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Preface to ”Application of Bioinformatics in Cancers”

Bioinformatics applications in cancer have rapidly evolved over the past several years.

Ever since its initial implementation, next generation sequencing has altered our understanding of

cancer biology, and the approaches to analyze more and more complex datasets have also become

increasingly complex. Routine bioinformatics pipelines now range from those that rapidly detect

and predict functional impact of molecular alterations to those that quantify changes to the tumor

microenvironment. For example, several tools that analyze tumor-immune interactions have been

successfully developed to assess tumor infiltrating lymphocyte content, microsatellite instability,

total mutational burden and neoantigen presentation. Further complexity of integrated omics-based

analysis is also now coupled with the emergence of modern machine learning and network-based

approaches to analyze large datasets in the context of publicly available resources, such as the cancer

genome atlas.

While much of the focus has so far been on annotating molecular alterations as well as infiltrating

cell types or cell states in ideal sequencing conditions, alternative and application-specific approaches

are now emerging that improve on a wide variety of established analysis techniques. These include

techniques that range from improved quantification of copy number and gene expression from

formalin fixed tissues as well as applications that require high sensitivity such as the quantification of

tumor mutations from liquid biopsies (circulating cell free DNA). Further novel applications attempt

to improve the ability to analyze the distribution and molecular impact of complicated genetic

features such as repetitive or transposable endogenous elements (e.g., LINE-1) as well as exogenous

genetic elements (e.g., human papilloma virus).

As we develop a better understanding of the limitations of these new informatics approaches, we

can ultimately hope to apply these techniques to existing datasets and build well-annotated databases

of easily accessible information that can be leveraged in multi-variable analysis pipelines. Similar to

the success of SIGdb and cBioPortal, this should help yield new diagnostic and prognostic/predictive

biomarkers for standard interventional modalities as well as emerging areas like immuno-oncology,

and areas of unmet clinical need. This Special Issue will highlight the current state of the art in

bioinformatics applications in cancer biology, and infer future prospects for improving informatics

applications through artificial intelligence and machine learning approaches.

Chad Brenner

Special Issue Editor
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This series of 25 articles (22 original articles, 3 reviews) is presented by international leaders
in bioinformatics and biostatistics. This original series of articles details emerging approaches that
leverage artificial intelligence and machine learning algorithms to improve the utility of bioinformatics
applications in cancer biology. Importantly, the issue also addresses the limitations of current
approaches to analyzing high throughput datasets by providing support for novel methods that
can be used to improve complex multi-variable analysis. For example, in order to help identify
clinically meaningful genes, Shen et al. demonstrate how the implementation of a knockoff procedure
can control false discovery rates in next-generation datasets with relatively small sample sizes [1].
Additionally, tools were developed and validated to address complex problems ranging from tumor
heterogeneity to mutation signature analysis. For example, intertumor heterogeneity scores were
characterized from >2800 tumors and used to identify genes associated with high heterogeneity
including histone methyltransferase SETD2 and DNA methyltransferase DNMT3A, which were
then validated by CRISPR/CAS9 in experimental systems [2]. Likewise, a tool was derived to infer
tumor RNA expression signatures of genes with copy loss to support gene-loss driven biomarker
analysis [3], and, a weight-matrix based approach was used to highlight the distribution of APOBEC
and AID-related gene signatures in multiple cancers that drive subsets of the somatic mutation
spectra [4]. Together these manuscripts demonstrate how novel tools and statistical approaches are
being used to refine analysis of large next generation sequencing datasets. Extending these concepts,
Veronesi et al. also develop an R-script based tool box for efficient analysis of gene signatures with
diagnostic and prognostic variable that highlights how tools are being rapidly adapted into easy-to-use
application packages [5].

Several papers in this series also demonstrate the potential to integrate large and diverse
datasets and use machine learning approaches to develop significantly improved multi-variable
predictors of clinical outcome. For example, deep learning artificial intelligence-based approaches
were shown to be highly effective at integrating genomic data from multiple sources using de-noising
auto-encoders to curate deep features associated with breast cancer clinical characteristics and
outcomes [6]. Moreover, artificial intelligence-driven classification techniques were also used on
multiple independent colorectal cancer datasets to identify and verify biomarkers of diagnosis and
prognosis that may have important implications for the disease [7]. As another example, the Taiwan
Cancer Registry database was analyzed to evaluate the value of the Wu co-morbidity score for accuracy
in assessing curative-surgery-related 90-day mortality risk and overall survival in patients with

Cancers 2019, 11, 1630; doi:10.3390/cancers11111630 www.mdpi.com/journal/cancers1
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locoregionally advanced head and neck cancer [8]; and, in an alternative approach, Ferroni et al.
demonstrate the utility of using machine learning-driven decision support systems to extract data
from electronic health records and refine prognostic variables [9]. As an alternative approach, and to
understand how gene sets may correlate with outcome, Locati et al. utilized self-organizing map
approaches to curate publicly available HPV+ cancer data and inferred gene signatures associated with
three biological subtypes of the disease [10]. Novel datasets comparing the molecular composition
of primary colorectal cancer and brain metastases were also generated [11]. In an interesting
informatics approach, analysis of steroid hormone-related gene sets in publicly available data identified
steroidogenic acute regulatory protein as a potential prognostic biomarker in breast cancer [12].
Likewise, a meta-analysis of GEO and TCGA miRNA datasets led to the prioritization of candidate
biomarkers of prognosis and overall survival in oral cancer [13]. Machine learning approaches were
similarly used to prioritize relevant miRNAs and validate the high performance of highly ranked
miRNAs in classification models, suggesting that prioritization of targets from expression data is a
highly effective strategy [14]. Analysis of miRNA data using an observed survival interval was reported
to overcome issues with clinical outcome associations [15]. Collectively suggesting the potential of
these approaches in this new era of machine learning approaches. Finally, additional analysis of similar
datasets also highlighted the role of detailed characterization of clinical characteristics in avoiding
biological and the clinical outcome analysis bias in large dataset analysis was well demonstrated in the
analysis of pancreatic cancer TCGA data by Nicolle et al. [16].

More broadly, machine learning-driven informatics approaches, which were demonstrated to have
utility in improving statistical analysis of integrated histopathologic datasets, were implemented to
analyze the TCGA lung adenocarcinoma dataset as an alternative approach to modeling outcomes [17].
Furthermore, using both the lung adenocarcinoma and hepatocellular carcinoma datasets to analyze the
utility of integrated gene and imaging data, multiple individual genes, conditional on imaging features,
were shown to drive significant improvement in prognosis modeling [18]. These improvements in
integrated multi-feature image analysis and molecular analysis for outcome modeling suggest that
complex models incorporating diverse variables may be key to making substantial improvements to
clinical outcome models in the future.

Interestingly, several of the articles also highlight the ability to use emerging bioinformatic
techniques, high throughput small molecule screening data, and/or outcomes data to make improved
predictive models. Lu et al. leveraged a support vector machine learning algorithm to analyze datasets
from the Cancer Cell Line Encyclopedia and identify a 10-gene predictive model of recurrence-free
survival and overall survival in epithelial ovarian cancer, validated on two independent datasets [19].
Diverse bioinformatics approaches were used to demonstrate how Bufadienolide-like chemicals may
contribute to cardiotoxicity and function as anti-neoplastic agents providing a roadmap for prioritizing
the mechanisms of action of small molecules with recent informatics techniques [20]. Further, a novel
pipeline was developed to predict acquired resistance to EGFR inhibition, in which the team built
a meta-analysis-based, multivariate model that leveraged eight independent studies and had high
predictive performance [21]. Network pharmacologic analysis was used as an approach to nominate
herb-derived compounds for their potential efficacy in tumor immune microenvironment regulation
and tumor prevention [22], showing the utility of informatics approaches for deconvolution of drug
screening data.

The collection also includes insightful reviews discussing major bioinformatics approaches involved
in the analysis of cell-free DNA sequencing data for detecting genetic mutation, copy number alteration,
methylation change, and nucleosome positioning variation [23]; how bioinformatics approaches can
be used to understand the functional effects of TERT regulation by alternative splicing [24]; and how
automatic computer-assisted methods and artificial intelligence-based approaches may be leveraged for
brain cancer characterization in a machine and deep learning paradigm [25].

The diversity of approaches and datasets highlighted in this collection of articles underscore
the broad range of bioinformatics techniques that are being developed to answer complex questions
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ranging from how to better predict clinical outcomes to prioritizing lead compounds capable of
disrupting the tumor-immune microenvironment. The articles collectively demonstrating the machine
learning approaches can be used to make significant advances in cancer biology. Indeed, as we develop
a better understanding of how different machine learning approaches are best suited to pursue critical
questions as outlined in the articles of this series, we can ultimately hope to improve research efficiency
and make substantial improvements to the overall health of patients.

Funding: C.B. received funding from NIH Grants U01-DE025184 and R01-CA194536 and the American
Cancer Society.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: The discovery of biomarkers that are informative for cancer risk assessment, diagnosis,
prognosis and treatment predictions is crucial. Recent advances in high-throughput genomics make
it plausible to select biomarkers from the vast number of human genes in an unbiased manner.
Yet, control of false discoveries is challenging given the large number of genes versus the relatively
small number of patients in a typical cancer study. To ensure that most of the discoveries are true,
we employ a knockoff procedure to control false discoveries. Our method is general and flexible,
accommodating arbitrary covariate distributions, linear and nonlinear associations, and survival
models. In simulations, our method compares favorably to the alternatives; its utility of identifying
important genes in real clinical applications is demonstrated by the identification of seven genes
associated with Breslow thickness in skin cutaneous melanoma patients.

Keywords: cancer biomarker; diseases genes; variable selection; false discovery rate; knockoffs

1. Introduction

The discovery of biomarkers that are informative for cancer risk assessment, diagnosis, prognosis
and treatment predictions is crucial. Many biomarkers have been proven to be very informative for
clinical usage, with prominent examples such as BRCA1 and HER2 in breast cancer [1,2], EGFR in
non-small-cell lung carcinoma [3] and PSA in prostate cancer [4]. Recent advances in high-throughput
genomics make it plausible to select biomarkers from the vast number of human genes in an unbiased
manner. For instance, genes associated with disease-related clinical outcomes can be identified
by linking a patient’s gene expression to the disease progression [5] or other disease phenotypes.
Furthermore, by understanding the regulatory roles of these associated genes on various cancers,
treatment strategies may be developed. For these reasons, many gene signatures have been discovered
for a variety of cancers.

However, many challenges exist for the selection of genes from the high-throughput and
high-dimensional expression data at a genomic scale. Besides computational challenges due to
the large size of data, a critical statistical difficulty is the control of false discoveries of all identified
genes mainly due to the large number of genes versus the relatively small number of patients in a typical
cancer study. The conventional method for genomic data analysis is known as univariate analysis,
that is, exploring the relationship of the disease-related outcomes with one gene at a time. Due to its
simplicity and intuitiveness, univariate analysis has been widely used in gene selection. However,
high correlations exist among genes induced by co-expression activities, and hence genes correlated
with disease-related genes are also correlated with disease outcomes (a.k.a. spurious correlation).
Therefore they will be selected via univariate analysis, leading to high false discoveries. Another issue

Cancers 2019, 11, 744; doi:10.3390/cancers11060744 www.mdpi.com/journal/cancers5
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of univariate analysis is its low statistical power of identifying any disease-related genes due to the
multiplicity of hypothesis testing [6] as well as noise that is unaccounted for. That is, relatively fewer
genes that are truly associated with the outcome will be identified from univariate analysis than that
with multivariate analysis. For the reasons above, penalized multivariate analysis approaches such as
the lasso regression [7] and its extensions such as penalized generalized linear models and the Cox
proportional hazard model with elastic-net penalty [8,9] have been applied recently to genomic data
analysis [10,11]. Nevertheless, because cross-valuation is typically used for the selection of the optimal
tuning parameters, such approaches often fail to control false discoveries [12]. This aspect has been
clearly illustrated in our simulations in Section 3.1.

For prediction purposes, genes with spurious correlations to the disease outcomes may be useful.
However, they are unsuitable when the goal is to understand the disease etiology, or to identify
potential treatment targets, where genes that are genuinely associated with the disease are required.
In other words, when the number of false discoveries is high, the discoveries are not scientifically
replicable. Due to the high cost to experimentally validate the selected genes, there is an urgent need to
control for false discoveries in gene selection procedures. The false discovery rate (FDR) [13], defined as
the expected proportion of false discoveries among all discoveries, is a widely used method to control
for false discoveries in genomic studies, due to its high statistical power compared with conventional
methods that control for family-wise error rates (FWER) such as the Bonferroni correction. Controlling
for FDR leads to limited proportion of non-true findings among all findings produced by a given
analysis and discovery procedure, which translates to reliable scientific discoveries as well as reduced
attempts and costs to validate non-true findings. The importance of controlling for the false discovery
rate in lasso regression has also been recognized. Recently, [12] proposed a bootstrap/resampling
method to control the FDR in lasso type variable selection. The smoothness of the limiting distributions
of the bootstrap, which is the standard assumption for the bootstrap, is needed for such methods [14].
In [15], a knockoff procedure was introduced to control the FDR in linear regression when the number
of variables is not too large; knockoff variables are constructed to mimic the correlation structure
found within the existing variables. In a follow-up paper [16], the method was further expanded to
a general framework and a high-dimensional situation for Gaussian variables was studied extensively.
However, there is still a gap between the generally simple knockoff framework and the complicated
data structures in real world applications.

In this paper, we propose several novel strategies based on the knockoff framework for variable
selection subject to control for the false discovery rate. The proposed method is general and flexible,
accommodating arbitrary covariate distributions, linear and nonlinear associations, and survival
models. Simulation experiments and a real data example on gene identification for Breslow thickness
in skin cutaneous melanoma patients demonstrate the utility of the proposed method.

2. Methodology

In many practical situations, identification of a set of explanatory variables which are truly
associated with the response is a primary interest in investigation. This is particularly true in
biomedical research when genes are selected from a pool of candidate genes that are potentially
associated with a disease. To assure that most of the discoveries are true and replicable, one must know
whether the false discovery rate, or the expected fraction of false discoveries among all discoveries,
as defined in Definition 1, is acceptable or too large. In other words, the false discovery rate in this
discovery process needs to be controlled at a desirable level.

Definition 1 (False discovery). Let S be the true set of variables associated with an outcome, and Ŝ be the

set of variables selected based on a dataset. The false discovery proportion (FDP) is defined as the proportion of

false discoveries among all discoveries, i.e., FDP :=|Ŝ\S|/|Ŝ|, where |·| is the size of a set, with the convention

0/0 = 0. The false discovery rate (FDR) [13] is defined as the expectation of FDP, i.e., FDR := E[FDP].
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The method proposed in this paper is based on the knockoff framework first proposed in [15]
and later generalized in [16]. The knockoff framework provides a recipe for building algorithms to
control for FDR in variable selection. Under certain mild conditions, the FDR can be theoretically
guaranteed to be controlled at a pre-specified level. The key contribution of the knockoff framework is
the introduction of the concept of knockoff variables, as defined in Definition 2.

Definition 2 (Knockoff variables). A set of random variables (X̃1, · · · , X̃p) is said to be model-free knockoffs [16]

for (X1, · · · , Xp) with respect to response Y if they are constructed without looking at Y, and for any j ∈{
1, · · · , p

}
, the pair (X j, X̃ j) is exchangeable conditioned on all the other variables (X̃1, · · · X̃p) and (X1, · · · , Xp)

excluding (X j, X̃ j).

In layman’s terms, each knockoff variable X̃ j can be considered as a “fake” duplicate of the

corresponding variable X j, in that the relationship between X̃ j and all the other variables and their
knockoffs excluding X j is indistinguishable from the relationship between X j and all the other variables

and their knockoffs excluding X̃ j. Furthermore, the knockoff variables are constructed without using
the outcome variable, and therefore are guaranteed not to be associated with the outcome. As a result,
in a variable selection procedure, a knockoff variable X̃ j has equal chance of being selected as the
“original” variable X j when X j is not associated with the outcome, which makes the knockoff variables
robust benchmarks for FDR control. In this paper, we propose several novel strategies based on the
knockoff framework for variable selection subject to control for the false discovery rate.

2.1. Construction of Model-Free Knockoff Variables

The first step for variable selection based on the knockoff framework is to construct knockoff
variables. In [15,16], algorithms for constructing knockoff variables for low and high dimensional
multivariate Gaussian distributions were proposed, respectively. In particular, an approximated
algorithm was proposed in [16] to construct knockoffs by sampling from a multivariate Gaussian
distribution with the same first two moments as that of the original variables. When the joint
distribution of the original variables is known, the conditional distributions can be derived, based on
which random samples can be drawn directly and can be used as knockoffs.

Although built on a multivariate Gaussian distribution, the performance of the knockoff variables
constructed using the algorithm in [16] is reported to be quite robust against deviations from the
Gaussian assumption, as long as the first two moments are approximated well. We also have the same
observations in our experiments (See Appendix C). Therefore, we use the algorithm in [16] for the
construction of knockoff variables for all the simulated and real data experiments in this paper, unless
otherwise noted. Moreover, we propose another algorithm for constructing knockoff variables without
the Gaussian assumption with much higher computational burden (See Appendix A), which may be
used in situations when the Gaussian assumption is severely violated.

2.2. Model-Free Statistics

The knockoff framework guarantees that the FDR is controlled at a desirable level for variable
selection. However, the statistical power for variable selection depends on the specific statistic
being used in the knockoff framework. In [16], the lasso coefficient difference (LCD) statistic was
proposed and shown to be very powerful for variable selection based on the lasso regression model.
However, it assumes a linear relationship between the response variable and the predictors. When such
relationship does not hold, the statistical power will be compromised. In this section, we propose two
novel statistics to accommodate arbitrary relationships between the response and predictor variables,
thereby realizing our goal of model-free variable selection. In contrast to the lasso regression model
in [16], we incorporate machine learning techniques, such as support vector regression [17] and
boosting [18], to allow for more flexible and complex model settings.
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2.2.1. Difference in R-Squared (DRS) Statistic

Intuitively, variable importance can be measured by the amount of variability of the response data
explained by each specific variable. In practice, we can define a statistic named difference in R-squared
(DRS) based on the difference between the R2 value achieved by the full model and that by a partial
model where one predictor variable is excluded at a time. See Appendix B for details.

2.2.2. Risk Reduction in Boosting (RRB) Statistic

This statistic stems from the mboost R package which implements a functional gradient descent
algorithm for model-based boosting. This method uses component-wise least squares estimates or
regression trees as base-learners to optimize general risk functions. The algorithm is quite flexible
in that it allows for various kinds of base-learners to be used, for example, linear, P-spline, and tree
based base-learners, as well as a variety of loss functions and corresponding risk functions to be
optimized. In a fitted boosting model, the accumulated in-bag risk reductions per boosting step for each
base-learner or variable can be used to reflect variable importance. The amount of risk reduction can
be provided by a function called varimp in the mboost R package with appealing computing efficiency.
Similar to DRS, the risk reduction in boosting (RRB) statistic W j can be constructed by the difference

between the risk reduction of variable X j and that of its corresponding knockoff X̃ j. Again, W j here
attains the anti-symmetry property and a symmetric distribution under the null hypothesis. The high
flexibility of the boosting method allows us to model arbitrarily complex relationships between y

and (X, X̃). The computational efficiency also makes this statistic favorable for our high-dimensional
variable selection purpose. In our simulations, compared with the DRS statistic, we found that the
RRB statistic achieves better performance in terms of FDR control and of statistical power for variable
selection (See Appendix C), with much lower computational burden. Therefore, we use the RRB
statistic for all the simulated and real data experiments in this paper, unless otherwise noted.

2.3. Nonlinear Screening

As genomic datasets are often high-dimensional, that is, the number of genes p is much larger
than the sample size n, computing the statistics W j for each variable X j will take a lot of time. Here,
we propose a nonlinear screening strategy to accelerate this procedure. In particular, when 2p > n,
we perform univariate fitting of y to each X j as well as X̃ j, using nonlinear regression based on
B-splines. In particular, we rank all the variables and their knockoffs based on the L2 norm of the
block-wise gradient vector. The top variables are corresponding to the steepest descent directions,
which minimizes the direction derivative, and hence, provides the largest decrease in the linear
approximation of the objective function. We then retain the top n variables for computing their W j’s
subsequently using a chosen statistic, and set the W j’s for all the remaining 2p − n variables to be
zero. In our simulations, we found that this nonlinear screening strategy can substantially reduce
computational time while maintaining the FDR control as well as statistical power for variable selection
(See Appendix C). Therefore, we use this nonlinear screening strategy for all the simulated and real
data experiments in this paper, unless otherwise noted.

3. Results

3.1. Simulations

We first use simulation studies to evaluate the performance of our proposed method against two
other existing methods: the knockoff method with lasso coefficient difference (LCD) [16] and lasso
regression [7] with cross-validation (CV), a widely used variable selection approach. In simulations,
we examine several situations to demonstrate that the proposed method performs well in terms of
FDR control with increased statistical power. These simulations support the usage of the proposed
method for analyzing a real dataset in Section 3.2. All simulations are performed in R.
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In particular, we consider three cases of linear and nonlinear associations as well as survival
models. In each case, we apply our proposal of using the boosting method with P-spline base-learners
to approximate linear or nonlinear associations. We use the knockoff construction algorithm introduced
in [16], the RRB statistic described in Section 2.2.2, and the nonlinear screening described in Section 2.3.
Specifically, we use the mboost R package to fit y against the augmented design matrix (X, X̃). For fitting
lasso penalized models in the knockoff with the LCD method of [16] and in lasso regression with
cross-validation, we use the glmnet R package [8,9] with five-fold cross-validation for selection of the
regularization parameter of lasso in simulations for linear (Section 3.1.1) and nonlinear (Section 3.1.2)
associations and the Cox proportional hazards regression [19] in simulations for survival analysis
(Section 3.1.3).

3.1.1. Linear Associations

The first simulation study focuses on linear associations in regression. In particular, the data were
simulated from a linear regression model

Y =

p∑

j=1

X jβ j + ε, ε ∼ N(0, σ2), (1)

in which X = (X1, · · · , Xp)
T is distributed according to a p-dimensional Gaussian distribution N(0, Σ),

with the i j-th element of Σ being ρ|i− j|, following an auto-regressive variance structure with the
auto-regressive coefficient ρ. Moreover, X and ε are independent. Of p variables, we randomly
choose k variables X j1 , · · · , X jk and set the corresponding β jl = ζ jlA, where A, called amplitude, is
a varying magnitude given in Figure 1, ζ jl is a random sign, and β j = 0 if j �

{
j1, . . . , jk

}
. The amplitude

represents the association strength (e.g., correlation) between a biomarker and the outcome. In this
case, we simulate p = 2000, k = 10, ρ = 0.3, and σ2 = 1 from (1) with sample size n = 300. This mimics
the real data analysis in Section 3.2. We use the multivariate Gaussian distribution for its simplicity in
simulating correlated covariates and the fact that the knockoff framework is robust against deviations
from this distributional assumption, as long as the first two moments are approximated well [16].
Furthermore, the relationship between outcome and covariates can be arbitrary.

As suggested by Figure 1, the FDR is controlled around our target value of 20% for the proposed
method (knockoff +mboost). The FDR for the knockoff + LCD method is slightly higher. In contrast,
the FDR of the lasso + CV method is so high that the discovery is unreliable. All three methods have
similar statistical power, and power increases and gets close to 1 as the signal strength gets stronger.
A statistical power of 1 means the ideal situation that all genes that are truly associated with the
outcome are identified. Although Lasso + CV has the highest power, it is not desirable for discovery,
given the uncontrollable FDR levels. Thus, lasso + CV is not a suitable approach for gene selection.

As will be seen in the cases of nonlinear associations (Section 3.1.2) and survival models
(Section 3.1.3), the proposed method becomes more powerful when the model assumption of linear
associations is violated.
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Figure 1. Simulation results for linear associations (top panel), nonlinear associations (middle panel)
and survival analysis (bottom panel). Left panel: averaged false discovery proportion (FDP,
the empirical version of FDR) and the standard error bars for knockoff variable selection with
mboost (red), lasso coefficient difference (LCD) (black) and lasso regression with cross-validation (CV)
(blue) as a function of amplitude (association strength (e.g., correlation) between a biomarker and the
outcome) based on 30 simulation replications. The reference lines indicate the target false discovery
rate of 20%. Right panel: corresponding empirical statistical power of the three methods.
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3.1.2. Nonlinear Associations

Our second simulation study deals with nonlinear relationships in regression, in which we again
compare the proposed knockoff +mboost method with the knockoff + LCD method of [16] as well as
lasso + CV. Here, we replace

∑p

j=1 X jβ j in (1) by
∑p

j=1 X2
j
β j to accommodate nonlinear associations.

All other settings are the same as in Section 3.1.1.
As indicated in Figure 1, the FDR for the proposed method (knock +mboost) is controlled under

the target value of 20%, as marked by the horizontal dotted line, whereas the FDRs for the other two
methods are above the target level. In terms of statistical power, the proposed method is much better
than the other two methods, which assume a linear predictor while the proposed method is more
flexible without such assumptions.

3.1.3. Survival Analysis

Our third simulation study concerns the Cox proportional hazards regression [19] with a nonlinear
predictor

∑p

j=1 X2
j
β j as in Section 3.1.2. Specifically, we generate y from the Cox model with a baseline

hazard rate equals to 0.002 and a hazard rate of censoring equals to 0.004. The event time follows
a Weibull distribution with the shape parameter equals to 1 and scale parameter equals to the baseline
hazard rate multiplied by the exponential of the predictor, i.e., exp(

∑p

j=1 X2
j
β j). The censoring time is

also sampled from a Weibull distribution with the shape parameter equals to 1 and scale parameter
equals to the hazard rate of censoring. The actual observation time is the smaller value between the
event and censoring times.

As shown in Figure 1, all three methods roughly achieve the objective of controlling the FDR at
the desired level of 20% with slight inflation. The proposed method exhibits much higher power than
the other two as was the case in Section 3.1.2.

Based on the simulation studies, we conclude that the proposed method performs well for linear
and nonlinear associations as well as survival models. In practice, we do not need to assume linear
or non-linear association between the biomarkers and the outcome, and our method will identify
biomarkers with high statistical power and well controlled FDR regardless of the type of association
that is present in the dataset.

3.2. Cancer Data

In this section we apply our proposed method as described in Section 3.1 to a real dataset from
a cancer study for the identification of genes that are associated with clinical outcomes. We investigate
a skin cutaneous melanoma (SKCM) dataset, which contains the expression levels of 20,531 genes from
355 melanoma patients measured by RNA-Seq. The dataset is a part of The Cancer Genome Atlas (TCGA)
project and publicly available from the TCGA data portal at https://portal.gdc.cancer.gov/. The aim is
to identify a set of genes associated with the clinical variable of interest, called Breslow thickness.

Due to the large number of genes and the relatively small sample size, to expedite computation
while enhancing the accuracy of identification, we apply a filtering rule to select genes whose mean
expression levels exceed 1 normalized transcripts per million (TPM) and the q-value (corrected using
the BH procedure [13]) from univariate correlation tests with the response less than 0.2. This leaves us
4171 genes to which to apply our method with the log-transformed Breslow thickness as the response.
The predictor variables are measured in log-transformed gene expression values (in TPM).

In this case, at a target FDR of 20%, our method identifies seven genes BOLA1 (BolA Family
Member 1), CLDN16 (Claudin 16), EBF2 (EBF Transcription Factor 2), KCTD16 (Potassium Channel
Tetramerization Domain Containing 16), KRT14 (Keratin 14), LOC100240735 (Uncharacterized
LOC100240735), and MAP4K4 (Mitogen-Activated Protein Kinase 4). In the literature, the CLDN
(Claudin) gene family is known to be associated with tumor suppressor genes; for example,
hypermethylation of the CLDN11 promoter occurs frequently in malignant melanoma of the skin [20],
which may encode a novel melanoma-specific tumor suppressor gene [21]. CLDN16 has been found to
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be associated with breast [22], thyroid [23], ovarian [24] and lung [25] cancers. Our finding suggests
that CLDN16 is also associated with cutaneous melanoma of the skin, which seems consistent with
the role of CLDN in terms of tumor suppression. Moreover, MAP4k4 belongs to the mammalian
STE20/MAP4K family, which is often overexpressed in many types of human cancer and cancer cell
lines, including malignant melanoma [26], because of its crucial role in transformation, invasiveness,
adhesion, and cell migration [27]. KRT14 has been found to be associated with melanoma [28]. EBF2
has been found to be associated with prostate [29], bone [30], hematological and epithelial [31] cancers.
KCTD16 has been found to be associated with thyroid cancer [32], while KCTD12, a member of the
KCTD family, has been found to be associated with uveal melanoma [33]. BOLA1 and LOC100240735
(an RNA gene) are not known to be associated with any malignancies. To further understand the roles
of these genes in melanoma, experimental follow-up studies are needed.

As a comparison, we also run Lasso + CV on the same dataset, for which a total of 140 genes are
identified. Five of the seven genes identified by Knockoff +mboost are also identified by Lasso + CV.
The two genes not identified by Lasso + CV are KRT14 and LOC100240735. Given the high false
discovery rates of Lasso + CV in simulations (top-left panel of Figure 1), we expect a large proportion
of these 140 genes to be false positives.

Furthermore, to demonstrate the performance of our approach in non-Gaussian data, we randomly
pick 500 genes and assign 10 random genes among them to be truly associated genes with the remaining
490 genes to be null genes. We then randomly assign coefficients for the 10 truly associated genes
by sampling from Uni f orm(1, 5) with a random sign. To make the problem even more challenging
and to demonstrate the ability of our approach working with non-quantitative data, we dichotomize
the resulting linear predictor Y =

∑p

j=1 X jβ j at the median of its distribution so that the outcomes are
binary (i.e., two groups of equal sizes). After running Knockoff +mboost at a target FDR level of 20%,
a total of seven genes are identified, with five true positives and two false positives, which corresponds
to an FDP of 28.6% and a statistical power of 50%.

4. Discussion

An advantage of our method is that no prior specification of the type of association (i.e., linear
or non-linear) is needed, which is usually unknown for a given dataset. The knockoff construction
algorithm in [16] is based on Gaussian assumption. Nevertheless, it seems robust for non-Gaussian
data in our experiments. We also present a knockoff construction algorithm which does not require the
Gaussian assumption in case such assumption is severely violated.

The statistical power depends both on the statistic being used and the correlation structure among
covariates, which was also noted in [16]. As the correlation among covariates increases, the statistical
power decreases. Therefore, a future research direction may be developing methods for the detection
of highly correlated gene clusters that are associated with the outcome of interest. Furthermore, due to
the high computational cost of building the knockoff variables, right now we can only practically use
our method with up to around 5000 pre-selected genes. Thus, developing more efficient computational
algorithms for building knockoff variables may be another future research direction.

The datasets and R programs for producing the results in this paper are available at http:
//www-personal.umich.edu/~jianghui/knockoff/.

5. Conclusions

The results in this paper demonstrate that our proposed approach can provide reliable false
discovery rate control for variable selection in various statistical models. Such rigorous false discovery
rate control is crucial for improving replicability of the findings and avoiding wasting resources for
attempts to validate false discoveries. With additional enhancements, our method offers a promising
avenue to identify reliable gene markers in cancer studies.
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Appendix A New Algorithm for Model-Free Knockoff Variable Construction

We propose a new algorithm for constructing knockoff variables without Gaussian assumption,
by obtaining the conditional distributions empirically through regression models, regardless of the
joint distribution of the covariates. Knockoff construction is independent from the response and the
form of associations between response and covariates. Our proposal is to generate random samples
from the conditional distributions by simply permuting the residuals, assuming that the residuals are
approximately independently and identically distributed. Details of the algorithm are summarized in
Algorithm A.1.

Algorithm A.1 (Algorithm for construction of model-free knockoff variables).

For each covariate X j, j = 1, · · · , p,

(1) Fit X j on (X− j, X̃1: j−1) with a regression model, where X− j denotes (X1, · · · , X j−1, X j+1, · · · , Xp)

and X̃1: j−1 represents existing knockoffs. No knockoffs are taken into consideration for X1.

(2) Compute residuals ε = (ε1, · · · , εn) by subtracting the predicted value for X j from the
corresponding observed values, i.e., εl = X jl − X̂ jl, l = 1, . . . , n, where X̂ jl is the predicted
value of X jl by the regression model.

(3) Permute the residuals randomly, denoted by the permuted residuals ε∗ = (ε∗1, · · · , ε∗n).

(4) Construct knockoff variable X̃ j by adding the corresponding permuted residual to the predicted

value for X j, i.e., X̃ jl = X̂ jl + ε
∗
l
, l = 1, . . . , n.

(5) Proceed to the next covariate until all knockoffs are constructed.

Unlike [15,16], our proposed algorithm does not assume the multivariate Gaussian joint
distributions of the covariates. The only requirement is the independence of the residuals, which may
require an appropriate choice of regression model for fitting. For example, lasso [7] would be a good
choice when X j is linearly dependent on (X− j, X̃1: j−1), and supervised machine learning techniques like
support vector regression [17] and gradient boosting [18] are flexible enough to approximate nonlinear
functional dependence. To avoid the problem of over-fitting, we may use K-fold cross-validation on
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test sets for prediction in subsequent calculations. Cross-validation may also help select optimal tuning
parameters in the regression model and thus enable the method to be well adaptive to the observed
covariate data.

Given the construction algorithm, we can generate knockoffvariables from an arbitrary distribution,
thus, effectively increasing the level of flexibility on the covariate distribution. For instance, for a binary
response, we can simply replace the aforementioned regression models by classification models and
then permute the binary response within the same prediction group to generate random samples
for knockoffs.

The drawback of Algorithm A.1 is an increased computational burden. In our simulations,
we noticed that the moments-based knockoff construction algorithm proposed in [16] is not
very sensitive to the multivariate Gaussian assumption, and achieve similar performance as our
regression-based knockoff construction algorithm in most cases (See Appendix C). Therefore, to save
computing times, we use the algorithm in [16] for all the simulations and real data experiments,
unless otherwise noted. Nevertheless, our regression-based knockoff construction algorithm has
the potential to be used in broader scenarios, including situations when the Gaussian assumption is
severely violated.

Appendix B Difference in R-Squared (DRS) Statistic

Algorithm B.1 gives the complete procedure for calculating the DRS statistics.

Algorithm B.1 (The DRS algorithm).

(1) Fit y with (X, X̃) using a prediction model and obtain R2, where X = (Xi, . . . , Xp) contains the

original predictor variables and X̃ = (X̃1, . . . , X̃p) contains the corresponding knockoff variables.

(X, X̃) is considered as an augmented design matrix with 2p columns.

(2) For each variable or knockoff variable in (X, X̃), j = 1, . . . , 2p, fit y with (X, X̃) excluding the j-th
variable with the same prediction model as in step 1) and obtain R2

j
. Calculate the absolute value

of the difference between the two R-squared values, Z j =
∣∣∣∣R2 −R2

j

∣∣∣∣, j = 1, . . . , 2p, and record it as
the importance score for the j-th variable (or knockoff variable).

(3) For j = 1, . . . , p, the DRS statistic for X j can be derived as W j = Z j −Z j+p, that is, the difference in
Z between a variable and its knockoff.

The anti-symmetry requirement for feature statistics in [16] is fulfilled by the way we construct
the DRS statistic. A large positive value of W j provides evidence that variable X j is strongly associated
with the response y, while the statistic for a null variable is equally likely to take on a small positive or
negative value, i.e., to have a symmetric distribution around zero. Similar to Algorithm A.1, we can
apply various prediction methods for fitting in steps (1) and (2), for example, lasso for the linear
relationship between y and (X, X̃), and supervised machine learning techniques such as support vector
regression and gradient boosting for nonlinear associations. To avoid the problem of over-fitting,
we can use K-fold cross-validation and summarize the predictive power of the models by mean squared
prediction error which can produce a cross-validated R2. Cross-validation can also help select the
tuning parameters in the prediction model and thereby enable the method to be well adaptive to the
observed data.

Appendix C Additional Simulations

We conduct additional simulation experiments to compare four approaches: (1) knockoff
construction using Gaussian based algorithm in [16] with RRB statistics in Section 2.2.2 (named
Knockoff +mboost), (2) knockoff construction using model-free algorithm in Appendix A with RRB
statistics (named Model-free knockoff + mboost), (3) knockoff construction using Gaussian based
algorithm with DRS statistics in Appendix B (named Knockoff + DRS), and (4) knockoff construction
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using Gaussian based algorithm with RRB statistics but without nonlinear screening in Section 2.3
(named Knockoff +mboost + no screening). The simulation setting is similar to that of Section 3.1.1,
except that here we exponentiate each element of the design matrix X, so that the covariates follow
multivariate log-normal distribution. Furthermore, to save computing time, we let n = 100 and
p = 100. The comparison results are shown in Figure A1. We can see that except for Knockoff + DRS
which has an inflated FDP and a lower power, all three other methods have similar performance.

Figure A1. Simulation results for linear associations with log-normal covariates. Left panel: averaged
false discovery proportion (FDP, the empirical version of FDR) and the standard error bars for
knockoff variable selection with Knockoff with mboost (red), Model-free knockoff with mboost (black),
Knockoffwith DRS (blue) and Knockoffwith mboost without screening (dark green) as a function of
amplitude (association strength (e.g., correlation) between a biomarker and the outcome) based on
10 simulation replications. The reference lines indicate the target false discovery rate of 20%. Right
panel: corresponding empirical statistical power of the four methods.
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Abstract: Intratumor genetic heterogeneity (ITH) is the main obstacle to effective cancer treatment and
a major mechanism of drug resistance. It results from the continuous evolution of different clones of
a tumor over time. However, the molecular features underlying the emergence of genetically-distinct
subclonal cell populations remain elusive. Here, we conducted an exhaustive characterization of
ITH across 2807 tumor samples from 16 cancer types. Integration of ITH scores and somatic variants
detected in each tumor sample revealed that mutations in epigenetic modifier genes are associated
with higher ITH levels. In particular, genes that regulate genome-wide histone and DNA methylation
emerged as being determinant of high ITH. Indeed, the knockout of histone methyltransferase SETD2
or DNA methyltransferase DNMT3A using the CRISPR/Cas9 system on cancer cells led to significant
expansion of genetically-distinct clones and culminated in highly heterogeneous cell populations.
The ITH scores observed in knockout cells recapitulated the heterogeneity levels observed in patient
tumor samples and correlated with a better mitochondrial bioenergetic performance under stress
conditions. Our work provides new insights into tumor development, and discloses new drivers
of ITH, which may be useful as either predictive biomarkers or therapeutic targets to improve
cancer treatment.

Keywords: cancer; intratumor heterogeneity; genomic instability; epigenetics; mitochondrial
metabolism

1. Introduction

The expansion of genetically-distinct cell populations within a tumor creates a subclonal
architecture that varies dynamically throughout cancer progression [1]. This acquired cancer trait,
termed intratumor heterogeneity (ITH), is the substrate for Darwinian evolution to act upon, selecting
subclones carrying phenotypes that favor tumor progression [2]. The outgrowth of such subclones
impacts cancer development, drug resistance and tumor relapse [3–6]. Despite the key role ITH plays in
cancer, important questions regarding its magnitude, origin and genetic drivers across different cancer
types remain largely unanswered. By facilitating the emergence of nucleotide sequence mutations,
copy-number alterations, chromosomal translocations or aneuploidies, genomic instability has been
regarded as the major source of ITH [4,7–9]. However, discrepancies in the rates of genomic instability
and ITH observed in previous comprehensive studies [3] suggest that additional events congregate to
increase genetic heterogeneity in tumors.
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Besides mutations, cancer cells invariably present with some degree of epigenetic alterations
that contribute to the acquisition of the cancer hallmarks [10,11]. Indeed, there is evidence that
epigenomic reprogramming plays a seminal role in tumorigenesis by creating a progenitor-like
cell state that facilitates expression of driver mutations and tumor initiation [12]. High-resolution
genome-sequencing efforts have identified driver mutations in genes that regulate the epigenome,
namely, genome-wide chromatin and DNA methylation [13,14]. For instance, acute monocytic
leukemias frequently (20.5%) carry mutations in the de novo DNA methyltransferase gene DNMT3A,
displaying aberrant genome-wide DNA methylation profiles [15]. Ten percent of kidney renal clear
cell carcinomas (KIRC) have mutations in SETD2, the methyltransferase responsible for trimethylation
of Lys36 in histone H3 (H3K36me3), which is necessary for accurate gene expression and DNA
repair [16–19]. H3K36me3 is also involved in targeting DNMT3A to chromatin [20], highlighting the
finely tuned epigenetic interplay between histone and DNA methylation that is needed for normal cell
function and is frequently disrupted in cancer cells.

While epigenetic deregulation in cancer arises primarily as a consequence of DNA mutations,
the view that altered epigenomes may also change DNA mutation rates highlights reciprocal
interactions that contribute to cancer development [14,21]. Accordingly, epigenomic disruption
should favor the development of genetically-diverse tumor cell populations, fueling ITH [21]. In fact,
a possible relationship between genomic and epigenomic alterations during clonal evolution of
tumors has recently been suggested in esophageal squamous cell carcinoma and glioma, where high
concordance was observed between the evolution of genetic and epigenetic diversification [22,23].
In this study, we reasoned that analysis of whole-exome datasets of The Cancer Genome Atlas (TCGA)
would disclose patterns of covariation between specific epigenetic modifier genes and ITH levels.
Our integrative pan-cancer characterization of somatic variants and ITH identified mutations in
epigenetic modifier genes that display an association with increased clonal evolution across several
cancer types. Experimental ablation of specific loci provided direct evidence that loss of SETD2 or
DNMT3A drives the emergence of genetically-distinct subclonal cell populations. Knockout cells
showed increased mitochondrial bioenergetic performance under stress conditions, a phenotypic
trait that fosters the Darwinian selection of clones. Our results provide an unprecedented pan-cancer
portrait of the major determinants of ITH and an experimental validation of the role of specific
epigenetic modifier genes, laying a foundation for more effective cancer prognoses and treatment.

2. Results

2.1. Genomic Instability Does Not Predict ITH in Many Cancer Types

To estimate correlations between genomic instability and ITH in different cancers, we examined
2807 tumor whole-exome sequences from 16 cancer types of TCGA. We assigned an overall genomic
instability score to each tumor, defined as the number of somatic point mutations and small insertions
and deletions (INDELs) ranging from 1 to 100 bp in length. The ITH score was obtained using
the mutant-allele tumor heterogeneity (MATH) method (Figure 1A and Table S1) [24]. MATH
evaluates the variability of the mutant-allele fractions among all tumor-specific mutated loci. Therefore,
homogeneous tumors with high mutation incidence have a narrower distribution of mutant-allele
fractions than heterogeneous tumors. In agreement with previous reports [3], we found that the
degree of genomic instability is highly variable across tumors types (Figure 1A). Notably, high levels of
genomic instability were not positively correlated with ITH in several tumors (Figure 1B). Individual
analysis of each cancer type revealed that only thyroid carcinoma (THCA), pancreatic adenocarcinoma
(PAAD) and kidney renal clear cell carcinoma (KIRC) exhibited a statistically significant positive
correlation between genomic instability and ITH (Figure 1B). Moreover, we found a significant
negative correlation between these two features in kidney renal papillary cell carcinoma (KIRP) and
adrenocortical carcinoma (ACC) (Figure 1B). This finding suggests that factors other than increased
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mutability determine the development and expansion of genetically-distinct subclonal cell populations
within a tumor.
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Figure 1. Pan-cancer correlations reveal that genomic instability does not predict ITH. (A) Distribution
of genomic instability (log10 transformed) and ITH across 16 TCGA cancer types: THCA (thyroid
carcinoma), KICH (kidney Chromophobe), BRCA (breast invasive carcinoma), PRAD (prostate
adenocarcinoma), UCEC (uterine Corpus Endometrial Carcinoma), PAAD (pancreatic adenocarcinoma),
KIRC (kidney renal clear cell carcinoma), KIRP (kidney renal papillary cell carcinoma), CESC (cervical
squamous cell carcinoma and endocervical adenocarcinoma), LIHC (liver hepatocellular carcinoma),
ACC (adrenocortical carcinoma), HNSC (head and neck squamous cell carcinoma), STAD (stomach
adenocarcinoma), BLCA (bladder urothelial carcinoma), LUAD (lung adenocarcinoma), LUSC (lung
squamous cell carcinoma). Cancers are ordered according to genomic instability levels. (B) Pearson
correlation between genomic instability (log10 transformed) and ITH for each cancer type. Each point
represents one patient and the line shows the fitted linear model.

2.2. Mutations in Epigenetic Modifier Genes Are Strong Determinants of ITH

To investigate whether epigenomic deregulation drives the development of tumors with high
levels of ITH, we focused our analysis on KIRC, the cancer type with the highest frequency of mutations
in epigenetic modifiers (Figure 2A). The important role of epigenomic deregulation in the development
and progression of KIRC is illustrated by the finding that patients with mutations in epigenetic
modifiers have worse overall survival compared to those without mutations in these genes (p < 0.05,
log-rank test; Figure 2B). To investigate how epigenomic deregulation compares with other specific
cellular processes in influencing ITH in KIRC, we analyzed significantly mutated genes grouped in
broad functional categories as previously described [25]. The linear model revealed that mutations in
epigenetic modifiers are the most strongly associated with high ITH in KIRC, amongst all categories
of genes analyzed (Figure 2C). Moreover, the presence of mutations in epigenetic modifier genes
correlates positively with increased ITH across different cancer types (Figure 2D and Table S2). Next,
we aimed at identifying the individual genes that, when mutated, more accurately predict ITH. To this
end, we used generalized linear models previously applied to infer the association of genetic alterations
with other phenotypic variables [26]. The strongest predictor of high ITH in both KIRC alone or across
several cancer types was the presence of mutations in SETD2, DNMT1 and DNTM3A (Figure 2E).
Importantly, we could model 32% of variability in KIRC ITH using only mutations in SETD2, DNMT1

and DNTM3A (Figure 2F). The optimal model showed a significant correlation between the observed
and predicted ITH levels based on the tumor mutation profiles (Figure 2F,G). These data suggest
that epigenomic deregulation is an important determinant of ITH and identify mutations in SETD2,
DNMT1 and DNTM3A as candidate drivers of ITH.
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Figure 2. Driver mutations of pan-cancer ITH. (A) Pan-cancer analysis of the percentage of somatic
mutations in epigenetic modifier genes across 16 TCGA cancer types. The vertical axis shows
the percentage of mutations in epigenetic modifier genes whereas the different cancer types are
ordered on the horizontal axis from the lowest to the highest percentage of mutations in these genes.
(B) Kaplan-Meier plot comparing the survival of KIRC patients segregated according to the presence
(red) or absence (black) of mutations in epigenetic modifiers. The log-rank test was used for statistical
analysis. (C) Statistical significance (−log 10 Benjamini-Hochberg Adj. p-value) of the linear model
coefficients estimated for each gene group in KIRC. The vertical dashed line corresponds to the
significance level (BH adj. p-value of 0.05). (D) Heatmap of the linear model coefficients estimated
for each cancer type and gene group. Only statistically significant coefficients are represented (BH
adj. p-value < 0.05). (E) Heatmap of driver mutations of ITH across several cancer types depicted by
a LASSO penalized model. LASSO-selected coefficients are colored according to the effect of each
standardized covariate in the optimal model. The numbers on each tile denote the order in which
variables are included indicating their relative importance. The top bar plot indicates the frequency
at which each driver-gene mutation occurs in the ITH fitted model. The right bar plot shows the
explained variance. An asterisk (*) denotes models where the explained variance (R2) is greater than
zero by a margin of more than one standard deviation. (F) Variance explained by selected driver genes
(black line ± 1 standard deviation) ordered by their occurrence in a LASSO penalized model for ITH in
KIRC using only the mutated genes DNMT1, DNMT3A and SETD2. The optimal model maximizes the
explained variance R2. The right axis indicates the effect of each standardized covariate in the optimal
model (red dots). (G) Scatter plot of predicted and observed ITH for KIRC (Estimate and statistical
significance of the Pearson correlation are presented).
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2.3. Knockout of SETD2 or DNMT3A Expands the Clonal Diversity of Cancer Cell Populations

We next sought to experimentally validate the role of SETD2, DNMT1 and DNMT3A mutations in
driving the emergence of genetically-distinct subclonal cell populations. The mutations found in these
genes were predicted as deleterious causing loss of function (Table S3). To recapitulate this phenotype,
we employed CRISPR/Cas9 system to specifically knockout each of these genes in KIRC Caki-2 cell
lines. Insertion of small INDELs at the target sites was confirmed by DNA sequencing and efficiency of
gene knockout evaluated by measuring protein levels (Figure 3A). Decreased H3K36me3 levels were
used as a surrogate for SETD2 depletion (Figure 3A). Importantly, knockout of DNMT1 rendered KIRC
cells senescent (Figure 3B), in contrast to DNMT3A and SETD2 depletion, which were well tolerated
and did not significantly affect cell proliferation (Figure 3C). This finding suggests that additional
compensatory mutations are required to allow the proliferation of DNMT1 mutant cells within tumors.
Alternatively, DNMT1 mutant clones could be selected during tumor evolution due their ability to
promote carcinogenesis through the senescence-associated secretory phenotype [27–29].
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Figure 3. CRISPR/Cas9 knockout of candidate ITH-driver genes in cancer cells. (A) The levels
of DNMT3A and H3K36me3 were estimated by western blot 1, 3 and 6 months after knockout.
(B) The percentage of senescent cells in control and mutant conditions (SETD2, DNMT1 and DNMT3A

knockouts) was assessed by β-galactosidase staining (error bars indicate SEM; n = 3 counting regions
of 150 cells/condition in triplicate; Student t-test). (C) The proliferation rate of the indicated cells was
measured by AlamarBlue dye reduction at the indicated time points. All data are presented as mean
(four technical replicates in the same experiment) ± SEM.

To investigate whether loss of DNMT3A or SETD2 drives the acquisition of
genetically-heterogeneous cell populations over time, we performed whole-exome sequencing of
control and knockout cells cultured during 1, 3 and 6 months (Figure 4A). ITH levels of three different
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cell populations per experimental condition (control, SETD2 and DNMT3A knockout) were measured
at each time point using MATH. Compared to control cells, loss of either SETD2 or DNMT3A

resulted in significantly increased and comparable levels of ITH after just one month (Figure 4B and
Table S4). However, while ITH rose for up to three months after SETD2 depletion, it remained constant
through time in DNMT3A knockout cells (Figure 4B). Bayesian cluster analysis of mutations using
PyClone [30] identified 25 mutation clusters that are distributed in each cell population at a frequency
that permits segregation according to the knockout gene (Figure 4C). ITH scores observed in SETD2

and DNMT3A knockout cell lines were not significantly different from those determined in TCGA
samples carrying SETD2 and DNMT3A mutations, respectively (Figure 4D). This finding reveals that
the clonal dynamics of cancer cells grown in vitro recapitulates the in vivo scenario. Altogether, these
data suggest that loss of SETD2 or DNMT3A drives specific patterns of clonal evolution that culminate
in tumors with increased levels of ITH.

2.4. Epigenomic Deregulation Drives Favorable Metabolic Phenotypic Variation

The increased ITH observed knockout of SETD2 or DNMT3A knockout suggests that new clones
carrying phenotypic traits that confer selective advantage within the cell populations have expanded
and were selected. In cancer cells, mitochondria play important roles in energy production, redox
and calcium homeostasis, transcriptional regulation and cell death [31]. Changes in mitochondrial
metabolism constitute an important source of variability for natural selection to act upon [32,33]. To test
whether epigenomic deregulation drives altered mitochondrial metabolic functions, we evaluated
the ability of cells to adapt to shifts in energy demands by measuring mitochondrial respiration rates
using an oxygen electrode on the Seahorse platform. In this assay, the oxygen consumption rate was
measured before and after the addition of inhibitors to derive parameters of mitochondrial respiration
in baseline and stress conditions (Figure 5A). Basal mitochondrial respiration in knockout and parental
cells was equally efficient (Figure 5B), indicating that no major intrinsic metabolic alterations were
caused upon loss of either SETD2 or DNMT3A. We then measured the maximal respiratory capacity
and spare capacity rate (SCR) of cells challenged with the mitochondrial uncoupler FCCP and the
Complex I and Complex III specific inhibitors rotenone and antimycin A, respectively. Both parameters
were significantly increased in SETD2 and DNMT3A knockout cells when compared to parental cells
under similar conditions (Figure 5C,D). Analysis of SETD2 and DNMT3A knockout cells revealed
mutations in genes involved in mitochondria biogenesis and function (Table S5); however, inspection
of mitochondria network in knockout cells using fluorescence confocal microscopy did not reveal
any major alterations (Figure 5E). These data rule out altered morphology as a causing factor for the
observed increase in the spare capacity rate. Instead, our data suggest that gain-of-function mutations
in genes involved in mitochondrial function drive higher spare capacity rates in knockout cells. Such an
association between epigenetics, altered nuclear DNA expression and mitochondrial function has
already been demonstrated in previous studies [34]. Altogether, these data provide direct experimental
evidence for the emergence of favorable characteristics in SETD2 and DNMT3A depleted cells that
may foster the increased number of genetically-distinct clones within the cell population.
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extraction and whole-exome sequencing (WES). ITH was inspected after three independent clonal
expansions (C1–C3) for each knockout at each time point. (B) ITH levels of SETD2 and DNMT3A
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presented as mean ± SEM. Statistical analysis was a two-tailed Student’s t-test (* p < 0.05, ** p < 0.01,
*** p < 0.001). (C) Hierarchical cluster analysis of the mean variant allele frequency estimated with
PyClone in control, SETD2 and DNMT3A knockout cells. (D) Distribution and comparison of the ITH
levels across KIRC patients from TCGA and Caki-2 cell lines for the indicated conditions (control,
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of the mean). Statistical analysis was performed with Wilcox-test but no statistical significance was
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Figure 5. SETD2 and DNMT3A knockout increase bioenergetic performance. Oxygen Consumption
Rates (OCR) trace and respiration parameters were measured in control, SETD2 and DNMT3A knockout
cells. Seahorse extracellular flux measurements of OCR was normalized to basal respiration (A). Basal
respiration (B), maximal respiration (C) and spare capacity rate (SCR) (D) of Caki-2 cell lines were
obtain by OCR values representative of 3 independent experiments in which each data point represents
replicates of three to five wells each cell line. Statistical analysis was performed using the unpaired
Student’s t-test, where * p < 0.05; ** p <0.01; *** p < 0.001; **** p < 0.0001, data were represented as
the mean ± SD. Olig: Oligomycin; FCCP; carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone;
Rot+AntA; Rotenone+Antimycin A. (E) Mitochondria morphology of Caki-2 control, DNMT3A KO
and SETD2 KO cell lines. Cells were fixed and stained with the mitochondrial marker Hsp60 (red) and
with the nucleus marker DAPI (blue). Cells were imaged on an inverted Zeiss LSM 880 microscope. Fiji
software was used to calculate scale bar (10 µm or 5 µm for zoom-in). Selected image is representative
of three independent experiments.
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3. Discussion

Tumors evolve through multiple rounds of clonal expansion, diversification and selection
that enable the acquisition of metabolic and bioenergetic phenotypes better adapted to the local
microenvironment. Such evolutionary adaptation also accounts for therapeutic failure as drug-resistant
tumor clones may be selected during therapy. High ITH is the substrate for this Darwinian model of
cancer evolution and therapeutic resistance, and hence, highlights the need for further understanding
of drivers and mechanisms of clonal evolution. Despite the major discrepancies observed in their
covariance rates [3], genomic instability is still considered a major source of ITH [4,7–9]. In this
study we show that genomic instability is not positively correlated with ITH in most cancer types.
In fact, there is a significant negative correlation in some cancers, suggesting that additional processes
must congregate to drive genetic heterogeneity. Our results are in agreement with previous studies,
where ITH was associated with different forms of instability [35]. Recently, high concordance was
observed between the evolution of genetic and epigenetic diversification in esophageal squamous
cell carcinoma and in glioma, disclosing possible relationships between genomic and epigenomic
alterations during the clonal evolution of tumors [22,23]. An interesting hypothesis linking DNA
mutations and epigenetics in cancer is that altered DNA methylation or chromatin modifications
may accelerate mutation rates. Examples of such relationship were already described. For example,
abnormal DNA hypomethylation near guanine quadruplexes (G4s)-rich regions is a common signature
for many DNA breakpoints associated with somatic copy-number alterations [36]. This finding
suggests that DNA hypomethylation in genomic regions enriched for G4s acts as a mutagenic factor in
cancer. Additionally, the genome organization into heterochromatin and euchromatin-like domains is
a dominant determinant of mutation rates, as illustrated by the finding that H3K9me3 levels alone can
predict over 40% of somatic mutation loci in human cancer samples [37]. Conversely, we and others
have shown that H3K36me3 protects active coding sequences of the genome from error-prone DNA
double-strand break repair mechanisms by promoting homologous recombination [17,38,39]. Together,
these data establish a strong association between epigenomic deregulation—namely, DNA and histone
methylation and genomic mutations, which we show play important roles during clonal evolution
and genetic diversification of tumors. In fact, we found that mutations in epigenetic modifier genes
are the strongest determinants of ITH amongst a panel of 17 distinct cellular pathways. Particularly,
we identified and validated mutations in the methyltransferase genes SETD2 and DNMT3A as potent
drivers of ITH. Other epigenetic modifiers were also associated with high levels of ITH in KIRC (e.g.,
PBRM1 or KDM5C), but correlated with lower heterogeneity in a pan-cancer analysis or in other
cancer types. Our findings add direct experimental evidence to previous studies implicating SETD2
loss-of-function in mechanisms that generate ITH [40,41].

As tumor cells adapt to the environment, they acquire distinctive bioenergetic features to take
advantage of available fuels. For instance, tumor cells growing in an environment rich in adipocytes
could use fatty acids as a major energy source [33]. This remarkable versatility arises from clonal
evolution, during which genetic heterogeneity would eventually impact the function of metabolic
enzymes [32,33]. We thus reasoned that the increased ITH observed upon SETD2 or DNMT3A

knockout likely underpins phenotypic variations in mitochondrial metabolism upon which natural
selection could act. In agreement with this, we observed that both SETD2 and DNMT3A depleted cell
populations have increased bioenergetic performance under stress conditions, a phenotype that was
accompanied by mutations in genes involved in mitochondria function.

4. Materials and Methods

4.1. Cell Culture

Caki-2 cells (Cell Line Services, Eppelheim, Germany) that do not have SETD2 mutations were
selected as a cellular model of KIRC. Caki-2 and human embryonic kidney (HEK) 293T (ATCC,
Manassas, VA, USA) cells were grown as monolayers in Dulbecco’s modified Eagle medium (DMEM,
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Invitrogen, Carlsbad, CA, USA), supplemented with 10% (v/v) FBS, 1% (v/v) nonessential amino acids,
1% (v/v) L-glutamine and 100U/mL penicillin-streptomycin and maintained at 37 ◦C in a humidified
atmosphere with 5% CO2.

4.2. Gene Knockout by CRISPR/Cas9

To establish knockout cell lines, we used the genome editing one vector system (lentiCRISPR-v2)
(Addgene #52961). sgRNAs were designed by GenScript and the potential off-target effects
was confirmed using the CRISPR tool (http://crispr.mit.edu). The following sgRNA sequences
were selected: DNMT1 CRISPR guide RNA 1: CTAGACGTCCATTCAC TTCC; DNMT3A

CRISPR guide RNA 2: TGGCGCTCCTCCTTGCCACG and SETD2 CRISPR guide RNA 1:
AGTTCTTCTCGGTGTCCAAA. As a control we used a pCas-Scramble CRISPR Vector (SantaCruz,
sc-418922). Recombinant lentiviruses were produced by co-transfecting HEK293T cells with each
lentiCRISPR-v2 expression plasmid together with packaging plasmid pCMV-dR8.91 (Addgene) and
the envelope plasmid pCMV-VSV-G (Addgene #8454) using Lipofectamine™ 3000 (Thermo Fisher
Scientific, Waltham, MA, USA) as a transfection reagent and Opti-MEM (Invitrogen), according
to the manufacturer’s instructions. Infectious lentiviruses were collected 48 h after transfection.
The supernatant was filtered through 0.45 µm filters (GE Healthcare, Chicago, IL, USA) and
concentrated by ultra-centrifugation at 25,000 rpm, 4 ◦C for 90 min. Cells were infected with lentivirus
at approximately 60% confluence. After 24 h, cells were incubated with 5 µg/mL of puromycin
(InvivoGen, San Diego, CA, USA) for 2 days. To identify KO clones, infected cells were single-cell
cloned in 96-well plates. Several clones from 96-well plates were selected and the presence of DNMT1,
DNMT3A and SETD2 was verified by western blot and Sanger sequencing. Genomic DNA was
extracted from each clone and a segment surrounding the DNMT1, DNMT3A and SETD2 edited region
was amplified with specific primers (Table S6). Target sites and specificity were validated using the
UCSC Genome Browser (https://genome.ucsc.edu/).

4.3. Western Blot

Whole cell protein extracts were prepared by cell lysis with SDS-PAGE buffer (80 mM Tris-HCL
pH 6.8, 16% glycerol, 4.5% SDS, 450 mM DTT, 0.01% bromophenol blue) with 200 U/mL benzonase
(Sigma-Aldrich, St. Louis, MO, USA), 50 µM MgCl2 and were boiled for 5 min. Equal amounts of
protein extracts were resolved by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and transferred
to a nitrocellulose membrane. After 1 h blocking with 5% non-fat dry milk in 1× PBS, 0.1% Tween20 at
room temperature, membranes were incubated with antibodies as follows: anti-DNMT1 (2 µg/mL,
Active Motif, Carlsbad, CA, USA), anti-DNMT3A (1:1000, Cell Signaling), anti-H3K36me3 (1:500,
Abcam, Cambridge, UK), α-tubulin (1:15,000, Sigma-Aldrich) and anti-histone H3 (1:1000, Abcam).
Detection was performed with the appropriate secondary antibodies (Bio-Rad, Hercules, CA, USA)
and enhanced luminescence substrate (Pierce ECL, Thermo Fisher Scientific, Waltham, MA, USA).
Details of antibodies used are mentioned in Table S6.

4.4. Cell Senescence and Proliferation Assays

Senescent cells were identified by β-galactosidase staining in low-density culture. Caki-2 cells
(controls and KOs) were seeded in 6-well plates at 10 × 104 cells/cm2. In the next day, cells were washed
with PBS 1×, fixed for 5 min (RT) in 2% formaldehyde/0.2% glutaraldehyde, washed, and incubated at
37 ◦C (with no CO2) with senescence cells histochemical staining kit (Sigma-Aldrich, CS0030) according
to manufacturer’s recommendations for 12 h. Blue-stained cells and total number of cells was counted
under the phase contrast microscope (Leica DM2500, Leica Biosystems, Wetzlar, Germany).

Cellular proliferation for human cancer cell lines (controls and KOs) was measured every
24 h for four days, using AlamarBlue™ (Thermo Fisher Scientific). Briefly, 10 × 104 cells/well
were seeded on 96-well plates in a final volume of 100 µL per well. This is a reliable method
for measuring cell viability, using the metabolic activity of cells to reduce resazurin (oxidized
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form: 7-hydroxy-3H-phenoxazin-3-1-10-oxide) to resorufin. The fluorescence of these two forms
is measured at 560 nm as excitation wavelength and at 590 nm emission wavelength was measured
every 24 h for 72 h, using a microplate reader (Microplate Reader TECAN Infinite M200, Tecan,
Mannedorf, Switserland).

4.5. Mitochondria Oxygen Consumption Rate

Mitochondria oxygen consumption rate (OCR) was measured with the XF24 Extracellular Flux
Analyzer (Seahorse Bioscience, Agilent, Santa Clara, CA, USA), according to the standard protocol.
Briefly, at least 3 months after each knockout, cells were seeded one day prior to the assay in a 24-well
XF plates at a density of 2 × 105 cell/well and incubated overnight at 37 ◦C, 5% CO2. Twenty-four
hours later, cells were incubated with Seahorse XF Base medium supplemented with 10 mM glucose,
2 mM L-glutamine and 1mM sodium pyruvate at pH 7.4 and calibrated for 1 h at 37 ◦C in the absence
of CO2. Hydration of the sensor cartridge was performed one day prior to the assay at 37 ◦C in
the absence of CO2. OCR was evaluated in a time course set-up where the following compounds
were sequentially injected in the following order: oligomycin (1 µM final concentration), carbonyl
cyanide-4-(trifluoromethoxy)phenylhydrazone (FCCP) (0.5 µM final concentration), and rotenone plus
antimycin A (0.5 µM final concentration). Rates were normalized to protein concentration measured
according to the Bradford method (Bio-Rad, Hercules, CA, USA). Three to five wells from each cell
line were measure in a total of n = 3 experimental assays. Values for each parameter were calculated as
the difference of OCR measures after and before injection:

a. Non-mitochondrial respiration was calculated as the average of OCR measurements after
rotenone and antimycin A injection;

b. Basal respiration is calculated as the difference between non-mitochondrial respiration and the
third point of baseline cellular oxygen consumption;

c. Maximal respiration corresponds to the difference between the average OCR value after FCCP
injection and the non-mitochondria respiration;

d. Spare capacity rate (SCR) is the difference between maximal and basal respiration values.

4.6. Determination of Mitochondrial Morphology

Caki-2 control, Caki-2 DNMT3A and Caki-2 SETD2 cells were seeded on 13 mm coverslips.
Twenty-four hours post seeding, cells were washed three times in PBS, fixed in 4% paraformaldehyde
for 20 min, washed three times in PBS, permeabilized in 0.1% Triton X-100 in PBS for 10 min, followed
by three washes in PBS. Cells were blocked in blocking buffer (0.2% gelatin, 2% fetal bovine serum,
2% BSA, 0.3% bovine serum albumin, 0.3% Triton X-100 in PBS) with 5% goat serum (DAKO) for 1 h.
Cells were stained using the primary antibody mouse anti-hsp60 at 1/250 dilution (BD Bioscience) for
2 h. After 3 washes in PBS, cells were incubated with the secondary antibody Alexa Fluor 568 goat
anti-mouse at 1/500 dilution (Life Technologies, Carlsbad, CA, USA) for 1 h and with DAPI at
1/10,000 dilution for 10 min. Images were visualized with a confocal laser point-scanning microscope
Zeiss LSM 880 with airyscan through an objective of 63× 1.40 oil dipping lens (Zeiss, Oberkochen,
Germany). Images were acquired using the ZEN software package (Zeiss) and analyzed in open source
Fiji software (https://fiji.sc/).

4.7. Pan-Cancer Data Sets

WES data published in the context of TCGA was downloaded from Broad Institute
MAF dashboard https://confluence.broadinstitute.org/display/GDAC/MAF+Dashboard, released
(14 April 2017). A total of 2807 patients corresponding to 16 different carcinomas were analyzed:
71 adrenocortical carcinoma (ACC), 270 bladder urothelial carcinoma (BLCA), 228 breast invasive
carcinoma (BRCA), 101 cervical squamous cell carcinoma (CESC), 196 head and neck squamous cell
carcinoma (HNSC), 167 liver hepatocellular carcinoma (LIHC), 324 lung adenocarcinoma (LUAD),

28



Cancers 2019, 11, 391

118 lung squamous cell carcinoma (LUSC), 58 kidney chromophobe (KICH), 274 kidney renal clear cell
carcinoma (KIRC), 149 kidney renal papillary cell carcinoma (KIRP), 46 pancreatic adenocarcinoma
(PAAD), 349 prostate adenocarcinoma (PRAD), 181 stomach adenocarcinoma (STAD), 163 thyroid
carcinoma (THCA), 112 uterine corpus endometrial carcinoma (UCEC). None of the patients were
subjected to neoadjuvant therapies (neither chemotherapy or radiotherapy or immunotherapy) before
tumor resection. A complete list of samples is given in Table S1. The effect mutations were predicted
using cBioportal (Table S3) [42].

4.8. Pan-Cancer Characterization of Genomic Instability and Intratumor Heterogeneity

Genomic instability and ITH were determined using all the somatic point mutations and INDELs
downloaded from the Broad Institute MAF dashboard. Genomic instability was calculated as the
absolute number of mutations and INDEL observed in each tumor sample. The ITH defined as
the genetic heterogeneity was measured considering the same somatic mutations and using the
mutant-allele tumor heterogeneity (MATH) approach [24] (see Supplementary Methods for details).
Briefly, for each individual tumor we: (1) obtained the mutant-allele fraction (MAF) values of the
somatic mutations (the fraction of DNA that shows the mutated allele at a locus), (2) calculated the
center (median) and the width of the distribution (median absolute deviation, MAD); (3) multiplied the
median by a factor of 1.4826, so that the expected MAD of a normally distributed variable is equal to its
standard deviation; (4) calculated the MATH value as the percentage ratio of the MAD to the median
distribution of MAFs among the tumor’s genomic loci (MATH = 100 × MAD/median). Correlation
between genomic instability and ITH was determined using Pearson method as implemented in
cor.test function of R package [43].

4.9. Pan-Cancer Discovery of Driver-Gene Mutations of ITH

To identify driver-gene mutations, a binary matrix was produced representing the
presence/absence of mutations for each gene on each tumor sample, eliminating the bias introduced
by hypermutated genes. First, mutated genes were classified according to cancer specific
pathways previously defined: epigenetic modifiers, transcription factors/regulators, genome integrity,
RTK signaling, cell cycle, MAPK signaling, PI(3)K signaling, TGF-β signaling, Wnt/β-catenin signaling,
proteolysis, splicing, HIPPO signaling, metabolism, NFE2L, protein phosphatase, ribosome, TOR [25].
By doing this, we reduced noise from passenger mutations and discover which group of genes is the
major contributor of ITH in a wide range of carcinomas. Then, we applied a linear model per cancer
type, extracting: explained variance, estimated coefficients, Benjamin-Hochberg adjusted p-values
for the fitted model and for each estimated coefficient (Table S2). Second, to identify specific gene
driver-events we used generalized linear models previously applied to infer association of genetic
alterations with other variables [26] (see Supplementary Methods for details). Briefly, ITH for each
individual cancer type and all cancers was modelled by Lasso regression as implemented in glmnet
R package [44]. Significance of the explained variance by each model was determined for values
greater than zero by a margin of more than one standard deviation. Finally, the fitted models were
evaluated by comparing the observed and predicted ITH levels based on the tumor mutation profiles
and assessing the Pearson correlation.

4.10. Whole-Exome Sequencing from Human Cancer Cell Lines

The genomic DNA from cells was prepared using the QIAamp DNA Mini Kit (Qiagen, Hilden,
Germany) following the manufacturer’s instructions and the quality and quantity of purified DNA
was assessed by NanoDrop™ 2000 (Thermo Fisher Scientific) and gel electrophoresis. Genomic
DNA was extracted from control, DNMT3A and SETD2 KOs carcinoma cell lines following 1, 3 and
6 months in culture and then used for WES. Whole-exome capture libraries were constructed using
100 ng of DNA from Caki-2 cells (controls and KOs) sequenced as paired-end 151-bp sequence tags
with coverage of 30×. Samples were barcoded and prepared for sequencing by GATC Biotech AG
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(www.gatc-biotech.com) using Illumina protocols. Integrity and quantity of the starting material was
determined by appropriate methods (e.g., volume measurement, gel electrophoresis and fluorimeter
measurements). Library preparation incorporated adaptor sequences and indexing compatible for
Illumina sequencing technology, using proprietary methods of GATC Biotech. Enrichment was
performed using Agilents SureSelectXT Human All Exon V6 technology. The quality of the final library
was assessed by determination of size distribution and by quantification, following GATC Biotech
protocols. Sequencing was carried out on the Illumina HiSeq platform. Delivered raw data is the
result of a primary analysis using Illumina CASAVA software (http://cancan.cshl.edu/labmembers/
gordon/fastq_illumina_filter/).

4.11. Variant Calling from Whole-Exome Sequencing

Whole-exome sequence data processing and analysis were performed by RubioSeq software
(http://rubioseq.bioinfo.cnio.es/) using default parameters for somatic variation analysis [45]. Briefly,
sequencing data were first checked by FastQC for quality control checks on raw sequence data and then
aligned to the human reference genome (GRCh37/hg19) using Burrows-Wheeler alignment (BWA) [46].
Reads unmapped by BWA were realigned using BFAST [47]. Sequenced samples presented 71% of
bases in the targeted exome above 30× coverage (see Supplementary Methods for details and Table S7).
For variant calling we used GATK Unified Genotyper v2 [48] applying the “Discovery” genotyping
mode and default parameters for filtering. The GATK QUAL field was employed for ranking selected
somatic variants. Mutations were filtered to ensure that each variant had at least 5 reads supporting
the mutant allele and coverage of ≥30. Single-nucleotide variants reported in dbSNP150 were filtered
out from VCF output files, unless they were also present in COSMICv85 [49]. Only single nucleotide
variants were used for downstream analyses. The filtered variants were annotated with SnpEff
(VEP) [50]. Finally, to remove the germinal variants (i.e., present in the original cell population)
we filtered out variants present in the earliest replicate (1 month) from each experiment (individual
knockouts or control) and with MAF equal to 1.

4.12. Assessing ITH and Subclones Number from Whole-Exome Sequencing

The ITH from control and knockout cell lines was determined using the mutant-allele tumor
heterogeneity (MATH) approach [24]. A Bayesian clustering approach was also used to infer clonal
population structures present in control and knockout cell lines as implemented in Pyclone [30] (see
Supplementary Methods for details). Pyclone analysis was performed jointly on all samples using
variants supported at least by 50 reads and with copy number information estimated by RubioSeq and
processed using CopyWriteR Bioconductor package [51].

4.13. Statistical Analysis and Graphical Representation

Figures were produced using ggplot R package [52] and default packages from R environment [43]
and also Graph Pad Prism5 Software (https://www.graphpad.com/scientific-software/prism/).
The statistical significance of differences between groups was evaluated using unpaired Student’s
t-test and Mann-Whitney-Wilcoxon test (* p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001). Results
are depicted either as mean ± standard deviation (SD) or median ± SD, of minimum 3 independent
replicates. Survival was analyzed by Kaplan-Meier curve comparison using a log-rank test and with
a multivariate Cox proportional hazards analysis as implemented in the survival R package [53].
Statistical significance was determined using p-value < 0.05 as cut-off.

5. Conclusions

Our pan-cancer analyses revealed that mutations in epigenetic modifiers, namely SETD2 and
DNMT3A, are major determinants of ITH. These genes are recurrently mutated in several cancer types.
For instance, SETD2 mutations are found in 10% of KIRC [16], 9% of non-small cell lung carcinomas [54],
15% of pediatric high-grade gliomas and 8% of adult high-grade gliomas [55], whereas mutations in
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DNMT3A are observed in over 20% acute monocytic leukemias [15]. These numbers illustrate the
broad significance of our findings, which provide an unprecedented pan-cancer portrait of the major
determinants of ITH. Our experimental validation of the role of specific epigenetic modifier genes in
driving ITH reveals novel biomarkers and/or therapeutic targets that may contribute to more effective
cancer prognoses and treatment.
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Abstract: The characterization of a gene product function is a process that involves multiple
laboratory techniques in order to silence the gene itself and to understand the resulting cellular
phenotype via several omics profiling. When it comes to tumor cells, usually the translation process
from in vitro characterization results to human validation is a difficult journey. Here, we present
a simple algorithm to extract mRNA signatures from cancer datasets, where a particular gene has
been deleted at the genomic level, ICAro. The process is implemented as a two-step workflow.
The first one employs several filters in order to select the two patient subsets: the inactivated one,
where the target gene is deleted, and the control one, where large genomic rearrangements should
be absent. The second step performs a signature extraction via a Differential Expression analysis
and a complementary Random Forest approach to provide an additional gene ranking in terms of
information loss. We benchmarked the system robustness on a panel of genes frequently deleted
in cancers, where we validated the downregulation of target genes and found a correlation with
signatures extracted with the L1000 tool, outperforming random sampling for two out of six L1000
classes. Furthermore, we present a use case correlation with a published transcriptomic experiment.
In conclusion, deciphering the complex interactions of the tumor environment is a challenge that
requires the integration of several experimental techniques in order to create reproducible results.
We implemented a tool which could be of use when trying to find mRNA signatures related to a gene
loss event to better understand its function or for a gene-loss associated biomarker research.

Keywords: transcriptional signatures; copy number variation; copy number aberration; TCGA
mining; cancer CRISPR; firehose; gene signature extraction; gene loss biomarkers; gene inactivation
biomarkers; biomarker discovery

1. Background

Translational research has been hard at work trying to find a way to characterize genes and gene
product functions for decades. One successful approach is the study of particular contexts where
the gene expression of interest is perturbed. In the past, biologists mostly tried to characterize gene
functions by overexpressing its mRNA, whereas more recently, several tools have been introduced
in the field of Cellular and Molecular Biology to erase a gene (or its mRNA). Furthermore, a rapid
evolution of induced DNA/RNA ablation techniques have emerged from perfectible approaches
including siRNA/shRNA to highly specific ones such as TALEN and CRISPRs/Cas9 [1,2].

An induced gene deletion (or mRNA ablation) event brings about a series of phenotypes, both
as direct consequences of the gene/protein absence and as epiphenomena mediated by the cellular
environment response of such a relevant change.

Cancers 2019, 11, 256; doi:10.3390/cancers11020256 www.mdpi.com/journal/cancers35



Cancers 2019, 11, 256

The granular study of these phenotypes has been accelerated dramatically by the introduction
of omic technologies in basic and translational research. For instance, we can easily take a
transcriptome-wide picture of the mRNA status or the profile of a large panel of metabolites. All these
data can easily help the investigators to apply the “guilt by association” approach in order to better
understand a gene function by looking at the correlated omic response [3]. In spite of the elegant
workflow (perturbation → omics → understanding), the process is hindered by a series of issues.

In regards to silencing technologies, while CRISPRs have promised to lead much less off-target
effects than shRNAs, they still are a challenging technique for several laboratories worldwide and
even show little correlation with RNA interference screens, a worrying scenario since thousands of
mechanistic papers on cellular and molecular biology are based on these tools [4]. Furthermore, most
of these characterizations are conducted in vitro, where the reproducibility of results is being pointed
out as a major issue [5–7].

Several efforts have been made towards also automating and standardizing in vitro results to make
them reproducible. Among these proposals, the L1000 connectivity map [8,9] is a clear example of a
thorough characterization of the mRNA response of thousands of compounds (shRNA, overexpression,
and drugs) in several cell lines.

However, when the whole question shifts to a difficult cellular context such as cancer, the situation
worsens. The network of intercellular and intracellular interactions of the tumor macroenvironment is
extremely complex and inevitably fails to be modeled by a simple mono-population cell line. In relation
to this, organoids are an interesting promise [10], but most medium- and small-sized laboratories
worldwide still do not have access to these kinds of models.

On the other hand, one resource that is available to any oncology-based research group is access
to public cancer datasets. Only The Cancer Genome Atlas (TCGA) contains several molecular profiles
from more than 11,000 patients at the time of the writing [11]. We tried to reason whether we could
extract huge amounts of data to make the process of elucidating gene functions in cancer contexts
easier and more robust. For this reason, we implemented ICAro (gene signature Inference system from
Copy number Aberrations), a framework that enables researchers to extract putative gene signatures
from publicly available Cancer Genomic datasets.

This overall idea involves treating cancer as a Cas9 model by using Copy Number Variations
(CNVs) and inactivating mutations data on a particular gene target to split the patient dataset in
control and inactivated groups. Then, we obtained RNA (RNA-seq) expression levels to extract a gene
deletion signature. Here, we show that this method can still be a useful resource as an integrated tool
for molecular knowledge mining.

2. Implementation

The algorithm is based on the workflow shown in Figure 1: the main inputs of the model are
the gene of interest α and the particular tissue context Σ (chosen from the available TCGA cohort
codes, e.g., ACC and COAD). Next, the inactivated and control sample sets are built. In the first step,
only samples for which both CNV and mRNA-seq data are present in the TCGA database are included.
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Figure 1. A schematic representation of the ICAro (gene signature Inference system from Copy number
Aberrations) workflow. The first part relies on sample filtering based on deletions and inactivating
mutations spanning the gene target α in order to build the inactivated and the control sample sets.
They are used as input for the signature extraction process, performed via a differential gene expression
analysis (the voom function from limma) and a Random Forest classification (randomForest R package).

The inactivated sample selection is performed following two different strategies: in the first one,
both deletions and inactivating mutations if provided are used to include samples; in the second one,
samples are selected only by inactivating mutations.

The deletion-based filter extracts inactivated samples by selecting CNVs that overlap the gene
α location and in which the CNV-GISTIC score [12,13] is lower than −1. An optional filter allows
to include only deletions larger than a given threshold. The second filter is based on inactivating
mutations and requires an input file containing a list of protein substitution variants in the standard
format according to Sequence Variant Nomenclature amino_acid/position/new_amino_acid (e.g.,
Cys28Ser). Unlike the first filter, it incorporates samples with variations present in the inactivating
mutation list. Moreover, the specific format “STOP N” can be added to the list, where N is a number
representing the rightmost stop-gain mutation allowing a sample to be included in the set.

The control set is built starting from only samples with both CNV and mRNA-seq data.
Other exclusion criteria for the control set include outside the gene α, samples containing CNVs
larger than a given threshold (e.g., 1 Mb), or mutations inside the same gene α. With these filters,
we tried to minimize the genomic interference of having huge structural rearrangements in the
control set.

The downstream analysis is executed only if there are at least five samples in the inactivated set
and if the ratio between such a set and the control set is higher than a given threshold (0.05).
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RNA-seq raw count data are transformed in count per millions (CPM), and only genes for which
CPM is greater than 5 in at least 5 samples are kept.

The second part regarding the signature extraction is performed in two separated methods: the
first one is a Differential Expression (DE) strategy in order to fetch up- and downregulated genes with
regards to the inactivated set. Secondly, a Random Forest approach (RF) is employed with the aim
of building activated and inactivated sets from a binary classifier. From the RF, we extracted a gene
ranking list that allows to understand the most discriminatory genes in the classification process and
the most likely to be part of our signature.

In the DE approach, the voom function of the limma package is executed on the data and a linear
model followed by empirical bayesian statistics are performed in order to find differentially expressed
genes between the two sets. On the other hand, Random Forests are built via the randomForest
function of the randomForest package which implements the Breiman’s random forest algorithm for
classification. The preprocessing part is performed via custom Python scripting, whereas the filtered
sets are provided as input to an R script that will perform the second step with the voom limma
and randomForest [14,15] packages. The data fetch process is automated thanks to the Firebrowse
package [16].

The DE output file contains a list of genes with some features, such as the log fold-change
and q-value, where the user can observe the putative differentially expressed genes. We appended
additional columns to the differential output file in order to give more information on the kind of
induction adopted, e.g., two columns with a median expression for each group. The RF output file
contains a list of genes ranked by their meanDecreaseGini value, thus having the most important genes
in terms of loss of information on top.

The tool is freely available at https://gitlab.com/bioinfo-ire-release/icaro.

3. Results

In order to demonstrate the accuracy of our approach, we extracted 50 pairs of frequently
deleted genes (and their matching datasets) from the cBioPortal [17] (Tables S1 and S2) to run the
workflow with. Afterwards, from the output signature, we extracted the fold change and the adjusted
p-value of the target gene to understand whether we are selecting samples in which the target gene
is significantly downregulated. Indeed, almost all of the targets are significantly downregulated
(94.0%) and have a strong induction (i.e., log2FC < −0.58, meaning a 50% regulation, 93.6%) (Figure 2).
We performed a similar benchmarking for the RF results on the same genes. When visualizing the
meanDecreaseAccuracy (MDA) and meanDecreaseGini (MDG) of such genes, we observed that only
5/50 (10%) gene-dataset pairs had an MDG higher than 1%, while only 2/50 (4%) pairs showed an
MDG over 5% (Figure S1).
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Figure 2. The performance of the ICAro Differential Expression for 50 executions on frequently deleted
gene-dataset pairs: Every point represents one ICAro execution on a gene-dataset pair (e.g., TP53 on
COADREAD). The different colors represent several TCGA datasets. X-axis: log2FC (gene induction),
Y-axis: transformed q-value (statistical significance). Most tests fall in the upper region, meaning that
they are significant, and on the center of the X-axis, i.e., they are downregulated. The downregulation
of deleted genes is a first step towards the in vivo validation of the ICAro process. For a complete key
of datasets please refer to Table S1.

We pointed out that inactivated set sizing was the main failure in the workflow. That is, for most
datasets, it was difficult to find a high number of patients with focal deletions inside a particular
gene. For the RF classification task, it seemed that the deleted gene expression level did not contain a
sufficient amount of information in this in vivo setting in order to build a good classifier by itself.

Next, we attempted to demonstrate that the algorithm was able to correlate with other data that
were more similar to the typical laboratory approach. The idea involved testing whether the ICAro
signature had significant similarities to shRNA knockout perturbations, the routine approach, or other
drugs and kinase signatures. To this purpose, we used the aforementioned 50 signatures and we
queried L1000 via the Enrichr API [8,9,18] for correlating with the Chemical, Kinase, and Ligand
Perturbation. We divided the signatures into up- and downregulated genes; therefore, for each
gene-dataset pair, we extracted a L1000 table, 300 in total (Figure 3). On average, every signature
correlated with 5 significant terms (adjusted p-value < 0.05, median: 5 terms, and mean: 306 terms).
When analyzing the particular sub-signatures, up-signatures tended to poorly overlap (median: 0)
while down-signatures had better correlation (median from 2 to 660) (Table S3). This difference is to be
clearly attributed to the nature of the model that we tested. In fact, our focus is on deletions; therefore
a direct gene downregulation trend will overlap better than an in-trans upregulation event.
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Figure 3. The amount of significant terms for down and up-regulated genes when compared to L1000
signatures: Every point is an ICAro execution with a significant gene set (up or down). Every signature
is compared with the amount of significant terms when sampling random gene sets of equal size.
Legend: * significant increase between random sampling and ICAro.

In order to show a comparison on the difference between this performance and random
distribution, we ran a parallel script, where given Ni, Mi, the number of significant genes from
each signature Si, we extracted Ni, Mi random genes and executed the Enrichr analysis on them.
The median number of significant signatures was 0 (adjusted p-value < 0.05, median: 0 terms, and mean:
36 terms), and five out of six classes had a median term number 0 (Figure 3 and Table S3). The mean
amount of terms resulted significantly more in 2 out of 6 cases, particularly in the Chemical Perturbation
Down and the Ligand Perturbation Down clusters, confirming the aforementioned hypothesis of the
ICAro applicability.

As a second validation process, without focusing on frequently deleted genes, we applied
the workflow on the genes of interest in tumor genomics, i.e., cancer driver genes. We focused
on 459 mutational cancer driver genes (Table S4), deriving from the Integrative Onco Genomics
(intOgen) list [19]. Among those, we excluded 23 of them, which were located in sexual chromosomes.
Given that we did not separate patients by gender, this would have had a strong bias in the
CNV/mRNA separation. The analysis was carried out on 35 datasets (Table S5): only on UCS
(Uterine Carcinosarcoma), no results were obtained. For the other datasets, there was a high variability
in the number of analyses successfully performed, starting from 2 for CHOL (Cholangiocarcinoma) and
DLBC (Diffuse Large B-cell Lymphoma) to 100 for OV (Ovarian serous cystadenocarcinoma), with a
mean of 22 successful runs per dataset. From a gene-centered perspective (Table S6), we obtained at
least 1 result from 148 genes (34%) and f in which the minimum is 1 for 60 genes and the maximum is
31 for the WNK1 gene, with a mean of 5 analyses for each gene. The main challenge in performing
an ICAro analysis is the lack of CNVs on the genes of interest: 59% of analyses failed for this reason.
Subsequently, the second main cause for this failure is the absence or the low amount of inactivated
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mRNA samples: 88% of samples which had passed the previous filters were rejected at this step.
Eight analyses were not performed due to a missing control sample. In conclusion, on the whole, only
5% of analyses were successfully performed.

The final step of ICAro modeling features also a Random Forest analysis in addition to the
Differential Expression. The aim is to overcome the limitations of linear modeling and to provide
a clean gene rank in terms of importance. In order to further describe the relationship among the
two analyses, we compared the results of ICAro executions of the aforementioned 50 gene-datasets
pairs in terms of the Differential Expression vs. Random Forest results. This profiling presents
different scenarios, in which in some cases, the RF approach can massively extend the scope of the
DE, that features only a few significant genes (5 out of the top 100 RF genes are significant in DE,
Figure 4A). In other cases, the situation is the opposite, and the RF is only an extension of the strong
amount of significant DE genes (75 out of the 100 top RF genes are significant in DE, Figure 4B). The
full 50 plots are available at the application’s webpage.

Figure 4. (A,B) Two representative plots of the Differential Expression against the Random Forest
analysis on the ICAro system. Blue line: the top 100 genes from the Random Forest analysis, ranked by
the meanDecreaseGini (MDG). Red line: the adjusted p-value significance threshold. Left: only a few
genes are significantly regulated in the DE analysis, but more can be studied from the top 100 genes on
the RF analysis. Right: the opposite situation where most information lies in the differential expression,
and just most of the top 100 RF genes are significant in DE terms.

Finally, in order to present the scope and the possible applications of our system, we produced a
use case. We exploited a public transcriptomic dataset (GSE76689), a silencing experiment designed
to dissect the role of RB1 in Ovarian carcinoma [20]. We reproduced the DE analysis of the paper.
Globally, 2 down- and 8 upregulated genes are confirmed to be significant by the system, thus stressing
the importance of these mRNAs to discriminate signatures of RB1 loss in Ovarian carcinoma (Table 1).
Furthermore, the Random Forest modeling returned 5/10 of the significant genes to be in the top
100 Gini index ranking.
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Table 1. The significant genes validated in the GSE76689 dataset from the ICAro system.

Gene Log2FC siRB1 Log2FC ICAro adj PVal siRB1 adj P Val ICAro

RB1 −0.83 −1.12 5.73 × 10−4 1.81 × 10−6

SH3BP4 −0.64 −0.63 8.21 × 10−4 3.35 × 10−2

NUDT21 0.67 0.29 1.22 × 10−3 4.46 × 10−2

SLC27A3 0.64 0.40 5.70 × 10−3 3.45 × 10−2

C15orf38 0.77 0.42 1.40 × 10−3 3.82 × 10−2

ADCY3 0.76 0.49 7.18 × 10−4 1.78 × 10−2

TMEM106C 0.66 0.51 2.69 × 10−3 2.70 × 10−2

FANCE 0.47 0.57 2.92 × 10−2 2.36 × 10−3

WDR34 0.53 0.59 1.31 × 10−2 4.94 × 10−4

TCF19 0.49 0.99 2.68 × 10−2 1.81 × 10−6

Taken together, these results highlighted that the algorithm is able to extract a few significantly
correlated regulation signatures for genes that are frequently deleted in cancer. The workflow
performed better than random sampling and could be used by researchers to extract several “parent”
signatures from the target gene in a tumor environment. From the cancer gene driver’s point-of-view,
a small fraction could be queried for gene signatures thanks to ICAro. Finally, it can be exploited to
select a subset of genes of interest in a mRNA profiling experiment.

4. Discussion

The intricate patterns of transcriptional networks are complex to decipher for the biomedical
researcher, and in our experience, researchers struggle to find evidence to confirm a regulatory
hypothesis. This is one of the main reasons that led us to develop a simple algorithm to help
investigators in the field of Cancer Transcriptomics.

The other motivation comes from our experience in handling NGS data and bioinformatic analysis
of a medium-sized genomic facility. Translational projects are often designed to start with a whole
transcriptomic or a whole epigenomic experiment (e.g., RNA-seq and ChIP-seq), intended to be the
hypothesis driver for further investigations. As a matter of fact, the process risks to be interrupted
when bioinformaticians present researchers with enormous lists of genes and ontologies. We impute
this matter to three main factors: the lack of computational biologists in research groups, the intrinsic
difficulty of summarizing large quantity of data, and a slow validation process due to the high number
of possible targets as starting points. ICAro comes as an aid for the latter issues, providing hints on
mRNA targets that could indeed be validated in vivo.

Many confounding factors are not taken into account in the patient partitioning. These are, for
instance, patient stratification by demographic data. This is an issue of many algorithmic signatures
of the transcriptomic field that do not seem to care even if they are designed to stratify patients into
clinical settings [21,22]. In our case, the scarcity of the inactivated set, usually falling below the count
of 5, prevents us in further dividing the patient strata.

In addition, most TCGA mutation datasets do not carry Variant Allele Frequency (VAF)
information. For this reason, we may erroneously include a few patients in the inactivation set
(that is already suffering from typical smaller size) that carry a stop-gain mutation in only a small
fraction of tumor cells (e.g., VAF < 10%). This limitation also applies to CNV data, where the GISTIC
threshold output are decided on a sample by sample basis [23]. Furthermore, it should be noted that
every sample profiled in the TCGA had a tumor cellularity of at least 80% (recently shifted to 60%)
and is not available metadata for which we could correct the CNV/Mutation status.
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Our implementation process also lacks some features that we plan to employ in the future.
The most obvious one is the lack of a gene amplification study. That is, the possibility to extract
a signature when a gene has more copies. This could be a valuable experiment mirroring another
frequent laboratory approach such as overexpression models. Another interesting add-on would be
appending genomic coordinates of each gene locus to the final output in order to understand whether
the differential effect is mostly guided by the CNV itself or by some other regulation pathways. Finally,
one more aspect that could be improved in the future is the simple automatization of functional APIs
from the result dataset, such as LINCs Cloud and ENRICHR, allowing researchers to better investigate
the mechanisms involved.

ICAro testing on a list of mutational cancer driver genes pointed out that the main problem is
that less than half of such genes are affected by CNVs, and among the samples with these deletions,
only 1 over 12 contains related mRNA experiments, thus preventing us from performing the analysis
on a larger set of data.

5. Conclusions

Mining knowledge regarding gene function or seeking inactivation biomarkers is not so trivial
tasks. It is for this reason, we developed an automated tool to integrate and mine knowledge from
third-level TCGA data. Our testing showed that this workflow is able to extract several transcriptional
signatures for a discrete set of genes.

From a biological perspective, the authors are aware that (a) the amount of patients with focal
deletions for a given gene will be discrete for the time being, (b) the cancer genomic and transcriptomic
background is a disorderly environment very different from engineered cell lines, and (c) it is known
that most frequent gene losses have recurrent breakpoints [12]. Nevertheless, we remain confident in
the value and feasibility of the presented approach due to the rapid increase in the amount of available
high-throughput data and in the vast disappointing failures of in vitro derived models.

We are currently working on an extended version for miRNA signature extraction that will be
useful for researchers in the non-coding RNA field. Investigators will fetch via ICAro differential
miRNA classes that are up-and downregulated by a particular gene deletion, providing additional
insights on miRNA-mRNA interaction.

In a real-life setting, we trust that the ICAro approach would be of value when paired with several
other approaches such as in vitro or in vivo knockout models, for instance when understanding
biomarkers for the inactivation of a particular gene. In this scenario, it will be useful to implement a
novel branch of the workflow to take into account also other emerging large-scale omic approaches
such as Reverse-Phase Protein Arrays (RPPA).

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/11/2/256/s1,
Figure S1: Performance of ICAro Random Forest classification for 50 executions on frequently deleted gene-dataset
pairs. MDA: meanDecreaseAccuracy and MDG: meanDecreaseGini, Table S1: The list of gene-dataset pairs used
for benchmarking purposes in Figures 2 and 3, Table S2: A full key of TCGA dataset names from Firebrowse at
the time of the writing, Table S3: The average number of significant L1000 signature overlaps from the ICAro
output and random sampling. The cpd, kpd, etc. stand for classes abbreviations for Chemical Perturbation Down,
etc., Table S4: The list of mutational cancer driver autosomal genes used for testing ICAro on each dataset, Table
S5: A dataset-centered summary of the ICAro tests using cancer driver genes. The column total contains the genes
analyzed for each dataset; no_cnv is the number of samples without CNVs on the queried gene; no_or_few_mrna is
the number of samples for which there are no mRNA data, the samples are less than 5, or the ratio between them
and the control samples is less than 0.05; no_control is the number of samples without mRNA control data; success
is the number of analysis successfully performed; and perc_success is the percentage of succeeded analysis on the
total number of analysis attempted for each dataset, Table S6: A gene-centered summary of the ICAro tests using
cancer driver genes. The columns follow the same nomenclature as Table S5 but on a gene-centered analysis.
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RF Random Forest
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Abstract: Cancer genomes accumulate nucleotide sequence variations that number in the tens of
thousands per genome. A prominent fraction of these mutations is thought to arise as a consequence
of the off-target activity of DNA/RNA editing cytosine deaminases. These enzymes, collectively
called activation induced deaminase (AID)/APOBECs, deaminate cytosines located within defined
DNA sequence contexts. The resulting changes of the original C:G pair in these contexts (mutational
signatures) provide indirect evidence for the participation of specific cytosine deaminases in a given
cancer type. The conventional method used for the analysis of mutable motifs is the consensus
approach. Here, for the first time, we have adopted the frequently used weight matrix (sequence
profile) approach for the analysis of mutagenesis and provide evidence for this method being a
more precise descriptor of mutations than the sequence consensus approach. We confirm that
while mutational footprints of APOBEC1, APOBEC3A, APOBEC3B, and APOBEC3G are prominent
in many cancers, mutable motifs characteristic of the action of the humoral immune response
somatic hypermutation enzyme, AID, are the most widespread feature of somatic mutation spectra
attributable to deaminases in cancer genomes. Overall, the weight matrix approach reveals that
somatic mutations are significantly associated with at least one AID/APOBEC mutable motif in all
studied cancers.

Keywords: DNA sequence profile; Monte Carlo; mixture of normal distributions; somatic mutation;
tumor; mutable motif; activation induced deaminase; AID/APOBEC
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1. Introduction

The sequencing of genomes of solid tumors and liquid malignancies associated with different
types and stages of cancer has revealed a plethora of genetic changes, from nucleotide substitutions and
insertions/deletions to chromosomal rearrangements and chromosome copy number alterations [1–3].
As predicted decades ago by the mutator theory of cancer [4], the elevated mutability in tumors
contributes both to their onset and to their further evolution. The underlying causes of this mutagenesis
are diverse, from the appearance of mutator mutations to DNA damage by intrinsic or environmental
mutagens (e.g., oxidative stress, tobacco smoke, UV light, etc.) [5]. Somatic genome instability leads to
the activation of oncogenes and inactivation of tumor suppressors and helps tumor cells to emerge,
proliferate, elude immune surveillance, and acquire resistance to anticancer drugs.

In some cancers, the number of single nucleotide variations (SNVs) is in the order of tens of
thousands per genome. A few driver mutations [6,7] ultimately lead to cancer, while the role, if
any, of the vast majority of mutations, termed “passengers”, during tumor development is poorly
understood [8,9]. One crucial principle stands out: mutations can be classified into ‘families’ based
upon their flanking DNA sequences [10,11]. Different mutagenic processes generate mutations within
different contexts of a neighboring nucleotide sequence (the bases upstream and/or downstream of the
mutations, termed “mutation signatures”). Sophisticated approaches have been developed to extract
the most prominent signatures from a complex mix of mutational targets resulting from the action of
a variety of mutagens, both exogenous and endogenous, operating during tumor evolution [12,13].
Both driver and passenger mutations have been used in the analysis. One of the clearest mutational
signatures, found in breast and other cancers [14,15], is characterized by C:G to T:A or C:G to G:C
substitutions that are found predominantly in the 5′-TC sequence motif (signatures #2 and 13; listed in
the COSMIC database). These signatures have been attributed to the action of nucleic acid-editing
enzymes, cytosine deaminases. These enzymes, collectively called APOBECs, deaminate cytosine
in single-stranded DNA, yielding uracil. DNA replication past the uracil leads to the insertion of A,
thereby giving rise to the C-to-T transition. Also, abasic sites that are produced as intermediates of
uracil repair are bypassed by the cytidine transferase activity of REV1 translesion DNA polymerase,
leading to C:G to G:C transversions. Cytosine deaminases possess inherent sequence specificity. Thus,
for example, activation induced deaminase (AID) prefers to deaminate within 5′-WRC motifs (W
= A or T, R = A or G), whereas APOBEC3G acts preferentially on the last cytosine in the 5′-CCC
motif, while two other APOBEC3 enzymes, APOBEC3A and APOBEC3B, exhibit a preference for
5′-TC sequences. Another prominent feature of APOBEC enzymes is their ability to act in a processive
fashion, i.e., to catalyze multiple deamination events per substrate-binding event [16], thereby inducing
kataegis (clustered mutations); however, it should be noted that APOBEC action is only one possible
explanation for kataegis in cancer cells [17]. Mutational signatures of cytosine deaminases are detected
in many cancers [15]. It is unlikely to be a mere coincidence that the APOBEC3 enzymes are frequently
upregulated in tumors [18,19]. It should be noted that if deaminases act on 5-methylcytosine generating
“T”, a specialized G:T mismatch repair mechanism operates, and the genetic consequences could be
different because of the disappearance of an epigenetic mark [20]. There is evidence for the contribution
of this process to cancer [21].

Cancer genome studies necessitate working with huge datasets; the obvious problems posed
by the analysis of such data are partially solved by the advent of the “mutational signature”
technique [12,22,23]. It is not usually possible to define the DNA strand upon which the vast majority
of mutations has occurred (but see [24,25]); for example, both a C>T change on one strand and a
G>A change on the opposite strand lead to the same CG to TA transition. Therefore, in practice, the
analysis may be reduced to the study of only six different types of substitution. Similarly, there are 96
context-dependent mutations (mutation types) that consider two nucleotides in the flanking 5′ and
3′ positions of the mutated nucleotide [23]. Analysis of the mutational spectra of context-dependent
mutations in cancer genomes involves pooling all the mutations from cancer samples into a discrete
distribution according to the mutation types, while further analysis involves the so-called non-negative
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matrix factorization (NMF) method [12,22,23]. There are some variations of this basic technique;
indeed, Temiz et al. [26] presented a 32 × 12 mutation matrix, which captures the nucleotide pattern
two nucleotides upstream and downstream of each mutation. In this study, a somatic autosomal
mutation matrix (SAMM) representing tumor-specific mutations and mechanistic template mutation
matrices (MTMMs) representing oxidative DNA damage, ultraviolet-induced DNA damage, (5m)CpG
deamination, and APOBEC-mediated cytosine mutation were constructed. MTMMs were mapped
to the individual tumor SAMMs to identify mutational mechanisms corresponding to each overall
mutational pattern. The method appeared to be sensitive enough to retrospectively allocate the origins
of tumors to specific tissues [26].

In an attempt to increase the specificity and sensitivity of the arsenal of techniques available
for mutation analysis in whole genomes, we have employed mutable motifs of cytosine deaminases
represented in the form of weight matrices (sequence profiles) [27–29]. This approach may be expected
to be a more general descriptor of nucleotide sequences as compared to the sequence consensus
approach, because it takes into account the variability in the information content (“conservation”)
across neighboring positions. Control experiments using various constrained samples of randomly
selected sequences indicated that the level of false positives obtained using this approach is even lower
than the expected false discovery rate (~0.05, see Sections 4.5–4.8 for details). These analyses suggest
that the weight matrices method is a powerful tool for the analysis of genomic mutations. Further,
we identified prominent mutational footprints of APOBECA and APOBECB in many human cancers.
Mutable motifs attributable to AID are less pronounced but are nevertheless present ubiquitously in
cancer genomes.

2. Results

2.1. Weight Matrices of AID/APOBEC Mutable Motifs

The information content of AID/APOBEC mutable motifs is shown in Figure 1 (the list and
sources of the mutated sequences are shown in Supplementary Table S1). AID/APOBEC cytosine
deaminases exhibit substantial variability in terms of their mutable motifs. T in position −1 (number 5
in Figure 1) was the most prominent feature of the APOBEC1, APOBEC3A, and APOBEC3B enzymes,
consistent with previous studies (reviewed in [23]). APOBEC3C has a distinct mutable motif with T in
position −2. Additionally, APOBEC1 has an excess of T in position −3 (number 3 in Figure 1).

APOBEC3G has a distinct mutation pattern wcCCw (lower case w and c mean substantially lower
information content as compared with the upper case, Figure 1), which is a variation of the previously
described CCC motif and CCR motif [7,30]. The AID deaminase has the expected context specificity,
WRC [16,31].

It is hard to demarcate the mutational signatures of APOBECs using the consensus approach
due to the high variability of information content across sites. For example, APOBEC3G has a highly
conserved C in positions −4 and −5; however, there is also a less conserved C (and lower information
content) in position −3 that may or may not be included in a consensus sequence (Figure 1). We opted
to employ the widely used weight matrix technique (see Section 4) in order to avoid uncertainties with
the less informative positions.

We compared the nucleotide composition of mutation sites (±5 nucleotides, Supplemental Figure
S1) for all the studied AID/APOBEC proteins using the χ2 test (Table 1). We found that all six
AID/APOBEC proteins studied were significantly different with respect to the DNA sequence context
of the mutation sites expressed in the form of nucleotide frequency matrices (Table 1). Thus, weight
matrices properly represent the DNA sequence context of mutations induced by various AID/APOBEC
proteins, as noted in previous studies [5] where a simple consensus approach was used. We aimed to
differentiate between the mutable motifs associated with the various AID/APOBEC proteins, although
this was not always possible (for example, the sequence contexts of the APOBEC3A, APOBEC3B, and
APOBEC3C targets are not as different as other pairwise comparisons, see Table 1).
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Figure 1. Information content and derived consensus sequences of the DNA context of mutations
induced by AID/APOBEC deaminases in yeast genomes (frequencies of nucleotides were used as
input). (A) APOBEC1, (B) APOBEC3A, (C) APOBEC3C, (D) APOBEC3B, (E) APOBEC3G, and (F)
AID. Position 6 is the position of the somatic mutations. AID/APOBEC weight matrices are shown in
Supplementary Figure S1.

Table 1. Pairwise differences between the DNA context (position-specific nucleotide frequencies across
±5 surrounding bases) of the studied AID/APOBEC proteins.

AID APOBEC3G APOBEC3C APOBEC3B APOBEC3A

APOBEC1 1986.8 2299.2 203.2 378.6 344.1

APOBEC3A 1674.4 2057.0 138.4 175.7

APOBEC3B 1764.5 2316.8 175.7

APOBEC3C 237.2 327.5

APOBEC3G 2711.8

The critical χ2 values = 71.1 (after Bonferroni correction P = 0.05/15 = 0.0033, degrees of freedom = 42). The χ2 test
was applied to raw numbers of nucleotides.

We performed four control experiments (for details, see Sections 4.5–4.8): (1) analysis of the
sequence context of somatic mutations in mitochondrial DNA as a negative control [32]; (2) analysis of
the correlation between the matrices of shuffled sites of mutations and the sites of somatic mutation
in cancer cells using the expected false discovery rate approach [33]; (3) analysis of the correlation
between matrices of randomly sampled sites from the yeast genome and somatic mutations in cancer
cells using the expected false discovery rate approach [33]; and (4) analysis of somatic mutations in
human immunoglobulin genes as a positive control [34–36]. The results of all four control experiments
(Supplementary Tables S2–S5) strongly support our contention that the weight matrix technique is
applicable to the studied AID/APOBECs (for details, see Section 4).

2.2. Analysis of the Correlation between AID/APOBEC Mutable Motifs and Somatic Mutations in Cancer
Cells: C:G>T:A Transitions

We examined the correlation of the sites of C:G>T:A mutations in cancers and AID/APOBEC
mutable motifs. A correlation between a mutable motif and the DNA context of somatic mutations
from the COSMIC database was claimed when the results of two statistical tests (Monte Carlo test and
t-test, see Section 4) were both significant. A correlation between the mutable motifs of (at least one)
deaminase(s) and the sites of somatic C:G>T:A mutations was found for all cancer tissues (Figure 2 and
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Supplementary Table S6). AID activity was the most ubiquitous according to the enzyme characteristic
signature in various cancer types, whereas the APOBEC1, APOBEC3A, APOBEC3B, and APOBEC3G
signatures were detected less frequently, although their signatures were stronger, most notably in
breast, lung, cervix, skin, and bladder cancer (Figure 2).

Figure 2. Correlation between AID/APOBEC mutable motifs and the sequence context of somatic
C:G>T:A mutations. For the actual data, see Supplementary Table S6. The intensities of the gray color
correspond to the ratio values (the ratio being the mean weight of the mutated sites divided by the mean
weight of the non-mutated sites). The unweighted pair group method with arithmetic mean (UPGMA)
clustering of ratio values for the AID/APOBEC footprints and tissues is shown as dendrograms.

We attempted to estimate the fraction of somatic mutations associated with AID/APOBEC
deamination using a mixture of two normal distributions (see Sections 3 and 4 for details). For example,
estimated fractions of APOBEC1-associated mutations (0.66, 0.48, 0.74, 0.39, and 0.62) look consistent
with the smallest value of 0.39 corresponding to the lowest ratio value (1.064, APOBEC1, lung),
although this method sometimes yielded potentially underestimated values (0.17, APOBEC3G, cervix,
ratio = 1.113) and overestimated values (0.92, APOBEC3G, bladder, ratio = 1.101) (Supplementary Table
S6). The overall distribution of fractions for APOBEC1, APOBEC3A, ABOPECB, and AID deaminases
is shown in Supplementary Figure S2. The mean of the fractions in Figure S2 is 0.42 (Supplementary
Table S6). This result suggests that a substantial proportion of somatic mutations is associated with
AID/APOBEC mutagenesis.

