+h)α−tα

)
.

(14)

For small enough h, therefore, and making the identifications

t −→ tk, t + h −→ tk+1 , y(t + h) −→ yk+1, y(t) −→ yk (15)

in (14) result in the following discrete representation of C
0 Tα

t y(t):

Tα
t y(t) = αlim

h→0

(
y(t + h)− y(t)
(t + h)α − tα

)
→ α

yk+1 − yk

(tk+1)
α − (tk)

α .

Based on the above, it is claimed in [29] that the modified conformable Euler’s method
for (1) is therefore given by

α
yk+1 − yk

(tk+1)
α − (tk)

α = f (tk, yk), (16)

valid for 0 < α ≤ 1, which is also a generalization of the Euler method for α = 1.

4. Alternative Definition of the CFD and Justification of the MCEM

4.1. An Alternative Definition of the CFD from the ESDDFD Method

The second derivation of a modified CEM is based on the exact discretization of the
initial value problem for the conformable relaxation equation, obtained from the following
results from [23], in which it is generally assumed that the IVP (1) is being discretized on
intervals of the form [0, b].

Theorem 1. For a given definition of an NID, let (t, α; y0) denote the analytic solution of initial
value problem for the relaxation equation:

Dα
t y(t) = −y(t), y(0) = y0, 0 ≤ t ≤ b; 0 < α ≤ 1. (17)

Thus, a corresponding difference quotient representation (DQR) of Caputo type con-
sistent with that derivative is

GC
0 Δα

t y(t) =
y(t + h)− y(t)

(1 − (t + h, α; y0)/(t, α; y0))
. (18)

Assuming y0 = 1 and using the solution of (17) for the CFD,

(t, α) = exp
(
− 1

α
tα

)
, (19)

9
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which describes behavior consistent with local, fractional, KWW wave patterns, in Equation
(18) leads to the following DQR for the CFD:

CFD
0 Δα

t y(t) =
y(t + h)− y(t)(

1 − e
−1
α ((t+h)α−tα)

) . (20)

Taking the limit as h → 0 in Equation (20) yields the following alternative definition
of the CFD:

Definition 1. Given a real-valued function on [0, ∞), the conformable fractional derivative has
the following alternative definition:

Tα
t f (t) = C

0 Tα
t f (t) ≡ lim

h→0
CFD
0 Δα

t f (t) = αlim
h→0

f (t + h)− f (t)
(t + h)α − tα

,

where C
0 Tα

t f (0) is understood to mean C
0 Tα

t f (0) = lim
t→0+

C
0 Tα

t f (t).

The following result regarding the basic properties of C
0 Tα

t above has elementary proofs
that follow directly from Definition 1 and are omitted here; it is the same as Theorem 2.2
of [2] and is a particular case of Theorem 2.1.6 of [23].

Theorem 2. Let α ∈ (0, 1] and the functions f , g be α-differentiable at a point t ∈ [0, ∞). Then,
for all real-valued constants A, B, K, p, the following properties hold:

1. C
0 Tα

t (A f + Bg) = AC
0 Tα

t ( f ) + BC
0 Tα

t (g)
2. C

0 Tα
t ( f g) = gC

0 Tα
t ( f ) + f C

0 Tα
t (g)

3. C
0 Tα

t

(
f
g

)
= 1

g2

(
gC

0 Tα
t ( f )− f C

0 Tα
t (g)

)
4. C

0 Tα
t (t

p) = ptp−α

5. C
0 Tα

t (K) = 0

6. If f (t) is first order differentiable, then it also holds that C
0 Tα

t ( f (t)) = t1−α d f (t)
dt

Direct application of Definition 1 yields the following values for some common
functions, which are identical to those obtained in [2], for p, k ∈ R:

1. C
0 Tα

t (t
p) = ptp−α

2. C
0 Tα

t (1) = 0

3. C
0 Tα

t

(
ekt
)
= kt1−αekt

4. C
0 Tα

t (sinkt) = kt1−αcoskt
5. C

0 Tα
t (coskt) = −kt1−αsinkt

6. C
0 Tα

t (t
α) = 1

7. C
0 Tα

t

(
e

1
α tα
)
= e

1
α tα

8. C
0 Tα

t

(
sin 1

α tα
)
= cos 1

α tα

9. C
0 Tα

t

(
cos 1

α tα
)
= −sin 1

α tα

Remark 1. Since the alternative definition of the conformable fractional derivative, Definition 1,
has the same basic properties and derivative values as the conformable fractional derivative, it is
the same as the CFD, that is, C

t0
Tα

t [ f (t)] = Tt0
α ( f )(t), where the right-hand side uses the notation

in [9]. It should therefore be noted that, as recently pointed out in [30], the alternative definition
shows that the conformable derivative for differentiable functions results from the integer-order
derivative with the fractional change of variable u = (t − t0)

α/α, which can be easily seen. To
see the equivalence of the CFD and this change of variable, assume f is differentiable. Then, since

10
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C
t0

Tα
t f (t) = Tt0

α f (t)(t) = (t − t0)
1−α d

dt f (t) and du(t)
dt = (t − t0)

α−1, direct substitution in
identity (4) and the chain rule yield

C
t0

Tα
t f (t) = (t − t0)

1−α d f (t)
dt

= (t − t0)
1−α d f (u)

du
du(t)

dt
= (t − t0)

1−α d f (u)
du (t − t0)

α−1

= d f (u)
du

4.2. Justification of and an Alternative to the Modified Conformable Euler’s Method

The identifications (15) applied in Equation (18) yield the following discretization rule
for Dα

t y(t) as a corollary to Theorem 1.

Corollary 1. Let (t, α; y0) be as in Theorem 1. Then the following is a consistent discrete represen-
tation of Dα

t y(t):

Dα
t y(t) −→ GC

0 Δα
tk

yk ≡ yk+1 − yk
(1 − (tk+1, α; y0)/(tk, α; y0))

.

The denominator is a complex function of both the step size, h = tk+1 − tk, and lattice
point, tk, and is described in [23] as a generalization of the nonstandard finite difference
(NSFD) denominator [31]. Similarly applying the identifications (15) in Definition 1 and
using (t, α) as given by Equation (19) in Corollary 1 therefore results in the following
discrete representations of the CFD:

Modified Conformable Euler : C
0 Tα

t y(t) = αlim
h→0

(
y(t + h)− y(t)
(t + h)α − tα

)
→ α

yk+1 − yk

(tk+1)
α − (tk)

α .

NSFD Conformable EDM : C
0 Tα

t y(t) = αlim
h→0

y(t + h)− y(t)(
1 − e− 1

α ((t+h)α−tα)
) → α

yk+1 − yk(
1 − e− 1

α ((tk+1)
α−(tk)

α)
) .

A clear corollary to the foregoing are the following Euler discretization rules for the
IVP (1), which provide justification of, and an alternative to, the MCEM as extensions of
the Euler method to the CFD:

Corollary 2. The following discrete representations are generalizations of the (forward) Euler
method for the CFD valid for α ∈ (0, 1]:

Modified Conformable Euler : α
yk+1 − yk

(tk+1)
α − (tk)

α = f (tk, yk)

ESDDFD-based Conformable Euler : α
yk+1 − yk(

1 − e− 1
α ((tk+1)

α−(tk)
α)
) = f (tk, yk).

5. Comparisons of Discrete Models of the Conformable Relaxation Equation

To demonstrate that the CEM is not a viable extension of the Euler method to the
CFD for α ∈ (0, 1) and to validate the suggested alternatives, comparisons against the
analytic solution are presented in graphical and tabular form for the following discrete
representations of the CRE obtained from the conformable Euler, ordinary Euler, modified
conformable Euler, and ESDDFD-based Euler methods (respectively, CEM, OEM, MCEM,
and EDM):

CEM : yk+1 = yk − 1
α hαyk,

OEM : yk+1 = yk − htα−1
k yk,

MCEM : yk+1 = yk − 1
α

(
(tk+1)

α − (tk)
α)yk

EDM : yk+1 = yk − 1
α

(
1 − e− 1

α ((tk+1)
α−(tk)

α)
)

yk

11
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5.1. Tabular Comparisons of Actual and Relative Errors

In Table 1 relative error comparisons are given for various values of α at tk = 1.00.

Table 1. % error by method compared to actual value at tk = 1.00.

α Exact Value EDM CEM MCEM OEM

0.99 0.36 0.00 5.06 1.29 1.30

0.98 0.36 0.00 8.93 1.32 1.38

0.97 0.36 0.00 12.90 1.34 1.46

0.96 0.35 0.00 16.80 1.37 1.54

0.95 0.35 0.00 20.80 1.40 1.62

0.62 0.20 0.00 99.60 4.56 7.31

It is clear from Table 1 that, for this simplest example, the CEM performs poorly
compared to all other methods and yields significantly incorrect approximations for α <
0.98, with relative error reaching almost 100% at α = 0.62. While the OEM is almost
comparable to the MCEM for α close to unity, its relative error is almost double that of the
MCEM for α < 0.62. The EDM, as expected for this example, has the same values as the
analytic solution.

5.2. Graphical Comparisons of Actual and Relative Errors

Comparisons are presented in terms of solution profiles as well as actual and relative
errors for α = 0.95 in Figure 1a–c and for α = 0.5 in Figure 2a–c.

Figure 1. Analytic solution profile of (17) compared on [0, 1] to approximations by the EDM, CEM, MCEM, and OEM
at α = 0.95 with h = 0.025: (a) solution values (yk), (b) absolute errors (|y(tk)− yk|) and (c) relative (percentage) errors
( |yk−y(tk)|

y(tk)
(100)).
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Figure 2. Analytic solution profile of (17) compared on [0, 1] to approximations by the EDM, CEM, MCEM, and OEM
at α = 0.5 with h = 0.025: (a) solution values (yk), (b) absolute errors (|y(tk)− yk|) and (c) relative (percentage) errors
( |yk−y(tk)|

y(tk)
(100)).

6. Conclusions

A discretization method, termed the conformable Euler’s method, for the fractional
initial value problem with the conformable fractional derivative has been considered that
extends the integer Euler method to the conformable derivative. Its justification using a
fractional series expansion is recalled and it is shown that the assumption C

0 Tα
t ( f )(t) =

t1−α d
dt f (t) leads to the conclusion that α = 1 in the method. The ordinary Euler method,

obtained by rewriting the CFD in terms of the integer-ordered derivative, is described and
its main implementation disadvantage briefly discussed. A modified conformable Euler’s
method is proposed that is derived from rewriting the term of the right-hand side of the
equation assumed above as a derivative quotient and then using the integer definition of
the derivative.

To justify the proposed modification of the CEM, the ESDDFD method, wherein
fractionality is determined by wave type behavior of processes under study, of generalized
difference quotient derivative representation is recalled. An alternate definition of the CFD
is presented that is derived from the analytic solution of the CRE, which describes fractional
KWW wave behavior, and it is shown that it has the same basic properties and returns the
same derivative values as the CFD. It is observed that the alternate definition shows that
the CFD is a fractional change of variable rather that a fractional operator. The MCEM
follows as a limit of, and is therefore consistent with, the exact ESDDFD representation of
the CRE, whereas the CEM is not.

13
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Numerical experiments are then presented to assess the accuracy of the CEM in
approximating the solution of the CRE. The CEM model of the CRE is compared with
three discrete models obtained from the ordinary Euler, modified conformable Euler, and
conformable NSFD (or ESDDFD) methods. Results are presented for several values of
α, 0.62 ≤ α ≤ 0.99, showing errors for the four models relative to the analytic solution,
as well as those of profile and error graphs for α = 0.95, α = 0.5. While comparisons are
presented only for a few values of α, the results displayed are typical and conclusively show
that the CEM yields incorrect approximations, with respective relative errors of 5.06%,
20.80%, and 99.60% for α = 0.99, α = 0.95, and α = 0.62. In comparison, the relative errors
at the same values of for the OEM and MCEM are, respectively, 1.30%, 1.62%, and 7.31%
and 1.29%, 1.40%, and 4.56%; the EDM has no errors for the CRE since it is exact. Based
on these numerical results, and with support of the theoretical arguments presented, it is
concluded that the CEM is not a valid generalization of the standard forward Euler method
to the CFD for 0 < α < 1, and that the MCEM and EDM offer more accurate alternative
generalizations.
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CFD conformable fractional derivative
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Abstract: Four discrete models, using the exact spectral derivative discretization finite difference
(ESDDFD) method, are proposed for a chaotic five-dimensional, conformable fractional derivative
financial system incorporating ethics and market confidence. Since the system considered was
recently studied using the conformable Euler finite difference (CEFD) method and found to be
hyperchaotic, and the CEFD method was recently shown to be valid only at fractional index α = 1,
the source of the hyperchaos is in question. Through numerical experiments, illustration is presented
that the hyperchaos previously detected is, in part, an artifact of the CEFD method, as it is absent
from the ESDDFD models.

Keywords: conformable calculus; fractional-order financial system; ESDDFD and NSFD methods;
hyperchaotic attractor; market confidence; ethics risk

1. Introduction

Hyperchaotic systems [1,2]—typically defined as systems with at least two positive
Lyapunov exponents [3–5]—of a fractional-order have been investigated in many contexts,
such as systems of Rössler [6] or Lorenz [7] type, those with flux controlled memristors [8]
or realized in circuits [9–11], those arising from cellular neural networks [12], and financial
systems [13]. As recounted in [13], a nonlinear financial system depicting the relationship
among interest rates, investments, prices, and savings was first introduced by Huang
and Li [14]. It was extended to fractional-order in Chen [15], to uncertain fractional-
order form in Wang et al. [16], to delayed form in Mircea et al. [17], and to discrete form
in Xin et al. [18]. The average profit margin was added as a variable in Yu et al. [19],
while investment incentive and market confidence were introduced in Xin et al. [20,21].
Xin and Zhang [21] updated the 3-dimensional Huang and Li [8] model to a 4-dimensional
one by accounting for market confidence and [13] incorporated ethics risk to obtain
a 5-dimensional system, which was then fractionalized to obtain the following fractional-
order financial system considered in [13]:

Tα1
t x = z + (y − a)x + k(w − pu)

Tα2
t y = 1 − by − x2 + k(w − pu)

Tα3
t z = −x − cz + k(w − pu)

Tα4
t w = −dxyz

Tα5
t u = k(w − pu)

(1)

where α = (α1, α2, α3, α4, α5) is subject to α1, α2, α3, α4, α5 ∈ (0, 1), and Tαi
t , 1 ≤ i ≤ 5,

denotes the conformable fractional derivative of order αi. The variables x, y, z, w, and
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u are the interest rate, investment demand, price index, market confidence, and ethics
risk, respectively; the parameters a, b, and c are the saving amount, cost per investment,
and demand elasticity of commercial markets, respectively, and a, b, c ≥ 0; k, p, d are impact
factors associated with ethics risk.

Since analytic solutions do not exist, suitable numerical schemes to obtain solutions of
the conformable derivative financial system are needed. Though there are several methods
to solve a conformable derivative system [22–47], these are too complex for many people.
Inspired by the discretization process for the Caputo derivative for Ricatti equations [45]
and Chua systems [46], the conformable Euler’s finite difference (CEFD) method [47] for the
5-dimensional fractional-order financial system is proposed in [13]. Numerical experiments
with the resulting discrete model were conducted to detect a hyperchaotic attractor of
the system. However, the standard Euler discretization of integer-order systems, such as
studied in [13], is known to induce (see, e.g., [48,49]) numerical instabilities and spurious be-
havior where none exist in the continuous system. Moreover, the CEFD method has recently
been shown [50] to be valid only for α = 1 and is, therefore, not a valid fractional method.
Nonstandard finite difference (NSFD) models have extensively [48] been shown to elimi-
nate induced chaos; the exact spectral derivative discretization finite difference (ESDDFD)
methodology is a novel extension, developed in the context of advection–reaction–diffusion
equations [51], of the NSFD method to non-integer derivatives [52].

It is, therefore, natural to ask whether some of the hyperchaotic behavior detected in
the fractional financial system is an artifact of the method and whether ESDDFD models can
be constructed to eliminate such induced hyperchaos. The purpose of the present study is
to investigate this question—in particular, the effects of the discretization of the derivative
and that of non-linear terms. To this end, the following four discrete models using the
ESDDFD method are constructed for the system (1) and the bifurcation experiments of [13]
are repeated with the new models.

xk+1−xk
φj(h,α1)

= Fx
i (xk, yk, zk, uk, wk)

yk+1−yk
φj(h,α2)

= Fy
i (xk, yk, zk, uk, wk)

zk+1−zk
φj(h,α3)

= −xk − czk + k(wk − puk)

uk+1−uk
φj(h,α5)

= k(wk − puk)

wk+1−wk
φj(h,α4)

= Fw
i (xk, yk, zk, zk)

(2)

i = 1, 2 and j = 1, 2, where:

Fx
1 (xk, yk, zk, uk, wk) = zk + (yk+1 − a)xk + k(wk − puk)

Fy
1 (xk, yk, zk, uk, wk) = 1 − byk − xkxk + k(wk − puk)

Fw
1 (xk, yk, zk, zk) = − d

2 xkyk(zk + zk)

Fx
2 = Fx

1 (xk, yk+1, zk, uk, wk)

Fy
2 = Fy

1 (xk, yk+1, zk, uk, wk)

Fw
2 = Fw

1 (xk, yk+1, zk, zk+1)

The remainder of this article is organized as follows. In Section 2, the ESDDFD
fundamentals, a description of the model (1), and the CEFD model from [3] are presented.
Section 3 presents the construction of the denominator functions, φj(h, αm), 1 ≤ m ≤ 5,
for the ESDDFD model (2) and compares sub-models of (2) with corresponding CEFD
sub-models. In Section 4, experimental results of hyperchaotic attractor detection from
the proposed financial system using both methods are presented. Concluding remarks in
Section 5 close the paper.
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2. Preliminaries

2.1. The Conformable Derivative ESDDFD Discrete Model Construction Fundamentals

While the Riemann–Liouville, Caputo, Atangana–Baleanu, and Grünwald–Letnikov
fractional derivatives [53–60] are widely used in various applications, their definitions
lack the chain rule, a classical derivative property satisfied by the conformable fractional
derivative (CFD) [61–63] and its various extensions (see e.g., [64]). A financial system with
a market confidence and ethics risk model was recently [13] added to the many existing
applications of the CFD in various scientific fields [22,65–74].

2.2. The Conformable Derivative Hyperchaotic Financial System and Its CEFD Model

The conformable fractional derivative financial system model (1) is based on a suc-
cessive addition of various factors, starting with the Huang and Li [8] nonlinear financial
system model:

x′ = z + (y − a)x
y′ = 1 − by − x2

z′ = −x − cz
(3)

modeling the interaction of interest rate (x), investment demand (y), and price index (z);
the variables and parameters are the same as in (1). Model (3) was extended, by Xin and
Zhang [15], to account for market confidence:

x′ = z + (y − a)x + m1w
y′ = 1 − by − x2 + m2w
z′ = −x − cz + m3w
w′ = −dxyz

(4)

where m1, m2, m3 are the impact factors associated with market confidence (w); the remain-
ing variables and parameters are the same as in (3). Model (1) is the fractionalization,
predicated on the practice that fractional-order economic systems [15,75–79] can generalize
their integer-order forms [14,80,81], of the following extension of (4) in [13] to account for
both market confidence and ethics risk (u):

x′ = z + (y − a)x + k(w − pu)
y′ = 1 − by − x2 + k(w − pu)
z′ = −x − cz + k(w − pu)
w′ = −dxyz
u′ = k(w − pu)

(5)

When α = (1, 1, 1, 1, 1), system (1) degenerates to system (5); in the absence of ethics
risk, (5) reduces to (4); in the absence of market confidence, (4) reduces to (3). In these
three cases, therefore, any discrete method developed for (1) must reduce to that of the
three respective reduced systems. Chaotic behavior for both the CEFD and ESDDFD
models will be numerically investigated in Section 4 for (1) as well as the reduced fractional
counterpart of system (3).

The following discrete model was obtained in [13] from the CEFD method and used
to numerically investigate hyperchaos of the system (1):

xk+1 = xk +
hα1
α1

(zk + (yk − a)xk + k(wk − puk))

yk+1 = yk +
hα2
α2

(1 − byk − xkxk + k(wk − puk))

zk+1 = zk − hα3
α3

(xk + czk − k(wk − puk))

uk+1 = uk +
hα5
α5

k(wk − puk)

wk+1 = wk − hα4
α4

dxkykzk

(6)
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3. ESDDFD Discretization of the Conformable Derivative System and Its Reductions

In the ESDDFD and NSFD discretization methodologies, the first step is to consider
a linear sub-system whose exact or best scheme can be constructed. Such a sub-system,
in this case, is the following:

Tα1
t x = −ax,

Tα2
t y = −by,

Tα3
t z = −cz,
Tα4

t w = 0,
Tα5

t u = −kpu,

(7)

which has only positive solutions for any positive initial data. The exact discretization of (7),
which has a solution identical to that of (7), is as follows:

xk+1−xk
φ1(h,α1)

= −axk,

yk+1−yk
φ1(h,α2)

= −byk,

zk+1−zk
φ1(h,α3)

= −czk,

wk+1−wk
φ1(h,α4)

= 0,

uk+1−uk
φ1(h,α5)

= −kpuk,

(8)

where the nonstandard denominators φ1(h, αi), 1 ≤ i ≤ 5, are given by:

φ1(h, αi) =
1

Qi

(
1 − e−

Qi
αi
[(t+h)αi−tαi ]

)
,

with Q1 = a, Q2 = b, Q3 = c, Q4 = 0, Q5 = kp.

Since (1) reduces to (7), any valid discrete model for (1) must be reducible to one con-
sistent with its exact discretization—that is, (8). By comparison, a reduction of the CEFD
model (6) to the sub-system (7) yields the following discrete sub-system:

xk+1 = xk − hα1
α1

axk,

yk+1 = yk − hα2
α2

byk,

zk+1 = zk − hα3
α3

czk,

wk+1 = wk + Q4
hα4
α4

wk,

uk+1 = uk − hα5
α5

kpuk,

(9)

which is positive only if the following condition is satisfied:
(

1 − hαi
αi

Qi

)
≥ 0, 1 ≤ i ≤ 5,

with the Qi as in (8); such conditional positivity is known to induce chaotic behavior. All of
the sub-Equations (8) are of the form:

Tα
t P = −λP,

whose CEFD scheme is:
Pk+1 = Pk − hα

α
λPk,

which has been conclusively shown in [50] to be valid only for α = 1.
It is shown in [50] that a modified CEFD (MCEFD) may be obtained from the following

alternate CFD definition, which is equivalent to the fractional change of variables in the
integer-valued derivative (see also [82]):
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Definition 1. Given a real-valued function on [0, ∞), the conformable fractional derivative has the
following alternative definition:

C
0 Tα

t [ f (t)] ≡ lim
h→0

CFD
0 Δα

t [ f (t)] = αlim
h→0

f (t + h)− f (t)[
(t + h)α − tα

] ,

where C
0 Tα

t [ f (0)] is understood to mean C
0 Tα

t [ f (0)] = lim
t→0+

C
0 Tα

t [ f (t)].

Therefore, the Euler scheme, resulting from the MCFED, is the same as that given in
Equation (8), only with the denominator of:

φ1(h, αi) =
1

Qi

(
1 − e−

Qi
αi
[(t+h)αi−tαi ]

)
replaced by:

φ2(h, αi) =
1
αi

[
(t + h)αi − tαi

]
, 1 ≤ i ≤ 5,

which is equivalent to replacing hαi by αiφ2(h, αi) in the CEFD scheme (9).
To enable the assessment of the effect of the denominators φj(h, αi), j = 1, 2, the fol-

lowing schemes are compared:

xk+1−xk
φj(h,α1)

= zk + (yk − a)xk ,

yk+1−yk
φj(h,α2)

= 1 − byk − (xk)
2,

zk+1−zk
φj(h,α3)

= −xk − czk, j = 1, 2.

(10)

To enable the assessment of the effect of the non-local discretization of nonlinear terms,
the following schemes are compared:

xk+1−xk
φj(h,α1)

= zk + (yk+1 − a)xk,

yk+1−yk
φj(h,α2)

= 1 − byk − xk+1xk,

zk+1−zk
φj(h,α3)

= −xk − czk, j = 1, 2.

(11)

The terms (y − a)x, and x2 are discretized non-locally as, respectively, (yk+1 − a)xk
and xk+1xk, while discretization of the terms z (in the first Equation of (10)) and x (in the
third as zk and xk) ensures respective consistency with the terms cz in the third and ax in
the first Equation of (11) in the cases where c = 1 and a = 1.

By comparison, the scheme obtained through a reduction of the CEFD model (6) to its
3-dimensional sub-system (3) yields the following discrete sub-system:

xk+1 = xk +
hα1
α1

(zk + (yk − a)xk)

yk+1 = yk +
hα2
α2

(1 − byk − xkxk)

zk+1 = zk +
hα3
α3

(−xk − czk).

(12)

Since system (12) reduces to the x− y− z sub-system of (9), which suffers from induced
chaos, it is to be expected that it too suffers the same, which will be numerically investigated
in the next section.
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The ESDDFD models (2) are then obtained by discretizing k(w − pu) as k(wk − puk) to
ensure consistency with (8) and then discretizing xyz non-locally as either 1

2 xkyk(zk + zk) or
1
2 xkyk+1(zk + zk+1), where the form xkyk+1 is used to match the xy term in the x-equation.

xk+1−xk
φj(h,α1)

= zk + (yk − a)xk + k(wk − puk)

yk+1−yk
φj(h,α2)

= 1 − byk − (xk)
2 + k(wk − puk)

zk+1−zk
φj(h,α3)

= −xk − czk + k(wk − puk)

uk+1−uk
φj(h,α5)

= k(wk − puk)

wk+1−wk
φj(h,α4)

= − d
2 xkyk(zk + zk), j = 1, 2.

(13)

and
xk+1−xk
φj(h,α1)

= zk + (yk+1 − a)xk + k(wk − puk)

yk+1−yk
φj(h,α2)

= 1 − byk − xk+1xk + k(wk − puk)

zk+1−zk
φj(h,α3)

= −xk − czk + k(wk − puk)

uk+1−uk
φj(h,α5)

= k(wk − puk)

wk+1−wk
φj(h,α4)

= − d
2 xkyk+1(zk + zk+1), j = 1, 2.

(14)

The schemes (13) are explicit and can be explicitly solved for each j = 1, 2, in the order
xk+1, yk+1, zk+1, uk+1, wk+1 to obtain the following:

xk+1 = xk + φj(h, α1)[zk + (yk − a)xk + k(wk − puk)]

yk+1 = yk + φj(h, α2)
[
1 − byk − (xk)

2 + k(wk − puk)
]

zk+1 = zk − φj(h, α3)[xk + czk − k(wk − puk)]

uk+1 = uk + φj(h, α5)[k(wk − puk)]

wk+1 = wk − d
2 φj(h, α4)xkyk(zk + zk), j = 1, 2.

(15)

While implicit, the schemes (14) can be explicitly solved for each j = 1, 2 in the order
uk+1, zk+1, xk+1, yk+1, wk+1 to obtain the following:

uk+1 = uk + φj(h, α5)[k(wk − puk)]

zk+1 = zk − φj(h, α3)[xk + czk − k(wk − puk)]

xk+1 = 1
[1+φj(h,α1)xkφj(h,α2)xk]

(
xk + φj(h, α1)xk

{
yk + φj(h, α2)[1 − byk + k(wk − puk)]

})
+ 1

[1+φ(h,α1)xkφ(h,α2)xk ]
φj(h, α1)[zk − axk + k(wk − puk)]

wk+1 = wk − φj(h, α4)
d
2 xkyk+1(zk + zk+1)

4. Numerical Experiments

In this section, hyperchaos detection experiments are conducted, parallel to those of [13],
by varying the parameters related to ethics risk, such as α5, the confidence factor k, and the risk
factor p, in the CEFD and ESDDFD models and their reductions. The following parameters
and initial point values are fixed following [1]: h = 0.002, a = 0.8, b = 0.6, c = 1, d = 2,
α1 = 0.3, α2 = 0.5, α3 = 0.6, α4 = 0.24, x0 = 0.4, y0 = 0.6, z0 = 0.8, w0 = 0.3, u0 = 0.4.
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4.1. Three-Dimensional Systems Comparison

There were no experiments performed in [13] for this case. Simulations for both the
ESDDFD model (11) and the CEFD model (12) are performed with the same parameters.
The following models (16)–(19), obtained through the ESDDFD method,

xk+1−xk

1
0.8

[
1−e

−0.8
0.3 [(t+h)0.3−t0.3 ]

] = zk + (yk − 0.8)xk,

yk+1−yk

1
0.6

[
1−e

−0.6
0.5 [(t+h)0.5−t0.5 ]

] = 1 − 0.6yk − (xk)
2,

zk+1−zk[
1−e

−1
0.6 [(t+h)0.6−t0.6 ]

] = −xk − zk,

(16)

xk+1−xk
1

0.3 [(t+h)0.3−t0.3]
= zk + (yk − 0.8)xk,

yk+1−yk
1

0.5 [(t+h)0.5−t0.5]
= 1 − 0.6yk − (xk)

2,

zk+1−zk
1

0.6 [(t+h)0.6−t0.6]
= −xk − zk,

(17)

xk+1−xk

1
0.8

[
1−e

−0.8
0.3 [(t+h)0.3−t0.3 ]

] = zk + (yk+1 − 0.8)xk,

yk+1−yk

1
0.6

[
1−e

−0.6
0.5 [(t+h)0.5−t0.5 ]

] = 1 − 0.6yk − xk+1xk,

zk+1−zk[
1−e

−1
0.6 [(t+h)0.6−t0.6 ]

] = −xk − zk,

(18)

xk+1−xk
1

0.3 [(t+h)0.3−t0.3]
= zk + (yk+1 − 0.8)xk,

yk+1−yk
1

0.5 [(t+h)0.5−t0.5]
= 1 − 0.6yk − xk+1xk,

zk+1−zk
1

0.6 [(t+h)0.6−t0.6]
= −xk

(19)

are compared to (20), obtained through the CEFD method:

xk+1 − xk +
h0.3

0.3 (zk + (yk − 0.8)xk),

yk+1 = yk +
h0.5

0.5 (1 − 0.6yk − xkxk),

zk+1 = zk +
h0.6

0.6 (xk − zk).

(20)

While bifurcations can be seen in Figure 1a for the CEFD model, they are absent from the
results of the ESDDFD models, Figure 1b–e.
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(a) 

 
(b) (c) 

  
(d) (e) 

Figure 1. Phase portraits (a) CEFD model (20) (b) MCEFD model (16) (c) Model 17 (d) Model 18
(e) model (19).
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4.2. Five-Dimensional Systems Comparison: Varying α5, k, and p

For this case, experiments performed in [13] are performed with the same parameters
for models obtained through the ESDDFD method, for the various cases and values of
(α5, k, p) used in [13]. Model (21) from the CEFD method,

xk+1 = xk +
h0.3

0.3 (zk + (yk − 0.8)xk + k(wk − puk))

yk+1 = yk +
h0.5

05 (1 − 0.6yk − xkxk + k(wk − puk))

zk+1 = zk − h0.6

0.6 (xk + zk − k(wk − puk))

wk+1 = wk − h0.24

0.24 2xkykzk

uk+1 = uk +
hα5
α5

k(wk − puk)

(21)

is compared to the following four models—respectively, MCEFD (22), ESDDFD1 (23),
ESDDFD2 (24), ESDDFD3 (25)—obtained through the ESDDFD and NSFD methods:

xk+1−xk
1

0.3 [(t+h)0.3−t0.3]
= zk + (yk − 0.8)xk + k(wk − puk)

yk+1−yk
1

0.5 [(t+h)0.5−t0.5]
= 1 − 0.6yk − xkxk + k(wk − puk)

zk+1−zk
1

0.6 [(t+h)0.6−t0.6]
= −xk − zk + k(wk − puk)

wk+1−wk
1

0.24

[
(t+h)0.24−t0.24

] = −xkyk(zk + zk)

uk+1−uk
1

α5
[(t+h)α5−tα5 ]

= k(wk − puk)

(22)

xk+1−xk

1
0.8

[
1−e

−0.8
0.3 [(t+h)0.3−t0.3 ]

] = zk + (yk − 0.8)xk + k(wk − puk)

yk+1−yk

1
0.6

[
1−e

−0.6
0.5 [(t+h)0.5−t0.5 ]

] = 1 − 0.6yk − xkxk + k(wk − puk)

zk+1−zk[
1−e

−1
0.6 [(t+h)0.6−t0.6 ]

] = −xk − zk + k(wk − puk)

wk+1−wk[
1−e

−1
0.24 [(t+h)0.24−t0.24 ]

] = −xkyk(zk + zk)

uk+1−uk

1
kp

[
1−e

−kp
α5

[(t+h)α5−tα5 ]
] = k(wk − puk)

(23)

xk+1−xk
1

0.3 [(t+h)0.3−t0.3]
= zk + (yk+1 − 0.8)xk + k(wk − puk)

yk+1−yk
1

0.5 [(t+h)0.5−t0.5]
= 1 − 0.6yk − xk+1xk + k(wk − puk)

zk+1−zk
1

0.6 [(t+h)0.6−t0.6]
= −xk − zk + k(wk − puk)

wk+1−wk
1

0.24

[
(t+h)0.24−t0.24

] = −xkyk+1(zk + zk+1)

uk+1−uk
1

α5
[(t+h)α5−tα5 ]

= k(wk − puk)

(24)
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xk+1−xk

1
0.8

[
1−e

−0.8
0.3 [(t+h)0.3−t0.3 ]

] = zk + (yk+1 − 0.8)xk + k(wk − puk)

yk+1−yk

1
0.6

[
1−e

−0.6
0.5 [(t+h)0.5−t0.5 ]

] = 1 − 0.6yk − xk+1xk + k(wk − puk)

zk+1−zk[
1−e

−1
0.6 [(t+h)0.6−t0.6 ]

] = −xk − zk + k(wk − puk)

wk+1−wk[
1−e

−1
0.24 [(t+h)0.24−t0.24 ]

] = −xkyk+1(zk + zk+1)

uk+1−uk

1
kp

[
1−e

−kp
α5

[(t+h)α5−tα5 ]
] = k(wk − puk)

(25)

4.2.1. Varying α5 with Fixed k = 2 and p = 1 and α5 ∈ [0.232, 0.328]

In this case, Ref. [13] concluded that system (6) is hyperchaotic with α5 ∈ [0.232, 0.328];
fixing α5 = 0.24, a set of two positive Lyapunov exponents and three negative Lyapunov
exponents were found. Profiles for x, y, z, w and u, when α5 = 0.232 for model (21),
are given below. Chaos can be clearly seen in Figure 2 which gives the phase portraits for
the CEFD model. For each model (22) through (25). Figure 3 shows phase portraits using
the same step size and parameter values. These models produce identical graphs, which
differ significantly from the graphs for model (21). The bifurcation tests for the ESDDFD
model are performed with the same parameters. The bifurcation diagrams for x, z and u
for model (21) are in Figure 4. These again show clear signs of chaos while the bifurcation
diagrams for models (22) through (25), which are given in Figures 5–8, do not.

 
(a) (b) 

 
(c) 

Figure 2. CEFD model (21) profiles of (a) x − y − z, (b) x − u − z, (c) x − w − z, at h = 0.002,
k = 2, p = 1, α5 = 0.232.
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(a) (b) (c) 

Figure 3. Phase portraits (a) x− y− z, (b) x− u− z, (c) x− z−w, at h = 0.002, k = 2, p = 1, α5 = 0.232
for models (22) through (25).
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(a) (b) 

 
(c) 

Figure 4. CEFD model (21); bifurcation of (a) u (b) x (c) z versus α5 for h = 0.002.

 
(a) (b) 

 
(c) 

Figure 5. MCEFD Model (22); (a) u vs. α5, (b) x vs. α5, (c) z vs. α5, at k = 2, p = 1, α5 ∈ [0.232, 0.328].
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(a) (b) 

 
(c) 

Figure 6. ESDDFD model (23); (a) u vs. α5, (b) x vs. α5, (c) z vs. α5, at k = 2, p = 1, α5 ∈ [0.232, 0.328].

 
(a) (b) 

 
(c) 

Figure 7. ESDDFD model (24); (a) u vs. α5, (b) x vs. α5, (c) z vs. α5, at k = 2, p = 1, α5 ∈ [0.232, 0.328].
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(a) (b) 

(c) 

Figure 8. ESDDFD model (25); (a) u vs. α5, (b) x vs. α5, (c) z vs. α5, at k = 2, p = 1, α5 ∈ [0.232, 0.328].

For step sizes above 0.003, CEFD, (21), fails. MCEFD, (22) fails for step sizes above
0.573. The graphs in Figure 9 were produced using the same parameter values as before,
except h = 0.1. The graphs in Figure 10 were done with h = 1.0. These show the effect of
larger step sizes on methods (23), (24), and (25). The ESDDFD methods preserve the end
behavior at much larger step sizes than CEFD and MCEFD. Note the differences in the
early behavior between the methods, especially when compared with h = 0.002.

 

Figure 9. Cont.
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(a) (b) (c) 

Figure 9. Phase portraits (a) x − y− z, (b) x − u− z, (c) x − z−w, at h = 0.1, k = 2, p = 1, α5 = 0.232
for models (22) through (25).

Figure 10. Cont.
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(a) (b) (c) 

Figure 10. Phase portraits (a) x− y− z, (b) x− u− z, (c) x− z−w, at h = 1.0, k = 2, p = 1, α5 = 0.232
for models (22) through (25). h = 1.0, α5 = 0.232 for (23) through (25).

4.2.2. Varying p with Fixed k = 2, α5 = 0.3, and p ∈ [1, 2]

In this case, Ref. [13] concluded that system 6 is hyperchaotic with p ∈ [1, 2]. Fixing
p = 1, a set of two positive Lyapunov exponents and three negative Lyapunov exponents
was determined. Bifurcation tests for the ESDDFD models are performed with the same
parameters for the full discrete model (2). Figure 11 shows the bifurcation diagrams for
u, x and z for the CEFD model (21). Figures 12–15 show the bifurcation diagrams for the
models (22) through (25). As in Section 4.2.1, the CEFD diagrams show evidence of chaos
while the other models do not.

 
(a) (b) 

Figure 11. Cont.
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(c) 

Figure 11. CEFD model (21); (a) u vs. p, (b) x vs. p, (c) z vs. p, at k = 2, α5 = 0.3, p ∈ [1, 2].

 
(a) (b) 

 
(c) 

Figure 12. MCEFD model (22); (a) u vs. p, (b) x vs. p, (c) z vs. p, at k = 2, α5 = 0.3, p ∈ [1, 2].

 
(a) (b) 

Figure 13. Cont.
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(c) 

Figure 13. ESDDFD1 model (23); (a) u vs. p, (b) x vs. p, (c) z vs. p, at k = 2, α5 = 0.3, p ∈ [1, 2].

 
(a) (b) 

 
(c) 

Figure 14. ESDDFD2 model (24); (a) u vs. p, (b) x vs. p, (c) z vs. p, at k = 2, α5 = 0.3, p ∈ [1, 2].

 
(a) (b) 

Figure 15. Cont.
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(c) 

Figure 15. ESDDFD2 model (25); (a) u vs. p, (b) x vs. p, (c) z vs. p, at k = 2, α5 = 0.3, p ∈ [1, 2].

Setting p = 1.94, phase portraits are given for models (22) through (25) in Figure 16.
Figure 17 shows the phase portraits for model (21). There are clear signs of chaos in the
phase portraits for model (21) and no chaos in those for the other models.

 

 

 

 

Figure 16. Cont.

34



Math. Comput. Appl. 2022, 27, 4

 

(a) (b) (c) 

Figure 16. Phase portraits (a) x− y− z, (b) x−u− z, (c) x− z−w, at h = 0.002, k = 2, p = 1.94, α5 = 0.3
for models (22) through (25).

 
(a) (b) 

 
(c) 

Figure 17. Model (21) phase portraits (a) x − y − z, (b) x − z − u, and (c) x − z − w at k = 2, p = 1.94,
α5 = 0.3.

4.2.3. Varying k with Fixed p = 1 and α5 = 0.3, with k ∈ [1.5, 2.5]

In this case, Ref. [13] concluded that system (6) is hyperchaotic with k ∈ [1.5, 2.5].
Fixing k = 1.5, a set of two positive Lyapunov exponents and three negative Lyapunov
exponents were determined. Bifurcation tests for the ESDDFD models are performed with
the same parameters for the full discrete model (2). Figure 18 gives the bifurcation diagrams
for CEFD, model (21). Figures 19–22 give the bifurcation diagrams for x, u and z, for models
(22) through (25). Once again there is chaos evident in the CEFD diagrams but no chaos in
the diagrams for the other models.
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(a) (b) 

 
(c) 

Figure 18. CEFD model (21); (a) u vs. k, (b) x vs. k, (c) z vs. k, at p = 1, α5 = 0.3, k ∈ [1.5, 2.5].

 
(a) (b) 

 
(c) 

Figure 19. MCEFD model (22); (a) u vs. k, (b) x vs. k, (c) z vs. k, at p = 1, α5 = 0.3, k ∈ [1.5, 2.5].
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(a) (b) 

 
(c) 

Figure 20. ESDDFD1 model (23); (a) u vs. k, (b) x vs. k, (c) z vs. k, at p = 1, α5 = 0.3, k ∈ [1.5, 2.5].

 
(a) (b) 

 
(c) 

Figure 21. ESDDFD2 model (24); (a) u vs. k, (b) x vs. k, (c) z vs. k, at p = 1, α5 = 0.3, k ∈ [1.5, 2.5].
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(a) (b) 

 
(c) 

Figure 22. ESDDFD2 model (25); (a) u vs. k, (b) x vs. k, (c) z vs. k, at p = 1, α5 = 0.3, k ∈ [1.5, 2.5].

Setting k = 2.45, phase portraits are given for models (22) through (25) in Figure 23. The
phase portraits for CEFD, model (21), are given in Figure 24. Again, while the phase portraits
for CEFD show chaos, it is lacking in the phase portraits for models (22) through (25).

 

 

Figure 23. Cont.
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(a) (b) (c) 

Figure 23. Phase portraits (a) x − y− z, (b) x − u− z, (c) x − z−w, at h = 0.1, k = 2.45, p = 1, α5 = 0.3
for models (22) through (25).

 
(a) (b) 

 
(c) 

Figure 24. Model (21) phase portraits; (a) x − y − z, (b) x − z − u, and (c) x − z − w at k = 2.45, p = 1,
α5 = 0.3.

4.2.4. With Fixed k = 2, p = 1 and α5 = 0.24

In this case, Ref. [13] concluded that system (6) has a hyperchaotic attractor in the
y − z − u and x − y − w planes. Two phase portraits for model (21) are given in Figure 25
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while the corresponding phase portraits for models (22) through (25) are given in Figure 26.
While the results for model (21) show chaos, the results for models (22) through (25) do not.

 
(a) (b) 

Figure 25. Phase portraits (a) y − z − u, (b) x − y − w , at h = 0.002, k = 2, p = 1, α5 = 0.24 for
model (21) CEFD.

 

 

Figure 26. Cont.
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(a) (b) 

Figure 26. Phase portraits (a) y − z − u, (b) x − y − w, at h = 0.002, k = 2, p = 1, α5 = 0.24 for
models (22) through (25).

5. Discussion

A discrete model using the conformable Euler finite difference (CEFD) model, (6),
was constructed in [13] and used to detect hyperchaotic behavior of the system (1). In
this paper, a discrete model (2) has been constructed for the system (1), and the parame-
ters from [13] were used to study hyperchaos using bifurcation techniques. The discrete
model (2) is constructed using the exact spectral derivative discretization finite difference
(ESDDFD) method, a universal extension of the nonstandard finite difference method to
fractional derivatives, which is designed to eliminate contrived chaos. Various cases are
considered in parallel to those considered in [13] as well as for sub-systems relevant to
the construction of the discrete model (2). While the proposed ESDDFD models produce
similar results to each other, those results are significantly different from those obtained
in [13] and exhibit no hyperchaotic behavior.

In view of the results obtained, it is reasonable to question the validity of the conclu-
sions of hyperchaotic behavior previously reported for related models, which the authors
intend to pursue in the future. While the conformable derivative is a local derivative and
has neither memory nor nonlocality, it is a multiple of the Caputo FD [83], and therefore
related to those with these properties. It will, therefore, be interesting to explore what, if any,
properties of the conformable system are inherited by the Caputo and Riemann–Liouville
FDs through these relationships. Further, as suggested in [13], studies incorporating
real economic data with parameter estimation for the financial system with market confi-
dence and ethics for all these derivatives are also necessary. Finally, as can be easily seen
from Theorem 4.1 of [50], the discretization methods presented here for CFD systems are
easy to implement and are equally applicable to all Caputo type derivatives, and hence,
to Riemann–Liouville derivatives through their relationship; hence, they have potential to
impact a wide range of fractional derivative applications.
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Abstract: This paper discusses a complex nonlinear fractional model of enzyme inhibitor reaction
where reaction memory is taken into account. Analytical expressions of the concentrations of enzyme,
substrate, inhibitor, product, and other complex intermediate species are derived using Laplace
decomposition and differential transformation methods. Since different rate constants, large initial
concentrations, and large time domains are unavoidable in biochemical reactions, different dynamics
will result; hence, the convergence of the approximate concentrations may be lost. In this case, the
proposed analytical methods will be coupled with Padé approximation. The validity and accuracy of
the derived analytical solutions will be established by direct comparison with numerical simulations.

Keywords: enzyme inhibitor; biochemical reaction; fractional differential system; Laplace transfor-
mation; semi-analytic

1. Introduction

Data gathering and experimental analysis do not generally provide rigorous tools
for understanding the kinetics of modern complex physical, biological, and biochemical
research. Therefore, researchers have increasingly employed mathematical modeling,
where theoretical analysis would lead to new insights and pave the way for better designs
and controlled systems [1–6].

A desired feature of fractional operators is their essential multiscale nature. Conse-
quently, time-fractional operators empower memory effects. In other words, the response
of a system is dependent on its previous history. In contrast, space-fractional operators
enable nonlocal and scale effects [7]. This nonlocal property of fractional derivatives gives
insight into a system’s future state features from the previous and present states. There-
fore, fractional models are more suitable for simulating physical phenomena and hence
more accurate for biochemical reactions. Moreover, fractal geometries that model nonlocal
transport, which arises in complex microstructural systems, are often seen in fractional
derivative models [8].

Recent research has affirmed that modeling natural phenomena arising in biology,
chemistry, and physics with fractional differential equations is more suitable for describ-
ing memory and hereditary properties of various materials and processes. For example,
Ionescu et al. detailed, in a comprehensive review, the latest developments in fractional
calculus applications in biological systems [9]. Rihan discussed some fractional-order
differential models of biological systems with memory, such as dynamics of tumor-immune
system and dynamics of HIV infection [10]. Other examples of fractional models covering
various fields of sciences and engineering can be found in fluid flow [11], electrical net-
works [12], viscoelasticity [13], and control theory [14]. The reader is encouraged to see the
recently published survey-cum-expository review article [15], and the following articles,
which shed more light on the discussion on and applications of fractional models [16–21].

Nonetheless, exact solutions to most nonlinear fractional-order differential equations
cannot be found. Therefore, many semi-analytical and numerical methods have been
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developed in recent years to find approximate solutions instead. Most classical numer-
ical methods used for ordinary differential equations have been successfully modified
for fractional differential equations such as implicit Euler scheme [10], spectral collo-
cation methods [22], Adams–Bashforth methods [23], and Runge–Kutta methods [24].
Some of the newly developed numerical methods include a new predictor-corrector for-
mula, Legendre spectral method, discretization of Riemann–Liouville, and a modified
Adams–Bashforth method [25–28].

Although numerical solutions can be accurate and efficiently obtained, they have
some drawbacks that make them less appealing than analytical solutions. Numerical
stability and adjusting parameters to match the numerical data can be exceptionally chal-
lenging [29]. As with numerical methods, most analytical schemes that have been ini-
tially developed for integer-order differential systems have been modified for fractional
differential systems [30–36].

This paper studies a nonlinear fractional model of enzyme inhibitor reactions subject
to two different sets of initial conditions and kinetic parameters. Modified Laplace decom-
position and differential transformation methods are applied to derive simple analytical
expressions for the concentrations of species. The obtained expressions converge and
stabilize over a prescribed small time domain. However, with possible divergent solutions
over large intervals, these methods are coupled with Padé approximation to maintain
convergent series solutions for larger reaction times [37]. The used methods are accessible
to the broader research community and can be adapted to solve other models that arise in
chemistry and chemical engineering.

2. A Model of Complex Enzyme Inhibitor Reactions

Consider the complex chemical reaction network for mixed enzymatic inhibition as
shown in Figure 1.

Figure 1. A complex chemical reaction for a mixed enzymatic inhibition.

Where E , S , P , and I represent enzyme, substrate, product, and inhibitor, respectively.
ES , EI , and ESI represent the complex intermediate species. The parameters k1, · · · , k9
represent the rate constants. If we express the concentrations of E , S , P ,I , ES , EI , and ESI
by E, S, P, I, C1, C2, and C3, respectively, then the mass action law leads to the following
nonlinear fractional differential model, which is a modification of the integer-derivative
model discussed by Akgül et al. [38]:
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Dα
t E = −k1ES + (k2 + k3)C1 − k4EI + k5C2S,

Dα
t S = −k1ES + k2C1 + k4EI − (k5 + k8)C2S + k9C3,

Dα
t I = −k4EI + k5C2S − k6C1 I + k7C3,

Dα
t P = k3C1,

Dα
t C1 = k1ES − (k2 + k3)C1 − k6C1 I + k7C3,

Dα
t C2 = k4EI − (k5 + k8)C2S + k9C3,

Dα
t C3 = k6C1 I − (k7 + k9)C3 + k8C2S,

(1)

where 0 < α ≤ 1. Dα
t is the Caputo fractional derivative defined by

Dα
x0

f (x) = RLDα
x0

(
f (x)−

m−1

∑
k=0

f (k)(x0)

k!
(x − x0)

k

)
, (2)

where RLDα
x0

f (x) = Dm(Jm−α
x0

f (x)
)
, m − 1 < α ≤ m, and m ∈ N, and Jα

x0
f (x) is the

Riemann–Liouville fractional integration of order α for a real-valued function f : R+ → R

defined by

Jα
x0

f (x) =
1

Γ(α)

∫ x

x0

(x − s)α−1 f (t)dt, α > 0, x > 0. (3)

3. Analytical Expressions for the Concentrations

Consider the nonlinear fractional reaction system (1) subject to the following set of
initial concentrations:

E(0) = e0, S(0) = s0, I(0) = i0, P(0) = p0, C1(0) = c10 , C2(0) = c20 , C3(0) = c30 . (4)

We will derive two approximate analytical expressions of the concentrations of enzyme,
substrate, product, inhibition, and the complex intermediate species using modified Laplace
decomposition (LDM) and differential transformation (DTM) methods.

The difference between Riemann–Louivelle and Caputo fractional derivatives, which
is just in the order of operators, makes Caputo definition closer to the traditional integer-
derivative operator and hence more used than Riemann–Louivelle.

3.1. Laplace Decomposition Approach

We begin with the following lemma whose proof follows immediately from (2)
and (3) [39].

Lemma 1. The Laplace transform of the Caputo fractional derivative of order α is given by

L{Dα f (x)} =
smF(s)− ∑m

i=1 sm−i f (i−1)(0)
sm−α

, (5)

where m ∈ N and m − 1 < α ≤ m.

Applying Laplace transform to each equation in the reaction system (1) gives

L{E(t)} = e0
s + 1

sα L{−k1ES + (k2 + k3)C1 − k4EI + k5C2S},

L{S(t)} = s0
s + 1

sα L{−k1ES + k2C1 + k4EI − (k5 + k8)C2S + k9C3},

L{I(t)} = i0
s + 1

sα L{−k4EI + k5C2S − k6C1 I + k7C3},

L{P(t)} = p0
s + 1

sα L{k3C1},

L{C1(t)} = c10
s + 1

sα L{k1ES − (k2 + k3)C1 − k6C1 I + k7C3},

L{C2(t)} = c20
s + 1

sα L{k4EI − (k5 + k8)C2S + k9C3},

L{C3(t)} = c30
s + 1

sα L{k6C1 I − (k7 + k9)C3 + k8C2S}.

(6)
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We seek an approximate solution to system (6) and hence a solution to the fractional
system (1) in the form of a power series about t = 0, that is

E(t) =
∞

∑
n=0

En(t), S(t) =
∞

∑
n=0

Sn(t), I(t) =
∞

∑
n=0

In(t), P(t) =
∞

∑
n=0

Pn(t),

C1(t) =
∞

∑
n=0

C1n(t), C2(t) =
∞

∑
n=0

C2n(t), C3(t) =
∞

∑
n=0

C3n(t).
(7)

The nonlinear terms in system (6) are expressed in terms of Adomian polynomials
as follows:

ES =
∞

∑
n=0

A1n =
1
n!

( d
dλ

)n( n

∑
k=0

λkEk

n

∑
k=0

λkSk

)∣∣∣
λ=0

,

EI =
∞

∑
n=0

A2n =
1
n!

( d
dλ

)n( n

∑
k=0

λkEk

n

∑
k=0

λk Ik

)∣∣∣
λ=0

,

C1 I =
∞

∑
n=0

A3n =
1
n!

( d
dλ

)n( n

∑
k=0

λk(C1)k

n

∑
k=0

λk Ik

)∣∣∣
λ=0

,

C2S =
∞

∑
n=0

A4n =
1
n!

( d
dλ

)n( n

∑
k=0

λk(C2)k

n

∑
k=0

λkSk

)∣∣∣
λ=0

.

(8)

Substituting (7) and (8) recursively in (6) and then applying the inverse Laplace
transforms lead to the analytical expressions of all concentrations expressed in series forms.
The first two terms of each of these series are given below

E0 = e0, S0 = s0, I0 = i0, P0 = p0, C10 = c10 , C20 = c20 , C30 = c30 ,

E1 = (s0c20 k5 − s0e0k1 + c10 k2 + c10 k3 − i0e0k4)
tα

Γ(α + 1)
,

S1 = (−s0c20 k5 − s0c20 k8 − s0e0k1 + c10 k2 − c30 k9 + i0e0k4)
tα

Γ(α + 1)
,

I1 = (s0c20 k5 − i0c10 k6 + c30 k7 − i0e0k4)
tα

Γ(α + 1)
,

P1 = (c10 k3)
tα

Γ(α + 1)
,

C11 = (−s0e0k1 − c10 k2 − c10 k3 − i0c10 k6 + c30 k7)
tα

Γ(α + 1)
,

C21 = (−s0c20 k5 − s0c20 k8 + c30 k9 + i0e0k4)
tα

Γ(α + 1)
,

C31 = (s0c20 k8 + i0c10 k6 − c30 k7 − c30 k9)
tα

Γ(α + 1)
.

