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Preface

The recent and ongoing COVID-19 pandemic has changed societies and research 
around the world. As a result, this new book reflects the latest developments in 
the field of neuroscience related to these changes. It includes six chapters over two 
sections: “COVID-19 Effects: Neurology, Neuroimmunology, Neurogenesis” and 
“Molecular and Cellular Neurochemistry.” The book presents comprehensive reviews 
in these different areas written by experts in their respective fields. COVID-19 is 
featured prominently and is a recurring theme throughout most chapters.

Neuroscience itself is a flourishing academic field that contributes to our under-
standing of molecular, cellular, and medical neurobiology. As scientific disci-
plines, neurobiology and neurochemistry study the role of chemicals that build 
the  nervous system, explore the function of neurons and glial cells in health and 
disease, discover aspects of cell metabolism and neurotransmission, and reveal how 
degenerative processes are at work in the nervous system. This book is a valuable 
resource for neurobiologists, neurochemists, and other scientists alike. In addition, 
it will contribute to the training of current and future neuroscientists and, hope-
fully, will lead us on the path to curing some of the biggest challenges in human 
health.

Section 1 begins with Chapter 1, “Does COVID-19 Affect Adult Neurogenesis? 
A Neurochemical Perspective” by Jayakumar Saikarthik, Ilango Saraswathi and 
Abdulrahman A. Al-Atram. The chapter begins with a discussion of the impact 
of COVID-19 on adult neurogenesis with an emphasis on the role of ACE2 and 
neurotransmitters.

Chapter 2, “Neuroimmunology and Neurological Manifestations of COVID-19” by 
Robert Weissert, provides a comprehensive review of the neurological symptoms 
resulting from COVID-19 as it affects the nervous system, in addition to the respira-
tory symptoms due to an attack of the broncho-alveolar system. The chapter also 
addresses vaccination and therapeutic approaches to prevent COVID-19 effects on 
the nervous system.

Chapter 3, “COVID-19 and Seizures” by Rafael Jesus, Carolina Azoia, Paulo Coelho 
and Pedro Guimarães, reviews the association between COVID-19 and the mecha-
nisms of acute symptomatic seizures through neurotropism and neuroinvasion 
features of SARS-CoV-2. The chapter reviews a variety of clinical presentations in 
this regard.

Section 2 begins with Chapter 4, “Peripheral Biomarkers in Multiple Sclerosis 
Patients Treated with Interferon-Beta,” by Andreia Monteiro, Ana Mafalda Fonseca 
and Artur Paiva. It examines findings described in the literature that correlate 
specific alterations of different leukocytes subpopulations in the blood with disease 
status in multiple sclerosis patients. The authors argue that these have the potential 
to constitute a peripheral biomarker of disease progression.



Chapter 5, “Amino Acids as Neurotransmitters. The Balance between Excitation 
and Inhibition as a Background for Future Clinical Applications” by Yaroslav R. 
Nartissov, reviews the role of the neurotransmitters glycine and glutamate. The 
author proposes that, in addition to their obvious effects on the brain, their poten-
tial role in therapeutic treatment of pathological conditions needs to be explored.

Chapter 6, “Emerging Roles of Non-Coding RNA in Neuronal Function and 
Dysfunction” by Steven G. Fagan and Shona Pfeiffer, contributes a discussion of 
advancements in RNA sequencing technologies. The focus of the chapter is on the 
dysregulation, functions, and regulatory roles of novel small non-coding RNAs in 
the pathophysiological mechanisms of neurological disorders and their relevance as 
novel biomarkers of injury and therapeutic agents.

We are grateful to IntechOpen for initiating this book project and for asking us 
to serve as its editors. Many thanks go to Nera Butigan at IntechOpen for guiding 
us through the publication process and for moving the book ahead in a timely 
fashion. Thanks are due to all contributors to this book for their excellent chapters. 
Hopefully, all contributors will continue their research with many intellectual 
 challenges and exciting new directions.

Thomas Heinbockel, Ph.D.
Professor and Interim Chair,

Department of Anatomy,
Howard University College of Medicine,

Washington, DC, USA

Robert Weissert, M.D. Ph.D.
Honorary Professor,

Attending in Neurology,
Department of Neurology,

University of Regensburg Hospital,
Regensburg, Germany
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Chapter 1

Does COVID-19 Affect Adult 
Neurogenesis? A Neurochemical 
Perspective
Jayakumar Saikarthik, Ilango Saraswathi  
and Abdulrahman A. Al-Atram

Abstract

COVID-19 has been found to cause neuropsychiatric symptoms which indicate 
brain involvement. SARS-CoV-2 may enter the brain by damaging and penetrating 
olfactory mucosa and via other possible routes like damaged blood–brain bar-
rier, and hematologic spread. With SARS-CoV-2 having a higher affinity to ACE2 
receptors, brain regions that have higher ACE2 receptors like the hippocampus, 
are more vulnerable to the effect of the viral invasion. In addition, immune cell 
activation, an important feature of COVID-19, leads to cytokine storm which 
causes neurotoxicity, neuroinflammation, and neurodegeneration. Impaired adult 
neurogenesis is related to many psychiatric disorders including depression, bipolar 
disorder, anxiety disorder, schizophrenia, and PTSD. It is known to be related to the 
depletion of neurotransmitters, dopamine, serotonin, norepinephrine, GABA, and 
glutamate which play a major role in adult neurogenesis. A recent study reveals that 
SSRI which acts by increasing serotonin is proven beneficial in COVID-19 patients. 
Thus, the current chapter will discuss the impact of COVID-19 on adult neurogen-
esis with emphasis on the role of ACE2 and neurotransmitters.

Keywords: COVID-19, SARS-CoV-2, ACE2, adult neurogenesis, glutamate, 
monoaminergic neurotransmitters, GABA

1. Introduction

The last two decades have seen epidemic outbreaks by novel viruses including 
SARS, MERS, and influenza which shared certain commonalities such as a likely 
zoonotic origin, high mortality rates, and less available therapeutic methods to 
counteract them. The COVID-19 pandemic shows no signs of slowing down with 
affecting 223 countries, with 224,811,910 cases, and 4,633,797 death tolls till date 
[1]. With what history on earlier pandemics has made us understand and with the 
rapidly mutating nature of the SARS-CoV-2 virus, it is not unreasonable to say that 
the pandemic is here to stay, and the world must learn to co-exist with it. The first 
reported case of COVID-19 was found in Wuhan, China in December 2019. By 
March 2020, the disease had spread across the globe and had become a public health 
emergency. The WHO declared a pandemic state to the disease spread on March 11, 
2020 [2]. With more than a year since the declaration of the pandemic, the scientific 
community has yet not developed a definitive anti-viral drug to combat the disease 
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spread. Even though the advent of vaccination has set the pace in favour of global 
health, we have a long way to go to eradicate if at all suppress the disease spread.

SARS-CoV-2 is highly virulent and highly contagious with the R0 value of 3.77 
[3]. Though it predominantly affects the respiratory system, other organ systems 
like the gastrointestinal system, heart, kidney, and central nervous system are also 
targeted by the virus. Fever, chills, cough, shortness of breath or breathing difficulty, 
sore throat, nasal congestion, diarrhoea, nausea, vomiting, generalised body aches 
are some of the common symptoms noted in patients infected with COVID-19 [4].

Neurological manifestations of COVID-19 include non-specific symptoms 
like headache, dizziness, fatigue, and myopathy and more specific symptoms like 
anosmia, ageusia, impaired consciousness, stroke, meningitis, acute transverse 
myelitis, and Guillian-Barre syndrome [5, 6]. More than one third of the individuals 
with COVID-19 were found to present with neurological symptoms [7, 8]. The pres-
ence of viral RNA in cerebrospinal fluid and the brain was observed in COVID-19 
patients [9]. Preliminary in vitro studies have found that SARS-CoV-2 can replicate 
in neuronal cells [10]. A post-mortem study has found that 48% of the studied cases 
had human CoV RNA in the CNS that was detectable [11]. SARS-CoV-2 is found 
to exhibit organotropism for the nervous system and SARS-CoV and MERS-CoV 
which are closely related to SARS-CoV-2 have neuro-invasive potential. Hence, 
apart from the secondary impact on the brain as a result of systemic complications 
like coagulopathy and hypoxia, the direct effect of SARS-CoV-2 infection on the 
brain and spinal cord is plausible and is being thoroughly studied by researchers 
globally. The neuropsychiatric symptoms in COVID-19 could be attributed to a vari-
ety of factors apart from the direct effect of the virus on the brain like psychological 
distress due to social isolation, the novelty of the disease spread and pandemic, 
concerns about family and friends contracting the disease, social stigma, etc. [12]. 
This chapter will, however, focus on the direct effects of the SARS-CoV-2 virus on 
the brain which could be attributed to the pathophysiology of neuropsychiatric 
symptoms with a special focus on ACE2 and monoaminergic neurotransmitters.

2. SARS-CoV-2

Coronaviruses are the largest among RNA viruses. They have a crown-like spikes 
on their surface and hence the name. SARS-CoV-2 is the latest/seventh coronavirus 
to become pathogenic to humans. It belongs to the Coronaviridae family which 
includes four genera; α−, β−, γ−, and δ-CoV. Out of these human pathogens include 
HCoV- 229E, HCoV- NL63 [α − CoV] and OC43, and HKU1 [β − CoV] that in most 
cases cause mild self-limiting respiratory disease. γ − and δ-CoV strains mainly 
affect avian species [13]. SARS-CoV and MERS-CoV, causatives of SARS and MERS, 
are beta coronaviruses that caused up to 9.6% and 34.3% mortality rates which 
were responsible for earlier pandemics that resulted in a death toll of 812 and 866, 
respectively [14]. SARS-CoV-2 is more similar to SARS-CoV and MERS-CoV while 
being far more pathogenic and transmissible than the earlier known coronaviruses.

SARS-CoV-2 is a beta coronavirus that is positive-sense single-stranded RNA 
virus with 29–30 kb in size. It has four structural proteins and 16 non-structural 
proteins. Nucleocapsid protein [N], membrane protein [M], spike protein [S], and 
envelope protein [E] are the four structural proteins (Figure 1). The capsid of the 
genome is formed by N protein and the genome is further surrounded by an enve-
lope that is made up of M, E, and S proteins. Like other coronaviruses, SARS-CoV-2 
has enveloped with a crown-like spikes on its surface. It is the spike protein that is 
responsible for the variations in host specificity and tissue tropism of the different 
coronavirus. Spike protein is a type-I membrane glycoprotein and has two functional 
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subunits S1 and S2 with different functional domains in the amino and carboxy ter-
minal. S1 subunit contains the receptor-binding domain [RBD] and binds with the 
receptor in the host cells. S2 subunit fuses the membranes of the host cells and the 
virus. The entry of the virus into the host cell involves binding of the S protein [S1 
subunit] to a specific cell receptor followed by priming of the S protein by proteases 
in the host cell. This leads to the fusion of the spike protein to the cell membrane 
which is mediated by the S2 subunit [15]. The specific cell receptor through which 
SARS-CoV-2 enters the host cell is the ACE2 receptor and the protease in the host 
cell that processes the spike protein to reveal the fusion peptide between S1 and S2 
subunits facilitating its entry, is a TMPRSS2 serine protease, member of the hepsin/
TMPRSS subfamily [16]. Another protein named furin or paired basic amino acid 
cleaving enzyme [PACE], a member of the subtilisin-like proprotein convertase 
family, mediates proteolytic cut of the S protein at S1-S2 boundary, is required for 
TMPRSS2 processing of S protein. Both TMPRSS2 and furin are essential for the 
entry of SARS-CoV-2 into the cell. The furin cleavage site in the S protein of SARS-
CoV-2 is not found in SARS-CoV and other beta coronaviruses [17].

3. ACE2

ACE2 is a cell surface protein, a metalloproteinase and an ectoenzyme which 
is an obligatory receptor for SARS-CoV and SARS-CoV-2. The affinity of SARS-
CoV-2 to ACE2 is ten times higher than that of SARS-CoV which partly explains its 
higher pathogenicity [18]. It was discovered in 2000 by two independent groups 
of researchers while searching for human ACE homologues [19, 20]. The gene 
for ACE2 in humans is located in Xp22 and has 18 exons, a majority of which are 
similar to the exons of the ACE gene [21]. Despite ACE2 exhibiting 42% sequence 
identify and 61% sequence similarity with ACE, the two enzymes show enormous 
variations (Table 1) [27].

Figure 1. 
(a) Structure of ACE2 and SARS-CoV-2; (b) Interaction of spike protein and ACE2; (c) Shedding of ACE2 
and entry of SARS-CoV-2 into the cell.
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Since the 20 years of its discovery, ACE2 was found to have a multitude of 
physiological and pathological functions based on its three fundamental actions viz. 
negative regulation of renin-angiotensin system [RAS], facilitation of amino acid 
transport in the intestine, and surface receptor for SARS-CoV and SARS-CoV-2. 
ACE2 is mainly expressed in the lungs, intestine, liver, heart, kidneys, testes, and 
brain. In the brain, it is expressed in neurons, astrocytes and oligodendrocytes, 
and in ventricles, substantia nigra, hypothalamus, hippocampus, middle temporal 
gyrus, posterior cingulate cortex, nuclei in pons—the nucleus of tractus solitarius 
and pre-Bötzinger complex and olfactory bulb [21, 28]. ACE2 expression is higher 
in astrocytes, astrocytic foot processes, pericytes, and endothelial cells which form 
the key components of the blood–brain barrier [29]. In the olfactory epithelium, its 
expression is higher in the supporting sustentacular cells than in olfactory sensory 
neurons [30]. The sites of ACE2 expression are given in Table 2 [31].

3.1 Structure

ACE2 is a type 1 integral membrane protein that includes a short cytoplasmic 
C-terminus, a transmembrane region, collectrin, and N-terminal ectodomain. Zinc-
binding motifs, HEMGH forms the active site of the enzyme. N-terminal domain 

ACE ACE2

Forms Exists as a 2-domain somatic form and 
a one domain testicular form

Exists as a single form

Structure Transmembrane ectoenzyme with two 
active sites

Transmembrane ectoenzyme with 
one active site

Enzymatic action Removes C-terminal dipeptide –  
peptidyl-dipeptidase

Removes single amino acid from 
C-terminus – carboxypeptidase

Substrate specificity Converts Ang I to Ang II Converts Ang I to Ang (1-9)

Does not cleave Ang II Converts Ang II to Ang (1-7)

Converts Ang (1-9) to Ang (1-7) Does not cleave Ang (1-9)

Converts Ang (1-7) to Ang (1-5) Does not cleave Ang (1-7)

Does not cleave Ang A Converts Ang A to Alamandine

Hydrolyses bradykinin Does not cleave bradykinin

Does not cleave des-Arg9-bradykinin Hydrolyses des-Arg9-bradykinin

Action on amyloid 
protein

Hydrolyses Aβ-43 to Aβ41 Hydrolyses Aβ43 to Aβ42

Hydrolyses Aβ-42 to Aβ40 Does not cleave Aβ-42

Localisation within 
cells

Equal distribution between apical and 
basolateral membranes

Localised on the apical membrane

Transports intestinal 
amino acids

No Transports intestinal neutral amino 
acids

Shedding into 
plasma

Unidentified. May involve 
metalloproteinase and A Disintegrin

By A Disintegrin and Metalloprotease 
17 (ADAM 17)

Response to ACE 
inhibitor

Inhibited Resistant, gets upregulated

Acts as a receptor to 
virus

No Receptor for SARS-CoV and 
SARS-CoV-2

Table 1. 
The comparison between ACE and ACE2 is given in Table 1 [22–26].
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has a claw-shaped protease domain which is the binding site of receptor-binding 
domain [RBD] of SARS-CoV and SARS-CoV-2. N terminus is homologous to ACE 
and is a carboxypeptidase that metabolises peptides like angiotensin II, kinins, 
apelin-13, apelin-36, neurotensin 1–13, kinetensin, and morphins, and C terminus 
is homologous to collectrin which is involved in the trafficking of neutral amino 
acid transporter [B[o]AT1] in the intestinal epithelium [32].

4. Role of ACE2 in renin-angiotensin system [RAS]

Both ACE and ACE2 play a major role in maintaining renin-angiotensin 
system [RAS] homeostasis. ACE2 acts like a negative regulator of ACE in RAS. 
RAS involves a variety of proteins and enzymes. Angiotensinogen is an inactive 
precursor that gets cleaved by renin to form angiotensin I. ACE acts on angiotensin 
I to convert into angiotensin II [Ang II] while ACE2 converts Ang II to Ang [1-7]. 
Ang [1-7] then binds to Mas receptors and causes attenuation of the signal cascade 
that was activated by Ang II (Figure 2). Thus, ACE2 not only inactivates Ang II 
but also generates the antagonistic peptide Ang [1-7] [33]. Ang [1-7] can also be 
formed from Ang I by neutral endopeptidases and neprilysin, but the most effective 
pathway of Ang [1-7] generation is through ACE2 [34]. The conversion of Ang II 

Vascular system Endothelial cells, vascular smooth muscle cells, and migratory angiogenic cells

Heart Cardiomyocytes, endothelial cells, pericytes, and epicardial adipose cells, and 
cardiofibroblasts

Skin sebaceous gland cells and basal epidermal layer

Kidneys glomerular endothelial cells, proximal tubule epithelial cells, bladder urothelial cells, 
luminal surface of tubular epithelial cells, and podocytes

Reproductive 
system

Ovary, oocyte, uterus, vagina, and placenta of the female reproductive system
Adult Leydig cells and cells in the seminiferous ducts in the testis of the male 
reproductive system

Liver Perinuclear hepatocytes, cholangiocytes, epithelial cells of the bile duct

Gut Stratified epithelial cells of oesophagus, stomach, Intestinal epithelial cells, enterocytes 
of small intestine, absorptive enterocytes from the ileum, colon and rectum, and 
endothelial cells

Pancreas Acinar cells and duct cells of the exocrine gland and alpha, beta, delta, and PP cells of 
islets of Langerhans

Thyroid Glandular cells

Oral cavity Tongue, buccal mucosa, gingiva, leucocytes within the oral mucosa, non-keratinising 
squamous epithelium of the oral cavity – basal layer

Upper airway Ciliated epithelial cells, goblet cells

Lungs Pulmonary vasculature, type I and II alveolar epithelial cells, bronchiolar epithelial 
cells

Eyes Pigmented epithelial cells, photoreceptor cells, Müller glial cells

Central nervous 
system

Neurons, astrocytes, and oligodendrocytes, and in ventricles, substantia nigra, 
hypothalamus, hippocampus, middle temporal gyrus, posterior cingulate cortex, 
nuclei in pons – nucleus of tractus solitarius and pre-Bötzinger complex and olfactory 
bulb and cerebral vasculature and components of blood–brain barrier (astrocytes, 
astrocytic foot processes, pericytes, and endothelial cells)

Table 2. 
Sites of ACE2 expression.
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to Ang [1-7] by ACE2 is 70 folds more efficient than the conversion of Ang I to Ang 
[1-9] by ACE2. Thus, under physiological conditions, ACE2 mainly forms Ang [1-7] 
than Ang [1-9] [34].