2.3. Analysis of the Correlation between AID/APOBEC Mutable Motifs and Somatic Mutations in Cancer
Cells: C:G>G:C and C:G>A:T Transversions

Many C:G > G:C transversions were suggested to be the result of processing abasic sites after
the removal of uracils originating via DNA deamination by AID/APOBEC proteins [37]. Consistent
with this idea, a significant correlation of these mutations with mutable motifs was found in many
cancers (Figure 3 and Supplementary Table S7). The transversions associated with APOBEC1,
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APOBEC3A, and APOBEC3B were found to be more abundant in comparison with APOBEC3G
and AID, suggesting a role of these three deaminases in generating C:G>G:C somatic mutations in
human cancer. The correlation with the three APOBEC motifs was again strongest for breast, bladder,
cervix, and lung cancer.

Figure 3. Correlation between AID/APOBEC mutable motifs and the sequence context of somatic
C:G>G:C mutations. For actual data, see Supplementary Table S7. The intensities of the gray color
correspond to the ratio values (the ratio being the mean weight of the mutated sites divided by the
mean weight of the non-mutated sites).

Although it has been proposed that C:G>A:T mutations are a less likely outcome of AID/APOBEC
enzymatic action, we found a significant excess of these transversions in many cancers (Figure 4 and
Supplementary Table S8), suggesting that a significant portion of C:G>A:T mutations may be caused
by processes initiated by deamination by AID/APOBEC enzymes. That the APOBEC3A, APOBEC3B,
and APOBEC3G footprints are more abundant in comparison with the APOBEC1 and AID motifs
suggests an important role for these three deaminases in generating somatic C:G>A:T mutations in
human cancers.

The unweighted pair group method with arithmetic mean (UPGMA) clustering of ratio values for
AID/APOBEC footprints and tissues (Figures 2–4) suggests that AID/APOBEC3G form one clade,
whereas APOBEC1/3A/3B form another clade according to the distributions of the ratios across
tissues (graphs above heatmaps at Figures 2–4). This can be explained by the high similarity of
APOBEC1/3A/3B signatures (Figure 1). Breast, bladder, and colon tend to form a separate group
according to the distributions of ratios across the AID/APOBEC footprints (graphs above heatmaps
at Figures 2–4). In general, these classifications are not consistent, reflecting large variations in
transition/transversion ratios (Supplementary Tables S6–S8) and are likely to be a result of variation in
the efficiency of DNA repair of such sites in different tissues [5,36,38].
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Figure 4. Correlation between AID/APOBEC mutable motifs and the sequence context of somatic
C:G>A:T mutations. For actual data, see Supplementary Table S8. The intensities of the gray color
correspond to the ratio values (the ratio being the mean weight of the mutated sites divided by the
mean weight of the non-mutated sites).

2.4. Analysis of Various Tumor Types in Blood and Skin

Cancers of the blood system were found to be associated with AID and APOBEC3A (Figures 2–4
and Supplementary Tables S6–S8). No other putative associations with APOBEC enzymes were
identified. We performed an analysis of two blood cancer subtypes with the highest representation in
the COSMIC dataset (see Section 4): acute myeloid leukemia and germinal center B-cell-like (GCB)
lymphomas (Table 2). A significant excess of somatic mutations in AID mutable motifs was detected in
acute myeloid leukemia (Table 2). In GCB lymphomas, a significant excess of somatic mutations was
detected in both AID and APOBEC3A mutable motifs (Table 2). These results suggest that there is
variability of mutation context specificity across the same tissue, as seen previously [39].

We also performed an analysis of two skin cancer subtypes with the highest representation in
the COSMIC dataset (see Section 4.3) (Table 2): skin cutaneous melanoma and skin adenocarcinoma.
Both tumor types yielded somewhat similar results. An overwhelming excess of somatic mutations
in APOBEC1 and APOBEC3A/B/G mutable motifs (Table 2) is likely to be due to the known excess
of mutations in dipyrimidine dinucleotides (for example, TC) in skin cutaneous melanoma caused
by mutagenic UV photoproducts [40]. Accordingly, we interpreted the excess of mutations in the
AID/APOBEC3A/B/G contexts (Table 2) to be the result of false positives (as was already suggested
by the results of the control experiments; for details, see Section 4.7), but we are also aware of evidence
for the direct role of deaminases in skin cancer [41]. We observed a much lower excess of mutations
in the mutable motifs observed in skin adenocarcinoma (Table 2). These results are likely to reflect
the participation of AID/APOBEC deaminases in mutagenesis, because UV photoproducts do not
play any role in the mutagenesis of skin adenocarcinomas [39]. Thus, APOBECs may play a role in a
proportion of cases of squamous cell carcinoma [42].
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Table 2. Correlation between AID/APOBEC mutable motifs and the context of somatic mutations in
C:G sites in various blood and skin tumor types.

Cancer Tissue
Type

Number of
Mutations

Test APOBEC1 APOBEC3A APOBEC3B APOBEC3G AID

Blood: acute
myeloid
leukemia

6844

Ratio 0.920 0.978 0.958 0.977 1.031
t-test NSE # NSE NSE NSE 6.5 *

MC test <0.001
Fraction

Blood: GCB
lymphomas 2747

Ratio 0.967 1.030 0.979 0.980 1.091
t-test NSE 3.4 * NSE NSE 12.3 *

MC test <0.001 <0.001
Fraction 0.208

Skin:
cutaneous
melanoma

235043

Ratio 1.388 1.308 1.334 1.138 1.026
t-test 321.3 * 292.8 * 344.6* 176.2 * 35.8 *

MC test <0.001 <0.001 <0.001 <0.001 <0.001
Fraction 0.608 0.508 0.982 0.687

Skin:
adeno-carcinoma

780

Ratio 1.045 1.073 1.088 1.075 1.025
t-test NSE 4.4 * 4.8 * 4.6 * NSE

MC test <0.001 <0.001 <0.001
Fraction 0.213

#—NSE (no significant excess) indicates the absence of a significant excess of mutations in the mutable motifs,
suggesting that there is no association between mutagenesis and the motifs. The significance of any excess
was measured using the Student t and Monte Carlo (MC) tests. The bold font and asterisk (*) denote that the
corresponding P < 0.002 (critical value = 3.1); this is a conservative estimate of the critical overall value of the
t-test having allowed for multiple testing by means of the Bonferroni correction (4 × 6 = 24). The “Ratio” is the
mean weight of the mutated sites divided by the mean weight of the non-mutated sites. The predicted fraction of
mutations induced by AID/APOBEC proteins (“Fraction”) is shown when a significant excess of somatic mutations
in the mutable motif comparisons was detected; all cases where there was a significant difference between the
observed and expected distributions (P > 0.05) were discarded.

The mixture of two normal distributions yielded fairly predictable results (0.168–0.687, Table 2,
see Section 2.2) except for the APOBEC3G mutable motifs in skin cutaneous melanoma samples where
the fraction of sites potentially associated with the APOBEC3G mutable motifs is extremely large
(0.982, Table 2). The distribution of weights for this case is shown in Figure 5A. A putative component
(normal distribution) corresponding to the APOBEC3G mutable motifs (large weights, the rightmost
distribution) was less obvious compared with Figure 5B, which can be classified as a reasonable result,
because the fraction of sites potentially associated with the APOBEC1 mutable motifs (0.65) is close
to the mean of the fractions estimated above (0.42, Supplementary Figure S2). This distorted normal
distribution (another problem is a much larger number of sites in the last bin compared with the
previous bin) may be a reason why two distributions (Figure 5A) were incorrectly classified (mixed
together) yielding an obvious overestimate for the APOBEC3G mutable motifs (see Section 3). This is a
known problem in classification analyses of this kind [43,44].

53



Cancers 2019, 11, 211

0

1000

2000

3000

4000

5000

6000

7000

0 10 20 30 40 50 60 70 80 90

0

50

100

150

200

250

0 10 20 30 40 50 60 70 80 90

(B) 

(A) 

Figure 5. The weight distribution obtained using (A) the APOBEC3G weight matrix for skin
adenocarcinoma (Table 2) and (B) the APOBEC1 weight matrix for bladder tissue (Supplementary Table
S6). X axis: 0 stands for 0–9 interval of weights, 1 stands for the 10–19 interval, 2 stands for 20–29, etc.

3. Discussion

The advantage of our approach is that we used a unified computational technique that allowed an
objective and accurate comparison of the mutational contribution of various APOBEC enzymes under
the same experimental conditions and for the same datasets. We confirm that while the mutational
footprints of APOBEC1, APOBEC3A, APOBEC3B, and APOBEC3G are prominent in many cancers,
mutable motifs characteristic of the humoral immune response somatic hypermutation machine, AID,
are the most widespread feature of the somatic mutation spectra attributed to APOBECs in cancer
genomes. It is important to note that the suggested technique does not depend on expert opinion as to
the exact consensus sequences and, therefore, objectively represents mutable motifs.

Somatic mutations in all 18 studied cancer types are significantly associated with at least one
AID/APOBEC mutable motif. The blood subset of mutations stands apart because only AID mutable
motifs are detected (Figures 2–4 and Table 2). Although there are significant differences between
the contexts of AID/APOBEC-induced mutations manifested in frequency matrices (Table 1), there
are many tissues where mutable sites have been found to be targeted by two or more deaminases
(Figures 2–4). In such cases, we cannot reliably differentiate between different deaminases with
similar mutable motifs (Figure 1). For example, the frequency matrices of APOBEC1, APOBEC3A, and
APOBEC3B are quite similar to each other (Figure 1 and Table 1), and this represents a major problem.
To resolve this issue, it may be possible to use additional information, for example, gene expression
data. However, the addition of expression data was not particularly informative for the AID and DNA
polymerase η mutational footprints [21,39]. The same conclusion was reached in several other studies,
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because the genomic level of cytosine deamination does not necessarily correlate with the expression
of the corresponding AID/APOBEC genes [15,23,45]. For this reason, we did not attempt to compare
expression data from different tissue types and relate these data to the results we obtained.

In order to take into account the differences in the base composition between the yeast and human
genomes, we used the simplest normalization procedure by taking the frequencies of nucleotides
in the non-informative positions −5, −4, +4, and +5 as a null model (Figure 1, see Section 4.7 for
details). Although the control experiments suggest that this normalization tends to yield results that
are consistent with our expectations (with the exception of bladder, cervix, and skin tumors; see
Section 4.7), we cannot exclude the possibility that more sophisticated normalization schemes might
be required to generate more accurate results.

In addition, the role of APOBEC3C in mutagenesis remains uncertain and requires further
investigation. Another potential methodological problem (at least, for complex computational
techniques) is that we have a “positive” set (sites of mutations: sites that contain characteristic
features of mutable motifs) and do not have a “negative” set (sites of mutations: sites that do not
contain characteristic features of mutable motifs). Randomly sampled sites from yeast chromosomes
are far from being a good “negative” set, because distributions of mutations across yeast chromosomes
are too sparse and may contain a lot of mutable motifs. This is not a problem for the weight matrix
technique, which does not use negative sets as a part of its learning procedures. However, this is the
major problem for more sophisticated methods. For example, it is an obstacle for the application of
supervised learning methods (e.g., hidden Markov models or support vector machine), because the
training of these artificial intelligence (AI) algorithms requires classified or labeled data. However,
unsupervised learning methods (such as k-means clustering), which do not need classified data, may
be applied to this problem. Another issue is the need to take into account the much higher A:T
content of the mutation sites in the yeast genome as compared with the human genome; this should be
implemented as a part of a learning procedure.

The results of all the control experiments and somatic mutations in cancers strongly suggest that
the weight matrix technique is applicable to various types of mutational signatures. The suggested
approach complimented with clustering techniques (Figures 2–4) allows for comparison between the
studied enzymes and tissues. The suggested approach can be applied to various exciting questions
in cancer genomics, including the underlying causes of the non-uniform distribution of somatic
mutations across the human genome and asymmetries of mutagenesis with respect to leading/lagging
and non-transcribed/transcribed DNA strands.

We estimated the impact of mutagenesis associated with AID/APOBEC deamination by
representing distributions of weights as mixtures of two normal distributions. This approach is
based on the method of estimating the protein coding density in a corpus of DNA sequence data,
in which a ‘protein-coding coding statistic’ (which is similar to distributions of weights of somatic
mutation contexts) is calculated for a large number of windows for the sequences under study,
and the distribution of the statistic is decomposed into two normal distributions, assumed to be
the distributions of the coding statistic in the coding and non-coding fractions of the sequence
windows [43]. The distribution with the largest mean was assumed to reflect the fraction of protein
coding fragments [43]. Similarly, the fraction of sites in a distribution with the largest mean was
assumed to be the fraction of mutations induced by the AID/APOBEC enzymes. We noted problems
with such an approach for some cases (see Section 2.4). However, the method tends to produce
reasonable estimates. Rare deviations from normality caused by the natural boundaries of weight
distributions (0 and 100, see the last bin in Figure 5A) is a possible explanation for the problems
associated with the use of this classification technique in some cases.

Our analysis suggested that initial deamination events lead to both transitions and transversions.
This is already known for somatic mutations initiated by AID in immunoglobulin genes and for
APOBEC enzymes in cancer [5,38]. A large variation in transition/transversion ratios (Supplementary
Tables S6–S8) is likely to be a result of peculiarities in the relative abundance of proper DNA substrates
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for deamination and the various efficiency of the DNA repair of such sites [5,36,38]. Overall, our
results suggest that AID/APOBEC proteins make a major contribution to several different types of
somatic mutations in cancer. The idea that APOBECs can be carcinogenic was originally proposed by
Neuberger et al. in early 2000s [46], after the discovery that these proteins can edit DNA [47,48] and,
therefore, are by definition mutators. Under normal conditions, deaminases are involved in adaptive
(AID) and innate (APOBEC3s) immunity, lipid metabolism (APOBEC1), and possibly even active DNA
demethylation [49–51] both in developing and in terminally differentiated cells. Extremely precise,
tight, and complex (and therefore, not surprisingly, poorly understood) regulation of AID/APOBEC
proteins ensures that in normal cells, they edit cytosines at very specific sites, such as immunoglobulin
genes or viral DNA. However, when the regulatory constraints fail, these housekeepers can become
much more promiscuous and edit DNA genome-wide.

The overexpression of active APOBECs is highly toxic in human cell lines [18,52], indicating that
a precise balance of deaminase production and other factors is required in order to cause non-lethal
genome-wide hypermutagenesis and kataegis. This is apparently also true in the case of APOBECs,
where only a small fraction of cells with unfettered deaminases and a fine-tuned environment survive
and give rise to malignant clones. It is also possible that the sudden overproduction of deaminases
in tumor cells with genomes shaped by other mutagenic processes will kill the tumor by extensively
damaging its genome, unless the tumor cells can protect themselves against APOBEC.

4. Materials and Methods

4.1. Mutations in Yeast Genomes

Coordinates and types of mutations induced by various APOBEC/AID proteins in yeast were
obtained from previously published SNV datasets (see legend to Supplementary Table S1) [37,53–56].
To extract the sequence context of the mutations, we used the getfasta tool from the bedtools package
(http://bedtools.readthedocs.org/en/latest/). These datasets are available upon request from I.B.R.
The logo description of mutable motifs was constructed using the Weblogo website (http://weblogo.
berkeley.edu/logo.cgi).

4.2. Analysis of Mutable Motifs

Several approaches have been developed for the analysis of a set of mutated sequences [27–29].
A mononucleotide weight matrix is a simple and straightforward way to present the structure of a
functional signal and to calculate weights for the signal sequence. Each matrix includes information
on a normalized frequency of A, T, G, C bases in each of the 10 positions surrounding the detected
sites of mutation (5 bases downstream and 5 bases upstream). We calculated the weight matrices for 6f
different AID/APOBEC mutational signatures in the yeast genome (Supplementary Table S1).

A simple formula for W(b,j) was used for data analysis: W(b,j) = log2[f(b,j)/e(b)], where f(b,j) is
the observed frequency of the nucleotide b in position j and e(b,j) is the expected frequency of the
nucleotide b in position j, calculated as the mean nucleotide frequencies of positions −5,−4, +4, +5
for sites of mutations in the yeast genome; the resulting W(b,i) matrices are shown in Supplementary
Figure S1.

The matching score S(b1, ..., bL) of a sequence b1, ..., bL is as follows:

L
S(b1, ..., bL) = Σ W(b,j)

j = 1
(1)

The matching score between sequence b1, ..., bL and a weight matrix can be further expressed as
a percentage:

% matching score = 100 × (S(b1, ..., bL) − Smin)/(Smax − Smin) (2)
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L L
Smin = Σ MIN W(b,j) Smax = Σ MAX W(b,j)

j = 1 b j = 1 b
(3)

Hereafter, we use the term “weight” instead of “% matching score”. We used the positions −3:+3
to estimate the weights of the sites.

In addition to the analyses of AID/APOBEC mutational signatures in cancer genomes, we
performed a control experiment: we randomly shuffled a dataset of AID/APOBEC contexts in the yeast
genome (Supplementary Table S1), keeping position 6 (the position of mutations) intact. Each sequence
was shuffled separately; thus, the overall base composition and the base compositions of each sequence
were the same. We also performed another control experiment: we randomly extracted sequences
from the yeast genome, maintaining the nucleotide composition and the size of sequence sets for each
set of mutation sites with AID/APOBEC-induced mutations. Weight matrices were derived from these
sampled sites. Where there was a significant difference between an extracted set and the analyzed set
(the 2-tailed t-test), the sampling procedure was repeated.

4.3. Datasets and Analysis of Somatic Mutations

Somatic mutation data from the ICGC and TCGA cancer genome projects were extracted from
the Sanger COSMIC Whole Genome Project v75 (http://cancer.sanger.ac.uk/wgs). The ICGC/TCGA
datasets are almost exclusively passenger mutations, and they are unlikely to be subject to selection
to promote cellular proliferation. Thus, they are more likely to reflect the original AID/APOBEC
mutational spectrum [23]. The tissues and cancer types were defined according to the primary tumor
site and the cancer project in question [12,13]. A dataset of somatic mutations in mitochondrial DNA
in various cancer types was extracted from [32]. In this set, no excess of mutations in known mutable
motifs is to be expected, because the mutation landscape in mitochondrial DNA is shaped by its
very specific mode of replication [32]. The mitochondrial mutation set can, therefore, be used as a
negative control.

DNA sequences surrounding the mutated nucleotide represent the mutation context.
We compared the frequency of known mutable motifs for somatic mutations with the frequency
of these motifs in the vicinity of the mutated nucleotide. Specifically, for each base substitution, the
121 bp sequence centered at the mutation was extracted (the DNA neighborhood). We used only the
nucleotides immediately flanking the mutations, because the AID/APOBEC enzymes are thought
to scan a very limited region of DNA to deaminate (methyl)cytosines in a preferred motif [16,57,58].
This approach does not exclude any specific area of the genome, but rather uses the areas within each
sample where mutagenesis has occurred (taking into account the variability in the mutation rates across
the human genome) and then evaluates whether the mutagenesis in these samples were enriched
for AID/APOBEC motifs [58]. This approach was thoroughly tested, and the high accuracy of the
analysis was demonstrated [58]. The mean weight of the mutable motifs (Supplementary Figure S1)
in the positions of somatic mutations was compared to the mean weight of the same motifs in the
DNA neighborhood using the t-test (2-tail test) and Monte Carlo test (MC, 1-tail test) similar to the
consensus method, as previously described [58].

4.4. Impact of AID/APOBEC Mutagenesis

In order to estimate the proportion of mutated sites that are likely to be caused by the
AID/APOBEC enzymes, we applied a mixture model of two normal distributions [43] to distributions
of weights of somatic mutation contexts. An example of such a distribution is shown in Figure 5B.
This approach is based on the method of estimating the protein coding density in a corpus of DNA
sequence data, in which a ‘protein-coding coding statistic’ (which is similar to distributions of weights
of somatic mutation contexts) is calculated for a large number of windows of the sequence under
study. The distribution of the statistic is decomposed into two normal distributions and assumed
to be distributions of the coding statistic in the coding and non-coding fractions of the sequence
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windows [43]. The distribution with the largest mean was assumed to reflect the fraction of protein
coding fragments [43]. Similarly, the fraction of sites in a distribution with the largest mean was
assumed to be the fraction of mutations induced by the AID/APOBEC enzymes. The results were
considered to be reliable only if no significant difference was found between the observed and expected
distributions according to the χ2 test. The suggested classification approach for normal distributions
had been tested by Fickett and Guigo and showed good accuracy [43]. All the details of the suggested
methodology and underlined statistical Bayesian framework were previously described for analyses
of normal and binomial distributions [43,44].

Heatmap visualization analysis for each of the AID/APOBEC pseudo-mutable motifs groups
was performed. The R (https://www.R-project.org/) software package heatmap.2 (https://CRAN.
R-project.org/package=gplots) was employed to generate the heatmaps for each group. For each
group, a specific range of values was established in grayscale representation, from the lowest values
to the highest values. For the pseudo-mutable motifs in somatic mutation in the C:G sites group,
the range was from 0.01 to 0.84 with intervals between 0.05. Values <0.01 were denoted as white.
For the pseudo-mutable motifs in somatic mutation in the C:G>T:A sites group, the range was from
1 to 1.573 with intervals between 0.01. Values <1 were denoted as white. For the pseudo-mutable
motifs in somatic mutation in the C:G>C:G sites group, the range was from 1 to 1.802 with intervals
between 0.01. Values <1 were denoted as white. For the pseudo-mutable motifs in somatic mutation in
the C:G>A:T sites group, the range was from 1 to 1.362 with intervals between 0.02. Values <1 were
denoted as white.

4.5. Control Experiment 1: Analysis of Somatic Mutations in Mitochondrial DNA

In the first control experiment, we analyzed the sequence context of somatic mutations in
mitochondrial DNA. In this set, no excess of mutations in known mutable motifs was to be expected,
because the mutation landscape in mitochondrial DNA is shaped by its very specific mode of
replication [32]. Thus, the mitochondrial mutation set can be used as a negative control. No significant
excess of AID/APOBEC mutable motifs was found (Supplementary Table S2). This is consistent with
a previous study [32]. In all the studied tissues, the ratio of the mean weight of the mutated sites vs.
the mean weight of the non-mutated sites was less than or close to 1; this is expected when there is
no correlation between mutable motifs and mutation (Supplementary Table S2). We observed only a
single case where the Monte Carlo test yielded a significant P-value (P = 0.031, APOBEC3B/brain), but
this result was not confirmed by use of the t-test and is likely to be an isolated false positive. Thus, the
weight matrix appears to be a reliable method for the analysis of somatic mutations.

4.6. Control Experiment 2: Correlation between the Matrices of Shuffled Sites of Mutations and the Sites of
Somatic Mutation in Cancer Cells

In order to allow for differences in nucleotide content between the yeast and human genomes, we
used normalized weight matrices (see above). To test the robustness of the normalization, a simple
control experiment was designed: we randomly shuffled the sequences of the AID/APOBEC mutation
sites (Supplementary Table S1). We identified rare cases of a significant deviation from the expected
value of the ratio (1.0, the ratio is the mean weight of the mutated sites divided by the mean weight of
the non-mutated sites), but those cases constituted only 2.6% of all the studied cases (Supplementary
Table S3). This result establishes that the weight matrix technique yields an expected proportion of
false positives (the expected false discovery rate should be around 5% according to the standard in
the field [33]) and hence is robust with respect to the biased nucleotide composition of mutated sites
in the yeast genome. However, the results for colon, skin, and stomach cancers may not be reliable
for some APOBECs (the fractions of false positives were found to be large, for example, 0.96 for
APOBEC3C/skin; Supplementary Table S3). In general, the APOBEC3C weight matrix tends to yield
the largest number of false positives, suggesting that this matrix might be problematic. We conclude
that such controls should always be performed when starting work with a new mutation set.
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4.7. Control Experiment 3: Correlation between Matrices of Randomly Sampled Sites from the Yeast Genome
and Somatic Mutations in Cancer Cells

To check for a potential influence of nucleotide content biases and the extent of a correlation
between positions in yeast and human genomes, we randomly extracted sequences from the yeast
genome, maintaining the nucleotide composition and size of sequence sets for each set of mutation
sites. Weight matrices were derived from these sampled sites. We identified numerous examples
of a substantial deviation from the expected values that produced significant results that should be
considered to be false positives (Figure 6 and Supplementary Table S4), because we did not expect
any meaningful association between randomly sampled sites and somatic mutations. The APOBEC3C
weight matrix yielded a large number of significant yet spurious results (false positives) for all the
studied tissues (Figure 6 and Supplementary Table S4) and therefore cannot be recommended for the
analysis of somatic mutation. This effect may have been due to the much smaller number of mutations
in the dataset, a lack of highly informative positions and a high A/T content of sites for APOBEC3C
(Figure 1). The results for APOBEC3C are likely to be false positives in this and previous control
experiments and were included in the Supplementary Materials only.

Figure 6. Fraction of random matrices with a significant correlation between AID/APOBEC
pseudo-mutable motifs (randomly sampled sites from the yeast genome) and the sequence context of
somatic mutations in C:G sites. For the actual data, see Supplementary Table S2. The intensities of the
gray color correspond to the fractions of cases with a significant correlation between pseudo-mutable
motifs (represented as weight matrices) and the context of somatic mutations in C:G sites.

The analysis of mutations in various tissues suggested that the weight matrix technique may also
produce misleading results for bladder, cervix, and skin tumors (Figure 6). The skin tissue consistently
produced a high rate of false positives in control experiments 3 and 4; thus, weight matrices should
be used with great caution for this tissue. The analysis of nucleotide frequencies for the region ±3
suggested that skin, cervix, and bladder tumors are characterized by a high frequency of T nucleotides
around the sites of mutation (Supplementary Table S5), and this is likely to be a reason for the high
rate of false positives. It should be noted that other techniques are also likely to produce a high rate
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of false positives for these tissues, although this type of control experiment has, to our knowledge,
never been performed before except for analysis of somatic mutations in normal tissues [21]. The likely
reason for high rates of false positives is that APOBEC mutable motifs tend to be A/T-rich (even C-rich
APOBEC3G sites contain excessive amounts of A and T nucleotides in positions −3, +1, +2, and +3;
Figure 1 and Supplementary Figure S1). We attempted to take this into account by removing sites
with a high A/T content (≥50% A+T in the 10-nucleotide region around sites of somatic mutations,
Supplementary Table S4). Although there was a substantial improvement in the accuracy of prediction
(rates of false positives were much smaller, Supplementary Table S4), problems with the accuracy of
prediction for skin tumors persisted (Supplementary Table S4).

4.8. Control Experiment 4: Analysis of Somatic Mutations in Human Immunoglobulin Genes

Somatic mutations in human immunoglobulin genes are known to be associated with AID
mutable motifs [35], and these mutations can be used as a positive control set. Indeed, a significant
association between the AID mutable motif and mutations was found in all three studied sets of
somatic mutations [34,35] (Table 3), suggesting that the AID weight matrix is a reliable descriptor
of AID-induced mutagenesis. The APOBEC1/3A/3B/3G weight matrices did not, however, yield
significant results for all the studied cases (Table 3). This is consistent with the absence of any traces of
APOBEC1/3A/3B/3G-induced mutation in the somatic hypermutation profiles of immunoglobulin
genes [36]. The results of all four control experiments suggested that the weight matrix technique is
applicable to studied APOBECs.

Table 3. Correlation between the AID/APOBEC mutable motifs and the sequence context of somatic
mutations in fragments of human immunoglobulin genes.

Locus
Number of
Mutations

Test APOBEC1 APOBEC3A APOBEC3B APOBEC3G AID

VH26 708

Ratio 0.931 0.986 0.919 0.908 1.162
t-test NSE # NSE NSE NSE 11.1 *

MC test <0.001
Fraction 0.477

JH4 intron,
control

individuals
177

Ratio 0.927 0.957 0.887 0.870 1.331
t-test NSE NSE NSE NSE 11.9 *

MC test <0.001
Fraction 0.559

JH4 intron,
XP-V

patients
235

Ratio 0.981 1.008 0.957 0.930 1.266
t-test NSE NSE NSE NSE 9.6 *

MC test <0.001
Fraction 0.366

#—NSE (no significant excess) indicates the absence of a significant excess of mutations in mutable motifs, suggesting
that there is no association between mutagenesis and the motifs. The significance of any excess was measured
using the Student t and Monte Carlo (MC) tests. The bold font and asterisk (*) denote that the corresponding P <
0.003 (critical value = 3.1); this is a conservative estimate of the critical overall value of the t-test having allowed for
multiple testing by means of the Bonferroni correction (3 × 6 = 18). The “Ratio” is the mean weight of the mutated
sites divided by the mean weight of the non-mutated sites. The predicted fraction of mutations induced by the
AID/APOBEC proteins (“Fraction”) is shown when a significant excess of somatic mutations in the mutable motif
comparisons was detected; all the cases where there was a significant difference between the observed and expected
distributions (P > 0.05) were discarded.

5. Conclusions

For the first time, we have adopted the weight matrix (sequence profile) approach for the analysis
of mutations in cancer genomes, and we provide evidence for this method being a more precise
descriptor of mutations than the commonly used sequence consensus approach. Control experiments
using shuffled sites and constrained samples of randomly sampled sequences from the yeast genome
yielded a low level of false positives.

We confirm that while mutational footprints of APOBEC1, APOBEC3A, APOBEC3B, and
APOBEC3G are prominent in many cancers, mutable motifs characteristic of the action of the humoral
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immune response somatic hypermutation enzyme, AID, are the most widespread feature of the somatic
mutation spectra attributed to APOBECs in cancer genomes. The AID and APOBEC3A mutable motifs
are the most prominent features of the C:G>T:A transitions that constitute the vast majority of somatic
mutations in studied cancers. We also demonstrated an abundance of APOBEC3A/3B/3G mutable
motifs in DNA contexts of C:G>A:T transversions. A potential association of AID and APOBEC3A in a
certain type of blood cancers is another interesting outcome of our study. Overall, the weight matrix
approach revealed that somatic mutations are significantly associated with at least one AID/APOBEC
mutable motif in the studied cancer types.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/11/2/211/s1,
Figure S1:AID/APOBEC weight matrices W(b,j).itle; Figure S2: The overall distribution of fraction of somatic
C:G>T:A mutations associated with AID/APOBEC deamination (APOBEC1, APOBEC3A, ABOPEC3B, and AID
deaminases); Table S1: Datasets of mutations induced by overexpression of AID/APOBEC enzymes in the
yeast genome; Table S2: Control study: correlation between AID/APOBEC mutable motifs and the context of
somatic mutations in C:G sites in mitochondrial DNA; Table S3: Control study: fractions of random matrices
with a significant correlation between AID/APOBEC pseudo-mutable motifs (shuffled sites of mutations) and the
context of somatic mutations at C:G sites; Table S4: Control study: fraction of random matrices with a significant
correlation between AID/APOBEC pseudo-mutable motifs (randomly sampled sites from the yeast genome) and
the context of somatic mutations at C:G sites; Table S5: Nucleotide composition of the DNA context of somatic
mutations (±3 nucleotides); Table S6: Correlation between AID/APOBEC mutable motifs and the context of
C:G>T:A somatic mutations; Table S7: Correlation between AID/APOBEC mutable motifs and the context of
C:G>G:C somatic mutations; and Table S8: Correlation between AID/APOBEC mutable motifs and the context of
C:G>A:T somatic mutations.
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Abstract: The identification of biomarker signatures is important for cancer diagnosis and prognosis.
However, the detection of clinical reliable signatures is influenced by limited data availability, which
may restrict statistical power. Moreover, methods for integration of large sample cohorts and signature
identification are limited. We present a step-by-step computational protocol for functional gene
expression analysis and the identification of diagnostic and prognostic signatures by combining
meta-analysis with machine learning and survival analysis. The novelty of the toolbox lies in its
all-in-one functionality, generic design, and modularity. It is exemplified for lung cancer, including a
comprehensive evaluation using different validation strategies. However, the protocol is not restricted
to specific disease types and can therefore be used by a broad community. The accompanying R
package vignette runs in ~1 h and describes the workflow in detail for use by researchers with limited
bioinformatics training.

Keywords: Bioinformatics tool; R package; machine learning; meta-analysis; biomarker signature;
gene expression analysis; survival analysis; functional analysis

1. Introduction

The combination of biomarkers (so-called biomarker signature) allows us to represent
the information contained in biological samples and fluids, supporting clinical decisions [1].
Numerous studies demonstrated the clinical usefulness of diagnostic (disease detection) and prognostic
(disease outcome) gene-expression signatures derived from microarray analysis [2,3]. For instance,
MammaPrint is a 70 gene-expression prognostic signature for powerful disease outcome prediction in
breast cancer [4]. The diagnostic miR-Test shows promising results for lung cancer early detection [5].

However, reliable clinical signatures are restricted by dataset availability, which often reduces
their statistical power [3,6]. Artificially increasing the number of samples by combining different large
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cohorts using dataset merging (meta-analysis) is a beneficial solution enabling numerous insights into
biological systems [7–10], but methods for biomarker signature identification are currently limited.
For instance, the R packages virtualArray [11] and inSilicoMerging [12] allow virtual array merging
but are no longer available and are removed from current Bioconductor releases [13]. On the other
hand, database tools such as SurvExpress [14] and SurvMicro [3] allow for the assessment of a
prognostic signature in cancer. Similarly, the miRpower tool provides survival analysis for miRNA
biomarkers using expression data from 2178 breast cancer patients [15] and GOBO based on 1881
breast cancer dataset [16], whereas the Kaplan-Meier Plotter enables outcome analysis for ovarian
cancer based on 1287 patients [17]. However, these tools focus on specific diseases and signature types.
More importantly, they allow only online analysis, requiring a gene list as input, but not the calculation
of signatures from in-house data. These characteristics limit them as stand-alone tools, suggesting new
bioinformatics approaches.

Machine learning (ML) approaches have been demonstrated to be useful in medicine. For example,
studies report that ML could be used in cancer diagnosis [18] and prognosis [19] as well as prediction
of optimal cancer therapies [20]. It can also improve the prediction of heart failure readmissions [21].

Regularized Generalized Linear Models such as L1/L2 regularized and Elastic net regression
address overfitting and aim to balance between accuracy and simplicity of a model [22,23]. The Least
Absolute Shrinkage and Selection Operator (LASSO) uses L1 regularization, whereas Elastic net
implements a mixture of L1 and L2 regularization. Applying these regularization techniques to fit
a Generalized Linear Model is widely used for feature selection and is extremely effective when
dealing with high dimensional data, which contains a large set of features. The LASSO model allows
the shrinkage of the coefficients of the less contributive variables to be exactly zero (the penalty
term L1-norm) [22]. Thereby, the tuning parameter lambda controls the strength of the penalization
(regularization). The cross-validation calculates the lambda.min value, which reflects the model with
the lowest prediction error, whereas the lambda.1se value represents a simpler model but within one
standard error of the optimal model. However, the LASSO regression tends to over-regularization and
has limited strength in highly correlated data.

The Elastic net balances between LASSO (L1-norm) and ridge penalties (L2-norm) shrinking some
coefficients close to zero (like ridge) and some exactly to zero (similar to LASSO) [23]. This model is
powerful in datasets with e.g., correlations between variables. For this, the hyper-parameter alpha
controls the mixing between the two penalty techniques (alpha = 0 for ridge; alpha = 1 for LASSO) and
can be set manually between 0 and 1 to receive a model with the desired size, whereas the parameter
lambda fine-tunes the amount of shrinkage [23]. Therefore, the Elastic net is a powerful method for
feature selection and can operate with continuous as well as categorical features.

Several statistical methods have been developed for survival data analysis [24,25]. The Cox
Proportional Hazard model is the most popular multivariate approach to investigate survival time in
medical research [24,26]. It describes the relation between event incidence (hazard function, survival
probability) and covariates [24,25].

We previously introduced a sample merging approach that is compatible with current Bioconductor
releases [27]. It allows the use of datasets from databases such as Gene Expression Omnibus (GEO),
The Cancer Genome Atlas (TCGA), and own experimental data [27], greatly enhancing the number
of available datasets for analysis. Starting from this, we developed a protocol for the systematical
calculation of diagnostic and prognostic gene signatures that combines (i) meta-analysis (multiple
dataset integration) with (ii) functional gene expression analysis and (iii) ML approaches. Our aim
was to develop a general framework for functional analysis and signature calculation with high
predictive performance that is not restricted to specific disease types and can therefore be used by a
broad community.
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2. Results

2.1. Meta-Analysis (Dataset Download, Normalization, Merging, Batch Effect Correction)

We demonstrate the workflow of our toolbox by analyzing three lung cancer datasets from
microarray profiling downloaded from the GEO database. The datasets GSE18842 (45 non-tumor,
46 tumor samples) and GSE19804 (60 tumor/60 non-tumor samples) were downloaded (getGEO) and
are already GCRMA normalized deposited in GEO. For the datasets GSE19188 (91 tumor/ 65 non-tumor
samples), we downloaded the raw data (CEL files). The files were imported into the R environment
and subsequently GCRMA normalized (resulting “ExpressionSet” object) using the gcrma package
version 2.56.0 [28] (Figure S1; datasets from Chip GPL570, Affymetrix Human Genome U133 Plus 2.0).
The merged dataset contained 54,675 transcripts and 367 samples (197 tumor/170 non-tumor samples;
no gene transcripts were excluded during the merging procedure). The batch effect detection using a
gPCA (Top) and the resulting boxplot of the merged dataset after batch effect correction (Bottom) are
shown in Figure S2.

2.2. Functional Gene Expression Analysis

The differentially expressed genes (DEG) analysis after batch correction resulted in 699 significantly
deregulated transcripts (Table S1; q-value < 0.05, logFC > 2/< −2 as standard criterion for selecting
significantly deregulated genes [29]). Figure 1 shows the heatmap of the DEGs, illustrating a clear
separation of tumor and non-tumor samples in two expression clusters. Many of them are known key
players in lung cancer, for instance G Protein-Coupled Receptor Kinase 5 (GRK5) [30], Solute Carrier
Family 46 Member 2 (SLC46A2) [31], and Collagen Type XI Alpha 1 Chain (COL11A1) [32] function as
oncogenic factors in lung cancer.

 

Figure 1. Overview of the differentially expressed genes (DEGs). Heatmap of the 699 DEGs derived
from the meta-analysis with the merged datasets GSE18842, GSE19804 and GSE19188 (samples on the
x-axis, DEGs on the y-axis; red color represents tumor, blue non-tumor (control) samples).

We further tested the 699 DEGs for enriched Gene Ontology (GO) terms and Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathways (Figure 2, enriched GO terms and KEGG pathways after False
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Discovery Rate (FDR) control are shown). For instance, the analysis shows enriched functions such as
hormone receptor binding and protein serine/threonine kinase activity (Left) and enriched pathways
such as Phosphatidylinositol 3-Kinase-Akt (PI3K-Akt) signaling pathway and Mitogen-Activated
Protein Kinase (MAPK) signaling pathway (Middle). Moreover, specific pathways depending on the
interest of the users can be further investigated. As an example, we show the PI3K-Akt signaling
pathway (hsa04151) from the KEGG database including the expression values of the involved DEGs
(Figure 2, Right; red: upregulated, green: downregulated).

 

Figure 2. Functional Gene Ontology (GO) term and pathway enrichment analysis. (Left) Enriched GO
terms including adjusted p-value as color code. (Middle) Enriched Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways including adjusted p-value as color code. (Right) The phosphatidylinositol
3-kinase (PI3K)-Akt signaling pathway (hsa04151) from the KEGG database including the differentially
expressed genes (DEGs) are highlighted considering differential expression.

2.3. Calculation of Diagnostic and Prognostic Signatures

We next analyzed the merged dataset (54,675 transcripts) for a diagnostic signature. We divided the
merged dataset into a training dataset (80%; 294 samples) and test dataset (20%, 73 samples). We used
a L1/L2 regularized logistic regression to fit a Generalized Linear Model in order to perform a feature
selection to include only the potentially most predictive variables (here genes) in the model. The 10-fold
cross-validation results in a lambda of 0.009260 and 0.059521 (Figure 3; alpha = 1). The lambda.min
identifies a selection of 64 transcript variables (55 unique gene symbols) whose coefficients were not
forced to be zero, whereas the lambda.1se identifies a 26 gene transcript signature (24 unique gene
symbols) (Table S2). Figure 3 shows the cross-validation error (Left) and the confusion matrix (Right)
for the calculated LASSO signatures predicting the test data samples.

Figure 3. Mean-Squared error for 10-fold cross-validation according to the log of lambda on the training
lung cancer dataset. (Left) The cross-validation errors and the upper and lower standard deviation along
the lambda values of the Least Absolute Shrinkage and Selection Operator (LASSO) regression model are
shown. The vertical dotted lines represent the two selected lambdas. The lambda.min value (left line)
minimizes the prediction error (MSE), whereas lambda.1se (right line) gives the most regularized model
(most simple model within one standard deviation of the optimal model). Values above the plot show the
number of variables included in the model. (Right) Confusion matrix depicting the diagnostic potential of
the signatures validated on the test dataset (0 = healthy, 1 = tumor).
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We further applied the Elastic net regression. The 10-fold cross-validation shows a lambda of
0.010288 and 0.063129 (alpha = 0.9). Notably, we manually set alpha = 0.9 as the grid search for
lambda (0 to 0.0001 with 100 intervals) calculates an alpha = 0.1 (lambda = 0.521401), resulting in a
signature without an improved predictive performance. The Elastic net regression model identified,
for lambda.min, an 80 gene transcript signature (69 unique gene symbols), and for lambda.1se,
a 41 transcript signature (36 unique gene symbols) (Table S2). The calculated cross-validation error
(Left) and resulting confusion matrix (Right) of the predicted test data samples by the Elastic net model
are shown in Figure 4.

Figure 4. Elastic net regression model. (Left) The plot displays the 10-fold cross-validation errors and
the upper and lower standard deviation along to the lambda values of the Elastic net regression model.
The vertical dotted lines represent the two selected lambdas. The lambda.min value (left line) minimizes
the prediction error (MSE), whereas lambda.1se (right line) gives the most regularized model (most simple
model within one standard deviation of the optimal model). Values above the plot show the number
of variables included in the model. (Right) Confusion matrix depicting the diagnostic potential of the
signatures validated on the test dataset (0 = healthy, 1 = tumor).

To address overfitting and reduce model instability, the framework allows to include further
datasets for validation. We validated the gene signatures in three independent datasets (GSE30219,
293 lung/14 non lung cancer samples; GSE102287, 32 lung/34 non lung cancer samples; GSE33356,
60 lung/60 non lung cancer samples; 54,675 genes). The GSE30219 contains <5% non-cancerous
samples, whereas the GSE102287 and GSE33356 are more balanced validation datasets. The results of
the validation are depicted in Figure 5 (confusion matrices) and Supplementary Table S3 (diagnostic
values), showing a high diagnostic power to classify between lung cancer and non-lung cancer samples.

After determining the diagnostic signature, we tested for a relevant prognostic signature. For
this, we analyzed the significant influence of the 699 DEGs on the patient survival outcome using a
Univariate Cox Proportional Hazard Model (82 patient survival outcome data from GSE19188). The
Cox regression analysis revealed 22 DEGs that have a significant influence (effect size) on the patient
survival (Table S4; p-value < 0.05). We found known lung cancer drivers such as Lipoprotein Lipase
(LPL) [33] and CC Chemokine Receptor 2 (CCL2) [34].
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Figure 5. Confusion matrices of the identified diagnostic signatures in independent datasets. The plots
illustrate the diagnostic classification using the identified signatures in the independent validation
dataset (54,675 genes; 0 = healthy, 1 = tumor). (A) GSE30219, 293 lung cancer samples, 14 non lung
cancer samples. (B) GSE102287, 32 lung cancer samples, 34 non lung cancer samples. (C) GSE33356,
60 lung cancer samples, 60 non lung cancer samples.

Next, we trained the prognostic 22 gene classifier using an algorithm comparing the expression
profiles between tumor and healthy samples of the merged datasets GSE18842 and GSE19804
(we excluded GSE19188 for classification to avoid selection bias, as it is the dataset for the identification
of survival correlated genes). We additionally validated the identified 22 prognostic gene signature in
two independent datasets (GSE30219: 278 from 293 patients with survival data, GSE50081: 181 patients
with survival data) to evaluate its impact on the patient outcome. Here, we tested whether the 22 gene
signature can classify patients with high and low mortality risk. Therefore, we classified the patient
samples into high risk and low risk groups using the trained classifier.

The Kaplan-Meier estimators in Figure 6 demonstrate the significant patient classification
achieved regarding high and low risk groups for the 22 genes in the validation dataset GSE30219
(Left: p-value = 0.0002166) and GSE50081 (Right: p-value = 0.02919). This indicates that the identified
22 gene classifier reflects a common prognostic signature of dominant tumor factors that can differentiate
between high and low risk tumor disease.

Figure 6. Kaplan-Meier estimators with computed 95% confidence interval to evaluate the patient
classification in high and low risk groups deploying the 22 gene signature on two independent datasets.
The classification in high and low risk groups is based on the expression profiles between tumor and
healthy samples of the merged datasets (GSE18842, GSE19804). (Left) The plot shows a classification in
high and low risk groups for the 293 patients from the validation dataset GSE30219 based on the 22
survival correlated genes (p-value = 0.0002166; low risk: 121 samples, high risk: 172 samples, number
of events/deaths: 188). (Right) The 22 gene signature can classify the 181 patients in the validation
dataset GSE50081 in high and low risk groups (p-value = 0.02919; low risk: 88 samples, high risk:
93 samples, number of events/deaths: 75).
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3. Discussion

Our intention was to develop a general and easy to use toolbox that identifies reliable diagnostic and
prognostic signatures including the important steps of data augmentation and validation, especially for
users with limited bioinformatics resources. It is therefore a step-by-step protocol rather than an
improved algorithm or ML method approach.

The tool applies a comparison between the two ML models LASSO and Elastic net, which aim
to balance between accuracy and simplicity of a model. LASSO and Elastic net regularization are
well-established methods for gene expression analysis, allowing to construct predictive models from
datasets with non-linear and large dimensional variable numbers [21]. Especially for generalization of
data with additive variable and outcome dimensions or a low number of training datasets they generate
predictive results similar to complex ML algorithms [19]. Complex ML approaches such as support
vector machines, neural networks, random forest, and gradient boosting algorithms allow unbiased
predictive models using complex variable selection and huge datasets but tend to overfitting in the
identification of large biomarker combinations [1,19,35]. However, the combinations of biomarkers
show better discriminatory power for clinical decision support rather than a single biomarker [1].

The use of ML implies the need for a substantial amount of data in order to train the model,
in which the integration of different datasets might be required. However, gene expression analysis
often suffers from selection bias, poor sample quality, and poor sample size estimation, influencing the
statistical power and validity of downstream analysis [1,36,37]. Combing different gene expression
datasets using meta-analysis has been shown to increase statistical power and overcome selection
biases including the identification of diagnostic and prognostic biomarkers [7–10,38–40]. However,
differentially gene expression selection using meta-analysis is mostly based on univariate p-value
statistics which introduces the problem to identify sets of genes with non-redundant information and
to find the correct number of genes that describe the data [8]. This limits application for diagnostic
and prognostic signatures that integrate several feature selections and covariates such as patient
characteristics (e.g., survival) and histology [8]. We overcome this by implementing a meta-analysis for
the integration of multiple gene expression datasets into a merging array and then applied ML methods
to identify biomarker signatures from datasets with non-linear and large dimensional variable numbers.

Several studies calculate signatures using ML approaches, but often fail during independent
validation stages [36]. To overcome overfitting and reduce model instability, we identified a classifier in
the training dataset and applied a comprehensive evaluation using different validation strategies—in
particular, a split sample, internal validation (cross-validation) and testing in independent datasets.
Moreover, we applied a multiple-testing correction using the Benjamini and Hochberg method and set
a stringent q-value of 0.05. We recommend using a stringent q-value (can be set by the user) to reduce
the false positives and find real biologically deregulated genes but also considering sample size and
power estimation approaches based on statistical and clinical significance [1,41]. This strengthens the
robustness for the biomarker signature identification capability and validity for clinical usefulness.

In our example, the identified gene signatures from two different ML models show a high
diagnostic power and might be promising for the clinic to classify between lung cancer and non-cancer
samples. The confusion matrix for the LASSO and Elastic net regression models are similar. Comparing
the calculated signatures shows a common set of 12 transcripts (12 unique gene symbols), and similar
accuracy and predictive performance. However, this is of course not always the case. For example,
studies in breast cancer reported two independent prognostic signatures identified with similar
approaches showing only few common genes, which were experimentally validated [42]. This illustrates
that different mathematical models should be applied to find the most reliable signature rather than
using only one method. Hence, using several methods reduces false positive results even for challenging
datasets and avoids misclassification in experimental and clinical testing. This strengthens the validity
and clinical usefulness of signatures extracted from large gene expression datasets.

The common gene set contains known cancer markers. For instance, TMEM106B has been shown
to be a valuable marker of lung cancer metastasis [43], whereas COL10A1 [44] plays a diagnostic role of
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circulating extracellular matrix-related proteins. However, LGR4 [45] is known as a diagnostic marker
in prostate cancer. This highlights that our analysis approach allows the identification of reliable
diagnostic signatures. The next step is then to validate and iteratively refine the marker signature
derived from our tool in prospective clinical studies to find an optimal biomarker signature, with the
help of more complex ML models.

The significance and novelty of the toolbox lies in its functionality as an „all-in-one tool”: it offers an
analysis path combining meta-analysis with functional gene expression analysis and robust diagnostic
and prognostic signature calculation. The code is implemented in an R package. The four main
functions—sigidentDEG, sigidentEnrichment, sigidentDiagnostic, and sigidentPrognostic—are wrapper
functions around all included smaller functions to execute the analysis steps. However, these can also
be run separately, depending on the interests of the users.

The toolbox benefits from its generic design and modularity. We designed it for Affymetrix as a
widely used microarray profiling platform [46] and illustrate the generality of the approach using lung
cancer gene expression datasets (tumor/healthy) downloaded from the GEO database. The generic
design of the tool allows the analysis of different types of gene expression signatures, e.g., mRNA,
lncRNA, and miRNA. Furthermore, it supports analysis in front of the high biological complexity of
tumors, for instance analysis of tumor subtypes and heterogeneity.

We demonstrated the method’s power to be applied to datasets containing a large number of
gene probes using the Affymetrix HG-U133 Plus 2.0 platform. However, the merging algorithm is not
restricted to this platform, allowing the potential integration of other popular microarray profiling
platforms such as HG-U133A, HG-U133B, and HG-U133A 2.0. Moreover, the modularity of the
framework allows the future incorporation of additional platforms, such as Illumina, but also other
high-throughput data such as genomic, proteomic, metabolomic, and radiomic data. For instance, the
Elastic net model shows applicability to genome-scale data such as the identification of genomic markers
of drug sensitivity [8,47]. Indeed, the implementation of this complex data requires programming skills
and is therefore recommended only for experienced users. Such a broad applicability is in principle
possible but was not the intention of the current version of the framework and should be the focus of
future work. Further efforts should also focus on the integration of the toolbox into a web application
to provide its functionality to users without R programming skills.

Existing tools such as SurvMicro [3] and SurvExpress [14] allow for the online validation of
prognostic signatures, but are restricted to datasets from TCGA and limited to cancer. Our toolbox has
the advantage to be disease independent and allows the integration of data from TCGA and GEO,
but also from in-house experiments.

The framework from Hughey et al. 2015 identifies a diagnostic signature combining meta-analysis
with an Elastic net regression [8]. This approach is similar to our method, but our tool calculates
prognostic signatures as a further relevant biomarker signature for clinical application. Additionally,
the regularization methods LASSO and Elastic net can be applied for the aim of feature selection to
identify variables correlated to the desired response variable. The toolbox also integrates an automated
method to identify DEGs, including a summary table with gene annotations and functional enrichment
analysis. In this way, our method can also be used to perform a functional DEG analysis from merged
datasets without the calculation of signatures. In conclusion, the user-friendly R package, the all-in-one
functionality, and modularity make the framework useful to a broad community.

4. Materials and Methods

Figure 7 illustrates the workflow of our toolbox. It has been developed and tested on R
version 3.6.1 (R Bioconductor version 3.9). We implemented the code into the R package “sigident”
(https://gitlab.miracum.org/clearly/sigident), which provides the four main functions—sigidentDEG,
sigidentEnrichment, sigidentDiagnostic, and sigidentPrognostic. The whole workflow is documented in
detail in the R package vignette.
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Supplementary Table S5 lists the used R packages. The newly created “sigident” R package
integrates a (i) meta-analysis (multiple dataset integration), (ii) functional gene expression analysis,
and (iii) the calculation of statistically robust multi-gene signature combinations. As an application
example, we used lung cancer datasets from the GEO database (GSE18842, GSE19804, and GSE19188).
After merging, we divided the dataset into a training (80%) and test (20%) dataset for the calculation
of the diagnostic signature. Moreover, we validated the diagnostic signature in three independent
datasets (GSE30219, GSE102287, GSE33356). For the prognostic signature, we performed a survival
analysis using the GSE19188 which includes survival information and validated the signature in two
independent datasets (GSE30219, GSE50081).

For the meta-analysis (dataset download, normalization, merging) and the functional gene
expression analysis (analysis for DEGs, heatmap), we used our previously published sample merging
approach, which is based on a modified code of the inSilicoMerging package combined with the
limma package [27]. This approach has been developed further in order to integrate it into the
“sigident” R package framework. In detail, it uses the R package GEOquery version 2.52.0 for
dataset downloading [48], gcrma package version 2.56.0 for CEL file loading, background correction,
quantile normalization, and log2-transformation [28], Biobase package version 2.44.0 for integration
of standardized data structures [13], gplots package version 3.0.1.1 for graphical representation [49],
and the limma package version 3.40.6 for the DEG analysis [50]. We extended the code by detecting
batch effects using a guided principal component analysis from the gPCA package version 1.0 [51].
For batch effect correction, we used empirical Bayes framework applying the ComBat function from the
sva package version 3.32.1 [52] considering different groups (tumor, ctrl). As a DEG analysis is known
to generate false positive results [36], we applied a multiple-testing correction using the Benjamini and
Hochberg approach to control the FDR [53]. We used a stringent q-value (adjusted FDR value) of 0.05.

Furthermore, for the DEGs we added a functional gene ontology (GO) and KEGG pathway
enrichment analysis using the goana and kegga functions from the limma package (Entrez IDs as
input). A further GO and pathway over-representation test is implemented using the clusterProfiler
package version 3.12.0 [54] (including FDR control, DEGs are mapped to their Entrez-IDs as input),
whereas specific pathways can be further investigated using the pathview package version 1.24.0 [55].

The calculation of statistically robust multi-gene signature combinations focuses on diagnostic
and prognostic signatures. For diagnostic signatures, we used the LASSO and Elastic net penalty as
implemented in the R package glmnet version 2.0.18 [56]. The hyper-parameter alpha can manually
be set to a value between 0 and 1 or can automatically be calculated in combination with the tuning
parameter lambda based on cross-validation and a grid search applying the wrapper function train
as implemented in the caret package version 6.0.84 [57]. In the case of a fixed value for alpha,
lambda is determined by 10-fold cross-validation, and a leave-one-out cross-validation is also possible.
For calculation of the Receiver Operating Characteristics (ROC) and the Area Under the Curve (AUC)
value of the ML models we used the pROC package version 1.15.3 [58].

For the prognostic signature detection we applied a survival and risk assessment analysis using
a Cox Proportional Hazard Model as implemented in the survival R package version 2.44.1.1 [59].
The Cox Proportional Hazard regression analysis identifies genes that have a significant effect size
on the survival outcome. To generate a prognostic signature, we applied a classification algorithm
that assigns patients in high and low risk groups based on the expression profiles of the identified
survival correlated genes between tumor and non-tumor samples. Survival curves were plotted using
the survminer package version 0.4.5 [60].
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Figure 7. Overview of the workflow of our toolbox. The boxes show the analysis steps, colored
rectangles represent the R package functions and results (see legend).
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5. Conclusions

We developed an efficient toolbox for the identification of diagnostic and prognostic gene
signatures. It is the first R package tool that combines meta-analysis with gene expression analysis and
ML approaches for the systematical calculation of statistically robust gene signatures. This helps to
reduce study biases and improves the statistical power for the identification of reliable signatures from
large sample cohorts. Importantly, the tool is not restricted to a specific disease. We believe that our
toolbox will be useful for the research community and opens new windows for an effective analysis of
data and a better clinical management of diseases.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/11/10/1606/s1,
Figure S1. Boxplots of the GCRMA normalized expression data (training and test dataset). The dataset GSE18842
contains 45 non-tumor and 46 tumor samples (Left), the GSE19804 dataset 60 non-tumor and 60 tumor samples
(Middle) and the GSE19188 dataset 65 non-tumor and 91 tumor samples (Right). (GCRMA normalized; datasets
from Chip GPL570, Affymetrix Human Genome U133 Plus 2.0); Figure S2. Plots for the batch effect detection
using the gPCA (training and test dataset). (Top) The merged dataset contains 54,675 transcripts and 367 samples
(170 non-tumor (control), 197 tumor samples; no gene transcript were excluded during the merging process).
The plots show the gPCA before (Left) and after (Right) batch correction. (Bottom) Boxplots of the merged datasets
before (left) and after (right) batch effect removal; Table S1. List of the 699 DEGs. The table lists the 699 DEGs
(q-value < 0.05, logFC > 2/< −2) in the merged dataset after batch effect correction (517 unique gene symbols
of total 699 ID transcripts); Table S2. Overview of the calculated signatures from the LASSO and Elastic net
regression models; Table S3. Predictive parameters of the identified diagnostic signatures in the independent
dataset. (A) GSE30219, 293 lung cancer samples, 14 non lung cancer samples. (B) GSE102287, 32 lung cancer
samples, 34 non lung cancer samples. (C) GSE33356, 60 lung cancer samples, 60 non lung cancer samples. total:
54,675 genes; Table S4. List of the 22 DEGs. The table lists the 22 DEGs that are significantly associated with the
survival outcome (affy gene ID according to affy_hg_u133_plus_2; p-value < 0.05; 20 unique genes of total 22
transcripts, two variants of each DLC1 and LPL; HR > 1: poor prognosis, HR < 1: good prognosis, HR = 1: no
effect); Table S5. Overview of the used R packages (for details see https://gitlab.miracum.org/clearly/sigident).

Data Availability: The toolbox is publicly available as R package under the URL https://gitlab.miracum.org/
clearly/sigident.
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Abstract: Artificial intelligence-based unsupervised deep learning (DL) is widely used to mine
multimodal big data. However, there are few applications of this technology to cancer genomics. We
aim to develop DL models to extract deep features from the breast cancer gene expression data and
copy number alteration (CNA) data separately and jointly. We hypothesize that the deep features
are associated with patients’ clinical characteristics and outcomes. Two unsupervised denoising
autoencoders (DAs) were developed to extract deep features from TCGA (The Cancer Genome Atlas)
breast cancer gene expression and CNA data separately and jointly. A heat map was used to view
and cluster patients into subgroups based on these DL features. Fisher’s exact test and Pearson’
Chi-square test were applied to test the associations of patients’ groups and clinical information.
Survival differences between the groups were evaluated by Kaplan–Meier (KM) curves. Associations
between each of the features and patient’s overall survival were assessed using Cox’s proportional
hazards (COX-PH) model and a risk score for each feature set from the different omics data sets
was generated from the survival regression coefficients. The risk scores for each feature set were
binarized into high- and low-risk patient groups to evaluate survival differences using KM curves.
Furthermore, the risk scores were traced back to their gene level DAs weights so that the three gene
lists for each of the genomic data points were generated to perform gene set enrichment analysis.
Patients were clustered into two groups based on concatenated features from the gene expression and
CNA data and these two groups showed different overall survival rates (p-value = 0.049) and different
ER (Estrogen receptor) statuses (p-value = 0.002, OR (odds ratio) = 0.626). All the risk scores from the
gene expression and CNA data and their concatenated one were significantly associated with breast
cancer survival. The patients with the high-risk group were significantly associated with patients’
worse outcomes (p-values ≤ 0.0023). The concatenated risk score was enriched by the AMP-activated
protein kinase (AMPK) signaling pathway, the regulation of DNA-templated transcription, the
regulation of nucleic acid-templated transcription, the regulation of apoptotic process, the positive
regulation of gene expression, the positive regulation of cell proliferation, heart morphogenesis, the
regulation of cellular macromolecule biosynthetic process, with FDR (false discovery rate) less than
0.05. We confirmed DAs can effectively extract meaningful genomic features from genomic data
and concatenating multiple data sources can improve the significance of the features associated with
breast cancer patients’ clinical characteristics and outcomes.

Keywords: denoising autoencoders; breast cancer; feature extraction and interpretation; concatenated
deep feature
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1. Introduction

Advanced hardware technologies have highly increased computational power, which makes the
implementation of computation-consuming algorithms possible. At the same time, the development
of biological technologies has greatly reduced the cost of genomic sequencing, which produced a
huge amount of high-dimensional genomic data. Under these circumstances, bioinformatics becomes
an exciting research field for researchers to explore the possibility to interpret genomic data using
advanced computational technologies [1].

Different types of high-dimensional genomic data have been associated with cancer clinical
characteristics and outcomes. The most commonly used ones are gene expression data and copy
number alteration (CNA) data [2]. The activity of gene expression in tumor tissues is quite different
from that in normal tissues [3] and has been established to have the ability to distinguish the
characteristics of cancers [4]. There are some repeated segments in normal DNA, and during the
process of cancer development, the repeated number of the segments may be changed due to abnormal
DNA replication in tumor cells. This phenomenon is called copy number alteration [5]. CNA may
result in chromosome structure changes in the forms of duplication or deletion in DNA segments.
It has been shown that CNA plays an important role in the development of many types of cancers
including breast cancer [6]. Therefore, it is highly necessary to mine the prognostic and diagnostic
significance of the genome-wide cancer genomic data. From a clinical point of view, the prognosis of
the genomic factors is always a necessary consideration because of its importance in making treatment
plans [7]. In previous studies, prognosis significance was evaluated mainly based on clinical features,
such as tumor grades and tumor subtypes [7] and molecular features, such as expression related gene
signatures (e.g., PAM50 subtypes) [8,9]. Results from these studies showed that the gene signatures
tend to have better prognosis significance than traditional pathological assessment [7]. This might
be due to the integration ability of these gene signatures. For instance, PAM50 can combine the
information from the tumor stage, tumor grade and tumor subtype together [9]. However, the known
gene signatures are only based on single genomic data source such as gene expression. This might be
not adequate since other types of genomic data such as copy number alterations should also include
important cancer prognosis information [9]. Advanced algorithms now give us new tools to explore
the possibility of integrating different data sources together. For example, Chi, et al. identified several
genes and pathways with a high prognostic significance for young breast cancer patients based on
their gene expression and copy number alteration data using a graph-based machine learning (ML)
method [9].

Traditional ML methods such as artificial neural networks (ANN) and support vector machines
(SVM) may suffer some problems in dealing with the high-dimensional, noisy and massive genomic
data [10]. Recently, a special case of ANN with more nodes and layers has emerged as an efficient
method to handle these high-dimensional and noisy data. The idea of ANN was originated from the
information processing and communication patterns in a human nervous system [11]. As the new
development of the traditional ANN, deep learning (DL) presents a large group of interconnected
artificial neurons with many more layers. Like other learning methods, DL could be implemented
in a supervised or unsupervised way, which depends on whether the input data is labeled or not.
Although both supervised and unsupervised DL algorithms have been successfully applied to the
analysis of genomic data, they could be used to solve different biology problems. Supervised learning
algorithms are often used to predict gene functions and gene-gene interactions or to identify new
driver genes [12], while unsupervised learning algorithms are often used to cluster the strong signals
in the data [13,14]. Among the unsupervised learning algorithms, autoencoder is a new technology
that uses the data itself as the learning objective or label. Therefore, it is also known as self-labeled
or self-supervised deep learning. Traditional autoencoders may face the invalid learning problem
when the number of hidden nodes is larger than the input size. To avoid this potential risk, denoising
autoencoders (DAs) came up with the solution of adding some noise into the input data on purpose.
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Vincent, et al. brought the concept of DAs into DL and built a specialized feature extraction DL
architecture [15]. The key idea of DAs as mentioned above is to add random noise into the raw data
before it is input into the network. After the encode and decode processes, the raw data would be
reconstructed from the noisy data, while the compact and efficient representations from the raw data
could be learned as well [15]. These representations are the DAs-based genomic features.

DL as a special case of ML and ANN has been applied to mine deep information from complex
genomic data and has generated interesting results [16]. Its high integration and reconstruction abilities
give us large flexibility to combine different types of genomic data to extract valuable information from
them. It has been expected that deep features extracted by DL models would perform better in clinical
association and prognosis prediction than standard gene or pathway signatures [17]. For example,
Tan, et al. reported a deep feature representing ER status and a deep feature with high prognosis
significance based on breast cancer gene expression data [13]. These deep features were constructed by
a DAs and performed better in the downstream analyses [13]. However, these studies were based on
only a single genomic source.

This study aims to extract the integrated features from both the gene expression and CNA data
by a concatenated DAs model. As a comparison, we also built a standard DAs model to extract deep
features from gene expression and CNA data separately. The comparisons were made in terms of
the performance in association analysis as well as prognosis analysis. The study design and analysis
procedures are shown in Figure 1.

Figure 1. A flowchart illustrating the analysis procedures in this study.

2. Materials and Methods

2.1. Data Sources

Datasets used in this study came from The Cancer Genome Atlas (TCGA) [18], which is one of
the most comprehensive genomic databases. TCGA provides 1098 breast cancer patients’ clinical
data along with their genomic data. These genomic data include gene expressions, CNA, protein
expressions, micro RNA (miRNA) expressions, and somatic mutations.

For gene expression data, the sequencing, alignment, quality control and quantification were
performed previously [18]. Using the TCGA-Assembler tool [19], we downloaded the gene expression
raw count, then filtered out unexpressed genes and those genes with a count per million (CPM) less
than 1 in 3 patients. We performed normalization of the data using Upper Quartile Fragments per
Kilobase of transcript per Million mapped reads (FPKM-UQ) [20]. FPKM-UQ is a modified FPKM
algorithm in which the total read count is replaced by the 75th percentile read count for a given sample.

Similar to the gene expression data, upstream processes of CNA data were done previously as
well [18]. Using the downloaded chromosome-region specific log2 copy number data, we calculated
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the gene-level CNA values using the TCGA-Assembler tool. Several data cleaning procedures such as
removing all-NAs were also performed to avoid potential format issues in the follow-up analysis.

After normalization and preprocessing, there were 18,163 genes from each of the 1095 patients
left for gene expression data and 23,563 genes from the 1098 patients left for CNA data. To
keep the gene dimension and scale matched in the two data sources, both of them were linearly
transformed into a range between 0 and 1, resulting in the decreasing of the data dimension to
16,197 (genes) × 1085 (patients) for both data sources.

2.2. DA Models

Two DAs models were developed using Keras [21] with Tensorflow [22] as the backend to extract
deep genomic features. One model was for feature extraction from a single genomic source, named as
one-input DAs model (Figure 2). The other, named as the two-input DAs model (Figure 3), was for
concatenated feature extraction from the integrated genomic sources.

 

Figure 2. The one-input denoising autoencoders model. There are two hidden layers in the encode
phase and two decode layers. The input can be either gene expression data or copy number
alteration data.

Figure 3. The two-input DAs model. There are two hidden layers in the encode phase and one decode
layer. Concatenation was performed between the two encode layers.
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2.2.1. One-Input DAs Model

This architecture was composed of one input layer, one fully connected encode hidden layer with
100 nodes which were chosen to be the deep features used in this study and one decode layer which
uses the transpose of encoding layer’ weights. This procedure can be formulated as below:

encode = sigmoid (W × input + b)
decode = sigmoid (W’ × encode + b’)

(1)

where W is the weight metrics between the layers with the size of 16,197 × 100, b is the bias for each
node, and the sigmoid function is sigmoid (x) = 1 / (1 + e−x). The counterparts with the superscript
refer to the transpose metrics. A dropout layer was added after the encode layer, which randomly set
50% of the output of encode layer to 0 to prevent overfitting. The encode item was chosen to be the
activity values of the deep features in this model.

2.2.2. Two-Input DAs Model

Literally, the two-input DAs model contained two input layers, followed by one encode layer with
1000 nodes for each input layer, then followed by a concatenated layer, and another encode layer with
100 nodes which were chosen to be the deep concatenated features. Finally, there were two decode
layers. The procedure can be formulated as follow:

input1_encode1 = sigmoid (input1_W1 × input1 + input1_b1)
input2_encode1 = sigmoid (input2_W1 × input2 + input2_b1)

concate_encode1 = concatenate (input1_encode1, input2_encode1)
concate_encode2 = sigmoid (concate_W2 × concate_encode1+ concate_b2)

output1 = sigmoid (input1_W1
′ × concate_encode2 + input1_b1

′)
output2 = sigmoid (input2_W1

′ × concate_encode2 + input2_b1
′)

(2)

where input1_W1, input2_W1, and concate_W2 are the weight metrics between the layers with the size
of 16,197 × 1000, 16,197 × 1000, 2000 × 100 respectively. The input1_b1, input2_b1, and concate_b2 are
the biases for each node. The counterparts with superscript refer to the transpose metrics. A dropout
layer was added after concate_encode2 layer, which randomly set 50% of the output of that layer to 0.
The concate_encode2 was chosen to be the activity values of the deep features in this model.

2.3. Train the Models

Before the training process, the input data sets were disrupted by a noise factor of 0.25, which is
the proportion of the number of genes in the data sources. These genes were selected randomly and
their values were set to 0. The binary cross-entropy function shown below was used to measure the
difference between the input layer and the output layer:

L (input, output) = −(1/N) Σ (inputk × log(outputk) + (1 − inputk) × log(1 − outputk)) (3)

where L (input, output) is the binary cross-entropy, K is the index of batches, N is the total number of
batches. Thus, the training task is to minimize the L (input, output).

For the optimizer, e.g., the strategy to update the weights and bias so that the minima could be
found, we selected stochastic gradient descent (SGD), which has several arguments to be set freely.
After having different trials, the learning rate was finally set to 0.1; the batch size and epoch were set
to 64 and 100 respectively. The models were finally trained under the parameters mentioned above.
The activity values and weight metrics related to deep features were read out.
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2.4. Visualization and Clustering

Heatmap3 [23] was used to visualize the activity values of these deep feature sets. We used the
complete linkage function in the hierarchical clustering process and visual-guided criteria by analysis
of the dendrogram to decide the number of clusters. First, the clinical data downloaded from TCGA
were carefully scanned and the most clinical-relevant characteristics such as pathological status (T, N,
M), tumor stage, estrogen receptor (ER) status, progesterone receptor (PR) status, human epidermal
growth factor receptor 2 (HER2) status, triple negative status, and PAM50 subtypes (i.e., Luminal A,
Luminal B, Basal-like, HER2-enriched, and Normal-like) were extracted. These clinical characteristics
were shown as the sidebar of the heat map.

2.5. Association Analysis

To test whether the identified patient clusters are associated with known clinical and molecular
characteristics, we applied both Fisher’s exact test and Pearson’ Chi-square test.

Survival differences between the identified patients groups were evaluated by Kaplan–Meier (KM)
curves. Furthermore, associations between each deep feature in the three feature sets (gene expression,
CNA, the concatenated one) and patient’s overall survival was assessed using Cox’s proportional
hazards (COX-PH) model [24]. The hazard function is

h(t) = h0 (t) × exp (bx) (4)

where t represents the survival time. b is the coefficient which measures the impact of the covariate x.

Later, a risk score for each feature set was generated from the COX-PH coefficients:

r = Σ (bi × ai) (5)

where r is the risk score, bi is the coefficient from the COX-PH model and ai is the related activity value
of the given feature. Afterward, the risk scores were binarized into high-risk and low-risk groups
using R package xtile function with a prob parameter set to 0.55, which means we use the 55% quantile
as the cutoff to bin the patients into the high-risk and low-risk groups. Finally, the survival differences
between these two groups were evaluated by the KM curve.

2.6. Gene Sets Enrichment Analysis

For each of the three DAs models for gene expression, CNA and their concatenated one, we traced
back their gene-level weights based on

Wg = W × B (6)

where W is the 16,197 × 100 dimensional weights that were extracted from a given DAs model
previously. B is the vector of COX-PH coefficients. The gene-specific weights Wg were filtered by a
cutoff 0.01, which resulted in the three selected gene lists with 6954, 5381 and 6297 genes, respectively.
Finally, the three gene lists were used to perform gene set enrichment analysis (GSEA) by the Enricr
tool [25] to identify the up-regulated and down-regulated pathways. Kyoto Encyclopedia of Genes
and Genomes (KEGG) [26] and Gene Ontology (GO) [27] Biological Process 2018 version were chosen
to be the reference gene sets.

3. Results

Based on the normalized and processed breast cancer genomic data, our models were trained
and the activity values of the 100 deep features for each of the three data sets as well as the weights
matrices were extracted (Table 1). Then we clustered these activity values for each of the three data
sets. Overall, there were no clear patterns shown in the deep features from a single genomic source
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(gene expression or CNA data). However, patients were roughly clustered into 2 groups according to
the activity values of the concatenated deep features (Figure 4).

Table 1. The size and organization of deep features obtained from the models. The size and structure
of the deep features extracted from gene expression data and copy number alteration data by the two
denoising autoencoders (DAs) models.

Model Data Source Deep Features (Noise Factors = 0.25)

One-input DAs
Gene expressions Activity values 1085 × 100

weights 16,197 × 100

Copy number alterations
Activity values 1085 × 100

weights 16,197 × 100

Two-input DAs
Gene expressions

Copy number alterations
Activity values 1085 × 100

weights 16,197 × 100

 

Figure 4. The clustering of activity values of concatenated deep features extracted under the noise
factor of 0.25. The columns are the 1085 patients and the rows are the 100 deep features. The sidebar
contains the corresponding clinical information of the patients. Values are clustered by both columns
and rows.

Results from the association tests between the two patient groups and their clinical characteristics
are shown in Table 2. The two patient groups showed significant survival (Figure 5) and ER status
difference (Table 2) with p-values 0.049 and 0.002, respectively, which mean that the concatenated
features have learned the ER information and performed well in predicting patient’s prognosis. The
odds ratio of ER status is 0.626, indicating that the second group tends to be associated with ER-negative
patients. From the KM plot (Figure 5), we can see that the patients in Group 2 suffered from a poor
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prognosis, which happens to be associated with ER-negative status. It has been shown that ER-negative
breast cancer patients usually have a poor prognosis.

Table 2. The results of clinical association analysis. * patients were classified as young (age < 40) and
old (age ≥ 40) groups.

Clinical Characteristics Fisher’s Exact p-Value Chi-Square Test p-Value

Pathological T 0.69 0.69

Pathological N 0.95 0.96

Pathological M 0.95 0.94

Tumor Stage 0.93 0.93

ER Status 0.002 0.002

PR Status 1.00 0.99

HER Status 0.43 0.44

Age * 0.58 0.67

Triple Negative Status 0.15 0.17

Tumor Subtype 0.35 0.36

 

Figure 5. The Kaplan–Meier (KM) plot of the two patient groups clustered by the concatenated features.

According to the results of COX-PH models, the high-risk scores generated from each of the three
deep feature sets are all significantly associated with a poor overall survival with p-values less than
1 × 10−5 (Table 3). The concatenated features showed a higher hazard ratio (HR) with 95% confidence
interval (CI) (1.27, 1.16–1.40) than gene expression features (1.009, 1.005–1.013) and CNA features
(1.23, 1.15–1.32). These results indicated that the risk scores from the deep features, especially the
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concatenated risk score, predict patient’s poor prognosis. The similar patterns were observed in KM
plots (Figure 6), where the patient group with high-risk scores always suffered from a poor prognosis.

Table 3. Cox’s proportional hazards (COX-PH) results for risk scores.

Risk Score HR Lower.95_HR Upper.95_HR p-Value

Gene expression 1.009 1.005 1.013 1.06 × 10−5

CNA 1.23 1.15 1.32 7.86 × 10−9

Concatenated 1.27 1.16 1.40 5.62 × 10−7

  
(A) (B)

 
(C) 

Figure 6. The KM-plots for risk scores based on the deep feature sets. (A) Gene expression data;
(B) copy number alteration data; (C) the concatenated data.

GSEA using the 6,297 genes selected based on the concatenated deep feature set showed
that the AMP-activated protein kinase (AMPK) signaling pathway in the KEGG family was
significantly down-regulated with a false discovery rate (FDR) less than 0.05, and several GO-based
regulation processes, such as the regulation of DNA-templated transcription, the regulation of nucleic
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acid-templated transcription, the regulation of apoptotic process, the positive regulation of gene
expression, the positive regulation of cell proliferation, and the regulation of cellular macromolecule
biosynthetic process were significantly enriched as well, with an FDR less than 0.05 (Table 4).

Table 4. The gene set enrichment analysis using Enricr.

Gene Sets p-Value Adjusted p-Value

regulation of transcription, DNA-templated 2.25 × 10−7 0.001

regulation of nucleic acid-templated transcription 6.03 × 10−5 0.04

regulation of apoptotic process 6.19 × 10−5 0.04

positive regulation of gene expression 5.89 × 10−5 0.04

positive regulation of cell proliferation 4.78 × 10−5 0.04

AMPK signaling pathway_Homo sapiens_hsa04152 6.08 × 10−5 0.018

AMPK is an important cellular metabolism and energy homeostasis regulator in mammalian
tissues. It is situated in the center of a signaling network which contains tumor suppressors such as
LKB1, TSC2 and p53 [25]. Some evidence has been reported that AMPK plays an anti-tumorigenic role
and a lot of work are ongoing to involve agonists of AMPK for cancer treatment [28]. Furthermore,
all those enriched GO regulation processes are critical as hallmarks in cancer occurrence and
progression [29].

4. Discussion

In building the DA model, one of the key parameters we need to set up is the noise level used to
partially destroy the inputs. We tried to add different levels of noise (e.g., 0%, 10%, 25% and 50%) into
the DA model. Similar to the observations made by Vincent et al. [15], we also found that the more
noise was added the better the network learns dependencies between the features. With low noise
levels, the learned features do not stand out. As we set the noise level at 0.25, denoising training can
capture more distinctive deep features.

Comparing with conventional breast cancer biomarkers, such as CA15-3 for measuring how breast
cancer treatment is working and looking for cancer that has come back or recurred, after treatment [30],
and NCC-ST-439 for measuring breast cancer progression [31], the explanation of the deep genomic
features or biomarkers from the DA model for breast cancers is more complicated. Each of the extracted
deep features is a high-level summary of the raw features or conventional biomarkers. These high-level
features or biomarkers can be more robust against noise in the conventional biomarkers. Furthermore,
these high-level features can potentially significantly improve the breast cancer outcome prediction by
integrating information from both breast cancer histology images and genomic biomarkers [32]. The
extracted features based on the proposed deep learning model can be also used to predict the statuses
of malignancy, relapse, and reactivity for anticancer if the related data sources are available. We will
explore the method in other large data sets and cancer types in the future. This can further validate the
usefulness of the method for risk stratification of cancer patients.

In order to extract robust deep features using the proposed DA model, we took a strategy to add
noise into the input genomic data by the partial corruption of the input pattern. It is expected that the
learned deep features from the partially destroyed inputs can yield almost the same representation of
the raw genomic data. In order to further boost the performance of using the learned deep features
to predict breast cancer outcome or traits, another interesting strategy is to incorporate the prior
knowledge about breast cancer hallmarks, which can be represented by a few molecular or signaling
networks [33], into the deep learning procedure. This can be potentially implemented in different
ways. For example, the interaction information among different genes or mutations collected in the
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molecular or signaling network databases can be used to assign the weights in different layers of the
network among different neurons. We will explore the interesting strategy in future studies.

5. Conclusions

In this study, we showed that unsupervised DAs as an effective model to extract meaningful
deep genomic features from either single- or multi- genomic sources from breast cancer patients.
These features were significantly associated with the breast cancer ER status and had the prognosis
significance. We also showed that the concatenated deep features were enriched by breast cancer
relevant pathways.

This study can be improved in two potential ways. The first one is to develop new DAs model
structures such as stacking more layers into DAs or adding a regression layer to make it supervised [34].
The second one is to combine all types of possible data sources together, such as somatic mutation
data, protein expressions, miRNA expressions, etc. We will explore these ideas in future analyses.
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DL Deep learning
CNA Copy number alteration
DAs Denoising autoencoders
TCGA The Cancer Genome Atlas
KM Kaplan-Meier
COX-PH Cox’s proportion hazard
OR Odds ratio
AMPK AMP-activated protein kinase
FDR False discovery rate
GSEA Gene sets enrichment analysis
ML Machine learning
ANN Artificial neural network
SVM Support vector machine
ER Estrogen receptor
miRNA Micro RNA
CPM Count per million
FPKM-UQ Upper quartile fragments per kilobase of transcript per Million mapped reads
SGD Stochastic gradient descent
KEGG Kyoto Encyclopedia of Genes and Genomes
GO Gene Ontology
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Abstract: In order to find out the most valuable biomarkers and pathways for diagnosis, therapy
and prognosis in colorectal cancer (CRC) we have collected the published CRC biomarkers and
established a CRC biomarker database (CBD: http://sysbio.suda.edu.cn/CBD/index.html). In this
study, we analysed the single and multiple DNA, RNA and protein biomarkers as well as their
positions in cancer related pathways and protein-protein interaction (PPI) networks to describe their
potential applications in diagnosis, therapy and prognosis. CRC biomarkers were collected from the
CBD. The RNA and protein biomarkers were matched to their corresponding DNAs by the miRDB
database and the PubMed Gene database, respectively. The PPI networks were used to investigate
the relationships between protein biomarkers and further detect the multiple biomarkers. The Kyoto
Encyclopaedia of Genes and Genomes (KEGG) pathway enrichment analysis and Gene Ontology
(GO) annotation were used to analyse biological functions of the biomarkers. AI classification
techniques were utilized to further verify the significances of the multiple biomarkers in diagnosis
and prognosis for CRC. We showed that a large number of the DNA, RNA and protein biomarkers
were associated with the diagnosis, therapy and prognosis in various degrees in the CRC biomarker
networks. The CRC biomarkers were closely related to the CRC initiation and progression. Moreover,
the biomarkers played critical roles in cellular proliferation, apoptosis and angiogenesis and they were
involved in Ras, p53 and PI3K pathways. There were overlaps among the DNA, RNA and protein
biomarkers. AI classification verifications showed that the combined multiple protein biomarkers
played important roles to accurate early diagnosis and predict outcome for CRC. There were several
single and multiple CRC protein biomarkers which were associated with diagnosis, therapy and
prognosis in CRC. Further, AI-assisted analysis revealed that multiple biomarkers had potential
applications for diagnosis and prognosis in CRC.

Keywords: DNA; RNA; protein; single-biomarkers; multiple-biomarkers; cancer-related pathways;
colorectal cancer

1. Introduction

Colorectal cancer (CRC) is one of the most common types of malignancies and third leading cause
of cancer-related death [1]. In 2017, there were 135 430 individuals who were diagnosed for CRC and
50 260 dead from CRC only in the United States of the America [2]. Accumulating evidence has shown
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that the outcome of CRC is clearly dependent on the cancer stage [2,3] and follows the strict rule: early
diagnosis with better survival and later diagnosis with worse prognosis [4]. If the CRC patients are
diagnosed at stage I cancer the 5-year survival rate is more than 90%, while for the stage IV patients
the 5-year survival is around 10% [5]. However, more than 50% of CRC patients are already in stage
III + IV at diagnosis [2]. This means that they have already passed the golden diagnostic time: early
diagnosis. The rule for better cancer therapy is that it is always more complicated to treat the later
stages of the cancers than to treat the early cancer patients [5]. Therefore, we lose the best therapy
opportunity for the CRC patients when the golden diagnosis has been missed. Although advanced
cancer therapeutic techniques have improved the outcome of cancer patients, the individuals with the
same types of cancer respond remarkably differently to the same therapies. A group of cancer may
respond very well to the therapy, another group may not respond to the same therapy at all and even
some patients will die due to the side effects of the therapy.

Studies have shown that there is great variation among patients concerning cancer therapy and
patient survival [6]. During the last decades, the publications concerning genomics, proteomics and
molecular pathology have reported a large amount of cancer biomarkers from a plenty of studies
from various laboratories. However, there are still huge gaps between the results from the research
benches to clinical bedsides. In order to understand how and when the biomarkers can be integrated
into clinical practice it is crucial to translate the laboratory results into reality. More accurate early
diagnosis and individual therapy will lead us to the better cancer therapy and further improve cancer
patient survival [7,8].

Recently, numerous CRC-related biomarkers have been identified and hundreds of these
biomarkers have been found to be associated with early diagnosis, therapy and survival of CRC [9]. The
knowledge concerning applications of the biomarkers has been considered as one of the most optimal
alternative way to improve the diagnosis, therapy and prognosis for CRC [10]. The development
of bioinformatics, computer science and computer-assisted biomarker analysis techniques have
proven very useful tools for further biomarker investigations [11]. Consequently, several biomarker
databases concerning various diseases have been created which provide a large amount of valuable
data to further study the functions, interactions and even applications of biomarkers in various
diseases [12–15]. However, there is no such public database focusing only on CRC biomarkers and
providing comprehensive information and overview of the CRC biomarkers for both basic and clinic
studies. With this question in our minds, we have recently established a CRC biomarker database
(CBD: http://sysbio.suda.edu.cn/CBD/index.html) [9].

In this study, we used the biomarker data from our CBD database and other public databases to
analyse the aspects of the potential applications of DNA, RNA and protein biomarkers focusing in
diagnosis, therapy and prognosis for CRC. AI-assisted classification techniques were used to verify the
diagnostic and prognostic significances of the single and multiple biomarkers for CRC. We attempted
to further clarify the important single and multiple biomarkers as well as biomarker pathways from
the laboratory benches to the clinical bedside and to provide more precise criteria in diagnosis, therapy
and prognosis and to benefit the CRC patients.

2. Results

2.1. Applications of CRC Biomarkers and Their Interactions in Cancer Diagnosis, Therapy and Prognosis

Applications of CRC biomarkers and their interactions in diagnosis, therapy and prognosis and
relationships of the biomarkers to the diagnosis, therapy and prognosis were analysed. As shown in
Figure 1A, there were 157 biomarkers which were associated with CRC diagnosis, 152 biomarkers were
related to cancer therapy and 707 with cancer prognosis. According to frequency of CRC biomarkers
from our database, the sub networks were reconstructed by biomarkers in the high frequency research
articles. According to Figure 1B, among the 157 diagnostic biomarkers the most common biomarkers
were carcinoembryonic antigen (CEA) and cyclooxygenase-2 (COX-2). For the therapy biomarkers,
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thymidylate synthase (TS), leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5) and
vascular endothelial growth factor (VEGF) were the common ones. CEA most frequently prognostic
biomarkers. Interactions among the diagnostic biomarkers, therapeutic biomarkers and prognostic
biomarkers were further analysed and the interactions of the multiple functional biomarkers were
presented in Figure 1C.

Figure 1. Distributions and interactions of CRC diagnosis, therapy and prognosis biomarkers from
the CBD. The numbers mentioned on the lines means the amounts of articles for the correlated
biomarkers. (A) The CRC biomarkers were classified according to their functions of diagnosis, therapy
and prognosis. (B) The biomarkers reported by more than 2 articles are presented. (C) The interactions
of diagnosis, therapy and prognosis biomarkers.

2.2. Applications of PPI Networks for CRC Diagnostic, Therapeutic and Prognostic Protein Biomarkers

As shown in Figure 2, the CRC protein biomarkers were further analysed in the PPI networks
for CRC diagnosis, therapy and prognosis. The biomarkers with the highest degree for the diagnosis
were TP53, VEGF, IGF1 and CD44 (Figure 2A), for therapy were TP53, PCNA, CDH1 and so forth,
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(Figure 2B) and for prognosis were TP53, EGFR, MYC and so forth, (Figure 2C). TP53 was found as
the biomarker with highest degree for all CRC diagnosis, therapy and prognosis. EGFR, Ras, CDH1
and BCL2 have been related to both CRC therapy and prognosis. (KRAS protein with therapy and
HRAS protein with prognosis) CD44 is associated with both CRC diagnosis and prognosis. Most of the
protein biomarkers were associated with CRC prognosis. The top 10 high degree protein biomarkers
in each PPI network are selected and presented in Figure 2.

Figure 2. PPI networks of CRC protein biomarkers in diagnosis, therapy and prognosis. Distributions
of protein biomarkers in diagnosis (A), therapy (B) and prognosis (C) of CRC are displayed. Top
10 most frequent protein biomarkers in related to the diagnosis, therapy and prognosis of the CRC
are listed.

We utilized KEGG pathway enrichment to further analyse the top 10 pathways in related to
diagnosis, therapy and prognosis in CRC, respectively. Results are shown in Table 1. The top enriched
pathways for CRC diagnosis were Ribosome, Pathway in cancer, HIF-1 signalling pathway, Wnt
signalling pathway and MicroRNAs in cancer (Table 1A). The pathways for CRC therapy were
Pathways in cancer, Bladder cancer, MicroRNAs in cancer, Hepatitis B and Colorectal cancer (Table 1B).
Moreover, the pathways for CRC prognosis were MicroRNAs in cancer, bladder cancer, Pathway in
cancer, p53 signalling pathway and HTL V-I infection (Table 1C). Pathways in cancer and microRNAs
in cancer shared essential roles in CRC diagnosis, therapy and prognosis.

The CRC biomarkers in functional pathways were further analysed by GO analysis and the
results showed GO annotation in biological process for diagnosis, therapy and prognosis biomarkers
(Table 2). In the CRC diagnosis, phosphorylation was an important functional pathway, such as
Positive regulation of phosphorylation, Positive regulation of phosphate metabolic process, Positive
regulation of protein phosphorylation and Protein complex subunit organization (Table 2A). For
CRC therapy, Negative regulation of cell death, Regulation of apoptotic processes, Response to
abiotic stimulus, Regulation of cell death and Negative regulation of apoptotic processes (Table 2B).
Regulation of cell proliferation, Response to stress, System development, Positive regulation of cellular
processes and Negative regulation of cellular processes seemed playing important roles (Table 2C).
Phosphorylation was essential for CRC diagnosis. Regulation of cellular death was critical for CRC
therapy. Regulations for cell proliferation and cellular processes were important for CRC prognosis. It
seems that different groups of cellular functional pathways play their unique roles for CRC diagnosis,
therapy and prognosis, respectively.
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Table 1. KEGG pathway enrichment results for CRC protein biomarkers.

Pathway ID Pathway Description Counts FDR

A. KEGG pathway enrichment for diagnosis biomarkers

03010 Ribosome 6 0.00157
05200 Pathways in cancer 8 0.00213
04066 HIF-1 signalling pathway 5 0.00281
04310 Wnt signalling pathway 5 0.00765
05206 MicroRNAs in cancer 5 0.00803
05131 Shigellosis 3 0.049

B. KEGG pathway enrichment for treatment biomarkers

05200 Pathways in cancer 15 4.52 × 10−13

05219 Bladder cancer 7 6.28 × 10−10

05206 MicroRNAs in cancer 9 8.43 × 10−9

05161 Hepatitis B 8 1.56 × 10−7

05210 Colorectal cancer 6 3.78 × 10−7

04110 Cell cycle 7 9.35 × 10−7

05218 Melanoma 6 9.35 × 10−7

05215 Prostate cancer 6 2.7 × 10−6

05212 Pancreatic cancer 5 1.48 × 10−5

05220 Chronic myeloid leukaemia 5 2.48 × 10−5

C. KEGG pathway enrichment for prognosis biomarkers

05206 MicroRNAs in cancer 23 1.16 × 10−17

05219 Bladder cancer 13 1.47 × 10−14

05200 Pathways in cancer 26 3.98 × 10−13

04115 p53 signalling pathway 12 7.01 × 10−10

05166 HTLV-I infection 18 3.39 × 10−8

04060 Cytokine-cytokine receptor interaction 18 5.3 × 10−8

04151 PI3K-Akt signalling pathway 20 7.36 × 10−8

05215 Prostate cancer 11 1.15 × 10−7

05205 Proteoglycans in cancer 16 1.28 × 10−7

Table 2. GO analysis results in biological process level for CRC protein biomarkers.

Pathway ID Pathway Description Counts FDR

A. GO analysis in biological process level for diagnosis biomarkers

Go:0042327 Positive regulation of phosphorylation 20 6.22 × 10−9

Go:0045937 Positive regulation of phosphate metabolic process 21 6.22 × 10−9

Go:0001934 Positive regulation of protein phosphorylation 19 1.42 × 10−8

Go:0071822 Protein complex subunit organization 24 1.42 × 10−8

Go:0042127 Regulation of cell proliferation 24 2.08 × 10−8

Go:0042981 Regulation of apoptotic process 23 3.65 × 10−8

Go:0048583 Regulation of response to stimulus 34 4.31 × 10−8

Go:0043933 Macromolecular complex subunit organization 27 9.8 × 10−8

Go:0043066 Negative regulation of apoptotic process 18 1.39 × 10−7

Go:0008284 Positive regulation of cell proliferation 17 4.33 × 10−7

B. GO analysis in biological process level for treatment biomarkers

GO:0060548 Negative regulation of cell death 20 7.29 × 10−11

GO:0042981 Regulation of apoptotic process 21 5.27 × 10−9

GO:0009628 Response to abiotic stimulus 19 8.77 × 10−9

GO:0010941 Regulation of cell death 21 8.77 × 10−9

GO:0043066 Negative regulation of apoptotic process 17 8.77 × 10−9

GO:0031325 Positive regulation of cellular metabolic process 26 8.79 × 10−8

GO:0010604 Positive regulation of macromolecule metabolic process 25 1.34 × 10−7

GO:0009893 Positive regulation of metabolic process 28 1.89 × 10−7
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Table 2. Cont.

Pathway ID Pathway Description Counts FDR

GO:0009605 Response to external stimulus 21 3.8 × 10−7

GO:0048523 Negative regulation of cellular process 29 4.12 × 10−7

C. GO analysis in biological process level for prognosis biomarkers

GO:0042127 Regulation of cell proliferation 76 3.63 × 10−29

GO:0006950 Response to stress 100 4.56 × 10−21

GO:0048731 System development 101 1.33 × 10−20

GO:0048522 Positive regulation of cellular process 111 5.31 × 10−20

GO:0048523 Negative regulation of cellular process 105 5.31 × 10−20

GO:0031325 Positive regulation of cellular metabolic process 88 6.82 × 10−20

GO:0048518 Positive regulation of biological process 119 8.49 × 10−20

GO:0010604 Positive regulation of macromolecule metabolic process 84 2.55 × 10−19

GO:0048519 Negative regulation of biological process 107 7.7 × 10−19

GO:0051247 Positive regulation of protein metabolic process 60 1.19 × 10−18

However, when we further estimated molecular functions of the CRC biomarkers and their pathways
associated with CRC diagnosis, therapy and prognosis with GO analysis the results (Table 3) showed that
protein binding, identical protein binding, binding and enzyme binding are the four pathways shared in
CRC diagnosis (Table 3A), therapy (Table 3B) and diagnosis (Table 3C). Cellular Component GO analysis
for the CRC biomarkers and pathways revealed in Table 4 that CRC diagnosis and prognosis biomarkers
shared extracellular space, vesicle, extracellular region and extracellular region part pathways.

Table 3. GO analysis results in molecular function level for CRC protein biomarkers.

Pathway ID Pathway Description Counts FDR

A. GO Analysis in molecular function level for diagnosis biomarkers

GO:0005515 Protein binding 44 2.81 × 10−10

GO:0005102 Receptor binding 20 4.2 × 10−7

GO:0042802 Identical protein binding 15 0.000526
GO:0005488 Binding 53 0.00127
GO:0001968 Fibronectin binding 3 0.0307
GO:0005539 Glycosaminoglycan binding 6 0.0353
GO:0003735 Structural constituent of ribosome 5 0.0358
GO:0005126 Cytokine receptor binding 6 0.0358
GO:0032403 Protein complex binding 9 0.0358
GO:0019899 Enzyme binding 14 0.0365

B. GO Analysis in molecular function level for treatment biomarkers

GO:0005515 Protein binding 36 3.52 × 10−10

GO:0042802 Identical protein binding 16 8.85 × 10−7

GO:0046983 Protein dimerization activity 13 1.15 × 10−5

GO:0005488 Binding 42 0.000317
GO:0019899 Enzyme binding 15 0.000317
GO:0042803 Protein homodimerization activity 10 0.000445
GO:0043566 Structure-specific DNA binding 7 0.00061
GO:0046982 Protein heterodimerization activity 7 0.00061
GO:0030983 Mismatched DNA binding 3 0.000839
GO:0004861 Cyclin-dependent protein serine/threonine kinase inhibitor activity 3 0.00138

C. GO Analysis in molecular function level for prognosis biomarkers

GO:0005515 Protein binding 131 4.67 × 10−29

GO:0005102 Receptor binding 45 1.18 × 10−11

GO:0044877 Macromolecular complex binding 44 1.98 × 10−11

GO:0005488 Binding 160 2.91 × 10−9

GO:0042802 Identical protein binding 35 1.63 × 10−7

GO:0019899 Enzyme binding 41 5.39 × 10−7

GO:0032403 Protein complex binding 25 6.42 × 10−7

GO:0003684 Damaged DNA binding 9 8.98 × 10−6

GO:0043566 Structure-specific DNA binding 15 1.09 × 10−5

GO:0019900 Kinase binding 19 9.05 × 10−5
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Table 4. GO analysis results in cellular component level for CRC protein biomarkers.

Pathway ID Pathway Description Counts FDR

A. GO analysis in cellular component level for diagnosis biomarkers

GO:0005615 Extracellular space 20 1.49 × 10−6

GO:0022627 Cytosolic small ribosomal subunit 6 1.49 × 10−6

GO:0031982 Vesicle 33 1.49 × 10−6

GO:0031988 Membrane-bounded vesicle 32 2.34 × 10−6

GO:0005576 Extracellular region 36 2.74 × 10−6

GO:0044421 Extracellular region part 32 7.96 × 10−6

GO:0034774 Secretory granule lumen 6 1.67 × 10−5

GO:0022626 Cytosolic ribosome 6 8.62 × 10−5

GO:0030141 Secretory granule 9 8.62 × 10−5

GO:0031093 Platelet alpha granule lumen 5 8.62 × 10−5

B. GO analysis in cellular component level for treatment biomarkers

GO:0005829 Cytosol 24 4.63 × 10−5

GO:0044428 Nuclear part 26 4.63 × 10−5

GO:0032991 Macromolecular complex 27 0.000117
GO:0043233 Organelle lumen 26 0.000117
GO:0043234 Protein complex 25 0.000117
GO:0044427 Chromosomal part 11 0.000117
GO:0031981 Nuclear lumen 23 0.000149
GO:0005654 Nucleoplasm 21 0.000153
GO:0005694 Chromosome 11 0.000164
GO:0070013 Intracellular organelle lumen 24 0.000662

C. GO analysis in cellular component level for prognosis biomarkers

GO:0005576 Extracellular region 96 1.33 × 10−10

GO:0005615 Extracellular space 46 1.62 × 10−10

GO:0044421 Extracellular region part 85 1.96 × 10−10

GO:0005829 Cytosol 72 6.05 × 10−8

GO:0005912 Adherens junction 23 1.13 × 10−7

GO:0005924 Cell-substrate adherens junction 21 2.33 × 10−7

GO:0043227 Membrane-bounded organelle 163 3.07 × 10−7

GO:0009986 Cell surface 28 3.94 × 10−7

GO:0005925 Focal adhesion 20 6.84 × 10−7

GO:0031982 Vesicle 73 1.04 × 10−6

2.3. CRC Biomarkers in Pathway in Cancer and miRNAs in Cancer Pathway

CRC biomarkers were analysed in association with Pathways in cancer (Figure 3). There were
many biomarkers and pathways which are found in the Pathways in cancer which were associated with
CRC. However, the most common and important pathways were p53, Ras and PI3K and apoptosis,
cell proliferation and angiogenesis pathways.

CRC miRNA biomarkers in the miRNAs in cancer pathway have been closely associated with
the Vogelstein’s CRC developing model. Different miRNAs and interactions among the miRNAs
and a variety of genes, such as APC and K-ras have been involved in CRC initiation and progression
process. MiR-135 inhibits APC at CRC initiating level; Let-7, miR-18a and miR-143 inhibit K-ras at
CRC progression level; miR-21 and miR-200 involve in the CRC metastasis (Figure 4).
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Figure 3. Biomarkers in the Pathways in cancer. (A) Various cancer pathways involve in different
cancer initiation and progression. (B) CRC biomarkers for diagnosis, therapy and prognosis biomarkers
in the CBD were mapped in different colours in Pathways in cancer. The CRC biomarkers have been
associated with apoptosis, cell proliferation, VEGF signalling pathway and Ras signalling pathway
in the Pathways in cancer. Red: diagnosis biomarker; Blue: treatment biomarker; Purple: prognosis
biomarker; Orange: diagnosis & treatment biomarker; Yellow: treatment & prognosis biomarker; Pink:
diagnosis & treatment & prognosis biomarker.

99



Cancers 2019, 11, 172

 

Figure 4. MiRNA in cancers. (A) MiRNAs involve in different types of cancers. (B) CRC Biomarkers in
the miRNAs in cancer pathway. Different miRNAs and interactions among the miRNAs and a variety
of genes, such as APC and K-ras have been involved in CRC initiation and progression process.
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2.4. miRNAs and Proteins Biomarkers for CRC Diagnosis, Therapy and Prognosis

As shown in Figure 5, we analysed miRNA and protein biomarkers concerning CRC diagnosis,
therapy and prognosis in our CBD database and found that there are 16 miRNA and 71 protein
biomarkers for diagnosis in the CBD database. After standardization through miRBase (http://www.
mirbase.org/) and NCBI protein database (https://www.ncbi.nlm.nih.gov/protein), the miRNAs and
proteins were converted to their corresponding target DNAs in the miRDB database and NCBI Gene
database. 1041 target genes in the miRDB were found for their 18 diagnosis miRNA biomarkers in
our CBD and 71 corresponding genes in the NCBI Gene database were found for the 71 diagnostic
protein biomarkers in the CBD. The converted DNAs for diagnostic miRNA and protein biomarkers
were overlapped in the check points IGFBP3 and PTPRG. For the CRC therapy biomarkers, there
were 16 miRNAs and 61 proteins. After the standardization and converting to DNAs, MYA6 was
found as the check point for both miRNAs and proteins for CRC therapy. There were 61 miRNAs
and 421 proteins were found as the CRC prognostic biomarkers in our CBD database. After the
standardization and converting to their corresponding DNAs, 24 check points were found to associate
with CRC prognosis between 1187 for miRNAs and 421 for proteins.

 

Figure 5. Associations of DNA, RNA and protein biomarkers in diagnosis, therapy and prognosis of
CRC. The RNA and protein biomarkers from our CBD were converted to their corresponding genes
and the relationships between the overlapping genes were further analysed. There were two genes
(IGFBP1 and PTPRG) from both RNA and protein biomarkers which were associated to CRC diagnosis
and one gene (MYA6) was related to therapy. However, there were 24 genes which were associated
with prognosis.

2.5. Prognostic DNA Biomarkers in CRC

For prognosis biomarkers, the protein-miRNA biomarkers overlapping genes are as follows:
ATP11A, CASK, CD44, DEK, DUSP5, DYRK2, EIF5A2, EPAS1, HOXB7, KRAS, MACC1, NRCAM,
PRRX1, PTEN, RALBP1, S1PR1, SATB1, SLIT2, STAT3, TAGLN2, TBL1XR1, ZEB1, ZEB2, ZFX. After
searching in the CBD we find that KRAS gene has been reported as DNA biomarker in CRC [16]. The
biological analysis results for these overlapped DNA are shown in Table 5.
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Table 5. Biological functional analysis for overlapping DNA transferred by prognosis biomarkers.

Pathway ID Pathway Description Counts FDR

A. KEGG pathway enrichment for overlapping DNA transferred by prognosis biomarkers

05206 MicroRNAs in cancer 5 0.000171
04068 FoxO signalling pathway 3 0.0466
05200 Pathways in cancer 4 0.0466

B. GO analysis result in biological process level for overlapping DNA transferred by prognosis biomarkers

GO:0009887 Organ morphogenesis 9 0.00107
GO:0010468 Regulation of gene expression 16 0.00107
GO:0010557 Positive regulation of macromolecule biosynthetic process 11 0.00107
GO:0010628 Positive regulation of gene expression 11 0.00107
GO:2000112 Regulation of cellular macromolecule biosynthetic process 15 0.00107
GO:0031328 Positive regulation of cellular biosynthetic process 11 0.00118
GO:0048514 Blood vessel morphogenesis 6 0.00514
GO:0010556 Regulation of macromolecule biosynthetic process 14 0.00588
GO:0010604 Positive regulation of macromolecule metabolic process 12 0.00608
GO:0001568 Blood vessel development 6 0.00631

In order to find the relationship of the CRC prognostic biomarkers and the prognostic DNA
biomarkers in CRC were mapped in PPI network (Figure 6). There were many single genes which
were confirmed to be associated in the PPI networks. We showed also 15 significant gene interactions
such as KRAS/PTEN and ZEB1/ZEB2 in the PPI networks, which may serve as combined biomarkers.

Figure 6. PPI network for the 24 overlapping prognosis genes. There were 13 genes which can been used
to predict patients survival. The remaining genes worked in pairs or in groups to predict the prognosis.

2.6. Verifications of Protein Biomarkers in Diagnosis and Prognosis

AI-assisted classification techniques were utilized to further verify the significance of the
15 commonly combined multiple biomarkers predicted from PPI networks in diagnosis and prognosis
for CRC. In Figure 2 we showed that many biomarkers can be applied in more than one ways along
diagnosis, treatment and prognosis. So the diagnostic value for these 15 multiple biomarkers were
further analysed. Figure 7 revealed the diagnostic ROC curves and distributions of AUC across
biosignatures of the combined multiple protein biomarkers in CRC. The combined multiple protein
biomarker of KRAS-PTEN-STAT3-CD44-ZEB1-ZEB2-S1PR1 had the most significant value amount the
15 combined biomarkers and it played the most significant role in CRC diagnosis.
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Figure 7. Diagnostic performance of multiple biomarkers for CRC. (A) The receiver operating (ROC)
curves of all the 15 multiple biomarkers. (B) Distributions of AUC across biosignatures. The area
under curve (AUC) statistics from 100 random training/testing divisions. The 15 multiple biomarkers
were ranked.

AI-assisted prognosis analysis showed that five of the 15 combined had statistical significance
to predict CRC prognosis. Of these, 5 biosignatures were significant at a level of 0.05 using the
log-rank test. After multiplicity correction using the Holm FWER correction, a single biosignature was
significant, the PTEN-ZEB2 pair. Its corresponding Log rank Score is 9.31. Further analyses revealed
that the CRC patients with lower S1PR1 levels had better prognosis and those with higher S1PR1 levels
had worse prognosis, independent of PTEN and STAT3 (Figure 8).
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Figure 8. Kaplan-Meier survival curves of five multiple biomarkers with significant prognosis value.
(A) Kaplan-Meier survival curves of multiple biomarker combined by PTEN and ZEB2. (B) Kaplan-Meier
survival curves of multiple biomarker combined by STAT3 and S1PR1. (C) Kaplan-Meier survival curves
of multiple biomarker combined by CASK and EPAS1. (D) Kaplan-Meier survival curves of multiple
biomarker combined by KRAS, PTEN, STAT3, CD44, ZEB1, ZEB2 and S1PR1. (E) Kaplan-Meier survival
curves of multiple biomarker combined by ZEB2 and ZEB1.

3. Discussion

In the CBD database [9] we have collected all the reported CRC biomarkers from the PubMed,
which has provided a useful platform for CRC researchers to further investigate the effects of the
biomarkers in early diagnosis, beneficial therapy and improved prediction for CRC patient survival.
In this study, the potential applications of CRC biomarkers and their interactions in cancer diagnosis,
therapy and prognosis and relationships of the biomarkers among the diagnosis and prognosis were
further analysed and verified by AI-assisted techniques. We found there were several single and
multiple functional biomarkers which are important in diagnosis, therapy and prognosis for CRC.