(9)

3.2. Differential Transformation Method

First proposed by Zhou [40], the differential transformation method (DTM) is an itera-
tive approach for obtaining a Taylor series solution of a differential equation without the
need for the tedious computing of symbolic higher derivatives. Arikoglu and Ozkol [41]
modified the original version of the DTM to make it applicable to solve fractional dif-
ferential equations. In this section, we derive a series solution of system (1) using the
fractional DTM [42].

The fractional power series expansion of the continuous analytical function f (x) is
given by

f (t) =
∞

∑
k=0

F(k)(t − t0)
k/α, (10)

where F(k) is the fractional differential transformation of f (t) defined by
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F(k) =

⎧⎪⎨⎪⎩
1

(k/α)! Dk/α
∣∣∣
t=t0

, if k/α ∈ Z+, k = 0, 1, 2, . . . , (qα − 1)

0, if k/α /∈ Z+

. (11)

For a fractional-order q, the Caputo fractional derivative is given by

Dq
t0

f (t) =
1

Γ(m − q)
Dm

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∫ t

t0

⎡⎢⎢⎢⎢⎣
f (t)−

m−1

∑
k=0

(1/k!)(t − t0)
k f (k)(t0)

(t − x)1+q−m

⎤⎥⎥⎥⎥⎦dt

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭. (12)

The following properties of fractional differential transformations are needed in the
derivation of the analytical solution of system (1) [42].

Theorem 1. If f (x) = g1(x) ± g2(x) ± · · · ± gn(x), then F(k) = G1(k) ± G2(k) ± · · · ±
Gn(k).

Theorem 2. If f (x) =
n

∏
j=1

gj(x), then

F(k) =
k

∑
kn−1=0

kn−1

∑
kn−2=0

· · ·
k3

∑
k2=0

k2

∑
k1=0

G1(k1)G2(k2 − k1) . . . Gn−1(kn−1 − kn−2)Gn(k − kn−1).

Theorem 3. If f (x) = (x − x0)
p, then F(k) = δ(k − αp), where

δ(k) =
{

1 if k = 0
0 if k �= 0

.

Theorem 4. If f (x) = Dq
x0 [g(x)], then F(k) =

Γ(q + 1 + k/α)

T(1 + k/α)
G(k + αq).

By applying the fractional operator in (12) to system (1), we obtain the same series
solution given in (10) for the integer case. For fractional order derivatives, the variations
between the LDM and DTM were very small, and will be discussed in the Results and
Discussion section.

3.3. Padé Approximation

It is known that the convergence of the truncated series solutions obtained by Laplace
decomposition and differential transformation methods are guaranteed only over small
domains. The divergence of the series solution obtained by the LDM or DTM may also
result for large initial conditions. In this case, LDM and DTM methods can be coupled
with Padé approximation to insure convergence. The Padé approximant of the function
f (x), which is a convergent ratio of two polynomials constructed from its Taylor series
expansion, gives a better approximation of the function, especially when there are poles.

When the function f (x) is expressed as a power series, the [L/M] Padé approximant
is given by

f (x) =
PL(x)

QM(x)
=

p0 + p1x + p2x2 + p3x3 + · · ·+ pLxL

1 + q1x + q2x2 + q3x3 + · · ·+ qMxM . (13)

4. Results and Discussion

In this section, two study cases are presented. In each case, the nonlinear reaction
system (1) is solved for a different set of parameters and a different set of initial concentrations.

Example 1. To verify the accuracy of the proposed approaches, we first solve the underlined system
for the integer-derivative, α = 1, subject to the following initial conditions (4).
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e0 = 0.1, s0 = 0.2, i0 = 0.01, p0 = c10 = c20 = c30 = 0, (14)

and the following constant rates

k1 = 0.1, k2 = 0.2, k3 = 0.4, k4 = 0.9, k5 = 1, k6 = 0.4, k7 = 0.9, k8 = 0.2, k9 = 0.5. (15)

The LDM and DTM solutions were identical for all seven species. For example, the identical
five-term series solution obtained by the LDM and the DTM representing the concentration of
enzyme is given by

E(t) = 0.1 − 0.0029 t + 0.000778 t2 − 0.000152 t3 + 0.0000242 t4. (16)

The analytical expressions of the concentrations of all other species are provided in the
Supporting Information. Figure 2a–g shows that for the integer case (α = 1), the derived
analytical concentration curves obtained by the LDM and the DTM are identical and
strongly agree with the fourth-order Runge–Kutta numerical curves. Figure 2 also reflects
the temporal dependence of relative concentrations of enzyme reaction components. It is
noticed that concentrations of enzyme, substrate, and product decrease as time increases,
whereas the concentrations of inhibitor, enzyme–substrate, enzyme–inhibitor, and enzyme–
substrate–inhibitor increase with time.

(a) (b)

(c) (d)
Figure 2. Cont.
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(e) (f)

(g)
Figure 2. Analytical and numerical concentration curves for reaction system (1) for the integer-
derivative case (α = 1) with initial concentrations (14) and rate constants (15). (a) Enzyme.
(b) Substrate. (c) Product. (d) Inhibitor. (e) Intermediate species ES. (f) Intermediate species EI.
(g) Intermediate species ESI.

The nonlinear fractional reaction system (1) is also solved for the fractional derivatives
α = 0.9, and α = 0.8. Figure 3a–g shows strong agreements between LDM and DTM
concentration curves of enzyme, substrate, product, inhibition and all complex intermediate
species. In this Figure, the fractional derivative α is an index of memory, where it is noticed
that the concentrations of the enzyme components depend on the fractional order. Figure 3
clearly shows that as α increases, the fractional concentration curve gets closer to the curve
representing the concentration for the integer case (α = 1).

Figure 3a–c confirms that the enzyme, substrate, and inhibitor concentrations increase
as the fractional power increases and decrease as time increases. In contrast, Figure 3d–g
portrays that the product and intermediate species concentrations increase and reach their
maximum with the rise of time and decrease of the fractional power.

Tables 1 and 2 assert that the actual variations between the LDM and DTM for the
fractional cases are smaller than what they appear in Figure 3. This can also be inferred
from the very small y-axis increments in Figure 3.
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Table 1. Maximum variation between LDM and DTM computed concentrations when α = 0.9.

Concentration Maximum Difference Occurred at x

Enzyme 0.0000424 1.000
Substrate 0.0000024 0.007
Inhibition 0.0000103 1.000
Production 0.0000205 0.925
Complex ES 0.0000323 0.925
Complex EI 0.0000105 1.000
Complex ESI 0.0000004 0.525

Table 2. Maximum variation between LDM and DTM computed concentrations when α = 0.8.

Concentration Maximum Difference Occurred at x

Enzyme 0.0000843 0.850
Substrate 0.0000049 0.600
Inhibition 0.0000206 1.000
Production 0.0000408 0.825
Complex ES 0.0000643 0.825
Complex EI 0.0000208 1.950
Complex ESI 0.0000009 0.450

(a) (b)

(c) (d)
Figure 3. Cont.
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(e) (f)

(g)
Figure 3. Analytical concentration curves for fractional reaction system (1) with initial
concentrations (14) and rate constants (15) for the integer-derivative case α = 1 and the fractional-
derivative cases α = 0.9 and 0.8. Solid and dotted curves represent the LDM and the DTM solutions,
respectively. (a) Enzyme. (b) Substrate. (c) Product. (d) Inhibitor. (e) Intermediate species ES.
(f) Intermediate species EI. (g) Intermediate species ESI.

Example 2. Consider the nonlinear fractional reaction system (1) subject to the following set of
relatively large initial concentrations:

e0 = 12, s0 = 5, i0 = 2, p0 = c10 = c20 = c30 = 0, (17)

and the following set of constant rates

k1 = 0.01, k2 = 0.2, k3 = 0.04, k4 = 0.19, k5 = 0.1, k6 = 0.4, k7 = 0.09, k8 = 0.22, k9 = 0.05. (18)

For the integer case, α = 1, the obtained LDM, and DTM truncated series solutions
(concentrations) were identical but diverged rapidly over a small domain. This divergence
was controlled by using a [4/4] Padé approximant for each analytical derived expression.
In Figure 4a, the divergent enzyme concentration curves obtained by the LDM and DTM
are depicted against time. In contrast, Figure 4b shows how the use of Padé approximation
overcomes this obstacle. Figure 5 is similar to Figure 4 but for the substrate concentra-
tion. All concentration curves for the case α = 1 and their [4/4] corresponding Padé
approximations are provided in the Supporting Information.
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(a) (b)
Figure 4. Analytical and numerical concentration curves of Enzyme (E(t)) for the integer-derivative
system (1) with α = 1, initial conditions (17), and parameters (18). (a) Divergent analytical concentra-
tion curve. (b) Convergent analytical concentration curve.

(a) (b)
Figure 5. Analytical and numerical concentration curves of substrate (S(t)) for integer-derivative
system (1) with α = 1, initial conditions (17), and parameters (18). (a) Divergent analytical concentra-
tion curve. (b) Convergent analytical concentration curve.

The DTM was employed to derive analytical expressions for the concentration curves
of all species for fractional values of α (α = 0.9, 0.8). All the obtained curves of more
than 10-term truncated series (provided in the Supporting Information) diverged over a
relatively small domain. Therefore, large order Padé approximations were needed to obtain
the convergent series solutions, as shown in Figure 6. A single command using Maple or
MATLAB can be used to generate Padé approximations (given in supplementary material).
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(a) (b)

(c) (d)

(e) (f)

Figure 6. Cont.
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(g)
Figure 6. Analytical LDM concentration curves of E, S, I, P, ES, EI and ESI for system (1) with
initial conditions (17) and parameters (18). (a) Enzyme. (b) Substrate. (c) Product. (d) Inhibitor.
(e) Intermediate species ES. (f) Intermediate species EI. (g) Intermediate species ESI.

5. Conclusions

This paper discussed a complex nonlinear fractional model of enzyme inhibitor re-
actions subject to two different sets of initial concentrations, each with a different set of
reaction rates. The simple, efficient, and reliable Laplace decomposition (LDM) and dif-
ferential transformation (DTM) methods were utilized to solve the nonlinear fractional
biochemical reaction system. The LDM was implemented by using Laplace transform of
Caputo fractional derivative to convert the nonlinear fractional-derivative system (1) into
an algebraic system, where the nonlinear terms are expressed in the form of Adomian
polynomials. Then, the solution is obtained by employing the linearity of the Laplace and
the inverse Laplace transforms. The fractional differential transformation method was
implemented by directly applying Equations (10) and (11), and Theorem 2. The derived
solution of system (1) represent the analytic expressions for the concentrations of enzyme,
inhibitor, substrate, product, and the complex intermediate species: enzyme–substrate,
enzyme–inhibitor, and enzyme–inhibitor–substrate were derived and discussed. From this
study, it was concluded that different rate constants and initial concentrations produce
different dynamics. Furthermore, it was shown that a Padé approximation of the series
solution obtained by LDM and DTM would preserve convergence and stability when large
initial concentrations or large rate constants are assumed. The derived LDM and DTM
concentration expressions for the enzyme inhibitor reaction model were shown to be very
close to the fourth-order Runge–Kutta method when the results were compared for the
integer-derivative case.

The derived fractional analytical concentration curves would play a significant role
in predicting the future state of the biochemical reaction model. In addition, the derived
analytical expressions would be essential in investigating the effects of various reaction
rates to reach better designs and controlled systems. The used methods are accessible to
the broader research community. They can be extended to solve various fractional models
to obtain a better insight into dynamical behavior for biological or chemical systems with
possible hereditary properties.

Supplementary Materials: The following are available at https://www.mdpi.com/article/10.3390/
mca27030045/s1.
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Abstract: This article aims to develop a mathematical simulation of the steady mixed convective
Darcy–Forchheimer flow of Williamson nanofluid over a linear stretchable surface. In addition,
the effects of Cattaneo–Christov heat and mass flux, Brownian motion, activation energy, and ther-
mophoresis are also studied. The novel aspect of this study is that it incorporates thermal radiation
to investigate the physical effects of thermal and solutal stratification on mixed convection flow
and heat transfer. First, the profiles of velocity and energy equations were transformed toward the
ordinary differential equation using the appropriate similarity transformation. Then, the system
of equations was modified by first-order ODEs in MATLAB and solved using the bvp4c approach.
Graphs and tables imply the impact of physical parameters on concentration, temperature, velocity,
skin friction coefficient, mass, and heat transfer rate. The outcomes show that the nanofluid tem-
perature and concentration are reduced with the more significant thermal and mass stratification
parameters estimation.

Keywords: Williamson nanofluid; thermal stratification; solutal stratification; mixed convection;
Darcy–Forchheimer flow; activation energy

1. Introduction

Nanotechnology is the technique of analyzing and separating or adding an object’s
atoms and molecules that need to be made very small. Over the last thirty years, nan-
otechnology has significantly impacted vast applications in the petroleum industry, food
production, medicine, nuclear energy, cooling of the reactor, and the polymer industry.
Primarily, in 1995, Choi and Eastman [1] “coined the term nanofluid by incorporating the
substance of nanoparticles into base fluids and theoretically demonstrated their efficiency”.
Based on their findings, they noticed a considerable increase in the thermal conduction
of the base liquid. Buongiorno [2] demonstrated the role of Brownian motion and ther-
mophoresis in a nanofluid. The seven slip mechanisms were studied by Buongiorno and
Buongiorno’s concepts: inertia, thermophoresis, gravity, Magnus effects, fluid drainage,
Brownian diffusion, and diffusionphoresis.

Williamson [3] developed “the flow of Pseudo-plastic equation” and analyzed the
properties of the pseudo-plastic flow holding three constants. These are the viscous constant,
plasticity constant, and the ratio between the viscous constant and the plasticity constant.
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Nadeem et al. [4] tested the Williamson fluid model for 2D flows through a stretching sheet.
The role of radiation and heat absorption on an incompressible pseudo-plastic Williamson
fluid over the unsteady flow of the boundary layer via a porous stretched surface was ex-
plored by Hayat et al. [5] and Karthikeyan et al. [6], and they discovered that increasing the
Weissenberg number decreases the skin friction coefficient. According to Zeeshan et al. [7],
water- and engine oil-based CNTs flowed through a porous medium. On the other
hand, the MHD Williamson fluid flow through a nonlinear curved surface in convec-
tive homogeneous and heterogeneous reactions was implemented by K. Ahmed et al. [8].
H. Waqas et al. [9] presented a numerical result for the Carreau–Yasuda nanofluid in a
porous medium with bioconvective microorganisms. Nasir Shehzad et al. [10] determined
that the suction/injection parameter was generated due to a constant and porous medium
in the presence of a heat source, and a chemical reaction was observed. The cutting-edge
reports in Williamson nanofluid flow with thermal radiation and heat generation are
seen in [11–19].

Cattaneo [20] suggested a modified Fourier’s law that included a relaxation time
element to overcome the paradox of Fourier’s law and heat conduction. Christov [21]
extended Cattaneo’s theory by including Oldroyd derivatives, and it was named the
Cattaneo–Christov model theory. Eswaramoorthi et al. [22] expressed the impact of a
Williamson fluid flow of two-dimensional Darcy–Forchheimer on a Riga plate. Dual strati-
fication and a double Catteneo–Christov flux were established for the energy equations.
The contribution of Jeffery fluid flow to the non-Fourier heat flux model on a nonlinear
stretched surface with double stratification was studied by Hayat et al. [23] and Shankar
Goud [24]. Ali et al. [25] used the Cattaneo–Christov dual diffusion model to discuss the
3D incompressible unsteady effect of magneto-hydrodynamics on the transient rotating
flow of Maxwell viscous nanofluid. The relation between thermal boundary layer and
thermal relaxation time was observed in Abu-hamdeh et al. [26]. Rashid et al. [27] ex-
amined the thermal radiation effects of Darcy–Forchheimer Maxwell fluid flow along an
exponentially stretching surface with activation energy. Shafiq et al. [28] “reported the
influence of convective boundary conditions, thermal radiation and chemical reaction on
the three-dimensional flow of Darcy Forchheimer nanofluid across a rotating surface with
Arrhenius activation energy”. “Entropy formation, activation energy, and binary chemical
reaction effects on the Darcy Forchheimer flow of Williamson nanofluid through a nonlinear
stretchable flat surface were deliberated” by Ghulam Rasool et al. [29] and Hayat et al. [30].

The activation energy is the smallest quantity of energy forced to trigger a chemical
reaction in a system. Energy exists in two types: kinetic and potential. A reaction among
molecules could be incomplete due to kinetic energy loss or an inadequate collision. At
this point, only the minimum amount of energy is required to initiate the chemical reac-
tion. Bestman [31] was the first to investigate the impact of activation energy on natural
action in a permeable boundary layer. Dawar et al. [32] addressed nonlinear stretching
plates in magnetohydrodynamics pseudo-plastic nanofluid flow with activation energy.
The method of homotopy analysis was performed by Alsaadi et al. [33] to examine the
Arrhenius energy equation in the nanomaterial of magneto-Williamson flow. The influence
of the activation energy, slip, porosity parameter, and entropy approach on the mixed
convective flow of Darcy–Forchheimer along a stretched curved surface was noticed by
Muhammad et al. [34]. Danook et al. [35] investigated the mixed convective heat transfer
in a turbulent flow of nanofluid. Wasim Jamshed et al. [36] worked on the unsteady flow of
a non-Newtonian Casson nanofluid with solar radiation using the Keller box method. The
significance of MHD mixed convective flows Casson nanofluids over an elongating irreg-
ular surface immersed vertically in a Darcy–Brinkman porous medium was exploited by
Alghamdi et al. [37]. Currently, investigators are analyzing the Arrhenius activation en-
ergy [38–48]. Other related studies have been conducted in [49–55].

For heat and mass transfer concepts, stratification is an essential component. Due to
temperature differences, concentration variations, and differing fluid densities, it happens
in inflow distribution. Heat and mass transport occur at the same time in the dual stratifica-
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tion process. Natural and mixed convection in a dual stratification medium are essential to
study because of their applications. Groundwater reservoirs, industrial food, and regulat-
ing hydrogen and oxygen levels in the atmosphere are just a few examples of stratification.
Sreelakshmi et al. [56] examined the steady flow of Maxwell fluid Darcy–Forchheimer
over a stretching surface with thermal and solutal stratification. Darcy–Forchhemer MHD
viscoelastic flow of nanofluid through a nonlinear stretching surface with dual stratification
effects was deliberated by Hayat et al. [57]. Eswaramoorthi et al. [58] tested the impact of
dual stratification and double non-Fourier heat flux model on the mathematical modeling
of a Williamson fluid flow on a Darcy–Forchheimer over a Riga plate. Williamson fluid
flow over a stretching in a linear surface was examined by Ahmed et al. [59] Some recent
thermal and solutal stratification articles were found in [43–48,56–70].

The vast majority of researchers collaborate on the mixed convective Darcy–Forchheimer
flow with the non-Fourier heat flux model via the prescribed boundary layer but have
not handled a dual stratified porous medium in Williamson nanofluid. Here, the gap was
filled by the Williamson nanofluid on the double Cattaneo–Christov theory, radiation, dual
stratification, and the impact of activation energy. The numerical findings were produced
using the MATLAB bvp4c approach. Finally, in Williamson nanofluid flow, all the phys-
ical parameters were represented by a graphical process. This process is widely used in
chemical and thermal engineering fields.

2. Development of the Flow Analysis

Assume a Williamson nanofluid’s steady flow through a linearly stretching surface in
a Darcy–Forchheimer porous material. The Cattaneo–Christov theory, Arrhenius energy,
thermal radiation, and magnetic field are studied. The flow process is revealed by thermal
and solutal stratification. Throughout this work, the x and y directions represent velocity
components of u and v, respectively (see Figure 1). The surface velocity is presumed to
be uw = ax, where a > 0 denotes the stretching surface rate. The flow equation [69] is
as follows:

∂u
∂x
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= 0 (1)
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The boundary conditions are

u = Uw(x) = ax, v = −Vw(x), T = Tw(x) = T0 + bx, C = Cw(x) = C0 + c1x at y = 0,
u → 0, ∂u

∂y → 0, T → T∞ = T0 + b1x, C → C∞ = C0 + c2x at y → ∞ (5)

61



Math. Comput. Appl. 2022, 27, 46

Consider

η =

√
a
ϑ

y, u = ax f ′(η),v = −
√

aϑ f (η) θ(η) =
T − T∞

Tw − T0
, φ(η) =

C − C∞

Cw − Co
(6)

 

Figure 1. The geometry of the physical model.

Equations (2)–(4) can be modified as follows by using (6):

f ′′′ + f f ′′ − f ′
2
+ Wi f ′′ f ′′′ − K f ′ + λ(θ − BNφ)− Fc f ′
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(9)

The boundary conditions are

η → 0, f (0) = f w; f ′(0) = 1; θ(0) = 1 − Sθ ; φ(0) = 1 − Sφ

η → ∞, f ′(∞) = 0; θ(∞) = 0; φ(∞) = 0
(10)
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kT∞
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Physical quantities for skin friction, Nusselt, and Sherwood number are obtained as
follows:
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∂y + 16σ∗T3

∞
3kp

∂T
∂y

)
jω = −Dm

∂C
∂y

The following are the dimensionless parts of local skin friction, heat, and mass
transfer rates.

1
2 Cf Re

1
2 = f ′′ (0) + Wi

2 f ′′ (0)2,

Re− 1
2 Nu = −

(
1 + 4

3 Rd
)

θ′(0),

Re− 1
2 Shx = −φ′(0).

(12)

3. The Solution Methodology

A system of nonlinear ODEs (7)–(9) with boundary conditions (10) is solved via
the MATLAB bvp4c code. The problems are converted into first-order ODEs using the
mathematical algorithm described below (Figure 2).

Let f = y(1), f ′ = y(2), f ′′ = y(3), θ = y(4), θ′ = y(5), φ = y(6), and φ′ = y(7). The
following is a list of first-order ODEs:

y′(1) = y(2),
y′(2) = y(3),
y′(3) = yy1 =

(
1

1+Wi y(3)

)
∗
(
−y(1)y(3) + y(2)2 + K y(2) + Fc y(2)2 + M y(2)

−λ (y(4)− BN y(6))),
y′(4) = y(5),

y′(5) = yy2 =

(
1

1+( 4
3 )Rd

− Pr ωθ y(1)2
)

∗(−Pr y(1) y(5) + Pr y(2)y(4) + Pr Sθ y(2)
+Pr ωθ

(
y(4) y(2)2 + y(2)2 Sθ − y(1) y(2) y(5)− y(1) y(3) y(4)

−y(1) y(3) Sθ)−Pr HA y(4)− Pr NB y(7) y(5)− Pr NT y(5)2
)

,
y′(6) = y(7),

y′(7) = yy3 =
(

1/
(

1 − Sc ωφ y(1)2
))

∗ (−Sc y(1) y(7) + Sc y(2) y(6) + Sc Sφ y(2)

+Sc ωφ (y(6) y(2)2 + y(2)2Sφ − y(1) y(2) y(7)− y(1) y(3) y(6)
−y(1) y(3)Sφ)− (NT/NB) ∗ yy2
+Sc σo(1 + δo y(4))n y(6) exp(−E/(1 + δo y(4))))

with boundary condition

y0(1) = f w, y0(2) = 1, y0(4) = (1 − Sθ), y0(6) =
(
1 − Sφ

)
,

yinf(2) = 0, yinf(4) = 0, yinf(6) = 0
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Figure 2. BVP4C computation flowchart.

4. Results and Discussion

Table 1 shows the association between Nusselt numbers taken from Mustafa et al.’s
results and our results. We were able to match our results identically to Mustafa’s re-
sults. The quantitative data of the skin friction drag force (1/2Cf Re1/2), heat transfer
rate ( NuRe−1/2), and Sherwood number (ShxRe1/2) for the several values of Richardson
number λ, Weissenberg number Wi, Forchheimer number Fc, Magnetic parameter M, and
suction/injection parameter fw were presented in Table 2. Moreover, it was discovered
that as Wi and λ values grow, the skin friction coefficient also increases, whereas it was
significantly decreased when Fc, fw, and M increased. Tables 3 and 4 incorporated the
effects of the embedded parameters Radiation R, Thermal relaxation time parameter ωθ ,
Thermal stratification Sθ , Thermophoresis parameter NT , Mass relaxation parameter ωφ,
Mass stratification Sφ, and Schmidt number Sc on heat and mass diffusion rates. The higher
variation of ωθ , Sθ , NT , and Sφ was related to the reduced mass and heat transfer rates. It
was also accelerated as the thermal radiation, Schmidt number, and mass relaxation time
were increased.
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Table 1. Correlation of Nusselt number
(

NuRe− 1
2

)
when Wi = Fc = K = R = ωθ = HA = ωφ = 0,

M = BN = NB = 0.5, Sc = 5, and δ0 = 1.

Pr NT E σ0 n λ
NuRe−1/2

Mustafa et al. [69] Present

2 0.5 1 1 0.5 0.5 0.706605 0.706604

4 0.5 1 1 0.5 0.5 0.935952 0.935955

7 0.5 1 1 0.5 0.5 1.132787 1.132788

10 0.5 1 1 0.5 0.5 1.257476 1.257482

5 0.1 1 1 0.5 0.5 1.426267 1.426269

5 0.5 1 1 0.5 0.5 1.013939 1.013938

5 0.7 1 1 0.5 0.5 0.846943 0.846928

5 1.0 1 1 0.5 0.5 0.649940 0.649939

5 0.5 0 1 0.5 0.5 0.941201 0.941209

5 0.5 1 1 0.5 0.5 1.013939 1.013943

5 0.5 2 1 0.5 0.5 1.064551 1.064563

5 0.5 4 1 0.5 0.5 1.114549 1.114191

5 0.5 1 0 0.5 0.5 1.145304 1.145301

5 0.5 1 1 0.5 0.5 1.013939 1.013938

5 0.5 1 2 0.5 0.5 0.926282 0.926281

5 0.5 1 5 0.5 0.5 0.798671 0.798669

5 0.5 1 2 −1 0.5 1.030805 1.030804

5 0.5 1 2 −0.5 0.5 0.999470 0.999468

5 0.5 1 2 0 0.5 0.964286 0.964285

10 0.5 1 2 1 0.5 0.886830 0.886830

10 0.5 1 2 0.5 0 1.032281 1.032280

10 0.5 1 2 0.5 0.5 1.056704 1.056706

10 0.5 1 2 0.5 3 1.154539 1.154538

10 0.5 1 2 0.5 5 1.215937 1.215938

Table 2. Numerical analysis of 1/2Cf Re1/2, NuRe−1/2, and ShxRe1/2 for different parameters Wi, Fc,
λ, M, and fw.

Wi Fc λ M fw 1/2CfRe1/2 NuRe−1/2 ShxRe−1/2

0 0.4 0.5 0.5 0.3 −1.493123 1.667677 0.688683

0.1 0.4 0.5 0.5 0.3 −1.455877 1.661396 0.681731

0.2 0.4 0.5 0.5 0.3 −1.41351 1.653626 0.673835

0.3 0.4 0.5 0.5 0.3 −1.362763 1.643289 0.664469

0.2 0 0.5 0.5 0.3 −1.329383 1.662128 0.682787

0.2 0.2 0.5 0.5 0.3 −1.372209 1.657807 0.678189

0.2 0.4 0.5 0.5 0.3 −1.41351 1.653626 0.673835

0.2 0.6 0.5 0.5 0.3 −1.45342 1.649575 0.669706

0.2 0.4 0 0.5 0.3 −1.470747 1.646644 0.666783

0.2 0.4 0.2 0.5 0.3 −1.44786 1.64946 0.669584

0.2 0.4 0.4 0.5 0.3 −1.424968 1.652245 0.672411
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Table 2. Cont.

Wi Fc λ M fw 1/2CfRe1/2 NuRe−1/2 ShxRe−1/2

0.2 0.4 0.6 0.5 0.3 −1.402068 1.655 0.675269

0.2 0.4 0.5 0 0.3 −1.167756 1.642785 0.789742

0.2 0.4 0.5 0.5 0.3 −1.41351 1.653626 0.673835

0.2 0.4 0.5 1 0.3 −1.56368 1.632112 0.646948

0.2 0.4 0.5 1.5 0.3 −1.696232 1.612796 0.626083

0.2 0.4 0.5 0.5 −0.3 −1.13794 1.366538 0.605637

0.2 0.4 0.5 0.5 −0.1 −1.22469 1.476979 0.612521

0.2 0.4 0.5 0.5 0.1 −1.316926 1.576889 0.632016

0.2 0.4 0.5 0.5 0.3 −1.41351 1.653626 0.673835

Table 3. Numerical study of NuRe−1/2 for various parameters R, ωθ , and Sθ .

R ωθ Sθ NuRe−1/2

0 0.1 0.2 1.292138

0.5 0.1 0.2 1.653626

1 0.1 0.2 1.877266

1.5 0.1 0.2 1.926091

0.5 −0.1 0.2 1.64429

0.5 0 0.2 1.662016

0.5 0.1 0.2 1.653626

0.5 0.2 0.2 1.561214

0.5 0.1 0 1.849146

0.5 0.1 0.1 1.753203

0.5 0.1 0.2 1.653626

0.5 0.1 0.3 1.550338

Table 4. Numerical results of ShxRe1/2 for different parameters Sc, NT , ωφ, and Sφ.

Sc NT ωφ Sφ ShxRe−1/2

0.5 0.5 0.1 0.2 0.015548

1 0.5 0.1 0.2 0.673835

1.5 0.5 0.1 0.2 1.186802

2 0.5 0.1 0.2 1.628294

1 0.2 0.1 0.2 1.038076

1 0.3 0.1 0.2 0.911577

1 0.4 0.1 0.2 0.790267

1 0.5 0.1 0.2 0.673835

1 0.5 0 0.2 0.591323

1 0.5 0.1 0.2 0.673835

1 0.5 0.2 0.2 0.759523

1 0.5 0.3 0.2 0.848478

1 0.5 0.1 0 0.899109
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Table 4. Cont.

Sc NT ωφ Sφ ShxRe−1/2

1 0.5 0.1 0.1 0.786382

1 0.5 0.1 0.2 0.673835

1 0.5 0.1 0.3 0.561474

The embedded parameters with fixed values Wi = 0.2, δo = ωθ = 0.1, ωφ = 0.1,
Pr = 2, Fc = 0.4, K = 0.2,σo = 1, BN = 0.5, R = 0.5, HA = −0.5, NB = 0.5,
NT = 0.5, n = 0.5, f w = 0.3, Sθ = 0.2, Sc = 1.0, M = 0.5, λ = 0.5, E = 1 and Sφ = 0.2 are
existence in velocity f ′, temperature θ and concentration φ profiles. Specifications of the
suction/injection parameter f w on velocity field f with the range of 0 ≤ η ≤ 4 the fluid
velocity profile of the nanofluid while comparing the values of Fc and K were noted in
Figure 3. In the graph flow between Fc and K, then values of f w varied from f w = −0.3 to
+0.3 increase, and the velocity profile f ′ of the graph automatically decreases. The influence
of mixed convection parameters λ on the velocity field for various values of the parameters
is shown in Figure 4. As shown in Figure 4, the velocity field decays with raising values
of λ = 0 to 0.6. Supporting flow is represented on a warm surface by λ values greater
than zero, whereas resisting flow is shown on a cold surface by λ values less than zero.
The influence of the Forchheimer number Fc on the velocity profile is seen in Figure 5 for
varied Wi = 0.0 and 0.4 values. It is determined that the velocity field diminishes when the
Forchheimer number rises. The effect of the Weissenberg number Wi on velocity flow is
seen in Figure 6 for both magnetic field parameter scenarios. Figure 6 shows that increasing
Wi depreciates the velocity field. The relaxation time is prolonged, which restricts fluid
motion. The Weissenberg number is used in physical studies of viscoelastic flows to test the
impact of elastic to viscous forces. As a result of lowering the velocity of the boundary layer,
the Forchheimer number Fc and the porous medium K have different parameter values. In
Figures 7 and 8, we present the variation of the Weissenberg number Wi and the magnetic
field M of the base flow of the velocity profile. Figures 7 and 8 show that increasing Wi and
M lowers the velocity distribution. The Lorentz force is formed when the magnetic field is
strengthened. This force aids in reducing the velocity distribution as well as Wi.

 
Figure 3. Effect of Suction/Injection parameter ( f w) on f ′(η).
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Figure 4. Effect of Richardson number (λ) on f ′(η).

Figure 5. Effect of Forchheimer number (Fc) on f ′(η).

 
Figure 6. Effect of Weissenberg number (Wi) on f ′(η) when M = 0, 0.5.
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Figure 7. Effect of Weissenberg number (Wi) on f ′(η) when Fc = 0, 0.4 and K = 0, 0.4.

Figure 8. Effect of a Magnetic parameter (M) on f ′(η).

Specifications of the heat absorption HA on temperature profile θ within the range
of 0 ≤ η ≤ 8 were established in Figure 9. In the graph, the flow depends on thermal
radiation values. When the values of HA increase, the temperature field also increases.
Figure 10 demonstrates the impact of the suction/injection parameter on temperature for
different parameters of the Forchheimer number Fc. The temperature field reduces for
higher values of fw. Figure 11 reveals the influence of the radiation parameter R on the
temperature profile. In these cases, the temperature profile was increased for various values
of the thermal radiation grown by varying the thermal relaxation time parameters ωθ . For
various Brownian motion and chemical reaction parameters, Figures 12 and 13 indicate
the performance of growing levels of thermal and solutal stratification parameters. The
stratification parameter is the ratio of free stream temperature to fluid surface temperature.
A significantly larger stratification parameter causes a rise in free stream temperature or
a decrease in a nanofluid stream, whereas the concentration profile exhibits the inverse
correlation. Temperature and concentration distribution within the boundary layer and
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the ambient fluid were reduced as the Sθ and Sφ values increased. The profiles of non-
dimensional temperature and concentration against thermal relaxation time ωθ and mass
relaxation time parameter ωφ were plotted in Figures 14 and 15. The temperature field
shrinks for NT = 0.0 and 0.5 as ωθ increases. For E = 0.0, 0.5, an upsurge in ωφ decreases
the concentration gradient. Figure 16 shows the effect of Sc on the concentration profile
with the range of 0 ≤ η ≤ 8 when NT = 0.0. It was discovered that concentration decreased
as Sc increased. Because of this, the Schmidt number has an opposite relation with mass
diffusivity. The characteristics of the thermophoresis parameter NT on the profile of
concentration were observed in Figure 17 for Sφ = 0.0 and 0.2. The concentration here rises
as a function of Sφ. The presence of a high value of NT helps reduce the concentration
boundary layer.

Figure 9. Effect of heat generation parameter (HA) on θ(η).

 
Figure 10. Effect of suction/injection parameter ( f w) on θ(η).
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Figure 11. Effect of thermal radiation parameter (R) on θ(η).

 
Figure 12. Effect of thermal stratification parameter (Sθ) on θ(η).

 
Figure 13. Effect of Solutal stratification

(
Sφ
)

on φ(η).
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Figure 14. Effect of thermal relaxation time parameter (ωθ) on θ(η).

 

Figure 15. Effect of Mass relaxation parameter
(
ωφ
)

on φ(η).

Figure 16. Effect of Schmidt number (Sc) on φ(η).
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Figure 17. Effect of Thermophoresis parameter (NT) on φ(η).

Figures 18–20 show the role of numerous parameters on skin friction coefficients
and heat and mass transfer rates. We concluded from Figure 18a,b that the skin friction
coefficient rises at fw and Wi while also increasing in Ri and Wi. Figure 19a,b display a lower
Nusselt number due to a lower R and ωθ as well as diminished NT and Sθ . Figure 20a,b
depict the mass diffusion rate for various estimates of fw and Sφ. The mass diffusion rate
increased in this case as the values of fw and Sφ increased, and Sc and ωφ also increased.

  
(a) (b) 

Figure 18. Three-dimensional plots of skin friction for (a) f w and Wi, (b) Ri, and Wi.

  
(a) (b) 

Figure 19. 3D plot of Nusselt number for (a) R and ωθ , (b) NT and Sθ .
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(a) (b) 

Figure 20. The 3D plot of Sherwood number for (a) fw and Sφ, (b) Sc and ωφ.

5. Conclusions

The numerical and analytical results of the Darcy–Forchheimer Williamson nanofluid
flow through a linear stretched surface were observed in this paper. In addition, the effects
of thermal and solutal stratification, activation energy, and the Cattaneo–Christov dual flux
were all considered. The following are the outcomes of this work.

i. The velocity profile was reduced by the Weissenberg number and Forchheimer
number, while the mixed convective parameter shows the increasing tendency in
velocity profile.

ii. The temperature distribution was raised with a high thermal relaxation time and
radiation values.

iii. For higher estimations of Schmidt number and mass relaxation time, the concentra-
tion profile diminished.

iv. Increases in the thermal and mass stratification parameters reduce the temperature
and concentration profile.

v. Heat and mass transfer rates were declined for large values of thermal radiation,
thermal relaxation time, mass stratification, and suction parameter.

The findings discussed in this work should benefit scientists and engineers in various
chemical and thermal engineering applications such as nuclear reactors, cooling systems,
and hybrid power systems.
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Abbreviations

List of Symbols

a Stretching rate
(
s−1)

CB Drag coefficient
Cp Specific heat (Jkg−1k−1)
B0 Magnetic field (kgs−2A−1)
Cw Surface concentration (kgm−3)
lg Acceleration due to gravity (ms−2)
C∞ Ambient fluid concentration (kgm−3)
lDB Mass diffusivity (m2s−1)
C Fluid concentration (kgm−3)
DT Thermophoretic diffusion coefficient (m2s−1)
E = (EA/kT∞) Activation energy Dimensionless

Fc=
(

CB/
√

k f

)
Forchheimer number Dimensionless

Gr =
(
(gβ(1−C∞)(Tw−T∞)x3)

ϑ2

)
Local Grashof number Dimensionless

HA =
(

Q1/ρ f Cpa
)

Heat generation parameter Dimensionless

k Thermal conductivity
(

Wm−1k−1
)

k f Permeability of porous medium Dimensionless

f w = −
(

Vw/
√

aϑ
)

Suction/injection parameter Dimensionless

kp Mean absorption coefficient Dimensionless
kr Reaction rate Dimensionless

M =
(

σB2
0/ρ f a

)
Magnetic parameter Dimensionless

n Fitted rate Dimensionless
NB=(τDBC∞/ϑ) Brownian diffusion parameter Dimensionless

BN =

(
(ρp−ρ f∞ )C∞

ρ f∞∧1(1−C∞)(Tw−T0))

)
Buoyancy ratio parameter Dimensionless

Pr =
(

k f /(ρc) f

)
Prandtl number Dimensionless

Rex = (Uwx/ϑ) Local Reynolds number Dimensionless

λ =
(

Gr
Re2

x

)
=
(
(g∧1(1−C∞)(Tw−T∞))

a2x

)
Richardson number Dimensionless

Sc = (ϑ/DB) Schmidt number Dimensionless
T Fluid temperature (K)

Wi =
(
∧x

√
2a3/ϑ

)
Weissenberg number Dimensionless

T∞ Ambient temperature (K)
u and v Velocity components (ms−1)
Uw Stretching surface velocity (ms−1)
Sθ Thermal stratification Dimensionless
x and y Direction coordinates (m)
Sφ Solutal stratification Dimensionless
Tw Wall temperature (K)

NT =
(

τDT(Tw−T0)
T∞ϑ

)
Thermophoresis parameter Dimensionless

R =
(

4σ∗T3
∞/kpk f

)
Thermal Radiation Dimensionless

ρ f Cp Heat capacity (Jk−1m−3)

Greek Symbols

ωθ = (aΓT) Thermal relaxation time parameter Dimensionless

δ =
(
(Tw−T0)

T∞

)
Temperature difference parameter Dimensionless

ωφ = (aΓC) Mass relaxation parameter Dimensionless
ρ f Fluid density (kgm−3)

α Thermal diffusivity (m2s−1)

∧ Williamson parameter Dimensionless
θ Non dimensional temperature Dimensionless
φ Non dimensional concentration Dimensionless
σ0 Dimensionless reaction rate Dimensionless
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Abstract: This discussion intends to scrutinize the Darcy–Forchheimer flow of Casson–Williamson
nanofluid in a stretching surface with non-linear thermal radiation, suction and heat consumption.
In addition, this investigation assimilates the influence of the Brownian motion, thermophoresis,
activation energy and binary chemical reaction effects. Cattaneo–Christov heat-mass flux theory is
used to frame the energy and nanoparticle concentration equations. The suitable transformation is
used to remodel the governing PDE model into an ODE model. The remodeled flow problems are
numerically solved via the BVP4C scheme. The effects of various material characteristics on nanofluid
velocity, nanofluid temperature and nanofluid concentration, as well as connected engineering aspects
such as drag force, heat, and mass transfer gradients, are also calculated and displayed through
tables, charts and figures. It is noticed that the nanofluid velocity upsurges when improving the
quantity of Richardson number, and it downfalls for larger magnitudes of magnetic field and porosity
parameters. The nanofluid temperature grows when enhancing the radiation parameter and Eckert
number. The nanoparticle concentration upgrades for larger values of activation energy parameter
while it slumps against the reaction rate parameter. The surface shear stress for the Williamson
nanofluid is greater than the Casson nanofluid. There are more heat transfer gradient losses the
greater the heat generation/absorption parameter and Eckert number. In addition, the local Sherwood
number grows when strengthening the Forchheimer number and fitted rate parameter.

Keywords: Casson and Williamson fluid; MHD; Cattaneo–Christov dual flux; non-linear thermal
radiation; binary chemical reaction

1. Introduction

Nowadays, heat transfer enrichment is a fascinating topic because of its numerous
applications in engineering and industry. In many industrial processes, regular fluids
(water, oil and ethylene glycol) are often employed. However, these fluids have a low
heat transfer phenomenon because of their low thermal conductivity. To address this
shortcoming, the nanometer-sized particle was mixed with regular fluids and enriches the
regular fluid thermal conductivity; see [1–3]. This is the way of preparing the nanofluid,
and this fluid has played an essential role in many fields such as solar water heating, heat
exchangers, transformer cooling, cancer therapy, etc. Choi [4] was the first to publish the
characteristics of nanoparticles, which were coupled with experimental evidence data. The
nanofluid flow over a cylinder with suction was explored by Sheikholeslami [5]. It was
uncovered that the local Nusselt number elevates when mounting the nanoparticle volume
fraction values. Ramana Reddy et al. [6] addressed the time-dependent MHD flow of
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nanofluid past a slendering surface. It was detected that the fluid temperature progressed
when enhancing the Brownian motion parameter. Makinde et al. [7] employed the impact
of Brownian motion and thermophoresis effects of MHD flow of nanofluid past a heated
surface. It was noted that the heat transfer rate decays when upturning the quantity of the
Brownian motion parameter. The consequences of Brownian motion and thermophoresis
of stagnation point flow of nanofluid past a non-uniform cylinder were presented by
Shafey et al. [8]. It was noticed that the heat transfer gradient slumps when rising the
thermophoresis quantity. Rasheed et al. [9] addressed the MHD flow of water-based
nanofluids with convective heating conditions. It was seen that the thermophoretic
parameter improves the thickness of the thermal boundary layer.

The non-Newtonian fluid has stimulated various scientists to investigate the events of
heat-mass transport because of its necessary part in industrial and engineering processes,
such as drilling muds, polymer extrusion, optical fibers, polymer production, etc. The
non-Newtonian fluid defies the Newton’s viscosity law. To deal with the huge nature of
the rheological behavior of such fluids, several non-Newtonian models have been devised.
Casson fluid is one of the non-Newtonian type models, and at the infinite non-linear
shear rate, the fluid material’s yield stress does not push flow, and it has zero viscosity.
The MHD flow of Casson nanofluid past a heated surface with viscous dissipation was
analyzed by Alotaibi et al. [10]. It was found that the drag force coefficient decays when
strengthening the Casson parameter. Nayak et al. [11] provide the impact of the triple
diffusive bioconvective flow of Casson nanofluid past a sheet. It was observed that the
wall motile micro-organism decimates when developing the Casson parameter. Entropy
optimization of MHD flow of Casson nanofluid over a stretching surface with convective
heating and mass conditions was illustrated by Butt et al. [12]. It was proved that the
Casson fluid parameter leads to a slow down of the entropy production. Ibrahim et al. [13]
discovered the chemically reactive MHD flow of Casson nanofluid past a stretching
surface with viscous dissipation. It was noticed that the nanoparticle concentration
profile decreases when raising the Casson parameter. The multiple slip effects of a
Casson nanofluid on a stretching surface were numerically performed by Afify [14],
and he proved that the mass transfer gradient enriches when enhancing the Casson
parameter. Varun Kumar et al. [15] scrutinized the MHD chemically reactive flow of Casson
nanoliquid past a curved stretching sheet. It was noted that liquid velocity depresses when
enhancing the Casson parameter. The 2D flow of Casson nanofluid on a thin moving needle
was examined by Naveen Kumar et al. [16], and they proved that the thermophoresis
parameter improves the mass transfer rate. Gohar et al. [17] studied the Darcy–Forchheimer
flow of Casson hybrid nanofluid on a curved surface. It was detected that the Casson
parameter suppresses the hybrid nanofluid motion.

Williamson fluid is also the non-Newtonian division model, which exhibits the shear
thinning property; that is, the fluid viscosity decays when rising the shear stress rate.
Waqas et al. [18] examined the MHD flow of Williamson nanofluid past a heated wedge.
It was revealed that the wall shear stress downfalls when mounting the Weissenberg
number. The MHD flow of Williamson nanofluid past a porous stretching surface with
suction was presented by Li et al. [19]. It was noted that the Williamson parameter leads
to depromoting the friction drag. Ahmed et al. [20] presented the consequences of MHD
Williamson nanofluid flow on an exponentially porous stretching surface. It was uncovered
that the fluid speed depresses when escalating the Williamson parameter. The 2D flow of
Williamson fluid over a cylinder was addressed by Iqbal et al. [21], and it was acknowledged
that the skin friction coefficient decreases as the Weissenberg number increases. Gorla
and Gireesha [22] demonstrated the convective heat transport analysis of a Williamson
nanofluid past the stretching surface. It was noticed that the nanofluid volume fraction
intensifies when heightening the Williamson parameter. The MHD flow of Williamson
nanofluid past a heated stretching surface was examined by Srinivasulu and Goud [23]. It
was concluded that the heat transfer gradient downfalls when promoting the quantity of
the Williamson parameter.
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In the last few decades, many researchers have focused on studying the thermal
radiation effect because the consequences of thermal radiation in flow structures are
helpful in atomic reactors, spacecraft, ship compressors, and solar radiation. Most of the
investigation is based on linearized Rosseland approximation; however, this concept is
applicative when the temperature distinction between ambient and fluid is small. However,
on many industrial occasions, this difference is enormous. So, a non-linearized Rosseland
approximation is introduced to overcome this restriction. MHD Casson nanofluid in
a bi-directional heated stretching surface with non-linear radiation was deliberated by
Mahanta et al. [24]. It was detected that the temperature ratio parameter leads to enriching
the entropy generation profile. Humane et al. [25] scrutinized the thermally radiative MHD
Casson–Williamson nanofluid flow on a porous stretching surface with a chemical reaction.
MHD heat-generating Casson nanofluid through a thin needle with non-linear thermal
radiation was examined by Akinshilo et al. [26]. Ghasemi et al.[27] numerically solved
the non-linear thermal radiative flow of nanofluid with a magnetic field via the spectral
relaxation method. It was noted that the nanofluid concentration upsurges when enhancing
the thermal radiation parameter. The bio-convective flow of Carreau nanofluid with
non-linear thermal radiation with a magnetic dipole was presented by Imran et al. [28]. It
was shown that the thermal boundary layer thickens when the temperature ratio parameter
is large. Bhatti et al. [29] demonstrated the impact of MHD flow of Williamson nanofluid
through a shrinking porous sheet. The problem of non-linear radiative flow of nanofluid
with the inclined magnetic field was numerically solved via the finite difference method
by Mahanthesh and Thriveni [30]. Their results clearly explain that the fluid temperature
ascends when upgrading the quantity of the thermal radiation parameter. Cao et al. [31]
investigated the non-linear thermal radiative flow of a ternary-hybrid nanofluid with partial
slip. The 3D radiative flow of Cu/Ag-water-based nanofluid with entropy optimization
was illustrated by Eswaramoorthi et al. [32], and they detected that the Bejan number rises
as the radiation parameter enhances.

The smallest amount of energy necessary to start a chemical reaction is known as
activation energy. This conception was initiated by Arrhenius in 1889, and this incident has
plentiful appliances in geothermal engineering, water emulsions, oil emulsion and food
processing. Shah et al. [33] addressed the chemically reactive flow of Casson nanofluid with
activation energy and radiation, and they found that activation energy leads to magnifying
the nanoparticle concentration. The 3D time-dependent flow of Williamson nanofluid with
heat generation and the activation energy was inspected by Aziz et al. [34]. Their findings
show that the higher chemical reaction parameter suppresses the nanofluid concentration.
Kalaivanan et al. [35] discussed the Arrhenius activation energy and non-linear thermal
impacts of second-grade nanofluid past a stretching surface. It was exposed that the heat
transfer gradient weakens when strengthening the exponential fitted rate. The MHD
flow of Casson nanofluid over a stretching cylinder with Arrhenius activation energy
was examined by Zeeshan et al. [36]. It was seen that the nanoparticle concentration
enhances for strengthening the activation energy parameter. Tayyab et al. [37] securitized
the consequences of Darcy–Forchheimer flow of 3D nanofluid on a sheet with activation
energy. The 3D Darcy–Forchheimer flow past a porous space with the presence of Arrhenius
activation energy was presented by Rashid et al. [38]. It was revealed that the reaction rate
leads to a decline in the nanoparticle concentration profile. Alsaadi et al. [39] elucidated
the flow of MHD WNF with the influence of Arrhenius activation energy. The impact of
activation energy of a second-grade nanofluid on a surface with heat source/sink was
analyzed by Punith Gowda et al. [40]. Varun Kumar et al. [41] studied the impact of
Arrhenius activation energy on a hybrid nanofluid past a curved surface. It was proved
that the nanofluid concentration improves when escalating the activation energy parameter.
The MHD flow of Williamson nanofluid with activation energy was investigated by
Tamilzharasan et al. [42], and they found that the activation energy parameter improves
the heat transfer rate.
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In light of the above analysis, no research articles provide the impact of the non-linear
thermal radiative flow of Casson–Williamson nanofluid over a heated stretchy plate
with activation energy. In addition, zero nanoparticle mass flux and Cattaneo–Christov
heat-mass flux conditions are included in our study. This research has implications for
thermal sciences, food processing, chemical engineering, polymer extrusion, and many
other fields in which heat conduction and convection are improved. In the limiting
scenarios, the calculated values derived from specified parameters are consistent with
existing findings in the literature, while tables and graphs have been built and explained to
spread the responses of dimensionless quantities. This type of flow model is used in food
processing, heavy mechanical apparatus, enzymes, ceramic processing, heating/cooling
processes, etc.

2. Mathematical Formulation

Let us consider the chemically reactive 2D Darcy–Forchheimer flow of Casson–Williamson
nanofluid past a stretchy plate. The x-axis is in the stretching direction and the y-axis is
perpendicular to it. The uniform magnetic field of strength B0 is applied in the y-direction,
and the induced magnetic effect is neglected because of the small quantity of Reynolds
number. Moreover, the flow is disclosed under the consequences of Arrhenius activation
energy; suction/injection, viscous dissipation and non-linear thermal radiation are all taken
into our account. The zero nanoparticle mass flux condition is assumed on the surface
of the sheet. Let Tw and Cw represent the temperature and nanoparticle concentration,
which are higher than the free-stream temperature (T∞) and nanoparticle concentration
(C∞), see Figure 1.

Figure 1. Physical model of flow.

The Cauchy stress tensor of Williamson fluid is expressed as S = −pI + τ1, where
τ1 =

[
μ∞ + (μ0−μ∞)

1−Γ1γ∗
1

]
A1; here, τ1 is the extra stress tensor, μ0 is the limiting viscosity

at zero shear rate, μ∞ is the limiting viscosity at infinity shear rate, Γ1 > 0 is the time
constant and A1 is the Rivlin–Ericson tensor. The simplified form of the extra stress tensor
is τ1 =

[
+ μ0

1−Γ1γ∗
1

]
A1; see [43].
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Similarly, Casson fluid flow is

τij =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2
(

μn f +
Qy√
2π

)
kij, π > πc

2
(

μn f +
Qy√
2πc

)
kij, π < πc

here, Qy is the yield stress of fluid, kij is the (i, j)th laceration direction component rate,
π = kijkij is the product of the component of rate of deformation with itself and πc is the
critical value of the product of the component of the strain tensor rate with itself; see [44].

The flow model may be described as follows using the given assumptions; see
Mustafa et al. [45].

ux + vy = 0 (1)

uux + vuy = ν

(
1 +

1
β

)
uyy +

√
2Γνuyuyy − ν

k1
u − Cb

x
√

k1
u2 − σB0

2u
ρ f

+
1
ρ f

[
(1 − C∞)ρ f∞ β(T − T∞)− (ρp − ρ f∞)(C − C∞)

]
g, (2)

uTx + vTy + λTΩT = αTyy (3)

+
1

ρCp

16σ∗

3k∗
∂

∂y

(
T3Ty

)
+

Q
ρ f Cp

(T − T∞) + τ

[
DBTyCy +

DT

T∞
T2

y

]
+

μ

ρCp

(
1 +

1
β

)
u2

y

uCx + vCy + λCΩC = DBCyy +
DT

T∞
Cyy − k2

r (C − C∞)

(
T

T∞

)n

exp
(−Ea

κT

)
(4)

where

ΩT = uuxTx + vvyTy + u2Txx + v2Tyy + 2uvTxy + uvxTy + vuyTx

ΩC = uuxCx + vvyCy + u2Cxx + v2Cyy + 2uvCxy + uvxCy + vuyCx

The boundary conditions are

u = Uω + L
(

1 +
1
β
+ Γuy

)
uy; v = −VωT = Tω, DBCy +

DT

T∞
Ty = 0 as y = 0

u → 0, T → T∞, C → C∞ as y → ∞ (5)

From the above Equations (Equations (2) and (5)), β → ∞ & Γ �= 0 is treated as a
Williamson fluid model and β �= ∞ & Γ = 0 is treated as a Casson fluid model.