While Ang II, which acts via angiotensin 1/AT1 [primary mediator] and 
angiotensin 2/AT2 receptors is a potent vasoconstrictor, a pro-fibrotic, and a 
pro-inflammatory agent, Ang [1-7] acts via Mas receptors and has vasodilator, 
anti-apoptotic and anti-proliferative effect. Mas receptors are G protein-coupled 
receptors and in the brain, they are highly expressed in the dentate gyrus of 
the hippocampus, a site-specific for adult neurogenesis and in blood vessels 
[35]. The ACE2/Ang [1-7]/Mas receptor axis of the RAS is considered to be the 
protective arm of the renin-angiotensin system. A balance in ACE/ACE2 is criti-
cal which implies a balance between the pro-inflammatory pro-oxidative arm 
and the anti-inflammatory and anti-oxidative arm of RAS. An increase in ACE/
ACE2 ratio was observed in many pathological conditions including cardio-
vascular pathology, renal dysfunction, pulmonary hypertension, in cigarette 
smokers, and Alzheimer’s disease [36–39]. SARS-CoV-2 which enters the host 
cells via ACE2 also causes downregulation of ACE2 and the major targets of 
SARS-CoV-2 are those which express higher levels of ACE2 [26]. The fibrotic 
and inflammatory processes observed in various organs in COVID-19 patients 
could be attributed to the dysregulation of ACE2 and subsequently, RAS which 
is observed in endocrine, paracrine, and intracrine levels in several organs [40]. 
Dysregulation of RAS in the brain is associated with neuroinflammation and 
neurodegeneration [41].

5. Neurogenesis

The old dogma that the production of functional neurons does not occur in 
adult life was refuted when Altman and Das published evidence to support the 

Figure 2. 
Renin-Angiotensin System.
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continuation of neurogenesis in adult life in rodents [42]. Neurogenesis refers to 
the process of the generation of new neurons from neural stem cells. This process 
which plays a major role in brain development in embryonic life ceases to exist 
shortly after birth in the majority of brain areas except two. The subgranular 
zone [SGZ] of the dentate gyrus of the hippocampus and subventricular zone 
[SVZ], lining the lateral wall of the lateral ventricles are the two areas where neu-
rogenesis persists well into adult life albeit declining slightly with ageing (Figure 3) 
 [43, 44]. There is a complex microenvironment that nourishes and supports 
the neural progenitor cells and their progeny which is called the ‘neurogenic 
niche’. There are various trophic factors, blood vessels, supporting glial cells, and 
hormones in the neurogenic niche that help to control and enhance neurogenesis 
[45]. The newborn neurons mature and get integrated into neural circuits and are 
involved in a variety of functions including learning and memory like temporal 
and pattern separation, high-resolution memory, synaptic plasticity, fear con-
ditioning and emotions, and olfaction [46]. Incidentally altered neurogenesis 
is implicated in several neuropsychiatric diseases like Alzheimer’s disease, 
Parkinson’s disease, depression, Huntington’s disease, and stroke, epilepsy, and 
demyelinating disease [46, 47].

5.1 Stages of adult neurogenesis

The process of adult neurogenesis occurs in stages viz. maintenance of neural 
stem/progenitor cells [NPC] and proliferation of NPC, fate specification/commit-
ment, differentiation, maturation, survival of immature neurons, and integration 
into neural circuitry. The defining abilities of NPC are self-replication and multi-
potency, that is, the ability to differentiate into multiple lineages of cells and in this 
case neurons, astrocytes, and oligodendrocytes [48]. There are different types of 
neural progenitor cells in SGZ and SVZ. Type-1 cells in SGZ, B-cells in SVZ, and 
radial glia-like cells in SGZ and SVZ are largely quiescent cells, which are similar 
to radial glia cells found during embryonic development and have a morphology 
similar to mature astrocytes. Type-2 cells in SGZ and C-cells in SVZ are small 
roundish cells that are highly proliferative, and they give rise to type-3 cells in SGZ 
and A-cells in SVZ which represent committed neuroblasts. The type-1/B-cells  

Figure 3. 
Coronal section of the brain showing the sites of adult neurogenesis.
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are multipotent and have unlimited self-renewal capacity which get activated by 
various factors and multiply to form highly proliferative transient intermedi ate 
progenitor cells [TIP] in the SGZ. In SVZ, the transit-amplifying cells [TAC] 
[type-2/C-cells] has the ability to differentiate into neurons. These divide to form 
neuroblasts or immature neurons [type-3/A-cells] which proceed to neuronal 
differentiation and forms newborn neurons that mature and get integrated into 
neural circuitry in the brain. It is pertinent to know that many of the newborn neu-
rons perish and only 15–30% of immature neurons survive the maturation process. 
There are various factors that regulate this step and thereby the process of adult 
neurogenesis [49–51].

In SGZ, the NPCs form granule cells which are the principal excitatory cells of 
the dentate gyrus. Their axons form the mossy fibres extending to the CA3 region 
and their dendrites are in the molecular layer which receives connections from the 
entorhinal cortex. Immature neurons that are less than a week-old start to have 
neurite outgrowth and by one- or two-weeks axons can be observed in the hilus, 
and dendrites start to extend to the molecular layer without spines which being 
developed by around the 16th day. By 17 days, functional connections are formed 
by the axons [mossy fibres] with the CA3 pyramidal neurons [52]. They release 
glutamate as the neurotransmitter. After around 1 week of birth, the newborn 
granule cells receive GABAergic inputs and after 2 weeks receive glutamatergic 
inputs [53]. These immature neurons exhibit enhanced excitability by virtue of high 
input resistance and subthreshold calcium ion conductance which enables them to 
develop action potential with less excitatory currents. They also have a low thresh-
old for induction of LTP [long-term potentiation] [54, 55]. Between 3 weeks and 
2 months, there occurs a gradual increase in spine formation, dendritic arborisation 
and connection, boutons on CA3 neurons, and maturation of mossy fibres. By less 
than 2 months, the newborn neurons become functionally indistinguishable from 
fully mature granule cells [52].

Intrinsic factors Examples

Neurotrophic factors brain-derived neurotrophic factor (BDNF), insulin-like growth factor-1 (IGF-
1), nerve growth factor (NGF), glia-derived nerve factor (GDNF), fibroblast 
growth factor 2 (FGF-2), epidermal growth factor (EGF)

Morphogens Notch, sonic hedgehog (Shh), wingless ligands (Wnts), and bone morphogenic 
proteins (BMPs).

Inflammatory 
cytokines

tissue necrosis factors α (TNFα), interleukin-6 (IL-6) and IL-1β
IL-4 and IL-10

Neurotransmitters gamma-aminobutyric acid (GABA), glutamate, dopamine, serotonin, 
norepinephrine, acetylcholine

Hormones Glucocorticoids, sex hormones, leptin, incretin

Epigenetic factors methyl-CpG-binding domain protein 1 (Mbd1), MYST family histone 
acetyltransferase Querkopf (Qkf), mixed-lineage leukaemia 1 (Mll1), polycomb 
complex protein (Bmi-1), histone deacetylase 2 (HDAC2), and microRNAs 
(miR124, 137, 184, 185, and 491-3p)

Transcriptional factors sex-determining region Y-box 2 (Sox2), Orphan nuclear receptor TLX, 
forkhead box O proteins (FoxOs), prospero homeobox 1 (Prox1), neurogenic 
differentiation1 (NeuroD1), Kruppel-like factor 9, cyclic AMP response 
element-binding protein (CREB), paired box protein (Pax6), and neurogenin 2 
(Neurog2)

Table 3. 
List of intrinsic factors that affect adult neurogenesis.
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In SVZ, restricted neural progenitor cells migrate along scaffolds maintained by 
specialised astrocytes via the rostral migratory stream [RMS] to reach the olfactory 
bulb. By 15–30 days, they differentiate into two types of interneurons, GABAergic 
granule neurons [95%] and GABA or dopaminergic periglomerular neurons [5%]. 
The newborn GABAergic granule neurons can become cells with dendrites that 
do not cross beyond the mitral cell layer and those with non-spiny dendrites that 
extend till the external plexiform layer. These interneurons mature and get inte-
grated into olfactory network and start responding to olfactory signals [52].

There are various factors that regulate neurogenesis. These include intrinsic 
niche-derived intrinsic mechanisms and extrinsic systemic factors. The intrinsic 
factors that regulate adult neurogenesis are given in Table 3. There are extrinsic 
environmental cues and systemic factors that can positively and negatively affect 
adult neurogenesis like physical exercise, dietary intake, olfactory/hippocampal-
dependent learning, environmental enrichment, ageing, stress, alcohol abuse, and 
certain inflammatory conditions [46, 56–59].

6. Entry of SARS-CoV-2 into the brain

There are different ways that are the possible pathway for the entry of SARS-
CoV-2 into the brain. Some of the ways include olfactory transmucosal invasion, 
hematogenous dissemination, and neuronal retrograde dissemination [5]. The 
olfactory sensory neurons of the olfactory mucosa are bipolar neurons. The axons 
of the olfactory sensory neurons along the apical side project into the nasal cavity 
while that on the basal side merge into filia and protrudes into the olfac tory bulb 
through the cribriform plate. Thus, the olfactory sensory neurons are in direct con-
tact with the cerebrospinal fluid [60]. In the olfactory mucosa, ACE2 receptors are 
mainly found in the non-neuronal cells, sustentacular cells while their expression 
in the olfactory sensory neurons is less [30]. The blood vessels lining the olfactory 
mucosa express both ACE2 and TMPRSS2 protease receptors which help in the 
invasion of the SARS-CoV-2 virus and facilitate binding, replication, and accumula-
tion of the virus [61, 62]. Studies have found that SARS-CoV-2 enters CNS through 
this neural-mucosal interface by infection of the olfactory neurons or by diffusion 
through channels formed by olfactory ensheathing cells in the olfactory mucosa 
[60, 63]. Following the olfactory transmucosal invasion, the virus passes along the 
olfactory tract via axonal transport, trans-synaptic transport, or microfusion to 
different areas of the brain linked with the olfactory tract [60, 64].

Recent studies have observed that SARS-CoV-2 RNA was found in brain regions 
that are not directly connected to olfactory mucosa like the cerebellum which 
shows that other forms/routes of viral entry into the brain are at play. Neuronal 
retrograde dissemination is the one where the virus may breach peripheral nerve 
terminals and take a trans-synaptic route to reach CNS. For instance, SARS-CoV-2 
may invade peripheral chemoreceptors and may reach the cardiorespiratory centre 
in the brain stem [65] or through the gut-brain axis where the virus may enter the 
brain through enteric nerves [66]. In case of hematogenous dissemination, the virus 
after infecting the airways may breach the epithelial barrier and enter the blood-
stream. Through systemic circulation, the virus may reach the cerebral circulation 
and could infect endothelial cells of blood–brain barrier or epithelial cells of the 
blood CSF barrier to reach the brain or via circumventricular organs which lack the 
blood–brain barrier [5]. Trojan horse mechanism is another way by which SARS-
CoV-2 could reach the brain parenchyma. It is the process in which the virus infects 
leucocytes which get activated and disseminate to other tissues and cross blood–
brain barrier [67].
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Once SARS-CoV-2 enters the brain, it enters and infects the neurons, glial cells, 
and endothelial cells through ACE2 and replicates which leads to cell death. It causes 
damage to the blood–brain barrier which will increase its permeability and cause 
oedema, intracerebral bleeding, and neuronal death. The infected neurons can 
release inflammatory mediators that can activate other immune cells like mast cells, 
neurons, microglia, astrocytes, endothelial cells, and pericytes [68, 69].

7. Adult neurogenesis in COVID-19

Earlier studies show that survivors of critical illness have higher risk of develop-
ing neuropsychiatric consequences after discharge from the hospital. The preva-
lence of symptoms of depression, anxiety, and post-traumatic stress was found 
to be 29% [28–34], 34% [30–42], and 34% [27–50] in survivors of critical illness, 
respectively [70–72]. Impairment in memory, attention, and concentration was 
observed in SARS survivors 1 year after recovery [73]. Based on the knowledge from 
earlier infections by coronaviruses, SARS, and MERS, an increased risk of neuro-
psychiatric disorders like depression, anxiety, post-traumatic stress disorder, are 
possible in a long-term follow-up of patients recovered from COVID-19 [12].

Neuropsychiatric disorders that display impaired adult neurogenesis include major 
depressive disorder, Alzheimer’s disease, Parkinson’s disease, schizophrenia, and 
post-traumatic stress disorder. All of these correlate well with the reduction in hip-
pocampal volume, cognitive deficits, and mood dysregulation [74]. A recent 3-month 
prospective study by Yiping Lu et al. conducted in COVID-19 recovered patients 
found that there was grey matter enlargement in olfactory cortices and hippocampus 
bilaterally [75]. Yiping Lu et al. also found that the grey matter volume of the hippo-
campus was negatively related to loss of smell during the disease phase [75]. Anosmia 
over a course of time in upper respiratory tract infections was found to be associated 
with a decrease in the grey matter volume [GMV] of the central olfactory system 
due to loss of stimulation while enlargement of GMV is observed during recovery 
[76]. Functional compensation in the form of enlarged neurons and an increase in 
the dendritic spine and compensatory enhanced neurogenesis are believed to be the 
reason behind GMV enlargement during recovery [77]. Loss of memory that per-
sisted 3 months after the active infection in COVID-19 recovered patients was found 
to be negatively related to hippocampal grey matter volume [75]. Memory acquisition 
depends on newborn neurons and impairment in the acquisition of memory occurs 
due to inhibition of adult neurogenesis in the hippocampus [78, 79].

Anosmia is regarded as the key feature of COVID-19 which either occurs as an 
only symptom or in association with other signs and symptoms [80, 81]. Earlier 
studies show that any impairment in olfactory neurogenesis is associated with anos-
mia since neurogenesis in the olfactory epithelium and olfactory bulb is essential 
for the sense of smell [82, 83]. Dysfunction or atrophy of the olfactory bulb was 
observed in COVID-19 patients by recent studies done using brain imaging reports 
[84, 85]. Pathogenic changes in COVID-19 seem to cause loss of dopaminergic 
neurons, defects in the dopamine system, and exacerbate the clinical features of 
Parkinson’s disease [PD] [86, 87]. Anosmia is an important premotor symptom of 
PD which is not directly related to the neurodegenerative process in substantia nigra 
but appears to be related to defective adult neurogenesis [88, 89].

Understanding the process of adult neurogenesis in COVID-19 may reveal a 
critical role of the regenerative capacity of NPCs in combating the neuropsychiatric 
consequence of COVID-19. There are no studies or evidence to link COVID-19 with 
adult neurogenesis yet. Based on the factors like the presentation of neuropsychiat-
ric symptoms in COVID-19, the occurrence of symptoms like anosmia, memory and 
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cognitive deficits in COVID-19, the neuro-invasive potential of SARS-CoV-2, ACE2 
expression in sites of adult neurogenesis, increased levels of pro-inflammatory 
cytokines like IL-6, Il-1β which inhibit adult neurogenesis and impact of earlier 
coronavirus infections, it might not be far-fetched to say that COVID-19 could 
have a possible impact on adult neurogenesis. There is a severe scarcity in research 
analysing the effect of SARS-CoV-2 infection on adult neurogenesis. The current 
chapter, which is speculative and based on a thorough literature search, discusses 
the possible changes in adult neurogenesis in COVID-19 emphasising the role of 
ACE2. If proven to be true in the future, the findings in this article will help in 
achieving early intervention to address the neuropsychiatric long-term consequence 
of COVID-19.

8. Role of ACE2 in adult neurogenesis in COVID-19

SARS-CoV-2 entry into the cell through ACE2 is followed by the downregulation 
of ACE2. A decrease in ACE2 will lead to dysregulation of RAS and various other 
complications. A recent study has found that ACE2 is expressed in young neurons and 
in human-induced pluripotent stem cell-derived neural progenitor cells [90]. ACE2 is 
found to have various neuroprotective functions. It converts neurotoxic amyloid pro-
tein Aβ into neuroprotective one in transgenic mice [91]. ACE2 activator, diminazene 
increased CREB, BDNF, glutamate, and nicotinic receptor and decreased the levels of 
apoptotic and inflammatory proteins in the AD model of D-galactose-ovariectomized 
rats [92]. All these factors play a major role in adult neurogenesis. ACE2 deficiency in 
mice was found to be accompanied by significantly impaired learning and memory 
[93]. Exercise-induced neurogenesis in the dentate gyrus was abolished in ACE2 
deficient mice. Ang II, Ang [1-7], and Mas receptors were not found to be responsible 
and hence the mediator of this effect is not identified yet [94].