Although accumulating evidence concerning studies of biomarkers in cancers have been focused
on cancer diagnosis, therapy and prognosis there are only few biomarkers which have been clinically
utilized for early diagnosis, selecting the suitable cancer patients for better therapy and predicting
prognosis. In this study, the applications of the CRC biomarkers in diagnosis, therapy and prognosis
were investigated at cellular, molecular and pathway levels to further understand the biological and
molecular process of the biomarkers. GO analysis showed that various biological processes, such as
molecular functions and cellular composition of the protein biomarkers are involved in CRC diagnosis,
therapy and prognosis. Protein phosphorylation and cell proliferation have been associated with the
CRC diagnosis. Cell death and apoptosis are related to the CRC therapy and cell proliferation and
biological process to the CRC prognosis. We provided clear evidence from molecular pathways and
cell biology levels that the CRC biomarkers can be utilized to early diagnosis, better therapy and
predicting patients outcome.
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CRC biomarkers in various molecule networks and biological pathways are important for CRC. In
this study, we showed the top enriched pathways in diagnosis, therapy and prognosis with the KEGG
enrichment analysis. The Pathways in cancer and miRNA in cancer pathway are the most common
pathways for the CRC biomarkers. As expected, the CRC biomarkers have been mainly working for
the molecular binding and there are the similar pathways for the molecular binding function of CRC
protein biomarkers. In the biological processes, most of annotated pathways are positive regulators for
diagnosis and prognosis biomarkers and negative regulators for therapy biomarkers, indicating that
protein biomarkers play different roles in CRC diagnosis, therapy and prognosis.

Proteins are the major consistency of CRC biomarkers and biological functions are always
implemented by several different proteins. In this study, we collected all the protein biomarkers
from our CBD [9] and drew PPI networks concerning diagnosis, therapy and prognosis, respectively.
Most of the protein biomarkers were connected to the PPI networks. There were several protein
biomarkers which acted as essential hubs in all the three PPI networks, such as TP53, EGFR, CDH11
and BCL2. GO analysis showed that these proteins played an important role in positive regulation of
intracellular transportation, cellular protein localization and cell-cell adhesion, which provided the
evidence that our future study should focus on such hub proteins as the biomarkers for CRC.

Potential applications of the CRC protein biomarkers in PPI networks for diagnostic, therapeutic
and prognostic biomarkers were further analysed and we found that the most frequent protein
biomarkers were associated with CRC prognosis. However, the roles of CRC protein biomarkers
for diagnosis, therapy and prognosis can be overlapped with multiple functions, such as TP53 in
CRC therapy and prognosis [17–19], Ras [20], BCL2 [21], CD44 [22], CEA [23] in CRC prognosis. The
similar results from gene expression and PPI data analysis for accurate prediction have been found
in leukaemia [24]. The molecular functions in protein networks of the protein biomarkers decided
whether the protein biomarkers play a single or multiple roles in CRC. High degree protein biomarkers
from our CRC database [9] were found to associate with p53, Ras, PI3K, apoptosis, proliferation and
angiogenesis, which are the essential pathways in CRC formation, diagnosis, therapy and prognosis.
We further analysed the CRC protein biomarkers from our database by KEGG pathway enrichment
concerning diagnosis, therapy and prognosis, respectively. The diagnosis, therapy and prognosis
protein biomarkers have been found to share the same pathways, such as pathway in cancer and
microRNAs in cancer. Moreover, the CRC diagnosis protein biomarkers were enriched in the Wnt
signalling pathway. The therapy-associated protein biomarkers were found in the colorectal cancer
pathway and prognosis protein biomarkers in p53 signalling pathway, indicating that there are single
and multiple cancer pathways which may play various role in CRC diagnosis, therapy and prognosis.

Various miRNAs and their interactions with different genes, such as APC and KRAS, have
been involved in CRC initiation, development and progression processes. The miRNAs have been
considered as important players in the tumorigenesis. A number of miRNAs have been identified
with miRNA microarrays as potential biomarkers for cancers [25–27]. Different miRNAs and genes
are involved in various CRC progression, such as miR-135 with APC and miR-21 with PDCD4 in
the CRC initiation (Figure 4). In addition, miRNAs in cancer pathway has been related to cancer
initiation, development and progression of several cancer types (Figure 4). In this study, we showed
that different miRNAs played different roles in the CRC development and progression by suing NCBI,
miRBase, miRDB, KEGG, GO Consortium and STRING databases which contain a huge amount of
genomics and proteomics data. Systematic and integrated analyses of the CRC biomarkers in the
miRNAs in cancer pathway provided an evidence the multiple miRNA biomarkers should play more
critical roles in diagnosis, therapy and prognosis of CRC. Under CRC progression from the normal
epithelial cells to primary and metastatic cancer cells, there are up-regulated and down-regulated
miRNAs which are involved in this molecular process, such as the up-regulated miRNA-135 inhibiting
expression of APC gene to block the process from the normal cells to dysplastic cells. EGFR as a
therapy and prognosis biomarker and c-Met as a prognosis biomarker have both down-regulated
under the CRC progression. EGFR is regulated by miR-145, which has been reported as a biomarker for
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acute pulmonary embolism [28], bipolar mania [29], temporal lobe epilepsy [30], breast cancer [31] and
lung cancer [32]. C-Met is regulated by miR-34, which is a known biomarker in CRC, [33] indicating
that different miRNAs may involve in a variety of cancer types and cancer progression in various
cancer types may be regulated by the same miRNAs.

There were many protein biomarkers which were regulated by various miRNAs that identified
as biomarkers for CRC. Moreover, further analyses of the relationship between protein and miRNA
biomarkers showed that DNA was considered as the connection between protein miRNA biomarkers.
Multiple biomarkers played better roles in the diagnosis [34–36], therapy [37,38] and prognosis [39–41]
for CRC although there was disagreement concerning combination of two biomarkers [35].

In this study, we utilized AI-assisted classification techniques to further verify the significance of
both the single and multiple protein biomarkers in diagnosis and prognosis for CRC. The multiple
biomarkers revealed strongly statistical significance to precise diagnosis and predict prognosis in CRC
and a more optimal and precise tool to investigate cancer biomarkers.

4. Materials and Methods

4.1. Data Collection and Construction of the CRC Biomarker Application Networks

870 CRC biomarkers were collected from the published articles indexed in PubMed to construct
a CBD database [8]. In this study, we selected the CRC biomarkers concerning diagnosis, therapy
and prognosis to produce the CRC biomarker application networks and further analyse significant
importance of the biomarkers from our CBD in the diagnosis, therapy and prognosis biomarkers for
CRC. The gene expression data collected from Gene Expression Omnibus (GEO) database: Series
GSE87211, Platform GPL13497 were used to test the prognosis and diagnosis value of multiple
biomarkers, which contains 203 rectal tumour samples and 160 control samples and was obtained from
Affymetrix Human Genome arrays [42].

4.2. Systematic Analysis for the CRC Protein Biomarkers

In order to perform a systematic analysis for protein biomarkers, all the 583 CRC protein biomarkers
from the CBD were collected to construct the protein-protein interaction (PPI) networks using the
STRING database (https://string-db.org/). The relationship between the biomarkers and diagnosis,
therapy and prognosis were further investigated. The pathway enrichment analysis was conducted with
the Kyoto Encyclopaedia of Genes and Genomes (KEGG) database (http://www.genome.jp/kegg/)
to further cluster these protein biomarkers at pathway levels. The Gene Ontology Consortium
database (GO: http://www.geneontology.org/) was used to annotate the CRC protein biomarkers into
corresponding pathways at three levels: biological process, cellular component and molecular function.
The enriched pathways were ranked according to the false discovery rate (FDR) and gene counts.

4.3. Overlapping Analysis of miRNA and Protein Biomarkers

In order to make comprehensive overlapping analysis of the CRC biomarker, both miRNA
and protein biomarkers were matched to their corresponding genes. The miRDB database
(http://www.mirdb.org/) was utilized to assign the miRNA biomarkers to their gene targets (the
genes with more than 95 target prediction score were selected). The algorithm for the prediction score
(S) of each gene is as following:

S = 100 × (1 − ∏ni = 1Pi)

where n represents the number of predicted target gene sites number and Pi is statistical significance of
gene sites calculated by support vector machines (SVMs) [43]. For each target gene, higher predicted
score represents greater statistical confidence.

The NCBI Gene database (https://www.ncbi.nlm.nih.gov/gene) was used to match the protein
biomarkers to their coding genes. The biological functions of the overlap between the genes matching
the miRNA and protein biomarkers were further investigated. The STRING PPI network was utilized
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to analyse the relationships among the overlapping genes and to search for multiple biomarkers. The
biological functions of the biomarkers were studied with KEGG pathway enrichment analysis and
GO annotation.

4.4. AI-assisted Verification

Tissue samples were classified as cancerous according to a binary classification model. The tissue
classes were normal mucosa (0) and tumour (1) tissues. The tissue class Y was modelled according to
logistic regression,

log
(

E(Y)

1 − E(Y )

)
= β0 +

J

∑
j = 1

β jxj

where p = E(Y) is the expected proportion belonging to the tumour class and parameter βj corresponds
to biomarker j.

Altogether, 15 models (multiple biomarkers found in PPI network) were considered, one for
each of the candidate biosignatures. For each candidate, we randomly divided the data set into a
training and testing set according to an 80/20 division. We then fit the model to the training set and
evaluated the predictive performance on the testing set according to the area under the curve (AUC), a
measure of a model’s ability to discriminate between classes. To evaluate the stability of each model,
we replicated the above procedure 100 times to generate 100 AUC statistics for each model.

Associated with these samples were censored survival times, with the event death due to tumour
being recorded. We modelled time of death due to tumour according to a Cox Proportional Hazards
Model using the list of 15 biosignatures. The corresponding Kaplan-Meier survival curve test were
used to estimate the statistical significances of the multiple biomarkers in CRC prognosis. When the
p-values < 0.05, the results were considered as statistically significant.

The statistical package R (3.4.3) was used to analyses gene expression data. R-package GEOquery
(2.46.15) was used to access data from the GEO repository. R-package pROC (1.10.0) was used to
calculate AUCs. R-package survival was used to fit proportional hazards models. R-packages ggplot2
(2.2.1) and survminer (0.4.2) were used to produce Kaplan-Meier curves.

5. Conclusions

In this study, we showed the potential applications of the CRC biomarkers in diagnosis, therapy
and prognosis for CRC. We reported that there were many single biomarkers which were associated
with the early diagnosis, better therapy and predict prognosis in CRC. However, the combinations of
multiple biomarkers and pathways might play more critical roles in diagnosis, therapy and prognosis
for CRC than the single biomarkers. Therefore, the applications of multiple biomarkers and pathways
could provide more precise criteria as valuable tools for early diagnosis, benefiting therapy and
predicting prognosis for CRC patients.
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Abstract: Purpose: To propose a risk classification scheme for locoregionally advanced (Stages III
and IV) head and neck squamous cell carcinoma (LA-HNSCC) by using the Wu comorbidity score
(WCS) to quantify the risk of curative surgeries, including tumor resection and radical neck dissection.
Methods: This study included 55,080 patients with LA-HNSCC receiving curative surgery between
2006 and 2015 who were identified from the Taiwan Cancer Registry database; the patients were
classified into two groups, mortality (n = 1287, mortality rate = 2.34%) and survival (n = 53,793,
survival rate = 97.66%), according to the event of mortality within 90 days of surgery. Significant
risk factors for mortality were identified using a stepwise multivariate Cox proportional hazards
model. The WCS was calculated using the relative risk of each risk factor. The accuracy of the WCS
was assessed using mortality rates in different risk strata. Results: Fifteen comorbidities significantly
increased mortality risk after curative surgery. The patients were divided into low-risk (WCS, 0–6;
90-day mortality rate, 0–1.57%), intermediate-risk (7–11; 2.71–9.99%), high-risk (12–16; 17.30–20.00%),
and very-high-risk (17–18 and >18; 46.15–50.00%) strata. The 90-day survival rates were 98.97, 95.85,
81.20, and 53.13% in the low-, intermediate-, high-, and very-high-risk patients, respectively (log-rank
p < 0.0001). The five-year overall survival rates after surgery were 70.86, 48.62, 22.99, and 18.75%
in the low-, intermediate-, high-, and very-high-risk patients, respectively (log-rank p < 0.0001).
Conclusion: The WCS is an accurate tool for assessing curative-surgery-related 90-day mortality risk
and overall survival in patients with LA-HNSCC.

Keywords: comorbidity score; mortality; locoregionally advanced; HNSCC; curative surgery
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1. Introduction

The incidence of head and neck squamous cell carcinoma (HNSCC) in Taiwan is different from
that in Western countries. Betel nut chewing is endemic to Taiwan and is observed in >90% patients
with HNSCC in Taiwan [1–5]. Betel nut chewing results in a high risk of local recurrence and second
primary HNSCC in patients with HNSCC in Taiwan [1–5]. Due to betel nut chewing, the proportion of
oral cavity and nonoral cavity cancers in patients with HNSCC in Taiwan is approximately 66 and 34%,
respectively [1–6]. The proportion of oral cavity cancers in patients with HNSCC is higher in Taiwan
than in other countries [1–6]. Treatments for Taiwanese patients with HNSCC might be complicated,
and the frequency of reirradiation is higher in Taiwan than in areas where betel nut chewing is not
endemic [1–5]. Therefore, comprehensive curative surgery is the main treatment (accounting for
64.09% of all HNSCC treatments) for patients with HNSCC in Taiwan [1–6]. In addition, in Taiwan,
at initial diagnosis, >50% of HNSCC cases are locoregionally advanced (Stages III and IV) HNSCC
(LA-HNSCC) [6]. Instead of RT or chemotherapy, the initial treatment for LA-HNSCC is surgical
resection of the primary tumor and neck dissection, followed by postoperative radiotherapy (RT) or
concurrent chemoradiotherapy (CCRT).

Curative head and neck surgery, including radical neck dissection, is associated with a mortality
rate of 1.5–8.5% [7–11]; however, the time interval between curative surgery and mortality has not
been specified in the literature. Most studies on curative surgery for HNSCC were published in
the 1970s to 1980s [7–11]; however, surgical techniques have improved considerably in the past
20 years [12,13]. Definitive data on mortality rates after curative surgery for LA-HNSCC in the past
20 years, particularly in Asia, are not available. In this study, we estimated mortality rates after curative
surgery in patients with LA-HNSCC between 2006 and 2015. A new comorbidity score to predict
mortality rates in patients with LA-HNSCC receiving curative surgery was also proposed because
modern RT techniques, chemotherapy regimens, induction chemotherapy, and immune therapy might
be more suitable alternative curative-intent treatments than curative surgery for high-mortality risk
patients with LA-HNSCC [2–4,14–21].

The mean age of patients with HNSCC in Taiwan has been reported to be 55 years; consequently,
the patients are generally individuals who provide the main economic support to their families [1–6].
We hope to reduce mortality rates after aggressive treatments in LA-HNSCC and propose a new
comorbidity score to preoperatively predict 90-day mortality and overall survival in patients
with LA-HNSCC who will receive curative surgery. The new comorbidity score can be used to
determine whether curative surgery or other curative-intent aggressive treatments are the optimal
treatment [2,4,14–21].

2. Patients and Methods

Ethics approval and consent: Our protocols were reviewed and approved by the Institutional
Review Board of Taipei Medical University (TMU-JIRB No. 201712019).

2.1. Database

The study population was identified from the Taiwan Cancer Registry database (TCRD).
The TCRD is a crucial research resource for epidemiological studies, and the results obtained using the
database can be used as a reference when developing medical and health policies. The Cancer Registry
database of Collaboration Center of Health Information Application contains detailed cancer-related
information on clinical stages, RT doses, habits (smoking, betel nut chewing, and drinking), surgical
procedures, techniques, and chemotherapy regimens [2,4,22,23]. The Institutional Review Board of
Taipei Medical University approved this study (TMU-No. 201712019). The TCRD is released to the
public for research purposes after identification numbers are scrambled and personal information
is de-identified.
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2.2. Selection of Patients and Controls

This study included 55,080 patients with LA-HNSCC who had received curative surgeries,
including tumor resection and ipsilateral radical neck dissection, between 1 January 2006 and
31 December 2015. In the patients with HNSCC, clinical staging was performed according to
the American Joint Committee on Cancer (AJCC), Seventh Edition. Squamous cell carcinoma was
confirmed in all study patients identified from the TCRD. Patients with the following contraindications
for curative surgery were excluded from the study: An Eastern Cooperative Oncology Group
performance status of ≥2, a fixed neck mass in the deep cervical fascia, skull base involvement,
circumferential or near circumferential involvement, and invasion of the carotid vessels if the patient
could not tolerate a balloon occlusion test. All head and neck surgeons in Taiwan are head and
neck oncology specialists certified by the Taiwan Ministry of Health and Welfare. We only included
patients aged >18 years to restrict our study population to adults. Patients with metastatic HNSCC
were excluded. The included patients were classified into two groups, namely mortality (n = 1287,
mortality rate = 2.34%) and survival (n = 53,793, survival rate = 97.66%) groups, according to the event
of mortality within 90 days after curative surgery. For each patient, the index date was designated as
the date of curative surgery.

2.3. Statistical Analysis

All statistical analyses were performed using SAS statistical software (SAS for Windows,
version 9.2, SAS Institute, Cary, NC, USA). Statistical significance was set at p ≤ 0.05.

For demographic characteristics, age group (18–29, 30–39, 40–49, 50–59, 60–69, and ≥70) and sex
were selected as the basic information of the patients. Age was calculated as the time interval between
the index date and birth date, and data on sex were extracted from the database. Comorbidities
were evaluated using the Charlson comorbidity index (CCI), and before surgery, physical status was
determined according to the American Society of Anesthesiologists (ASA) Physical Status Classification
System [2,4,24–26]. Patients with recent (within 6 months before the index date) myocardial infarction
(MI), cerebral vascular accident (CVA), transient ischemic attack (TIA), or coronal arterial disease
(CADs) with stents, ongoing cardiac ischemia or severe valve dysfunction, severe reduction of ejection
fraction, sepsis, disseminated intravascular coagulation (DIC), adult respiratory distress syndrome
(ARDS), or end-stage renal disease (ESRD) were excluded from the study. Only comorbidities observed
6 months before the index date were included in the analysis; comorbidities were identified and
included according to the main International Classification of Diseases, Ninth Revision, Clinical
Modification (ICD-9-CM) diagnostic codes for the first admission or 3 or more repeated main diagnosis
codes for visits to outpatient departments. The comorbidities of interest were diabetes mellitus
(DM), hypertension (HTN), pneumonia, chronic obstructive pulmonary disease (COPD), hepatitis
B (HBV) infection, hepatitis C (HCV) infection, implanted pacemaker, MI, CVA, TIA, CADs, angina,
heart valve dysfunction, ESRD, sepsis, chronic kidney disease (CKD), heart failure, DIC, ARDS,
aortic aneurysm, peripheral vascular disease (PVD), peptic ulcer disease (PUD), dementia, chronic
pulmonary disease, connective tissue disease, mild liver disease, hemiplegia, moderate or severe
renal disease, any non-HNSCC solid cancer, leukemia, lymphoma, moderate or severe liver disease,
metastatic non-HNSCC solid cancer, previous thoracic surgery, smoking, obesity, asthma, and bowel
obstruction. The chi-square test was used to compare demographic characteristics and comorbidities
between the mortality and survival groups.

In this study, we aimed to identify significant risk factors for mortality within 90 days after
curative surgery and proposed the Wu comorbidity score (WCS) to assess mortality risk associated
with curative surgery in patients with HNSCC. Univariate and multivariate Cox proportional hazard
models were constructed to calculate the hazard ratios (HRs) of the variables and corresponding 95%
confidence intervals (CIs). A stepwise selection method was used to select all the variables that exerted
significant effects on the survival duration in the patients. Variables with coefficients of >0 or HRs of >1
were selected as risk factors to construct the WCS by adding points according to the HRs. We divided
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all the patients into different strata according to the WCS and confirmed that the patients with high
scores had high mortality risk after curative surgery. The cumulative mortality rate was estimated
using the Kaplan–Meier method, and differences among the risk strata were determined using the
log-rank test. Two-tailed p < 0.05 was considered statistically significant.

3. Results

Table 1 shows a comparison of demographic characteristics and mortality rates within 90 days
after curative surgery between the mortality and survival groups. Significant differences were observed
between the groups in the age (p < 0.0001), sex (p < 0.0001), and comorbidities, such as DM, HTN,
and pneumonia.

Table 1. Demographic characteristics between death within 90 days and survival groups receiving
curative surgery in locoregionally advanced head and neck squamous cell carcinoma patients.

Factor Death No. Death Rate Survival No. Survival Rate p Value

Number of patients 1287 53,793
Age (years) <0.0001

18–29 2 0.16% 696 1.29%
30–39 40 3.11% 4978 9.25%
40–49 231 17.95% 14,379 26.73%
50–59 352 27.35% 16,611 30.88%
60–69 263 20.44% 10,046 18.68%
≥70 399 31.00% 7083 13.17%
Sex <0.0001

Female 195 7.38% 5697 10.59%
Male 1192 92.62% 48,096 89.41%

Comorbidity
DM 80 6.22% 1804 3.35% <0.0001

HTN 477 37.06% 16,260 30.23% <0.0001
Pneumonia 250 19.43% 2665 4.95% <0.0001

COPD 240 18.65% 4517 8.40% <0.0001
Hepatitis B 8 0.62% 425 0.79% 0.4989
Hepatitis C 32 2.49% 1003 1.86% 0.1045

Implanted pacemaker 2 0.16% 22 0.04% 0.0518
MI, CVA, TIA, angina, or CAD 280 21.76% 6957 12.93% <0.0001

Heart valve dysfunction 35 2.72% 659 1.23% <0.0001
ESRD 0 0.00% 0 0.00%
Sepsis 172 13.36% 882 1.64% <0.0001
CKD 165 12.82% 1754 3.26% <0.0001

Heart failure 92 7.15% 1000 1.86% <0.0001
DIC 5 0.39% 5 0.01% <0.0001

ARDS 4 0.31% 18 0.03% <0.0001
Aortic aneurysm 4 0.31% 58 0.11% 0.0319

PVD 33 2.56% 707 1.31% 0.0001
PUD 268 20.82% 7394 13.75% <0.0001

Dementia 71 5.52% 1100 2.04% <0.0001
Chronic pulmonary disease 222 17.25% 4810 8.94% <0.0001
Connective tissue disease 23 1.79% 614 1.14% 0.0323

Mild liver disease 255 19.81% 7733 14.38% <0.0001
Hemiplegia 107 8.31% 1970 3.66% <0.0001

Moderate or severe renal disease 166 12.90% 1757 3.27% <0.0001
Any non-HNSCC Solid Cancer 659 51.20% 14,591 27.12% <0.0001

Leukemia 2 0.16% 33 0.06% 0.1858
Lymphoma 22 1.71% 647 1.20% 0.101

Moderate or severe liver disease 89 6.92% 2487 4.62% 0.0001
Metastatic non-HNSCC solid cancer 548 42.58% 13,390 24.89% <0.0001

Smoking 1158 89.98% 48,413 90.00% 0.8989
Previous thoracic surgery 6 0.47% 268 0.50% 0.6767

Obesity 11 1.24% 699 1.30% 0.7756
Asthma 10 0.78% 429 0.80% 0.9573

Bowel obstruction 3 0.23% 123 0.23% 0.8457

Diabetes mellitus: DM; hypertension: HTN; Chronic Obstructive Pulmonary Disease: COPD; Hepatitis B: HBV;
Hepatitis C: HCV; myocardial infarction: MI; cerebral vascular accident: CVA; transient ischemic attack: TIA; coronal
arterial disease: CAD; end stage renal disease: ESRD; Chronic kidney disease: CKD; disseminated intravascular
coagulation: DIC; adult respiratory distress syndrome: ARDS; peripheral vascular disease: PVD; peptic ulcer
disease: PUD.
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Tables 2 and 3 present the relative risk for each variable estimated using univariate and
multivariate Cox proportional hazard models. Fewer variables were significant in the multivariate
model than in the univariate model, indicating strong collinearity between the variables. Therefore, we
used a stepwise method in the multivariate model for variable selection (Table 4). Among comorbidities,
significant variables were HTN, pneumonia, COPD, sepsis, heart failure, DIC, ARDS, dementia, mild
to severe liver disease, hemiplegia, moderate or severe renal disease, any tumor, and metastatic
solid tumor.

Table 2. Mortality risk assessment through univariate Cox proportional hazard model in locoregionally
advanced head and neck squamous cell carcinoma patients receiving curative surgery.

Factor HR 95% CI p Value

Age (years)
18–29 1 (Reference)
≥30 1.277 2.077, 32.989 0.0027
≥40 1.463 2.546, 4.709 <0.0001
≥50 2.19 1.916, 2.503 <0.0001
≥60 2.245 2.012, 2.504 <0.0001
≥70 2.915 2.59, 3.28 <0.0001
Sex

Female 1 (Reference)
Male 1.48 1.201, 1.824 0.0002

Comorbidities
DM 1.894 1.51, 2.374 <0.0001

HTN 1.356 1.211, 1.518 <0.0001
Pneumonia 4.476 3.898, 5.138 <0.0001

COPD 2.466 2.143, 2.838 <0.0001
Hepatitis B 0.787 0.393, 1.576 0.4986
Hepatitis C 1.342 0.945, 1.905 0.1004

Implanted pacemaker 3.716 0.928, 14.874 0.0636
MI, CVA, TIA, angina, or CAD 1.857 1.627, 2.12 <0.0001

Heart valve dysfunction 2.224 1.589, 3.111 <0.0001
Sepsis 8.647 7.364, 10.153 <0.0001
CKD 4.245 3.605, 4.999 <0.0001

Heart failure 3.965 3.207, 4.902 <0.0001
DIC 32.834 13.643, 79.019 <0.0001

ARDS 9.058 3.395, 24.166 <0.0001
Aortic aneurysm 2.818 1.056, 7.519 0.0385

PAD 1.962 1.389, 2.772 0.0001
PUD 1.64 1.433, 1.876 <0.0001

Dementia 2.735 2.153, 3.475 <0.0001
Chronic pulmonary disease 2.1 1.817, 2.427 <0.0001
Connective tissue disease 1.567 1.037, 2.367 0.0328

Mild liver disease 1.465 1.277, 1.68 <0.0001
Hemiplegia 2.35 1.928, 2.865 <0.0001

Moderate or severe renal disease 4.272 3.629, 5.028 <0.0001
Any non-HNSCC Solid Cancer 2.753 1.917, 3.953 <0.0001

Leukemia 2.506 0.626, 10.032 0.1941
Lymphoma 1.423 0.934, 2.168 0.1008

Moderate or severe liver disease 1.525 1.229, 1.891 0.0001
Metastatic non-HNSCC solid cancer 2.21 1.979, 2.468 <0.0001

Smoking 0.964 0.405, 1.459 0.3571
Previous thoracic surgery 1.168 0.778, 2.589 0.6734

Obesity 1.473 0.746, 1.896 0.8197
Asthma 1.384 0.804, 8.09 0.7592

Bowel obstruction 1.132 0.494, 2.873 0.8112

Diabetes mellitus: DM; hypertension: HTN; Chronic Obstructive Pulmonary Disease: COPD; Hepatitis B: HBV;
Hepatitis C: HCV; myocardial infarction: MI; cerebral vascular accident: CVA; transient ischemic attack: TIA; coronal
arterial disease: CAD; end stage renal disease: ESRD; Chronic kidney disease: CKD; disseminated intravascular
coagulation: DIC; adult respiratory distress syndrome: ARDS; peripheral vascular disease: PVD; peptic ulcer
disease: PUD.
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Table 3. Mortality risk assessment through multivariate Cox proportional hazard model in locoregionally
advanced head and neck squamous cell carcinoma patients receiving curative surgery.

Factor HR 95% CI p Value

Age (years)
18–29 1 (Reference)
≥30 1.012 0.486, 3.336 0.3348
≥40 1.125 1.304, 2.555 0.0004
≥50 1.309 1.107, 1.547 0.0016
≥60 1.218 1.037, 1.432 0.0166
≥70 1.902 1.618, 2.236 <0.0001
Sex

Female 1 (Reference)
Male 1.439 1.163, 1.78 0.0008

Comorbidities
DM 1.188 0.942, 1.5 0.1463

HTN 0.811 0.713, 0.922 0.0014
Pneumonia 2.093 1.79, 2.447 <0.0001

COPD 1.262 1.007, 1.581 0.0431
Hepatitis B 0.864 0.429, 1.741 0.6823
Hepatitis C 0.746 0.488, 1.142 0.1772

Implanted pacemaker 1.453 0.36, 5.873 0.6001
MI, CVA, TIA, angina, or CAD 0.891 0.745, 1.066 0.2072

Heart valve dysfunction 1.215 0.858, 1.721 0.2716
Sepsis 4.079 3.418, 4.869 <0.0001
CKD 1.117 0.658, 1.897 0.6818

Heart failure 2.037 1.617, 2.567 <0.0001
DIC 7.585 3.105, 18.53 <0.0001

ARDS 4.04 1.494, 10.923 0.0059
Aortic aneurysm 1.059 0.394, 2.845 0.9093

PAD 1.107 0.777, 1.578 0.5733
PUD 1.063 0.923, 1.225 0.3953

Dementia 1.583 1.234, 2.029 0.0003
Chronic pulmonary disease 0.97 0.774, 1.216 0.7916
Connective tissue disease 1.173 0.772, 1.781 0.4551

Mild liver disease 1.211 1.043, 1.407 0.0121
Hemiplegia 1.426 1.117, 1.821 0.0044

Moderate or severe renal disease 2.092 1.235, 3.544 0.0061
Any non-HNSCC solid cancer 2.306 1.599, 3.325 <0.0001

Leukemia 1.989 0.496, 7.981 0.332
Lymphoma 1.455 0.952, 2.225 0.0832

Moderate or severe liver disease 1.212 1.104, 1.519 0.0025
Metastatic non-HNSCC solid Cancer 2.144 1.916, 2.399 <0.0001

Smoking 0.846 0.618, 1.126 0.5753
Previous thoracic surgery 0.957 0.901, 1.976 0.8251

Obesity 1.015 0.879, 1.705 0.9088
Asthma 1.203 0.798, 1.511 0.8603

Bowel obstruction 1.047 0.505, 1.984 0.9221

Diabetes mellitus: DM; hypertension: HTN; Chronic Obstructive Pulmonary Disease: COPD; Hepatitis B: HBV;
Hepatitis C: HCV; myocardial infarction: MI; cerebral vascular accident: CVA; transient ischemic attack: TIA; coronal
arterial disease: CAD; end stage renal disease: ESRD; Chronic kidney disease: CKD; disseminated intravascular
coagulation: DIC; adult respiratory distress syndrome: ARDS; peripheral vascular disease: PVD; peptic ulcer
disease: PUD.
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Table 4. Stepwise selection results and comorbidity score for multivariate Cox proportional hazard
model in locoregionally advanced head and neck squamous cell carcinoma patients receiving
curative surgery.

Factor HR 95% CI p Value Points

Age (years)
≥40 1.913 1.376, 2.659 0.0001 1
≥50 1.309 1.107, 1.547 0.0016 1
≥60 1.221 1.039, 1.435 0.0154 1
≥70 1.894 1.613, 2.225 <0.0001 1
Sex

Female 1 (Reference)
Male 1.425 1.153, 1.76 0.001 1

Comorbidities
HTN 0.803 0.708, 1.11 0.1006 0

Pneumonia 2.092 1.79, 2.446 <0.0001 2
COPD 1.227 1.052, 1.431 0.0093 1
Sepsis 4.161 3.492, 4.958 <0.0001 4

Heart failure 2.056 1.646, 2.566 <0.0001 2
DIC 7.683 3.152, 18.728 <0.0001 7

ARDS 3.897 1.444, 10.52 0.0073 3
Dementia 1.598 1.247, 2.048 0.0002 1

Mild liver disease 1.251 1.087, 1.439 0.0018 1
Hemiplegia 1.342 1.089, 1.654 0.0059 1

Moderate or severe renal disease 2.361 1.983, 2.81 <0.0001 2
Any non-HNSCC solid cancer 2.289 1.588, 3.3 <0.0001 2

Moderate or severe liver disease 1.284 1.034, 1.473 0.0083 1
Metastatic non-HNSCC solid cancer 2.142 1.915, 2.397 <0.0001 2

Diabetes mellitus: DM; hypertension: HTN; Chronic Obstructive Pulmonary Disease: COPD; Hepatitis B: HBV;
Hepatitis C: HCV; myocardial infarction: MI; cerebral vascular accident: CVA; transient ischemic attack: TIA; coronal
arterial disease: CAD; end stage renal disease: ESRD; Chronic kidney disease: CKD; disseminated intravascular
coagulation: DIC; adult respiratory distress syndrome: ARDS; peripheral vascular disease: PVD; peptic ulcer
disease: PUD.

The WCS was calculated using significant variables other than HTN because the HR of HTN was
<1. Although HTN increased the risk of outcomes, which can be observed from univariate analysis
(Table 2, HR = 1.356, CI: 1.211–1.518), collinearity in multivariate model may have reduced the HR to
<1 (Table 4, HR = 0.803, CI: 0.708–0.91), which is a common statistical phenomenon. We calculated
the WCS by adding points according to the HR of each risk factor. The points of each risk factor were
assigned as the largest integer less than or equal to its HR (last column in Table 4); for example, 2 points
for pneumonia with an HR of 2.092 and 3 points for ARDS with an HR of 3.897. In the WSC, a high
number of points were assigned to risk factors with high relative mortality risk within 90 days. In our
study, the minimum and maximum values of the WCS were 0 and 18+, respectively. We collapsed
the range of the WCS into 4 strata, namely the low-risk (WCS, 0–6; 90-day mortality rate, 0–1.57%),
intermediate-risk (7–11; 2.71–9.99%), high-risk (12–16, 17.30–20.00%), and very-high-risk (17 to 18+;
46.15–50.00%) strata (Table 4). We used the CCI for scoring to predict 90-day mortality compared with
the current scoring system (Figures S1 and S2), the risk groups of CCI were not feasible for predicting
90-day mortality in LA-HNSCC patients receiving curative surgery and could not reach statistical
significance. In addition, there were scarcely LA-HNSCC patients with ASA classifications I and IV–V
receiving curative surgery in our database. Therefore, we cannot use ASA classifications I–V to predict
90-day mortality in LA-HNSCC patients receiving curative surgery. The 90-day mortality rate tended
to increase as the WCS increased, indicating the accuracy of the WCS. The 90-day mortality rate and
five-year survival in the patients were estimated using the Kaplan–Meier method to analyze the risk of
mortality associated with the 4 risk strata (Figures 1 and 2). The 90-day survival rates were 98.97, 95.85,
81.20, and 53.13% in the low-, intermediate-, high-, and very-high-risk strata, respectively (log-rank

118



Cancers 2018, 10, 392

test p < 0.0001; Figure 1). The five-year overall survival rates were 70.86, 48.62, 22.99, and 18.75% in the
low-, intermediate-, high-, and very-high-risk strata, respectively (log-rank p < 0.0001; Figure 2).

 

Figure 1. Kaplan–Meier curves for 90-day survival in patients with locoregionally advanced head and
neck squamous cell carcinoma receiving curative surgery associated with the four risk groups. Note:
p-value of Log Rank Test is <0.0001.

 

Figure 2. Kaplan–Meier curves for five years overall survival in patients with locoregionally advanced
head and neck squamous cell carcinoma receiving curative surgery associated with the four risk groups.
Note: p-value of Log Rank Test is <0.0001.

4. Discussion

According to the Taiwan Cancer Registry report, 2017 edition [6], >90% of curative surgery
procedures for LA-HNSCC are conducted in top-ranking medical centers. The ranking is based
on accreditation of hospitals in Taiwan into 4 levels since 1988 (medical center, regional hospitals,
local hospital, clinics); the accreditation grade affects the service quality and specific patient volume
of the hospital [6]. Most curative surgery procedures were performed in hospitals with sufficient
patient volume (>100 newly diagnosed patients with LA-HNSCC per year), thus leading to consistent
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patient outcomes for LA-HNSCC in Taiwan [6,27–30]. Therefore, in Taiwan, the overall mortality rate
within 90 days after curative surgery in the patients with LA-HNSCC was only 2.34% (Table 5) after
consultation with a professional head and neck surgeon and anesthesia consultation. In Table 1, <3% of
the patients with LA-HNSCC and heart valve dysfunctions and <5% of the patients with LA-HNSCC
and moderate or severe liver disease received curative surgery. Surgeons were unwilling to perform
curative surgery on the patients with LA-HNSCC and ESRD. However, the 90-day mortality remained
2.34%. Therefore, we wanted to develop a highly accurate predictor score to estimate mortality
rates after curative surgery because CCRT or induction chemotherapy, followed by CCRT, might
be an alternative treatment for patients with LA-HNSCC [3,4]. The proportion of the patients with
LA-HNSCC with smoking habit (approximately 90%) in Table 1 was consistent with that reported in
previous studies in Taiwan [1–5]. The 90-day mortality rate was proportional to age, particularly in the
patients aged >70 years. This is the first study to show that age is a predictor of 90-day mortality in the
patients with LA-HNSCC after curative surgery (Tables 1–3).

Table 5. Mortality (%) by different cumulative comorbidity scores among locoregionally advanced
head and neck squamous cell carcinoma patients receiving curative surgery.

Score No of Patient No of Death Death Rate

0 107 0 0.00%
1 277 0 0.00%
2 1104 5 0.45%
3 4289 16 0.37%
4 8948 67 0.75%
5 11,317 124 1.10%
6 10,621 167 1.57%
7 8423 228 2.71%
8 4621 168 3.64%
9 2514 154 6.13%
10 1263 109 8.63%
11 681 68 9.99%
12 393 68 17.30%
13 236 44 18.64%
14 149 32 21.48%
15 70 15 21.43%
16 35 7 20.00%
17 26 12 46.15%

18+ 6 3 50.00%
Total 55,080 1287 2.34%

Univariate and multivariate analyses revealed that age is an independent predictor of 90-day
mortality after curative surgery in patients (Tables 2 and 3). The male patients had higher 90-day
mortality risk than did the female patients after curative surgery. These findings are consistent
with those of previous studies, which reported endpoints different from those in our study [31,32].
From Table 3, the patients with LA-HNSCC and pneumonia or COPD exhibited high mortality
rates. These findings are consistent with those of previous studies [33,34]. However, this is the first
study to demonstrate that preoperative pneumonia increases mortality rates in the patients with
LA-HNSCC who received curative surgery. Notably, although heart valve dysfunction, MI, CVA, TIA,
angina, or CADs were listed as risk factors in the ASA Physical Status Classification System before
surgery [24,26], these factors were not risk factors for 90-day mortality in our study. This discrepancy
can be explained by our inclusion of comorbidities observed >6 months before the index date and
exclusion of the comorbidities observed within 6 months of the index date. The mortality rates of these
acute vascular diseases might decrease considerably after 6 months of having these diseases [35–38].
This is the first study to show the absence of correlations between heart valve dysfunction, MI, CVA,

120



Cancers 2018, 10, 392

TIA, angina, or CADs and 90-day mortality rates associated with curative surgery in the patients with
LA-HNSCC. These findings are reliable references for head and neck surgeons in the future.

Notably, HF, DIC, and ARDS were independent risk factors for 90-day mortality, even when
comorbidities observed 6 months before the index date were included. This is because HF, DIC, and
ARDS are chronic diseases [39–42] and not acute vascular diseases. In addition, HF, DIC, and ARDS
were also listed in the ASA Physical Status Classification System before surgery [24,26]. Dementia and
hemiplegia might affect self-care by patients who receive surgery and might result in an increased
mortality rate after surgery [31,43]. Our study is the first to demonstrate that dementia and hemiplegia
were independent risk factors for mortality in the patients with LA-HNSCC who had received head
and neck curative surgery. Head and neck surgeons should carefully consider curative surgery for
patients with LA-HNSCC and dementia or hemiplegia. Furthermore, in our study, liver disease or
renal disease were independent risk factors for 90-day mortality. Moreover, Cramer et al. showed
that liver disease increases the risk of perioperative mortality in patients with HNSCC, and this
risk should be carefully considered during surgical decision-making and postoperative care [44].
ESRD was also an independent 90-day mortality risk factor in our study; this finding is consistent
with the results of a previous study, which reported a slightly different endpoint from ours [45].
However, leukemia and lymphoma were not risk factors for 90-day mortality in our study (Table 3).
Most patients with leukemia or lymphoma have long survival durations of >1 year [46,47]; this long
survival duration might explain why leukemia and lymphoma did not affect 90-day mortality in our
study. By contrast, non-HNSCC cancer with or without metastasis was an independent risk factor
for 90-day mortality (Table 3). This result may be attributable to the weakening of overall physical
health, immunity, and the hematological system owing to previous cancer treatments, such as systemic
chemotherapy, major surgical procedures, or RT, which increase 90-day mortality rates because of
systemic infection complications, hospitalizations, and uncontrolled coagulation or hematological
problems [48–50]. For patients with LA-HNSCC and non-HNSCC cancer with or without metastasis,
alternative curative-intent aggressive treatments might be considered [4].

In our analysis, the WCS corresponded with not only the 90-day mortality rates but also with
the overall survival rates (Figure 2). Developing a new comorbidity score for predicting 90-day
mortality in patients with LA-HNSCC who will receive curative surgery is currently valuable because
of the evolution of contemporary chemotherapy, RT techniques, target therapy, or immunotherapy,
particularly in the past 10 years [14–21]. An increasing number of alternative curative-intent aggressive
treatments are available for patients with LA-HNSCC [14–21].

Because the development of new surgical procedures has minimized surgical morbidity and
mortality, the contraindications to curative surgery for LA-HNSCC remain controversial [12,13].
However, patients with LA-HNSCC who have a high surgical risk because of comorbidities and whose
condition cannot be optimized preoperatively should not be considered for new surgical procedures.
Even after treatment by a professional head and neck surgeon and careful anesthesia consultation,
the 90-day mortality in Taiwan remained at 2.34% from 2006 to 2015 (Table 5). The WCS can serve as a
valuable tool for preoperative prediction of the risk associated with curative surgery in patients with
LA-HNSCC. After predicting the risk, other alternative curative-intent aggressive treatments can be
considered in LA-HNSCC patients [4,14–21].

To the best of our knowledge, our study is the first to use a comorbidity score to predict the
90-day mortality in the patients with LA-HNSCC who had received curative surgery. Figures revealed
significant differences between low-, intermediate-, high-, and very-high-risk strata. These findings
suggest that the WCS is a valid and specific tool for predicting 90-day and overall mortality in patients
with LA-HNSCC who will receive curative surgery. Our literature review also revealed that our study
also had the largest sample size among the studies that have proposed new comorbidity scores in the
past 10 years.

This study has some limitations. First, the morbidity of curative surgery could not be determined
because of differences in the levels of experience among surgeons and across hospitals; therefore, head
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and neck curative-surgery-related mortality estimates may have been biased. However, the Taiwan
Cancer Registry report, 2017 edition, revealed that curative surgery for LA-HNSCC in Taiwan are
mostly performed in hospitals with high patient volumes and large medical centers [6]. Therefore,
the outcomes of head and neck curative surgery would be consistent in Taiwan. Second, because all
the patients with LA-HNSCC were enrolled from an Asian population and all the surgical procedures
were performed by Taiwanese surgeons, the corresponding ethnic and regional susceptibility to this
disease remain unclear; hence, our results should be cautiously extrapolated to non-Asian populations.
Third, the diagnoses of all comorbid conditions were based on ICD-9-CM codes. However, the Taiwan
Cancer Registry administration randomly reviews charts and interviews patients to verify the accuracy
of the diagnoses. Hospitals with outlier chargers or practices may be audited and be subsequently
heavily penalized if malpractice or discrepancies are identified. In addition, the quality and precision
of ICD-9-CM codes in Taiwan have been verified and proven by previous studies [51,52]. Therefore,
to obtain accurate information on population specificity and disease occurrence, large-scale randomized
trials that compare carefully selected patients who had received suitable treatments are required.
Fourth, we have scarcely very-high WCS patients (32/55,080 = 0.05%) and scarcely high WCS patients
(<1000/55,080 = 1.60%). For remaining more than 98 percent of the patients only two risk strata
groups are left and this is the same problem what we have with the ASA II and ASA III patients.
Nevertheless, the individual 90-day mortality can be predicted upon the findings of this study because
a big cancer registry supports this data. Finally, the TCRD does not contain information on dietary
habits, socioeconomic status, or body mass index, which may all be risk factors for mortality. However,
considering the magnitude and statistical significance of the effects observed in this study, these
limitations are unlikely to have affected the conclusions.

5. Conclusions

The WCS is a valid tool for predicting 90-day mortality and overall survival in patients with
LA-HNSCC who will receive curative surgery. Other alternative curative-intent aggressive treatments
can be considered for patients with LA-HNSCC in the high- to very-high-risk strata instead of
curative surgery.
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Figure S1: Kaplan–Meier curves for 90-day survival in patients with locoregionally advanced head and neck
squamous cell carcinoma receiving curative surgery associated with the four risk groups from Charlson
Comorbidity Index, Figure S2: Kaplan–Meier curves for 90-day survival in patients with locoregionally advanced
head and neck squamous cell carcinoma receiving curative surgery associated with the four risk groups from Wu
comorbidity score.
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Abbreviations

AJCC American Joint Committee on Cancer
ARDS Adult Respiratory Distress Syndrome
ASA American Society of Anesthesiologists
CAD Coronal Arterial Disease
CCI Charlson Comorbidity Index
CCRT Concurrent Chemoradiotherapy
CI Confidence Interval
CKD Chronic Kidney Disease
COPD Chronic Obstructive Pulmonary Disease
CVA Cerebral Vascular Accident
DIC Disseminated Intravascular Coagulation
ESRD End-Stage Renal Disease
HBV Hepatitis B
HCV Hepatitis C
HNSCC Head and Neck Squamous Cell Carcinoma
HR Hazard Ratio
HTN Diabetes Mellitus DM Hypertension
ICD-9-CM International Classification of Diseases Ninth Revision Clinical Modification
LA-HNSCC Locoregionally Advanced Head and Neck Squamous Cell Carcinoma
MI Myocardial Infarction
PUD Peptic Ulcer Disease
PVD Peripheral Vascular Disease
RT Radiotherapy
TCRD Taiwan Cancer Registry Database
TIA Transient Ischemic Attack
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Abstract: Machine learning (ML) has been recently introduced to develop prognostic classification
models that can be used to predict outcomes in individual cancer patients. Here, we report the
significance of an ML-based decision support system (DSS), combined with random optimization
(RO), to extract prognostic information from routinely collected demographic, clinical and biochemical
data of breast cancer (BC) patients. A DSS model was developed in a training set (n = 318),
whose performance analysis in the testing set (n = 136) resulted in a C-index for progression-free
survival of 0.84, with an accuracy of 86%. Furthermore, the model was capable of stratifying the
testing set into two groups of patients with low- or high-risk of progression with a hazard ratio
(HR) of 10.9 (p < 0.0001). Validation in multicenter prospective studies and appropriate management
of privacy issues in relation to digital electronic health records (EHR) data are presently needed.
Nonetheless, we may conclude that the implementation of ML algorithms and RO models into EHR
data might help to achieve prognostic information, and has the potential to revolutionize the practice
of personalized medicine.

Keywords: breast cancer prognosis; artificial intelligence; machine learning; decision support systems

1. Introduction

The breast cancer (BC) death rate has declined steadily over the past two decades, progress that can
be attributed to the deployment of innovative management pathways, from early detection to treatment.
Nevertheless, BC still represents the leading cause of cancer death among females worldwide [1].
Accordingly, BC survivability prediction represents a challenging task that could strongly benefit
from the development of personalized predictive models. In this context, contemporary oncology has
witnessed a growing interest in digital technologies, whose integration with big healthcare data has
raised new hopes for personalized medicine.

Artificial intelligence (AI) and machine learning (ML) have been used to diagnose and classify
cancer for nearly 20 years, but only a few studies have investigated their relevance in cancer
prognosis [2]. In particular, ML or semi-supervised learning techniques have been recently applied to
develop models for BC progression and survivability. Most of them, however, were built on datasets
from the SEER (Surveillance Program, Epidemiology, and End Results), not including important

Cancers 2019, 11, 328; doi:10.3390/cancers11030328 www.mdpi.com/journal/cancers127
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prognostic parameters such as the St. Gallen criteria (hormones receptor status, HER2/Neu expression
or Ki67 proliferation index) [3–5], while other studies were performed on hybrid models containing
microarray data [6] or on mammographic images [7,8]. Lately, an unsupervised ML approach that can
admit any number of prognostic factors, was used to build prognostic systems for cancer patients [9].
Also, in this case, the SEER dataset used did not include information on HER2/Neu expression,
whose prognostic significance has been emphasized in the 8th edition TNM staging system for
BC [10]. Thus, the unmet need to develop prognostic classification models that embody the newest
AI technologies and can be used to predict outcomes in individual cancer patients for personalized
patient care has been highlighted [11].

In this context, we have recently demonstrated the potential of a semi-explainable decision
support system (DSS), based on multiple kernel learning (MKL) [12], that can be adapted to different
medical problems [13,14] and gives the possibility to inspect the learned model. The model combines
a support vector machine (SVM) [15] algorithm and random optimization (RO) [16]. Hence, it can
offer an explanation on how routinely collected demographic, clinical and biochemical data are
important in predictions. This MKL model, originally developed for cancer-associated thrombosis
risk assessment [13], has been here adapted to estimate the risk of disease progression in an oncology
setting of BC patients. To achieve this objective, a proof-of-concept study was specifically designed
to assess whether a customized MKL-based DSS could be a useful prognostic tool in the clinical
management of BC patients.

2. Results

A set of predictors (named ML-RO) was identified using a 3-fold cross-validation technique on
a training set (n = 318). A testing set (n = 136) was used to compute the final performance of risk
predictors. To devise the DSS, we selected ML-RO-4 as the best performing out of a range of ten runs,
in terms of the area under the curve (AUC), on the training set (Table 1).

Table 1. Analytical performance of machine learning with random optimization in the training set.

ML Predictor AUC (SE) 95% CI Sensitivity (95% CI) Specificity (95% CI) +LR −LR

ML-RO-4 0.778 (0.0290) 0.728–0.822 67.1 (55.4–77.5) 88.4 (83.7–92.2) 5.80 0.37
ML-RO-1 0.769 (0.0293) 0.719–0.814 65.8 (54.0–76.3) 88.0 (83.2–91.8) 5.49 0.39
ML-RO-7 0.767 (0.0293) 0.717–0.813 67.1 (55.4–77.5) 86.4 (81.4–90.4) 4.92 0.38
ML-RO-3 0.759 (0.0296) 0.708–0.805 65.8 (54.0–76.3) 86.0 (80.9–90.1) 4.68 0.40
ML-RO-6 0.759 (0.0296) 0.708–0.805 65.8 (54.0–76.3) 86.0 (80.9–90.1) 4.68 0.40
ML-RO-8 0.755 (0.0297) 0.703–0.801 65.8 (54.0–76.3) 85.1 (80.0–89.4) 4.42 0.40
ML-RO-0 0.753 (0.0297) 0.701–0.799 65.8 (54.0–76.3) 84.7 (79.5–89.0) 4.30 0.40
ML-RO-2 0.748 (0.0299) 0.697–0.795 64.5 (52.7–75.1) 85.1 (80.0–89.4) 4.33 0.42
ML-RO-9 0.739 (0.0302) 0.687–0.786 61.8 (50.0–72.8) 86.0 (80.9–90.1) 4.40 0.44
ML-RO-5 0.722 (0.0306) 0.669–0.770 59.2 (47.3–70.4) 85.1 (80.0–89.4) 3.98 0.48

AUC: Area under the curve; CI: Confidence interval; LR: Likelihood ratio; ML: Machine learning; RO:
Random optimization.

As shown in Table 1, most predictors had a receiver operating characteristic (ROC) curve with
an AUC ≥0.75 (the threshold generally accepted as clinically useful) [17]. Among these, ML-RO-0
was further selected as it provided a major relative importance to the group of features linked to
glucose metabolism (Group 5) (Table 2), which is currently considered an important contributor to
BC progression [18,19], at the point that metformin—an anti-diabetic drug with insulin-lowering
effects—has been proposed in combination with chemotherapy [20,21] and is currently being
considered vs. placebo in a phase-III randomized trial in early stage BC (ClinicalTrials.gov Identifier:
NCT01101438).
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Table 2. Weights of attribute groups in the training set.

Method
Group Sum of the

Weights
Normalized Group Weights

1 2 3 4 5 1 2 3 4 5

ML+RO-4 0.41890 1.04551 0.60311 0.33909 0.58969 2.996321 0.13980 0.34893 0.20128 0.11316 0.19680
ML+RO-0 0.77299 1.86062 1.39445 0.90456 1.00740 5.940053 0.13013 0.31323 0.23475 0.15228 0.16959
ML+RO-6 0.42756 0.91373 1.16514 0.39297 0.58755 3.486968 0.12261 0.26204 0.33414 0.11269 0.16849
ML+RO-8 0.44878 1.28224 0.63075 0.44350 0.53398 3.339267 0.13439 0.38399 0.18888 0.13281 0.15991
ML+RO-1 0.46149 1.17742 0.55782 0.34141 0.47660 3.014770 0.15307 0.39055 0.18503 0.11324 0.15809
ML+RO-7 0.54682 1.40025 0.79264 0.59119 0.61023 3.941154 0.13874 0.35529 0.20112 0.15000 0.15483
ML+RO-3 0.64274 1.13249 0.36078 0.39482 0.45241 2.983255 0.21545 0.37961 0.12093 0.13234 0.15165

Data are absolute numbers for group weights. ML: Machine Learning; RO: Random Optimization.

When both predictors were incorporated into a DSS model for BC progression, their combined use
(both positive, either positive, both negative) in the testing set translated in a c-statistic = 0.84 (95% CI:
0.76–0.90). The level with the best Youden index at ROC analysis (>1, i.e., risk estimate achieved by
both predictors, according to voting on the positive class) was then selected as the cutoff value for
further evaluation of the combined DSS. A comparison of the analytical performance of the trained
models and derived DSS on the testing set is reported in Table 3.

Table 3. Analytical performance of machine learning with random optimization in the testing set.

Performance Parameter ML-RO-0 ML-RO-4 DSS Model a

F-measure b 0.696 0.677 0.698
Accuracy 0.853 0.838 0.860

Area under the curve (AUC) 0.822 0.813 0.815
(+)LR (95% CI) 9.1 (4.3–20.8) 8.5 (3.9–19.6) 8.6 (4.2–18.0)
(−)LR (95% CI) 0.4 (0.3–0.6) 0.4 (0.3–0.6) 0.4 (0.2–0.5)

HR (95% CI) 10.7 (4.6–24.8) 10.3 (4.5–23.7) 10.9 (4.5–26.6)

LR: Likelihood ratio; C.I.: Confidence interval; HR: Hazard ratio; a Analytical performance was evaluated after
categorization 0/1 based on risk estimate achieved by both predictors; b F-measure represents a harmonic mean of
precision [(P) positive predictive value in machine learning] and recall [(R) sensitivity in machine learning] and is
calculated as: 2PR/(P+R).

At a criterion >1, the DSS model was capable of stratifying primary BC patients into two groups
with a low- or high-risk of progression, either in the training (n = 279; log-rank = 3.23, p = 0.001) or
in the testing set (n = 118; log-rank = 3.42, p < 0.001). Figure 1 reports the Kaplan–Meier curves of
progression-free survival (PFS) in the 136 BC women included in the testing set and followed-up for a
mean time of 3.5 years (ranging from 0.3–9.7 years). As shown, patients estimated at high risk (>1) of
progression by the combined DSS model had a 5-year progression-free survival probability significantly
lower than that observed in BC patients estimated at low-risk (≤1) (26% vs. 85%, respectively;
log-rank = 6.82, p < 0.0001).
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Figure 1. Kaplan–Meier curves of progression-free survival (PFS) of the 136 BC women included in the
testing set. Comparison between patients at high (>1) or low-risk (≤1) of progression by the combined
decision support system (DSS) model.

3. Discussion

Treatment decisions are particularly challenging in early-stage BC patients with conflicting
prognostic features, especially node-negative ones, in which the question of whether to pursue an
adjuvant treatment with chemotherapy or endocrine therapies is still unclear. Putative biomarkers,
so far, have not demonstrated sufficient predictive ability to be clinically useful. Ki67 itself lacks
reproducibility and its use, if not part of an AI model, has been largely re-dimensioned [22].

Identification of predictive tools of tumor responsiveness, risk of recurrence, and mortality,
providing the possibility to avoid unnecessary toxicities are thus very appealing. As reported above,
ML has started to take hold across the oncology community to develop prognostic classifications
models of BC progression and survivability [9]. In this regard, the possibility to perform an automated
survival prediction in metastatic cancer patients using high-dimensional electronic health records
(EHR) data has been recently highlighted [23]. By using an ML approach on EHR-derived predictor
variables (clustered into categories), Gensheimer et al., in fact, devised an AI system, with a better
c-statistic than previously reported prognostic models, which could be deployed in a DSS to help
improve quality of care in the metastatic setting [23]. More recently, four major nonlinear ML methods
(integrating multiple clinicopathological features and genomic data) were used to compare survival
predictions in a large cohort of BC patients [24]. Although no model significantly outperformed others,
the Nottingham Prognostic Index, age, tumor stage and size, ER/PR/HER2 and breast surgery status
strongly influenced survival across repeated runs and models, while the gene expression cluster was a
moderately influential factor [24].

The results here reported confirm and extend the findings by Zhao et al., as the use of an SVM
has proven effective in devising an AI-based DSS for the prognostic assessment of non-metastatic BC
patients. In particular, the combined use of ML and RO techniques, allowed the construction of a set
of prognostic discriminators from routinely collected clinicopathological features and biochemical
data of BC patients, which showed a better performance than the predictors developed by Zhao
et al. (c-statistic 0.82 vs. 0.66 and an accuracy of 86% vs. 73%, respectively) [24]. In our opinion,
this combined approach might hold potential for improving model precision through weighting the
relative importance of attributes. Moreover, with respect to models based on neural networks [7],
the combination of ML and RO techniques offers a model that can be learned with small datasets and
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that is more interpretable, as were Bayesian networks applied to BC [25]. Furthermore, the devised DSS
included a number of prognostic and metabolic parameters, not previously analyzed, that could be
easily extracted by EHR, meaning that ML may add significant and sustained benefits to personalized
medicine at no additional cost to the health system.

Of course, there are limitations to acknowledge. First, the study was mono-institutional. Second,
the sample size was relatively small, which may have lowered the power of ML. Nonetheless,
we believe that implementation of ML algorithms and RO models into high-dimensional EHR data
might help to achieve prognostic information, and has the potential to revolutionize the practice of
personalized medicine.

4. Patients and Methods

Starting from January 2007, the PTV Bio.Ca.Re. (Policlinico Tor Vergata Biospecimen Cancer
Repository) and the SR-BioBIM (Interinstitutional Multidisciplinary Biobank, IRCCS San Raffaele
Pisana, Rome, Italy) are actively involved in the recruitment of ambulatory patients with primary or
metastatic cancer, who are prospectively followed under the appropriate institutional ethics approval,
as part of a Clinical Database and Biobank project. Among these, a cohort of 454 consecutive BC
patients in whom prognostic and pre-treatment biochemical factors were available, were selected
for the present analysis. The study was performed in accordance with the principles embodied in
the Declaration of Helsinki. All patients gave written informed consent, previously approved by
our Institutional Ethics Committee (ISR/DMLBA/405, 15 November 2006). BC was pathologically
staged according to the latest prognostic TNM staging system [8]. Three hundred and ninety-seven
women (87%) had primary BC and underwent radical surgery followed by radiation and/or
adjuvant treatment as per current guidelines. The remaining 57 (13%) patients presented with
metastatic disease. Prognostic routinely-collected factors such as BC stage, menopausal status,
pathological grading as well as the St. Gallen criteria (e.g., estrogen and progesterone receptors,
HER2/neu expression and the proliferation index Ki67) were available for each patient. In particular,
grading was assessed according to the Nottingham grading system (Elston–Ellis modification of
the Scarff–Bloom–Richardson grading system) for BC [8]. The immunohistochemical analyses were
performed on formalin-fixed, paraffin-embedded tumor sections for hormone receptor presence [26],
HER2/neu expression [27] and proliferation index (Ki67) [28]. HER2/neu positivity was defined
according to the American Society of Clinical Oncology-College of American Pathologists (ASCO-CAP)
guidelines as an immunohistochemical staining of 3+ or 2+ with evidence of gene amplification by
fluorescence in situ hybridization (FISH) [27]. The Ki67 proliferative index in surgical specimens
was assigned by the pathologist based on the percentage of positivity on at least 500 neoplastic cells
counted in the peripheral area of the nodule. A cut–off value of ≥20% was used in all association
analyses, according to the recommendations of the St. Gallen International Expert Consensus on the
primary therapy of early BC 2013 [28].

Furthermore, given the increasing awareness that metabolic features might represent an important
contributor to BC progression, Type 2 diabetes, glycemic parameters and the body mass index (BMI)
were introduced in the model [18,19]. Routine biochemical analyses were performed on fresh blood
samples taken in the morning after an overnight fast at the time of enrolment and prior to any treatment
(surgery, adjuvant, either chemotherapy or endocrine, or metastatic). The demographic and clinical
characteristics of the recruited population are summarized in Table 4.
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Table 4. Clinical-pathological characteristics of breast cancer (BC) patients. Comparison between
training and testing set.

Clinical-Pathological Characteristics Training Set (n = 318) Testing Set (n = 136)

Age (years), Mean ± SD 56 ± 13 57 ± 12
Menopausal status, N (%)

Pre 141 (44) 51 (38)
Post 177 (56) 85 (63)

Body Mass Index, Mean ± SD 25.2 ± 4.5 25.7 ± 5.2
Histological diagnosis, N (%)

Ductal 263 (83) 121 (89)
Lobular 37 (12) 9 (7)
Others 18 (5) 6 (4)

Molecular Type a, N (%)
Triple-negative 39 (12) 17 (12)
Luminal-like A 97 (31) 37 (27)
Luminal-like B 172 (54) 77 (57)

HER2 pos 10 (3) 5 (4)
Grading, N (%) b

1 20 (7) 15 (13)
2 108 (39) 45 (38)
3 151 (54) 58 (49)

Tumor, N (%) b

T1 141 (50) 59 (50)
T2 91 (33) 42 (36)
T3 28 (10) 5 (4)
T4 19 (7) 12 (10)

Node, N (%) b

N0 134 (48) 54 (46)
N+ 145 (52) 64 (54)

Prognostic stage, N (%)
I 177 (56) 70 (50)
II 53 (17) 20 (15)
III 45 (14) 26 (19)
IV 4 (1) 2 (1)

Metastatic 39 (12) 18 (13)
Receptor status, N (%) c

ER+/PR+ 235 (74) 94 (69)
ER+/PR− 29 (9) 19 (14)
ER-/PR+ 5 (2) 1 (1)
ER-/PR− 49 (15) 22 (16)

HER2/neu+, N (%) c 66 (21) 34 (25)
Ki67 proliferation index ≥20%, N (%) c 204 (67) 93 (71)

Type 2 Diabetes, N (%) 39 (12) 11 (8%)
Glucose metabolic asset d

Fasting blood glucose (mg/dl), Mean ± SD 105 ± 31 102 ± 32
Fasting insulin (µIU/ml), Median (IQR) 11.9 (6.4–27.0) 10.6 (5.6–19.6)

HbA1c (%), Mean ± SD 5.8 ± 0.8 5.8 ± 0.7
HOMA Index, Mean ± SD 3.0 (1.4–8.3) 2.9 (1.2–6.3)

Follow-up (years)
Mean (range) 3.4 (0.29–10.5) 3.5 (0.26–9.65)

a According to St. Gallen Consensus Conference. b Evaluated at time of diagnosis. c Evaluated in a population
of 397 primary breast cancer patients. d Evaluated at time of enrollment and prior to any treatment. ER/PR:
estrogen/progesterone receptors; HER2: Human epidermal growth factor receptor 2; IQR: Interquartile range;
HbA1c: Glycosylated hemoglobin; HOMA Index: Homeostasis model assessment index.

The machine learning used for the primary analysis was run using the kernel-based learning
platform (KeLP) [29], as previously reported [13]. Multiple kernel learning (MKL), based on support
vector machines (SVM) and random optimization (RO) models, were used to produce prognostic
discriminators (referred as machine-learning (ML)-RO) yielding the best classification performance
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over a training (3-fold cross-validation) and testing set. The training set consisted of 318 BC patients
(70% of the dataset); the remaining 136 patients were allocated to the testing set (30% of the cases).
No significant difference was observed for demographic, clinical and biochemical characteristics
between the training and testing set (Table 4). The numerical attributes were analyzed as continuous
values. Missing clinical attribute values were treated according to the predictive value imputation
(PVI) method by replacing missing values with the average of the attribute observed in the training
set. The variables were clustered into five groups according to clinical significance. A detailed list
of all the features applied to construct the predictor is reported in Table 5. RO was used to devise
their relative weights in the final prediction. In RO, relative weights are initialized with a random
number and estimated by maximizing performance in the 3-fold cross-validation. These weights can
be used to interpret the importance of the groups of features within the model. Thus, the final DSS
is interpretable.

Table 5. Features included in the model.

Patient-Related Tumor-Related Biochemical

Group 1:
Age Menopausal status

Body Mass Index

Group 2: Molecular type
Histological diagnosis

Grading
TNM stage

Group 4: Total BilirubinCreatinine

Group 5: Fasting glycemia
Fasting insulinemia

Glycosylated hemoglobin
HOMA index (insulin resistance)

Type 2 diabetes

Group 3: Estrogen receptors
Progesterone receptors

HER2/NEU
Ki67 proliferation index

Statistical analysis

The receiver operating characteristic (ROC) curve and univariate Cox proportional hazards
analyses were performed by MedCalc Statistical Software version 13.1.2 (MedCalc Software bvba,
Ostend, Belgium). The area under the curve (AUC) was calculated on a three-level risk: 2 (if both
predictors estimated the risk), 1 (if only one predictor estimated the risk) or 0 (if both predictors did not
estimate the risk) to investigate whether the combined DSS could distinguish between recurrent and
non-recurrent patients. The level with the best Youden index (>1, i.e., risk estimate achieved by both
predictors) was selected as the cutoff value for the combined DSS. Bayesian analysis was performed,
and positive (+LR) and negative (−LR) likelihood ratios were used to estimate the probability of
BC progression. The survival curves were calculated by the Kaplan–Meier and log-rank methods
using computer software packages (MedCalc Software bvba, Ostend, Belgium and Statistica 8.0,
StatSoft Inc., Tulsa, OK, USA). The PFS represented the study endpoint and was calculated from
the date of enrollment until disease progression. The patients who had no disease progression were
censored at the time of the last follow-up. For administrative censoring, the follow-up ended on
31 December, 2017. All tests were two-tailed and only p-values lower than 0.05 were regarded as
statistically significant.

5. Conclusions

ML has recently started to take hold across the oncology community to develop prognostic
classifications models of cancer progression and survivability. In our opinion, a combined approach of
ML algorithms and RO models might hold potential for improving model precision through weighting
the relative importance of attributes. In line with the actual trend, in fact, the proposed model seeks not
only decision, but also interpretability of the model itself, which, together with the use of a real-world
BC dataset, represents the novel aspect of our research. Validation in multicenter prospective studies
and appropriate management of privacy issues in relation to digital EHR data are required before
making any ML approach into the clinical practice available.
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Abstract: Patients (pts) with head and neck squamous cell carcinoma (HNSCC) have different
epidemiologic, clinical, and outcome behaviors in relation to human papillomavirus (HPV) infection
status, with HPV-positive patients having a 70% reduction in their risk of death. Little is known
about the molecular heterogeneity in HPV-related cases. In the present study, we aim to disclose
the molecular subtypes with potential biological and clinical relevance. Through a literature review,
11 studies were retrieved with a total of 346 gene-expression data points from HPV-positive HNSCC pts.
Meta-analysis and self-organizing map (SOM) approaches were used to disclose relevant meta-gene
portraits. Unsupervised consensus clustering provided evidence of three biological subtypes
in HPV-positive HNSCC: Cl1, immune-related; Cl2, epithelial–mesenchymal transition-related;
Cl3, proliferation-related. This stratification has a prognostic relevance, with Cl1 having the best
outcome, Cl2 the worst, and Cl3 an intermediate survival rate. Compared to recent literature, which
identified immune and keratinocyte subtypes in HPV-related HNSCC, we confirmed the former
and we separated the latter into two clusters with different biological and prognostic characteristics.
At present, this paper reports the largest meta-analysis of HPV-positive HNSCC studies and offers a
promising molecular subtype classification. Upon further validation, this stratification could improve
patient selection and pave the way for the development of a precision medicine therapeutic approach.

Keywords: self-organizing map; head and neck cancer; treatment de-escalation; HP; molecular
subtypes; tumor microenvironment

1. Introduction

Worldwide, head and neck squamous cell carcinoma (HNSCC) affects more than 550,000 patient
cases/year with around 380,000 deaths annually [1]. Traditionally, alcohol exposure and tobacco
smoking are identified as exogenous risk factors. However, human papillomavirus (HPV) infection,
caused predominantly by HPV type 16, is currently recognized as an independent causal factor for the
development of HNSCC. Since the 1990s, there was a significant increase in HPV-related HNSCC in
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western countries, whilst the incidence of HPV-negative HNSCC is globally declining [2,3], in parallel
with the decline in tobacco smoking rates. This high incidence of HPV-positive cases establishes
HNSCC as one of the most common HPV-related cancers, second only to cervical cancer [4]. Moreover,
it is estimated that the annual incidence could increase and eventually surpass the annual incidence of
cervical cancer by 2020. Previous epidemiological studies showed that around 25% of all HNSCCs are
related to HPV infection, with a tendency for the oropharynx (OPSCC) to be the specific site, compared
to infection in other sites (oral cavity, larynx, and hypopharynx) [5]. It is known that HPV-related
HNSCC patients have different epidemiologic and clinical behaviors in comparison with HPV-negative
HNSCC patients, allowing the identification of HPV-positive HNSCC as a specific distinct disease
with peculiar prognostic characteristics [6]. In fact, HPV-positive HNSCC is diagnosed at a younger
age than HPV-negative HNSCC, and the five-year survival rate for HPV-positive HNSCC is 60–90%
as compared with 20–70% for HPV-negative HNSCC [7], conferring a more favorable prognosis for
HPV-positive HNSCC patients. The differences in outcomes between HPV-positive and HPV-negative
tumors were already provided, and a multitude of molecular differences comparing HPV-negative
and HPV-positive HNSCC patients were reported [8–10]. However, a clear biological picture behind
their broad diversity is not yet elucidated. Moreover, considering the better prognosis of HPV-positive
HNSCC patients compared with their HPV-negative HNSCC counterparts and the median younger
age of patients at diagnosis, the question about how to treat HPV-positive patients requires an answer.
De-escalation of treatment protocols, for this subgroup of patients, is currently ongoing [11], with the
final aim being to reduce the intensity of treatments (both chemoradiation and surgery) and the
burden of treatment-related toxicities over the next few years. A further investigation on HPV-related
HNSCC is needed. As already reported in the literature, in addition to the diversity of HPV-positive
HNSCC compared with HPV-negative HNSCC, it is possible to also observe an intrinsic biological
heterogeneity in the HPV-positive HNSCC. In particular, we refer to Keck et al. [12], who identified
two different clusters on the basis of their gene expression, and to Zhang et al. [13], who classified
these two groups as HPV-positive immune-related (HPV-IMU) and HPV-positive with keratinocyte
differentiation (HPV-KRT) HNSCC. Both of these studies had the ability to explore the biology related
to HPV infection, unfortunately without showing a significant survival difference.

High-throughput technologies allow the assessment of thousands of features, posing challenges to
data analysis. To deal with increased data complexity, researchers apply machine learning approaches to
improve biological knowledge via intuitive visualization, even at single-sample resolution. This allows
questions, such as biomarker discovery and functional biological information mining, to be addressed.
A particular method, self-organizing maps (SOM), provides important benefits including dimension
reduction, multidimensional scaling, visualization capabilities over alternative methods such as
non-negative matrix factorization, and hierarchical clustering [14]. SOM gained immediate attention
in the bioinformatics field, and early microarray studies reported its application [15,16]. Since then,
a number of studies on different cancer types proved its robustness [17,18].

In the present analysis, we focused our attention on HPV-positive HNSCC with annotated gene
expression data and clinical annotations by exploiting a meta-analysis approach. We applied the SOM
machine learning method on a total of 346 HPV-positive tumor samples. This allowed us to dissect the
molecular heterogeneity of the disease and to make suggestions for de-escalation treatment.

2. Results

2.1. Case Material

In order to dissect the molecular heterogeneity in HPV-positive HNSCC, 11 eligible published
studies reporting gene expression data were selected for a systematic survey (Table S1, Supplementary
Materials). Of these studies, all but one utilized microarray technology for gene expression analysis,
and, in the majority of cases, HPV status was assessed with qPCR or HPV genotyping. The resulting
meta-analysis dataset, containing 346 samples and 8254 EntrezID genes, was used for the genomic
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analysis. HPV infection was assessed by p16 immunohistochemistry (IHC) (13 cases, 4%) or DNA
or RNA from HPV testing (333, 96%) (Table S1, Supplementary Materials). All the methods used are
recognized and utilized in clinical practice [19].

According to the clinical information (Table 1), a male preponderance (83%) and median age of
58.7 years (range, 35–87) were observed, in line with the epidemiological data reported in the literature.
The main subsite of origin was the oropharynx (68%), followed by the oral cavity (17%), larynx (6%),
and hypopharynx (3%). Stages, assessed following malignant tumor classification system (TNM
edition 7, American Joint Committee on Cancer, AJCC), were divided into stages I–II (35), stages III–IV
(229), and information not available (82). Locally advanced stages (III–IV) were the most represented
(66%), followed by not available (24%) and early stages (I–II; 10%). Survival data were available for
197 cases (57%) and not present for 149 cases (43%). Smoking habits were reported for 245 patients
(169 smokers, 76 never smokers), and were unknown for 101 patients (Table 1).

Table 1. Demographic and clinical data of the head and neck squamous cell carcinoma (HNSCC)
human papillomavirus (HPV)-positive patients entered in the meta-analysis.

Characteristics No. %

Age, years

(median; range) 57 (35–87) 77%

Not available 78 23%

Gender (male:female ratio) 287/59 83%/17%

Subsite

Oropharynx 235 68%

Oral cavity 59 17%

Larynx 20 6%

Hypopharynx 10 3%

Not available 22 6%

Stage according to TNM edition 7

Stage I–II 35 10%

Stage III–IV 229 66%

Not available 82 24%

Smoking

Smoker 169 49%

Not smoker 76 22%

Not available 101 29%

Availability of follow-up data

Yes 197 57%

No 149 43%

Total 346 100%

2.2. HPV-Positive HNSCC Tumor Clusters: First-Level Self-Organizing Map (SOM) and Unsupervised
Clustering Analysis

We applied the SOM machine learning algorithm to convert the meta-analysis dataset into a matrix
of meta-gene expression data. Starting from the 8254 genes, we imposed the log-intensity variation
p-value < 0.01, and a data matrix of 3498 genes was yielded. These 3498 genes were aggregated
in meta-genes (average 10 genes each), resulting in a matrix of 18 × 18 meta-genes. Consensus
unsupervised clustering was applied on the meta-gene data, revealing three clusters of samples.
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The cluster had well-defined boundaries, as shown by the consensus heatmap (Figure 1a). To exclude
the existence of under-represented clusters, the consistency of sample assignment was evaluated by
silhouette plot analysis. The resulting clustering configuration was appropriate (Figure 1b), since most
samples in each cluster had a positive value (average < s >: Cluster 1, Cl1 = 0.68; Cluster 2, Cl2 =
0.53; Cluster 3, Cl3 = 0.48). Only seven samples (two belonging to Cl2 and five belonging to Cl3),
corresponding to 2% of the entire case material, had negative values but were in the range between
−0.01 and −0.04. These seven samples were assigned by silhouette analysis, as follows: two Cl2
samples to Cl1, three Cl3 samples to Cl2, and three Cl3 samples to Cl1. We assessed the sample
size adequacy by estimating the power for the detection of the three clusters; the robustness of the
classification was ensured since at least 87% of genes had a power level of 0.9 (Figure S1, Supplementary
Materials). By training the SOM algorithm, each sample was portrayed by displaying its molecular
fingerprint. The generated subtype SOM images revealed a series of adjacent mosaic tiles coherently
over- or under-expressed, and the resulting gallery of SOM portraits was used to intuitively visualize
the coherent cluster patterns. In this way, we highlighted cluster-specific tiles in the SOM portraits,
independent of the patient’s individuality (Figure 1c).

 

Figure 1. Human papillomavirus (HPV)-positive head and neck squamous cell carcinoma
(HNSCC) tumor clusters: first-level self-organizing map (SOM) and unsupervised clustering analysis.
(a) Consensus matrix heatmap imposing three clusters: Cl1 (n = 134; 39%), Cl2 (n = 104; 30%), and
Cl3 (n = 108; 31%). The consensus values are reported in a range from 0 (white, samples that never
cluster together) to 1 (blue, samples showing the highest clustering affinity). (b) Silhouette plot
analysis. The samples are ranked based on silhouette values (S) in each cluster. The heights indicate a
strong similarity of the samples within their clusters compared with the samples belonging to other
clusters. The colors in the lower bar show the predicted membership by silhouette analysis; the colors
correspond to the consensus clustering assignment for all samples with the exception of the seven
samples with a negative number but close to 0. (c) First level of the SOM gallery of the three clusters
with cluster-specific tiles highlighted. The expression patterns are translated into a color code indicating
over- and under-expression in a range from red to blue spots, respectively.
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We also investigated the influence related to technical sources of variability on our findings.
An alluvial diagram was used to show the three-cluster membership, based on the study of origin
and the platform used for the expression profiling (Figure 2). The percentage of variation, explained
by these variables, was investigated compared with the variation associated with the present cluster
stratification, and this is summarized in the violin plots (Figure S2, Supplementary Materials).
Our findings supported the biological value behind our three-subtype stratification, with a negligible
influence of technical covariates.

Figure 2. Alluvial diagram. In the diagram, each of the blocks corresponds to the number of features,
and the stream fields between the blocks represent changes in the composition of the different blocks.
The sizes of the blocks are proportional to the number of samples. We explored the cluster membership
taking into account (i) the study of origin of each sample (11 strata); (ii) the different technology
platforms used for expression profiling (five strata). Study of the origin: χ2 test = 12.08, p-value = 0.913;
Platform χ2 test = 5.93, p-value = 0.655.

2.3. HPV-Positive HNSCC Cluster Similarity Relationships: Second-Level SOM

The second-level SOM analysis investigated the similarity relationships among the first-level
sample SOM portraits.

We applied three different sample similarity approaches to estimate the mutual distances among
samples, based on metagene expression data and using different metrics and algorithms. The first
approach, independent component analysis (ICA), displayed three clusters supporting the identified
stratification, although the boundaries between them were not strictly defined (Figure 3a, left panel).
Additional information could be retrieved from the three independent components (component 1,
component 2, and component 3): the projections onto the component 1/component two axes (Figure 3a,
right lower panel) segregated Cluster 1 (Cl1, green spots) from Cl2 and Cl3 (blue and red spots,
respectively); however, regions of high density Cl2 and Cl3 showed distinct behavior without clear
separation. On the contrary, when the component 1/component three axes were considered, Cl2 and
Cl3 were more clearly divided (Figure 3a, right upper panel).

As a second alternative metric, we investigated a correlation network approach: the resulting
structure was visualized into a graph to highlight the correlation network (Figure 3b), and it confirmed
the presence of a main cluster including Cl1 with few connections to Cl2 and Cl3.

The third approach exploited a Euclidean distance-based approach through the resolution of
neighbor-joining (NJ) clustering, which projects the relationships among samples in phylogenetic trees
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(Figure 3c). The NJ dendrogram was able to disclose finer details than the previous approaches, and it
revealed inherent substructures and their connections in each cluster. By visual inspection, most Cl1
samples were segregated into clearly different branches from Cl2 and Cl3 branches, which, in contrast,
appeared tightly correlated.

Figure 3. HPV-positive HNSCC cluster similarity relationships: second-level SOM. (a) Independent
component analysis of meta-gene data. Samples were distributed along the three leading independent
components; the plots show the three-dimensional distribution and the projections into the component
1/component 2 (lower panel) and component 1/component 3 (upper panel) dimensions. (b) Sample
correlation network. The samples are visualized by nodes connected by edges with a backbone
structure linking samples with the highest correlation. The similarity between samples is represented
by their reciprocal distance; closer nodes have higher similarity and distant nodes have lower similarity.
(c) Neighbor-joining analysis. The sample similarities are summarized in a phylogenetic tree structure
computed using Euclidean distance. The neighbor-joining (NJ) analysis visualizes “bush-like” groups
of similar samples by assessing their mutual dissimilarity.

Finally, we investigated the relationship among meta-genes characterizing the three identified
subtypes. The process of detection of coherent expression of meta-genes in SOM portraits highlighted
specific molecular features for each subtype. Indeed, the resulting map defined three over-expression
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regions, each of them located in distinct corners of the map. These regions corresponded to SOM
clusters of co-regulated meta-genes (Figure 4a). The association of meta-genes to each cluster in precise
map locations (left panels) and to a bar plot of expression intensity (right panels) better confirmed and
defined the differences between subtypes: 54, 93, and 57 meta-genes had positive correlations with
Clusters 1, 2, and 3, respectively (r = 0.77, r = 0.53, r = 0.67) (Figure 4b).

Figure 4. Subtype characterization by group overexpression maps. (a) The 18 × 18 map of meta-genes
summarizes the expression landscapes over the three subtypes; according to this analysis, co-regulated
meta-genes are located in the opposite corners of the map. (b) Detailed analysis of metagenes
overexpressed in each subtype: map location (left panels) and bar plot of expression intensity (right
panels). The bar plot represents the average meta-gene expression of each sample for the selected tiles.

2.4. Tumor Microenvironment Landscape

The xCell tool was applied for the detection and evaluation, if present, of any differences in the three
clusters, regarding microenvironment components. According to a dimensionality reduction technique
(t-distributed stochastic neighbor embedding, t-SNE), we obtained two-dimensional coordinates that
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clearly segregated the three molecular clusters. It provided evidence about the existence of unique and
defined biological subtypes (Figure 5a). To better disclose the properties of each subtype, the composite
scores of immune cells (ImmuneScore), stromal cells (StromaScore), and the score of keratinocytes were
calculated. Cl1, compared to Cl2 and Cl3, was characterized by enrichment of immune components
(p-value = 9.9 × 10−29) (Figure 5b) and under-expression of keratinocytes (p-value = 2.03 × 10−32)
(Figure 5c). On the contrary, Cl2 and Cl3 showed similar enrichment in keratinocytes, but a lower
immunoscore. Cl2 and Cl3 were clearly separated when compared in terms of stromal components,
with Cl3 significantly decreased (p-value = 6.3 × 10−18) compared with the two other two subtypes
(Figure 5d).

Figure 5. Tumor microenvironment landscape. (a) Visualization of the immune and “other cell”
infiltrates assessed by xCell. Individual patients are summarized based on two-dimensional coordinates
from the t-distributed stochastic neighbor embedding (t-SNE) method. The notched boxplots show the
ImmuneScores (p-value = 9.9 × 10−29) (b), keratinocytes scores (p-value = 2.03 × 10−32) (c), and stromal
cell infiltrates (p-value = 6.3 × 10−18) (d) split into the three different subtypes.

2.5. Functional Analyses of Subtypes

To disclose the biological properties associated with each of the three resulting clusters, further
functional characterization was performed using Gene Set Enrichment Analysis (GSEA). GSEA is
a method used to test the overrepresentation of genes in gene sets, which are characterized by
independent studies. We investigated the “Hallmark” gene set collection representing specific
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well-defined biological processes. In particular, our analysis provided evidence of a specific enrichment
for each cluster. Cl1 showed enrichment in immune-related hallmarks, such as “allograft rejection”,
“IFN, interferon gamma”, and “IL6 JAK STAT3 signaling”; Cl2 overexpressed genes related to the
hallmarks “epithelial–mesenchymal transition” (EMT), “myogenesis”, and “hypoxia”; Cl3 displayed
enrichment in proliferation-related hallmarks, e.g., “E2F targets” and “G2M checkpoint” (Table 2 and
Figure 6).

Table 2. Gene-sets significantly up-regulated in each cluster.

Gene-set ID
HALLMARK

Gene-Set Name
Genes a NES b Nom

p-Value
FDR
q-val

Cl1 vs. Cl2 and Cl3

GS-1
ALLOGRAFT REJECTION

(immune resp)
130 2.89 <0.00001 <0.00001

GS-2
INTERFERON GAMMA

RESPONSE
151 2.18 <0.00001 <0.00001

GS-3
IL6 JAK STAT3
SIGNALING

60 1.94 <0.00001 <0.00001

GS-4
INFLAMMATORY

RESPONSE
132 1.76 <0.00001 0.0018

GS-5 KRAS SIGNALING UP 114 1.75 <0.00001 0.0019

Cl2 vs. Cl1 and Cl3

GS-1
EPITHELIAL

MESENCHYMAL
TRANSITION

140 3.01 <0.00001 <0.00001

GS-2 MYOGENESIS 119 2.42 <0.00001 <0.00001
GS-3 COAGULATION 77 2.23 <0.00001 <0.00001
GS-4 ANGIOGENESIS 19 2.02 <0.00001 <0.00001
GS-5 HYPOXIA 133 1.90 <0.00001 <0.00001
GS-6 HEDGEHOG SIGNALING 17 1.89 0.0020 <0.00001
GS-7 UV RESPONSE DN 97 1.78 <0.00001 0.0020
GS-8 APICAL JUNCTION 137 1.78 <0.00001 0.0020

Cl3 vs. Cl1 and Cl2

GS-1 E2F TARGETS 143 2.56 <0.00001 <0.00001
GS-2 G2M CHECKPOINT 150 2.24 <0.00001 0.0020

GS: geneset; thresholds: FDR ≤ 0.005; NES≥1.75, a Number of total genes present in the geneset, b NES = normalized
enrichment score.

Figure 6. Cont.
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Figure 6. Visualization of the Gene Set Enrichment Analysis (GSEA) functional analysis for each of
the three clusters. The boxplots show how the gene set Z score (GSZ) values (depicted in y-axis)
are distributed within each of the three clusters (Cl1, green; Cl2, blue; Cl3 red). In each row,
comparisons of the GSZ score values for the two most enriched hallmark gene sets are shown:
for Cl1, over-expression is shown for the “immune response” hallmark (p-value 1.09 × 10−40) and
“interferon (IFN)-gamma response” hallmark (p-value = 9.32 × 10−14); for Cl2, enrichment is shown in
the “epithelial–mesenchymal transition (EMT)” hallmark (p-value = 4.30 × 10−33) and “myogenesis”
hallmark (p-value = 9.68 × 10−19); for Cl3, over-expression is shown in the “E2F targets” hallmark
(p-value = 2.68 × 10−18) and “G2M checkpoint” (p-value 2.10 × 10−13). The p-values were obtained by
means of Kruskal–Wallis tests.

2.6. HPV Presence/Integration and Its Association with Clusters

We investigated the association between HPV viral integration and our three clusters, using the
data provided by Koneva et al. [20]. Table S2 (Supplementary Materials) shows the contingency table
for the TCGA cases analyzed in Koneva et al., reaching a significant association of χ2 =12.32 and a
p-value = 0.00212; the relative presence of HPV integrated cases in each subtype increased in the order
Cl1 < Cl3 < Cl2, with relative frequencies of 0.45, 0.77, and 1, respectively. Moreover, we explored the
expression of viral genes (E2, E4, and E5). The expression patterns in Cluster 2 are consistent with viral
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integration. When integrated, the expression of the E2 gene is reduced, since it is truncated along with
downstream genes such as E4 and E5 (Figure S3).

2.7. Prognostic Values of the Three-Subtype Classification

Due to the robust analysis revealing three distinct HPV-positive HNSCC subtypes, we aimed to
investigate their associations with overall survival as the clinical endpoint. Outcome data (i.e., overall
survival; OS) were available for 75/134 Cl1 patients, 56/108 Cl2 patients, and 66/104 Cl3 patients, for a
total of 197 patients. As depicted in Figure 7a, the results showed a significantly better outcome for Cl1
subtype patients, with a survival probability at 60 months of 0.809, and a worst outcome for Cl3 and
Cl2 subtypes, with a survival probability at 60 months of 0.47 and 0.197, respectively (log-rank p-value
= 4.76 × 10−9).

Figure 7. Prognostic evaluation of the three-subtype stratification. (a) Survival analysis on the
meta-analysis dataset (MetaHPVpos). The 197 cases, entered into the three subtypes (75/134 Cl1
patients; 56/108 Cl2 patients; 66/104 Cl3 patients), were used for the Kaplan–Meier analysis, yielding
a log-rank score of p-value = 4.76 × 10−9. The endpoint was overall survival. (b) Gene-signature.
Two models were evaluated: (i) radiosensitivity index (RSI), (ii) the 172-gene prognostic model. RSI is
directly proportional to radioresistance (high index = radioresistance), while the 172-gene model is
directly proportional to the risk of recurrence. Stratification by both signatures reached p-value = 8.76
× 10−13 and p-value = 7.98 × 10−22 for the RSI and 172-gene model, respectively. (c) Validation on
GSE112026. The 47 cases belonging to GSE112026 were stratified based on our three subtypes: 18, 18,
and 11 cases were predicted as belonging to Cl1, Cl2, and Cl3, respectively. The cases, entered into
the three identified subtypes, were used for the Kaplan–Meier analysis, yielding a p-value = 0.0152
(log-rank test).

Furthermore, we applied two different gene expression published signatures to the 197
HPV-positive HNSCC patients with available follow-up information: (i) the 172-gene model,
a prognostic model for HNSCC [21]; (ii) the radiosensitivity index (RSI) [22], a gene signature
developed as a pan-marker of cellular radiosensitivity. In order to assess whether and to what extent
the signatures were associated with HPV-related subtypes, we applied the algorithms developed [21,22]
to our cohort. The resulting scores were compared to the three-subtype stratification. A significant
relationship was found between our stratification and these molecular signatures (Figure 7b). In detail,
the Cl1 subtype showed the lowest 172-gene signature related score, meaning that Cl1 has the minimum
predicted risk, as confirmed by OS. Furthermore, Cl1 displayed the lowest RSI value, which predicted
its radiosensitivity. On the contrary, Cl2 subtype exhibited the highest score in the 172-gene signature,
and the maximum RSI score, compared with the other two subtypes, predicting its high risk and
intrinsic radioresistance, respectively. The Cl3 subtype showed an “intermediate” behavior, with all
three analyses (OS, 172-gene signature score, and RSI).
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The clinical relevance of our classification was additionally investigated and associated with
the outcome in an external validation dataset. For our analysis, we retrieved the RNA-sequencing
(RNA-seq) data of Ando et al. [23], which included 47 HPV-positive oropharyngeal squamous cell
carcinomas. With this external validation, we confirmed that the three-subtype stratification provides
useful prognostic information. As a matter of fact, better outcomes were associated with patients
belonging to Cl1/Cl3 subtypes, and worse outcomes were associated with patients belonging to Cl2
subtype (Figure 7c) (log-rank p-value = 0.0152). Finally, we investigated the association between
clinal features and our molecular stratification. Table S3 (Supplementary Materials) reports the data
related to gender, age, smoking habit, site, and TNM v7 stage. We found a significant association with
site having Cl2 a higher percentage of cases other than oropharynx. In addition, due to its potential
prognostic role, smoking habit was associated with the three subtypes. There was a trend in the different
distribution of the smoking habit with higher percentage of smokers in Cl2. Table S4 (Supplementary
Materials) reports the association for Ando’s dataset including gender, age, smoking, Ang et al. (2010)
classification system, smoked packs per year, alcohol use, t-stage, and n-stage. We found a significant
association with t-stage, having Cl2 cases a higher percentage of T3–4.

3. Discussion

Among HNSCCs, the HPV-positive tumors are an independent entity with specific clinical and
molecular characteristics. Moreover, inside the HPV-positive subgroup, it is additionally possible
to observe an intrinsic heterogeneity, in terms of patients’ outcomes. This assumption questions
whether treatment de-intensification could be applied to all HPV-positive HNSCCs. Clinical factors,
such as large tumor burden and smoking history, correlate with a worse prognosis, but the biological
mechanisms elucidating the complexity of the HPV-positive subgroup are still not fully understood.
In the present meta-analysis of transcriptomic data, we applied a rigorous and up-to-date bioinformatics
analysis to 346 HPV-positive HNSCCs with published sample data. To the best of our knowledge,
this is the largest cohort of HPV-positive HNSCCs analyzed up until now. Specifically, our study
identified three tumor subtypes, and it further dissected a population, which was previously divided
into only two subgroups by published studies [12,13,24]. In agreement with these findings, we clearly
identified an immune-associated cluster (named Cl1 in our analysis). In addition, we stratified the
remaining patients (previously described as one “keratinocyte subtype” cluster [13,24]) into two well
distinct subtypes with clearly defined biological and prognostic characteristics. The stratification
refinement could be attributed not only to the dimension of the analyzed cohort (from two to three
times larger than in previous studies), but also to the application of the NJ analysis, which revealed a
degree of heterogeneity moving from Cl2 to Cl3 samples with disjointed branches.

In general, HPV-related HNSCCs are known to have better outcomes when compared with
HPV-negative HNSCCs [25]. The observed overall survival of our cohort of patients is aligned with
the reported prognostic data. However, our analysis displayed a specific prognosis for each cluster,
identifying those HPV-positive cases with the best, intermediate, and poorest prognoses. Interestingly,
the subtype stratification did not provide evidence of a significant association with smoking habit,
but highlighted some specific biological traits for each cluster that could help in interpreting their
different outcomes.

Cluster 1 patients exhibited the best outcome at five years and it showed similar behavior to those
patients identified as having low-risk HPV-related HNSCC [25]. Additionally, Cl1 was clearly separated
from the other two clusters by its high immune score in the xCell analysis, and by upregulation of
the hallmarks “IFN, interferon gamma signaling” and “IL6 JAK STAT3 signaling”. The high immune
score, associated with a good outcome, could be in agreement with the hypothesis that, in these
patients, the immune system plays an important role in the clearance of viral proteins expressed
in HPV-positive cancers [26]. Indeed, tumors enriched by the IFN-gamma signature may benefit
from immunotherapy [27]. On the contrary, the IL6/JAK/STAT3 pathway hyper-activation is more
difficult to interpret in the context of a better prognosis. In fact, IL6/JAK/STAT3 signaling is expected
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to drive proliferation, survival, and invasiveness of tumor cells, and to suppress the anti-tumor
immune response. Overall, we could assume that, in Cl1, the immune infiltrate, as determined by the
ImmuneScore, and the high “IFN, interferon gamma signaling” could counterbalance the pro-tumoral
action of IL6 JAK STAT3 signaling; however, specific functional assays are necessary to confirm
this assumption. Considering the better prognosis and the biological profile, we could hypothesize
that Cl1 patients would be the best candidate for de-escalating treatment strategies, even including
checkpoint inhibitors.

Cluster 2 exhibited the worst outcomes, and it strongly differed from the other two subtypes by
its high stromal score. Essentially, this score reflects fibroblast infiltration, and it frequently leads to
deregulation of EMT-inducing factors, EMT upregulation, and hallmark “hypoxia” overexpression.
The EMT changes in tumor cells were reported to be linked to the acquisition of aggressive behaviors
including (i) increased invasive properties, (ii) resistance to DNA damage, (iii) chemotherapy-induced
apoptosis, (iv) immunosuppression, and (v) acquisition of stem-like features [28]. In addition,
the increase in the hallmark “hypoxia” is in agreement with the radioresistance detected by
RSI [29]. We hypothesize that treatment intensification could be beneficial for these patients. As an
example, an accelerated fractionation schedule of radiotherapy should be considered as a strategy to
overcome radioresistance.

Cluster 3, characterized by an intermediate outcome compared with the other two clusters, was
clearly defined by upregulation of the hallmarks “E2F targets” and “G2M checkpoint”, both associated
with increased proliferation. A possible explanation for these data may be the interpretation of boosted
proliferation as a result of the integration of the viral genome in the host cell. Moreover, upregulation
of the hallmarks “E2F targets” and “G2M checkpoints” is in agreement with the observation that the
HPV genome does not encode enzymes necessary for viral replication [26]. Instead, the virus utilizes
host cell proteins to replicate its DNA. Therefore, basal cells containing HPV genomes remain active in
the pathway related to the cell cycle, also due to Rb degradation. The E2F transcription factor, without
Rb function, is free to drive the expression of S-phase genes [26,30]. A first explorative investigation,
between the viral integration and our three clusters using data provided by Koneva et al. [20], revealed
a significant association between the integration of HPV in the host genome and each of our subtypes
in the following order: Cl1 < Cl3 < Cl2 (Figure S2, Supplementary Materials). Despite the analysis
being performed on a limited number of samples, Cl2 seemed to be in accordance with cases already
described in literature, in which HPV was integrated and viral integration was associated with a poor
prognosis [31]. Nevertheless, in this regard, Cl3 shows an intermediate behavior, which may possibly
be explained through Nulton discovery [32]. Indeed, HPV infection is described not only as its usual
integrated and episomal state but, additionally, as a third state where the viral genome exists as both
episomal and integrated states. Anyway, the proposed associations require further evaluation, for not
only exploring the HPV state, in terms of integration, episomal, and intermediate states, but also to
examine possible target amplification.

Some limitations of this study and some differences with more recent data should be mentioned.
Based on the clinical characteristics of the analyzed patients, we observed a relatively high number of
missing clinical data (near to 30% in age and stage). The possible explanation for the unavailability
of these data could reside in the nature of the studies included in our meta-analysis, which had the
biological description of the HPV tumors as a primary endpoint and, accordingly, an inconsistent
collection of clinical data was performed.

It is noteworthy that HPV-related tumors in subsites, other than the oropharynx, reached a
higher percentage than expected (10%). We hypothesize that this difference could be attributed to the
sample collection in the years before the clear prognostic role of HPV infection in oropharynx cancers.
In fact, the new TNM staging system (American Joint Committee on Cancer, 8th edition) distinguishes,
for the first time, HPV-related from HPV-unrelated oropharynx cancers by stratifying according to p16
expression. The prognostic value for other subsites (i.e., oral cavity, hypopharynx, larynx) other than
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the oropharynx is still debatable, although a recent review demonstrated a prognostic role for HPV
infection in all HNSCC subsites [33].

Considering the prognostic role of our stratification, three subtypes, with different outcomes,
were described for the first time. An identified limitation could be the fact that treatment was not
systematically recorded, and the overall survival of our case series was poorer than the expected
outcome [25]. Moreover, another limitation was identified: the association of subtypes and prognoses
should be underscored, although we should highlight that the follow-up was only available for 197
out of 346 (57%) cases. A further bias is related to the differences in treatment techniques used in the
last 15 years (e.g., three-dimensional (3D) vs. intensity-modulated radiotherapy; trans-oral robotic
surgery, TORS, robotics vs. traditional open surgery).

In conclusion, ongoing trials on de-escalation treatment approaches in HPV-positive HNSCC
are based only on HPV status and do not take the contributions of genomics and molecular profiles
into consideration [34]. It is conceivable that, upon rigorous validation, our stratification could help
develop a “precision treatment approach” based on the genomic profile of HPV-related HNSCC to
select patients.

4. Materials and Methods

4.1. Case Material: Gene Expression and Clinical Data

A survey of gene-expression data on HNSCC (available at 31 August 2018) was accomplished.
The cases entered into our study were selected based on the following eligibility criteria: (i) primary
lesions of squamous cell carcinoma; (ii) reported HPV status, according to the clinical practice
in the reference center; (iii) MIAME (Minimum Information about a Microarray Experiment) [35]
complaint data with the availability of raw data deposited on publicly accessible repositories and
full gene annotation (Gene Bank accession or EntrezID). After literature revision, there were 11
datasets [12,36–45]. See Table S1 (Supplementary Materials) for details regarding the datasets including
the accession numbers and methods of HPV detection. Raw microarray data were retrieved from the
NCBI (National Center for Biotechnology Information) Gene Expression Omnibus (GEO) database [46],
ArrayExpress (the EMBL European Bioinformatics Institute, UK) [47], MIAME-Vice [48], and TCGA
repositories [49] and were integrated into a unique dataset through a meta-analysis approach, as
previously described [50].

In addition, we collected available clinical data related to this case material, comprising age at
diagnosis, gender, smoking habits, tumor subsite, stage, and overall survival.

For validation purposes, we retrieved the data from Ando et al. [23], which are publicly available on
the GEO repository (identifier (ID): GSE112026). A cohort of 47 primary tumor tissues with HPV-related
oropharyngeal squamous cell carcinoma was collected for RNA-seq analysis and microdissected to
yield at least 80% tumor purity. HPV tumor status was confirmed by in situ hybridization for
high-risk HPV subtypes or p16 immunohistochemistry. According to the TCGA RSEM (RNA-Seq
by Expectation Maximization) pipeline, RNA-seq data were processed using RSEM version 1.2.9
and upper quartile normalization. For class prediction purposes, analyses were performed through
R-based BRB-ArrayTools software (version 3.5.0) developed by Richard Simon and the BRB-ArrayTools
development team [51]. A class prediction method based on a supervised learning method was applied
for classifying GSE112026 cases. Prediction was based on the support vector machine (SVM) method
by incorporating genes at the univariate significance level (α = 0.001) in a binary tree classification
framework, which was chosen due to its ability to classify more than two classes. SVM is specifically
designed to address binary classification; however, it can be adapted to handle multi-class classification
by building a sequence of binary classifiers. The prediction error of the binary tree classifier was
estimated by the leave-one-out cross-validation method.
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4.2. Data Preprocessing for Meta-Analysis Dataset Generation

The selected studies were analyzed with four platforms, including three microarray platforms
(Affymetrix, Agilent, and Nimblegene) and one RNA-seq (Illumina). For Affymetrix data, signal
intensities were normalized within each individual dataset using a robust multi-array average (RMA)
tool. For Agilent data, the normexp background correction and loess normalization were used for
two-channel arrays, while quantile normalization procedures were applied to the probe-level data.
For Illumina microarray data, quantile normalization was applied. For RNA-seq data, TCGA level 3
files were downloaded along with the clinical annotations and used for the analysis. The redundancy
of probes mapping the same EntrezID was removed by selecting the probe with the highest variance
among multiple probe-sets by identifying the same gene; collapse was performed using WGCNA
package 1.63 (function: collapseRows) and the “maxRowVariance” method [52]. To reduce the likelihood
of systemic non-biological technical experimental biases among data from different platforms, after
log2 transformation, the ComBat algorithm was applied [53]. Then, the expression value of each gene
was averaged over all samples of our data matrix, converting the expression data into the change
in log-expression (∆ei,m) of gene i in sample m; ∆ei,m = 0 implies an expression level according to its
mean value, while a relative positive or negative value refers to over- or under-expression, respectively,
according to the mean gene expression.

4.3. Tumor Clusters: First-Level SOM

The ∆ei,m data matrix was used to train a SOM, an unsupervised machine learning method based
on the artificial neural network, enabling the dimensionality reduction of complex data structures of
size N ×M (N: number of genes; M: number of samples) to K ×M (K: number of meta-genes), where
K <<N, promoting the discovery of qualitative relationships among samples [54]. Each meta-gene
represents a cluster of genes sharing similar expression profiles and was selected by an interactive
machine learning process by SOM; the process was trained until the meta-genes captured the entire
range of expression patterns present in the data matrix. SOM algorithm data analysis and landscape
visualization were performed using the “oposSOM” R package (version 1.18.0) [55], which uses the
“som” R package [56]. A statistical significance criterion based on expression variance was applied
to discard the non-informative features in our data matrix through the BRB-ArrayTools developed
by Dr. Richard Simon and the BRB-ArrayTools Development Team [57]. The procedure assigns each
input gene measured in M samples into a meta-gene of the same length, and each gene is included in a
meta-gene, ∆ei,m

meta, of closest similarity established by the Euclidian distance. The meta-genes are
organized in a two-dimensional grid of K = x × y tiles with the most similar expression profiles of
meta-genes adjacent each to another, while the dissimilar ones are more distant. In the present study, we
adopted a tile size with an average of nk ≈ 10 genes per meta-gene, corresponding to a two-dimensional
grid of size K = 18 × 18 meta-genes with square topology and the Gaussian neighborhood function [14].
The meta-genes were normalized to fit into the range −1 ≤ ei,m

meta ≤ 1 and coded by a color scale from
blue (low expression) to red (high expression).

4.4. Tumor Clusters: Unsupervised Clustering Analysis

The R-package “ConsensusClusterPlus” [58] was applied to portion the samples into molecular
coherent subtypes. The meta-data ∆ei,m

meta were used as input for unsupervised class identification
using partition around medoids (PAM) clustering with 1-Pearson correlation as the distance matrix.
The PAM algorithm [59] is similar to the K-means algorithm, with both being partitional algorithms
that split the dataset into clusters and try to minimize the error. However, while K-means works
with centroids, which are artificially created entities that are representative of each cluster, PAM
chooses real data-points as cluster centers. An unsupervised clustering procedure was applied to the
data through 1000 re-sampling interactions by randomly selecting a fraction of the samples. Cluster
numbers ranging from 2 to 10 were tested, and the empirical cumulative distribution function (CDF)
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and delta area plots displaying consensus distributions were assessed to identify the number of clusters
giving maximum stability with a negligible increase in the CDF area [60]. To estimate the accuracy of
the classification, the silhouette correlation width values were calculated for all samples (R-package:
“oposSOM”), providing a graphical representation of how well the samples lay within their assigned
cluster. The silhouette values ranged from +1 to −1, indicating the degree of similarity of a sample to
the assigned cluster (cohesion) or to other clusters (separation). The evaluation of sample size adequacy
of the identified clusters was assessed according to Warnes and Liu (R-package: “ssize”) [61] and
computed by imposing the type I error rate (false discovery rate, FDR), α = 0.05, and a minimum effect
size (log fold-change) of ∆ = 1. Cluster-specific portraits represent the mean value of each meta-gene
of the samples belonging to the cluster in detail. The portraits are depicted in a log (fold-change)
scale where the fold-change is the expression difference compared with the mean expression in all
samples. To ascertain to what degree technical variability (i.e., study of origin and platform) affects
our subtype clustering analysis, we used the “alluvial diagram”, a variant of the parallel coordinates
plot that is helpful for exploring categorical data by grouping them into flows that can easily be
traced in the diagram [62]. The plots were generated using the R-package “alluvial”. In addition,
we used a linear mixed model to quantify the extent of technical variability in each sample through
the “variancePartition” R package [63]. To visualize the contribution of each variable, violin plots were
depicted to show the trend and rank the distribution of variance explained by each variable across all
genes. The plots summarize the results in terms of the percentage of variance explained.

4.5. Cluster Similarity Relationships: Second-Level SOM Cartography

Second-level SOM analysis aims to address the issue of similarity relationships among groups of
samples. It estimates the hierarchy of similarities and mutual distances based on the expression of
meta-genes, and it provides improved visualization and representativeness of the results. To infer the
main structures present in our data, we applied three approaches for computing the distance metrics.

Independent component analysis (ICA) [64] was applied to the SOM meta-genes using the
“fastICA” R package [65], a method based on the covariance matrix assessed by Pearson’s correlation to
decompose the input meta-genes into independent and non-Gaussian components in order to ensure
that each one is statistically as independent from the others as possible.

The correlation backbone through a two-nearest-neighbor graph is a correlation network approach
where Pearson correlations are computed between all pairwise combinations of samples, and their
structures are visualized in a graph.

The NJ algorithm (“ape” R package [66]) is a distance-based method offering phylogenetic tree
reconstruction where similarity trees are defined between samples into an Euclidian space, allowing
“bush-like clusters” displaying mutual dissimilarity to be revealed [67].

To visualize the main meta-genes related to subtype stratification, we assessed the group
over-expression spots. We exploited SOM portraits by detection of the coherent expression of
meta-genes. Using group overexpression maps, we linked selected meta-genes (correlation with r >

0.5) in different regions of the SOM with groups of samples. The group overexpression portrait was
calculated as the mean map profile by averaging the meta-gene expression over the three subtypes.
To identify the over-expression tiles, a 98th percentile criterion was applied to the meta-gene expression
SOM training aggregate meta-genes with similar profiles in the adjacent neighbored tiles of the map.
These tiles’ profiles grouped over-expressed (or under-expressed) samples that differed from the
others. The samples belonging to each subtype were summarized in an average representative portrait.
The mining of biological functions from SOM portraits was performed using “oposSOM” R package
(version 1.18.0).

4.6. Tumor Microenvironment Landscape

To evaluate the heterogeneity in the tumor microenvironment, the immune, stromal, and other cell
components were inferred by an in silico approach using the xCell tool [68,69]. This approach enables
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the assessment of 64 cell types using the bulk gene expression profiles of the tumors as input and
comparing them across samples, as described by the authors of Reference [69]. The tool outputs include
the transformed xCell scores for the immune, stromal, and other cell types. The adjusted ImmuneScore
included 10 populations (B-cells, CD4+T-cells, CD8+T-cells, DC, eosinophils, macrophages, monocytes,
mast cells, neutrophils, and NK cells) and StromaScore 3 populations (adipocytes, endothelial
cells, fibroblasts). In addition, to identify potential keratinocyte differentiation, the xCell score for
keratynocytes was computed. To visualize the cellular heterogeneity of the clusters, we applied
a dimension reduction method by t-distributed stochastic neighbor embedding (t-SNE) using the
“Rtsne” package [70], which projected the cell type enrichment scores onto two-dimensional axes [71].
We presented the scores of each subtype in notched boxplots using the “ggplot2” R package. Notch
boxplots display a confidence interval around the median based on the median±1.58× IQR (interquartile
range) /sqrt(n). They are useful graphs for comparing groups of samples, because an absence in notch
overlapping provides strong visual evidence that the medians differ. The p-values were calculated by
the Kruskal–Wallis test, a nonparametric test that compares the means among three or more groups, as
in our subtype classification.