The dimensionless parameters are

� =

√
a
ν

y; u = axυ′1; v = −√
aνυ1(�)

υ2(�) =
T − T∞

Tω − T∞
; υ3(�) =

C − C∞

C∞
(6)

Substituting Equation (6) into Equations (2)–(4), we obtain
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(
1 +

1
β

)
υ′′′1 (�)− υ′21 (�) + υ1(�)υ′′1 (�) + Weυ′′1 (�)υ′′′1 (�)− λυ′1(�)− Frυ′21 (�)− Mυ′1(�)

+Ri(υ2(�)− Nrυ3(�)) = 0 (7)
1

Pr
υ′′2 (�) +

1
Pr

4
3

R[(θw − 1)3{υ′′2 (�)υ3
2(�) + 3υ2

2(�)υ′22 (�)}+ 3(θw − 1)2{υ′′2 (�)υ2
2(�)

+2υ2(�)υ′2(�)2}+ 3(θw − 1){υ′′2 (�)υ2(�) + υ′22 (�)}+ υ′′2 (�)] + υ1(�)υ′2(�)

−ΓT{υ1(�)υ′1(�)υ′2(�) + υ2
1(�)υ′′2 (�)}+ Hgυ2 +

(
1 +

1
β

)
Ecυ′′21 + Nbυ′2υ′3 + Ntυ′22 = 0 (8)

1
Sc

υ′′3 (�) + υ1(�)υ′3(�)− ΓC{υ1(�)υ′1(�)υ′3(�) + υ2
1(�)υ′′3 (�)}+ 1

Sc

(
Nt
Nb

)
υ′′2 (�)

−σ∗∗(1 + δυ2(�))nυ3(�)exp
( −E

1 + δυ2(�)

)
= 0 (9)

The covered boundary conditions are

υ1(0) = f w, υ′1(0) = 1 + K
[

1 +
1
β
+

We√
2

υ′′1 (0)
]

υ′′1 (0), υ2(0) = 1, Nbυ′3(0) + Ntυ′2(0) = 0

υ′1(∞) → 0, υ2(∞) → 0, υ3(∞) → 0 (10)

The non-dimensional form of skin friction coefficient, local Nusselt number and local
Sherwood number are expressed as

1
2

C f
√

Re = −
[(

1 +
1
β

)
υ′′1 (0) +

We
2

υ′′21 (0)
]

;
Nu√

Re
= −

[
1 +

4
3

R{1 + (θw − 1)υ2(0)}3
]

υ′2(0)

Sh√
Re

=
Nb
Nt

υ′2(0)

3. Numerical Solution

The derived ODE models (7)–(9) along with the conditions (10) are numerically solved
by applying the MATLAB bvp4c scheme. Initially, the higher-order terms are converted
into first-order terms, see [46,47].

Let υ1 = y1, υ′1 = y2, υ′′1 = y3, υ′′′1 = y′3, υ2 = y4, υ′2 = y5, υ′′2 = y′5, υ3 = y6, υ′3 = y7,
υ′′3 = y′7.

y′1 = y2

y′2 = y3

y′3 =
y2

2 − y1y3 + λy2 + Fry2
2 + My2 − Ri[y4 − Nry6]

(1 + 1
β ) + Wey3

y′4 = y5

A = −y1y5 + ΓTy1y2y5 − 1
Pr

4
3

R[(3θn − 1)3y2
4y2

5 + 6(θn − 1)2y4y2
5 + 3(θn − 1)y2

5]
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B = −Hgy4 − Nby5y7 − Nty2
5 −
(

1 +
1
β

)
Ecy2

3

y′5 =
A + B

1
Pr [1 +

4
3 R[1 + (θn − 1)3y3

4 + 3(θn − 1)2y2
4 + 3(θn − 1)y4]]− ΓTy2

1

y′6 = y7

C = −y1y5 + ΓTy1y2y5 − 1
Pr

4
3

R[(3θn − 1)3y2
4y2

5 + 6(θn − 1)2y4y2
5 + 3(θn − 1)y2

5]

D = −Hgy4 − Nby5y7 − Nty2
5 −
(

1 +
1
β

)
Ecy2

3

E =
1

Pr
[1 +

4
3

R[1 + (θn − 1)3y3
4 + 3(θn − 1)2y2

4 + 3(θn − 1)y4]]− ΓTy2
1

y′7 =
−y1y7 + ΓCy1y2y7 −

(
1
Sc

)(
Nt
Nb

)(
C+D

E

)
+ σ∗∗(1 + δy4)

ny6exp
(

−E
1+δy4

)
1
Sc − ΓCy2

1

With the conditions

y1(0) = f w, y2(0) = 1 + K
[

1 +
1
β
+

We√
2

y3(0)
]

y3(0), y2(∞) = 0,

y4(0) = 1, Nby7(0) + Nty5(0) = 0, y4(∞) = 0, y6(∞) = 0 (11)

We implemented the MATLAB bvp4c scheme to find the numerical solution for the
above problem with maximum error is 105 and step size is 0.05.

4. Results and Discussion

This segment provides the details about the changes of velocity, temperature, naofluid
concentration, skin friction coefficient (SFC), local Nusselt number (LNN) and local Sherwood
number (LSN) for different flow parameters through graphs and tables. The consequences
of f w, λ, Fr, M, Ri and Nr (Table 1), R, Hg, Ec, ΓT, Nb, Nt and θn (Table 2) and Γc, σ∗∗, δ, n
and E (Table 3) on SFC, LNN and LSN for Casson–Williamson nanofluid are deliberated in
Tables 1–3. Table 4 provides the comparison of our numerical results to Mustafa et al. [45]
and found excellent agreement. It is detected that there is SFC shrinkage when boosting the
f w, λ, Fr, M, Nr, ΓT, Nt ΓC and E, and it upturns when enriching the Ri R, Hg, Ec, Nb, θn,
σ∗∗, δ and n. The heat transfer gradient (HTG) loses when strengthening the quantity of λ,
Fr, M, Nr, Hg, Ec, Nt, ΓC, δ, n and E, and it upturns when enhancing the amount of f w, Ri,
R, ΓT, Nb, θn and σ∗∗. The LSN proliferate when mounting the quantity of λ, Fr, M, Nr, R,
Hg, Nb, θn, Γc and δ. The quite opposite trend is obtained when changing the presence of
f w, Ri, Ec, ΓT, Nt, σ∗∗, n and E.

Table 1. The skin friction coefficient, local Nusselt number and local Sherwood number for f w, λ, Fr,
M, Ri and Nr for both fluids.

fw λ Fr M Ri Nr
1
2 C f

√
Re Nu/

√
Re Sh/

√
Re

Casson Williamson Casson Williamson Casson Williamson

−0.6 0.2 0.4 0.5 0.5 0.5 −0.509450 −0.391709 0.579321 0.583070 −0.325537 −0.327817
−0.3 −0.540008 −0.427964 0.641809 0.642974 −0.363858 −0.364580
0.0 −0.571635 −0.468255 0.708673 0.706679 −0.405644 −0.404386
0.3 −0.603205 −0.511666 0.779139 0.773945 −0.450585 −0.447240
0.6 −0.633606 −0.556634 0.852262 0.844421 −0.498239 −0.493078
0.4 0.0 0.4 0.5 0.5 0.5 −0.594642 −0.508055 0.806499 0.800459 −0.468292 −0.464370

0.4 −0.629919 −0.543188 0.800562 0.794198 −0.464437 −0.460312
0.8 −0.657162 −0.571883 0.796283 0.789413 −0.461663 −0.457217
1.2 −0.679033 −0.595949 0.793056 0.785643 −0.459573 −0.454781

0.4 0.2 0.0 0.5 0.5 0.5 −0.603953 −0.514606 0.804272 0.798227 −0.466845 −0.462923
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Table 1. Cont.

fw λ Fr M Ri Nr
1
2 C f

√
Re Nu/

√
Re Sh/

√
Re

Casson Williamson Casson Williamson Casson Williamson

0.6 −0.617898 −0.532082 0.802808 0.796584 −0.465894 −0.461858
1.2 −0.629722 −0.547022 0.801560 0.795165 −0.465084 −0.460939
1.8 −0.639957 −0.560048 0.800480 0.737920 −0.464384 −0.460133

0.4 0.2 0.4 0.0 0.5 0.5 −0.560068 −0.475720 0.812721 0.806599 −0.472339 −0.468357
0.5 −0.613519 −0.526577 0.803268 0.797104 −0.466193 −0.462195
1.0 −0.650934 −0.565199 0.797237 0.790500 −0.462281 −0.457920
1.5 −0.679033 −0.595949 0.793786 0.785643 −0.459573 −0.454781

0.4 0.2 0.4 0.5 0.0 0.5 −0.660336 −0.580349 0.798424 0.788312 −0.463051 −0.456505
0.4 −0.622571 −0.536848 0.802412 0.795557 −0.465637 −0.461193
0.7 −0.595805 −0.506627 0.804836 0.799939 −0.467212 −0.464033
1.0 −0.570084 −0.477980 0.806865 0.803636 −0.468530 −0.466432

0.4 0.2 0.4 0.5 0.5 −1.0 −0.606275 −0.522759 0.808362 0.804310 −0.469503 −0.466870
−0.5 −0.608591 −0.523896 0.806752 0.802074 −0.468456 −0.465418
0.0 −0.611002 −0.525165 0.805055 0.799680 −0.467353 −0.463865
0.5 −0.613519 −0.526577 0.803268 0.797104 −0.466193 −0.462195
1.0 −0.616151 −0.528155 0.801381 0.794318 −0.464969 −0.460390

Table 2. The skin friction coefficient, local Nusselt number and local Sherwood number for R, Hg, Ec,
ΓT , Nb, Nt and θn for both fluids.

R Hg Ec ΓT Nb Nt θn
1
2 C f

√
Re Nu/

√
Re Sh/

√
Re

Casson Williamson Casson Williamson Casson Williamson

0.0 −0.5 0.4 0.1 0.5 0.5 1.2 −0.629685 −0.5443759 0.552386 0.545982 −0.552386 −0.545982
0.4 −0.613519 −0.526577 0.803268 0.797104 −0.466193 −0.462195
0.8 −0.600650 −0.513580 1.023377 1.017386 −0.411036 −0.408267
1.2 −0.590235 −0.503470 1.221039 1.215175 −0.372078 −0.370007
0.4 −0.4 0.4 0.1 0.5 0.5 1.2 −0.609973 −0.522867 0.776546 0.770393 −0.448914 −0.444955

−0.2 −0.600663 −0.513212 0.708901 0.702637 −0.405788 −0.401838
0.0 −0.586188 −0.498333 0.608328 0.600989 −0.343240 −0.338747
0.2 −0.560224 −0.471686 0.431109 0.417147 −0.237329 −0.229206
0.4 −0.548398 −0.443644 0.248746 0.158094 −0.133635 −0.083938

0.4 −0.5 0.0 0.1 0.5 0.5 1.2 −0.616797 −0.530165 0.828958 0.830200 −0.482937 −0.483750
0.5 −0.612698 −0.525686 0.796834 0.788861 −0.462020 −0.456860
1.0 −0.608584 −0.521271 0.764598 0.747832 −0.441233 −0.430502
1.5 −0.604457 −0.516918 0.732266 0.707121 −0.420586 −0.404665

0.4 −0.5 0.4 0.0 0.5 0.5 1.2 −0.612511 −0.525620 0.799275 0.793245 −0.463602 −0.459696
0.2 −0.614542 −0.527555 0.807356 0.801051 −0.468849 −0.464754
0.4 −0.616637 −0.529576 0.815834 0.809232 −0.474367 −0.470068
0.6 −0.618798 −0.531690 0.824758 0.817834 −0.480190 −0.475670

0.4 −0.5 0.4 0.1 0.1 0.5 1.2 −0.624871 −0.534266 0.795002 0.784238 −2.304167 −2.269369
0.5 −0.613519 −0.526577 0.803268 0.797104 −0.466193 −0.462195
1.0 −0.612246 −0.525851 0.804174 0.798416 −0.233391 −0.231523
1.5 −0.611828 −0.525618 0.804470 0.798843 −0.155658 −0.154441
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Table 2. Cont.

R Hg Ec ΓT Nb Nt θn
1
2 C f

√
Re Nu/

√
Re Sh/

√
Re

Casson Williamson Casson Williamson Casson Williamson

0.4 −0.5 0.4 0.1 0.5 0.5 1.2 −0.613519 −0.526577 0.803268 0.797104 −0.466193 −0.46295
1.0 −0.614246 −0.526134 0.790345 0.783132 −0.915639 −0.906320
1.5 −0.614786 −0.525509 0.777196 0.768887 −1.347998 −1.331962
2.0 −0.615136 −0.524713 0.763870 0.754421 −1.763066 −1.738850

0.4 −0.5 0.4 0.1 0.5 0.5 1.0 −0.617049 −0.530398 0.748078 0.741525 −0.487877 −0.483603
1.2 −0.613519 −0.526577 0.803268 0.797104 −0.466193 −0.462195
1.4 −0.609177 −0.521923 0.871668 0.865948 −0.440864 −0.437192
1.6 −0.603889 −0.516328 0.956034 0.950777 −0.412023 −0.408740

Table 3. The skin friction coefficient, local Nusselt number and local Sherwood number for Γc, σ∗∗, δ,
n and E for both fluids.

ΓC σ∗∗ δ n E
1
2 C f

√
Re Nu/

√
Re Sh/

√
Re

Casson Williamson Casson Williamson Casson Williamson

0.0 1.0 1.0 0.5 1.0 −0.613044 −0.526039 0.803508 0.797397 −0.466349 −0.462385
0.1 −0.613519 −0.526577 0.803268 0.797104 −0.466193 −0.462195
0.2 −0.613985 −0.527112 0.803024 0.796807 −0.466035 −0.462003
0.3 −0.614443 −0.528172 0.802775 0.796199 −0.465873 −0.461608
0.1 0.0 1.0 0.5 1.0 −0.621718 −0.537316 0.802043 0.793644 −0.465398 −0.459954

0.4 −0.616422 −0.529896 0.803344 0.796616 −0.466243 −0.461879
0.8 −0.614204 −0.527324 0.803393 0.797110 −0.466274 −0.462199
1.2 −0.612990 −0.526016 0.803097 0.797019 −0.466082 −0.462140

0.1 1.0 0.0 0.5 1.0 −0.613684 −0.526784 0.803713 0.797484 −0.466482 −0.462441
0.3 −0.613634 −0.526719 0.803572 0.797365 −0.466391 −0.462364
0.6 −0.613585 −0.526657 0.803438 0.797250 −0.466303 −0.462290
1.0 −0.613519 −0.526577 0.803268 0.797104 −0.466193 −0.462195

0.1 1.0 1.0 0.0 1.0 −0.613558 −0.526629 0.803468 0.797283 −0.466323 −0.462311
0.5 −0.613519 −0.526577 0.803268 0.797104 −0.466193 −0.462195
1.0 −0.613492 −0.526540 0.803029 0.796883 −0.466038 −0.462052
1.5 −0.613478 −0.526520 0.802745 0.796615 −0.465854 −0.461878

0.1 1.0 1.0 0.5 0.0 −0.611041 −0.524071 0.802264 0.796452 −0.465541 −0.461773
1.0 −0.613519 −0.526577 0.803268 0.797104 −0.466193 −0.462195
2.0 −0.616499 −0.529962 0.803240 0.796521 −0.466175 −0.461817
3.0 −0.618951 −0.533118 0.802802 0.795459 −0.465891 −0.461129

Table 4. Comparison of local Nusselt number when We = λ = Fr = R = ΓT = Hg = ΓC = 0 and
M = Nr = 0 : 5, Sc = 5 and δ = 1 with Mustafa et al. [45].

Pr Nt E σ∗∗ n Ri Nu/
√

Re
Ref. [45] Present

2.0 0.5 1.0 1.0 0.5 0.5 0.706605 0.706604
4.0 0.935952 0.935955
7.0 1.132787 1.132788
10.0 1.257476 1.257482
5.0 0.1 1.0 1.0 0.5 0.5 1.426267 1.426269

0.5 1.013939 1.013938
0.7 0.846943 0.846928
1.0 0.649940 0.649939

5.0 0.5 0.0 1.0 0.5 0.5 0.941201 0.941209
1.0 1.013939 1.013943
2.0 1.064551 1.064563
4.0 1.114549 1.114191
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Table 4. Cont.

Pr Nt E σ∗∗ n Ri Nu/
√

Re
Ref. [45] Present

5.0 0.5 1.0 0.0 0.5 0.5 1.145304 1.145301
1.0 1.013939 1.013938
2.0 0.926282 0.926281
5.0 0.798671 0.798669

5.0 0.5 1.0 2.0 −1.0 0.5 1.030805 1.030804
−0.5 0.999470 0.999468
0.0 0.964286 0.964285
1.0 0.886830 0.886830

10.0 0.5 1.0 2.0 0.5 0.0 1.032281 1.032280
0.5 1.056704 1.056706
3.0 1.154539 1.154538
5.0 1.215937 1.215938

Figure 2a–d display the variances of fluid velocity versus Ri(a), f w(b), λ(c) and M
(d). It is clearly shown that the fluid speed enhances when heightening the quantity of Ri
and it depresses when mounting the quantity of f w, λ and M for both fluids. In addition,
the velocity of the Casson nanofluid is low near the plate and high away from the plate
compared to Williamson nanofluid. Physically, a larger quantity of M generates a drag
force named the Lorentz force. This force leads to suppressing the fluid movement on a
plate surface, and this causes a decline in the fluid speed and thinner momentum boundary
layer. The fluid temperature variations on R(a), Hg(b), ΓT(c) and Ec(d) for both fluids
are illustrated in Figure 3a–d. It is acknowledged that the fluid warmness escalates when
enhancing the R and Hg values, and it suppresses when the ΓT and Ec values are rising.
Physically, the presence of a radiation parameter has enriched the fluid thermal state,
thereby strengthening the fluid warmness and thicker thermal boundary layer thickness. In
addition, the greater availability of Eckert number creates a more robust viscous dissipation
effect, which enriches the fluid warmness. Figure 4a–d show the consequences of σ∗∗(a),
f w(b), E(c) and Nt(d) on nanoparticle concentration profile. It is seen that the nanoparticle
concentration reduces when raising the values σ∗∗. A opposite behavior occurs for varying
the values of f w, E and Nt. The skin friction coefficient for a distinct combination of M, λ
and f w is presented in Figure 5a–d. It is found that the surface shear stress decays when
enhancing the magnetic field and porosity parameter for both f w values. In addition, the
Williamson nanofluid has a greater skin friction coefficient value than the Casson nanofluid.
Figure 6a–d portrayed the changes of local Nusselt number for a distinct combination of
values of M, λ and f w. It is concluded that the heat transfer gradient slowly depresses
when increasing the magnetic field and porosity parameters for both f w values. The
local Sherwood number for various combination of values of M, λ and f w is shown in
Figure 7a–d. It is seen from these figures that the local Sherwood number slowly depresses
when increasing the magnetic field and porosity parameters for both f w values.
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(a) (b)

(c) (d)

Figure 2. The nanofluid velocity for various values Ri (a), f w (b), λ (c) and M (d).

(a) (b)

(c) (d)

Figure 3. The nanofluid temperature profile for various vales of R (a), Hg (b), ΓT (c) and Ec (d).
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(a) (b)

(c) (d)

Figure 4. The nanoparticle concentration for various values of σ∗∗ (a), f w (b), E (c) and Nt (d).

(a) (b)

(c) (d)

Figure 5. The skin friction coefficient (SFC) for different values of M with f w = −0.6 (a), M with
f w = 0.6 (b), λ with f w = −0.6 (c) and λ with f w = 0.6 (d) for Casson nanofluid (CF) and Williamson
nanofluid (WF).
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(a) (b)

(c) (d)

Figure 6. The local Nusselt number (LNN) for different values of M with f w = −0.6 (a), M with
f w = 0.6 (b), λ with f w = −0.6 (c) and λ with f w = 0.6 (d) for Casson nanofluid (CF) and Williamson
nanofluid (WF).

(a) (b)

(c) (d)

Figure 7. The local Sherwood number (LSN) for different values of M with f w = −0.6 (a), M with
f w = 0.6 (b), λ with f w = −0.6 (c) and λ with f w = 0.6 (d) for Casson nanofluid (CF) and Williamson
nanofluid (WF).

5. Conclusions

Here, Brownian motion and the thermophoresis impact of the non-linear radiative
flow of C-WNF in a Darcy–Forchheimer porous space with suction and heat consumption
is investigated. The present investigation includes the consequences of activation energy
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and binary chemical reaction. The governing mathematical models are numerically solved
by the bvp4c algorithm with MATLAB. The main outcomes of our discussion are as follows:

• The fluid speed enhances for Richardson number but it slows against porosity, suction
/injection and magnetic field parameters.

• The fluid becomes more warmed as the radiation, heat generation parameters and
Eckert number increase.

• The nanoparticle concentration enhances upon strengthening the suction/injection
and thermophoresis parameters and it downfalls upon escalating the reaction rate.

• The skin friction reduces after enriching the Forchheimer number, porosity and
magnetic field parameters.

• The heat transfer gradient increases when escalating the values of radiation parameter
and it downturns against radiation and heat generation parameters.

• The mass transfer gradient enhances upon heightening the Brownian motion parameter
and it weakens against the thermophoresis parameter.

• In the future, we extend this flow model through the Riga plate with the convective
heating condition.
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Abbreviations

The following abbreviations are used in this manuscript:

Nomenclature

Symbols Description

a,b Positive constants
B0 Magnetic field strength (T)
C Fluid concentration (mol L−1)

Cb Drag coefficient
Cp Specific heat (Jkg−1K−1)
C∞ Ambient fluid concentration
DB Brownian diffusion coefficient (m2s−1)

DT Thermophoretic diffusion coefficient
E(= Ea/kT∞) Activation energy parameter
Ea Activation energy
Fr(= Cb/

√
k1) Forchheimer number

f Dimensionless velocity
g Acceleration due to gravity (ms−2)

Grx(= (gβ(1 − C∞)(Tω − T∞)x3/ν2) Local Grashof number
Hg(= Q

ρ f Cp a ) Heat generation/absorption parameter

k Thermal conductive (Wm−1K−1)

k1 Permeability of porous medium (m2)

k∗ Mean absorption coefficient
kr Reaction rate

M(=
σB2

0
ρ f a ) Magnetic parameter

n Fitted rate or stretching sheet index parameter
Ec Eckert number
Nb(= τDB(Cw−C∞)

ν ) Brownian diffusion parameter
Nt(= τDT(Tω−T∞)

T∞ν ) Thermophoresis parameter
Pr(= ν

α = m2s−1

m2s−1 = 1) Prandtl number

Q
Heat generation/absorption coefficient
(JM−1m−3s−1)
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R(= 4σ∗T3
∞

kk∗ ) Thermal radiation
Rex(=

Uω x
ν ) Local Reynolds number

Ri(= Grx
Re2

x
=

gβ(1−C∞)(Tω−T∞)
a2x ) Richardson number

Sc(= ν
DB

) Schmith number
T Fluid temperature (K)
T∞ Ambient temperature (K)
u, v Velocity components (ms−1)
Uω Stretching surface velocity (ms−1)

We(= Γx
√

2a3/ν) = sm
√

2s−3

m2s−1 = constant
)

Weissenberg number

x, y Direction coordinates (m)
Greek Symbols Description

α Thermal diffusivity (m2s−1)
β Casson parameter
δ(= Tω−T∞

T∞
) Temperature difference parameter

Γ Williamson parameter or time constant
ΓT(= aλT) Thermal relaxation parameter
ΓC(= aλC) Solute relaxation parameter
λ Local porosity parameter
λC Relaxation time of mass flux
λT Relaxation time of heat flux
ν Kinetic viscosity (m2s−1)

φ Non-dimensional nanofluid concentration
ρ f Fluid density (kgm−2)
σ Electrical conductivity (Sm−1)

σ∗ Stefan–Boltzmann constant (Wm−2K−4)
σ∗∗(= kr2

a ) Dimensionless reaction rate
τ Heat capacity ratio
θ Non-dimensional temperature
θn Temperature ratio parameter
η Similarity variable
μ Dynamic viscosity (Kgm−1s−1)

p Dust phase
∞ Fluid properties at ambient condition
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Abstract: This article aims to study the effect of the vertical rotation and magnetic field on the
dissolution-driven convection in a saturated porous layer with a first-order chemical reaction. The
system’s physical parameters depend on the Vadasz number, the Hartmann number, the Taylor
number, and the Damkohler number. We analyze them in an in-depth manner. On the other hand,
based on an artificial neural network (ANN) technique, the Levenberg–Marquardt backpropagation
algorithm is adopted to predict the distribution of the critical Rayleigh number and for the linear
stability analysis. The simulated critical Rayleigh numbers obtained by the numerical study and
the predicted critical Rayleigh numbers by the ANN are compared and are in good agreement. The
system becomes more stable by increasing the Damkohler and Taylor numbers.

Keywords: linear stability; magnetic field; porous layer; chemical reaction; Levenberg–Marquardt
backpropagation algorithm

1. Introduction

Dissolution-driven convection occurs in the host phase of a partially miscible system
when a buoyantly unstable density stratification develops upon dissolution. The onset of
convection in a porous layer has received considerable interest in science, engineering, and
technology, such as food engineering, oil recovery, chemical reactor design, and plastic
processing. Dissolution-driven convection in porous media has received recent interest
in the context of the long-term geological storage of carbon dioxide in the underground,
natural, brine-filled caverns, often referred to as saline aquifers, in the production of mineral
deposits, and a variety of other applications. Following injection into the saline aquifer,
dissolution of supercritical carbon dioxide in the host brine causes a local density increase,
leading to gravitational instability of the diffusive boundary layer and the formation of
convective fingers [1–6]. In addition, Benard and chemical instabilities were studied for
the dissociation of a horizontal layer of Navier–Stokes fluid due to the Boussinesq approx-
imation. Dissolution-driven convection of a binary fluid in a reactive porous layer was
foremost studied [7,8], then secondary instabilities [9], and constant temperatures and
chemical equilibrium in binary fluid at the boundary surfaces while the solubility of the
dissolved issue relies upon temperature [10–18]. The diffusive boundary layer becomes
unstable in anisotropic porous media where both the capillary transition zone and dis-
persion are considered, even if the geochemical reaction is significantly large. While the
reaction enhances stability by consuming the solute, porous media anisotropy, hydrody-
namic dispersion, and capillary transition zone destabilize the diffusive boundary layer
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that is unstably formed in a gravitational field [19–21]. Stability techniques that look at and
broaden the way the solute’s dissolution influences the thermal convection and prolongs
this evaluation by the use of an asymptotic energy method, Galerkin and spectral tech-
niques, are expecting the structure of the preliminary bifurcation. Darcy, Darcy Brinkmann,
and Darcy Lapwood Brinkmann’s models were used to study porous, anisotropic porous,
and sparsely packed porous medium over multiple diffusive convection [22–25].

Exhausting the magnetic field is an adequate method to regulate a thermally induced
flow. The magnetic field will propagate a Lorentz force to permeate the convective flow. The
penetration effect depends on the strength of the applied magnetic field and its assimilation
into the convective flow direction. The magnetic field is significant for engineering applica-
tions such as magnetohydrodynamics, cooling of nuclear reactors, micropump electronic
packages, and microelectronic devices. The density can be enhanced or reduced depending
on the magnetic field and electrode configuration. The magnetic field effect on formally
charged transfer-controlled active dissolution and the Lorentz force reduces the field gradi-
ent force, which boosts active dissolution. The convective cavities of various aspect ratios in
the magnetohydrodynamics of fluids are broadly studied [26–38]. Due to the simultaneous
action of buoyancy and induced magnetic forces, heat transfer to liquid metals may be
significantly affected by the presence of a magnetic field, but very small effects are experi-
enced by other fluids. The Coriolis and centrifugal buoyancy forces arising from rotation
have a remarkable influence on the local heat transfer when compared with the nonrotating
results. A series of interferograms, stream functions, and isotherm plots demonstrated the
strong effect of rotation on the flow field and heat transfer. A correlation of the Nusselt
number as a function of Taylor and Rayleigh numbers is presented [15,19,39–42].

Various machine learning techniques, in particular artificial neural networks (ANN),
have been widely used in different research areas for predicting data. Recently, many
researchers have used ANN to predict the data and compare them with their results.
Neural networks are used to solve different types of large data-related problems and solve
the Navier–Stokes equations for turbulence by using the Bayesian cluster. The combination
of ANN and gene expression programming compares the local Nusselt number with
their numerical results [43–45]. The investigation of bifurcating fluid phenomena using a
reduced-order modeling setting was aided by artificial neural networks, ANNs, to study
the flow and thermal fields of the onset of convection in a rectangular channel. From
their results, they found that the ANN can precisely predict the Nusselt number with less
computational time and cost compared to the DNS [46–51].

The purpose of this article is to explore the magnetic effect, the Coriolis effect, and
chemical reaction effects on the onset of convection in a porous medium. To the best of our
knowledge, linear stability theory and ANN prediction of threshold Rayleigh number for
the onset of magneto-rotating convection in a porous medium with first-order chemical
reaction have not been studied so far. The plan for this article is as follows: Section 2
describes the mathematical modeling under consideration, Section 3 presents the ANN
methodology, and Section 4 discusses the results. The paper ends with a conclusion in
Section 5.

2. Mathematical Modeling

2.1. Basic Equations

Consider an electrically conducting fluid-saturated porous layer of thickness d that is
salted from below and confined between two parallel horizontal planes at z = 0 and z = d.
The horizontal coordinate x and vertical coordinate z increase upwards in a Cartesian
coordinate with the origin at the bottom of the porous medium. The surfaces are extended
infinitely in x and y directions and a constant salinity gradient C is maintained across
the porous layer. Let Ω = Ωêz be the constant angular velocity of the layer. To make
the Boussinesq approximation valid, the physical properties of the fluid are assumed to
be constant, except for density in the buoyancy term. The porous medium is considered
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homogeneous and isotropic. Based on [15,19,39,40], with the physical configuration recalled
in Figure 1, the governing equations are

∇ · u = 0, (1)

ρ0Ca
∂u
∂t

+
μ

K
u = −∇p + ρ0gβc(C − C0)êz + σ1(u × B0 êz)× B0 êz − 2ρ0Ω

δ
êz × u, (2)

ε
∂C
∂t

+ (u · ∇)C = εDv∇2C − βC, (3)

subject to the following boundary conditions

u = 0, C = C + ΔC on z = 0,

u = 0, C = C0, on z = d. (4)

Here, Ca, μ, K, p, ρ, βc, g, t, ε, Dv, and β are the acceleration coefficient, dynamic
viscosity, permeability, dynamic pressure, reference density, solute expansion coefficient,
gravity acceleration, time, porosity, solute diffusion coefficient, and reaction rate of the
solute, respectively. The dimensionless quantities are given as follows:

x = x∗d, y = y∗d, z = z∗d,

u =
φDv

d
u∗, v =

φDv

d
v∗, w =

φDv

d
w∗,

t =
d2

Dv
t∗, C = C0C∗, (5)

as well as the non-dimensional quantities

Ra =
gρ0βcΔCKdn

φnμDn
v

, Dm =
βd2

φDv
, Ha =

σ1B2
0K

μ
,

Ta =
2ρ0Ωκ f

μφ
, Va =

μd2

ρFCaKDv
, (6)

where Ra, Ta, Ha, Dm, and Va are the Rayleigh number, Taylor number, Hartmann number,
Damkohler number, and Vadasz number, respectively. The non-dimensional form of the
governing Equations (1)–(3) and the corresponding boundary conditions (4) are given by

∇.u = 0, (7)
1

Va
∂u

∂t
+ u = −∇p + RaCêz + Ha2[(u × êz)× êz]− Taêz × u, (8)

∂C
∂t

+ (u.∇)C = ∇2C − DmC, (9)

subject to the boundary conditions

u = 0, C = 1 on z = 0,

u = 0, C = 0 on z = 1. (10)
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Figure 1. Physical configuration.

2.2. Basic Flow

The basic stationary flow of Equations (7)–(10) is as follows:

ub = 0, (11)

Cb = 1 − z. (12)

2.3. Linear Stability Analysis

The perturbation of the basic state for the Equations (7)–(10) is

u = ub + U′, C = Cb + C′, p = Pb + P′. (13)

By substituting Equation (13) into Equations (7)–(10), one obtains

∇U′ = 0 (14)

1
Va

∂U′

∂t
+ U′ = −∇P′ + RaC′ êz + Ha2[(U′ × êz)× êz]− Taêz × U′, (15)

∂C′

∂t
= w′ +∇2C′ − DmC′, (16)

subject to the boundary conditions

U′ = 0, C′ = 0 on z = 0,

U′ = 0, C′ = 0 on z = 1. (17)

By taking the third component of the curl of Equation (15) and curl of curl of Equation (15),
one obtains (

1 +
1

Va
∂

∂t
− Ha2

)
wz − Ta1/2 ∂w′

∂z
= 0, (18)(

1
Va

∇2 ∂

∂t
+∇2 + Ha2 ∂2

∂z2

)
− Ra∇2

hC′ + Ta1/2 ∂wZ
∂z

= 0. (19)

From Equations (16), (18) and (19), we obtain[
D2

(
D1D3 + Ta

∂2

∂z2

)
− Ra∇2

hD1

]
w′ = 0, (20)
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where

D1 = 1 +
1

Va
∂

∂t
− Ha2, (21)

D2 =
∂

∂t
−∇2 + Dm, (22)

D3 =
1

Va
∇2 ∂

∂t
+∇2 + Ha2 ∂2

∂z2 . (23)

Let us introduce the normal mode by writing that the perturbation is in the form of

w′ = ei(lx+my)+σt sin(πz), (24)

where l and m are the wave numbers along x and y directions and σ is a complex parameter.
Substituting Equation (24) into Equation (20), one obtains

Ra =
σ + δ2 + Dm

q2

(
1

Va
σδ2 + δ2 + Ha2π2

)
+

Taπ2(σ + δ2 + Dm
)

q2
(
1 + σ

Va − Ha2
) , (25)

where q2 = l2 + m2 and δ2 = π2 + q2.

2.4. Stationary Mode

To study the stationary stability, take σ = 0 in the Rayleigh number for the exchange
of the stabilities at the onset of stationary convection, say Rasc. It is given as

Rasc =
δ2 + Dm

q2

(
δ2 + Ha2π2

)
+

Taπ2(δ2 + Dm
)

q2(1 − Ha2)
. (26)

The critical Rayleigh number at the onset of stationary convection Rasc
c is

Rasc
c = Dm + 2π

√
(Dm + π2)(−1 + Ha4 − Ta)

Ha2 − 1
+

π(−2 + Ha2 + Ha4 − Ta)
Ha2 − 1

. (27)

The above stationary Rayleigh number reduces to Rasc =
δ4

q2 with the critical values

Rasc
c = 4π2, qsc

c = π in the absence of a magnetic field, Coriolis effect, and chemical
reaction effect, which agrees with the results of Horton and Rogers [41] and Lapwood [42]
for the onset of convection in a porous layer.

2.5. Oscillatory Mode

To study the oscillatory stability, take σ = iω. The Rayleigh number at the onset of
oscillatory convection is

Raoc =
δ4ω4 + α1ω2 + α2

q2Va[(−1 + Ha2)2Va2 + ω2]
, (28)

where

α1 =Vaπ2(DmHa2 + TaVa) + (Dm + Ha2π2)δ2 − (−1 + Ha2)2Vaδ4, (29)

α2 =− Da4 + (−1 + Ha2)(Dm + Ha2π2)− π2Ta)δ2+

(−1 + Ha2)Va3
[

Dmπ2(−Ha2 + Ha4 − Ta)
]
δ4 +−δ6, (30)

ω2 =− (−1 + Ha2)2Va2 +
π2Ta

[
Dm + (−1 + Ha2)Va + δ2]

Ha2π2Va + δ2(Dm + Va + δ2)
. (31)
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3. Artificial Neural Network Modeling

Let us now present some basis for the ANN modeling. An ANN is a computing
system based on biological neural networks (which are interconnected) that resemble a
brain. In general, ANN can be used to predict data. In this study, we used a network with
three layers: input, hidden, and output, as well as other components, such as feed-forward
propagation, an optimal number of neurons, and backpropagation (update weights and
biases) (see Figures 2 and 3). To train the suggested network, we use the Levenberg–
Marquardt backpropagation algorithm, as proposed by Yu and Wilamowski [46]. To
prepare the organization, data are first divided into three groups. A total of 650 datasets
were utilized to train, test, and validate the ANN model, with 70%, 15%, and 15% of
the data being randomly allocated for preparing and assessing. The optimal number of
neurons (Nn) for the best performing artificial neural network architecture is determined
by examining three different statistical values: coefficient of determination (R2), root mean
square error (RMSE), and root mean relative error (RMRE), which are defined by

R2 = 1 − ∑N
i (Rac,s − Rac,a)

2

∑N
i
(

Rac,s − Rac,a
)2 ,

RMSE =

√
∑N

i (Rac,s − Rac,a)
2

N

RMRE =

√√√√ 1
N

N

∑
i

∣∣∣∣ (Rac,s − Rac,a)

Rac,s

∣∣∣∣. (32)

Here, Rac,s is the simulated critical Rayleigh number, Rac,a is the ANN critical Rayleigh
number, the index i refers to the i-th experiment, bar denotes average value, and N is data
size or number. See Seo et al. [45] for further details on these measures. The regression
plots of training, testing, and validation for these three different sets are illustrated in
Figure 4. The values of R2, RMSE, and RMRE for different values of Va, Ha, Ta, and Dm
are illustrated in Tables 1 and 2. From these tables, it is clear that the present ANN model
can predict the critical Ra for linear stability analysis for different Va, Ha, Ta, and Dm.

Vadasz Number

Critical Ra for
stationary convection

Input  
Layer

Hidden 
Layer

 
 

Output 
Layer

 
 

Hartmann Number

Damkohler Number

Taylor Number Critical Ra for
oscillatory convection

Figure 2. Schematic representation of a multilayer feed-forward network consisting of two inputs,
one hidden layer, and two outputs.
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Error
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No
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Figure 3. Flow chart of the artificial neural network.

Figure 4. Regression plots for training, validation, and testing; the targets are simulated data and the
outputs are ANN-predicted data.
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Table 1. Calculated stationary values of R2, RMSE, and RMRE at various values of Ta, Dm, and Ha.

Stationary
Values R2 RMSE RMRE

Ta = 0, 5, 10, . . . , 50 Va = 0.5, Ha = 0.5, Dm = 2 0.999992 0.301510 0.549099

Dm = 0.5, 1, 1.5, . . . , 5 Va = 0.5, Ha = 0.5, Ta = 20 0.999991 0.316226 0.562340

Ha = 0.1, 0.2, 0.3, . . . , 0.9 Va = 0.5, Dm = 2, Ta = 20 0.999996 0.333332 0.5773497

Table 2. Calculated oscillatory values of R2, RMSE, and RMRE at various values of Ta, Dm, and Ha.

Oscillatory
Values R2 RMSE RMRE

Ta = 0, 5, 10, . . . , 50 Va = 0.5, Ha = 0.5, Dm = 2 0.999999 0.447213 0.668740

Dm = 0.5, 1, 1.5, . . . , 5 Va = 0.5, Ha = 0.5, Ta = 20 0.999994 0.316226 0.562340

Ha = 0.1, 0.2, 0.3, . . . , 0.9 Va = 0.5, Dm = 2, Ta = 20 0.999966 0.333327 0.577345

4. Discussion

The numerical results and discussion are presented in this section. In this results
part, we evaluated a numerical study of the effect of the magnetic field and rotation on the
onset of dissolution-driven convection saturated porous layer with ANN prediction. The
critical Rayleigh number at the onset of stationary (Rasc

c ) and oscillatory (Raoc
c ) convection

is obtained for the prescribed values of the other parameters. The investigations are
performed for various values of the Hartmann number, Taylor number, Vadasz number,
and Damkohler number. In Figures 5–10, solid and dotted lines represent the stationary
and oscillatory convection, respectively. The following physically realistic range of these
parameters is considered: 0 ≤ Va ≤ 20 [37], 0 ≤ Ta ≤ 50 [22], 0 ≤ Ha ≤ 0.9 [40], and
0 ≤ Dm ≤ 20 [23].

First, we shall discuss the theory of bifurcation points in Figures 5–7, the results
obtained numerically by linear and weakly nonlinear stability analysis. Takens–Bogdanov
and codimension two bifurcation points are identified in these figures. Takens–Bogdanov
bifurcation point is the point at which the oscillatory neutral curve intersects the stationary
neutral curve and approaches zero as the intersection point is approached. At the Takens–
Bogdanov bifurcation point, we have

Rs(qs) = Ro(qo) and qs = qo. (33)

The codimension two bifurcation point is the intersection between a Hopf and Pitch-
fork bifurcation with distinct wave numbers. At the codimension two bifurcation point,
we have

Rs(qs) = Ro(qo) and qs �= qo. (34)

The effect of the Vadasz number Va on the neutral curves is presented in Figure 8. We
find that the Rasc

c is independent of the Vadasz number Va, whereas the Raoc
c decreases

with a decrease in the value of the Vadasz number Va. This reports the porosity effects on
driven convection in a Newtonian-fluid-saturated porous layer. Furthermore, from this
figure, one can notice that for Va = 1, there exists a threshold Ta∗ ∈ (1.9, 2) such that for
Ta < Ta∗, stationary convection sets in, while for Ta∗ ∈ (1.9, 2), there is a switch from
stationary to oscillatory convection. Similar behavior can be observed for the other values
of Va.
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(a) (b)

(c)

Figure 5. Neutral curves (solid lines represent the stationary convection and dotted lines represent
the oscillatory convection) for Dm = 20, Ta = 3.1, Va = 20: (a) Ha = 0.5, (b) Ha = 0.6, (c) Ha = 0.7.

(a) (b)

(c)

Figure 6. Neutral curves (solid lines represent the stationary convection and dotted lines represent
the oscillatory convection) for Dm = 20, Ha = 0.6, Va = 20: (a) Ta = 2.5, (b) Ta = 3.1, (c) Ta = 5.
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Figure 7. Neutral curves (solid lines represent the stationary convection and dotted lines represent
the oscillatory convection) for Dm = 20, Ha = 0.5, Ta = 10.

Figure 8. Plots of the critical Ra as the function of Ta for Va = 1, 5, 10, 15.

Figure 9 illustrates the effect of the magnetic field on the onset of convection. From
this figure, one can observe that the Hartmann number has a stabilizing effect on stationary
convection. On the contrary, the Hartmann number has a stabilizing effect on oscillatory
convection. We find that the minimum value of the stationary Rayleigh number for
stationary mode increases with increasing Hartmann number Ha. On the other hand,
the minimum value of the oscillatory Rayleigh number decreases with an increase in the
value of the Hartmann number Ha. Thus, Ha has a contrasting effect on the stability of
the system in the case of stationary and oscillatory modes. From this figure, we notice
that for Ha = 0.2, there exists a threshold Ta∗ ∈ (1.9, 2) such that for Ta < Ta∗, oscillatory
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convection sets in, while for Ta∗ ∈ (1.9, 2), there is a switch from oscillatory to stationary
convection. Similar behavior can be observed for the other values of Va.

Figure 9. Plots of critical Ra as the function of Ta for Dm = 5, Va = 5, Ha = 0.2, 0.3, 0.4, 0.5.

Figure 10. Plots of critical Ra as the function of Ta for Va = 15, Ha = 0.5, Dm = 1, 5, 10, 15.

Similarly, Figure 10 depicts the effect of Dm on the system. From this figure, we see
that the effect of increasing Dm is to increase the Rasc

c and Raoc
c , implying that Dm has a

stabilizing effect on the onset of dissolution-driven convection in a porous medium. This
can be explained as follows. An increase in the value of Dm promotes the dissolution
reaction to absorb some of the heat energy, causing the surrounding environment to feel
cold. Hence, a larger solute gradient is required for the onset of convection so that the
system is stabilized. We find that for fixed values of other physical parameters, there exists
a critical Taylor number Tac such that when Ta < Tac, convection begins as an oscillatory
type, and when Ta > Tac, the convection switches to stationary. Further, when Ta = Tac,
the stationary and oscillatory modes occur simultaneously.
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Furthermore, Figures 8–10 demonstrate the Coriolis effect on the onset of convection.
All of these figures show that the Rasc

c and Raoc
c increase as the Taylor number increases.

Hence, the Taylor number has a stabilizing effect on the system. This can be explained as
follows: in the fluid, the rotation creates vorticity. As a result, the fluid has a faster velocity
in horizontal planes. Hence, the perpendicular velocity of the fluid decreases. Therefore,
the convection does not start right away.

The comparison of numerical and predicted ANN data of the critical Ra with different
values of Va, Ha, Ta, and Dm is shown in Figures 11 and 12. From all these figures, it
is obvious to see that the trained predictive ANN model holds well with the numerical
results.

(a) (b)

(c)

Figure 11. Comparison of the simulated and ANN-predicted critical Rayleigh number values for
(a) Dm, (b) Ha, and (c) Ta.
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(a) (b)

(c)

Figure 12. Comparison of the simulated and ANN-predicted critical Rayleigh number values for
(a) Dm, (b) Ha, and (c) Ta.

5. Conclusions

In the present analysis, the onset of dissolution-driven convection in a porous layer
with the effect of the magnetic field and rotation is studied. The behavior of various physical
parameters is investigated. The results can be summarized as follows: Takens–Bogdanov
and codimension two bifurcation points are identified. The Vadasz number does not show
any effect on stationary convection, whereas it has a destabilizing effect on oscillatory
convection. The Hartmann number has destabilizing and stabilizing effects on stationary
and oscillatory convection, respectively. The Damkohler number has a stabilizing effect on
the system. Furthermore, an artificial neural network (ANN) is used to model and predict
the critical Rayleigh numbers. The simulated and predicted values of the proposed ANN
model were found to be highly close, indicating that the expected critical Rayleigh number
and the observed critical Rayleigh number are quite similar.

In future work, we plan to study linear instability and nonlinear stability. Another
interesting problem is to investigate the stationary or oscillatory convection at the onset of
instability using Brinkmann’s law.
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5. Jamshed, W.; Şirin, C.; Selimefendigil, F.; Shamshuddin, M.D.; Altowairqi, Y.; Eid, M.R. Thermal Characterization of Coolant
Maxwell Type Nanofluid Flowing in Parabolic Trough Solar Collector (PTSC) Used Inside Solar Powered Ship Application.
Coatings 2021, 11, 1552. [CrossRef]

6. Mahabaleshwar, U.S.; Rekha, M.B.; Kumar, P.N.V.; Selimefendigil, F.; Sakanaka, P.H.; Lorenzini, G.; Nayakar, S.N.R. Mass transfer
characteristics of MHD casson fluid flow past stretching/shrinking sheet. J. Eng. Thermophys. 2020, 29, 285–302. [CrossRef]

7. Steinberg, V.; Brand, H. Convective instabilities of binary mixtures with fast chemical reaction in a porous medium. J. Chem. Phys.
1983, 78, 2655–2660. [CrossRef]

8. Steinberg, V.; Brand, H.R. Amplitude equations for the onset of convection in a reactive mixture in a porous medium. J. Chem.
Phys. 1984, 80, 431–435. [CrossRef]

9. Gatica, J.E.; Viljoen, H.J.; Hlavacek, V. Interaction between chemical reaction and natural convection in porous media. Chem. Eng.
Sci. 1989, 44, 1853–1870. [CrossRef]

10. Pritchard, D.; Richardson, C.N. The effect of temperature-dependent solubility on the onset of thermosolutal convection in a
horizontal porous layer. J. Fluid Mech. 2007, 571, 59–95. [CrossRef]

11. Rees, D.A.S.; Selim, A.; Ennis-King, J. The Instability of Unsteady Boundary Layers in Porous Media; Springer: Berlin/Heidelberg,
Germany, 2008.

12. Slim, A.C.; Ramakrishnan, T. Onset and cessation of time-dependent, dissolution-driven convection in porous media. Phys. Fluids
2010, 22, 124103. [CrossRef]

13. Bestehorn, M.; Firoozabadi, A. Effect of fluctuations on the onset of density-driven convection in porous media. Phys. Fluids 2012,
24, 114102. [CrossRef]

14. Kim, M.C.; Choi, C.K. Effect of first-order chemical reaction on gravitational instability in a porous medium. Phys. Rev. E 2014,
90, 053016. [CrossRef] [PubMed]

15. Hill, A.A.; Morad, M.R. Convective stability of carbon sequestration in anisotropic porous media. Proc. R. Soc. Math. Phys. Eng.
Sci. 2014, 470, 20140373. [CrossRef]

16. Al-Sulaimi, B. The energy stability of Darcy thermosolutal convection with reaction. Int. J. Heat Mass Transf. 2015, 86, 369–376.
[CrossRef]

17. Emami-Meybodi, H. Stability analysis of dissolution-driven convection in porous media. Phys. Fluids 2017, 29, 014102. [CrossRef]
18. Salibindla, A.K.; Subedi, R.; Shen, V.C.; Masuk, A.U.; Ni, R. Dissolution-driven convection in a heterogeneous porous medium.

J. Fluid Mech. 2018, 857, 61–79. [CrossRef]
19. Gautam, K.; Narayana, P.A.L. On the stability of carbon sequestration in an anisotropic horizontal porous layer with a first-order

chemical reaction. Proc. R. Soc. A 2019, 475, 20180365. [CrossRef]
20. Babu, A.B.; Koteswararao, N.V.; Reddy, G.S. Instability conditions in a porous medium due to horizontal magnetic field. In

Numerical Heat Transfer and Fluid Flow; Springer: Singapore, 2019; pp. 621–628.
21. Babu, A.B.; Rao, N.; Tagare, S.G. Weakly nonlinear thermohaline convection in a sparsely packed porous medium due to

horizontal magnetic field. Eur. Phys. J. Plus 2021, 136, 795. [CrossRef]
22. Babu, A.B.; Anilkumar, D.; Rao, N.V.K. Weakly nonlinear thermohaline rotating convection in a sparsely packed porous medium.

Int. J. Heat Mass Transf. 2022, 188, 122602. [CrossRef]
23. Reddy, G.S.K.; Ragoju, R. Thermal instability of a Maxwell fluid saturated porous layer with chemical reaction. Spec. Top. Rev.

Porous Media Int. J. 2022, 13, 33–47. [CrossRef]
24. Yin, Y.; Qu, Z.; Zhu, C.; Zhang, J. Visualizing gas diffusion behaviors in three-dimensional nanoporous media. Energy Fuels 2021,

35, 2075–2086. [CrossRef]
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Abstract: In this paper, the thermal instability of rotating convection in a bidispersive porous layer
is analyzed. The linear stability analysis is employed to examine the stability of the system. The
neutral curves for different values of the physical parameters are shown graphically. The critical
Rayleigh number is evaluated for appropriate values of the other governing parameters. Among the
obtained results, we find: the Taylor number has a stabilizing effect on the onset of convection; the
Soret number does not show any effect on oscillatory convection, as the oscillatory Rayleigh number
is independent of the Soret number; there exists a threshold, R∗

c ∈ (0.45, 0.46), for the solute Rayleigh
number, such that, if Rc > R∗

c , then the convection arises via an oscillatory mode; and the oscillatory
convection sets in and as soon as the value of the Soret number reaches a critical value, (∈(0.6, 0.7)),
and the convection arises via stationary convection.

Keywords: bidispersive porous media; thermal convection; linear stability analysis

1. Introduction

In recent years, great attention has been devoted to the thermal instability in bidis-
persive porous medium (BDPM). A BDPM is an extension of a regular porous medium.
In general, it is considered a regular porous medium where the solid phase is replaced
by another porous medium. A BDPM is composed of clusters of large particles that are
agglomerations of small particles [1,2]. The voids between the clusters are known as
macropores, and the voids within the clusters are known as micropores. In other words,
a BDPM is a porous medium in which fractures or tunnels have been introduced. In the
present model, the f-phase and p-phase are represented by ’fracture phase’ and ’porous
phase’, respectively. Understanding convection in a BDPM is of considerable interest for
geophysical applications [3,4]. The theory of thermal convection in a BDPM was developed
by Nield and Kuznetsov [5–11], Kuznestsov and Nield [12], and Sraughan [13,14]. All
these authors considered two different velocities and two different temperatures in the
macro and micro pores. In their analysis, they found that, in a BDPM, the critical values of
Rayleigh numbers are much larger than those in the regular porous medium. Later, much
research made an effort to investigate the convective instability in a BDPM.

Very recently, Falsaperla et al. [15] and Gentile and Straughan [16,17] studied the
same problem by using a single equation for temperature. In particular, Gentile and
Straughan [16,17] analyzed the non-linear stability theory for the problem of thermal
convection in a BDPM. They proved that the linear and non-linear stability thresholds
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coincide. Very recently, Capone et al. [18] have shown that the linear instability and non-
linear stability thresholds for the problem of thermal instability in a rotating BDPM are
different. Later, Capone and De Luca [19] extended their work by considering inertia terms,
and they showed that the effect of the Vadasz number can give rise to an oscillatory mode
at the loss of stability of a thermal motionless state.

On the other hand, double-diffusive instability in porous media is an interesting subject
of research due to its applications in different industries, such as the migration of solutes
in watersaturated soils, the spread of pollutants, drying processes, evaporative cooling of
high-temperature systems, and solar ponds [8]. The study of thermosolutal convection of
a fluidsaturated porous medium has attracted the attention of many researchers [20–28].
In addition, Straughan [29] developed a model for double-diffusive convection in a BDPM.
Later, Straughan [30] extended this work by considering the effect of inertia. He showed
that the inertia term had a very strong effect on the double-diffusive convection in a BDPM.
Badday and Harfash [31] have studied the double-diffusive convection in BDPM with
chemical reaction and magnetic field effects.

In this paper, the coriolis effect on thermosolutal convection in a rotating bidispersive
porous layer is studied. We reconsider the problem investigated in [18] in light of the
Soret effect. The plan of the article is as follows. Section 2 describes the mathematical
problem. In Section 3, we describe the linear stability analysis. The critical values of
Rayleigh numbers at the onset of stationary and oscillatory convection are determined.
The results and discussions are presented in Section 4, which contains a table to provide
some examples in which stationary or oscillatory instability sets in, and figures showing
the neutral stability curves for steady and oscillatory instability. The paper ends with a
conclusion part in Section 5.