ACE2 expression is stronger in the enterocytes of the small intestine and 
colon, which is even higher than in the lungs. Neural ganglia cells in the colon of 
the enteric nervous system also express ACE2 receptors. Intestinal ACE2 plays a 
major role in the transport of neutral amino acids via B0AT1, neutral amino acid 
transporter. ACE2/B0AT1 complex regulates the composition and function of gut 
microbiota. ACE2 knockout animals showed lower levels of serum neutral amino 
acid levels like tryptophan, and impaired gut microbiota composition along with 
reduced expression of small intestinal antimicrobial peptides [95]. Enteric infection 
is an important presentation of COVID-19. Faeces of COVID-19 patients were found 
to have Viral mRNA [96, 97]. SARS-CoV-2 entry via the enteric route into host cell 
leads to ACE2 shedding due to S priming which may lead to gut microbiota dysbio-
sis [98]. Depletion of gut microbiota by prolonged antibiotic treatment resulted 
in impairment in cognitive function and hippocampal neurogenesis in adult mice 
[99]. The existence of a strong link between gut microbiota and the development of 
mental disorders, depression, and anxiety which are associated with impaired adult 
neurogenesis has been explored in recent studies [100].

Neuroinflammation directly impairs adult hippocampal neurogenesis. Pro-
inflammatory cytokine IL-1β, IL-6, IFN-α causes a reduction in neural cell prolifer-
ation and suppresses adult hippocampal neurogenesis [101–103]. SARS-CoV-2 entry 
into the brain triggers an immune response by activating microglia, astrocytes, and 
other immune cells. This leads to increased production of cytokines in the brain. 
Cytokine storm which is a deadly hyperinflammatory response is considered to be 
a hallmark feature of COVID-19 pathogenesis [104]. Hypercytokinemia of IL-6, 
IL-10, and TNF-α was observed in COVID-19 patients. Increased levels of IL-6 
correlate with mortality and the need for ventilator support [105, 106].
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Thus, there are different possible mechanisms through which SARS-CoV-2 affects 
adult neurogenesis via ACE2. This chapter, however, will focus on the role of ACE2 in 
possible alterations in adult neurogenesis in COVID-19 via neurotransmitters.

9. ACE2 and neurotransmitters involved in adult neurogenesis

Neurotransmitter signalling is found to play a major role in the formation of new 
neurons in addition to its clear and indisputable role in communication between 
neurons. Starting from embryogenesis, neurotransmitters are involved in neuronal 
proliferation. In adult neurogenesis, they influence various steps including pro-
liferation, differentiation, and migration. In addition to the direct action of neu-
rotransmitters on adult neurogenesis, they also influence other factors that regulate 
neurogenesis like neurotrophic factors and growth factors [107].

9.1 ACE2 and serotonin

Serotonin is a crucial monoaminergic neurotransmitter that acts as a mood 
stabiliser and is associated with feelings of happiness, well-being, and contentedness. 
In the brain, it is synthesised by the Raphe nuclei neurons in the brain stem from 
tryptophan using neuron-specific tryptophan hydroxylase 2 enzymes. Vesicular 
monoamine transporter 2 [VMAT] packs the synthesised serotonin into vesicles. 
Serotonin transporters [SERT] re-uptake serotonin back to presynaptic neurons after 
its release, thereby regulating its extracellular levels [108]. The serotonergic fibres 
from raphe nuclei have projections throughout the brain and especially to the granule 
cells and interneurons of the dentate gyrus of the hippocampus. Serotonin is known 
to play a major regulatory role in adult hippocampal neurogenesis. Selective serotonin 
reuptake inhibitors [SRRI] are commonly used antidepressants that act by increasing 
serotonin levels in the brain causes clinical improvement associated with an increase 
in adult hippocampal neurogenesis characterised by increased neuronal proliferation 
and number of newborn neurons [109]. Malberg et al. in 2000 were the first to show 
that chronic treatment with fluoxetine improved adult hippocampal neurogenesis 
[109]. In the dentate gyrus, serotonin is known to promote neuronal development 
and its depletion was found to cause reduced dendritic spine density of granule cells 
[110–113]. Chronic treatment with SSRI, fluoxetine was found to increase the survival 
of newborn neurons in the dentate gyrus [109, 114]. In stress models like inescap-
able stress, cold restraint stress in the animal model, fluoxetine administration was 
found to exhibit neurogenic and neuroprotective roles in the hippocampus [114, 115]. 
Accelerated synaptogenesis and increased long-term potentiation [LTP] in the hip-
pocampus were also observed by long-term treatment by fluoxetine [116].

Recent studies have found that ACE2 plays a major role in the biosynthesis of 
serotonin [5HT]. The precursor for 5HT is an essential amino acid, tryptophan 
which can cross the blood–brain barrier and whose intestinal absorption was found 
to be reduced by 70% in case of ACE2 deficiency. Thus, ACE2 has an indirect modu-
latory role in 5HT synthesis in the brain [117]. There are recent studies that show 
that 5HT synthesis in the brain is dependent on ACE2, which acts by modulating 
5HT metabolism and ACE2 deficiency leads to decreased serum tryptophan levels 
and decreased serotonin levels in the brain [94].

9.2 ACE2 and dopamine

Dopamine is involved in executive functions, volition, motor control, motiva-
tion, pleasure/reward, and attention/concentration [118]. The role and mechanism 
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of action of dopamine in adult neurogenesis are not elucidated fully. Dopamine was 
found to modulate cell proliferation in the embryonic brain [119]. Hippocampus 
and sub-ventricular zone [SVZ] which are the neurogenic niche containing neural 
stem cells receive dopaminergic projections from the substantia nigra and ventral 
tegmental area. Dopamine receptors are also widely expressed in these two areas 
and play a regulatory role in adult neurogenesis and neural plasticity [120, 121]. 
Earlier studies show that depletion of dopamine in the rat model reduces both pro-
liferation and survival of neural precursor cells in the sub-granular zone [SGZ] of 
the dentate gyrus [122, 123]. Dopaminergic denervation in substantia nigra caused a 
significant reduction in the proliferation of neural stem cells in SGZ and SVZ which 
was reversed by D2 receptor stimulation in rodents [123]. In humans, post-mortem 
studies have revealed that the number of neural precursor cells in SGZ and SVZ 
was reduced in patients with Parkinson’s disease [124]. Dopamine was also found to 
increase the type 2A early progenitor cell in the hippocampus of rodents via D1 like 
receptors [118]. Dopamine receptor agonist pramipexole increases the proliferation 
and survival of newborn neurons in SVZ, olfactory bulb [119].

RAS plays a major role in dopaminergic vulnerability through AT1 receptors. 
Dysregulation of RAS due to the downregulation of ACE2 induced by SARS-CoV-2 
may increase the vulnerability of dopaminergic neurons and subsequently dopa-
mine levels [125]. Interactions between dopamine and angiotensin receptors that 
are counterregulatory in nature are observed in substantia nigra and striatum [125]. 
The gene for ACE2 was found to coexpress and coregulate with that of dopa decar-
boxylase [DDC] in non-neuronal cells, which is a major enzyme of dopamine, sero-
tonin, and histamine biosynthesis. DDC converts L-3,4-dihydroxyphenylalanine 
[L-DOPA] into dopamine which subsequently forms norepinephrine and epineph-
rine and L-5-hydroxytryptophan into serotonin. This coexpression and coregula-
tion link between the genes for ACE2 and DDC gives rise to the possibility of a 
functional link between the actions of ACE2 and DDC [i.e.,] in the synthesis of Ang 
[1-7] and dopamine and serotonin mediated by ACE2 and DDC, respectively [126]. 
Following the infusion of Ang [1-7] in the hypothalamus of rats, brain dopamine 
levels increased which emphasises the link between ACE2 and DDC. SARS-CoV-2 
induced downregulation of ACE2 could cause the decreased synthesis of serotonin 
and dopamine [94, 127].

The SARS-CoV-2 infection has been found to cause loss of dopaminergic 
neurons and deficits in the dopamine system [86, 128]. ACE2 expression is high in 
dopaminergic neurons and the downregulation of ACE2 by SARS-CoV-2 may cause 
depletion of dopaminergic neurons and dopamine levels. This is evident from the 
worsening of symptoms observed in COVID-19 patients with Parkinson’s disease 
[PD], requiring increased dopamine replacement therapy [129]. ACE2 deletion in 
the knockout mouse model caused a significant reduction in dopamine D1 mRNA 
expression in substantia nigra [130].

9.3 ACE2 and norepinephrine

Norepinephrine is an important catecholamine that is involved in alertness, 
arousal, sleep–wake cycle, memory storage, and emotions. It modulates various 
functions of the hippocampus like learning, memory, and mood. Noradrenergic axon 
terminals arising from the locus coeruleus densely innervate the neurogenic niche in 
the adult hippocampus [131]. Norepinephrine along with the other monoaminergic 
neurotransmitters plays a major role in adult neurogenesis. Norepinephrine was 
found to activate the stem cells and neural precursor cells via β3-adrenergic receptors 
where non-proliferating latent precursor cells develop the ability to respond to mito-
gens and generate neurospheres. It also increases the proliferation of early progenitor 
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cells in the adult hippocampus via β2-adrenergic receptors [132, 133]. Depletion of 
norepinephrine significantly decreased the proliferation of progenitor cells of granule 
cells in the hippocampus [134]. Antidepressants that selectively increase norepineph-
rine were found to increase adult hippocampal neurogenesis [132].

Downregulation of ACE2 by SARS-CoV-2 may affect the activity of DDC due to the 
coexpression and coregulation between the genes for ACE2 and DDC. This could lead 
to a decrease in the biosynthesis of dopamine and subsequently norepinephrine [126].

9.4 ACE2 and glutamate and GABA

Glutamate is the predominant excitatory neurotransmitter of the CNS. It plays 
a vital role in both embryonic brain development and adult neurogenesis. Its 
extracellular levels are especially higher in the neurogenic niche when compared to 
other areas of the brain [135, 136]. It has trophic effects on the developing neurons 
before synapse formation like proliferation, migration, and maturation. It causes 
an increase in the proliferation of neural progenitor cells [NPC]. The NPCs express 
NMDA metabotropic glutamate receptors, stimulation of which caused increased 
intracellular calcium and activation of NeuroD1, proneural gene [137]. Glutamate 
signalling plays a positive role in maintaining the proliferation of NPCs and the 
survival rates of newborn neurons [137, 138].

Gamma-aminobutyric acid [GABA] is a principal inhibitory neurotransmitter 
in the CNS. It is produced from glutamate by the action of the enzymes glutamate 
decarboxylase GAD65 and GAD67 [139]. Dysfunction in the GABAergic system is 
implicated in major depressive disorder and anxiety [140]. However, in the develop-
ing brain, GABA exerts an excitatory effect, that is, GABA is excitatory in immature 
neurons. Tonic discharge from GABAergic neurons is necessary for maintaining the 
quiescent state of NPCs. The absence of GABAergic excitability will cause impair-
ment in neuronal maturation and synapse formation while an excess of it over new-
born neurons will lead to seizures [141]. In SGZ, GABA mediates depolarisation of 
progenitor cells which is involved in the incorporation of AMPA receptors in imma-
ture granule cells, which is critical for learning and formation of memory [142]. It 
has a negative influence on neuroblasts. It inhibits the proliferation and migration 
of neuroblasts. It also inhibits the proliferation of NPCs [143–145]. It also promotes 
the differentiation of hippocampal NPCs. GABAA receptor agonist, phenobarbital 
caused a reduction in NPC proliferation and increase in differentiation which 
resulted in an increased number of newborn neurons [146]. Thus, it plays crucial 
role in different stages of adult neurogenesis. GABA and glutamate signalling play 
a major role in adult neurogenesis. Selective activation of the receptor subtypes of 
GABA and glutamate expressed in NPCs plays a pivotal role in self-replication and 
fate commitment of the developing neurons into a particular progeny [147].

A recent study has found ACE2 to be located mainly in excitatory neurons of 
the brain and to a lesser extent in inhibitory neurons like GABAergic neurons [148]. 
This indicates that SARS-CoV-2 once enters the brain has the potential to access 
the glutamatergic and GABAergic neurons. The consequence of this is not known 
however, viral entry may trigger apoptotic pathways and cause excitatory-inhibi-
tory imbalance, and lead to neuronal death [149]. Cytokine release from infected 
neurons and other activated microglia and astrocytes may also cause a decrease in 
glutamate and GABA [150]. These effects are implicated along with impaired adult 
neurogenesis in neurodegenerative diseases like Parkinson’s disease and Alzheimer’s 
disease. Seizure is one of the neurological symptoms in COVID-19 patients, in 
which an increase in glutamate levels and decrease in GABA levels in the cerebral 
cortex and hippocampus is an implicated mechanism [151]. This further emphasises 
the possible impact of SARS-CoV-2 on glutamate and GABA.
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Thus, SARS-CoV-2 induced downregulation of ACE2 in COVID-19 is potentially 
detrimental to adult neurogenesis. ACE2 deficiency affects the levels and actions of 
the neurotransmitters serotonin, dopamine, norepinephrine, GABA, and glutamate 
which play crucial roles in adult neurogenesis.

10. Conclusion

SARS-CoV-2 has been found to have a high affinity to ACE2 receptors. Such high 
affinity has been linked to affect neurogenesis through a variety of mechanisms. The 
present chapter has clearly postulated the link between this deadly virus and its effect 
on monoaminergic neurotransmitters as well as GABA and glutamate which play a 
major role in adult neurogenesis. As ACE2 receptors are expressed in the hippocampus, 
decreased neurogenesis in this region could be one of the major factors behind the 
neuropsychiatric disorders associated with patients affected with COVID-19. Awareness 
and early intervention to prevent and treat long-term psychiatric consequences of 
COVID-19 are crucial. We should be aware of the possibility that in the long term, 
COVID-19 may be associated with cognitive and psychiatric disorders in those who 
recovered. Despite having a mild course of disease in children and adolescents, immu-
nological response to the infection in this population may affect synaptic pruning which 
may lead to various issues that may not be immediately apparent. Insights into the 
various machinations of adult neurogenesis in COVID-19 can be used to engineer the 
process to help with the pathological changes in the brain inflicted by the disease.
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Chapter 2

Neuroimmunology and 
Neurological Manifestations of 
COVID-19
Robert Weissert

Abstract

Infection with SARS-CoV-2 is causing coronavirus disease in 2019 (COVID-19). 
Besides respiratory symptoms due to an attack on the broncho-alveolar system, 
COVID-19, among others, can be accompanied by neurological symptoms because 
of the affection of the nervous system. These can be caused by intrusion by SARS-
CoV-2 of the central nervous system (CNS) and peripheral nervous system (PNS) 
and direct infection of local cells. In addition, neurological deterioration mediated 
by molecular mimicry to virus antigens or bystander activation in the context of 
immunological anti-virus defense can lead to tissue damage in the CNS and PNS. 
In addition, cytokine storm caused by SARS-CoV-2 infection in COVID-19 can lead 
to nervous system related symptoms. Endotheliitis of CNS vessels can lead to vessel 
occlusion and stroke. COVID-19 can also result in cerebral hemorrhage and sinus 
thrombosis possibly related to changes in clotting behavior. Vaccination is most 
important to prevent COVID-19 in the nervous system. There are symptomatic  
or/and curative therapeutic approaches to combat COVID-19 related nervous 
system damage that are partly still under study.

Keywords: SARS-CoV-2, COVID-19, CNS, PNS, T cell, B cell, vaccination, treatment, 
neuroimmunology, molecular mimicry, bystander activation, cytokine storm

1. Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a single-
stranded positive sense ribonucleic acid (ssRNA) virus with an envelope that leads 
to coronavirus disease 2019 (COVID-19) [1]. COVID-19 has affected millions of 
people worldwide since its emergence in December 2019 in Wuhan in China. It has 
caused a worldwide pandemic. Multiple mutated variants of SARS-CoV-2 have 
appeared with varying infectivity [2, 3]. SARS-CoV-2 has caused major disease 
burden and death rates worldwide. Due to the threat to individual health and health 
systems, SARS-CoV-2 and COVID-19 have resulted in a worldwide social and eco-
nomic crisis. Economically rich Western countries have success in fighting SARS-
CoV-2 by vaccination, while this is not true to the same extent for economically 
weak countries due to a shortage of vaccine supply. In addition, the standard of care 
for patients with COVID-19 differs dramatically based on the economic wealth of a 
country [4]. Due to the nature of the pandemic to affect people worldwide, there is 
a lack of help from rich countries for economically weak countries.
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2. Background

SARS-CoV-2 is a beta-coronavirus [5]. The positive ssRNA genome encodes 16 non-
structural proteins involved in viral replication. Moreover, four structural proteins 
are for the envelope, spike-glycoprotein, the membrane, and the nucleocapsid [6]. 
Angiotensin-converting enzyme 2 (ACE2) is the receptor for uptake of SARS-CoV-2 
[7–9]. Co-factors are heparan sulfates on the cell surface [10]. The spike protein is of 
major importance for interaction with ACE2 and cellular uptake. ACE2 is expressed in 
many cells of the body and therefore SARS-CoV-2 can infect most organs. SARS-CoV-2 
uses the infected cell for the production of the virus. More receptors and host factors 
have been described for SARS-CoV-2 cellular entry [11, 12]. Most cells in the body 
express ACE2 receptors mediating SARS-CoV-2 uptake.

SARS-CoV-2 has the strongest effects on the lung [13, 14]. As a result of infection, 
SARS-CoV-2 leads to an atypical mainly interstitial pneumonia with patchy infil-
trates. In severe cases, the lung can be completely affected resulting in loss of oxygen-
ation. Besides the lung, any tissue can be infected by SARS-CoV-2 and damaged. As 
written further down and explained for the nervous system, the tissue damage can be 
a consequence of direct infection with the virus or indirect effects on the tissue due to 
a dysregulated immune response.