4.7. Functional Analyses

To disclose the biological functional properties associated with the proposed molecular subtypes,
gene set analysis was applied. This approach estimates gene set over-representation (probability
of finding genes in a list compared to their random appearance) and over-expression (difference in
expression compared to the mean expression over the samples). The gene sets were defined from a
priori knowledge from independent studies and they were summarized in a list of genes specifically
related to molecular pattern/biological function. A large collection of gene sets was retrieved from
the Gene Set Enrichment Analysis (GSEA Broad Institute; software.broadinstitute.org/gsea/) and the
Molecular Signatures Database (MSigDB) repository, including 50 hallmark gene sets. We used the
gene set Z-score (GSZ) to summarize the profile of a gene set across all samples [72]. GSZ is a Z-score
function that merges both over-representation and over-expression features from a gene set to give a
defined gene set and provides a representative score of the gene set for each sample. Boxplots were
generated using the “ggplot2” R package with the notched boxplot function (see Section 4.6).

4.8. Analysis of Viral Presence/Integration and Its Association with Clusters

The association between viral integration and our subtype stratification was investigated using
the results provided by Koneva et al. [20]. Based on TCGA RNA-seq data and exploiting VirusSeq
software [73], they detected known virus strains and identified the integration sites. Thus, the authors
disclosed the HPV integration status of 65 TCGA cases present in our meta-analysis and assessed
viral gene expression (E2, E4, and E5). We investigated the relative presence of integrated HPV cases
defined as integrated cases/(integrated + non-integrated cases) in each subtype, and significance was
calculated by the χ2 test. Counts per million (CPM) were retrieved from Koneva et al. and transformed
into the log scale by log2(CPM + 1) [74]. Associations with viral gene expression were visualized by a
heatmap. The samples were ranked by the Gene Set Variation Analysis (GSVA [75]) based on the three
viral genes. GSVA was used to estimate the variation of a gene set over the samples in an unsupervised
manner. The p-values were calculated by the Kruskal–Wallis test.

4.9. Evaluation of Prognostic Signatures

Statistical analysis was performed using R (version 3.5.1) [76] and Bioconductor (release 3.7) [77].
Survival curves were assessed according to the Kaplan–Meier method, and overall survival was
used as the endpoint. Differences between the subtypes were assessed using the log-rank test and R
package “survival”. Two signatures were evaluated: (i) the 172-gene prognostic model [21]; (ii) the
radiosensitivity index (RSI) [22]. The list of genes and the algorithm used for model assessment were
retrieved from the original papers.
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Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/2072-6694/11/8/1057/
s1: Figure S1: Estimation of sample size adequacy. The relationship between the genes in our data matrix and
power to detect a sample size defined by our three-subtype stratification (Cl1 = 134; Cl2 = 104; Cl3 = 108) is shown
in the plots. The percentage of genes achieving a power level of at least 0.9 is displayed by the red bars and was
calculated by performing a pairwise comparison between subtypes; Figure S2: Violin and boxplot of the percent
variation in gene expression explained by the study of origin, platform, and our three-cluster stratification. Median
percentage variation explained: cluster = 50.4%; study <1%; platform <1%; Figure S3: Expression heatmap of
viral genes. The expression values for HPV E2, E4, and E5 in the TCGA cases were retrieved from Koneva et al.
For visualization purposes, samples were ranked based on Gene Set Variation Analysis (GSVA) from low to high
viral gene enrichment. The membership of each TCGA sample is depicted in the bar below the heatmap. Low E2,
E4, and E5 expression was found in Cl2 cases compared with Cl1 and Cl3 (p-value = 0.00156, p-value = 0.00204,
and p-value = 0.00147 determined by Kruskal–Wallis Tests, respectively); Table S1: List of used datasets. Dataset
name, platform used, provider, technology, repository (included websource), number of samples, assignment
to the three clusters, and methods of HPV detection are detailed in the table for each of the 11 sources utilized;
Table S2: Contingency table for TCGA HPV cases annotated for HPV integration status by Koneva et al; Table
S3: Association to clinical parameters in the meta-analysis dataset. The table includes the evaluation of the
following clinical parameters: (i) gender; (ii) age; (iii) smoking habit (current or former smokers vs. never smoke);
(iv) site (oropharynx vs. other sites); (v) stage. p-values by χ2 test, with the exception for age determined by
Kruskal–Wallis Tests; Table S4: Association to clinical parameters in the validation dataset (GSE112026). The table
includes the evaluation of the following clinical parameters: (i) gender; (ii) age; (iii) smoking, (iv) Ang et al. (2010)
classification system; (v) smoked packs per year; (vi) alcohol use; (vii) t-stage; (viii) n-stage. p-values by χ2 test,
with the exception for age determined by Kruskal–Wallis Tests.
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Abstract: Background: Colorectal cancers (CRC) with brain metastases (BM) are scarcely described.
The main objective of this study was to determine the molecular profile of CRC with BM. Methods:

We included 82 CRC patients with BM. KRAS, NRAS, BRAF and mismatch repair (MMR) status
were investigated on primary tumors (n = 82) and BM (n = 38). ALK, ROS1, cMET, HER-2, PD-1,
PD-L1, CD3 and CD8 status were evaluated by immunohistochemistry, and when recommended, by
fluorescence in situ hybridization. Results: In primary tumors, KRAS, NRAS and BRAF mutations
were observed in 56%, 6%, and 6% of cases, respectively. No ROS1, ALK and cMET rearrangement
was detected. Only one tumor presented HER-2 amplification. Molecular profiles were mostly
concordant between BM and paired primary tumors, except for 9% of discordances for RAS mutation.
CD3, CD8, PD-1 and PD-L1 expressions presented some discordance between primary tumors and
BM. In multivariate analysis, multiple BM, lung metastases and PD-L1+ tumor were predictive
of poor overall survival. Conclusions: CRCs with BM are associated with high frequency of RAS

mutations and significant discordance for RAS mutational status between BM and paired primary
tumors. Multiple BM, lung metastases and PD-L1+ have been identified as prognostic factors and
can guide therapeutic decisions for CRC patients with BM.

Keywords: brain metastases; colorectal cancer; KRAS mutation; PD-L1; tumor infiltrating lymphocytes

1. Introduction

Brain metastases (BM) from colorectal cancer (CRC) are rare with an incidence ranging from 0.6 to
3.2% and are associated with a poor prognosis with an overall survival (OS) of about 5.0 months [1,2].
Patients with BM from CRC present a specific clinical profile with predominant rectosigmoid primary
tumor location and lung metastases [3–6]. Nevertheless, the molecular profile of BMs from CRC has
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only been partially explored [7,8]. Some small series have suggested a high rate of KRAS mutation
in CRC with BM, but no study has evaluated complete RAS (KRAS and NRAS), BRAF and mismatch
repair (MMR) status [1].

In metastatic CRC (mCRC), molecular profiles of liver and lung metastases have already been
tested and revealed a high concordance between the metastases and paired primary tumor (PPT)
(95–100%) [9]. Brastianos et al., by performing a whole-exome sequencing of 86 BM and PPT from
various sites, reported 53% of discordances in genetic profile, and found actionable mutations (EGFR,
HER-2 and PI3K/AKT/mTOR pathways) in BM that were not detected in PPT [10]. However, only
four CRCs were analyzed. Therefore, it is of major interest to evaluate molecular abnormalities of CRC
with BM in a larger cohort.

The main objective of this study was to evaluate the molecular profile of CRC with BM.
The secondary objectives were to evaluate the concordance of molecular profiles between BM and their
PPT and to determine the prognostic factors of CRC patients with BM.

2. Results

2.1. Patient and Tumor Characteristics

Eighty-two CRC patients with BM were included, mostly radiologically confirmed (n = 44/82),
with a median follow-up of 45.1 months (95% Confidence Interval (CI) 26.6–45.5 months). Median age
at CRC diagnosis was 64.0 years and most of the patients were male (63%) (Table 1).

Table 1. Clinical characteristics of patients, primary tumors and brain metastases (BM).

Characteristics Patients (n = 82)

Age at primary tumor diagnostic, years
Median (range) 64 (35–85)

Gender, n (%)
Male 52 (63)
Female 30 (37)

Site of primary tumor, n (%)
Ascending colon 19 (23)
Descending colon 24 (29)
Rectum 35 (42)
Bifocal tumor 5 (6)

Tumor grade, n (%)
Well or moderately differentiated 61 (87)
Poorly differentiated 9 (13)
Missing 12

Stage at initial CRC diagnostic, n (%)
I 4 (5)
II 13 (16)
III 26 (32)
IV 39 (47)

Primary tumor resection, n (%)
No 11 (13)
Yes 71 (87)

ECOG performance status at BM diagnosis, n (%)
< 2 43 (54)
≥ 2 36 (46)
Missing 3

Number of BM, n (%)
Single 43 (52)
Multiple 39 (48)

Site of BM, n (%)
Supratentorial 46 (56)
Subtentorial 18 (22)
Both 18 (22)
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Table 1. Cont.

Characteristics Patients (n = 82)

Delay between BM and CRC diagnosis, n (%)
Synchronous 8 (10)
Metachronous 74 (90)

ECM at BM diagnosis, n (%)
No 11 (14)
Yes 70 (86)
Missing 1

Lung metastases at BM diagnosis, n (%)
No 23 (28)
Yes 58 (72)
Missing 1

Liver metastases at BM diagnosis, n (%)
No 45 (56)
Yes 36 (44)

Abbreviations: BM, brain metastasis(es); CRC, colorectal cancer; ECM, extracranial metastasis(es); ECOG,
Eastern Cooperative Oncology Group score.

2.2. Molecular and Pathological Profiles of Colorectal Cancer with Brain Metastases

In primary tumors (n = 82), RAS mutations were observed in 62% of cases with 56% of KRAS

mutations and 6% of NRAS mutations (Table 2). KRAS mutations in codon 12 of exon 2 were observed in
48% and the most frequent were G12D and G12V. BRAF mutation was observed in 6%. Concerning BM
(n = 38), RAS was mutated in 85% of cases (74% of KRAS mutations and 11% of NRAS mutations) and
BRAF in 5%. Both primary tumors and BM were mostly MMR-proficient (pMMR) (95%). Four patients
had dMMR tumors, one patient had a Lynch syndrome (MSH2 germline mutation) and the three
others patients had sporadic dMMR tumors.

Table 2. Molecular profile of primary tumors and brain metastases.

Molecular Status Primary Tumors (n = 82) BM (n = 38)

KRAS status
Wild-type, n (%) 35 (44) 10 (26)
Mutant, n (%) 44 (56) 28 (74)

KRAS exon 2 at codon 12
G12D 14 (18) 9 (23)
G12V 14 (18) 8 (21)
G12A 5 (6) 3 (8)
G12S 3 (4) 0
G12C 1 (1) 1 (3)
G12R 1 (1) 1 (3)

KRAS exon 2 at codon 13
G13D 2 (3) 3 (8)
G13R 1 (1) 1 (3)

KRAS exon 3 at codon 61 3 (4) 2 (5)

KRAS exon 4 at codon 146 0 0
Missing, n 3 0

NRAS status
Wild-type, n (%) 74 (94) 34 (89)
Mutant, n (%) 5 (6) 4 (11)

NRAS exon 2 at codon 12 or 13 1 (1) 1 (3)
NRAS exon 3 at codon 61 4 (5) 3 (8)

Missing, n 3 0

BRAF exon 15 at codon 600
Wild-type, n (%) 74 (94) 36 (95)
Mutant, n (%) 5 (6) 2 (5)
Missing, n (%) 3 0
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Table 2. Cont.

Molecular Status Primary Tumors (n = 82) BM (n = 38)

MMR status
pMMR, n (%) 70 (95) 36 (95)
dMMR, n (%) 4 (5) 2 (5)
Missing, n 8 0

cMET expression
Negative (0, 1+, 2+/3+ with FISH negative), n (%) 76 (100) 37 (100)
Positive (2+, 3+ with FISH positive), n (%) 0 0
Missing, n 6 1

HER-2 expression
Negative (0, 1+, 2+ with FISH negative), n (%) 74 (99) 37 (100)
Positive (2+ with FISH positive, 3+), n (%) 1 (1) 0
Missing, n 7 1

ALK expression
Negative (0, 1+/2+/3+ with FISH negative), n (%) 76 (100) 37 (100)
Positive (1+/2+/3+ with FISH positive), n (%) 0 0
Missing, n (%) 6 1

ROS1 expression
Negative (0, 1+/2+/3+ with FISH negative), n (%) 74 (100) 37 (100)
Positive (1+/2+/3+ with FISH positive), n (%) 0 0
Missing, n 8 1

PD-1 expression
Negative, n (%) 64 (86) 37 (100)
Positive, n (%) 10 (14) 0
Missing, n 8 1

PD-L1 expression
Negative, n (%) 68 (93) 35 (95)
Positive, n (%) 5 (7) 2 (5)
Missing, n 9 1

CD3 expression
Median rate, % (range) 30 (0–80) 11 (0–60)
Missing, n 11 1

CD8 expression
Median rate, % (range) 11 (0–70) 3 (0–50)
Missing, n 7 2

Abbreviations: IHC, Immunohistochemistry; FISH, Fluorescence in situ hybridization; MMR, Mismatch repair;
pMMR, Proficient Mismatch Repair; dMMR, Deficient Mismatch Repair.

No primary tumor overexpressed ROS1 protein according to immunohistochemistry (IHC)
analysis. ALK IHC 1+ was detected in six primary tumors, but was negative by Fluorescence in
situ hybridization (FISH) analysis. Concerning HER-2 IHC, three primary tumors were positive, but
HER-2 amplification was confirmed by FISH only for one sample. cMET positive staining was detected
by IHC in 61% of primary CRC, but none was confirmed by FISH. Concerning BM, ROS1, ALK and
HER-2 staining were all negative (score 0). cMET positive staining was detected in 84% of BM, but
none was confirmed by FISH.

Ten primary tumors (14%) were programmed death-1 positive (PD-1+), but no BM. Five primary
tumors (7%) and two BMs (5%) were programmed death-ligand 1 positive (PD-L1+). Among the
five PD-L1+ primary tumors, three were MMR-deficient (dMMR) and two were pMMR. The median
percentage of CD3 and CD8 lymphocyte infiltrates were 30% and 11% in primary tumors, 11% and
3% in BM respectively. The mean percentages of CD3 and CD8 lymphocyte infiltrates in primary
tumors were 46% and 38% in dMMR tumors and 33% and 11% in pMMR tumors (p = 0.23 for CD3
and p < 0.01 for CD8) respectively. The mean percentages of CD3 and CD8 lymphocyte infiltrates in
primary tumors were 49% and 41% in PD-L1+ tumors and 33% and 12% in PD-L1- tumors (p = 0.09 for
CD3 and p < 0.01 for CD8), respectively.
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2.3. Concordance of Molecular and Pathological Profiles between Brain Metastases and Their Paired
Primary Tumors

The molecular profiles of BM were compared with their PPT (Table 3), when available (n = 35).
Discordances in RAS and BRAF status were observed in four patients (11%), three for RAS and one
for BRAF. In each case, PPT was wild-type and BM was mutated. According to IHC evaluation, PPT
and BM were discordant for cMET in nine cases (28%). However, all cases were negative according to
FISH analyses.

Table 3. Molecular and pathological profiles of brain metastases and paired primary tumors.

Brain Metastases

RAS status

Primary tumors Wild-type Mutant Total
Wild-type, n (%) 6 (17) 3 (9) 9 (26)
Mutant, n (%) 0 26 (74) 26 (74)
Total, n (%) 6 (17) 29 (83) 35

BRAF status

Primary tumors Wild-type Mutant Total
Wild-type, n (%) 33 (94) 1 (3) 34 (97)
Mutant, n (%) 0 1 (3) 1 (3)
Total, n (%) 33 (94) 2 (6) 35

MMR status

Primary tumors pMMR dMMR Total
pMMR, n (%) 30 (94) 0 30 (94)
dMMR, n (%) 0 2 (6) 2 (6)
Total, n (%) 30 (94) 2 (6) 32

HER-2 expression

Primary tumors Negative Positive Total
Negative, n (%) 35 (100) 0 35 (100)
Positive, n (%) 0 0 0 (0)
Total, n (%) 35 (100) 0 (0) 35

cMET expression (IHC)

Primary tumors Negative Positive Total
Negative, n (%) 4 (13) 7 (22) 11 (34)
Positive, n (%) 2 (6) 19 (59) 21 (66)
Total, n (%) 6 (19) 26 (81) 32

PD-1 expression

Primary tumors Negative Positive Total
Negative, n (%) 30 (94) 0 30 (94)
Positive, n (%) 2 (6) 0 2 (6)
Total, n (%) 32 (100) 0 32

PD-L1 expression

Primary tumors Negative Positive Total
Negative, n (%) 29 (91) 2 (6) 31 (97)
Positive, n (%) 1 (3) 0 1 (3)
Total, n (%) 30 (94) 2 (6) 32

CD3 expression Primary tumor Brain metastases
Median rate, % (range) 34 (0–80) 15 (0–60)

CD8 expression Primary tumor Brain metastases
Median rate, % (range) 10 (0–70) 3 (0–50)

Abbreviations: IHC, immunohistochemistry; MMR, Mismatch repair; pMMR, Proficient Mismatch Repair; dMMR,
Deficient Mismatch Repair.
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Concerning PD-1+ tumor, discordance was observed in two paired samples (6%). We found
three discordances for PD-L1 status (9%). Median percentages of CD3+ and CD8+ lymphocytes were
significantly more important in PPT (34% and 10%) compared to BM (15% and 3%) (both p < 0.01).
In addition, there was a positive correlation between levels of CD8+ infiltrates in BM and PTT (p = 0.01),
but not for CD3+ infiltrates (p = 0.40).

2.4. Overall Survival

79 patients died at the time of data analysis. Median Overall Survival (OS) from BM diagnosis
was 4.1 months (95%CI 3.6–5.4 months) (Figure 1). Median OS from diagnosis of metastatic disease
was 28.6 months (95%CI 18.0–35.5 months). Age, BRAF mutation, PD-L1+ tumors, Eastern cooperative
oncology group (ECOG) performance status ≥ 2, multiple BM and lung metastases were significantly
associated with poor OS in univariate analysis (Table 4). In multivariate analysis, PD-L1+ primary
tumors, multiple BM and lung metastases were significantly associated with poor OS.

Figure 1. Overall Survival at brain metastasis(es) diagnosis in the whole population and according to
PD-L1 expression, number of brain metastasis(es) and the presence of lung metastasis(es): (a) Overall
survival of 82 patients at BM diagnosis, (b) Overall survival according to PD-L1 expression in primary
tumor, (c) Overall survival according to the BM number, (d) Overall survival according to the presence
of lung metastasis(es) at BM diagnosis.
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Table 4. Univariate and multivariate analysis of overall survival in patients with brain metastases from
colorectal cancer.

Univariate Analysis Multivariate Analysis

Variables n Median (Months) p Value HR 95% CI p Value

Gender (n = 82) 0.79 * 0.38
Male 52 3.9 1
Female 30 4.3 0.8 0.5–1.4

Age at BM diagnosis (n = 82) 82 0.02 * 1.0 1.0–1.0 0.62

Site of primary tumor (n = 82) 0.23
Ascending colon 20 4.5
Descending colon 24 5.9
Rectum 35 2.9

Tumor grade (n = 70) 0.05
Well or moderately differentiated 61 3.9
Poorly differentiated 9 4.6

RAS status (n = 79) 0.65
Wild-type 30 3.6
Mutant 49 4.3

BRAF status (n = 79) 0.03 * 0.76
Wild-type 74 4.2 1
Mutant 5 3.3 1.2 0.3–4.2

MMR status (n = 74) 0.68
pMMR 70 4.1
dMMR 4 4.0

PD-1 expression (n = 74) 0.79
Negative 64 4.2
Positive 10 3.6

PD-L1 expression (n = 73) 0.009 * 0.02
Negative 68 4.2 1
Positive 5 1.8 5.0 1.4–18.5

CD3 expression (n = 71) 71 0.08

CD8 expression (n = 75) 75 0.45

ECOG performance status (n = 79) 0.0003 * 0.07
<2 43 7.3 1
≥2 36 3.2 1.8 1.0–3.4

Number of BM (n = 82) 0.003 * 0.01
Single 43 6.3 1
Multiple 39 3.1 2.0 1.2–3.4

Lung metastases at BM diagnosis (n = 81) 0.0003 * 0.005
No 23 11.7 1
Yes 58 3.6 2.5 1.3–4.8

Liver metastases at BM diagnosis (n = 81)
No 45 4.3 0.31
Yes 36 3.7

Abbreviations: HR, hazard ratio; BM, brain metastasis(es); 95% CI, 95% confidence interval; ECOG, Eastern
Cooperative Oncology Group score. * variables included in multivariate analysis

3. Discussion

In our study, molecular features of CRC with BM were in accordance with rates observed in
all-comers mCRC except for RAS mutations that appear to be higher than rates commonly observed in
mCRC [11]. Surprisingly, we observed some differences of molecular profiles between BM and PPT,
especially for RAS and PD-L1 status. Finally, we identified multiple BM, lung metastases and PD-L1
positivity as prognostic factors in patients with BM from CRC.

As compared to all-comers mCRC patients, in our study, patients with BM from CRC seemed to be
younger, with more frequent rectal tumor and lung metastases. Other studies had previously identified
frequent lung metastases and young age as particular characteristics of CRC patients with BM [1].
In accordance with the literature, the interval between primary tumor diagnosis and BM diagnosis
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reached more than 30 months, probably because the brain is a late sanctuary site for chemo-resistant
tumor cells [12]. Moreover, the rate of RAS mutation was high (62%) in comparison to what is usually
observed in mCRC (≈50%) [11]. This observation is in agreement with other studies, which also
showed that KRAS mutations could be a predictive factor of BM [13]. The rates of CD3 and CD8
tumor-infiltrating lymphocytes (TILs) observed in our study were in accordance with the rates observed
in other mCRC cohorts [14,15]. Also, our study showed comparable proportions of PD-L1+ and PD-1+
tumors, mostly in dMMR tumors, when compared with other studies in the literature [16,17].

There is a high discrepancy observed between IHC and FISH results for cMET status in our
study, as described in the literature. In a recent study using IHC, 57.5% of CRC were found to be
positive for MET protein IHC, but only 4.4% were FISH positive [18]. Overexpression of MET has
been established in CRC [19], with MET protein levels ranging from 12% to 81% (median, 61%) [20].
Zeng et al. established that MET gene amplification was present in 2% of localized CRC tumors, 9%
of tumors with distant metastases, and 18% of liver metastases using the quantitative PCR/ligase
detection reaction technique [21]. In our study cMET positive staining was detected by IHC in 61% of
primary CRC, but none was confirmed by FISH.

Comparison of BM and PPT has been scarcely explored in mCRC, but discordances have been
observed between BM and PPT in lung and breast cancers [10]. In our study, we found a higher rate of
RAS mutation in BM (85%) compared to PPT (62%) and three discordant cases (9%). El-Deiry et al.
determined KRAS status from 2510 primary CRC and 30 BM from CRC and found significantly higher
rates of KRAS mutation in BM (65%) compared to the primary tumor (45%), but the samples were not
paired [13]. In another cohort of 41 BM with PPT, two cases presented discordant KRAS status [22].
Discordances between PPT and BM could be explained by intra and/or inter-tumoral heterogeneity, as
we recently demonstrated in CRC [23]. Indeed, if CRC patients have had BM surgery, RAS should be
evaluated in this sample in order to define treatment (anti-EGFR). BM are more frequently observed in
breast and gastric cancers with HER-2 overexpression compared to HER-2 negative tumors [24,25],
which does not seem to be the case in mCRC.

To our knowledge, no previous study has compared the expression of PD-1, PD-L1, CD3 and
CD8 in paired primary CRC and BM. In BM, we identified low rates of immune infiltrates compared
to PPT. These results were concordant with the study by Harter et al., which showed low rates of
PD-L1+ and PD-1+ tumors (1%) and low rates of CD3+ (3%) and CD8+ T-cells (2%) in BM samples
from CRC [26]. In the literature, whatever the tumor type, less immune infiltrate is observed in
BM compared to PPT [27]. Moreover, in our study, there was some discordance between PD-1 and
PD-L1 status in BM compared to PPT. Recent studies have identified BM as a sanctuary site for tumor
cells to escape immunosurveillance [28]. Up until now, there has been only limited data concerning
immune checkpoint inhibitor efficacy in BM, but no clinical evidence of lesser efficacy compared to
other metastatic sites [29]. Nevertheless, it is important to consider the spatial heterogeneity of the
tumor immune microenvironment in BM compared to PPT, especially PD-L1 expression, when cancer
patients are treated with PD-1 or PD-L1 inhibitors.

Overall survival of patients with BM from CRC is poor. It is important to identify prognostic
factors to help therapeutic decision-making. Some prognostic classifications exist, but most are not
designed specifically for patients with mCRC. A recent Italian retrospective study identified age,
performance status, BM site and BM number as prognostic factors associated with OS of CRC patients
with BM [30]. In our study, we found no association between RAS or BRAF status and OS. However,
OS of patients with PD-L1 negative primary tumors was significantly higher than patients with PD-L1+
tumors. This result should be interpreted with caution considering the small number of patients with
PDL1+ tumors, the potential tumor heterogeneity and the absence of standard cut-off for this marker.
High PD-L1 expression has been associated with longer OS in pMMR mCRC in some studies, but not
all [31]. In addition, in lung cancer with BM, PD-L1 expression has been associated with worse OS [32].
Our study highlighted two other prognostic markers, single BM and the absence of lung metastases
that had already been reported for patients with BM whatever the primary tumor.
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The main limitation of the study is its retrospective nature, but there are few missing data (≈10%).
Results concerning the comparison of BM and PPT should be confirmed given the small size of our
study, since most patients did not have surgery of BM. Nevertheless, it is the largest study up until
now concerning the molecular profile of CRC with BM.

4. Materials and Methods

4.1. Patients

All patients with BM from CRC, diagnosed from 2001 to 2016, were identified in our institution
using our clinical report database. All patients with a histologically confirmed CRC and histologically
or radiologically confirmed BM by computed tomography scan (CT-scan) and/or magnetic resonance
imaging (MRI) were included. BM was defined as synchronous if they occur within three months of
mCRC diagnosis. Our institution’s Ethics Committee approved the study (DC-2008-565).

4.2. Molecular Analyses

Genomic DNA from tumor samples was extracted using Maxwell 16 FFPE Plus LEV DNA
purification kit© (Promega, Charbonnières-les-Bains, France). KRAS/NRAS codons 12, 13, 61, 146 and
BRAF (V600E) were analyzed by pyrosequencing (TheraScreenPyroKit©, Qiagen, Hilden, Germany)
using homemade specific primers as previously described [33]. MMR status was determined by
microsatellite analysis using MD1641 Promega kit© (Promega).

4.3. Tissue Microarray Construction and Immunohistochemistry

Formalin-fixed paraffin-embedded blocks were used for tissue microarray (TMA) construction
using four biopsy cores of 1 mm diameter per tumor in the tumor center (MTA Booster© version 1.01,
Alphelys, Paris, France).

IHCwas carried out on paraffin-embedded 3-µm thick TMA sections with antibodies
directed against ALK, ROS1, cMet, HER-2, PD-1, PD-L1, CD3 and CD8 according to the
manufacturer’s instructions.

IHC is a prescreening test commonly used for the detection of ALK rearrangement in lung
carcinoma [34] and the same scoring was used here. Immunostaining scores were assigned from 0
to 3. For ALK cytoplasmic staining, a score of 1+ (weak), 2+ (moderate) or 3+ (strong) in more than
10% of tumor cells and for ROS1 staining, any percentage of tumor cells with cytoplasmic staining
intensity of 1+, 2+ or 3+ were considered as IHC-positive and then evaluated by FISH [35]. Indeed,
FISH is considered the “gold standard” to confirm IHC results, due to possible false-positive signals
with IHC testing [36]. For MET only 2+ or 3+ in more than 10% of tumor cells were defined as positive
and subsequently evaluated by FISH [37]. HER-2 IHC positive status was defined as tumors with a 2+
or 3+ staining in more than 10% of the cells and then evaluated by FISH [38].

PD-1 IHC was considered positive when ≥1% of intra-epithelial TILs were stained. PD-L1
immunostaining was considered positive when ≥1% of tumor cells had membranous staining [39].
CD3 and CD8 staining were also analyzed as the percentage of both intra-tumoral and stromal CD3
and CD8 positive lymphocytes over the total immune cells [14,15].

4.4. Fluorescent In Situ Hybridization (FISH)

Vysis ALK Break Apart FISH probes© (Abbott Molecular, Abbott Park, IL, USA), HER-2/CEP17
DNA Probe Kit II probes© (Abbott Molecular) and ZytoLight SPEC MET/CEN 7 Dual Color Probes©

(ZytoVision, Bremerhaven, Germany) were used respectively for the detection of ALK rearrangement,
HER-2 and cMET amplification.

ALK locus rearrangement was considered translocated if ≥15% of tumor cells showed isolated red
signal(s) and/or split red and green signals. ALK appeared amplified and required further verification
if an average copy number ≥6 copies per nucleus was detected [40]. HER-2 was considered amplified
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if average HER-2/CEP17 ratio was higher than 2.0 [38]. Tumors with MET/CEP7 ratio ≥2 or with an
average number of MET signals per nucleus >6 were scored as positive for MET amplification [41].

4.5. Statistical Analysis

Survival curves and 95% confidence intervals were determined using the Kaplan-Meier method.
Predictive factors of OS were evaluated using the log-rank test for univariate analysis and statistically
significant variables were included in multivariate analysis using a Cox regression model. The level
of significance was set at a p value of 0.05. Statistical analyses were performed using XLSTAT 2017
software (Addinsoft, New York, NY, USA).

5. Conclusions

Our study provided relevant and specific features of CRC patients with BM, such as frequent
lung metastasis, frequent rectal tumor site and high rate of RAS mutation. These results suggest
a need for BM screening in this mCRC patients subgroup, but will require further prospective
investigations to determine if early identification of BM improves survival and/or quality of life.
We have highlighted the usefulness of BM number, the presence of lung metastases and the expression
of PD-L1 as prognostic markers. For the first time, we found that PD-L1 expression was associated with
poor prognostic in CRC patients with BM. All of these new data can guide therapeutic decision-making
in patients with BM from CRC.
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Abstract: Cancer is a multifactorial condition with aberrant growth of cells. A substantial number of
cancers, breast in particular, are hormone sensitive and evolve due to malfunction in the steroidogenic
machinery. Breast cancer, one of the most prevalent form of cancers in women, is primarily stimulated
by estrogens. Steroid hormones are made from cholesterol, and regulation of steroid/estrogen
biosynthesis is essentially influenced by the steroidogenic acute regulatory (StAR) protein. Although
the impact of StAR in breast cancer remains a mystery, we recently reported that StAR protein is
abundantly expressed in hormone sensitive breast cancer, but not in its non-cancerous counterpart.
Herein, we analyzed genomic profiles, hormone receptor expression, mutation, and survival for
StAR and steroidogenic enzyme genes in a variety of hormone sensitive cancers. These profiles were
specifically assessed in breast cancer, exploiting The Cancer Genome Atlas (TCGA) datasets. Whereas
StAR and key steroidogenic enzyme genes evaluated (CYP11A1, HSD3B, CYP17A1, CYP19A1, and
HSD17B) were altered to varying levels in these hormone responsive cancers, amplification of the StAR

gene was correlated with poor overall survival of patients afflicted with breast cancer. Amplification
of the StAR gene and its correlation to survival was also verified in a number of breast cancer studies.
Additionally, TCGA breast cancer tumors associated with aberrant high expression of StAR mRNA
were found to be an unfavorable risk factor for survival of patients with breast cancer. Further
analyses of tumors, nodal status, and metastases of breast cancer tumors expressing StAR mRNA
displayed cancer deaths in stage specific manners. The majority of these tumors were found to
express estrogen and progesterone receptors, signifying a link between StAR and luminal subtype
breast cancer. Collectively, analyses of genomic and molecular profiles of key steroidogenic factors
provide novel insights that StAR plays an important role in the biologic behavior and/or pathogenesis
of hormone sensitive breast cancer.

Keywords: hormone sensitive cancers; breast cancer; StAR; estrogen; steroidogenic enzymes

Cancers 2019, 11, 623; doi:10.3390/cancers11050623 www.mdpi.com/journal/cancers171



Cancers 2019, 11, 623

1. Introduction

The rate-limiting step in the regulation of steroid hormone biosynthesis is the transport of the
substrate of all steroid hormones, cholesterol, from the outer to the inner mitochondrial membrane,
a process that is predominantly mediated by the steroidogenic acute regulatory (StAR; also called
STARD1) protein [1–4]. There is wealth of information that regulation of steroid biosynthesis is
mediated by mechanisms that enhance the transcription, translation, or activity of StAR [2,4–6].
Noteworthy, whereas phosphorylation of StAR is associated with the optimal cholesterol transferring
ability of the StAR protein in steroid biosynthesis, mutations in the StAR gene results in a protein that is
nonfunctional and inactive in transporting cholesterol. In almost every system studied, agents/factors
that influence StAR expression also influence steroid biosynthesis through endocrine, autocrine,
and paracrine regulation in a variety of classical and non-classical steroidogenic tissues [2,4,7–11].
Following the transport of cholesterol, by StAR, to the inner mitochondrial membrane, the P450 side
chain cleavage (P450scc) enzyme, encoded by the CYP11A1 gene, catalyzes the first enzymatic step
in steroidogenesis i.e., the conversion of cholesterol to pregnenolone [4,6]. In addition, CYP11A1
converts 7-dehydrocholesterol to 7-dehydropregneolone and activates vitamin D, emphasizing the
importance of StAR to transport other substrates for non-canonical activity of CYP11A1 [12,13]. The
first steroid, pregnenolone, is then metabolized to various sex steroids by a series of enzymes in target
tissues. These enzymes include 3β-hydroxysteroid dehydrogenase (3β-HSD), 17α-monooxygenase,
17α-hydroxylase, 17,20-lyase (P45017α), aromatase, and 17β-HSD, which are encoded by the HSD3B,
CYP17A1, CYP19A1, and HSD17B genes, respectively [4,8].

Steroid hormones are synthesized not only in endocrine tissues, but also in a variety of
extra-gonadal/adrenal tissues, and they play crucial roles in diverse processes, ranging from
development to homeostasis to carcinogenesis [4,10,11,14–16]. Of note, StAR mediates steroid
biosynthesis by controlling the transport of cholesterol and, thus, its entry to the mitochondrial
inner membrane is a key event in influencing various cholesterol/steroid led functions. Conversely,
inappropriate regulation of StAR, involving cholesterol transport, might influence hormone dependent
disorders. Accordingly, cholesterol and its metabolites have been shown to be involved in the etiology
of a number of cancers [17,18]. Moreover, dysregulation of androgen and estrogen biosynthesis has
long been implicated in the pathogenesis a variety of hormone sensitive cancers [16,19].

One of the most common malignancies in women is breast cancer, which is activated by estrogens,
especially 17β-estradiol (E2), and it accounts for over one-fourth of all cancer cases [16,20–22]. The
American Cancer Society estimated that 266,120 women were expected to be diagnosed with invasive
breast cancer, with 40,920 deaths in 2018. Breast cancers are classified into four subtypes, i.e., luminal A,
luminal B, HER2/ErbB2+ (human epidermal growth factor receptor 2/the erythroblastosis oncogene-B2
positive), and TNBC (triple negative breast cancer), based on estrogen receptor (ER), progesterone
receptor (PR), and HER2 expression [23]. Hormone sensitive breast cancers predominantly express ER,
especially ERα, and/or PR, and account for ~80% of all breast cancer cases. The remaining 15–20%
cancers include HER2+ that expresses HER2, and TNBC that does not express ER, PR, and HER2 [24,25].
In this connection, it is worth noting that expression of the StAR protein has been shown to be markedly
high in ER+/PR+ breast cancer, modest in TNBC, but little to none in normal mammary epithelial
cells [5]. Additionally, accumulation of E2 mirrored StAR protein expression in both noncancerous
and cancerous breast cell lines, suggesting that StAR plays a key role in the development of ER+/PR+
breast cancer. To obtain more insight into the association of StAR in breast cancer, genomic profiling of
StAR and key steroidogenic enzyme genes were analyzed by exploiting two publicly available research
databases: The Cancer Genome Atlas (TCGA, provisional for different cancer types) and cBioPortal
(for independent breast cancer studies).
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2. Materials and Methods

2.1. TCGA Hormone Responsive Cancer Tumors and Their Correlation to Copy Number Alterations of StAR
and Steroidogenic Enzyme Genes

TCGA genomic research databases were assessed for the following hormone sensitive cancers:
breast (1080 tumors), colorectal (616 tumors), melanoma (367 tumors), ovarian (579 tumors), pancreatic
(184 tumors), prostate (492 tumors), and uterine endometrial (539 tumors) [26–29]. These tumors
were analyzed for DNA copy number alterations (CNAs) for StAR and key steroidogenic enzyme
genes using the GISTIC 2.0. algorithm. CNA data were categorized as high-level amplification (+2
copies), gain (+1 copy), diploid (normal/no change), homozygous deletion (−2 copies), and hemizygous
deletion (−1 copy). These analyses were performed using UCSC Xena [30] and/or cBioPortal Cancer
Genomics [31,32] platforms. StAR CNA data were further evaluated for their correlation to StAR
mRNA expression with RNA-Seq data, using the RSEM algorithm [33]. The correlation between StAR
CNA and StAR mRNA levels was verified by Spearman’s rank coefficient analysis.

2.2. Expression of ER, PR, and HER2 in Breast Cancer Tumors

The predictive immunohistochemical (IHC) markers, employed in clinical settings to classify
breast cancer tumors into biologically distinct subtypes with unique pathogenesis, were examined. The
use of IHC to assess ER, PR, and HER2 expression status in breast cancer has been routinely performed
in clinics. IHC based tumor classification was analyzed for ER, PR, and HER2 expression using TCGA
breast cancer datasets. These receptors were also evaluated in a number of breast cancer publications
and/or projects that are available in cBioPortal website [31,32].

2.3. Amplification of the StAR Gene in Breast Cancer Studies

Amplification of the StAR gene was assessed in a variety of breast cancer publications/projects
with cBioPortal browser. In particular, StAR gene amplification was analyzed in the following breast
cancer studies: METABRIC (Molecular Taxonomy of Breast Cancer International Consortium), Nature

Communication [34], (2173 tumors); breast cancer patient xenografts [35], (29 tumors); breast invasive
carcinoma [36], (TCGA Cell 2015, 816 tumors); breast invasive carcinoma, [27], (TCGA Provisional;
Nature 2012, 1080 tumors); metastatic breast cancer, PLoS Medicine [37], (216 tumors); and metastatic
breast cancer (MBC) project (TCGA 2017, 103 tumors). These studies include mixed tumor types with
variable numbers, in which amplification of the StAR gene and its correlation to overall survival, were
evaluated, using available datasets.

2.4. Mutational Portraits of the StAR Gene in TCGA Hormone Responsive Cancers

Mutation in the StAR gene was examined in different hormone responsive cancers by analyzing
exome sequencing, utilizing TCGA datasets. Mutational analyses were limited for functional forms.
Intronic, silent, or other forms of mutations were not considered. These analyses were performed
using UCSC Xena platform [30]. Gene mutation frequency is described as a percentage of total number
of tumors.

2.5. Expression of StAR mRNA in TCGA Breast Cancer Tumors and Their Correlation to TNM Stages

Expression of StAR mRNA, evaluated from RNA-Seq data, available for breast cancer tumors,
was downloaded from TCGA and UCSC Xena websites. StAR mRNA expressed as upper
quartile-normalized fragments per kilobase of transcript per million mapped reads (fpkm+uq+1),
generated by TCGA, was plotted using the Box and Whisker plot [38]. The Box and Whisker plot depicts
normal distribution of StAR mRNA and determines the median and quartiles in a statistical population.

The T (tumor), N (node), and M (metastasis) staging, is a globally recognized system for defining
the extent of stage and/or spread of solid tumors for prognosis and treatment [39,40]. The TNM staging
of TCGA breast cancer tumors, expressing StAR mRNA, was performed using the American Joint
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Committee on cancer classifications [39,40]. StAR mRNA/RNA-Seq data analyzed for various purposes
are provided as an Excel file under Supplemental Materials.

2.6. Generation of Kaplan-Meier Curves and Overall Survival Analyses

Kaplan-Meier curve is frequently used to determine survival analysis for clinical outcomes such
as recovery rates, probability of death, and disappearance of a tumor [41]. Utilizing TCGA and/or
cBioportal breast cancer tumor CNA data, Kaplan-Meier survival curves were generated using with
(high level amplification) and without (diploid) amplification [42–44] for StAR, CYP11A1, HSD3B1,

CYP17A1, CYP19A1, HSD17B1, and HSD17B2 genes. For StAR, survival curve was also generated
with and without (all tumors excluding homozygous deletion) amplification. Both HSD17B1 and
HSD17B2 gene isoforms evaluated were based on their association with breast cancer [45]. Additionally,
Kaplan-Meier survival curves were generated by dividing tumors into non-overlapping upper and
lower groups based on two reports, with StAR mRNA values up to 50th percentile as low and above
50th as high [46]; and up to 25th percentile as low and above 25th percentile as high [47,48].

2.7. Statistical Analysis

Statistical analyses were performed using GraphPad Prism software (GraphPad, San Diego,
CA, USA). Data represented are the mean ± SEM and analyzed using one-way analysis of variance
(ANOVA) followed by post-hoc test. Spearman’s rank coefficient analysis was performed to determine
the correlation between StAR CNA and StAR mRNA levels. The analysis of overall survival between
groups was performed by log-rank Mantel-Cox method. A p-value less than 0.05 was considered
statistically significant.

3. Results

3.1. Assessment of StAR CNAs in Various Hormone Sensitive Cancers

Gene amplification, comprising oncogene activation, is a fundamental event in tumor
progression [42]. The hypothesis that estrogen and/or androgen sensitive cancers involve gain
of function of StAR in the transport of cholesterol, and thereby influence hormone sensitive cancers,
was examined. Utilizing TCGA datasets, StAR CNA data were analyzed in a variety of hormone
dependent cancers (Table 1). Breast cancer CNA data for StAR demonstrated ~13% high level
amplification (138 tumors), ~25% gain (268 tumors), ~38% diploid (406 tumors), ~23% hemizygous
deletion (252 tumors), and ~1.5% homozygous deletion (16 tumors). Tumor numbers altered in each
category are shown in parentheses. Analysis of colorectal cancer CNA data for StAR resulted in
~2.5%, ~30%, ~44%, ~23%, and ~8% high level amplification, gain, diploid, hemizygous deletion, and
homozygous deletion, respectively. Whereas StAR CNA data were found to be altered at varying
levels, high level amplification was observed at 4.4% in pancreatic cancer. Likewise, melanoma,
ovarian, prostate, and uterine endometrial cancer CNA data for StAR displayed ~0.3%, ~3.5%, ~2.9%,
and ~1.9% high level amplification in these malignant tumors, respectively (Table 1). These data are
consistent with previous detection of StAR in peripheral tissues and malignant tumors [4,49]. Higher
amplification of the StAR gene (~13%) was next evaluated for its impact on breast cancer.
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Table 1. DNA copy number alterations of the steroidogenic acute regulatory (StAR) gene in different
hormone responsive cancers.

CNAs
Breast
N (%)

Colorectal
N (%)

Melanoma
N (%)

Ovarian
N (%)

Pancreatic
N (%)

Prostate
N (%)

Uterine
Endometrial

N (%)

Homozygous
Deletion

16
(1.48)

8
(1.30)

3
(0.82)

7
(1.21)

0
(0.00)

32
(6.50)

7
(1.30)

Hemizygous
Deletion

252
(23.33)

140
(22.73)

69
(18.80)

215
(37.13)

42
(22.83)

133
(27.03)

66
(12.24)

Diploid
406

(37.59)
271

(43.99)
184

(50.14)
220

(38.00)
109

(59.24)
258

(52.44)
345

(64.01)

Gain
268

(24.81)
182

(29.55)
110

(29.97)
117

(20.21)
25

(13.59)
55

(11.18)
111

(20.59)
High Level

Amplification
138

(12.78)
15

(2.44)
1

(0.27)
20

(3.45)
8

(4.35)
14

(2.85)
10

(1.86)
Total Number

of Tumors
1080 616 367 579 184 492 539

StAR CNA data were assessed for the following cancer tumors: breast (1080 cases), colorectal (616 cases), melanoma
(367 cases), ovarian (579 cases), pancreatic (184 cases), prostate (492 cases), and uterine endometrial (539 cases).
The CNA level was categorized as homozygous deletion, hemizygous deletion, diploid, gain, and high level
amplification, as described under Section 2. N (%) = number of tumors with percentages in parentheses.

3.2. Expression of ER, PR and HER2 in TCGA Breast Cancer Tumors

To assess breast cancer subtype(s) in TCGA tumor datasets, expression of ER, PR and HER2 was
examined. IHC data revealed differential expression of ER (74% positive, 21% negative, 5% unknown),
PR (64% positive, 31% negative, 5% unknown), and HER2 (15% positive, 51% negative, 34% unknown)
(Figure 1). These results indicate that TCGA breast cancer tumors are mostly ER+/PR+, representing
they are largely luminal subtypes.

Figure 1. Expression of ER, PR and HER2 in The Cancer Genome Atlas (TCGA) breast cancer tumors.
These tumors were previously stained with specific IHC markers in a clinical setting to classify into
biologically distinct subtypes. Pie charts illustrate ER, PR, and HER2 expression in breast cancer tumors,
which are presented as percentage of total numbers. Expression of these receptors was categorized as
positive, negative, and unknown. The unknown category includes tumors in which IHC analysis was
either not done or indeterminate or equivocal or data was not available.

3.3. Amplification of the StAR Gene in Breast Cancer and Its Correlation to Overall Survival

Utilizing TCGA breast cancer data cohort, amplification of the StAR gene was examined for
cancer survival. As illustrated in Figure 2A, StAR CNA data in different categories were positively
correlated with StAR mRNA expression (RNA-Seq data). The correlation between StAR CNA and
StAR mRNA levels was verified with Spearman’s correlation coefficient, i.e., 0.463. The analysis of
Kaplan-Meier curve demonstrated that amplification of the StAR gene (~13%) was correlated with poor
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survival of breast cancer patients (p-value = 0.020). The median survival rate was noticeably reduced
with amplification of the StAR gene when compared without amplification (Figure 2B). Similarly,
the survival of breast cancer was affected (p-value = 0.045) when Kaplan-Meier curve was generated
with and without (in which all tumors, excluding homozygous deletion, was included) StAR gene
amplification (Figure 2C).

Figure 2. Frequency of StAR CNA data in breast cancer tumors and its correlation to overall survival.
StAR CNA data were obtained from TCGA breast cancer tumor datasets with 1080 tumors. The
CNA level was categorized as homozygous deletion, hemizygous deletion, diploid, gain, and high
level amplification (A), utilizing cBioPortal browser, as described under Section 2. Breast cancer
RNA-Seq data were assessed for StAR mRNA expression that positively correlated with StAR CNA
data in different categories (A), which were presented in Y-axis and X-axis, respectively. Amplification
of the StAR gene was evaluated for overall breast cancer survival (B,C). Kaplan-Meier curve was
generated with TCGA breast cancer tumor CNA data, using with amplification (138 tumors) vs. without
amplification (diploid, 406 tumors; B), or with a category (926 tumors; C) excluding homozygous
deletion (16 tumors) of the StAR gene. Red and blue lines in panels B and C represent with and without
amplification of the StAR gene, respectively.

3.4. StAR Gene Amplification, Hormone Receptor Expression, and Their Correlation to Cancer Survival in a
Number of Breast Cancer Studies

To better understand involvement of StAR gene amplification in breast cancer deaths, genomic
data from a number of publications/projects, as available in cBioPortal, were analyzed. As depicted in
Figure 3A, amplification of the StAR gene was observed between 12% and 26% in all breast cancer
studies examined. Specifically, amplification of the StAR gene was 26% in a breast cancer patient
xenografts study, 12% in breast cancer METABRIC, and 13% and 14% in two independent publications
associated with breast invasive carcinomas, and 15% each in two independent metastatic breast cancer
studies (specified in Section 2).
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Figure 3. Amplification of the StAR gene, expression of hormone receptors, and their correlation
to breast cancer survival in a number of publications/projects. Amplification of the StAR gene in
different breast cancer studies, as available in cBioPortal, was analyzed. (A), amplification of the
StAR gene was evaluated in the following breast cancer studies: breast cancer patient xenografts,
Nature 2015 (29 tumors), [35]; breast METABRIC, Nature Communication 2016 (2173 tumors) [34]; breast
TCGA Cell 2015, (816 tumors), [36]: TCGA Provisional (1080 tumors), [27]; breast PLoS Medicine 2016
(216 tumors), [37]; and TCGA Metastatic Breast Cancer (MBC) Project 2017 (103 tumors). Receptor
expression was categorized as positive, negative, and unknown, and presented as percentages of total
number of tumors (B,C), as described in the legend of Figure 1. Levels of ER, PR, and HER2 expression
and their correlation to overall survival were analyzed for METABRIC (B,B’) and TCGA Cell 2015
(C,C’) studies. Kaplan-Meier survival curves were generated with METABRIC (red line, 288 tumors;
blue line, 1133 tumors) and Cell 2015 (red line, 102 tumors; blue line, 309 tumors) CNA data, using
tumors with amplification and without amplification (diploid) of the StAR gene.

In additional analyses, ER, PR, and HER2 expression, amplification of the StAR gene and its
correlation to overall survival, were evaluated. In METABRIC study, breast cancer tumors (2173 tumors)
were 69% ER+, 48% PR+, and 80% HER−, representing a mixed subtype, in which amplification of the
StAR gene (~12%) affected the survival (p-value = 0.003) of breast cancer (Figure 3B,B’). In a breast
invasive carcinoma study (Cell 2015, 816 tumors), amplification of the StAR gene (~14%), associated
with 74% ER+, 64% PR+, and 51% HER2− (15% HER2+), was found to correlate (p-value = 0.008)
with poor breast cancer survival (Figure 3C,C’). These data corroborate the findings presented in
Figure 2B,C, and demonstrate that amplification of the StAR gene is correlated with poor survival
of patients with luminal subtype breast cancer. Survival data were not available for other studies
included in Figure 3A.

3.5. Amplification of Steroidogenic Enzyme Genes and Their Correlation to Overall Breast Cancer Survival

Estrogen plays an important role in stimulating breast cancer. The involvement of key steroidogenic
enzyme genes (Supplementary Figure S1) to estrogen synthesis was next evaluated for their association
to breast cancer survival utilizing TCGA data cohort. The data presented in Figure 4A–F illustrate bar
graphs of different CNA frequencies (high level amplification (red), gain (blue), hemizygous deletion
(green), and homozygous deletion (pink) for CYP11A1, CYP17A1, HSD3B1, CYP19A1, HSD17B1,

and HSD17B2 enzyme genes in different hormone sensitive cancers. Diploid category is not shown
in these bar diagrams for easier visualization. CNA data demonstrate that the CYP11A1 gene was
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amplified at ~1.5%, ~1.4%, ~3%, ~1.6%, and ~1.1% in breast, melanoma, ovarian, pancreatic, and
uterine endometrial cancers, respectively (Figure 4A). No amplification of the CYP11A1 gene was
observed in prostate and colorectal cancers. The CYP17A1 gene was amplified less than 1% in all cancer
types analyzed (Figure 4B). Amplification of the HSD3B1 gene was highest (~5%) in melanoma and
none in colorectal cancer (Figure 4C). In breast cancer, this gene was amplified at ~2.3%. Amplification
of the CYP19A1 gene (aromatase) was ~1%, ~0.5%, ~0.3%, ~0.2%, ~1.6%, 0%, and ~0.2% in breast,
colorectal, melanoma, ovarian, pancreatic, prostate, and uterine endometrial cancers, respectively
(Figure 4D). Additionally, both HSD17B1 and HSD17B2 gene isoforms were found to be amplified
minimally (0–1.4%) in different hormone sensitive cancers studied (Figure 4E,F). These HSD17B1 and
HSD17B2 isoforms were amplified at ~1.4% and ~0.6% in breast cancer, respectively. These results
are in support of previous studies that demonstrated upregulation of aberrant steroidogenesis during
tumor progression [49,50].

Figure 4. Analyses of CNA data for various steroidogenic enzyme genes in different hormone sensitive
cancers and their correlation to breast cancer survival. TCGA CNA data analyzed for different cancers
were the following: breast cancer tumors (1080 cases), colorectal (616 cases), melanoma (367 cases),
ovarian (579 cases), pancreatic (184 cases), prostate (492 cases), and uterine endometrial (539 cases). Bar
graphs illustrate CNA data for steroidogenic enzyme genes: CYP11A1 (A), CYP17A1 (B), HSD3B1 (C),
CYP19A1 (D), HSD17B1 (E), and HSD17B2 (F). Amplification of these genes was analyzed for overall
breast cancer survival (A’–F’). Kaplan-Meier survival curves were generated with and without (diploid)
amplification of the following steroidogenic enzyme genes: CYP11A1 (A’; red line, 16 tumors; blue line,
635 tumors), CYP17A1 (B’; red line, 1 tumor; blue line, 667 tumors), HSD3B1 (C’; red line, 25 tumors;
blue line, 591 tumors), CYP19A1 (D’; red line, 11 tumors; blue line, 629 tumors), HSD17B1 (E’; red line,
15 tumors; blue line, 500 tumors), and HSD17B2 (F’; red line, 6 tumors; blue line, 293 tumors). Red
and blue lines represent with and without amplification of target genes, respectively. Utr. Endom.,
Uterine Endometrial.

The amplification of these steroidogenic enzyme genes in breast cancer survival was next
evaluated. As determined by Kaplan-Meier survival analyses, amplification of the CYP11A1 gene
was not associated (p-value = 0.984) with breast cancer survival (Figure 4A’). Similarly, both CYP17A1

and HSD3B1 gene amplifications were not found to affect the survival of breast cancer, in which
p-values were 0.103 and 0.262, respectively (Figure 4B’,C’). Kaplan-Meier survival analysis revealed
that amplification of the CYP19A1 gene was not correlated (p-value = 0.756) with breast cancer survival
(Figure 4D’). Additionally, amplification of both HSD17B1 and HSD17B2 gene isoforms did not affect
the survival of breast cancer, where p-values were 0.861 and 0.618, respectively (Figure 4E’,F’). These
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data indicate that none of these steroidogenic enzyme genes were either substantially amplified or
affected the survival of ER+/PR+ breast cancer.

3.6. Assessment of StAR Gene Mutation in Hormone Sensitive Cancers

TCGA hormone responsive cancer datasets were analyzed for identifying mutation(s) in the
StAR gene, which has been shown to affect the biological activity of the StAR protein in steroid
biosynthesis [4,51]. As determined by exome sequencing, no mutations in the StAR gene were observed
in breast (982 tumors) and prostate (499 tumors) cancers, suggesting StAR is functionally active in
mobilizing cholesterol to the mitochondria. However, one mutation in the StAR gene was identified in
each of the following cancers: colorectal (one out of 223 tumors; 0.45%), pancreatic (one out of 150
tumors; 0.67%), and ovarian (one out of 316 tumors; 0.32%). In melanoma and uterine endometrial
carcinomas, five (368 tumors; 1.36%) and four (248 tumors; 1.61%) mutations were observed in the StAR

gene, respectively (Supplementary Figure S2). The absence of mutation in the StAR gene, especially
in breast cancer, suggests that amplification of the StAR gene is culpable in the transport of excess
cholesterol to the inner mitochondrial membrane, resulting in increased estrogen synthesis which
would promote tumorigenesis.

3.7. Expression of StAR mRNA in TCGA Breast Cancer Tumors and Its Association to Overall Survival

TCGA breast cancer tumor datasets were assessed for StAR mRNA expression. As illustrated by
the Box and Whisker plot, StAR mRNA expression was represented as fkpm+uq+1 (obtained from
RNA-Seq data), in which normal distribution across the population was visualized as 25th (9.114) and
75th (11.32) percentiles with a median of 10.2 (Figure 5A).

Figure 5. Expression of StAR mRNA in TCGA breast cancer tumors using the Box and Whisker Plot,
and generation of Kaplan-Meier curves with low vs. high StAR levels. StAR mRNA expression was
illustrated as fkpm+uq+1, generated by TCGA (1089 tumors), and visualized with the Box and Whisker
Plot (A), as described in Section 2. Shown are 25th (9.114) and 75th (11.32) percentiles with a median of
10.2 (indicated by a horizontal line). Kaplan-Meier survival curves were generated with StAR mRNA
values up to 50th percentile (<10.2; 546 tumors) as low and above 50th percentile (>10.2; 543 tumors) as
high (B), and up to 25th percentile as low (<9.114; 272 tumors) and above 25th percentile (>9.114; 817
tumors) as high (C). Red and blue lines represent low and high StAR mRNA expression, respectively.

179



Cancers 2019, 11, 623

To better understand the involvement of StAR in breast cancer, TCGA breast cancer tumors
expressing StAR mRNA were verified for survival analyses with two different quartile combinations.
As depicted in Figure 5B, Kaplan-Meier curve generated with StAR mRNA values up to 50th percentile
(<10.2) as low and above 50th percentile (>10.2) as high [46], was found to correlate with poor survival
(p-value = 0.038) of patients with breast cancer. In a different category, StAR mRNA values up to 25th
percentile (<9.114) as low and above 25th percentile (>9.114) as high [48], showed qualitatively similar
effect (p = 0.034) on the survival of breast cancer (Figure 5C). These data suggest that higher expression
of StAR mRNA can be a risk factor for poor survival of patients with breast cancer.

3.8. TNM Staging and Its Correlation to Breast Cancer Deaths

To obtain more insight in to the impact of StAR in breast cancer deaths, TCGA breast cancer tumors
expressing StAR mRNA were analyzed in conjunction with the TNM staging. Specifically, different
TNM stages were evaluated with low and high StAR mRNA levels with two quantile combinations as
those utilized in Figure 5B,C. The results presented in Table 2 demonstrate TNM stage specific effects of
tumors and their correlation to breast cancer deaths. These results show that breast cancer deaths were
found to be coordinately associated with not only to increased tumor sizes, but also to lymph nodes
in stage dependent manners. Additionally, tumor metastasis (M1) markedly affected the survival
of breast cancer when compared with no metastasis (M0) in both low and high categories (Table 2).
Specifically, the results obtained with TNM stages confirm the Kaplan-Meier survival data presented
in Figure 5B,C. Altogether, genomic analyses of key steroidogenic factors, within the context of TCGA
breast cancer datasets, indicated that aberrant amplification/ expression of the StAR gene is involved,
at least in part, in poor survival of ER+/PR+ breast cancer patients. These results are in support of
our recent finding that demonstrated that StAR protein is abundantly expressed in hormone sensitive
breast cancer [5].

Table 2. T, N, M staging of TCGA breast cancer tumors segregated for low and high StAR mRNA
expression based on two different quartile combinations, and their correlation to patient deaths.

TNM
Staging

Low Expression (<50%) High Expression (>50%) Low Expression (<25%) High Expression (>25%)

Tumor
Nos.

Death
Nos.

%
Deaths

Tumor
Nos.

Death
Nos.

%
Deaths

Tumor
Nos.

Death
Nos.

%
Deaths

Tumor
Nos.

Death
Nos.

%
Deaths

T1 120 17 14.2 158 16 10.1 54 8 14.8 224 25 11.2

T2 336 44 13.1 294 33 11.2 169 25 14.8 461 52 11.3

T3 63 11 17.5 75 14 18.7 32 9 28.1 106 16 15.1

T4 26 8 30.8 14 7 50 16 5 31.3 24 10 41.7

N0 257 22 8.6 257 22 8.6 120 15 12.5 394 29 7.4

N1 169 31 18.3 190 28 14.7 91 19 20.1 268 40 14.9

N2 75 16 21.3 45 6 13.3 38 6 15.8 82 16 19.5

N3 33 5 15.2 45 12 26.7 16 4 25.0 60 11 18.3

M0 459 62 13.5 621 32 5.2 224 26 11.6 672 83 12.4

M1 13 10 76.9 8 5 62.5 4 2 50 12 9 75.0

TCGA breast cancer tumors expressing low and high StAR mRNA levels (as specified) were categorized based
on tumor sizes (T1–T4), nodal variations (N0–N3), and metastasis and non-metastasis (M0–M1), as described in
Section 2.

4. Discussion

Abnormality in gene expression is responsible for anomalous growth of cells connecting tumor
progression. The majority of the human genome is transcribed, but not translated, and gene
amplification, involving oncogene activation, is a fundamental event in cancers. Hormone responsive
cancers, especially breast cancer, are most common globally. Since StAR plays an indispensable
role in the regulation of steroidogenesis, its expression must be finely regulated to appropriate
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functioning of steroid led activities. Conversely, dysregulation of steroid biosynthesis has been
implicated in the pathophysiology of a number of relevant cancers. While StAR’s involvement in
breast malignancy remains obscure, we recently reported that both StAR protein expression and E2
synthesis are profoundly higher in ER+/PR+ breast cancer cell lines, when compared their levels with
either non-cancerous mammary epithelial cells or TNBC [5]. By analyzing genomic profiles of StAR
and steroidogenic enzyme genes for several hormone sensitive cancers, our data extend previous
observations and provide novel insight that aberrant high amplification/expression of the StAR gene is
correlated with poor survival of patients with breast cancer.

The comprehensive analyses of TCGA and cBioPortal research datasets for various hormone
responsive cancers demonstrate that StAR gene is amplified (associated with a positive correlation
between StAR CNA and StAR mRNA levels), but not mutated, in luminal subtype breast cancer.
Specifically, the association of StAR with ER+/PR+ breast cancer indicates that StAR acts as a tumor
promoter in the most prevalent hormone sensitive breast cancer. Several lines of evidence demonstrate
a close correlation between StAR mRNA and StAR protein synthesis which parallels the synthesis of
steroids in a variety of target tissues [4,7,10,52]. The involvement of StAR in breast cancer appeared
specific, as translocator protein (TSPO), a mitochondrial factor involved in steroidogenesis [53,54], was
not connected (TSPO gene was amplified at 0.7% with a p-value = 0.540) with cancer deaths (data
not illustrated). The mechanism accounting for estrogen sensitive ovarian and endometrial cancers,
connecting mutations in the StAR gene, remains unclear, and may involve one or more compensatory
event(s), including involvement of StAR related lipid transfer proteins 3-6 (STARD3-6) and/or other
factors involved in cholesterol trafficking [55,56]. Of note, the late endosomal membrane protein
STARD3 (also known as metastatic lymph node 64), with ~37% C-terminal homology to StAR, was
initially cloned as a gene amplified in the breast, gastric, and esophageal cancers [57,58]. It has previously
been shown that overexpression of STARD3 is associated with increased cholesterol biosynthesis in
HER2+ breast cancer subtype [59,60]. Regardless of the influence of these transporters, cholesterol and
its oxygenated derivatives were demonstrated to be involved in the pathophysiology of a number of
hormone sensitive malignancies, including breast cancer [17,18]. Studies have also reported that both
cholesterol and its metabolites, including 27-hydroxycholesterol (27-HC) and 6-oxocholestan-diol, are
capable to accelerate and/or enhance breast tumorigenesis [17,61,62]. Noteworthy, 27-HC is a ligand
for ER and liver X receptor (LXR), in which the effects of 27-HC on tumor formation and growth
are dependent on ER, while the action of this oxysterol involves LXR in tumor metastasis in mouse
breast cancer models [17]. Whereas an overwhelming amount of evidence indicates the involvement
of cholesterol in hormone sensitive breast cancer, epidemiologic findings are contradictory, requiring
future studies to assess whether total cholesterol and its metabolites, high-density lipoprotein, or
low-density lipoprotein influence cancer development and progression.

Almost all proteins in eukaryotic cells are modified by various post-translational modifications
(PTMs) that influence protein function. We recently identified that StAR is a novel acetylated protein
in ER+ breast cancer cells, in which three acetyl lysine residues were recognized endogenously,
surmising they contribute to higher accumulation E2 in these cells [5]. It is plausible that both higher
expression and activity of StAR facilitate abnormal cholesterol delivery to the mitochondrial inner
membrane and, as a consequence, precursor availability for estrogen in promoting breast tumorigenesis.
This reinforces the notion that estrogen levels in the majority of hormone sensitive malignant
breast tumors can be 10–30 times higher than those found in either circulation or non-cancerous
counterparts [16,21,63,64]. Previously, we [14,65,66] and others [67,68] have reported that cAMP
mediated mechanisms phosphorylate StAR and this PTM enhances the optimal cholesterol transferring
ability of the StAR protein in steroid biosynthesis. Despite the regulatory events involved, the impact
of StAR to serve as a risk factor in affecting the survival of ER+/PR+ breast cancer opens up a new
avenue in breast cancer research.

A notable aspect of the present findings is that amplification of the CYP19A1 gene (aromatase),
within the context of TCGA data cohort, was not correlated with breast cancer death [16], even though
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aromatase is the rate-limiting enzyme in estrogen biosynthesis. Expression of aromatase has been
shown to be high in both non-cancerous and cancerous breast cell lines, suggesting its relevance in
a number of physiological and pathophysiological events [5,69]. There is increasing evidence that
enhanced expression/activity of aromatase is one of the key events for elevated intra-tumoral production
of estrogen in malignant breast tissues [16,21,70,71]. Estrogen is also produced by the action of the
17β-HSD enzyme, and CNA data revealed that the HSD17B gene was neither significantly amplified nor
connected with the survival of hormone sensitive breast cancer. These data imply that StAR mediated
delivery of excess cholesterol, resulting in a substantial increase in estrogen accumulation, appears to
be a fundamental event in the development of hormone sensitive breast cancer. In accordance with
this, preliminary data obtained reveal that the expression of both StAR mRNA and StAR protein was
markedly high in transgenic (Tg) mouse models of breast cancer, activated by MMTV promoter driven
cNeu and H-Ras oncogenes, and polyomavirus, in comparison to nearly undetectable level of StAR in
normal Tg mammary tissue.

Estrogen is primarily produced in the ovaries via the classical steroidogenic pathway through the
synthesis of androstenedione and testosterone from cholesterol (in which StAR plays a permissive role)
in the theca cells. These androgens are then converted to estrogens in granulosa cells. In peri- and
post-menopausal women, extra ovarian tissues become a major source for estrogen synthesis [72]. This
transition is critical since most hormone sensitive cancers, including breast, occur over the age of 50, in
which estrogens synthesized in peripheral tissues are believed to play pivotal roles [63,64]. The plasma
androgen level in post-menopausal women, with the loss of ovarian estrogen production, remains
stable for years. Utilizing the non-classical pathway, these androgens are converted to estrogens in
peripheral tissues. In addition to peripheral estrogen that reaches the tumor site through systemic
circulation, estrogen is also synthesized locally in malignant breast tumors [16,21,63,64]. Breast cancer
tumors in TCGA datasets were predominantly ER+/PR+, in which aberrant high expression of StAR

mRNA, was found to affect poor survival of breast cancer. Further analyses of these tumors, expressing
StAR mRNA, demonstrated increasing patterns of breast cancer deaths with advanced TNM stages.
It should be noted, however, while breast cancer deaths were steadily increased with various TNM
stages, they were not coordinately associated with StAR mRNA expression, which could be due to
tumor numbers, tumor stages, or involvement of additional factors.

5. Conclusions

Analyses of molecular genomic profiling of steroidogenic factors associated with TCGA and
cBioPortal research datasets revealed that abundant amplification and/or expression of the StAR
gene is connected with poor survival of patients with luminal subtype breast cancer. This is in
support of our recent report that demonstrated that StAR protein, concomitant with E2 synthesis, is
markedly expressed in ER+/PR+ breast cancer, in comparison to nearly undetectable to modest StAR
and E2 levels in non-cancerous mammary epithelial cells [5]. Based on these data (albeit limited),
it is highly likely that StAR facilitates abnormal delivery of cholesterol to the inner mitochondria,
resulting in adequate availability of precursors for E2 overproduction, which could be a plausible
mechanism in the development and growth of hormone sensitive breast cancer. Furthermore, the
results of in silico analyses, together with our in vitro data reported recently, attest that StAR can
serve as a novel prognostic marker in ER+/PR+ breast cancer, whereas its inhibition, involving E2
synthesis, by a number of histone deacetylase inhibitors, might have therapeutic implications in
the prevention/treatment of this devastating disease. The present data indicating the involvement
of the classical pathway in intra-tumoral androgen/estrogen synthesis points to an additional new
mechanism in growth and development of ER+/PR+ breast and/or other pertinent cancers, even though
overexpression of aromatase, resulting in an increase in estrogen synthesis through the non-classical
pathway is well established. Whereas StAR gene is highly amplified/expressed in hormone sensitive
breast cancer, its association with HER2 and TNBC subtypes remains to be elucidated.
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Abstract: Background: Oral cancer is one of the most prevalent cancers worldwide. Despite that the
oral cavity is easily accessible for clinical examinations, oral cancers are often not promptly diagnosed.
Furthermore, to date no effective biomarkers are available for oral cancer. Therefore, there is an
urgent need to identify novel biomarkers able to improve both diagnostic and prognostic strategies.
In this context, the development of innovative high-throughput technologies for molecular and
epigenetics analyses has generated a huge amount of data that may be used for the identification of
new cancer biomarkers. Methods: In the present study, GEO DataSets and TCGA miRNA profiling
datasets were analyzed in order to identify miRNAs with diagnostic and prognostic significance.
Furthermore, several computational approaches were adopted to establish the functional roles of
these miRNAs. Results: The analysis of datasets allowed for the identification of 11 miRNAs with
a potential diagnostic role for oral cancer. Additionally, eight miRNAs associated with patients’
prognosis were also identified; six miRNAs predictive of patients’ overall survival (OS) and one,
hsa-miR-let.7i-3p, associated with tumor recurrence. Conclusions: The integrated analysis of different
miRNA expression datasets allows for the identification of a set of miRNAs that, after validation,
may be used for the early detection of oral cancers.

Keywords: oral cancer; miRNA; bioinformatics; datasets; biomarkers; TCGA; GEO DataSets

1. Introduction

Oral cancer is one of the most prevalent cancers worldwide, accounting for about 354,864 new
diagnoses and approximately 177,384 new deaths annually [1]. Generally, the term oral cancer identifies
a subset of head and neck cancers arising in the lips, hard palate, upper and lower alveolar ridges,
anterior two-thirds of the tongue, sublingual region, buccal mucosa, retro-molar trigone and floor of the
mouth [2]. Among these cancers, the most frequent histotype is oral squamous cell carcinoma (OSCC)
representing about 95% of all oral cancers [3]. Recent epidemiological data demonstrated that despite
the development of novel screening strategies together with the advancement of pharmacological
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treatments, the incidence and mortality rates of head and neck cancer, and in particular that of oral
cancer, are almost stable or increased during the last years [4,5].

Behind the increase of both oral cancer incidence and mortality rates, there are several modifiable
factors, including dietary and lifestyles habits, together contributing to cancer development. Among
these factors, alcohol consumption and smoking represent the most recognized factors predisposing to
OSCC [6,7]. Additionally, viruses and other microbes have been intensively associated with a higher
increase of OSCC development, such as infections sustained by human papilloma viruses (HPVs),
Epstein-Barr virus (EBV) or Candida albicans [8–10]. Although the majority of the studies are focused
on the investigation of microbial factors as cancer risk factors, recently several studies were pursued
with the aim of establishing a potential role of the human microbiota in protecting the host from several
tumors, including those of the oral cavity [11–13].

Along with these well-recognized risk factors, oral cancer development is also associated with
several molecular alterations affecting key genes involved in the regulation of pivotal cellular processes,
such as cell cycle, cell proliferation and apoptosis. The most frequent gene alterations found linked with
OSCC affect TP53, NOTCH1, CDKN2A, SYNE1, PIK3CA, as well as the EGFR pathway-related genes
(including TGF-β, fibroblastic growth factor-BP (FGF-BP) and MMK6) [14,15]. Recently, epigenetic
modifications, including promoter/intragenic methylation and microRNAs (miRNAs) de-regulation,
have been linked to the development of oral cancers by mediating the alteration of cellular homeostasis
and physiological processes [16–18].

Despite that the oral cavity is readily explorable, most oral tumors are diagnosed at an advanced
stage reducing the survival rate of patients [19,20]. Currently, there are no effective biomarkers for the
early diagnosis of oral cancer. Several studies have proposed the evaluation of the salivary and serum
levels of IL-6 and/or IL-8 as promising biomarkers for oral cancer lesions, however, the sensitivity and
specificity of these markers were low because they increase also in presence of various oral cavity
inflammatory conditions [21,22]. Other studies focused the attention on tumor markers already used
for the diagnosis of other solid tumors, such as the salivary levels of the carcino-embryonic antigen
(CEA; 68.9% sensitivity, 73.3% specificity) [23], carcinoantigen 19-9 (CA19-9; no diagnostic value) [24]
and CA125 (80.0% sensitivity, 66.0% specificity) [25]. However, the sensitivity and specificity of these
markers were not high enough to diagnose effectively all oral tumors.

Therefore, there is an urgent need to identify novel biomarkers for the early diagnosis of oral cancer.
In this context, the role of non-coding RNAs, of which miRNAs are the most studied, has been recently
acquiring remarkable importance in the development of several pathologies, including cancer [26–28].
In particular, several studies demonstrated that miRNAs, a class of small non-coding RNAs with
a length of 20–22 nucleotides, are involved in cancer, including that of oral cavity cancer, inducing
epigenetic modifications altering key cellular processes, such as cell differentiation, growth, apoptosis
and drug resistance [29,30]. Notably, miRNAs are able to regulate gene expression by controlling
mRNA translation, either by translational repression of the targeted mRNA or by enhancing its
degradation through an RNA interference mechanism [31]. Furthermore, a growing body of evidence
demonstrated that dysregulated miRNAs may be used for diagnostic and prognostic purposes. In fact,
it is well established that certain miRNAs are specifically associated with the presence of tumors, even
in the early stages, or associated with a worse prognosis [32,33].

Therefore, miRNAs may represent good candidate biomarkers also for oral cancer. On this matter,
during the last decade, a huge amount of molecular and bioinformatics data has been generated, with
the final goal of characterizing miRNAs’ expression profile in several cancers. These databases were
therefore used to identify new effective biomarkers identified through computational approaches [34].
Several studies analyzed the data deriving from miRNAs microarray or sequencing profiling in oral
cancer samples. However, the lack of integration between the different data matrix generated has
generated confusing data on this matter. For instance, Manikandan M and colleagues (2016) have
performed a miRNA microarray analysis in a discovery cohort (n = 29) and validation cohort (n = 61)
of primary OSCC tissue specimens identifying a set of miRNAs (let-7a, let-7d, let-7f, miR-16, miR-29b,
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miR-142-3p, miR-144, miR-203, miR-223 and miR-1275) potentially involved in oral cancer development
and progression [35]. Other microarray studies have identified miRNAs different from those identified
by Manikandan et al. In particular, Chamorro Petronacci and colleagues (2019) have recently identified
two potential miRNAs, miR-497-5p and miR-4417 associated with the presence of OSCC [36]. Yan
ZY and co-workers (2017) have identified seven key miRNAs (miR-21, miR-31, miR-338, miR-125b,
hsa-miR-133a, miR-133b and miR-139) associated with the tumor [37]. Therefore, it is evident that
there are no concordant data generated by the single and independent analysis of different miRNA
microarray datasets for oral cancer.

To our best knowledge, no previous studies have analyzed simultaneously different oral cancer
tissue miRNAs profiling datasets. In the present study, miRNA expression datasets, contained in both
the Gene Expression Omnibus DataSets (GEO DataSets) and The Cancer Genome Atlas (TCGA) Head
and Neck Cancer (HNSC), were analyzed to identify a panel of miRNAs used as potential diagnostic
and/or prognostic biomarkers for oral cancer.

2. Results

2.1. Identification of Oral Cancer-Associated miRNAs

The differential analysis performed by GEO2R on the two datasets of the GEO DataSets database
allowed the identification of two lists of de-regulated miRNAs in oral tumors compared to non-tumor
controls. By comparing these two lists of miRNAs, it was possible to identify 28 miRNAs differentially
expressed in the tumor tissue, 12 of which were up-regulated and 16 were down-regulated (Table 1).

Table 1. Up-regulated and down-regulated miRNAs in tumor samples compared to the healthy controls.

miRNA ID
GSE45238 GSE31277

Fold Change p-Value * Fold Change p-Value *

Up-regulated miRNAs

hsa-miR-196a-5p 8.096 9.45 × 10−12 8.132 1.42 × 10−6

hsa-miR-503-5p 5.010 4.83 × 10−21 2.622 4.69 × 10−4

hsa-miR-7-5p 3.505 9.41 × 10−20 2.297 5.00 × 10−4

hsa-miR-542-5p 3.348 9.21 × 10−12 2.700 1.10 × 10−4

hsa-miR-142-5p 3.323 3.98 × 10−8 2.633 2.12 × 10−3

hsa-miR-19a-3p 3.068 3.81 × 10−7 2.910 4.75 × 10−4

hsa-miR-18a-5p 2.646 2.34 × 10−10 1.554 2.66 × 10−3

hsa-miR-19b-3p 2.179 1.28 × 10−5 2.415 7.73 × 10−4

hsa-miR-32-5p 1.997 1.76 × 10−5 3.874 3.28 × 10−5

hsa-miR-196b-5p 1.791 2.05 × 10−8 1.874 2.00 × 10−4

hsa-miR-33b-5p 1.581 9.26 × 10−4 2.541 2.00 × 10−3

hsa-miR-34b-3p 1.558 1.95 × 10−4 2.079 1.13 × 10−3

Down-Regulated miRNAs

hsa-miR-195-5p −1.778 1.25 × 10−12 −1.620 1.71 × 10−6

hsa-miR-378a-5p −1.799 9.47 × 10−12 −2.194 4.45 × 10−3

hsa-miR-363-3p −1.869 1.56 × 10−5 −1.951 4.16 × 10−5

hsa-miR-100-5p −1.883 8.04 × 10−14 −2.199 1.19 × 10−4

hsa-miR-328-5p −2.471 1.18 × 10−8 −1.599 2.32 × 10−3

hsa-miR-99a-5p −2.732 4.83 × 10−16 −2.441 7.82 × 10−5

hsa-miR-218-5p −3.021 1.08 × 10−10 −1.853 1.72 × 10−4

hsa-miR-432-5p −3.155 1.55 × 10−13 −1.718 3.14 × 10−3

hsa-miR-379-5p −3.513 1.83 × 10−11 −2.345 9.63 × 10−4

hsa-miR-154-5p −4.021 4.01 × 10−13 −1.826 2.00 × 10−3

hsa-miR-133a-3p −4.202 6.37 × 10−9 −3.446 8.47 × 10−3

hsa-miR-487b-5p −4.366 6.96 × 10−15 −1.899 9.71 × 10−3

hsa-miR-135a-5p −4.910 1.11 × 10−14 −3.324 1.90 × 10−3

hsa-miR-411-5p −5.574 3.25 × 10−16 −2.542 6.18 × 10−3

hsa-miR-1-3p −9.783 3.47 × 10−9 −5.786 2.16 × 10−3

hsa-miR-375 −16.589 1.95 × 10−17 −3.198 5.12 × 10−4

* p-values were automatically obtained by using the GEO2R software by performing Student’s t-test.

The analysis of the expression data of miRNAs contained in the TCGA HNSC dataset allowed
us to obtain a list of 514 de-regulated miRNAs associated with the presence of a tumor (p < 0.01;
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Table S1). Furthermore, 21 of the 28 miRNAs identified with the GEO DataSets analysis were contained
in this list of 514 miRNAs (Table S1), thus confirming that the results obtained from the two analyses
were overlapping.

To further narrow the search towards miRNAs showing a strong diagnostic significance, the
25 most up-regulated and the 25 most down-regulated miRNAs were selected from the list of 514
miRNAs. The analysis of the TCGA HNSC dataset showed a list of 50 miRNAs that were strongly
associated with the presence of the tumor (Table 2).

Table 2. TCGA analysis of up-regulated and down-regulated miRNAs in the tumor compared to the
normal samples.

miRNA ID miRNA Name FC Cancer vs Normal p-Value *

Up-regulated

MIMAT0000226 hsa-miR-196a-5p 12.145 3.12 × 10−19

MIMAT0001080 hsa-miR-196b-5p 11.639 5.43 × 10−20

MIMAT0000267 hsa-miR-210-3p 9.733 1.18 × 10−9

MIMAT0000089 hsa-miR-31-5p 7.684 8.42 × 10−12

MIMAT0004784 hsa-miR-455-3p 7.165 9.21 × 10−18

MIMAT0005923 hsa-miR-1269a 5.899 1.99 × 10−11

MIMAT0000102 hsa-miR-105-5p 5.510 9.64 × 10−13

MIMAT0004504 hsa-miR-31-3p 5.298 1.59 × 10−9

MIMAT0003882 hsa-miR-767-5p 5.294 5.40 × 10−13

MIMAT0000281 hsa-miR-224-5p 4.789 5.39 × 10−11

MIMAT0002874 hsa-miR-503-5p 4.044 3.86 × 10−19

MIMAT0002819 hsa-miR-193b-3p 3.407 8.17 × 10−15

MIMAT0005951 hsa-miR-1307-3p 3.395 1.14 × 10−11

MIMAT0000076 hsa-miR-21-5p 3.209 3.05 × 10−10

MIMAT0000266 hsa-miR-205-5p 3.040 1.64 × 10−5

MIMAT0016895 hsa-miR-2355-5p 3.023 6.22 × 10−14

MIMAT0004987 hsa-miR-944 3.020 7.56 × 10−7

MIMAT0005797 hsa-miR-1301-3p 2.902 6.39 × 10−17

MIMAT0000761 hsa-miR-324-5p 2.878 7.41 × 10−12

MIMAT0000758 hsa-miR-135b-5p 2.859 4.08 × 10−8

MIMAT0001341 hsa-miR-424-5p 2.856 4.57 × 10−13

MIMAT0000072 hsa-miR-18a-5p 2.829 8.10 × 10−10

MIMAT0001545 hsa-miR-450a-5p 2.828 1.20 × 10−15

MIMAT0000688 hsa-miR-301a-3p 2.807 5.32 × 10−13

MIMAT0003150 hsa-miR-455-5p 2.799 3.50 × 10−12

Down-regulated

MIMAT0002870 hsa-miR-499a-5p −3.296 3.76 × 10−5

MIMAT0000733 hsa-miR-379-5p −3.298 1.29 × 10−10

MIMAT0002890 hsa-miR-299-5p −3.504 8.97 × 10−7

MIMAT0000461 hsa-miR-195-5p −3.510 7.79 × 10−14

MIMAT0022721 hsa-miR-1247-3p −3.553 3.40 × 10−7

MIMAT0016847 hsa-miR-378c −3.670 4.61 × 10−8

MIMAT0002171 hsa-miR-410-3p −3.684 9.33 × 10−12

MIMAT0004603 hsa-miR-125b-2-3p −3.694 1.52 × 10−18

MIMAT0004606 hsa-miR-136-3p −3.797 1.08 × 10−12

MIMAT0004550 hsa-miR-30c-2-3p −3.881 1.03 × 10−12

MIMAT0004552 hsa-miR-139-3p −3.937 3.02 × 10−14

MIMAT0000099 hsa-miR-101-3p −4.017 3.64 × 10−23

MIMAT0000087 hsa-miR-30a-5p −4.132 6.93 × 10−14

MIMAT0003329 hsa-miR-411-5p −4.160 2.03 × 10−10

MIMAT0000265 hsa-miR-204-5p −4.519 1.28 × 10−17

MIMAT0000681 hsa-miR-29c-3p −4.539 5.24 × 10−17

MIMAT0000064 hsa-let-7c-5p −4.674 3.68 × 10−22

MIMAT0000462 hsa-miR-206 −5.228 4.62 × 10−3

MIMAT0000736 hsa-miR-381-3p −5.293 5.06 × 10−8

MIMAT0000770 hsa-miR-133b −5.580 3.66 × 10−4

MIMAT0000088 hsa-miR-30a-3p −5.696 2.66 × 10−13

MIMAT0000097 hsa-miR-99a-5p −5.746 1.85 × 10−27

MIMAT0000427 hsa-miR-133a-3p −7.055 2.93 × 10−4

MIMAT0000416 hsa-miR-1-3p −10.663 8.80 × 10−6

MIMAT0000728 hsa-miR-375-3p −18.183 1.33 × 10−11

In bold the miRNAs in common with the results of the GEO DataSets analysis; * p-values were calculated by
Student’s t-test.
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In Table 2, in bold, are reported the miRNAs matching between the analyses of GEO DataSets
and TCGA datasets. These common-shared miRNAs are presumably more involved in neoplastic
transformation mechanisms underlying the development of oral cancers. As shown in Table 2, most
of these miRNAs presented the highest levels of up-regulation (miR-196a-5p and miR-196b-5p) and
down-regulation (miR-99a-5p, miR-133a-3p, miR-1-3p and miR-375-3p).

In summary, the two differential analyses between tumor samples and normal samples performed
on GEO DataSets and TCGA datasets, showed that 11 miRNAs, of which four up-regulated and seven
down-regulated, were strictly related to the presence of a tumor (Table 3).

Table 3. Summary table of GEO DataSets and TCGA HNSC datasets “Cancer vs Normal”
differential analyses.

miRNA Name

GEO DataSets
TCGA HNSC Datasets

GSE45238 GSE31277

FC Cancer
vs Normal

p-Value *
FC Cancer
vs Normal

p-Value *
FC Cancer
vs Normal

p-Value **

Up-regulated

hsa-miR-196a-5p 8.096 9.45 × 10−12 8.132 1.42 × 10−6 12.145 3.12 × 10−19

hsa-miR-196b-5p 1.791 2.05 × 10−8 1.874 2.00 × 10−4 11.639 5.43 × 10−20

hsa-miR-503-5p 5.010 4.83 × 10−21 2.622 4.69 × 10−4 4.044 3.86 × 10−19

hsa-miR-18a-5p 2.646 2.34 × 10−10 1.554 2.66 × 10−3 2.829 8.10 × 10−10

Down-regulated

hsa-miR-379-5p −3.513 1.83 × 10−11 −2.345 9.63 × 10−4 −3.298 1.29 × 10−10

hsa-miR-195-5p −1.778 1.25 × 10−12 −1.620 1.71 × 10−6 −3.510 7.79 × 10−14

hsa-miR-411-5p −5.574 3.25 × 10−16 −2.542 6.18 × 10−3 −4.160 2.03 × 10−10

hsa-miR-99a-5p −2.732 4.83 × 10−16 −2.441 7.82 × 10−5 −5.746 1.85 × 10−27

hsa-miR-133a-3p −4.202 6.37 × 10−9 −3.446 8.47 × 10−3 −7.055 2.93 × 10−4

hsa-miR-1-3p −9.783 3.47 × 10−9 −5.786 2.16 × 10−3 −10.663 8.80 × 10−6

hsa-miR-375-3p −16.589 1.95 × 10−17 −3.198 5.12 × 10−4 −18.183 1.33 × 10−11

* p-values were already calculated by GEO2R software; ** p-values were calculated by applying Student’s t-test.

As shown in Table 3, the miRNA miR-196a-5p and the two miRNAs miR-1-3p and miR-375-3p,
respectively up-regulated and down-regulated, presented the higher levels of over-expression or
down-regulation in all three datasets (two GEO DataSets and one TCGA).

For the further prediction analyses of target genes and altered molecular pathways, the 11
miRNAs reported in Table 3 were considered: hsa-miR-196a-5p, hsa-miR-196b-5p, hsa-miR-503-5p,
hsa-miR-18a-5p, hsa-miR-379-5p, hsa-miR-195-5p, hsa-miR-411-5p, hsa-miR-99a-5p, hsa-miR-133a-3p,
hsa-miR- 1-3p and hsa-miR-375-3p.

2.2. Levels of Interaction Between the 11 Selected miRNAs and Oral Cancer Altered Genes

Through the use of COSMIC and mirDIP, the majority of mutated and altered genes in oral cavity
tumors were identified and miRNA-gene interaction specificity was determined, respectively. First,
by using COSMIC the 10 most frequent mutations and gene alteration found in oral cancers were
identified. These altered genes were the TP53 genes (43%), FAT1 (28%), CASP8 (23%), TERT (22%),
NOTCH1 (20%), CDKN2A (16%), HRAS (10%), KMT2D (10%), FGFR3 (8%) and PIK3CA (8%).

Then, through mirDIP it was possible to establish the interaction levels with the selected 11
oral cancer-associated miRNAs and the genes identified by using COSMIC (Table S2). For the 10
interacting genes, also gene expression levels were analyzed using the TCGA HNSC IlluminaHiSeq
pancan normalized dataset (Table S3). This analysis revealed that all the identified miRNAs were able
to target the commonly mutated genes in oral cancers. In fact, the majority of the interactions occurred
with medium-high specificity underlining the strong correlation between deregulated miRNAs in
cancer patients and the aforementioned genes involved in fundamental cellular and cancer pathways
(Figure 1). However, the analysis of the TCGA HNSC IlluminaHiSeq pancan normalized dataset
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showed that only six out of the 10 (TP53, FAT1, CASP8, TERT, CDKN2A and PIK3CA) genes were
significantly de-regulated in oral cancers (Table S3).

Figure 1. mirDIP analysis of interaction levels between selected miRNAs and the main mutated and
altered genes in oral cavity tumors.

The most interesting data showed in Figure 1 were relative to the KMT2D gene where it is possible
to note how all up-regulated miRNAs were able to target this gene by reducing its expression levels.
This is important if we consider that KMT2D is a tumor suppressor gene, therefore its down-regulation
due to the suppressive action of up-regulated miRNAs triggers cellular neoplastic transformation.
Taking into account the miRNAs, it can instead be noted that, generally, the 11 selected miRNAs
have medium levels of interaction with the target genes (medium interaction orange). However, the
down-regulated hsa-miR-195-5p and hsa-miR-375-3p miRNAs showed the highest interaction levels
with the analyzed genes (Figure 1). The expression levels of the 10 targeted genes showed that the
FAT1, CASP8, TERT, CDKN2A and PIK3CA genes were significantly up-regulated in tumor samples,
while TP53 was significantly down-regulated.

2.3. Correlation Analysis Between the 11 Selected Tumor-Associated miRNAs and Ene Expression

The correlation value of each miRNA with different genes was obtained by using the bioinformatics
tool miRCancerdb. This tool is a free easy-to-use database of microRNA-gene/protein expression and
correlation in cancer where the correlation levels are calculated using the Pearson correlation coefficient
(ρ). Therefore, the correlation levels are denoted by “r” [38].

In particular, for each miRNA a list of miRNAs-correlated genes, ranging from 4493 to 9042, was
obtained through miRCancerdb analysis. Subsequently, these lists of genes were compared showing a
total of 121 genes in common and altered by the 11 selected miRNAs. However, only the genes shared
by the 11 miRNAs and belonging to the first quartile of the genes most positively and negatively
correlated to each miRNA were considered (Figure 2). This selection unveiled the correlation levels of
105 different genes (Figure 2A).
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Figure 2. Panel (A) miRCancerdb analysis of genes whose expression is positively and negatively
related to the 11 selected miRNAs; panel (B) mirDIP analysis of interaction levels between miRNAs
and related genes.

In Figure 2A, the heat map showed that the down-regulated miRNAs miR-133a-3p and miR-1-3p
were those with the highest positive correlation levels; instead, the miRNA with lower negative
correlation levels was the up-regulated miRNA miR-18a-5p. Moreover, it can be observed that FYCO1,
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SORBS1 and GPD1L genes were strongly positively correlated with the selected miRNAs; on the other
hand, ASA1, NFIC and SECISBP2L genes were the least correlated with the analyzed miRNAs.

To further confirm the correlation levels existing among miRNAs and genes, the mirDIP tool was
used. In Figure 2B, the interaction levels between the 11 selected miRNAs and the positively and
negatively correlated genes are showed (Figure 2B). The figure shows that for eight genes there were
no interactions with the selected miRNAs (KIAA1370, CHP, WDR67, ZNF642, LASS5, ORC6L, C20orf20,
C1orf135). Overall, such analysis revealed that miR-195-5p, miR-503-5p, miR-18a-5p (up-regulated)
and miR-375-3p (down-regulated) showed highest interaction levels with the 105 genes. On the other
hand, the genes CPEB3, CPEB4, MAGI1, PHACTR2, PDLIM5, NFIC, SLMAP and SECISBP2L were
strongly targeted by the 11 selected miRNAs (Figure 2B).

2.4. Determination of the Functional Roles of Tumor-Associated MiRNAs Through Pathway and GO
Enrichment Analyses

For the pathway prediction analysis, all the 11 tumor-associated miRNAs were inputted into the
bioinformatics prediction tool DIANA-mirPath. The analysis revealed that for the miRNAs miR-503-5p,
miR-133a-3p and miR-1-3p there were not modulated pathways and targeted genes according to the
TarBase Version 7.0 database of DIANA-mirPath. For the remaining miRNAs the cumulative pathway
analysis showed that, overall, the miRNAs were able to alter 48 different pathways and over 2100
genes. However, the pathways involved in the tumor processes were 22 and the modulated genes
amounted to 345 univocal genes (Table 4).

Table 4. Pathways involved in neoplastic transformation and modulated by the 11 computationally
selected miRNAs.

No. KEGG Pathway
Up-Regulated miRNAs Down-Regulated miRNAs

p-Value * #Genes #miRNAs p-Value * #Genes #miRNAs

1 Bladder cancer (hsa05219) 2.25 × 10−3 14 3 2.78 × 10−3 19 5
2 Cell cycle (hsa04110) 1.11 × 10−2 27 3 5.48 × 10−3 43 6

3
Central carbon metabolism in cancer
(hsa05230)

/ / / 4.59 × 10−2 20 5

4 Chronic myeloid leukemia (hsa05220) 3.61 × 10−4 22 3 1.99 × 10−2 25 5
5 Colorectal cancer (hsa05210) 7.53 × 10−5 18 3 / / /

6 FoxO signaling pathway (hsa04068) 7.64 × 10−3 28 3 4.50 × 10−3 44 6
7 Glioma (hsa05214) 2.56× 10−3 16 3 3.70 × 10−3 23 5
8 Hippo signaling pathway (hsa04390) 1.74 × 10−11 41 3 4.22 × 10−8 51 6
9 Melanoma (hsa05218) 1.48 × 10−2 15 3 / / /

10 mTOR signaling pathway (hsa04150) / / / 1.82 × 10−2 22 5
11 Non-small cell lung cancer (hsa05223) 2.54 × 10−2 14 3 / / /

12 p53 signaling pathway (hsa04115) 1.84 × 10−3 19 3 6.53 × 10−4 28 6
13 Pancreatic cancer (hsa05212) 2.90 × 10−2 17 3 4.79 × 10−2 23 5
14 Pathways in cancer (hsa05200) 1.33 × 10−3 62 3 1.68 × 10−4 111 6
15 Prostate cancer (hsa05215) 3.73 × 10−2 19 3 3.83 × 10−3 33 6
16 Proteoglycans in cancer (hsa05205) 2.13 × 10−4 35 3 1.11 × 10−12 73 6
17 Renal cell carcinoma (hsa05211) / / / 1.65 × 10−2 23 6
18 Small cell lung cancer (hsa05222) 2.34 × 10−2 19 3 1.65 × 10−2 29 5

19
TGF-beta signaling pathway
(hsa04350)

8.01 × 10−6 19 3 6.45 × 10−3 26 6

20 Thyroid cancer (hsa05216) 3.68 × 10−2 7 3 / / /

21 TNF signaling pathway (hsa04668) / / / 1.88 × 10−2 36 6
22 Viral carcinogenesis (hsa05203) 1.53 × 10−2 35 3 3.77 × 10−6 65 6

* p-values were already calculated by the DIANA-mirPath by automatically applying the Fisher’s Exact Test.

As shown in Table 4, the identified miRNAs play a key role in the modulation of different
pathways involved in neoplastic development and in different types of tumors, highlighting their
potential pro-oncogenic role when de-regulated (Table 4). The pathways found highly modulated
were: “Pathways in cancer (hsa05200)”, “Cell cycle (hsa04110)”, various signal transduction pathways,
including “FoxO signaling pathway (hsa04068)”, “p53 signaling pathway (hsa04115)” and “Hippo
signaling pathways (hsa04390)”.
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Within these pathways, MAPK1 (18 counts), CCND1 (17 counts), AKT3 and PIK3CA (15 counts),
PIK3CB (14 counts), NRAS (13 counts), BRAF (12 counts), CDK4 and CDKN1A (11 counts) and E2F2

(10 counts) genes were found commonly altered by the selected miRNAs. All these genes, when
de-regulated, were notoriously involved in cancer development and progression.

To further confirm the functional roles of miRNAs and their modulated genes, gene enrichment
analyses were performed on both miRCancerdb and DIANA-mirPath lists of genes by using both GO
PANTHER and STRING software.

Both enrichment analyses were performed on the list of the 105 miRCancerdb genes correlated to
the 11 cancer-associated miRNAs giving back similar results regarding the three ontological categories
“biological process”, “molecular function” and “cellular component”. Figure 3 shows the results of the
GO PANTHER and STRING analyses (Figure 3).

Figure 3. Gene Ontology enrichment of the 105 genes identified through miRCancerdb. Panel (A,D)
GO PANTHER and STRING analyses of the “biological process” category; panel (B,E) GO PANTHER
and STRING analyses of the “molecular function” category; panel (C,F) GO PANTHER and STRING
analyses of the “cellular component” category.

Regarding the “biological process” category, it was demonstrated that most of the
miRNAs-modulated genes are involved in the regulation of biological (29.9% and 78.7%, GO PANTHER
and STRING, respectively) and cellular (17.8% and 75.6%, GO PANTHER and STRING, respectively)
processes (Figure 3A,D). In Figure 3B,E, the genes were clustered according to their “molecular function”
and the results showed that the genes were all involved in protein binding, cyclic compounds and
nucleotides binding (STRING analysis Figure 3E). While the GO PANTHER analysis for the same
category (molecular function) showed that the genes were mainly involved in the binding and, to a
lesser extent, in the catalytic, molecular and transport activities (Figure 3B). Finally, with regard to
the “cellular component” category, the majority of the genes were components of the cell (39.3% and
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93.3, GO PANTHER and STRING, respectively) and organelles (23.1% and 84.8%, GO PANTHER and
STRING, respectively; Figure 3C,F).

The same GO enrichment analyses were performed on the 345 genes identified by DIANA-mirPath
showing similar results to those described above (Figure 4).

Figure 4. Gene Ontology enrichment of the 345 genes identified through DIANA-mirPath. Panel (A,D)
GO PANTHER and STRING analyses of the “biological process” category; panel (B,E) GO PANTHER
and STRING analyses of the “molecular function” category; panel (C,F) GO PANTHER and STRING
analyses of the “cellular component” category.

Figure 4 (Panel A and D) shows that, in the “biological process” category, the genes identified by
DIANA-mirPath were involved in the regulation of the biological and cellular processes as observed in
Figure 3. Similarly, in the “molecular function” and “cellular component” categories, the 345 genes
were involved, respectively, in molecular binding and catalytic activities (Figure 4B,E), and were
components of the cell and intracellular organelles (Figure 4C,F).

2.5. Identification of Oral Cancer Stage-Related miRNAs

The same differential analysis performed to find the oral cancer-associated miRNAs was also
performed between high-grade tumor samples (254 stage III and IV samples—high-grade) and
low-grade tumor samples (94 Stage I and II samples—low-grade) in order to find oral cancer
stage-related miRNAs with a prognostic significance. This second differential analysis showed
that 36 miRNAs were de-regulated in high-grade samples compared to low-grade (p < 0.01; Table 5).
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Table 5. TCGA analysis of up-regulated and down-regulated miRNAs in high-grade compared with
low-grade tumors.

miRNA ID miRNA Name FC High-Grade vs Low-Grade p-Value **

Up-regulated

MIMAT0001536 hsa-miR-429 1.279 3.20 × 10−3

MIMAT0003233 hsa-miR-551b-3p 1.205 1.31 × 10−3

MIMAT0004697 hsa-miR-151a-5p 1.172 3.78 × 10−3

MIMAT0003246 hsa-miR-581 1.078 3.88 × 10−3

MIMAT0019931 hsa-miR-4775 1.064 1.31 × 10−3

Down-regulated

MIMAT0004594 hsa-miR-132-5p −1.141 4.88 × 10−3

MIMAT0000727 hsa-miR-374a-5p −1.148 7.65 × 10−3

MIMAT0022272 hsa-miR-664b-3p −1.159 9.42 × 10−4

MIMAT0000415 hsa-let-7i-5p −1.180 2.57 × 10−3

MIMAT0003338 hsa-miR-660-5p −1.202 5.19 × 10−3

MIMAT0004775 hsa-miR-502-3p −1.206 4.61 × 10−3

MIMAT0000082 hsa-miR-26a-5p −1.209 4.96 × 10−3

MIMAT0004694 hsa-miR-342-5p −1.213 4.45 × 10−3

MIMAT0004766 hsa-miR-146b-3p −1.222 7.84 × 10−3

MIMAT0025849 hsa-miR-6718-5p −1.223 3.61 × 10−4

MIMAT0004682 hsa-miR-361-3p −1.224 8.00 × 10−4

MIMAT0004597 hsa-miR-140-3p −1.232 5.38 × 10−5

MIMAT0004673 hsa-miR-29c-5p −1.234 1.88 × 10−3

MIMAT0002808 hsa-miR-511-5p −1.246 9.53 × 10−3

MIMAT0000250 hsa-miR-139-5p −1.248 2.75 × 10−3

MIMAT0004585 hsa-let-7i-3p −1.251 7.09 × 10−3

MIMAT0019071 hsa-miR-4532 −1.256 3.56 × 10−3

MIMAT0019927 hsa-miR-4772-3p −1.258 6.01 × 10−3

MIMAT0000258 hsa-miR-181c-5p −1.267 1.17 × 10−3

MIMAT0004570 hsa-miR-223-5p −1.285 7.97 × 10−3

MIMAT0000086 hsa-miR-29a-3p −1.290 1.94 × 10−3

MIMAT0004552 hsa-miR-139-3p –1.314 2.04 × 10−3

MIMAT0000433 hsa-miR-142-5p –1.329 3.76 × 10−3

MIMAT0000646 hsa-miR-155-5p −1.349 5.08 × 10−3

MIMAT0000274 hsa-miR-217-5p −1.354 6.83 × 10−3

MIMAT0000449 hsa-miR-146a-5p −1.375 1.56 × 10−3

MIMAT0000280 hsa-miR-223-3p −1.397 1.40 × 10−3

MIMAT0000681 hsa-miR-29c-3p –1.430 1.90 × 10−3

MIMAT0000451 hsa-miR-150-5p −1.644 3.98 × 10−4

* MIMAT0000427 hsa-miR-133a-3p –2.168 6.39 × 10−3

MIMAT0000462 hsa-miR-206 −3.070 1.29 × 10−3

In bold, miRNAs detected in the differential analysis “Cancer vs Normal” performed in both the TCGA and GEO
Datasets; * miRNA included in the list of 11 selected miRNAs; ** p-values were calculated by Student’s t-test.

As shown in Table 5, among the 36 identified miRNAs, 31 were down-regulated and five were
up-regulated. Furthermore, among the 31 down-regulated miRNAs, three were in common with those
obtained by the lists of differentially expressed miRNAs in tumor samples compared to the normal
one, i.e. miRNAs miR-139-3p, miR-142-5p and miR-29c-3p, which therefore may have both diagnostic
and prognostic significance in oral cancers. Furthermore, the down-regulated miRNA miR-133a-3p
was in common with the list of 11 miRNAs obtained from the comparison between GEO DataSets and
TCGA analyses (Table 3) suggesting that these miRNAs may have both a diagnostic and prognostic
role for oral cancer.
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2.6. Prognostic Value of Oral Cancer Stage-Related miRNAs

The OncoLnc analysis performed on the 36 differently expressed miRNAs in high-grade oral
cancers revealed the real prognostic significance of each miRNA in terms of patients’ overall survival
(OS). As shown in Figure 5, of 36 miRNAs analyzed only nine were statistically associated with
patients’ OS (log-rank test, p < 0.05). These prognostic miRNAs were all down-regulated miRNAs, i.e.,
miR-181c-5p, miR-342-5p, miR-361-3p, miR-29c-5p, miR-142-5p, miR-146a-5p, miR-150-5p, miR-146b-3p
and miR-206 (Figure 5).

Figure 5. Survival analysis performed by OncoLnc. Panel (A) down-regulated miRNAs statistically
associated with patients’ overall survival (OS) whose expression is concordant with survival curves;
panel (B) miRNAs statistically associated with patients’ OS whose expression levels are not concordant
with the survival curves.

However, two of these miRNAs, miR-146b-3p and miR-206, have shown results of dubious
interpretation. In fact, despite these miRNAs are down-regulated in high-grade tumors, their
down-regulation is not associated with a worse OS, but with a better prognosis (Figure 5B).

To confirm the Kaplan-Meier results obtained by using OncoLnc, the OS curves were also calculated
by using GraphPad v.6 and analyzing the TGCA HNSC survival data previously downloaded from the
UCSC Xena Browser. Overall, this analysis revealed the same results previously obtained.

The TCGA HNSC data were also used for the identification of miRNAs able to predict the risk of
oral cancer recurrence. For this purpose, GraphPad Kaplan-Meier curves showed that two out of 36
tumor stage-related miRNAs were statistically linked to the patients’ recurrence-free survival (RFS). Of
these miRNAs, miR-581 was up-regulated and miR-let-7i-3p was down-regulated. Unexpectedly the
over-expression of the up-regulated miR-581 was not associated with a worse prognosis, but with a
minor RFS (Figure 6).
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Figure 6. Recurrence-free survival analysis performed on the TCGA HNSC data.

Other five miRNAs, miR-151a-5p, miR-6718-5p, miR-660-5p, miR-4772-3p and miR-217-5p, showed
a weak correlation with RFS when de-regulated, however no statistical significance was reached.

These analyses allowed us to identify 11 miRNAs significantly associated to both tumor grade
and patients’ OS and RFS, of these only eight were related to patients’ OS (seven miRNAs) and RFS
(one miRNA), respectively.

2.7. Determination of the Functional Roles of the 11 Tumor-Grade Associated miRNAs Through Pathway and
GO Enrichment Analyses

As previously described for the analysis of the 11 selected miRNAs associate to the presence
of tumor, the miRCancerdb and mirDIP analyses were performed for the 11 miRNAs associated to
patients’ prognosis in order to identify the miRNAs-correlated and -targeted genes. The miRCancerdb
analysis showed that 19 different genes were positively and negatively correlated to the 11 selected
miRNAs (Figure 7A).

 

Figure 7. Panel (A) miRCancerdb analysis of genes whose expression is positively and negatively
related to the 11 selected miRNAs; panel (B) mirDIP analysis of interaction levels between miRNAs
and related genes.

The heat map showed that the down-regulated miRNAs miR-150-5p and miR-206 are those with
the highest positive correlation levels. Of note, these two miRNAs were also those with the higher
levels of down-regulation among the 36 differentially expressed miRNAs showed in Table 5. Figure 7
also shows that the miRNAs miR-181c-5p and miR-146a-5p were those more negatively correlated

199



Cancers 2019, 11, 610

with the identified genes. By considering the genes, it was observed that CARD8 and RASGAP3

genes were those that were more positively correlated with the selected miRNAs, while the four genes
WDFY2, MAPK6, ESRP1 and PVRL1 were all negatively correlated with the 11 miRNAs with similar
correlation levels.

The mirDIP analysis performed on the 19 genes and the 11 miRNAs showed that for the PVRL1

gene no interaction levels were available. Overall, the analysis revealed the existence of medium
interaction levels between miRNAs and genes. However, the down-regulated miR-29c-5p and let-7i-3p
showed lower interaction levels with most of the 19 genes, while the miR-181c-5p was the miRNA
with the higher interaction levels. On the other hand, the CARD8 gene was the most targeted by the 11
selected miRNAs, while the UCP2 was the less targeted (Figure 7B).

After the gene targets analysis, the DIANA-mirPath analysis of the 11 prognostic miRNAs revealed
that for the miRNA miR-581 there were not modulated pathways and targeted genes according to the
TarBase Version 7.0 database of the mirPath tool. For the other 10 miRNAs the cumulative pathway
analysis showed that, the miRNAs were able to modulate 44 different pathways and over than 1300
genes. The selection of the 21 pathways involved in the tumor processes showed that the selected
miRNAs were able to modulate 292 univocal genes (Table 6).