2. Mathematical Formulation

Let us consider a horizontal fluid saturated bidisperse porous layer confined between
z = 0 and z = d. In this setting, let V f

i and Vp
i be the velocity of the fluid in the macro

pores and the velocity of the fluid in the micro pores, respectively. The fixed temperatures
at z = 0 and at z = d are T0

LC and T0
UC, respectively, with TL > TU > 0. It is rotating at a

constant rate Ω. The axis of rotation is parallel to z-axis. The Boussinesq approximation is
used to account for the density variations.

The hydrodynamic model representing flow behavior in bidisperse porous layer
differs from the classical porous layer theory by exhibiting two different pressures in the
pores, following the multiporosity model. The flow within each type of pores is determined
by its own pressure gradient through Darcy’s law. Hence, four additional equations
corresponding to the micro-pores are considered to make the relevant equations for mass
and momentum balances closed. The governing equations consist of the momentum and
continuity equations (see the references [18,31], and the visual representation in Figure 1).
By adopting the Boussinesq approximation in the macro and micro pores, these equations
can be written as

Figure 1. Physical Configuration.
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∇ · V f = 0,∇ · Vp = 0, (1)

− μ

κ f
V f − δ

(
V f − Vp

)
−∇P f − ρgêz − 2ρ0Ω

δ
êz × V f = 0, (2)

− μ

κp
Vp − δ

(
Vp − V f

)
−∇Pp − ρgêz − 2ρ0Ω

ε
êz × Vp = 0. (3)

Then, we consider a linear relation for the density of form

ρ = ρ0[1 − α(T − T0) + αc(C − C0)]. (4)

The equation of the energy balance can be written as

(ρc)m
∂T
∂t

+ (ρc) f

(
V f + Vp

)
· ∇T = km∇2T, (5)

where c is the specific heat in the porous medium. The coefficients (ρc)m and km are
given by

(ρc)m = (1 − ε)(1 − δ)(ρc)s + [δ + ε(1 − δ)](ρc) f , (6)

km = (1 − ε)(1 − δ)ks + [δ + ε(1 − δ)]k f . (7)

The equation for the concentration field taking into account the Soret effect on the
diffusion coefficient can be written as

ε1
∂C
∂t

+
(

V f + Vp
)
· ∇C = ε2∇2C + Ŝ∇2T, (8)

where

ε1 = δ + ε(1 − δ), (9)

ε2 = δk f
c + ε(1 − δ)kp

c , (10)

Ŝ = φS f
T + ε(1 − φ)Sp

T , (11)

subject to the boundary conditions

V f · êz = Vp · êz = 0, on z = 0, d, (12)

T(x, y, 0, t) = TL, T(x, y, d, t) = TU (TL > TU), (13)

C(x, y, 0, t) = CL, C(x, y, d, t) = CU(CL > CU). (14)

The basic state solution is then

V
f
b = 0, V

p
b = 0, Tb = TL − βz, Cb = CL − βcz, (15)

where β = TL−TU
d and βc =

CL−CU
d .

Let V f , Vp, P f , Pp, T, and C be a perturbation to the steady Equation (15).
The perturbations are non-dimensional, with length scale d, velocity scale V, time

scale τ , temperature scale T∗, and concentration scale C∗, where

τ =
(ρc)md2

km
, V =

km

(ρc) f d
,

T∗ =
βV(ρc) f d2

km
, C∗ =

βcVd2

ε2
.
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Define the quantities γ, κr, A, η, R, RC, Ta, Le, and S by

γ =
δκ f

μ
, κr =

κ f

κp
, � =

(ρc)m
(ρc) f

,

Ta =
2ρ0Ωκ f

μφ
, R =

ρ0βgαd2(ρc) f κ f

μkm
, RC =

ρ0βcgαcd2κ f

με2
,

Le =
km

(ρc)mε2
, S =

ŜT∗
ε2C∗ .

All these quantities have been explained in the nomenclature. The non-dimensional
equations (after omitting the asterisks) governing the system are

∇ · V f = 0,∇ · Vp = 0, (16)

− V f − γ
(

V f − Vp
)
−∇P f + (Rθ − RCφ)êz − Taêz × V f = 0, (17)

− κrVp − γ
(

Vp − V f
)
−∇Pp + (Rθ − RCφ)êz − ηTaêz × Vp = 0, (18)

∂θ

∂t
+
(

V f + Vp
)
· ∇θ =

(
w f + wp

)
+∇2θ, (19)

ε1Le
∂φ

∂t
+ ALe

(
V f + Vp

)
· ∇φ =

(
w f + wp

)
+∇2φ + S∇2θ, (20)

w f = wp = θ = φ = 0 on z = 0, 1. (21)

By taking the third component of curl of Equations (17) and (18), one obtains

w
f
3 + γ

(
w

f
3 − w

p
3

)
− Ta

∂w f

∂z
= 0, (22)

κrw
p
3 + γ(w

p
3 − w

f
3)− ηTa

∂wp

∂z
= 0, (23)

where D = ∂
∂t , w

f
3 = ∂v f

∂x − ∂u f

∂y .
By taking the third component of double curl of Equations (17) and (18), one has

∇2w f + γ
(
∇2w f −∇2wp

)
− R∇2

hθ + RC∇2
hφ + Ta

∂w
f
3

∂z
= 0, (24)

κr∇2wp + γ
(
∇2wp −∇2w f

)
− R∇2

hθ + RC∇2
hφ + ηTa

∂w
p
3

∂z
= 0, (25)

where

∇2
h =

∂2

∂x2 +
∂2

∂y2

and

∇2 =
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2 .

Solving Equations (22) and (23) with respect to w
f
3 and w

p
3 , respectively, one has

w
f
3 =

Ta(γ + κr)w
f
z + ηTaγw

p
z

γ + κr + γκr
, (26)

w
p
3 =

Ta
(

γw
f
z

)
+ ηTa(1 + γ)w

p
z

γ + κr + γκr
. (27)

Substituting Equations (26) and (27) into Equations (24) and (25), respectively, one obtains
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∇2w f + γ
(
∇2w f −∇2wp

)
− R∇h

2θ + RC∇h
2φ +

Ta2(γ + κr)w
f
zz + ηTa2γw

p
zz

γ + κr + γκr
= 0, (28)

κr∇2wp + γ
(
∇2wp −∇2w f

)
− R∇h

2θ + RC∇h
2φ +

ηTa2γw
f
zz + η2Ta2(1 + γ)w

p
zz

γ + κr + γκr
= 0. (29)

Hence, considering Equations (19), (20), (28) and (29), we see the following problem in
w f , wp, θ, and φ:

∇2w f + γ
(
∇2w f −∇2wp

)
− R∇h

2θ + RC∇h
2φ +

Ta2(γ + κr)w
f
zz + ηTa2γw

p
zz

γ + κr + γκr
= 0, (30)

κr∇2wp + γ
(
∇2wp −∇2w f

)
− R∇h

2θ + RC∇h
2φ +

ηTa2γw
f
zz + η2Ta2(1 + γ)w

p
zz

γ + κr + γκr
= 0, (31)

∂θ

∂t
= w f + wp +∇2θ, (32)

ε1Le
∂φ

∂t
=w f + wp +∇2φ + S∇2θ. (33)

3. Linear Stability Analysis

Let us consider the normal mode solutions in the form of(
w f , wp, θ, φ

)
=
(

w f , wp, θ, φ
)

sin(nπz)ei(lx+my)+σt. (34)

Substituting the above normal mode solution into the Equations (30)–(33), we find

[AΛ(1 + γ) + n2π2Ta2B]w f + [ηγn2π2Ta2 − γΛA]wp − a2RAθ + a2RC Aφ = 0, (35)

[ηγn2π2Ta2 − γΛA]w f + [ΛAB + η2n2π2Ta2(1 + γ)]wp − a2RAθ + a2RC Aφ = 0, (36)

w f + wp + [σ − Λ]θ = 0, (37)

w f + wp − SΛθ − [ε1Leσ + Λ]φ = 0, (38)

where ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

a2 = l2 + m2 is the wave number,
σ = ιω,
A = γ + κr + γκr,
B = γ + κr,
Λ = π2 + a2.

Requiring zero determinant of the above system, one has

R =
ξ1 + ω2ξ2 + ι

(
ξ3 + ω2ξ4

)
ξ5

, (39)

with
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ1 = Λ2[−a2ΛRC(S − 1)(x1 + AΛ(1 + B + 3γ)) + Λ(x2 + x3Λ + x4Λ2)],
ξ2 = x[a2 ARC(x1 + AΛ(1 + B + 3γ)) + xΛ(x2 + x3Λ + x4Λ2)],
ξ3 = a2 AΛRC(1 − x + Sx)[x1 + AΛ(1 + B + 3γ)] + Λ2[x2 + x3Λ + x4Λ2],
ξ4 = x2(x2 + x3Λ + x4Λ2),
ξ5 = a2 A(ω2x2 + Λ2)[π2Ta2(B + η(γη − 2γ + η)) + AΛ(1 + B + 3γ)],
x1 = π2Ta2(B + η2 + η2γ − 2ηγ),
x2 = π4Ta4(B + Bγ − γ2)η2,
x3 = Aπ2Ta2(B2 + 2ηγ2 + (1 + γ2)η2),
x4 = A2(B + Bγ − γ2),
x = Leε1.

3.1. Stationary Convection:

Substituting ω = 0 in Equation (39), one obtains

RTsc =
ξ6 + ξ7Λ + ξ8Λ2 + ξ9Λ3

ξ10 + ξ11Λ
, (40)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ6 = a2π2Rc(1 − S)Ta2(κr + γ(−1 + η)2 + η2),
ξ7 = a2 ARc(1 − S)(1 + k + 4γ) + π4Ta4η2,
ξ8 = π2Ta2((κr + γ)2 + 2ηγ2 + (1 + γ)2η2),
ξ9 = A2,
ξ10 = a2π2Ta2(κr + γ(−1 + η)2 + η2),
ξ11 = a2 A(1 + k + 4γ).

In the absence of rotation and the Soret effect, the above-stationary Rayleigh number
reduces to

Rasc =
δ4(γ + κr + γκr)

q2(1 + κr + 4γ)
, (41)

which, on comparison, satisfies [16] (Equation (31)).
The case of a monodispersive porous layer rotating about a vertical axis with the Darcy

model has been considered in Capone and Rionero [32]. As κr → ∞, γ → 0 Rc → 0, and
η → ∞ in Equation (40), we find

Rasc =
δ2(π2Ta2 + δ2)

q2 . (42)

After some calculations, we find

Rascl = π2(1 +
√

1 + Ta2)2, (43)

which is in good agreement with [32] (Equation (4.24), p. 195).

3.2. Oscillatory Convection

To study the oscillatory stability, we consider the real and imaginary parts of R.
The Rayleigh number at the onset of oscillatory convection is

RToc =
ξ12 + ξ13Λ + ξ14Λ2 + ξ15Λ3

ξ16 + ξ17Λ
, (44)

where
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ12 = a2π2RcTa2(κr + γ(−1 + η)2 + η2),
ξ13 = a2 ARc(1 + k + 4γ) + π4Ta4(1 + x)η2,
ξ14 = π2Ta2(1 + x)((κr + γ)2 + 2ηγ2 + (1 + γ)2η2),
ξ15 = (1 + x)A2,
ξ16 = xa2π2Ta2(κr + γ(−1 + η)2 + η2),
ξ17 = xa2 A(1 + k + 4γ).

4. Discussion

The numerical results and discussions are presented in this section. The critical
Rayleigh number at the onset of stationary convection, Rac

TSC
; at the onset of oscillatory

convection, Rac
TOC

; the critical wave number at the onset of stationary convection, qc
sc; and

at the onset of oscillatory convection, qc
oc, are obtained for the prescribed values of other

parameters. Figures 2–8 show the neutral curves in the parametric plane (q, RT) with
different values of the Ta, S, RC, and κr.

Figure 2. Neutral curves for the different values of Ta and for the fixed values of γ = 0.5, η = 0.2, κr = 1,
RC = 50, and S = 0.5 for the stationary mode.

In the stationary mode, the neutral curves are displayed in Figures 2–5. Figure 2
shows the neutral curves in the parametric plane (q, RT) with different values of the Taylor
number. From this figure, one can observe that, as Ta increases, the curves shift upward,
indicating a delay in the onset of instability. This can be explained as follows: Vorticity is
introduced into the fluid when it rotates. As a result, the fluid travels faster in horizontal
planes. The velocity of the fluid perpendicular to the planes decreases as a result of this
motion, therefore Rac

TSC
rises with Ta.

The effect of the Soret parameter on the onset of instability is shown in Figure 3. In it,
we see that Rc

Tsc
decreases with the Soret parameter, which means that the Soret parameter

destabilizes the system. For various values of solute Rayleigh number, with changing
values of wave number and then Rayleigh numbers, the neutral curves are obtained in
Figure 4. We can see from this figure that Rc

Tsc
increases as Rc increases, indicating that the

presence of Rc suppresses the onset of convection.
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Figure 3. Neutral curves for the different values of S and for the fixed values of γ = 0.5, η = 0.2,
κr = 1, RC = 50, and Ta = 20 for the stationary mode.

Figure 4. Neutral curves for the different values of RC and for the fixed values of γ = 0.5, η = 0.2,
κr = 1, S = 0.2, and Ta = 50 for the stationary mode.

Figure 5 depicts the neutral curves at the onset of stationary convection for various
values of κr. According to this figure, Rc

Tsc
decreases as κr increases, indicating that the

presence of a solute Rayleigh number advances the onset of convection. The neutral curves
at the onset of oscillatory convection are displayed in Figures 6–8. Figure 6 displays the
neutral curves for different values of Ta. According to this figure, increasing Ta causes Rc

Toc
to increase, indicating that Ta has the effect of stabilizing the system.
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Figure 5. Neutral curves for the different values of κr and for the fixed values of γ = 0.5, η = 0.2,
RC = 50, S = 0.2, and Ta = 50 for the stationary mode.

Figure 6. Neutral curves for the different values of Ta and for the fixed values of γ = 0.5, η = 0.2,
RC = 50, and κr = 1 for the oscillatory mode.

Figure 7 depicts the neutral curves for different values of RC at the onset of oscillatory
convection, and it is found that the neutral curves move upward with an increase in the
value of RC, thus RC stabilizes the oscillatory convection.

Figure 8 shows the effect of κr. In particular, we observe that the effect of κr advances
the onset of convection. This can be understandable, mathematically, because κr =

κ f
κp

,
κr increases as κp decreases (κ f is assumed to be fixed here). In other words, as microp-
ermeability declines, fluid movement in micropores becomes more difficult. As a result,
convective motions become more difficult, yielding more stability to the system.
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Figure 7. Neutral curves for the different values of RC and for the fixed values of γ = 0.5, η = 0.2,
Ta = 50, and κr = 1 for the oscillatory mode.

Figure 8. Neutral curves for the different values of κr, and for the fixed values of γ = 0.5, η = 0.2, Ta = 50
and RC = 100 for the oscillatory mode.

In Tables 1–3, we present some examples in which steady or oscillatory instability sets
in for the constant values of physical parameters. According to Table 1, there is a threshold
R∗

c (∈ 0.45, 0.46) for the solute Rayleigh number, such that, if Rc > R∗
c , then the convection

arises via an oscillatory mode. According to Table 2, oscillatory convection occurs initially,
and as soon as the value of S reaches a critical value (∈(0.6, 0.7)), the convection ceases to
be oscillatory, and stationary convection occurs as the first bifurcation. Table 3 shows that,
as the value of κr increases, convection always occurs via stationary mode.
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Table 1. Critical stationary and oscillatory Rayleigh numbers for different values of Rc and the fixed
values of κr = 1, Ta = 5, and S = 0.5.

Rc Stationary R Stationary a Oscillatory R Oscillatory a Instability

0 61.6464 3.9578 62.7612 3.9578 Stationary
1 62.1464 3.9578 62.7793 3.9578 Stationary
2 62.6464 3.9578 62.7973 3.9578 Stationary
3 63.1464 3.9578 62.8154 3.9578 Oscillatory
4 63.6464 3.9578 62.8335 3.9578 Oscillatory
5 64.1464 3.9578 62.8516 3.9578 Oscillatory

Table 2. Critical stationary and oscillatory Rayleigh numbers for the different values of S and the
fixed values of κr = 1, Ta = 50, and Rc = 50.

S Stationary R Stationary a Oscillatory R Oscillatory a Instability

0.1 1018.7706 8.2527 992.2842 8.2527 Oscillatory
0.2 1013.7706 8.2527 992.2842 8.2527 Oscillatory
0.3 1008.7706 8.2527 992.2842 8.2527 Oscillatory
0.4 1003.7706 8.2527 992.2842 8.2527 Oscillatory
0.5 998.7706 8.2527 992.2842 8.2527 Oscillatory
0.6 993.7706 8.2527 992.2842 8.2527 Oscillatory
0.7 988.7706 8.2527 992.2842 8.2527 Stationary
0.8 983.7706 8.2527 992.2842 8.2527 Stationary
0.9 978.7706 8.2527 992.2842 8.2527 Stationary

Table 3. Critical stationary and oscillatory Rayleigh numbers for the different values of κr and the
fixed values of S = 0.8, Ta = 50, and Rc = 50.

κr Stationary R Stationary a Oscillatory R Oscillatory a Instability

1 983.7706 8.2540 992.2842 8.2540 Stationary
2 691.3454 6.4421 694.5709 6.4421 Stationary
3 588.8136 5.5171 590.1849 5.5171 Stationary
4 546.4455 4.9469 547.0506 4.9469 Stationary
5 531.2631 4.5668 531.5936 4.5668 Stationary

5. Conclusions

In this study, we investigated the onset of rotating convection in a horizontal bidis-
persive porous layer that is uniformly heated and salted from below. The behaviour of
various parameters, such as the Ta, S, RC, and κr, has been analysed. The results can be
summarized as follows:

• Rc
Tsc

and Rc
Toc

increase as the Taylor number increases, indicating that Ta has a stabiliz-
ing effect on the onset of convection.

• Rc
Tsc

and Rc
Toc

are increasing functions of Rc and decreasing functions of κr.
• S does not show any effect on Rc

Toc
, as Rc

Toc
is independent of S.

• There exists a threshold R∗
c ∈ (0.45, 0.46) for the solute Rayleigh number such that,

if Rc > R∗
c , then the convection arises via an oscillatory mode.

• The oscillatory convection sets in and, as soon as the value of S attains a critical value
(∈(0.6, 0.7)), the convection ceases to be oscillatory, and stationary convection occurs
as the first bifurcation.
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Nomenclature

Ca Acceleration coefficient
κ f Permeability in macro pores
κp Permeability in micro pores
ζ Interaction coefficient
μ Fluid viscosity
g Gravity
α Coefficient of thermal expansion
αc Density coefficient for salinity
σ Heat capacity ratio
ε Macro porosity
δ Micro porosity
ρ Density
ks Thermal conductivity of the solid
k f Thermal conductivity of the fluid
(ρc)s Product of density and specific heat in the solid skeleton
(ρc) f Product of density and specific heat in the pores
ρ0 Reference density
km Thermal conductivity
P f Pressure in macro pores
Pp Pressure in micro pores
T Temperature
C Salt concentration field
R Rayleigh number
RC Solutal Rayleigh number
Ta Taylor number
Le Lewis number
S Soret number
d Length
Superscripts
′ Perturbated quantity
c Critical value
Subscripts

b Base state
0 Reference valve
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Abstract: The present research was developed to find out the effect of heated cylinder configurations
in accordance with the magnetic field on the natural convective flow within a square cavity. In the
cavity, four types of configurations—left bottom heated cylinder (LBC), right bottom heated cylinder
(RBC), left top heated cylinder (LTC) and right top heated cylinder (RTC)—were considered in the
investigation. The current mathematical problem was formulated using the non-linear governing
equations and then solved by engaging the process of Galerkin weighted residuals based on the finite
element scheme (FES). The investigation of the present problem was conducted using numerous
parameters: the Rayleigh number (Ra = 103–105), the Hartmann number (Ha = 0–200) at Pr = 0.71
on the flow field, thermal pattern and the variation of heat inside the enclosure. The clarifications
of the numerical result were exhibited in the form of streamlines, isotherms, velocity profiles and
temperature profiles, local and mean Nusselt number, along with heated cylinder configurations.
From the obtained outcomes, it was observed that the rate of heat transport, as well as the local
Nusselt number, decreased for the LBC and LTC configurations, but increased for the RBC and RTC
configurations with the increase of the Hartmann number within the square cavity. In addition,
the mean Nusselt number for the LBC, RBC, LTC and RTC configurations increased when the
Hartmann number was absent, but decreased when the Hartmann number increased in the cavity.
The computational results were verified in relation to a published work and were found to be in
good agreement.

Keywords: natural convection; magnetic field; FES; heated cylinder; square cavity

1. Introduction

As a mechanism of heat transfer, the natural convective electrical conduction flow
of fluid, in accordance with the effect of magnetic field in cavities, has been thoroughly
studied by researchers due to its technical importance in engineering applications. The
extensive studies of various applications include electronic device cooling, ventilation of
rooms, reactor insulation, solar ponds, fire prevention and crystal growth in liquids [1].
By considering this importance, many researchers have conducted many numerical and
experimental studies inside the cavities with and without obstacles to research the flow
and heat transfer behaviors. Krakov and Nikiforov [2] studied the influence of the vertical
magnetic field on thermo-magnetic convection in a square cavity. They showed that the
convective flow can have either a one-cell or two-cell structure in the cavity. Steady-state
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natural convection in a square cavity using a fully compact higher-order computational
method was performed by Kalita et al. [3]. Conjugate gradient and hybrid bi-conjugate
gradient are used to find good convergence at higher Rayleigh numbers by solving the
symmetrical and non-symmetrical algebraic systems. Natural convection in a square
enclosure was performed by Shu and Wee [4] using the SIMPLE-generalized differential
quadrature method and produced accurate numerical results only for a few grid points.
Basak and Roy [5] examined the thermal effects of natural convection flows within a
square cavity. They found that the power law correlations played a vital role between
the average Nusselt number and Rayleigh numbers for convection-dominated regimes.
Natural convection fluid flow and heat transfer using discrete source–sink pairs in square
cavities were studied by Deng [6]. The result showed that total heat transmission is directly
proportional to the amount of eddies in the enclosure. Pirmohammadi et al. [7] investigated
buoyancy-driven convection and the influence of magnetic field within a differentially
heated square cavity. The result indicated that the magnetic field reduces the rate of
convective heat transfer. Magneto convection and partially active vertical walls in a square
cavity were studied by Nithyadevi et al. [8].

With the increase in the Hartmann number, the average Nusselt number decreased,
but the Prandtl number and Grashof number increased. The porous layer on the flow
structure and heat transfer within a square was examined by Hamimid et al. [9] to find
out the velocity pressure formulation. Jani et al. [10] studied MHD free convection in a
square cavity with a hot bottom wall and cooled side walls. It was found that the magnetic
field reduced free convection strength as well as flow velocity and at higher Rayleigh
numbers. Natural convection with an inner circular cylinder through square enclosure
was investigated by Lee et al. [11]. It was found that the size of the local heating zone
influenced the production and dissolution of vortices. Hussein et al. [12] studied transient
natural convection flow in the enclosures and obtained heat transfer properties of three-
dimensional impacts of transitory natural convection. Natural convection in a square
cavity was examined by Park et al. [13], where two inner circular cylinders were positioned
in the cavity. Hossain et al. [14] performed a trapezoidal cavity, including the effect of
the magnetic field as well as non-uniformly heated bottom wall. It was demonstrated
that the average and local Nusselt number with the non-uniform heating of the cavity’s
bottom wall depended on dimensionless parameters, as well as tilt angles. The effect of a
perpendicular magnetic field on free convection in a rectangular cavity to solve the resulting
boundary value problem was examined by Singh et al. [15]. Park et al. [16] studied natural
convection in a square enclosure with four circular cylinders to locate various rectangular
positions of the cylinders on the flow and thermal fields. Hossain et al. [17] analyzed
magneto-natural convection within trapezoidal cavity and utilized circular block in the
cavity and observed that the conduction-dominant region had changed for different angles
of Φs. Seo et al. [18,19] investigated flow instability on natural convection in a square
enclosure with the aid of four inner cylinders. The effects of the rectangular array cylinder
positions in a square enclosure on heat transfer characteristics were highlighted. The
effect of buoyancy force by using bottom heating in a square cavity was analyzed by
Siddiki et al. [20]. An analysis of the flow of natural convection was conducted by Hossain
et al. [21] in a trapezoidal cavity, in which a non-uniformly heated triangular block was
used inside the cavity. They observed that the heat transfer rates were significantly affected
by tilt angles and heated triangular blocks. Feldman [22] studied the oscillatory instability
flow of natural convection in a square enclosure, incorporating a tandem of vertically
aligned cylinders.

Hossain et al. [23] demonstrated natural convection in a trapezoidal cavity and also
utilized magnetic fields and cold triangular obstacles. They observed that streamlines,
isotherms and average Nusselt numbers were affected by rotations of the cold triangular
obstruction. Magneto-hydrodynamic free convection through a square enclosure Lattice
Boltzmann simulation was studied by Laouer and Djeghiour [24]. It was seen that the heat
transfer rate fell as the Ha increased, but it increased when the Ra increased. Furthermore,
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for high Rayleigh numbers and a wide range of Hartmann numbers, the magnetic field
direction had a significant impact on the heat transfer and fluid movement inside the
enclosure. Fayz-Al-Asad et al. [25] analyzed natural convection in a wavy cavity to obtain
the result of the fin length and its location. They found that there was a significant impact
on the flow structure and temperature for the fin lengths and their locations. Magneto-
hydrodynamic natural convection flow was studied by Hossain et al. [26]. They used
heated triangular obstacles in accordance with a porous trapezoidal cavity. They showed
that local and average Nusselt numbers were highly influenced by a variety of aspect
ratios of heat source obstacles within the cavity. Liao and Li [27] presented an empirical
correlation of natural convection with the effect of a magnetic field in a square enclosure to
anticipate the heat transfer transition for various values of Ha and Ra. Shahid et al. [28]
studied a lid-driven rectangular cavity using a multi-relaxation time Lattice Boltzmann
simulation. They analyzed the aspect ratio of the cavity, as well as the sizes of the heated
obstacles on fluid flow. Natural convection flow in a trapezoidal cavity was studied by
Khan et al. [29]. They used a porous matrix within the cavity, along with heated cylindrical
barriers. They showed that the average Nusselt number showed a dominant boost for both
the fluid and solid phases. Fayz-Al-Asad et al. [30,31] studied a vertically wavy enclosure.
They used magneto conditions to find out the effect of undulation in the cavity. They
observed that, due to the increase in the number of undulations, the evolution of heat
transport increased. The study of a rectangular heating source ofnatural convective flow
within a triangular cavity was conducted by Fayz-Al-Asad et al. [32]. They confirmed
that the rate of heat variation increased as the Rayleigh number increased in the cavity.
Fayz-Al-Asad et al. [33] analyzed the magneto-combined convection in a lid-driven wavy
cavity. They found that variations of lengths of the fin surface had a significant impact
on the flow building and heat line sketch. Mixed convection flow in a lid-driven cavity
was performed by Xiong et al. [34] for different obstacles. The results showed that the
intensity of maximum convection was achieved for a higher Grashof number. Recently,
Alshare et al. [35] conducted a hydrothermal and entropy critique of nanofluid natural
convection inside an elliptical shape in the concentric irregular cavity. They observed
that a single increase in undulation increased the Nusselt number by an average of 9.5%
within the examined range (N = 1 to 4). Furthermore, doubling the nanoparticle volume
fraction increased the Nusselt number by nearly 8%. In addition, the finite element method,
magnetic field and natural convection were found to be more detailed [36–39].

To the best knowledge of the scientist, it was noted that no inquiry has been conducted
on the effect of heated cylinders in accordance with magnetic-natural convection flow in
a square cavity in which the geometrical result for the heat transport characteristics is
necessary in order to know the industrial functions. The flow field has been characterized
by the streamlines whereas the thermal area is defined by the isotherms, local and average
Nusselt numbers. For computation, the Prandtl number (Pr = 0.71) is considered for
the airflow in the cavity. The present research study was conducted for the assorted
configurations of heated cylinders for the range of Ha and Ra on flow, as well as thermal
field through square enclosure.

2. Problem Definition

The physical configuration for the current investigation is shown in Figure 1. A steady,
two-dimensional square cavity with various heated cylinders (LBC, RBC, LTC and RTC)
embedded inside, along with magnetic field (B0) with the y-axis, was used in the present
model. The dimension of the cavity was defined by its height (H) and length (L). The
gravitational force (g) always worked in the vertically downward direction. The left and
right walls of the cavity were thermally insulated (Ti). The base wall of the cavity was
considered to be at a uniform hot temperature (Th) and the top wall was maintained at
a cold temperature (Tc), where Th > Tc. Furthermore, a heated cylinder of a diameter D
was placed in various positions within the square cavity. The diameter of the cylinder
was made to be one third of the cavity’s height. The electrically conductive fluid with
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Pr = 0.71 [10] was placed in the square cavity and the flow of fluid was thought to be
Newtonian and laminar. In addition, stable fluid properties were seen, and the boundary
walls of the cavity were no-slip.

y

xB
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x,u

iT iT
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cT
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Figure 1. Schematic model of the present study.

3. Mathematical Modeling

The flow of fluid was steady, viscous and incompressible in the present study. The
electrically conducting flow of fluid was also invariant, excluding density variation. Fur-
thermore, Boussinesq approximation was used to report the variation of density as a
function of temperature and, in this way, connect the temperature field to the flow field
for the treatment of buoyancy term in the momentum equation. In addition, viscous dis-
sipation, the effect of radiation, the low-magnetic Reynolds number model for Lorentz
force and Joule heating were neglected in this study. The two-dimensional conservations
equations of mass, momentum and energy for the present study in dimensionless form
were as follows [10,14,17,23,26,40,41]:

∂U
∂X

+
∂V
∂Y

= 0, (1)

U
∂U
∂X

+ V
∂U
∂Y

= − ∂P
∂X

+ Pr
(

∂2U
∂X2 +

∂2U
∂Y2

)
, (2)

U
∂V
∂X

+ V
∂V
∂Y

= − ∂P
∂Y

+ Pr
(

∂2V
∂X2 +

∂2V
∂Y2

)
+ RaPrθ − Ha2PrV, (3)

U
∂θ

∂X
+ V

∂θ

∂Y
=

(
∂2θ

∂X2 +
∂2θ

∂Y2

)
. (4)
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Using the following variables in the present study, Equations (1)–(4) were non-
dimensionalized:

X = x
L , Y = y

L , U = uL
α , V = vL

α , P = pL2

ρα2 , θ = T−Tc
Th−Tc

,

Ha = B0L
√

σ
μ , Pr = v

α , Ra = gβ(Th−Tc)L3

αv ,

where X and Y both are non-dimensional coordinates alongside horizontal and vertical
directions, respectively; U and V are non-dimensional velocity components in X and Y
directions, respectively; θ and P are the non-dimensional temperature and pressure; and
Ra, Pr and Ha, are the Rayleigh number, the Prandtl number and the Hartmann number,
respectively. Thermal diffusivity, volumetric thermal expansion coefficient, kinematic
viscosity, density, specific heat, acceleration due to gravity and dimensional temperature
difference of the fluid are represented, respectively, by the symbols α, β, ν, ρ, cp, g, and ΔT.

The related boundary conditions for Equations (1)–(4) take the following forms:
on the left and right (side) walls: U = 0, V = 0, ∂θ

∂n = 0;
on the top wall: U = 0, V = 0, θ = 0;
on the bottom wall: U = 0, V = 0, θ = 1;
on the insider elliptic obstacle: U = 0, V = 0, θ = 1.
The heat transfer co-efficient, as well as the local Nusselt number (Nulocal) and mean

Nusselt number (Nuav) on the heated part of the cavity, were determined as follows:

Nulocal = − ∂θ

∂Y
and Nuav =

∫ 1

0
Nulocal dX

4. Numerical Details

The computational technique was employed to simulate the flow dynamics within
the cavity for the problem presented in this paper, with the help of the Galerkin weighted
residual finite element technique. Using this technique, the solution domain was discretized
into finite element meshes composed of non-uniform triangular elements. Then, the
nonlinear governing partial differential equations (i.e., mass, momentum and energy
equations) were transferred into a system of integral equations by applying this technique.
The Galerkin weighted residual finite element technique (as shown in the works of Taylor
and Hood [42], Zienkiewicz [43] and Dechaumphai [44]) was applied to Equations (1)–(4)
for the evaluation of finite element equations as:∫

A
Nα

(
∂U
∂X

+
∂V
∂Y

)
dA = 0, (5)

∫
A

Nα

(
U

∂U
∂X

+ V
∂U
∂Y

)
dA = −

∫
A

Hλ

(
∂P
∂X

)
dA + Pr

∫
A

Nα

(
∂2U
∂X2 +

∂2U
∂Y2

)
dA, (6)

∫
A

Nα

(
U

∂V
∂X

+ V
∂V
∂Y

)
dA = −

∫
A

Hλ

(
∂P
∂Y

)
dA + Pr

∫
A

Nα

(
∂2V
∂X2 +

∂2V
∂Y2

)
dA + RaPr

∫
A

NαθdA − Ha2
∫
A

NαVdA, (7)

∫
A

Nα

(
U

∂θ

∂X
+ V

∂θ

∂Y

)
dA =

∫
A

Nα

(
∂2θ

∂X2 +
∂2θ

∂Y2

)
dA, (8)

where A is the element section; Nα refers to functions of element interpolation for velocity
and temperature and α = 1, 2, . . . , 6; Hλ refers to functions of element exclamation for
pressure; and λ = 1, 2, 3.
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Gauss’s theorem with appropriate boundary integral terms, in accordance with heat
flux and surface tractions, was applied to Equations (6)–(8), then becoming∫

A Nα

(
U ∂U

∂X + V ∂U
∂Y

)
dA +

∫
A Hλ

(
∂P
∂X

)
dA

+Pr
∫

A

(
∂Nα
∂X

∂U
∂X + ∂Nα

∂Y
∂U
∂Y

)
dA =

∫
S0

NαSxdS0,
(9)

∫
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(
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∂X + V ∂V
∂Y

)
dA +

∫
A

Hλ

(
∂P
∂Y

)
dA

+Pr
∫
A

(
∂Nα
∂X

∂V
∂X + ∂Nα

∂Y
∂V
∂Y

)
− RaPr

∫
α

NαθdA + Ha2
∫
α

NαVdA =
∫
s0

NαSydS0 ,
(10)

∫
α

Nα

(
U

∂θ

∂X
+ V

∂θ

∂Y

)
dA +

∫
α

(
∂Nα

∂X
∂θ

∂X
+

∂Nα

∂Y
∂θ

∂Y

)
dA =

∫
Sw

NαqlwdSw, (11)

where (9)–(10) specify the surface tractions (Sx, Sy) alongside the outflow boundary S0 and
(11) specifies the components of velocity and heat flux (qw), which flows into or out from
field alongside Sw.

Now, the basic unidentified elements for the major partial differential equations are
velocity distributions components U and V; the temperature distribution θ; and the pressure
distribution P. These distributions, by their uppermost derivative orders, were then applied
to Equations (5)–(8):

U(X, Y) = NβUβ, V(X, Y) = NβVβ, θ(X, Y) = Nβθβ, P(X, Y) = HλPλ, (12)

where β = 1, 2, . . . , 6; λ = 1, 2, 3.
The finite element equations, by substituting Equation (12), are as follows:

Kαβx Uβ + Kαβy Vβ = 0, (13)

Kαβγx UβUγ + Kαβγy VγUγ + Mαμx Pμ + Pr
(
Sαβxx + Sαβyy

)
Uβ = Qαu , (14)

Kαβγx UβVγ + Kαβγy VγVγ + Mαμy Pμ + Pr(Sαβxx + Sαβyy + Ha2Kαβ)Vβ − RaPrKαβθβ = Qαv , (15)

Kαβγx Uβθγ + Kαβγy Vβθγ +
(
Sαβxx + Sαβyy

)
θβ = Qαθ , (16)

where element matrices coefficients are in the shape of the integrals in the element region
and alongside the element edges S0 and Sw as:

Kαβx =
∫

A NαNβ,xdA, Kαβy =
∫

A NαNβ,ydA, Kαβγx =
∫

A NαNβNγ,xdA,
Kαβγy =

∫
A NαNβNγ,ydA, Kαβ =

∫
A NαNβdA, Sαβxx =

∫
A Nα,x Nβ,xdASαβyy =

∫
A Nα,yNβ,ydA,

Mαμx =
∫

A HαHμ,xdA, Mαμy =
∫

A HαHμ,ydA,
Qαu =

∫
S0

NαSxdS0, Qαv =
∫

S0
NαSydS0, Qαθ =

∫
Sw

Nαq1wdSw, Qαθ s =
∫

Sw
Nαq2wdSw.

The non-linear resulting finite element Equations (13)–(16) are algebraic. Finally, the
process of Newton–Raphson, as well as the integration technique, was used to iteratively
determine the equations of residuals. A convergence of the procedure of computation is
put aside once the convergence criteria or the condition is determined as

∣∣∣Ψn+1−Ψn

Ψn+1

∣∣∣ < 10−6,
where n refers to the iterative number, ψ = ψ(U, V, θ).

As the code validation is necessary for the accurateness of the numerical technique,
the present problem is considered with Pr = 0.71, Ha = 50 and Ra = 105, which had been
solved for streamlines (stream function) and isotherms for 2D magneto-hydrodynamic
free convection flow through the square cavity. The result was checked for streamlines
and isotherms and then the present work was compared with the reported reference of
Jani et al. [10] and presented in Figure 2. From the above comparisons of the figures, we
found a good agreement between the present work and Jani et al. [10], which is displayed
in Figure 2. Furthermore, mesh configuration is a technique in which a large domain is
subdivided into a set of sub domains called finite elements, control volume and so on. A lot
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of boundary value problems of several engineering fields have been solved with the aid of
irregular geometry via a set of finite elements. The answer for the current geometry for the
specific non-dimensional parameters was computed at discrete locations called numerical
grids. The mesh structure for the current problem is provided in Figure 3.
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Figure 2. Comparison of streamlines and isotherms of by Jani et al. [10] and the present work with
Pr = 0.71, Ha = 50 and Ra = 105.

 
Figure 3. Mesh configuration for the cavity.

In addition, to select a proper grid size, in the present study, a particular grid sensi-
tivity selecting procedure was performed for the square cavity along with various heated
cylinders for Pr = 0.71, Ha = 100 and Ra = 105, considering assorted size of mesh. The
manifest meshing is shown in Table 1 and Figure 4, where the average Nusselt number
is calculated. It was found that further increments of Nuav have insignificant transform.
Throughout the study, for 23,780 nodes and 3568 elements, the mesh configuration was
chosen for accurate simulation to find the optimized, desired result in the present study.

Table 1. Grid sensitivity tests at Pr = 0.71, Ha = 100 and Ra = 105.

Nodes 16,030 19,099 21,560 23,780 32,945 37,682

Elements 2408 2878 3258 3568 4978 5696

Nuav 0.130212 0.130203 0.137988 0.141502 0.141502 0.1415

Time (s) 15.913 19.308 22.568 26.879 36.5135 38.495
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Figure 4. Grid sensitivity tests for Pr = 0.71, Ha = 100 and Ra = 105.

5. Results and Discussion

In the present study, the effect of a heated cylinder for different configurations, LBC,
RBC, LTC and RTC, in accordance with the magnetic field for the fluid flow on the natural
convection in a square cavity numerically, was studied. The results of the square cavity
with an insider heated cylinder were presumed for electrically conductive fluid with the
Prandtl number (Pr = 0.71) and a confined airflow. The wide range of governing parameters
were the Rayleigh number (103 ≤ Ra ≤ 105) and the Hartmann number (0 ≤ Ha ≤ 200),
studied here in order to find the computational results. The results were analyzed in the
form of streamlines and isotherms, velocity profiles, temperature profiles, heat transfer
rates and local and mean Nusselt numbers, alongside the heated wall of the cavity.

5.1. Effect of Cylinder Position and Magnetic Field on Streamlines and Isotherms

Streamlines and isotherms for assorted heated cylinder configurations along with
different parameters Ha, Pr and Ra were shown in Figures 5–8. As the beneath wall of the
cavity and cylindrical block were heated, the flow of hot fluids creates eddy circulation
cells, rotating along the cold walls inside the cavity from the heating wall for all parameters:
Pr, Ha and Ra. To find the variations of streamlines and isotherms on various configurations
of heated cylinders (LBC, RBC, LTC and RTC), a numerical study was performed with
Pr = 0.71, Ha = 0–200 and Ra = 103–104, correspondingly, for flow and thermal field in
Figures 5 and 6. The impact of the presence of a magnetic field for streamlines and
isotherms is also demonstrated in Figures 5a and 6, respectively, for cavity configuration
(LBC). Figure 5a shows that one eddy circulation cell formed inside the cavity. The flow
strength decreases and streamlines close to the heated cylinder configurations due to the
enhancement of the Hartmann number, which is shown in Figure 5b–d. The effect of
the Hartmann number (Ha = 0–200) on the distributions of the velocity and temperature
contours for right bottom configuration (RBC), while Ra = 103 and Pr = 0.71 is also shown
in Figure 5. A tiny recirculation cell appeared in the center of the square of the cavity and
the recirculation cell was smaller, owing to the increase in the Hartmann number, which is
shown in Figure 5. Figure 5 also illustrates the streamlines for the left top heated cylinder
configurations (LTC), along with variations of the Hartmann number (Ha = 0–200), when
Ra = 103 and Pr = 0.71. Figure 5 shows in the LTC configuration that one cell was created
inside the center of the square cavity in the absence of magnetic field. In addition to this,
one large vortex also formed in the left bottom side of the cavity. The cell became bigger
and oval shaped in the cavity with the increase of the Hartmann number and also, a tiny
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vortex was found in the left top side of the cavity. The variation of the Hartmann number
for the right top cylindrical heat source (RTC) configuration is shown in Figure 5 for the
square cavity. It can be seen that the smaller cell was formed in the square cavity due to
both the absence and presence of Ha, compared with the LTC. Figure 6 shows that the
isotherms for the left bottom heated cylinder configuration (LBC) are likely linear, as well
as nonlinear close to the upper wall and base wall, correspondingly, with the increase in the
Hartmann number when Ra = 103 and Pr = 0.71 (see Figure 6a–d). Furthermore, Figure 6a–d
shows the thermal increases, owing to the increase of the magnetic field parameter: the
Hartmann number (Ha). The temperature distributions for the right bottom cylindrical heat
source configuration (RBC) with magnetic field’s effect on the parameter Hartmann number
(Ha = 0–200) is shown in Figure 6a–d for fixed Ra = 103 and Pr = 0.71. The isotherms were
parallel to the upper wall of the cavity. On the other hand, a nonlinearity effect was found
near to the base wall of the cavity. The isotherms for LTC shown in Figure 6 were almost as
linear as those near to the top wall. However, bend isotherms could be seen near the base
wall through the effect of the Hartmann number. By increasing the Hartmann number, it
could be seen that the isotherms in the RTC transform slightly in the cavity, as shown in
Figure 6. When the Rayleigh number increased, that is, for higher Ra = 105, streamlines
and isotherms were analyzed, as shown in Figures 7 and 8 for various configurations of
heated cylinders (LBC, RBC, LTC and RTC) within the square cavity for Ha = 0–200 and
Pr = 0.71. As shown in Figure 7, by analyzing all configurations of the heated cylinders
(LBC, RBC, LTC and RTC), it can be understood that one primary larger eddy circulation
cell was created inside the cavity when Ha = 0. However, due to the increase in the
Hartmann number (0 ≤ Ha ≤ 200), the velocity flow strength dwindled. Therefore, likely
larger secondary recirculation cells with tiny vortices were created inside the square cavity.
At higher Ra = 105–103 and when Pr = 0.71, it is shown in Figure 8 that isotherms for
every arrangement of heated cylinders (LBC, RBC, LTC and RTC) looked parallel and
non-parallel, respectively, near to the upper and beneath wall of the cavity for the impact of
magnetic field Ha = 0–200. However, due to the increased Hartmann number and strength
of flow of convection, more compacted and non-parallel isotherm lines were seen in the
cavity. In addition to this, fewer bond isotherm lines were also observed near the side walls
of the cavity.

5.2. Velocity and Temperature Profiles

Figure 9 displays the effects of the Hartmann number (Ha) on velocity pro-files with
distances for different cylinder configurations (LBC, RBC, LTC and RTC) adjacent to the
line X = 0.3. As shown in Figure 9, the velocity decreased for each cylinder configuration
(LBC, RBC, LTC and RTC) and with the increasing value of the Hartmann number below
the central portion of the cavity. On the other hand, the velocity increased with the decrease
in the Hartmann number. Due to the counterclockwise and clockwise flow directions, the
maximum and minimum velocities were found in the absence of a magnetic field. The
temperature fields with the distance X are plotted in Figure 10 for different cylinder heat
source configurations (LBC, RBC, LTC and RTC). Figure 10 shows, for LBC, RBC, LTC
and RTC, that when the Hartmann number was absent, the maximum and minimum
temperatures were found in the cavity. The temperature field lessened due to the increase
in the Hartmann number. For LBC and LTC, the temperature field transformed slightly
with the increase in the Hartmann number to X < 0.2, but transformed significantly when
the Hartmann number was X > 0.2. An inverse result was observed for RBC and RTC. It
was observed that the change in the temperature field was insignificant when the Hartmann
number increased to X < 0.4, but the change was significant when the Hartmann number
was X > 0.4.
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Figure 5. Streamlines for different orientations of heated cylinders for Ha = 0–200, Ra = 103 and
Pr = 0.71.
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Figure 6. Isotherms for different orientations of heated cylinders for Ha = 0–200, Ra = 103 and
Pr = 0.71.
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Figure 7. Streamlines for different orientations of heated cylinders for Ha = 0–200, Ra = 105 and
Pr = 0.71.
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Figure 8. Isotherms for different orientations of heated cylinders for Ha = 0–200, Ra = 105 and
Pr = 0.71.
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Figure 9. Variations of velocity vs. distance for different orientations of heated cylinders for
Ha = 0–200, Ra = 105 and Pr = 0.71.

Figure 10. Cont.
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Figure 10. Variations of temperature with distance for different orientations of heated cylinders for
Ha = 0–200, Ra = 105 and Pr = 0.71.

5.3. Heat Transfer

The heat transfer rates, as well as the local Nusselt number with the distance wall
for different configurations (LBC, RBC, LTC and RTC) are presented in Figure 11 for the
variations of the Hartmann number. Regarding the LBC and LTC configurations, Figure 11
shows that the local Nusselt number decreased with the increase in the Hartmann number,
but for the RBC and RTC configurations, it was observed that the local Nusselt number
increases due to the increasing Hartmann number. The heat transfer rates, as well as
the mean Nusselt number for different configurations (LBC, RBC, LTC and RTC) are
presented in Figure 12 against the variations of the Hartmann number. Figure 12 shows,
for all configurations, that the mean Nusselt number increases due to the absence of the
Hartmann number, but the mean Nusselt number decreases due to the increase in the
Hartmann number.

Figure 11. Cont.
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Figure 11. Variations of local Nusselt number with distance for different orientations of heated
cylinders for Ha = 0–200, Ra = 105 and Pr = 0.71.

Figure 12. Variations of average Nusselt number with the Hartmann number for different orientations
of heated cylinders for Ha = 0–200, Ra = 105 and Pr = 0.71.

6. Conclusions

A 2D computational framework was generated to analyze the fluid dynamic per-
formance in a square cavity in order to find the effect of heating cylinders in line with a
magnetic field using natural convection by applying the free triangular grid-established
finite element technique through the use of an easy algorithm. The numerical work within
a square cavity for various cylindrical heat source configurations (LBC, RBC, LTC and RTC)
when Pr = 0.7, 0 ≤ Ha ≤ 200 and 103 ≤ Ra ≤ 105 was studied in this work by employing
the Galerkin weighted residual method of finite element formulation. The results are
displayed for assorted cylinder configurations in the phase of streamlines, isotherms, veloc-
ity profiles, temperatures and heat transfers rates, as well as the local and mean Nusselt
number for the bottom wall of the cavity. The concise summary is as follows:

� The distributions of flow field and isotherm patterns, velocity and temperature pro-
files, rate of heat transport for various cylinder configurations within the cavity fully
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depended on the Prandlt number (Pr), the Rayleigh number (Ra) and the Hartmann
number (Ha) and the heated bottom wall of the cavity.

� The number of vortices increased within the streamlines for various configurations of
the cavity due to enhance of the Hartmann number.

� The bonding of isotherm lines reduced close to the side walls of the cavity.
� The bend isotherm lines were observed adjacent to the base wall of the cavity.
� The velocity decreased for each heated cylinder configurations (LBC, RBC, LTC

and RTC), as well as for the increasing value of the Hartmann number below the
central portion of the cavity, but the velocity increased with the decrease in the
Hartmann number.

� For the LBC and LTC configurations, the local Nusselt number decreased with the
increase of the Hartmann number, but for the RBC and RTC configurations, the local
Nusselt number increased with the increase in the Hartmann number.

� The mean Nusselt number for the LBC, RBC, LTC and RTC configurations increased
due to the absence of the Hartmann number, but the mean Nusselt number decreased
due to the increase in the Hartmann number.
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Nomenclature

B0 Magnetic field
Cp Specific heat at constant pressure (J/kg·K)
g Gravitational acceleration (m/s2)
h Convective heat transfer coefficient (W/m2·K)
Ha Hartmann number
k Thermal conductivity of fluid (W/m·K)
K Thermal conductivity ratio fluid
N Non-dimensional distance
Nuav Mean Nusselt number
Nulocal Local Nusselt number
P Non-dimensional pressure
p Pressure
Pr Prandtl number
Ra Rayleigh number
T Non-dimensional temperature
U Dimensionless horizontal velocity
u Velocity in x-direction (m/s)
V Dimensionless vertical velocity
v Velocity in y-direction (m/s)
x, y Cartesian coordinates
X, Y Dimensionless Cartesian coordinates
Greek symbols

α Thermal diffusivity (m2/s)
β Coefficient of thermal expansion (K−1)
θ Temperature of fluid
Δθ Discrepancy of temperature
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μ Dynamic viscosity of the fluid (Pa·s)
ν Kinematic viscosity of the fluid (m2/s)
r Fluid density (kg/m3)
σ Fluid electrical conductivity (Ω−1m−1)
Abbreviations

LBC Left bottom heated cylinder
LTC Left top heated cylinder
RTC Right top heated cylinder
RBC Right bottom heated cylinder
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Abstract: This article develops a within-host viral kinetics model of SARS-CoV-2 under the Caputo
fractional-order operator. We prove the results of the solution’s existence and uniqueness by using the
Banach mapping contraction principle. Using the next-generation matrix method, we obtain the basic
reproduction number. We analyze the model’s endemic and disease-free equilibrium points for local
and global stability. Furthermore, we find approximate solutions for the non-linear fractional model
using the Modified Euler Method (MEM). To support analytical findings, numerical simulations are
carried out.
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Modified Euler Method

1. Introduction

COVID-19 caused by SARS-CoV-2 is a highly transmissible and pathogenic coron-
avirus that appeared in late 2019 and has posed a danger to both human health and public
safety [1,2]. The World Health Organization (WHO) declared it an endemic because it killed
and affected many worldwide, particularly in the USA and Europe, in a short period of
time [3]. Clinical research has not yet produced a remedy that can completely eradicate the
virus from the human body. However, the research remains ongoing. Many therapies (such
as vaccination, monoclonal antibody therapy, and plasma therapy) have been developed by
researchers who successfully treat early-stage diseases, including MERS-CoV, SARS-CoV,
Ebola, HIV, and influenza-like viral diseases. Additionally, our body’s immune system
responds well to infections or disorders. Throughout this uncontrollable condition, nearly
all virus-infected regions were locked down, social gatherings were banned, and strict
social distancing measures in all situations were implemented to control virus spread.
Research worked to control the spread of this virus from different points of analysis such
as microbiology [4,5], pathology [6,7], and applied mathematics [8].

In addition to biological and medical research, theoretical studies based on mathemat-
ical models may also be crucial to this anti-pandemic effort in analyzing the behavior of the
outbreak that made it an epidemic, making decisions about how to stop its spread, and in
comprehending patterns of virus transmission within hosts. Several mathematical models
for COVID-19 have been formulated at an epidemiological level [6,9–21]. The replication
cycle of the SARS-CoV-2 virus and its interactions with the innate and adaptive immune
systems are only limited by research done at the within-host level [5,22,23]. Susceptible,
infected, and removed (SIR) models are generally used for measles, rubella, and other
infectious diseases to investigate the quick spread behavior of these infectious diseases [24].
A susceptible, exposed, infected, and removed (SEIR) model is comparable to the SIR
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model. The classes S, I, and R represent the number of populations in each partition at a
specific point in time [25,26]. However, the incubation period is used in the SEIR model, so
a specific incubation period for infectious diseases is more applicable [26,27]. The incuba-
tion period of SARS-CoV-2 is 1–14 days [28–31]. Different models have been developed to
study the mechanism behind the spread of COVID-19 [32–34].

At the time of SARS-CoV-2 infection, macrophages are first targeted by SARS-CoV-2,
and SARS-CoV-2 propagates to T cells afterwards. At this stage of the virus route, T cells are
activated and further involve differentiation. In addition, T cells produce cytokines (INF-α),
IL-6, and IL-10) associated with the different types of a T cell. A large amount of cytokines
provides a greater activation of the immune response to fight against the virus. Particularly,
T cells, CD4+ T cells, and CD8+ T cells have been playing a significant antiviral role in
the fight against pathogens. There is also a risk of mounting autoimmunity or devastating
inflammation. CD4+ T cells help the immune system of the body by generating virus-
specific antibodies with the activation of T-dependent B cells. However, CD8+ T cells can
kill virally infected cells, as they are cytotoxic. In general, many CD8+ T cells in the infected
SARS-CoV-2 body are found in nearly 80% of the total infiltrative inflammatory cells in the
interstitial pulmonary tract, which play a significant role in clearing CoVs. The loss of CD4+

T cells is correlated with the reduced conscription of lymphocytes and neutralizing the
production of antibodies and cytokines, resulting in severe immune-mediated interstitial
pneumonitis and delayed SARS-CoV-2 lung clearance [34–37].