3. Hypoxia and CNS damage

Reduced oxygenation caused by SARS-CoV-2 mediated pneumonia in COVID-19 
can lead to severe hypoxia of CNS. In many cases of patients that have died of  
COVID-19, severe hypoxia of the CNS has been observed [15]. There is an acute 
hypoxic-ischemic injury with neuronal loss and the presence of apoptotic neurons. 
This kind of CNS damage is unrelated to direct viral infection of the CNS or indirect 
effects mediated by the virus-induced immune response within the CNS but a conse-
quence of the strongly reduced oxygenation of erythrocytes in the lung. This reduced 
oxygenation of erythrocytes results in hypoxia of the CNS. Besides hypoxia, at biopsy 
or autopsy in CNS microthrombi, thromboembolic disease, inflammation, and to the 
largest extent hemodynamic mediated changes were found [16].

4. Direct effects of SARS-CoV-2 in CNS

There is evidence that SARS-CoV-2 can be present in CNS [17–19]. There are 
indications that SARS-CoV-2 can infect many CNS-resident cells [20, 21]. The pres-
ence of SARS-CoV-2 in cells is causing cellular dysfunction resulting in a variety 
of manifestations [22]. For example, infection of olfactory bulb neurons with 
SARS-CoV-2 will lead to olfactory dysfunction (dysosmia). In addition, infection 
of neurons involved in taste sensing will lead to the reduction of taste perception 
(ageusia). Dysosmia and ageusia have been observed early on in patients with 
COVID-19 [23]. Subsequently, evidence for direct infection of other parts of the 
CNS has been found (Table 1).

5. Vasculature and COVID-19

SARS-CoV-2 infection can lead to endotheliitis [36, 40]. Endotheliitis, caused 
by SARS-CoV-2 infection also affect CNS vessels. In endotheliitis, there is an 
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accumulation of lymphocytes, neutrophils, and macrophages in endothelial 
walls. Endotheliitis can have major consequences eventually resulting in ischemic 
stroke. Also, alternative mechanisms of damage to large and small cerebral vessels 
by SARS-CoV-2 in COVID-19 have been observed [41]. In the heart, it has been 
shown that endotheliitis leads to small vessel vasculitis. This can also involve 
epicardial nerves in COVID-19 disease with the appearance of an inflammatory 
neuropathy, possibly resulting in cardiac complications such as myocardial injury 
and arrhythmias [42].

Disease 
manifestation

Structure Diagnostics Treatment

Dysosmia [23, 24] Olfactory bulb C.e., NMR, odor testing None

Ageusia [23, 24] Gustatory neurons C.e., NMR, taste testing None

Decreased cognitive 
function [25]

Hippocampus C.e., cCT, cNMR, 
neuropsychological 
testing

None

Encephalitis [26] Brain parenchyma C.e., cCT, cNMR, CSF, 
EEG

If present, treatment 
of cerebral edema; 
treatment of 
co-infections

Meningitis [27, 28] Meninges C.e., cCT, cNMR, CSF If present, treatment 
of cerebral edema; 
treatment of 
co-infections

Headache [29] Meninges and brain 
parenchyma

C.e., CT, NMR, CSF If present, treatment of 
cerebral edema

Dizziness [30] Brain parenchyma, 
occlusive vessel disease

C.e., cCT, cNMR, CSF Antiplatelet therapy, 
statin

Impaired 
consciousness [31]

Brain parenchyma, 
occlusive vessel disease

C.e., cCT, cNMR, CSF If present, treatment 
of cerebral edema; 
treatment of infections; 
if occlusive vessel 
disease antiplatelet 
therapy, statin

Epileptic seizures 
[32, 33]

Brain parenchyma C.e., EEG, cCT, cNMR, 
CSF

Antiepileptics

Cerebral ischemia 
[34, 35]

Occlusive 
vessel disease, 
thromboembolism

C.e., cCT, cNMR, 
ultrasound

Antiplatelet therapy, 
statin

Cerebral bleeding 
[36]

Angiitis C.e., cCT, cNMR, CSF Depending on 
severity, neurosurgical 
intervention

Cerebral venous 
thrombosis [37]

Changes in blood 
clotting behavior

C.e., cCT, cNMR, CSF Aspirin or 
anticoagulation 
depending on severity

Posterior reversible 
encephalopathy 
[38, 39]

Unknown C.e., cCT, cNMR, CSF, 
EEG

None

c, cerebral; C.e., clinical examination; CNS, central nervous system; CSF, cerebrospinal-fluid; CT, computer 
tomography; EEG, electroencephalography; NMR, nuclear magnetic resonance.

Table 1. 
Manifestations of putative direct infection of cells with consequences in the CNS in COVID-19.
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6. Indirect effects of SARS-CoV-2 in CNS

There are several neurological symptoms and diseases that are associated with 
COVID-19. These include Guillain-Barré-syndrome (GBS), myasthenia gravis 
(MG), opsoclonus-myoclonus syndrome (OMS) and others (Table 2). In these 
diseases, a direct effect of SARS-CoV-2 and subsequent tissue damage is unlikely 
and other mechanisms are hypothesized. Such potential mechanisms are molecular 
mimicry and bystander activation [61, 62]. Molecular mimicry means that there 
may be the structural similarity between virus sequences or/and domains and 
structures or/and sequences of the individual [63]. Potentially, these similarities 
can result in an immune response that is not only directed against parts of the virus 
but also against self-proteins, for example, the nicotinic acetylcholine receptor 
(nAChR) that is the autoantigen in myasthenia gravis. In bystander activation, 
the immune response triggered by a viral infection can cause an activation of an 
immune response directed against self-antigens that will also result in autoim-
mune disease. The list of possible autoimmune manifestations due to the affection 
of SARS-CoV-2 and COVID-19 is growing. This is also the case for autoimmune 
neurological manifestations (Table 2). There is increasing knowledge regarding the 
structural requirements for induction of autoimmune disease after viral infection 
with SARS-CoV-2.

Cytokine storm induced by infection with SARS-CoV-2 and COVID-19 can lead 
to multiple organ damage and potentially induction/boosting of an autoimmune 
immune response [54].

7. Chronic fatigue syndrome and COVID-19

Some patients that had COVID-19 subsequently develop long-COVID-19 or also 
named post-COVID-19 [64, 65]. Many of these patients suffer from strong fatigue. 
The condition is clinically like chronic fatigue syndrome (CFS) also named myalgic 
encephalomyelitis (ME). In CFS there is a strong indication that there is an energy 
failure on the cellular level that can result in rapid exhaustion and fatigue. In addi-
tion, there are changes in certain immune cell types that can result in increased sus-
ceptibility to infection. Changes in lymphocyte stiffness, monocyte size, neutrophil 
size and deformability, and heterogeneity of erythrocyte deformation and size were 
found [66]. The exact mechanism of how COVID-19 is resulting in subsequent CFS 
is not known at present. The diagnosis is mainly based on clinical characteristics 
with the presence of abnormal fatigue. Presently, there are no specific markers that 
allow a laboratory-based diagnosis. Usually, CSF analysis does not show distinctive 
features. There are no approved pharmaceutical options for the treatment of fatigue 
associated with long-COVID-19 or post-COVID-19. Treatment involves mild physi-
cal endurance training.

8. Treatment of COVID-19

Treatment options can be separated according to treatment to counteract viral 
replication and viral virulence of SARS-CoV-2 and treatment options to counteract 
and treat organ damage due to consequences of the infection with SARS-CoV-2 
(Table 3). Remdesivir is a treatment option that counteracts viral replication [67]. 
This is a drug that has been initially developed for fighting Ebola. It has been shown 
to be efficacious if given early after infection with SARS-CoV-2. In combination with 
the Janus-kinase inhibitor baricitinib increased efficacy could be demonstrated [69]. 
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Treatment Approach Efficacy

Remdesivir [67, 68] Inhibition of viral 
replication

Shortening the time to recovery in adults 
who were hospitalized with COVID-19 
and had evidence of lower respiratory 
tract infection; in combination with 
baricitinib superior efficacy. Among 
nonhospitalized patients who were at high 
risk for COVID-19 progression, a 3-day 
course of remdesivir in an 87% lower risk 
of hospitalization or death than placebo.

Baricitinib [69] Janus-kinase Inhibitor 
(JAK1 and JAK2)

Mainly in patients receiving oxygen 
support without invasive mechanical 
ventilation.

Dexamethasone [70] Antiinflammatory Lower 28-day mortality in hospitalized 
patients among those who were receiving 
either invasive mechanical ventilation or 
oxygen alone at randomization but not 
among those receiving no respiratory 
support; increased mortality compared 
with usual care in patients not requiring 
oxygen supplementation.

Tocilizumab [71–73] anti-IL-6R blockade Reduces the risk of mechanical ventilation 
in hospitalized patients with severe 
COVID-19; improved outcome and 
survival of COVID-19.

Sarilumab [73] anti-IL-6R blockade Improved outcome and survival of 
COVID-19.

Anakinra [74] anti-IL-1R blockade Early increase of soluble urokinase 
plasminogen activator receptor (suPAR) 
serum was used as a marker to assess the 
risk of COVID-19. Early start of treatment 
with anakinra guided by suPAR levels in 
patients hospitalized with moderate and 
severe COVID-19 significantly reduced 
the risk of worse clinical outcome at day 
28 and reduced length of hospital stay 
compared to placebo.

Regdanvimab [75] Blockade of spike 
protein interaction with 
ACE2

Regdanvimab reduced the risk of 
hospitalization or death versus placebo in 
patients with mild-to-moderate COVID-
19 symptoms who were considered at high 
risk of progressing to severe COVID-19 up 
to day 28.

Casirivimab/Imdevimab [76] Blockade of spike 
protein interaction with 
ACE2

Casirivimab/Imdevimab reduced 
the risk of COVID-19-related 
hospitalization or death from any 
cause, and it resolved symptoms and 
reduced the SARS-CoV-2 viral load 
more rapidly than placebo.

Sotrovimab [77] Neutralisation 
SARS-CoV-2

The risk of disease progression was 
reduced among high-risk patients with 
mild-to-moderate COVID-19 treated with 
sotrovimab.

Molnupiravir [78] anti-RNA polymerase 
activity

The risk of hospitalization or death in 
at-risk, unvaccinated adults with COVID-
19 was reduced in patients treated early 
with molnupiravir.
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Dexamethasone has been shown to have beneficial effects in COVID-19 since it leads 
to reduction of the host immune response against the virus [70]. This host immune 
response can lead to catastrophic outcomes for the body. Beneficial effects of dexa-
methasone are mainly seen in the case of severely ill patients requiring mechanical 
ventilation. In non-severely affected COVID-19 patients not requiring oxygen supple-
mentation, increased mortality is observed [80]. Tocilizumab an anti-interleukin-6 
receptor (IL-6R) directed monoclonal antibody (mAb) has been shown to have some 
beneficial effects in COVID-19 patients reducing the risk of mechanical assistance 
[71, 72]. Also, another mAb against IL-6R, Sarilumab, improved the outcome and 
survival of COVID-19 [73]. Early start of treatment with anakinra a mAb against 
the interleukin-1 receptor (IL-1R) guided by levels against soluble urokinase plas-
minogen activator receptor (suPAR) significantly reduced the risk of worse clinical 
outcome at day 28 and reduced the length of hospital stay compared to placebo 
in patients hospitalized with moderate and severe COVID-19 [74]. Various mAb 
directed against the SARS-CoV-2 spike protein have demonstrated beneficial effects 
in patients with COVID-19 [76, 77, 79]. Malnupavir has anti-RNA polymerase activity 
and the risk of hospitalization or death in at-risk, unvaccinated adults with COVID-
19 was reduced in patients treated early with this novel compound [78]. The protease 
inhibitor PV-07321332/Ritanovir of SARS-COV-2 3-chymotrypsin-like protease 
resulted in the reduction of risk of hospitalization and death compared to placebo 
in adults with a high risk of poor outcome of COVID-19 [79]. Much effort is done to 
identify compounds with beneficial effects in COVID-19 patients including re-
purposing of drugs from other indications [73, 81]. Importantly, serum from patients 
recovered from COVID-19 has been used successfully to reduce mortality in patients 
with active COVID-19 disease [82]. Higher anti-SARS-COV-2 titers of the transfused 
plasma led to a lower risk of death in non-ventilated patients with COVID-19. So 
far, besides symptomatic treatments no specific treatments for COVID-19- related 
neurological conditions have been introduced. Nevertheless, the beneficial effects of 
treatment on COVID-19 precipitation and severity will also result in reduced neuro-
logical disease burden.

9. Vaccination

Vaccination is of paramount importance to counteract the further spreading of 
SARS-CoV-2 and COVID-19 [83]. The first vaccines were introduced at the end of 
2020 [84] and the beginning of 2021 [85–87]. Since then, a major vaccination effort 
has been undertaken with the fastest vaccination campaigns in Israel and Great 
Britain. The vaccines also have shown efficacy against mutated variants of SARS-
CoV-2 even though breakthrough infections have been observed [88]. Societies 

Treatment Approach Efficacy

Tixagevimab/Cilgavimab [79] Neutralization of 
SARS-CoV-2

Preliminary results indicate a decrease in 
disease severity in COVID-19 patients.

PV-07321332/Ritanovir [79] Protease Inhibitor 
of SARS-CoV-2 
3-chymotrypsin-like 
protease

Reduction of risk of hospitalization and 
death compared to placebo in adults with a 
high risk of poor outcome of COVID-19

ACE, angiotensin-converting enzyme; COVID-19, coronavirus disease 2019; JAK, janus-kinase; IL-1R, interleukin-1 
receptor; IL-6R, interleukin-6 receptor.

Table 3. 
Treatment options to counteract viral replication or/and viral virulence or organ damage caused by a viral 
infection or virus-mediated secondary tissue damage.
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with high numbers of vaccinated individuals have gained better control over the 
COVID-19 pandemic compared to societies with low vaccination rates. Repetitive 
vaccination strategies have increased vaccination efficacy and have provided more 
protection from novel virus variants [89]. Presently as of the end of January 2022, 
mRNA vaccines and adenovirus vectors with inserts of sequences coding for the 
spike protein of SARS-CoV-2 and protein-based vaccines have been introduced 
[84–87, 90, 91]. Vaccination efficacy is much dependent on booster vaccination 
regimes [89, 92, 93]. All currently approved vaccines are given by intramuscular 
injection [94]. Muscle cells that take up the mRNA vaccine or the adenovirus-
vector-based vaccine are used subsequently to produce SARS-CoV-2- derived spike 
protein. This protein is recognized as `non-self` by the immune system and a strong 
T-and B-cell derived immune response is generated. This immune response leads to 
protection from SARS-CoV-2. The protein-based vaccines lead to the generation of 
a T- and B-cell response against SARS-CoV-2. There are vaccination-related cases 
with neurological symptoms [95–97]. In general, vaccination-related side effects 
were increased in patients with preceding COVID-19 [98].

10. Conclusion

Infection with SARS-CoV-2 resulting in COVID-19 leads to damage of many 
organs in the body. The nervous system is also often assaulted by the virus and 
the subsequent immune response. The treatment options are limited. Vaccination 
to prevent the spread of SARS-CoV-2 and its variants is the most efficacious way 
to prevent nervous system disease in context with SARS-CoV-2 and COVID-19. 
Possibly, the insights that are obtained on the worldwide population level by SARS-
CoV-2 and COVID-19 will result in a better understanding of the induction of 
autoimmune disease of the nervous system in general.
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Abstract

The past two years were deeply marked by the emergence of a global pandemic 
caused by the worldwide spread of the virus severe acute respiratory syndrome 
coronavirus type 2 (SARS-CoV-2) infection. The plethora of repercussions on the 
health of those affected is extensive, ranging from asymptomatic individuals, mild 
flu-like disease, and severe respiratory failure, eventually leading to death. Despite 
this predilection for the respiratory system, the virus is responsible for multisys-
temic manifestations and soon became clear that neurological involvement was a 
frequent issue of coronavirus disease 2019 (COVID-19). Much have been pointed 
out about the neurotropic nature of the virus, the ways by which it invades and 
targets specific structures of the central nervous system, and the physiopathology 
behind the neurologic manifestations associated with it (namely encephalomyelitis, 
Guillain-Barré syndrome, lacunar infarcts, and vascular dysfunction, just to list a 
few). This chapter aims to raise light about the association between COVID-19 and 
the mechanisms of acute symptomatic seizures, through neurotropism and neuro-
invasion features of SARS-CoV-2, and to review the variety of clinical presentations 
reported so far.

Keywords: COVID-19, neurotropism, central nervous system infection,  
acute symptomatic seizure, electroencephalogram

1. Introduction

When SARS-CoV-2 emerged in a seafood wholesale market in Wuhan, a city 
in the Hubei Province of China, back in December 2019, the world was far from 
foreseeing the real dimensions of the challenge ahead. What was first considered as 
just a local outbreak causing a cluster of cases of a “deadly viral pneumonia,” soon 
became a global concern as it spread throughout the five continents in a matter of 
few months. While reaching pandemic proportions, in 2020, it revealed to have 
catastrophic healthcare and socioeconomic effects, being responsible for more than 
3 million of confirmed cases worldwide and over 200.000 deaths, all in less than 
six months. The actual number of infections led to more than 299 million cases and 
over 5.4 million deaths worldwide (data from Johns Hopkins University Coronavirus 
Resource Center).

SARS-CoV-2 belongs to the family Coronaviridae, a large family of viruses 
that cause illness ranging from the common cold to more severe diseases [1]. 
Coronaviruses are enveloped positive-stranded RNA viruses, with crown-like 
thorns on their surface (the Latin word for crown is coronam); full-genome 
sequencing and phylogenic analysis indicate that SARS-CoV-2 is a betacoronavirus 
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in the same subgenus as its older relative SARS-CoV, both distantly related with the 
Middle East respiratory syndrome (MERS) virus [2, 3]. The analysis of the SARS-
CoV-2 genome suggests that a natural evolutionary process between a bat-CoV and 
a pangolin-CoV could have been important in creating the new zoonotic virus, but 
the closest RNA sequence similarity is to bat coronaviruses, making bats the most 
probable primary source of human transmission [1, 4]. SARS-CoV-2 enters host 
cells via the angiotensin-converting enzyme 2 (ACE2) receptor, which is widely 
expressed in various human organs, particularly in neurons and glia, and to which it 
binds through the receptor-binding domain of its spike protein [1, 5].