Table 6. Tumor pathways modulated by the 11 computationally selected miRNAs associated to
patients’ prognosis.

N. KEGG Pathway p-Value * #Genes #miRNAs

1 PI3K-Akt signaling pathway (hsa04151) 8.22 × 10−3 82 10
2 Cell cycle (hsa04110) 1.91 × 10−5 45 10
3 Proteoglycans in cancer (hsa05205) 6.81 × 10−5 48 9
4 Transcriptional misregulation in cancer (hsa05202) 2.00 × 10−2 46 9
5 FoxO signaling pathway (hsa04068) 2.66 × 10−3 43 9
6 Hippo signaling pathway (hsa04390) 9.14 × 10−4 39 9
7 Melanoma (hsa05218) 7.56 × 10−3 22 9
8 Viral carcinogenesis (hsa05203) 1.08 × 10−6 62 8
9 Prostate cancer (hsa05215) 6.33 × 10−3 29 8

10 Small cell lung cancer (hsa05222) 2.63 × 10−3 29 8
11 Renal cell carcinoma (hsa05211) 6.92 × 10−6 27 8
12 Chronic myeloid leukemia (hsa05220) 7.67 × 10−4 26 8
13 Glioma (hsa05214) 1.74 × 10−4 23 8
14 TGF-beta signaling pathway (hsa04350) 7.03 × 10−4 23 8
15 Pancreatic cancer (hsa05212) 3.18 × 10−2 21 8
16 Non-small cell lung cancer (hsa05223) 8.22 × 10−3 18 8
17 p53 signaling pathway (hsa04115) 2.00 × 10−3 26 7
18 Central carbon metabolism in cancer (hsa05230) 1.96 × 10−5 24 7
19 Colorectal cancer (hsa05210) 4.50 × 10−2 19 6
20 Acute myeloid leukemia (hsa05221) 3.52 × 10−2 17 6
21 Endometrial cancer (hsa05213) 4.46 × 10−2 16 6

* p-values were already calculated by the DIANA-mirPath by automatically applying the Fisher’s Exact Test.

The DIANA-mirPath analysis showed that all the selected miRNAs were involved in the
modulation of the “PI3K-Akt signaling pathway (hsa04151)” and the “Cell cycle (hsa04110)”, both
involved in various neoplastic processes when altered (Table 6). Of note, “Cell cycle (hsa04110)”
pathways were also strongly altered by the 11 cancer-associated miRNAs previously analyzed (Table 4).
The genes altered by these miRNAs were all involved in neoplastic processes, such as CCND1 (18
counts), MAPK1 (16 counts), MAP2K1 (14 counts), PIK3CB and PIK3R3 (16 counts), AKT2 and AKT3

(15 counts), CDK4 and CDK6 (11 counts), etc.
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The genes identified through miRCancerdb and DIANA-mirPath analyses were finally analyzed
with GO PANTHER and STRING to establish for which molecular processes and functions these
miRNAs were enriched.

For the 19 genes identified by miRCancerdb analysis only the GO PANTHER evaluation was
performed because the gene ontology enrichment performed by STRING requires a wide number of
analyzed genes. The GO PANTHER analysis showed that most of selected genes were involved in the
cellular processes (23.3% of genes) and in biological regulation (20.0% of genes) for the “biological
process” category (Figure 8A). Regarding the “molecular function” category, the analysis demonstrated
that the 43.5% and 17.4% of genes were involved in binding and molecular regulatory functions,
respectively (Figure 8B); while for the “cellular component” category, the results showed that the 19
genes constitute mainly part of the cell, of the organelles and of the cell junctions (37.5%, 25.0% and
18.8% respectively; Figure 8C).

Figure 8. Gene Ontology enrichment of the 19 genes identified through miRCancerdb. Panel (A)
GO PANTHER analysis of the “biological process” category; panel (B) GO PANTHER analysis of the
“molecular function” category; panel (C) GO PANTHER analysis of the “cellular component” category.

The same enrichment analysis was performed on the 292 genes identified by DIANA-mirPath
carrying out both GO PANTHER and STRING analyses.

The results obtained for the “biological process” category showed that the identified genes were
mainly involved in the cellular processes (23.3% of genes) and in biological regulation (20.0% of genes)
as observed for the 19 genes identified by miRCancerdb (Figure 9A,D). Furthermore, both the analyses
(GO PANTHER and STRING) showed that the 292 genes were involved in molecular binding and
catalytic activities (Figure 9B,E), as observed in the previous evaluations. Regarding the “cellular
component” category, it was finally demonstrated that the genes were part of the cell and of the
intracellular organelles (Figure 9C,F).
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Figure 9. Gene Ontology enrichment of the 345 genes identified through DIANA-mirPath. Panel (A,D)
GO PANTHER and STRING analyses of the “biological process” category; panel (B,E) GO PANTHER
and STRING analyses of the “molecular function” category; panel (C,F) GO PANTHER and STRING
analyses of the “cellular component” category.

3. Discussion

During the last decade, the advancement of bioinformatics and high-throughput technologies
led to the development of omics sciences, as well as to the collection of thousands of petabytes of
molecular data related to various human diseases, including tumors [39].

The increase in the number of available bioinformatics data allowing the understanding of various
physio-pathological aspects of tumors. However, the huge amount of data, either deriving from
individual basic science experiments, or collected by large international consortia, such as TCGA and
ENCODE, are often incorrectly analyzed, thus generating conflicting results [40–42].

In order to best analyze the so-called “Big Data”, in recent years different researchers have created
several bioinformatics software useful for a fast and efficient analysis of a large number of data thus
interpretation through a process named “data mining” [43,44].

Thanks to the availability of new software for the computational analysis of Big Data, numerous
studies tried to establish the molecular mechanisms responsible for neoplastic transformation, as well
as to identify novel molecular targets or biomarkers useful for the management of tumors [45].

In recent years, several genetic, epigenetic and proteomic data were also generated for oral cancer.
These data allowed the researchers to obtain important information regarding the main molecular and
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clinical-pathological characteristics of this kind of tumor. However, the analysis of the data contained
in the various oral cancer datasets generated conflicting data difficult to interpret due to the lack of
data integration among the different data matrices [46]. Furthermore, despite the increasing number of
bioinformatics studies, no effective diagnostic and prognostic biomarkers have been yet identified for
oral cancers, making this pathology one of the most aggressive, since in most cases it is not promptly
diagnosed [47].

Therefore, the aim of the present study was to identify new specific diagnostic and prognostic
biomarkers for oral cancer through the analysis and integration of different miRNAs profiling datasets,
using several computational approaches.

For this purpose, two of the biggest worldwide genomics databases, TCGA and GEO DataSets
were analyzed in order to select miRNA expression profiling datasets. In particular, the analysis
of the TCGA HNSC “miRNA mature strand expression RNAseq by Illumina Hiseq” dataset and
of two GEO DataSets miRNA microarray matrices allowed the identification of a panel of miRNAs
with diagnostic and prognostic value for oral cancer patients. From these datasets, a group of 11
de-regulated miRNAs was identified by comparing cancer patients with healthy controls. Among
these miRNAs, the up-regulated miR-196a-5p and miR-196b-5p and the down-regulated miR-99a-5p,
miR-133a-3p, miR-1-3p and miR-375-3p were the most de-regulated and therefore these miRNAs
may be used to improve the actual diagnostic strategies for oral cancers. Indeed, different research
groups are currently investigating all these miRNAs because their deregulation is associated with the
development of different cancers. In particular, Sutliff and colleagues (2019) demonstrated that the
de-regulation miR-196 family (miR-196a-5p and miR-196b-5p) is associated with the development of
lung cancer [48].

Furthermore, other studies have demonstrated that the miR-196 family and other miRNAs,
including miR-375 and miR-133a-3p, may play a key role as diagnostic biomarkers for head and neck
cancers, especially for the tumors of the oral cavity [49–51]. In addition to these five miRNAs, the
miRNAs miR-139-3p, miR-142-5p and miR-29c-3p are also noteworthy because beyond their diagnostic
role, they have also an important prognostic role. On this regard, the analysis of miRNA expression
levels in high-grade tumors compared to the low-grade tumors contained in the TCGA HNSC dataset
revealed that the down-regulation of these three miRNAs, together with the aforementioned miRNA
miR-133a-3p, was associated with a more aggressive and infiltrating phenotype. Accordingly, these
results are supported by several studies performed on different tumors where it has been shown that
the de-regulation of these miRNAs is associated with a more aggressive tumor phenotype [32,52–54].

Furthermore, the OncoLnc analysis revealed that among the 36 tumor-stage associated miRNAs
only eight were related to patients’ OS and RFS (seven and one, respectively). Of note, all these miRNAs
were found all down-regulated in high-grade tumors compared to low-grade. In particular, the most
statistically significant miRNAs associated with OS, and therefore to a worse prognosis, were the
miRNAs miR-150-5p, miR-181c-5p and miR-146a-5p. Regarding the RFS, only the miRNA miR-let-7i-3p
was a good indicator of disease recurrence. These data are also supported by several studies since
the miR-7i (both 3p and 5p strands) is associated with a poorer prognosis when down-regulated [55].
Furthermore, other studies showed that the down-regulation of other miRNAs, such as miR-375 and
miR-181c, is associated with a cancer aggressive phenotype [56,57].

Therefore, these first computational data demonstrated that by using an integrated computational
approach for the analysis of miRNAs datasets it is possible to identify a set of miRNAs potentially used
as specific biomarkers for oral cancers. As described above, the validity of the obtained results is further
strengthened by the results obtained by other research groups in independent experimental studies.

Once identified which miRNAs bear a diagnostic and/or prognostic significance, it was also
established which genes and pathways they were able to modulate to uncover their functional roles. As
described in previous studies, the DIANA-mirPath analysis showed that the computationally selected
miRNAs were strictly related to cancer development since they were able to alter key oncogenic
pathways [32–34,58]. On this regard, the oral cancer-associated miRNAs identified in the present
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study were able to alter several intracellular signal transduction pathways, including mTOR, p53
and TGF-β pathways, whose implication in the development of oral carcinoma has been widely
demonstrated [59–61]. Similarly, the selected miRNAs were also able to target genes frequently
down-regulated or over-expressed in oral cancers. Some of these genes, including AKT, BRAF,
PIK3CA, NRAS, GSK3, CNND1, etc., are involved not only in oral cancers but, generally, in several
solid tumors [62–65]. The subsequent gene ontology enrichment analyses further demonstrated that
the miRNAs’ targeted genes were involved in the biological process linked to the cell proliferation,
biological regulation, protein binding, catalytic activities and metabolic processes.

Similarly, the prediction and GO enrichment analyses performed on the 11 miRNAs associated to
the patients’ OS and RFS revealed that all the miRNAs with a significant diagnostic and/or prognostic
role were able to modulate several cancer pathways by modulating numerous genes known to be
involved in neoplastic transformation.

Overall, the computational approaches adopted in the present studies allowed us to identify a set
of specific miRNAs for the diagnosis of oral cancer and the definition of patients’ prognosis through
the integrated analysis of different bioinformatics datasets that allowed us to understand the functional
role of each miRNA. However, the results obtained from this study represent only the starting point for
identifying effective markers for oral carcinoma. Therefore, further experimental and functional studies
will have to be performed on a large number of samples in order to evaluate the expression levels
of these putative miRNAs biomarkers and to validate their predictive role for oral cancer. With the
advancement of both bioinformatics and high-throughput and high-sensitive molecular technologies
this future goal can be easily achieved thanks to the detection of even small variations in the expression
levels of selected miRNAs indicative of the presence of a possible pathological state [66–68].

4. Materials and Methods

4.1. Oral Cancer MicroRNA Datasets Selection

In order to identify miRNAs potentially involved in the development and progression of oral
cancer, several oral cancer miRNAs datasets were taken into account. Firstly, the oral cancer datasets
of microRNA profiling by array were selected by checking within the datasets registered in the
GEO DataSets portal publicly available on NCBI (www.ncbi.nlm.nih.gov/geo/) [69]. In particular,
for the selection of the suitable datasets an advanced search was carried out by inserting the search
terms “((“non coding RNA profiling by array”[DataSet Type]) and oral carcinoma) and “Homo
sapiens”[porgn:__txid9606]”. With this first approach, a list of all oral cancer datasets containing
miRNA expression levels was obtained. Of these datasets, only those that respect the following
inclusion and exclusion criteria were selected for the subsequent evaluations:

Inclusion criteria, i) datasets containing miRNA expression levels of oral cancer tissues, excluding
tumor arising in the hypopharynx, larynx, esophagus and tonsil; ii) datasets reporting miRNAs
expression levels of both tumor and normal tissue samples; iii) datasets containing the miRNA
expression data of at least 30 samples (tumor + normal).

Exclusion criteria, i) datasets constructed only with tumor samples; ii) datasets containing
information about miRNAs of oral cancer or normal cell lines; iii) datasets containing information on
miRNAs expression levels of serum samples.

The search criteria for the selection of the datasets contained in the GEO DataSets database
allowed us to preliminarily identify 37 different datasets of oral carcinoma microRNA profiling by
array (published up to December 2018). However, most of these datasets did not respect the exclusion
and inclusion criteria because they were datasets reporting the miRNA expression data relative to
tumor cell lines and not from oral cancer patients. Hence, after the application of the abovementioned
criteria only two datasets were selected for performing the differential analyses (Table 7).
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Table 7. Features of the two selected datasets from GEO DataSets.

Series
Accession

n. Normal n. Cancer Samples Platform Author Ref
Total

Number

GSE45238 40 40
Fresh Frozen

Tissues

GPL8179 Illumina
Human v2 MicroRNA
expression beadchip

Shiah SG et
al, Cancer
Res 2014

80

GSE31277 15 15
Fresh Frozen

Tissues
GPL9770 Illumina

miR arrays version 1.0

Severino P et
al, BMC

Cancer 2013
30

In addition to the datasets contained in the GEO DataSets database, also the TCGA Head and Neck
Cancer (HNSC) database was selected. Among the 25 datasets available in the TCGA HNSC database,
the “Phenotype” and “miRNA mature strand expression RNAseq by Illumina Hiseq” HNSC datasets
were downloaded for the analyses by using the UCSC Xena Browser (https://xenabrowser.net/) portal
where all the HNSC molecular profiling data, generated by the TCGA consortium, were deposited,
including those of oral cancer. In particular, the first dataset contained the clinical-pathological data
of 604 samples (530 cancer patients and 74 normal individuals) while the second one contained the
miRNAs expression profile of 529 samples. Since the TCGA HNSC database also contains tumor
samples obtained not only from the oral cavity but also from other sites (oropharynx, hypopharynx,
larynx and tonsil), for the purposes of this study only the data of samples derived from alveolar ridge,
base of tongue, buccal mucosa, floor of mouth, hard palate, lip, oral cavity and oral tongue were
analyzed. In this way, the number of analyzed samples was reduced to 399. By selecting only samples
of the oral cavity also the number of samples with available miRNAs expression profile it was reduced
passing from 529 to 351 samples.

4.2. Differential Analysis of miRNAs Expression Between Groups

Two distinct differential analyses were performed by using the datasets selected from the GEO
DataSets and TCGA databases. A first differential analysis was performed to both GEO DataSets and
TCGA data matrices by integrating the different GEO DataSets platform and by comparing the miRNAs
expression levels of tumor samples with a normal one in order to identify new diagnostic biomarkers.

The second differential analysis was conducted only for the TCGA dataset comparing the
expression levels of miRNAs of advanced tumors with that of low-grade tumors to identify miRNAs
able to define the prognosis of patients.

In particular, the data matrices of each dataset selected from GEO DataSets were downloaded to
identify the down-regulated or up-regulated miRNAs in oral cancer. The differential analysis between
cancer and normal samples was performed by using the GEO2R tool [69]. The fold change value
(FC) obtained for each miRNA was indicated as base-2 logarithm of FC (logFC) in order to normalize
the data derived from different microarray platforms. Then, for each dataset only the differentially
expressed miRNAs with a statistical significance p < 0.01 were taken into account. The lists of the
de-regulated miRNAs of the two selected GEO DataSets platforms were subsequently compared in
order to select only the miRNAs shared by the two datasets and with a logFC value greater than ±1.5.

In parallel, other differential analyses of miRNAs expression levels between tumor vs normal
samples and between high-grade vs low-grade tumors of TCGA HNSC dataset were performed.

For the differential analyses, the samples were clustered according to the presence or absence
of tumor (Tumor (348 samples) vs Normal (51 samples)) and according to the tumor stage (T3–T4
(319 samples) vs. T1–T2 (32 samples)). After patients’ stratification, the down-regulated and
up-regulated miRNAs were identified by calculating the fold change value obtained through the
differential analysis between the different clusters of samples. Of note, for some of the oral cancer
patients the miRNA expression levels were missing (NA value). Therefore, in order to avoid the
identification of non-representative miRNAs, for further analysis only the differentially expressed
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miRNAs with reported expression data for at least 50% of the patients and with p-value of p < 0.01
were selected.

Moreover, with reference to the differential analysis between tumor and normal samples, only
the 25 most up-regulated and down-regulated miRNAs were considered to obtain more significant
data; while for the differential analysis between high-grade and low-grade tumors all the differentially
expressed miRNAs were considered.

Finally, the annotation of the TCGA HNSC miRNAs was performed using miRBase V.22
(http://www.mirbase.org/) by converting the miRNA IDs ‘MIMAT00’ in ‘hsa-miR-’.

4.3. Analysis of the Interaction Levels Between the Selected miRNAs and Oral Cancer-Altered Genes

After the identification of the most de-regulated miRNAs in tumor samples compared to
normal samples, their functional roles were studied using different bioinformatics approaches.
At first, using the data reported in the Catalogue of Somatic Mutations in Cancer (COSMIC)
(http://cancer.sanger.ac.uk/cosmic), the most mutated and altered genes of oral cavity tumors were
identified. Subsequently, for each of the COSMIC genes, the specificity of miRNA-gene interaction was
highlighted by using the bioinformatics prediction software miRNA Data Integration Portal (mirDIP;
(http://ophid.utoronto.ca/mirDIP). In particular, this software is able to integrate the data related to
26 different databases for miRNAs (including miRBase, microrna.org and DIANA microT-CDS v5)
allowing the users to centralize the data related to the miRNAs-target genes interactions obtaining more
robust data. The levels of interaction between the miRNAs and the targeted gene are expressed as very
high, high, medium and low according to the integrated score calculated by the mirDIP algorithm that
combines the confidence scores from all available predictions data of the 26 different databases [70,71].
Furthermore, the expression levels of the 10 interacting genes identified with COSMIC were analyzed
by performing the differential analysis of the gene expression data contained in the TCGA HNSC
IlluminaHiSeq pancan normalized dataset.

4.4. Analysis of TCGA HNSC Genes Positively and Negatively Correlated with the Selected
Tumor-Associated/Grade-Associated miRNAs

In addition to the COSMIC analysis, a global correlation analysis was also performed on the genes
contained in the TCGA HNSC dataset whose expression is modulated, positively or negatively, by the
selected tumor-associated miRNAs. In particular, for this analysis the bioinformatics tool miRCancerdb
(https://mahshaaban.shinyapps.io/miRCancerdb/) was used. miRCancerdb is a free R software for
the correlation analysis between gene expression and miRNAs levels with a web interface based on
data contained in the TCGA and TargetScan databases [38]. In particular, through miRCancerdb, for
each selected miRNA was obtained the correlation value (ρ) with different genes. The lists of genes
generated for each miRNA were subsequently combined using the tool Draw Venn Diagrams of the
Bioinformatics & Evolutionary Genomics (BEG) (http://bioinformatics.psb.ugent.be/webtools/Venn/) to
identify the genes correlated and shared among all miRNAs.

However, since miRCancerdb uses interaction data between miRNAs and genes derived exclusively
from the TargetScan database, the previously described mirDIP tool, that uses 26 different miRNA
databases, was also used to establish the levels of miRNAs-genes interaction. These analyses were
performed for the 11 miRNAs associated to the presence of oral cancer and for the 11 miRNAs that
after OncoLnc analysis were associated to both tumor grade and patients’ OS and RFS.

4.5. Prediction Pathway Analysis, Gene Ontology (GO) and Functional Roles of Tumor-Associated Selected
miRNAs

To better understand the functional role of the tumor-associated selected miRNAs, a pathway
prediction analysis was performed. For this purpose, the bioinformatics tool DIANA-mirPath v.3
was used [72]. With this computational approach it was possible to identify the main molecular
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pathways altered by selected miRNAs, especially those related to tumor development and hence to
oral carcinoma.

Finally, the functional role of the selected miRNAs was determined by performing the pathways
enrichment analysis of the lists of genes obtained from the miRCancerdb and DIANA-mirPath v.3
analyses. For this purpose, both GO PANTHER version 14.0 (http://pantherdb.org/) and STRING
version 11.0 (https://string-db.org/) software were used [73,74]. The two software were used to perform
a more robust analysis. In fact, STRING database uses a number of functional classification systems
including GO, Pfam and KEGG and therefore provide more comprehensive results than those obtained
with the GO PANTHER analysis. Furthermore, the data derived from the biological functional
prediction analyses performed with DIANA-mirPath, GO PANTHER and STRING tools are already
normalized with data used as reference or negative control, therefore, no additional datasets were used
for the normalization of the data.

The DIANA-mirPath, GO PANTHER and STRING analyses were performed for the 11 selected
miRNAs associated to the presence of oral cancer and for the 11 miRNAs that after OncoLnc analysis
were associated to both tumor grade and patients’ OS and RFS.

4.6. Kaplan-Meier Estimate of Overall Survival (OS) and Recurrence-Free Survival (RFS) in Patients with
Down-regulated and Up-regulated Tumor Stage-Related miRNAs

In order to establish the prognostic significance of the tumor stage-related miRNAs identified, the
bioinformatics tool OncoLnc (http://www.oncolnc.org/) was used [75]. OncoLnc is a tool able to derive
the mortality data from the TCGA datasets, including that of HNSC, allowing the user to obtain the
Kaplan-Meier survival curves for each miRNA. The software identifies which of the selected tumor
stage-related miRNAs were correlated to a patients’ overall survival (OS). The OncoLnc analysis was
performed according to the instruction given by the software developers that suggest to perform the
analysis between the expression levels of bottom quartile samples and top quartile samples.

To further confirm the OS Kaplan-Meier results obtained by OncoLnc, the survival curves were
also calculated by using the TGCA survival data downloaded only for the oral cancer (excluding tumor
arising in hypopharynx, oropharynx, larynx and tonsil) analyzed with GraphPad v.6.

Furthermore, to our best knowledge no bioinformatics tools are available for the analysis of TCGA
recurrence-free survival data; therefore, the RFS curves were calculated by using the TGCA HNSC
progression data analyzed with a GraphPad survival curve sheet. In particular, RFS was calculated
from the date of diagnosis to patient progression, or to the end of follow-up, whichever occurred first.
The times of follow-up were different from patient to patient up to a maximum follow-up time of 5480
days, however, for some patients RFS data were not available.

4.7. Statistical Analyses

The miRNAs expression data derived from the GEO DataSets were already normalized by the
GEO2R software, while the fold change values of TCGA HNSC miRNA expression levels were
calculated through differential analysis. Student’s t-test was performed to select the differentially
expressed miRNAs of the TCGA dataset with a statistical significance. The GEO2R software already
calculated the p-values of the GEO DataSets data. For the Kaplan-Meier analyses, GraphPad survival
sheet and log-rank non-parametric test were used. Data with a p-value of ≤0.05 and ≤0.01 were
considered statistically significant.

5. Conclusions

In conclusion, in the present study the integrated analysis of different miRNA expression datasets
and the use of several tools for the interpretation of bioinformatics data allowed us to identify a set
of miRNAs that, after in vitro and in vivo validations, may be used in clinical practice for the early
detection of pre-cancerous and cancerous oral lesions.
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Abstract: Certain small noncoding microRNAs (miRNAs) are differentially expressed in normal
tissues and cancers, which makes them great candidates for biomarkers for cancer. Previously,
a selected subset of miRNAs has been experimentally verified to be linked to breast cancer. In this
paper, we validated the importance of these miRNAs using a machine learning approach on miRNA
expression data. We performed feature selection, using Information Gain (IG), Chi-Squared (CHI2)
and Least Absolute Shrinkage and Selection Operation (LASSO), on the set of these relevant miRNAs
to rank them by importance. We then performed cancer classification using these miRNAs as features
using Random Forest (RF) and Support Vector Machine (SVM) classifiers. Our results demonstrated
that the miRNAs ranked higher by our analysis had higher classifier performance. Performance
becomes lower as the rank of the miRNA decreases, confirming that these miRNAs had different
degrees of importance as biomarkers. Furthermore, we discovered that using a minimum of three
miRNAs as biomarkers for breast cancers can be as effective as using the entire set of 1800 miRNAs.
This work suggests that machine learning is a useful tool for functional studies of miRNAs for cancer
detection and diagnosis.

Keywords: miRNAs; cancer biomarkers; breast cancer detection; machine learning; feature selection;
classification

1. Introduction

MicroRNAs (miRNAs) are small non-coding RNA molecules involved in the regulation of gene
expression by partially base-pairing to complementary sequences of target messenger RNAs (mRNA),
which leads to cleavage and eventual degradation of the target mRNA or translational repression [1].
The objective of this research is to investigate the potential of using a machine learning approach to
validate clinically chosen relevant miRNAs as reliable biomarkers for cancer detection and diagnosis.

Calin et al. [2] were among the first who established the relationship between miRNAs and
cancers after discovering that mir15 and mir16 are deleted or down-regulated in a majority of chronic
lymphocytic leukemia cases. McManus [3] reviewed examples that link miRNA expression to the
development of cancer, and proposed a general role of miRNAs in oncogenesis. Further studies
conducted on a variety of cancer types reinforced the causal relationship between miRNA and cancer
by demonstrating significantly altered expression profiles of miRNAs in cancer as compared to normal
tissue [4–6]. It was shown that alteration of only a single miRNA can influence cell identity [7].
These observations led to the increasing interests to test the effectiveness of using miRNAs as
biomarkers for diagnosing cancer. However, it has been difficult to identify miRNAs that are clearly
important for cancer detection as some miRNAs are up-regulated in certain cancers and function
as oncogenes while they are down-regulated in others, acting as tumor suppressors. Furthermore,
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some miRNAs play pivotal roles in cancer development whereas others are less important. This means
that identifying relevant miRNAs will be context-sensitive and dependent on the location and type of
cancer that is being considered [7,8]. Therefore, computational analysis of large datasets of miRNA
and cancer may greatly improve identification of miRNA biomarkers.

Computational methods, especially machine learning, have been applied for cancer detection
and diagnosis using miRNAs as biomarkers. Lu et al. [5] used hierarchical clustering on 73 bone
marrow samples and determined that miRNA expression distinguishes tumors of different subtypes
within acute lymphoblastic leukemia. They constructed a k-NN classifier using lung cancer samples
as well as adjacent healthy samples from mice, which achieved a classification accuracy of 100%.
Rosenfeld et al. [9] constructed a miRNA-based tissue classifier to identify the source location of
metastatic tumors. By using k-NN and decision trees to classify tumors into 22 different tumor
origins (classes), they obtained an accuracy of 89% on the validation set. Prior work was also done
by Kotlarchyk et al. [10] on the subject of using feature selection on liver, breast and brain cancer
datasets. However, the previous studies were limited by the amount of miRNA data that was readily
available and the number of miRNAs that were known at the time. With the emergence of the Genomic
Data Commons (GDC) Data Portal provided by the National Cancer Institute, the amount of miRNA
expression data increased dramatically. With 34 different types of cancers available, more precise
experiments could be performed. Waspada et al. [11] used 22 different miRNA expression datasets
from the GDC Data Portal and achieved multiple objectives: (i) a multiclass classification combination
of all 22 cancer types, (ii) binary classification using only breast cancer data, (iii) binary classification
using breast cancer data with the addition of a feature selection step, and (iv) binary classification with
miRNAs selected according to clinical research. Cheerla et al. [12] constructed a SVM-RBF classifier
trained with various miRNA expression data across 21 different cancer types, achieving an accuracy
of 97.2%. They also used feature selection methods to reduce the number of miRNAs to 60 and
still achieved a 95.5% overall classification accuracy. Ali et al. [13] used Neighbourhood Component
Analysis to extract relevant miRNA features in order to perform subtype classification, achieving
around 95% accuracy. These studies demonstrated the potential of improved cancer detection and
diagnosis using miRNAs as biomarkers.

This research aims at using a variety of feature selection techniques to select a subset of miRNAs
to identify important miRNA features that are crucial in the diagnosis of breast cancer, a cancer that
has accumulated ample amount of miRNA data [14]. The miRBase release 22 (version 22) recorded
1917 confirmed mature human miRNAs [15]. For all practical purposes, it is important to narrow
down this large number of miRNAs to find the most discriminative subset of miRNA features for
the specific tasks we are working on. Since these miRNAs correspond directly as features, we can
employ feature selection methods to remove irrelevant and redundant ones. In machine learning,
feature selection is a method of selecting a subset from a given feature set based on a certain set of
criteria without transformation of the original features, which preserves the interpretation of the results.
This prevents overfitting and improves classification performance especially with gene expression
data, which usually has a large number of features. In order to determine the best subset of features,
we focus only those miRNAs which have been verified clinically. This allows us to focus on miRNAs
that have been deemed relevant in the laboratory. We then apply feature selection methods on this
reduced subset of miRNAs to determine which are more important for cancer detection. Even though
quite a few miRNAs have been clinically shown to be linked to breast cancer, we aim to show with
a machine learning approach that not all miRNAs are equally important as a cancer biomarker, even
among those clinically selected ones.

2. Methodology

Our approach for validating clinically selected miRNAs for cancer detection and diagnosis is
summarized in Figure 1.
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Figure 1. Schematics for Cancer Detection with Machine Learning.

The algorithm is divided into two stages: training and verification. In the training stage, the first
step is to clean up the miRNA row data by removing rows with all zero values. We then keep only
those miRNAs that have been identified via wet lab as possible biomarkers for breast cancer detection.
These biomarkers are classified as clinically verified miRNAs. The list of clinically verified miRNAs
identified in the literature is shown in Table 1. Three feature selection methods, Information Gain,
Chi Squared, and LASSO, are applied to independently rank the importance of miRNAs. The resulting
feature vectors are then fed to classification algorithms. For this purpose, two classifiers, Random
Forest and Support Vector Machines (SVMs), are applied to train the model. Feature selection is
performed on the selected subset of the breast-cancer dataset and these miRNA features are ranked by
each feature selection method individually. From these ranked features, different subsets were selected
and were then fed into the classification algorithms. The performance of the miRNAs is then evaluated
based on certain performance metrics which will be introduced later.

In the next subsections, we discuss the techniques used for both feature selection and classification.

Table 1. Clinically Verified miRNA.

miRNA [14]

hsa-mir-10b hsa-let-7d hsa-mir-206 hsa-mir-34a
hsa-mir-125b-1 hsa-let-7f-1 hsa-mir-17 hsa-mir-27b

hsa-mir-145 hsa-let-7f-2 hsa-mir-335 hsa-mir-126
hsa-mir-21 hsa-mir-206 hsa-mir-373 hsa-mir-101-1

hsa-mir-125a hsa-mir-30a hsa-mir-520c hsa-mir-101-2
hsa-mir-17 hsa-mir-30b hsa-mir-27a hsa-mir-146a

hsa-mir-125b-2 hsa-mir-203a hsa-mir-221 hsa-mir-146b
hsa-let-7a-2 hsa-mir-203b hsa-mir-222 hsa-mir-205
hsa-let-7a-3 has-mir-213 hsa-mir-200c
hsa-let-7c hsa-mir-155 hsa-mir-31
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2.1. Feature Selection

As has been mentioned before, the objective of feature selection is to identify the specific miRNAs
that are most effective in discriminating normal and cancerous tissues. Since the dimensionality of
expression data is large in relation to the number of samples, it is easy for classifiers to over-fit, therefore
a reduction in feature size will alleviate that problem. Another important aspect of feature selection
versus using certain dimensionality reduction techniques, such as Principal Component Analysis,
Discrete Cosine Transform and Wavelet Transform, is that we can preserve the original features as
opposed to mapping them to a different representation.

In this section, three popular feature selection techniques, Information Gain, Chi-Squared Feature
Selection, and Least Absolute Shrinkage and Selection Operator, are reviewed. For a detailed discussion
of these methods, readers are referred to [16–18].

2.1.1. Information Gain

Information Gain (IG) is a feature selection method based on Information Theory, which measures
the reduction of entropy that occurs by having knowledge of a feature, A. For a dataset X with n class
labels, the Shannon entropy, which is a measure of unpredictability, is given by the following equation,

H(X) = −
n

∑
i=1

pi log2 pi. (1)

where pi is the probability of class i in the data set X. IG is the reduction of entropy that is achieved by
knowing the feature A, shown by the following equation,

IG(X, A) = H(x)− H(X|A). (2)

where,

H(X|A) =
v

∑
i=i

Xi

X
H(Xi). (3)

where Xi is a subset of X containing a distinct value of A, v is the number of distinct values present in
A and H(Xi) is the entropy of the i-th subset created by splitting X on feature A. Therefore, IG can be
seen as the difference between the prior entropy and the entropy after splitting the original dataset
based on the feature A.

2.1.2. Chi-Squared Feature Selection

Chi-squared (CHI2) is another feature selection method which evaluates features with respect to
the classes. It is a statistical test to determine the dependency of a feature on the class label. We can
discard features that do not show dependency and extract the relevant features that are useful for
classification. The range of continuous valued features needs to be discretized into intervals.

χ2 =
C

∑
i=1

I

∑
j=1

(Aij − Eij)
2

Eij
(4)

where C is the number of classes, I is the number of intervals, Eij is the expected number of samples,
Aij is the number of samples of the Ci class within the j-th interval. The larger the value of χ2, the
more information the corresponding feature provides.

2.1.3. Least Absolute Shrinkage and Selection Operator

Least Absolute Shrinkage and Selection Operator (LASSO) is a regularization and variable
selection method for statistical models. LASSO minimizes the sum of squared errors while also
being subject to a constraint on the sum of the absolute values of the regression coefficients, which is
described by,
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min
β0,β

N

∑
i=1

(yi − β0 − xT
i β)2s.t.

p

∑
j=1

|β j| ≤ t. (5)

Where N is the number of cases, p is the number of features, (β, β0, β j) are regression coefficients,
yi is the i-th predicted output and xi is the i-th set of features. By tuning the parameter t, we can choose
the best performing features, as the less predictive coefficients will go to zero.

2.2. Classification

After feature selection, one can apply classification algorithms to determine if the target is
cancerous or not. In this section, two classifiers, Random Forest and Support Vector Machine (SVM),
are overviewed [11,18].

2.2.1. Random Forest

The Random Forest (RF) algorithm is an ensemble classifier that generates multiple decision trees,
including weak classifiers learned on a random sample from the data. The classification of a new
sample is done by majority voting of the decision trees. Random Forest is constructed in the following
manner. Assume that the given training set has N cases, each with M features. Each decision tree
is grown as follows: First, n samples are selected at random with replacement from the training set.
At each node of the tree, m << M of the features are selected at random. The best split on these
m features, based on some objective function (for instance, Information Gain), is used to perform
a binary split on that node. This process is repeated until a predefined minimum node size is reached.
Classification of new data is done through majority votes by aggregating the predictions of all the
decision trees.

2.2.2. Support Vector Machine

Support Vector Machine (SVM), a supervised machine learning method, aims to design
an optimum hyperplane that separates the input features into two difference classes for binary
classification. The best solution maximizes the margin, defined by so-called support vectors, between
both classes. Given the miRNA data consists of n feature vectors, (xi, yi), where yi ∈ {+1,−1},
one can construct an optimization problem in which the distance between the margins is maximized
by minimizing the following equation,

1
2
||w||2 (6)

under the following constraint,
yi(wxi + b)− 1 ≥ 0. (7)

where w is the weights vector which dictates the margin size and b is the bias, which shifts the
hyperplane boundary. In the case of non-linearly separable data, kernel functions can be used to map
the input space to a higher dimensional feature space to allow for a linear separation. A popular kernel
function, the Radial Basis Function (RBF), is given as follows:

k(xi, yi) = exp
(
−γ||xi − xj||2

)
(8)

where γ is a hyperparameter that controls the error due to bias and variance. We will use both linear
SVM as well as SVM with a radial basis function kernel (RBF) in our experimentation.

3. Results

The microRNA expression dataset for breast cancer was obtained from the National Cancer
Institute’s Genomic Data Commons Data Portal [19]. This dataset consists of 1207 patient samples with
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1881 miRNA features, containing 1103 primary solid tumor samples, 7 metastatic samples and 104
healthy samples. The dataset is imbalanced as there are many more number of cancerous samples
compared to healthy samples.

The dataset included raw read counts as well as counts normalized to reads per million mapped
reads (RPM). The metastatic samples were combined with the solid tumor samples as one class, since
metastatic cancer tissue retained most of the genomic features of the source tumor [20]. The log2 of
the RPM values was taken plus a pseudo count of 1 and then the values were standardized to zero
mean and unit variance. Zero values were also removed which further reduced the number of miRNA
features to 1626. Then miRNAs that were not identified by Table 1 were removed.

The dataset was run through the classifiers first without feature selection and then with
feature selection using different feature selection methods (IG, LASSO and CHI2, see Section 2.1).
In the experiment, we grouped miRNAs into subsets of 3, 5, and 10 members and test their effectiveness
in identifying cancer using different feature selection procedures with different classifiers. Also, 10-fold
validation was performed throughout. The 10-fold validation is a technique in which in each trial,
90% of the data samples are used for training and the remaining 10% for testing; the process is repeated
10 times, ensuring that all samples are tested once. We chose to only utilize cross-validation and
neglect the other steps outlined by the Data Analysis Protocol (DAP), which is outlined by the US-FDA
MAQC-II initiative [21]. This is because the focus of this paper is to demonstrate that a small subset of
miRNAs can be used to detect cancer with 10-fold validation [22].

Due to the nature of the unbalanced dataset, using only accuracy as a performance metric may
misrepresent the performance of our classifiers. In the experiment, we establish the outcomes using the
following measures: True positive (TP), False Positive (FP), True negative (TN) and False negative (FN).
Here the positive class means a tumorous sample and the negative class is non-cancerous (healthy).
Specificity is defined as,

TN

TN + FP
(9)

which is the proportion of non-cancerous samples correctly identified. Sensitivity is,

TP

TP + FN
(10)

which tests the ability for the cancerous samples to be correctly identified. In addition, Accuracy
is simply,

TP + TN

TP + TN + FP + FN
(11)

which tests the overall ability to different between healthy and cancerous samples. We also calculate
Area Under Curve (AUC).

Table 2 shows the performance of different feature selection techniques vs different classifiers.
In the table, the first column indicates which classifier was used in the experiment. The second one
lists the feature selection method along with the number of miRNAs in each group. For instance,
IG-10 means that Information Gain is used for feature selection, and miRNAs are grouped into 10 each.
Other columns show the performance of the feature selection algorithm teamed up with the classifier.

Examining Table 2, we can see that the performance metric that fluctuates the most is the specificity.
Since it is possible to achieve a high accuracy even while misclassifying all of the minority class,
we need to look at a performance metric that can give us a more meaningful result. Note that the
classification accuracy across all selections is practically the same, which confirms its ineffectiveness
as a performance metric. The difficulty of this dataset lies in correctly classifying its minority class.
We can see a trend of improved sensitivity values when feature selection is used for the RF and
SVM-RBF classifiers. This reinforces the notion that there are redundant and irrelevant features present
in the dataset and that we may be able to achieve better results with a handful of features rather than
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the original 1881. We also observed a marked improvement in terms of Specificity by applying any
type of feature selection (across all subsets).

Table 2. Performance Metrics across different thresholds of miRNA Features (3, 5, 10).

Classifier Method Accuracy Sensitivity Specificity AUC

RF

0.996 1.000 0.952 0.999
IG-10 0.995 0.998 0.962 0.996
IG-5 0.996 0.997 0.977 0.998
IG-3 0.997 0.997 0.990 0.999

CHI2-10 0.995 0.999 0.952 0.995
CHI2-5 0.996 0.999 0.979 0.996
CHI2-3 0.996 0.997 0.981 0.999

LASS-10 0.996 0.998 0.971 0.997
LASS-5 0.995 0.997 0.965 0.998
LASS-3 0.994 0.997 0.962 0.999

SVM-RBF

0.989 1.000 0.875 0.938
IG-10 0.994 0.998 0.952 0.995
IG-5 0.996 1.000 0.990 0.985
IG-3 0.998 0.998 0.990 0.980

CHI2-10 0.994 0.999 0.951 0.995
CHI2-5 0.996 0.998 0.983 0.993
CHI2-3 0.998 0.999 0.990 0.980

LASS-10 0.995 0.998 0.962 0.996
LASS-5 0.995 0.999 0.974 0.985
LASS-3 0.996 0.999 0.962 0.980

SVM

0.997 0.999 0.971 0.985
IG-10 0.997 0.999 0.971 0.997
IG-5 0.997 0.999 0.985 0.989
IG-3 0.998 0.999 0.990 0.981

CHI2-10 0.997 0.999 0.971 0.997
CHI2-5 0.996 1.000 0.988 0.987
CHI2-3 0.998 0.999 0.990 0.991

LASS-10 0.994 0.997 0.962 0.996
LASS-5 0.995 0.999 0.956 0.993
LASS-3 0.997 1.000 0.962 0.981

Examining the results from Table 2, one can also see that even using a small fraction of the entire
feature set, one may obtain very good classification results. This means that clinically one may only
need to focus on just a few miRNAs to diagnose a patient. In the next section, we ranked the importance
of individual miRNAs under different feature selection techniques. Table 3 show the test results. In this
table, miRNAs are ranked in a top-down order under different feature selection algorithms. This means
that the miRNAs listed in the top of the table provide better detection performance.

Table 3. Top Ranked Features Under Different Feature Selection Techniques.

Info Gain CHI2 Lasso

hsa-mir-10b hsa-mir-10b hsa-let-7a-3
hsa-let-7c hsa-let-7c hsa-let-7c

hsa-mir-145 hsa-mir-145 hsa-let-7d
hsa-mir-125b-1 hsa-mir-125b-2 hsa-mir-101-1
hsa-mir-125b-2 hsa-mir-125b-1 hsa-mir-10b

hsa-mir-335 hsa-mir-335 hsa-mir-125b-2
hsa-mir-126 hsa-mir-126 hsa-mir-145

hsa-mir-125a hsa-mir-125a hsa-mir-206
hsa-let-7a-2 hsa-let-7a-2 hsa-mir-27b
hsa-let-7a-3 hsa-let-7a-3 hsa-mir-335
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We can see that the subsets of Info Gain and CHI2 are remarkably identical, while overlap
six features Lasso, as shown in Table 3.

We can also use feature selection to rank those clinically-selected miRNAs. After ranking, we can
verify our results by taking different subsets and testing their performance for cancer detection.
We begin by choosing the top four miRNA features in subsets of IG and CHI2, ranked 1–3 as Subset #1.
We then slide down by choosing ranked 2–4 miRNAs as Subset #2, and so on. In this way, we obtain
eight different subsets, shown in Table 4. We choose four miRNAs as our threshold to mirror our
previous experiment as that served as a good limit before performance degradation.

Table 4. Subset Selection of Ranked miRNA.

Subset 1 Subset 2 Subset 3 Subset 4 Subset 5 Subset 6 Subset 7 Subset 8

hsa-mir-10b hsa-let-7c hsa-mir-145 hsa-mir-125b-1 hsa-mir-125b-2 hsa-mir-335 hsa-mir-126 hsa-mir-125a
hsa-let-7c hsa-mir-145 hsa-mir-125b-1 hsa-mir-125b-2 hsa-mir-335 hsa-mir-126 hsa-mir-125a hsa-let-7a-2

hsa-mir-145 hsa-mir-125b-1 hsa-mir-125b-2 hsa-mir-335 hsa-mir-126 hsa-mir-125a hsa-let-7a-2 hsa-let-7a-3

We can now evaluate these data sets with both RF and SVM algorithms. The Specificity has been
plotted across the eight subsets, shown in Figure 2.

Interestingly, we observe a downward trend as the subset index (the horizontal axis) goes up,
which demonstrates a decrease in classifier performance as we go from Subset #1 to #7. The results
strongly suggest that miRNAs that are ranked higher are better biomarkers for breast cancer detection
than the ones on the bottom in the list.

Figure 2. Specificity Across Different Clinical miRNA Subsets.

4. Conclusions

Our results in this work validate clinically-chosen miRNAs as biomarkers for breast cancer
detection with a machine learning approach. It demonstrates that by ranking miRNAs using feature
selection methods, one is able to determine the best performing miRNAs for breast cancer detection
among those clinically verified ones. Our tests have also demonstrated that with merely three selected
miRNAs as biomarkers, the classifiers can still produce nearly optimal results in breast cancer detection,
in comparison to the use of many more miRNAs.
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There are multiple avenues to pursue regarding further work. Specifically, one may extend the
framework to identify discriminative miRNAs that indicate different stages of cancer progression if
features are available in the datasets. One can also extend these ideas for other cancer types. These other
datasets may have common characteristics which can be leveraged using machine learning techniques.
With machine learning, one may be able to overcome the problems caused by very small number of
samples in cancer datasets. More importantly, the ability of machine learning to classify breast cancer
related miRNAs demonstrated here may lead to future development of robotic methods for de novo

identification of miRNA biomarkers for other diseases with or without laboratory data.
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Abstract: To drive high-quality omics translational research using The Cancer Genome Atlas (TCGA)
data, a TCGA Pan-Cancer Clinical Data Resource was proposed. However, there is an out-of-step
issue between clinical outcomes and the omics data of TCGA for skin cutaneous melanoma (SKCM),
due to the majority of metastatic samples. In clinical cases, the survival time started from the initial
SKCM diagnosis, while the omics data were characterized at TCGA sampling. This study aimed to
address this issue by proposing an observed survival interval (OBS), which was defined as the time
interval from TCGA sampling to patient death or last follow-up. We compared the OBS with the
usual recommended overall survival (OS) by associating them with both clinical data and microRNA
sequencing data of TCGA-SKCM. We found that the OS of primary SKCM was significantly shorter
than that of metastatic SKCM, while the opposite happened if OBS was compared. OS was associated
with the pathological stage of both primary and metastatic SKCM, while OBS was associated with the
pathological stage of primary SKCM but not that of metastatic SKCM. Five previously cross-validated
survival-associated microRNAs were found to be associated with the OBS rather than OS in metastatic
SKCM. Thus, the OBS was more appropriate for associating microRNA-omics data of TCGA-SKCM
than OS, and it is a timely supplement to TCGA Pan-Cancer Clinical Data Resource.

Keywords: overall survival; observed survival interval; skin cutaneous melanoma; The Cancer
Genome Atlas; omics

1. Introduction

Skin cutaneous melanoma (SKCM) is the most common malignant skin cancer and its incidence,
mortality, and disease burden have been increasing annually [1–3]. Clinically, the American Joint
Committee on Cancer (AJCC) staging is now the dominant synthetical index to predict SKCM
prognosis [4]. Although useful, on the one hand, significant variability of prognosis in SKCM patients
with the same AJCC pathological stage is observed [5]. On the other hand, it is hard to understand
the underlying biology of SKCM just based on clinicopathological characteristics, and, further, it is
difficult to apply individualized treatment protocols to SKCM patients [6].

By comprehensively characterizing molecular patterns in hundreds of SKCM samples, The Cancer
Genome Atlas (TCGA) project has provided a comprehensive way to understand SKCM [7].
Multi-omics data with large sample sizes make the discovery of novel biomarkers that may potentially
affect diagnosis, treatment and prognosis of SKCM possible. Several studies have been conducted
to identify prognostic biomarkers based on various TCGA-SKCM omics data. Jayawardana et al.
and Guo et al. proposed fifteen and five prognostic microRNAs (miRNAs) by mining TCGA-SKCM
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miRNA sequencing data, respectively [8,9]. Chen et al., Yang et al. and Ma et al. identified, from
TCGA-SKCM RNA sequencing data, four, six, and six long non-coding RNAs for SKCM prognosis,
respectively [10–12]. Furthermore, Jiang et al. focused on a multi-omics analysis by integration of
mutation, copy number variation, methylation, and messenger RNA expression data to achieve this
objective [13].

Methodologically, survival analysis (non-parametric methods, such as the Kaplan-Meier method,
or the semi-parametric methods, such as Cox regression analysis) is now the dominant method to
explore associations between outcome variables and the possible affecting factors. Therefore, the first
step of survival analysis was to select an appropriate outcome variable. All previous studies
adopted overall survival (OS), defined as the time interval from initial SKCM diagnosis to patient
death or last follow-up [14], as the outcome variable. To ensure proper use of the large clinical
dataset associated with omics features for TCGA users and to drive high quality survival outcome
analytics, Liu et al. proposed an integrated TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR),
which includes four clinical outcomes and a list of outcome usage recommendations for each cancer
type [14]. For SKCM, TCGA-CDR also recommends the use of OS for large-scale translational research.
However, an out-of-step issue (or discordance) between OS and TCGA-SKCM omics data should
be noticed. Specifically, TCGA didn’t always take the initially diagnosed SKCM samples for sequencing.
Instead, SKCM samples from relapses or metastases in the follow-up of SKCM patients were usually
adopted (i.e., SKCM samples submitted to TCGA were usually not the samples used for initial
SKCM diagnosis). Therefore, omics data measured from TCGA-SKCM samples were out-of-step with
the start time point of OS. This discordance will lead to biologically meaningless associations between
OS and the omics data of TCGA-SKCM. Furthermore, prognostic biomarkers identified based on these
associations will further misguide downstream experimental directions.

In this study, we aimed to address the out-of-step issue by proposing an observed survival interval
and comparing it with OS in TCGA-SKCM dataset. Our findings prompted TCGA users to carefully
select clinical outcomes when using TCGA-SKCM data for omics translational research.

2. Materials and Methods

2.1. Data Retrieval and Preprocessing

Level 1 clinical data, level 3 miRNA isoform sequencing raw counts, and the corresponding
meta-data of SKCM samples were retrieved and downloaded from TCGA repository (https://
cancergenome.nih.gov/). The retrieval strategies, exclusion criteria, preprocessing of miRNA
sequencing data and clinical data [15] are presented in Section I–IV of the Supplementary Materials,
respectively. Hierarchical clustering was performed to detect sample outliers and guided principal
component analysis (Supplementary Materials Section V) was used to evaluate the batch effects of the
normalized miRNA isoform expression matrix [16].

2.2. Differential Expression Analysis

There were both primary SKCM (PCM) and metastatic SKCM (MCM) samples in
TCGA-SKCM cohort. PCM samples with pathological stage I or II were defined as localized PCM
(LPCM) samples and those with pathological stage III or IV were considered advanced PCM (APCM)
samples [5]. Differential expression analysis was carried out to evaluate differences among LPCM,
APCM, and MCM.MicroRNAs with at least a two-fold change of expression were considered to be
biologically meaningful. The results of this analysis determined whether we would combine LPCM
and APCM samples (i.e., PCM) or further combine PCM and MCM samples (i.e., SKCM) to identify
prognostic miRNAs.
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2.3. Observed Survival Interval

We defined an observed survival interval (OBS) as the time interval from TCGA sampling to
patient death or last follow-up (Figure 1A). Unlike the usually adopted OS, the OBS has the same end
time point as OS but different start time points, i.e., TCGA sampling introduced randomization to the
start time point of OS. We obtained the DTS (days from initial SKCM diagnosis to TCGA sampling) and
INPTS (indicator of new tumor event prior to TCGA sampling) from the parsed clinical files entitled
“clinical_data.csv” and “new_tumor.csv”, respectively (see Section IV of the Supplementary Materials
for parsing clinical files). TCGA may take samples at different time points of SKCM progression.
If TCGA took samples at initial SKCM diagnosis (i.e., DTS = 0), the OBS was equal to OS. If TCGA took
samples at the first SKCM relapse or metastasis (i.e., DTS > 0 and INPTS = No), the OBS was equal to
SAR (survival after the first relapse or metastasis). DTS was equal to PFI (progression-free interval)
(Figure 1A) if TCGA took samples at subsequent SKCM relapses or metastases (i.e., the second/third/
. . . relapse or metastasis). In practice, we could obtain the OBS by subtracting DTS from OS.
For example, patient TCGA-W3-A825 survived for 1917 days from her initial SKCM diagnosis to death
(i.e., OS = 1917). Furthermore, a MCM was found in her lung at 1644 days after initial SKCM diagnosis.
TCGA didn’t obtain her initially diagnosed SKCM sample and therefore the MCM sample was taken
for sequencing (i.e., DTS = 998). Thus, her OBS = OS − DTS = 273 days (Figure 1B).

Figure 1. Definition of observed survival interval for TCGA-SKCM cohort. (A) Disease course of
TCGA-SKCM cohort. DTS—days from initial SKCM diagnosis to TCGA sampling; INPTS—indicator of
new tumor event prior to TCGA sampling; SAR—survival after the first relapse/metastasis;
OS—overall survival; OBS—observed survival interval; PFI—progression-free interval.
The diamond-shaped box denotes the examination of the condition included in the box. (B) Disease
course of patient TCGA-W3-A825.

2.4. Comparison of OS and OBS in Association with Clinical Data

The Kaplan-Meier survival analysis and log-rank test were applied to evaluate the prognostic
effects of demographic and clinicopathological characteristics by considering both OS and OBS as
clinical outcomes. The multivariate Cox regression model [17] was used to evaluate the independence
of demographic and clinicopathological characteristics.

We also inferred the pathological stage at the time of TCGA sampling for MCM patients based
on the 8th edition of the AJCC melanoma staging system [4]. Specifically, if the SKCM patient was
initially diagnosed as pathological stage IV, the patient was still stage IV at the time of TCGA sampling;
otherwise, if TCGA took a non-distant MCM sample from the patient, the patient was stage III at
the time of TCGA sampling; otherwise, TCGA took a distant MCM sample from the patient and the
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patient should have been stage IV at the time of TCGA sampling. The prognostic effect of the inferred
pathological stage was also evaluated by the Kaplan-Meier survival analysis.

2.5. Comparison of OS and OBS in Associating miRNA Sequencing Data

Univariate Cox regression analyses and proportional hazards assumption tests [18] were used
to preliminarily explore the associations between OS or OBS and miRNA expression profiles.
The Benjamini-Hochberg method was adopted for multiple testing corrections [19]. A stepwise
multivariate Cox regression analysis with all preliminarily survival associated miRNAs as covariates
was applied to construct an independent miRNA expression signature for SKCM prognosis.

The survival risk score (SRS), defined as the standard form of the prognostic index, was used
as the synthetical index to represent the prognostic miRNA expression signature. The prognostic
index was defined as a linear combination of the miRNA expression values weighted by the regression
coefficients. Specifically,

SRS =
PI − mean(PI)

sd(PI)
(1)

where PI is a prognostic index vector and the jth element of PI is the prognostic index of the jth patient, i.e.,

PIj = ∑
i

βi × Eij (2)

where, βi is the multivariate Cox regression coefficient of the ith miRNA and Eij is the expression value
of the ith miRNA in the jth sample. The ability of SRS to predict the SKCM patient survival outcome
was assessed by calculating the area under the curve (AUC) of the time dependent receiver operating
characteristic (ROC) at 3 years, 5 years, and 10 years, respectively [20].

2.6. Statistical Analysis

All analyses were done using R 3.4.4 [21]. MicroRNA sequencing raw counts normalization and
differential expression analyses were conducted by a “DESeq2” package [22]. Guided principal
component analysis was implemented by a “gPCA” package [16]. Survival analysis and
proportional hazards assumption tests were performed by a “survival” package and a “survminer”
package, respectively. Time dependent ROC analyses were done using a “timeROC” package [20].
All P values or adjusted p-values less than 0.05 were considered to be significant.

3. Results

3.1. TCGA-SKCM Dataset

There were 470 SKCM patients who provided 452 samples to TCGA for miRNA sequencing.
Of the 452 SKCM samples, 97 were primary SKCM (PCM) samples, 352 were metastatic SKCM (MCM)
samples, one was an additional MCM sample, and two were normal samples. We only analyzed
the PCM and MCM samples due to the small number of normal and additional MCM samples.
After preprocessing, 357 SKCM samples (82 PCM samples and 275 MCM samples) and 564 miRNAs
were retained. To reproduce our analysis, the preprocessed clinical data and normalized miRNA
sequencing data are presented in Datasets S1 and S2, respectively. Batch effect analyses of the
normalized miRNA expression matrix showed that there was no discernible separation on the first
two guided principal components (Figure S1A) with a permutation test p-value of 0.472 (Figure S1B).
These results revealed that although TCGA-SKCM samples were sequenced in different batches, there
was no significant batch effect among them.

3.2. Differences between OBS and OS

Of the 357 patients in TCGA-SKCM cohort, 171 patients were deceased and 186 patients were alive
at the time of last follow-up. The median OS time and OBS time of TCGA-SKCM cohort were 2184 days
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(95% CI, 1927–3266 days) and 986 days (95% CI, 854–1276 days), respectively. For TCGA-PCM cohort,
18 patients were deceased and 64 patients were alive at the time of the last follow-up. The median
OS time and OBS time of TCGA-PCM cohort were 1070 days (95% CI, 857–NA days) and 1276 days
(95% CI, 1070–NA days), respectively. For TCGA-MCM cohort, 122 patients were deceased and
153 patients were alive at the time of last follow-up. The median OS time and OBS time of TCGA-MCM
cohort were 2402 days (95% CI, 1992–3424 days) and 896 days (95% CI, 732–1175 days), respectively.

There was no obvious difference between OS and the OBS in TCGA-PCM cohort (p = 0.85)
because the majority of the samples (80.49%) submitted to TCGA in this cohort were samples that
were initially SKCM diagnosed. However, the OBS was significantly shorter than OS in TCGA-MCM
cohort (p = 2.51×10−11) as the majority of the samples (90.55%) submitted to the TCGA in this cohort
were not samples that were initially SKCM diagnosed, but samples excised from follow-up metastases
(an average of a 1403 day delay after initial SKCM diagnosis). Furthermore, the median OS of
TCGA-PCM cohort was significantly shorter than that of TCGA-MCM cohort (Figure 2A) and the
opposite was true when the OBS was compared (Figure 2B). Logically, PCM patients were expected
to survive longer than MCM patients. According to our analyses, the results were hard to explain if
OS was adopted as the survival outcome, while it became explicable by considering the OBS as the
survival outcome. These results revealed that OS and the OBS were different and the difference may
give rise to distinct associations when used as survival outcomes in omics translational research.

Figure 2. Kaplan-Meier survival analysis between PCM patients and MCM patients. PCM—primary
SKCM; MCM—metastatic SKCM. OS (A) and the OBS (B) were considered clinical outcomes. The upper,
middle, and lower parts represent the Kaplan-Meier plot, number of patients at risk for each group,
and number of censored patients for each group respectively. OS—overall survival; OBS—observed
survival interval.

3.3. OS Deemed More Appropriate to Associate Clinicopathological Characteristics than the OBS

Demographic and clinicopathological characteristics of TCGA-SKCM cohort measured at initial
SKCM diagnosis are summarized in Table 1. The age at initial diagnosis, AJCC pathological stage,
ulceration, and Breslow depth were significantly associated with OS of SKCM patients (Table 1).
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However, none of them were associated with the OBS (Table S1). Furthermore, only the AJCC
pathological stage was an independent predictor of OS of SKCM patients (Table 1).

Table 1. Survival analysis of demographic and clinicopathological characteristics based on OS.

Column
Header

Deaths/Patients (%) MS (95% CI) ULog-rank test p MHR (95% CI) MWald test p

Age1

≤50 years 58/113 (51.33) 4062 (2022–5370)
>50 years 115/244 (47.13) 1927 (1524–2927) 0.011 1.27 (0.82–1.96) 0.282

Gender
Male 60/138 (43.48) 2004 (1640–4507)

Female 111/219 (50.68) 2402 (1960–3424) 0.736
Breslow depth1

≤2 mm 55/114 (48.25) 3943 (3139–5318)
>2 mm 80/169 (47.33) 1424 (1103–2004) <0.001 1.44 (0.93–2.22) 0.098

Pathological stage2

I–II 81/179 (45.25) 3266 (2402–4601)
III–IV 75/153 (49.02) 1490 (988–2071) <0.001 1.82 (1.22–2.72) 0.004

Ulceration1

No 57/111 (51.35) 2402 (1927–4222)
Yes 58/133 (43.61) 1354 (1059–2028) <0.001 1.53 (1.00–2.35) 0.052

Primary tumor site
Extremities 76/158 (48.1) 2071 (1910–4000)

Head and neck 11/23 (47.83) 2192 (787–NA)
Trunk 59/128 (46.09) 3139 (1691–5107) 0.787

Radiation therapy
No 165/355 (49.25) 2192 (1917–3266)
Yes 7/14 (50.00) 1341–NA 0.892

Chemotherapy
No 121/251 (48.21) 2173 (1832–3564)
Yes 40/75 (53.33) 2184 (1917–3683) 0.813

MS—median survival; CI—confidence interval; HR—hazard ratio; U—univariate analysis; M—multivariate analysis.
For the multivariate Cox regression analyses, variable coding are: age (1, ≤50 years; 2, >50 years), pathological stage
(1, I–II; 2, III–IV), ulceration (1, No; 2, Yes), and Breslow depth (1, ≤2 mm; 2, >2 mm). 1Significant in univariate
analysis; 2Significant in multivariate analysis. Patients with missing values were omitted from the table.

Subgroup analysis revealed that SKCM patients with a higher pathological stage had shorter
OS in bothTCGA-PCM cohort (HR = 3.63, 95%CI: 1.26–10.42; Figure S2A) and TCGA-MCM cohort
(HR = 1.77, 95%CI: 1.25–2.52; Figure S2B). However, for the OBS, it was associated with the pathological
stage in TCGA-PCM cohort (HR=3.63, 95%CI: 1.26–10.41; Figure S2C) but not in TCGA-MMC cohort
(HR = 0.94, 95%CI: 0.67–1.30; Figure S2D).

As the AJCC pathological stage was the only independent predictor of OS of SKCM patients,
we further inferred the pathological stage at the time of TCGA sampling for MCM patients. The inferred
pathological stage was significantly associated with the OBS (HR = 2.06, 95%CI: 1.24–3.41; Figure 3B)
rather than OS (HR = 1.03, 95%CI: 0.69–1.53; Figure 3A) in TCGA-MCM cohort.

The clinicopathological characteristics provided by TCGA were measured at the time of
the initial SKCM diagnosis. Thus, they were in accordance with the start time point of OS,
while they were usually out-of-step with respect to the OBS (especially for TCGA-MCM cohort).
For TCGA-PCM cohort, OS and the OBS were usually the same, and indiscriminate usage of them
will not result in a significant difference. Overall, these results indicated that the clinicopathological
characteristics reasonably predicted OS, while they were not appropriate to predict the OBS due to the
out-of-step issue.
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Figure 3. Kaplan-Meier survival analysis of inferred pathological stage. The OBS and inferred
pathological stage in TCGA-MCM cohort (A), OS and inferred pathological stage in TCGA-MCM
cohort (B). OS—overall survival; OBS—observed survival interval.

3.4. Differentially Expressed miRNAs

Differentially expressed miRNAs between PCM and MCM were mainly in the hsa-miR-205-5p,
hsa-miR-203a-3p, and hsa-miR-200 family (Figure 4). Only hsa-miR-3150b-3p was differentially
expressed in APCM (advanced PCM, PCM with pathological stage III and IV) versus LPCM
(localized PCM, PCM with pathological stage I and II), while it didn’t show any difference in APCM
versus MCM or LPCM versus MCM (Figure 4). These results were consistent with the discoveries of
Xu et al. on differentially expressed miRNAs in MCM versus PCM [23]. Furthermore, these results
revealed that biological differences were mainly between PCM and MCM rather than between LPCM
and APCM. Thus, it was appropriate to combine LPCM samples and APCM samples as PCM samples
to explore survival associated miRNAs, while it was improper to further combine PCM samples and
MCM samples as SKCM samples to identify survival associated miRNAs.

Figure 4. Venn plot of differentially expressed miRNAs of APCM versus LPCM, APCM versus MCM,
and LPCM versus MCM. Arrow and number represent regulation direction and number of differentially
expressed miRNAs, respectively. LPCM—localized primary SKCM; APCM—advanced primary SKCM;
MCM—metastatic SKCM.
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3.5. OBS Deemed More Appropriate to Associate miRNA-Omics Data than OS

Segura et al., Caramuta et al. and Tembe et al. proposed several miRNA expression signatures
for MCM prognosis based on low sample size microarray data [24–26]. Jayawardana et al. [8]
proposed fifteen prognostic miRNAs for stage III MCMs from TCGA miRNA-omics data and, further,
systematically cross-validated these fifteen miRNAs with previous studies [24–26]. Five miRNAs
(hsa-miR-142-5p, hsa-miR-150-5p, hsa-miR-342-3p, hsa-miR-155-5p, and hsa-miR-146b-5p) were
found to be cross-validated (i.e., with greater validation rates across studies). However, none of
the fifteen miRNAs identified from TCGA data overlapped with the five cross-validated miRNAs.
Thus, Jayawardana et al. claimed that TCGA-MCM data performed the worst. These results were
considered priori criteria for comparison of OS and the OBS in miRNA sequencing data.

Univariate Cox regression analysis revealed that there was no miRNA associated with either
OS or the OBS in TCGA-PCM cohort. Meanwhile, 27 and nine miRNAs were found to be
significantly associated with the OBS and OS of patients in TCGA-MCM cohort, respectively (Table S2).
Interestingly, all of the five cross-validated miRNAs were found to be associated with the OBS rather
than OS in TCGA-MCM cohort (Table S2) despite all being missed in the analysis of Jayawardana et al.
due to the adoption of OS [8].

Unlike the clinicopathological characteristics measured at the time of initial SKCM diagnosis,
the molecular patterns were characterized at the time of TCGA sampling. Thus, the miRNA-omics
data were in accordance with the start time point of the OBS, while they were out-of-step with
respect to OS (especially for TCGA-MCM cohort). Combined with the results from the above clinical
analyses, OS and the OBS were usually the same in TCGA-PCM cohort, while they were usually
different in TCGA-MCM cohort. Thus, for TCGA-MCM cohort, the OBS should be used for associating
miRNA-omics data, and indiscriminate usage of OS and the OBS in TCGA-PCM cohort will not result
in a significant difference. Overall, the OBS was more appropriate for identification of prognostic
biomarkers than OS. Furthermore, to evaluate the independence and compare the prognostic power of
clinicopathological characteristics and biomarkers, the time point of clinical data and omics data must
be in accordance. As the time point of the omics data was fixed at TCGA sampling, it is wise to deduce
the clinicopathological characteristics at the time point of TCGA sampling.

3.6. A miRNA Expression Signature for MCM Prognosis Based on the OBS

Although Jayawardana et al. have cross-validated five miRNAs for MCM prognosis,
the cross-validation was based on differential expression analysis between MCM patients with longer
OS and MCM patients with poor OS [8]. Thus, relationships among the five miRNAs were not
investigated further. For the identification of prognostic biomarkers, the construction of signatures
that included as many independent biomarkers as possible was expected [15]. Correlation analysis
showed that the five cross-validated miRNAs were correlated with each other (Figure 5A) and a
collinearity existed among them (Kappa value = 70.32). Furthermore, multivariate Cox regression
analyses revealed that hsa-miR-155-5p was an appropriate representative for the five cross-validated
miRNAs (Table S3).
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Figure 5. Prognostic miRNAs for MCM based on the OBS. (A) Pairwise Spearman correlations ofthe
five cross-validated prognostic miRNAs in MCM. (B) Kaplan-Meier survival analysis between high-risk
and low-risk MCM patients. (C) Time dependent receiver operating characteristic curves of SRS at
different times. SRS-survival risk score.

Stepwise multivariate Cox regression analyses, by considering the OBS to be the survival outcome
and the 27 OBS associated miRNAs as covariates, revealed that hsa-miR-155-5p, hsa-miR-4461,
hsa-miR-504-5p, hsa-miR-625-5p, and hsa-miR-664b-5p were independent prognostic miRNAs for
patients with MCM (Table 2, upper part). Model diagnosis revealed that the final regression model
(Global Schoenfeld test p = 0.49) and all covariates in the model satisfied the proportional hazards
assumption (Figure S3) with negligible collinearity (Kappa value = 2.70).

The survival risk score (SRS) was calculated for each MCM patient and Kaplan-Meier survival
analysis showed that high-risk (SRS>0) MCM patients had shorter OBS compared with low-risk
(SRS ≤ 0) MCM patients (HR = 3.29; 95%CI: 2.37–4.56; Figure 5B). Furthermore, as a continuous
variable, the SRS was inversely associated with the OBS (HR = 2.32; 95%CI: 1.93–2.78; Wald test
p < 0.001). The area under the curve of the receiver operating characteristic for SRS were 0.77 (95%CI:
0.71–0.84), 0.76 (95%CI: 0.68–0.83), and 0.79 (95%CI: 0.71–0.88) at three years, five years, and 10 years,
respectively (Figure 5C). Finally, multivariate Cox regression analysis showed that the SRS was an
independent predictor of the OBS of MCM patients while the inferred pathological stage was no longer
significant (Table 2, lower part).
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Table 2. Independent prognostic miRNAs for MCM patients based on OBS.

Column Header MHR (95% CI) MWald Test P Type

hsa-miR-155-5p 0.73 (0.63–0.85) 3.15×10−5 Protective1

hsa-miR-4461 1.29 (1.13–1.46) 1.07×10−4 Risky2

hsa-miR-504-5p 0.80 (0.71–0.92) 1.17×10−3 Protective
hsa-miR-625-5p 0.67 (0.53–0.86) 1.35×10−3 Protective

hsa-miR-664b-5p 0.69 (0.58–0.83) 4.39×10−5 Protective
SRS 2.28 (1.89–2.74) <2.00×10−16 Risky

Inferred stage 1.32 (0.88–1.98) 0.18 Risky
M—multivariate analysis; 1—HR<1; 2—HR>1.

4. Discussion

The recently proposed TCGA-CDR includes OS, PFI (progression-free interval),
DFI (disease-free survival), DSS (disease-specific survival), and a list of outcome usage
recommendations for each cancer type [14]. As indicated by Liu et al., TCGA mainly collected primary
tumors for molecular characterization, with the exception of the SKCM study, which included mainly
metastatic samples. According to our results, there was no statistically significant difference between
OS and the OBS in PCM (p = 0.85). Thus, TCGA-CDR prudently recommended using only the limited
number of PCM samples for SKCM clinical outcome correlations [14]. However, this recommendation
discarded the majority of the MCM samples. Although there was no statistically significant difference
between OS and the OBS in TCGA-PCM cohort, OS and the OBS were not always the same for every
PCM patient (19.51%). This means that some of the PCM samples submitted to TCGA may not be
samples obtained at initial SKCM diagnosis but relapse samples from the follow-up. For example,
patient TCGA-ER-A2NB provided a PCM sample to TCGA, but his DTS = 124 days. Although we
believe this non-significant difference between OS and the OBS will not lead to significantly different
associations when applying to TCGA-PCM omics data, a more precise recommendation is necessary.

Some limitations of the current study should be noticed. (I) We addressed the out-of-step issue of
survival outcome but various outcome endpoints based on relapses or metastases were not investigated.
With the exception of OS, Liu et al. also recommended PFI and DSS for TCGA-SKCM data.
However, there also existed the out-of-step issue for these outcomes in MCM. For example, all outcome
endpoints of TCGA-W3-A825 in TCGA-CDR were 1917 days [14]. According to our analyses, the PFI
of TCGA-W3-A825 should be 1644 days (i.e., DTS = 1644 days; Figure 1B), but this outcome was
not appropriate for the investigation of associations between it and omics data due to no primary
sample being available for TCGA-W3-A825. (II) We didn’t find any prognostic miRNAs to predict the
survival of PCM. Possible explanations are: (a) PCM is a relatively early event in SKCM progression
and PCMomics data may be unable to predict the relatively long survival-based outcomes such as
OS and the OBS. Thus, relatively shorter outcome endpoints based on relapses or metastases may be
appropriate for PCMomics translational research. (b) Single miRNA-omics may not be enough for
predicting PCM patient survival, and a multi-omics analysis should be conducted. (III) Despite this
study focusing on the outcome endpoints of TCGA-SKCM data, the five identified novel prognostic
miRNAs based on the OBS call for additional studies for further validation and mechanism exploration.

5. Conclusions

In conclusion, we defined the OBS, to supplement TCGA-CDR, and recommended it for
TCGA-SKCMomics translational research. Our results could remind subsequent TCGA-SKCM data
users to pay attention to the out-of-step issue of outcome endpoints. Although our analyses were based
on associations between survival-based outcomes and TCGA-SKCM miRNA-omics data, they could
be generalized to associate other TCGA-SKCMomics data and relapses, or metastasis-based outcomes.
In addition, the five identified prognostic miRNAs may be of value in predicting the OBS of MCM
patients and informing future experimental investigations.
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Abstract: Data from the Cancer Genome Atlas (TCGA) are now easily accessible through web-based
platforms with tools to assess the prognostic value of molecular alterations. Pancreatic tumors
have heterogeneous biology and aggressiveness ranging from the deadly adenocarcinoma (PDAC)
to the better prognosis, neuroendocrine tumors. We assessed the availability of the pancreatic
cancer TCGA data (TCGA_PAAD) from several repositories and investigated the nature of each
sample and how non-PDAC samples impact prognostic biomarker studies. While the clinical and
genomic data (n = 185) were fairly consistent across all repositories, RNAseq profiles varied from
176 to 185. As a result, 35 RNAseq profiles (18.9%) corresponded to a normal, inflamed pancreas
or non-PDAC neoplasms. This information was difficult to obtain. By considering gene expression
data as continuous values, the expression of the 5312 and 4221 genes were significantly associated
with the progression-free and overall survival respectively. Considering the cohort was not curated,
only 4 and 14, respectively, had prognostic value in the PDAC-only cohort. Similarly, mutations
in key genes or well-described miRNA lost their prognostic significance in the PDAC-only cohort.
Therefore, we propose a web-based application to assess biomarkers in the curated TCGA_PAAD
dataset. In conclusion, TCGA_PAAD curation is critical to avoid important biological and clinical
biases from non-PDAC samples.

Keywords: pancreatic cancer; TCGA; curation

1. Introduction

Consortium efforts, such as those of the Cancer Genome Atlas (TCGA) or the International
Cancer Genome Consortium (ICGC), to massively sequence thousands of tumors from multiple types
have led to a much better understanding of tumor biology. While the data were freely accessible,
their use was restricted in practice to teams with great expertise in bioinformatics. Further efforts from
centers such as the Broad Institute (https://gdac.broadinstitute.org) or the University of California
Santa Cruz (http://xena.ucsc.edu) allowed easy access to TCGA normalized RNAseq, methylation
and clinical data, often readily available in excel files. Finally, multiple web-based platforms were
launched with “one-click” capabilities to give users direct access to the prognostic role of the gene
expression level, the frequency of any mutation, the protein level expression and the networks of
genes and proteins, etc. Main platforms include TCGA (https://gdc.cancer.gov), the Broad Institute
(https://gdac.broadinstitute.org), the University of California Santa Cruz (http://xena.ucsc.edu),
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cBioportal (http://www.cbioportal.org) and the Human Protein Atlas (https://www.proteinatlas.org).
These platforms have given everyone access to use these data as exploratory or validation sets.

Pancreatic cancer is a generic term often misused as a surrogate for the most common malignant
tumor entity in this organ, the ductal adenocarcinoma (PDAC). Other malignant tumor entities such
as the neuroendocrine neoplasms or the acinar cell carcinomas can also be found in the pancreas [1].
While these tumors are uncommon, they often fall under the umbrella term of “pancreatic cancer”,
and are as such defined by completely different biology (mutational and transcriptional profiles) and
clinical outcomes from the classical PDAC [2,3]. If such tumors were unnoticeably included within
a dataset mainly composed of PDAC, they may introduce a strong bias in data analysis and lead to
false conclusions regarding the prognostic value of a DNA mutation or an mRNA expression level.
Depending on the source, 176 to 185 samples compose the TCGA study dedicated to the pancreas
(TCGA_PAAD) and the multiomic analysis of these samples from the TCGA group was restricted to
150 samples [4]. In a recent study, Peran et al. highlighted that the TCGA_PAAD cohort, which mostly
comprised patients who underwent surgery, displayed a much better survival rate than that of the
unselected cohort SEER [5]. They further demonstrated that a failure to exclude non-PDAC samples
might introduce a bias in the gene expression analyses leading to false conclusions being drawn when
assessing the prognostic value of several mRNAs.

In this study, we aim to gather and compare the available data concerning the TCGA_PAAD
from all the main repositories and clearly establish a list of suitable TCGA_PAAD samples for the
PDAC centered studies. We then compare the TCGA_PAAD cohort to a large multicentric consecutive
cohort of surgical PDAC. Using the key DNA mutation and the whole transcriptome, we then assessed
the potential for bias based on survival analyses when using an uncurated sample list. Finally,
we designed a web-based tool to assess the prognostic value of any gene expression on the curated
TCGA_PAAD dataset.

2. Results

2.1. Data Comparison from the Repositories for the TCGA_PAAD

Across most platforms queried, the number of patients within the TCGA_PAAD study was
consistent and set at 185 (TCGA data portal n = 185, UCSC Xena n = 185, Broad Institute Firehose
n = 185, The Human Protein Atlas n = 176 (only patients with available RNAseq data were considered)
and cBioportal n = 185). In all platforms, clinical data were available for the 185 patients. Depending
on the platforms, mutation and copy number data were available for 184 or 185 samples, DNA
methylation data were consistent and available for 184 samples, and RNAseq data were the most
discordant, ranging from 176 to 185 samples (cBioportal n = 185, UCS Xena n = 183, Broad Institute
Firehose n = 178, TCGA data portal n = 178 and The Human Protein Atlas n = 176). TCGA-derived
RNAseq data were the most frequently used. As a result, we carefully investigated the nature of the
samples to explain the discrepancy in the available number of samples depending on the platforms.
RNAseq data were not available for seven patients and the number of patients with RNAseq data
(list in Table S1) was set at 178. For four patients, RNAseq data from the normal adjacent pancreas
were available and included in the datasets from the platforms with more than 183 samples. These
samples could be identified, as they have the same ID number as the tumor sample but with “-11” at
the end of their ID instead of “-01” (TCGA-HV-A5A3-01 and TCGA-HV-A5A3-11, for instance). For
one patient, RNAseq data from the primary tumor and the metastasis was available. The metastasis
is identifiable by its “-06” at the end of the sample ID TCGA-HZ-A9TJ-01 (primary tumor) and
TCGA-HZ-A9TJ-06 (metastasis). This highlighted that data retrieval must be done with care, and
confirms that while genomic and clinical data are available for 185 patients, RNAseq data are only
available for 178 unique patients.
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2.2. Curation of the TCGA_PAAD Dataset

The recent study from the TCGA group focused on pancreatic ductal adenocarcinoma and only
included 150 samples. Therefore, we carefully reviewed the clinical and histological data of all the
cases gathered through the repositories and by viewing the virtual slides. Ten samples presented the
pancreas as normal with atrophy, eight samples were neuroendocrine neoplasms, four samples were
tumors derived from other organs (duodenum-ampulla in three cases and undefined location in one
case), two samples were intraductal papillary neoplasms, one sample was an acinar cell carcinoma,
one was a ductal adenocarcinoma but had received neoadjuvant chemotherapy and one had a normal
ampulla. It should be noted that for several patients, while the analyzed specimens were not PDAC
(atrophic pancreas, PanIN, etc.), these patients did have a PDAC. These clinical data may therefore
be used, but not the omic data. One additional case was excluded, as no single nucleotide variation
data was available (TCGA-L1-A7W4-01). This sample was listed as a PDAC and treated with adjuvant
gemcitabine, a classical drug for this tumor. The examination of the frozen section showed a poorly
differentiated tumor, which was difficult to clearly identify as a PDAC or a neuroendocrine carcinoma.
Copy number abnormalities (SMAD4 deletion, MYC amplification, no alteration on TP53, CDKN2A

and RB1) did not help in further assuring the diagnosis. The flow chart presenting the TCGA-PAAD
sample curation is presented in Figure 1 and the full list of the 150 proper PDAC sample and the 28 non
PDAC sample are provided in Table S1.

 

Figure 1. Flow chart depicting the curation of the pancreatic cancer dataset (TCGA_PAAD).

2.3. Clinical Relevance of the TCGA_PAAD Curated Sample List

Samples constituting of the TCGA cohorts were collected from multiple institutions, which may
have introduced some heterogeneity in patient management and clinical data collection. In addition,
while these cases were all surgical resections, they were not consecutive. To assess how representative
the curated TCGA_PAAD cohort was, we compared it to our well characterized cohort of 471
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consecutive resected PDAC in five centers collected over a 13 years period [6]. Basic clinical and
pathological comparison is presented in Table 1. For this comparison, we used the consensual 150 cases,
but the seven PDAC cases with no RNAseq data could have been added (results unchanged, data
not shown). Both cohorts were comparable on most criteria. Tumors from the TCGA_PAAD study
tended to be slightly more aggressive with larger and more poorly differentiated tumors (p < 0.05).
Progression-free survival (PFS) was comparable in both cohorts (TCGA_PAAD 16.75 months vs. 14.51
months in our cohort, ns) (Figure 2a). In contrast, overall survival (OS) was much shorter in the
TCGA_PAAD cohort (19.54 vs. 33.09 months, p < 0.0001) (Figure 2b).

Table 1. Clinical comparison of the TCGA_PAAD and the pancreatic adenocarcinoma
multicenter cohort.

Clinical/Pathological Features TCGA_PAAD (n = 150)
PDAC Multicenter

Cohort (n = 471)
p-Value

Age at diagnostic (avg. (min,
max))

64.89 (35, 88) 63.31 (34, 88) 0.12

Sex (male proportion (female,
male))

54% (69, 81) 54% (215, 256) 1

Tumor size (avg. (min, max)) 37.97 (18, 120) 32.42 (7, 150) 1.86 × 10−4

Tumor grade < 1 × 10−10

G1 5 201 < 1 × 10−10

G2 75 189 0.079
G3 69 67 < 1 × 10−10

G4 1 0 0.5579
Pathology TNM 0.0047

T1 1 17 0.114
T2 20 68 0.861
T3 125 386 0.676
T4 3 0 0.016

N (N1 proportion (N0, N1)) 73.8% (39, 110) 74.5% (120, 351) 0.950
M (M0 proportion (M0, M1)) 94.4% (68, 0) 100% (471, 0) 1.11 × 10−5

Figure 2. Progression-free and overall survival of the curated TCGA_PAAD and a PDAC multicenter
cohort. Kaplan-Meier curves depicting the progression-free (a) and overall survival (b) of the curated
TCGA-PAAD cohort (n = 150) and a multicenter PDAC cohort (n = 471).
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2.4. Bias in the Prognostic Value when Using the Uncurated Cohort

We assessed whether the clinical or biological data from the non-PDAC patients impacted survival
analyses performed on the TCGA_PAAD cohort. While the median PFS and OS of the uncurated
cohort was marginally longer than that of the pure PDAC cohort (median PFS: 17.0 versus. 15.9 months
and median OS 20.1 vs. 20.2 months respectively), the non-PDAC patients had a much longer PFS and
OS compared to the pure PDAC cohort (n = 150) (median PFS: 27.3 vs. 15.9 months p = 0.07; median
OS: unattained vs. 19.6 months p = 0.03; five year overall survival: 54.6% vs. 19.7%) (Figure 3a.).
When the gene expression data were considered as continuous values; 5312 and 4221 genes were
significantly associated (FDR 5%) with the PFS and OS respectively in the uncurated cohort (where
a total of 17,302 genes were tested, uncorrected log-rank test: 6618 and 7260 genes at alpha = 5%).
In contrast, if the PDAC-only cohort was considered, only 4 and 14 genes were significantly associated
with the PFS and OS respectively (at FDR 5%; uncorrected log-rank test: 2632 and 2374 genes at
alpha = 5%) (Figure 3b). In the PDAC-only cohort, 2671 genes were significantly over expressed and
1730 genes were significantly under expressed compared to the non-PDAC samples of the cohort
(Table S2). Using a median cut off, 594 and 409 genes were associated with progression-free and overall
survival, respectively, in the whole cohort (at FDR 5%; uncorrected log-rank test: 3907 and 3776 genes
at alpha = 5%), while only 3 and 0 in the PDAC-only subgroup (at FDR 5%; uncorrected log-rank
test: 1706 and 2062 genes at alpha = 5%). Within the genes that were differentially expressed in the 2
cohorts, we handpicked genes that were previously described as having a strong impact on prognosis.
The progression-free and overall survival of cases with the top and bottom 25% expression were then
compared in the uncurated and the curated cohort. While some genes such as ERBB2, HK2, SLC2A1

were significantly or nearly significantly associated with the prognosis in both cohorts, others such as
MUC1/LOX/TWIST1/PI3K lost their prognostic significance in the pure PDAC cohort (TWIST1 as an
example in Figure 4a).

Figure 3. Progression-free and overall survival of the PDAC and non-PDAC cases. (a) Kaplan-Meier
curves depicting the progression-free (left panel) and overall survival (right panel) of the PDAC cases
(n = 150) and the non-PDAC cases (n = 27). (b) Number of genes associated significantly associated
with the progression-free (left panel) and overall survival (right panel) in PDAC only cases and the
uncurated cohort.
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Figure 4. Bias in prognostic analysis when using the uncurated cohort. (a) TWIST1 mRNA expression
in PDAC and non-PDAC cases and prognostic impact (OS) in the uncurated and the PDAC only cohorts
(left panels). Kaplan-Meier curves depicting the overall (middle panel) and progression-free survival
(right panels) according to TWIST1 expression in the uncurated cohort or the PDAC only cohort. (b) and
(c) Distribution of the KRAS and TP53 mutation in the PDAC and non-PDAC cases (left panels) and
Kaplan-Meier curves depicting the overall survival according to the mutational status in the uncurated
cohort (middle panels) or the PDAC-only cohort (right panels). (d) miR-203 mRNA expression in
PDAC and non-PDAC cases and prognostic impact (OS) in the uncurated and the PDAC only cohorts
(left panels). Kaplan-Meier curves depicting the overall (middle panel) and progression-free survival
(right panels) according to miR-203 expression in the uncurated cohort or the PDAC only cohort.

Similar findings were observed when key mutations in PDAC were assessed. Here we included
the seven PDAC cases with the DNA data available (but no RNAseq). The results were similar when
using the minimal 150 PDAC cohort. While the mutational status of KRAS and TP53 were strongly
associated with the overall survival in the uncurated cohort, these mutations lost their prognostic
significance in the pure PDAC cohort (Figure 3b,c). In a recent study, Shi et al. searched in silico
miRNAs associated with the prognostic significance in the TCGA_PAAD cohort and reported that
a five miRNA signature had a strong prognostic value [7]. Unfortunately, they used the uncurated
cohort. As a consequence, when these miRNAs were assessed in the pure PDAC cohort, they lost their
prognostic significance (mir-203 as an example, Figure 4d).

2.5. Web-Based Application to Query the Curated TCGA-PAAD Dataset

In order to quickly assess the prognostic significance of a gene in the curated TCGA_PPAD,
we developed a web-based application [8]. The application requires a gene symbol and displays
survival curves by splitting patients into groups depending on their level of expression of the selected
gene, if it is available in the TCGA_PAAD RNAseq data. The patients are either separated in two
groups, low versus high, or separated by a given percentile cut, 50% by default. In this splitting case,
all 144 patients were used for the survival analysis. The patients could have also been divided by
interval in which only the patients with the highest expression levels would be shown against the
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patients with the lowest levels of expression of the analyzed gene. By default, the upper quartile
(>75%) was shown against the lower quartile (<25%). In both types of survival analysis, the p-value of
a log-rank test was shown, as well as the median survival in each group. The log-rank test p-value and
the Hazard Ratio of the continuous gene expression level were also shown.

3. Discussion

Clinical validation of their findings is often a bottleneck step for basic scientific laboratories.
Consortium efforts such as those of the TCGA and the ICGC have been a tremendous help for this
purpose. In addition, it facilitated alternative approaches based on in silico discovery completed
by clinical validation. Here, we presented a thorough analysis of the TCGA dataset, which was
dedicated to pancreatic neoplasms and highlighted the heterogeneity of the data sources and samples.
In addition, we demonstrated that the curation of this dataset led to the exclusion of almost 20% of the
cases but was a mandatory step, as it prevented false results on prognostic analyses.

TCGA data may be retrieved through numerous platforms. Confusion for researchers may arise
from the fact that while data for a particular sample are homogeneous across all platforms, the list
of available samples is heterogeneous with little to no information on the sample of most platforms.
In addition, while the genomic data for a sample may be exploitable, the RNAseq data may not.
The TCGA data portal provided the most comprehensive information on the nature of the samples,
but it required a deeper exploration within the platform to find it. Due to most platforms providing
the official clinical data, but not a detailed manifest of the samples analyzed, it is important to retrieve
the final list of “good samples” and to only assess these, a function available on some platforms but
not all.

In the TCGA_PAAD, there were three main reasons for sample exclusion. The first reason, valid
across all the data (DNA, RNA, etc.) was the histology of the tumors. PDAC have a well-described
biology (mutational and transcriptional patterns) and a clinical behavior, which is very distinct
from other pancreatic neoplasm such as neuroendocrine neoplasms (NEN), acinar cell carcinomas
or intraductal papillary neoplasm (IPMN). Well-differentiated NEN for instance, have a completely
different mutational and transcriptional pattern from PDAC and a much longer survival rate. Therefore,
any alteration specific to PDAC will artificially see its prognostic value increased. The second reason
was that the sample analyzed was not a tumor. It was either a normal pancreas or from a PDAC-look
alike histological lesion, often atrophic fibrosis with a stroma-like appearance. These patients had
a prolonged survival compared to PDAC patients. As a result, the prognostic value was strongly
biased in any alteration present in PDAC. Finally, for one sample, the single nucleotide variation data
were not available (TCGA-L1-A7W4-01).

Peran et al. compared the clinical characteristics of the TCGA_PAAD cohort with that of the SEER
and the national cancer database and reported that the TCGA_PAAD cohort had less locally advanced
and metastatic tumors and therefore a much better chance of survival [5]. This highlights another
potential bias in the cohorts required for this type of multi-omics analyses. As they require frozen tumor
material, the cohorts usually include only surgical specimens. This is an important bias for PDAC
as only 15% of patients present with a resectable tumor. In addition, only large tumors have frozen
material set apart usually, leading to a nonconsecutive series. Yet, when comparing the pure-PDAC
TCGA cohort with our large multicentric consecutive cohort, we have found few differences, except
for the median tumor size and therefore a slightly worse overall survival. This confirmed the clinical
validity of the curated cohort for prognostic studies.

The importance of the curation is also highlighted by the massive prognostic bias introduced by
the samples (tumor or non-tumor) with a different molecular profile from the PDAC and a prolonged
survival. We observed that many molecular alterations (gene mutation, mRNA or miRNA aberrant
expression level) had a prognostic value only in the uncurated cohort. This is not surprising as most
of these were absent from the good prognostic non-PDAC subgroup. Improper data curation led to
the description of many PDAC prognostic factors that lost their value in the curated dataset [9,10].
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This is in line with the study of Peran et al. that described on a limited number of genes how the use of
a curated cohort led to the loss of their prognostic value.

We therefore developed a free web-based app to quickly assess the prognostic value
(progression-free and overall survival) of the expression of any gene on the curated dataset. This is to
our knowledge the only “click and play” tool to reliably assess the prognostic value of any gene using
either a cut off based on the median expression value or any interval, and retrieve the survival and
expression data.

4. Patients and Methods

4.1. Data Query from the Main Data Repository

The following data repository were queried to retrieve a sample list and biological annotations,
whole normalized level 3 RNAseq and miRNA data, specific DNA mutation data (KRAS, TP53, SMAD4)
and clinical data: TCGA (https://gdc.cancer.gov), the Broad Institute (https://gdac.broadinstitute.org),
the University of California Santa Cruz (http://xena.ucsc.edu), cBioportal (http://www.cbioportal.org)
and the Human Protein Atlas (https://www.proteinatlas.org). The sample list and the clinical data
used in the TCGA group publication were also retrieved from the supplemental data [5].

4.2. Data from the Multicenter Ductal Adenocarcinoma Cohort

For comparison with the TCGA_PAAD cohort, we used a previously published cohort of
471 consecutive patients who underwent curative intent surgery for PDAC at 5 university centers
between September 1996 and August 2009. Subjects were excluded if they had received preoperative
treatment and macroscopically incomplete resection (R2) or if their tumor histology was not a ductal
adenocarcinoma. Patients who died of postoperative complications within 30 days following surgery
were also excluded.

4.3. Data Analysis

Survival analyses with gene expression were performed in R using the survival package. The gene
expression or miRNA expression association to survival was evaluated by fitting a Cox proportional
hazards regression model. The explanatory variable of the survival model fitted for each gene was
either the continuous expression values or the discretized expression value (e.g., below versus over
the median expression). The association to survival in the curated or uncurated cohorts was assessed
for 17,302 genes. For each of them, the p-value of the log-rank test was retrieved and corrected
using the Benjamini-Hochberg multiple comparison approach for controlling the false discovery rate.
When defining the number of prognostic genes, the log-rank test was used and adjusted to obtain
a False Discovery Rate of 5%.

Clinical characteristics of the two cohorts were compared using a Chi2-based test of equal
proportions for discrete variables and a Student’s t-test for continuous variables.

Survival curves were drawn using the ggsurv function from the GGally R package.

4.4. Web Based App

A web app to associate gene expression to overall and progression-free survival in the 144 TCGA
patients (6 of the 150 curated sample/patient pair had missing clinical data for effective PFS analysis)
is available at [8] (executable code available: [11]).

The TCGA data used for the application were obtained from the Broad’s Institute firehose portal
(https://gdac.broadinstitute.org, 20,160,128 release). The PDAC survival web application can be
used to associate gene expression to overall and progression-free survival in three different ways:
by splitting the series of patients into two subseries around a gene expression threshold (e.g., median),
by separating the series of patients into two extremes intervals (e.g., upper quartile vs. lower quartile)
or by directly associating the continuous gene expression values to the survival. For the splitting and
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interval analysis, the thresholds can be modified by the user which will update the results accordingly.
Kaplan-Meier curves are used and the log-rank test p-values are shown. In addition, the raw survival
and gene expression values are shown in order to let anyone reuse the curated data with any software.

5. Conclusions

In conclusion, we highlighted in this study the heterogeneity of the data available through the
main repositories and the lack of a proper sample description leading to the inclusion in many studies
dedicated to PDAC of non-PDAC tumor samples or even non-tumor samples. We confirmed that it
introduced a major bias in biomarker prognostic value analysis and we provided a comprehensive
list of the curated dataset together with a free web-based app to assess on the curated dataset the
prognostic value of gene expression levels.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/11/1/126/s1,
Table S1: TCGA_PAAD sample list and biological nature of the samples, Table S2: Comparison of genes associated
with PFS and OS in the uncurated and the curated TCGA_PAAD cohorts.
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Abstract: Histopathological imaging has been routinely conducted in cancer diagnosis and recently
used for modeling other cancer outcomes/phenotypes such as prognosis. Clinical/environmental
factors have long been extensively used in cancer modeling. However, there is still a lack of study
exploring possible interactions of histopathological imaging features and clinical/environmental
risk factors in cancer modeling. In this article, we explore such a possibility and conduct both
marginal and joint interaction analysis. Novel statistical methods, which are “borrowed” from
gene–environment interaction analysis, are employed. Analysis of The Cancer Genome Atlas (TCGA)
lung adenocarcinoma (LUAD) data is conducted. More specifically, we examine a biomarker of lung
function as well as overall survival. Possible interaction effects are identified. Overall, this study can
suggest an alternative way of cancer modeling that innovatively combines histopathological imaging
and clinical/environmental data.

Keywords: cancer modeling; interaction; histopathological imaging; clinical/environmental factors

1. Introduction

Cancer is extremely complex. Extensive statistical investigations have been conducted, modeling
various cancer outcomes/phenotypes. A long array of measurements from different domains have
been used in cancer modeling, including clinical/environmental factors, socioeconomic factors, omics
(genetic, genomic, epigenetic, proteomic, etc.) measurements, histopathological imaging features,
and others. However, none of the existing models is completely satisfactory, and it remains a
challenging task to develop new ways of cancer modeling.

Imaging has been playing an irreplaceable role in cancer practice and research [1]. It is
routine for radiologists to use Computed Tomography (CT), Magnetic Resonance Imaging (MRI),
Positron Emission Computed Tomography (PET), and other techniques to generate radiological
images, which can inform the size, location, and other “macro” features of tumors [2]. Biopsies are
ordered, and pathologists review the slides of representative sections of tissues to make definitive
diagnosis. This procedure generates histopathological (diagnostic) images [3]. Through microscopically
examining small pieces of tissues, more “micro” features of tumors are obtained. Histopathological
images have been used as the gold standard for diagnosis. More recently, histopathological imaging
features have also been used to model other cancer outcomes/phenotypes. For example, in [4], they
were used for predicting the prognosis of estrogen receptor-negative breast cancer, and a multivariate
Cox regression was adopted. In [5], histopathological imaging features were used in a k-nearest
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neighbor classifier to assign images into different groups of Gleason tumor grading for prostate
cancer patients.

With the complexity of cancer, a single domain of measurement is insufficient, and measurements
from multiple sources are needed in modeling [6]. In the literature, histopathological imaging features
and clinical/environmental risk factors have been combined in an additive manner for modeling
cancer outcomes. In [7], for modeling lung cancer prognosis, clinical factors (including age, gender,
cancer type, smoking history, and tumor stage) were combined with imaging features in a multivariate
Cox regression model. This study and those alike have shown that combining the two sources of
information are more informative than a single source. Our literature review suggests that most
if not all of the existing studies have considered the additive effects of histopathological imaging
features and clinical/environmental factors, and studies that accommodate their interactions (referred to

as “I–E” interactions, with “I” and “E” standing for imaging and clinical/environmental factors, in this study)

are lacking. Statistically, adding interactions when the main-effect models are not fully satisfactory
is “normal”. Biologically speaking, incorporating such interactions have been partly motivated by
the success of gene–environment (G–E) interactions. Specifically, in the literature, the biological
rationale and practical success of G–E interactions have been well established [8]. Cancer is a genetic
disease. Histopathological images reflect essential information on the histological organization and
morphological characteristics of tumor cells and their surrounding tumor microenvironment, which
are heavily regulated by tumors’ molecular features. As such, from G–E interactions, we may naturally
derive I–E interactions. It is noted that I–E and G–E interaction analyses cannot replace each other.
More specifically, not all genetic information is contained in imaging features, and histopathological
features, as reflected in imaging data, are also affected by factors other than molecular changes.

This study has also been partly motivated by the ineffectiveness of techniques adopted in the
existing studies. Histopathological images contain rich information, and the number of extracted
features can be quite large, posing analytic challenges. This dimension problem is “brutally” handled
in some studies. For example, in [9], the univariate Cox model was fit to each imaging feature,
and those with the strongest marginal effects were selected. Such features were then used along with
clinical characteristics, including age, gender, smoking status, and tumor stage, to construct the final
prognostic model. When joint modeling is the ultimate goal, the aforementioned approach may miss
truly important signals in the first step of screening. To accommodate the high dimensionality in joint
modeling, penalization and other regularization techniques have been adopted. For example, in [10],
the elastic net approach, which combines the Lasso and ridge penalties, was used along with Cox
regression. With the differences between interactions and main effects, such methods cannot be directly
applied to analysis that accommodates I–E interactions. There are also studies that use advanced
deep learning techniques. For example, Bychkov and others [11] used the CNN (convolutional neural
network) technique to predict colorectal cancer prognosis based on images of tumor tissue samples.
Other examples also include [12,13]. Such deep learning techniques may excel in prediction, however,
usually lack interpretations and also suffer from a lack of stability when sample size is small.

The main objective of this article is to explore accommodating I–E interactions in cancer modeling.
Although the concept may seem simple, such an interaction analysis has not been conducted in the
literature. The adopted statistical methods have been “borrowed” from G–E interaction analysis.
With the connectedness between genetic and histopathological imaging features and parallelization of
G–E and I–E interaction analysis, such a strategy is sensible. The proposed interaction analysis strategy
and methods are demonstrated using the The Cancer Genome Atlas (TCGA) lung adenocarcinoma
data. Overall, this study may suggest an alternative way of utilizing histopathological imaging data
and modeling cancer more accurately.

2. Data

We demonstrate I–E interaction analysis using the TCGA lung cancer data. TCGA is a
collective effort organized by lNational Cancer Institute (NCI) and has published comprehensive
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data, especially on outcomes/phenotypes, clinical/environmental measures, and histopathological
images, for lung and other cancer types. Lung cancer is the leading cause of cancer death globally [14],
and lung adenocarcinoma (LUAD) is the most common histological subtype and has posed increasing
public concerns [15]. The TCGA LUAD data has been analyzed in multiple published studies,
including [7,9], who analyzed histopathological images, and [16,17], who conducted analysis on
clinical/environmental factors. Thus, it is of interest to “continue” these studies on main additive
effects and further examine potential I–E interactions with the TCGA LUAD data. It also has the
advantage of having a relatively larger sample size, which is critical to achieve meaningful findings.
It is noted that the proposed analysis can be directly applied to data on other cancer types.

We acquire 541 whole slide histopathology images from the TCGA ldata portal [18]. To extract
imaging features, we adopt the following pipeline developed by Luo and others [9]. First, as the
size of the whole slide images, which is from 300 Mb up to 2 Gb with 110,000 × 70,000 pixels, is too
huge to be analyzed directly, each image is cropped into sub-images with 500 × 500 pixels and saved
as tiff image files using the Openslide Python library. Analyzing all the sub-images (more than
10 million image tiles in total) is still computationally unfeasible. Thus, twenty representative tiff
sub-images that contain mostly (>50%) regions of interest are randomly selected as input for the
following process. It is expected that the randomly selected sub-images are representative samples
for the overall “population” of sub-images. Such cropping and random selection are common steps
in whole slide image processing and widely adopted in published imaging studies [10,19–21]. It is
noted that randomly selecting sub-images may lead to imaging features with very small differences
(and so affect downstream analysis). However, as our main goal is cancer model building, as opposed
to feature selection, such small differences may not be of major concern.

Second, we adopt CellProfiler [22], a platform designed for cell image processing and used in
quite a few recent publications, to extract quantitative features from each sub-image. Specifically,
image colors are separated based on hematoxylin and eosin staining, and converted to grayscale for
extracting regional features. Next, cell nuclei are detected and segmented so that cell-level features can
be specifically measured. Other features such as regional occupation, area fraction, and neighboring
architecture are also captured. Irrelevant features such as file size and execution information are
excluded from analysis. This procedure results in a total of 772 features which are categorized
into the texture, geometry, and holistic groups. Specifically, the texture group contains Haralick,
Gabor “wavelet”, and Granularity features, which are classic image processing features, measure the
texture properties of cells and tissues, and have been examined in a large number of imaging studies.
The geometry group contains features that describe the geometry properties (such as area, perimeter,
and so on), and those extracted by Zernike moments. The holistic group contains holistic statistics
that describe overall information, such as the total area, perimeter and number of nuclei, and nuclear
staining area fraction.

Third, for each patient, the features of images are normalized using sample mean at the patient
level. Missing values (with a missing rate lower than 20%) are imputed using sample medians.

For clinical/environmental risk factors, we consider age, American Joint Committee on Cancer
tumor pathologic stage, tobacco smoking history indicator, and sex. These variables have been
suggested as associated with multiple lung cancer outcomes/phenotypes, including those analyzed in
this article [23]. In particular, Nordquis and others [24] found that the mean age at diagnosis of lung
adenocarcinoma among never-smokers was significantly higher than that among current smokers,
and the never-smokers with lung adenocarcinoma were predominantly female. Studies have shown
that tobacco smoking is responsible for 90% of lung cancer [25], and has been identified as a negative
prognostic factor for lung adenocarcinoma [26]. In addition, these factors have also been considered in
G–E interaction analysis [27].

Multiple outcome variables have been analyzed in the literature [7]. In this article, we consider
two important response variables: (a) FEV1: the reference value for the pre-bronchodilator forced
expiratory volume in one second in percent. It is an important biomarker for lung capacity. It is
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continuously distributed, with mean 80.28 and interquartile range [67.00, 96.25]. Data is available
for 132 subjects; and (b) overall survival, which is subject to right censoring. Data is available for
271 subjects, among whom 102 died during follow-up. The mean observed time is 27.47 months,
with interquartile range [14.06, 35.00].

The adopted feature extraction process follows [9], where the extracted imaging features
were used to predict lung cancer prognosis. Similar processes have also been adopted in other
publications [10,19]. Different from limited histopathological features recognized visually by
pathologists, CellProfiler extracted features are morphological features of tissue texture, cells,
nuclei, and neighboring architecture. These features are extracted and measured by comprehensive
computer algorithms, and are impossible to be assessed by human eyes. As demonstrated in [9],
quantitative imaging features provide objective and rich information contained in images that can
reveal hidden information to decode tumor development and progression in lung cancer. Following
the literature [9,20,21], we adopt feature names automatically assigned by CellProfiler, as can be partly
seen in Tables 1–4. These names provide a brief description of the extracted information with the
general form “Compartment_FeatureGroup_Feature_Channel_Parameters”. For example, features
“AreaShape_MedianRadius” and “AreaShape_MaximumRadius” measure the median and maximum
radius of the identified tissue, respectively. As in some recent studies [9,20,21], in this study, our goal
is not to identify specific imaging features as markers and make biological interpretations. Instead,
we aim to conduct better cancer modeling by incorporating I–E interactions. As such, although they
may not have simple, explicit biological interpretations, these features are sensible for our analysis.

3. Methods

In parallel to G–E interaction analysis [28], we conduct two types of I–E interaction analysis,
namely marginal and joint analysis. The overall flowchart of analysis is provided in Figure 1.
In marginal analysis, one imaging feature, one clinical/environmental variable (or multiple such
variables), and their interaction are analyzed at a time. In joint analysis, all imaging features,
all clinical/environmental variables, and their interactions are analyzed in a single model. The two
types of analysis have their own pros and cons and cannot replace each other. We refer to the
literature [29,30] for more detailed discussions on the two types of analysis.

First, consider a continuous cancer outcome, which matches the FEV1 analysis. Denote Y as
the length N vector of outcome, where N is the sample size. Denote E = [E1, · · · , EJ ] as the N × J

matrix of clinical/environmental variables, and X = [X1, · · · , XK] as the N × K matrix of imaging
features. As represented by the LUAD data, usually clinical/environmental variables are pre-selected
and low-dimensional, and imaging features are high-dimensional.

3.1. Marginal Analysis

Detailed discussions of marginal G–E interaction analysis are available in [31] and other recent
literature. The marginal I–E interaction analysis proceeds as follows. First, assume that Y, E, and X

have been properly centered.

(a) For j = 1, . . . , J and k = 1, . . . , K, consider the linear regression model

Y = αjEj + βkXk + γjkEjXk + ǫ, (1)

where αj and βk respectively represent the main effects of the jth clinical/environmental factor
and the kth imaging feature, γjk is the interactive effect, and ǫ is the random error. A total of J × K

models are built.

(b) As each model has a low dimension, estimates can be obtained using standard likelihood based
approaches and existing software. p-values can be obtained accordingly.
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(c) Interactions (and main effects) with small p-values are identified as important. When more
definitive conclusions are needed, the false discovery rate (FDR) or Bonferroni approach
can be applied.

It is noted that, in Step (a), one clinical/environmental variable is analyzed in each model, which
follows [31]. It is also possible to accommodate all clinical/environmental variables in each model.
In Step (c), discoveries can be made on interactions only or interactions and main effects combined.
Advantages of marginal analysis include its computational simplicity and stability. On the negative
side, with the complexity of cancer, an outcome/phenotype is usually associated with multiple imaging
features and clinical/environmental variables. As such, each marginal model can be “mis-specified”
or “suboptimal”. In addition, there is a lack of attention to the differences between interactions and
main effects.

Figure 1. Flowchart of the I–E interaction analysis of The Cancer Genome Atlas (TCGA) lung
adenocarcinoma (LUAD) data.
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3.2. Joint Analysis

Joint analysis can tackle some limitations of marginal analysis, and is getting increasingly popular
in statistical and bioinformatics literature. It proceeds as follows.

(a) Consider the joint model

Y =
J

∑
j=1

τjEj +
K

∑
k=1

ηkXk +
J

∑
j=1

K

∑
k=1

ηkθjkEjXk + ǫ, (2)

where τj and ηk are the main effects of the jth environmental factor and the kth imaging feature,
respectively, and the product of ηk and θjk corresponds to the interaction.

(b) For estimation, consider the Lasso penalization

min
ηk ,θjk

||Y − f (E, X)||2 + λ1 ∑
k

|ηk|+ λ2 ∑
j

∑
k

|θjk|, (3)

where f (E, X) = ∑j τjEj + ∑k ηkXk + ∑j ∑k ηkθjkEjXk, and λ1, λ2 > 0 are tuning parameters.
In numerical study, we select the tuning parameters using the extended Bayesian information
criterion [32].