Researchers have shown that a long-lasting and persistent response of T cells to S and
other structural proteins (including the proteins M and N), which provides the sufficient
knowledge to draft the SARS vaccine by combining viral structural proteins. These vaccines
may provide a robust, efficient, and long-term response to the virus by memory cells [36].
Clinical trials also show that a monoclinic antibody therapy is an effective treatment tool
that responds well to SARS-CoV-2 [34].

Fractional calculus is often employed for epidemic models [38–44]. It has been shown
that the fractional-order model outperforms the integer-order model in handling the mod-
eling process since it has many other desirable characteristics, such as excellent fitting
with real data. Furthermore, memory and heredity characteristics make it more effec-
tive in modeling and analyzing real-world problems. Numerous definitions or operators
in the fractional calculus, such as Caputo, Riemann-Liouville, Atangana-Baleanu, and
Caputo-Fabrizio derivative [45,46], are helpful in modeling epidemic diseases.

In our paper, we study a model of in-host viral kinetics that describes the response of
SARS-CoV-2 to epithelial cells. Section 2 presents the formulation of the model, Section 3
describes preliminaries, Section 4 presents the uniqueness and existence of the solution
to the proposed model, Section 5 presents the steady state points and the derivation of
the primary reproduction ratio, Sections 6 and 7 present local and global stability analyses,
respectively, Section 8 presents the numerical solution algorithm, Section 9 shows graphical
representations to support the logical result, and Section 10 concludes.

2. Mathematical Model

We consider the mathematical model [5,47] used to analyze the fractional model of the
within-host viral kinetics of SARS-CoV-2.

E
′
p(t) =δ(Ep(0)−Ep(t))− γEp(t)F(t)

I
′
p(t) =γEp(t)F(t)− βIp(t)

F
′(t) =ρIp(t)− ωF(t),

(1)

with initial conditions
Ep(0) > 0, Ip(0) ≥ 0, and,F(0) ≥ 0. (2)

Here, the whole population is divided into three compartments: virus-free pulmonary
epithelial cells, represented by Ep(t), virus-free cells, represented by F(t), and virus-
infected pulmonary epithelial cells, denoted by Ip(t). Here δ, β, and ω denote the death
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rate of uninfected pulmonary epithelial cells, infected pulmonary epithelial cells, and the
virus, respectively. The production rate of the virus is denoted by ρ. In the model, the
term Ep(0) denotes the initial number of uninfected cells at time zero, and δEp(0) shows a
constant regeneration of uninfected epithelial cells.

Several researchers have taken into account fractional-order derivative (FOD) for
modelling the infectious diseases [48–50]. We used FOD in the Caputo sense, because it
gives better results than the classical order. Several FOD operators were developed, but the
Caputo and the Riemann–Liouville FD operators are the most generally used due to their
simplicity and similarities [38,39,51]. Other derivatives include Katugampola, Hadamard,
Atangana-Baleanu, and Caputo–Fabrizio [52].

c
0D

α
t
[
Ep
]
=δα(Ep(0)−Ep)− γα

EpF
c
0D

α
t
[
Ip
]
=γα

EpF− βα
Ip

c
0D

α
t [F] =ρα

Ip − ωα
F,

(3)

with initial conditions

Ep(0) = K1 > 0, Ip(0) = K2 ≥ 0, and,F(0) = K3 ≥ 0. (4)

3. Basic Definitions and Theorems

Definition 1. The Caputo fractional derivative of order α of z : (0, ∞) → R is defined as

c
0D

α
t [z(t)] =

1
Γ(K − α)

t∫
0

(t − ζ)K −α−1z(K )(ζ)dζ,

where α ∈ (K − 1, K ], K = [α] + 1, and [α] represents the integer part of α.

Theorem 1 ([49]). Let the equilibrium of the following non-autonomous fractional order system be
z = 0.

c
0D

α
t z(t) = f (t, z), z(t0) = z0.

Let ψ ⊆ Rn be a domain containing z = 0. Let U(t, z) : [t0, ∞] × ψ → R be a
continuously differentiable function such that V1(z) ≤ U(t, z) ≤ V2(z) and

c
0D

α
t U(t, z) ≤ −V3(z), f or t ≥ 0, z ∈ ψ,

where V1(t, z), V2(t, z) and V3(t, z) are continuous non-negative definite functions on ψ,
and U is a Lipschitz continuous function (LCF), so z = 0 is globally asymptotically stable.

Lemma 1 ([39]). Let function z(t) ∈ R be continuously differentiable. It follows that, for any time
t ≥ 0,

1
2

c
0D

α
t z2(t) ≤ c

0D
α
t z(t), ∀α ∈ (0, 1).
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4. Existences and Uniqueness

Firstly, we discuss the uniqueness and existence of the solution to the proposed model.

Applying the fractional integral as
.

(c
0D

−α
t )c

0D
α
t (H(t)) = H(t) − H(0) to Equation (3),

we obtain

Ep(t)−Ep(0) =
1

Γ(α)

∫ t

0
(1 − η)α−1(δα(Ep(0)−Ep(t))− γα

Ep(t)F(t))dη,

Ip(t)− Ip(0) =
1

Γ(α)

∫ t

0
(1 − η)α−1(γα

Ep(t)F (t)− βα
Ip(t))dη,

F(t)− F(0) =
1

Γ(α)

∫ t

0
(1 − η)α−1(ρα

Ip(t)− ωα
F(t))dη.

(5)

Using the initial conditions, (5) becomes

Ep(t) = K1 − 1
Γ(α)

∫ t

0
(t − η)α−1(δα(Ep(0)−Ep(η))− γα

Ep(η)F(η))dη,

Ip(t) = K2 − 1
Γ(α)

∫ t

0
(t − η)α−1(γα

Ep(η)F(η)− βα
Ip(η))dη,

F(t) = K3 − 1
Γ(α)

∫ t

0
(t − η)α−1(ρα

Ip(η)− ωα
F(η))dη.

(6)

We define the kernels in System (6) as

Υ1
(
t,Ep, Ip,F

)
= (δα(Ep(0)−Ep(t))− γα

Ep(t)F(t))

Υ2
(
t,Ep, Ip,F

)
= (γα

Ep(t)F(t)− βα
Ip(t))

Υ3
(
t,Ep, Ip,F

)
= (ρα

Ip(t)− ωα
F(t)).

(7)

Therefore, by using (7), the system (3) becomes

Ep(t) = K1 − 1
Γ(α)

∫ t

0
(t − η)α−1Υ1

(
η,Ep, Ip,F

)
dη,

Ip(t) = K2 − 1
Γ(α)

∫ t

0
(t − η)α−1Υ3

(
η,Ep, Ip,F

)
dη,

F(t) = K3 − 1
Γ(α)

∫ t

0
(t − η)α−1Υ3

(
η,Ep, Ip,F

)
dη.

(8)

Theorem 2. The kernels of System (3) satisfy the Lipschitz continuity if there are finite and positive
scalar constants Ci, i = 1, 2, 3, such that C1 =

∣∣∣γα maxt∈[0,t∗ ] F− δα
∣∣∣ ≥ 0, C2 = βα ≥ 0 and

C3 = ωα ≥ 0.

Proof. By considering the kernels given in (3), we have∣∣∣Υ1
(
t,Ep, Ip,F

)− Υ2

(
t,E∗

p, Ip,F
)∣∣∣ = ∣∣∣(δα(Ep −Ep(0))− γα

EpF
)− (δα(E∗

p −E
∗(0))− γα

E
∗
F

)∣∣∣
=
∣∣∣γα

F

(
Ep −E

∗
p

)
− δα

((
Ep(0)−E

∗(0)) + (Ep −E
∗
p

))∣∣∣
≤
∣∣∣(γα

F− δα)
(
Ep −E

∗
p

)∣∣∣
≤ |γα

F− δα|
∥∥∥Ep −E

∗
p

∥∥∥
≤
∣∣∣∣∣γα max

t∈[0,t∗ ]
F− δα

∣∣∣∣∣∥∥∥Ep −E
∗
p

∥∥∥
≤ C1

∥∥∥Ep −E
∗
p

∥∥∥,

(
C1 =

∣∣∣∣∣γα max
t∈[0,t∗ ]

F− δα

∣∣∣∣∣
)

,
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∣∣∣Υ1
(
t,Ep, Ip,F

)− Υ2

(
t,Ep, I∗p,F

)∣∣∣ =∣∣∣(γα
EpF− βα

Ip
)− (γα

EF− βα
I
∗
p

)∣∣∣
=
∣∣∣βα
(

I∗p − Ip

)∣∣∣
≤ |βα|

∥∥∥I∗p − Ip

∥∥∥
≤ C2

∥∥∥I∗p − Ip

∥∥∥, (C2 = βα),

(9)

∣∣Υ1
(
t, Ep, Ip,F)− Υ2

(
t, Ep, Ip,F∗)∣∣ =∣∣(ρα Ip − ωα

F
)− (ρα Ip − ωα

F
∗)∣∣

=|ωα(F∗ − F)|
≤|ωα|‖F∗ − F(t)‖
≤C3‖F∗ − F‖, (C3 = ωα).

Hence, the proposed system satisfies the Lipschitz continuity. This means that the
system is continuous and bounded.

Theorem 3. Let α ∈ (0, 1), J = [0, t∗] ⊆ R and l =
∣∣∣Ep(t)−E∗

p(t)
∣∣∣ ≤ A1. Let the function

Υ1 : j × l → R be continuous and bounded. ∃M > 0 such that
∣∣Υ1
(
t,Ep, Ip,F

)∣∣ ≤ M1.
We assume that v1 satisfies the Lipschitz conditions. If C1A1 < M1, then there is a unique
Υ1
(
t,Ep, Ip,F

) ∈ C[0, t∗], such that t∗ = min
[
t, (A1Γ(α+1)

M1 )
]
.

Proof. If F = {Eb ∈ C(0, t∗) : ‖Eb(t)−Eb(0)‖ ≤ A1}, then F is a complete metric space
since F ⊆ R, and it is also a closed set. We now define the operator T in F as

TEp(t) = Ep(0) +
1

Γ(α)

∫ t

0
(t − η)α−1Υ1

(
η,Ep, Ip,F

)
dη.

We then have∣∣TEp(t)−Ep(0)
∣∣ = ∣∣∣∣ 1

Γ(α)

∫ t

0
(t − η)α−1Υ1

(
η,Ep, Ip,F

)
dη

∣∣∣∣
≤ 1

Γ(α)

∫ t

0
(t − η)α−1∣∣Υ1

(
η, Ep, Ip,F)∣∣dη

≤ 1
Γ(α)

∫ t

0
(t − η)α−1M1dη

=
M1

Γ(α + 1)
tα

≤ M1

Γ(α + 1)
(t∗)α

≤ M1

Γ(α + 1)
A1Γ(α + 1)

M1
) = A1.

Hence, ∣∣TEp(t)−Ep(0)
∣∣ ≤ A1.

Similarly, we easily show that∣∣TIp − Ip(0)
∣∣ ≤ A2,

and

|TF− F(0)| ≤ A3.
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Finally, we need to show that T satisfies the contraction mapping theorem.

TEp − TE∗
p(t) = Ep(0)−E

∗
p(0) +

1
Γ(α)

∫ t

0
(t − η)α−1

(
Υ1
(
η,Ep(η), Ip(η),F(η)

)− Υ1

(
η,E∗

p(η), Ip(η),F(η)
))

dη.

Assuming that Ep(0) = E∗
p(0),∣∣∣TEp − TE∗

p(t)
∣∣∣ = ∣∣∣∣ 1

Γ(α)

∫ t

0
(t − η)α−1

(
Υ1
(
η,Ep(η), Ip(η),F(η)

)− Υ1

(
η,E∗

p(η), Ip(η),F(η)
))

dη

∣∣∣∣,
which implies that∣∣∣TEp − TE∗

p

∣∣∣ ≤ 1
Γ(α)

∫ t

0
(t − η)α−1

∣∣∣(Υ1
(
η,Ep(η), Ip(η),F(η)

)− Υ1

(
η,E∗

p(η), Ip(η),F(η)
))∣∣∣dη.

By using the value of |(Υ1(η,Ep(η), Ip(η),F(η)) − Υ1(η,E∗
p(η), Ip(η),F(η))|dη, we

obtain ∣∣∣TEp − TE∗
p

∣∣∣ ≤ 1
Γ(α)

∫ t

0
(t − η)α−1C1

∥∥∥E∗
p −Ep

∥∥∥dη

≤ C1

Γ(α)

∥∥∥E∗
p −Ep

∥∥∥ ∫ t

0
(t − η)α−1dη

≤ C1

Γ(α + 1)

∥∥∥E∗
p −Ep

∥∥∥tα

≤ C1

Γ(α + 1)

∥∥∥E∗
p −Ep

∥∥∥(t∗)α

≤ C1

Γ(α + 1)

∥∥∥E∗
p −Ep

∥∥∥A1Γ(α + 1)
M1

.

Hence, ∣∣∣TEp − TE∗
p(t)
∣∣∣ ≤ A1C1

M1

∥∥∥E∗
p −Ep

∥∥∥. (10)

Since A1C1
M1

< 1, one can conclude that T satisfies the contraction mapping theorem
and it has a unique fixed point.

In the same procedure, we obtain∣∣∣TIp − TI∗p
∣∣∣ ≤ A2C2

M2

∥∥∥I∗p − Ip

∥∥∥. (11)

|TF− TF∗| ≤ A3C3

M3
‖F∗ − F‖. (12)

Thus, System (3) has a unique solution.

5. Steady State and Derivation of Reproduction Number R0

Let E0 be the disease-free equilibrium point, and from the equations in (3), we set the
right-hand sides as equal to zero and solve for variables.

δα(Ep −Ep(0))− γα
EpF = 0, (13)

γα
EpF− βα

Ip = 0, (14)

ρα
Ip − ωα

F = 0. (15)

If Ip and F are equal to zero, we obtain the disease-free equilibrium as

E0 =
(
E

0
p, I0

p,F0
)
=
(
Ep(0), 0, 0

)
. (16)
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To find the endemic equilibrium E∗ =
(
E∗

p, I∗p,F∗
)

, we consider Ep(t) �= 0, Ip(t) �= 0,
in Equations (13)–(15) as

E
∗
p =

1
δα

(
−βα

I
∗
p −Ep(0)

)
, (17)

I
∗
p =

γα

βαδα

(−βαωα

ρα
F
∗ −Ep(0)

)
F
∗, (18)

F
∗ = ωα

ρα
I
∗. (19)

Next, we want to derive the reproduction number R0. The reproduction number is
a threshold quantity representing the total number of secondary illnesses caused by an
infected individual in a fully susceptible population throughout the infectious period [53].

For this, we develop the next generation matrix approach. Let M(S) represent the
rate of new infections, and let X(S) represent the transfer rate of individual. We then have

M(S) =
(

γαEp(t)F(t)
0

)
and X(S) =

(
βαIp

ραIp − ωαF

)
.

The Jacobian matrices JM(S) and JX(S) at the non-infected steady state (16) are

m = JM(S) =
(

0 γαEp(0)
0 0

)
, x = JX(S) =

(
βα 0
ρα −ωα

)
.

x−1 =
1

−ωαβα

( −ωα 0
−ρα βα

)
.

mx−1 =
1

−ωαβα

(
0 γαEp(0)
0 0

)( −ωα 0
−ρα βα

)
=

( −ραγαEp(0)
−ωα βα

βαγαEp(0)
−ωα βα

0 0

)
.

The reproduction number is given by the spectral radius of the next generation matrix

mx−1. We then obtain λ1 = 0, λ2 =
ραγαEp(0)

λα βα , from the absolute highest eigenvalues from

mx−1. Thus, from the model (3), we obtain the expression for R0 as

R0 =
ραγαEp(0)

λαβα
.

The following graphical representation describes the potential impact of introducing a
new SARS-CoV-2 variant with high transmission rates. Figure 1 represents the effects of
the basic reproduction number with respect to different parameters.

(a) (b)

Figure 1. It is clear that, when R0 < 1 , the model (3) has no endemic equilibrium and the disease-free
equilibrium is stable. (a) Variation of R0 with respect to the transmission rate γ. (b) Impact of γ and ρ

on R0.
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6. Local Stability

In this part of the paper, we discuss the local stability of the steady-state point (16).
For this need, we write the Jacobian matrix for the system (3) as

J =

⎛⎝ δα − γαF 0 −γαEp
γαF −βα γαEp

0 ρα −ωα

⎞⎠. (20)

Theorem 4. The non-infected steady state E0 is locally asymptotically stable when R0 < 1.

Proof. The Jacobian matrix for the steady state (16) as

J(E0) =

⎛⎝ δα 0 −γαEp(0)
0 −βα γαEp(0)
0 ρα −ωα

⎞⎠. (21)

According to the Routh–Hurwitz criteria [54], if all the real parts of the value of the
real eigenvalues of the Jacobian matrix are negative, then E0 is locally asymptotically stable.
In order to show that, we have

∣∣∣λI − JE0
∣∣∣ =

∣∣∣∣∣∣
δα − λ 0 −γαEp(0)

0 −βα − λ γαEp(0)
0 ρα −ωα − λ

∣∣∣∣∣∣ = 0.

The characteristics equation of the above matrix is

(δα − λ)
(

λ2 + λ(ωα + βα) + βαωα − ραγα
Ep(0)

)
= 0,

(δα − λ)
(

λ2 + a1λ + a2

)
= 0,

with a1 = ωα + βα, and a2 = βαωα − ραγαEp(0).
Based on an equation, the eigenvalues λ1 = δα > 0, and a1 = ωα + βα > 0 were

obtained. According to Routh–Hurwitz stability criteria, a2 = βαωα − ραγαEp(0) > 0 ⇒
βαωα > ραγαEp(0) ⇒ 1 >

ραγαEp(0)
βαωα ⇒ R0 < 1.

Therefore, if R0 < 1, then all the conditions of Routh–Hurwitz criteria are satisfied.
Hence, the non-infected steady-state E0 becomes locally asymptotically stable if R0 < 1
and unstable if R0 > 1.

7. Global Stability

In this part of the paper, we use the Lyapunov function approach to investigate the
result for the model’s globally asymptotically stability (GAS) in the disease-free state. For
this, we have the following theorem.

Theorem 5. When R0 < 1, the disease-free equilibrium E0 is globally asymptotically stable;
otherwise, it is unstable.

Proof. For this, we derive the Lyapunov candidate function (LCF) for the fractional-order
as in [38]. We then take the family of the Lyapunov function

L(e1, e2, ..., en) =
n

∑
i=1

pi
2
(ei(t)− e∗)2.
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LCF is defined as

L
(
Ep, Ip,F

)
=

1
2

(
Ep −E

∗
p

)2
+

1
2

(
Ip − I

∗
p

)2
+

1
2

(
Fp − F

∗
p

)2
. (22)

Applying the Caputo fractional derivative and using its linearity property yields

c
0D

α
t L
(
Ep, Ip,F

)
=

1
2

[
c
0D

α
t

(
Ep −E

∗
p

)2
+ c

0D
α
t

(
Ip(t)− I∗p

)2
+ c

0D
α
t

(
Fp − F

∗
p

)2
]

. (23)

Applying Lemma 2 of [38] to (23), we obtain

c
0D

α
t L
(
Ep, Ip,F(t)

) ≤ c
0D

α
t

(
Ep −E

∗
p

)2
+ c

0D
α
t

(
Ip − I

∗
p

)2
+ c

0D
α
t

(
Fp − F

∗
p

)2
. (24)

c
0D

α
t L
(
Ep, Ip,F(t)

)
=

(1 − (δα)2)

δα
Ep(0) + δα

Ep + (ρα − βα)Ip −
(

δαωα − βαρα

δαρα

)
I
∗
p − ωα

F

+

(
γαωα

δαρα
F
∗ + γα

βαδα
Ep(0)

)
F
∗.

Substituting the disease-free equilibrium, we obtain

c
0Dα

t L
(
Ep, Ip,F

) ≤ ((1 − (δα)2)
δα

+ δα

)
Ep(0)− (βα − ρα)Ip − ωα

F, (25)

so
c
0D

α
t L
(
Ep, Ip,F

) ≤ −Z(p), (26)

where

Z(p) = (βα − ρα)Ip + ωα
F−

((
1 − (δα)2)

δα
+ δα

)
Ep(0).

Hence, by Theorem 2 in [39], the disease-free equilibrium is globally asymptotically
stable.

The existence of equilibria of the model is shown for different values of R0. In plotting
Figures 2 and 3, we have varied the value of infection rate γ. It is observed that the disease-
free equilibrium E0 is stable for low infection rates, corresponding to R0 < 1. It becomes
unstable for high infection rates, corresponding to R0 > 1.

(a)
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(b)

Figure 2. Simulation of the numbers of Ep, Ip, and F when R0 < 1 with (a) three-dimensional plot
and (b) two-dimensional plot.

149



Math. Comput. Appl. 2022, 27, 82

(a) (b)

Figure 3. Dynamics of the numbers of virus-infected epithelial cells, SARS-CoV-2 virus and virus-free
epithelial cells when R0 > 1 with (a) three-dimensional plot and (b) two-dimensional plot.

8. Algorithm for the Solution

In this part of the paper, we derive the general procedure for the approximate solution
of the considered fractional-order model (3). For this, we extend the numerical Euler
method [55].

Now, using (9), we write (3) as⎧⎪⎨⎪⎩
c
0Dα

t [Ep] = Υ1
(
t,Ep, Ip,F

)
,

c
0Dα

t [Ip] = Υ2
(
t,Ep, Ip,F

)
,

c
0Dα

t [Fp] = Υ3
(
t,Ep, Ip,F

)
.

(27)

Let [0, T] be the interval where we want to find the solution of (27). For this, we
divide the given interval into an i sub-interval [ti, ti+1] of equal width h = T

i , using the
nodes ti = ih for i = 0, 1, 2, 3, ..., k − 1. Here, we assume that Ep, c

0Dα
t [Ep], and c

0D2α
t [Ep] are

continuous up to a higher order on [0, T].
We take into account the modified Euler method (MEM) for t = t0 = 0 to (27). The

expression for t1 is⎧⎪⎪⎨⎪⎪⎩
Ep(t1) = Ep(t0) + Υ1

(
Ep(t0), Ip(t0),F(t0)

) tα

Γ(η+1) +
c
0D2α

t Ep(t) t2α

Γ(2η+1) ,

Ip(t1) = Ip(t0) + Υ2
(
Ep(t0), Ip(t0),F(t0)

) tα

Γ(η+1) +
c
0D2α

t Ip(t) t2α

Γ(2η+1) ,

F(t1) = F(t0) + Υ3
(
Ep(t0), Ip(t0),F(t0)

) tα

Γ(η+1) +
c
0D

2α
t F(t) t2α

Γ(2η+1) .

(28)

In this procedure, we neglect the second-order involving t2α because we the step size
h is very small. ⎧⎪⎪⎨⎪⎪⎩

Ep(t1) = Ep(t0) + Υ1
(
Ep(t0), Ip(t0),F(t0)

) tα

Γ(η+1) ,

Ip(t1) = Ip(t0) + Υ2
(
Ep(t0), Ip(t0),F(t0)

) tα

Γ(η+1) ,

F(t1) = F(t0) + Υ3
(
Ep(t0), Ip(t0),F(t0)

) tα

Γ(η+1) .

(29)

The subsequent terms are⎧⎪⎪⎨⎪⎪⎩
Ep(t2) = Ep(t0) + Υ1

(
Ep(t1), Ip(t1),F(t1)

) tα

Γ(η+1) ,

Ip(t2) = Ip(t0) + Υ2
(
Ep(t1), Ip(t1),F(t1)

) tα

Γ(η+1) ,

F(t2) = F(t0) + Υ3
(
Ep(t1), Ip(t1),F(t1)

) tα

Γ(η+1) .

(30)

In the above fashion, a general formula at ti+1 = ti + h is developed:⎧⎪⎪⎨⎪⎪⎩
Ep(ti+1) = Ep(t0) + Υ1

(
Ep(ti), Ip(ti),F(ti)

) tα

Γ(η+1) ,

Ip(ti+1) = Ip(t0) + Υ2
(
Ep(ti), Ip(ti),F(ti)

) tα

Γ(η+1) ,

F(ti+1) = F(t0) + Υ3
(
Ep(ti), Ip(ti),F(ti)

) tα

Γ(η+1) ,

(31)
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where i = 0, 1, 2, ..., k − 1.

9. Graphical Representations

In this section, we discuss the obtain approximate solutions of (31) graphically using
the values of the parameters shown in Table 1 with different α values.

Table 1. Parameters and their values.

Symbol Parameter Values References

δ 0.09932 Assumed
β 0.229 Assumed
ω 0.0326 Assumed
γ 0.001 [5]
ρ 0.7492 [5]

Ep(0) 80 Assumed
I(0) 50 Assumed
F(0) 5 Assumed

We conduct graphical representation to represent the solution effects of our model
with different fractional-order α. By using MATLAB software, we set up an algorithm to
simulate the results in Figure 4–9. For this, we consider some appropriate values used
in the model for the parameters in Table 1. The parameter values of the model (3) have
been estimated based on chest radiograph score data [5] using the Monte Carlo Markov
Chain method. We utilize that parameter; more specifically, Ep(0) = 50, Ip(0) = 50, and
F(0) = 100.

In Figure 4, we take the fractional-order α = 0.9, which is close to the integer-order
α = 1. For this model, the results obtained from the fractional-order model of SARS-CoV-2
are very similar to those of the integer-order model [5]. Further, Figure 5–9 show series plots
of the approximate solutions (31) with the fractional orders slowly decreasing as follows:
α = 0.90, 0.80, 0.70, 0.60, 0.50. We observe from these graphs that the virus-infected, virus-
free epithelial and the virus-free curves have approximately the same trend for different
values of α. However, their convergence toward stability of the virus-infected epithelial
is slightly changed. There is a notable difference in the graph at order 0.90 and 0.50. We
also note that the equilibrium points are the same for the different fractional orders in
Figure 4–9, but the equilibrium points of the virus-infected epithelial go to the fixed point
over a longer period when the fractional-order increases.
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Figure 4. Graphical representation of the approximate solutions of the SARS-CoV-2 model for order
α = 0.9, 0.8, 0.7, 0.6, 0.5.
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Figure 5. Graphical representation of the approximate solutions of the infected virus epithelial cells
for fractional order α = 0.9, 0.8, 0.7, 0.6, 0.5.
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Figure 6. Graphical representation of the approximate solutions of the virus-free epithelial cells for
fractional order α = 0.9, 0.8, 0.7, 0.6, 0.5.

Figure 7. Graphical representation of the virus-infected epithelial cells and virus-free epithelial cells
for fractional order α = 0.9, 0.8, 0.7, 0.6, 0.5 when R0 < 1.
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Figure 8. Graphical representation of the SARS-CoV-2 and virus-free epithelial cells for fractional
order α = 0.9, 0.8, 0.7, 0.6, 0.5 when R0 < 1.

Figure 9. Graphical representation of the SARS-CoV-2, virus-infected epithelial cells, and virus-free
epithelial cells of approximate solutions for fractional order α = 0.9, 0.8, 0.7.

From the above plotting, we have concluded that the infection rate γ can be low. This
is because, if we take the greater infection rate in such a way that R0 > 1, the infection
prevails in the body since the virus cannot be controlled. However, if the infection rate γ
is lower than R0 < 1, this leads to being controlled by the virus-infected epithelial cells
rate in the body. Otherwise, the number of virus-free epithelial cells will decrease. Such
infected virus epithelial cells and the virus-free cells will not stabilize very quickly in a
body with time. In this case, the patient’s condition will vitiate with time. We also conclude
that the fractional derivative is the generalization of the integer-order derivative. We use
fractional-order to obtain good accuracy and reduce the possible errors arising from the
mistreated parameters in the distributed modeling system and the system with memory.

10. Conclusions

This article presents a Caputo fractional-order model for the within-host dynamics of
SARS-CoV-2. First, we found the existence and uniqueness of the model’s solution by using
the fixed point theory. We obtained the disease-free and endemic equilibrium points. The
critical parameter (reproduction number) R0 was determined using the next-generation
matrix approach. Moreover, we developed the considered model’s local and global stability
conditions.

153



Math. Comput. Appl. 2022, 27, 82

Further, we calculated the approximate solution to the model (3) via a powerful method
due to Euler. Finally, graphical representations of the obtained approximate solutions were
performed to verify the theoretical analysis using MATLAB. By biology, an infection will be
cleaned from a human body when the basic reproduction number R0 < 1 is approached;
otherwise, therapy must be used to minimize and eliminate the infection from the body.
Additionally, it was shown that an infection will continue for any level of viral load in the
host’s body if the basic reproduction number is greater than one. For the eradication of the
virus from an infected human body, our future work will include using various treatment
strategies and control parameters in this model.
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Abstract: We establish a class of nonlinear fractional differential systems with distributed time delays
in the controls and impulse effects. We discuss the controllability criteria for both linear and nonlinear
systems. The main results required a suitable Gramian matrix defined by the Mittag–Leffler function,
using the standard Laplace transform and Schauder fixed-point techniques. Further, we provide
an illustrative example supported by graphical representations to show the validity of the obtained
abstract results.
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1. Introduction

Fractional calculus has become a topic of growing interest in Applied Mathemat-
ics because of its potential to model many physical phenomena; in fact, it has become
a subject of significant interest to many researchers, scientists and engineers, since it ap-
plies to a wide range of applications in physics, mathematics and engineering; see, for
instance [1–11]. Concerning different applications and mathematical models, the literature
contains, among many others, reaction–diffusion problems [12], neural networks [13], a
COVID-19 model [14] and an anomalous transport model [15].

A delay differential equation is a differential equation where the time derivatives at
the current time depend on the solution and possibly its derivatives at previous times.
Instead of a simple initial condition, an initial history function needs to be specified.
Fractional differential equations with delays have recently played a significant role in
modelling in many areas of science. Appropriately, fractional differential equations are
further considered to be alternative models to nonlinear differential equations. For more
details, see the monographs of Kilbas et al. [16], Miller and Ross [17], and Podlubny [18].
Mathematical models for systems with distributed delays in the controls occur in the study
of agricultural economics and population dynamics [19,20].

On the other hand, it is noted that controllability is one of the most important qualita-
tive behaviours of a dynamical structure. Based on this fact, we can infer that it is possible
to steer any initial state of the system to any final state in some finite time using an admis-
sible control. Moreover, controllability outcomes can be acquired by using non-identical
techniques, for which the fixed point theory is the most powerful tool [21]. Therefore, the
fusion of fractional-order derivatives and integrals in control theory lead to better results
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than integer order approaches. Recently, Balachandran et al. [22] proved the relative con-
trollability of fractional dynamical systems with distributed delays in the controls. In [23],
the authors established some analysis for the stability and controllability of a fractional
damped differential system with non-instantaneous impulses supported by numerical
treatments. Furthermore, the dynamics of developing processes is frequently subjected
to immediate changes such as shocks, harvesting or natural disasters, and so on. These
types of short-term performances are regularly treated as having acted instantaneously
or in the form of impulses. Zhang et al. [24] proved the controllability of an impulsive
fractional differential equation with a state delay. Very recently, in [25], the authors proved
in a relative controllability analysis fractional order differential equations with multiple
time delays. For further works, the readers may refer to [26–29]. Motivated by the above
statements and extending the results of [22,25], in this work, we are concerned with the
problem of controllability of impulsive fractional differential systems with distributed
delays in controls.

CDαx(t) = Ax(t) + Kx(t − τ) +
∫ 0

−h
dτB(t, τ)u(t + τ) + f (t, x(t), x(t − h), u(t − τ)),

t ∈ [0, T]− {t1, t2, . . . , tk},

Δx(ti) = x(t+i )− x(t−i ) = Ii(x(ti)), i = 1, 2, . . . , k,

x(t) = ϕ(t), t ∈ [−τ, 0], (1)

where CDα represents the Caputo fractional derivative of order α, 0 < α < 1 and A ∈ Rn×n

denotes a constant matrix, x ∈ Rn is the state variable and the third integral term is in
the Lebesgue–Stieltjes sense with respect to τ. Let f , k and h > 0 be given. The control
input u : [−h, T] → Rm for all t ∈ J, and ut denotes the function on [−h, 0], defined by
ut(s) = u(t + s) for s ∈ [−h, 0). B(t, τ) is an n × m dimensional matrix continuous in
t for fixed τ and is of bounded variation in τ on [−h, 0) for each t ∈ J and continuous
from left in τ on the interval. (−h, 0), φ ∈ C([−τ, 0],Rn) is the initial state function, where
C([−τ, 0],Rn) denotes the space of all continuous functions mapping the interval [−τ, 0]
into Rn; Ii : Rn → Rn is continuous for i = 1, 2, . . . , k, and

x(t+i ) = lim
ε→0+

x(ti + ε),

x(t−i ) = lim
ε→0−

x(ti + ε), (2)

represent the right and left limits of x(t) at t = ti and the discontinuous points

t1 < t2 < · · · < ti < · · · < tk,

where 0 = t0 < τ < t1, tk < tk+1 = T < +∞, and x(ti) = x(t−i ), which implies that the
solution of the system (1) is left continuous at ti.

The notable contributions of our work is as follows:

• Nonlinear impulsive fractional differential systems with distributed delays in controls
are considered.

• The solution representation is formulated via an unsymmetric Fubini’s theorem.
• The controllability of the linear system is proved by using the controllability

Gramian operator.
• The controllability of the nonlinear system is investigated by employing the Schauder

fixed-point theorem.
• Numerical treatments are given using MATLAB.

Our paper is organized as follows. In Section 2, we present some basic definitions and
preliminary facts, which will be used in order to obtain our desired results. In Section 3, we
state and prove the main results of this work. In Section 4, an example is given to illustrate
the effectiveness and validity of our controllability results. Finally, we conclude our results
and suggest new directions in Section 5.
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2. Preliminaries

Throughout the paper, CP([0, T],Rn) denotes the space of all piecewise left-continuous
functions mapping the interval [0, T] into Rn.

Definition 1 ([18]). The Caputo fractional derivative of order α > 0, n − 1 < α < n is defined as

(CDα
0+ f )(t) =

1
Γ(n − α)

∫ t

0
(t − s)n−α−1 f (n)(s)ds,

where the function f (t) has absolutely continuous derivatives up to order (n − 1). If 0 < α < 1, then

(CDα
0+ f )(t) =

1
Γ(1 − α)

∫ t

0

f
′
(s)

(t − s)α
ds.

Definition 2 ([18]). The Mittag–Leffler function in two parameters is defined as

Eα,β(z) =
∞

∑
k=0

zk

Γ(kα + β)
, f or α, β > 0,

so that z ∈ C, C denotes the complex plane. The general Mittag–Leffler function satisfies∫ ∞

0
e−ttβ−1Eα,β(tαz)dt =

1
1 − z

, f or |z| < 1.

The linear fractional delay differential system without impulses is considered as follows.

CDαx(t) = Ax(t) + Kx(t − τ) +
∫ 0

−h
dτB(t, τ)u(t + τ), t ∈ [0, T],

x(t) = ϕ(t), t ∈ [−τ, 0]. (3)

The nonlinear fractional delay differential system without impulses is considered as follows.

CDαx(t) = Ax(t) + Kx(t − τ) +
∫ 0

−h
dτB(t, τ)u(t + τ) + f (t, x(t), x(t − τ), u(t)), t ∈ [0, T],

x(t) = ϕ(t), t ∈ [−τ, 0]. (4)

Lemma 1. For 0 < α < 1, if f : [0, T] → Rn is continuous and exponentially bounded, then the
solution of the system (3) can be represented as

x(t) = φ(0) +
∫ t

0
(t − s)α−1Eα,α(A(t − s)α)[Aφ(0) + Kx(s − τ)]ds

+
∫ 0

−h
dBτ [

∫ 0

τ
(t − (s − τ))α−1Eα,α(A(t − (s − τ))α)B(s − τ, τ)u0(s)ds]

+
∫ t

0
[
∫ 0

−h
(t − (s − τ))α−1Eα,α(A(t − (s − τ))α)dτBt(s − τ, τ)u(s)ds, t ∈ [0, T],

where Bt(s, τ) =

{
B(s, τ), s ≤ t,
0, s > t,

and x(t) = ϕ(t), t ∈ [−τ, 0].

Proof. Let t ∈ [0, T], employing the Laplace transform with respect to t on both sides of
system (3), the result is
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sαL[x(t)]− sα−1φ(0) = AL[x(t)] + L[Kx(t − τ) +
∫ 0

−h
dτB(t, τ)u(t + τ)],

L[x(t)] = (sα I −A)−1sα−1φ(0) + (sα I −A)−1L[Kx(t − τ) +
∫ 0

−h
dτB(t, τ)u(t + τ)],

L[x(t)] = L[φ(0)] + (sα I −A)−1L[Aφ(0) + Kx(t − τ) +
∫ 0

−h
dτB(t, τ)u(t + τ)],

= L[φ(0)] + L[tα−1Eα,α(Atα)]L[Aφ(0) + Kx(t − τ)

+
∫ 0

−h
dτB(t, τ)u(t + τ)]. (5)

Applying the convolution theorem of the Laplace transform to (5), we get

L[x(t)] = L[φ(0)] + L[tα−1Eα,α(Atα)][Aφ(0) + Kx(t − τ) +
∫ 0

−h
dτB(t, τ)u(t + τ)].

Employing the inverse Laplace transform, then we have

x(t) = φ(0) +
∫ t

0
(t − s)α−1Eα,α[A(t − s)α][Aφ(0) + Kx(s − τ)]ds

+
∫ t

0
(t − s)α−1Eα,α[A(t − s)α][

∫ 0

−h
dτB(s, τ)u(s + τ)]ds.

Using the well-known result of the unsymmetric Fubini theorem [30] and the change of
order of the integration to the last term, we have

x(t) = φ(0) +
∫ t

0
(t − s)α−1Eα,α[A(t − s)α][Aφ(0) + Kx(s − τ)]ds

+
∫ 0

−h
dBτ [

∫ t

0
(t − s)α−1Eα,α[A(t − s)α]u(s + τ)B(s, τ)ds]

= φ(0) +
∫ t

0
(t − s)α−1Eα,α[A(t − s)α][Aφ(0) + Kx(s − τ)]ds

+
∫ 0

−h
dBτ [

∫ 0

τ
(t − (s − τ))α−1Eα,α[A(t − (s − τ))α]B(s − τ, τ)u0(s)ds]

+
∫ 0

−h
dBτ [

∫ t+τ

0
(t − (s − τ))α−1Eα,α[A(t − (s − τ))α]B(s − τ, τ)u(s)ds]

= φ(0) +
∫ t

0
(t − s)α−1Eα,α[A(t − s)α][Aφ(0) + Kx(s − τ)]ds

+
∫ 0

−h
dBτ [

∫ 0

τ
(t − (s − τ))α−1Eα,α[A(t − (s − τ))α]B(s − τ, τ)u0(s)ds]

+
∫ t

0
[
∫ 0

−h
(t − (s − τ))α−1Eα,α[A(t − (s − τ))α]dτBt(s − τ, τ))u(s)ds,

where

Bt(s, τ) =

{
B(s, τ), s ≤ t,
0, s > t,

and dBτ denotes the integration of the Lebesgue–Stieltjes sense with respect to the variable
τ in the function B(t, τ), hence the proof.

Lemma 2. For 0 < α < 1, the solution representation of the nonlinear structure (4) is
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x(t) = φ(0) +
∫ t

0
(t − s)α−1Eα,α(A(t − s)α)[Aφ(0) + Kx(s − τ) + f (s, x(s), x(s − h), u(s))]ds,

+
∫ 0

−h
dBτ [

∫ 0

τ
(t − (s − τ))α−1Eα,α(A(t − (s − τ))α)B(s − τ, τ)u0(s)ds],

+
∫ t

0
[
∫ 0

−h
(t − (s − τ))α−1Eα,α(A(t − (s − τ))α)dτBt(s − τ, τ)]u(s)ds, t ∈ [0, T], (6)

where

Bt(s, τ) =

{
B(s, τ), s ≤ t,
0, s > t,

and x(t) = ϕ(t), t ∈ [−τ, 0].

Proof. The proof is similar to Lemma 1. Hence, it is eliminated.

Lemma 3. Let 0 < α < 1 and u ∈ Cp([0, T],Rm) then the solution of structure (1) is as follows.
For t ∈ [−τ, 0], x(t) = ϕ(t),
For t ∈ [0, t1),

x(t) = φ(0) +
∫ t

0
(t − s)α−1Eα,α[A(t − s)α][Aφ(0) + Kx(s − τ))]ds,

+
∫ 0

−h
dBτ [

∫ 0

τ
(t − (s − τ))α−1Eα,α[A(t − (s − τ))α]B(s − τ, τ)u0(s)ds],

+
∫ t

0
[
∫ 0

−h
(t − (s − τ))α−1Eα,α[A(t − (s − τ))α]dτBt(s − τ, τ))u(s)ds. (7)

For t ∈ (t1, t2),

x(t) = φ(0) + I1(x(t−1 )) +
∫ t

0
(t − s)α−1Eα,α[A(t − s)α][Aφ(0) + Kx(s − τ)]ds,

+
∫ 0

−h
dBτ [

∫ 0

τ
(t − (s − τ))α−1Eα,α[A(t − (s − τ))α]B(s − τ, τ)u0(s)ds],

+
∫ t

0
[
∫ 0

−h
(t − (s − τ))α−1Eα,α[A(t − (s − τ))α]dτBt(s − τ, τ))u(s)ds. (8)

For t ∈ (ti, T], i = 1, 2, . . . , k,

x(t) = φ(0) +
i

∑
j=1

Ij(x(t−j ) +
∫ t

0
(t − s)α−1Eα,α[A(t − s)α][Aφ(0) + Kx(s − τ)]ds,

+
∫ 0

−h
dBτ [

∫ 0

τ
(t − (s − τ))α−1Eα,α[A(t − (s − τ))α]B(s − τ, τ)u0(s)ds],

+
∫ t

0
[
∫ 0

−h
(t − (s − τ))α−1Eα,α[A(t − (s − τ))α]dτBt(s − τ, τ))u(s)ds. (9)
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Proof. For t ∈ [−τ, 0], the proof is obvious. For t ∈ [0, t1), by Lemma 2,

x(t) = φ(0) +
∫ t

0
(t − s)α−1Eα,α[A(t − s)α][Aφ(0) + Kx(s − τ)]ds

+
∫ 0

−h
dBτ [

∫ 0

τ
(t − (s − τ))α−1Eα,α[A(t − (s − τ))α]B(s − τ, τ)u0(s)ds]

+
∫ t

0
[
∫ 0

−h
(t − (s − τ))α−1Eα,α[A(t − (s − τ))α]dτBt(s − τ, τ))u(s)ds.

x(t1) = φ(0) +
∫ t1

0
(t1 − s)α−1Eα,α[A(t1 − s)α][Aφ(0) + Kx(s − τ)]ds

+
∫ 0

−h
dBτ [

∫ 0

τ
(t1 − (s − τ))α−1Eα,α[A(t1 − (s − τ))α]B(s − τ, τ)u0(s)ds]

+
∫ t1

0
[
∫ 0

−h
(t1 − (s − τ))α−1Eα,α[A(t1 − (s − τ))α]dτBt1(s − τ, τ))u(s)ds.

If t ∈ (t1, t2), using (7), we have

x(t) = x(t+1 )−
∫ t1

0
(t1 − s)α−1Eα,α[A(t1 − s)α][Aφ(0) + Kx(s − τ)]ds

+
∫ 0

−h
dBτ [

∫ 0

τ
(t1 − (s − τ))α−1Eα,α[A(t1 − (s − τ))α]B(s − τ, τ)u0(s)ds]

+
∫ t1

0
[
∫ 0

−h
(t1 − (s − τ))α−1Eα,α[A(t1 − (s − τ))α]dτBt1(s − τ, τ))u(s)ds

+
∫ t

0
(t − s)α−1Eα,α[A(t − s)α][Aφ(0) + Kx(s − τ)]ds +

∫ 0

−h
dBτ [

∫ 0

τ
(t − (s − τ))α−1

×Eα,α[A(t − (s − τ))α]B(s − τ, τ)u0(s)ds] +
∫ t

0
[
∫ 0

−h
(t − (s − τ))α−1Eα,α[A(t − (s − τ))α]

×dτBt(s − τ, τ))u(s)ds.

x(t) = x(t−1 ) + I1(x(t−1 ))−
∫ t1

0
(t1 − s)α−1Eα,α[A(t1 − s)α][Aφ(0) + Kx(s − τ)]ds

+
∫ 0

−h
dBτ [

∫ 0

τ
(t1 − (s − τ))α−1Eα,α[A(t1 − (s − τ))α]B(s − τ, τ)u0(s)ds]

+
∫ t1

0
[
∫ 0

−h
(t1 − (s − τ))α−1Eα,α[A(t1 − (s − τ))α]dτBt1(s − τ, τ))u(s)ds

+
∫ t

0
(t − s)α−1Eα,α[A(t − s)α][Aφ(0) + Kx(s − τ)]ds +

∫ 0

−h
dBτ [

∫ 0

τ
(t − (s − τ))α−1

×Eα,α[A(t − (s − τ))α]B(s − τ, τ)u0(s)ds] +
∫ t

0
[
∫ 0

−h
(t − (s − τ))α−1Eα,α[A(t − (s − τ))α]

×dτBt(s − τ, τ))u(s)ds

x(t) = φ(0) + I1(x(t−1 )) +
∫ t

0
(t − s)α−1Eα,α[A(t − s)α][Aφ(0) + Kx(s − τ)]ds

+
∫ 0

−h
dBτ [

∫ 0

τ
(t − (s − τ))α−1Eα,α[A(t − (s − τ))α]B(s − τ, τ)u0(s)ds]

+
∫ t

0
[
∫ 0

−h
(t − (s − τ))α−1Eα,α[A(t − (s − τ))α]dτBt(s − τ, τ))u(s)ds.
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If t ∈ (t2, t3), then

x(t) = x(t+2 )−
∫ t2

0
(t2 − s)α−1Eα,α[A(t2 − s)α][Aφ(0) + Kx(s − τ)]ds

+
∫ 0

−h
dBτ [

∫ 0

τ
(t2 − (s − τ))α−1Eα,α[A(t2 − (s − τ))α]B(s − τ, τ)u0(s)ds]

+
∫ t2

0
[
∫ 0

−h
(t2 − (s − τ))α−1Eα,α[A(t2 − (s − τ))α]dτBt2(s − τ, τ))u(s)ds

+
∫ t

0
(t − s)α−1Eα,α[A(t − s)α][Aφ(0) + Kx(s − τ)]ds

+
∫ 0

−h
dBτ [

∫ 0

τ
(t − (s − τ))α−1Eα,α[A(t − (s − τ))α]B(s − τ, τ)u0(s)ds]

+
∫ t

0
[
∫ 0

−h
(t − (s − τ))α−1Eα,α[A(t − (s − τ))α]dτBt(s − τ, τ))u(s)ds.

x(t) = φ(0) +
2

∑
j=1

Ij(x(t−j )) +
∫ t

0
(t − s)α−1Eα,α[A(t − s)α][Aφ(0) + Kx(s − τ)]ds

+
∫ 0

−h
dBτ [

∫ 0

τ
(t − (s − τ))α−1Eα,α[A(t − (s − τ))α]B(s − τ, τ)u0(s)ds]

+
∫ t

0
[
∫ 0

−h
(t − (s − τ))α−1Eα,α[A(t − (s − τ))α]dτBt(s − τ, τ))u(s)ds.

If t ∈ (ti, T](i = 1, 2, . . . , k), using similar reasoning, we get

x(t) = φ(0) +
i

∑
j=1

Ij(x(t−j )) +
∫ t

0
(t − s)α−1Eα,α[A(t − s)α][Aφ(0) + Kx(s − τ)]ds

+
∫ 0

−h
dBτ [

∫ 0

τ
(t − (s − τ))α−1Eα,α[A(t − (s − τ))α]B(s − τ, τ)u0(s)ds]

+
∫ t

0
[
∫ 0

−h
(t − (s − τ))α−1Eα,α[A(t − (s − τ))α]dτBt(s − τ, τ))u(s)ds.

The proof is complete.

3. Controllability Results

In this section, we prove the controllability result of the labelled system.

Definition 3. System (1) is called controllable on [0, w](w ∈ (0, T]); for any initial function, ϕ
∈ C([−τ, 0],Rn), and any state, xw ∈ Rn, there exists a control input u(t) ∈ Cp([0, w],Rm), so
that the corresponding solution of (1) satisfies x(w) = xw.

Theorem 1. Structure (1) is controllable on [0, w] if and only if the Gramian matrix

WC[0, w] =
∫ w

0
G(w − s)G∗(w, s)ds, (10)

is nonsingular for some w ∈ [0, T], where

G(w, s) =
∫ 0

−h
(w − (s − τ))α−1Eα,α[A(t − (s − τ))α]dτBw(s − τ, τ)

and ∗ denotes the matrix transpose.

163



Math. Comput. Appl. 2023, 28, 13

Proof. Assume that W[0, w] is nonsingular, then W−1[0, w] is well defined. If ϕ ∈ C([−τ, 0],Rn),
let w ∈ [0, t1] the control function is

u(t) = G∗(w, t)W−1[0, w][xw − φ(0)−
∫ w

0
(w − s)α−1Eα,α(A(w − s)α)[Aφ(0) + Kx(s − τ)]ds,

−
∫ 0

−h
dBτ [

∫ 0

τ
(w − (s − τ))α−1Eα,αA(w − (s − τ))αB(s − τ, τ)u0(s)ds]]. (11)

By substituting t = w in (7) and inserting (11), we get

x(w) = φ(0) +
∫ w

0
(w − s)α−1Eα,α[A(w − s)α][Aφ(0) + Kx(s − τ))]ds

+
∫ 0

−h
dBτ [

∫ 0

τ
(w − (s − τ))α−1Eα,α[A(w − (s − τ))α]B(s − τ, τ)u0(s)ds]

+
∫ w

0
G(w, s)G∗(w, s)W−1[0, w][xw − φ(0)−

∫ w

0
(w − s)α−1Eα,α(A(w − s)α)

×[Aφ(0) + Kx(s − τ)]ds −
∫ 0

−h
dBτ [

∫ 0

τ
(w − (s − τ))α−1Eα,αA(w − (s − τ))α

×B(s − τ, τ)u0(s)ds]]dτ.

x(w) = xw.

Thus, system (1) is controllable on [0, w], w ∈ [0, t1]. For w ∈ (t1, t2], we take the control
function as

u(t) = G∗(w, t)W−1[0, w][xw − φ(0)− I1(x(t−1 ))−
∫ w

0
(w − s)α−1Eα,α(A(w − s)α)

×[Aφ(0) + Kx(s − τ)]ds −
∫ 0

−h
dBτ [

∫ 0

τ
(w − (s − τ))α−1Eα,αA(w − (s − τ))α

B(s − τ, τ)u0(s)ds]]. (12)

By substituting t = w in (8) and inserting (12), we get

x(w) = φ(0) + I1(x(t−1 )) +
∫ w

0
(w − s)α−1Eα,α[A(w − s)α][Aφ(0) + Kx(s − τ))]ds

+
∫ 0

−h
dBτ [

∫ 0

τ
(w − (s − τ))α−1Eα,α[A(w − (s − τ))α]B(s − τ, τ)u0(s)ds]

+
∫ w

0
G(w, s)G∗(w, s)W−1[0, w][xw − φ(0)−

∫ w

0
(w − s)α−1Eα,α(A(w − s)α)

[Aφ(0) + Kx(s − τ)]ds −
∫ 0

−h
dBτ [

∫ 0

τ
(w − (s − τ))α−1Eα,αA(w − (s − τ))α

×B(s − τ, τ)u0(s)ds]]dτ.

x(w) = xw.

Hence, system (1) is controllable on [0, w], w ∈ [t1, t2]. For w ∈ (ti, ti+1], i = 1, 2, . . . , k, the
control function, u, is defined by

u(t) = G∗(w, t)W−1[0, w][xw − φ(0)−
i

∑
j=1

Ij(x(t−j ))−
∫ w

0
(w − s)α−1Eα,α(A(w − s)α)

×[Aφ(0) + Kx(s − τ)]ds −
∫ 0

−h
dBτ [

∫ 0

τ
(w − (s − τ))α−1Eα,α

×A(w − (s − τ))αB(s − τ, τ)u0(s)ds]]. (13)

By substituting t = w in (9) and installing the result in (13), similar reasoning gives
x(w) = xw. Hence, structure (1) is controllable on [0, w].
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Conversely, assume that W[0, w] is singular, If w ∈ (ti, ti+1], i = 1, 2, . . . , k, there is a vector
z0 �= 0, such that z∗0W[0, w]z0 = 0. That is,

z∗0
∫ w

0
G(w, s)G∗(W, s)z0ds = 0,

z∗0G(w, s) = 0, on[0, w].

Because structure (1) is controllable, there exist control inputs, u1(t) and u2(t), so that

x(w) = φ(0) +
i

∑
j=1

Ij(x(t−j )) +
∫ w

0
(w − s)α−1Eα,α[A(w − s)α][Aφ(0) + Kx(s − τ)]ds

+
∫ 0

−h
dBτ [

∫ 0

τ
(w − (s − τ))α−1Eα,α[A(w − (s − τ))α]B(s − τ, τ)u0(s)ds]

+
∫ w

0
[
∫ 0

−h
(w − (s − τ))α−1Eα,α[A(w − (s − τ))α]dτBw(s − τ, τ))u1(s)ds. (14)

z0 = φ(0) +
i

∑
j=1

Ij(x(t−j )) +
∫ w

0
(w − s)α−1Eα,α[A(w − s)α][Aφ(0) + Kx(s − τ)]ds

+
∫ 0

−h
dBτ [

∫ 0

τ
(w − (s − τ))α−1Eα,α[A(w − (s − τ))α]B(s − τ, τ)u0(s)ds]

+
∫ w

0
[
∫ 0

−h
(w − (s − τ))α−1Eα,α[A(w − (s − τ))α]dτBw(s − τ, τ))u2(s)ds. (15)

By combining (14) and (15), we get

z0 −
∫ w

0
[
∫ 0

−h
(w − (s − τ))α−1Eα,α[A(w − (s − τ))α]dτBw(s − τ, τ))(u2(s)− u1(s))ds = 0. (16)

By multiplying z∗0 on both sides of (16), we get

z∗0z0 −
∫ w

0
z∗0G(w, s)[u2(s)− u1(s)]ds = 0.

According to z∗0G(w, s) = 0, we have z∗0z0 = 0. Thus, z0 = 0. This is a contradiction to
z0 �= 0, hence the proof.