According to the World Health Organization, COVID-19 symptoms can be 
divided in most common, less common, and serious [6]. Most common symptoms 
include fever, cough, tiredness, and loss of taste or smell. Less common symptoms 
include sore throat, headache, generalized aches and pains, diarrhea, rash, and even 
red, irritated eyes. When it comes to serious symptoms, these include shortness 
of breath, chest pain, and some neurologic complications such as loss of speech or 
mobility and confusion. Gladly, the majority of infected people will develop mild 
to moderate illness and recover without hospitalization; for those who experience 
severe manifestations, big effort is put on preventing lethal respiratory failure [6].

Recent reports have drawn attention to the neurotropic behavior shown by 
the virus, as it affects both the central and the peripheral nervous system (CNS 
and PNS, respectively), as well as skeletal muscle [7]. The neurological diseases 
affecting the PNS and muscle in COVID-19 are less frequent than those related to 
the CNS invasion by the virus and include Guillain-Barré syndrome; Miller Fisher 
syndrome; multiple cranial neuropathies; and rare instances of viral myopathy 
with rhabdomyolysis [7].

Most frequently described CNS manifestations include headache and agitation, 
delirium, impaired consciousness, anosmia, hyposmia, hypogeusia, and dysgeusia, 
some of which are early symptoms of coronavirus infection [7]. Even the respira-
tory infection has a probable neurogenic origin and may result from the viral 
invasion of the olfactory nerve, progressing into rhinencephalon and brainstem 
respiratory centers [7]. Cerebrovascular disease seems to be due to a prothrombotic 
state induced by viral attachment to ACE2 receptors in endothelium, causing 
widespread endotheliitis, coagulopathy, arterial and venous thrombosis; acute 
hemorrhagic necrotizing encephalopathy has also been documented secondary to 
the cytokine storm involved in the immune response against the virus [7].

To date, literature is still very scarce when it comes to reports of encephalopathy, 
meningitis, encephalitis, myelitis, and seizures. Given the already proven neurot-
ropism as a common feature of coronaviruses, it is reasonable to expect that some 
patients infected with SARS-CoV-2 develop seizures as a consequence of hypoxia, 
metabolic derangements, organ failure, or even cerebral damage that may occur in 
the context of COVID-19 [8]. This chapter focuses on the specific matter of acute 
symptomatic seizures associated with COVID-19 with particular interest in the 
neurologic mechanisms explaining the epileptogenic activity of SARS-CoV-2.

2. About neurotropism: how SARS-CoV-2 affects nervous system

As soon as the scientific community became aware of the multitude and magni-
tude of neurological complications of SARS-CoV-2 infection, as well as of the fact 
that virus is detectable in the cerebrospinal fluid (CSF) of patients infected, much 
effort was put on finding out the many possible ways the virus can enter and affect 
the nervous system, for a better understanding of pathophysiology and possible 
treatment targets [9].
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Nervous system invasion has already been demonstrated as a feature of previ-
ously identified human coronavirus (namely MERS-CoV and SARS-CoV) [10], but 
it is not clear yet whether neurological symptoms are a direct result of virus infection 
of nervous system cells, parainfectious or postinfectious immune-related disease, or 
a consequence of systemic illness, with possible concurring mechanisms [11].

There have been described two different ways for the virus to reach the central 
nervous system: using a hematogenous route or by a retrograde axonal route. In 
the hematogenous route, virus circulating in blood vessels gains access to the CNS 
through infection of endothelial cells at the blood–brain barrier (BBB), epithelial 
cells at the choroid plexus and immune cells that eventually enter the CNS (the so 
called “Trojan horse” method). In the retrograde axonal route, the virus travels 
backward through the axons to reach neuron cell bodies in the peripheral nervous 
system or in the CNS through neural-mucosal interface [9, 12].

Several ways have been proposed by which SARS-CoV-2 originates neurologi-
cal damage, including direct damage through receptors in neurons and glia, or 
indirectly via systemic inflammation with cytokine-mediated injury, secondary 
hypoxia, and retrograde travel through nerve fibers [9].

2.1 The role of angiotensin-converting enzyme 2 (ACE2)

Early in the pandemic, several studies identified ACE2 expressing cells as targets 
for SARS-CoV-2 infection. Superficial ACE2 works as a functional receptor for the 
virus to enter into host cells, similarly as for the previously known SARS-CoV, but 
with higher binding affinity [12, 13].

ACE2 is a carboxy-peptidase responsible for the synthesis of vasodilator peptides 
as angiotensin-(1-7) [12] and is widely expressed in almost all human organs in 
varying degrees. It is present in the brain tissue (both neuronal and glial cells) and 
endothelial cells of BBB allowing viral binding and entry into CNS [5].

Thereby, in the beginning, it was assumed by some authors that ACE2 deficiency 
could reduce the impact of SARS-CoV-2 infection [14]. Further studies rejected 
this hypothesis as they concluded that the interaction between ACE2 and SARS-
CoV-2 ultimately leads to substantial loss of ACE2 receptor activity on membrane 
surface, mainly through its internalization, downregulation, and malfunction. 
Consequently, there is dysregulation of the protective renin-angiotensin-aldoste-
rone system axis inducing higher levels of angiotensin II and less generation of 
(protective) angiotensin-(1-7). This gives rise to angiotensin II “storm” triggering 
vasoconstriction and inflammation, kidney failure, heart disease, apoptosis, and 
oxidative processes that promote brain degeneration and contribute to the poor 
outcome seen in many patients with COVID-19 and giving rise to some neurological 
complications [15, 16].

The binding of SARS-CoV-2 with ACE2 receptor gained more significance in 
cerebrovascular disease in COVID-19 patients as the imbalance of renin-angio-
tensin-aldosterone axis results in vascular dysfunction leading to atherosclerosis, 
arterial hypertension, and cardiovascular disease. Along with the prothrombotic 
effect of inflammatory cascade, it contributes to a higher risk for stroke and venous 
thrombosis in these patients [12, 15, 17].

2.2 Neuronal retrograde dissemination and neural-mucosal interface

Hyposmia and dysgeusia soon started to be widely reported in patients with 
SARS-COV-2 infection. One study with 417 patients with mild to moderate COVID-19 
found olfactory and gustatory dysfunction in 85,6% and 88% of patients, respectively 
[18]. These symptoms do not seem to be related to traditional nasal symptoms, as 
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seen in other viral infections (as influenza and rhinovirus), as COVID-19 patients 
do not present significant nasal congestion or rhinorrhea [15]. Therefore, scientific 
community postulated that anosmia and dysgeusia could be a consequence of viral 
infection targeting olfactory system. Further studies suggested that SARS-CoV-2 
could directly affect the olfactory nerve and bulb and trigeminal afferents in nasal 
mucosa and vagus nerve afferents in the respiratory tract, traveling retrogradely along 
these structures, being a highway between the nasal epithelium and central nervous 
system [9, 12, 15, 19]. One study assessed viral load of olfactory mucosa and its 
nervous projections as several other CNS regions in postmortem COVID-19 patients. 
Higher levels of viral RNA for SARS-CoV-2 were found within the olfactory mucosa 
directly beneath the cribriform plate, but also in lower levels in the cornea, conjunc-
tiva, and oral mucosa, pointing these as potential sites for SARS-CoV-2 CNS entry. 
Virus detection in CNS regions with no direct connection to the olfactory mucosa 
suggests the contribution of other mechanisms in combination with axonal transport, 
as SARS-CoV-2-containing-leukocyte migrating across the BBB and viral entry along 
CNS endothelia [19].

Against this theory, some authors showed two important genes for SARS-CoV-2 
cellular entry, ACE2 and transmembrane serine protease 2 (TMPRSS2), which were 
expressed in the olfactory and nasal airway epithelial cells, but not in olfactory 
afferent neurons, raising questions about the olfactory bulb as a pathway for CNS 
invasion by SARS-CoV-2 [20]. Frequent and early alterations of taste and smell in 
patients with COVID-19 reinforce the contribution of a neural-mucosal interface 
possibly relating to other molecular ways than ACE2 receptor [9, 19].

2.3 Systemic inflammatory response and hypoxia

Neuronal damage can be either the result of viral replication effects or the aber-
rant immunological response, consequently giving rise to neurological signs and 
symptoms [12].

The binding of SARS-CoV-2 to pulmonary epithelial cells gives rise to a systemic 
inflammatory response (SIRS), mediated by increased levels of interleukin (IL), 
namely IL-6, IL-12, IL-15, and tumor necrosis factor alpha (TNF-α), the so-called 
“cytokine storm” [9, 21]. The infiltrated immune cells, which include activated 
astrocytes and microglia, produce even more inflammatory mediators (including 
cytokines and matrix metalloproteases) resulting in severe brain inflammation. 
Besides the chemokine role in host defense, they also are responsible for immune 
damage by attracting activated T cells, NK cells, and monocytes to the brain tissue. 
TNF-α and Monocyte Chemoattractant Protein-1 (MCP-1) contribute to disrup-
tion of tight junctions of the BBB, increasing vascular permeability and leukocyte 
migration [12, 22], and all this inflammatory cascade causes even more damage to 
BBB facilitating SARS-CoV-2 invasion of brain cells [10, 15, 22].

Some authors defend that SARS-CoV-2 has antigenic determinants similar to 
some of myelinated neurons, and a cross-reaction of immunological response to the 
virus could lead to a postinfectious autoimmune demyelinating disease as encepha-
lomyelitis or acute demyelinating polyneuropathy [22, 23].

Additionally to the systemic inflammatory response, diffuse alveolar and inter-
stitial inflammatory exudation leads to disruption of alveolar gas exchange causing 
hypoxia in the CNS. This process can also complicate with hemodynamic changes 
leading to septic (distributive) shock and CNS hypoperfusion. Consequently, this 
increases anaerobic metabolism in the brain cells with accumulation of acid metab-
olites that lead to vasodilation, brain edema, and possibly obstruction of blood flow 
with consequent hypoxic and ischemic lesions of brain tissue [9, 10].
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3. SARS-CoV-2 infection and acute symptomatic seizures

Seizure is a relatively uncommon neurological complication of SARS-CoV-2 
infection, accounting for less than 1% of patients [17, 24, 25], despite a significant 
proportion of patients presenting risk factors such as hypoxia, acute cerebrovascu-
lar disease, and metabolic derangements [26]. Prevalence was lower compared with 
previous MERS-CoV and SARS-CoV (8,6% and 2,7%, respectively) [24, 27].

Acute symptomatic seizures can occur in infection setting particularly in 
patients with poor general condition and fever [25], but a few case reports stated it 
as a presenting symptom of SARS-CoV-2 infection without the classical respiratory 
symptoms [27–29]. No study has yet clarified any direct relation between COVID-19 
and the potentiation of epileptic seizures. At least in some patients with a history of 
epilepsy, they could merely reflect unprovoked seizures [26].

Nonetheless, several mechanisms were proposed for seizure generation and 
epileptogenesis in SARS-CoV-2 infection setting.

3.1 Pro-convulsant effect of angiotensin II

Some reports suggested that ACE2 could also be part of a specific mechanism 
for seizure induction by SARS-CoV-2, with upregulation of components of the 
renin-angiotensin-aldosterone in the hippocampus of patients with temporal lobe 
epilepsy. Downregulation of ACE2 would lead to higher concentration of angio-
tensin II with angiotensin II receptor type 1 (AT1) activation, which is known to 
cause vasoconstriction and promote inflammatory cascade. ACE2 also plays a role 
in kallikrein-kinin system, important for maintenance of cardiovascular system 
homeostasis. These findings point to a pro-convulsant effect of angiotensin II, 
theoretically increasing susceptibility to seizure occurrence in COVID-19. However, 
no experimental or clinical data have yet supported this hypothesis yet [26].

3.2 Neuroinflammation and BBB dysfunction

CSF SARS-CoV-2 PCR was reported positive in some patients with clinical and 
imagiological evidence of encephalitis. This suggests that the virus is able to invade 
and infect CNS, causing meningitis and encephalitis with possible concurrent 
seizures [15]. Neuroinflammation may also be acquired from systemic circulation 
through BBB dysfunction [30, 31]. Glial cells assume an important role in this 
process by releasing inflammatory mediators and by modulating neuronal function. 
Seizure generation and epileptogenesis have been associated with neuronal damage 
and gliosis and, for some time, with an inflammatory state in neural tissue [30].

After CNS invasion, SARS-CoV-2 triggers a large inflammatory cycle that 
leads to chronic inflammation and neural hyperexcitability, promoting neuronal 
apoptosis, astrogliosis, and tissue necrosis [32]. There are several proinflammatory 
cytokines involved in this process, namely IL-1β, TNF-α, IL-6, but also nitric oxide, 
prostaglandin-E2 (PGE2), and free radicals. IL-1β, expressed in active microglia 
and astrocytes, increases availability of glutamate in the synapses and increases 
the number of GluN2B subunits in NMDA receptors of postsynaptic cells leading 
to hyperexcitability and possibly causing seizures [30, 32]. TNF-α also plays a role 
in lowering seizure threshold through induction of glutamate release from glia, 
increasing excitatory glutamate receptors, and decreasing the number of inhibi-
tory GABA receptors and hyperregulating AMPA receptors (leading to calcium 
over-uptake and neuronal toxicity) [30, 32]. IL-6 is typically found in low amounts 
in the CNS, but its levels increase with activation of astrocytes and microglia. This 



COVID-19, Neuroimmunology and Neural Function

50

upregulation decreases hippocampal neurogenesis and contributes to initiation 
of epileptogenesis. PGE2 stimulates EP3 receptors on astrocytes also promoting 
glutamate release and neuronal hyperexcitability and death [30]. In response to 
neuronal depolarization and upregulation of these proinflammatory cytokines, 
matrix metalloproteinase-9 (MMP-9) transcription increases. MMP-9 is responsible 
for structural modification in synapses, reducing its plasticity, increasing suscepti-
bility to seizure occurrence and epileptogenesis [30, 33]. Chemokines, expressed by 
microglia, astrocytes, and endothelial cells, can also modify neuronal physiology, 
modulating ion channels and promoting the release of certain neurotransmitters, 
contributing to the ictal phenomena [30].

Central and peripheral inflammation and hypoxia contribute to BBB breakdown 
and dysfunction, through upregulation of inflammatory mediators [31]. Similar to 
other infectious diseases, COVID-19 infection can affect BBB integrity. This leads 
to migration of blood cells and proteins and to expression of adherence molecules 
allowing immune cells to enter [30, 32]. Leucocytes also secrete MMP-9 with the 
subsequent upregulation of inflammatory mediators, which enhance BBB dysfunc-
tion, recruit even more immune cells and astrocyte, and activate glia cells, perpetu-
ating a chronic inflammatory process. The ultimate consequence of this cascade 
of events is the disruption of osmotic balance in CNS leading to neuronal damage, 
alteration of membrane potential, hyperexcitable status, and seizure genesis [32].

Hyperthermia is another cause of BBB disruption and a potential seizure 
inducer. In the brain, severe hyperthermia promotes glial cells activation and 
increases BBB permeability, per se, and indirectly through the release of inflamma-
tory mediators (as IL-1β) [32].

Several studies show that “cytokine storm” and systemic inflammation are 
responsible for severe cases of acute respiratory distress syndrome and multiorganic 
failure [34, 35]. Neuroinflammation seems to be a crucial mechanism for seizure 
occurrence and epileptogenesis in COVID-19 patients [30].

In patients with epilepsy history, infections (mainly respiratory) are a frequent 
precipitant of relapsing seizures, particularly in pediatric setting [27].

3.3 Metabolic and electrolytic imbalance, hypoxia, and organ failure

Acute symptomatic seizures can occur in patients with metabolic derangements, 
as the result of COVID-19 multiorganic dysfunction or aggravation of previous 
comorbidities.

Several works reported metabolic and electrolytic abnormalities in patients 
with COVID-19, mainly in those patients with severe disease. The most common 
disorders are decreased serum concentrations of sodium, potassium, calcium, and 
magnesium, but the pathophysiology is not well elucidated [36, 37]. Some authors 
propose hypokalemia could result from elevated angiotensin II levels and conse-
quent promotion of renal potassium excretion. Other potential causes for electro-
lyte imbalance are renal failure, syndrome of inappropriate anti-diuretic hormone 
secretion (SiADH), iatrogenic (as use of diuretics) and gastrointestinal losses when 
vomiting and diarrhea are present [36]. Electrolyte disturbances are important 
causes of acute symptomatic seizures, mainly in patients with hyponatremia, 
hypocalcaemia, and hypomagnesemia. The successful treatment of these patients is 
achieved through a correct diagnosis of underlying disturbance and the respective 
correction, preventing inadequate use of anti-seizure drugs [32, 38].

COVID-19 can also influence glucose metabolism predisposing to higher risk of 
ketoacidosis in diabetic patients [39]. Even though nonketotic hyperosmolar coma 
more commonly results in seizures than ketoacidosis, this is a hypothesis to consider 
in these patients [40].
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Systemic inflammatory cascade with endothelial dysfunction and increased 
brain vasculature permeability and edema can originate a form of posterior revers-
ible encephalopathy syndrome (PRES) concurring as another mechanism for 
seizure generation. Hypertension and renal disease are predisposing factors for 
PRES, aggravated by COVID-19 [41].

Severe respiratory disease results in devastating hypoxia that can potentiate 
hypoxic encephalopathy and contribute to development of seizures. Multiorganic 
failure as systemic complication of COVID-19 with associated metabolic disorders 
(namely uremia and metabolic acidosis) could also lead to seizure occurrence [42]. 
These situations reduce the seizure threshold mostly in susceptible patients (with 
brain structural lesions or neurodegenerative diseases, for example), potentially 
causing new-onset seizures or decompensating disease control in patients with 
previous epilepsy [32].