(c) Interactions (and main effects) with nonzero estimates are identified as being associated
with the outcome.

3.3. Accommodating Survival Outcomes

Consider cancer survival. Denote T as the N-vector of survival times. Below, we describe joint
analysis, and marginal analysis can be conducted accordingly. We adopt the AFT (accelerated failure
time) model, under which

log(T) =
J

∑
j=1

τjEj +
K

∑
k=1

ηkXk +
J

∑
j=1

K

∑
k=1

ηkθjkEjXk + ǫ, (4)

where notations have similar implications as in the above section. With high-dimensional data,
the AFT model has been widely adopted because of its lucid interpretation and more importantly
computational simplicity [33]. Under right censoring, denote C as the N-vector of censoring
times, Y = log(min(T, C)), and δ = I(T ≤ C), where operations are taken component-wise.
To accommodate censoring, a weighted approach is adopted. Assume that data have been sorted
according to Yi’s from the smallest to the largest. The Kaplan–Meier weights can be computed

as w1 =
δ1

N
, wi =

δi

N − i + 1

i−1
∏
j=1

(
N − j

N − j + 1

)δj

, i = 2, . . . , N. Similar to Equation (3), consider the

penalized estimation

min
ηk ,θjk

||
√

w × (Y − f (E, X))||2 + λ1 ∑
k

|ηk|+ λ2 ∑
j

∑
k

|θjk|, (5)

where the square root and multiplication are taken component-wise. Interpretations and other
operations are the same as for continuous outcomes.

In joint analysis, the most prominent challenge is the high dimensionality. Here, the penalization
technique is adopted, which can simultaneously accommodate high dimensionality and identify
relevant interactions/main effects. Another feature of this analysis that is worth highlighting is
that it respects the “main effects, interactions” hierarchy. That is, if an I–E interaction is identified,
the corresponding main imaging feature effect is automatically identified. It has been suggested that,
statistically and biologically, it is critical to respect this hierarchy [34]. We refer to the literature [35,36]
for alternative penalization and other joint interaction analysis methods. Compared to marginal
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analysis, joint analysis can be computationally more challenging, and well-developed software
packages are still limited. In addition, the analysis results can be less stable.

The proposed analysis can be effectively realized. To facilitate data analysis within and beyond
this study, we have developed R code and made it publicly available at www.github.com/shuanggema.

4. Results

4.1. Analysis of FEV1

4.1.1. Marginal Analysis

After the FDR adjustment, none of the main effects or interactions are statistically significant.
In Table 1, we present the main effects and interactions with the smallest (unadjusted) p-values. The top
ranked main effects are from the Geometry and Texture groups, and the top ranked interactions are
from the Geometry group and with sex.

Based on the analysis results, we conduct a power calculation. First, assume the current levels of
estimated effects and their variations. Then, with a sample size of 224, the top ranked I–E interactions
can be identified as significant with target FDR 0.1. Second, consider the current sample size and levels
of variations. Then, an effect of −0.35 can be identified as significant with target FDR 0.1.

For comparison, we conduct the analysis of main effects (without interactions). The top eight
main effects (with the smallest p-values) have four overlaps with those in Table 1, suggesting that
accommodating interactions can lead to different findings.

Table 1. Marginal analysis of the reference value for the pre-bronchodilator forced expiratory volume
in one second in percent (FEV1): identified main effects and interactions, with raw p-values Pr.

Feature Group Feature Name Estimate Pr

Geometry AreaShape_Zernike_2_2 Main 0.270 0.002
Geometry AreaShape_Zernike_5_3 Main −0.319 0.001
Geometry Mean_Identifyhemasub2_AreaShape_Zernike_9_9 Main −0.259 0.004
Geometry Median_Identifyhemasub2_AreaShape_Zernike_7_1 Main −0.249 0.005
Geometry Median_Identifyhemasub2_AreaShape_Zernike_8_6 Main −0.272 0.003
Texture StDev_Identifyeosinprimarycytoplasm_Texture_Correlation_maskosingray_3_01 Main 0.280 0.002
Geometry StDev_Identifyhemasub2_AreaShape_Zernike_8_8 Main −0.251 0.005
Geometry StDev_Identifyhemasub2_AreaShape_Zernike_9_1 Main −0.259 0.004
Geometry StDev_Identifyhemasub2_AreaShape_Center_Y Sex 0.291 0.002
Geometry StDev_Identifyhemasub2_AreaShape_Zernike_8_2 Sex 0.304 0.001
Geometry StDev_Identifyhemasub2_Location_Center_Y Sex 0.294 0.002

4.1.2. Joint Analysis

The analysis results are provided in Table 2. A total of 11 imaging features are identified,
representing the Geometry and Texture groups. A total of 11 interactions are identified, with all
four clinical/environmental variables.

For comparison, we consider the joint model with all clinical/environmental variables and
imaging features but no interactions. Lasso penalization is applied for selection and estimation. A total
of eight imaging features are identified, with one overlapping with those in Table 2. We further compute
the RV coefficient, which may more objectively quantify the amount of “overlapping information”
between two analyses. Specifically, it measures the “correlation” between two data matrices of
important effects identified by two different approaches, with a larger value indicating higher similarity.
The RV coefficient is 0.24, suggesting a mild level of overlapping.

A significant advantage of joint analysis is that it can lead to a predictive model for the outcome
variable. We conduct the evaluation of prediction based on a resampling procedure, which may
provide support to the validity of analysis. Specifically, we split data into a training and a testing
set, generate estimates using the training data, and make predictions for the testing set subjects.
The PMSE (prediction mean squared error) is then computed. This procedure is repeated 100 times,
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and the mean PMSE is computed. The I–E interaction model has a mean PMSE of 0.84, whereas the
main-effect-only model has a mean PMSE of 1.12. This significant improvement suggests the benefit of
accommodating interactions.

Table 2. Joint analysis of FEV1: identified main effects and interactions.

Feature Group Feature Name Main Age Stage Smoking Sex

−0.049 −0.052 −0.002 0.006
Geometry AreaShape_Zernike_2_2 0.163 0.040 −0.014 −0.185
Geometry AreaShape_Zernike_5_3 −0.053
Geometry AreaShape_Zernike_6_0 −0.034
Texture Granularity_10_ImageAfterMath 0.137 0.110 −0.020 0.064
Geometry Location_Center_X 0.002
Geometry Mean_Identifyeosinprimarycytoplasm_Location_Center_X 0.005
Geometry Median_Identifyhemasub2_AreaShape_Zernike_7_1 −0.127 −0.073 0.072 0.003
Geometry StDev_Identifyhemasub2_AreaShape_Zernike_8_2 −0.170 −0.083 0.188
Texture StDev_Identifyhemasub2_Granularity_6_ImageAfterMath −0.029
Texture Texture_AngularSecondMoment_ImageAfterMath_3_00 −0.044
Texture Texture_AngularSecondMoment_ImageAfterMath_3_03 −0.010

4.2. Analysis of Overall Survival

4.2.1. Marginal Analysis

The analysis results are provided in Table 3, where we present estimates, raw p-values, as well as
the FDR adjusted p-values. Three imaging features from the Holistic group have the FDR adjusted
p-values < 0.1. In addition, 36 imaging features from the Geometry group and 24 features from the
Texture group are identified as having interactions with Smoking, the most important environmental
factor for lung cancer. Compared to the above analysis, more “signals” are identified. Note that the
effective sample size is smaller than that above. As such, the smaller p-values are likely to be caused
by stronger signals.

For comparison, we conduct the analysis of main effects. One imaging feature is identified as
having FDR adjusted p-value < 0.1, which is also identified in Table 3. With the complexity of lung
cancer prognosis, the interaction analysis, which identifies more effects, can be more sensible.

4.2.2. Joint Analysis

The analysis results are provided in Table 4. A total of 31 imaging features are identified,
representing the three feature groups. Two imaging features are identified as interacting with two and
four clinical/environmental variables, respectively.

The analysis of main effects is conducted using the Lasso penalization. A total of two imaging
features are identified, with one overlapping with those in Table 4. The RV coefficient is computed
as 0.40, representing a moderate level of overlapping. As with FEV1, prediction evaluation is also
conducted based on resampling. For the testing set, subjects are classified into low and high risk
groups with equal sizes based on the predicted survival times, where subjects with predicted survival
times larger than the median are classified into the low risk group. For one resampling of training
and testing sets, in Figure 2, we plot the Kaplan–Meier curves estimated using the observed survival
times for the predicted low and high risk groups, along with those generated under the additive
main-effect model. Compared to the main-effect model, it is obvious that the two risk groups identified
by the I–E interaction model have a much clearer separation of the survival functions, indicating
better prediction performance. To be more rigorous, we further conduct a logrank test, which is
a nonparametric test for comparing the survival distributions of two subject groups. With 100
resamplings, the average logrank statistics are 7.28 (I–E interaction model, p-value = 0.007) and
0.99 (main-effect model, p-value = 0.320), respectively. The superior prediction performance of the
I–E interaction models suggests that incorporating interactions can lead to clinically more powerful
models, justifying the value of the proposed analysis.
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Table 3. Marginal analysis of overall survival: identified main effects and interactions, with raw
p-values Pr and false discovery rate (FDR) adjusted p-values Pa.

Feature Group Feature Name Estimate Pr Pa

Holistic Threshold_FinalThreshold_Identifyeosinprimarycytoplasm Main -0.301 0 0.095
Holistic Threshold_OrigThreshold_Identifyeosinprimarycytoplasm Main −0.301 0 0.095
Holistic Threshold_WeightedVariance_identifyhemaprimarynuclei Main −0.360 0 0.077
Geometry AreaShape_Area Smoking 0.253 0.004 0.078
Geometry AreaShape_MaximumRadius Smoking 0.266 0.004 0.074
Geometry AreaShape_MeanRadius Smoking 0.265 0.005 0.079
Geometry AreaShape_MedianRadius Smoking 0.266 0.005 0.079
Geometry AreaShape_MinFeretDiameter Smoking 0.257 0.003 0.073
Geometry AreaShape_MinorAxisLength Smoking 0.264 0.002 0.07
Geometry AreaShape_Zernike_4_4 Smoking −0.241 0.005 0.079
Geometry AreaShape_Zernike_7_3 Smoking −0.308 0 0.027
Geometry AreaShape_Zernike_8_4 Smoking −0.242 0.007 0.096
Geometry AreaShape_Zernike_8_6 Smoking −0.252 0.005 0.079
Geometry AreaShape_Zernike_9_1 Smoking −0.303 0 0.027
Texture Granularity_13_ImageAfterMath.1 Smoking −0.317 0.001 0.054
Texture Mean_Identifyeosinprimarycytoplasm_Texture_Correlation_maskosingray_3_03 Smoking 0.232 0.005 0.079
Geometry Mean_Identifyhemasub2_AreaShape_Area Smoking 0.297 0.001 0.049
Geometry Mean_Identifyhemasub2_AreaShape_MaximumRadius Smoking 0.318 0.001 0.049
Geometry Mean_Identifyhemasub2_AreaShape_MeanRadius Smoking 0.318 0.001 0.049
Geometry Mean_Identifyhemasub2_AreaShape_MedianRadius Smoking 0.308 0.002 0.054
Geometry Mean_Identifyhemasub2_AreaShape_MinFeretDiameter Smoking 0.299 0.001 0.049
Geometry Mean_Identifyhemasub2_AreaShape_MinorAxisLength Smoking 0.310 0.001 0.045
Geometry Mean_Identifyhemasub2_AreaShape_Zernike_4_4 Smoking −0.263 0.003 0.07
Geometry Mean_Identifyhemasub2_AreaShape_Zernike_5_1 Smoking −0.268 0.002 0.07
Geometry Mean_Identifyhemasub2_AreaShape_Zernike_8_2 Smoking −0.277 0.003 0.073
Geometry Mean_Identifyhemasub2_AreaShape_Zernike_8_8 Smoking −0.290 0.003 0.073
Geometry Mean_Identifyhemasub2_AreaShape_Zernike_9_1 Smoking −0.226 0.004 0.074
Texture Mean_Identifyhemasub2_Granularity_13_ImageAfterMath Smoking −0.325 0.001 0.054
Texture Mean_Identifyhemasub2_Texture_Correlation_ImageAfterMath_3_01 Smoking 0.330 0 0.039
Texture Mean_Identifyhemasub2_Texture_Correlation_ImageAfterMath_3_02 Smoking 0.297 0.002 0.07
Texture Mean_Identifyhemasub2_Texture_Correlation_ImageAfterMath_3_03 Smoking 0.397 0 0.01
Texture Mean_Identifyhemasub2_Texture_SumVariance_ImageAfterMath_3_02 Smoking 0.258 0.007 0.093
Texture Median_Identifyeosinprimarycytoplasm_Texture_Correlation_maskosingray_3_03 Smoking 0.233 0.004 0.079
Geometry Median_Identifyhemasub2_AreaShape_Area Smoking 0.344 0 0.027
Geometry Median_Identifyhemasub2_AreaShape_MaxFeretDiameter Smoking 0.242 0.005 0.079
Geometry Median_Identifyhemasub2_AreaShape_MaximumRadius Smoking 0.323 0.001 0.049
Geometry Median_Identifyhemasub2_AreaShape_MeanRadius Smoking 0.323 0.001 0.049
Geometry Median_Identifyhemasub2_AreaShape_MedianRadius Smoking 0.266 0.005 0.079
Geometry Median_Identifyhemasub2_AreaShape_MinFeretDiameter Smoking 0.346 0 0.027
Geometry Median_Identifyhemasub2_AreaShape_MinorAxisLength Smoking 0.342 0 0.027
Geometry Median_Identifyhemasub2_AreaShape_Perimeter Smoking 0.247 0.006 0.085
Geometry Median_Identifyhemasub2_AreaShape_Zernike_4_4 Smoking −0.242 0.002 0.059
Geometry Median_Identifyhemasub2_AreaShape_Zernike_5_1 Smoking −0.256 0.003 0.073
Texture Median_Identifyhemasub2_Granularity_13_ImageAfterMath Smoking −0.311 0.001 0.049
Texture Median_Identifyhemasub2_Texture_Correlation_ImageAfterMath_3_01 Smoking 0.319 0.001 0.049
Texture Median_Identifyhemasub2_Texture_Correlation_ImageAfterMath_3_02 Smoking 0.274 0.005 0.081
Texture Median_Identifyhemasub2_Texture_Correlation_ImageAfterMath_3_03 Smoking 0.394 0 0.01
Texture StDev_Identifyeosinprimarycytoplasm_Texture_SumAverage_maskosingray_3_00 Smoking 0.272 0.003 0.073
Texture StDev_Identifyeosinprimarycytoplasm_Texture_SumAverage_maskosingray_3_01 Smoking 0.273 0.003 0.073
Texture StDev_Identifyeosinprimarycytoplasm_Texture_SumAverage_maskosingray_3_02 Smoking 0.270 0.004 0.074
Texture StDev_Identifyeosinprimarycytoplasm_Texture_SumAverage_maskosingray_3_03 Smoking 0.275 0.003 0.073
Geometry StDev_identifyhemaprimarynuclei_Location_Center_Y Smoking −0.245 0.007 0.093
Geometry StDev_Identifyhemasub2_AreaShape_Zernike_8_4 Smoking −0.280 0.001 0.045
Geometry StDev_Identifyhemasub2_AreaShape_Zernike_8_8 Smoking −0.236 0.007 0.094
Texture StDev_Identifyhemasub2_Texture_SumVariance_ImageAfterMath_3_01 Smoking 0.266 0.007 0.096
Texture StDev_Identifyhemasub2_Texture_SumVariance_ImageAfterMath_3_02 Smoking 0.283 0.005 0.079
Texture StDev_Identifyhemasub2_Texture_SumVariance_ImageAfterMath_3_03 Smoking 0.283 0.006 0.084
Geometry StDev_identifytissueregion_Location_Center_Y Smoking −0.289 0.002 0.059
Texture Texture_Correlation_ImageAfterMath_3_01 Smoking 0.252 0.004 0.078
Texture Texture_Correlation_ImageAfterMath_3_03 Smoking 0.329 0 0.027
Texture Texture_Correlation_maskosingray_3_03 Smoking 0.237 0.004 0.074
Texture Texture_Entropy_ImageAfterMath_3_01 Smoking 0.220 0.007 0.093
Texture Texture_Entropy_ImageAfterMath_3_03 Smoking 0.233 0.004 0.074

4.3. Simulation

Comparatively, joint analysis is newer and has been less conducted. To gain more insights into
the validity of findings from our joint interaction analysis, we conduct a set of data-based simulation.
Specifically, the observed imaging features and clinical/environmental factors are used. To generate
variations across simulation replicates, we use resampling, with sample sizes set as 200. The “signals”
and their levels are set as those in Tables 2 and 4, respectively. For both the continuous and (log)
survival outcomes, we generate random errors from N(0, 1). For the survival setting, we generate the
censoring times from randomly sampling the observed. The Lasso-based penalization approach is
then applied, with tuning parameters selected using the extended Bayesian information criterion (BIC)
approach. To evaluate identification, TP (true positive) and FP (false positive) values are computed.
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Summary statistics are computed based on 100 replicates. Under the continuous outcome setting,
there are 11 true main effects and 11 I–E interactions. For main effects, the TP and FP values are 9.75
(1.65) and 3.15 (1.39), respectively, where numbers in “()” are standard deviations. For interactions,
the TP and FP values are 7.35 (0.99) and 0.05 (0.22), respectively. Under the censored survival outcome
setting, there are 31 true main effects and 6 I–E interactions. For main effects, the TP and FP values
are 24.41 (3.98) and 13.90 (2.47), respectively. For interactions, the TP and FP values are 3.24 (0.21)
and 0.24 (0.12), respectively. Overall, at the estimated signal levels and with the observed feature
distributions, the joint analysis is capable of identifying the majority of true interactions and main
effects, with a moderate number of false discoveries. This provides a high level of confidence to the
joint interaction analysis.

(a) (b)

Figure 2. Kaplan–Meier curves of high and low risk groups identified by the approach that
accommodates interactions ((a); logrank test p-value 0.007) and the one with main effects only ((b);
logrank test p-value 0.320).

Table 4. Joint analysis of overall survival: identified main effects and interactions.

Feature Group Feature Name Main Age Stage Smoking Sex

−0.024 −0.317 −0.038 −0.088
Geometry AreaShape_Zernike_6_0 −0.038
Geometry AreaShape_Zernike_6_4 −0.019
Geometry AreaShape_Zernike_6_6 0.052
Geometry AreaShape_Zernike_9_3 0.027
Geometry AreaShape_Zernike_9_5 0.153
Texture Granularity_10_ImageAfterMath.1 −0.033
Texture Granularity_9_ImageAfterMath 0.081
Geometry Mean_Identifyhemasub2_AreaShape_Center_X 0.002
Geometry Mean_Identifyhemasub2_AreaShape_Zernike_5_1 0.013
Geometry Mean_Identifyhemasub2_AreaShape_Zernike_6_2 −0.002
Geometry Mean_Identifyhemasub2_AreaShape_Zernike_6_4 −0.010
Geometry Mean_Identifyhemasub2_AreaShape_Zernike_9_9 −0.146
Geometry Mean_Identifyhemasub2_Location_Center_X 0.002
Geometry Mean_identifytissueregion_Location_Center_X 0.056
Geometry Median_Identifyeosinprimarycytoplasm_Location_Center_X −0.071
Geometry Median_Identifyhemasub2_AreaShape_Zernike_4_0 0.023
Geometry Median_Identifyhemasub2_AreaShape_Zernike_7_3 0.083
Geometry Median_Identifyhemasub2_AreaShape_Zernike_8_4 −0.120
Geometry Median_Identifyhemasub2_AreaShape_Zernike_8_6 −0.098
Geometry Median_Identifyhemasub2_AreaShape_Zernike_9_1 −0.044
Geometry Median_identifytissueregion_Location_Center_Y −0.063
Holistic Neighbors_SecondClosestDistance_Adjacent −0.170 −0.072 0.002
Geometry StDev_Identifyeosinprimarycytoplasm_Location_Center_Y 0.095

Texture
StDev_Identifyeosinprimarycytoplasm_Texture
_DifferenceVariance_maskosingray_3_00

0.036

Geometry StDev_Identifyhemasub2_AreaShape_Orientation −0.159
Geometry StDev_Identifyhemasub2_AreaShape_Zernike_8_8 −0.146
Texture StDev_Identifyhemasub2_Granularity_12_ImageAfterMath −0.101
Texture StDev_Identifyhemasub2_Granularity_13_ImageAfterMath 0.327 0.130 0.072 −0.189 0.174
Texture StDev_Identifyhemasub2_Granularity_9_ImageAfterMath 0.003

Texture
StDev_Identifyhemasub2_Texture_SumVariance
_ImageAfterMath_3_01 −0.034

Geometry StDev_identifytissueregion_Location_Center_Y 0.016

253



Cancers 2019, 11, 579

5. Discussion

Histopathological imaging analysis has been routine in cancer diagnosis, and recently,
its application in the analysis of cancer biomarkers, outcomes, and phenotypes has been explored.
This study has taken a natural next step and conducted the imaging-environment interaction analysis.
Statistically and biologically speaking, the analysis has been partly motivated by G–E interaction
analysis. It is noted that the statistical methods themselves have been almost fully “translated” from
G–E interaction analysis. As I–E interaction analysis has not been conducted in published cancer
modeling studies, it is sensible to first employ well-developed methods, and in the future, methods that
are more tailored to imaging data may be developed. We also note that in cancer modeling and other
biomedical fields, it is not uncommon to apply methods well developed in one field to other new fields.
The proposed I–E interaction analysis, especially joint analysis, may seem considerably more complex
than some cancer modeling approaches. With the complexity of cancer, models with a few variables
and simple statistical analysis are getting increasingly insufficient. Published studies have suggested
that advanced statistical techniques and complex models are needed. Recent developments for lung
cancer, including the elastic net-Cox analysis [10], deep convolutional neural network [13], and deep
network based on convolutional and recurrent architectures [11], have comparable or higher levels of
complexity compared to the proposed analysis. Artificial intelligence (AI) techniques, which have
been recently used for cancer modeling in particular including the radiomics analysis of non-small-cell
lung cancer [37,38], have even higher levels of complexity. We conjecture that such complexity will
also be needed for future developments in cancer modeling using imaging data. The increasing
complexity in cancer modeling seems to be an inevitable trend, and domain specific expertise is a must
for such analysis.

We have analyzed the TCGA LUAD data with a continuous and a censored survival outcome.
This choice has been motivated by the clinical importance of lung adenocarcinoma as well as data
availability (a larger sample size). It is noted that the proposed analysis and R program will be directly
applicable to the analysis of data on other cancer types. I–E interactions have been identified in both
marginal and joint analysis, for both FEV1 and overall survival. There is one prominent difference
between imaging and genetic/clinical data. With extensive investigations and functional experiments,
the biological and biomedical implications of most clinical/environmental factors and genes are at
least partially known. It is thus possible to evaluate whether G–E interactions are biologically sensible.
The circumstance is significantly different for histopathological imaging features. The rationale and
algorithms for feature extraction have been made clear in the developments of CellProfiler and other
software. However, the identified features do not have lucid biological interpretations. As such,
we are not able to objectively assess the biological implications of the findings in Tables 1–4. It is
noted that this limitation is also shared by recently published imaging studies [9,20,21], which have
unambiguously demonstrated the great value of such imaging features in cancer modeling. It is
also noted that imaging features derived from computer-aided pathological analysis have the unique
advantage of being objective and comprehensive, and can reveal hidden information contained
in histopathological images that cannot be recognized or assessed by pathologists. Our statistical
evaluations, including the prediction evaluation and data-based simulation, can provide support to
the analysis results to a great extent. In general, more investigations into the biological implications of
the computer-program-extracted imaging features will be needed.

This study has suggested a new venue for cancer modeling. Although findings made on LUAD
may not be applicable to other cancers, the analysis technique and R program will be broadly applicable.
Following the flowchart in Figure 1 and detailed steps described in this article, and using the publicly
available R program, cancer biostatisticians and clinicians should be able to carry out the proposed
analysis with their own data. More specifically, with their own clinical/environmental and imaging
data, they will be able to construct models for prognosis and other outcomes/phenotypes. Such models,
as other cancer models (for example those using omics data), can be used to assist clinical decision
making. Overall, this study may help advance the challenging field of cancer modeling.
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6. Conclusions

Histopathological imaging data may harbor important information on cancer and has been
recently used for modeling cancer clinical outcomes and phenotypes. This study has been the first to
examine the interactions between imaging features and clinical/environmental risk factors in cancer
modeling. Marginal and joint analysis approaches have been described. In the analysis of TCGA
LUAD data, it has been shown that I–E interactions may be important for modeling FEV1 and overall
survival. Overall, this study has suggested a new paradigm of cancer bioinformatics modeling.
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Abstract: Cancer prognosis is of essential interest, and extensive research has been conducted
searching for biomarkers with prognostic power. Recent studies have shown that both omics profiles
and histopathological imaging features have prognostic power. There are also studies exploring
integrating the two types of measurements for prognosis modeling. However, there is a lack of
study rigorously examining whether omics measurements have independent prognostic power
conditional on histopathological imaging features, and vice versa. In this article, we adopt a rigorous
statistical testing framework and test whether an individual gene expression measurement can
improve prognosis modeling conditional on high-dimensional imaging features, and a parallel
analysis is conducted reversing the roles of gene expressions and imaging features. In the analysis of
The Cancer Genome Atlas (TCGA) lung adenocarcinoma and liver hepatocellular carcinoma data,
it is found that multiple individual genes, conditional on imaging features, can lead to significant
improvement in prognosis modeling; however, individual imaging features, conditional on gene
expressions, only offer limited prognostic power. Being among the first to examine the independent
prognostic power, this study may assist better understanding the “connectedness” between omics
profiles and histopathological imaging features and provide important insights for data integration
in cancer modeling.

Keywords: cancer prognosis; independent prognostic power; omics profiles; histopathological
imaging features

1. Introduction

In cancer research and practice, prognosis is of essential interest. Extensive statistical modeling
has been conducted, and yet there is still much room for additional research [1,2]. Multiple families of
biomarkers have been used in cancer prognosis modeling. In the past decades, with the development
of profiling techniques, omics data have been extensively used and shown to be effective. For example,
in [3], a signature composed of 21 gene expressions is used for modeling breast cancer prognosis. In [4],
hsa-mir-155 and hsa-let-7a-2 microRNAs are found as prognostic for lung cancer. In [5], the prognostic
power of methylated RASSF1A and/or APC serum DNA for breast cancer is identified. Such findings
are biologically highly sensible as cancer is a genetic disease and the development and progression of
cancer are strongly affected by molecular changes.

Imaging techniques have been extensively used in cancer practice. In particular, for definitive
diagnosis, biopsies are usually ordered, and pathologists review the slides of representative sections
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of tissues. The histopathological imaging data generated in this process directly reflect the
histological organization and morphological characteristics of tumor cells and their surrounding
tumor microenvironment. More recently, beyond diagnosis, histopathological imaging data have also
been used for modeling other cancer outcomes/phenotypes. For example, Harpole et al. [6] showed
that the levels of tumor cell dedifferentiation are associated with survival outcomes. Automated
histopathological imaging analysis systems have been shown to be effective in the prognostic
determination of various malignancies, including breast cancer [7], neuroblastoma [8], lymphoma [9],
nonsmall cell lung cancer [10], precancerous lesions in the esophagus [11], and others.

Omics profiles and histopathological images are biologically connected and contain overlapping information.
In particular, properties of tumors and their microenvironment, as described in histopathological
images, are highly regulated by molecular changes. Multiple statistical modelings have been
conducted on their interconnections. For example, Yu et al. [10] found the correlation of quantitative
histopathological features with TP53 mutation in lung adenocarcinoma. Cooper et al. [12]
demonstrated that PDGFRA, EGFR, and MDM2 amplifications are associated with imaging features
such as greater minor axis length, area, and circularity in glioblastoma.

On the other hand, it is also possible that omics profiles and histopathological images may contain

independent information. Tissues used to generate omics measurements are usually heterogeneous and
mixtures of different components, making the observed omics measurements represent an aggregation
of distinct cells [12]. Histopathological images, with extremely high spatial resolutions, also contain
information on tissue relationships and characteristics of the spatial organizations of tumor cells.
Features of histopathological images, beyond regulated by molecular changes, may also be affected
by personal immune system, microenvironment, and other factors. There are a few recent studies
integrating omics measurements and imaging features and showing that such a data integration
can lead to improved prognosis modeling for breast cancer [13], brain tumor [14], and nonsmall cell
lung cancer [15]. Such studies seem to suggest that there is independent information in omics and
histopathological imaging data.

Our literature review suggests that there is a lack of study rigorously quantifying whether
omics profiles contain independent information, conditional on histopathological images, on cancer
prognosis, and vice versa. It is noted that the aforementioned and other data integration studies
do not suggest which type of measurement has independent information. In addition, they are
mostly estimation-based and do not have a rigorous statistical inference framework. Some studies
rely on prescreening to accommodate high data dimensionality and can be statistically limited. This
study is conducted to directly tackle these problems. It can advance from the existing literature in
multiple aspects. Specifically, it delivers an analysis pipeline which has a rigorous statistical inference
framework and can show whether individuals of a type of measurement have additional prognostic
power conditional on the other type of measurement. It can provide solid evidence on whether data
integration is needed in modeling and clinical practice. In addition, data analysis may also provide
further insights into two deadly cancers.

2. Data

The Cancer Genome Atlas (TCGA) is one of the largest and most comprehensive cancer projects,
and is organized by the National Cancer Institute (NCI) and National Human Genome Research
Institute (NHGRI) [16]. It has published high quality omics data and histopathological images for 33
types of cancer. In this study, we analyze data on lung adenocarcinoma (LUAD) and liver hepatocellular
carcinoma (LIHC), both of which have high mortality rates and pose increasing public concerns. They
also have relatively larger sample sizes, which is critical for making reliable findings. The proposed
analysis can be extended to other cancer types straightforwardly. For omics measurements, we consider
gene expressions, which have a central role in cancer prognosis modeling. The response of interest
is overall survival time, which is right censored. It is noted that other types of omics measurements,
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for example protein expressions and microRNAs, and other prognosis outcomes can be analyzed in a
similar manner.

2.1. mRNA Gene Expression Measurements

We download the mRNA gene expression data from cBioPortal (http://cbioportal.org), which
have been measured using the Illumina Hiseq2000 RNA Sequencing Version 2 analysis platform, and
processed and normalized using the RSEM software. We refer to the literature [17,18] and TCGA
website for more detailed information on data collection and processing. Data are available on 25,031
gene expression measurements. As the number of cancer-related genes is not expected to be large, we
conduct a simple prescreening to reduce the dimensionality and also improve the stability of estimation.
Specifically, the top 5000 genes with the largest variances are selected for downstream analysis.

2.2. Histopathological Imaging Features

We download the whole-slide histopathology images directly from the TCGA website (https:
//portal.gdc.cancer.gov), which are in the svs format. These tissue slides are formalin-fixed,
paraffin-embedded slides with which the cell morphology is well-preserved and thus appropriate
for image feature recognition. They are captured at 20× or 40× magnification by the Aperio medical
scanner. To extract imaging features, we conduct the following three-step preprocessing. The overall
flowchart is provided in Figure 1.

Figure 1. Flowchart of extracting imaging features. Step 1: whole-slide histopathology images are
cropped into small subimages of 500 × 500 pixels, and 20 subimages are then randomly selected. Step
2: Imaging features are extracted using CellProfiler [19] for each subimage. Step 3: For each patient,
features are averaged.

In the first step, we process the downloaded svs files using the Openslide Python library [20].
Specifically, to make data in an appropriate format for morphological feature extraction, each svs
image is cropped into small subimages of 500 × 500 pixels, and each subimage is then saved in the tiff
format. Among them, subimages that contain mostly (>50%) background white space are filtered out.
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From the remaining subimages, twenty representative ones are randomly selected for each svs image
to avoid potential subjective bias and reduce computational cost [21].

In the second step, we use CellProfiler [19] to extract features from each subimage. CellProfiler
is an open source cell image analysis platform developed by the Broad Institute. Specifically, image
colors are separated based on hematoxylin staining and eosin staining, and converted to grayscale
to extract regional features, such as cell and tissue texture and granularity. These are “classic” image
processing features, which have been examined in a large number of imaging studies. It is noted
that they are not expected to be specific histopathological features, and cannot be recognized by
pathologist. More specifically, texture describes a set of metrics calculated in CellProfiler to quantify
the perceived texture of histopathological images, and includes information on the spatial arrangement
of color or intensities in images. Granularity describes the size of how well the structure element fits in
images. Then, cell nuclei are identified and segmented to collect the cell-level features, such as cell
size, shape, distribution, and texture of nuclei. Other cell features such as regional occupation, area
fraction, and neighboring architecture are also captured. The above process generates 832 features for
each subimage. A further screening is conducted to exclude irrelevant features such as file size and
execution information. Finally, for each subimage, a total of 772 features are available for analysis.

In the third step, for each slide, the average feature values over twenty representative subimages
are computed. When a subject has multiple slides, the average values over multiple slides are further
computed for downstream analysis.

The above preprocessing is applied to both LUAD and LIHC data. There are missing values
in imaging feature data. Subjects with more than 25% missing imaging features are excluded. The
remaining missing values are imputed using sample medians.

Remark 1. We adopt CellProfiler to extract imaging features, which is a popular choice in recent literature. The

feature names are automatically provided by CellProfiler. The extracted features represent objective attributes

of histopathological images, including the area and perimeter of nucleus and cytoplasm, mean and standard

deviation of these measures, and other general image attributes. For each patient, multiple slides and subimages

may be available. To extract as much information as possible, we consider multiple slides and subimages

simultaneously, and the average values are used to summarize information. A closer examination suggests

that they are not explicitly associated with specific histopathological findings, such as cellularity, atypia,

anaplasia, nuclear pleomorphism, and some others. However, these attributes have been shown to be associated

with pathological stages [7,10] and prognosis [21], and also been used in multiple existing cancer modeling

studies [13,15]. For example, Yu et al. [22] show that some of these features are associated with specific subtypes

of lung cancer. In this study, our goal is to rigorously quantify independent information in omics profiles

and histopathological images for cancer prognosis, as opposed to focusing on specific interpretation of imaging

features. As such, these features are sensible for our analysis, although they may not have simple, explicit

biological interpretations.

2.3. Available Data

After data matching, we obtain records on 316 and 358 subjects for LUAD and LIHC, respectively,
with 5000 gene expression measurements, 772 imaging features, and survival time. For LUAD, there
are 103 deaths during follow-up, with survival times ranging from 0 to 214.77 months (median 6.03
months). For LIHC, there are 121 deaths during follow-up, with survival times ranging from 0 to
120.73 months (median 19.25 months). Summary information of the analyzed subjects is provided in
Table 1.
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Table 1. Sample characteristics.

Characteristic LUAD LIHC

Sample size 316 358

Age at diagnosis: median (range) 66 (39–88) 61 (16–90)

Follow-up: median (range) 6.03 (0–214.77) 19.25 (0–120.73)

Vital status: n (%)
Alive 213 (67.4%) 233 (65.0%)

Deceased 103 (32.6%) 125 (35.0%)

Sex: n (%)
Male 144 (45.6%) 242 (67.6%)

Female 172 (54.4%) 116 (32.4%)

Cancer stage: n (%)
I 180 (57.0%) 166 (46.4%)
II 69 (18.7%) 82 (22.9%)
III 41 (13%) 83 (23.2%)
IV 21 (6.6%) 5 (1.4%)

NA 5 (1.6%) 22 (6.1%)

3. Methods

For describing cancer survival, we use the accelerated failure time (AFT) model. This model
has been extensively adopted in cancer studies with high-dimensional variables because of its lucid
interpretations and low computational cost [23]. For each gene expression, we consider the prognosis
model with its effect along with all imaging features. A statistically rigorous test is then conducted
on the gene expression’s effect, which can suggest whether this particular gene has independent
information for prognosis conditional on the imaging features. Then a parallel analysis is conducted,
reversing the roles of gene expressions and imaging features. With a special emphasis on omics and
imaging features, clinical factors are not included in the prognosis models.

Consider n independent subjects. For the ith subject, denote xi =
(
xi1, xx2, . . . , xip

)
and zi =(

zi1, zi2, . . . , ziq

)
as the p- and q-dimensional vectors of gene expressions and imaging features,

Ti and Ci as the logarithm of the event and censoring times. With right censoring, we observe
(yi = min(Ti, Ci), δi = I(Ti ≤ Ci), xi, zi).

First consider the analysis with one gene expression and all imaging features. The analysis with
one imaging feature and all gene expressions can be conducted in a similar manner and will not be
reiterated. For the jth gene expression, consider the following AFT model:

Ti = α + xijβ j + ziθj + εi (1)

where α is the intercept, β j and θj =
(
θj1, . . . , θjq

)′ are the unknown coefficients for the jth gene
expression and all imaging features, and εi is the random error. A statistical test

H0 : β j = 0 vs. H1 : β j �= 0

can reveal whether xij is independently associated with Ti given zi. Here, loosely speaking, a smaller
p value can indicate a stronger association/more prognostic power. The analysis is challenging
with the high dimensionality of imaging features, which makes the “standard” estimation and
inference techniques not applicable. To tackle this problem, we consider a high-dimensional inference
approach [24] recently developed under a related but simpler context. Specifically, for estimation, the
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weighted least squares approach is adopted. Assume that data have been sorted according to yi’s from
the smallest to the largest. Then we have the Kaplan–Meier weights defined as

w1 =
δ1

n
, wi =

yi

n − i + 1

i−1

∏
j=1

(
n − j

n − j + 1

)δj

, i = 2, . . . , n,

where a further normalization is conducted to make ∑
n
i=1 wi = n. Let W = diag{w1 , w2, w3, . . . , wn},

x·j, z·k, and y denote the vectors composed of xij’s, zik’s, and yi’s, which are weighted normalized such
that 1′Wx·j = 0, 1′Wz·k = 0, and 1′Wy = 0, and Z =

(
z·1, . . . , z·q

)
. With the high data dimensionality,

regularized estimation is needed. In addition, not all imaging features are expected to be associated
with survival, posing a variable selection problem. Consider the weighted penalized estimation:

⎧
⎨
⎩

(
β̃∗

j , θ̃j

)
= argminβ j ,θ∈R1+q

{
1

2n‖W
1
2
(
y − x·jβ j − Zθj

)
‖2

2
+ λ0 ∑

q
k=1

∣∣∣θjk

∣∣∣
}

b̃j = argminbj∈Rq

{
1

2n‖W
1
2
(
x·j − Zbj

)
‖2

2
+ λ1 ∑

q
k=1

∣∣∣bjk

∣∣∣
} , (2)

where ‖·‖2 denotes the L2 norm, bj =
(
bj1, . . . , bjq

)′ is the unknown coefficient vector, and λ0, λ1 > 0
are data-dependent tuning parameters for Lasso penalties.

With θ̃j and b̃j, the final estimate β̃ j of β j is defined as

β̃ j =
(
x̃.j

′Wx.j
)−1

x̃.j
′W

(
y − Zθ̃j

)
, (3)

where x̃.j = x·j − Zb̃j. It has been shown in [24] that
√

n
(

β̃ j − β j

)
is asymptotically normal with

variance defined as

Σ̃
(

β̃ j

)
=

1
n

(
x̃.j

′Wx.j
)−1

Σ̃1
(
x.j

′Wx̃.j
)−1,

where Σ̃1 is the sample variance based on x̃ij(yi − xij β̃ j + ziθ̃j). With this asymptotic normal
distribution, the test statistic for H0 : βj = 0 can be defined as

β̃ j/

√
Σ̃
(

β̃ j

)
/n,

which follows Student’s T distribution. The unadjusted p value can then be obtained. When all gene
expressions are considered together, to accommodate multiple comparisons, p values are adjusted
using the voxel-level false discovery rate approach [25].

An advantage of the above analysis is that it can be realized via simple coding. The most
challenging step is the estimation in (2), which can be realized using the R function glmnet. The tuning
parameters λ0 and λ1 are selected using the EBIC approach [26]. To facilitate data analysis in and
beyond this study, we have developed R code implementing the proposed approach. To illustrate its
usage, we have also provided an example R file with the LUAD data. The code and data are publicly
available at http://www.github.com/shuanggema/TestLDHD as well as in Supplementary Materials.

Remark 2. The effectiveness of the AFT model for cancer prognosis modeling has been well tested. Penalization

has been shown effective for screening out irrelevant variables and accommodating high dimensionality. As

shown in [24], the estimation (2) can effectively “single out” the effect of the one gene expression. It is noted that,

as the gene expression effect is of particular interest, its coefficient is not subject to penalization in estimation.

A “byproduct” of penalized estimation is that imaging features associated with prognosis, conditional on the

one gene expression effect, are identified, which may assist understanding the associations between imaging

features and prognosis as well as the associations between imaging features and gene expressions. The statistical

distribution result for the test statistic has been rigorously proved in [24]. The T distribution makes inference

very easy.
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4. Results

4.1. Identification of Gene Expressions with Independent Prognostic Power Conditional on Imaging Features

We first apply the analysis approach described above to identify individual gene expressions that
have independent prognostic power conditional on the high dimensional histopathological imaging
features. With significance level 0.05 as cutoff, 85 genes are identified as significantly associated with
prognosis for LUAD. Detailed estimation results are provided in the Table S1. A quick literature
search of PubMed suggests that many of the findings have sound biological basis. For top ten
representative genes, we provide brief information and references on their associations with lung
cancer prognosis in Table 2. For LIHC, we identify 386 genes as significantly associated with prognosis
conditional on imaging features. Again, it is found that many of those genes have established evidences
of being associated with liver cancer prognosis. Brief information on the representative genes is
provided in Table 3. The solid evidences from existing studies provide support to the validity of
analysis. To more comprehensively comprehend the identified genes, we examine the genes’ functional
and biological connections by conducting Gene Ontology (GO) and KEGG pathway enrichment
analysis. The processes with the smallest p values are presented in Figure 2. It is observed that
both LUAD and LIHC have enriched processes associated with cell adhesion. This may result from
high-dimensional imaging features capturing more information on cell interaction. The identified
genes are also enriched in traditional cancer hallmarks, such as the positive regulation of mitotic cell
cycle, proteoglycans in cancer, and extracellular matrix regulation. It is interesting that some immune
response-related pathways, such as MHC assembly, are also identified, considering that there are
promising developments in immunotherapy for cancer treatment recently.

 

(a) 

 

(b) 

Figure 2. Gene ontology (GO) and pathway enrichment analysis of the identified genes. (a) lung
adenocarcinoma (LUAD), (b) liver hepatocellular carcinoma (LIHC).

264



Cancers 2019, 11, 361

It is also noted that the proposed analysis takes an angle different from the literature. As such,
there are also new findings. For example, the top ranked genes (with the smallest p values) also include
DCAF6 and LITAF for LUAD and IARS and LRPPRC for LIHC. Gene DCAF6 is a transcriptional
cofactor that enhances androgen receptor (AR)-mediated transcriptional activity. Chen et al. [27]
have found that the expression of DCAF6 is upregulated in prostate cancer patient and may be a
candidate tumor promoter for prostate cancer, indicating its important role in cancer etiology. For
gene LITAF, Zhou et al. [28] have established the regulatory axis of AMPK–LITAF–TNFSF15, where
AMPK activation upregulates the transcription of LITAF and consequently upregulates the expression
of TNFSF15. TNFSF15 inhibits the growth of prostate cancer cells and bovine aortic endothelial cells
in vitro, supporting that LITAF may function as a tumor suppressor. Gene IARS is the coding gene of
isoleucyl-tRNA synthetase (ARSs). ARSs has been shown to catalyze the amino acylation of tRNAs by
their cognate amino acid, linking amino acids with the correct nucleotide triplets and ensuring the
correct transformation of the genetic code to the protein level. Kopajtich et al. [29] have reported that
biallelic IARS mutations can cause infantile hepatopathy, suggesting its potential association with liver
function. LRPPRC is another interesting gene, which regulates the expression of all mitochondrial
DNA-encoded mRNAs, and thus has important contributions to mitochondrial function. Tian et al. [30]
have examined the expression of LRPPRC in six types of cancer and observed that LRPPRC plays an
important role in tumorigenesis through the resistance to apoptosis and high invasive activity. Other
newly identified genes, such as FLS353 [31], IPO7 [32], PDS5A [33], and MPP-2 [34], have also been
demonstrated to be related to tumorigenesis. This brief literature search suggests that the implications
of these new findings in lung and liver cancer prognosis have not been well established, however, they
have been observed to have important contributions to cancer etiology. The new findings are also
not surprising. It is conceptually sensible that the strongest “signals” are perhaps reflected in both
omics profiles and histopathological images. The proposed analysis seeks for additional “signals” in
gene expressions that are not reflected in images. As such, the findings may complement those in
the literature.

Table 2. Analysis of LUAD data: representative identified genes.

Gene Evidence PMID

HYAL2
Real-time PCR studies showed that HYAL2 genes were down regulated in
non-small cell lung cancer [35].

19140316

MAPK1IP1L
MAPK1IP1L gene was found to be related with acquired resistance to MET
inhibitors in lung cancer cells [36].

28396363

HLA-DRA
Lack of surface class II expression was found to be associated with a specific
defect in HLA-DRA induction in non-small cell lung carcinoma cells [37].

8786310

HNRNPK
Higher levels of hnRNP mRNAs were found in SCLC as compared to
NSCLC. hnRNP K protein localization varied with cellular confluence [38].

12871776

GPNMB
Osteoactivin (GPNMB) ectodomain protein was shown to promote growth
and invasive behavior of human lung cancer cells [39].

26883195

BMP2
Positive correlation was found between gene expressions of two angiogenic
factors, VEGF and BMP-2, in lung cancer patients [40].

19324447

COMMD6
COMMD9 was demonstrated to promote TFDP1/E2F1 transcriptional
activity via interaction with TFDP1 in non-small cell lung cancer [41].

27871936

HLA-DRB1
Lung cancer patients in Japan showed an increased frequency of
HLA-DRB1*0901 and a decreased frequency of HLA-DRB1*1302 and
DRB1*14-related alleles when compared to the other subjects [42].

9808426

LARP1
LARP1 post-transcriptionally regulates mTOR and contributes to cancer
progression [43].

25531318

ZAK
ZAK inhibits human lung cancer cell growth via ERK and JNK activation in
an AP-1-dependent manner [44].

20331627

* The star is a sign indicating the location of the mutated allel.
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Table 3. Analysis of LIHC data: representative identified genes.

Gene Evidence PMID

LAPTM4B
LAPTM4B is a potential proto-oncogene, whose overexpression is
involved in carcinogenesis and progression of HCC [45].

12902989

CAPZA1
CAPZA1 expression levels were negatively correlated with the
biological characteristics of primary HCC and patient prognosis [46].

28093067

PLOD2
PLOD2 expression was identified as a significant, independent factor of
poor prognosis for HCC patients [47].

22098155

STIP1
STIP1 was upregulated in HCC and associated with poor clinical
prognosis [48].

28887036

IGF1
Inhibition of IGF-1R tyrosine kinase (IGF-1R-TK) by NVP-AEW541
induces growth inhibition, apoptosis and cell cycle arrest in human
HCC cell lines without accompanying cytotoxicity [49].

16530734

HTATIP2

HepG2 cells that expressed transgenic HTATIP2 formed more invasive
tumors in mice following administration of sorafenib. Sorafenib
therapy prolonged recurrence-free survival in patients who expressed
lower levels of HTATIP2 compared with higher levels [50].

22922424

GNAI3
GNAI3 inhibits tumor cell migration and invasion and is
post-transcriptionally regulated by miR-222 in hepatocellular
carcinoma [51].

25444921

XPO1
Exportin-1 (XPO1, CRM1) mediates the nuclear export of several key
growth regulatory and tumor suppressor proteins [52].

25030088

PLVAP
PLVAP was identified as a gene specifically expressed in vascular
endothelial cells of HCC but not in non-tumorous liver tissues [53].

25376302

EPAS1
HIF-2alpha/EPAS1 expression may play an important role in tumor
progression and prognosis of HCC [54].

17589895

Analysis is further conducted to better comprehend the additional prognostic information in
gene expressions. Specifically, for each identified gene expression, two AFT models are considered.
The first model, referred to as A1, contains the single gene expression as well as selected imaging
features; in contrast, the second model, referred to as A2, contains only the selected imaging features.
Comparing the two models can straightforwardly describe the contribution of the gene expression to
prognosis. To facilitate the comparison, subjects are classified into low and high risk groups with equal
sizes based on the survival times predicted using A1 and A2, and the log rank test is conducted to
compare survival of the two groups. p values from the log rank tests are provided in the Table S1. For
LUAD, it is observed that 56 out of the 85 A1 type models can effectively separate the high and low
risk groups (with the adjusted log rank test p values < 0.05); In contrast, 47 of the A2 type models have
significant adjusted log rank p values. In addition, 51 A1 type models have p values smaller than their
A2 counterparts. In the analysis of LIHC data, the numbers of significant adjusted p values for the
A1 and A2 type of models are 237 and 66, respectively. In addition, 286 genes have p values smaller
under the A1 type models than their A2 counterparts. These results suggest that gene expressions
can significantly improve prognosis modeling beyond histopathological imaging features. For a more
intuitive presentation, we present the Kaplan–Meier curves for two representative genes in Figure 3.
Specifically, we show the survival functions of the low and high risk groups under the A1 and A2
models. The A1 models have a much clearer and more significant separation. Such results suggest that,
for clinical practice, it may be necessary to integrate gene expression data beyond histopathological
imaging data.
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(a) (b) 

  
(c) (d) 

Figure 3. Kaplan–Meier (KM) curves for low (blue) and high (red) risk groups under models A1 and
A2. (a,b) for LUAD: Gene HNRNPK as well as selected imaging features (A1), and only selected
imaging features (A2). (c,d) for LIHC: Gene GOT2 as well as selected imaging features (A1), and only
selected imaging features (A2). p values are computed from log rank tests.

4.2. Identification of Imaging Features with Independent Prognostic Power Conditional on Gene Expressions

Analysis parallel to the above is conducted, reversing the roles of gene expressions and imaging
features. With significance level 0.05, the identified imaging features along with their p values are
shown in Table 4. Detailed estimation results are provided in the Table S1. In the LUAD data analysis,
11 imaging features are found as significantly associated with prognosis conditional on the selected
gene expressions. Among them, six are texture related, which is consistent with the literature [21]. In
the analysis of LIHC data, nine imaging features are found as significantly associated with prognosis
conditional on gene expressions, among which eight belong to the morphological category of nuclei
texture. There is one notable difference between gene expression and histopathological imaging
measurements. With extensive functional studies accumulated over years, the biological functions of
many genes are known; In contrast, the biological interpretations of imaging features mostly remain
unclear. As such, interpretations as in Table 2; Table 3 cannot be pursued.
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As in the above section, additional analysis is conducted. Specifically, two types of AFT models
are considered. The first type, referred to as B1, is based on an individual imaging feature and
selected gene expressions; whereas the second type, referred to as B2, is only based on selected
gene expressions. Detailed results are provided in the Table S1. For LUAD, it is observed that ten
out of the 11 B1 type models can effectively separate the high and low risk groups, whereas 11 of
the B2 type models have significant adjusted log rank p values. For the identified imaging feature
Granularity_15_ImageAfterMath, the B1 model is not significant, however, the corresponding B2
model is significant. This can be explained by the larger degrees of freedom of the B1 model and
possible correlation between the two types of measurements. It is also found that six imaging features
have p values smaller under the B1 type models than their B2 counterparts. In the LIHC data analysis,
the overall findings are similar. Specifically, all tests under both B1 and B2 types of models have
adjusted p values smaller than 0.05. All tests under B1 have p values larger than those under B2. Again,
this can be possibly explained by the larger numbers of parameters under B1 and correlations. The
KM curves for two representative imaging features are examined in Figure 4. The differences between
the left and right panels are much less distinct compared to Figure 3. Overall, the analysis suggests
that, conditional on the presence of gene expression measurements, histopathological imaging features
have limited independent prognostic power.

  
(a) (b) 

  
(c) (d) 

Figure 4. KM curves for low (blue) and high (red) risk groups under models B1 and B2.
(a,b) for LUAD: Imaging feature Texture_Correlation_maskosingray_3_00 as well as selected gene
expressions (B1), and only selected gene expressions (B2). (c,d) for LIHC: Imaging feature
StDev_Identifyhemasub2_Texture_DifferenceEntropy_ImageAfterMath_3_00 as well as selected gene
expressions (B1), and only selected gene expressions (B2). p values are computed from log rank tests.
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5. Discussion

In the literature, the separate and integrated analyses of omics and histopathological imaging data
have been conducted. This study has taken a different perspective and tried to answer the fundamental
question of whether a type of measurement has independent prognostic power conditional on the
collective effect of the other type. A rigorous statistical testing approach, developed under simpler
settings, has been adopted and extended. In the analysis of TCGA data on two cancer types, it
has been found that, conditional on imaging features, individual gene expressions may still have
significant prognostic power; however, conditional on gene expressions, individual imaging features
may have limited prognostic power. As such, at least for the analyzed datasets, gene expressions
and histopathological imaging features have an irreversible independent relationship in modeling
prognosis. Such findings, to the best of our knowledge, are the first in the literature. They may have
important implications for cancer practice. Specifically, in cancer clinical practice, gene expression
profiling is becoming routine. Our analysis suggests that, for modeling prognosis, when gene
expression data are available, clinicians may not need to order histopathological imaging. However,
this is not true the other way around. For a more accurate prognosis modeling, with imaging data,
clinicians may still want to order gene expression profiling, and use integrated analysis techniques
(developed in published and future literature) to integrate gene expression and imaging data. The
biological implications of the findings, pertinent to the associations between gene expressions and
imaging features, are worth further investigation.

This study can be extended in multiple directions. Specifically, other types of omics measurements,
such as DNA mutations, miRNA expressions, methylation, and copy number variations, can be
analyzed similarly. It is noted that the findings are not necessarily the same as in this article. In our
analysis, we have considered high dimensional imaging features, which may include more information
but do not have simple biological interpretations. It is possible to conduct a similar analysis using
low dimensional imaging features such as vascular invasion and lymphocyte cells—this is postponed
to future research. It is noted that in the literature [55], techniques have already been developed to
identify cancer regions, extract such low dimensional imaging features, and use them in analysis. The
analysis has been focused on gene expression and imaging data. We acknowledge the importance
of clinical, environmental, and other factors in cancer prognosis. These factors are not included in
analysis with the following concerns. First, the most important objective of this study is to evaluate the
overlapping/independent information in omics and histopathological imaging data. As such, we focus
on these two types of measurements. Second, to the best of our knowledge, techniques for making
inference with the “one gene expression + low dimensional clinical factors + high dimensional imaging
features” model are not available. This analysis can be more complex than that in this article with the
significant differences between clinical factors and imaging features. Table 1 has been provided so that
researchers can comprehend properties of the TCGA cohorts. Extending the proposed analysis and
accommodating clinical factors will be postponed to future research. It is also of interest to conduct
similar analysis for other types of cancer outcomes. For a continuous cancer marker, the described
analysis technique can be directly applied. New developments will be needed for other types of
outcomes/phenotypes. It is also noted that the detailed results can be data and model dependent.
It is impossible to conduct analysis with all cancer types and models. However, the “spirit” of the
proposed analysis will be broadly applicable. Although with certain limitations, being the first of its
kind, this study may still provide important insights into cancer modeling and characteristics of cancer
as reflected in omics profiles and histopathological images.

6. Conclusions

Omics and histopathological imaging data have been co-collected in cancer practice and analyzed
in recent integrated analysis. In this study, we have presented a pipeline for analyzing their
independent prognostic power conditional on the other type of data. The adopted statistical inference
technique has a solid ground and can be broadly applied. The “asymmetric” finding is interesting, has
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not been observed in the literature, and has sound interpretations. It is reasonable to expect that the
proposed analysis and its downstream integrated analysis will gain popularity fast and have a deep
impact on cancer practice.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/11/3/361/s1,
Table S1: Detailed estimation results referred to in Section 4, TestLDHD: R code and example data.
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Abstract: Epithelial ovarian cancer patients usually relapse after primary management. We utilized
the support vector machine algorithm to develop a model for the chemo-response using the Cancer
Cell Line Encyclopedia (CCLE) and validated the model in The Cancer Genome Atlas (TCGA) and
the GSE9891 dataset. Finally, we evaluated the feasibility of the model using ovarian cancer patients
from our institute. The 10-gene predictive model demonstrated that the high response group had
a longer recurrence-free survival (RFS) (log-rank test, p = 0.015 for TCGA, p = 0.013 for GSE9891
and p = 0.039 for NTUH) and overall survival (OS) (log-rank test, p = 0.002 for TCGA and p = 0.016
for NTUH). In a multivariate Cox hazard regression model, the predictive model (HR: 0.644, 95% CI:
0.436–0.952, p = 0.027) and residual tumor size < 1 cm (HR: 0.312, 95% CI: 0.170–0.573, p < 0.001) were
significant factors for recurrence. The predictive model (HR: 0.511, 95% CI: 0.334–0.783, p = 0.002) and
residual tumor size < 1 cm (HR: 0.252, 95% CI: 0.128–0.496, p < 0.001) were still significant factors for
death. In conclusion, the patients of high response group stratified by the model had good response
and favourable prognosis, whereas for the patients of medium to low response groups, introduction
of other drugs or clinical trials might be beneficial.

Keywords: chemotherapy; microarray; ovarian cancer; predictive model; machine learning

1. Introduction

Ovarian carcinoma is a major cause of cancer death in women [1,2]. Due to the lack of
initial symptoms and effective screening tools, most patients are diagnosed at an advanced stage
with a 5-year survival of less than 50% [3,4]. The clinical prognostic factors include cancer stage,
histological subtypes, tumor grade, the residual tumor size after debulking surgery and the response
to chemotherapy. Despite good initial response, most ovarian cancer patients experience tumor

Cancers 2019, 11, 270; doi:10.3390/cancers11020270 www.mdpi.com/journal/cancers275
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recurrence and eventually are resistant to salvage treatments [3,5]. The serum CA-125 level is the
current biomarker, but it is not ideal due to its limited specificity. Many potential biomarkers have
been evaluated alone or in combination with CA-125, but the majority show disappointing results [6].

Precision medicine is the direction for cancer treatments, and the strategy of management depends
on the distinct molecular features among these subtypes of ovarian carcinoma. However, the clinical
benefits of targeted therapies are limited even though there are marked abnormalities in genetic
or molecular pathways in ovarian cancer [7]. To date, the most promising agents are only
anti-angiogenesis and poly ADP-ribose polymerase inhibitors. Bevacizumab, in combination with
chemotherapy, demonstrates an improved progression-free survival, but a benefit on overall survival
is only observed in high-risk patients [8,9]. Olaparib is approved for maintenance therapy in
platinum-sensitive BRCA-mutated serous ovarian cancer patients [10]. The progression-free survival
is significantly longer in platinum-sensitive recurrent ovarian cancer patients receiving niraparib,
regardless of the BRCA mutation status [11]. In fact, the clinical dilemma is that these targeted drugs
are expensive and benefit only a small subpopulation of ovarian cancer patients.

With the advancement in high-throughput genomic technology in recent years, many large-scale
genomic and genetic studies have been performed to investigate cancer cell lines and patients [12,13].
For examples, the Cancer Cell Line Encyclopedia (CCLE) project analyzed more than 1000 cancer cell
lines and reported their drug responses to more than 20 drugs and The Cancer Genome Atlas (TCGA)
studied different kinds of genetic changes in real patients from more than 30 major cancer types.
Due to the limitations from research ethnics and the difficulties in performing many clinical trials
in real patients, these materials can serve as a good starting point to develop a machine learning
model by using the cell lines first. Subsequently, the developed model can be validated in other
large-scale studies, and such big data mining approach has been demonstrated its effectiveness in
several studies [14,15].

Currently, cytotoxic chemotherapy still plays a key role in managing ovarian cancer.
Determining how to predict the response of chemotherapy and identify which patients benefit
from chemotherapy is important [16]. In this study, we initially developed a predictive model of
chemo-response using CCLE and then selected for the optimal combination of predictors in TCGA
and the GSE9891 dataset. Finally, we validated the model using clinical ovarian cancer tissue samples.
We analysed the expression of the 10 predictive genes and correlated the clinical outcomes of the
ovarian cancer patients to confirm the utility of the model.

2. Results

2.1. Development of A Predictive Model from Cancer Cell Line Encyclopaedia (CCLE)

After preprocessing, we utilized the Kruskal-Wallis test to identify the genes showing significant
differences among the cell lines divided into three groups with an unequal drug efficacy in GSE36133
(Figure 1). The expression levels of 575 probes with a uniquely mapped gene name were significantly
associated with the response (p < 0.01), and thus, they served as the original gene pool that might be
possible predictive biomarkers. To identify a set of genes that could be used to develop a predictive
model, we used the genetic algorithm (GA) shown in Figure S1 to select the best combination of
10 genes from the 575 significant genes. A predictive model composed of the 10 selected genes
was developed using the SVM algorithm, and its performance was evaluated based on the leave
one out cross-validation strategy. Notably, the prediction accuracy gradually increased through
the GA processes and became stable before 10 generations that were set as the last generation in
the GA. The best combination of the 10 genes selected by the GA is summarized in Table S1, and the
corresponding SVM predictive model showed an accuracy of 100% for classifying the cell lines into
three groups with different efficacies.
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Figure 1. The overall protocol utilized in this study to develop the predictive model.

2.2. Evaluation of The Performance of The Developed Predictive Model

Even though the developed predictive model perfectly classified the cell lines into distinct groups
corresponding to the efficacy, we still cannot exclude the possibility that the predictive model was
identified purely based on a random chance. To address this issue, a permutation test was repeated
100,000 times to evaluate the probability of identifying a model with the same prediction accuracy.
The details of the permutation test are described in the Methods section, and the results demonstrated
that only 570 combinations out of the 100,000 trials showed 100% accuracy. Thus, the random chance
of identifying a set of 10 genes showing 100% accuracy was only 0.0057. With such a low probability,
the permutation test suggested that our proposed GA efficiently identified a set of genes with good
prediction performances, and thus, the probability of identifying the developed predictive model is low.

2.3. Validation of The Predictive Model in Two Independent Datasets: TCGA and GSE9891

To validate the predictive model, two microarray datasets from patients with ovarian cancer
were downloaded. One was from the TCGA, and another one was from the GEO (GSE9891).
Because this study focused on the drug efficacy, only those patients receiving chemotherapy were
used for the analyses. After preprocessing, the two microarray datasets were analysed using the
developed SVM model. Therefore, each patient in the two datasets was classified into one of the
three groups according to the predictive model. As shown in Figure S2A,B, the high response
group showed a better survival outcome, and no obvious differences were observed between the
low response and medium response groups. To reduce the ambiguity, only the two groups with
high and low responses are illustrated in Figure 2A,B. Significant differences in the RFS between
the two groups were shown in the two datasets (log-rank test, p = 0.015 for TCGA and p = 0.013
for GSE9891), suggesting the effectiveness of the predictive model in predicting the chemo-response.
Intriguingly, the proportion of patients showing a good response was 14.5% in TCGA and 19.3%
in GSE9891, which concurred with the finding of less than 30% of a good response in the ovarian
cancer patients receiving chemotherapy [17]. In addition to the RFS, we evaluated whether the
developed SVM model was predictive for the OS. In general, the pattern of the three groups for the
OS was similar to the RFS (Figure S3). Notably, a significant difference was observed in the TCGA
dataset (log-rank test, p = 0.002, Figure 3A), whereas the OS was not significantly different in GSE9891
(Figure 3B). In addition, the proportion of patients showing a longer OS (>5 years) and RFS (>2 years)
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are summarized in Table S2, and the proportion from the high response group was higher than that in
the other two groups. The results showed that the SVM model we developed identified patients with a
high response to chemotherapy, and a significant difference in the RFS was observed between the high
and low response groups.

 

Figure 2. The Kaplan-Meier survival curves of the recurrence free survival (RFS) in the high and low
response groups in the (A) TCGA dataset, (B) GSE9891 dataset and (C) NTUH patients. Patients of
high response group had longer RFS than low response group in the three cohorts. The hazard ratio
(HR) was estimated by the Cox hazard regression model.
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Figure 3. The Kaplan-Meier survival curves of the overall survival (OS) in the high and low response
groups in the (A) TCGA dataset, (B) GSE9891 dataset and (C) NTUH patients. Patients of high response
group had longer OS than low response group in the three cohorts. The hazard ratio (HR) was estimated
by the Cox hazard regression model.

2.4. Validation of The Predictive Model by QRT-PCR in Ovarian Cancer Tissue of NTUH

In addition to the microarray datasets, we validated the prediction performance of the developed
SVM model in another cohort of ovarian cancer patients. The study subjects were recruited from
the NTUH, and the gene expression values of the 10 selected genes were measured using QRT-PCR.
The clinical characteristics of this cohort are shown in Table 1. Similar to the previous validation in
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the microarrays, the patients were classified into three groups based on the developed SVM model
after standardization. The survival curves for RFS and OS in the three groups from the NTUH patients
were similar to the TCGA and GSE9891 datasets (Figures S2 and S3). As shown in Figures 2C and 3C,
significant differences were observed between the high and low response groups for both the RFS
(log-rank test, p = 0.039) and the OS (log-rank test, p = 0.016), suggesting the effectiveness of the
developed SVM model even if the experimental technology is different.

Table 1. Clinical characteristics of the epithelial ovarian cancer patients at NTUH.

Feature Number (Proportion)

Total patients 84
Age (years) 54.94 ± 11.25

Histological subtype
Serous 59 (0.7)

Endometrioid 12 (0.14)
Clear cell 13 (0.16)

Tumor grade
1 4 (0.05)
2 10 (0.12)
3 57 (0.68)

Not available 13 (0.15)
FIGO_stage
Early (I + II) 11 (0.13)

Advanced (III + IV) 73 (0.87)
Debulking surgery

Residual tumor size < 1 cm 42 (0.5)
Residual tumor size ≥ 1 cm 42 (0.5)

Lastly, we evaluated whether the developed SVM model was an independent predictor to known
clinical factors (Table 2). A Cox hazard regression model was utilized to compare the predictive
model with several clinical features, including residual tumor size < 1 cm, FIGO stage, tumor
grade and histological subtypes. In univariate Cox regression, the predictive model (HR: 0.643,
95% CI: 0.415–0.998, p = 0.049), residual tumor size < 1 cm (HR: 0.273, 95% CI: 0.160–0.468, p < 0.001),
advanced FIGO stage (HR: 7.954, 95% CI: 1.934–32.71, p = 0.004) and high tumor grade (HR: 2.289,
95% CI: 1.156–4.530, p = 0.018) were significant factors for recurrence. For death, the predictive model
(HR: 0.559, 95% CI: 0.351–0.890, p = 0.014), residual tumor size < 1 cm (HR: 0.198, 95% CI: 0.107–0.365,
p < 0.001), advanced FIGO stage (HR: 6.13, 95% CI: 1.489–25.24, p = 0.012) and clear cell carcinoma
(HR: 0.284, 95% CI: 0.102–0.793, p = 0.016) were significant factors in univariate Cox regression.
In multivariate Cox regression analysis, the predictive model (HR: 0.644, 95% CI: 0.436–0.952, p = 0.027)
and residual tumor size < 1 cm (HR: 0.312, 95% CI: 0.170–0.573, p < 0.001) were significant factors for
recurrence. For death, the predictive model (HR: 0.511, 95% CI: 0.334–0.783, p = 0.002) and residual
tumor size < 1 cm (HR: 0.252, 95% CI: 0.128–0.496, p < 0.001) were still significant factors. As shown in
Table 2, the developed SVM model was an independent and significant predictor after adjusting with
these clinical factors. Therefore, the results indicated that the developed SVM model further improved
the prediction of the patients’ chemo-response.
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3. Discussion

Our model predicted the chemo-response in ovarian carcinoma patients. Several types of
chemotherapy sensitivity and resistance assays (CSRAs) have been reported, such as the adenosine
triphosphate assay, the human tumor cloning assay, the methylthiazolyldiphenyltetrazolium bromide
assay, and the extreme drug resistance assay, as well as the drug-induced apoptosis assay, but the role
of CSRAs remains controversial [18]. Other platforms, including proteomics [19], exosomes [20], next
generation sequencing [21] and in vivo ovarian cancer patient-derived xenografts [22], also have
weaknesses of inconsistent results, expensive costs and time-consuming processes. With the
advancement of high-throughput technologies, researchers are now able to measure the gene
expression profiles of one patient at a low cost. Therefore, considering the genetic features in one
single individual may shed light on how to achieve the concept of providing precision medicine.
However, it is difficult to develop a predictive model of one specific drug by investigating and
manipulating the samples directly from real patients. Han et al. developed multiple gene
predictive models for the platinum/paclitaxel response from the TCGA gene expression dataset [23].
Murakami et al. developed a multiple-gene scoring system for predicting a platinum or taxane
response in ovarian cancer from the TCGA and GSE datasets [24]. However, both studies were not
validated in ovarian cancer tissue samples by evaluating the clinical feasibility of the predictive models.
To address this issue, we used cell lines as the identification set and validated the results in clinical
samples [25].

In this study, we demonstrated the usefulness of the model in predicting the chemo-response,
and survival benefits were observed in three independent datasets, including ovarian cancer tissue
samples from our institute. Notably, relatively few samples from the NTUH cohort have been classified
into “high” or “low” response groups. It can be mainly attributed to that we tried to classify the
samples into three groups, which may result in some false positive classifications. However, as shown
in Figures S1 and S2, the curves from the “medium” response group showed no significant differences
to the curves from the “low” response group. This suggests that only the patients classified into “high”
response group have definite benefits from receiving the drug treatment. For the other two groups,
we should be more cautious while designing the treatment plan and selecting the appropriate drugs.
In clinical practice, the cancer tissue of ovarian cancer patients could be tested by our 10 gene model
before chemotherapy. For the patients of high response group, they have the best response to the
paclitaxel-platinum chemotherapy which could be the standard treatment. However, in the patients of
medium to low response groups, the response to the paclitaxel-platinum chemotherapy is not good
enough, and early introduction or combination of other drugs should be considered.

The reason why we utilized a GA to select 10 possible predictors from 575 genes is its low
computational complexity and good classification accuracy. Notably, the number of possible
combinations of the original 575 genes is C575

10 = 1.01 × 1021, which cannot be analysed in a practical
amount of time. The GA is a greedy approach that randomly selects and tests possible combinations
through many generations. By doing so, the GA avoids calculating all the combinations and still can
identify useful predictors in a reasonable amount of time [14]. Furthermore, in order to reduce the
cost and simplify the experimental processes, we wished to minimize the number of predictors in the
predictive model. However, the prediction accuracy was poor when the number of predictors was <10;
thus, we defined it as 10.

Several studies demonstrated that the genes of our predictive model were involved in the growth,
proliferation, and drug response of cancer cells [26–31]. We utilized the Ingenuity Pathway Analysis
website to explore the possible interaction network among the 10 genes. As shown in Figure S4,
five out of the 10 genes are summarized into one network centering on TGFB1 and E2F1 which are
important regulators in the cell cycle. The results indicated that the genes of our predictive model have
an important functional impact in ovarian cancer cells relating to chemo-response.

The study had some limitations. Notably, the standard regimen of chemotherapy for epithelial
ovarian cancer is combination of platinum and paclitaxel. In this study, we only used the drug response
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efficacy of paclitaxel in the CCLE dataset to identify possible biomarkers, which might result in some
biases and neglect the combination effects after treated with two different drugs. This was certain a
potential limitation in our approach. However, the large-scale gene expression data along with the drug
efficacy after treatment with these two drugs was not available currently. Therefore, it was not feasible
to develop a prediction model by performing an integrated analysis of these two drugs simultaneously.
In our identification set, the CCLE dataset, those studied ovarian cancer cell lines included both
platinum-sensitive and platinum-resistant, such as ES-2, NIH:OVCAR-3, and SKOV-3. Therefore, those
identified genes reflected the effect which was not solely from paclitaxel. Validation of this prediction
model in three datasets in real clinical patients also showed a good performance, suggesting that
although the approach in this study was not a perfect one, the resulted prediction model still had
a good utility in daily clinical practice. The other limitation was the different definition of RFS in
TCGA, GSE9891 and our set. RFS was calculated from the completion of adjuvant chemotherapy and
we used the definition in our own NTUH dataset. However, in the data from the public domains
including GSE9891 and the TCGA dataset, we used those provided RFS information along with their
microarray data. However, this might result in some potential biases from different definitions of
the RFS. Lastly, it was a limitation that the NTUH cohort did not include the tissue samples of the
non-ovarian cancer group, which may help to provide more detailed information of our gene model
about the chemo-response of ovarian cancer.

4. Materials and Methods

4.1. Identification of The Genes Associated with The Drug Response

The protocol used to identify the probes associated with the drug efficacy and develop the
predictive model is illustrated in Figure 1. The details about selecting predictive biomarkers
from GSE36133 (Table S3) were described in the supplementary data. Briefly, after pre-processing,
we analysed the 25 ovarian cancer cell lines (Table S4) to identify the genes associated with the efficacy
of paclitaxel treatment. The 25 ovarian cancer cell lines were classified into three groups based on their
sensitivity, which was the activity area provided by the GSE36133 dataset. Furthermore, a quantile
normalization algorithm was performed and a Kruskal-Wallis test was utilized to identify the probes
showing significantly different expression levels in the three groups (p < 0.01). Only the probes mapped
to a unique gene symbol remained for further analyses. When multiple probes were annotated to
the same gene, their coefficients of variation (CVs) were calculated, and only the probe possessing
the largest CV was kept. In order to reduce systematic biases resulted from different technological
platforms, the expression value of each gene was normalized to Z-value based on its mean and
standard deviation, respectively.

4.2. Development of a Predictive Model Using a Genetic Algorithm

Among the probes showing a significant association with the response of paclitaxel, a genetic
algorithm (GA) was designed to select the best combination of 10 probes to classify the 25 cell lines
into the three groups, corresponding to the drug efficacy (Figure S1). The detailed procedures in the
GA were described in the supplementary data. In general, the GA algorithm mimics the concept of the
“survival of the fittest,” which indicates that a combination showing a better prediction performance
has a higher probability of being selected in the next generation. Therefore, the model showing the
highest accuracy for predicting the paclitaxel response was developed in the last generation. We also
performed a permutation test to evaluate the random chance of identifying 10 probes with the same
prediction accuracy.

The definitions of response groups were based on the activity area of the drug efficacy provided
in the CCLE dataset. We sorted the values ascendingly and divided them into three groups accordingly.
That is after being sorted, the first nine cell lines with lower activity area values from the 25 ovarian
cancer cell lines were classified into “low” response group (i.e., activity area less than 4 in Table S4).
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Subsequently, the eight cell lines with medium activity values were classified into “medium” response
group and the last eight cell lines with higher activity values were classified into “high” response
group (i.e., activity area higher than 5.29 in Table S4).

4.3. Validation of the Predictive Model in Two Independent Datasets

In addition to the internal validations using permutation and cross-validation in the CCLE dataset,
two ovarian cancer microarray datasets from TCGA [13] and GSE9891 [32], composed of real clinical
samples, were analysed (Table S3). To focus on the chemo-response, only those patients who received
the drug treatment and survived longer than 30 days were analysed. All the analysis procedures
followed the same steps previously described, and all the patients were classified into distinct groups
using the predictive model. The gene expression data from the microarray datasets were normalized to
the standard normal distribution, and the drug response of one patient was predicted by the developed
SVM model that was composed of the 10 selected probes. For the patient groups with different drug
efficacies, the log-rank test was utilized to evaluate whether significant differences existed in the
overall survival (OS) and/or recurrence-free survival (RFS).

4.4. Validation of the Predictive Model by a Quantitative Real-Time Polymerase Chain Reaction (QRT-PCR)
Using Ovarian Cancer Tissue

Lastly, we validated the predictive model using the QRT-PCR method in patients recruited from
the National Taiwan University Hospital (NTUH). The study protocol was approved by the National
Taiwan University Hospital Research Ethics Committee. Informed consents were obtained and the
methods were performed in accordance with the guidelines and regulations. From January 2012
to March 2014, 84 women diagnosed with ovarian carcinoma who received debulking surgery and
adjuvant chemotherapy were enrolled. Part of cancerous tissue specimen collected in debulking
surgery was immediately frozen in liquid nitrogen and stored at −70 ◦C. The remaining tissue
specimens were sent for frozen section and pathology examinations to confirm the diagnosis and
ensure sufficient tumor tissue in the specimens collected for the following experiments. The medical
records of the patients were reviewed until June 2017 to obtain clinical data, including the age, cancer
stage, surgical findings during debulking, treatment courses, recurrence and survival. Residual tumor
size was recorded as <1 cm or ≥1 cm after debulking surgery. The tumor grading was based on
the International Union Against Cancer criteria, and the staging was based on the criteria of the
International Federation of Gynecology and Obstetrics (FIGO) [33]. The patients received regular
follow-ups every 3 months after the primary treatment. Abnormal results from imaging studies
(including computerized tomography or magnetic resonance imaging), elevated CA-125 (more than
2 times the upper normal limit) for two consecutive tests in 2-week intervals, or biopsy-proven disease
were defined as recurrence. The RFS was calculated as the period from the date of chemotherapy
completion to the date of confirmed recurrence, disease progression, or the last follow-up. The OS
was calculated as the period from the surgery to the date of death associated with the disease or the
date of the last follow-up. To evaluate the required the sample size for the validation, we utilized the
estimated hazard ratio from the TCGA data (HR = 0.52). Therefore, using the parameters (type 1 error:
0.05, power: 70%, overall probability of event: close to 1, and the proportion of samples in “low” risk
group: 0.776, the estimated sample size is 84.

Total RNA of the cancerous tissue was isolated with TRIzol reagent (Invitrogen Corporation,
Carlsbad, CA, USA) according to the manufacturer’s instructions. The samples were subsequently
passed over a Qiagen RNeasy column (Qiagen, Valencia, CA, USA) to remove the small fragments
that affect the RT reaction and hybridization quality. After RNA recovery, double-stranded cDNA was
synthesized by a chimeric oligonucleotide with an oligo-dT and a T7 RNA polymerase promoter at a
concentration of 100 pmol/µL. The protocol for the quantitative real-time polymerase chain reaction is
briefly described. First-strand cDNA was synthesized with a RevertAid first strand cDNA synthesis
kit (Fermentas, Burlington, ON, Canada; Vilnius, Lithuania). Quantitative PCR was performed
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using the LightCycler Real-Time detection system (Roche Diagnostics, Mannheim, Germany).
The relative abundance of the mRNA level was calculated by using the comparative method with
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as the internal control. The quantitative PCR
primers for the TaqMan probes are listed in Table S1. The detection of GAPDH was carried out by
the LightCycler h-GAPDH housekeeping gene set (Roche Applied Science, Indianapolis, IN, USA) for
50 cycles of 10 s at 95 ◦C, 15 s at 55 ◦C, and 15 s at 72 ◦C.

The expression levels of the 10 probes were normalized to the standard normal distribution.
Following the prediction procedures previously described, each patient was classified into a different
group based on the SVM predictive model. The differences in the OS and RFS in the predicted groups
were compared using the log-rank test, and a Cox hazard regression model was utilized to evaluate
the prediction performance.

5. Conclusions

The epithelial ovarian cancer patients of high response group stratified by our 10 gene model
had good response to the paclitaxel-platinum chemotherapy which could be the standard treatment.
However, for the patients of medium to low response groups, introduction of other drugs or clinical
trials might be beneficial.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/11/2/270/s1,
Figure S1: The proposed genetic algorithm (GA) to identify the best combinations of predictors for the SVM
model, Figure S2: The Kaplan Meier survival curves of the RFS in the three response groups in the (A) TCGA,
(B) GSE9891 and (C) NTUH datasets, Figure S3: The Kaplan Meier survival curves of the OS in the three response
groups in the (A) TCGA, (B) GSE9891 and (C) NTUH datasets, Figure S4: The gene-gene interaction network of
the 10 genes analyzed using the Ingenuity Pathway Analysis website, Table S1: The quantitative PCR primers
of TaqMan probes, Table S2: Distribution of OS and RFS in the patients classified into three groups, Table S3:
Characteristics of the three microarray datasets, Table S4: The 25 ovarian cancer lines in GSE36133 utilized as the
training set.
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Abstract: Bufadienolide-like chemicals are mostly composed of the active ingredient of Chansu and
they have anti-inflammatory, tumor-suppressing, and anti-pain activities; however, their mechanism
is unclear. This work used bioinformatics analysis to study this mechanism via gene expression
profiles of bufadienolide-like chemicals: (1) Differentially expressed gene identification combined
with gene set variation analysis, (2) similar small -molecule detection, (3) tissue-specific co-expression
network construction, (4) differentially regulated sub-networks related to breast cancer phenome,
(5) differentially regulated sub-networks with potential cardiotoxicity, and (6) hub gene selection and
their relation to survival probability. The results indicated that bufadienolide-like chemicals usually
had the same target as valproic acid and estradiol, etc. They could disturb the pathways in RNA
splicing, the apoptotic process, cell migration, extracellular matrix organization, adherens junction
organization, synaptic transmission, Wnt signaling, AK-STAT signaling, BMP signaling pathway,
and protein folding. We also investigated the potential cardiotoxicity and found a dysregulated
subnetwork related to membrane depolarization during action potential, retinoic acid receptor
binding, GABA receptor binding, positive regulation of nuclear division, negative regulation of viral
genome replication, and negative regulation of the viral life cycle. These may play important roles in
the cardiotoxicity of bufadienolide-like chemicals. The results may highlight the potential anticancer
mechanism and cardiotoxicity of Chansu, and could also explain the ability of bufadienolide-like
chemicals to be used as hormones and anticancer and vasoprotectives agents.

Keywords: Bufadienolide-like chemicals; molecular mechanism; anti-cancer; bioinformatics

1. Introduction

Despite considerable efforts on early diagnosis and treatment in the last decade, breast cancer
remains the most common malignancies for women worldwide, representing ~22% of female
malignancies [1–4]. In addition to early diagnosis, new chemotherapeutic agents and more effective
therapies are needed to reduce mortality. Traditional Chinese medicine has existed for thousands of
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years and can treat cancer. Chansu is one of the most famous traditional Chinese medicines. It has been
used for centuries in various aspects, such as anaesthesia for anesthesia, antitumor, anti-inflammation,
and anti-arrhythmia conditions [5–8]. Chansu is mostly from the glandular secretion and dried product
of Bufo bufo gargarizans Cantor or Bufo melanostictus Schneider [8]. It includes resibufogenin, bufalin,
arenobufagin, cinobufagin, bufotoxin, telocinobufagin, bufotaline, and cinobufotalin [5,6,8] (Figure 1).

 

Figure 1. The structural formula of the eight bufadienolide-like chemicals.

Over the last decade, many groups have studied the pharmacological activities and antitumor
activity of bufadienolide-like chemicals. For example, Li et al. [9] reported that cinobufagin has
significant cancer-killing capacity for a range of cancers, including HCT116 cells, HT29 cells, A431
cells, PC3 cells, A549 cells, and MCF-7 cells. Mechanistic studies showed that cinobufagin can
induce tumor cells apoptosis and modulate hypoxia-inducing factor-1 alpha subunit (HIF-1α).
Yeh et al. [10] and Yu et al. [11] reported that bufalin and cinobufagin have a potent inhibiting effect on
androgen-dependent and -independent prostate cancer cells, similar to Dong et al. [12], Wang et al. [13],
and Ko et al. [14] via HepG2 cells, T24 cells, and HeLa cells.

Immunotherapy, an evolving approach for the management of triple negative breast cancer:
Converting non-responders to responders. These results demonstrate that Chansu is a potent anticancer
agent for a range of cancers, but its potential anticancer mechanisms are unclear. Here, the gene set
variation analysis (GSVA) algorithm [15] was first used to identify differentially expressed genes
(DEGs) and relative enrichment pathways underlying eight bufadienolide-like chemicals. A series of
bioinformatics analyses, including gene enrichment analysis, tissue-specific co-expression network
construction, and differentially-regulated sub-network detection, can relate the findings to the breast
cancer phenome and hub gene selection. The relation to survival probability and similar small-molecule
detection used the DEGs with relative enrichment pathways (Figure 2). This work shows the potential
mechanism of bufadienolide-like chemicals on breast cancer, especially differentially regulated
sub-networks that relate to breast cancer and hub genes disturbed by bufadienolide-like chemicals. This
work highlights the potential application of bufadienolide-like chemicals on breast cancer, especially
as a novel agent for cancer therapy.
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Figure 2. The workflow to study the potential mechanism of bufadienolides-like chemicals on breast
cancer via bioinformatics analysis. (A) The experimental design and basic information of this analysis.
(B) The DEGs’(Differentially expressed genes) identification with the GSVA (Gene set variation analysis)
algorithm [15]. (C) Similar small-molecule detection with the Comparative Toxicogenomics Database
(CTD) [16] and connectivity map (CMAP2) [17,18] database. (D) The tissue-specific co-expression
network constructed with the TCSBN (Tissue and cancer specific biological networks) database [19].
(E) The differentially expressed subnetworks detected with the UberPheno database and PhenomeScape
plug [20]. (F) The arrhythmia-related subnetworks detected with the UberPheno database and
PhenomeScape plug [20]. (G) The expression and survival relation of hub genes validated by TCGA
(The Cancer Genome Atlas) [21] and the Kaplan-Meier (KM) plotter databases [22].

2. Results

2.1. Identification of DEGs

Based on the differentially expressed genes analysis associated with the gene sets enrichment
variation analysis strategy, a total of 80 differentially expressed genes (DEGs) involved in the 44
MSigDB C2 curated gene sets were identified (Figure 3A,B), and the top 20 DEGs’ expression
heatmap is shown in Figure 3C. Of which, 38 genes involved in the Singh NFE2L2 targets gene
sets, Chang dominant negative gene sets immortalized by HPV31 and Lin silenced gene sets by
tumor microenvironment were up-regulated (Tables S1 and S2), including IF16 (interferon-inducible
protein 6), IRF9 (interferon regulatory factor 9), IFIT1 (IFN-induced protein 1 with tetratricopeptide
repeats), ISG15 (Interferon-stimulated gene 15), BST2 (bone marrow stromal cell antigen 2), OAS3
(2′-5′-oligoadenylate synthetase 3), OAS1 (2′-5′-oligoadenylate synthetase 1), DDX60 (DEAD box
polypeptide 60), CYP1A1 (cytochrome P450 1A1), CEACAM6 (carcinoembryonic antigen-related cell
adhesion molecule 6), keratin genes KRT81, and so on.
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Figure 3. The differentially expressed genes (DEGs) disturbed by bufadienolide-like chemicals through
the gene set variation analysis (GSVA) algorithm. (A) The differentially expressed gene sets disturbed
by bufadienolide-like chemicals (|logFC| ≥ log2(2) and adjPvalue < 0.001). (B) The DEGs relate to
differentially expressed gene sets (|logFC| ≥ log2(2) and adjPvalue < 0.001). (C) The heatmap of the
top 20 DEGs disturbed by bufadienolide-like chemicals.

Among the differentially expressed genes associated with enrichment gene sets, 42 genes involved
in the 41 gene sets were down-regulated (Tables S1 and S2), such as the genes involved in the Iizuka
(Table S1) liver cancer progression pathway, including PPIF (peptidylprolyl isomerase F), TMED2
(transmembrane trafficking protein 2 with emp24 domain), SAFB (scaffold attachment factor B),
SQLE (squalene epoxidase), PICALM (phosphatidylinositol binding clathrin assembly protein), STIP1
(stress-induced phosphoprotein 1), CYB561 (cytochromes b561), CCT2 (chaperonin 2β with TCP1
domain); the genes sets involved Thum systolic heart failure pathway, including CCNG2 (cyclin
G2), TMED2 (transmembrane emp24 domain trafficking protein 2), FH (fumarate hydratase), TAF9B
(ATA-box binding protein associated factor 9b), CCT2 (chaperonin-containing t-complex polypeptide 1
beta), transmembrane receptor NOTCH2, PICALM (subfamily A (MS4A), and CCNL2 (cyclin L2); and
also Reactome DNA strand elongation, Reactome regulated proteolysis of P75NTR, and other gene
sets were downregulated, with logFC form −0.89~−0.27.

In order to obtain a biological interpretation of those genes in the GO and KEGG pathway
functional groups, GO and KEGG enrichment analysis were performed with the clueGO plug [23]
in Cystoscape [24]. Results indicated that those genes that were up-regulated were rich in terms of
type I interferon signaling response to virus, defense to other organisms, regulation of viral genome
replication, and 2′-5′-oligoadenylate synthetase activity, and those activated may be because of the
up-regulation of IRF9, IFI6, IFI27, ISG15, IFIT1, OAS1, and OAS3 (Figure 4A). Further investigation
with the KEGG pathway enrichment analysis showed those up-regulated genes could cause the
activation of the IFN-induced pathway, type II interferon signaling pathway, and regulation of protein
ISGylation by the ISG15 deconjugating enzyme USP18 pathway (Figure 4B). The genes that were
down-regulated were rich in terms of protein kinase complex, transcription factor TFTC complex-1, the
SAGA-complex, and cargo loading into vesicle (Figure 4A). Further investigation with KEGG pathway
enrichment analysis showed those genes could negatively affect the transport of fringe-modified
NOTCH to the plasma membrane pathway (Figure 4B).
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Figure 4. The GO and KEGG enrichment result of DEGs disturbed by bufadienolide-like chemicals.
(A) Representative biomolecular network of GO enrichment terms. The bigger red nodes imply
enrichment of GO terms with up-regulated genes. The bigger blue nodes suggest enrichment of
GO terms with down-regulated genes. The small red nodes imply up-regulated genes. The small
blue nodes are down-regulated genes. Undirected edges imply enrichment, green directed edges
are activated according to the string database. The red directed edges implies suppression from
the evidence generated by the String database. (B) Representative biomolecular network of KEGG
enrichment term, the nodes, and edges also had the same means with Figure 4A.

2.2. Similar Small Molecule Detection

Detection of the similar small molecule with the Comparative Toxicogenomics Database
(CTD) (http://ctdbase.org/) [16] and connectivity map (CMAP2) (https://portals.broadinstitute.
org/cmap/) [17,18] database provides a better understanding the molecular mechanism of
bufadienolide-like chemicals, and its potential value as a novel agent for cancer therapy. Based
on the results with detecting the CTD Database, valproic acid, cyclosporine, and estradiol had the
most similar target with bufadienolide-like chemicals (Figure 5). Valproic acid, a histone deacetylase
inhibitor, which once was widely used as an antiepileptic, has recently also shown anti-cancer activity
in an vitro/vivo model [25]. Estradiol is a sex hormone with anticancer activity, and is also widely
used for the treatment of breast cancer, especially for postmenopausal women [26–28].

Based on the results from the CMAP2 database (https://portals.broadinstitute.org/cmap/) [17,18],
V03AF, G03GB, C05AX, and C05CX were the top matching drugs with bufadienolide-like chemicals
(Table 1). V03AF, a type of detoxifying agent for antineoplastic treatment, had an opposing effect on
the expression of bufadienolide-like chemicals. This result provided evidence for bufadienolide-like
chemicals’ potential value as a novel agent for cancer therapy. G03GB, one type of sex hormone and
a modulator of the genial system, had the most similar expression profile with bufadienolide-like
chemicals. This means the bufadienolide-like chemicals also use estradiol, epimestrol and cyclofenil
in breast cancer. C05AX and C05CX are two types of vasoprotectives agents, indicating that
bufadienolide-like chemicals also have a potential use as vasoprotectives-like drugs.

From the evidence from detecting the similar small molecules with the CTD database and CMAP2
database, it was indicated that bufadienolide-like chemicals were one kind of steroid with the same
physiological activity as estradiol and G03GB (ATC code), with potential value for use in cancer,
especially breast cancer.
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Figure 5. Chemicals-gene interaction network for the DEGs disturbed by bufadienolide-like chemicals.
Square nodes represent the DEGs. Circle nodes represent the chemicals predicted by the CTD Database.
The size of the nodes represents the degree. Circle nodes with red represent the similar small molecule
predicted by degree (degree ≥ 30).

Table 1. Top 20 CMAP2 (connectivity map, https://portals.broadinstitute.org/cmap/) hits correlated
with bufadienolide-like chemicals’ treatment.

Rank ATC Code Mean Score Enrichment p-Value Specificity

1 V03AF −0.471 −0.71 4.45 × 10−3 3.82 × 10−2

2 G03GB 0.449 0.655 3.29 × 10−2 7.47 × 10−2

3 C05AX 0.41 0.689 1.95 × 10−2 4.76 × 10−2

4 C05CX 0.41 0.689 1.95 × 10−2 4.76 × 10−2

5 D07XC −0.372 −0.661 1.44 × 10−3 8.10 × 10−3

6 N05BE −0.359 −0.719 1.26 × 10−2 1.22 × 10−2

7 C08EA 0.292 0.539 1.87 × 10−2 1.45 × 10−1

8 N05AC 0.259 0.365 2.32 × 10−3 3.90 × 10−1

9 D06BB −0.252 −0.405 9.39 × 10−3 1.44 × 10−1

10 D06BX −0.249 −0.72 3.74 × 10−3 1.38 × 10−2

11 N02BB 0.244 0.404 2.71 × 10−3 1.75 × 10−2

12 N02CX 0.189 0.481 3.16 × 10−2 4.43 × 10−2

13 A07EA −0.186 −0.343 6.96 × 10−3 2.55 × 10−2

14 S02BA −0.167 −0.383 5.03 × 10−3 1.31 × 10−2

15 B01AC 0.152 0.243 2.71 × 10−2 1.19 × 10−1

16 S03BA −0.144 −0.366 2.02 × 10−2 4.80 × 10−2

17 R03BA −0.141 −0.29 1.19 × 10−2 4.00 × 10−2

18 S01CB −0.136 −0.326 1.21 × 10−2 2.61 × 10−2

19 R01AD −0.113 −0.266 4.30 × 10−3 4.83 × 10−2

20 C07AA −0.109 −0.262 1.14 × 10−2 2.22 × 10−1

2.3. The Tissue Specific Co-Expression Network and Breast Cancer Associated Subnetwork Regulated by
Bufadienolide-Like Chemicals

It is clear that most of the genes exert their function by collaborating with other genes in
the network, which represent rigid molecular machines, cellular structures, or dynamic signaling
pathways [29]. Here, a breast tissue specific co-expression network with DEGs was generated
with the TCSBN database (http://inetmodels.com/) [19] through the NetworkAnalyst web server
(https://www.networkanalyst.ca/) [18]. Results indicated that the co-expression networks consisted
of 743 nodes and 876 edges (Figure 6 and Table 2).
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Figure 6. The breast tissue specific co-expression network with DEGs generated by the TCSBN
(Tissue and cancer specific biological networks) database (http://inetmodels.com/) through the
NetworkAnalyst (https://www.networkanalyst.ca/) web server. (A–O), the subnetworks of
co-expression network origin from the seeds of DEGs.

Table 2. The tissue specific co-expression network regulated by bufadienolide-like chemicals and their
enrichment with GO and KEGG.

Subnetwork
Number

Nodes Edges Seeds
KEGG Enrichment GO Enrichment

KEGG Pathway p-Value BP Term p-Value

A 492 558 13 Tight junction 4.19 × 10−4 Establishment or
maintenance of cell polarity 2.83 × 10−4

B 113 128 3 PPAR signaling
pathway 7.75 × 10−6 Triglyceride metabolic

process 1.25 × 10−7

C 46 50 2 mTOR signaling
pathway 9.62 × 10−3 Protein targeting to

membrane 4.93 × 10−67

D 27 86 6 Influenza A 3.04 × 10−10 Defense response to virus 1.24 × 10−22

E 18 17 1 Tuberculosis 2.01 × 10−4 Tuberculosis 2.01 × 10−4

F 11 10 1 N-Glycan
biosynthesis 9.19 × 10−3 Post-translational protein

modification 6.33 × 10−3

G 6 5 1 Terpenoid backbone
biosynthesis 1.72 × 10−4 Coenzyme biosynthetic

process 1.55 × 10−5

H 5 4 1 Notch signaling
pathway 2.98 × 10−2 Gamete generation 1.34 × 10−2

I 4 3 1 Null Null Transcription,
DNA-dependent 1.31 × 10−2

J 4 3 1 Null Null Positive regulation of
translation 1.17 × 10−2

K 4 3 1 Null Null Endoplasmic reticulum
unfolded protein response 6.51 × 10−3

L 4 3 1

Regulation of
cyclin-dependent

protein kinase
activity

1.24 × 10−2
Regulation of

cyclin-dependent protein
kinase activity

1.24 × 10−2

M 3 2 1 Steroid biosynthesis 7.68 × 10−3 Steroid biosynthetic process 2.07 × 10−6

N 3 2 1 Null Null Regulation of transcription,
DNA-dependent 1.84 × 10−2

O 3 2 1 Null Null Intra-Golgi
vesicle-mediated transport 4.47 × 10−3
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Furthermore, a functional enrichment analysis with KEGG pathways revealed that the
co-expression networks with DEGs were enriched in pathways related to tight junction, PPAR signaling
pathway, mTOR signaling pathway, influenza A, tuberculosis, N-Glycan biosynthesis, terpenoid
backbone biosynthesis, Notch signaling pathway, regulation of cyclin-dependent protein kinase
activity, and steroid biosynthesis (Table 2). The GO BP term enrichment analysis showed those genes
mostly involved in the establishment or maintenance of cell polarity, triglyceride metabolic process,
protein targeting to membrane, defense response to virus, tuberculosis, post-translational protein
modification, coenzyme biosynthetic process, gamete generation, transcription, DNA-dependent,
positive regulation of translation, endoplasmic reticulum unfolded protein response, regulation of
cyclin-dependent protein kinase activity, steroid biosynthetic process, regulation of the transcription of
DNA-dependent, intra-Golgi vesicle-mediated transport term, and other rigid molecular machines in
the biological process.

Based on the novel differentially regulated sub-networks detection tool, PhenomeScape [20],
which could combine the fold changes of genes into the knowledge of networks and disease phenotypes,
a series of differentially regulated sub-networks associated with phenotypes were identified with the
random walk algorithm. In this research, seven phenotypes related to breast cancer were selected as the
seed phenotypes (Table 5); subsequently, a total of 19 differentially regulated sub-networks enriched
in the breast cancer phenotype related subnetwork were identified (Table 3). The sub-networks
distributed by bufadienolide-like chemicals included RNA splicing (p-value = 2.00 × 10−3), apoptotic
process (p-value = 2.00 × 10−3), extracellular matrix organization (p-value = 1.00 × 10−3), canonical
Wnt signaling pathway (p-value = 2.20 × 10−2), synaptic transmission (p-value = 1.40 × 10−2), negative
regulation of the JAK-STAT cascade (p-value = 4.20 × 10−2), adherens junction organization (p-value =
3.80 × 10−2), BMP signaling pathway (p-value = 4.10 × 10−2), negative regulation of cell migration
(p-value = 1.30 × 10−2), and activation of signaling protein activity involved in the unfolded protein
response (p-value = 1.90 × 10−2) (Figure 7).

Table 3. Summary of differentially regulated sub-networks disturbed by bufadienolide-like chemicals.

Subnetwork Number No. of Nodes GO-BP Empirical p-Value

A 21 RNA splicing 2.00 × 10−3

B 73 apoptotic process 2.00 × 10−3

C 11 extracellular matrix organization 1.00 × 10−3

D 6 canonical Wnt signaling pathway 2.20 × 10−2

E 7 synaptic transmission 1.40 × 10−2

F 11 negative regulation of JAK-STAT cascade 4.20 × 10−2

G 9 adherens junction organization 3.80 × 10−2

H 9 BMP signaling pathway 4.10 × 10−2

I 6 negative regulation of cell migration 1.30 × 10−2

J 4
activation of signaling protein activity
involved in unfolded protein response

1.90 × 10−2

K 12 drug metabolic process 1.20 × 10−2

L 6 negative regulation of lipid storage 4.50 × 10−2

M 6 xenobiotic metabolic process 1.70 × 10−2

N 8 relaxation of cardiac muscle 4.80 × 10−2

O 5 very long-chain fatty acid metabolic process 1.70 × 10−2

P 4 oligosaccharide metabolic process 3.10 × 10−2

Q 4 collagen catabolic process 2.50 × 10−2

R 4 response to cocaine 2.70 × 10−2

S 4 behavioral response to nicotine 4.20 × 10−2
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Figure 7. The differentially expressed networks regulated by bufadienolide-like chemicals, and
generated by the PhenomeScape plug. Sub-networks linked to breast cancer, RNA splicing (2.00 × 10−3)
(A), apoptotic process (2.00 × 10−3) (B), extracellular matrix organization (1.00 × 10−3) (C), canonical
Wnt signaling pathway (2.20 × 10−2) (D), synaptic transmission (1.40 × 10−2) (E), negative regulation
of JAK-STAT (Janus kinase/signal transducers and activators of transcription) cascade (4.20 × 10−2) (F),
adherens junction organization (3.80 × 10−2) (G), BMP signaling pathway (4.10 × 10−2) (H), negative
regulation of cell migration (1.30 × 10−2) (I), and activation of signaling protein activity involved in the
unfolded protein response (1.90 × 10−2) (J). The fold change of the proteins is shown by the node color,
and breast cancer-associated phenotype annotated proteins were used to generate the sub-networks
and are shown with a black border.

The subnetwork A (Figure 7A), related to the RNA splicing function, was the first identified
dysregulation subnetwork. It showed the genes involved in the mRNA splicing spliceosome were
down-regulated, including the serine- and arginine- rich splicing factor members, SRSF4, SRSF5,
and SRSF6, and peroxisome proliferator activated receptor gamma coactivator (PPARGC1A). The
apoptotic process (Figure 7B) could have been dysregulated by bufadienolide-like chemicals, and this
dysregulation was performed with the increased expression of SYT11, PARK2, PYHIN1, APC, RNF40,
SERPINB3, TIAM2, ITSN1, SH3GL2, CASP1, GATA4, ITSN2, and PDE4DIP. Several cancer signaling
pathways, including the Wnt signaling pathway, the JAK-STAT signaling pathway, and the BMP
signaling pathway, also could had been dysregulated by bufadienolide-like chemicals (Figure 7D,F,H).
This suggests that bufadienolide-like chemicals could increase the apoptotic process through a series
of pathways or regulation networks. The subnetwork C (Figure 7C) was mostly related to the
extracellular matrix organization being upregulated, including the genes, TIMP4, MMP3, SPARC, DPT,
and ACAN. Also in this subnetwork, those genes that referred to the regulation of cell migration were
downregulated, including the genes, TNFAIP6, DCN, SPARC, THBS1, and CCL8. This means the
increase of the extracellular matrix may have hindered the migration of the tumor. Also, negative
synaptic transmission, adherens junction organization, and regulation of cell migration was found in
subnetwork E, G, and I (Figure 7E,G,I). Several metabolic processes were also discovered, including
the drug metabolic process, xenobiotic metabolic process, oligosaccharide metabolic process, etc. All
other PhenomeScape networks can be found in Supplementary Figure S1.

Although, there is no evidence to prove the bufadienolide-like chemicals having obvious toxicity
with the CEBS database (https://manticore.niehs.nih.gov/cebssearch/) [30]. In this research, in
order to identify the potential cardiotoxicity of bufadienolide-like chemicals, 11 cardiotoxicity relation
phenotypes (Table 6), including arrhythmia (HP:0011675), atrial fibrillation (HP:0005110), atrial flutter
(HP:0004749), and other phenotypes, were chosen as seed phenotypes of cardiotoxicity with the aim
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of searching for the potential dysregulation subnetworks with cardiotoxicity. Results indicated six
subnetwork related to membrane depolarization during the action potential (p-value = 3.70 × 10−3,
Figure 8A), retinoic acid receptor binding (p-value = 2.00 × 10−3, Figure 8B), GABA receptor binding
((p-value = 3.00 × 10−3, Figure 8C), positive regulation of nuclear division (p-value = 5.00 × 10−3,
Figure 8D), negative regulation of viral genome replication (p-value = 3.00 × 10−3, Figure 8E), and
negative regulation of viral life cycle (p-value = 1.00 × 10−3), which were identified as potential
cardiotoxicity subnetworks disturbed by bufadienolide-like chemicals (Table 4 and Figure 8). The
subnetwork related to membrane depolarization may be the key potential cardiotoxic target of
bufadienolide-like chemicals. These were also be observed by several widely used anticancer drugs
with cardiotoxicity. For example, Adriamycin, Gleevec, and Herceptin were observed with a membrane
depolarization appearance during clinical research [31,32].

 

Figure 8. The differentially regulated sub-networks with potential cardiotoxicity disturbed by
bufadienolide-like chemicals, generated by the PhenomeScape plug with seeds of 11 cardiotoxicity
phenotypes. (A) Subnetwork related to membrane depolarization during action potential (3.70 × 10−2),
(B) Subnetwork related to retinoic acid receptor binding (2.00 × 10−3), (C) Subnetwork related to
GABA receptor binding (3.00 × 10−3), (D) Subnetwork related to positive regulation of nuclear division
(5.00 × 10−3), (E) subnetwork related to negative regulation of viral genome replication (3.00 × 10−3),
and (F) subnetwork related to negative regulation of viral life cycle (1.00 × 10−3).

Table 4. Summary of differentially regulated sub-networks with potential cardiotoxicity disturbed by
bufadienolide-like chemicals.

Subnetwork Number No. of Nodes GO-BP Empirical p-Value

A 21 Membrane depolarization during action potential 3.70 × 10−2

B 19 Retinoic acid receptor binding 2.00 × 10−3

C 9 GABA receptor binding 3.00 × 10−3

D 23 Positive regulation of nuclear division 5.00 × 10−3

E 13 Negative regulation of viral genome replication 3.00 × 10−3

F 6 Negative regulation of viral life cycle 1.00 × 10−3
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Hub genes, mostly the highly connected nodes in the network, were identified by node degree
and the MCC (Maximal clique centrality) algorithm with the Cytoscape plugin, cytoHubba [33]. Based
on the threshold of the degree (degree > 5) and the MCC algorithm, 10 genes with MCC scores
ranging from 126 to 953 were identified as hub genes (Figure 9A,B). Ten hub genes, including three
2′-5′-oligoadenylate synthetase genes, OAS1, OAS2, and OAS3; five interferon-induced genes, ISG15,
IFIT1, IFI6, IFI44, and IFIL44L; and two other genes, including the kelch-like family member 35
(KLHL35) and Golgi Membrane Protein 1 (GOLM1) were identified. These were selected as the hub
genes. Further investigation with TCGA [21] and the Kaplan-Meier databases [22] indicated that the
10 hub genes except KLHL35 were increased both in the treatment with bufadienolide-like chemicals
and the TCGA breast cancer sample (Figure 9C). Six hub genes, including IFIT1, ISG15, IFI6, GOLM5,
KLHL35, and OAS2, were associated with the total survival probability in breast cancer patients
(Figure 9D). Further analysis of the correlation between the hub genes and the total survival time in
breast cancer indicated that the high expression of GOLM5, KLHL35, and OAS2 was associated with a
better survival probability.

 

Figure 9. The 10 hub genes and their correlation with the total survival probability in breast
cancer. (A) The 10 hub genes and their MCC (Maximal clique centrality) score. (B) The network
of hub genes. (C) The expression correlation with breast cancer, validated by the TCGA database.
(D) The total survival probability correlation with breast cancer, validated by the Kaplan-Meier (KM)
plotter database.

3. Discussion

Recently, gene expression profile technology, including the microarray and RNA-seq, has been
widely used to detect the potential mechanism of chemicals, however, a central problem still perplexes
researchers on pharmacology and biology; that is, how chemicals disturb pathways and phenotypes
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through genes and their co-expression networks. In this research, with the use of bioinformatics
tools, especially the differentially regulated sub-networks detection tools, PhenomeScape [20], CTD
(http://ctdbase.org/) [16], and CMAP2 (https://portals.broadinstitute.org/cmap/) [17,18] databases,
several dysregulated sub-networks related to the potential anticancer mechanism and cardiotoxicity
were revealed, which was also further verified by the expression correlation and survival probability
correlation with other databases. These results may highlight the potential molecular mechanism and
application of bufadienolide-like chemicals on cancer, especially as a novel agent for breast cancer.

First, during the process of differentially expressed gene identification, in contrast to using
the conventional method of differentially expressed gene selection with significance in statistics,
a non-parametric unsupervised method of gene set variation analysis was used for differentially
expressed gene identification. The results indicated a total of 80 DEGs involved in the 44 MSigDB
C2 curated gene sets were identified (Figure 3A,B). After further analysis with the enrichment of the
GO and KEGG pathway, we found genes that were up-regulated were most rich in their interferon
signaling response to virus, defense to other organisms, regulation of viral genome replication, and
2′-5′-oligoadenylate synthetase activity. KEGG pathway enrichment analysis showed those genes
could activate the IFN-induced pathway, type II interferon signaling pathway, and regulate the
protein ISGylation pathway. However, the genes that were down-regulated were rich in protein
kinase complex, transcription factor TFTC complex-1, SAGA- complex, and cargo loading into vesicle.
KEGG pathway enrichment analysis showed those genes may be involved in negative transport of
fringe-modified NOTCH to the plasma membrane pathway. By comparing the DEGs identification
method with the statistical significance strategy, the number of DEGs enriched in MSigDB C2 curated
gene sets may be much less compared to those DEGS with enrichment in the same biology function or
similar pathway. Also, the same results were proven by the examples of the GSVA package [15].