Definition 4. Systems (3) or (4) are said to be completely controllable on [0, w](w ∈ [0, T]); for
any initial function, ϕ ∈ C([−τ, 0],Rn), and any state, xw ∈ Rn, there exists a control input u(t),
so that the corresponding solutions of (3) or (4) satisfy x(w) = xw.

Theorem 2. System (3) is completely controllable on [0, w] if and only if W is nonsingular for
some w ∈ [0, T].

Proof. Assume that W is nonsingular. Let φ(t) be continuous on [−τ, 0], and let xw ∈ Rn.
The control function u can be taken as

u(t) = G∗(w, t)W−1[0, w][xw − φ(0)−
∫ w

0
(w − s)α−1Eα,α(A(w − s)α)[Aφ(0) + Kx(s − τ)]ds

−
∫ 0

−h
dBτ [

∫ 0

τ
(w − (s − τ))α−1Eα,αA(w − (s − τ))αB(s − τ, τ)u0(s)ds]], (17)

where

G(w, s) =
∫ 0

−h
(w − (s − τ))α−1Eα,α[A(t − (s − τ))α]dτBw(s − τ, τ).
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By substituting t = w in the solution of (7), we get

x(w) = φ(0) +
∫ w

0
(w − s)α−1Eα,α(A(w − s)α)[Aφ(0) + Kx(s − τ)]ds

+
∫ 0

−h
dBτ [

∫ 0

τ
(w − (s − τ))α−1Eα,α(A(w − (s − τ))α)B(s − τ, τ)u0(s)ds]

+
∫ w

0
[
∫ 0

−h
(w − (s − τ))α−1Eα,α(A(w − (s − τ))α)dτBw(s − τ, τ)]u(s)ds. (18)

and, using (17) in (18), we have

x(w) = φ(0) +
∫ w

0
(w − s)α−1Eα,α(A(w − s)α)[Aφ(0) + Kx(s − τ)]ds

+
∫ 0

−h
dBτ [

∫ 0

τ
(w − (s − τ))α−1Eα,α(A(w − (s − τ))α)B(s − τ, τ)u0(s)ds]

+
∫ w

0
G(w, s)G∗(w, s)W−1[0, w][xw − φ(0)−

∫ w

0
(w − s)α−1Eα,α(A(w − s)α)

×[Aφ(0) + Kx(s − τ)]ds −
∫ 0

−h
dBτ [

∫ 0

τ
(w − (s − τ))α−1Eα,α

×A(w − (s − τ))αB(s − τ, τ)u0(s)ds]]dτ.

x(w) = xw.

Now, we assume that W is singular. There exists a non-zero, z, so that z∗Wz = 0. That
is, Z∗ ∫ w

0 G(w, s)G∗(w, s)zds = 0. z∗G(w, s) = 0 on [0, w], w ∈ [0, T]. Take φ = 0 and the
terminal point, xw = z. Since the system is controllable, there exists a control, u(t), on J
that steers the response to xw = z at t = w, that is, x(w) = z. From φ = 0, x(w, φ) = 0, and
z∗z �= 0 for z �= 0. On the other hand,

z = x(w) = φ(0) +
∫ w

0
(w − s)α−1Eα,α(A(w − s)α)[Aφ(0) + Kx(s − τ)]ds

+
∫ 0

−h
dBτ [

∫ 0

τ
(w − (s − τ))α−1Eα,α(A(w − (s − τ))α)B(s − τ, τ)u0(s)ds]

+
∫ w

0
[
∫ 0

−h
(w − (s − τ))α−1Eα,α(A(w − (s − τ))α)dτBw(s − τ, τ)]u(s)ds,

hence

z∗z =
∫ w

0
z∗G(w, s)u(s)ds + z∗

∫ 0

−h
dBτ [

∫ 0

τ
(w − (s − τ))α−1

×Eα,α(A(w − (s − τ))α)B(s − τ, τ)u0(s)ds].

Therefore, z∗z = 0, which yields a contradiction that z �= 0. Hence, W is nonsingular, hence
the proof.

Theorem 3. Let the continuous function, f , satisfy the condition lim |p| → ∞ | f (t,p)|
|p| = 0

uniformly in t ∈ J, and suppose that the system, (3), is completely controllable on J. Then,
the system (4) is completely controllable on J. Here p = (x, z, u) ∈ Rn × Rn × Rm, and let
|p| = |x|+ |z|+ |u|.
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Proof. Let φ(t) be continuous on [−τ, 0], and let xw ∈ Rn. Let Q be the Banach space
of all the continuous functions (x, u) : [−τ, w] × [−τ, w] → Rn × Rm, with the norm
‖ (x, u) ‖=‖ x ‖ + ‖ u ‖, where ‖ x(t) ‖= {sup |x(t)| f or t ∈ [−τ, w]} and ‖ u ‖=
{sup|u(t)| f or t ∈ [0, w]}. The operator Ψ : Q → Q is defined by Ψ(x, u) = (z, v), where

v(t) = G∗(w, t)W−1[0, w][xw − φ(0)−
∫ w

0
(w − s)α−1Eα,α(A(w − s)α)[Aφ(0) + Kx(s − τ)]ds

−
∫ 0

−h
dBτ [

∫ 0

τ
(w − (s − τ))α−1Eα,αA(w − (s − τ))αB(s − τ, τ)u0(s)ds]].

z(t) = φ(0) +
∫ w

0
(w − s)α−1Eα,α(A(w − s)α)[Aφ(0) + Kx(s − τ)]ds

+
∫ 0

−h
dBτ [

∫ 0

τ
(w − (s − τ))α−1Eα,α(A(w − (s − τ))α)B(s − τ, τ)u0(s)ds]

+
∫ w

0
[
∫ 0

−h
(w − (s − τ))α−1Eα,α(A(w − (s − τ))α)dτBw(s − τ, τ)]u(s)ds,

for t ∈ J and z(t) = φ(t), t ∈ [−τ, 0]. Let

a1 = sup ‖ φ(0) ‖, a2 = sup ‖ Kx(s − τ) ‖,

a3 = sup ‖ Eα,α(A(w − s)α) ‖, a4 = sup ‖ Eα,α(A(w − (s − τ))α) ‖,

a5 =‖
∫ 0

τ
(w − (s − τ))α−1Eα,αA(w − (s − τ))αB(s − τ, τ)u0(s)ds ‖,

a6 = sup ‖ G∗(w, t) ‖, a7 = W−1[0, w],

a = max{a4w ‖ G(w, s) ‖, 1}, d1 = a6a7[|xw + a1 + a5|], d2 = 8(a1 + a5),

c1 = 8a3a6a7wαα−1(a1 + a2), c2 = 8a3(a1 + a2)wαα−1

e1 = 8a3a6a7wαα−1, e2 = 8a3wαα−1,

c = max{c1, c2}, d = max{d1, d2}, e = max{e1, e2},

sup | f | = sup s ∈ J{| f (s, x(s), x(s − τ), u(s))|}.

Then,

|v(t)| ≤ ‖ G∗(w, t) ‖ |W−1[0, w]|[xw + a1 + a5]+ ‖ G∗(w, t) ‖ |W−1[0, w]|a3wαα−1[a1 + a2]

+ ‖ G∗(w, t) ‖ |W−1[0, w]|a3wαα−1 sup | f |.
|u(t)| ≤ d1

8a
+

c1

8a
+

e1

8a
sup | f |

≤ 1
8a

(d + c + e sup | f |).

|z(t)| ≤ (a1 + a5) + a4

∫ t

0
‖ G(t, s) ‖‖ u(s) ‖ ds + a3

∫ t

0
(t − s)α−1 sup | f |ds

+a3

∫ t

0
(t − s)α−1(a1 + a2)ds

≤ d
8
+

1
8
[d + c + e sup | f |] + e

8
sup | f |

≤ d
4
+

c
8
+

e
4

sup | f |.

We make the following assumption about the function f , as in [31]. Letting c and d be each
pair of the positive constants, there exists a positive constant, r, so that, if |(x, u)| ≤ r, then

c| f (t, p)|+ d ≤ r, for all t ∈ J, (19)
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then, any r1, as long as r < r1, will also satisfy (19). Let r be chosen so that (19) is
satisfied and sup−1≤t≤0 |φ(t)| ≤ r

4 . Therefore, if ‖ x ‖≤ r
4 and ‖ u ‖≤ r

4 , then |x(s)| +
|x(s − h)| + |u(s)| ≤ r, s ∈ J. It follows that d + c + e sup | f | ≤ r, f ors ∈ J. Therefore,
|v(t)| ≤ r

8a f or all t ∈ J and, hence, ‖ v(t) ‖≤ r
8a , we have ‖ z ‖≤ r

4 . Thus, if Q(r) =
{(x, v) ∈ Q :‖ x ‖≤ r

4 and ‖ u ‖≤ r
4}, then Ψ maps Q(r) into itself. The operator Ψ is

continuous since f is continuous. Let M0 be a bounded subset of Q. Consider a sequence,
(zj, vj), contained in Ψ(M); let (zj, vj) = Ψ(xj, uj), f or some (xj, uj) ∈ M0, f orj = 1, 2, . . . .
Hence, vj(t) is an equicontinuous and uniformly bounded sequence on [0, w]. Ψ(M0) is
sequentially compact; hence, the closure is sequentially compact. Thus, Ψ is completely
continuous. Since Q(r) is closed, bounded and convex, using the Schauder fixed-point
theorem, Ψ has a fixed point (x, u) ∈ Q(r), so that (z, v) = Ψ(x, u) = (x, u).
Therefore,

x(t) = φ(0) +
∫ t

0
(t − s)α−1Eα,α(A(t − s)α)[Aφ(0) + Kx(s − τ) + f (s, x(s), x(s − h), u(s))]ds

+
∫ 0

−h
dBτ [

∫ 0

τ
(t − (s − τ))α−1Eα,α(A(t − (s − τ))α)B(s − τ, τ)u0(s)ds]

+
∫ t

0
[
∫ 0

−h
(t − (s − τ))α−1Eα,α(A(t − (s − τ))α)dτBt(s − τ, τ)u(s)ds, t ∈ [0, T] = J,

where

Bt(s, τ) =

{
B(s, τ), s ≤ t,
0, s > t,

x(t) = ϕ(t), t ∈ [−τ, 0].

Therefore, x(t) is the solution to the system, and

x(w) = φ(0) +
∫ w

0
(w − s)α−1Eα,α(A(w − s)α)[Aφ(0) + Kx(s − τ)]ds

+
∫ 0

−h
dBτ [

∫ 0

τ
(w − (s − τ))α−1Eα,α(A(w − (s − τ))α)B(s − τ, τ)u0(s)ds]

+
∫ w

0
G(w, s)G∗(w, s)W−1[0, w][xw − φ(0)−

∫ w

0
(w − s)α−1

×Eα,α(A(w − s)α)[Aφ(0) + Kx(s − τ)]ds −
∫ 0

−h
dBτ [

∫ 0

τ
(w − (s − τ))α−1

×Eα,αA(w − (s − τ))αB(s − τ, τ)u0(s)ds]]dτ.

x(w) = xw.

Hence, the system (4) is completely controllable.

4. Example

Consider the following linear fractional dynamical system:

CD
1
2 x1(t) = x2(t) +

∫ 0

−1
eτ [sin tu1(t + τ) + cos tu2(t + τ)]dτ,

CD
1
2 x2(t) = −x1(t) +

∫ 0

−1
eτ [− cos tu1(t + τ) + sin tu2(t + τ)]dτ,

x(t) = 1, −1 ≤ t ≤ 0, (20)

for t ∈ [0, 3] and α = 1
2 . Here,

A =

(
0 1
−1 0

)
,B(t, τ) =

(
eτ sin t eτ cos t
−eτ cos t eτ sin t

)
, x(t) =

(
x1(t)
x2(t)

)
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and

E 1
2
(At

1
2 ) =

⎛⎝ ∑∞
j=0

(−1)j tj

Γ(1+j) ∑∞
j=0

(−1)j t(2j+1)/2

Γ(1+(2j+1)/2)

∑∞
j=0

(−1)j t(2j+1)/2

Γ(1+(2j+1)/2) ∑∞
j=0

(−1)j tj

Γ(1+j)

⎞⎠.

Further,

E 1
2 , 1

2
(A(3 − (s − τ))

1
2 ) =

⎛⎝ ∑∞
j=0

(−1)j(3−(s−τ))j

Γ(1+j) ∑∞
j=0

(−1)j(3−(s−τ))(2j+1)/2

Γ[1+(2j+1)/2]

−∑∞
j=0

(−1)j(3−(s−τ))(2j+1)/2

Γ[1+(2j+1)/2] ∑∞
j=0

(−1)j(3−(s−τ))j

Γ(1+j)

⎞⎠
and

(3 − (s − τ)−
1
2 )E 1

2 , 1
2
(A(3 − (s − τ))

1
2 ) =

(
sin 1

2
(t) cos 1

2
(t)

− cos 1
2
(t) sin 1

2
(t)

)
,

where

cos 1
2
(t) =

∞

∑
j=0

(−1)j(3 − (s − τ))−(2j+1)/2

Γ[(2j + 1)/2]
,

sin 1
2
(t) =

∞

∑
j=0

(−1)j(3 − (s − τ))(j+1)−1

Γ(j + 1)
.

Also,

G(3, s) =
∫ 0

−1
(3 − (s − τ))−

1
2 E 1

2 , 1
2
(A(3 − (s − τ))

1
2 )dτB3(s − τ, τ)

=

(
p(s) q(s)
−q(s) p(s)

)
,

such that,

p(s) =
∫ 0

−1
eτ [sinα(3 − (s − τ)) sin(s − τ)− cos 1

2
(3 − (s − τ)) cos(s − τ)]dτ,

q(s) =
∫ 0

−1
eτ [cos 1

2
(3 − (s − τ)) sin(s − τ)− sin 1

2
(3 − (s − τ)) cos(s − τ)]dτ.

Using matrix calculation,

W(0, 3) =
∫ 3

0
G(3, s)G∗(3, s)ds

=
∫ 3

0
[p2(s) + q2(s)]

(
1 0
0 1

)
ds

=

(
84.6306 40.9686

200.6702 84.6306

)
,

W−1(0, 3) =

(−0.0799 0.0387
0.1895 −0.0799

)
.

Hence, by Theorem 2, the fractional system (20) is completely controllable on [0, 3]. Based
on our chosen values, we have drawn diagrams for the state function with control Figure 1,
the state function without control Figure 2 and the steering control function Figure 3
respectively.
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Figure 1. State with control function steers initial state x(0) = (0, 2)T to final state x(2) = (2, 4)T .
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Figure 2. State vectors without control function.

Figure 3. The steering control function.
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Remark 1. Consider the following nonlinear impulsive fractional dynamical system

CD
2
3 x1(t) = x2(t) +

∫ 0

−1
eτ [sin tu1(t + τ) + cos tu2(t + τ)]dτ +

10x1(t)
1 + x2

1(t) + x2
2(t)

,

CD
2
3 x2(t) = −x1(t) +

∫ 0

−1
eτ [− cos tu1(t + τ) + sin tu2(t + τ)]dτ +

x2(t)
1 + x2

1(t) + t
,

Δx|t= 1
2

=
|x( 1

2
−
)|

8 + |x( 1
2
−|)

,

x(t) = 1, −1 ≤ t ≤ 0. (21)

Under appropriate choices and by following the previous techniques, Theorem 3 can be applied
to guarantee the controllability result of the fractional system (21), and hence the diagrams can be
also associated.

5. Conclusions

We investigated the concept of controllability criteria for nonlinear fractional differ-
ential systems with state delays and distributed delays in the controls with impulsive
perturbations. We used the unsymmetric Fubini’s theorem with the change of order of
integration, and also, by effecting the notion of Mittag–Leffler’s matrix function, we find
the solution representation for the considered system. Further, by applying the controlla-
bility Gramian matrix, we studied the controllability results for the system addressed in
the preliminary section. Moreover, we have given a numerical example that justifies the
exactness of the obtained theoretical results in our main results. As further directions to be
considered in our future projects, we intend to combine the above analysis with the topics
of differential inclusion, fractional discreet calculus and variable order derivatives.
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Abstract: The main goal of the current research is to investigate the numerical computation of
Ag/Al2O3 nanofluid over a Riga plate with injection/suction. The energy equation is formulated
using the Cattaneo–Christov heat flux, non-linear thermal radiation, and heat sink/source. The
leading equations are non-dimensionalized by employing the suitable transformations, and the
numerical results are achieved by using the MATLAB bvp4c technique. The fluctuations of fluid
flow and heat transfer on porosity, Forchheimer number, radiation, suction/injection, velocity slip,
and nanoparticle volume fraction are investigated. Furthermore, the local skin friction coefficient
(SFC), and local Nusselt number (LNN) are also addressed. Compared to previously reported studies,
our computational results exactly coincided with the outcomes of the previous reports. We noticed
that the Forchheimer number, suction/injection, slip, and nanoparticle volume fraction factors slow
the velocity profile. We also noted that with improving rates of thermal radiation and convective
heating, the heat transfer gradient decreases. The 40% presence of the Hartmann number leads to
improved drag force by 14% and heat transfer gradient by 0.5%. The 20% presence of nanoparticle
volume fraction leads to a decrement in heat transfer gradient for 21% of Ag nanoparticles and 18%
of Al2O3 nanoparticles.

Keywords: nanofluid; riga plate; heat source/sink; non-linear thermal radiation; Cattaneo–Christov
heat flux

1. Introduction

The importance of nanofluids has piqued the interest of many industrial researchers.
Nanofluid combines base fluids and nanoparticles (1–100 nm). Nanoparticles typically have
better thermal distribution properties than convectional heat distribution liquids. Various
researchers have been drawn to nanofluid in the last decade, with Choi and Eastman [1]
being the first person to come up with the word nanofluid. Martin et al. [2] combined
and analyzed a porous medium with nanofluids to increase heat transmission around a
vertical finned cylindrical antenna. They detected that the nanoparticle volume fraction is
enhanced when mounting the porosity parameter. Uddin et al. [3] examined a single-phase
CuO–water nanofluid flow through an isosceles triangular geometry. They observed that
the heat transmission is enhanced when the nanoparticle volume fraction increases. The
copper-water nanofluid flow over a rotating disk was examined by Nayak et al. [4]. The
heat transfer analysis of a nanofluid on a non-linearly stretching plate was scrutinized
by Adem and Kishan [5]. The consequences of surface waves on heat transmission and
flow were studied by Uddin et al. [6]. They observed that the nanofluids with a lower
nanoparticle volume fraction have higher flow configurations. Verma et al. [7] investigated
the copper-water nanofluid over a porous medium. They found that the velocity declines
when enriching the nanoparticle volume fraction. The MHD flow of a Casson–Williamson
nanofluid over a porous medium was examined by Yousef et al. [8]. Mohamed et al. [9]
scrutinized the heat transfer flow of Ag–Al2O3/water-hybrid nanofluid over a stretching
sheet. They found that the SFC increased due to a rise in the nanoparticle volume fraction.
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Shahzad et al. [10] investigated the heat transfer of copper-nanofluid slip flow over a
convective heated sheet. They noted that the SFC decreases when increasing the volume
fraction parameter.

The Riga plate plays a vital role in enhancing the electrical conductivity. This plate
consists of electrodes and magnets that are arranged alternatively. Gailitis and Lielausis [11]
were the first to commence the Riga plate, which generates a Lorentz force parallel to the
flow-controlling wall. The mixed convective flow of nanofluid flow on a Riga plate was
initiated by Vaidya et al. [12]. They revealed that the warmness of the fluid downturns
when improving the modified Hartmann number. Shah et al. [13] inspected the flow of
Maxwell fluid through a Riga plate with the generalized Fourier’s law. Rizwana and
Nadeem [14] analyzed the unsteady MHD flow of copper-water nanofluid past a Riga plate.
They found that the MBL thickens when escalating the modified Hartmann number. The
Maxwell fluid flow passing through a Riga plate was analyzed by Ramesh et al. [15]. Abbas
et al. [16] scrutinized the nanofluid flow over a Riga plate with entropy generation. The
hyperbolic nanofluid flow over a Riga plate was numerically studied by Waqas et al. [17].
Eswaramoorthi et al. [18] implemented the double stratification of a Darcy–Forchheimer
flow over a Riga plate. They revealed that increasing the modified Hartmann number
causes a significant increase in wall shear stress. The microorganisms swimming in the
Sutterby nanofluid, passed through a Riga plate, was inspected by Faizan et al. [19]. They
proved that the fluid speed is able to enhance the modified Hartmann number. Karthik
et al. [20] explored the swimming microorganisms of zero and non-zero mass flux over a
Riga plate. They revealed that the fluid speed declines when it strengthens the modified
Hartmann number. Parvine and Alam [21] examined the MHD nanofluid flows across a
Riga plate. Computational study of a micropolar nanofluid moving in a stratified pattern
over a Riga plate was investigated by Rafique et al. [22].

Generally, two types of internal heat generation/consumption occur. The first type of
internal heat sink/source depends on the warmth of the fluid. The second type is a non-
uniform heat sink/source that depends on warmth and space. Recently, many researchers
have been working on heat sinks and sources. An even more intriguing debate on the
effects of a non-uniform heat sink/source was dealt with by Madhukesh et al. [23]. It is
found that the warmness of the fluid increases when raising the heat sink/source parameter.
Oke et al. [24] identified the water nanoparticles of 47-nm alumina over a heat sink/source.
They proved that the LNN is proportional when the heat transfer rate amplifies. The heat
sink/source of Jeffrey fluid over a heat and mass transfer was scrutinized by Qasim [25].
He identified that when the heat sink parameter is raised, the temperature drops. The
effects of Darcy–Forchheimer flow in an unsteady MHD viscous fluid over a non-uniform
heat sink/source was investigated by Sharma and Gandhi [26]. Vieru et al. [27] explored
the impact of unsteady flow of viscous fluid with a heat sink/source. The non-uniform heat
sink/source of Jeffry and Maxwell nanofluid using a stretching sheet was investigated by
Sandeep and Sulochana [28]. They discovered that the thermal boundary layer thickness
increases as the values of the non-uniform heat source or sink parameters are increased. Jena
et al. [29] inspected the movement of a fluid with a high viscosity past a heat sink/source.
The MHD-mixed convective flow of micropolar fluid past an SS with a non-uniform heat
sink/source was studied by Sandeep and Sulochana [30]. Reddy and Rao [31] scrutinized
the chemical reaction in the heat and mass transfer of nanofluids containing Al2O3-water
and Ag-water through a vertical cone. They revealed that heat source/sink characteristics
lead to improving the temperature profile. A few key researches on this perception have
been gathered in Refs. ([32,33]).

Thermally radiative flow is typically encountered when there is a significant warmth
difference between the free stream and the surface, and it is important in many industrial
processes. Most of the research is based on the Rosseland approximation with linearization,
however, this concept is most useful when the warmness difference between ambient and
liquid is minuscule, and this difference is typically very significant in many industrial
situations. A non-linearized Rosseland approximation is applicable for overcoming this
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constraint. Rashidi et al. [34] analyzed the buoyancy effect of MHD nanofluid flow with
thermal radiation. They noted that the magnetic and radiation parameters affect the skin
friction coefficient. The radiative nanofluid flow over an SS with convective boundary
conditions was investigated by Kameswaran et al. [35]. Maleki et al. [36] investigated
the radiation impact of a nanofluid flow over a porous plate. They noticed that the local
Nusselt number declines when the radiation parameter is increased. The 3D radiative flow
of carbon nanotubes in glycerin flown past a Riga plate was addressed by Eswaramoorthi
et al. [37]. They proved that increasing the radiation parameter develops the entropy
profile. The effect of thermal radiation of a Walters’-B nanofluid was depicted by Mahat
et al. [38]. They proved that the temperature of the fluid upgrades to strengthen the thermal
radiation. Mahanthesh et al. [39] examined the boundary layer flow of a melting plate with
non-linear thermal radiation. The Darcy–Forchheimer flow of an Eyring–Powell nanofluid
with non-linear thermal radiation was explored by Bhatti et al. [40]. The thermally radiative
flow of Casson–Williamson nanofluid with binary chemical reaction was investigated by
Eswaramoorthi et al. [41]. They noticed that when the radiation parameter is increased,
the heat transfer gradient rises. Mahanta et al. [42] analyzed the 3D MHD nanofluid flow
passing through an SS with non-linear radiation. They identified that the higher thermal
radiation parameter leads to develop the Bejan number. The influence of radiation on a
magnetohydrodynamic (MHD) three-dimensional stagnation-point flow of a graphene
oxide nanofluid based on water and produced by a non-uniform heat source/sink over
a horizontal plane surface was investigated by Waqas et al. [43]. They noticed that the
temperature profile increased as the radiation parameter increased. A few cutting-edge
research reports have have been gathered in Refs. ([44–46]).

According to study findings in the literature, as mentioned above, the majority of
the researchers are working to discover the nature of the radiative flow of nanofluid with
non-uniform heat sink/source and Cattaneo–Christov heat flux past an SS but have yet to
be analyzed through a Riga plate with velocity slip. As a result, our primary objective is
to fill this knowledge gap. Our research describes the consequence of non-linear thermal
radiation, non-uniform heat sink/source, and Cattaneo–Christov of Darcy–Forchheimer
flow of water-based (Ag and Al2O3) nanoparticles past a Riga plate with a slip condition,
because the upshot of slip is more crucial when the particles’ mean free path is tantamount
or smaller than the problem’s usual structure. In these situations, the continuance flow
presumptions are limited. In such places, the slip boundary presumptions act a vital role in
restraining the flow attributes (e.g., see Aldabesh et al. [47]). The primary goal of utilizing
nanoparticles, such as Ag and Al2O3, is as nanofluid coolant for contemporary engines.
This work will be useful for thermal engineers in developing models of thermal systems.
The key takeaways of this study can be summed up as follows:

1. Modify the current mathematical model to include nanofluids based on Ag/Al2O3-
water, Cattaneo–Christov heat flux, non-linear thermal radiation, and heat source/sink.

2. In what ways does it affect Darcy–Forchheimer flow on a Riga plate?
3. Exactly how do the Cattaneo–Christov heat flux phenomenon and non-linear thermal

radiation influence heat transfer?
4. When convective heating conditions are applied, how does the heat transfer gradient

respond?

2. Mathematical Formulation

We explored the 2D Darcy–Forchheimer flow of water-based Ag/Al2O3 nanoparti-
cles past a heated Riga plate. We consider that the x-axis should be aligned in the same
direction as the plate, but the y-axis should be perpendicular to it. The heat equation is con-
structed by non-linear thermal radiation, Cattaneo–Christov theory and a non-uniform heat
sink/source. Let Tw and T∞(≤ Tw) be the fluid temperature and free stream temperature,
respectively. The bottom of the plate was heated by passing hot fluid with temperature Tf
and this generate a heat transfer coefficient hc. The sketch of the Riga plate and the flow
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model are shown in Figure 1a,b. The equations of mass, momentum, and energy with their
associated constraints are shown below (e.g., Kameswaran et al. [35], Maleki et al. [36]).

∂u
∂x

+
∂v
∂y

= 0, (1)

u
∂u
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+ v
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= νn f
∂2u
∂y2 − νn f

k∗1
u − cb√

k∗
u2 +

π J0M
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∂u
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+

(
u

∂v
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+ v
∂v
∂y

)
∂T
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]
+

1(
ρcp
)

n f

kn f Uw

xνn f
[A∗(Tf − T∞) f ′ + B∗(T − T∞)]. (3)

The corresponding boundary conditions, see Mahmood et al. [48] and Hayat et al. [49]:

u = Uw + μn f
∂u
∂y

, v = −Vw, −kn f Ty = hc[Tf − T] at y = 0

u → 0, v → 0, T → T∞ as y → ∞ (4)

In order to solve the governing system of PDEs (1)–(4), stream function ψ is introduced, as
seen in Afify [50].

ψ = (aν f )
1
2 x f (ς), u =

∂ψ

∂y
, v = −∂ψ

∂x
. (5)

Define the variables,

ς =

√
a

ν f
y, u = ax f ′(ς), v = −√aν f f (ς), θ =

T − T∞

Tf − T∞
. (6)

Considering the aforementioned changes, Equations (2) and (3) are written as follows:

1
A1 A2

f ′′′(ς) + f (ς) f ′′(ς)− f ′2(ς)− 1
A1 A2

λ f ′(ς)− Fr f ′2(ς) + 1
A2
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1
Pr
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1
Pr
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3
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{6θ(ς)θ′2(ς) + 3θ2(ς)θ′′(ς)}+ (θw − 1){3θ′2(ς) + 3θ(ς)θ′′(ς)}+ θ′′(ς)
]
= 0. (8)

The appropriate boundary conditions (4) are remodeled as follows,

f (0) = f w, f ′(0) = 1 +
Λ
A1

f ′′(0), f ′(∞) = 0,

θ′(0) = − Bi
A5

[1 − θ(0)], θ(∞) = 0. (9)

The skin friction coefficient and local Nusselt number can be expressed as follows,
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Cf
√

Re =
1

A1
f ′′(0),

Nu√
Re

= −
[

A5 +
4
3

Rd{1 + θ(0)(θw − 1)}3
]

θ′(0)

The nomenclature section specifies all the variables involved in the flow.

(a) (b)

Figure 1. (a) Sketch of a Riga plate and (b) physical configuration of the flow model.

3. Numerical Solution

The MATLAB bvp4c technique is used to solve the remodeled ODEs (Equations (7) and (8))
and corresponding boundary conditions (9). In this case, the coupled non-linear PDEs
and the boundary conditions can be transformed into five equivalent first-order ODEs and
boundary conditions, respectively, see Asshaari et al. [51] and Shampine et al. [52]. To carry
out this procedure, we must do the following:

f = K1, f ′ = K2, f ′′ = K3, θ = K4, θ′ = K5

The system of equations are

K′
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]
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With the corresponding conditions

K1(0) = f w, K2(0) = 1 +
Λ
A1

K3(0), K2(∞) = 0,

K5(0) = − Bi
A5

[1 − K4(0)], K4(∞) = 0

The advantage of this method is the ability to handle non-linear problems in simple
domains more quickly. The technique is shown to be efficient and accurate in various
boundary value scenarios, all described in Shampine et al. [53]. The process repeats itself
further until a tolerance of 10−5 and a step size of 0.05 is reached.

4. Results and Discussion

The primary goal of this segment is to provide a clear understanding of the flow
regime, specifically, the variations in the nanofluid velocity, nanofluid temperature, skin
friction coefficient, and local Nusselt number for both nanoparticles (Ag and Al2O3) as
a result of various regulatory flow parameters. Table 1 provides the physical properties
of nanoparticles (Ag and Al2O3) and base fluid (H2O). The nanofluid specifications are
depicted in Table 2. Table 3 provides a comparison of − f ′′(0) to Prabakaran et al. [54],
Ibrahim and Shankar [55] for different values of f w with λ = Fr = Ha = φ = 0 and
observed that our numerical results corresponded perfectly with theirs. The fluctuations
of Ag nanoparticle on SFC and LNN for different values of λ, Fr, Ha, f w, Λ, and φ are
portrayed in Table 4. Table 5 represents the fluctuations of Al2O3 nanoparticles on SFC
and LNN for different values of λ, Fr, Ha, f w, Λ, and φ. From Tables 4 and 5 it is detected
that the surface drag force (Cf Re1/2) decimates when augmenting the values of λ, Fr, f w,
and φ and it augments for the larger quantities of Ha, and Λ. The heat transfer rate of
(NuRe−1/2) decreases when increasing the size of λ, Fr, Λ and φ and is enhanced for larger
values of the modified Hartmann number and injection/suction parameter. Table 6 shows
the consequence of A∗, B∗, Γ1, Rd and Bi on LNN. It is observed that the LNN slumps when
enhancing the values of A∗ and B∗ and it improves when increasing the quantity of Γ1, Rd
and Bi.

Table 1. The thermo-physical properties of the nanomaterials and water, see Roja and Gireesha [56].

Physical Properties Silver (Ag) Aluminium Oxide (Al2O3) Water (H2O)

ρ/(kg/m−3) 10, 500 3970 997.1
Cp/(J.kg−1.K−1) 235 765 4179

σ/(Ω.m)−1 6.3 × 107 3.5 × 107 5.5 × 10−6

k/(W.m−1.K−1) 429 40 0.613

Table 2. Physical characteristics, see Sharma [26].

Properties Nanofluid

Viscosity (μ) A1 =
μ f
μn f

= (1 − φ)2.5
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ρn f
ρ f

=
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ρ f

)
Heat capacity (ρCp) A3 =

(ρCp)n f

(ρCp) f
=
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(ρCp) f

)
Electrical conductivity (σ)
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σn f
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3
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)
−
(
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Thermal conductivity (k) A5 =
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k f

=
ks+(m−1)k f −(m−1)φ(k f −ks)

ks+(m−1)k f +φ(k f −ks)
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Table 3. Comparison of − f ′′(0) for disparate values of f w with λ = Fr = Ha = φ = 0 to Prabakaran
et al. [54], Ibrahim and Shankar [55].

fw Present Study Ref. [54] Ref. [55]

0 1.000001 1.000000 1.0000
0.5 1.280776 1.280776 1.2808

Table 4. SFC & LNN comparison for diverse combo of λ, Fr, Ha, f w, Λ, φ.

λ Fr Ha f w Λ φ
Ag

Cf Nu

0.2 0.4 0.3 0.5 1 0.05 −0.540406 0.722099
0.3 −0.549413 0.721707
0.4 −0.557932 0.721327
0.5 −0.566000 0.720961
0.6 −0.573647 0.720606
0.2 0.4 0.3 0.5 1 0.05 −0.540406 0.722099

0.8 −0.553538 0.721507
1.2 −0.565041 0.720977
1.6 −0.575249 0.720498
2 −0.584406 0.720062

0.2 0.4 0 0.5 1 0.05 −0.598291 0.719486
0.1 −0.578264 0.720432
0.2 −0.559002 0.721299
0.3 −0.540406 0.722099
0.4 −0.522401 0.722842

0.2 0.4 0.3 −0.6 1 0.05 −0.409777 0.139884
−0.2 −0.453539 0.455283

0 −0.477364 0.571358
0.2 −0.502169 0.649742
0.6 −0.553210 0.738959

0.2 0.4 0.3 0.5 0.2 0.05 −1.198806 0.730271
0.4 −0.911637 0.727170
0.6 −0.739594 0.725004
0.8 −0.623925 0.723378
1 −0.540406 0.722099

0.2 0.4 0.3 0.5 1 0 −0.474647 0.772332
0.05 −0.540406 0.722099
0.1 −0.590914 0.680030

0.15 −0.632065 0.644168
0.2 −0.666931 0.613247

Figure 2a–d portray the outcomes of λ, Fr, Ha and f w on the nanofluid velocity profile.
The results show that a larger modified Hartmann number values increases the nanofluid
flow speed, whereas a larger λ, Fr, and f w result in an opposite behavior. Physically,
larger values of the modified Hartmann number produce larger electrical fields, which
in turn produce larger values of the wall-parallel Lorentz force experienced by the body.
Since this is the case, the fluid’s speed increases. Further, the higher porosity enriches the
fluid resistance during flow, which slows down fluid motion and makes the boundary
layer thinner. The variations in the slip parameter and nanoparticle volume fraction on
the nanofluid velocity profile are illustrated in Figure 3a,b. It is found that the increased
availability of Λ and φ leads to a decay in the nanofluid velocity. Physically, the fluid
deforms as the velocity slip parameter increases because of the low adhesive forces.
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Table 5. SFC & LNN comparison for a diverse combination of λ, Fr, Ha, f w, Λ, φ.

λ Fr Ha f w Λ φ
Al2O3

Cf Nu

0.2 0.4 0.3 0.5 1 0.05 −0.507314 0.728057
0.3 −0.518302 0.727571
0.4 −0.528618 0.727103
0.5 −0.538316 0.726652
0.6 −0.547446 0.726219
0.2 0.4 0.3 0.5 1 0.05 −0.507314 0.728057

0.8 −0.521096 0.727438
1.2 −0.533185 0.726883
1.6 −0.543925 0.726380
2 −0.553570 0.725921

0.2 0.4 0 0.5 1 0.05 −0.569436 0.725170
0.1 −0.548014 0.726214
0.2 −0.527336 0.727172
0.3 −0.507314 0.728057
0.4 −0.487879 0.728880

0.2 0.4 0.3 −0.6 1 0.05 −0.393978 0.175973
−0.2 −0.432415 0.479912

0 −0.453043 0.587601
0.2 −0.474401 0.660208
0.6 −0.518389 0.744083

0.2 0.4 0.3 0.5 0.2 0.05 −1.074296 0.736057
0.4 −0.833493 0.733090
0.6 −0.684442 0.730967
0.8 −0.582187 0.729347
1 −0.507314 0.728057

0.2 0.4 0.3 0.5 1 0 −0.474647 0.772332
0.05 −0.507314 0.728057
0.1 −0.538018 0.690530

0.15 −0.567324 0.658335
0.2 −0.595710 0.630453

Figure 4a–d depict the transitions on the temperature distribution for various values
of A∗, B∗, Rd and φ. It is demonstrated that the thickness of the TBL increased due to the
increased presence of A∗, B∗, Rd, and φ. Physically, strengthening the thermal radiation
causes increased energy transport between the particles and this causes an enrichment of the
thermal boundary-layer thickness. Figure 5a–d delineates the changes in the temperature
profile for disparate values of f w, Γ1 and Bi. It is revealed that the fluid warmness declines
when the values for convective cooling, injection/suction, and the thermal relaxation time
parameter are enhanced, and it intensifies for larger values for the convective heating
parameter. Physically, improving the convective heating parameter leads to a greater heat
transfer coefficient, and this coefficient increases the fluid temperatures and thickens the
thermal boundary layer. Also, Ag nanoparticles have a thicker thermal boundary layer
compared to the Al2O3 nanoparticles. Generally, Ag nanoparticles have higher thermal
conductivity than the Al2O3 nanoparticles. Figures 6a–d and 7a–d indicate the upshot of
Fr, Ha, f w, λ and Λ on the SFC. It is observed that the surface drag force decreases when
increasing the Fr, λ and f w values and it enlarges when heightening the values of Ha and
Λ. The changes of LNN for various combinations of Ha, Rd, Γ1, f w and λ are illustrated in
Figure 8a–d. Based on these graphs, it can be seen that the LNN enlarges when enhancing
the values of Ha, f w and Γ1, and opposite reaction is observed for larger values of λ.
Figure 9a,b shows the consequence of A∗, B∗ and f w on LNN. It is explored that the LNN
decays when enhancing the overall quantity of A∗ and B∗ and it enriches for larger values
of f w.
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Table 6. Variations of LNN for a diverse combination of A∗, B∗, Γ1, Rd, Bi.

A∗ B∗ Γ1 Rd Bi Ag Al2O3

0 0.1 0.1 0.6 0.5 0.730125 0.734846
0.2 0.714032 0.721239
0.4 0.697778 0.707516
0.6 0.681362 0.693676
0.8 0.664781 0.679719
0.1 0 0.1 0.6 0.5 0.723775 0.729211

0.2 0.720341 0.726864
0.4 0.716550 0.724352
0.6 0.712333 0.721652
0.8 0.707854 0.718741

0.1 0.1 0 0.6 0.5 0.712420 0.718396
0.1 0.722099 0.728057
0.2 0.731930 0.737842
0.3 0.741850 0.747699
0.4 0.759113 0.757502

0.1 0.1 0.1 0 0.5 0.440869 0.442943
1 0.898688 0.907764
2 1.305605 1.323422
3 1.675997 1.701921
4 2.025144 2.057481

0.1 0.1 0.1 0.6 0.1 0.162427 0.163222
0.3 0.459119 0.462158
0.5 0.722099 0.728057
0.7 0.955640 0.964981
1 1.259007 1.273932

Figure 10a–d shows the slumping/growing percentage of the SFC for distinct quan-
tities of λ, Fr, Ha and f w. In the case of the porosity parameter, the greatest diminishing
percentage (2.30%) is collected in viscous fluid when λ is changed from 0.2 to 0.3 and the
least diminishing percentage (1.35%) is obtained in Ag nanofluid when λ is changed from
0.5 to 0.6. In the case of Fr, the greatest diminishing percentage (3.05%) is observed in
viscous fluid when Fr changed from 0.4 to 0.8, and the least diminishing percentage (1.59%)
is observed in Ag nanofluid when Fr is changed from 1.6 to 2. In the case of the modified
Hartmann number, the greatest improving percentage (4.33%) is collected in viscous fluid
when Ha is changed from 0.3 to 0.4, and the least improving percentage (3.32%) is obtained
in Ag nanofluid when Ha is changed from 0.2 to 0.3. In the case of the injection/suction
parameter, the greatest diminishing percentage (2.59%) is collected in Ag nanofluid when
f w is changed from −0.2 to −0.1 and the least diminishing percentage (2.35%) is obtained in
Al2O3 nanofluid when f w is changed from −0.5 to −0.4. Figure 11a,b shows the declining
SFC percentages for a distinct quantity of Λ and f w. In the case of the slip parameter, the
greatest improving percentage (23.95%) is collected in Ag nanofluid when Λ is changed
from 0.2 to 0.4, and the least improving percentage (12.35%) is obtained in viscous fluid
when Λ is changed from 0.8 to 1. In the case of the injection/suction parameter, the greatest
diminishing percentage (2.57%) is collected in Ag nanofluid when f w is changed from 0 to
0.1, and the least diminishing percentage (2.26%) is obtained in Al2O3 nanofluid when f w
is changed from 0.3 to 0.4.

The improving/declining percentages of LNN on λ, Fr, Ha, Rd, A∗, B∗, Bi and Λ are
illustrated in Figures 12a–d and 13a–d. In the case of the porosity parameter, the greatest
diminishing percentage (0.066%) is collected in Al2O3 nanofluid when λ is changed from
0.2 to 0.3, and the least diminishing percentage (0.049%) is obtained in Ag nanofluid when
λ is changed from 0.5 to 0.6. In the case of Fr, the greatest diminishing percentage (0.088%)
is collected in viscous fluid when Fr is changed from 0.4 to 0.8 and the least diminishing
percentage (0.060%) is observed in Ag nanofluid when Fr is changed from 1.6 to 2. In
the case of the modified Hartmann number, the greatest improving percentage (0.151%)
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is collected in viscous fluid when Ha is changed from 0 to 0.1, and the least improving
percentage (0.102%) is observed in Ag nanofluid when Ha is changed from 0.3 to 0.4. In the
case of non-linear radiation, the greatest improving percentage (119.56%) is collected in
viscous fluid when Rd is changed from 0 to 1, and the least improving percentage (20.76%)
is observed in viscous fluid when Rd is changed from 3 to 4. In the case of A∗, the greatest
diminishing percentage (2.433%) is collected in Ag nanofluid when A∗ is changed from 0.6
to 0.8, and the least diminishing percentage (1.619%) is observed in viscous fluid when A∗
is changed from 0 to 0.2. In the case of B∗, the greatest diminishing percentage (0.628%) is
collected in Ag nanofluid when B∗ is changed from 0.6 to 0.8, and the least diminishing
percentage (0.245%) is observed in viscous fluid when B∗ is changed from 0 to 0.2. In the
case of the Brinkmann number, the greatest improving percentage (183.14%) is collected in
Al2O3 nanofluid when Bi is changed from 0.1 to 0.3, and the least improving percentage
(31.74%) is observed in Ag nanofluid when Bi is changed from 0.7 to 1. In the case of the slip
parameter, the greatest diminishing percentage (0.424%) is collected in Ag nanofluid when
Λ is changed from 0.2 to 0.4, and the least diminishing percentage (0.173%) is observed in
viscous fluid when Λ is changed from 0.8 to 1.

(a) (b)

(c) (d)

Figure 2. The variation of f ′(ς) in relation to (a) λ, (b) Fr, (c) Ha and (d) f w.
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(a) (b)

Figure 3. The variation of f ′(ς) in relation to (a) Λ and (b) φ.

(a) (b)

(c) (d)

Figure 4. The variation of θ(ς) in relation to (a) A∗, (b) B∗, (c) Rd and (d) φ.
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(a) (b)

(c) (d)

Figure 5. The variation of θ(ς) in relation to (a) f w, (b) Γ1, (c) Bi (convective heating) and (d) Bi
(convective cooling).

(a) (b)

Figure 6. Cont.
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(c) (d)

Figure 6. SFC variation for diverging values of (a) Fr & λ, (b) Fr & f w, (c) Fr & Λ and (d) f w & Λ.

(a) (b)

(c) (d)

Figure 7. SFC variation for diverging values of (a) f w, (b) λ, (c) Λ and (d) Fr.
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(a) (b)

(c) (d)

Figure 8. LNN variation for diverging values of (a) Ha, (b) Rd, (c) f w and (d) Γ1.

(a) (b)

Figure 9. LNN variation for diverging values of (a) A∗ and (b) B∗.
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(a) (b)

(c) (d)

Figure 10. The increasing/declining percentage of SFC on (a) λ, (b) Fr, (c) Ha and (d) f w.

(a) (b)

Figure 11. The increasing/declining percentage of SFC on (a) Λ and (b) f w.
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(a) (b)

(c) (d)

Figure 12. The increasing/declining percentage of LNN on (a) λ, (b) Fr, (c) Ha and (d) Rd.

(a) (b)

Figure 13. Cont.
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(c) (d)

Figure 13. The increasing/declining percentage of LNN on (a) A∗, (b) B∗, (c) Bi and (d) Λ.

5. Conclusions

The main purpose of this research is to scrutinize the consequences of Darcy–Forchheimer
flow in water-based Ag/Al2O3 nanofluid past a Riga plate. The energy equation is formed
by including the Cattaneo–Christov heat flux, heat sink/source, and non-linear thermal
radiation impacts. The governing models are re-framed by implementing suitable vari-
ables. The re-framed models are solved numerically by implementing the MATLAB bvp4c
technique. The notable findings derived from the current study are as follows:

• The nanofluid velocity profile reduces for higher values of porosity, the Forchheimer
number, the suction/injection parameter, and the slip parameter.

• The greater the thermal radiation, nanoparticle volume fraction, space and tempera-
ture dependent heat source parameter, the greater the nanofluid temperature profile.

• The nanofluid temperature declines for larger values of convection cooling, injec-
tion/suction and the thermal relaxation time parameter.

• The skin friction coefficient declines for increasing values of the Forchheimer number
and suction/injection parameter, and increases when the modified Hartmann number
increases.

• The heat transfer gradient increases with increasing values for the Hartmann number,
radiation, suction/injection and the thermal relaxation time parameter, whereas it de-
clines when the space and temperature dependent heat source parameter is increased.

• In future, we will expand this flow model by including hybrid and ternary hybrid
nanofluids with different shape factors.
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Nomenclature

Symbols Description

a1 positive constants
A∗ space-dependent heat source parameter
B∗ temperature-dependent heat source parameter

Bi
(
= hc

k f

√
v f
a

)
Biot number

Cp specific heat capacity
cb drag coefficient
Cf skin friction coefficient
f subscript represent base fluid

fw

(
= Vw√

a(ν) f

)
suction/injection parameter

Fr
(
= cb√

k∗1

)
Forchheimer number

hc heat transfer coefficient

Ha
(
= π J0 Mx

8(ρ) f a2

)
modified Hartmann number

J0 current density applied to the electrodes
k∗1 permeability of porous medium
k∗ Rosseland absorption coefficient
M magnetic field
nf subscript represent nanoliquid
Nu Nusselt number

Pr
(
=

α f
ν f

)
Prandtl number

Rd
(
= 4σ∗T3

∞
k∗(k) f

)
radiation parameter

Re
(
= ax2

ν f

)
local Reynolds number

T fluid temperature
Tf temperature of the hot fluid
T∞ ambient temperature
u, v velocity components
x, y Cartesian coordinates
Uw, Vw surface stretching velocities
Greek Symbols

ρ density
μ dynamic viscosity
ς dimensionless variable
θ dimensionless temperature

βR

(
= π

a1

√
ν f
a

)
dimensionless parameter

θw

(
=

Tf
T∞

)
heating variable

ν kinematic viscosity

λ
(
=

ν f
k∗1 a

)
local porosity parameter

φ nanoparticle volume fraction
ψ stream function
σ∗ Stefen-Boltzmann constant
Λ slip parameter
α thermal diffusivity

Γ1

(
= λa

)
thermal relaxation time parameter

Abbreviations

LNN local Nusselt number
MHD magnetohydrodynamics
ODEs ordinary differential equations
PDEs partial differential equations
SFC skin friction coefficient
SS stretching sheet
TBL thermal boundary layer
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Abstract: Total fractional-order variation (TFOV) in image deblurring problems can
reduce/remove the staircase problems observed with the image deblurring technique by using
the standard total variation (TV) model. However, the discretization of the Euler–Lagrange equa-
tions associated with the TFOV model generates a saddle point system of equations where the
coefficient matrix of this system is dense and ill conditioned (it has a huge condition number). The
ill-conditioned property leads to slowing of the convergence of any iterative method, such as Krylov
subspace methods. One treatment for the slowness property is to apply the preconditioning technique.
In this paper, we propose a block triangular preconditioner because we know that using the exact
triangular preconditioner leads to a preconditioned matrix with exactly two distinct eigenvalues. This
means that we need at most two iterations to converge to the exact solution. However, we cannot use
the exact preconditioner because the Shur complement of our system is of the form S = K∗K + λLα

which is a huge and dense matrix. The first matrix, K∗K, comes from the blurred operator, while
the second one is from the TFOV regularization model. To overcome this difficulty, we propose two
preconditioners based on the circulant and standard TV matrices. In our algorithm, we use the flexible
preconditioned GMRES method for the outer iterations, the preconditioned conjugate gradient (PCG)
method for the inner iterations, and the fixed point iteration (FPI) method to handle the nonlinearity.
Fast convergence was found in the numerical results by using the proposed preconditioners.

Keywords: preconditioning technique; image deblurring; Krylov subspace methods; fractional
derivatives; Toeplitz and circulant matrices

1. Introduction

Although TV regularization is a commonly employed technique in image deblurring
problems [1–4], one significant drawback is the appearance of the “staircase effect”, wherein
edges are depicted as a sequence of steps rather than smooth transitions. This phenomenon
arises because TV regularization encourages the creation of piecewise constant regions,
which leads to the appearance of blocks around edges rather than accurately capturing
their continuous nature. As a result, researchers are actively investigating and advancing
alternative regularization techniques and algorithms to remove or reduce these “staircase
effects” and enhance the overall quality of image deblurring methods. An alternative
regularization approach is the TFOV model [5–8]. TFOV regularization presents a robust
method for enhancing image deblurring, offering a combination of benefits such as edge
preservation, flexibility, noise resilience, and reduction in staircase effects. Its effectiveness
has been substantiated in numerous studies, significantly contributing to the progression of
image deblurring techniques. However, when it comes to discretizing the Euler–Lagrange
equations of the TFOV-based model, a substantial nonlinear and ill-conditioned system
emerges. Efficiently solving such systems poses a considerable challenge for numerical
methods, even with the application of potent numerical algorithms like Krylov subspace
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methods, such as the generalized minimal residual (GMRES) and conjugate gradient (CG).
These methods tend to exhibit slow convergence in this context. One potential remedy to
address this slow convergence is the use of preconditioning techniques. Preconditioning
is a technique used to transform a linear system of the form Ax = b into another system
to improve the spectral properties of the system matrix. A preconditioner is a matrix P
that is easy to invert and the preconditioned matrix P−1 A shows good clustering behavior
for the eigenvalues. This is because rapid convergence is often associated with a clustered
spectrum of P−1 A. In the preconditioning technique, we solve P−1 Ax = P−1b instead of
solving the original Ax = b because the new system P−1 Ax = P−1b converges rapidly
when we use a suitable preconditioner. To apply the preconditioner matrix P within a
Krylov subspace method, we need to compute the multiplication of a matrix by a vector
of the form z = Pr at each iteration. Hence, evaluating this product must be cheap. In the
literature, several preconditioners are developed in [9] for a special linear system, such
as block preconditioners and constraint preconditioners. For diagonal preconditioners,
we can refer to Silvester and Wathen [10] and Wathen and Silvester [11]. For the block
triangular preconditioners, we can refer to Bramble and Pasciak [12] and [13–16], as well
as the references therein. For constraint preconditioners, see, for example, Axelsson and
Neytcheva [17]. Other preconditioners based on Hermitian/skew-Hermitian splitting are
studied in [18–20]. Recently, several new preconditioners for Krylov subspace methods
have been introduced. For example, Cao et al. [21] derived two block triangular Schur
complement preconditioners from a splitting of the (1, 1)-block of the two-by-two block
matrix. Chen and Ma [22] proposed a generalized shift-splitting preconditioner for saddle
point problems with a symmetric positive definite (1, 1)-block. Salkuyeh et al. [23] proposed
a modified generalized shift-splitting preconditioner where the (1, 1)-block is symmetric
positive definite and the (2, 2)-block matrix is symmetric positive semidefinite (not zero).
Very recently, block diagonal and block triangular splitting preconditioners were studded
by Beik et al. [24], and the authors introduced new variants of the splitting preconditioners
and obtained new results for the convergence of the associated stationary iterations and
new bounds for the eigenvalues of the corresponding preconditioned matrices. Moreover,
they considered inexact versions as preconditioners for flexible Krylov subspace methods.
A good survey of preconditioning techniques for general linear systems can be found
in [9,25,26].