3.4 Hypercoagulability and cerebrovascular disease

Coagulation disorders and cerebrovascular disease were described soon in a 
significant number of COVID-19 patients [15]. COVID-19 patients have shown 
increased levels of D-dimers, which is thought to be associated to the hypercoagula-
ble state and predisposition to thrombosis [22]. One study found much higher rates 
of diffuse intravascular coagulation in non-survivors compared with survivors, 
setting that coagulopathy is related to worst prognosis [43, 44]. Different factors 
can contribute to coagulation disorders. Persistent inflammatory and “cytokine 
storm” status activates coagulation cascade and suppresses the fibrinolytic system. 
The resulting endothelial damage by direct effect of the virus (remember ACE2 
is expressed in endothelial cells) [22] and aggravated by systemic inflammatory 
response can activate coagulation system. On the other hand, coagulation cascade 
can potentiate immune response giving rise to a vicious cycle that progressively 
increases hypercoagulable state [32, 43].

Thereby, cerebrovascular disease, mainly ischemic events, is a serious complica-
tion of COVID-19, occurring in 1–3% of infections (with higher incidence in severe 
infection setting) [9, 24, 45]. It seems to be the result of hypercoagulable state, 
direct endothelial damage by SARS-CoV-2, higher levels of angiotensin II associated 
vasoconstriction, and higher vascular resistance and multiorganic dysfunction that 
often lead to cardiac malfunction and hypotension, promoting brain ischemia and 
hypoxia [15, 22].

A seizure can occur as a manifestation of stroke setting with several contributing 
factors that include hypoxia, metabolic disorders, and imbalance of blood perfu-
sion. In the acute ischemia, damaged cells release potassium and glutamate into the 
extracellular space, which may activate AMPA and NMDA receptors potentiating 
neuronal death and contributing for seizure occurrence. Chronic inflammation, 
gliosis, and neuronal death with alteration of synapses structure and loss of synap-
tic plasticity contribute to occurrence of late seizures, as well [32, 46].

3.5 Role of mitochondrial dysfunction

Mitochondria play a key role, not only in assuring energy homeostasis, but also 
in calcium homeostasis, production of reactive oxygen species (ROS), modulation 
of neurotransmitters in CNS, and regulation of cell apoptosis [47].

COVID-19 infection is associated with oxidative stress, as inflammatory 
cascade increases production of ROS. High concentrations of ROS can damage 
mitochondrial respiratory chain, alteration of its membrane permeability and its 
structure and induce mitochondrial DNA mutations. Due to the important role of 
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these organelles in maintaining normal electrical activity of neuronal and synaptic 
transmission, any disturbance may lead to abnormal electrical activity of neurons 
and occurrence of seizures [32, 47].

3.6 Iatrogenic induced seizures

Iatrogenics is another way by which SARS-CoV-2 can be related to acute symp-
tomatic seizures in the context of COVID-19. Drugs used to treat infection—namely 
chloroquine and hydroxychloroquine—may cause seizures, along with headache, light-
headedness, and paresthesia; liponavir-ritonavir may also cause peripheral and perioral 
paresthesia, headache, confusion, and reduction of the epileptic threshold [48].

Certain antibiotics were also associated with acute symptomatic seizures. 
Despite COVID-19 being a viral infection, some patients can evolve with bacterial 
superinfection and initiate treatment with antibiotics that predispose for seizures, 
as it is the case for quinolones [49].

4. Clinical features of seizures associated with COVID-19

As mentioned above, in addition to respiratory symptoms, COVID-19 has been 
associated with neurologic complications, but minimal literature exists about 
seizures in these patients [50]. Seizures have been described as direct consequence 
of SARS-CoV infection in the context of encephalitis [51] or indirectly as a conse-
quence of hypoxemia, metabolic derangement, medications, multiorganic failure, 
or even brain damage [52]. The evidence available points to the fact that the virus 
by itself does not carry an increased risk of seizure [50], and it is common to find 
accompanying seizure-triggering comorbidities in patients with a first seizure 
and COVID-19, mainly metabolic and electrolytic disturbances and ischemic 
stroke [27].

New-onset seizures in COVID-19 patients should be considered acute symp-
tomatic, and long-term anti-seizure medication is usually not necessary, unless 
a subsequent episode occurs or a brain lesion is found to raise the risk for seizure 
recurrence [53].

COVID-19 may present in many different ways making early diagnosis difficult 
and delaying proper treatment in atypical cases [27]. Even though seizures are 
not a common manifestation of COVID-19, they have been described in a variety 
of forms, as focal motor, generalized motor, convulsive and nonconvulsive status 
epilepticus (CSE and NCSE, respectively) [52]. In most cases, they are not the 
presenting symptom and arise mostly in patients with severe disease [26].

New-onset seizures had been described as a possible early symptom of COVID-19 
in patients with no preceding symptoms suggestive of that diagnosis and, in some 
cases, seizure is in fact the symptom that prompts presentation to the emergency 
room, mainly in children [27]. Fasano and colleagues [28] reported a case of first 
motor seizure as presenting symptom of SARS-CoV-2 infection; Kadono and 
coworkers [54] described a case of a patient presenting an acute symptomatic seizure 
with a recurrence of severe brain edema post cerebral venous thrombosis who was 
later found to have a COVID-19 infection.

Change in mental status has been reported in about 10% of patients with severe 
COVID-19, but electroencephalogram (EEG) has not been done as routine to inves-
tigate or exclude NCSE in patients with altered responsiveness and COVID-19 [4, 53]. 
Several studies report that, due to the contagious nature of the disease, COVID-19 
patients had limited access to diagnostic investigations, including EEG, and this 
could seriously underestimate the incidence of non-motor seizures and NCSE [55]. 
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According to semiology, CSE predominates over NCSE [56]. Nonetheless, COVID-19 
patients with unexplained altered mental status should be studied for the possibility 
of NCSE [42]. Some authors recommend continuous EEG monitoring in patients 
with COVID-19 and altered mental status to rule out NCSE [8].

5.  Complementary studies in SARS-CoV-2 infected patients with 
seizures

5.1 CSF findings

There are only a few reports with CSF findings in COVID-19 patients, as it is not 
systematically accessed for every patient. One systematic review reported CSF find-
ings in COVID-19 patients who presented seizures in infection setting, including 69 
patients. They found that only 13% had positive CSF SARS-CoV-2 PCR. Pleocytosis 
was found in one-third of them, and nearly half had increased proteinorachia. 
Postictal pleocytosis and hyperproteinorachia were already described, so these 
findings may be secondary to seizures itself as opposed to an intrathecal process 
related to SARS-CoV-2. Autoimmune antibodies were tested in 11 patients and 
were positive in only two (NMDA antibodies and Caspr2 antibodies). It remained 
unclear if these findings were related to COVID-19 (as some cases of autoimmune 
encephalitis can be preceded by infection that works as a trigger of autoimmunity) 
or if it was purely coincidental [57].

5.2 Electroencephalographic findings

There are some reports of electroencephalogram (EEG) findings in patients with 
SARS-CoV-2 infection. Altered mental status and seizures are the most common 
indication for EEG. Most of patients performed routine EEG, with a few cases 
submitted to continuous video-EEG monitoring [42, 58]. A systematic review found 
that continuous EEG studies reported more abnormalities than routine EEG [59].

Even though EEG abnormalities are frequent, none of available studies 
showed specific findings in COVID-19 patients. The most commonly described 
abnormalities are diffuse slow activity (accounting for 60% of findings in these 
patients) and, less frequently, focal slow activity [56]. One study showed that 
brain reactivity was reduced or absent more often in COVID-19 patients with poor 
prognosis [27, 60]. Confusion and seizures seem to be the most frequent predic-
tors of encephalopathy [58].

According to available literature, epileptiform abnormalities and periodic pat-
terns account for 13–20% of EEG findings in COVID-19 patients, more often found 
in critically ill patients and in those whose presented seizures [42, 56, 59]. Several 
EEG patterns were reported in status epilepticus (SE) associated to COVID-19, 
including periodic discharges (lateralized, bilateral, and generalized) and rhythmic 
discharges, but no single pattern appears to be specific. EEG findings localized to 
frontal lobe were described in almost half of SE [59].

Just a few patients had focal abnormalities explained by structural focal lesions 
as ischemic stroke, encephalitis, and unspecified gliosis [56].

One report found severity of EEG findings may be correlated with oxygen 
saturation at admission and with severity of COVID-19 [59]. It is difficult to relate 
EEG findings with CSF and neuroimaging findings as just a few patients underwent 
a complete screening for all modalities. One study was able to obtain records of 
thoracic CT scan, CSF SARS-CoV-2 PCR, and EEG of a subgroup of 13 patients, and 
no correlations were found between those variables [58].
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There are some limitations to obtain information in this field. Timing of EEG is 
difficult to recall, as it is usually performed according to onset of neurological com-
plication and not COVID-19 classical symptoms. Information about disease severity 
and anti-seizure medication and sedatives at time of EEG is not always clear [56].

5.3 Neuroimaging findings

Neuroimaging findings in COVID-19 patients are heterogeneous, varying 
according to disease severity and neurological concomitant complications [42]. 
Available cases and reviews suggest more than two-thirds of COVID-19 patients, 
who undergo brain imaging (CT or MRI), do not show abnormalities presumably 
associated to infection [61].

Among those who present abnormalities, the most common findings were 
unspecific diffuse white matter (WM) abnormality (accounting for about 75% of 
reported findings) and acute or subacute ischemic strokes. WM signal abnormality 
is usually described as subcortical and periventricular, in association with microhe-
morrhages. Cerebellar, midline, and deep brain structures involvement is uncom-
mon [61, 62]. Leukoaraiosis is one important finding attributable to aging, and one 
review suggested its prevalence was higher in COVID-19 patients than expected 
for age. However, relationship between COVID-19 infection and structural brain 
lesions is not clear yet. Cortical FLAIR signal abnormality was described in a vast 
differential diagnosis, including patients with encephalitis, post-ictal state, PRES, 
and acute ischemia [61].

In a cohort of patients with SE, MRI revealed abnormalities in about 43% of 
patients, mainly inflammatory lesions, and lesions suggestive of PRES, brain 
atrophy, cerebral hemorrhage, and brain tumor. Inflammatory lesions did not reveal 
a specific localization nor a specific cortical involvement in most of cases [55].

6. Conclusions

SARS-CoV-2 seems to have neurotropism and neuroinvasion mechanisms, 
similar to previous known human coronavirus infections, and neurological compli-
cations are frequent [22]. Despite of all new information constantly being published 
about this issue, robust and complete data are lacking about seizures in patients 
with COVID-19.

Systemic infection may be a trigger for breakthrough seizures in patients with a 
history of epilepsy and respiratory infection in particular is a well-known precipitant 
of acute symptomatic seizures in such individuals [27]. Severe systemic illness, meta-
bolic derangements, emotional stress, the eventual inability to obtain anti-seizure 
drugs (as patients may avoid hospitals and pharmacies and have more difficulty to 
get their medications), or gastrointestinal symptoms impeding absorption of oral 
medications are just examples of the diversity of ways through which COVID-19 
may be associated with recurrence of seizures in the epileptic population [25, 27]. As 
any other infectious disease, COVID-19 can present with significant electrolytic and 
metabolic imbalance, as hyponatremia or uremic state, both potentially responsible 
for lowering the seizure threshold in susceptible, non-epileptic, patients. Acute 
symptomatic seizure can also occur in the context of cerebrovascular disease [27].

Nevertheless, seizure occurrence in COVID-19 is uncommon. Most of the 
available reviews report an incidence lower than 1% of SARS-CoV-2 infections, 
even lower than that described in previous human coronaviruses. Higher risk is 
appointed for patients with poor general condition and severe COVID-19 symp-
toms [26, 27].
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Regardless of etiology, COVID-19 should be considered in the differential 
diagnosis for patients presenting with seizures during the pandemic, as early con-
sideration may lead to earlier detection and appropriate precautions [27]. Particular 
attention should rise for patients with altered mental status and the risk of noncon-
vulsive status epilepticus.
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Abstract

Multiple sclerosis is a relapsing and eventually progressive disorder of the 
central nervous system that continues to challenge researchers who try to under-
stand the pathogenesis of the disease and prevent its progression. Interferon-beta is 
the most widely prescribed treatment for MS. Peripheral blood seems to mirror the 
immunological disturbances that underlie MS, which could represent the migration 
patterns between periphery and other tissues according to the clinical phase of the 
disease. Based on this assumption, several studies point to significant alterations in 
peripheral blood homeostasis of different subpopulations of T cells, like γδ T cells 
or Th1, Th2 and Th17 functional subsets; of B cells subpopulations; and of innate 
cells like monocytes and dendritic cells. The main goal of this chapter is to make 
an in-depth review of the major findings described in the literature that correlate 
specific alterations on different leukocytes subpopulations with disease status, and 
which therefore have the potential to constitute a peripheral biomarker of disease 
progression.

Keywords: biomarkers, T cells, B cells, dendritic cells, monocytes

1. Introduction

Around 2.8 million people are diagnosed with multiple sclerosis (MS) world-
wide. MS is an autoimmune demyelinating disease of the central nervous system 
(CNS) of unknown etiology. Hallmarks of MS include focal inflammatory infil-
trates, demyelinating plaques, reactive gliosis, and axonal damage [1, 2].

The mechanism of MS pathology involves complex interactions between systems 
and cell types including neurons, glia, and immune cells, accompanied by perme-
ability of the blood–brain barrier (BBB). Autoreactive T cells activated outside the 
CNS cross the BBB and are reactivated by local antigen-presenting cells. Secretion 
of proinflammatory cytokines stimulates microglial cells and astrocytes, recruits 
additional inflammatory cells, and induces antibody production by plasma cells [3].

Recombinant interferon-β (IFN-β) remains the most widely prescribed treat-
ment for relapsing–remitting MS (RRMS) and a valid approach because of its good 
benefit/risk profile. Despite widespread use of IFN-β, its therapeutic mechanism 
is still partially understood. The efficacy of IFN-β treatment has been shown by 
a decreased annual relapse rate, disability progression and inflammatory brain 
lesions resulting in the approval of different IFN-β preparations [4].



COVID-19, Neuroimmunology and Neural Function

64

IFN-β is a highly pleiotropic cytokine which antagonizes the proinflammatory 
milieu by inhibiting expression of proinflammatory molecules, while increasing 
production of anti-inflammatory factors. It inhibits leukocyte trafficking, regulates 
the adhesion molecule expression and inhibits matrix metalloproteinase activity. 
The mechanism of action of IFN-β is complex and multifactorial but has been 
shown to reduce the biological activity of RRMS in several clinical class I trials [5].

The identification of peripheral markers that could reflect the clinical course 
of MS and the efficacy of treatment is a stimulating field of research and debate. 
An ideal biomarker is characterized by high sensitivity and specificity as well as a 
simple, cost effective, reproducible, and non-invasive detection method [6]. For 
instance, there are reports focusing molecules and autoantibodies as potential 
biomarkers in the MS disease course. Our focus in this chapter is on circulating 
leucocytes that can be considered during the follow of RRMS patients in remission 
versus relapse phase.

2. Multiple sclerosis

MS is an autoimmune disease of the brain and the spinal cord characterized by 
chronic inflammation, demyelination, gliosis and neuronal loss. The demyelination 
consists of the damage of the myelin sheath surrounding nerves, consequently 
affects the function of the nerves. The pathological hallmark of chronic MS is the 
demyelinated plaque or lesions, which consists of a well-demarcated hypocel-
lular area characterized by the loss of myelin sheaths or oligodendrocytes, relative 
preservation of axons, and the formation of astrocytic scars [1].

The etiology of MS remains elusive, with a complex multifactorial system impli-
cated, in which environmental factors are hypothesized as interacting with geneti-
cally susceptible individuals. MS causes a heterogeneous array of symptoms and 
signs because of the differential involvement of motor, sensory, visual and autonomic 
systems with serious physical disability in young adults, especially women [2, 4, 7].

The CNS is frequently described as an immune-privileged site, evidence sup-
ports the notion that the CNS receives limited immune surveillance by peripheral 
lymphocytes under physiological conditions. New findings provide a mechanism 
by which large particles and immune cells can drain from the brain and interface 
directly with the peripheral immune system [8, 9].

MS is triggered in the periphery or in the CNS. The CNS-extrinsic (peripheral) 
model is the most widely accepted and is consistent with the method used to induce 
experimental autoimmune encephalomyelitis (EAE), the animal model for neuro-
inflammation. The autoreactive T cells from MS patients may become activated in 
the periphery as a result of a molecular mimicry, gain access to the CNS, and T cells 
generated against non-self-epitopes (viral or microbial antigens) cross-react with 
self-myelin epitopes of similar sequence [10–12].

85% of patients present a RR form of MS, characterized by discrete episodes of 
neurological dysfunction (relapses) separated by clinical stable periods with lack of 
disease progression (remissions). More than 30% remain in the RRMS form of the 
disease into old age [7, 11–13].

Relapse is the clinical result of an acute inflammatory focal lesion and is typically 
discernible using magnetic resonance imaging. Relapse is defined as newly appear-
ing neurological symptoms in the absence of fever or infections that last for more 
than 24 hours and are separated from the previous event by at least one month. The 
frequency of relapses can vary widely among patients as well as during different 
periods during an individual patient’s disease. The relapse tends to be present for a 
limited time – days or weeks – and can lead to full recovery or can leave sequelae. 
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At present time, no clinical features or biomarkers that are predictive of relapse 
rates have been identified. The signs and symptoms that occur during relapses are 
also diverse and unpredictable [3, 8, 11].

Immunological characteristics of MS lesions have been reflected in circulating 
immune cells of MS patients. Peripheral blood provides a ‘window’ into the immu-
nopathogenesis of MS. The immunological disturbances that underlie MS can be 
observed not only in the CNS, but also through examination of peripheral immune 
cells [14].

3. Therapeutic management

IFN-β and glatiramer acetate have been used as first-line disease-modifying 
therapy for RRMS. More than two decades have passed since IFN-β was found to be 
effective in the management of MS. IFN-β treatment efficacy has been shown by a 
decrease in the annual relapse rate, in disability progression and in inflammatory 
brain lesions, resulting in the approval of different IFN-β preparations [15–17].