Second, during the process of similar small molecule detection, CTD (http://ctdbase.org/) [16]
and CMAP2 (http://www.broadinstitute.org/cMAP/) [17,18] databases were used. The results
indicated that the bufadienolide-like chemicals had the same effect as valproic acid and estradiol.
Valproic acid is a histone deacetylase inhibitor, and it was shown to inhibit proliferation via Wnt/β
catenin signaling activation. Estradiol was also proven to have anticancer activity, especially in
postmenopausal women. Also, the evidence from the CTD database (http://ctdbase.org/) indicated
bufadienolide-like chemicals have the potential ability to be used as hormones and anticancer and
vasoprotectives agents.

Third, during the process of co-expression network reconstruction and dysregulated sub-networks
detection, a novel plug of PhenomeScape was used, which could combine the data of gene expression
into the knowledge of protein–protein interaction networks and disease phenotype [20]. During
the analysis with the damaged osteoarthritic cartilage gene expression profile, several significant
sub-networks related to damaged osteoarthritic cartilage were identified: Mitotic cell cycle, Wnt
signaling, apoptosis, and matrix organisation [34,35]. In this research, with the PhenomeScape
tool [20], a total of 19 differentially regulated sub-networks were identified, and 10 sub-networks
were proven to relate to breast cancer by evidence, including RNA splicing, apoptotic process, cell
migration, extracellular matrix organization, adherens junction organization, synaptic transmission,
and so on. Also, with the PhenomeScape tool [20], six dysregulated subnetworks, including the
subnetwork related to membrane depolarization during the action potential, retinoic acid receptor
binding, GABA receptor binding, positive regulation of nuclear division, negative regulation of viral
genome replication, and negative regulation of viral life cycle, were identified. Those dysregulated
subnetworks may play important roles in the cardiotoxicity of bufadienolide-like chemicals.

Hub gene selection and its relation to survival probability indicated that 10 hub genes (except
KLHL35) were increased in both breast cancer and samples treated with bufadienolide-like chemicals.
Further analysis in relation to the total survival probability showed six hub genes, including IFIT1,
ISG15, IFI6, GOLM5, KLHL35, and OAS2, were associated the total survival time and high expression
of GOLM5, KLHL35, and OAS2 was associated with better survival probability.
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4. Materials and Methods

4.1. Microarray Data Information

The gene expression profiles of GSE85871 (https://www.ncbi.nlm.nih.gov/gds/), which is a gene
expression profile treated with 102 chemicals from Chinese traditional medicine, and is based on the
Affymetrix GPL571 platform (Affymetrix Human Genome U133A 2.0 Array, Santa Clara, CA, USA),
was submitted by Lv et al. [36].

In this study, the raw data of 4 controls and 14 samples treated with bufadienolide-like chemicals
(1 µM and treatment with 12 h), including resibufogenin, bufalin, arenobufagin, cinobufagin,
bufotoxin, telocinobufagin, bufotaline, and cinobufotali, were downloaded from the GEO database via
GEOquery [37] packages in the R3.5.1 [38] environment.

4.2. Identification of DEGs Associated with Relative Enrichment Pathways

In order to obtain a series of differentially expressed genes (DEGs) with biological interpretation,
a novel R package, GSVA [15], was employed, which allowed the assessment of the DEGs underlying
pathway activity variation by transforming the gene expression profile into the prior knowledge of
the gene set. In accordance with MIAME (Minimum Information About a Microarray Experiment)
standards [39,40], the DEGs disturbed by bufadienolide-like chemicals were identified by a series of
standard flow with the R environment. First, the quality assessments, background correction, and
normalization were preprocessed and normalized with the affy [41] and gcrma [42] packages. Then,
the batch effects were examined and removed with the combat and sva functions in the SVA (Surrogate
Variable Analysis) package [43]. Subsequently, a non-specific probes filtering step was performed with
the nsFilter function in the genefilter package [44], the quality control probes of Affymetrix, probe sets
without Entrez ID annotation, probesets whose associated Entrez ID was duplicated in the annotation,
and the top 20% with smaller variability were first removed. Finally, the GSVA [43], GSEABase [45],
limma [46] package, and c2BroadSets from Molecular Signatures Database (MSigDB) [47,48] were used
to select the DEGs enriched in the relative enrichment pathways.

During the process of DEGs selection with relative enrichment sets, the gene expression profile
was first transformed into the prior knowledge gene sets of c2BroadSets and the enriched gene sets were
selected with the screening criteria of FDR < 0.01. Then, the DEGs enriched in the c2BroadSets gene
sets were selected with the limma [46] package, and the screening criteria were set with FDR < 0.01 and
|logFC| > 1. The DEGs associated with relative enrichment pathways were used for further analysis.

During the process of DEGs identification, the Biobase [49] package and GSVAdata [50] package
were also applied. The results were visualized with the ggplot2 [51], ggpubr [52], pheatmap [53], and
cowplot [54] packages.

4.3. Gene Enrichment Analysis

In order to obtain a comprehensive understanding of those genes involved in the prior knowledge
of gene sets, GO and KEGG enrichment analysis were performed with the clueGO plug [23] in
Cystoscape [24]. The significantly enriched GO terms and KEGG pathways were calculated by the
hypergeometric test [55], and cut-off criteria were set as FDR < 0.05. Another statistical parameter of the
Kappa Score were set as middle stringency, which means the terms in the network were merged with
the middle related terms based on their overlapping genes. The minimum percentage and minimum
genes enriched in GO terms or KEGG pathways were set as 1.0% and 2; also, the term fusion parameter
was also chosen. Other options, including the statistical options, reference options, grouping options,
and visual options, were set with the default setting.

4.4. Similar Small Molecule Detection

In order to detect the similar small molecules with bufadienolide-like chemicals, the DEGs
with up or down were respectively submitted to the CTD (http://ctdbase.org/) [16] and CMAP2
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(http://www.broadinstitute.org/cMAP/) database [16,17]. During the process of detection of similar
small molecules with the CTD database, the threshold of degree in the degree filter network was set
as 10. During the process of detection of similar small molecules with the connectivity map database,
the enrichment score and p-value were chosen as the similarity index between the gene expression
profile of the query signature and that of chemicals in the CMAP2 database.

Also, the potential toxicity the same as bufadienolide-like chemicals were also detected with
the CEBS database (https://manticore.niehs.nih.gov/cebssearch/) [30], but there was no evidence to
prove the bufadienolide-like chemicals had obvious toxicity.

4.5. Gene Co-Expression Network Analysis and Disease Phenotype Association

To obtain a comprehensive understanding of the potential mechanism of DEGs involved
in breast cancer, co-expression network analysis, phenome association, and survival correlation
analysis were investigated with the NetworkAnalyst database (https://www.networkanalyst.ca/) [56]
and PhenomeScape plug [20] in Cystoscape [24]. Also, other plugs and databases, including
the cytoHubba [33], TCSBN database (http://inetmodels.com/) [19], TCGA database [21] and
Kaplan-Meier (KM) plotter database (http://kmplot.com/) [22], and the Phenomiser (http://compbio.
charite.de/phenomizer/) [57] web tool, were also used for hub gene selection and survival correlation
analysis. First, the breast mammary tissue-specific co-expression networks were investigated with the
TCSBN database (http://inetmodels.com/) through the NetworkAnalyst web server (https://www.
networkanalyst.ca/). The GO and KEGG enrichment terms of networks were also investigated with
the NetworkAnalyst web server (https://www.networkanalyst.ca/). Subsequently, the differentially
regulated sub-networks enriched in genes associated with the breast cancer phenotype were identified
by random sampling (10,000 sub-networks) methods with the PhenomeScape plug and Phenomiser
(http://compbio.charite.de/phenomizer/) web tool. First, through the search with Phenomiser web
tool and the manual of UberPheno ontology [57], 6 breast carcionma phenotypes (Table 5) and 11
cardiotoxicity relation phenotypes (Table 6) were chosen as the potential anticancer mechanism or
potential cardiotoxicity association phenotype. Parameters of the maximum initial sub-network size
of 7 and an empirical p-value threshold of 0.05 were used for filtering the differentially regulated
sub-networks enriched in genes associated with breast cancer or the cardiotoxicity phenotype.

Hub genes, highly interconnected with nodes in the network, are considered functionally
significant in the network. In our study, the top 10 hub genes were defined by the node degree
and MCC algorithm in the Cytoscape plugin, cytoHubba [33]. We used the previously described
workflow that selected the essential proteins from the yeast protein interaction network with the MCC
algorithm [33]. First, the degrees of nodes were computed by the NetworkAnalyzer [58] in Cytoscape.
Then, the nodes with a degree greater than a threshold were selected as potential candidate hub genes,
and the threshold was the maximum integer as 2 × ∑

v∈V, Deg(v)>t

Deg(v) > ∑
v∈V,

Deg(v), where v is the

collection of nodes within the network V, Deg(v) is the degree of node v. Last, the top 10 hub genes
were ranked by the MCC algorithm in the cytoHubba plugin. The hub genes common in breast tissue
co-expression networks were chosen as the candidates for further validation with TCGA [21] and the
Kaplan-Meier (KM) plotter database (http://kmplot.com/analysis/) [22].

Table 5. UberPheno phenotype terms selected for identification of the differentially regulated
sub-network with the potential anticancer mechanism of bufadienolide-like chemicals.

Phenotype ID Phenotype Description

HP:0100783 Breast aplasia
HP:0100013 Neoplasm of the breast
HP:0003002 Breast carcionma
HP:0003187 Breast hypoplasia
HP:0000769 Abnormality of the breast
HP:0010619 Fibroma of the breast
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Table 6. UberPheno phenotype terms selected for identification of the differentially regulated
sub-network with potential cardiotoxicity of bufadienolide-like chemicals.

Phenotype ID Phenotype Description

HP:0011675 Arrhythmia
HP:0005110 Atrial fibrillation
HP:0004749 atrial flutter
HP:0011215 Hemihypsarrhythmia
HP:0002521 Hypsarrhythmia
HP:0040182 Inappropriate sinus tachycardia
HP:0001962 Palpitations
HP:0005115 Supraventricular arrhythmia
HP:0004755 Surpraventricular tachycardia
HP:0004308 Ventricular arrhythmia
HP:0011841 Ventricular flutter

5. Conclusions

In this research, with a serious of bioinformatics analysis, we noticed that the bufadienolide-like
chemicals may perform anticancer activity through RNA splicing, apoptotic process, cell migration,
extracellular matrix organization, adherens junction organization, synaptic transmission, Wnt signaling,
AK-STAT signaling, BMP signaling pathway, and the unfolded protein response (Figure 10A). Also,
further investigation of the potential cardiotoxicity of bufadienolide-like chemicals indicated the
dysregulated subnetwork related to membrane depolarization during the action potential, retinoic acid
receptor binding, GABA receptor binding, positive regulation of nuclear division, negative regulation
of viral genome replication, and negative regulation of viral life cycle may play important roles in
cardiotoxicity (Figure 10B). Additionally, those may highlight the potential molecular mechanism
of bufadienolide-like chemicals on breast cancer, but still, there are several problems with no better
solution, including the renal toxicity of bufadienolide-like chemicals, and the difference of potential
molecular mechanisms among different stem nuclei in bufadienolide-like chemicals was also clearly
illuminated in this research.

 

Figure 10. The potential anticancer mechanism and cardiotoxicity of bufadienolide-like chemicals.
(A) The potential anticancer mechanism of bufadienolide-like chemicals. Nodes p1–p10 means
the 10 differentially regulated sub-networks in Figure 7. (B) The potential cardiotoxicity of
bufadienolide-like chemicals: Node p11–p15 means the five differentially regulated sub-networks in
Figure 8.
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Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/11/1/
91/s1, Figure S1: Other differentially expressed networks regulated by bufadienolide-like chemic, Table S1:
The DEGs disturbed by bufadienolide-like chemicals, Table S2: The different gene sets disturbed by
bufadienolide-like chemicals.
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Abstract: Epidermal growth factor receptor (EGFR) inhibitors have benefitted cancer patients
worldwide, but resistance inevitably develops over time, resulting in treatment failures. An accurate
prediction model for acquired resistance (AR) to EGFR inhibitors is critical for early diagnosis
and according intervention, but is not yet available due to personal variations and the complex
mechanisms of AR. Here, we have developed a novel pipeline to build a meta-analysis-based,
multivariate model for personalized pathways in AR to EGFR inhibitors, using sophisticated machine
learning algorithms. Surprisingly, the model achieved excellent predictive performance, with a
cross-study validation area under curve (AUC) of over 0.9, and generalization performance on
independent cohorts of samples, with a perfect AUC score of 1. Furthermore, the model showed
excellent transferability across different cancer cell lines and EGFR inhibitors, including gefitinib,
erlotinib, afatinib, and cetuximab. In conclusion, our model achieved high predictive accuracy
through robust cross study validation, and enabled individualized prediction on newly introduced
data. We also discovered common pathway alteration signatures for AR to EGFR inhibitors,
which can provide directions for other follow-up studies.

Keywords: drug resistance; gefitinib; erlotinib; biostatistics; bioinformatics

1. Introduction

Despite the initial benefits of EGFR inhibitors in cancer patients harboring EGFR mutations, the
rapid development of acquired resistance (AR) is a major obstacle in clinical practice and often leads to
therapeutic failure and disease recurrence. A broad range of mechanisms of AR to EGFR inhibitors have
been proposed, from mutational to non-mutation-based mechanisms. However, the exact mechanisms
still remain unclear due to the multifactorial natures of cancer and intracellular signaling networks.
Inherent crosstalk and redundancy of signaling pathways introduces huge complexity [1,2]. Therefore,
inhibiting a single signaling network via drugs may trigger other survival pathways and limit efficacy.
These complex dynamics make it more difficult to understand the underlying causes of AR and predict
potential EGFR inhibitor sensitivity.

With the recent growth of publically available genomic data, meta-analysis and computational
modeling have emerged as key tools to overcome the limitations of insufficient statistical power in
individual studies. Conventional meta-analysis methods are often univariate, performing statistical
analysis on each feature independently. As conventional classification algorithms tend to overfit
high-throughput datasets, also known as high dimension low sample size (HDLSS) datasets, analyses

Cancers 2019, 11, 45; doi:10.3390/cancers11010045 www.mdpi.com/journal/cancers307



Cancers 2019, 11, 45

are practically infeasible, resulting in lower accuracy rates when the model is applied to blind data [3,4].
In recent years, regularized regression classifiers such as lasso and elastic net have emerged as more
effective ways to perform feature selection and prediction in high dimensional data [4]. These methods
modify the conventional ordinary least squares model, using a sparsity penalty that shrinks regression
coefficients by imposing a constraint on their size. While this penalty function pushes some
coefficients towards zero and introduces some bias, the decrease in variance can potentially improve
predictive performance on new, unseen data. These techniques are more interpretable than alternative
state-of-the-art algorithms such as support vector machines (SVM), artificial neural networks (ANN),
and random forests, which are often considered to be black box models [5]. It is hard to interpret
these alternative models, since their inner workings are incomprehensible. Model interpretability
and parsimony are especially important in medical field, where numbers of predictors are much
larger than sample sizes. In this aspect, regularized regression classifier is regarded as the most
optimal model, since it has both more interpretability and similar or superior predicting performance
compared with the alternative algorithms. Another possible strategy that reduces model complexity
and increases interpretability is the pathway-based approach, which has the potential to better
reflect the heterogeneous nature of cancer pathophysiology, compared to classical single gene- or
molecule-based methods.

Early detection of acquired EGFR inhibitors resistance is critical, and can help physicians establish
a treatment plan by predicting the outcome of a disease. However, previous prediction models are
often only applicable to specific types of EGFR tyrosine kinase inhibitors (TKIs), provide insufficient
sensitivity or specificity for other types of EGFR inhibitors, and fail to detect generalized predictors.

In this study, using a sophisticated penalized machine learning technique, we built a
meta-analysis-based, multivariate model for personalized pathways in acquired EGFR inhibitor
resistance. This resulted in a more interpretable and robust model with high generalized predictive
performance throughout various EGFR inhibitors and cancer types.

2. Results

To build a robust and generalized prediction model based on individualized pathway information,
we developed a novel pipeline that integrates meta-analysis-based regularized regression with
pathway-level measurement of abnormality (Figure 1). A total of 8 studies, all of which followed
the strict AR criteria mentioned in the methods section, were used for model building. The study
cohort was very heterogeneous in terms of the types of EGFR inhibitors, platforms, and cancer cell
lines (Table S1). We merged 8 studies through an empirical Bayes algorithm [6] to create an internal
training and validation set, after reserving 30% of the samples in GSE34228 and GSE10696 for an
external validation set with the createDataPartition function from R package Caret. This function
performs a stratified random split of the data by sampling within each class to preserve the overall class
distribution [7]. These studies were selected because they were the only cohorts with large enough
sample sizes for this purpose.
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Figure 1. Pipeline for performing a meta-analysis-derived, multivariate model for personalized
pathways in acquired epidermal growth factor inhibitor tyrosine kinase inhibitor (EGFR TKI) resistance
(AETR). The pipeline consists of three main parts: cross study normalization, pathway mapping,
and prediction model construction. The study cohort was preprocessed and categorized into an
internal training/validation study set (N) and an external validation study set (M). For cross-study
normalization, an empirical Bayes (EB) method was used. Pathway mapping for each individual
sample was conducted using a Pathifier algorithm and public pathway databases (KEGG, BioCarta,
and PID). The regularized regression model was built using elastic net. The optimal values of the
hyper-parameters α and λ for elastic net regression were obtained from robust cross validation
(leave-one-study-out cross validation (LOSOCV) or leave-one-out cross validation (LOOCV)) with
Efficient Parameter Selection via Global Optimization (EPSGO) algorithm. S, sensitive.

We then used the Pathifier algorithm to convert the transcriptomics-level data matrix to a
pathway-based matrix containing pathway dysregulation scores (PDS) [8]. Recently developed, the
Pathifier algorithm is viewed as the best functional class scoring relevant algorithm currently available
for deducing pathway level scores. This method finds a principal curve, which nonparametrically and
nonlinearly generalizes the first principal component for dimension reduction, using the algorithm
by Hastie and Stuetzle [9]. Pathifier produces a one-dimensional principal curve from a cluster of
data points in a high-dimensional space. The PDS is a metric that represents the extent of pathway
abnormality per sample, and can be calculated using the distance from the starting point of the
principal curve to the point projected by a particular individualized pathway. In our study, the initial
point was the centroid of the control group, sensitive to EGFR inhibitors. A PDS can range from
0 to 1, with a score closer to 1 indicating a more abnormal pathway. Using this method, it is
possible to represent samples using fewer, but more informative variables, based on prior biological
pathway knowledge [8]. Applying pathway information from curated databases, including the
Kyoto Encyclopedia of Genes and Genomes (KEGG) [10], BioCarta [11], and the National Cancer

309



Cancers 2019, 11, 45

Institute–Nature Pathway Interaction Database [12], we obtained principal curves for each pathway,
and a PDS matrix with 752 rows (pathway features) and 90 columns (samples) (Figure 2A,B). With this
PDS matrix, we then used a meta-analysis-based penalized regression method to construct a prediction
model for AR to EGFR inhibitors. Penalized regression approaches such as lasso, ridge, and elastic
net have been developed to address the challenges caused by high dimensionality of the feature
space [4,13,14]. These methods have recently been used to successfully analyze high dimensional
human genetic data [4,15,16]. Regression coefficients are shrunk by adding a penalty function to
the loss function, which potentially introduces bias but also reduces model variance. Elastic net is
a linear combination of lasso and ridge penalties. Two hyperparameters (α and λ) are calibrated for
an optimal elastic net penalty function. The α hyperparameter adjusts the levels of contributions
from the ridge (L2-norm penalty) and lasso penalties (L1-norm penalty), while λ controls the overall
degree of penalization [14]. We used a meta-heuristic algorithm called efficient parameter selection via
global optimization (EPSGO) [17], rather than the commonly used fixed grid search methods which
are highly arbitrary (see Materials and Methods section for details). Elastic net showed excellent
performance on leave-one-out cross-validation (LOOCV), compared to ridge or lasso regression, and
EPSGO-tuned elastic net further increased the discrimination power of the classifier (Figures S1 and
S2, Table S2). Consequently, EPSGO tuning was employed to find the optimal values of α and λ

with minimum binomial deviance (Figure 3A). These optimal parameter values were used for feature
selection (Figure 3B,C, Figure S2). At the value for which the penalization parameter gave the lowest
cross validation error, the overall area under curve of receiver operating characteristic (AUROC) of
the classifier was 0.91 and 1 for the LOSOCV and LOOCV settings, respectively (Figure 4A,C and
Figure S3). The results were quite surprising, because all eight studies in the cohort came from
different types of cancer cell lines, EGFR inhibitors, and technology platforms (Figure 2A and Table S1).
This suggests that pathway-based features have high transferability and generalizability. In addition,
other performance metrics (F1, precision, recall, Brier score, accuracy, and Matthews correlation
coefficient (MCC)) that examine prediction error further support the predictive power of this model
(Figure 4B,D, Figure S3 and Table S5).
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Figure 2. Meta-analysis-derived pathway deregulation analysis. (A) Pathway dysregulation score (PDS)
matrix for the 8 internal training/validation study sets. Each row represents the z-score-normalized
PDS for each individual sample in each cohort. The color-bars in the bottom indicate the following
from top to bottom: (1) the study cohort. (2) The resistance status of samples. (3) The cancer subtype
of the samples. (4) The type of EGFR-TKI. (B) Principal curves of selected pathways. The principal
curve learned for the pathways on the 8 study cohort. The data points and the principal curve are
projected onto the three principal components (PCs; PC1 to PC3). The principal curve goes through
the cloud of samples and is directed so that EGFR-TKI-sensitive samples are near the beginning of the
curve. The acquired EGFR-TKI-resistant samples are projected onto the curve. AR, acquired resistance;
S, sensitive; Gef, Gefitinib; Erl, Erlotinib; Afa, Afatinib; Cetu, Cetuximab.

The leave-one-study-out strategy gave a more parsimonious model with 21 non-zero pathway
coefficients, compared to 55 features by the leave-one-out strategy, suggesting that this model is more
interpretable and has less risk of overfitting (Figure 3A and Figure S2C). The detailed results are
given in Tables S3 and S4. Next, we further validated our model using an independent blind test set
(Gef-GSE34228 and Erl-GSE10696) that was not used in model discovery. The resulting pathway-based
predictive model still achieved very high performance on the independent test sets, with perfect AUCs
of 1 for both the Gef and Erl sets (Figure 4A,C). Moreover, the additional evaluation metrics also
confirmed the robustness and generality of our meta-analysis-based pathway-based learning model
(Figure 4B,D and Table S5).
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Figure 3. Optimizing meta-analysis-derived elastic net using LOSOCV. (A) Hyperparameter
optimization for elastic net with EPSGO. Cross validation deviance as a function of both tuning
hyperparameters α and log λ. The number of selected features in minimum deviance is shown next to
the symbol. The solid lines highlight the final EPSGO solution where the deviance is within 1SE of
the minimum. The initial points are plotted as rectangles and iteration points as circles. The optimal
parameter values with minimal deviance were found for α = 0.96 and log λ = −4.99, and are highlighted
as a solid line. (B) Coefficient paths for elastic net penalized regression models applied to the 8 study
cohort. The solution path is scaled to reflect log λ on the x-axis. (C) Heatmap of the pathways with
non-zero coefficients. Sensitive or acquired resistance condition for EGFR-TKIs is indicated above
the heatmap. The pathway features are listed in descending order with regard to their coefficient.
The optimal hyperparameter values were determined by LOSOCV. AR, acquired resistance; S, sensitive.
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Figure 4. Internal and external evaluation of model performance to distinguish sensitive and acquired
resistance to EGFR TKIs. (A) Receiver operating characteristic (ROC) curves for the binary classifier in
the leave-one-study-out cross validation (LOSOCV). The black line indicates the cross-validation curve,
and the dotted red line indicates the external test set. The curve shows sensitivity versus specificity,
based on probabilities computed through elastic net regression. (B) Different performance metrics
(Brier, ACC, precision, recall, F1, and MCC) for the evaluation of classification in LOSOCV. (C) Receiver
operating characteristic (ROC) curves for the binary classifier in the leave-one-out cross validation
(LOOCV). (D) Different performance metrics (Brier, ACC, precision, recall, F1, and MCC) for the
evaluation of classification in LOOCV. (E) Estimated probabilities for samples in cross-study validation.
Within study set and subgroup, samples are sorted by the probability of the true group. (F) Estimated
probabilities for samples in external independent validation. AR, acquired resistance; S, sensitive; ACC,
accuracy; MCC, Matthews correlation coefficient.

3. Discussion

Most EGFR inhibitor resistance predictive models use genomic predictors such as gene signatures,
filtered with arbitrary cutoff values and often hard to interpret. The use of a meta-analytic approach and
pathway features offers a more robust and comprehensive look into underlying biological processes
than individual genes. The novelty and strength of our approach is that we considered all dimensions
and applied pathway mapping to a multi-study model to build a generalized predictive model for
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AR to EGFR inhibitors. Through this, we achieved excellent predictive performance for both the cross
study validation set and the independent blind test set.

Our study employed a two-step approach to dimensionality reduction: cross-study pathway-level
representation and penalized regression with a global-tuning algorithm. The first step of complexity
reduction is to convert individual gene-level information into pathway-level information. A growing
body of evidence suggests that pathway-based features can provide more insight into the biological
aspects of disease prediction [8,18]. In our study, although the cohort was highly heterogeneous,
the model performed remarkably well, which suggests that pathway-based features are good
representatives of the true phenotypes. The second step of complexity reduction is regularization.
Due to the intrinsic nature of high dimensionality, the low sample size, and heterogeneity of the
studies we employed, a regularized regression approach was paired with a fine-tuning algorithm to
build a generalized classifier for EGFR inhibitor resistance. This regularization regression is comprised
of a loss function with a penalty function, with the latter function placing a heavier penalty on more
complex models. The severity of the penalty is tuned empirically using cross-study validation in
addition to the more traditional cross validation approach, and is then further optimized using the
state-of-the-art EPSGO algorithm to find the global optimization parameter. This process provides
additional reduction in model complexity and increases model interpretability.

From the 752 pathways used for the analysis, LOSOCV selected 21 non-zero pathway coefficients
for the final model, reflecting much more sparsity than the final model by LOOCV, which contains 55
non-zero features (Table S3). The common genes shared in more than 10 pathways were PI3K, AKT1,
MAPK1, SRC, SHC1, FYN, and GRB2. All of them are known to play a central role in EGFR-mediated
signaling pathways (Table S4 and Figure S4B). The majority of the pathways are closely related
to previously identified potential EGFR inhibitor drug resistance pathways (NCI’s ‘Regulation of
p38-alpha and p38-beta’ [19]; NCI’s ‘E−Cadherin signaling’ pathway’ [19]; ‘Hedgehog signaling
events mediated by Gli proteins’ [20]; ‘Atypical NF-kb pathway’ [21]; BioCarta’s ‘PTEN dependent
cell cycle arrest and apoptosis’ [22]; ‘CXCR4 signaling pathway’ [23]; ‘Hypoxia-inducible factor in
the cardiovascular system’ [23]). The associations between the rest of the pathways and acquired
resistance are relatively unexplored and require follow-up functional studies. One of them is BioCarta’s
ER associated degradation (ERAD) pathway, which had the highest non-zero coefficient (Table S3).
Traditionally, EGFR proteins are known as cell surface receptors activated by ligand binding, which
results in tyrosine kinase activation and downstream signaling. These downstream signaling pathways
are crucial for aggressiveness and resistance development of cancers. Recent evidence has indicated
that EGFR receptors are transported from the cell surface to the nucleus, and transmit signals to
influence a variety of biological functions. It has been hypothesized that EGFR receptors are shuttled to
the cytoplasm through the ERAD pathway, and to the nucleus through the nuclear pore complex (NPC)
and importin-β [24]. Nuclear EGFR has been reported in various tumors, and was associated with poor
outcomes [25,26]. One previous study indicated nuclear EGFR is accountable for cetuximab acquired
resistance [27]. Further investigation into the ERAD pathway and nuclear EGFR is urgently needed, as
it may provide invaluable knowledge into acquired resistance. Some of the others are directly involved
in growth factor signaling, among them the NCI’s ‘EGFR-dependent Endothelin signaling events’
and ‘Ephrin a reverse signaling pathway’. Nectins and DeltaNp63 signaling pathways are known
to be implicated in the tumor progression and anticancer drug resistance [28,29], but their potential
roles in EGFR inhibitors resistance have not yet been studied. Three out of 21 non-zero pathways are
metabolic pathways. Two of them are associated with the biosynthesis of fatty acids, and the other with
phenylalanine metabolism (Table S3 and Figure S4A). Glycosylated sphingolipids are involved in the
formation of lipid rafts, which have long been suggested to play an important role in the development
of multidrug resistance (MDR) [30]. It has been reported that EGFR is commonly localized to lipid
rafts, most prominently in the EGFR TKI resistant cell lines [31]. Phenylalanine has been shown to
have the potential to suppress the MDR phenotype [32]. However, whether phenylalanine metabolism
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is involved in EGFR TKI resistance had not been reported. A better understanding of these pathway
features could potentially serve as a basis for discovering the mechanism of resistance development.

Having parsimony and transferability without losing predictive capacity is very important in
models, especially for medical applications. This is the first study of its kind to report such high
validation accuracy and transferability over different types of cancer cell lines and EGFR inhibitors.
In this study, using a state-of-the art machine learning technique, we successfully developed a
meta-analysis-derived, multivariate model for personalized pathways in acquired EGFR inhibitor
resistance that is able to accurately identify general predictors.

4. Materials and Methods

4.1. Data Set Configurations

Eight publicly available study cohorts (GSE34228, GSE10696, GSE62061, GSE49135, GSE38310,
GSE62504, GSE75468, GSE21483) [33–38] only included samples that were stepwise selected for
acquired resistant cell lines and encompassed 4 different types of EGFR inhibitors (gefitinib, erlotinib,
afatinib and cetuximab), 3 types of cancer (lung, head and neck, and epidermoid cancer), and 4 types
of array platforms (Table S1). GSE75468 included acquired afatinib-resistant non-small cell lung cancer
cell lines derived from a tumor xenograft model. We excluded studies with insufficient information
on the type of drug resistance (innate or acquired). Animal studies and studies with extremely small
sample sizes or an inadequate control conditions were also ruled out. The selection process resulted
in a total of eight studies to be included in the study cohort. Of these, the gefininb (GSE34228) and
erlotinib (GSE62061) studies had large enough sample sizes to be partially used to construct an external
test set. Stratified random sampling was used to select 30% of the samples from each study for external
use. The other six studies were solely used for model training and cross-study validation due to the
smaller sample sizes. Detailed information of the study subjects is given in Table S1.

4.2. Data Processing

All data used in this paper is publicly available from the Gene Expression Omnibus (GEO).
Normalization and log-transformation of expression values from each dataset were performed as
previously described in detail [15]. If raw data from Affymetrix platforms were available, they were
pre-processed by robust multi-array average (RMA) [15]. Otherwise, we used pre-processed data from
the authors. For gene level summarization, we employed an interquartile range (IQR) method, in
which we selected the probe set ID with the largest IQR of expression values among all multiple probe
set IDs to represent the gene. Cross-study normalization to correct batch effect was performed using
the ComBat function in the sva R package [39]. ComBat uses an empirical Bayes method, which tunes
data to remove batch effects and is very effective for datasets with small sample sizes [6]. Blind sets
for external validation were not used in internal cross-study normalization to prevent any effects in
model building, which established the model’s generalizability to predict from any unknown data [15].
In external validation, we used ComBat for cross-study normalization for each addition of a blind
set using the same protocol. Next, as biological pathways are the aggregate of gene activities and
generally much more robust than gene markers, we converted gene-wise information to pathway-wise
information to detect the common features for acquired drug resistance, regardless of EGFR inhibitors
and cancer cell lines [40,41].

4.3. Pathway Mapping

Pathway dysregulation scores (PDS) for each individual sample were calculated using a pipeline
that employed the Pathifier algorithm as previously described [7]. Pathifier is a non-linear method for
quantifying degree of pathway abnormality. The algorithm learns the standard pathway flow from
control samples and utilizes this to construct a principal curve. Every sample is projected onto this
principal curve, and the PDS is calculated from the normalized projection distance for each sample’s
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pathway. Pathway information used to form PDS matrix was extracted from ConsensusPathDB
(CPDB) (http://consensuspathdb.org/) [42], which comprises curated information from BioCarta,
Kyoto Encyclopedia of Genes and Genomes (KEGG), and the National Cancer Institute—Nature
Pathway Interaction Database. We used the R package pathifier [8] to calculate PDS.

4.4. Model Building

We built the prediction model using elastic net regularization using the R package
glmnet [13]. Friedman et al. [13,14] describe the elastic net algorithm in detail. To construct the
meta-analysis-derived classifier, we referred to and modified the function from R package C060 and a
pre-published script by Sill et al. [43], which is available online. We built additional wrapper functions
for the glmnet algorithm to fit and tune the model. We used leave-one-study-out cross validation
(LOSOCV) and leave-one-out cross validation (LOOCV) to find the optimal value of the regularization
parameter with both minimum deviance and minimum deviance + 1SE. In LOSOCV, one study
was then taken as the validation set for testing the model, and the remaining studies were used as
training data. The cross-validation procedure was repeated for the number of studies to estimate
the average standard error and find the optimal parameter values. The efficient parameter selection
via global optimization (EPSGO) algorithm was then used to further fine-tune the parameter [17].
EPSGO is a meta-heuristic algorithm which bases its learning an online Gaussian process, and its
parameters are chosen by maximum likelihood. Compared to the grid search method, this algorithm
is computationally efficient and robust against local minima. LOOCV followed the same process,
except for using a sample in place of a study. The optimal parameter values were then used for
variable selection.

4.5. Evaluation Strategies

We mainly used area under receiver operation characteristic curve (AUROC) to assess the model’s
performance. In the context of binary classification, the classifier can produce four possible outcomes:
true positive (TP), true negative (TN), false positive (FP), and false negative (FN). The ratio of true
positives over the sum of ground truth positives is called the true positive rate (TPR, also known
as sensitivity or recall), and is expressed as TP/(TP + FN). The ratio of false positives over the sum
of ground truth negatives is called the false positive rate (FPR or 1-specificity), and is expressed as
FP/(FP + TN). AUROC is the true positive rate as a function of the false positive rate, and measures
the aggregated classification performance with its value ranging between 0.5 and 1. A value of 0.5
corresponds to a random guess, while 1 means a perfect prediction. Precision is the ratio of true
positives over the sum of predicted positives, and is expressed as TP/(TP + FP). Precision recall curve
summarizes the model performance in terms of precision and recall. F-score is the harmonic mean of
precision and recall, expressed as 2*recall*precision/(recall + precision). Brier score is the mean squared
error between predicted probabilities and the actual outcome. MCC, taking all four outcomes (TP, TN,
FP, and FN) into account and expressed as (TP*TN) − (FP*FN)/square root((TP + FP)*(TP + FN)*(TN
+ FP)*(TN + FN)), is a geometric mean corrected for chance agreement and generally regarded as a
balanced measure. All statistic measures except the Brier score are directly proportional to predictive
performance. For the Brier score, higher values denote worse performances. MCC has a range from
−1 (completely incorrect) to 1 (completely correct). All other metrics mentioned above have a range of
(0, 1). All statistical evaluation and visualization were performed in the R software environment.

5. Conclusions

Accurate prediction of chemotherapy resistance is clinically crucial for the management of cancers.
Using pathway mapping and machine learning algorithms, we developed a pipeline to build a
meta-analysis-based, multivariate model for personalized prediction. Our model achieved high
prediction accuracy with generalizability and transferability through robust internal cross-study
validation and external validation, enabling personalized prediction for resistance over different
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types of cancer cell lines and EGFR inhibitors, including gefitinib, erlotinib, afatinib, and cetuximab.
From 752 pieces of pathway information, LOSOCV selected 21 pathway coefficients, which was
sparser than LOOCV. The highest non-zero coefficient for a pathway was BioCarta’s ER associated
degradation (ERAD) pathway, which is implicated in the shuttling of nuclear EGFR into the cytoplasm
before its eventual translocation into the nucleus. Further molecular and clinical confirmations are
urgently needed, as the associations of nuclear EGFR with various cancers and resistance to cetuximab
have been previously described.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/11/1/45/s1,
Figure S1: Performance comparison of the four classifiers including ridge, lasso, elastic net, and EPSGO-elastic net
on the merged cohort. (A) Receiver operating characteristic (ROC) and Precision-Recall curves of four classifiers.
(B) Different performance metrics for the evaluation of classification. EPSGO, Efficient Parameter Selection
via Global Optimization; AUROC, area under curve of receiver operating characteristic; ACC, accuracy; MCC,
Matthews correlation coefficient. Figure S2: Log loss as a function of the regularization hyper-parameter λ for
LOSOCV (A) and LOOCV (B) on the merged cohort. Points and, error bars correspond to the mean and the
standard deviation, respectively. The dashed lines indicate the final λ solution where the minimum deviance +
1SE was recorded. (C) meta-analysis-derived elastic net with LOOCV. The heatmap shows the pathways with
non-zero coefficents. AR, acquired resistance; S, sensitive; LOSOCV, leave-one-study-out cross validation; LOOCV,
leave-one-out cross validation. Figure S3: Precision-Recall curves for the binary classifiers ability to distinguish
sensitive and acquired resistance to EGFR TKIs in the internal leave-one-study-out (left) or leave-one-sample-out
(right) CV (green) and external test set (red). Figure S4: (A) additional principal curves of selected pathways.
(B) overlapping gene count in the 752 pathways listed (left) and genes shared in more than 5 pathways (right).
Table S1: Characteristics of individual studies. Table S2: The performances of four penalized regression models.
Table S3: Pathways with non-zero coefficients using LOOCV and LOSOCV. Table S4: The genes that overlaps
between pathways (overlap counts ≥ 3). Table S5: Performance scores for internal and validation.
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Abstract: Health-strengthening (Fu-Zheng) herbs is a representative type of traditional Chinese
medicine (TCM) widely used for cancer treatment in China, which is in contrast to pathogen
eliminating (Qu-Xie) herbs. However, the commonness in the biological basis of health-strengthening
herbs remains to be holistically elucidated. In this study, an innovative high-throughput research
strategy integrating computational and experimental methods of network pharmacology was
proposed, and 22 health-strengthening herbs were selected for the investigation. Additionally,
25 pathogen-eliminating herbs were included for comparison. First, based on network-based,
large-scale target prediction, we analyzed the target profiles of 1446 TCM compounds. Next,
the actions of 166 compounds on 420 antitumor or immune-related genes were measured using
a unique high-throughput screening strategy by high-throughput sequencing, referred to as
HTS2. Furthermore, the structural information and the antitumor activity of the compounds in
health-strengthening and pathogen-eliminating herbs were compared. Using network pharmacology
analysis, we discovered that: (1) Functionally, the predicted targets of compounds from health
strengthening herbs were enriched in both immune-related and antitumor pathways, similar to
those of pathogen eliminating herbs. As a case study, galloylpaeoniflorin, a compound in a health
strengthening herb Radix Paeoniae Alba (Bai Shao), was found to exert antitumor effects both in vivo
and in vitro. Yet the inhibitory effects of the compounds from pathogen eliminating herbs on
tumor cells proliferation as a whole were significantly stronger than those in health-strengthening
herbs (p < 0.001). Moreover, the percentage of assay compounds in health-strengthening herbs
with the predicted targets enriched in the immune-related pathways (e.g., natural killer cell
mediated cytotoxicity and antigen processing and presentation) were significantly higher than
that in pathogen-eliminating herbs (p < 0.05). This finding was supported by the immune-enhancing
effects of a group of compounds from health-strengthening herbs indicated by differentially expressed
genes in the HTS2 results. (2) Compounds in the same herb may exhibit the same or distinguished
mechanisms in cancer treatment, which was demonstrated as the compounds influence pathway gene
expressions in the same or opposite directions. For example, acetyl ursolic acid and specnuezhenide
in a health-strengthening herb Fructus Ligustri lucidi (Nv Zhen Zi) both upregulated gene expressions
in T cell receptor signaling pathway. Together, this study suggested greater potentials in tumor
immune microenvironment regulation and tumor prevention than in direct killing tumor cells
of health-strengthening herbs generally, and provided a systematic strategy for unveiling the
commonness in the biological basis of health-strengthening herbs in cancer treatment.
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1. Introduction

China has a long history of using traditional Chinese medicine (TCM) for treating cancer [1]. A large
amount of medication experience and clinical cases have been accumulated by TCM practitioners,
which makes TCM contribute greatly to the development of China’s national health status. According to
an urban basic medical insurance survey of inpatient use of health services in China from 2008 to 2010,
42.4% of oncology patients have used antineoplastic TCMs in the Chinese national medical insurance
catalogue [2]. With increasing scientific evidence in biological, chemical, and medical research, as well as
clinical trials, the use of traditional Chinese medicine in cancer treatment is gradually being recognized
as a complementary and alternative therapy all over the world [3–6].

Traditionally, TCM adopts a relative and holistic point of view in cancer treatment. The clinical
treatment strategy by strengthening health reflects the characteristics of focusing on regulatory
effects instead of the antagonistic effects of TCM, and embodies the classical therapeutic theory
that “pathogenic-qi cannot invade the body if health-qi remains strong” in the Canon of Internal
Medicine (Huangdi Neijing). Therefore, an in-depth exploration on the antitumor effects exerted
by health- strengthening herbs is meaningful and urgently needed. TCMs in the Chinese national
medical insurance catalogue (2017) for oncology treatment are officially divided into two categories,
including antitumor TCM and adjuvant TCM for tumors, which contain 40 TCM prescriptions
in total [7]. Additionally, some health-strengthening prescriptions are widely applied in cancer
treatment, such as Sijunzi decoction in colorectal cancer [8], Shenqi Fuzheng injection in colorectal
cancer and breast cancer [9,10], Shenling Baizhu San in gastric cancer [11], and Buzhong Yiqi decoction
in colorectal and lung cancer [12,13]. The wide application and the distinctive therapeutic strategy of
health-strengthening herbs have given rise to the growing research interests in the investigation on
the effects and the underlying mechanisms of health-strengthening herbs in cancer treatment. A large
amount of research effort has been put into the studies on the biological basis of health-strengthening
TCM from a variety of perspectives, such as their immune and metabolic regulatory effects.
For example, previous studies on various health strengthening formulae (e.g., Shenqi Fuzheng injection,
Danggui Buxue decoction, Huangqi Jianzhong decoction, and Liu-wei-di-huang pill) revealed their
protective effect on immune functions in cancer therapy [14–17]. Metabolic regulatory function is also
involved in the antitumor effects of health-strengthening formulae, suggested by the pharmacological
studies on the Liu-wei-di-huang pill, Jianpi Yiqi decoction, and Yishen Gukang decoction [17–19].
Considering the situation that more studies emphasize the immune regulatory effects of health
strengthening herbs, in this study, we took the immunological effects of health strengthening herbs as
an example to explore the commonness in their biological basis of in cancer treatment. Despite the great
efforts in the research field, the understanding of the antitumor mechanism of health-strengthening
medicine is not clear enough [20,21]. The solution is constrained by the following three interrelated
factors: the complex composition of TCM, the lack of target information of TCM, and the complex
biological system involved in cancer development. To further promote the application of TCM in the
treatment of cancer, proposing a comprehensive analysis strategy for exploring the impact of TCM
from a holistic point of view is urgently needed.

An increasing amount of evidence indicates that TCM may exert therapeutic effects by targeting a
variety of biomolecules [22]. However, due to the complexity of the ingredients and the limitations in
the application of experimental methods, the targets of many TCM compounds are still unclear [23].
It has been proposed that TCM formulae and herbs impact the network of targets in complex diseases,
such as cancer [24–27], and researchers may investigate the systemic effects of drugs on biological
networks. The systematic concept is consistent with the multitarget characteristic of TCM and makes
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it suitable for studying the complex mechanism of TCM [28,29]. The advent of the big data era,
the continuous accumulation of omics data, and the progress of bioinformatics methods provide
strong support for the development of network pharmacology [30]. As a core concept in network
pharmacology, network targets have changed the current research mode of “single target” and provided
a potential research strategy for analyzing the biological basis of TCM from the perspective of networks
and guiding the discovery of new active ingredients in TCM [31].

The development of high-throughput transcriptional assay technologies provides researchers
with a comprehensive viewpoint for exploring the effect of compounds on gene expression.
High-throughput methods are an integral part of pharmacological studies and have led to many
achievements in biomedical fields [32]. High-throughput experimental methods, together with other
genomic technologies, enables a comprehensive and systematic approach to the biological basis of
medicine. TCM is widely recognized as a holistic treatment to diseases [13] and the mechanisms of
TCM in cancer treatment are still unclear. Hopefully, the development of high-throughput methods
will shed light on deciphering the comprehensive mechanism of TCM in cancer treatment. Here, a
unique high-throughput screening strategy by high-throughput sequencing, referred to as HTS2 [33],
was adopted for investigating the biological basis of 166 TCM compounds in cancer simultaneously.
In the HTS2 assay, we added the compound library to the cell line and obtained a large-scale and
quantitative transcriptional profiling in cells by detecting the signals of the designed gene probes.

To approach the systematic mechanisms of TCM compounds for cancer treatment, we combined
network pharmacology prediction methods with HTS2 assay methods in our data analysis process.
In this research, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways involved in the
antitumor or immunological activities of the TCM compounds are identified [34]. Taking advantage of
the prediction and assay results, we conducted a systematic investigation on the antitumor mechanism
of compounds in the two types of herbs (health-strengthening and pathogen-eliminating herbs),
compounds in the same herb, and compounds that regulate the same pathway. Our study also
revealed a potential bioactive compound, galloylpaeoniflorin, for cancer therapy, which may exhibit
its efficacy via both regulating immune-related and antitumor pathways.

Together, by combining target prediction and high-throughput assay, this study proposed
a systematic overview on the biological basis underlying the pharmacological effects of health
strengthening herbs in cancer treatment. Despite the need for further investigation, it was indicated
that health-strengthening herbs may provide researchers with a valuable candidate library for tumor
immune regulatory and tumor preventive drug development.

2. Results

2.1. The Prediction and Examination of Potential Targets of by Literature Mining and the HTS2 Assay

Due to the complex composition of TCM and the lack of corresponding target records, the
potential target lists of TCM compounds were obtained by using a computational prediction method,
drugCIPHER-CS [12]. Literature mining based on text searching was conducted to verify the reliability
of the target prediction results. The co-occurrence of the compound and target appearing in one
or more abstracts was used to define the association between them. For each investigated TCM
compound, we searched the PubMed database by its name in the abstracts and counted the total item
number of the search results. Since the numbers of the related reports of the different TCM compounds
varied greatly, which would influence the following analysis results (e.g., the percentage of predicted
targets verified by literature), we only selected the compounds with adequate related reports (total
item number ranging from 500 to 1000) for the verification of target prediction results. All the related
abstracts of the selected compounds were downloaded, and text-processing codes were programed for
extracting the biomolecules mentioned in the abstracts. The results from literature mining were then
verified via manual examination by deleting the false positive responses.
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After literature mining, we obtained the biomolecules mentioned in the abstracts related to the
compounds in Figure 1A. Additionally, the differentially expressed genes (DEGs) after treatment with
these TCM compounds in the cell line were achieved using the HTS2 assay. We examined whether a
predicted target was directly or indirectly related with the biomolecules in the literature or DEGs in the
HTS2 assay. The indirect relationship was established if the predicted target was in the upstream in a
KEGG pathway of the biomolecules in the abstracts or DEGs, or if they were related by protein–protein
interaction (PPI) in the HPRD, BIND, IntAct, MINT, or OPHID database [35–39]. The cover rate
demonstrated in Figure 1A stands for the percentage of the predicted targets supported by literature or

the HTS2 assay. The cover rate was calculated as |The predicted targets related to the reported targets (or DEGs)|
|The predicted targets| ×

100%. The results (Figure 1A) indicated that the predicted target lists of TCM compounds for cancer
basically covered 75%–90% of the biomolecules in the literature and had a relatively strong reliability.
In addition, some potential targets were verified by the HTS2 experimental results, which demonstrated
that the HTS2 assay may be an alternative method for exploring the novel biological functions of
TCM compounds.

Figure 1. Evaluation of the target prediction results based on the literature and the HTS2 assay results.
(A) The ratio of the predicted targets of the TCM compounds covered by the literature and the assay
results. The cover rate was calculated as |The predicted targets related to the reported targets (or DEGs)|

|The predicted targets| × 100%.
(B) Some targets of wogonin, which were not related to biomolecules in the literature or the DEGs in the
HTS2 assay, were in the same pathway or connected via the protein–protein interaction (PPI) in STRING
with the biomolecules in the literature or the DEGs in the HTS2 assay for wogonin. (C) Literature
verification of the KEGG pathways related to the TCM compounds for cancer treatment with target
enrichment and HTS2 evidence. Error bars represent the precision and recall rates of different
TCM compounds. The precision was |The predicted relevant pathways related to the reported relavant pathways|

|The predicted relevant pathways| ×
100%. The recall rate was |The predicted relevant pathways related to the reported relavant pathways|

|The reported relevant pathways| × 100%. Data
represent mean ± SD.

In Figure 1A, we found that 87% of the predicted targets of wogonin, a representative compound
from Radix Scutellariae (Huang Qin), were supported with literature or assay evidence. As for the other
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13% of the potential targets of wogonin predicted by drugCIPHER-CS, some of them were connected
to the biomolecules in the literature or the DEGs in the HTS2 assay by an additional indirect mapping,
as shown in Figure 1B. The indirect mapping in Figure 1B represented protein–protein interaction (PPI)
in the STRING database [40] or relations via pathways in KEGG.

Next, to further analyze the mechanism of the action of the compounds, we performed KEGG
pathway enrichment analysis based on the target prediction results. We checked the enrichment
p-values of the targets in 26 cancer hallmarks (immune-excluded) and immune-related KEGG pathways.
The literature verification of the pathways with HTS2 or enrichment evidence was conducted manually
by reading the papers in the PubMed database. If a significantly enriched pathway was related to the
bioactivity records in the published papers in the PubMed database [41] or included enough DEGs (the
cut-off value was set as between one to five DEGs and the robustness of the threshold was measured
in Figure 1C) in the HTS2 assay results, then it would be considered as a predicted related pathway
with supports from literature records or HTS2 assay results. As shown in Figure 1C, a series of cut-off
values (from one to five DEGs in a pathway in the HTS2 assay) was set to examine the robustness of
the literature verification results. Our results indicated that the cut-off values had little influence on the
precision rate for the related pathways determined using an HTS2 assay, and the recall rate scaled from
97% to 72% as the cut-off changed. The precision and recall rate of the significantly enriched KEGG
pathways (p < 0.05, false discovery rate (fdr) adjusted) were approximately 60% and 70%, respectively,
which indicated the reliability of the pathway prediction results. By comprehensively considering both
the precision and recall results, we selected the pathways with three or more DEGs in the HTS2 assay
as the ones with support from the assay data for further investigation.

2.2. Target Prediction and Assay Results Indicate that the Two Types of TCM Herbs May Regulate Several Key
Biological Processes in Cancer Treatment, Including Antitumor and Immune Modulation

Historically, TCM encompasses a two-way philosophy in cancer treatment in that it is involved in
both health strengthening and pathogen elimination. TCMs applied in curing cancer are classified as
health-strengthening or pathogen-eliminating herbs according to their therapeutic effects. However,
the biological functions of the two types of anti-cancer TCMs have not yet been elucidated. Therefore,
we hoped to identify the regulated pathways of both types of TCM herbs by taking advantage of
network pharmacology prediction and the HTS2 assay. As shown in Figure 2A, 1446 compounds were
selected for target prediction, including 655 compounds in health-strengthening herbs, 667 compounds
in pathogen-eliminating herbs, and 124 compounds in both types of herbs. In Figure 2B, the structural
similarities among the compounds were measured by applying a principle component analysis (PCA)
method to the compound 2-D structure information from the ChEMBL database [42]. A total of
881-dimensional CADD Group Chemoinformatics Tools and User Services (CACTVS) substructures
in PubChem [43] were adopted to encode the structures of the investigated TCM compounds
into binary vectors. The PCA analysis was conducted by using the princomp function in the R
packages stats v3.2.2 (RStudio, Boston, MA, USA) under the environment of RStudio v1.1.447 [44].
As demonstrated in Figure 2B, the compounds in health-strengthening and pathogen-eliminating herbs
may contain similar substructures. This result was consistent with the fact that health-strengthening
and pathogen-eliminating herbs contained multiple compounds with common herbal chemical types,
such as saponins, flavonoids, and alkaloids. For further unveiling the structural basis of the two clouds
of compounds in Figure 2B, we examined the 10 CACTVS substructures that contributed the most to
the first and the second feature vectors in the PCA analysis. The selection of the feature vectors was
consistent with the two dimensions depicted in Figure 2B. The contributions were determined by the
absolute values of the coefficients of the first two feature vectors. C:CC=C, C=C-C:C, O-C-C:C, C:C-C:C,
and O-C-C:C-C were the five strongest positive features, and ≥ 3 any ring size 6, ≥ 4 any ring size 6,
C(-C)(-C)(-H)(-O), C(-C)(-H)(-O), and [#1]-C-O-[#1] were the five strongest negative features. Therefore,
the left cloud of compounds was more likely to contain the substructures among the negative features
and the right cloud of compounds was more likely to contain the substructures among the positive
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features in Figure 2B. As shown in Figure 2C, it was found that the average structure similarity score
of the specific compounds in the two types of herbs was significantly higher than that between the
TCM compounds and antineoplastic Western drugs (p < 0.001). The structure similarity analysis
was conducted by calculating Tanimoto coefficients [45] between the 881-dimensional CACTVS
substructures of the compounds.

Among the 1446 TCM compounds applied in target prediction, 166 compounds were used
in the HTS2 assay, including 67 compounds in health-strengthening herbs, 66 compounds in
pathogen-eliminating herbs, and 33 compounds in both types of herbs (Figure 2D). In the HTS2

assay, approximately 3000 HCT116 colorectal cancer cells were seeded in each well of a 384-well plate
for 24 h. Then the TCM compound library were added to the cells for 24 h to achieve a transcriptional
profile after compounds treatment. Eight dimethyl sulfoxide (DMSO) replicates were also added in the
wells as controls. After obtaining the gene probe reads, we performed gene expression normalization
by using 18 stable genes in in colorectal cancer (GSE44076, GSE44861, GSE53295, and GSE53965 in the
Gene Expression Omnibus (GEO) database [46]). The normalized expression of a gene was defined
as the reads of the gene probe divided by the median number of the reads of 18 housekeeping genes.
The fold change was calculated as the normalized gene expression after the drug treatment divided by
the median number of normalized gene expression after the eight DMSO replicates treatment. For
each TCM compound, genes with a fold change > 2 were considered DEGs.

To explore the inhibitory effects on proliferation in the different cell lines of compounds from
health-strengthening and pathogen-eliminating herbs, we analyzed the half-maximal inhibitory
concentration (IC50) and the half-maximal inhibitory concentration on cell growth (GI50) data of
the TCM compounds collected from the ChEMBL database or literature. The median IC50 (or GI50)
was calculated as the median number of all the human cell line specific experiments in ChEMBL and
literature records after the TCM compound treatment. These two metrics were considered as the
same and were merged in the analysis. Even though the compounds from pathogen-eliminating
herbs exhibited the lower median IC50s (or GI50s) than compounds from health-strengthening
herbs in Figure 2E, the results indicated that compounds in health-strengthening herbs might be
anti-proliferative to tumor cells. The IC50 and GI50 data were also adopted as reference concentrations
in the (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium
(MTS) assay, a cell survival rate measurement assay, and these bioactivity data were then applied in
setting the concentrations of the TCM compounds in the HTS2 assay after the manual adjustment.

In Figure 2F, target prediction and HTS2 assay suggested that some compounds may regulate
immune and cancer hallmarks (immune-excluded) pathways simultaneously. As shown in Figure 2G,
in the cell cycle pathway, the expression of the CDK4, CDK6, and CCND1 genes in the HTS2 assay were
reduced after treatment with several compounds in the two types of herbs, while the gene expressions
in T cell receptor signaling pathways were upregulated after treatment with several TCM compounds
from the two types of herbs. The percentage of the experimental compounds in health-strengthening
herbs with predicted targets enriched in the immune-related pathways was significantly higher than
that in pathogen eliminating herbs (e.g., 37.3% and 22.7%, respectively, in antigen processing and
presentation, and 65.7% and 47.0%, respectively, in natural killer cell mediated cytotoxicity) (Fisher
exact test, p < 0.05). In Table 1, the regulated pathways of several compounds from health-strengthening
and pathogen-eliminating herbs predicted using target enrichment and the HTS2 assay results were
listed. These results indicated that TCM herbs, no matter their therapeutic classification, may exhibit
therapeutic effects in cancer treatment via both immune regulation and other antitumor functions.
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Figure 2. An overview of types of TCM applied in the research on their structures, inhibitory effects on
tumor cells, and regulated bioactivities, based on public data, target prediction, and the HTS2 assay.
(A) The number of compounds in the two types of TCM herbs in cancer treatment applied in the target
prediction. (B) PCA analysis on structure of compounds in the two types of herbs in cancer treatment.
(C) The structure similarity comparison between the compounds from health-strengthening herbs
and pathogen-eliminating herbs and that between the TCM compounds and antineoplastic Western
drugs via Tanimoto coefficients. Data represent median ± interquartile range. Statistical analysis
was performed using a Kolmogorov–Smirnov (KS) test. *** p < 0.001. (D) The number of compounds
from the two types of TCM herbs applied in the HTS2. (E) The inhibitory effects of compounds in the
two types of herbs on proliferation of tumor cell lines in public bioactivity databases. Data represent
median ± interquartile range. Statistical analysis was performed using a Wilcoxon rank sum test.
*** p < 0.001. (F) The regulated immune and cancer hallmarks (immune-excluded) pathways of several
TCM compounds supported using target prediction and the HTS2 assay. (G) Expression data of several
genes in the cell cycle and T cell receptor signaling pathways after TCM compound treatments.
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Table 1. Several KEGG pathways predicted to be regulated by compounds from health-strengthening
and pathogen-eliminating herbs using target enrichment and the HTS2 assay.

KEGG Pathway Herb Type Herb Compounds
Enrichment

p-value
DEG

Number

Apoptosis

Fu-Zheng
Radix Angelicae sinensis

(Shan Yao)
Batatasin IV

Dioscin
2.1 × 10−4

1.1 × 10−2
13
23

Qu-Xie
Rhizoma Curcumae

(E Zhu)
Curcumin

Isocurcumenol
1.7 × 10−3

1.7 × 10−3
11
31

vascular endothelial
growth factor (VEGF)

signaling pathway
Fu-Zheng

Fructus Schisandrae
(Wu Wei Zi)

Schisanhenol
Gomisin J

3.2 × 10−3

3.2 × 10−3
14
7

Qu-Xie
Radix et Rhizoma Rhei

(Da Huang)
Chrysaron

Rhein
2.3 × 10−6

3.2 × 10−3
9
5

Cell cycle Fu-Zheng
Fructus Ligustri lucidi

(Nv Zhen Zi)
Ligustroflavone
Specnuezhenide

2.4 × 10−3

1.5 × 10−3
4

10

Qu-Xie
Cortex Moutan
(Gan Chan Pi)

Cinobufagin
Telocinobufagin

1.5 × 10−3

2.3 × 10−4
20
26

T cell receptor signaling
pathway

Fu-Zheng
Poria

(Fu Ling)
Pachymic Acid
Poricoic Acid B

8.7 × 10−7

7.8 × 10−5
5
8

Qu-Xie
Cortex Magnoliae officinali

(Huang Qin)
Baicalein
Wogonin

7.8 × 10−5

3.8 × 10−3
18
15

Toll-like receptor
signaling pathway

Fu-Zheng
Radix Astragali

(Huang Qi)
Astragaloside A
Formononetin

4.1 × 10−3

4.1 × 10−3
5
3

Qu Xie
Venenum Bufonis

(Chan Su)
Bufarenogin
Cinobufagin

4.1 × 10−3

4.1 × 10−3
15
20

Nucleotide-binding
oligomerization domain

(NOD)-like receptor
signaling pathway

Fu-Zheng
Radix Ginseng

(Ren Shen)
Ginsenoside Rh3
Protopanaxadiol

4.9 × 10−5

4.9 × 10−5
23
15

Qu-Xie
Fructus Bruceae

(Ya Dan Zi)
Bruceantin
Bruceine D

1.6 × 10−3

3.0 × 10−4
7

14

2.3. HTS2 Assay Results Show that Health-Strengthening Medicine May Regulate Tumor Immunity Via
Promoting NK Cell Activity and Tumor Cell Antigen Presentation

NK cells recognize and kill tumor cells containing the mutated gene fragments [47]. In the
tumor environment, the NK cell activity is inhibited by the biological function of the tumor cells [48].
In Figure 3A, some TCM compounds from health-strengthening herbs with the potential biological
functions of promoting NK cell activity were listed at the top, as indicated by the HTS2 assay results.
For instance, ginsenoside Re, a compound in Radix Ginseng (Ren Shen), was suggested to exert an
NK cell activation effect by upregulating the expression of genes involved in degranulation and NK
cell-related cytokines release.

Antigen processing and presentation plays an important role in tumor immunity [49]. In the
tumor environment, the antigen presentation functions of tumor cells are relatively suppressed [50].
Therefore, the immune system may not fully recognize and kill tumor cells. The analysis of the HTS2

assay results revealed that several health strengthening herbs may comprehensively increase the level
of antigen presentation in tumor cells by promoting intracellular synthesis of main histocompatibility
complex class I (MHC-I) molecules, improving antigen processing efficiency, and combining tumor cell
biopeptides with MHC-I molecules (Figure 3B). For example, sinnamaldehyde, a compound in Cortex

Cinnamomi (Rou Gui), was indicated to upregulate antigen processing and MHC biosynthesis related
genes, as shown in Figure 3B. Additionally, as demonstrated in Figure 3B, some compounds that may
enhance the NK cell activities may also improve the levels of antigen processing and presentation in
tumor cells.
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Figure 3. The regulatory effects on immune-related pathways induced by a group of compounds
from health-strengthening herbs. The dotted lines linked the TCM compounds and the DEGs after
compound treatment in the HTS2 assay. (A) The HTS2 assay results showed that compounds from
health strengthening herbs upregulated the biomolecules in the NK cell mediated cytotoxic pathway.
(B) The HTS2 assay results showed that compounds from health strengthening herbs upregulated the
biomolecules involved in the MHC-I antigen processing and presentation pathway.

2.4. Target Prediction and HTS2 Assay Results Show that Compounds in the Same Herb May Exhibit Different
Patterns in Modulating Antitumor or Immune Processes

To further identify how the combinations of the TCM compounds in the same herb may regulate
the same biological process, we extracted the HTS2 results of the TCM compounds that were predicted
to regulate the same pathway. Next, we examined the expression data of the genes in the predicted
regulated pathways. After the integration of the HTS2 results from the TCM compounds and the gene
information in the KEGG pathways, we concluded that the TCM compounds in the same herb may
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have interactions in several patterns in regulating the same KEGG pathway. As shown in Figure 4,
the selected TCM compounds may regulate the same pathway in the same or opposite directions
to induce the final effects, as indicated by the HTS2 assay results. For instance, kaempferol and
kaempferide are two compounds from the health-strengthening herb Fructus Corni (Shan Zhu Yu).
After analyzing the HTS2 assay results of kaempferol and kaempferide, we discovered that they have
similar molecular patterns for inhibiting cell cycles, as shown in Figure 4B. Additionally, paeonol
and galloylpaeoniflorin, two compounds in Radix Paeoniae Alba (Bai shao), were indicated to influence
gene expression in the mitogen-activated protein kinase (MAPK) signaling pathway in the opposite
directions (Figure 4C). These results suggested that compounds in the same herb may exhibit similar
or distinguished mechanisms in cancer treatment. The compounds with different mechanisms may
have the potential bioactivities in treating different types of tumors.

Figure 4. The HTS2 assay results indicated that within the same pathway, compounds from the
same herb may influence gene expression in the same cancer hallmarks (immune-excluded) or
immune-related KEGG pathway in the same or opposite directions, as shown in the three boxes.
(A) Compounds from the same herb may simultaneously upregulate the gene expression in the same
pathway. (B) Compounds in the same herb may simultaneously downregulate the gene expression in
the same pathway. (C) Compounds from the same herb may regulate the gene expression in the same
pathway in opposite directions.

2.5. Prediction and Assay Results Imply that Compounds in One Health-Strengthening Herb or a Single
Compound May Exert Antitumor and Immune-Related Functions Simultaneously for Cancer Therapy

Considering the multicompound characteristics of TCM herbs, it is necessary to examine the
biological functions of different compounds from one herb in treating cancer. As we know, Radix

Paeoniae Alba (Bai Shao) and Radix Sophorae flavescentis (Ku Shen) are two typical health-strengthening
and pathogen-eliminating herbs that are widely used for cancer treatment [2]. After target prediction
and KEGG pathway enrichment, we extracted the mRNA expression induced by the compounds from
Radix Paeoniae Alba and Radix Sophorae flavescentis in the HTS2 assay. The target enrichment results of
the pathways with the assay evidence are shown in Figures 5 and 5. T cell receptor signaling pathway,
B cell receptor signaling pathway, Th17 cell differentiation, MAPK signaling pathway, mTOR signaling
pathway, and some other pathways were regulated by several compounds from Radix Paeoniae Alba,
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including 1,2,3,4,6-pentagalloylglucose, albiflorin, coumarin, galloylpaeoniflorin, paeoniflorin, and
paeonol (Figure 5A). The target enrichment and HTS2 assay results suggested that all the compounds
in Figure 5A might regulate both immune-related and other antitumor pathways. The similar pattern
was found in the target enrichment results of the compounds from Radix Sophorae flavescentis. As shown
in Figure 5B, nine compounds from Radix Sophorae flavescentis were selected for the HTS2 assay, and all
of them may influence at least one immune-related pathway and one other antitumor pathway.

One of the compounds from Radix Paeoniae Alba, galloylpaeoniflorin, had no relevant antitumor
records or any other biological activity records. The target prediction and HTS2 assay results indicated
that galloylpaeoniflorin might regulate several immune-related pathways (i.e., T cell receptor signaling
pathway, Th17 cell differentiation, and B cell receptor signaling pathway), and cancer hallmarks
pathways (i.e., MAPK signaling pathway, cell cycle, and mTOR signaling pathway) (Figure 5C).
For instance, the relative expression of genes in the cell cycle in the HTS2 assay was shown in the
right part of Figure 5C, and the expression of the biomolecules listed in the subnetwork were reduced
by galloylpaeoniflorin. Moreover, we examined the antitumor effects of galloylpaeoniflorin both
in vitro and in vivo (Figure 5D,E). As shown in Figure 5D, galloylpaeoniflorin effectively inhibited
the proliferation of several cell lines (IC50 < 40µg/mL), including HCT116 (a colorectal cancer cell
line), B16F10 (a melanoma cell line), MCF-7 (a breast cancer cell line), and NCI-H460 (a lung cancer
cell line) cells. Different solvents were applied (DMSO and ethanol) in the top and the bottom of
Figure 5D and the results demonstrated robust inhibitory effects on the tumor cell lines induced by
galloylpaeoniflorin. The in vitro inhibitory effects of galloylpaeoniflorin in Figure 5D on not only the
HTC116 cells, which was adopted in the HTS2 assay, but also several cell lines of varied cancer types
indicated its antineoplastic potentials in treating different tumors. The experiment in Figure 5D was
done once in triplicate. Our in vivo results confirmed that the tumor weight of the H22 liver tumor
mice was significantly reduced after the treatment with galloylpaeoniflorin (Figure 5E). Twenty-one
BALB/c/nu nude female mice injected with H22 tumor were utilized for the in vivo assay.
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Figure 5. Identification of the immune regulatory and other antitumor biological functions of
compounds from Radix Paeoniae Alba (Bai Shao) and Radix Sophorae flavescentis (Ku Shen). (A,B) The
comprehensive functional characterization of the compounds in Radix Paeoniae Alba (A) or Radix

Sophorae flavescentis (B) using the pathway enrichment analysis based on target prediction results.
The white blanks represent pathways not regulated by the compounds according to HTS2 assay
results. (C) The pathway regulation effects of galloylpaeoniflorin, a compound in Radix Paeoniae Alba

(Bai Shao) using the target enrichment and HTS2 assay. A subnetwork representing the expression
of the predicted targets of galloylpaeoniflorin in the cell cycle pathway was shown. (D) Inhibitory
effects of galloylpaeoniflorin on tumor cell proliferation using the cell lines of several tumor types,
as assessed using an MTT assay. The experiment was done once in triplicate. (E) Inhibitory effects of
galloylpaeoniflorin on tumor growth in H22 mice. The assay was performed on seven BALB/c/nu
nude female mice injected with the H22 tumor for each group. ** p < 0.01, *** p < 0.001, compared with
the solvent control group. Statistical analysis was performed using multiple t tests. Data represent
mean ± SD.

3. Discussion

Health-strengthening medicine is seen as a representative application of the classical philosophy
of TCM in cancer therapy. It is reported that, unlike Western medicine, which may exhibit direct killing
effects on tumor cells, health-strengthening medicine is developed to treat cancer by systematically
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regulating the tumor microenvironment [51–54]. According to the traditional efficacy of TCM,
health-strengthening herbs can be classified into different categories, such as yin-nourishing (Zi-Yin)
herbs and qi-tonifying (Yi-Qi) herbs. In this research, as a first step, we treated health-strengthening
herbs as a whole rather than the subcategories for the following network pharmacological analysis.
Several biological processes may be involved in the regulatory effects of health-strengthening medicine,
including some immune-related bioactivities. This finding is in accord with the previous studies
on the comprehensive anti-tumor mechanisms of nuciferine, a compound from a yin-nourishing
health-strengthening herb, Nelumbo nucifera Gaertn (He Ye) [55]. Additionally, some classical
TCM formulae with the health-strengthening efficacy are clinically proven to enhance the innate
immunological function (e.g., the killing abilities of NK cells) and the sensitivity of immune system to
tumor cells [56,57]. These results were consistent with our findings that health-strengthening medicine
might regulate the immune function in multiple aspects, including NK-cell-mediated cytotoxicity
and antigen processing and presentation. However, the biological activities of health strengthening
medicine have not been fully elucidated.

Here, based on the target prediction and the HTS2 assay results, we analyzed the potential
bioactivities of compounds from health-strengthening herbs. Several pathogen-eliminating herbs
were also included in the research paradigm for comparison. Our prediction and assay results
suggested that compounds from both types of TCMs may regulate both immune and cancer hallmarks
(immune-excluded) pathways. This finding was consistent with the multitarget characteristic of TCM
compounds. We further investigated the differences between these two types of TCMs and discovered
that the overall inhibitory effects of the compounds in pathogen-eliminating herbs on tumor cells were
significantly stronger than those in health-strengthening herbs. The results were consistent with the
traditional understanding that pathogen-eliminating herbs tend to target the tumor directly. However,
the traditional therapeutic advantages of health-strengthening herbs on the immune system need to be
further explored by adopting immunological experimental results, and our high-throughput assay was
conducted on tumor cells. Additionally, we revealed a group of compounds from the same herb that
influences pathway gene expression in the same or different directions. The compounds with opposite
influences on pathway gene expression may be explained by the different underlying mechanisms in
cancer treatment. Therefore, it was suggested that they may be applied for treating different types
of tumors.

In addition, galloylpaeoniflorin, a compound from a health-strengthening herb Radix Paeoniae

Alba (Bai Shao) was predicted to impact several pathways that are significant in tumor development,
including T cell receptor signaling pathway, B cell receptor signaling pathway, cell cycle, and mTOR
signaling pathway. The regulatory effects were further supported by the HTS2 gene expression profile
of the related genes in the pathways after the treatment with galloylpaeoniflorin. In fact, the antitumor
effects of Radix Paeoniae Alba and its total glucosides were found in recent research, and the mechanism
may be related to the inhibitory effects on the cell cycle of tumor cells [58,59]. Notably, to the best of
our knowledge, there is no activity record of galloylpaeoniflorin. Therefore, we examined and initially
validated the antitumor effects of galloylpaeoniflorin both in vitro and in vivo. More work should be
conducted for further evaluating the antitumor ability as well as unveiling the potential mechanism
of galloylpaeoniflorin.

In this work, we divided cancer-related pathways into two categories: immune pathways and
other cancer hallmarks for separate investigations. The distinction was made for the following
reason: in the aspect of clinical treatment, immunotherapy and other approaches (e.g., targeted
approaches and cytotoxic agents) are distinguished treatment options available in cancer treatment [60].
That was because the mechanisms that cancer immunotherapy are based on differ greatly from those
of other approaches in cancer therapy [61]. Even though immune evasion is one of cancer’s hallmarks,
it characterizes the responses using the immune system [62]. Also, this distinction was consistent
with the Anatomical Therapeutic Chemical (ATC) drug classification, a drug classification system
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based on pharmacological and anatomical properties by WHO, in which antineoplastic (L01) and
immunomodulating (L03 and L04) agents are independent drug catalogues [63].

To be mentioned, previous studies indicated that health-strengthening herbs may exert their
therapeutic effects in cancer treatment in multiple aspects (e.g., immunity and metabolism) [14–19].
In this study, the immunological efficacy was selected as an example and more work is needed for a
comprehensive understanding of their efficacy in other aspects, such as the metabolic regulation effects.
Moreover, TCM syndrome (Zheng) is an essential concept in the TCM theory [64]. It is reported that
TCM syndromes correlates with treatment response to TCM in cancer therapy [65]. Therefore, future
studies on the therapeutic effects of health strengthening herbs cancers with different TCM syndromes
would further promote the understanding of the biological basis of health-strengthening herbs.

According to the analysis results in this study, health-strengthening herbs may exhibit
both immune-regulatory and antitumor effects. Taking into consideration the generally weaker
antitumor effects (IC50 or GI50) in vitro of compounds in health strengthening herbs than that
in pathogen-eliminating herbs in public records, the high percentage of selected compounds
in health-strengthening herbs related to immune-related pathways, and the good safety of
health-strengthening herbs, it was indicated that health-strengthening herbs may have more
pharmacological potential in preventing tumors and improving a tumor-immune microenvironment,
compared to directly killing tumor cells.

In contrast to previous studies, our study features the usage of high-throughput computational
and experimental methods for a more comprehensive understanding of underlying mechanism of
health-strengthening herbs. HTS2 may significantly promote the parallel processing of candidate
compounds and genes, and has been applied in drug screening [66]. However, this study only
provided in vitro large-scale experimental results of the HTS2 assay on one cell line, HCT116, and it
does not represent cells of the immune system. Therefore, most of the results in this manuscript are
hypothesis-generating and more experimental studies are needed to further explore the bioactivities
regulated by TCM compounds. Still, the research strategy in this study does provided avenues
for large-scale experimentation. Hopefully, our study may help reveal the biological basis of
health-strengthening herbs, a characteristic herb type which has been used for a long period by
TCM practitioners, and shed light on the future researches on anti-tumor drugs by unveiling the
wisdom of TCM.

4. Materials and Methods

4.1. TCM Compounds Data Preparation

We collected compound information of 47 TCM herbs (including 22 health-strengthening
herbs and 25 pathogen-eliminating herbs for comparison) that are widely used in cancer
therapy from the Chinese national medical insurance catalogue and commonly used prescriptions
(e.g., Liu-wei-di-huang pill, Buzhong Yiqi decoction, and Sijunzi decoction) (Supplementary Table S1).
The 22 health-strengthening herbs include different categories, such as yin-nourishing (Zi-Yin) herbs
and qi-tonifying (Yi-Qi) herbs, and the 25 pathogen-eliminating herbs include categories, such as
heat clearing and detoxifying (Qing-Re-Jie-Du) herbs, and blood activating and stasis dissolving
(Huo-Xue-Hua-Yu) herbs, according to the traditional classification based on TCM efficacy. Together,
1446 TCM compounds with PubChem records were collected, including 655 compounds from
health-strengthening herbs, 667 compounds from pathogen-eliminating herbs, and 124 compounds
from both types of herbs.

4.2. Analysis Workflow Based on Network Pharmacology

In this study, we proposed an approach based on network pharmacology to study the antitumor
mechanisms of health-strengthening medicine. The network pharmacology approach was applied for
predicting the potential targets of the TCM compounds and to visualize the analysis results as networks
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in this manuscript. After the TCM compounds data preparation, we predicted the potential targets of
the TCM compounds by utilizing an algorithm based on the correlation between the pharmacological
network and genomic network. The prediction results were analyzed via literature mining, the HTS2

assay, public assay data, and in vitro and in vivo experiments. Taking advantage of the prediction
and analysis results, we analyzed the molecular functional patterns of health-strengthening herbs
(Figure 6).

Figure 6. The network analysis workflow for understanding the effects of health-strengthening
medicine compounds in cancer treatment.

4.3. Literature Mining

The literature mining was performed via text searching and no algorithm was applied in the
process. By literature mining, we aimed to obtain the related biomolecules for each TCM compound
and to compare the results with the predicted targets. The co-occurrence of compound and target
appearing in one or more abstracts was used to define the association of them.

We searched the PubMed database using the name of each TCM compound in the abstracts
and recorded the number of returned search results. In this study, we selected the compounds with
an adequate number of search results (between 500 to 1000) for further analysis. The interval was
necessary because the number of the related literature varied greatly, and this would have impacts
on the following analysis (e.g., the percentage of predicted targets verified by literature records).
All the related abstracts of the selected compounds were downloaded, and text-processing codes were
programed for extracting the biomolecules mentioned in the abstracts. If a biomolecule co-occurred
in the abstract with the compound name, then we considered that the biomolecule was related to
the compound.
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The results from the literature mining were then verified via a manual examination by deleting
the false positive responses. Then, the results were used as the verification set for target prediction and
HTS2 assay results.

4.4. Target Prediction for the TCM Compounds Applied in Cancer Treatment

The potential targets of the TCM compounds were predicted by drugCIPHER-CS [24] using
Matlab 2016a (MathWorks, Natick, MA, USA) [67], a network-based target prediction method. Using a
liner regression model, this method correlates pharmacological and genomic spaces for predicting the
drug targets. In this method, the likelihood of a candidate compound targeting a specific protein can be
described as a concordance score between the structural similarity vector of the candidate compound
and drugs in DrugBank [68] and the drug-protein closeness vector based on PPI. According the article
on drugCIPHER-CS, the accuracy of target prediction is 77.3% when the top 100 biomolecules were
chosen to form a potential target profile, as measured using cross-validation. Therefore, in this study,
the top 100 biomolecules in the prediction result list were selected as the potential target list of each
TCM compound. The PPI network was constructed by combining the PPI information recorded
in HPRD, BIND, IntAct, MINT, and OPHID in May 2011 [35–39], and it contained 137,037 PPIs
for 13,388 human proteins. Drug–protein interactions were retrieved from DrugBank associated
to the PubChem database in May 2015 [43]. Drug structural similarity vectors were the Tanimoto
coefficients [45] based on 881-dimensional CACTVS substructures in PubChem.

Moreover, to measure the reliability of target prediction results, biomolecules mentioned in the
literature and DEGs in HTS2 results were collected. If a predicted target is directly or indirectly related
to a biomolecule which co-occurred with the compound in the literature or to a DEG in the HTS2 assay
after treatment with the compound, it is considered to be supported by the literature mining and HTS2

assay. The indirect relationship was established if the predicted target in in the upstream in a KEGG
pathway of the biomolecules in the abstracts or DEGs, or if they are related via PPI. The cover rate was

calculated as |The predicted targets related to the reported targets (or DEGs)|
|The predicted targets| × 100%.

4.5. KEGG Pathway Enrichment Analysis

We performed the KEGG pathway enrichment analysis for the predicted targets of the TCM
compounds applied in cancer therapy in order to identify their biological functions. We used a
hypergeometric test for enrichment analysis. We performed target enrichment under the background
of 13388 human proteins and checked the p-values of the pathways to see if they were significantly
enriched. The enrichment p-values of 26 pathways from cancer hallmarks and immune-related
pathways in the KEGG database were examined. The enrichment analysis was performed using
RStudio v1.1.447 and an open source programming language, Ruby 2.3.0. The significantly enriched
KEGG pathways (p < 0.05, fdr adjusted) were retained for further research.

4.6. Chemical Space Analysis

CACTVS substructures in PubChem were adopted in the chemical space analysis. In the analysis,
we used 881-dimensional substructure binary vectors to encode the investigated TCM compounds.
A PCA analysis was conducted using the princomp function in the R packages stats v3.2.2 under the
environment of RStudio v1.1.447 [44]. The Tanimoto coefficients of the binary vectors of the TCM
compounds in the two types of herbs and antineoplastic Western drugs were calculated.

4.7. Network Visualization

Network visualization was performed using Cytoscape v3.6.0 (National Resource for Network
Biology, Bethesda, MD, USA) [69]. For visualization, the KEGG, HPRD, BIND, IntAct, MINT,
and OPHID databases were used for providing pathway and PPI information.
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4.8. Cell Culture

HCT116 (a colorectal cancer cell line), B16F10 (a melanoma cell line), MCF-7 (a breast cancer
cell line), and NCI-H460 (a lung cancer cell line) cells were obtained from the cell center of Chinese
Academy of Medical Sciences and Peking Union Medical College (CAMS and PUMC). The cells
were cultured in an incubator with 5% CO2 at 37 ◦C. Dulbecco’s modified eagle medium (DMEM)
containing 10% fetal bovine serum, 100 U/mL penicillin and 100 g/mL streptomycin were applied for
the incubation.

4.9. The HTS2 Assay

The HTS2 assay is a high-throughput screening strategy that enables a large-scale and quantitative
analysis of gene transcriptional profiles in cells [33]. In the HTS2 assay, approximately 3000 HCT116
colorectal cancer cells were seeded in each well of a 384-well plate for 24 h. After that, the TCM
compounds library was added to the cells for another 24 h, including eight DMSO replicates as negative
controls. The HTS2 assay was then conducted to obtain the transcriptional profiles of the designed
gene probes. The cells were lysed in GentLys buffer (Nanopure, Beijing, China). The instrumentation
of the HTS2 assay was an automated liquid handling system, which contained the Agilent Bravo
automated liquid handling platform (Agilent, Santa Clara, CA, USA) and the Agilent bench robot
(Agilent, Santa Clara, CA, USA). By RNA annealing, selection and ligation, the instrumentation
automatically performed the HTS2 assay. Pooled pairs of oligonucleotides targeting selected gene
probes by streptavidin-magnetic beads and the biotinylated oligo-dT were used. Then, the paired
oligonucleotides were ligated using T4 DNA ligase and were amplified using Polymerase Chain
Reaction (PCR). Using unique bar-coded primer in Illumina flowcells, the HTS2 assay allowed a
high-throughput transcriptional profiling of up to 1400 genes from 2000 samples.

4.9.1. Selection and Preparation of the TCM Compounds for HTS2

The selection of the TCM compounds for the HTS2 assay were performed considering their
recorded biological activity data and the offer lists provided by the suppliers. The bioactivity data
(IC50 and GI50) of the TCM compounds were collected from ChEMBL or via manual literature
searching. The median IC50 and GI50 of a compound were achieved via calculating the median
number in all human cell line specific experiments in ChEMBL and literature records. The two metrics,
IC50 and GI50 were used as the same metrics in the analysis. Then, we chose the compounds with
an adequate antitumor activity (median IC50 or GI50 < 100 µM) as candidate compounds for the
HTS2 assay. The candidate compounds were further selected considering the product availability of
the suppliers.

The TCM compounds were dissolved in DMSO. The concentrations were preliminarily set as the
median IC50 and were adjusted afterwards based on the cell survival rate using MTS assay for the
HCT116 cells to meet the standard for the HTS2 assay (cell survival rate > 70%). Detailed information
about the compounds applied in the HTS2 assay (e.g., PubChem Compound Identifier (CID), supplier,
and purity) was presented in Table S2.

4.9.2. The Gene Selection and Probe Design of the HTS2 Assay

A total of 420 genes were selected to form a gene set for the HTS2 assay. The gene set contained
immune-related and other antitumor-related genes. The selection of the 420 genes were achieved in
three steps. First, the genes were selected from databases and by predictions to form a cancer-related
gene lists, including genes in pathways in cancer (hsa05200) in KEGG, genes in colorectal cancer
(hsa05210) in KEGG, the colorectal cancer related genes in OMIM (MIM Number: 114500) [70],
the targets of antineoplastic drugs in DrugBank, and the colorectal cancer related genes predicted
using CIPHER, a phenotype-gene network based algorithm [71,72]. The reason why we selected some
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genes related to colorectal cancer was that the HCT116 cell line applied in the following HTS2 assay
was a colorectal cancer cell line.

Then, we referred to the public gene expression profiles in the GEO database for selecting a reliable
set of genes with adequate expression levels. Here, we selected two profiles of samples from patients
with colorectal cancer (GSE44076 and GSE44861) and two profiles of the HCT116 cell line (GSE53295
and GSE53965) for measuring the gene expression. A gene was selected if it had at least three of the
above profiles in its expression data and if the expression ranked 10% to 60% in the detected gene
set in at least one profile. Additionally, we selected 30 housekeeping genes that meet the following
standards: (1) it was not in the cancer-related gene lists achieved in the first step; (2) the expression
of the gene was detected in the four gene expression profiles (GSE44076, GSE44861, GSE53295, and
GSE53965), and was not a DEG in any one of these profiles; and (3) the expression of the gene ranked
10% to 60% in the gene sets of at least one profile. The moderate ranking was to ensure that the gene
expression was neither too high or too low, which may impair the credibility of the HTS2 assay results.

At last, the probes for the genes were designed, and 420 genes with efficient probes, were selected
for the HTS2 assay, including 18 housekeeping genes. Sequences of 10 probes used in the HTS2 assay
were provided in Table S3.

4.9.3. HTS2 Data Processing

First, the reads were mapped to the probe sequences, and three mismatches for each were
permitted. The raw experimental data of HTS2 assay after treatment with DMSO and several TCM
compounds were provided in Table S4. The numbers in Table S4 were the reads of gene probes using
the HTS2 assay, which represent the abundance of genes. The HTS2 data was normalized by the
expression of 18 stable housekeeping genes. The normalized gene expression was computed with raw
reads of the gene after the drug treatment and the median number of raw reads of 18 housekeeping
genes after the drug treatment.

Second, to identify the DEGs for each TCM compound, we calculated the fold change of the tested
genes as the normalized gene expression after the drug treatment divided by the median number of
normalized gene expression after the eight DMSO replicates treatments. For each TCM compound,
genes with fold change > 2 were considered DEGs.

Third, to evaluate the reliability of the transcriptional profile, we calculated the Pearson
correlations among the normalized transcriptional data after treatment with the eight DMSO replicates.
The results are demonstrated in Figure S1. The correlations ranged from 0.84 to 0.99, which indicated
the reliability of the assay results.

4.10. Cell Viability Assay

For exploring the antitumor effects of galloylpaeoniflorin, we further performed an MTT cell
viability assay on different tumor cells. The HCT116, B16F10, MCF-7, and NCI-H460 cell lines were
seeded in a 96-well plate before the drug treatment. Various concentrations of galloylpaeoniflorin
dissolved in DMSO and ethanol respectively were added to the cells after incubation for 24 h. To assess
the IC50s of the cell lines, the MTT cell viability assay was conducted after incubation for another
120 h. The IC50s were achieved by fitting the dose-response curve. The MTT assay was done once
in triplicate.

4.11. Animal Studies

Twenty-one six-weeks-old BALB/c/nu nude female mice obtained from the Vital River
Laboratories (Vital River Laboratories, Beijing, China) and were used for the xenograft experiments.
H22 cells were injected into the left flank of the mice. When the tumor volume reached the size of
100–250 mm3, the mice were randomly separated into three groups and were administered an oral
dose of galloylpaeoniflorin (40 mg/kg/day or 80 mg/kg/day) or vehicle control (1 × solution with
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cremophor EL/ethanol/water (12.5:12.5:75)). The mice were sacrificed at the end of the treatment
period. The tumor volume was measured and weighted for the analysis.

The animal experiments were conducted in accordance with the guidelines for the care and use
of laboratory animals. The work was approved by the Animal Care Committee of Chinese Academy
of Medical Sciences and Peking Union Medical Colleges (Beijing, China) (Permit Number: SYXK
2015-0025).

4.12. Statistical Analysis

Data are shown as the means ± standard deviation (SD) (Figures 1 and 5) and median ± interquartile
range (Figures 2 and 2). Multiple types of data were used in the manuscript and various statistical analysis
methods were applied. Statistical analysis was performed using Kolmogorov-Smirnov (KS) test in
Figure 2C, Wilcoxon rank sum test in Figure 2E and Student t-tests in Figure 5E. The significance levels
were set at * p < 0.05, ** p < 0.01, and *** p < 0.001.

5. Conclusions

In conclusion, in this study, we performed a network-based analysis of health-strengthening
medicine by integrating a series of methods, including target prediction, literature mining, the HTS2

experiment, and some low-throughput assays. The expression levels of 420 genes, associated with
tumor growth and immune functions, were detected after a parallel treatment of 166 TCM compounds.
By combining evidence from different sources, we helped further uncover the biological basis of
health-strengthening medicine. We concluded that health-strengthening herbs, might regulate both
immune-related and antitumor pathways, similar to pathogen-eliminating herbs. A typical case
was demonstrated by Radix Paeoniae Alba (Bai Shao), a health-strengthening herb widely used in
TCM cancer treatment. Galloylpaeoniflorin, a compound from Radix Paeoniae Alba, was predicted to
regulate several essential biological processes in cancer development, and its antitumor effect was
preliminarily proven both in vivo and in vitro. Additionally, some TCM compounds in the same herb
were indicated to regulate pathway gene expression with similar or different patterns, suggesting
the urgent need for further in-depth studies on TCM prescriptions. For instance, acetyl ursolic acid
and specnuezhenide, two compounds in a health strengthening herb Fructus Ligustri lucidi (Nv Zhen

Zi), both upregulated gene expressions in T cell signaling pathway in HTS2 assay. In summary, this
study provided a new research strategy for explaining the biological basis of health-strengthening
herbs, and further suggested the tumor immune regulatory and tumor preventive potentials of
health-strengthening herbs.
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data of HTS2 assay after treatment with DMSO or TCM compounds in Figures 3 and 4. The numbers are the
reads of gene probes by HTS2 assay, which represent the abundance of genes. Figure S1: Transcriptional profile
correlations of the DMSO replicates.
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Abstract: Molecular analysis of cell-free DNA (cfDNA) that circulates in plasma and other body
fluids represents a “liquid biopsy” approach for non-invasive cancer screening or monitoring. The
rapid development of sequencing technologies has made cfDNA a promising source to study cancer
development and progression. Specific genetic and epigenetic alterations have been found in plasma,
serum, and urine cfDNA and could potentially be used as diagnostic or prognostic biomarkers in
various cancer types. In this review, we will discuss the molecular characteristics of cancer cfDNA
and major bioinformatics approaches involved in the analysis of cfDNA sequencing data for detecting
genetic mutation, copy number alteration, methylation change, and nucleosome positioning variation.
We highlight specific challenges in sensitivity to detect genetic aberrations and robustness of statistical
analysis. Finally, we provide perspectives regarding the standard and continuing development of
bioinformatics analysis to move this promising screening tool into clinical practice.

Keywords: bioinformatics; copy number variation; cell-free DNA; methylation; mutation; next
generation sequencing

1. Introduction

To date, tissue biopsy samples are widely used to characterize tumors. Although tissues allow the
histological definition of the disease and can reveal details of the genetic profile of the tumor, enabling
prediction of disease progression and response to therapies, the applications are limited on tissue
availability, sampling frequency, and their genetic heterogeneity [1]. Therefore, attention is turning
to liquid biopsies, which enable the analysis of tumor components, including circulating tumor cells
(CTC) [2] and circulating tumor nucleic acids from various biological fluids, mostly blood but also
other easily accessible fluids such as urine [3]. Compared to conventional tissue biopsy from a single
tumor site, the main advantages of liquid biopsies include their non-invasive characteristics, multiple
sampling capability, and comprehensive coverage to address issues of tumor heterogeneity [4,5].

Circulating cell-free DNA (cfDNA) is defined as extracellular DNA occurring in blood or other
body fluids. It is usually released as small fragments (150–200 bp in length [6]) from normal or
tumor cells by apoptosis and necrosis [7], or shed from viable cells [8]. Levels of cfDNA are higher in
diseased than healthy individuals [9]. cfDNA can track the evolutionary dynamics and heterogeneity
of tumors and detect the early emergence of therapy resistance, residual disease, and recurrence [10–12].
Therefore, analysis of cfDNA has been considered as a potential screening approach for tumor diagnosis
and prognosis by detecting tumor-associated aberrations in peripheral blood [13,14].

Next generation sequencing (NGS) has emerged as a powerful tool for cfDNA analysis, which
allows the detection of cancer-related genetic and epigenetic alterations such as mutations, copy number
variations (CNVs), and DNA methylation changes across wider genomic regions in many cancer
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types [15,16]. However, detection of cancer with high specificity and sensitivity is still challenging,
especially in early-stage cancers, as there exist many barriers to the utilization of cfDNA in clinical
applications, including lack of well-accepted sample collection protocol and sensitive detection
approaches. Furthermore, analysis of cfDNA sequencing data requires specialized bioinformatics tools
to identify robust biomarkers for clinical practice. In this review, we will discuss specific challenges in
sensitivity to detect genetic aberrations and provide information on cfDNA bioinformatics approaches.
We conclude with a perspective regarding future development in this rapidly evolving area. A
simplified workflow of blood-based liquid biopsy is shown in Figure 1.

Figure 1. Workflow of blood-based liquid biopsy.

2. Characteristics of Circulating Tumor DNA (ctDNA)

The ctDNA is released from tumor cells only. The ctDNA can be derived from primary or
metastatic tumors [17]. Most circulating ctDNA are 160–180 base pair fragments, roughly the size
of a mononucleosomal unit [18,19]. However, recent studies have shown that ctDNA tends to be
shorter than cfDNA from normal cells [20,21]. Therefore, ctDNA may be enriched by excising smaller
DNA fragments from cfDNA on polyacrylamide gels [22]. Currently, cfDNA fragmentation patterns
and their applications in liquid biopsy are an emerging research field. Although ctDNA can be used
to detect the presence of cancer-related genetic and epigenetic changes, such changes usually vary
from case to case, which makes the development of sensitive and generalizable approaches extremely
challenging. One major challenge is low ctDNA fraction. In most cases, ctDNA accounts for a small
fraction of total cfDNA since most cfDNA is derived from non-cancer cells, especially blood cells. In
early-stage cancer patients, ctDNA fraction could be lower than 0.1%. To detect such a rare event with
high specificity and sensitivity, a variety of approaches have been developed, which include droplet
digital PCR (ddPCR) and molecular index-based next generation sequencing technologies [23,24].

3. Detection and Analysis of Somatic Mutations

Somatic mutations are involved in cancer development and progression. The presence or absence
of a single genetic alteration in tumor DNA is currently employed to guide clinical decision making for
a number of targeted agents [25–28]. Ever-increasing numbers of genomic alterations are being tested
as putative predictive biomarkers in clinical trials of novel anticancer therapies [29]. To detect the
cancer-associated alleles in the blood, real-time PCR (RT-PCR) and ddPCR “targeted” methods have
been extensively adopted in most clinical trials [30]. Till now, clinical utility has been demonstrated for
two FDA-approved cfDNA-based tests: the cobas epidermal growth factor receptor (EGFR) mutation
test V2 (Roche Molecular Diagnostics), which detects EGFR mutation in plasma cfDNA from patients
with lung cancer [31,32], and Epi proColon (Epigenomics AG), which reports on the methylation
status of the Septin 9 promoter in plasma cfDNA from patients undergoing screening for colorectal
cancer [33]. ddPCR is particularly useful to sensitively detect well-characterized mutations. The
system can partition cfDNA into 20,000 nanoliter-sized droplets, where PCR amplification is carried
out simultaneously. It is reported that the sensitivity of ddPCR can reach a limit of detection of 0.0005%
BRAF V600E and V600K [34]. Another study reported that ddPCR can reliably detect AR-V7 expression
from one spiked cell into 4000 lymphocytes (0.025%) [35]. Compared to the traditional NGS method,
ddPCR is easier to use, has lower cost, and provides higher sensitivity and specificity. Although
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molecular barcoding technology has significantly increased the sensitivity and specificity of NGS, the
low cost and easy-to-use features will make ddPCR widely accepted in clinical practice.

Although PCR-based assays can detect known mutations, the assay requires previous knowledge
of target genes. In addition, the assay does not cover whole spectrum mutations in specific genes.
Restriction of multiplexing capacity limits the simultaneous analysis of a large number of gene
targets. Therefore, it may fail to identify less common but clinically relevant mutations. On the other
hand, NGS, based on massive parallel sequencing of millions of different DNA molecules, allows
the detection of multiple mutations in multiple genes. By using focused gene panels on clinically
relevant targets, each nucleotide of interest can be sequenced thousands of times, ensuring a high
degree of sensitivity. However, the requirement for such a high degree of sensitivity can easily lead
to false positive results due to potential errors of PCR amplification and sequencing. To address
this challenge, new data analysis approaches have been developed, among which is a new unique
molecular identifier (UMI) strategy [36]. Another challenge related to mutation detection in cfDNA is
to differentiate tumor mutations from background somatic mutations. Somatic mutations are common
in healthy individuals with a rate between 2–6 mutations per 1 Mb [37]. Given the fact that the
majority of cfDNA is from blood cells and ctDNA fraction in cancer patients is generally low, it is likely
that most of the mutations identified in cfDNA could be irrelevant to cancer development, thereby
impeding their clinical application [38–40]. This challenge points to the need for a large experiment to
systematically investigate the mutation spectrum from both cfDNA and white blood cells in healthy
and cancer patients.

4. Unique Molecular Identifier (UMI)-Based Target Sequencing

Target enrichment is a critical component of targeted deep sequencing for cost-effective, accurate,
and sensitive detection of mutations, CNVs, and methylations in cfDNA. Common bioinformatics
workflows allow sensitive and specific variant identification down to 2–5% allele frequency. This
provides a sound methodology for identifying somatic mutations from solid tumor biopsies [41].
However, low ctDNA content in the blood and sequencing artifacts currently limit analytical sensitivity.
In analyzing cfDNA from healthy controls, background errors are increasingly evident below allele
fractions of ~0.2%. It is reported that under an allele fraction of 0.02%, >50% of sequenced genomic
positions had artifacts [42]. In addition, common NGS assays involve multiple steps, including end
repair, ligation, PCR, and sequencing. These steps often introduce technical biases, limiting accurate
quantification and, therefore, hindering the robust and clinically valid detection of biomarkers [43].
Furthermore, PCR-based target enrichment cannot distinguish PCR duplicates from copies of unique
fragments generated by a pair of PCR primers.

To overcome these limitations, UMIs (also known as molecular barcodes) have been added into
the adaptors to tag individual DNA molecules [44–47]. Such barcodes enable the precise tracking
of individual molecules. UMIs can accurately distinguish PCR duplicates from copies of unique
fragments generated by PCR amplification [36]. Moreover, UMIs can reduce quantitative bias during
experimental processes to detect true ultra-rare variants by distinguishing authentic somatic mutations
arising in vivo from artifacts introduced ex vivo. This is largely due to the fact that errors arising
from artifacts during library construction and sequencing runs could be eliminated by comparing the
sequences of PCR duplicates identified with a UMI sequence [42,48]. Figure 2 illustrates the basic
principle of UMI application in the detection of true somatic mutations. Dedicated bioinformatics
software packages (Table 1) have been developed for the UMI-tagged targeted resequencing data to
improve ultra-rare variant calling by removing errors arising from the first cycle PCR [49,50].

Incorporation of molecular barcoding into a bioinformatics algorithm has significantly increased
sensitivity of mutation detection in NGS data. The detection sensitivity can be down to 0.01% [57].
However, recent advances in statistical modeling has also increased sensitivity of variant detection
without molecular barcoding. A method ERAS-Seq (Elimination of Recurrent Artifacts and Stochastic
Errors) that utilizes technical replicates in conjunction with background error modelling has shown an
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increased sensitivity of variant detection between 0.05% and 1% allele frequency [58]. By physically
extracting and individually amplifying the DNA clones of erroneous reads, another barcoding-free
method is reported to distinguish true variants of frequency >0.003% from the systematic NGS error.
This method uses 10 times less sequencing reads compared to those from previous studies and achieved
a PCR-induced error rate of 2.5 × 10−6 per base per doubling event [59].

Figure 2. Principle of unique molecular identifiers (UMI) application in the detection of
somatic mutations.

Table 1. Bioinformatics programs for detecting genetic and epigenetic changes in cancers.

Program Website Key Features Reference

Mutation

UMI-tools
https:

//GitHub.com/CGATOxford/UMI-tools

identifies sequencing
errors in the UMI

sequence to improve
quantification accuracy

[49]

MAGERI https://github.com/mikessh/mageri
provides an efficient
analysis pipeline for
UMI-encoded data

[50]

Copy Number

QDNA-seq https://github.com/ccagc/QDNAseq
simultaneously corrects
for GC and mappability

bias
[51]

WisecondorX
https://github.com/

CenterForMedicalGeneticsGhent/
WisecondorX

optimizes segmentation
by reducing noise from

problematic bins
[52]

BIC-seq2
http:

//compbio.med.harvard.edu/BIC-seq/
Avoids high variability

of reads in bins
[53]

CNVkit https://github.com/etal/cnvkit

uses both the targeted
reads and the

nonspecifically captured
off-target reads to infer

copy number

[54]

Methylation

CancerLocator
https://github.com/jasminezhoulab/

CancerLocator

simultaneously infers the
proportion and tissue of

origin of ctDNA
[55]

CancerDetector
https://zhoulab.dgsom.ucla.edu/pages/

CancerDetector

Improves ctDNA
fraction estimation and

identifies outlier markers
[56]
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5. Detection of DNA Copy Number Alterations

Currently, most cfDNA applications in cancer screening have focused on somatic point
mutations [23,24]. However, methods that interrogate other genomic aberrations should be incorporated
to improve detection and characterization of early-stage cancers. One of such genomic abnormalities is
CNVs that contribute significantly to genome instability [60,61]. Large-scale cancer genome studies
have identified CNVs across various types of cancer and a majority of the CNVs are shared among
several cancer types [62,63]. Recently, several lines of investigation have demonstrated the potential of
CNVs from cfDNA as sensitive cancer biomarkers [64–66]. Both targeted and whole genome sequencing
(WGS) have been employed to identify specific CNVs or genome-wide DNA copy number patterns in
cancer patients. Extension of statistical and bioinformatics methods developed from microarray-based
comparative genomic hybridization (aCGH) array or NGS are suitable for the detection of CNVs
from cfDNA.

For the WGS-based CNV analysis, depth of coverage (DOC) methods (Table 1) are the most used
techniques to estimate copy number from the sequence depth in the genome [51–54]. Other methods
such as assembly-based, split-read, and read-pair methods [67] can be used to infer copy number
changes and chromosomal rearrangement. However, these methods may require high sequence
coverage or specific molecular size and thus may not be practical in diagnostic application. The
DOC methods can be divided into two major categories depending on whether a reference signal
is required. In general, the pseudo-autosomal region on the Y chromosome and genomic regions
with low mappability should be removed before the sequencing alignment procedure. This step is
especially critical for reference free methods to ensure that the short reads can be mapped to a unique
genomic location instead of multiple possible locations. The GEM (GEnome Multitool) mappability
algorithm [68] is an efficient program that provides mappability information for multiple genomes.
In addition, it is important to filter genomic regions that tend to show artificially high signal (i.e.,
excessive unstructured anomalous reads mapping). These blacklisted regions in the human genome
are often found in highly variable regions (e.g., alternative haplotypes overrepresented on chromosome
19) or at specific types of problematic repeats such as centromeres, telomeres, and satellite repeats.
The ENCODE and modENCODE consortia have identified these regions and made them available
online [69] at https://sites.google.com/site/anshulkundaje/projects/blacklists. However, empirical data
analysis indicates that the ENCODE blacklist may not be sufficient to remove all problematic regions.
As such, the QDNAseq algorithm [51] provides a data-driven approach to identify additional regions
that should be removed before downstream analysis.

Due to the high cost of WGS assay, current cfDNA-based approaches to CNVs detection normally
have low-sequence coverage (e.g., 0.1×~0.5× coverage depth) [64,70,71]. As such, the binning procedure
is generally required to aggregate reads mapped to a genomic window. After removing the low
mappability reads and blacklisted regions, reads in different genomic windows are counted and
normalized by the total number of reads. Depending on the read depth, a fixed bin size is normally
chosen such that sufficient detection resolution can be achieved while excessive variation of read
counts between adjacent windows can be reduced, thereby enhancing the detection sensitivity for
CNVs. Although simple, using a fixed bin size may lead to high variability of read counts among bins
with a substantially different number of mappable positions. To overcome this problem, the BIC-seq2
algorithm [53] normalizes read counts at a nucleotide level rather than at the bin level. It calculates
the expected number of mapped reads for every position in the mappability map. The ratio of the
observed read number and expected number of mappable reads is thus used to infer copy number for
a specific genomic region. The normalized read counts can be further subject to GC content correction
using smoothing techniques such as LOWESS [72]. The GC-corrected read counts are then normalized
to the GC-corrected read counts of cfDNA from a group of reference samples (e.g., healthy controls or
patient’s own germline DNA) and expressed as log2 ratio values. For reference-free methods, median
normalization can be used to obtain log2 ratio values.
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Segmentation on the log2 ratio values is generally performed to identify the genomic areas with
potential CNVs. The purpose of segmentation is to merge adjacent data points with the same copy
number into one segment and divide regions with different copy numbers into different segments.
Several statistical techniques and tools have been developed. Two of the most popular methods are
circular binary segmentation (CBS) [73,74] and the hidden Markov model (HMM) [75,76]. Thorough
review and systematic evaluation of CNV detection methods and software resources have been
documented previously [52,77–79]. Researchers may use the information therein to choose appropriate
algorithms for their projects. After the segmentation, aberration calling will be made to infer DNA
regions with abnormal copy number (e.g., >2 or <2 DNA copies for gain or loss). A commonly used
method for determining CNVs from the cfDNA of cancer patients using high throughput sequencing
is the Z-score based approach [64,80–82]. These methods identify CNV segments by determining
regions in the cfDNA that are significantly different from the reference panel (e.g., Z-score distribution
from normal control). Other methods that make formal statistical inference for copy number are
available [83,84]. For example, CGHcall [83] uses a two-level hierarchical mixture model to infer
for each segment the likelihood of being one of six states of copy number: double deletion, single
deletion, normal, gain, double gain, and amplification. This method uses log2 ratio data to estimate
the proportion of different copy number states at the chromosome arm level. Therefore, it may require
a large number of samples for robust inference, especially for chromosomes in which abnormal DNA
copy numbers are rare. A summary of the bioinformatics procedure for WGS-based CNV analysis in
cfDNA is shown in Figure 3.

Figure 3. Bioinformatics procedure and techniques/resources used to detect copy number variations
(CNVs) from low coverage whole genome sequencing (WGS) data.
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One of the challenges to infer CNVs from the cfDNA sequencing data is attributable to the ctDNA
content and tumor heterogeneity. In a large portion of cfDNA samples with low ctDNA content (i.e.,
<2%), especially in the early stages of cancer, sequencing reads are dominated by the DNA from
non-cancer cells. Therefore, the signals of CNVs from cancer cells are almost entirely masked, leading
to very little statistical power for any segmentation algorithms to detect CNVs, especially for focal
amplifications or deletions. In addition, multiple clones of cancer cells could coexist in a cfDNA
sample. This will make it even more difficult to detect CNVs due to genetic heterogeneity. To overcome
this obstacle, Kirkizar et al. [85] developed a method that employs single-nucleotide polymorphism
(SNP)-targeted massively multiplexed PCR (mmPCR) followed by NGS (mmPCR-NGS). Haplotype
information is then obtained from the experiment to identify both single nucleotide variants (SNVs)
and CNVs with high sensitivity and an average allelic imbalance as low as 0.5%. This method can also
detect both clonal and subclonal CNVs in ctDNA.