In our paper, we consider the following two-by-two block nonlinear system of equations:[
In Kh
−K∗

h λLα
h(Uh)

]
︸ ︷︷ ︸

A

[
Vh
Uh

]
︸ ︷︷ ︸

x

=

[
Zh
0

]
︸ ︷︷ ︸

b

. (1)

This system is obtained by discretizing the Euler-Lagrange equations associated with
TFOV in image deblurring problems, and the coefficient matrix of this system has a size
of 2n by 2n, where n := N2 and N is the number of pixels in the image. The coefficient
matrix of this system is non-symmetric, ill conditioned, dense, and huge. These properties
complicate the development of an efficient numerical algorithm. We know that using
direct methods for solving Equation (1) requires O(N3) and, hence, they are not applicable
here. For this system, iterative methods, like Krylov subspace methods, are applicable.
However, their convergence is too slow because they are sensitive to the condition numbers.
Hence, preconditioning is needed to accelerate the convergence of the Krylov subspace
methods. In this paper, we propose two block triangular preconditioners for Equation (1).
In the literature, it has been shown that such preconditioners are among the most effective
for solving problems of the saddle point type. Moreover, it is known that using the
exact triangular preconditioner leads to a preconditioned matrix with exactly two distinct
eigenvalues [25]. This means that we need at most two iterations to converge to the exact
solution. Since the coefficient matrix A is not symmetric, the suitable outer iterative method
is the GMRES method [27], and since the (2, 2)-block in the matrix A is symmetric positive
definite, the suitable inner iterative method is the CG method. However, using the GMRES
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Krylov subspace method as a preconditioner within a different Krylov subspace method
(the CG method) may lead to a changing preconditioner. In such cases, the preconditioner
matrix changes from step to step. For this reason, we use flexible GMRES (FGMRES) instead
of GMRES [27]. The flexibility here means that FGMRES is designed to be flexible in terms
of the choice of the inner Krylov subspace method and the choice of the preconditioner.
This flexibility allows FGMRES to adapt to different Krylov subspace methods. FGMRES
can be restarted after a certain number of iterations to control the memory usage and
computational cost, especially when solving multiple linear systems with different right-
hand sides. The main contributions of this work are follows:

• We propose two block triangular preconditioners and study the bounds of the eigenval-
ues of the preconditioned matrices. In addition, we demonstrate the effectiveness of our
algorithm in the numerical results by starting with the fixed point iteration (FPI) Method
as in [28] to linearize the nonlinear primal system

[
KTK + λLα

h(U
m)
]
Um+1 = KTZ, m =

0, 1, . . ., then we use the preconditioned conjugate gradient (PCG) method [29] for the
inner iterations. After that, we use FGMRES method for the outer iterations. We illustrate
the performance of our approach by calculating the peak signal-to-noise ratio (PSNR),
CPU-time, residuals and the number of iterations. Finally, we calculate the PSNR for
different values of the order of the fractional derivative, α, to show the impact of using
the TFOV model.

The remainder of this paper is organized as follows: Section 2 presents the mathe-
matical model of the image deblurring problem, different regularization models, three
definitions of the fractional derivative, and the Euler–Lagrange equations associated with
the TFOV model. System (1) is obtained at the end of this section. Section 3 presents all
theoretical contributions of this paper. Section 4 reports some numerical results that show
the efficiency of our preconditioners. Section 5 briefly states our conclusions.

2. Problem Setup

We know that blurring and noise affect the quality of the received image. To deblur an
image, we need a mathematical model of how it was blurred. The recorded image z and
the true (exact) image u are related by the equation

z = Ku + ε, (2)

where K denotes the following blurring operator:

(Ku)(x) =
∫

Ω
k(x, x′)u(x′)dx′, x ∈ Ω (3)

with translation-invariant kernel, k(x, x′) = k(x − x′), known as the point spread function
(PSF). ε is the additive noise function. Ω will denote a square in R2 on which the image
intensity is defined. When K is the identity operator, the problem (2) becomes image
de-noising. In this paper, we focus on de-blurring problem. The PSF function must be
known. However, if it is unknown, another technique named blind deconvolution can be
used [30]. The operator K is compact, so the problem (2) is ill-posed [31], and then the
resulting matrix systems from the discretization of this problem are highly ill-conditioned.
In this case, directly solving this problem is difficult. The most popular approach to obtain
a well-posed problem is to add a regularization term. Different regularization terms are
used in the literature, for example:

1. Tikhonov regularization [32] is used to stabilize the problem (2) and also called as
penalized least squares. In this case, the problem is then to find a u that minimize the
functional

F(u) =
1
2
‖ Ku − z ‖2 +λJ(u), (4)

with a small positive parameter λ called the regularization parameter that controls
the trade-off between the data fitting term (the first term) and the regularization term
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(the second term). ‖ · ‖ denotes the norm in L2(Ω). The functional J has to be known.
Common choices for the functional J are

J(u) =
∫

Ω
u2dx, (5)

the above functional gives what is known as Tikhonov regularization with the identity,
and

J(u) =
∫

Ω
| ∇u |2 dx, (6)

where | · | denotes Euclidean norm, and ∇ =
(

∂
∂x , ∂

∂y

)
. When u is discontinuous,

the functional in (5) often induces either oscillations or ringing. However, in the
functional (6), we need to assume that u is a smooth function. Although, this model
is easy to use and simple to calculate, it cannot preserve image edges. Hence, both
the above choices are unsuitable for image processing applications when we need to
recover sharp contrasts modeled by discontinuities in u [28].

2. Total Variation (TV): One of the most commonly used regularization models is the TV.
It was introduced for the first time [33] in edge-preserving image denoising by Rudin,
Osher and Fatemi (ROF) and it has improved in recent years for image de-noising,
de-blurring, in-painting, blind de-convolution, and processing [1–4,34–39]. When
using the TV model, the problem is then to find a u that minimizes the functional

F(u) =
1
2
‖ Ku − z ‖2 +λJTV(u), (7)

where
JTV(u) =

∫
Ω
| ∇u | dx. (8)

Note that, we do not require the continuity of u. Hence, (8) is a good regularization in
image processing. However, the Euclidean norm, | ∇u |, is not differentiable at zero.
Common modification is to add a small positive parameter β. The resulting is in the
modified functional:

JTV β(u) =
∫

Ω

√
| ∇u |2 +β2dx. (9)

The well-posedness of the above minimization problem (7) with the functional given
in (9) is studied and analyzed in the literature, such as in [1]. The success of using
TV regularization is that TV gives a balance between the ability to describe piecewise
smooth images and the complexity of the resulting algorithms. Moreover, the TV
regularization performs very well for removing noise/blur while preserving edges.
Despite the good contributions of the TV regularization mentioned above, it favors a
piecewise constant solution in the bounded variation (BV) space which often leads
to the staircase effect. Thus, stair casing remains one of the drawbacks of the TV
regularization. To remove the stair case effects, two modifications to the TV regu-
larization model have been used in the literature. The first approach is to higher
the order of the derivatives in the TV regularization term, such as the mean curva-
ture or a nonlinear combination of the first and second derivatives [40–45]. These
modifications remove/reduce the staircase effects and they are effective but they are
computationally expensive due to the increasing the order of the derivatives or due to
the nonlinearity terms. The second approach is to use the fractional-order derivatives
in the TV regularization terms as shown in [46,47].

2.1. Fractional-Order Derivative in Image Deblurring

The most important advantage of using fractional differential equations is their nonlo-
cal property. The integer order differential operator is a local operator but the fractional
order differential operator is nonlocal. This means that the next state of a system depends
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not only on its current state but also upon all of its historical states. This is more realistic
and it is one reason why fractional calculus has become more and more popular.

In image deblurring problems, the blurring is considered nonlocal in some cases and
local in others depending on the cause of the blur. For example, if a body is moving while
the background is stationary, then the blur is local and in case the camera is moving then
the blur is nonlocal. The blurring operator is a convolution operator that depends on the
definition of the kernel functions. In the case of a moving camera, the blurring operator
involves each pixel in the image, which means that the blurring process is a nonlocal. The
bulrring is nonlocal, in this case, so it is appropriate to choose a regularization operator with
the same nonlocal property. This property is available in operators that contain fractional
derivatives. Comparative studies have shown that fractional-order differentials are more
reliable than the integer-order differentials for enhancing edges in image processing. A
similar trend has been observed for the texture and area-preserving properties. Therefore,
images processed by fractional differentials are clearer and have higher contrast [48]. This
approach is widely used in image processing [5–8,49,50]. These works have shown that the
fractional-order derivative performs well in achieving a satisfactory compromise between
avoiding staircasing and preserving important fine-scale features such as edges and textures.
In this paper, we compare the results of the usual TV model with the TFOV model for two
image deblurring problems. From Figures 1–6, we can see that the TFOV shows better edge
enhancement results than TV in some regions where we can observe that the PSNR at α = 1
is lower than PSNR at α > 1.

Example 1. We used the exact Golden House image plotted in Figure 9, the deblurred Golden
House image using the TV-model plotted in Figure 27, and the deblurred Golden House image
using the TFOV-model plotted in Figure 29. We took a vertical line almost in the middle of these
images and plotted the results of the cross sections in Figure 1. In Figure 1, we highlighted three
corners (boxes). From Figures 1–6, we can clearly see that the TFOV-based image deblurring results
are smoother than the TV-based image deblurring. Additionally, in each corner TV based image
deblurring creates a higher error than TFOV. This shows that TFOV-based image deblurring is
better and edge-preserving.

Figure 1. Cross sections.
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Figure 2. Right box.

Figure 3. Middle box.

Figure 4. Left box.

Figure 5. TV-error.
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Figure 6. TFOV-error.

The numerical results in the above examples reflect good performance, and motivating
us to use the TFOV model in our preconditioners.

2.2. The TFOV-Model

Let BVα(Ω) denotes the space of functions of α-bounded variation on Ω defined by

BVα(Ω) :=
{

u ∈ L1(Ω)|TVα(u) < +∞
}

.

with the BVα norm ||u||BVα = ||u||L1 +
∫

Ω |∇αu|dx. The parameter α represents the order
of the fractional derivatives, the fractional-order total variation of u, TVα is defined by

TVα(u) =
∫

Ω
|∇αu|dx := sup

φ∈T

∫
Ω
(−u divαφ)dx,

and divαφ = ∂αφ1
∂x + ∂αφ2

∂y , ∂αφ1
∂x and ∂αφ2

∂y denote the fractional-order derivative along the x
and y directions respectively. The space T denotes the space of special test functions

T :=
{

φ ∈ C�
0(Ω,R2)|φ(x)| ≤ 1, ∀x ∈ Ω

)
where |φ(x)| =

√
Σ2

i=1φ2
i and C�(Ω,R2) denote the space of α-order continuously differ-

entiable functions. Hence, when the TFOV- model is used, the problem is then to find a
u ∈ BVα(Ω) ∩ L2(Ω) that minimizes the functional

Fα(u) =
1
2
‖ Ku − z ‖2 +λJα

TV β(u) (10)

where Jα
TV β is called the modified total fractional-order variation and defined by

Jα
TV β(u) =

∫
Ω

√
| ∇αu |2 +β2dx, (11)

where |∇αu|2 = (Dα
xu)2 + (Dα

y u)2 where Dα
x , Dα

y are the fractional derivative operators
along the x and y directions respectively. Existence and uniqueness of a minimizer to the
above problem (10) with the functional (11) are studied and analyzed in the literature [8,51].

2.3. Fractional-Order Derivatives

Several definitions have been proposed for fractional-order derivatives [52–54]. We
shall present some of them below. For a systematic presentation of mathematics, a fractional-
order derivative is denoted as function operator Dα

[a,x], where a and x are the bounds of
the integrals, and α is the order of the fractional derivative such that 0 < n − 1 < α < n
where n = [α] + 1 and [·] is the greatest integer function.
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1. Riemann–Liouville (RL) definitions: The left- and right-sided RL derivatives of
order α of a function f (x) are given as follows:

Dα
[a,x] f (x) =

1
Γ(n − α)

(
d

dx

)n ∫ x

a
(x − t)n−α−1 f (t)dt (12)

and

Dα
[x,b] f (x) =

(−1)n

Γ(n − α)

(
d

dx

)n ∫ b

x
(t − x)n−α−1 f (t)dt (13)

where Γ(·) is the gamma function, defined by

Γ(z) =
∫ ∞

0
e−ttz−1dt.

2. Grünwald–Letnikov (GL) definitions: The left- and right-sided GL derivatives are
defined by

GDα
[a,x] f (x) = lim

h→0

Σ
[ x−a

h ]

j=0 (−1)jCj
α f (x − jh)

hα
(14)

and

GDα
[x,b] f (x) = lim

h→0

Σ
[ b−x

h ]

j=0 (−1)jCj
α f (x + jh)

hα
(15)

where

Cj
α =

α(α − 1) . . . (α − j + 1)
j!

. (16)

3. Caputo (C) definitions: The left- and right-sided Caputo derivatives are defined by

CDα
[a,x] f (x) =

1
Γ(n − α)

∫ x

a
(x − t)n−α−1 f (n)(t)dt (17)

and
CDα

[x,b] f (x) =
(−1)n

Γ(n − α)

∫ b

x
(t − x)n−α−1 f (n)(t)dt (18)

where f (n) denotes the nth-order derivative of function f (x).

2.4. Euler-Lagrange Equations

In this subsection, we present the Euler-Lagrange equations associated with the TFOV
in image de-blurring problem.

Theorem 1. If α ∈ (1, 2), the Euler-Lagrange equations for the functional given in (10) are:

K∗(Ku − z) + λLα(u)u = 0, in Ω

Dα−2

(
∇αu√|∇αu|2 + β2

)
·�n = 0, Dα−1

(
∇αu√|∇αu|2 + β2

)
·�n = 0, on ∂Ω,

(19)

where K∗ is the adjoint operator of the integral operator K and the nonlinear deferential operator
Lα(u) is given by:

Lα(u)w = (−1)n∇α.

(
∇αw√|∇αu|2 + β2

)
. (20)
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Proof. Let ν ∈ Wα
1 (Ω) be a function. Then for u ∈ Wα

1 (Ω) ⊂ BVα(Ω), the first order
Gateaux derivative of the functional Fα(u) of (10) in the direction of ν is

∂Fα(u)ν
∂ν

= limt→0
Fα(u + tν)− Fα(u)

t
(21)

= lim
t→0

G1(u + tν)− G1(u)
t

+ lim
t→0

G2(u + tν)− G2(u)
t

,

where G1(u) = 1
2

∫
Ω(Ku − z)dx and G2(u) = λJα

TVβ(u). By using the Taylor series in the
direction of t, we have

∂Fα(u)ν
∂ν

=
∫

Ω
K∗(Ku − z)dx +

∫
Ω
(W. �α ν)dx, (22)

where W = λ ∇αu√
|∇αu|2+β2

. Now consider,

∫
Ω
(W. �α ν)dx = (−1)n

∫
Ω
(νCdivαW)dx (23)

−
n−1

∑
j=0

(−1)j
∫ 1

0
Dα+j−n
[a,b] W1

∂n−j−1ν(x)

∂xn−j−1
1

∣∣∣x1=1

x1=0
dx2 −

n−1

∑
j=0

(−1)j
∫ 1

0
Dα+j−n
[a,b] W2

∂n−j−1ν(x)

∂xn−j−1
2

∣∣∣x2=1

x2=0
dx1,

where we know that n = 2 for 1 < α < 2.
Case-I: If u(x)

∣∣∣
∂Ω

= b1(x) and ∂u(x)
∂n

∣∣∣
∂Ω

= b2(x), so
(

u(x) + tν(x)
)∣∣∣

∂Ω
= b1(x) and

∂

(
u(x)+tν(x)

)
∂n

∣∣∣
∂Ω

= b2(x). Then it suffices to take ν ∈ C1
0 (Ω,R), this implies

∂iν(x)
∂ni

∣∣∣
∂Ω

= 0, i = 0, 1,

⇒ ∂n−j−1ν(x)

∂xn−j−1
1

∣∣∣
x1=0,1

=
∂n−j−1ν(x)

∂xn−j−1
2

∣∣∣
x2=0,1

= 0, n − j − 1 = 0, 1.

Hence (22) reduces to (19).
Case-II: If ν ∈ Wα

1 (Ω), then

∂n−j−1ν(x)

∂xn−j−1
1

∣∣∣
x1=0,1

�= 0,
∂n−j−1ν(x)

∂xn−j−1
2

∣∣∣
x2=0,1

�= 0, n − j − 1 = 0, 1.

So boundary terms in (23) can only become zero if

Dα+j−n
[a,b] W1

∣∣∣
x1=0,1

= Dα+j−n
[a,b] W2

∣∣∣
x2=0,1

= 0

⇒ Dα+j−nW.n = 0, j = 0, 1.

This completes the proof.

Note that (19) is a nonlinear integro-differential equation of elliptic type. Equation (19)
can be expressed as a nonlinear first order system [55]:

K∗Ku + λ∇α.�v = K∗z, (24)

−∇αu +
√
| ∇αu |2 +β�v =�0, (25)
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with the dual, or flux, variable

�v =
∇αu√| ∇αu |2 +β

. (26)

We apply the Galerkin method to (24)–(25) together with the midpoint quadrature for the
integral term and cell-centered finite difference method for the derivative part.

2.5. Discretization of the Fractional Derivative

First, we divide the square domain Ω = (0, 1)× (0, 1) into N2 equal squares (cells)
where N denotes the number of equispaced partitions in the x or y directions. Then,
we follow the same discretization in [8,51]. We define a spatial partition (xk, yl) (for
all k, l = 0, 1, . . . , N + 1) of image domain Ω. Assume u has a zero Dirichlet boundary
condition, we consider the discretization of the α-order fractional derivative at the inner
point (xk, yl) (for all k, l = 0, 1, . . . , N) on Ω along the x-direction by using the shifted
Grünwald approximation approach [56,57]

Dα f (xk, yl) =
δα

0 f (xk, yl)

hα
+ O(h) =

1
2

(
δα− f (xk, yl)

hα
+

δα
+ f (xk, yl)

hα

)
+ O(h)

=
1

2hα

(
Σk+1

j=0 ωα
j f l

k−j+1 + ΣN−k+2
j=0 ωα

j f l
k+j−1

)
+ O(h)

(27)

where f l
s = fs,l and ωα

j = (−1)j
(

α
j

)
j = 0, 1, . . . , N and ωα

0 = 1, ωα
j = (1 − 1+α

j )ωα
j−1 for

j > 0. Observe from (27) that the first order estimate of the α-order fractional derivative
D[a,b]

α f (xk, yl) along the x-direction at the point (xk, yl) with a fixed yl is a linear com-
bination of N + 2 values f l

0, f l
1, . . . , f l

N , f l
N+1. After incorporating the zero boundary

condition in the matrix approximation of fractional derivative, all N equations of fractional
derivatives along the x direction in (27) can be written simultaneously in the matrix form⎡⎢⎢⎢⎢⎢⎢⎣

δα
0 f (x1, yl)

δα
0 f (x2, yl)

...

...
δα

0 f (xN , yl)

⎤⎥⎥⎥⎥⎥⎥⎦ =

1
2hα

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2ω1
α ω0

α + ω2
α ω3

α . . . ωN
α

ω0
α + ω2

α 2ω1
α . . . . . .

...

ω3
α . . . . . . . . . ω3

α

...
. . . . . . 2ω1

α ω0
α + ω2

α

ωN
α . . . ω3

α ω0
α + ω2

α 2ω1
α

⎤⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

Bα
N

⎡⎢⎢⎢⎢⎢⎢⎣

f l
1

f l
2
...
...

f l
N

⎤⎥⎥⎥⎥⎥⎥⎦.

From the definition of fractional-order derivative (27), for any 1 < α < 2, the coefficients
ωk

α have the following properties:

(1) ω0
α = 1, ω1

α = −α < 0, 1 ≥ ω2
α ≥ ω3

α ≥ . . . ≥ 0.
(2) ∑∞

k=0 ωk
α = 0, ∑m

k=0 ωk
α ≤ 0(m ≥ 1).

Hence by the Gershgorin circle theorem, we can derive that matrix Bα
N is a symmetric

and negative definite Toeplitz matrix (i.e., −Bα
N is a positive definite Toeplitz matrix). Let

U ∈ RN×N denote the solution matrix at all nodes (khx; lhy), k, l = 1, . . . , N corresponding
to x-direction and y-direction spatial discretization nodes. Denote by �u ∈ RN2×1, the
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ordered solution vector of U. The direct and discrete analogue of differentiation of arbitrary
α order derivative is

ux
α = (IN ⊗ Bα

N)�u = Bx
α�u (28)

Similarly, all values of α-th order y-direction derivative of u(x; y) at these nodes are approx-
imated by

uy
α = (Bα

N ⊗ IN)�u = By
α�u, (29)

where

ux
α = (u11

α, . . . , uN1
α, u12

α, . . . , uNN
α)T , uy

α = (u11
α, . . . , u1N

α, u21
α, . . . , uNN

α)T , (30)

�u = u11, u12, . . . , uNN and ⊗ denotes the Kronecker product. For more details in the
discretization, we refer to [54,58]. Now, using the cell center finite difference Method
(CCFDM), the fractional discretization shown above, and using the fact that [(−1)n∇α·] is
the adjoint operator of the operator ∇α, then (24)–(25) leads to the following system

V + KhU = Z,

K∗
hV − λ(Lα

hUm)Um+1 = 0, m = 0, 1, 2 . . . NF,
(31)

where NF is the number of Fixed-Point Iterations used to linearize the nonlinear term in
the square root in (26). The matrix Kh is obtained form using the midpoint quadrature for
the integral operator as follows:

(Ku)(xi, yj) ≈ [KhU]ij, i, j = 1, 2, . . . , N. (32)

with entries [KhU]ij,lm = h2k(xi − xj, yl − ym). With using the lexicographical order, Kh is
a block Toeplitz with Toeplitz block (BTTB) matrix. The need for BTTB property will be
discussed later in the paper. The discrete scheme of the matrix Lα

hU is given by:

(Lα(Um))Um+1 = [BN(D1(Um)) ◦ (BNUm+1)] + [(D2(Um) ◦ (Um+1BM))]BN (33)

where ◦ is the point wise multiplication and m is the m − th Fixed-Point Iteration. U is an
N × N-size reshaped matrix of the vector u and the matrices D1(Um) and D2(Um) are the di-
agonal of the Hadamard inverses of the non-zero matrices Bx

α(Um) and
By

α(Um) respectively.

2.6. Difficulties in TFOV-Model Compared to TV-Model

In this subsection, we compare the TFOV-system (1):[
In Kh
−K∗

h λLα
h(Uh)

]
︸ ︷︷ ︸

Aα

[
Vh
Uh

]
︸ ︷︷ ︸

x

=

[
Zh
0

]
︸ ︷︷ ︸

b

,

and the following TV-system:[
In Kh
−K∗

h λLh(Uh)

]
︸ ︷︷ ︸

A

[
Vh
Uh

]
︸ ︷︷ ︸

x

=

[
Zh
0

]
︸ ︷︷ ︸

b

. (34)

In the TFOV system (1), the fractional matrix Lα
h is obtained from discretizing a fractional

deferential operator and it is dense. The density property leads to an expensive matrix-
vector multiplication. In this case, the coefficient matrix Aα in the system (1) contains
three dense submatrices, while in TV system (34), the non-fractional matrix Lh is obtained
from discretizing a non-fractional deferential operator and it is a sparse matrix, then the
coefficient matrix A in the system (34) contains only two dense submatrices. Further,
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the Schur complement matrix associated with (1) is a sum of two dense matrices while
the Schur complement matrix associated with (34) is a sum of one dense matrix and one
sparse matrix.

3. Preconditioning Technique

In the literature, it has been shown that block triangular preconditioners are among
the most effective preconditioners for solving saddle point problems. In this paper, we
develop two block triangular preconditioners for solving (1). First, we present our main
preconditioner matrix [12] and its inverse:

P =

[
In K
0 −S

]
, P−1 =

[
In KS−1

0 −S−1

]
, (35)

where S = K∗K + λLα is the Schur complement matrix. We notice that the Schur comple-
ment matrix contains the product (K∗K) which is not a BTTB matrix. We know that a BTTB
matrix-vector product computation cost O(N log N) but using a BCCB extension. Since
this extension is not an easy task in some cases, the idea of using a circulant matrix as a pre-
conditioner for a Toeplitz matrix is needed. This idea was first proposed by Strang [59] and
Olkin [60] and extended by others to block Toeplitz systems for example Chan et al. [61].
Many researchers use Toeplitz preconditioners and block Toeplitz preconditioners for
Toeplitz systems. For instance, Chan et al. [62], and Lin and Fu-Rong [63]. Band Toeplitz
preconditioner and band BTTB preconditioner are proposed by Chan and Raymond [64]
and Serra and Stefano [65]. In Lin et al. [66], BTTB preconditioners for BTTB systems are
discussed. Several kinds of circulant preconditioners have been proposed to be good pre-
conditioners, see for instance [59,62,67–69]. Several kinds of circulant preconditioners have
been proposed and proven to be good preconditioners. Therefore, the PCG methods with
circulant preconditioners converge very fast when they are used to solve Toeplitz systems.
Motivated by these papers, we propose the following two block triangular preconditioners:

P1 =

[
In K
0 −S1

]
, P2 =

[
In K
0 −S2

]
, (36)

where S1 = (I + λLTV) and S2 = (C∗C + λLTV). Where I is the denoising operator, the
identity matrix is a circulant matrix, and LTV comes from discretaizing the TV model
(α = 1) which is a sparse matrix and C is the Strang circulant approximation of the matrix
K [59]. These circulant approximations are very important to allow us to use the FFT and
the convolution theorem. We know that all circulant matrices can be diagonalized by the
Fourier matrix, see [70]. Also using FFT and the convolution theorem will reduce the
cost of the computation from O(N2) into O(N log N). Moreover, all that is needed for
computation is the first column or the first row of the circulant matrix, which decreases
the amount of required storage. This reduction in the computations and storage leads to
efficient solvers for our problem (1).

4. Preconditioned GMRES Algorithm

In this section, we give a detailed algorithms for using our preconditioner P (P1 and
P2). In Algorithm 1, GMRES method is used to solve the linear system (1).

In Algorithm 1, in Steps 3 and 7, we need to solve a matrix times a vector of the form[
In K
0 −S

]
︸ ︷︷ ︸

P

[
x1
x2

]
︸ ︷︷ ︸

x

=

[
b1
b2

]
︸ ︷︷ ︸

b

, (37)

where S = S1 or S = S2. To do the above multiplications, we use the conjugate gradients
method as in Algorithms 2 and 3:
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Algorithm 1 Preconditioned GMRES Algorithm

1: Choose x0 as the initial guess
2: Compute r̃0 = b − Ax0

3: Solve P r0 = r̃0

4: Let β0 = ‖r0‖, and compute v(1) = r0/β0
5: for k = 1, 2, . . . until βk < τβ0 do

6: w̃(k+1)
0 = Av(k)

7: Solve P w(k+1)
0 = w̃(k+1)

0
8: for l = 1 to k do
9: hlk = 〈wl

(k+1), v(l)〉
10: wl

(k+1) = wl
(k+1) − hlkv(l)

11: end for
12: hk+1,k = w(k+1)

k+l /hk+1,k

13: Compute y(k) such that βk = ‖β0e1 − Ĥky(k)‖ is minimized, where
Ĥk = [hij]1≤i≤k+1≤,1≤j≤k and e1 = (1, 0, . . . , 0)T

14: end for
15: x(k) = x0 + Vky(k)

Algorithm 2 P1-Conjugate Gradient Method Algorithm.
1: x1 = x(1 : n) = b(1 : n)− Kx2;
2: S1 = P1(n + 1 : 2n, n + 1 : 2n);
3: b2 = b(n + 1 : 2n);
4: x2 = x(n + 1 : 2n)
5: Solve for x2 in the system −S1x2 = b2 using conjugate gradient method.

Algorithm 3 P2-Conjugate Gradient Method Algorithm.
1: x1 = x(1 : n) = b(1 : n)− Kx2;
2: S2 = P2(n + 1 : 2n, n + 1 : 2n);
3: b2 = b(n + 1 : 2n);
4: x2 = x(n + 1 : 2n);
5: Solve for x2 in the system −S2x2 = b2 using conjugate gradient method.

Eigenvalues Estimates

In this subsection, we need to study the eigenvalues of the exact preconditioned matrix
P−1 A. Since P−1 A and AP−1 are similar matrices, they have the same eigenvalues. Hence
we study the eigenvalues of the matrix AP−1.

Theorem 2. If the linear system (1) is left preconditioned by the matrix P, then the preconditioned
matrix is

AP−1 =

[
In 0

−K∗ −In

]
, (38)

and its minimal polynomial is (ν − 1)(ν + 1) where ν is the eigenvalue of the matrix AP−1.

Proof. Since AP−1 and P−1 A are similar, it is easy to study the eigenvalues of AP−1 instead
of P−1 A. From the form of AP−1, we notice that the preconditioned matrix has only two
distinct eigenvalues ±1 and then we notice that a minimal polynomial of degree at most
2. Hence, when Krylov subspace methods like FGMRES is used, then it converges in 2
iterations or less, in exact arithmetic. This property is of practical use when inexpensive
approximations of the Schur complement exist. However, when we approximate the
Schur complement matrix S by the matrix S1 or S2, we have the following eigenvalue
estimation.
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Theorem 3. If the linear system (1) is left preconditioned by the matrix P1 or P2, then the eigenval-
ues of the preconditioned matrices

A(P1)
−1 =

[
In 0

−K∗ −SS1
−1

]
, and A(P2)

−1 =

[
In 0

−K∗ −SS2
−1

]
(39)

are described as follows:
ν+ = {1}, and ν− ∈ [σ1, σn], (40)

where σ1 and σn are the minimum and the maximum eigenvalues of the matrix (−SS1
−1) or

(−SS2
−1).

Example 2. In this example, our aim is to verify that the bounds given in the above theorem are
matched. We take N = 16, i.e., n = (16)2 = 256 and we fix α = 1.4, β = 0.1, λ = 0.001. For
this task, we use the preconditioner P1 and we use the test image “Golden House”. We notice that
the positive eigenvalues are equal to one whereas the negatives are contained in the interval [σ1, σn]
where σ1 and σn are defined in the above theorem. In this example σ1

∼= −1.01 and σn ∼= −1. The
results of this example are plotted and shown in Figures 7 and 8. Moreover, in this experiment,
we find that the cond(A) = 3.2915 × 104 and cond((P1)

−1 A) = 1.6219 which indicate that our
preconditioner is effective.

Figure 7. Eigenvalues of A.

Figure 8. Eigenvalues of (P1)
−1 A.
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From Figures 7 and 8, we notice that the preconditioned matrix has a good cluster-
ing behavior of the eigenvalues. The eigenvalues are clustering around 1 and −1. This
clustering verifies the above theorem guarantees fast convergence of the FGMRES method.

5. Numerical Results

In this section, we experimentally study the performance of the FGMRES method
with the proposed preconditioners P1 and P2. In the following numerical experiments, we
implement Algorithms 1–3, and we take the zero vector to be the initial guess. We stopped
the outer iterations (FGMRES) when the residuals satisfies ‖b − Axk‖ < 10−7 ‖ b ‖ where
xk = (vk, uk) is the solution vector in the k − th iteration. We used only one iteration of the
Fixed-Point Iteration method to linearize the nonlinear term and then we used the PCG for
the inner iterations and it is stopped when the tolerance is 10−9. No restarting is used for
FGMRES algorithm. For this purpose, two famous 128 × 128 test images, called Retinal
Image and Golden House are used in the experiments, as shown in Figures 9 and 10 and
they are blurred by the motion kernel as shown in Figure 11.

Figure 9. Golden house image.

Figure 10. Retinal image.

Figure 11. Shape of the kernel.
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In order to show the performance of the proposed preconditioners, we need to calculate
the PSNR which is commonly used in the signal processing field. It can be calculated by
the following formula:

PSNR(ue, ud) = 10 log

⎛⎜⎝ n max1≤i,j≤n | ue |
∑nx

i=1 ∑nx
j=1

(
ueij − udij

)2

⎞⎟⎠ (41)

where ue and ud are the exact and deblurred images, respectively. Bigger PSNR means
better deblurring performance.

5.1. The Parameters β and λ Selecting

The value of the parameters β and λ also play a vital role in the performance of the
numerical technique used for the image deblurring model. Small values of β affect the
convergence rate of the iterations in the numerical technique but do not change the quality
of the deblurred images. We have chosen β = 1, β = 0.1 and β = 0.01 which are commonly
used in the literature [28]. We noticed no significant difference in the results between
these values. Regarding the values of the regularization parameters λ, we have chosen λ
small enough, 10−3, 10−5 10−6 and 10−8 to ensure the best deblurring performance of the
corresponding deblurring model. These values are commonly used in the literature [28].

Example 3. In this example, we show the impact of our preconditioners on the convergence speed
of the FGMRES algorithm for the fractional-order image deblurring problem. We fix N = 128,
β = 0.1, and the regularization parameter λ = 0.001. No restarting is used for the FGMRES
algorithm and it is stopped when the tolerance is 10−7. We use the test image “Golden House”. In

each FGMRES iteration, the logarithm of ||r(k) ||2
||r(0) ||2 is calculated and then plotted for different values

of the regularization parameter λ in Figures 12 and 13.

Figure 12. Residual versus iterations number when λ = 1 × 10−3.
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Figure 13. Residual versus iterations number when λ = 1 × 10−5.

In Figures 12 and 13, we show the algorithm of the ratio of the current residual norm to
the initial residual norm, plotted against the number of FGMRES iteration, for different values
of the regularization parameter λ. NP stands for FGMRES without preconditioners, P1 stands
for FGMRES with the preconditioner P1 and P2 stands for FGMRES with the preconditioner
P2. The results in Figures 12 and 13 show that our block triangular preconditioners P1 and P2
significantly accelerate the convergence of FGMRES, compared to FGMRES without preconditioners.
Additionally, P1 outperforms P2.

Example 4. In this example, we show the effectiveness of our proposed preconditioners in deblurring
images. We used two blurred images (of size 128 × 128) shown in Figures 14 and 15. We select the
following parameters: α = 1.8, β = 1, and λ = 0.00001. We used our preconditioners P1 and P2 to
deblur the images and the results are shown in Figures 16–23.

Figure 14. Golden house image (blurred).

From Figures 16–23, the results show that our preconditioners are effective in deblurring
images, with significant improvement in the PSNR. For example, the PSNR of deblurred image in
Figure 16 is 49.41, compared to the PSNR 22.978 for the blurred image in Figure 23.
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Figure 15. Retinal image (blurred).

Figure 16. Using P1 with α = 1.

Figure 17. Using P2 with α = 1.

Figure 18. Using P1 with α = 1.8.
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Figure 19. Using P2 with α = 1.8.

Figure 20. Using P1 with α = 1.

Figure 21. Using P2 with α = 1.

Figure 22. Using P1 with α = 1.8.
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Figure 23. Using P2 with α = 1.8.

Example 5. In this example, we compare the total CPU-time (in seconds) required for the conver-
gence of the FGMRES with and without our proposed preconditioners P1 and P2. The results are
shown in Table 1 for different N, α, β, λ.

Table 1. The CPU time comparison of GMRES and FGMRES.

Parameters Iterations CPU-Time

N α λ β NP P1 P2 NP P1 P2

32 1.3 10−3 1 53 30 32 3.44 1.88 1.98

64 1.8 10−8 0.1 301 166 194 39.71 20.97 20.55

128 1.6 10−6 0.01 178 68 91 76.64 35.86 38.22

From Table 1, the results show that both P1 and P2 can significantly reduce the CPU-time
required for convergence, compared to FGMRES without preconditioners. For example, for N = 128,
α = 1.6, β = 0.01, and λ = 10−6, the CPU-time for FGMRES without preconditioning is 76.64 s,
while the CPU-time for FGMRES with P1 is 35.86 s and the CPU-time for FGMRES with P2 is
38.22. Overall, the results show our proposed preconditioners P1 and P2 are effective in accelerating
the convergence of FGMRES for the fractional-order image deblurring problem. This can lead to
significant reductions in CPU-time, which is important for practical applications.

5.2. GMRES versus FGMRES

In this experimental result, we compared the performance of GMRES and FGMRES
with our preconditioner P1 using the following parameters: N = 64, α = 1.4, β = 0.1, and
λ = 10−5. We used the test image “Golden House”. We used both GMRES and FGMRES.
In this example, both GMRES and FGMRES were stopped when the tolerance was 10−7

and no restarting is used. The comparison results are shown in Figure 24, where P1GM
stand for GMRES with P1 and P1FG stands for FGMRES with P1. As shown in the figure,
FGMRES is performed slightly better than GMRES.

In the following numerical result, we show the comparison of our TFOV-based algo-
rithm with TV-based algorithm [28].
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Figure 24. FGMRES vs. GMRES.

Example 6. In this example, we compare our TFOV- based algorithm with the TV-based algorithm
on the nontextured peppers image. We use a Gaussian kernel with standard deviation σ = 1.5. The
results are shown in Figures 25–30. The size of each subfigure is 256 × 256. The subfigures are as
follows: (a) exact image (b) blurry image (c) deblurred image by TV (d) deblurred image by NP (e)
deblurred image by P1 and (f) deblurred image P2. For numerical calculations, we used the motion
kernel. For the TV-based method we used β = 1 and λ varying from 10−2 to 10−4, according
to [28]. The parameters for TFOV-based method are listed in Table 2. For comparison we used three
different values of N: 64, 128 and 256. Their corresponding blurred PSNRs are 20.1827, 20.1124
and 20.5531 respectively. For the stopping criteria of the numerical methods, we used tolerance
tol = 10−7.

Remark 1.

1. Figures 27–30 are almost similar, indicating that all methods generate the same quality
results.

2. From Figures 31–33, we can clearly see the effectiveness of preconditioning. For all values
of N, the number of P1 and P2 iterations is much lower than the number of TFOV-based NP
and TV-based P1 iterations to reach the required accuracy tol = 10−7. The later fixed-point
iterations also have similar results.

3. From Table 2, we observed that the PSNR by the TFOV-based PGMRES method is almost the
same as that of the ordinary TFOV-based GMRES method, but much higher than that of the
TV-based P1 method for all values of N. However, the P1 and P2 methods generate this better
PSNR in much fewer iterations. For example, to achieve a better PSNR the P1 method needs
only 18 iterations, and the P2 method needs only 20 iterations for N = 64. However, the NP
method needs 120+ iterations to get the same PSNR. The TV-based P1 method also takes 120+
iterations to get its lower PSNR. The same is the case for other values of N. This means that
the TFOV-based FGMRES method is faster than the TFOV-based GMRES and TV-based P1
methods.
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Figure 25. Peppers image (exact).

Figure 26. Peppers image (blurred).

Figure 27. Using TV (α = 1).

Figure 28. Using NP.
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Figure 29. Using P1 with α = 1.9.

Figure 30. Using P2 with α = 1.9.

Figure 31. N = 64.

Figure 32. N = 128.
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Figure 33. N = 256.

Table 2. The PSNR Comparison of TV, NP, P1 and P2.

Parameters Iterations Deblurred PSNR

N α λ β TV (α = 1) NP P1 P2 TV (α = 1) NP P1 P2

64 1.6 10−4 1 120+ 120+ 20 18 47.2230 48.6422 49.0131 48.9233

128 1.8 10−4 1 120+ 120+ 40 22 45.2243 46.0352 46.8526 46.8957

256 1.9 10−7 1 120+ 120+ 60 38 40.3331 44.1220 44.6277 44.6241

Example 7. In this example, we utilized satellite images used by Chowdhury et al. [71]. The images
underwent deliberate blurring and were corrupted by Poisson noise, resulting in the presence of
blurring artifacts. To achieve the blurring, we applied a kernel with specific parameters, namely, we
used the Gaussian build in kernel “ f special(′gaussian′, 9, sqrt(3))′′. The introduction of Poisson
noise to the image presents a substantial challenge for most deblurring techniques, as this type of
noise frequently occurs in scenarios involving photon counting across various imaging methods.
Simultaneously, blurring is an inevitable consequence due to the underlying physical principles of
the imaging system, which can be thought of as the convolution of the image with a point spread
function. For the sake of comparison, we chose to employ the non-blind fractional order TV-based
algorithm (NFOV) proposed by Chaudhury et al. [71]. The restored satellite images can be seen in
Figures 34–38, with each image sized at 128 × 128. We configured the parameters for the NFOV
method as specified in the reference by Chowdhury et al. [71]. For comparison, we have used two
different values of N. These are 64 and 128. Their corresponding blurred PSNR are 20.2985 and
20.4559 respectively. The computational technique’s stopping criterion is determined by a tolerance
value of tol = 10−7. Additional details regarding this experiment can be located in Table 3.

Remark 2. Upon examining Figures 35–38 and Table 3, it becomes apparent that the results
generated by all methods are virtually indistinguishable. Nevertheless, our proposed methods
(GMRES and FGMRES) exhibit slightly higher PSNR values while demanding significantly less
CPU time. This observation underscores the improved efficiency and speed of our suggested methods
(GMRES and FGMRES) in comparison to the NFOV technique.

Table 3. The PSNR Comparison of NFOV, NP, P1 and P2.

Parameters Iterations Deblurred PSNR

N α λ β NFOV NP P1 P2 NFOV NP P1 P2

64 1.7 10−4 1 120+ 120+ 41 26 25.9869 26.5625 26.7861 26.8283

128 1.9 10−7 1 120+ 120+ 65 45 24.1417 25.1908 25.4312 25.6952
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Figure 34. Satel image (blurred).

Figure 35. Using NFOV.

Figure 36. Using NP.
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Figure 37. Using P1 with α = 1.9.

Figure 38. Using P2 with α = 1.9.

6. Conclusions

In this paper we have proposed two block triangular preconditioners for solving the
generalized saddle point system which is derived from discretizing the Euler Lagrange
equations associated with the TFOV in image de-blurring based problems. We have
investigated the performance of the proposed preconditioners with the FGMRES method.
We have tested this method on three types of digital images. We have also compared
our algorithm with TV based algorithm. Our experiments show that the block triangular
preconditioners are very effective. We have also shown that our technique improves
the quality of the reconstruction images via calculation of the PSNR. We showed the
performance of both GMRES and FGMRES with our proposed preconditioner and we
concluded that FGMRES is slightly better than GMRES. Few iterations and CPU-time are
needed to obtain a fast rate of convergence and good de-blurring performance. Circulant
approximations are used in the first term of the Shur complement to reduce the cost of the
computation from O(N2) into O(N log N) and reduce the storage. The spectrums of the
preconditioned matrices are clustered around 1 and −1.
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Abstract: The theory of convexity pertaining to fractional calculus is a well-established concept that
has attracted significant attention in mathematics and various scientific disciplines for over a century.
In the realm of applied mathematics, convexity, particularly in relation to fractional analysis, finds
extensive and remarkable applications. In this manuscript, we establish new fractional identities.
Employing these identities, some extensions of the fractional H-H type inequality via generalized
preinvexities are explored. Finally, we discuss some applications to the q-digamma and Bessel
functions via the established results. We believe that the methodologies and approaches presented in
this work will intrigue and spark the researcher’s interest even more.

Keywords: convex function; invex sets; preinvex functions; Hölder’s inequality; power mean
inequality

1. Introduction

Convex inequalities are mathematical inequalities involving convex functions. A
convex inequality is similar to the definition of a convex function, but it applies to the
inequalities formed by these functions. In order to design constraints that limit the viable
region to convex sets, convex inequalities are crucial in optimization issues. Convexity
is well known as playing a significant and critical role in a range of domains such as
economics, finance, optimization, game theory, statistical theory, quality management, and
numerous sciences. For the literature regarding convexity, see the references [1–14].

Inequalities are an amazing mathematical tool due to their importance in fractional
calculus, traditional calculus, quantum calculus, stochastic, time-scale calculus, fractal sets,
and other fields. The crucial mathematical tool that connects integrals and inequalities,
integral inequalities provide insights into the behavior of functions over particular intervals.
For the literature regarding inequalities, see the references [15–19].

Fractional calculus, which focuses on fractional integration across complex domains,
has recently acquired popularity due to its practical applications and has piqued the cu-
riosity of mathematicians. The research of well-known inequalities, such as Ostrowski,
Simpson, and Hadamard, inspired the study of fractional integral inequality. Transform the-
ory, engineering, modeling, finance, mathematical biology, fluid flow, natural phenomenon
prediction, healthcare, and image processing are all domains where fractional calculus
is used.
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The goal of this article is to prove some integral inequalities for derivable mapping
whose absolute values are preinvex. Next, we will review some concepts in invexity
analysis that will be utilized throughout the paper (see [20–24] and references therein).
The idea of convexity is a strong and magnificent tool for dealing with a huge range of
applied and pure science problems. Many researchers have recently devoted themselves
to researching the properties and inequalities associated with the topic of convexity in
different areas, (see [25,26] and the references therein).

We constructed this manuscript in the following way: first, we explore some fun-
damental ideas and definitions in Section 2. In Section 3, we investigate and prove new
integral identities. In Section 4, we investigate some applications involving modified Bessel
functions and q-digamma functions. Lastly, in Section 5, future directions and conclusions
of the newly discussed concept are elaborated.

2. Preliminaries

The main objective of this section is to remember and discuss specific related ideas
and concepts that are pertinent to our analysis in later sections of this paper.

Jensen introduced the term convexity for the first time in the following manner:

Definition 1 ([27]). A mapping Π : K ⊆ R → R is said to be convex if

Π(ιτ1 + (1 − ι)τ2) ≤ ιΠ(τ1) + (1 − ι)Π(τ2),

for all τ1, τ2 ∈ K and ι ∈ [0, 1].

Definition 2 ([28]). The term invexity (ξ-connected set) is defined on a set K ⊂ Rn with respect
to ξ(∗, ∗), if τ1, τ2 ∈ K and ι ∈ [0, 1]

τ1 + ιξ(τ2, τ1) ∈ K.

It is self-evident that every convex set is invex in terms of ξ(τ2, τ1) = τ2 − τ1. However, there
are invex sets that are not convex [20].

Definition 3 ([29]). Let I ⊆ Rn, then I is m–invex w.r.t ξ : I× I× (0, 1] → Rn, if

mτ1 + ιξ(τ2, τ1, m) ∈ I,

for every τ1, τ2 ∈ I, m ∈ (0, 1] and ι ∈ [0, 1].

Example 1 ([29]). Suppose m = 1
4 , I = [−π

2 , 0)
⋃
(0, 1

2 ] and

ξ(τ2, τ1, m) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
m cos(τ2 − τ1) i f τ1 ∈ (0, π

2 ], τ2 ∈ (0, π
2 ];

−m cos(τ2 − τ1) i f τ1 ∈ [−π
2 , 0), τ2 ∈ [−π

2 , 0);
m cos(τ1) i f τ1 ∈ (0, π

2 ], τ2 ∈ [−π
2 , 0);

−m cos(τ1) i f τ1 ∈ [−π
2 , 0), τ2 ∈ (0, π

2 ].

Then, I is an m-invex set with respect to ξ for ι ∈ [0, 1] and m = 1
4 . It is obvious that I is not

a convex set.

In the year 1988, Mond and Weir [30] explored the idea of invex set to introduce the
idea of preinvexity.

Definition 4 ([30]). A function Π : K → Rn is said to be preinvex with respect to ξ, if

Π(τ1 + ιξ(τ2, τ1)) ≤ (1 − ι) Π(τ1) + ι Π(τ2) , ∀τ1 , τ2 ∈ K , ι ∈ [0, 1].
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It is very important to mark that every convex is a preinvex function, but the converse
is not true [21]. For example, Π(ι) = −|ι|, ∀ ι ∈ R, is preinvex but not convex with
respect to

ξ(τ2, τ1) =

{
τ2 − τ1 i f τ1τ2 ≥ 0
τ1 − τ2 i f τ1τ2 < 0.

Recently, Deng [31] introduced m–preinvex function, which is defined as:

Definition 5. A function Π : I → R is said to be generalized m–preinvex with respect to ξ : I× I

×(0, 1] → Rn for m ∈ (0, 1], if

Π(mτ1 + ιξ(τ2, τ1, m)) ≤ m(1 − ι)Π(τ1) + ιΠ(τ2), (1)

for every τ1, τ2 ∈ I, ι ∈ [0, 1].

The following condition C was explored and discussed for the first time by Mohan
and Neogy [32].

Condition-C: Assume that K ⊂ Rn is an open invex subset with respect to ξ : K×K →
R. We say the ξ satisfies the condition C if for any τ1, τ2 ∈ K and ι ∈ [0, 1],

ξ(τ2, τ2 + ι ξ(τ1, τ2)) = −ι ξ(τ1, τ2)

ξ(τ1, τ2 + ι ξ(τ1, τ2)) = (1 − ι) ξ(τ1, τ2). (2)

For any τ1, τ2 ∈ K and ι1, ι2 ∈ [0, 1] from condition C, we have

ξ(τ2 + ι2 ξ(τ1, τ2) , τ2 + ι1 ξ(τ1, τ2)) = (ι2 − ι1)ξ(τ1, τ2).

If Π is a preinvex on [τ1, τ1 + ξ(τ2, τ1)] and ξ satisfies condition C, then for each
ι ∈ [0, 1], from above Equation (2), it yields

|Π(τ1 + ιξ(τ2, τ1))| = |Π(τ1 + ξ(τ2, τ1)) + (1 − ι)ξ(τ1, τ1 + ξ(τ2, τ1))|
≤ ι |Π(τ1 + ξ(τ2, τ1))|+ (1 − ι)|Π(τ1)|

and

|Π(τ1 + (1 − ι)ξ(τ2, τ1))| = |Π(τ1 + ξ(τ2, τ1)) + ιξ(τ1, τ1 + ξ(τ2, τ1))|
≤ (1 − ι) |Π(τ1 + ξ(τ2, τ1))|+ ι|Π(τ1)|.

The following generalized Condition C first time introduced by Du [33] in the aspect
of m–preinvex.

Extended Condition-C: Assume that K ⊂ Rn be an open invex subset with respect to
ξ : K× K× (0, 1] → R. We say the ξ satisfies the extended condition C, for any τ1, τ2 ∈ K,
ι ∈ [0, 1] and m ∈ (0, 1], if

ξ(τ1, mτ1 + ιξ(τ2, τ1, m), m) = −ι ξ(τ2, τ1, m),

ξ(τ2, mτ1 + ι ξ(τ2, τ1, m), m) = (1 − ι) ξ(τ2, τ1, m),

ξ(τ2, τ1, m) = −ξ(τ1, τ2, m).

If Π is a m-preinvex on [mτ1, mτ1 + ξ(τ2, τ1, m)] and ξ satisfies extended condition C,
then for each ι ∈ [0, 1], from above equation, it yields

|Π(mτ1 + ιξ(τ2, τ1, m))| = |Π(mτ1 + ξ(τ2, τ1, m)) + (1 − ι)ξ(mτ1, mτ1 + ξ(τ2, τ1, m))|
≤ ι |Π(mτ1 + ξ(τ2, τ1, m))|+ (1 − ι)|Π(mτ1)|
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and

|Π(mτ1 + (1 − ι)ξ(τ2, τ1, m))| = |Π(mτ1 + ξ(τ2, τ1, m)) + ιξ(mτ1, mτ1 + ξ(τ2, τ1, m))|
≤ (1 − ι) |Π(mτ1 + ξ(τ2, τ1, m))|+ mι|Π(τ1)|.

There are numerous vector functions that meet the condition C in [28], with trivial
case ξ(τ1, τ2) = τ1 − τ2.

For example, suppose K = R\{0} and

ξ(τ2, τ1) =

⎧⎨⎩
τ2 − τ1 i f τ1 > 0, τ2 > 0
τ2 − τ1 i f τ1 < 0, τ2 < 0
−τ2, otherwise

The set K is invex set and the condition C is satisfied by ξ.
In Noor [34], the following H-H type inequalities were demonstrated.

Theorem 1. Assume that function Π : K = [τ1, τ1 + ξ(τ2, τ1)] → (0, ∞) is preinvex on K0 with
ξ(τ2, τ1) > 0. Then:

Π
(

2τ1 + ξ(τ2, τ1)

2

)
≤ 1

ξ(τ2, τ1)

∫ τ1+ ξ(τ2,τ1)

τ1

Π(x) dx ≤ Π(τ1) + Π(τ2)

2
.

Definition 6 ([35]). Suppose Π ∈ L[τ1, τ2]. The left-sided and right-sided Riemann–Liouville
fractional integrals of order � > 0 defined by

J�
τ1 Π(τ) =

1
Γ(�)

∫ τ

τ1

(τ − μ)�−1Π(μ)dμ, τ1 < τ

and
J�
τ2 Π(τ) =

1
Γ(�)

∫ τ2

τ
(μ − τ)�−1Π(μ)dμ, τ < τ2.

The gamma function is defined as Γ(�) =
∫ ∞

0 e−uu�−1du.
Note that J0

τ1
f (τ) = J0

τ2
Π(τ) = Π(τ).

Throughout the paper, we will consider that Γ(.) is the gamma function and � > 0.

3. Main Results

Lemma 1. Let an open invex subset K ⊆ R with respect to ξ : K× K −→ R and τ1, τ2 ∈ K

with mτ1 < mτ1 + ξ(τ2, τ1, m). Assume that Π : K → R is differentiable function on K such that
Π′ ∈ L([mτ1, mτ1 + ξ(τ2, τ1, m)]). Then:

Γ(� + 1)
[ξ(τ2, τ1, m)]�

J�

mτ+1
Π(mτ1 + ξ(τ2, τ1, m)) − Π

(
mτ1 +

�

� + 1
ξ(τ2, τ1, m)

)
(3)

= ξ(τ2, τ1, m)

[
−
∫ �

�+1

0
ι�Π′(mτ1 + ιξ(τ2, τ1, m))dι +

∫ 1

�
�+1

(1 − ι�)Π′(mτ1 + ιξ(τ2, τ1, m))dι

]
.

Proof. By applying the integration by parts to the right hand side of (3), we obtain

ξ(τ2, τ1, m)

[
−
∫ �

�+1

0
ι�Π′(mτ1 + ιξ(τ2, τ1, m))dι +

∫ 1

�
�+1

(1 − ι�)Π′(mτ1 + ιξ(τ2, τ1, m))dι

]

= ξ(τ2, τ1, m)

[
−
∫ 1

0
ι�Π′(mτ1 + ιξ(τ2, τ1, m))dι +

∫ 1

�
�+1

Π′(mτ1 + ιξ(τ2, τ1, m))dι

]
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= −Π(mτ1 + ξ(τ2, τ1, m)) + �
∫ 1

0
ι�−1Π(mτ1 + ιξ(τ2, τ1, m))dι + Π(mτ1 + ξ(τ2, τ1, m))

− Π
(

mτ1 +
�

� + 1
ξ(τ2, τ1, m)

)
=

Γ(� + 1)
[ξ(τ2, τ1, m)]�

J�

mτ+1
Π(mτ1 + ξ(τ2, τ1, m))− Π

(
mτ1 +

�

� + 1
ξ(τ2, τ1, m)

)
.

This ends the proof.

Lemma 2. Let an open invex subset K ⊆ R with respect to ξ : K× K −→ R and τ1, τ2 ∈ K with
mτ1 < mτ1 + ξ(τ2, τ1, m). Assume that Π : K → R is twice differentiable function on K such that
Π′′ ∈ L([mτ1, mτ1 + ξ(τ2, τ1, m)]). Then:

Γ(� + 1)

[ξ(τ2, τ1, m)]�+1

{
J�−1

(mτ1+
1
2 ξ(τ2,τ1,m))

− Π(mτ1) + J�−1

(mτ1+
1
2 ξ(τ2,τ1,m))

+ Π(mτ1 + ξ(τ2, τ1, m))

}
(4)

−
� Π
(

mτ1 +
1
2 ξ(τ2, τ1, m)

)
2�−2[ξ(τ2, τ1, m)]2

=
∫ 1

2

0
ι� Π′′(mτ1 + ι ξ(τ2, τ1, m)) dι +

∫ 1

1
2

(1 − ι)� Π′′(mτ1 + ι ξ(τ2, τ1, m)) dι.