IFNs are naturally occurring cytokines, secreted by various cells such as fibro-
blasts, NK cells, leukocytes, and epithelial cells in response to pathogens such as 
bacteria, viruses, parasites, and tumor cells, as well as other foreign substances. 
They have a wide range in anti-inflammatory processes, regulation of cell growth 
and modulation of immune responses [18, 19].

IFN-β binds to the interferon receptor, activates the Janus kinase/signal transducer 
and the activator of transcription (STAT) pathway to phosphorylate STAT1 and 
STAT2. The activation of interferon-stimulated genes leads to the production of anti-
viral, antiproliferative, and antitumour products. The effectiveness of IFN-β in the 
treatment of MS may rely on both anti-viral and immunomodulatory aspects [20, 21].

IFN-β was the first immunomodulatory therapy approved by the U.S. Food and 
Drug Administration and is the most widely prescribed treatment for MS; it is 
generally well tolerated and overall reduces the relapse rate by 30% in patients with 
RRMS [4].

Several IFN-β preparations have been approved with differing structures 
(glycosylated IFN-β-1a vs. non-glycosylated IFN-β-1b), formulation (lyophilized 
vs. liquid), used excipients (e.g., containing serum albumin or not), modification 
(pegylation), dosage (protein load and bioactivity), route of administration (sub-
cutaneous vs. intramuscular), or frequency of injection (ranging from bi-weekly to 
every other day). IFN-β shows high tissue distribution; however, it is not supposed 
to cross the BBB and exerts its immunomodulatory mechanism in the peripheral 
compartment. IFN-β is cleared via renal and hepatic pathways, in which catabolism 
seems to be important rather than simple excretion [15].

The therapeutic benefit of IFN-β in MS has been proven in several large clinical 
trials, with the effect of IFN-β therapy being more studied on T and B cells [22]. In 
spite of this, it is known that the biological functions of IFN-β act in both innate 
and adaptive immune responses and may influence phenotype and functions of all 
MS-relevant immune cells [23].

4.  Peripheral blood leukocytes as potential biomarkers of disease 
activity

A biomarker is defined as a characteristic that can be objectively measured 
and evaluated and serves as an indicator of normal biological processes, patho-
logical processes or pharmacological reactions to therapy. An ideal biomarker is 
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characterized by high sensitivity and specificity as well as a simple, cost effective, 
reproducible, and non-invasive detection method [6].

In this section we synthesize and integrate the most relevant data regarding 
the characteristics of the selected immune cells that could be considered as IFN-β 
treatment-related biomarkers. The main goal of this work is an attempt to help 
researchers to perform a good assessment of immune cells in future studies. The 
presented data is a result of a compilation of several studies and findings.

4.1 Antigen-presenting cells

Antigen presenting cells (APCs) are considered key players in the immune 
surveillance of CNS and, at the same time, they are critically involved in the 
pathogenesis of CNS autoimmune diseases. They are a morphologically and 
functionally diverse group of cells that links the innate and adaptive immune 
responses. These cells are specialized in the presentation of antigens to lympho-
cytes, particularly T cells. Included among such cells are dendritic cells (DCs), 
monocytes and macrophages (derived from monocytes that migrated from the 
blood stream to tissues). B lymphocytes that specifically capture antigens via 
their clonally expressed membrane immunoglobulin can also function efficiently 
as APCs to T cells [24].

4.1.1 Dendritic cells

In humans, DCs comprise two major subsets: plasmacytoid DCs (pDCs) and 
myeloid (mDCs). Through nucleic acid-sensing, pDCs activate toll-like receptors 
(TLR), such as TLR7 and TLR9, rapidly producing type I IFN. mDCs are dedicated 
APCs that have a characteristic dendritic morphology, express high levels of MHC 
class II molecules and recognize pathogen-derived lipids, proteins and nucleic-acids 
by TLR2, TLR4 and TLR3 respectively [25].

The DCs subsets may be helpful as biomarker between remission and relapse of 
RRMS patients treated with IFN-β. The circulating mDCs subset reduces in remis-
sion and increase in relapse RRMS patients. On the other hand, the pDCs frequency 
are maintain across the different phases of disease. Usually, these subsets present a 
low frequency in systemic circulation, so the mDCs/pDCs ratio is a good represen-
tative of the alteration observed in the DCs subsets. The mDCs/pDCs decreases in 
remission RRMS patients and is re-established in relapse RRMS patients, constitut-
ing a potential peripheral biomarker [26, 27].

The involvement of DCs in MS arises from studies that demonstrate the abun-
dant presence of these cells in the inflamed CNS lesions and in the CSF of MS 
patients [23].

One of the immunomodulatory effects of IFN-β in the EAE model is the 
reduction in antigen presentation, particularly myelin-specific antigens, leading 
to reduced T-cell responses [25, 28]. In contrast with these effects, in remission 
phase it was observed that the DCs subsets increase the expression of HLA-DR 
and decrease in the relapse phase. The variation in HLA-DR expression is more 
evident in the mDCs subset. The same subset reduce the mRNA gene expression of 
CX3CR1; fractalkine is known to be upregulated and released in response to pro-
inflammatory stimuli and induces adhesion, chemoattraction, and activation of 
leukocytes [27].

The activation status of the mDCs subset could discriminate between RRMS 
phases. This subset shown a highest activated status in remission than in relapse 
phase, through the increased HLA-DR expression and a reduced migratory capabil-
ity, since reduce the mRNA gene expression of CX3CR1.
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4.1.2 Monocytes

Monocytes represent a heterogeneous population of primary immune effector 
cells with distinct phenotypical and functional characteristics; their differential 
roles in steady-state immune surveillance and the pathogenesis of human CNS 
disease are poorly understood [20].

The differential expression of CD14 (part of the receptor for lipopolysaccha-
ride) and CD16 (also known as FcγRIII) allows monocytes to be segregated into 
three subsets. The major subset designated “classical” monocytes (CD14++CD16−, 
cMo), corresponds to 80–90% of circulating monocytes. CD16 expressing mono-
cytes are divided into a named “intermediate” monocyte (CD14++CD16+, iMo) and a 
subset classified as “non-classical” monocytes (CD14+CD16++, ncMo); each of these 
subsets corresponds to 5–10% of circulating monocytes [21, 29].

Patients with MS display high levels of monocyte-secreted inflammatory mol-
ecules in serum compared to healthy individuals, demonstrating a role for periph-
eral monocytes in the progression of the disease. Increased levels of serum tumor 
necrosis factor (TNF) α and β have been reported in MS relapse. Monocytes and 
microglia are known to act as major effectors in the demyelinating process through 
direct interaction and the production of proinflammatory cytokines and mediators 
(e.g., IL-1b, nitric oxide). CD16+ monocytes may contribute to the breakdown of 
the BBB by facilitating T cell trafficking into the CNS [20, 24, 30].

Research performed on monocyte pool in RRMS patients is scarce and ambigu-
ous. A recent work achieved a significant decrease of the ncMo subset in both 
phases of RRMS patients, although in a higher extension in remission patients [27].

The frequency of monocytes subsets does not allow us to identify different 
phases of RRMS, but the HLA-DR expression could constitute a potential important 
biomarker between remission and relapse phases. A significant increase in HLA-DR 
expression in all monocyte subsets in the remission group when compared with 
healthy and relapse groups, has been described [27]. IFN-β enhances HLA-DR expres-
sion in circulating monocytes, but inside the CNS, one prominent model is based on 
the observation that IFN-β inhibits the IFNγ upregulation of MHC class II molecules 
on cell surface of macrophages and glial cells and therefore diminishes antigen 
presentation [28]. In the periphery, Kantor et al. report that the increase of MHC Class 
II expression in monocytes induced by IFN-β may contribute to the positive immuno-
modulatory effect in MS [31]. These findings were reinforced by the observation that 
when IFN-β-stimulated monocytes were used to stimulate autologous T cells, there 
was an increased secretion of anti-inflammatory cytokine IL-13 [32].

4.2 T cells

4.2.1 CD4+ and CD8+ T cells

T cells are central regulators of the adaptive immune response, they help B lym-
phocytes to produce antibodies and secrete cytokines that provide efficient protec-
tion against pathogens. Distinct T helper (Th) cell subsets, producing one or more 
lineage-defining cytokines and expressing master transcription factors and homing 
receptors. Th subsets are differentiated from naive CD4+ T cells in response to a 
specific class of pathogenic microorganisms and to the cytokine milieu. This occurs 
in peripheral lymph nodes by mature DCs that present pathogen-derived peptides 
associated to MHC class II. With the involvement of their costimulatory molecules, 
DCs promote T cell proliferation and produce polarizing cytokines. In turn T cell 
was differentiated in distinct Th cell subsets, such as Th1, Th2, Th17, regulatory T 
(T reg) and T follicular helper (Tfh) [33].
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The CD4+ T cells have been the most studied in the pathogenesis of MS, although 
CD8+ T cells are the dominant lymphocyte population in all stages of disease and 
lesions of MS patients. Naive CD8+ T cells follow a similar differentiation pro-
gramme of CD4+ T cells [34, 35].

Th1 cells are described as being the pathogenic subset of T cells, whereas Th2 
cells are reported to exert inhibitory effects [5]. Previous studies have pointed to a 
reduction in pro-inflammatory capability promoted by IFN-β therapy, consisting 
of a reduction of the expression of Th1-induced cytokines while enhancing Th2 
responses [18]. Concerning the T cytotoxic (Tc) subsets, it has been reported the 
same behavior, in remission a downregulation of pro-inflammatory Tc1 responses 
and up-regulation of anti-inflammatory Tc2 with a beneficial effect on disease 
activity [36]. This dichotomy Th1, Th2 subsets and Tc1, Tc2 subsets could contrib-
ute to discriminate between remission and relapse phases.

The identification of Th17 cells helped to resolve some in adequacies of the 
original Th1/Th2 concept that had dominated T cell immunology research filed for 
almost 20 years. For a long time, it was thought that the IL-12/IFNγ pathway and 
Th1 cells were central to the development of autoimmune disease [37].

Both Th1 and Th17 cells have been implicated in the initiation and progression 
of disease in RRMS and its experimental model EAE [19]. The link between Th17 
cells, IL-17 and MS relapses comes from the observation that in humans, Th17 cells 
are able to cross the BBB in MS lesions, enhancing neuroinflammation. In vitro 
studies have revealed that IL-17 blocks the differentiation and reduces the survival 
of oligodendrocyte lineage cells. In EAE model, it has been suggested that Th17 cells 
interact directly with neurons, forming antigen-independent, immune, synapse-
like contacts [7, 38].

It is assumed that the inhibition of Th17 cells in RRMS patients attenuates the 
disease, however conflicting data have been published. Axtell et al. reported that 
IFN-β treatment effectively blocked disease symptoms in mice with EAE induced 
with Th1 cells. Otherwise, in EAE induced with Th17 cells the IFN-β treatment 
worsened disease [19].

In RRMS patients, it is not clear whether a more specific blockade of the Th17 
pathway has beneficial effects in MS patients. Treatment with an antibody directed 
against IL-12p40 and therefore neutralizing both IL-12 and IL-23 did not result in a 
significant reduction of disease activity [39].

A meta-analysis pointed out several limitations across studies that assess the lev-
els of peripheral Th17 cells and serum Th17-related cytokines. Like the severities of 
the disease and clinical subtypes in MS patients; the disease duration from relapse; 
and that the MS treatments were not consistent; and it was postulated that most 
studies selected MS patients with high disease activity. There were differences in 
experimental methods between studies and a lack of detailed standardized methods 
to identify the Th17 cells and Th17-related cytokines [40].

A recent in vivo study observed an increased frequency of circulating Th17 and 
Tc17 cells, accompanied by increased serum levels of IL-17 in remission RRMS 
patients treated with IFN-β [41]. This contradiction underlines the need to clarify 
the role of the IL-17-producing T cells in RRMS patients.

It has been demonstrated that a significant proportion of Th17 cells convert into 
IFN-γ-producing T cells and have chemokine receptors from both Th17 and Th1 
subtypes, referred as Th17.1 cells. The enhanced potential of Th17.1 cells to infiltrate 
the CNS was supported by their predominance in CSF of early MS patients and 
their preferential transmigration across human brain endothelial layers [42, 43]. 
In remission RRMS patients, it was observed that Th17 and Tc17 cells exhibited a 
higher degree of Th1 plasticity since there were higher frequencies of those cells 
simultaneously producing intracellular IL-17 and IL-2 or IFNγ or TNFα [41].
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Another subset of T cells, the Tregs, are characterized by high expression of 
CD25 and the transcription factor Foxp3, which is critical for their development, 
lineage commitment, and regulatory functions. Tregs are a very heterogeneous 
population with suppressive functions that maintain tolerance to harmless food/
self-antigens and prevent autoimmune disease. Numerous studies have identified 
Tregs as important immunoregulators in many inflammatory and autoimmune 
disease conditions including asthma, MS, and type-I diabetes [37, 44].

In MS patients, both reduced or normal frequency of Tregs was observed. Libera 
et al. described a significant decrease in Treg cells in remission RRMS patients [45]. 
Haas et al. state that the frequency of Treg cells was normal in MS patients but with 
a lower suppressive function on autoreactive T cells [46]. Venken et al. described 
that RRMS patients treated with IFN-β showed restored naive Treg numbers as 
compared with age- and disease-duration-matched untreated patients [47].

Recently identified, the Tfh subset expresses the chemokine receptor CXCR5 
as well as CD279 [48], is specialized in helping B cells to produce antibodies in the 
face of antigenic challenge and plays a crucial role in orchestrating the humoral 
arm of adaptive immune responses. Tfh cells have the unique ability to migrate into 
follicles in secondary lymphoid organs where they colocalize with B cells to deliver 
contact-dependent and soluble signals that support survival and differentiation of 
the latter cells. There is no complete and thorough understanding of how naïve Th 
cells differentiate into mature Tfh [49, 50].

Tfh cell levels are elevated in the blood of MS patients and this population is 
positively correlated with the progression of disability. One potential mechanism 
through which Tfh cells can contribute to disease is promoting the inflamma-
tory B-cell activities, suggesting that Tfh cells cooperate with Th17 cells to induce 
inflammatory B cell responses in the CNS and increase disease severity [49].

The increased frequencies of Th1 cells, activated Tfh- and B-cells parallel find-
ings from pathology studies, along with the correlation between activated Tfh- and 
B-cells, suggest a pathogenic role of systemic inflammation in progressive MS [51].

A similar frequency of Tfh cells between RRMS patients and healthy subjects 
was reported. However, this subset tend to exhibit a more proinflammatory activ-
ity, since higher frequencies of TNF-α+ Tfh cells have been observed [41]. It is well 
known that Tfh cells play an important role in T/B interactions in germinal centres 
(GC) and one potential mechanism through which Tfh cells can contribute to MS is 
in promoting inflammatory B-cell activities [49]. The Tfh subset and others follicu-
lar like T cells subsets, like Treg/follicular cells, are promising targets in the study of 
T cells in pathophysiology of MS.

4.2.2 γδ T cells

γδ T cells develop in the thymus together with αβ T cells but rearrange a different 
TCR, consisting of a TCR-γ and TCR-δ chain. One of the most striking characteris-
tics of γδ T cells is their inherent ability to secrete pro-inflammatory cytokines very 
rapidly, which influences adaptive immunity, they carry out immediate effector 
functions as well as mounting a memory response upon microbial reinfection. This 
fast response can be explained by γδ T cells exiting the thymus already with the 
functional competence to produce cytokines with no need of APCs cells [52, 53].

In MS, their potential importance is increased by the finding that γδ T cells 
accumulate in demyelinating CNS MS plaques; these cells show evidence of oligo-
clonal expansion indicating a local response to currently unknown antigens. γδ T 
cells have been shown to be present in both MS lesions and in CSF, and sequencing 
studies have shown that the major γδ T subsets present in the lesion differ from 
those in the CSF, suggesting specific functions for these cells in lesion development. 
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In more chronic lesions, γδ T cells may become the most prevalent type of T cell in 
the lesion. γδ T cells isolated from the CNS can be expanded but only in patients 
with relapse disease, not chronic MS patients, suggesting that these cells may have 
differential roles during various phases of the disease [54, 55].

The frequency, the migratory pattern, the activation status of γδ T cells in 
RRMS patients are unclear. Between remission and relapse RRMS patients, the γδ 
terminally differentiated effector memory T cells (TEMRA) and the CCR5+ γδ TEMRA 
decrease in relapse when compared with remission RRMS patients [56], constitut-
ing a good biomarker between phases of the disease. Probably as a result of the 
migratory pattern describe for this phase of MS, preferentially toward RANTES and 
MIP-1α, whose expression is increased during relapses [57, 58].

The decrease of Eomesodermin and granzyme B mRNA expression in CD27− γδ 
T cells suggests a reduction in the cytotoxic potential of the circulating pool of γδ T 
cells, particularly in relapsing RRMS patients [56].

4.3 B lymphocytes

The most consistent immunodiagnostic feature and hallmark immunologic find-
ing in MS patients is the presence of oligoclonal bands (OCB) in the CSF and their 
absence in peripheral circulation. Consequently, the pathogenic function of B cells 
in MS has been traditionally associated with antibody production. However, B cells 
have three putative biological roles: production of proinflammatory or regulatory 
cytokines, function as APCs and antibody production [59].

In MS, the memory B cells, plasmablasts and plasma cells preferentially cross 
the BBB and migrate into the CNS, where they dominate the B cell pool and exert 
different effector functions. B cells seem to be abnormally polarized toward a more 
proinflammatory phenotype [60].

More recent, somatic hypermutation studies have demonstrated that identical B cell 
clones can be shared between the CNS and the periphery in individual patients. These 
studies provide evidence of bidirectional trafficking of distinct B cell clones (both into 
and out of the CNS). The patterns suggest that B cells can travel back and forth across 
the BBB and commonly re-enter GC (in the meninges or cervical lymph nodes) to 
undergo further somatic hypermutations. These findings change our view of lympho-
cytic surveillance of CNS tissue and underline that B-cell trafficking is an important 
topic for future research and therapy strategies [60–62]. This news about recirculation 
of B cells through the BBB alters the perception of the role of B cells in MS.