6. Identification of DNA Methylation Changes from cfDNA

DNA methylation is essential for normal development and plays an important role in epigenetic
control of gene activity. Changes in DNA methylation have been recognized as one of the most
common molecular alterations in tumorigenesis [86,87]. It is well known that each tissue possesses
unique methylation signatures and a genome-wide methylation pattern is distinguished between
cancer and normal cells [16,88,89]. Therefore, whole genome methylation profiling from cfDNA could
be a potentially powerful tool to detect the presence of specific cancer. Lehmann-Werman et al. [90]
first demonstrated the feasibility to identify tissue origin using cfDNA. By leveraging whole genome
methylation data sets from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO)
repositories, they identified individual CpG dinucleotides that were unmethylated in the tissue of
interest but methylated in other tissues. By comparing genome-wide methylation data from 35 human
tissues generated using the Illumina Infinium HumanMethylation450k BeadChip, tissue-specific DNA
methylation markers were selected. Subsequently, Moss et al. [91] generated a reference methylation
atlas of 25 human tissues including major organs and cells involved in common diseases. For each
tissue or cell type, both uniquely hypermethylated and uniquely hypomethylated CpG sites were
identified. Additional CpG sites were further identified to differentiate any two cell types that were
found to be most similar in the atlas.

With the data for tissue-specific and cancer methylation signatures, deconvolution algorithms [92],
a commonly used algorithm to recover the original signal from a mixture of signal sources, can be used
to map tumor tissue of origin from cfDNA. Sun et al. [93] used optimization programming to calculate
the methylation densities of 5820 methylation markers in cfDNA from bisulfite sequencing data for
14 human tissues. To improve the selection of informative methylation markers, Guo et al. [94] identified
147,888 blocks of tightly coupled CpG sites, called methylation haplotype blocks, after a comprehensive
analysis of a large amount of whole-genome bisulfite sequencing data, reduced-representation bisulfite
sequencing data, and methylation array data. The deconvolution algorithm was then applied for
tissue-specific methylation analysis at the block level. This method was successfully applied to estimate
ctDNA content and differentiate among clinical plasma samples from normal individuals and patients
of lung cancer and colorectal cancer.

Recently, probabilistic models have been formulated to identify specific cancer types from cfDNA.
Kang et al. developed a method, termed CancerLocator [55], to simultaneously infer the proportion
and tissue of origin of ctDNA using whole-genome DNA methylation data. By using TCGA Infinium
HumanMethylation450 microarray data from both normal and tumor samples, CancerLocator identified
as feature input a large number of CpG clusters that have high inter-individual methylation variation
across all normal and cancer types. Since cfDNA from the peripheral blood is a mixture of normal
and tumor DNA if a cancer cell is present, the methylation level for each CpG cluster, one for normal
and the other one for a cancer type, can be estimated and the ctDNA fraction and the likelihood of
the presence of a specific cancer type can be inferred based on the methylation data of informative
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CpG clusters. CancerLocator demonstrated a superior prediction performance over popular machine
learning algorithms (i.e., random forest and support vector machine) on low-coverage sequencing
data, especially for samples with low to moderate ctDNA fraction. However, a challenge facing this
method is that the classification accuracy depends substantially on the estimated ctDNA fraction of a
specific tumor type.

A variation of CancerLocator was developed later by Li et al. [56]. This method, called
CancerDetector, differs slightly from CancerLocator in genomic marker selection and estimation.
To identify sensitive genomic markers, CpG clusters were identified such that the level of methylation
in a specific cancer tissue differs from matched normal tissue as well as normal plasma samples. This
procedure ensures that selected markers are not tissue specific and the methylation signal can be
detected in the blood. With selected CpG clusters, a similar probabilistic model to CancerLocator was
implemented to predict cancer types and ctDNA fraction. To improve the estimation of ctDNA fraction,
an iteration procedure was developed to remove outlier markers whose estimated ctDNA fraction are
far from the estimated ctDNA fraction when all markers were used. CancerDetector demonstrated
substantial improvement over CancerLocator with high sensitivity and specificity in detecting tumor
cfDNAs on real plasma data. Figure 4 illustrates the major principle of the bioinformatics approach for
tumor tissue-specific methylation analysis.

Figure 4. Schematic approach to map cancer tissue of origin from WGS methylation analysis.

7. Association of Nucleosome and Fragmentation Pattern with Tissue of Origin in cfDNA

In addition to DNA methylation, cfDNA fragmentation and/or nucleosome occupancy patterns
are another epigenetic feature to trace gene activity and tissue origin [95]. Compaction of nucleosomal
structures creates a barrier for DNA-binding transcription factors to access their cognate cis-regulatory
elements. Usually, active promoters lack nucleosomes, while inactive promoters have densely packed
nucleosomes. Nucleosome positioning through genome-wide mapping is shown to be associated
with gene activation and expression in a development-dependent and tissue-specific manner [95,96].
Therefore, investigation of nucleosome positioning in a patient’s cfDNA may reveal the existence of a
specific cancer type.

As cfDNA is preferentially released from apoptotic cells, the size distribution of cfDNA fragments
(160–180 bp) can resemble the size of mononucleosome-protected DNA. Specifically, peak sizes
correspond to nucleosomes (~147 bp) and chromatosomes (nucleosome + linker histone; ~167 bp),
suggesting they could bear the information of the cell type of origin [97]. Based on the expectation that
fragment endpoints should cluster next to nucleosome boundaries and should be depleted at sites of
nucleosome occupancy, Snyder et al. showed that nucleosome spacing patterns can inform the cell
type of origin from cfDNA [98]. The study showed that nucleosome spacing inferred from cfDNA
in healthy individuals correlated strongly with epigenetic features of lymphoid and myeloid cells,
consistent with hematopoietic cell death as a major source of cfDNA, while the patterns of nucleosome
spacing in late-stage cancer patients match the anatomical origin of the patient’s cancer. Therefore,
different nucleosome footprints between the tumor and the normal source of cfDNA may enable the
noninvasive monitoring of a much broader set of clinical conditions than currently possible [98].
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8. Conclusions and Future Direction

cfDNA molecules have emerged as promising biomarkers for cancer detection and monitoring
due to the easy access to clinical samples from blood or urine. The advent of NGS technology
provides an unprecedented opportunity to systematically examine the characteristics of cfDNA for
tumor-specific changes. However, the massive amount of sequencing data requires sophisticated
bioinformatics analysis to accurately identify genomic abnormalities in cancer. This review discussed
major bioinformatics applications of cfDNA in oncological research to identify point mutations, copy
number abnormalities, DNA methylation changes, and nucleosome positioning patterns. Using
sophisticated bioinformatics analysis, advances have been made to better understand the property of
cfDNA through fragmentation and nucleosome spacing patterns. Analysis by leveraging large-scale
cancer genomic databases in conjunction with state-of-the-art statistical algorithms demonstrates the
great potential of using methylation biomarkers for identification of cancer cell origin. Moreover,
patterns of CNV through the WGS analysis can further reveal the extent of tumor heterogeneity.
Nevertheless, to move cfDNA into routine clinical practices for better patient management, future
studies will need to address several issues. First, studies need to focus more on detection sensitivity
in early-stage cancer because there are many barriers to utilizing cfDNA for such applications. For
example, most studies that demonstrated the feasibility of cfDNA in cancer detection used samples
form late-stage cancer patients. However, the fraction of ctDNA in the plasma from early-stage
cancer patients is generally very low. Although a range of NGS-based approaches have been used
to characterize tumor genomes in detail and new bioinformatics techniques and analysis tools are
rapidly evolving, current technologies and bioinformatics algorithms are not sensitive enough to
detect such low level of genetic or epigenetic abnormalities. How to develop advanced technologies
to detect mutations, CNVs, and epigenetic changes at the low ctDNA level is likely to be one of
the most challenging issues to resolve. Another issue is related to cfDNA contaminations by the
lysed blood cells and significant variation into cfDNA due to DNA isolation protocols and choice of
instrument. Therefore, a standard protocol for quality control and bioinformatics analysis procedures
need to be developed before these technologies can be successfully and reliably used in clinical practice
and regulatory decision -making. A joint effort from the scientific community for the MicroArray
Quality Control (MAQC) project [99] is an excellent example to follow to attain this goal. Finally,
other biomarkers should be further explored for liquid biopsy in addition to genetic and epigenetic
markers and nucleosome spacing patterns discussed in this review. For example, recent studies
have shown that circulating cell-fee RNA (cfRNA), which encompasses miRNAs, lncRNAs, and
mRNAs, could also serve as valuable biomarkers for liquid biopsy [100,101]. Given the finding that
transcriptome profiling alone from tissue biopsies can robustly determine cancerous status and tissue
origin [102], the multiparameter analyses incorporating the molecular profiles at cfDNA, cfRNA,
and protein will result in an improved understanding of molecular aberrations and their functional
roles across tumor types, as well as facilitate the identification of novel tumor subtypes [103]. As
most of the cfDNA interrogations to date are proof-of-principle studies, large-scale, multi-site cohort
studies that systematically investigate all these aspects of molecular profiles are needed to evaluate
the complementary nature of their screening power so that liquid biopsy signatures can be refined,
validated, and utilized in clinical practice. Eventually, these efforts will lead to the identification of
new oncological biomarkers for early detection and outcome prediction, which is a prerequisite for
realizing the promise of precision medicine.
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Abstract: The reactivation of telomerase in cancer cells remains incompletely understood. The catalytic
component of telomerase, hTERT, is thought to be the limiting component in cancer cells for the
formation of active enzymes. hTERT gene expression is regulated at several levels including chromatin,
DNA methylation, transcription factors, and RNA processing events. Of these regulatory events,
RNA processing has received little attention until recently. RNA processing and alternative splicing
regulation have been explored to understand how hTERT is regulated in cancer cells. The cis- and
trans-acting factors that regulate the alternative splicing choice of hTERT in the reverse transcriptase
domain have been investigated. Further, it was discovered that the splicing factors that promote the
production of full-length hTERT were also involved in cancer cell growth and survival. The goals are
to review telomerase regulation via alternative splicing and the function of hTERT splicing variants
and to point out how bioinformatics approaches are leading the way in elucidating the networks that
regulate hTERT splicing choice and ultimately cancer growth.

Keywords: hTERT; telomerase; telomeres; alternative splicing; network analysis; hierarchical
clustering analysis; differential gene expression analysis

1. Introduction

Telomeres are specialized DNA and protein structures found at the ends of linear chromosomes
made up of the hexameric repeat DNA 5′-TTAGGGn [1]. The main function of telomeres is to protect
the ends of linear chromosomes from inappropriate recognition as broken DNA by cellular DNA
damage response proteins [2]. Telomeres prevent the recognition of chromosome ends by DNA damage
response proteins by being bound by a six-protein complex called shelterin. Thus, telomeres and the
shelterin complex overcome the “end protection problem”. Telomeres are also involved in determining
the maximal number of times a cell can divide. Due to the inability of DNA polymerase to completely
replicate the lagging strand of telomere DNA, a small (30–150 nucleotides) piece of DNA is lost with
each round of replication (Figure 1). This phenomenon, known as the “end replication problem”, results
in telomere shortening overtime. Upon reaching a critically shortened length, telomere uncapping and
DNA damage sensing of telomeres by p53 results in growth arrest [1–3]. Growth arrest is triggered
when one or a few telomeres become short enough to be sensed as damaged DNA, resulting in
replicative senescence [4]. The limited proliferative capacity, also known as the “Hayflick limit”, of cells
can act as a ‘cellular aging/timing’ mechanism in humans and other large long-lived organisms. By
having a counting mechanism, cells can prevent unlimited cell growth (i.e., telomeres are short and
thus sensed as DNA damage). Without such a mechanism, cells could accumulate mutations associated
with cancer development. Thus, telomere shortening and replicative senescence is thought to act as a
potent inhibitor of progression to malignancy [1,5].
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Figure 1. Telomere biology. (A) Telomeres are replicated during cell division (mitosis). A set of enzymes
process the end of replicated chromosomes so that a 3′ G-rich overhang is produced. The single
stranded 3′ end displaces the double-stranded structure to form a three-stranded structure (D-loop).
Shelterin binds to both the single- and double-stranded portion of the telomere, protecting it from being
recognized by the DNA damage machinery, solving the “end-protection” problem. (B) Telomerase
negative cells or cells without a telomere maintenance mechanism. Due to the “end-replication”
problem, a small piece of DNA at the lagging strand end of DNA is not replicated and is lost from
the chromosome that is passed on to the daughter cells. Over time, this slow erosion results in the
loss of telomere length. When a few telomeres have DNA damage at chromosome ends, deprotection
occurs and cellular senescence is initiated. This removes cells with critically short telomeres from
the replicating population of cells and acts as a potent block to tumor progression. (C) Cells become
replicatively immortal by adopting a telomere maintenance mechanism. Telomeres are maintained by
two mechanisms, telomerase RNP or a homology-directed mechanism called alternative lengthening of
telomeres. Telomerase is the mechanism that approximately 90% of human cancer cells use to maintain
telomeres and immortality. In male germline cells, telomeres are also maintained or elongated by the
ribonucleoprotein telomerase.

In order to achieve immortality, cancer cells need a telomere length maintenance mechanism [6].
Nearly all cancer cells up-regulate telomerase to re-elongate or maintain telomeres by de novo synthesis
of telomere repeats on to chromosome ends [1,7,8]. Although most cancer cells have detectable
telomerase activity, enzyme levels vary considerably between tumors and individual cells within
tumors [9]. Telomere length is also heterogenous between tumor types and within tumors [10].
Telomerase is a ribonucleoprotein (RNP) with reverse transcriptase activity that consists of two main
components and several accessory proteins. The core RNP is composed of the catalytic protein subunit
telomerase reverse transcriptase (hTERT) and an RNA template component (human telomerase RNA
component; hTERC, hTR) that when assembled and recruited can elongate or maintain telomeres [7,11].
Telomerase is active during embryonic development but is rapidly repressed in most somatic tissues [12].
Only specialized subpopulations of transit amplifying stem/ progenitor cells are capable of transient
telomerase expression post-development [1,13].

Telomerase is subject to a myriad of gene expression regulatory mechanisms. Little consensus
exists in the field about chromatin environment, DNA methylation, DNA looping, promoter mutations,
and transcription factor binding [14,15]. Despite the vast amount of research that has focused on
transcriptional and epigenetic regulation of hTERT, little research has focused on the regulation of the
resultant RNA molecules and co/post-transcriptional gene expression regulation [16,17]. hTERT mRNA
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levels are highest in embryonic stem cells, induced pluripotent stem cells and transit-amplifying adult
progenitors, and lower in normal cells. Contrary to the dogma in the field, recent evidence indicates
that there may or may not be a slight increase in hTERT mRNA abundance in cancer cells [18–20].
Full-length (FL) hTERT mRNA is the limiting factor for the formation of telomerase activity. Despite the
presence of active telomerase enzymes in cancer cells and stem cells, the mRNA copy number or mRNA
abundance is very low compared to other genes [21–23]. For instance, quantification of telomerase
components has shown 5000–10,000 molecules of hTR in cells, while hTERT mRNA is expressed between
1–40 molecules per cell [21–23]. Although the general paradigm is that the hTERT is limiting for active
telomerase, either component can be limiting in the formation of active telomerase [23,24]. In most
normal cells, hTR is present in excess and thus hTERT is limiting. Evidence for this is the observation
that hTERT expression is sufficient for immortalization (but not transformation) of fibroblast cells [25].
Recent evidence has demonstrated that there is a subpopulation of hTERT protein that is not assembled
into the telomerase complexes that could be capable of maintaining telomeres. Estimates indicate that
there are anywhere from 100–700 hTERT protein molecules that can interact with hTR in a telomerase
active cell at any given time [26,27]. In order to develop better telomerase inhibitors, a more thorough
understanding of hTERT gene expression regulation and function is necessary to gain insights into
possible therapeutic avenues.

Due to the lack of telomerase activity in most normal cells, besides transit-amplifying stem cells
and germ line cells, and the fact that the majority (~90%) of cancer cells have telomerase activity,
telomerase has been a highly sought-after cancer therapeutic target. While both public and private
efforts have attempted to develop inhibitors of this enzyme, the most clinically progressed drug is an
anti-sense RNA (Imeltelstat, GRN163L) of the template RNA, hTR [10,28–30]. Other small molecule
drugs and vaccine-like approaches to target telomerase positive cancer cells have been attempted but
have failed due to dose-limiting toxicities and other off target effects on normal cells [30–33]. Further,
clinical trials of Imetlestat are still underway and this drug may be best for cancers with already very
short telomeres [10]. Thus, the potential therapeutic benefits of targeting telomerase have not been
realized with current strategies. The major issue with direct inhibition of telomerase activity is the
long lag period that it takes to treat cells with inhibitors before telomeres are critically shortened and
cancer cells begin to die [1]. Recent advances in the field, however, have led to a resurgence in interest
towards finding a therapeutic window and means to inhibit telomerase/target telomere biology as a
cancer therapy. For instance, the observations that certain cancer cells/tumors appear to be addicted
to hTERT/telomerase as indicated by rapid telomere length-independent apoptosis, suggests that
there may be other strategies to target cancer cells [34]. hTERT promoter somatic mutations in cancer
cells also provide a new approach to targeting hTERT/telomerase positive cancer cells with minimal
off target effects. Additionally, a new class of drugs called telomere uncapping drugs are showing
significant benefits in pre-clinical studies. Leading the way in this class is a nucleotide analogue,
6-thio-deoxyguanosine (6-thio-dG) [35]. This nucleotide is preferentially incorporated by telomerase
into telomeres, which is hypothesized to generate a mutant telomere sequence. Shelterin components
cannot bind to mutant (6-thio-dG containing) telomeres which contributes to rapid telomere uncapping,
DNA damage signaling at the telomeres, and cell death in telomerase-expressing cancer cells [35].
Thus, a more thorough biochemical analysis of the hTERT regulatory mechanisms is being sought to
find new and more potent telomerase/TERT/telomere biology drugs.

One area of gene expression regulation that has mostly been ignored is alternative RNA splicing
of hTERT. Alternative RNA splicing has recently been observed to impact at least 95% of human
multi-exon genes and serves as a mechanism to control gene expression in several evolutionary
conserved ways [36]. For example, alternative splicing generates proteome diversity by making
several proteins from the same transcriptional unit/gene, allowing ~20,000 genes to code for more than
100,000 proteins [37]. While gene number does not scale with organism complexity, intron number
and thus splicing, does scale with organism complexity [38]. Alternative splicing of a gene can lead to
proteins with similar function or even opposing functions (dominant-negative isoforms). Alternative
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splicing can also regulate the abundance of functional gene products by splicing to isoforms that have
premature stop codons (degraded by non-sense mediated mRNA decay [39]). Ultimately, alternative
splicing offers a biological mechanism utilized by cells to regulate the functional outcomes of each gene.
hTERT/telomerase offers a good model gene that utilizes alternative splicing as part of its regulatory
repertoire, which is of particular importance in cancer biology and stem cells.

2. Alternative Splicing is Dysregulated in Cancer Leading to the Re-Emergence of Splice Variants
Normally Found in Development but Silenced in Normal Cells

Alternative splicing is dysregulated in cancers [40]. Alternative splicing is regulated by the
combination of cellular context, cis-elements, and trans-factor/RNA binding proteins [41]. Alternative
splicing is also co-transcriptionally regulated according to the kinetic coupling model [42]. As RNA
polymerase II transcribes a new pre-mRNA molecule, the spliceosome is recruited to the pre-mRNA,
even docking on the C-terminal domain of RNA polymerase II and dictating the inclusion and exclusion
of exons [43]. Further, the rate of RNA polymerase across a gene body, along with the chromatin
environment, DNA methylation patterns, and other unknown factors, can significantly impact the
alternative splicing pattern of a gene [44]. The spliceosome is a megadalton molecular machine that
is composed of five small nuclear ribonucleic particle (snRNP) core components (U1, U2, U4, U5
and U6) and an additional ~700 proteins [45]. The spliceosome components are recruited with RNA
polymerase II to the growing pre-mRNA and assembled in a step-wise manner at the 5′ and 3′ splice
sites, branch point, and polypyrimidine tract in order to complete intron lariat formation and removal,
and joining of exons in the processed transcript [45] (Figure 2). Exon joining may be constitutive,
meaning the exons are always included in the mRNA of a gene or alternative (only included sometimes
in the mRNA of a gene), giving rise to alternative splice variants (ASVs; [45]). Other types of splicing
events can occur such as intron retention, alternative 5′ or 3′ splicing sites, alternative promoters/first
exons, and alternative polyadenylation/3′ exon (Figure 2). Splice site selection is a complex process but
generally the proximity of local sequence elements (cis) such as exonic splicing enhancers/silencers
(ESE/ESI) and intronic splicing enhancers/silencers (ISE/ISI) and the RNA binding proteins in the
cell at any given time dictate splicing choice (Figure 2; [46]). There are at least 700 known splicing
factors/RNA binding proteins that can participate in alternative splicing [47]. We are only at the
beginning of understanding the roles and regulation of splicing in normal cells and the many ways
cancer cells utilize dysregulated splicing to promote growth and survival. Nearly all of the hallmarks
of cancer cells have dysregulated splicing products that have been identified, including hTERT and
cellular immortality [48]. These mechanistic insights may pave the way for new therapeutic avenues
into treating cancer, or specific aspects of cancer cells.

 

Figure 2. Alternative splicing regulation. A cartoon image of important sequence (cis) and protein (trans)
regulatory features that result in exon inclusion or exclusion. The majority of the splicing information is
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contained in intronic and exonic sequences that are called intronic splicing silencers/enhancers (ISS/ISE)
and exonic splicing silencers/enhancers (ESS/ESE). Specialized RNA binding proteins bind to these
sequence elements and recruit in the megadalton spliceosome. Serine/Arginine-Rich (SR) proteins are
typically splicing enhancers (enhanced exon inclusion) while hnRNP proteins are typically splicing
silencers (repress exon inclusion, promote exon skipping/alternative RNA splicing). There are at least
700 RNA binding proteins in the human genome that can act as splicing trans factors, thus the repertoire
of splicing regulatory features is vast.

3. Alternative Splicing of hTERT

The reverse transcriptase component of telomerase, hTERT, is subjected to regulation by alternative
splicing. It is important to note that the murine TERT (mTERT) gene is not alternatively spliced
in the same fashion as human TERT (hTERT) [20]. Thus, we will focus solely on the splicing of
human TERT in this review. There are 22 known splice isoforms of hTERT that have been detected
in a variety of cell types [49]. hTERT is a 16 exon (15 intron) gene (Figure 3 and Table 1). hTERT
consists of four major protein domains (TEN domain, RNA binding domain, reverse transcriptase
domain, and C-terminal domain; Figure 3). Only the full-length 16 exon isoform of TERT that codes
for a protein that can be assembled into telomerase ribonucleoproteins is capable of maintaining or
elongating telomeres (Table 1; [17]). hTERT is spliced into active and inactive forms simultaneously in
telomerase positive cells (i.e., cancer cells, embryonic stem cells, iPS cells, male germ line precursor
cells, transit-amplifying adult stem cells, and activated immune T cells). The full-length protein coding
hTERT mRNA is expressed in the range of 1–90% of the steady state transcripts depending on cell
line/tissue studied [19,21,22].

hTERT 

Figure 3. hTERT gene, protein domains and commonly studied splice variants. (A) Cartoon image of
hTERT exons and introns. hTERT is a 16 exon/15 intron gene that generates the reverse transcriptase
component of the telomerase enzyme. Exon 2 is highlighted in orange as it is the major contributor to
the telomerase RNA binding domain (TRBD). Exons 7 and 8 are highlighted in red as these two exons
represent one of the most commonly studied splicing events in the hTERT gene and they encode for
critical residues in the reverse transcriptase domain (RT). (B) Protein domains of hTERT. Lines linking
exons to the domains they encode are shown. Critical domains are the TEN (exon 1), RNA binding
(exons 2 and 3), RT (exons 4–13), and c-terminal (exons 14–16). All four of these domains are essential
for telomerase activity, processivity, recruitment, and function. (C) Open reading frames of abundant
hTERT alternative RNA splicing isoforms.
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Table 1. Description of major hTERT splice isoforms.

Isoform Exon Structure Intron Retention? Biochemical Function

Full-length 1–16. Original ORF. No
Functional hTERT protein, maintains
telomeres when in active telomerase

holoenzyme (RNP)

Minus beta
1–6, 9, and 10; PTC in 10.

Skipping of exons 7 and 8.
No

Mostly degraded by non-sense
mediated decay, some translated into
protein and may play a role in DNA

damage repair/ protection from
apoptosis, may bind hTERC (hTR)

Minus alpha

1–16, alternative 3′ splice
acceptor site in exon 6

generates in frame shift of
36 nucleotides.
Original ORF.

No Dominant-negative, binds hTERC (hTR)

INS3 1–16 plus, PTC in intron 14.
Retention of intron 14

nucleotide 623 to end of
intron 14.

Dominant-negative, binds hTERC (hTR)

INS4
1–14, and alternative exon

16 3′ splice site NT492,
PTC in exon 14.

Retention of intron 14
nucleotides 1–600.

Dominant-negative, binds hTERC (hTR)

DEL2 1,3–16, PTC in exon 3. No
Proposed mitochondrial hTERT variant,

retains hTERT MLS in exon 1.

Delta4–13 1–3, 14–16, original ORF. No
Proposed to stimulate proliferation.
Interacts with WNT/Beta catenin.

Minus Gamma
Skipping of exon 11.

Original ORF.
No

Tissue specific and may inhibit
telomerase action at the telomeres.

PTC—premature termination codon. RNP—ribonucleoprotein. NT—nucleotide.

The alternative RNA splicing isoforms that are expressed in each cell type are not well described
but are likely to be tissue- and cell line-specific. The most commonly studied isoforms of hTERT
result from alternative splicing in the reverse transcriptase domain (RT) between exons 5 and 9 [19,50].
Alternative splicing in the RT domain consists of splicing in regions called the alpha and beta regions
(Table 1; Figure 3). The hTERT alpha region is a cryptic splice site within exon 6 that results in deletion
of the 5′ 36 nucleotides resulting in the minus alpha variant [51]. This alternative variant is in the
canonical hTERT reading frame and codes for a dominant-negative protein that can interact with hTR,
and when overexpressed, results in telomere shortening in telomerase positive cells [51]. However,
this variant is not very abundant, accounting for less than 5% of the steady state transcripts in cancer
cells [22]. The beta region consists of exons 7 and 8 of hTERT and these exons are skipped in the minus
beta variant of hTERT. The skipping of exons 7 and 8 of hTERT puts a premature stop codon in exon 10
in frame and thus results in the majority of the steady state mRNA of this transcript being targeted for
non-sense-mediated decay [22,51]. However, recent evidence in certain cancer cells indicates that not
all of this transcript is degraded and some may interact with polyribosomes and be translated into
truncated hTERT proteins [50]. The suspected function of minus beta truncated hTERT proteins is
similar to that of minus alpha in that it would contain exon 2 and the RNA binding domain, and thus
could interact with hTR and compete with full-length telomerase for telomere binding [26]. Other
evidence indicates that minus beta may be interacting with DNA damage and repair complexes and be
protecting cells that express this variant from certain types of genotoxic stressors [50,52]. However,
these results are controversial since an antibody to minus beta hTERT does not exist. The abundance
of minus beta varies from cell type to cell type but can be anywhere from 10% to 90% of the steady
state transcript levels [19,50]. The combination of minus alpha and minus beta splicing also occurs
in some cell types. The abundance of minus alpha minus beta can range from 1% to 15% depending
on cell type [22]. The function of this variant is assumed to be null as it should be degraded by
non-sense-mediated decay pathways.
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Several other variants outside of these have been described in the literature such as the minus
gamma variant, Del2, INS3, INS4, and delta4–13 (Table 1) [49,53]. The gamma deletion variant results
from skipping of exon 11 and is in the original reading frame of hTERT [16]. This splicing event impacts
the RT domain, is highly tissue-specific, and may act as a dominant-negative protein if it is expressed
at sufficient levels in cells. Recently, the Del2 (deletion of exon 2) alternative splicing variant (ASV)
of TERT was quantified in several cancer cell lines [21]. Exon 2 codes for part of the RNA binding
domain of hTERT. ASVs lacking this exon would be unable to interact with hTR and thus would not
have canonical telomerase activity. This variant was estimated at 40 copies per cell in certain cell
lines investigated but was absent in other lines, thus its expression is tissue- and cell line-specific [44].
The authors also went on to show that this ASV could indeed code for a protein of 12 kDa; however,
no function or physiological studies were performed so the function of this protein is unknown [36].
Several intron retention variants exist in hTERT as well. Many of these variants contain premature
stop codons, but two variants, INS3 and INS4, have been defined to function as dominant-negative
inhibitors of telomerase activity [53]. INS3 contains a 159 bp insertion of intron 14 (622–781 nucleotides)
at the end of exon 14, encoding for 44 amino acids, followed by a stop codon [52]. INS4 contains a
600 bp insertion of the entire intron 14, encoding for 17 amino acids, followed by a stop codon [12].
The expression of INS3 and INS4 is tissue-specific and when expressed may account for 1–15% of the
total steady state levels of hTERT mRNAs. Another recent study exploring the identity of hTERT ASVs
in a variety of human cell lines discovered several new variants including delta4–13 [49]. The authors
demonstrated that hTERT was transcribed in all lines investigated, even telomerase negative lines, but
that the transcript in the negative lines was alternatively spliced to the delta4–13 ASV which lacks the
RT domain and thus cannot produce active telomerase. The delta4–13 ASV codes for a truncated hTERT
protein that seemingly interacts with WNT/beta-catenin pathway and stimulates the proliferation of
cells in culture. While hTERT alternative splicing variants have been documented in various tissues
and cell lines to date, technological and methodological limitations make some of the above conflicting
findings difficult to interpret. Moving forward and as described below, RNA sequencing technologies
and new informatic techniques will pave the way for a more thorough understanding of hTERT ASVs.

3.1. hTERT Alternative Splicing during Human Embryogenesis and Development Indicates that Telomerase
Activity is Regulated by Alternative Splicing

hTERT is regulated by alternative splicing during human embryonic development. During tissue
development and the first phases of differentiation, hTERT is transcribed and spliced to multiple
forms [54,55]. The most commonly studied isoforms arising from exons 5–9 have been documented.
For example, full-length (FL) hTERT and minus beta hTERT are present along with telomerase activity
during kidney development. At about week 17 of development, there is a massive shift in hTERT
splicing where the full-length (exon 7/8 containing) transcript is eliminated and only minus beta remains.
This shift in splicing coincides with a complete loss of telomerase activity [54]. These observations can
be interpreted to indicate that alternative splicing regulates telomerase activity. However, the splicing
factors that regulate the turning off of telomerase activity during tissue differentiation and specification
are completely unknown. Further, the expression and splicing of other hTERT ASVs is not well studied
during the differentiation and development of human tissues. This area deserves further investigation
as telomerase halopinsufficiency leads to stem cell diseases and risk of early cancers in patients.
Thus, further characterization of hTERT regulation in stem cells may lead to early interventions and
cancer prevention.

3.2. A Paradigm Shift: hTERT Is Regulated by Alternative Splicing in Cancers

A long-held paradigm in the telomere/telomerase field was and still is that hTERT and telomerase
is regulated by transcription. It appeared that hTERT was transcriptionally silenced following fetal
development and this was the mechanism that prevented hTERT expression and thus telomerase
activity, and allowed for progressive telomere shortening that is observed in the soma [16,17]. However,
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recent evidence from several groups indicates that this may have been a mis-interpretation of the
assays used to measure hTERT steady state transcripts. The most common assays to measure hTERT
transcripts are designed to detect exons 5–9 in the RT domain, however, we now know that those exons
are spliced out of most transcripts of hTERT [20,49]. Thus, previous research using primers in exons
5–9 led to missing transcripts that contained other regions of hTERT mRNA and the interpretation
that hTERT is transcriptionally silenced in normal somatic cells. We and others have reported that
hTERT is indeed transcribed in all cells but it is spliced to forms that do not encode for reverse
transcriptase activity [18,49]. Further, exon 1 of hTERT is extremely G/C rich making it difficult to detect
without using PCR additives and modified polymerases at higher than normal annealing temperatures.
We have quantitated that normal cells and tissues express between 50–90% of the abundance of hTERT
transcripts as cancer cells and that ultimately an upregulation of transcription of hTERT in cancer cells
is minimal in terms of overall transcripts [18]. The major regulatory mechanism that leads to active
telomerase and full-length hTERT production is a shift in splicing. Thus, the new working model
going forward should be to understand how hTERT alternative splicing is regulated in normal cells
and becomes dysregulated during the progression to malignancy, leading to tumor cell immortality.

3.3. RNA Sequencing and Other Technologies to Detect hTERT Splice Variants in Cancer

The abundance and splicing of hTERT makes it difficult to detect using standard techniques.
Using short read sequencing and RT-PCR to quantify and identify splicing variants leads to bias and
the potential for mis-interpretations of the data [56]. The coverage and sequencing depth of short
read RNA sequencing experiments can significantly mislead research concerning hTERT splicing
and must be interpreted and validated carefully. New and emerging sequencing technologies and
informatics tools have significantly advanced the detection and quantification of full-length cDNAs [57].
For instance, Sayed et al. 2018 demonstrated using third generation single molecule sequencing of
hTERT-specific cDNA libraries that HeLa cells splice hTERT into several variants [20]. This sequencing
technology was combined with informatics analysis that allowed the authors to define the identity
of full-length transcripts in cells [20]. The most common variants in the libraries were identified as
a very short transcript-containing exons 1, 15 and 16, a transcript splicing from exon 4 to exon 16.
Other variants where detected using this method such as full-length being the second most abundant
transcript identified. Interestingly, minus beta as well as Del2 were detected but these variants in their
full-length context were not as abundant as previously estimated by other techniques. These newer
sequencing technologies and informatics have their own sets of caveats. Improvements in reagent
chemistry, library generation techniques, and analysis software that allows mapping and quantification
of detected transcripts of third generation sequencing will prove advantageous over other methods for
splice isoform measures.

3.4. Regulation of hTERT Alternative Splicing by cis-Elements and trans-Factors

The general rules of splicing regulation or the splicing code are still being elucidated; several
recent efforts to understand the role of cis-and-trans elements of hTERT alternative splicing regulation
have been published. Two seminal studies investigated the reverse transcriptase domain alternative
splicing of hTERT [17,50]. Both groups generated minigene constructs including exons 5–9 to determine
what sequence elements and trans-factors were responsible for the formation of full-length (containing
all five exons) versus the minus beta splice variants containing only exons 5, 6, and 9. In breast cancer
cells, Listerman et al. focused on the formation of minus beta. Using their minigene construct they
observed that the majority of the product when in the context of breast cancer cells was the full-length
variant (90%) with about 10% of the observed transcripts being minus beta [50]. Next, they undertook
a small-scale cDNA screen of common splicing enhancers (Serine/Arginine-rich (SR) proteins) and
splicing repressors (hnRNP proteins; Figure 4). They observed that SRSF11 promoted the alternative
splicing (repressed full-length splicing; Figure 4) and formation of minus beta in their minigene. They
also observed that hnRNPH2 and hnRNPL promoted full-length splicing of their hTERT minigene [29].
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This study also observed that not all of the minus beta transcript was degraded by non-sense mediated
decay and may make a dominant-negative protein of telomerase. Further the authors demonstrated
that minus beta may protect breast cancer cells from chemotherapeutic insults [29]. Thus, future
research is needed to more carefully explore the role of minus beta in cancer cells.

In a study by Wong et al., an hTERT minigene was generated and an interesting observation was
made that the initial construct only formed full-length hTERT transcripts containing exons 5–9 when
placed in the context of HeLa cells [58]. To determine what sequence elements may be missing in
the minigene construct, the authors performed a self-blast of hTERT exons 5–10 and observed highly
repetitive sequences in these exons and introns of hTERT. To determine if these repeat regions might
be important in regulation, they looked at the conservation of these repeats in species that regulate
TERT similar to humans (i.e., old world primates) compared to species that regulate TERT differently
(i.e., rodents). The authors found several conserved repeat regions shared between old world primates
and human TERT gene loci, but these elements were lacking/missing in rodents and other shorter-lived
primates. Utilizing this information, the authors inserted three of the conserved elements into the
hTERT minigene and observed the expected ratio of full-length to minus beta steady state expression
(i.e., recapitulating the endogenous hTERT isoform expression ratio). These cis-elements were termed
block 6 repeats (a variable number tandem repeat in intron 6), direct repeat 6 (DR6), and direct repeat 8.
The direct repeats are 256 nucleotides within intron 6 and 285 nucleotides within intron 8 respectively,
and consist of 85% homologous sequences [58]. Through deletion analysis, the authors determined the
impact of each element on steady state hTERT isoform expression. It was observed that the 1.1 kb
VNTR (38 nucleotide repeat) termed block 6 repeats was essential for exclusion/skipping of exons 7
and 8 and production of the minus beta deletion containing transcripts. Further, DR8 was important
for the formation of exon 7- and 8-containing transcripts, or potential full-length transcripts. To follow
up these observations, the authors went on to show that a minimal number of VNTR block 6 repeats
were needed to promote minus beta splicing (skipping of exons 7 and 8) and that blocking DR8 with
an anti-sense oligonucleotide could promote skipping of exons 7 and 8, indicating that DR8 is likely a
docking site for trans-factors [58]. In a second study, Wong et al. utilized RNA secondary structure
modeling to predict how the pre-mRNA could be folding following transcription [59]. They then
utilized a modified mutation complementation assay to demonstrate that the VNTR block 6 repeats
could potentially form RNA:RNA pairing, making the splicing of the exon 6 5′ splice site be in closer
proximity to the exon 9 3′ splice site [59]. Combined, these foundational data indicate that alternative
splicing of hTERT, which is a very low abundant transcript, does not follow the typical splicing rules
of more abundant transcripts. These studies determined a few trans-factors and the pivotal sequence
elements in determination of the splicing choice of exons 7 and 8 of hTERT.

 

Figure 4. Reverse transcriptase alternative splicing regulation of hTERT. (A) Key of RNA binding
proteins associated with hTERT. Enhancers are depicted in green. Repressors in red. Blue indicates a
likely indirect impact on TERT splicing caused by the manipulation of a splicing factor. (B) Cartoon
image of introns 5 through exon 9 of hTERT in the reverse transcriptase domain (RT). On top of the
cartoon image are the hTERT exon 7/8 enhancers. On the bottom are the proteins that repress the
inclusion of exons 7/8.
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To begin to elucidate additional trans-factors, Ludlow et al. used a dual-reporter minigene loss of
the function screen focused on 516 splicing factors [19]. The list of RNA binding proteins was derived
based on both empirically determined RNA binding proteins via literature searches and searching
protein data bases (Genecards, etc.) that resulted in the curation of a list of 516 putative RNA binding
proteins. Following the screen, there were 110 individual genes that resulted in a two-fold change in
reporter activity. Since the goal of this initial study was to understand splicing factors/RNA binding
proteins involved in the promotion of full-length TERT and telomerase activity, they focused on
93 genes that resulted in a two-fold change in minus beta to full length splicing. A systematic approach
utilizing bioinformatics techniques and network analysis was then utilized to focus the analysis and
narrow down the list of candidate genes (detailed below in Section 4).

4. Using Bioinformatics to Discover hTERT Alternative Splicing Regulation in Cancers

Following high throughput screening, target identification is an important yet difficult process.
Several approaches can be taken to narrow down candidates. To begin to narrow down our list of
candidate genes, we utilized a panel of well characterized lung cancer cells and developed highly
quantitative droplet digital PCR measures of hTERT exon inclusion/exclusion events [19]. From these
measures, we were able to segregate cell lines into high hTERT full length (FL) lines and low hTERT FL
lines. Using publicly available gene expression data from the same lung cancer cell lines, we used
hierarchical clustering analysis based on the expression level of the 516 splicing factors. We then
compared and overlapped the minigene hits to the differential expression analysis. This analysis
narrowed down the list from 93 potential candidate genes to 12 genes that were differentially expressed
between high and low TERT FL lines. This led us to identify one gene, NOVA1, that was related to
hTERT FL splicing in non-small cell lung cancer cells that express NOVA1. We then hypothesized
that NOVA1, hTERT FL, telomerase activity, and telomere length interacted to define subsets of lung
cancer cells that may be more or less similar in terms of splicing factor expression. Again, we utilized
hierarchical clustering analysis based on the expression of NOVA1, hTERT FL, telomerase activity,
and telomere length, and clustered lung cancer cell lines into categories expressing high and low
levels of these variables. We then used differential expression analysis focusing on the expression of
the 516 splicing factors and found a set of splicing genes that were differentially expressed between
these high and low cell lines [19]. This analysis identified a network of genes that are related to the
alternative splicing of hTERT and may lead to the identification of potential lead candidate genes for
targeted therapies given hTERT/telomerase specificity to cancer. These analyses were done with a
combination of in-laboratory measures and publicly available data. Other studies have done similar
analyses to try to understand hTERT alternative splicing in cancer.

Investigating the genetic landscape at the hTERT locus, a group utilized largescale analysis and fine
mapping to elucidate the relationships between single nucleotide polymorphisms (SNPs) and telomere
length, hTERT expression, and alternative splicing [60]. The authors combined cohorts to generate a
large study population that had data on 110 SNPs in hTERT and correlated these SNPs to telomere
length, hTERT expression and splicing from available RNA sequencing data. Further, the SNPs were
also correlated (step-wise regression analysis) to cancer risk for specific cancers. Interestingly, an SNP
in intron 4 was found to impact the alternative splicing of hTERT. The minor allele of this SNP was
found to impact the splicing choice of hTERT by introducing the use of a novel alternative splice donor.
In a follow up study, it was observed that this SNP generated a new splice variant termed INS1B which
is a variant of a known hTERT ASV called INS1 [61]. The expression of INS1B reduced telomerase
activity when the authors used oligonucleotides to switch the splicing to favor INS1B. The authors
concluded that this SNP results in subtle inadequacies in telomerase activity in normal cells, which
over time results in an increased risk for genome instability and cancer [61].

Other research has used The Cancer Genome Atlas or Pan Cancer Atlas to study telomere and
telomerase biology including hTERT alternative splicing. Barthel et al. utilized these public resources
to analyze a variety of regulatory features that lead to the expression of hTERT in cancer cells [62].
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Concerning the alternative splicing of hTERT, the authors reported that the full length transcript was
the most abundant in the samples with detectable levels of hTERT. This is in contrast to the common
thought paradigm that the minus beta transcript is most abundant in cancer cells. However, more
recent data and improved reagents and techniques are providing more evidence that FL may indeed be
more abundant compared to commonly measured alternatively spliced transcripts. Several technical
limitations should be mentioned briefly. hTERT is an extremely low abundant transcript making it
difficult to detect and quantify accurately. RNA sequencing technologies are limited in the sensitivity
for low abundance targets and thus caution must be taken when interpreting hTERT expression
estimates from large consortia RNA sequencing data. Furthermore, predicting the functional outcome
of full-length hTERT must also be interpreted cautiously. hTERT protein can be assembled into active
telomerase molecules but it also has telomere-independent roles in cells [26,63]. That being said,
this group attempted to derive a gene expression signature to predict telomerase activity levels [62].
This expression signature generated a telomerase activity score and was correlated to expression levels
of hTERT and hTERC (telomerase RNA component) in the Pan-cancer analysis [62]. Overall, this
paper utilized a wide variety of bioinformatic tools and public data to make inferences about the
activation of telomerase in cancer and how hTERT and hTERT splicing may be related to cellular
immortality of tumors. Very recently, a group published an additional trans-factor that may bind hTERT
pre-mRNA to regulate the splicing choice of exons 7/8 of hTERT. Wang et al. reported that an antisense
oligonucleotide aimed at the intronic cluster of SRSF2 binding sites in intron 6 of hTERT results in
reduced FL hTERT splicing and increased alternative splicing [64]. These data combined indicate that
alternative splicing is an emerging important regulatory paradigm for hTERT and telomerase and that
it may indeed be targetable for cancer therapeutics.

5. Utilizing Predictive Models of RNA Folding and RNA trans-Factor Binding

Alternative splicing is regulated by the combination of cis- and trans-acting factors along with the
combination and competition of trans-RNA binding proteins available in a given cell or tissue at a
given time (i.e., context). Many computational biology groups have attempted to model and predict
both RNA folding in vivo and RNA trans-factor binding (recently reviewed in References [65,66]).
There are many programs that have resulted from such efforts. Groups have utilized these programs to
predict the hTERT RNA secondary structure to help explain alternative RNA splicing. Wong et al. in
2013 and 2014 utilized RNAfold to predict the potential structure of hTERT exons and introns 5–9 [59].
They observed the potential for RNA:RNA pairing within intron 6 and between introns 6 and 8. They
inferred that this model could explain why cancer cells tend to skip exons 7 and 8 and allow for the
joining of exons 6 and 9. Many tools have since evolved from these initial predictive models, and as
machine learning capabilities improve, better and more accurate secondary structure prediction tools
will become available.

Another important consideration in the regulation of alternative splicing is the contribution of
RNA trans-acting factors or RNA binding proteins’ involvement in site choice. Given its importance in
gene expression regulation, many tools have been developed to predict RNA–protein interactions [66].
We used a series of freely available webtools to predict where NOVA1 may be interacting with hTERT.
NOVA1 is an RNA binding protein involved in neuronal development [67–69]. It was initially described
in small cell lung cancer patients with neurological complications [67]. NOVA1 was later associated
with breast and lung cancers in general. The binding motif of NOVA1 is YCAY (where Y is a C or a U in
RNA) and NOVA1 has been extensively characterized in neurons [70]. We experimentally determined
that NOVA1 in fact interacts with hTERT pre-mRNAs at DR8 [19]. Experimental confirmation of
RNA binding–protein interaction predictions is critical as RNA:protein interactions are not completely
understood and are difficult to predict. Since a number of prediction models exist, utilizing several
predictive models could provide a higher level of confidence of interaction when experimental
techniques are not available. Overall, the RNA biologist tool kit continues to grow and many of these
tools are freely available and can be found at Galaxy, RNA Galaxy workbench 2.0.
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6. Conclusions

Telomerase regulation in cancer cell progression is incompletely understood. The emergence of
hTERT full length mRNA and telomerase activity is a multi-step process that leads to telomere length
maintenance and survival of cancer cells. The role of alternative RNA splicing in the production of
full-length hTERT mRNA is not completely defined. Understanding how cells choose to splice hTERT
pre-mRNAs to either functional telomerase-generating mRNAs or to alternatively spliced products
will inform tumor progression models of cancer. Further, hTERT is a low abundant gene with several
regulatory features that make it an interesting model gene for understanding non-canonical splicing
processes. Elucidating the role of alternative RNA splicing in telomerase biology will take a combination
of molecular and cellular studies coupled with bioinformatics, network analysis, the generation of new
tools potentially involving machine learning, and access to large cohorts of patient samples. Overall,
the knowledge gained by studying the role of hTERT alternative RNA splicing in cancer cells and
during cancer progression may lead to new therapeutic targets of telomere biology and could lead to
novel paradigms of gene expression regulation of low abundance genes.
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Abstract: A World Health Organization (WHO) Feb 2018 report has recently shown that mortality
rate due to brain or central nervous system (CNS) cancer is the highest in the Asian continent. It is of
critical importance that cancer be detected earlier so that many of these lives can be saved. Cancer
grading is an important aspect for targeted therapy. As cancer diagnosis is highly invasive, time
consuming and expensive, there is an immediate requirement to develop a non-invasive, cost-effective
and efficient tools for brain cancer characterization and grade estimation. Brain scans using magnetic
resonance imaging (MRI), computed tomography (CT), as well as other imaging modalities, are fast
and safer methods for tumor detection. In this paper, we tried to summarize the pathophysiology
of brain cancer, imaging modalities of brain cancer and automatic computer assisted methods for
brain cancer characterization in a machine and deep learning paradigm. Another objective of this
paper is to find the current issues in existing engineering methods and also project a future paradigm.
Further, we have highlighted the relationship between brain cancer and other brain disorders like
stroke, Alzheimer’s, Parkinson’s, and Wilson’s disease, leukoriaosis, and other neurological disorders
in the context of machine learning and the deep learning paradigm.

Keywords: cancer; brain; pathophysiology; imaging; machine learning; extreme learning; deep learning;
neurological disorders

1. Introduction

The fatality rate due to brain cancer is the highest in Asia [1]. Brain cancer develops in the brain or
spinal cord [2]. The various symptoms of brain cancer include coordination issues, frequent headaches,
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mood swings, changes in speech, difficulty in concentration, seizures and memory loss. Brain cancer is
a form of tumor which stays in the brain or central nervous system [2]. Brain tumors are categorized
into various types based on their nature, origin, rate of growth and progression stage [3,4]. Brain
tumors can be either benign or malignant. Benign brain tumor cells rarely invade neighboring healthy
cells, have distinct borders and a slow progression rate (e.g., meningiomas, pituitary tumors and
astrocytomas (WHO Grade-I)). Malignant brain tumor cells (e.g., oligodendrogliomas, high-grade
astrocytomas, etc) readily attack neighboring cells in the brain or spinal cord, have fuzzy borders
and rapid progression rates. Brain tumors can be further classified into two types based on their
origin: primary brain tumors and secondary brain tumors. A primary tumor originates directly in
the brain. If the tumor emerges in the brain due to cancer existing in some other body organ such
as lungs, stomach etc., then it is known as a secondary brain tumor or metastasis. Further, grading
of brain tumors is done as per the rate of growth of cancerous cells, i.e., from low to high grade.
WHO categorizes brain tumors into four grades (I, II, III and IV) as per the rate of growth [2,5–9]
(discussed later). Brain tumors are also characterized by their progression stages (Stage-0, 1, 2, 3 and 4).
Stage-0 refers to cancerous tumor cells which are abnormal, but do not spread to nearby cells. Stages-1,
2 and 3 denote cells which are cancerous and spreading rapidly. Finally in Stage-4 the cancer spreads
throughout the body. It is for sure that many lives could be saved if cancer were detected at an early
stage through fast and cost-effective diagnosis techniques. However, it is very difficult to treat cancer
at higher stages where survival rates are low.

Brain cancer diagnosis can be either invasive or non-invasive. Biopsy is the invasive approach
where an incision is done to collect a tumor sample for examination. It is considered the gold standard
for cancer diagnosis where the pathologists observe various features of cells of the tumor sample
under a microscope to confirm malignancy. The physical examination of the body and brain scanning
using imaging modalities constitute non-invasive approaches. The various imaging modalities such
as computed tomography (CT), or magnetic resonance imaging (MRI) of brain are faster and safer
techniques than biopsy. These imaging modalities help radiologists locate brain disorders, observe
disease progression and in surgical planning [10]. Brain scans or brain image reading to rectify
disorders is however subject to inter-reader variability and accuracy which depends on the proficiency
of the medical practitioner [11].

The advent of powerful computing machines and decreased hardware costs has led to the
development of many computer-assisted tools (CAT) for cancer diagnosis by the research community.
It is projected that CAT may help radiologists in improving the precision and consistency of the
diagnostic results. In this study, various CAT-based intelligent learning methods i.e., machine learning
(ML) and deep learning (DL) for automatic tissue characterization and tumor segmentation has been
discussed. The basic objective of this paper is to highlight state-of-the-art of brain tumor classification
methods, current achievements, challenges, and find the future scope.

The paper is organized as follows: Section 2 provides an overview of the pathophysiology of brain
cancer. Sections 3–6 discuss various imaging modalities, the WHO guidelines on brain cancer grading,
brain cancer tests and characterization methodologies, respectively. Section 7 briefly introduces
different brain diseases and finally, Section 8 provides an overall discussion.

2. Pathophysiology of Brain Cancer

The pathophysiology of brain cancer is discussed here. The reasons of occurrence of brain cancer
are given from the perspective of cellular architecture and its functioning within the human body.

2.1. Cellular Level Architecture

The cell is the basic building block of the human body. It also defines the function of each
organ within the body such as oxygen flow, blood flow and waste materials management. Each
cell has a central control system known as the nucleus which contains 23 pairs of chromosomes
consisting of millions of genes. The instructions for these genes are contained within deoxyribonucleic
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acid (DNA) [12], which is like a blueprint for genes and defines their behavior. The protein of the
gene is like a messenger that communicates between the cells or between the genes themselves.
The message conveyed is defined by its 3D structure [13]. Genes control the continuous process of
the death of unhealthy or unwanted cells besides reproduction of healthy cells. The main cause of
a cancer is uncontrolled growth of cells. A mutation alters this DNA sequence, which is the root
cause of malfunctioning of the genes. There are many factors involved in DNA mutations such as
environmental, lifestyle, and eating habits.

The genes responsible for cancer are divided into three categories. We introduce and define each
category in detail:

(i) The first category is known as tumor suppressors that controls the cell death cycle (apoptosis) [14].
This process has two signaling pathways. In the first pathway, the signal is generated by a cell to
kill itself while in the second, the cell receives the death signal from nearby cells. This process
of cell death is slowed down by a mutation in one of the pathways. It stops completely if this
mutation happens in both pathways, leading to unstoppable cell growth [14,15]. Some examples
of cell suppressor genes are RB1, PTEN, which are responsible for cell death [16].

(ii) The second category of genes is responsible for the repair of the DNA. Example of DNA repair
genes are MGMT and p53 protein. Any malfunctioning in them may trigger cancer.

(iii) The third group known as proto-oncogenes, are in opposition to the function of the tumor
suppressor genes and are responsible for the production of the protein fostering the division
process and inhibiting the normal cell death [17,18]. In healthy cells, the cell division cycle
is controlled by proto-oncogenes via protein signals which are generated by the cell itself or
the connected cells. Once the signal is generated, it goes through a series of different steps,
which is called signal transduction cascade or pathway as shown in Figure 1. This signal may
be generated by the cell itself or from the nearby cells that are directly connected to it. In this
pathway, many proteins are involved to carry the signal from the cell membrane to nucleus
through the cytoplasm. In this process the cell membrane receptor accepts the signal and carries
the message to nucleolus through various intermediate factors. Once, the signal reaches to the
nucleus, the responsible genes for transcription is activated and performs the cell division task.
One of the known proto-oncogenes responsible for the transcription is RAS which acts as a switch
to turn ‘on’ or ‘off’ the cell division process [19]. Mutation alters its functionality which leads to
transform this gene into an oncogene. In this situation the gene is unable to switch off the cell
division signal and unstoppable growth of the cells may begin.

If cancer starts in the body due to any of the above-mentioned reasons, it is known as a primary
tumor which invades other organs directly. If the cancer starts through blood vessels then it known
as secondary tumor or metastasis [20]. Even though the secondary tumor is formed, it needs oxygen,
nutrients and a blood supply to survive. Many genes exist in the body to detect these needs and start
establishing a vascular network for them to satisfy their needs. This process is known as angiogenesis
and is another cause of cancer explosion [21]. The genes discussed above as well as their expended
form has given in Table 1.

About 15 percent of cancers worldwide are caused by viruses [22]. The viruses infect cells
by altering DNA in the chromosomes which are responsible for converting proto-oncogenes into
oncogenes. Only a few cancer causing viruses have been identified i.e., DNA virus and retroviruses or
oncorna viruses (an RNA virus). The four basic DNA viruses responsible for human cancers are human
papillomavirus, Epstein-Barr, Hepatitis B and human herpes virus. The RNA viruses which cause
cancer are Human T lymphotropic type1 and hepatitis C. Several environmental factors also affect
the cells. X-rays, UV light, viruses, tobacco products, pollution and many other daily use chemicals
carry carcinogenic agents. Sunlight may also alter tumor suppressor genes in skin cells leading to skin
cancer. Further, the carcinogenic compounds in smoke alters the lung cells causing lung cancer [23].
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Many studies have shown that tumor cells have unique molecular signatures and
characteristics [24]. Hyperplasia, metaplasia, anaplasia, dysplasia, and neoplasia are the various
stages of the cells that define the cellular abnormality during microscopic analysis. Hyperplasia is the
stage, where abnormal growth of the cell starts but the cell continues to appear normal. The cell first
begins to appear abnormal in metaplasia. In the anaplasia state, cells lose their morphological features
and are difficult to discriminate. The cell appears to be abnormal and little aggressive in dysplasia.
Anaplasia is the most aggressive stage of this abnormal cell growth, where they seem quite abnormal
and invade the surrounding tissues or start flowing through the bloodstream, which is one of the
leading causes of metastasis [25]. The physical changes in cells due to cancer can be captured using
high resolution imaging such as MRI or CT imaging, which are the focus of the next section.

Figure 1. Cell cycle proliferation. (image courtesy: AtheroPointTM, Roseville, CA, USA).

Table 1. Genomics relevance with Brain Tumor, RKT: Receptor Tyrosine Kinase, TP53 (p53):
Tumor Protein53, RB1: Retino Blastoma1, EGFR: Epidermal Growth Factor Receptor, PTEN:
Phosphatase and Tensin Homolog, IDH1/DH2: Isocitrate Dehydrogenase 1/2, 1p and 19
co-deletion, MGMT: O6-methylguanine DNA methyltransferase, BRAF: B-Raf proto-oncogene,
ATRX: The α-thalassemia-mental retardation syndrome X-linked, HGG: High-Grade Gliomas,
GBM: Glioblastoma.

Gene Type Function Mutation Effect
Relevancy Between Brain Tumor
and Genes [Degree of Mutation]

TP53(p53)
[26]

DNA repair
Initiating Apoptosis

• Genetic Instability
• Reduced Apoptosis
• Angiogenesis

• More relevant to HGG
• Brain Tumor (80%)

376



Cancers 2019, 11, 111

Table 1. Cont.

Gene Type Function Mutation Effect
Relevancy Between Brain Tumor
and Genes [Degree of Mutation]

RB1
[26]

Tumor Suppressor

• Blocks cell
cycle progression

• Unchecked cell
cycle progression

• More relevant to GBM
• Brain Tumor (75%)

EGFR
[27]

Trans-Membrane
Receptor In (RTK)

• Increased Proliferation
• Increased Tumor

Cell Survival
• Primary GBM (Approx. 40%)

PTEN
[27]

Tumor Suppressor
• Increased Cell Proliferation
• Reduced Cell Death

• Primary GBM (15–40%)
• GBM (up to 80%)

IDH1 and DH2
[28]

Control citric acid cycle
• Inhibits the function

of enzymes

IDH1

• Primary GBM (5%)
• GBM Grade II-III (70–80%)
• IDH1 longer survival.

IDH2

• Relevant to
oligodendroglial tumors

1p and 19q
[29]

Prognosis of the disease
or treatment assessment

• Poor prognosis

• Oligodendrogliomas (80%)
• Anaplastic

Oligodendrogliomas (60%)
• Oligoastrocytomas (30–50%)
• Anaplastic Oligoastrocytomas

(20–30%)

MGMT
[30]

DNA repair
predict patient survival

• Cell proliferation • GBM (35–75%)

BRAF
[26]

Proto-oncogene
• Cell Proliferation
• Apoptosis

• Pilocyticastrocytomas
(65–80%)

• Pleomorphic
Xanthoastrocytomas and
Gangliogliomas (25%)

ATRX
[26]

Deposition of
Genomic Repeats.

• Genital Anomalies,
• Hypotonia,
• Intellectual Disability
• Mild-To-Moderate Anemia
• Secondary To α-Thalassemi

• Relevent to oligodendroglial

2.2. Relevancy between Brain Tumor and Genes

As discussed in the last section, mutations in certain types of genes define the cancer. In various
studies, some connection is found between degree of mutation in genes and type of brain tumor,
which we have summarized in Table 1. Tumor protein-53 (TP53) is involved in DNA repair and
initiating apoptosis. Tp53 level is found to be quite abnormal in high-grade gliomas and mutations
have been found in more than 80% of tumors [26]. The retinoblastoma (RB1) gene is a tumor
suppression gene. RB1 mutation is found in approximately 75% of brain tumors and it is more
relevant to glioblastoma [26]. EGFR is a trans-membrane receptor in the receptor tyrosine kinase
(RTK) family. Mutation in EGFR will lead to increased cell cycle proliferation and increased tumor
cell survival. It is generally associated with primary glioblastomas and approximately 40% of the
mutations that caused them are found within it [27]. PTEN is a tumor suppressor gene and are
responsible for about 15–40% of mutations found in primary glioblastomas. The degree of mutation
may be up to 80%, indifferent glioblastoma [27]. IDH1 and IDH2 are enzymes that control the citric
acid cycle. Mutations in them inhibit enzyme activity. Generally, IDH1 mutation is found less in
primary glioblastoma patients (5%), but more in high grade glioblastomas (70–80%). IDH2 mutations
are generally seen in oligodendroglial tumors [28]. Co-deletion of chromosomes 1p and 19q is
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indicative of oligodendroglial lineage and mainly seen in anaplastic oligoastrocytomas (20–30%),
oligoastrocytomas (30–50%), anaplastic oligodendrogliomas (60%) and oligodendrogliomas (80%).
1p/19q helps in prognosis and treatment assessment [29]. MGMT protein is another DNA repair gene,
for which 35–75% abnormality is found in glioblastomas [30]. BRAF is a proto-oncogene encoded
as BRAF protein, which is involved in the cell proliferation cycle, apoptosis process and treatment
assessment. BRAF mutations are generally found in pilocyticastrocytomas (65–80%), pleomorphic
xanthoastrocytomas (about 80%) and gangliogliomas (25%) [26]. A-Thalassemia-mental retardation
syndrome X-linked (ATRX) is a gene that encodes a protein and is associated with TP53 and IDH1
mutations. It is use as a prognostic indicator when tumors have anIDH1 mutation and it distinguishes
between the tumors of oligodendroglial origin [26].

3. Imaging Modality

Medical imaging techniques help doctors, medical practitioners and researchers view inside the
human body and analyze internal activities without incisions. Cancer diagnosis, grade estimation,
treatment response assessment, patient prognosis and surgery planning are the main steps and
challenges in cancer treatment. There are a number of medical imaging techniques used by hospitals
across the world for different treatments. The brain imaging techniques can be categorized into two
types: i.e., structural and functional imaging [31,32]. Structural imaging consists of different measures
related to brain structure, tumor location, injuries and other brain disorders. The functional imaging
techniques detect metabolic changes, lesions on a finer scale and visualize brain activities. This activity
visualization is possible due to metabolic changes in a certain part of the brain which are reflected in
the scans. CT and MRI are used for brain tumor analysis and are able to capture different cross-sections
of the body without surgery [33,34].

3.1. Computed Tomography Imaging

In a CT scan, an X-ray beam circulates around specific part of the body and a series of images
captured from various angles. The computer uses this information to create a series of two-dimensional
(2D) cross-sectional image of the organ and combines them to make a three-dimensional (3D) image,
which provides a better view of the organs. Positron emission tomography (PET) is a variant of CT
where a contrast agents is injected into the body in order to highlight abnormal regions. CT scans are
recommended by doctors in many conditions such as hemorrhages, blood clots or cancer. However,
CT scans use X-rays which emit ionizing radiation and have the potential to affect living tissues,
thereby increasing the risk of cancer. In one study, it is shown that the risk of radiation in CT is
100 times higher than in a normal X-ray diagnosis [35].

3.2. Magnetic Resonance Imaging

MRI is a radiation free and therefore a safer imaging technique than CT and provides finer details
of the brain, spinal cord and vascular anatomy due to its good contrast. Axial, sagittal, and coronal are
the basic planes of MRI to visualize the brain’s anatomy as shown in Figure 2. The most commonly
used MRI sequences for brain analysis are Tl-weighted, T2-weighted, and FLAIR [36]. Tl-weighted
scan provides gray and white matter contrast. T2-weighted is sensitive to water content and therefore
well suited to diseases where the water accumulates inside brain tissues. T1- and T2-weighted
images are also used to differentiate cerebrospinal fluid (CSF). The CSF is colorless and found in the
brain and spinal cord. It looks dark in T1-weighted imaging and bright on T2-weighted imaging.
The third sequence is fluid attenuated inversion recovery (FLAIR) which is similar to T2-weighted
image except for its acquisition protocol. FLAIR is used in pathology to distinguish between CSF and
brain abnormalities. FLAIR can locate an edema region from CSF by suppressing free water signals,
and hence periventricular hyperintense lesions are clearly visible in the images.
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Figure 2. (a) Axial view, (b) Sagittal view, (c) Coronal view and (d) T1-weighted, (e) T2-weighted and
(f) FLAIR Images of MRI. (image courtesy: AtheroPointTM ).

The comparison between the above three sequences is shown in Figure 2. Diffusion-weighted
imaging (DWI) [37] is another MRI sequence that helps to detect the random movements of
water particles inside the brain. As the water movement becomes restricted, an extremely bright
signal on the DWI is reflected, thus the DWI technique is mostly used for acute stroke detection.
Perfusion-weighted MRI (PWI) highlights the specific part of the brain where the blood flow has been
altered. Diffusion-tensor MRI (DTMRI) detects water motion in tissues through a microscopic image
which helps during surgical removal of the brain tumor. Functional magnetic resonance imaging
(fMRI) [38] is another variant of MRI that is used for measuring the changes in blood oxygenation
in order to interpret the neural activity. When a certain part of the brain is more active, it starts
consuming more oxygen and blood. Consequently, an fMRI maps the ongoing activity of the brain by
correlating the mental process and location. Although MRI is very useful for brain image analysis,
it has some limitations compared to CT. The motion artifact effect is inferior in MRI which helps in
acute hemorrhage and brain injury detection, but also causes it to require a greater acquisition time
than many other imaging techniques.

3.3. Biopsy

Biopsies are the gold standard for all cancer diagnosis and grade estimation. In a biopsy, the color,
shape, and size of the cell nuclei of tumor sample are observed. This brings complexity in manual
microscopic biopsy image analysis. The accuracy depends on the experience and expertise of the
pathologist and therefore, computer assisted tools can help pathologist in Digital Pathological Image
(DPI) analysis and may provide better results than manual approach [39]. Hematoxylin & Eosin
(H&E) staining is the most commonly used method for a biopsy sample analysis. Cytopathology is
used to know the cell structure, function and their chemistry. Tissue proteins are assessed by using
immuno-fluorescence imaging.
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3.4. Hyperstereoscopy Imaging

High-grade tumors invade the surrounding normal tissues, which makes them extremely difficult
to differentiate from each other through the naked eyes of surgeon (especially glioma). Incorrect
resection leads to reduced survival rate of the brain cancer patients [40,41]. In this case, hyperspectral
imaging (HSI) can be used. HSI is a minimally invasive, non-ionizing sensing technique. HSI uses a
wider range of the electromagnetic spectrum compared to normal three channel Red, Green and Blue
(RGB) image type [41], which provides detailed information about tissues in the captured scene [42].

Recently, scientists have proposed a novel visualization system based on HSI, which can assist
surgeons to detect the brain tumor boundaries during neurosurgical procedures [40]. This model
uses both supervised (SVM and KNN) and unsupervised (K-Means) machine learning techniques
to differentiate cell classes such as normal, cancerous, blood vessels/hyper-vascularized tissue and
background in the spectral image. The brain cancer detection algorithm is divided into off-line (training
process) and in situ (online) process. In the off-line process, the samples are labeled by experts and
in the in situ process, the HSI are directly acquired from the patient for real-time image analysis in
the operation theater. SVM is adapted for classification during the in situ process to get a supervised
classification map, while the kNN algorithm is used to find the spatial-spectral classification map.
To get the final definitive classification map, image fusion is performed between spatial-spectral
classification map (derived from KNN-supervised) and hierarchical K-means map (unsupervised
strategy). Finally, a majority voting (MV) method is used to fuse both images for superior results.
For dimensionality reduction, a principal component analysis (PCA) algorithm is adapted in the
above settings.

Another study utilizing the hyperspectral paradigm is [43], where, head and neck cancer
classification was done using a deep learning (DL) technique. In this study, the authors demonstrated
that DL techniques have the potential to be used as a real-time tissue classifier (tissue labeling process)
using HS images to identify boundaries of the cancerous and non-cancerous tissues during surgery.
A CNN network was proposed consisting of six convolution layers and three fully connected layers to
classify three types of classes such as head and neck tissue, squamous-cell carcinoma and thyroid cancer.
The database consisted of 50 subjects. The network was trained for 25,000 iterations using a batch size
of 250. Performance was evaluated using leave-one-out cross-validation protocol while computing the
performance parameters giving the accuracy, sensitivity, specificity as 80%, 81% and 78%, respectively.
The CNN strategy was benchmarked against conventional ML methods such as SVM, kNN, logistic
regression (LR), decision tree (DT), linear discriminant analysis (LDA) demonstrating its superiority.

3.5. MR Spectroscopy

MRI is able to visualize the anatomical structure of the brain, whereas, Magnetic Resonance
spectroscopy (MRS) is able to detect small biochemical changes in the brain. This property is useful
for the brain tissue classification in brain tumor, stroke and epilepsy. Here, several metabolites and
their products such as amino acids, lactate, lipids, alanine, etc., where, the frequency can be measured
in parts per million (ppm). There are unique metabolic signatures associated with each tumor type
and their grades [44], therefore, the neurologist measures the changes between normal and cancerous
tissues by the frequency map of ppm of each metabolite. In [45], the authors had proposed a deep
learning-based model for brain tumor diagnosis using MRS imaging techniques. The authors proposed
three deep models for brain tumor classification into healthy, low or high grade tissue types. In another
study [46], the authors proposed a brain tumor grading method using MR spectroscopy. The proposed
method showed that metabolite values/ratios could provide better classification/grading of brain
tumors using, short and long echo times (TEs). A machine learning method was proposed by authors
in [47] for glioma classification into benign and malignant types. Features were extracted from MR
spectroscopy and then classified using popular ML methods such as SVM, random forest, multilayer
perceptron, and locally weighted learning (LWL). The best performance was achieved by random
forest, giving an AUC of 0.91, while a sensitivity of 86.1% was achieved using the LWL-based method.
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Each imaging modality has its own merits and demerits. Occasionally we need to combine the
merits of more than one imaging modality for accurate diagnosis and assessment of various severe
diseases. Combining multiple image modalities is called image fusion which helps in better diagnosis
than when using a single imaging technique. Image fusion improves the image quality and may reduce
randomness and redundancy of the medical images. Some of the popular methods of image fusions
are [48] based on morphology, knowledge, wavelets and fuzzy logic methods.

4. World Health Organization Guidelines for Tumor Grading

Cancer identification and correct grade estimation are crucial part of the diagnosis process. It helps
doctors decide on a personalized treatment plan which may increase the survival expectancy of the
patients. Medical practitioners or histopathologists use WHO guidelines for brain tumor grading.
The WHO proposed five amendments or editions since 1979 for tumor classification, presented in
Table 2. In 1979, the WHO first proposed miotic activity, necrosis and infiltration for the tumor
classification. In 1993, the WHO came up with another amendment, where immune histochemistry
was considered for tumor assessment. After that, a genetic profile was included in the year of 2000.
In the 4th amendment, a genetic profile and histological variation were combined for the tumor
analysis in the year of 2007.Recently, on May 9, 2016 the WHO published an official fifth amendment
to the central nervous system (CNS) tumor classification, which may precisely define the tumor cells
and helps in better tumor classification [49]. All the studies have shown that tumor cells have unique
molecular signatures and characteristics which define their grade and group [50]. The WHO classifies
brain tumors using four basic features such as mitoses, necrosis, nuclear atypia, and microvascular
proliferation [51]. The assigned grades from the least aggressive to the most aggressive (malignant)
tumors are in the range of I to IV [49–52]. Grade-I cells look nearly normal and spread slowly.
Grade-II cells look slightly abnormal and grow slowly and may invade nearby tissues. These are more
life-threatening than Grade-I but can be cured by a suitable treatment. In Grade-III, tumor cells seem
abnormal and invade the nearby healthy brain tissues. These tumors may be treated. Grade-IV cells
look completely abnormal and grow and very rapidly. Eventually, it is very difficult to sub-grade
tumor due to the fuzzy difference in cell structure microscopically. Therefore, grade estimation of
tumor is challenging for a pathologist.

Table 2. WHO recommendations for tumor assessment in different editions.

Edition Year Recommended Parameters for Tumor Assessment

I 1979 Miotic Activity, Necrosis and Infiltration
II 1993 Immunohistochemistry (IHC)
III 2000 Genetic Profile
IV 2007 Genetic Profile and Histological Variation
V 2016 Molecular Features and Histology

5. Brain Tumor Tests

In neurological examination, the doctor asks about the patient’s health and checks vision, hearing,
alertness, muscle strength and reflexes. The doctor may also examine the eyes of a patient to see any
swelling. Brain scans, tumor biopsy and biomarkers are major tests to confirm cancer and its grade.
If the doctor finds any symptoms of brain cancer then they may suggest any one of them depending
on the patient condition to confirm the malignancy of the brain tumor. Some of the tests are given in
the following subsections.

5.1. Biomarker Test

Mutation in the genes is the root cause of cancer and the degree of this mutation in specific genes
can be measured through biomarker tests. Some of the genes responsible for specific brain cancers
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are given in Table 1. This test diagnoses tumors, helps to find its type and may help in tumor growth
measurement, treatment response and personalized treatment therapy [53].

5.2. Biopsy

Biopsy is the primary test for diagnosis and stage conformation [54] for all types of cancer. This is
an invasive cancer diagnosis approach. In this test, a sample of the brain tumor is taken out through
surgery and the procedure may take several hours. The collected biopsy samples go through a
laboratory test where the histopathologists look for the cellular patterns and characteristics to estimate
the grade of the brain tumor. The low and high-grades of tumor are difficult to differentiate as their
cellular structures are similar. Accurate diagnosis is an important step to analyze the behavior of
the tumor and make the correct treatment plan. The estimation of the grade of the tumor is subject
to inter-reader variability and correct analysis of the DPI depends on the training and experience
of the histopathologists [55]. Image features that grade tumors are not always clear or difficult to
determine by different observers. The computerized image analysis can partially overcome these
shortcomings [56]. Complexity in clinical features representation, large size single histopathology
image and insufficient images for training are the major barriers in the automatics classification
techniques development [56]. Computerized image analysis include image registration, preprocessing,
feature selection, the region of interest (ROI) identification, segmentation and image classification
which are discussed later.

For many years, The Medical Image Computing and Computer Assisted Intervention (MICCAI)
Society has been organizing many conferences and open challenges that foster to develop computer
assisted tools or medical inventions in medical image analysis. Recently, many digital histopathology
image analysis challenges were organized worldwide to boost the tumor histopathology among
researchers community. We have summarized some of the MICCA challenges in Table 3.

Table 3. Overview of some open challenges in digital pathology images analysis worldwide.

Year Challenges Reference

2012 ICPR Mitosis Detection Competition [57]

2012
EM segmentation challenge 2012

2D segmentation of neuronal processes
[58]

2013 MICCAI Grand Challenge on Mitosis Detection

[59]2014
MICCAI Brain Tumor Digital Pathology

Challenge

2014
MICCAI Brain Tumor Digital Pathology

Challenge
2015 MICCAI Gland Segmentation Challenge Contest

2016 Tumor Proliferation Assessment Challenge 2016 [60]

2017 CAMELYON17 challenge [61]

2018
Medical Imaging with Deep Learning

(MIDL-2018)
[62]

5.3. Imaging Test

Imaging modalities such as CT, MRI, PET, and SPECT are popular brain imaging techniques
to confirm the presence of tumors without using surgery. Amongst them, MRI is the most popular
diagnostic imaging modality. MRI is mainly used for neural disorder or abnormality detection
because of its good contrast resolution for different tissues and lack of radiation. Automatic brain
tumor detection and classification is a challenging task due to overlapping intensities, anatomical
inconsistency in shape, size and orientation, noise perturbations and low contrast of images [63].
Some of the open challenges proposed worldwide for brain image analysis have been summarized
in Table 4. Our main focus of this review is to highlight the challenges involved and find the future
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scope in a non-invasive procedure of brain tumor detection and classification using the ML and
DL approaches. In the next section, we have discussed various ML and DL methods for the brain
image segmentation, tumor detection, and classification and point out limitations and future scope for
the enhancements.

Table 4. Overview open challenges of brain image analysis worldwide.

Challenge Objective Modality Reference

BraTS 2012 Brain Tumor Segmentation MRI [64]
BraTS 2013 Brain Tumor Segmentation MRI [65]
BraTS 2014 Brain Tumor Segmentation MRI [66]
BraTS 2015 Brain Tumor Segmentation MRI [67]

BraTS 2016
Quantifying longitudinal changes: evaluate the accuracies of the

volumetric changes between any two time points.
MRI [68]

BraTS 2017
Segmentation of gliomas in pre-operative scans.

Prediction of patient overall survival (OS) from pre-operative scans.
MRI [69]

BraTS 2018
Segmentation of gliomas in pre-operative MRI scans.

Prediction of patient overall survival (OS) from pre-operative scans.
MRI [70]

MICCAI 2018
The segmentation ofgray matter, white matter, cerebrospinal fluid,

andother structureson multi-sequence brain MR images with and without
(large) pathologies. (large) pathologies on segmentation and volumetry.

MRI [71]

HC-18
To design an algorithm that can automatically measure the fetal head

circumference given a 2D ultrasound image.
Ultrasound Image [72]

6. Classification Methods

Machine learning can be defined as a situation where a machine is given a task in which the
machine performance improves with experience [73]. ML algorithms are divided into two types:
supervised learning and unsupervised learning [74,75]. In supervised learning, ML algorithms learn
from already labeled data. In unsupervised learning, the ML algorithms try to understand the
inter-data relationship from unlabeled data. In the case of brain image analysis, ML has been used
in characterizing brain tumors [75,76]. The inner workings of ML algorithms consist of two stages:
feature extraction and application of ML algorithm for characterization. The process model is shown
in Figure 3.

Figure 3. Working of ML-based algorithms.

The feature extraction algorithms are generally mathematical models based on various image
properties such as texture, brightness, contrast. Sometimes, several features from different extraction
models are fused together to increase the discrimination power of ML algorithms [77]. Some of the
most common algorithms for classification and segmentation of brain images are: K-Nearest Neighbors
(KNN) [78], Support Vector Machines (SVM) [79], Artificial Neural Networks (ANN) [80] etc. The KNN
classification is based on the premise that features of the same class cluster together. The KNN assigns
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an unknown instance the most common label amongst its K nearest neighbors. The SVM applies two
approaches for characterization: at first it tries to find the largest separating hyper-plane between two
classes. In the second approach, if the features are not separable in one dimension, they are mapped
to higher dimension where they are linearly separable, by using the kernel approach. ANN forms
hierarchical network of computing nodes capable of learning from features. ANNs are classified into
many types depending on their architecture, number of hidden layers, connection weight updating
algorithms, etc. The most common ANN models are extreme learning machines (ELMs) [81], recurrent
neural networks (RNN) [82], restricted Boltzmann machine (RBN) [83] etc. ELM is single-layer
feed-forward neural network (SLFFNN), RNNs apply feedback mechanism in the network connections
and RBN is a stochastic neural network.

The advent of high performance computers, as well as lower hardware costs have led to the
emergence of models with multiple layers of abstraction and millions of computing nodes which has
enabled characterization/segmentation with a high degree of accuracy. These models are collectively
called DL methodologies [84]. The most common DL models for brain image characterization are
convolution neural networks (CNN) [85], auto encoders [86] and deep belief networks (DBNs) [87].
DL-based tools for brain images are rapidly finding interest amongst the research community.

6.1. Machine Learning

KNN, SVM, DT, the naive Bayes (NB) classifier, expectation maximization (EM), random forest
(RF) etc. are the most popular ML techniques for medical image analysis. Many of them were
used alone or in combination by various researchers for brain image analysis. Some of them are
discussed in Table 4. We provide different brain cancer classification techniques using ML in the
following subsections.

6.1.1. ANN-Based MRI Brain Tumor Classification Using Genetic Features

The artificial neural network (ANN)-based approach for brain tumor classification using MRI
was proposed in [63]. The method is able to characterize normal (N), benign (B) and malignant (M)
tumor. The N, B and image example is shown in Figure 4.

Figure 4. Brain MR images: (a) normal brain, (b) benign tumor (7 O’ clock arrow) and (c) malignant
tumor (7 O’ clock arrow) (reproduced from [63] with permission).

For the purpose of characterization, 100 brain MR images (N = 35, B = 35, M = 30) were collected.
A semi-automatic method was applied to extract the region-of-interest (ROI). A wavelet-based feature
selection was performed to extract the features. A genetic-based feature selection algorithm along
with principal component analysis (PCA) and classical sequential algorithm was applied for feature
selection. Finally, all the features are input into the ANN. The ANN classifier is a three-layer feed
forward neural network with a single hidden layer. The process model of the approach is shown in
Figure 5. It’s found that the genetic approach using only four of the available 29 features attained a
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classification accuracy of 98%. Similar approaches such as PCA and other classical algorithms required
a large feature set to achieve a similar accuracy level.

Figure 5. Process model of ANN-based classification model [63].

6.1.2. A Hybrid Characterization System for Brain Cancer Tumors

In [88], a hybrid system consisting of two ML algorithms has been proposed for brain cancer
tumor characterization. A total of 70 brain MRI images (abnormal: 60, normal: 10) were considered
for this purpose. The features were extracted from the images using DWT [89]. The total numbers of
features were reduced using PCA [90]. After feature extraction, two classifiers were used separately on
the reduced features (i.e., feed forward back propagation based artificial neural network (FP-ANN)
and KNN). FP-ANN applies to the back-propagation learning algorithm for weight updating [91].
KNN is discussed earlier. This method achieves 97% and 98% accuracy using FP-ANN and KNN,
respectively. The process model of the proposed method is shown in Figure 6.

Figure 6. Hybrid characterization system for brain cancer characterization [88].

385



Cancers 2019, 11, 111

6.1.3. A Characterization System for Grading Brain Cancer Tumors

A fully automated brain tumor classification scheme using conventional MRI and rCBV maps
calculated from perfusion MRI was proposed in [92]. The method classifies meningioma, glioma
grades (II, III, IV), and metastasis brain images as shown in Figure 7. Earlier, researchers used linear
discriminant analysis (LDA) as a model based on principle component regression (PCR) [93]. In this
method, a linear SVM model is used for characterization. A total of 102 MRI brain scans were used for
the purpose of characterization. The images were pre-processed and ROIs were extracted. Several
features were extracted such as tumor shape characteristics, image intensity characteristics and Gabor
features. In order to reduce the features, selection algorithms were applied (i.e., Ranking-based
and SVM-recursive feature elimination (SVM-RFE)). Finally, SVM is applied. A process model of
the methodology is shown in Figure 8. The highest classification accuracy obtained for metastasis
was 91.7%, while for low-grade gliomas it was 90.9%. The highest accuracy of 97.8% was achieved
when distinguishing grade II gliomas from metastasis. The lowest accuracy of 75% is obtained when
distinguishing grade II from grade III gliomas. This showed that grade II and III gliomas are difficult
to distinguish.

Figure 7. Illustration of different types as per their grades: row 1 and row 2 consists of T1ce brain
images and its corresponding texture images, respectively. The images are pointed to by arrow are
as follows: a1 (T1ce) and a2 (Texture): meningioma; b1 (T1ce) and b2 (Texture): Grade-II; c1 (T1ce),
c2 (Texture): Grade-III; d1 (T1ce) and d2 (Texture): Grade-IV; e1 (T1ce) and e2 (Texture): metastasis
(reproduced from [92] with permission).

386



Cancers 2019, 11, 111

Figure 8. Process model using SVM-based grade estimation method [92].

6.1.4. A Multi-Parametric Tissue Characterization System for Brain Neoplasm

A characterization system was developed for identifying neoplastic tissue from healthy tissue,
as well as the classification of different tumor components and edema-like areas [94]. Data was
collected from 14 patients recently diagnosed with brain cancer. The images were pre-processed and
voxel-wise intensity feature vectors were collected. Bayesian [95–97] and SVM were used to distinguish
neoplastic tissue from healthy tissue, as well as the classification of different tumor components and
edema-like areas. The results show that the Bayesian classifier obtains higher accuracy for classifying
edema, enhancing neoplasm and non-enhancing neoplasm at 97.03%, 96.39% and 93.05%, respectively.
SVM obtained highest accuracy for cerebrospinal fluid at 91.34%. The process model is shown in
Figure 9.

Figure 9. Process model of SVM-based grade estimation method [92].
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6.1.5. Extreme Learning Machine

Extreme learning machine (ELM) is another emerging area which is less computationally
expensive compared to neural networks. It is based on the single-layer feed-forward neural network
(SLFFNN) which is used for real-time classification or regression. ELM chooses randomly initialized
weights in the input-to-hidden layer, whereas, hidden-to-output layer weights are trained using
Moore-Penrose inverse form [97] to generate least square solution. This feature minimizes network
complexity, training time, learning speed, and improves classification accuracy. Moreover, the weights
in the hidden layer give a multi-tasking capability to the network as in other ML methods like SVM,
KNN and Bayesian network. The ELM network consists of three layers as shown in Figure 10 and all
the layers are fully connected. The weight between input and hidden layer are fixed at random initially
and unchanged throughout the training process and weights between hidden and output are only
allowed to change. Therefore it learns the weights in a single pass and reaches a global optimum [98].
There is a claim of researchers [98,99] that due to its simpler architecture and one shot training makes
this network better and faster as compared to SVM.

Figure 10. Extreme learning machine.

6.2. Deep Learning

DL is most extensively used for the brain image analysis in several applications such as normal
or abnormal brain tumor classification, segmentation (edema, enhancing and non-enhancing tumor
region), stroke lesion segmentation, Alzheimer diagnosis, etc. A convolution neural network (CNN)
is the most popular DL model used widely for classification and segmentation of medical images.
The CNN learns the spatial relationship between pixels in a hierarchical manner. This is done by using
convolving the images using learned filters to build a hierarchy of feature maps. This convolution
function is done in several layers such that the features obtained are translation and distortion invariant
resulting in high degree of accuracy. The basic layers of CNN network are described below.

6.2.1. Input Image Format

The input image is considered as an array of pixel values which depends on the resolution and
size of the image. For example, a sample colored input image is represented by a 3 × m × n array of
numbers (the 3refers to red, green and blue color values in case of color image with the pixel value for
each color ranging from 0–255; m and n are the dimensions of the image). In the case of a grayscale
image, the image size is defined by 2D array (m × n), where the intensity of the pixels also ranges
from 0–255.
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6.2.2. Convolution Layer

The first layer of CNN architecture is the convolution layer, which extracts features from the given
input image using the convolution filters. The filter is a square array of numbers which are weights or
parameters. These filters can loosely be thought of as the neurons of an ANN or the kernel. The first
position of the filter corresponds to the top left corner of the image in the convolution operation.
This operation is described in Equation (1), which shows an example of an image (R) being convolved
with the kernel (S), where ⊗ denotes the convolution operation. Essentially operation can be thought
of as a series of multiplications of the image pixel matrix and the filter matrix and then a summing
of these multiplications. Important to note in Equation (1) is that the kernel is size of m × m and
the operation is performed at the center pixel (x, y), and nearby, where the p and q are the dummy
variables. This process repeated by sliding filter to the right. The number of cell shifts to the right in
each step defines the stride (number of cells sliding right in each step). The CNN architecture is shown
in Figure 11. CNN learns and updates filters or kernel values during the training.

f (x, y) = R(x, y)⊗ S(p, q) =
m/2

∑
p=−m/2

m/2

∑
q=−m/2

R(x + p, y + q)× S(p, q) (1)

Figure 11. CNN architecture (image courtesy: AtheroPointTM).

6.2.3. Activation Function

In ANNs, the training progress is measured by gradient-based methods where the gradient is
considered as a learning parameter, which reflects the changes in the training process. Since the
changes in gradient are very small during training then learning is not effective and this phenomenon
is known as vanishing gradient problem. This problem is more severe in DL because of large number
of layers. It can be avoided by using suitable activation function which, don’t have this property of
suppressing the input space into a small region. ReLu is very simple and computationally inexpensive
activation function which performs the non-linear operation and replaces all negative values in the
feature map by zero using a simple formula [max (0, x)], whereas, x is an input parameter [100].

6.2.4. Pooling Layer

To make the method computational inexpensive, a pooling layer is introduced between
convolution layers to reduce the dimensionality of each feature maps but retain the most important
feature information. Average pooling and max-pooling are the two popular pooling operations.
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In average pooling; selected patch features are replaced by the single average value of patch in next
layer, whereas, for max pooling only maximum value of patch features move further.

6.2.5. Fully Connected Layer

The first three operations i.e., convolution, ReLu, and pooling are used for extracting high-level
image features. For features classification, a fully connected network appended at the end of the CNN,
which convert last 2D layers into a one-dimensional feature vector. The output of the FC layer defines
by N-dimensional vector which refers to the number of output classes. Only one of the output class
chosen from the vector by using probabilistic methods such as softmax.

6.3. Brain Image Analysis Using Deep Learning

As discussed earlier, DL algorithms are used in brain image analysis in different application
domains like Alzheimer’s disease identification, segmentation of lesion (e.g., tumors, white matter
lesions, lacunes, micro-bleeds) and brain tissue classification [101]. Much of the ongoing research is
limited to brain segmentation and only little work has been done for the tumor grading. Hence,
there are a lot of potentials to explore the grade estimation for brain tumor using ML and DL
approaches. In this section, we have discussed some recently existing DL based brain image
segmentation methods.

6.3.1. DL-Based Inter-Institutional Brain Tumor Segmentation

A CNN-based brain tumor segmentation method was proposed in [102]. In the experiment,
three CNNs were used for training on multi-institutional data. Each CNN consisted of four convolution
layers followed by two fully connected layers. Data of 68 patients were collected from two institutes.
Patching-based segmentation was used. The equal sized patches extracted from images were annotated
into three classes: tumor patches, healthy patches surrounding the tumor and other healthy patches.
The tumor images were further divided into five classes based on patient data i.e, class-0: normal,
class-2: enhancing region, class-3: necrotic region, class-4: T1-abnormality, class-5: FLAIR abnormality,
class-1: ground truth region based on combination of classes 2–5. The various classes of tumor are
shown in Figure 12.

Figure 12. Segmentation results from two different patients. Class1: ground truth; Class 2 (enhancing
region): green; Class 3 (necrotic region): yellow, Class 4 (T1abnormality-hypointensity region on T1,
excluding enhancing and necrotic regions): red, and Class 5 (FLAIR abnormality excluding classes 2-4):
blue (reproduced from [102] with permission).
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The first CNN was trained for the institution-1 data set, second for the institute-2 dataset and
third CNN was trained for patients from both institutions. Dice similarity coefficients and Hausdorff
distance were used for the assessment between the ground truth and automatic segmentation. Ten-fold
cross-validation scheme was applied to compare the performance between different approaches.
They observed that performance of the model decreased when network is trained and tested on
different institutional data (dice coefficients: 0.68 ± 0.19 and 0.59 ± 0.19) in comparison with same
institutional data (dice coefficients: 0.72 ± 0.17 and 0.76 ± 0.12) and concluded that the reasons behind
this effect require extra comprehensive investigation. The process model is shown in Figure 13.

Figure 13. Process model for segmentation [102].

6.3.2. Brain Tumor Segmentation Using Two-Pathway CNN

Two-pathway based fully automated segmentation method was proposed for brain tumors [103].
The method segments glioblastomas (low grade glioma/LGG and high grade glioma/HGG) from MR
images. The two pathways are executed using a small convolution filter for local segmentation and
large filter for global segmentation. At last the feature maps from both pathways are concatenated
to give us the segmented image. Based on this approach three cascaded networks were developed:
Input Cascade CNN, MF Cascade CNN and Local Cascade CNN. The Input Cascade CNN obtained
the highest Dice similarity of 0.89. The segmented results are shown in Figure 14. The architecture of
the model is shown in Figure 15.
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Figure 14. Segmentation results from two different patients. Green: edema, yellow: enhanced tumor,
pink: necrosis, blue: non-enhanced tumor (reproduced from [103] with permission).

Figure 15. Model Architecture (reproduced from [103] with permission).

6.4. Plausible Solution for Brain Cancer Classification

Gliomas are the most common brain tumor in adults, and are generally divided into two categories:
HGG and LGG. The WHO further divides LGG into I-II grade tumors and HGG into III-IV grade.
Features such as shape and size of cell and its nuclei and cellular distribution are used to measure
the degree of malignancy of the tumor microscopically. Differentiating HGG and LGG is somewhat
easier than further sub-classification between LGG grade-I and II or HGG grade-III and IV, due to their
uneven structure of the cell in this state. Grade estimation of the cancer is a very important parameter
to decide targeted therapy and assessment of prognosis. Although biopsy is the gold standard, it is
inherently invasive, along with its sampling errors and variability in interpretation, therefore, most
doctors prefer MRI (T1, T2, and FLAIR) test in case surgical resection is difficult due to the location of
tumor or patient condition, because of its good contrast and radiation-free nature from brain scans
(MRI, CT, etc.). Most of the medical practitioners manually measure the degree of aggressiveness
(grade) of the tumor. The accuracy of grade estimation depends on the proficiency of the practitioners
and subjected to inter-reader variability studies. In this case, computer-assisted tools may help for
better accuracy.
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There are some automatic brain tumor grading methods which were proposed by researchers
based on texture analysis using ML techniques [92,104,105]. Most of them use MRI (T1, T2, FLAIR, etc.).
Recently many DL architectures (especially CNN) have shown remarkable performance in medical
image analysis such as brain tumor segmentation and tissue classification on brain MRI. However,
tumor grading utilizing DL methods is unexplored so far and there is a lot of research scope to explore
further. We have provided a plausible solution for the tumor grading as shown in Figure 16. The model
is described vividly in the discussion section.

Figure 16. Plausible solution for brain tumor grading.

7. Brain Cancer and Other Brain Disorders

7.1. Stroke

There are two major classes of stroke: ischemic and hemorrhagic stroke [106]. Ischemic strokes
happen when blood supply is interrupted in the brain, while hemorrhagic strokes results from blood
vessel damage or abnormal vascular structure. Although stroke and brain cancer are two different
diseases, the relationships between them have been examined by some researchers. A study was done
on longitudinal risk of developing brain cancer in stroke patients [107]. For this study, they have
selected 35 cases of malignant gliomas with or without stroke cases using brain MRI. They observed
that the stroke patients have a higher risk of developing brain cancer than other forms of cancers with a
hazard ratio of 3.09 (95% Confidence Interval (CI): 1.80–5.30). Another interesting finding of the study
is that the old stroke patients and females between 40–60 age groups have more risk of developing
brain cancer.

7.2. Alzheimer’s Disease

Alzheimer’s disease (AD) is a chronic neurodegenerative disease, where the short term memory
loss is an initial symptom which may become worse over the time as disease advances i.e., language
problem, behavioral issues, and the inability of self-care, etc [107]. Although, AD and cancer are two
different diseases there is relationship between them in some studies. It is found that there is an inverse
relationship between cancer and Alzheimer’s disease in their study. Over a mean follow-up of 10 years
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of patients, they found that the cancer survivors have a 33% decreased risk of Alzheimer’s disease as
compared to the people without cancer. Another interesting outcome came out of the study is that the
patients who have AD had risk of cancer decreased by 61%.

7.3. Parkinson’s Disease

Parkinson’s disease (PD) mainly affects the motor system of the brain resulting in tremors, rigidity,
and slowness in movement and difficulty in walking. Sometimes thought process and behavioral
changes are also observed [108]. A meta-analysis for demonstrating the relationship between PD and
brain found a positive connection between them. Eight groups were involved in the study where
329,276 patients had participated. The study revealed that occurrence of brain tumor was relatively
higher after the diagnosis of PD (odds ratio 1.55, 95% CI 1.18 ± 2.05), but not statistically significant
before PD diagnosis (odds ratio 1.21, 95% CI 0.93 ± 1.58).

7.4. Leukoaraiosis

Leukoaraiosis is an abnormal change in the appearance of white matter near the lateral ventricles.
It is often seen in old age, but sometimes also found in young adults. Leukoaraiosis may be the initial
stage of Binswanger’s disease but this may not always happen [109]. We cannot find any direct relation
between brain cancer and Leukoaraiosis.

7.5. Multiple Sclerosis

Multiple sclerosis (MS) is a brain and spinal cord disease. In this disease, the immune system
attacks the protective sheath (myelin) that covers nerve fibers which hampers communication system
from the brain to rest of the body. The severity of the disease is measured by the quantity of nerve
damage. Signs and symptoms of the disease may differ person to person. The symptoms are partial or
complete loss of vision, double vision, speech slur, tingling in different parts of the body and losing
walking ability at a higher stage. There is no permanent cure available for MS. In a recent study, it was
shown that the MS patients have an increased risk of brain cancer [110,111].

7.6. Wilson’s Disease

Wilson’s Disease (WD) is caused by genetic disorder which is inherited from the parents. In this
disease, copper builds up in the body and generally affects the brain and liver. Vomiting, weakness,
fluid buildup in the abdomen, swelling of the legs, yellowish skin, and itchiness are some common
liver related symptoms. Brain-related symptoms are tremors, muscle stiffness, trouble in speaking,
personality changes, anxiety and seeing or hearing things [112]. A comparison of the differences in
brain diseases is shown in Figure 17.
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Figure 17. Comparison of brain tumor with other brain disorders (image permission
requested from sources). (a) Normal Brain [AtheroPointTM]; (b) Multiple Sclerosis [113];
(c) Stroke [114]; (d) Leukoaraiosis [115]; (e) Alzheimer’s Disease [116]; (f) Parkinson’s Disease [117];
(g) Wilson’sDisease [118]; (h) Brain Tumor [119].

8. Discussion

Brain tumor analysis using medical imaging is a complicated and challenging task, which can
be broadly categorized into pre-processing, classification and post-processing steps. There are many
challenges associated with the aforementioned steps, which make this task complicated. No ideal
computer assisted tools available so far to conform, tumor malignancy and its degree of aggressiveness.
Thus doctors rely on the biopsy test [54,55] only for all types of cancer. The manual microscopic
biopsy image analysis is done by pathologists and medical practitioners by observing cell or tissue
structure under the microscope. The analysis is a challenging issue for them and subject to inter-reader
variability tests. Therefore, DPI analysis is a growing area of research. In DPI, some common features
include the shape and size of cells, shape and size of cell nuclei and distribution of the cells which are
used to measure the degree of malignancy of the tumor. Characterizing benign and malignant cells is
easier than sub-classifying malignant tumor due to uneven structure of the cell in this state. Staining
variations, usage of different scanners and colors variations of the tissues may appear in DPI which
may lead to wrong interpretation. Another challenge with DPI is that most of the whole slide image
(WSI) scanner generates only 2D image, whereas the depth information is unavailable in 2D image,
which is an important parameter for pathologists to confirm certain tissue class. It is anticipated that
the design of 3D WSI scanners may be available soon [120]. Since biopsies are time-consuming and
more risk-prone in the case of the brain tumor, therefore, various brain scans such as CT, MRI, etc. are
used to confirm tumors and the degree of malignancy. Again, this analysis depends on the proficiency
of the medical practitioners and is subject to inter-reader variability.

As discussed above, many automatic brain image analysis methods were proposed by various
researchers for brain segmentation and tissue classification. Most of them use MRI (T1, T2, and FLAIR),
due to its good contrast and radiation-free nature. As discussed earlier, brain image analysis consists
of image registration, image enhancement, features reduction, feature extraction and classification.
The image registration is the first and most important step in medical imaging. Image acquisition
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is not always consistent because of the effects of noise and blurring due to organ movements.
The performance of the medical image analysis highly depends on several parameters such as modality,
similarity measures, transformation, image contents, optimization of algorithm and implementation
mechanism. Generally medical images suffer from low contrast which leads to deterioration of image
quality. Gaussian (high-pass, low-pass) filter, histogram equalization, contrast starching are most
commonly used image enhancement techniques for medical images. Large numbers of features are
computationally expensive and make classification complex. Therefore, principal component analysis
(PCA), linear discriminant analysis (LDA), and genetic algorithm (GA) are the most popular methods
for feature reduction. SVM, DT, naive Bayes classifier, Bayesian classifier, KNN, ANNs etc. are
the most commonly used ML methods for brain image classification and have achieved high-level
accuracy in classification. In ML, features are first extracted by using hand-made techniques and then
input to the ML-based characterization system. The difficulty of image classification using ML-based
algorithms is that there lies continuous variability within image classes. Further, the contemporary
distance measures used by feature extraction methods are unable to compute similarity between
images. Nowadays, DL methods (CNN’s, ResNets) are gaining more popularity than ML techniques
for the brain image classification. In DL, the images are directly input to the system. DL models such
as CNN produce features from images which are translation invariant and stable to deformations
leading to more accurate characterization/segmentation. In addition to characterization/segmentation
of brain, it is suggested to utilize DL models for grading of brain tumor. A proposed DL-based model
is already shown in Figure 16. There are four CNNs (CNN-1, 2, 3 and 4) employed for brain cancer
characterization and grading. Brain MR Images are first pre-processed and tumor part is segregated.
The tumor part is characterized as normal, benign or malignant. If the tumor is malignant CNN2 is
employed to characterize it as LGG or HGG. LGG is further characterized as tumor grade-I or grade-II
using CNN3. Similarly, HGG is classified as tumor grade-III and grade-IV by CNN4. This model can
effectively diagnose brain cancer and do its grading.

Although DL methods are widely popular among the research community, there are many
challenges involved with DL architectures. DL models are quite computationally expensive because of
additional hardware (GPUs) requirements to run the models. The memory and processing requirement
of DL models are huge. It is also not necessary that increasing the number of layers in DL architecture
will improve the performance of the architecture.

8.1. A Note on Biomarkers for Cancer Detection

Various tests have been suggested for diagnosing brain cancer: (a) including the one stated
earlier in the section of imaging modalities, such as MRI, MRS, CT, etc., and (b) laboratory sampling
of brain tumor i.e., biopsy. The inclusion of intelligence-based techniques such as ML or DL for
imaging modalities are very likely to increase the effectiveness of the diagnosis and enhance the
radiologists’ capability towards accurate diagnosis for brain cancer in a timely manner. In addition to
the computer-aided diagnosis using imaging modalities and biopsy methodologies, spread of cancer
in the nervous system can be detected using a sample of cerebrospinal fluid from the spinal cord.
This technique is called lumbar puncture or spinal tap [121]. In this methodology, several biomarkers
related to brain tumor were detected [122]. In addition, molecular tests on brain tumor sample can be
carried out to identify specific genes, proteins, and cells related to the particular tumor. Doctors can
look into these biomarkers to assess the grade, type of tumor and decide treatment options. Further,
examining these biomarkers can help in early treatment before the symptoms begin. Inclusion of ML
and DL techniques in assessing these biomarkers can lead to accurate diagnosis that can save both
time and cost, proving to be more economical.

8.2. Benchmarking

The benchmarking of several ML-based brain cancer classification system has been provided in
Table 5. Sasikal et al. (Row #1) applied ANN-based classifier on featured extracted using DWT from
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100 T2W MRI images. The accuracy obtained is 98%. In 2008, Verma et al. (Row #2) applied Bayesian
and SVM on 14 DWI, B), FLAIR, T1 and GAD images and achieved sensitivity of 91.84% and specificity
of 99.57% for SVM. Zacharaki et al. achieved 97.8% accuracy using NL-SVM on SVM-RFE features
from 102 T1,2 FLAIR, rCBV images (Row #3). EL Dahashanet al. (Row #4) in 2009, applied FP-ANN
and KNN on features extracted using DWT from 70 MR images and obtained highest accuracy of 98.0%.
Similarly, Ryu et al. (Row #5) applied entropy histogram techniques on GLCM features extracted
from 42 DWI, ADC images and achieved accuracy of 84.4%. Further, Skogen et al. (Row #6) applied
standard deviation on 95 patients from 95 T1W, T2 and FLAIR images and also achieved an accuracy
of 84.4%.
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9. Conclusions

Our main focus of the review is to provide state of art in brain cancer area that includes
pathophysiology of cancer, imaging modality, WHO guidelines for tumor classification, primary
diagnosis methods, and existing computer-assisted algorithms for brain cancer classifications using
the machine and deep learning techniques. Finally, we have compared brain tumor with other brain
disorders. We have concluded that due to automatic feature extraction capability of DL based methods,
recently it is getting more attention and accuracy compared to conventional classification techniques
for medical imaging. It is for sure that many lives can be saved if cancer detected and suitable grade
estimated through fast and cost-effective diagnosis techniques. Therefore, there is dare need to develop
fast, non-invasive and cost effective diagnosis techniques. Here, DL methods can play a major role for
the same. In best of our knowledge, very less work has done for the automatic tumor grading using
DL techniques and their full potential, yet to be explored.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. International Agency for Research on Cancer. Available online: https://gco.iarc.fr/ (accessed on 1 November 2018).

2. Brain Tumor Basics. Available online: https://www.thebraintumourcharity.org/ (accessed on 1 November 2018).

3. American Cancer Society website. Available online: www.cancer.org/cancer.html (accessed on 1 November 2018).

4. Brain Tumor Diagnosis. Available online: https://www.cancer.net/cancer-types/brain-tumor/diagnosis

(accessed on 1 November 2018).

5. WHO Statistics on Brain Cancer. Available online: http://www.who.int/cancer/en/ (accessed on

1 November 2018).

6. Shah, V.; Kochar, P. Brain Cancer: Implication to Disease, Therapeutic Strategies and Tumor Targeted Drug

Delivery Approaches. Recent Pat. Anti-Cancer Drug Discov. 2018, 13, 70–85. [CrossRef] [PubMed]

7. Ahmed, S.; Iftekharuddin, K.M.; ArastooVossoug. Efficacy of texture, shape, and intensity feature fusion for

posterior-fossa tumor segmentation in MRI. IEEE Trans. Inf. Technol. Biomed. 2011, 15, 206–213. [CrossRef]

[PubMed]

8. Behin, A.; Hoang-Xuan, K.; Carpentier, A.F.; Delattre, J. Primary brain tumoursinadults. Lancet 2003,

361, 323–331. [CrossRef]

9. Deorah, S.; Lynch, C.F.; Sibenaller, Z.A.; Ryken, T.C. Trends in brain cancer incidence and survival in the

United States: Surveillance, Epidemiology, and End Results Program, 1973 to 2001. Neurosurg. Focus 2006,

20, E1. [CrossRef] [PubMed]

10. Mahaley, M.S., Jr.; Mettlin, C.; Natarajan, N.; Laws, E.R., Jr.; Peace, B.B. National survey of patterns of care

for brain-tumor patients. J. Neurosurg. 1989, 71, 826–836. [CrossRef]

11. Hayward, R.M.; Patronas, N.; Baker, E.H.; Vézina, G.; Albert, P.S.; Warren, K.E. Inter-observer variability in

the measurement of diffuse intrinsic pontine gliomas. J. Neuro-Oncol. 2008, 90, 57–61. [CrossRef]

12. Griffiths, A.J.F.; Wessler, S.R.; Lewontin, R.C.; Gelbart, W.M.; Suzuki, D.T.; Miller, J.H. An Introduction to

Genetic Analysis; Macmillan: New York, NY, USA, 2005.

13. Shinoura, N.; Chen, L.; Wani, M.A.; Kim, Y.G.; Larson, J.J.; Warnick, R.E.; Simon, M.; Menon, A.G.; Bi, W.L.;

Stambrook, P.J. Protein and messenger RNA expression of connexin43 in astrocytomas: Implications in brain

tumor gene therapy. J. Neurosurg. 1996, 84, 839–845. [CrossRef] [PubMed]

14. Evan, G.I.; Vousden, K.H. Proliferation, cell cycle and apoptosis in cancer. Nature 2001, 411, 342. [CrossRef]

15. Burch, P.R. The Biology of Cancer: A New Approach; Springer Science & Business Media: New York, NY, USA, 2012.

16. Song, M.S.; Salmena, L.; Pandolfi, P.P. The functions and regulation of the PTEN tumoursuppressor. Nat. Rev.

Mol. CellBiol. 2012, 13, 283. [CrossRef]

17. Rak, J.; Filmus, J.; Finkenzeller, G.; Grugel, S.; Marme, D.; Kerbel, R.S. Oncogenes as inducers of tumor

angiogenesis. Cancer Metastasis Rev. 1995, 14, 263–277. [CrossRef]

399



Cancers 2019, 11, 111

18. Yarden, Y.; Kuang, W.-J.; Yang-Feng, T.; Coussens, L.; Munemitsu, S.; Dull, T.J.; Chen, E.; Schlessinger, J.;

Francke, U.; Ullrich, A. Human proto-oncogene c-kit: A new cell surface receptor tyrosine kinase for an

unidentified ligand. EMBO J. 1987, 6, 3341–3351. [CrossRef]

19. Greenberg, M.E.; Greene, L.A.; Ziff, E.B. Nerve growth factor and epidermal growth factor induce rapid

transient changes in proto-oncogene transcription in PC12 cells. J. Biol. Chem. 1985, 260, 14101–14110.

[PubMed]

20. Sneed, P.K.; Suh, J.H.; Goetsch, S.J.; Sanghavi, S.N.; Chappell, R.; Buatti, J.M.; Regine, W.F.; Weltman, E.;

King, V.J.; Breneman, J.C.; et al. A multi-institutional review of radiosurgery alone vs. radiosurgery with

whole brain radiotherapy as the initial management of brain metastases. Int. J. Radiat. Oncol. Biol. Phys.

2002, 53, 519–526. [CrossRef]

21. Bertram, J.S. The molecular biology of cancer. Mol. Asp. Med. 2000, 21, 167–223. [CrossRef]

22. Liao, J.B. Cancer issue: Viruses and human cancer. Yale J. Biol. Med. 2006, 79, 115–122.

23. Golemis, E.A.; Scheet, P.; Beck, T.N.; Scolnick, E.M.; Hunter, D.J.; Hawk, E.; Hopkins, N. Molecular

mechanisms of the preventable causes of cancer in the United States. Genes Dev. 2018, 32, 868–902. [CrossRef]

[PubMed]
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