Proof. It suffices to write that

I =
∫ 1

2

0
ι� Π′′(mτ1 + ι ξ(τ2, τ1, m)) dι +

∫ 1

1
2

(1 − ι)� Π′′(mτ1 + ι ξ(τ2, τ1, m)) dι

= I1 + I2, (5)

where

I1 =
∫ 1

2

0
ι� Π′′(mτ1 + ι ξ(τ2, τ1, m)) dι

=
ι� Π′(mτ1 + ι ξ(τ2, τ1, m))

ξ(τ2, τ1, m)

∣∣∣∣
1
2

0
− �

ξ(τ2, τ1, m)

∫ 1
2

0
ι�−1 Π′(mτ1 + ι ξ(τ2, τ1, m)) dι

=
Π′
(

mτ1 +
1
2 ξ(τ2, τ1, m)

)
2� ξ(τ2, τ1, m)

−
� Π
(

mτ1 +
1
2 ξ(τ2, τ1, m)

)
2�−1[ξ(τ2, τ1, m)]2

+
Γ(� + 1)

[ξ(τ2, τ1, m)]�+1 J�−1

(mτ1+
1
2 ξ(τ2,τ1,m))

− Π(mτ1) (6)

and

I2 =
∫ 1

1
2

(1 − ι)� Π′′(mτ1 + ι ξ(τ2, τ1, m)) dι

=
(1 − ι)� Π′(mτ1 + ι ξ(τ2, τ1, m))

ξ(τ2, τ1, m)
|11

2
+

�

ξ(τ2, τ1, m)

∫ 1

1
2

(1 − ι)�−1 Π′(mτ1 + ι ξ(τ2, τ1, m)) dι

= −
Π′
(

mτ1 +
1
2 ξ(τ2, τ1, m)

)
2�ξ(τ2, τ1, m)

+
�

ξ(τ2, τ1, m)

∫ 1

1
2

(1 − ι)�−1 Π′(mτ1 + ι ξ(τ2, τ1, m)) dι
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= −
Π′
(

mτ1 +
1
2 ξ(τ2, τ1, m)

)
2� ξ(τ2, τ1, m)

−
� Π
(

mτ1 +
1
2 ξ(τ2, τ1, m)

)
2�−1[ξ(τ2, τ1, m)]2

+
Γ(� + 1)

[ξ(τ2, τ1, m)]�+1 J�−1

(mτ1+
1
2 ξ(τ2,τ1,m))

+ Π(mτ1 + ξ(τ2, τ1, m)). (7)

Combine Equations (6) and (7) with (5), and obtain Equation (4).

Theorem 2. Let all the conditions in Lemma 1 are satisfied. If |Π′| is m-preinvex on [mτ1, mτ1
+ξ(τ2, τ1, m)], then, for fractional integrals, the following inequality with � > 0 holds:∣∣∣∣ Γ(� + 1)

[ξ(τ2, τ1, m)]�
J�

mτ+1
Π(mτ1 + ξ(τ2, τ1, m)) − Π

(
mτ1 +

�

� + 1
ξ(τ2, τ1, m)

)∣∣∣∣ (8)

≤ ξ(τ2, τ1, m)

[
m�

2(� + 1)2(� + 2)

∣∣Π′(τ1)
∣∣+ �

(−��+1 + 2�� + (� + 1)�)
2(� + 1)�+2(� + 2)

∣∣Π′(τ2)
∣∣].

Proof. From inequality (3) and the m-preinvexity of |Π′|, we have∣∣∣∣ Γ(� + 1)
[ξ(τ2, τ1, m)]�

J�

mτ+1
Π(mτ1 + ξ(τ2, τ1, m)) − Π

(
mτ1 +

�

� + 1
ξ(τ2, τ1, m)

)∣∣∣∣
≤ ξ(τ2, τ1, m)

[ ∫ �
�+1

0
ι�|Π′(mτ1 + ιξ(τ2, τ1, m))| dι

+
∫ 1

�
�+1

(1 − ι�)|Π′(mτ1 + ιξ(τ2, τ1, m))|dι

]

≤ ξ
(
τ2, τ1, m

)[ ∫ �
�+1

0
ι�
{

m
(
1 − ι

)∣∣Π′(τ1
)∣∣+ ι

∣∣Π′(τ2
)∣∣}dι

+
∫ 1

�
�+1

(
1 − ι�

){
m
(
1 − ι

)∣∣Π′(τ1
)∣∣+ ι

∣∣Π′(τ2
)∣∣}dι

]

≤ ξ
(
τ2, τ1, m

)[
m
∣∣Π′(τ1

)∣∣ ∫ �
�+1

0
ι�
(
1 − ι

)
dι +

∣∣Π′(τ2
)∣∣ ∫ �

�+1

0
ι�+1dι

+m
∣∣Π′(τ1

)∣∣ ∫ 1

�
�+1

(
1 − ι�

)(
1 − ι

)
dι +

∣∣Π′(τ2
)∣∣ ∫ 1

�
�+1

(
1 − ι�

)
ιdι

]

= ξ(τ2, τ1, m)

[
m�

2(� + 1)2(� + 2)

∣∣Π′(τ1)
∣∣+ �

(−��+1 + 2�� + (� + 1)�)
2(� + 1)�+2(� + 2)

∣∣Π′(τ2)
∣∣],

where ∫ �
�+1

0
ι�+1dι =

��+2

(� + 1)�+2(� + 2)
,

∫ �
�+1

0

(
ι� − ι�+1

)
dι =

2��+1

(� + 1)�+2(� + 2)
,

∫ 1

�
�+1

(
ι − ι�+1

)
dι =

2��+1 + �(� + 1)�

2(� + 1)�+2(� + 2)
,

∫ 1

�
�+1

(1 − ι�)(1 − ι)dι =
4��+1 − �(� + 1)�

2(� + 1)�+2(� + 2)
.

This ends the proof.
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Remark 1. In inequality (8), if we take ξ(τ2, τ1, m) = τ2 − mτ1 and � = m = 1, then we get the
inequality proven in [36], Theorem 2.2.

Corollary 1. In inequality (8), if we take ξ(τ2, τ1, m) = τ2 − mτ1, then∣∣∣∣ Γ(� + 1)
[(τ2 − mτ1)]

� J�

mτ+1
Π(τ2) − Π

(
mτ1 + �τ2

� + 1

)∣∣∣∣ (9)

≤ (τ2 − mτ1)

[
m�

2(� + 1)2(� + 2)

∣∣Π′(τ1)
∣∣+ �

(−��+1 + 2�� + (� + 1)�)
2(� + 1)�+2(� + 2)

∣∣Π′(τ2)
∣∣].

Corollary 2. In inequality (8), if we take ξ(τ2, τ1, m) = τ2 − mτ1 and m = 1, then∣∣∣∣ Γ(� + 1)
[(τ2 − τ1)]

� J�

τ+1
Π(τ2) − Π

(
τ1 + �τ2

� + 1

)∣∣∣∣ (10)

≤ (τ2 − τ1)

[
�

2(� + 1)2(� + 2)

∣∣Π′(τ1)
∣∣+ �

(−��+1 + 2�� + (� + 1)�)
2(� + 1)�+2(� + 2)

∣∣Π′(τ2)
∣∣].

Corollary 3. If ξ satisfies the extended condition C, then by definition of the m-preinvexity of |Π′|,
we obtain

∣∣Π′(mτ1 + ιξ(τ2, τ1, m))
∣∣ =

∣∣Π′(mτ1 + ξ(τ2, τ1, m)) + (1 − ι)ξ(mτ1, mτ1 + ξ(τ2, τ1, m))
∣∣

≤ ι
∣∣Π′(mτ1 + ξ(τ2, τ1, m))

∣∣+ m(1 − ι)
∣∣Π′(τ1)

∣∣. (11)

Using inequality (11) in the proof of Theorem 2, the inequality (8) becomes

∣∣∣∣ Γ(� + 1)
[ξ(τ2, τ1, m)]�

J�

mτ+1
Π(mτ1 + ξ(τ2, τ1, m)) − Π

(
mτ1 +

�

� + 1
ξ(τ2, τ1, m)

)∣∣∣∣ (12)

≤ ξ(τ2, τ1, m)

×
[

m�

2(� + 1)2(� + 2)

∣∣Π′(τ1)
∣∣+ �

(−��+1 + 2�� + (� + 1)�)
2(� + 1)�+2(� + 2)

∣∣Π′(mτ1 + ξ(τ2, τ1, m))
∣∣].

We observe that, by employing the m-preinvexity of |Π′|, we have∣∣Π′(mτ1 + ξ(τ2, τ1, m))
∣∣ ≤ ∣∣Π′(τ2)

∣∣.
Therefore, inequality (12) is better than inequality (8).

Corollary 4. If ξ satisfies the condition C and m = 1, then by definition of the preinvexity of |Π′|,
we obtain∣∣Π′(τ1 + ιξ(τ2, τ1))

∣∣ =
∣∣Π′(τ1 + ξ(τ2, τ1)) + (1 − ι)ξ(mτ1 + ξ(τ2, τ1))

∣∣
≤ ι

∣∣Π′(τ1 + ξ(τ2, τ1))
∣∣+ (1 − ι)

∣∣Π′(τ1)
∣∣. (13)

Using inequality (13) in proof of Theorem 2, inequality (8) becomes the following:∣∣∣∣ Γ(� + 1)
[ξ(τ2, τ1)]

� J�

τ+1
Π(τ1 + ξ(τ2, τ1)) − Π

(
τ1 +

�

� + 1
ξ(τ2, τ1)

)∣∣∣∣ (14)

≤ ξ(τ2, τ1)

×
[

�

2(� + 1)2(� + 2)

∣∣Π′(τ1)
∣∣+ �

(−��+1 + 2�� + (� + 1)�)
2(� + 1)�+2(� + 2)

∣∣Π′(τ1 + ξ(τ2, τ1))
∣∣].
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We observe that, by employing the preinvexity of |Π′|, we have∣∣Π′(τ1 + ξ(τ2, τ1))
∣∣ ≤ ∣∣Π′(τ2)

∣∣.
Therefore, inequality (14) is better than inequality (8).

Theorem 3. Let all conditions in Lemma 1 be satisfied. If |Π′|q is m-preinvex on [mτ1, mτ1 +
ξ(τ2, τ1, m)] for y ≥ 1, then, for fractional integrals, the following inequality holds:∣∣∣∣ Γ(� + 1)

[ξ(τ2, τ1, m)]�
J�

mτ+1
Π(mτ1 + ξ(τ2, τ1, m)) − Π

(
mτ1 +

�

� + 1
ξ(τ2, τ1, m)

)∣∣∣∣ (15)

≤ ξ
(
τ2, τ1, m

)( ��+1(
� + 1

)�+2

)1− 1
y

×
{(

2m��+1(
� + 1

)�+2(
� + 2

) ∣∣Π′(τ1
)∣∣y + ��+2(

� + 1
)�+2(

� + 2
) ∣∣Π′(τ2

)∣∣y) 1
y

+

(
4��+1 − �

(
� + 1

)�

2
(
� + 1

)�+2(
� + 2

)m
∣∣Π′(τ1

)∣∣y + 2��+1 + �
(
� + 1

)�

2
(
� + 1

)�+2(
� + 2

) ∣∣Π′(τ2
)∣∣y) 1

y
}

,

where x−1 = 1 − y−1 .

Proof. From inequality (3), by utilizing power-mean inequality and definition of
m-preinvexity of |Π′|q, we have

∣∣∣∣ Γ(� + 1)
[ξ(τ2, τ1, m)]�

J�

mτ+1
Π(mτ1 + ξ(τ2, τ1, m)) − Π

(
mτ1 +

�

� + 1
ξ(τ2, τ1, m)

)∣∣∣∣
≤ ξ(τ2, τ1, m)

[∫ �
�+1

0
ι�Π′(mτ1 + ιξ(τ2, τ1, m))dι +

∫ 1

�
�+1

(1 − ι�)Π′(mτ1 + ιξ(τ2, τ1, m))dι

]

≤ ξ
(
τ2, τ1, m

){( ∫ �
�+1

0
ι�dι

)1− 1
y
( ∫ �

�+1

0
ι�
∣∣Π′(mτ1 + ιξ

(
τ2, τ1, m

))∣∣dι

) 1
y

+

( ∫ 1

�
�+1

(
1 − ι�

)
dι

)1− 1
y
( ∫ 1

�
�+1

(
1 − ι�

)∣∣Π′(mτ1 + ιξ
(
τ2, τ1, m

))∣∣dι

) 1
y
}

≤ ξ
(
τ2, τ1, m

)( ��+1(
� + 1

)�+2

)1− 1
y
{( ∫ �

�+1

0
ι�
(
m
(
1 − ι

)∣∣Π′(τ1
)∣∣y + ι

∣∣Π′(τ2
)∣∣y)dι

) 1
y

+
∫ 1

�
�+1

(
1 − ι�

)(
m
(
1 − ι

)∣∣Π′(τ1
)∣∣y + ι

∣∣Π′(τ2
)∣∣y)dι

}

= ξ
(
τ2, τ1, m

)( ��+1(
� + 1

)�+2

)1− 1
y

×
{(

2m��+1(
� + 1

)�+2(
� + 2

) ∣∣Π′(τ1
)∣∣y + ��+2(

� + 1
)�+2(

� + 2
) ∣∣Π′(τ2

)∣∣y) 1
y

+

(
4��+1 − �

(
� + 1

)�

2
(
� + 1

)�+2(
� + 2

)m
∣∣Π′(τ1

)∣∣y + 2��+1 + �
(
� + 1

)�

2
(
� + 1

)�+2(
� + 2

) ∣∣Π′(τ2
)∣∣y) 1

y
}

.

This ends the proof.
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Corollary 5. In inequality (15), if we take ξ(τ2, τ1, m) = τ2 − mτ1, then∣∣∣∣ Γ(� + 1)
[(τ2 − mτ1)]

� J�

mτ+1
Π(τ2) − Π

(
mτ1 + �τ2

� + 1

)∣∣∣∣
≤ ξ
(
τ2 − mτ1

)( ��+1(
� + 1

)�+2

)1− 1
y

(16)

×
{(

2m��+1(
� + 1

)�+2(
� + 2

) ∣∣Π′(τ1
)∣∣y + ��+2(

� + 1
)�+2(

� + 2
) ∣∣Π′(τ2

)∣∣y) 1
y

+

(
4��+1 − �

(
� + 1

)�

2
(
� + 1

)�+2(
� + 2

)m
∣∣Π′(τ1

)∣∣y + 2��+1 + �
(
� + 1

)�

2
(
� + 1

)�+2(
� + 2

) ∣∣Π′(τ2
)∣∣y) 1

y
}

.

Corollary 6. In inequality (15), if we take ξ(τ2, τ1, m) = τ2 − mτ1 and m = 1, then∣∣∣∣ Γ(� + 1)
[(τ2 − τ1)]

� J�

τ+1
Π(τ2) − Π

(
τ1 + �τ2

� + 1

)∣∣∣∣
≤ ξ
(
τ2 − τ1

)( ��+1(
� + 1

)�+2

)1− 1
y

(17)

×
{(

2��+1(
� + 1

)�+2(
� + 2

) ∣∣Π′(τ1
)∣∣y + ��+2(

� + 1
)�+2(

� + 2
) ∣∣Π′(τ2

)∣∣y) 1
y

+

(
4��+1 − �

(
� + 1

)�

2
(
� + 1

)�+2(
� + 2

) ∣∣Π′(τ1
)∣∣y + 2��+1 + �

(
� + 1

)�

2
(
� + 1

)�+2(
� + 2

) ∣∣Π′(τ2
)∣∣y) 1

y
}

.

Corollary 7. In inequality (15), if we set ξ(τ2, τ1, m) = τ2 − mτ1 and � = 1, then we obtain the
following midpoint-type inequality:∣∣∣∣ 1

τ2 − mτ1

∫ τ2

mτ1

Π(x)dx − Π
(

τ1 + τ2

2

)∣∣∣∣ (18)

≤ τ2 − mτ1

8

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎝m|Π′(τ1)|y + 2

∣∣∣Π′
(τ2)
∣∣∣y

3

⎞⎟⎠
1
y

+

(
2m|Π′(τ1)|y + |Π′(τ2)|y

3

) 1
y

⎫⎪⎪⎬⎪⎪⎭.

Corollary 8. In inequality (15), if we set ξ(τ2, τ1) = τ2 − τ1, m = 1 and � = 1, then we obtain
the following midpoint-type inequality∣∣∣∣ 1

τ2 − τ1

∫ τ2

τ1

Π(x)dx − Π
(

τ1 + τ2

2

)∣∣∣∣ (19)

≤ τ2 − τ1

8

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎝ |Π′(τ1)|y + 2

∣∣∣Π′
(τ2)
∣∣∣y

3

⎞⎟⎠
1
y

+

(
2|Π′(τ1)|y + |Π′(τ2)|y

3

) 1
y

⎫⎪⎪⎬⎪⎪⎭.

Corollary 9. In inequality (15), considering that ξ meets the extended condition C and using
inequality (3), we obtain

∣∣∣∣ Γ(� + 1)
[ξ(τ2, τ1, m)]�

J�

mτ+1
Π(mτ1 + ξ(τ2, τ1, m)) − Π

(
mτ1 +

�

� + 1
ξ(τ2, τ1, m)

)∣∣∣∣
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≤ ξ
(
τ2, τ1, m

)( ��+1(
� + 1

)�+2

)1− 1
y

×
{(

2m��+1(
� + 1

)�+2(
� + 2

) ∣∣Π′(τ1
)∣∣y + ��+2(

� + 1
)�+2(

� + 2
) ∣∣Π′(mτ1 + ξ

(
τ2, τ1, m

))∣∣y) 1
y

+

(
4��+1 − �

(
� + 1

)�

2
(
� + 1

)�+2(
� + 2

)m
∣∣Π′(τ1

)∣∣y + 2��+1 + �
(
� + 1

)�

2
(
� + 1

)�+2(
� + 2

) ∣∣Π′(mτ1 + ξ
(
τ2, τ1, m

))∣∣y) 1
y
}

.

Corollary 10. In inequality (15), considering that ξ meets the extended condition C, m = 1 and
using inequality (3), we obtain∣∣∣∣ Γ(� + 1)

[ξ(τ2, τ1, m)]�
J�

τ+1
Π(τ1 + ξ(τ2, τ1)) − Π

(
τ1 +

�

� + 1
ξ(τ2, τ1)

)∣∣∣∣
≤ ξ

(
τ2, τ1

)( ��+1(
� + 1

)�+2

)1− 1
y

×
{(

2��+1(
� + 1

)�+2(
� + 2

) ∣∣Π′(τ1
)∣∣y + ��+2(

� + 1
)�+2(

� + 2
) ∣∣Π′(τ1 + ξ

(
τ2, τ1

))∣∣y) 1
y

+

(
4��+1 − �

(
� + 1

)�

2
(
� + 1

)�+2(
� + 2

) ∣∣Π′(τ1
)∣∣y + 2��+1 + �

(
� + 1

)�

2
(
� + 1

)�+2(
� + 2

) ∣∣Π′(τ1 + ξ
(
τ2, τ1

))∣∣y) 1
y
}

.

Theorem 4. Let all conditions in Lemma 1 be satisfied. If |Π′|q is m-preinvex on [mτ1, mτ1
+ξ(τ2, τ1, m)] for y > 1, then, for fractional integrals, the following inequality holds:∣∣∣∣ Γ(� + 1)

[ξ(τ2, τ1, m)]�
J�

mτ+1
Π(mτ1 + ξ(τ2, τ1, m)) − Π

(
mτ1 +

�

� + 1
ξ(τ2, τ1, m)

)∣∣∣∣
≤ ξ

(
τ2, τ1, m

){(
M
(
�, x
)) 1

x
(

�2 + 2�

2
(
� + 1

)2 m
∣∣Π′(τ1

)∣∣y + �2

2
(
� + 1

)2

∣∣Π′(τ2
)∣∣y) 1

y

+

(
N
(
�, x
)) 1

x
(

m

2
(
� + 1

)2

∣∣Π′(τ1
)∣∣y + 2� + 1

2
(
� + 1

)2

∣∣Π′(τ2
)∣∣y) 1

y
}

, (20)

where

M(�, x) =
∫ �

�+1

0
ι�xdι,

N(�, x) =
∫ 1

�
�+1

(1 − ι�)xdι,

where x−1 + y−1 = 1.

Proof. From inequality (3), from the Hölder integral inequality and the m-preinvexity of
|Π′|q, we have∣∣∣∣ Γ(� + 1)

[ξ(τ2, τ1, m)]�
J�

τ+1
Π(mτ1 + ξ(τ2, τ1, m)) − Π

(
mτ1 +

�

� + 1
ξ(τ2, τ1, m)

)∣∣∣∣
≤ ξ(τ2, τ1, m)

[ ∫ �
�+1

0
ι�
∣∣Π′(τ1 + ιξ(τ2, τ1, m))

∣∣dι

+
∫ 1

�
�+1

(1 − ι�)
∣∣Π′(mτ1 + ιξ(τ2, τ1, m))

∣∣dι

]
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≤ ξ
(
τ2, τ1, m

){( ∫ �
�+1

0
ι�xdι

) 1
x
( ∫ �

�+1

0

∣∣Π′(mτ1 + ιξ
(
τ2, τ1, m

))∣∣ydι

) 1
y

+

( ∫ 1

�
�+1

(
1 − ι�

)xd℘
) 1

x
( ∫ 1

�
�+1

∣∣Π′(mτ1 + ιξ
(
τ2, τ1, m

))∣∣ydι

) 1
y
}

≤ ξ
(
τ2, τ1, m

){( ∫ �
�+1

0
ι�xdι

) 1
x
( ∫ �

�+1

0

{
m
(
1 − ι

)∣∣Π′(τ1
)∣∣y + ι

∣∣Π′(τ2
)∣∣y}dι

) 1
y

+

( ∫ 1

�
�+1

(
1 − ι�

)xdι

) 1
x
( ∫ 1

�
�+1

{
m
(
1 − ι

)∣∣Π′(τ1
)∣∣y + ι

∣∣Π′(τ2
)∣∣y}dι

) 1
y
}

= ξ
(
τ2, τ1, m

){(
M
(
�, x
)) 1

x
(

�2 + 2�

2
(
� + 1

)2 m
∣∣Π′(τ1

)∣∣y − �2

2
(
� + 1

)2

∣∣Π′(τ2
)∣∣y) 1

y

+

(
N
(
�, x
)) 1

x
(

m

2
(
� + 1

)2

∣∣Π′(τ1
)∣∣y + 2� + 1

2
(
� + 1

)2

∣∣Π′(τ2
)∣∣y) 1

y
}

.

This ends the proof.

Remark 2. In inequality (20), if we take ξ(τ2, τ1, m) = τ2 − mτ1 and � = 1, then we obtain the
inequality proved in [36], Theorem 2.3.

Corollary 11. In inequality (20), if we take ξ(τ2, τ1, m) = τ2 − mτ1, then∣∣∣∣ Γ(� + 1)
[(τ2 − mτ1)]

� J�

mτ+1
Π(τ2) − Π

(
mτ1 + �τ2

� + 1

)∣∣∣∣
≤ (τ2 − mτ1

){(
M
(
�, x
)) 1

x
(

�2 + 2�

2
(
� + 1

)2 m
∣∣Π′(τ1

)∣∣y + �2

2
(
� + 1

)2

∣∣Π′(τ2
)∣∣y) 1

y

+

(
N
(
�, x
)) 1

x
(

m

2
(
� + 1

)2

∣∣Π′(τ1
)∣∣y + 2� + 1

2
(
� + 1

)2

∣∣Π′(τ2
)∣∣y) 1

y
}

.

Corollary 12. In inequality (20), if we take ξ(τ2, τ1) = τ2 − τ1 and m = 1, then∣∣∣∣ Γ(� + 1)
[(τ2 − τ1)]

� J�

τ+1
Π(τ2) − Π

(
τ1 + �τ2

� + 1

)∣∣∣∣
≤ (τ2 − τ1

){(
M
(
�, x
)) 1

x
(

�2 + 2�

2
(
� + 1

)2

∣∣Π′(τ1
)∣∣y + �2

2
(
� + 1

)2

∣∣Π′(τ2
)∣∣y) 1

y

+

(
N
(
�, x
)) 1

x
(

1

2
(
� + 1

)2

∣∣Π′(τ1
)∣∣y + 2� + 1

2
(
� + 1

)2

∣∣Π′(τ2
)∣∣y) 1

y
}

.

Corollary 13. In inequality (20), considering that ξ meets the extended condition C and using
inequality (3), we obtain∣∣∣∣ Γ(� + 1)

[ξ(τ2, τ1, m)]�
J�

mτ+1
Π(mτ1 + ξ(τ2, τ1, m)) − Π

(
mτ1 +

�

� + 1
ξ(τ2, τ1, m)

)∣∣∣∣
≤ ξ

(
τ2, τ1, m

)
×
{(

M
(
�, x
)) 1

x
(

�2 + 2�

2
(
� + 1

)2 m
∣∣Π′(τ1

)∣∣y + �2

2
(
� + 1

)2

∣∣Π′(mτ1 + ξ
(
τ2, τ1, m

))∣∣y) 1
y
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+

(
N
(
�, x
)) 1

x
(

m

2
(
� + 1

)2

∣∣Π′(τ1
)∣∣y + 2� + 1

2
(
� + 1

)2

∣∣Π′(mτ1 + ξ
(
τ2, τ1, m

))∣∣y) 1
y
}

.

Corollary 14. In inequality (20), considering that ξ meets the extended condition C, m = 1 and
using inequality (3), we obtain∣∣∣∣ Γ(� + 1)

[ξ(τ2, τ1)]
� J�

τ+1
Π(τ1 + ξ(τ2, τ1)) − Π

(
τ1 +

�

� + 1
ξ(τ2, τ1)

)∣∣∣∣
≤ ξ

(
τ2, τ1

){(
M
(
�, x
)) 1

x
(

�2 + 2�

2
(
� + 1

)2

∣∣Π′(τ1
)∣∣y + �2

2
(
� + 1

)2

∣∣Π′(τ1 + ξ
(
τ2, τ1

))∣∣y) 1
y

+

(
N
(
�, x
)) 1

x
(

1

2
(
� + 1

)2

∣∣Π′(τ1
)∣∣y + 2� + 1

2
(
� + 1

)2

∣∣Π′(τ1 + ξ
(
τ2, τ1

))∣∣y) 1
y
}

.

Theorem 5. Let all conditions in Lemma 2 be satisfied. If |Π′′|q is m-preinvex on [mτ1, mτ1
+ξ(τ2, τ1, m)] for y > 1, then, for fractional integrals, the following inequality holds:

∣∣∣∣ Γ(� + 1)

[ξ(τ2, τ1, m)]�+1

{
J�−1

(mτ1+
1
2 ξ(τ2,τ1,m))

− Π(mτ1) + J�−1

(mτ1+
1
2 ξ(τ2,τ1,m))

+ Π(mτ1 + ξ(τ2, τ1, m))

}

−
�Π
(

mτ1 +
1
2 ξ(τ2, τ1, m)

)
2�−2[ξ(τ2, τ1, m)]2

∣∣∣∣
≤

(
2−�−1

� + 1

) 1
x

×
{[

m
∣∣ Π′′(τ1

)∣∣y( (� + 3
)
2−�−2(

� + 1
)(

� + 2
))+

∣∣ Π′′(τ2
)∣∣y(2−�−2

� + 2
)] 1

q

+

[
m
∣∣ Π′′(τ1

)∣∣y(2−�−2

� + 2
)
+
∣∣ Π′′(τ2

)∣∣y( 4 − (� + 3
)
2−�

4
(
� + 1

)(
� + 2

))] 1
y
}

, (21)

where x−1 + y−1 = 1.

Proof. From inequality (4) and Hölder’s integral inequality, we have

∣∣∣∣ Γ(� + 1)

[ξ(τ2, τ1, m)]�+1

{
J�−1

(mτ1+
1
2 ξ(τ2,τ1,m))

− Π(mτ1) + J�−1

(mτ1+
1
2 ξ(τ2,τ1,m))

+ Π(mτ1 + ξ(τ2, τ1, m))

}

−
�Π
(

mτ1 +
1
2 ξ(τ2, τ1, m)

)
2�−2[ξ(τ2, τ1, m)]2

∣∣∣∣
≤

∫ 1
2

0
ι�
∣∣Π′′(mτ1 + ι ξ(τ2, τ1, m))

∣∣ dι +
∫ 1

1
2

(1 − ι)� ∣∣Π′′(mτ1 + ι ξ(τ2, τ1, m))
∣∣ dι

≤
(∫ 1

2

0
ι� dι

) 1
x
(∫ 1

2

0
ι�
∣∣Π′′(mτ1 + ι ξ(τ2, τ1, m))

∣∣y dι

) 1
y

+

(∫ 1
2

0
(1 − ι)� dι

) 1
x
(∫ 1

2

0
(1 − ι)� ∣∣Π′′(mτ1 + ι ξ(τ2, τ1, m))

∣∣y dι

) 1
y

. (22)

Since |Π′′|q is m-preinvex function on [mτ1, mτ1 + ξ(τ2, τ1, m)], we have

∫ 1
2

0
ι�
∣∣Π′′(mτ1 + ι ξ(τ2, τ1, m))

∣∣y dι ≤
∫ 1

2

0
ι�
{

m(1 − ι)
∣∣ Π′′(τ1)

∣∣y + ι
∣∣ Π′′(τ2)

∣∣y} dι (23)
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≤ m
∣∣ Π′′(τ1)

∣∣y( (� + 3)2−�−2

(� + 1)(� + 2)

)
+
∣∣ Π′′(τ2)

∣∣y(2−�−2

� + 2

)
and

∫ 1

1
2

(1 − ι)�∣∣Π′′(mτ1 + ι ξ(τ2, τ1, m))
∣∣y dι ≤

∫ 1

1
2

(1 − ι)�
{

m(1 − ι)
∣∣ Π′′(τ1)

∣∣y + ι
∣∣ Π′′(τ2)

∣∣y} dι

≤ m
∣∣ Π′′(τ1)

∣∣y(2−�−2

� + 2

)
+
∣∣ Π′′(τ2)

∣∣y( 4 − (� + 3)2−�

4(� + 1)(� + 2)

)
. (24)

Using Equations (23) and (24) in (22) and obtaining the result of (21) completes the
proof.

Corollary 15. In inequality (21), if we take ξ(τ2, τ1) = τ2 − mτ1, then∣∣∣∣ Γ(� + 1)

(τ2 − mτ1)
�+1

{
J�−1(

mτ1+τ2
2

)− Π(mτ1) + J�−1(
mτ1+τ2

2

)+ Π(τ2)

}

−
�Π
(

mτ1+τ2
2

)
2�−2(τ2 − mτ1)

2

∣∣∣∣
≤

(
2−�−1

� + 1

) 1
x

×
{[

m
∣∣ Π′′(τ1

)∣∣y( (� + 3
)
2−�−2(

� + 1
)(

� + 2
))+

∣∣ Π′′(τ2
)∣∣y(2−�−2

� + 2
)] 1

y

+

[
m
∣∣ Π′′(τ1

)∣∣y(2−�−2

� + 2
)
+
∣∣ Π′′(τ2

)∣∣y( 4 − (� + 3
)
2−�

4
(
� + 1

)(
� + 2

))] 1
y
}

.

Corollary 16. In inequality (21), if we take ξ(τ2, τ1) = τ2 − mτ1 and m = 1, then

∣∣∣∣ Γ(� + 1)

(τ2 − τ1)
�+1

{
J�−1(

τ1+τ2
2

)− Π(τ1) + J�−1(
τ1+τ2

2

)+ Π(τ2)

}
−

�Π
(

τ1+τ2
2

)
2�−2(τ2 − τ1)

2

∣∣∣∣
≤

(
2−�−1

� + 1

) 1
x

×
{[∣∣ Π′′(τ1

)∣∣y( (� + 3
)
2−�−2(

� + 1
)(

� + 2
))+

∣∣ Π′′(τ2
)∣∣y(2−�−2

� + 2
)] 1

y

+

[∣∣ Π′′(τ1
)∣∣y(2−�−2

� + 2
)
+
∣∣ Π′′(τ2

)∣∣y( 4 − (� + 3
)
2−�

4
(
� + 1

)(
� + 2

))] 1
y
}

.

Corollary 17. In inequality (21), considering that ξ meets the extended condition C and using
inequality (4), we obtain

∣∣∣∣ Γ(� + 1)

[ξ(τ2, τ1, m)]�+1

{
J�−1

(mτ1+
1
2 ξ(τ2,τ1,m))

− Π(τ1) + J�−1

(mτ1+
1
2 ξ(τ2,τ1,m))

+ Π(mτ1 + ξ(τ2, τ1, m))

}

−
�Π
(

mτ1 +
1
2 ξ(τ2, τ1, m)

)
2�−2[ξ(τ2, τ1, m)]2

∣∣∣∣
≤

(
2−�−1

� + 1

) 1
x

×
{[

m
∣∣ Π′′(τ1

)∣∣y( (� + 3
)
2−�−2(

� + 1
)(

� + 2
))+

∣∣Π′′(mτ1 + ξ
(
τ2, τ1, m

))∣∣y(2−�−2

� + 2
)] 1

y

+

[
m
∣∣ Π′′(τ1

)∣∣y(2−�−2

� + 2
)
+
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(
τ2, τ1, m

))∣∣y( 4 − (� + 3
)
2−�

4
(
� + 1

)(
� + 2

))] 1
y
}

.
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Corollary 18. In inequality (21), considering that ξ meets the extended condition C, m = 1 and
using inequality (4), we obtain∣∣∣∣ Γ(� + 1)

[ξ(τ2, τ1)]
�+1

{
J�−1

(τ1+
1
2 ξ(τ2,τ1))

− Π(τ1) + J�−1

(τ1+
1
2 ξ(τ2,τ1))

+ Π(τ1 + ξ(τ2, τ1))

}

−
�Π
(

τ1 +
1
2 ξ(τ2, τ1)

)
2�−2[ξ(τ2, τ1)]

2

∣∣∣∣
≤

(
2−�−1

� + 1

) 1
x

×
{[∣∣ Π′′(τ1

)∣∣y( (� + 3
)
2−�−2(

� + 1
)(

� + 2
))+

∣∣Π′′(τ1 + ξ
(
τ2, τ1

))∣∣y(2−�−2

� + 2
)] 1

y

+

[∣∣ Π′′(τ1
)∣∣y(2−�−2

� + 2
)
+
∣∣Π′′(τ1 + ξ

(
τ2, τ1

))∣∣y( 4 − (� + 3
)
2−�

4
(
� + 1

)(
� + 2

))] 1
y
}

.

Theorem 6. Let all the conditions in Lemma 2 be satisfied. If |Π′′|q is m-preinvex function on
[mτ1, mτ1 + ξ(τ2, τ1, m)] for y > 1, y ≥ r, s ≥ 0. Then, for fractional integrals, the following
inequality is satisfied:

∣∣∣∣ Γ(� + 1)

[ξ(τ2, τ1, m)]�+1

{
J�−1

(mτ1+
1
2 ξ(τ2,τ1,m))

− Π(mτ1) + J�−1

(mτ1+
1
2 ξ(τ2,τ1,m))

+ Π(mτ1 + ξ(τ2, τ1, m))

}

−
�Π
(

mτ1 +
1
2 ξ(τ2, τ1, m)

)
2�−2[ξ(τ2, τ1, m)]2

∣∣∣∣
≤ ( 1

2�
(

y−r
y−1

)
+1. �

( y−r
y−1
)
+ 1

)1− 1
y

{[
m
∣∣ Π′′(τ1

)∣∣y( (�r + 3
)
2−�r−2(

�r + 1
)(

�r + 2
) )+ ∣∣ Π′′(τ2

)∣∣y(2−�r−2

�r + 2
)] 1

y

}

+
( 1

2�
(
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y−1

)
+1. �
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)
+ 1

)1− 1
y
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m
∣∣ Π′′(τ1

)∣∣y(2−�s−2

�s + 2
)
+
∣∣ Π′′(τ2

)∣∣y( (�s + 3
)
e− ln(2)�s

4
(
�s + 1

)(
�s + 2

) )] 1
y

}
. (25)

where x−1 + y−1 = 1.

Proof. From inequality (4) and Hölder’s integral inequality, we have

∣∣∣∣ Γ(� + 1)

[ξ(τ2, τ1, m)]�+1

{
J�−1

(mτ1+
1
2 ξ(τ2,τ1,m))

− Π(mτ1) + J�−1

(τ1+
1
2 ξ(τ2,τ1,m))

+ Π(mτ1 + ξ(τ2, τ1, m))

}

−
�Π
(

mτ1 +
1
2 ξ(τ2, τ1, m)

)
2�−2[ξ(τ2, τ1, m)]2
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≤
{(∫ 1

2

0
ι
�
(
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y−1

)
dι

)1− 1
y
(∫ 1

2

0
��r ∣∣Π′′(mτ1 + � ξ(τ2, τ1, m))

∣∣y dι

) 1
y

+

(∫ 1

1
2

(1 − ι)
�
(
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)
dι
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1
2

(1 − �)�s∣∣Π′′(mτ1 + � ξ(τ2, τ1, m))
∣∣y dι

) 1
y
}

. (26)

Since |Π′′|y is m-preinvex function on [mτ1, mτ1 + ξ(τ2, τ1, m)] we have

∫ 1
2

0
ι�r ∣∣Π′′(mτ1 + ι ξ(τ2, τ1, m))

∣∣y dι ≤
∫ 1

2

0
ι�r
{

m(1 − �)
∣∣ Π′′(τ1)

∣∣y + ι
∣∣ Π′′(τ2)
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)
+
∣∣ Π′′(τ2)
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�r + 2

)
(27)
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and ∫ 1

1
2

(1 − ι)�s ∣∣Π′′(mτ1 + ι ξ(τ2, τ1, m))
∣∣y dι

≤
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(1 − ι)�s
{
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+
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∣∣y( (�s + 3)e− ln(2)�s

4(�s + 1)(�s + 2)

)
. (28)

Use Equations (27) and (28) in (26) and obtain (25). This ends the proof.

Corollary 19. In inequality (25), if we take ξ(τ2, τ1) = τ2 − mτ1, then

∣∣∣∣ Γ(� + 1)
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y−r
y−1

)
+1. �

( y−r
y−1
)
+ 1

)1− 1
y

{[
m
∣∣ Π′′(τ1

)∣∣y( (�r + 3
)
2−�r−2(

�r + 1
)(

�r + 2
) )+ ∣∣ Π′′(τ2

)∣∣y(2−�r−2

�r + 2
)] 1

y

}

+
( 1

2�
(

y−s
y−1

)
+1. �

( y−s
y−1
)
+ 1

)1− 1
y

{[
m
∣∣ Π′′(τ1

)∣∣y(2−�s−2

�s + 2
)
+
∣∣ Π′′(τ2

)∣∣y( (�s + 3
)
e− ln(2)�s

4
(
�s + 1

)(
�s + 2

) )] 1
y

}
.

Corollary 20. In inequality (25), if we take ξ(τ2, τ1) = τ2 − mτ1 and m = 1, then

∣∣∣∣ Γ(� + 1)

(τ2 − τ1)
�+1

{
J�−1(

τ1+τ2
2

)− Π(τ1) + J�−1(
τ1+τ2

2

)+ Π(τ2)

}
−

�Π
(

τ1+τ2
2

)
2�−2(τ2 − τ1)

2

∣∣∣∣
≤ ( 1

2�
(

y−r
y−1

)
+1. �

( y−r
y−1
)
+ 1

)1− 1
y

{[∣∣ Π′′(τ1
)∣∣y( (�r + 3

)
2−�r−2(

�r + 1
)(

�r + 2
) )+ ∣∣ Π′′(τ2

)∣∣y(2−�r−2

�r + 2
)] 1

y

}

+
( 1

2�
(

y−s
y−1

)
+1. �

( y−s
y−1
)
+ 1

)1− 1
y

{[∣∣ Π′′(τ1
)∣∣y(2−�s−2

�s + 2
)
+
∣∣ Π′′(τ2

)∣∣y( (�s + 3
)
e− ln(2)�s

4
(
�s + 1

)(
�s + 2

) )] 1
y

}
.

Corollary 21. In inequality (25), considering that ξ meets the extended condition C and using
inequality (4), we obtain

∣∣∣∣ Γ(� + 1)

[ξ(τ2, τ1, m)]�+1

{
J�−1

(mτ1+
1
2 ξ(τ2,τ1,m))

− Π(mτ1) + J�−1

(mτ1+
1
2 ξ(τ2,τ1,m))

+ Π(mτ1 + ξ(τ2, τ1, m))

}

−
�Π
(

mτ1 +
1
2 ξ(τ2, τ1, m)

)
2�−2[ξ(τ2, τ1, m)]2

∣∣∣∣
≤

(
1

2�
(

y−r
y−1

)
+1. �

( y−r
y−1
)
+ 1

)1− 1
y

×
{[

m
∣∣ Π′′(τ1

)∣∣y( (�r + 3
)
2−�r−2(

�r + 1
)(

�r + 2
) )+ ∣∣Π′′(mτ1 + ξ(τ2, τ1, m)

)∣∣y(2−�r−2

�r + 2
)] 1

y
}

+

(
1

2�
(

y−s
y−1

)
+1. �

( y−s
y−1
)
+ 1

)1− 1
y
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×
{[

m
∣∣Π′′(τ1

)∣∣y(2−�s−2

�s + 2
)
+
∣∣Π′′(mτ1 + ξ(τ2, τ1, m)

)∣∣y( (�s + 3
)
e− ln(2)�s

4
(
�s + 1

)(
�s + 2

) )] 1
y
}

.

Corollary 22. In inequality (25), considering that ξ meets the extended condition C, m = 1 and
using inequality (4), we obtain∣∣∣∣ Γ(� + 1)

[ξ(τ2, τ1)]
�+1

{
J�−1

(τ1+
1
2 ξ(τ2,τ1))

− Π(τ1) + J�−1

(τ1+
1
2 ξ(τ2,τ1))

+ Π(τ1 + ξ(τ2, τ1))

}

−
�Π
(

τ1 +
1
2 ξ(τ2, τ1)

)
2�−2[ξ(τ2, τ1)]

2

∣∣∣∣
≤

(
1

2�
(

y−r
y−1

)
+1. �

( y−r
y−1
)
+ 1

)1− 1
y

×
{[∣∣ Π′′(τ1

)∣∣y( (�r + 3
)
2−�r−2(

�r + 1
)(

�r + 2
) )+ ∣∣Π′′(τ1 + ξ(τ2, τ1)

)∣∣y(2−�r−2

�r + 2
)] 1

y
}

+

(
1

2�
(

y−s
y−1

)
+1. �

( y−s
y−1
)
+ 1

)1− 1
y

×
{[∣∣Π′′(τ1

)∣∣y(2−�s−2

�s + 2
)
+
∣∣Π′′(τ1 + ξ(τ2, τ1)

)∣∣y( (�s + 3
)
e− ln(2)�s

4
(
�s + 1

)(
�s + 2

) )] 1
y
}

.

Corollary 23. In inequality (25), when r = s, we have

∣∣∣∣ Γ(� + 1)

[ξ(τ2, τ1, m)]�+1

{
J�−1

(mτ1+
1
2 ξ(τ2,τ1,m))

− Π(mτ1) + J�−1

(mτ1+
1
2 ξ(τ2,τ1,m))

+ Π(mτ1 + ξ(τ2, τ1, m))

}

−
�Π
(

mτ1 +
1
2 ξ(τ2, τ1, m)

)
2�−2[ξ(τ2, τ1, m)]2

∣∣∣∣
≤

⎛⎜⎝ 1

2�
(

y−r
y−1

)
+1

�
(

y−r
y−1

)
+ 1

⎞⎟⎠
1− 1

y

×
{{[

m
∣∣Π′′(τ1)

∣∣y( (�r + 3)2−�r−2

(�r + 1)(�r + 2)

)
+
∣∣Π′′(τ2)

∣∣y(2−�r−2

�r + 2

)] 1
y
}

+

{[
m
∣∣Π′′(τ1)

∣∣y(2−�r−2

�r + 2

)
+
∣∣Π′′(τ2)

∣∣y( (�r + 3)e− ln(2)�r

4(�r + 1)(�r + 2)

)] 1
y}}

.

Corollary 24. In inequality (25), when r = s and m = 1, we have

∣∣∣∣ Γ(� + 1)

[ξ(τ2, τ1)]
�+1

{
J�−1

(τ1+
1
2 ξ(τ2,τ1))

− Π(τ1) + J�−1

(τ1+
1
2 ξ(τ2,τ1))

+ Π(τ1 + ξ(τ2, τ1))

}

−
�Π
(

τ1 +
1
2 ξ(τ2, τ1)

)
2�−2[ξ(τ2, τ1)]

2

∣∣∣∣
≤

⎛⎜⎝ 1

2�
(

y−r
y−1

)
+1. �

(
y−r
y−1

)
+ 1

⎞⎟⎠
1− 1

y

×
{{[∣∣Π′′(τ1)

∣∣y( (�r + 3)2−�r−2

(�r + 1)(�r + 2)

)
+
∣∣Π′′(τ2)

∣∣y(2−�r−2

�r + 2

)] 1
y
}

+

{[∣∣Π′′(τ1)
∣∣y(2−�r−2

�r + 2

)
+
∣∣Π′′(τ2)

∣∣y( (�r + 3)e− ln(2)�r

4(�r + 1)(�r + 2)

)] 1
y}}

.
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Corollary 25. In inequality (25), when r = 0 = s, we have

∣∣∣∣ Γ(� + 1)

[ξ(τ2, τ1, m)]�+1

{
J�−1

(mτ1+
1
2 ξ(τ2,τ1,m))

− Π(mτ1) + J�−1

(mτ1+
1
2 ξ(τ2,τ1,m))

+ Π(mτ1 + ξ(τ2, τ1, m))

}

−
�Π
(

mτ1 +
1
2 ξ(τ2, τ1, m)

)
2�−2[ξ(τ2, τ1, m)]2

∣∣∣∣
≤

⎛⎜⎝ 1

2�
(

y
y−1

)
+1. �

(
y

y−1

)
+ 1

⎞⎟⎠
1− 1

y

×
{(

m
∣∣Π′′(τ1)

∣∣y 3
8
+
∣∣Π′′(τ2)

∣∣y 1
8

) 1
y
+

(
m
∣∣Π′′(τ1)

∣∣y 1
8
+
∣∣Π′′(τ2)

∣∣y 3
8

) 1
y
}

.

Corollary 26. In inequality (25), when r = 0 = s and m = 1, we have∣∣∣∣ Γ(� + 1)

[ξ(τ2, τ1)]
�+1

{
J�−1

(τ1+
1
2 ξ(τ2,τ1))

− Π(τ1) + J�−1

(τ1+
1
2 ξ(τ2,τ1))

+ Π(τ1 + ξ(τ2, τ1))

}

−
�Π
(

τ1 +
1
2 ξ(τ2, τ1)

)
2�−2[ξ(τ2, τ1)]

2

∣∣∣∣
≤

⎛⎜⎝ 1

2�
(

y
y−1

)
+1. �

(
y

y−1

)
+ 1

⎞⎟⎠
1− 1

y

×
{(∣∣Π′′(τ1)

∣∣y 3
8
+
∣∣Π′′(τ2)

∣∣y 1
8

) 1
y
+

(∣∣Π′′(τ1)
∣∣y 1

8
+
∣∣Π′′(τ2)

∣∣y 3
8

) 1
y
}

.

Corollary 27. In inequality (25), when r = s = y, we have

∣∣∣∣ Γ(� + 1)

[ξ(τ2, τ1)]
�+1

{
J�−1

(mτ1+
1
2 ξ(τ2,τ1,m))

− Π(mτ1) + J�−1
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1
2 ξ(τ2,τ1,m))

+ Π(mτ1 + ξ(τ2, τ1, m))

}

−
�Π
(

mτ1 +
1
2 ξ(τ2, τ1, m)

)
2�−2[ξ(τ2, τ1, m)]2

∣∣∣∣
≤

(
1
2

)1− 1
y ×
{(

m
∣∣Π′′(τ1)

∣∣y( (�y + 3)2−�y−2

(�y + 1)(�y + 2)

)
+
∣∣Π′′(τ2)

∣∣y( 2−�y−2

(�y + 2)

)) 1
y

+

(
m
∣∣Π′′(τ1)

∣∣y( 2−�y−2

(�y + 2)

)
+
∣∣Π′′(τ2)

∣∣y( (�y + 3)e− ln(2)�y

4(�y + 1)(�y + 2)

)) 1
y}

.

Corollary 28. In inequality (25), when r = s = y and m = 1, we have∣∣∣∣ Γ(� + 1)

[ξ(τ2, τ1)]
�+1

{
J�−1

(τ1+
1
2 ξ(τ2,τ1))

− Π(τ1) + J�−1

(τ1+
1
2 ξ(τ2,τ1))
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}

−
�Π
(

τ1 +
1
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)
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2
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1
2

)1− 1
y ×
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(�y + 1)(�y + 2)

)
+
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)) 1
y
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+

(∣∣Π′′(τ1)
∣∣y( 2−�y−2

(�y + 2)

)
+
∣∣Π′′(τ2)

∣∣y( (�y + 3)e− ln(2)�y

4(�y + 1)(�y + 2)

)) 1
y}

.

4. Applications to Some Special Functions

4.1. q-Digamma Function

Let 0 < q < 1, the mathematically q-digamma function ϕq

(
see [37,38]

)
, which is

given as:

ϕq = − ln(1 − q) + ln q
∞

∑
k=0

qk+ζ

1 − qk+ζ

= − ln(1 − q) + ln q
∞

∑
k=0

qkζ

1 − qkζ
.

For q > 1 and ζ > 0, q-digamma function ϕq can be given as:

ϕq = − ln(q − 1) + ln q

[
ζ − 1

2
−

∞

∑
k=0

q−(k+ζ)

1 − q−(k+ζ)

]
= − ln(q − 1) + ln q

[
ζ − 1

2
−

∞

∑
k=0

q−kζ

1 − q−kζ

]
.

Proposition 1. Assume that τ1, τ2 ∈ R such that 0 < τ1 < τ2 and 0 < q < 1. Then:

∣∣∣∣ 1
τ2 − τ1

∫ τ2

τ1

ϕq(ε) dε − ϕq

(
τ1 + τ2

2

)∣∣∣∣ ≤ (
τ2 − τ1

8

){(∣∣∣ϕ(1)
q (τ1)

∣∣∣y + 2
∣∣∣ϕ(1)

q (τ2)
∣∣∣y

3

) 1
y

(29)

+

(2
∣∣∣ϕ(1)

q (τ1)
∣∣∣y + ∣∣∣ϕ(1)

q (τ2)
∣∣∣y

3

) 1
y
}

.

Proof. The assertion can be obtained immediately by inequality (18), when m = 1, Π(ε) =
ϕq(ε) and ε > 0, since Π′(ε) = ϕ′

q(ε) is convex on (0,+∞).

4.2. Modified Bessel Function

This section contains multiple uses related to the prediction of a few special functions,
specifically modified Bessel functions. Such functions can be observed in statistical mechan-
ics, non-uniform beams, transmission line studies, and statistical treatment of relativistic
gas. First, we add the mathematical form of modified Bessel function �ρ, in the first sense,
which is given by (see [37], p. 77)

�ρ(ζ) = Σn≥0

(
ζ
2

)ρ+2n

n!Γ(ρ + n + 1)
.

where ζ ∈ R and ρ > −1, while the mathematical form of modified Bessel function Kρ in
the second sense (see [37], p. 78) is usually explored as

Kρ(ζ) =
π

2
�−ρ(ζ)−�ρ(ζ)

sin ρπ
.

Consider the function Ωρ(ζ) : R → [1, ∞) defined by

Ωρ(ζ) = 2ρΓ(ρ + 1)ζ−ρ�ρ(ζ).
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The first order derivative formula of Ωρ(ζ) is given by [37]:

Ω′
ρ(ζ) =

ζ

2(ρ + 1)
Ωρ+1(ζ), (30)

and the second derivative can be attained easily from (30) to be

Ω′′
ρ (ζ) =

ζ2Ωρ+2(ζ)

4(ρ + 1)(ρ + 2)
+

Ωρ+1(ζ)

2(ρ + 1)
. (31)

Proposition 2. Suppose that ρ > −1 and 0 < τ1 < τ2. Then, we have∣∣∣∣ τ1 + τ2

4(ρ + 1)
Ωρ+1

(
τ1 + τ2

8

)
− Ωρ(τ2)− Ωρ(τ1)

τ2 − τ1

∣∣∣∣
≤ τ2 − τ1

8

[
1
3

{(
τ2

1 Ωρ+2(τ1)

4(ρ + 1)(ρ + 2)
+

Ωρ+1(τ1)

2(ρ + 1)

)q

+ 2

(
τ2

2 Ωρ+2(τ2)

4(ρ + 1)(ρ + 2)
+

Ωρ+1(τ2)

2(ρ + 1)

)q} 1
q

+
1
3

{
2

(
τ2

1 Ωρ+2(τ1)

4(ρ + 1)(ρ + 2)
+

Ωρ+1(τ1)

2(ρ + 1)

)q

+

(
τ2

2 Ωρ+2(τ2)

4(ρ + 1)(ρ + 2)
+

Ωρ+1(τ2)

2(ρ + 1)

)q} 1
q
]

.

Proof. Applying the inequality (18) to the mapping Π(ζ) = Ω′
ρ(ζ), ζ > 0, m = 1 and the

identities (30) and (31) we have the result. (Note that all assumptions are satisfied).

5. Conclusions

The work on integral inequalities associated with fractional operators has proven
to be an abundant source of inspiration for numerous researchers in a variety of fields.
Improvements and generalizations achieved with the concept of preinvexity result in better
and sharper bounds when compared to convex functions. First, in this work, we established
a few fractional identities. Employing these new notations and identities, we derived some
Hermite–Hadamard-type inequalities applicable to the R-L fractional integrals. Further-
more, various examples are provided to demonstrate the accuracy of the results. With the
help of power mean and Hölder inequality, we derived the generalizations of H-H inequal-
ity that brought the work more aesthetic appeal. Our findings provide improvements and
modifications to prior investigations, encouraging additional investigation.
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