B cells are released in the peripheral blood, recirculate between the secondary 
lymphoid tissues, and dying after a few days. According to phenotypic profile of B 
cell subsets, which also reflects their functional abilities and behavior, four major 
maturation-associated subsets can be identified in the human peripheral blood: 
immature/transitional, naive, memory and plasmablast [63].

In remission RRMS patients submitted to IFN-β, the percentage of immature/
transitional B cells increases. This increase can be seen as an attempt to increase 
anti-inflammatory cytokines. Meanwhile, a decrease in the proportion of circulat-
ing class-switched memory B cells was reported [64, 65].

The relapsing RRMS patients exhibited distinct changes in B cell subsets homeo-
stasis, resulting in a decrease in the total population of B cells, including a decrease 
of the immature/transitional and naïve B cell subsets when compared with remis-
sion RRMS patients. On the other hand, the plasmablast B cell subset presented an 
increase in relapse RRMS patients. The ratio between immature/transitional B cells 
and plasmablasts can thus be considered as a potential biomarker between phases of 
RRMS patients. The remission RRMS patients and the healthy subjects presented a 
similar ratio, and the relapse RRMS patients present a decreased ratio [66].
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According to the new and recent data about the recirculation of B cells in RRMS, 
it seems that the increase of plasmablasts in circulation of relapsing episodes may 
be due to a migration of these cells from cervical lymph nodes and/or from B cell 
aggregates described in the meninges of MS patients to the blood marrow in an 
attempt to promote the immune response [67].

5. Effects of IFN-β in circulating cells

An ever-expanding body of literature, sometimes difficult to integrate, defines 
the intricate pathways by which IFN-β mediates its broad effects. To resume the 
effects of IFN-β in circulating immune cells a table listing the relevant studies and 
findings was performed (Table 1).

Effects of IFN-β

Antigen 
presenting 
cells

• reduces mDCs frequency, pDCs frequency remains unchanged, mDCs/pDCs ratio 
decreases [25, 27, 65];

• activated pDCs decreased TLR9 consequently decreases Th1 cell differentiation, 
reduced pro-inflammatory IL-6, TNF-α, IFNγ secretion, expression of CCR7 and 
increased IL-10 secretion [20, 25–27, 66]

• activated status mDCs trough the expression of HLA-DR and mRNA gene expression 
of CX3CR1 reducing their migration pattern [27]

• pDCs showed reduced expression of the maturation markers CD83 and CD86 molecules 
and lower secretion of proinflammatory cytokines, including IFN-α, and a decreased 
ability to stimulate allogeneic T cells in response to maturation stimuli [24, 65];

• enhances HLA-DR expression in circulating monocytes [27, 28]

T cells • reduces T-cell activation, downregulating MHC class II and costimulatory molecules, 
prevents the interaction of B7/CD28 and CD40/CD40L decreases the activation of 
myelin-reactive T cells [4, 5, 25];

• inhibits proinflammatory IFNγ, TNFα and IL-17, increasing the production of IL-10 
[5, 68];

• increases levels of Th1 cytokines during RRMS relapse, whereas Th2 cytokines 
increases during remission in RRMS patients [5, 25, 40];

• prevents T-cell adhesion and extravasation across the BBB [4, 5];

• induces Treg cells [4, 5, 22];

• Mediates the chemokine receptor CCR7, channel autoreactive T cells into secondary 
lymphoid tissue rather than to CNS [5];

• the CCR5+γδ TEMRA cells decreases with a reduction in the cytotoxic potential in relapse 
when compared to remission [56]

B cells • induces expression of the B-cell survival factor B-cell-activating factor, with a shift 
toward less mature circulating B cells [65];

• reduces of memory B cell frequency exerted by the induction of a FAS-R-mediated 
caspase 3-dependent apoptosis [16];

• downregulates costimulatory molecules, CD40 and CD80 becoming less efficient 
APCs and less able to induce T-cell proliferation [23];

• inhibits proinflammatory cytokines, IL-1β and IL-23, anti-inflammatory IL-10 is 
upregulated in B cells [24, 64];

• the ratio between immature/transitional B cells and plasmablasts decreases in relapse 
when compared to remission RRMS [66]

Table 1. 
Main effects of IFN-β in circulating immune cells in MS.
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A major role for IFN-β is the induction of a priming state through which produc-
tion and regulation of mediators, including cytokines, are affected by synergistic 
or antagonistic interactions. In the treatment of MS, the most important IFN-β 
mechanisms of action appear to be mediated mainly by the increased expression 
and concentration of anti-inflammatory agents, in turn, down-regulating the 
inflammatory state observed in the patients both in the periphery and in the brain 
tissue (Figure 1) [23].

6. Methodology

The work from our group started with the selection of the RRMS patients 
and collected blood from each one after assigned an informed consent. By flow 
cytometry performed direct immunofluorescence membrane and intracytoplasmic 
staining protocols to identify and characterize the circulating subsets. To functional 
assessment of the cells was measured intracellular cytokines at single cell level, after 
in vitro stimulation. To evaluation of gene expression, RNA isolation and quantita-
tive real-time reverse transcriptase-polymerase chain reaction was performed.

In our group publications, one can be find the flow strategy with the description 
of the antibodies used and the mRNA gene expression studies performed in APCs 
[27], in T cell subsets [41], in γδ T cells [56] and in B cell subsets [66].

The literature search was performed using the PubMed electronic bibliographic 
database. The search was restricted to English and publications between 2010 and 
2021. The keywords used were: multiple sclerosis, IFN-β, antigen presenting cells, T 
cells and B cells alone or in conjugation. The bibliographies of retrieved articles and 
previous review articles were hand searched to obtain additional articles.

Figure 1. 
Main effects of IFN-β in RRMS patients (a) remission phase and (B) relapse phase. mDC – Myeloid dendtitic, 
pDC – Plasmacytoid dendtitic cell, cMO – Classical monocytes, iMo – Intermediate monocytes, ncMo – Non-
classical monocytes.
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7. Conclusion

In demyelinating diseases, mainly in relapse phase of RRMS, the BBB suffer a 
profound disturbance, so as the exchanges and ultimately the CNS itself. Despite 
CNS suffered an immune response, immune abnormalities could be found in the 
peripheral immune compartment.

The periphery assumes an extremely important role in the study of MS. In 
remission phase is establish an equilibrium between CNS and systemic circulation. 
In this chapter we have attempted to contribute to highlight the more relevant data 
regarding circulating cell subsets that could potentially be considered as peripheral 
biomarkers in RRMS patients treated with IFN-β.

Some circulating immune cells assume differences between the remission and 
relapse phases of RRMS. These differences may be used as disease activity biomark-
ers to measure inflammatory and/or neurodegenerative components of disease and 
helpful to discriminate between phases of RRMS.

Technological advances of flow cytometry have greatly increased the strength 
of analysis achievable at the single-cell level. These developments can be applied 
to understand more clearly the immunopathology of MS and the identification of 
consistent, safe and reproducible biomarkers in the periphery.
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Chapter 5

Amino Acids as Neurotransmitters. 
The Balance between Excitation 
and Inhibition as a Background for 
Future Clinical Applications
Yaroslav R. Nartsissov

Abstract

For more than 30 years, amino acids have been well-known (and essential) 
participants in neurotransmission. They act as both neuromediators and metabolites 
in nervous tissue. Glycine and glutamic acid (glutamate) are prominent examples. 
These amino acids are agonists of inhibitory and excitatory membrane receptors, 
respectively. Moreover, they play essential roles in metabolic pathways and energy 
transformation in neurons and astrocytes. Despite their obvious effects on the 
brain, their potential role in therapeutic methods remains uncertain in clinical 
practice. In the current chapter, a comparison of the crosstalk between these two 
systems, which are responsible for excitation and inhibition in neurons, is pre-
sented. The interactions are discussed at the metabolic, receptor, and transport 
levels. Reaction-diffusion and a convectional flow into the interstitial fluid create a 
balanced distribution of glycine and glutamate. Indeed, the neurons’ final physio-
logical state is a result of a balance between the excitatory and inhibitory influences. 
However, changes to the glycine and/or glutamate pools under pathological condi-
tions can alter the state of nervous tissue. Thus, new therapies for various diseases 
may be developed on the basis of amino acid medication.

Keywords: glycine, glutamate, neurotransmission

1. Introduction

Even for students just beginning to study biochemistry and physiology, it is 
immediately apparent that amino acids (AAs) are among the most important 
molecules in nature. Their functions are broad and varied. Indeed, protein synthesis 
relies on the well-known polymerization of AAs to form a peptide bond. This prop-
erty is the most famous aspect of AAs. However, many AAs have specific individual 
functions, such as neurotransmission [1], cellular energy metabolism [2], and 
detoxification [3, 4]. Accumulating evidence in recent years has demonstrated that 
AAs also regulate both the expression of genes and the protein phosphorylation 
cascade. Moreover, hormones and different low-molecular-weight biologically 
important chemical compounds can be synthesized from AAs [5]. AAs can be 
divided into essential and nonessential categories. If the body cannot synthesize 
the carbon skeleton of an amino acid, then it is considered nutritionally essential. 
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Indeed, the diet must contain such AAs. The dietary essentiality of other AAs 
(e.g., arginine, glycine, proline, and taurine) is determined by the developmental 
stage and species [6]. In contrast, if AAs can be synthesized de novo in a species-
dependent manner, they are considered nonessential. Accumulating evidence has 
led to the concept of functional AAs (FAAs), which are defined as AAs that regulate 
key metabolic pathways to improve the health, survival, growth, development, 
lactation, and reproduction of organisms [7]. Since the late 1970s, researchers 
have generally agreed that amino acids can also function as inhibitory or excitatory 
neurotransmitters [8]. It should be noted that in neurochemistry, the term “neu-
rotransmitter” is usually used synonymously with “neuromediator,” another term 
for a chemical participant in connections between neurons and neuroglia cells. 
Because these terms are exchangeable, they will both be used in the text. Based on 
their effects on vertebrate nerve cells, γ-aminobutyric acid (GABA), glycine, and 
taurine fall into the class of inhibitory amino acids, whereas glutamate and aspar-
tate fall into the class of excitatory compounds [9]. Indeed, GABA is considered 
the main inhibitory neurotransmitter in the central nervous system (CNS) [10], 
but it is not truly a member of the AA family. Although taurine also plays a role in 
inhibitory neuromediation [11] and serves as an osmoeffector to regulate volume in 
astrocytes [12], this compound is considered a derivative of cysteine, and, similar to 
GABA, not a true amino acid. Thus, the remaining excitatory/inhibitory amino acid 
neurotransmitters are glutamate, aspartate, and glycine. The first and third are the 
most prominent members of the AA family. The processes that regulate glutamate 
and glycine in the CNS are (i) transportation, (ii) biochemical transformations in 
metabolic pathways, and (iii) interactions with membrane receptors. In the current 
chapter, the crosstalk between the processes mentioned above for both glutamate 
and glycine is presented because the final state of neurons seems to be a result of the 
balance between these excitatory and inhibitory influences.

2. The membrane transport system of amino acids

Glutamate and glycine are nonessential amino acids; their levels differ depending 
on the location. The extracellular glutamate concentration around quiescent neurons 
is less than 1 μM, while its concentration in the cytoplasm is much higher, at approxi-
mately 2 mM [13]. The brain sequesters glycine in concentrations of 600 μM [14], 
with a basal concentration in the cerebrospinal fluid (CSF) of ~6 μM [15], compared 
to a plasma concentration of ~250 μM [16]. Because no extracellular enzymes degrade 
glutamate and glycine, maintaining these low extracellular concentrations requires 
cellular uptake of both compounds. Thus, the activity of the carriers directly regu-
lates receptor response to neuron activation. Indeed, glutamate and glycine serve as 
neuromediators in the extracellular fluid because the binding site of AA receptors 
is exposed to the outer surface of cells. Consequently, the release of AA into the 
extracellular fluid controls receptor activation and active states are controlled by the 
removal of AAs from the extracellular fluid [17]. This uptake is catalyzed by a family 
of transporter proteins located on the cell surface of both astrocytes and neurons 
[17]. A high-affinity glutamatergic uptake system was observed in the mammalian 
brain in the 1970s. Subsequently, excitatory amino acid transporters (EAATs) were 
experimentally identified. They transport glutamate and aspartate across the plasma 
membrane. Notably, EAATs are part of the well-known solute carrier 1 (SLC1) family 
of transmembrane amino acid transporters [18]. Thus, released glutamate molecules 
can be removed from the synaptic cleft by the brain transporters; this process will 
initiate the glutamate-glutamine cycle, eventually restoring the pool of the neuro-
mediator in synaptic vesicles [19]. Five EAAT isoforms, human EAAT1-5, have been 
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identified; they correspond to GLAST1/GLT-1/EAAC1/EAAT4/EAAT5 in rodents, 
respectively [20]. In addition, the EAAT4 and EAAT5 subtypes were identified, with 
EAAT5 predominantly expressed in the retina. Notably, the transport cycle times 
of EAATs are relatively slow and their high affinity for glutamate makes it possible 
to sequester low glutamate concentrations from the extracellular space, preventing 
excitotoxicity. The slow transportation rate may in part be overcome by rapid sur-
face diffusion and transporter tracking of EAATs upon glutamate stimulation [21]. 
The SLC1 family also contains two neutral amino acid transporters, alanine serine 
cysteine transporters 1 and 2 (ASCT1 and 2), which share high sequence homology 
with the EAATs [22]. EAAT1 and EAAT2 are glutamate transporters that are mostly 
expressed in astrocytes. These two glutamate transporters are responsible for most of 
the glutamate clearance in the brain. EAAT2 is widely expressed in the cerebral cortex 
and the hippocampus [13]. Moreover, GLT-1/EAAT2 accounts for approximately 90% 
of the total glutamate uptake in the brain, and thus, it is considered the most impor-
tant glutamate transporter subtype in the CNS. This transporter is predominantly but 
not exclusively expressed in astrocytes [22]. Glutamate transporters couple glutamate 
uptake to the transport of inorganic ions. It is now generally accepted that 3 Na+ ions 
and 1 H+ ion are cotransported and 1 K+ ion is counter-transported with the uptake of 
each glutamate molecule. Based on this stoichiometry, glutamate transporters were 
calculated to concentrate glutamate up to 5 × 106-fold inside cells under physiological 
conditions. This glutamate transport is electrogenic [23].

The extracellular levels of glycine in inhibitory and excitatory synapses are 
controlled by glycine transporters (GlyTs). Both subtypes, GlyT1 and GlyT2, belong 

Figure 1. 
Membrane carriers are responsible for clearance of glutamate/glycine from interstitial fluid (ISF) in the CNS. 
The scheme indicates two types of neurons. Some are excitatory and glutamatergic (the upper part of the 
scheme). Other neurons are inhibitory and glycinergic (the lower part of the scheme). Both types of neurons 
are interconnected with astrocytes. Moreover, glycine and glutamate are accessible for both types of cells. AA 
transporters (EAAT, GlyT, etc.) are found in all cell membranes but have differing isoenzyme compositions.
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to the sodium-dependent solute carrier 6 (SLC6) family of transporters, but they 
have different regional and cellular expression patterns in the CNS, different stoi-
chiometries (that is, different numbers of sodium ions that are co-transported with 
every glycine molecule) and varying abilities to reverse-transport glycine into the 
extracellular space. To date, five variants of GlyT1 (GlyT1a, GlyT1b, GlyT1c, GlyT1d, 
and GlyT1e) and three variants of GlyT2 (GlyT2a, GlyT2b, and GlyT2c) have been 
identified and occur as a result of alternative promoter usage and/or splicing, but the 
relative distributions of these within the CNS have not been fully characterized [21].

The essential function of membrane transporters is to accumulate neuromedia-
tors in vesicles. At presynaptic terminals, vesicular glutamate transporters (vGluTs; 
SLC17A7, -6, and -8) load glutamate into synaptic vesicles. The two subtypes of 
vGluTs, vGluT1, and vGluT2, are expressed in excitatory neurons in a comple-
mentary manner in the brain, composing two subsets of excitatory neurons [13]. 
Glycine also actively accumulates in synaptic vesicles through vesicular inhibi-
tory amino acid transporter (VIAAT); currently, only one type of transporter 
(SLC32A1) is known to be responsible for this process [18]. The scheme of balanced 
neuromediator transport is represented in Figure 1.

Remarkably, both glutamate and glycine transporters have mechanisms that 
include sodium ion transport. This means that neuromediator uptake is accompanied 
by changes in membrane potential. Moreover, the intake of both glutamate and gly-
cine initiates several metabolic reactions in neurons and astrocytes. However, these 
reactions are spatially distributed, and the fate of the neuromediators is functionally 
determined by different cells. Interestingly, the metabolic transformations of AAs 
are closely related to ATP production by mitochondria and the oxidation of glucose.

3. Transformations of amino acids in the cell metabolic network

As mentioned above, any example of metabolic transformation in brain tissue 
is tightly connected with glycolysis Therefore, glutamate/glycine participation in 
metabolic pathways seems to be considered correctly including the main neighbor 
reactions of glucose oxidation. The primary source of energy for the brain is 
glucose. This sugar is almost entirely oxidized under basal physiological conditions, 
providing nearly all the energy necessary to support brain function. However, when 
supplemental energy is needed, necessary energy demands may be provided by 
other metabolites, such as ketones, fatty acids, acetate, lactate, and certain amino 
acids [19]. Pyruvate, the end product of aerobic glycolysis, can enter the tricar-
boxylic acid (TCA) cycle by two different routes: (1) via acetyl-CoA formation, 
catalyzed by the pyruvate dehydrogenase complex, and (2) by the formation of 
oxaloacetate, catalyzed by PC [24]. However, the end metabolite of anaerobic gly-
colysis, lactate, also participates in the energy supply of neurons (Figure 2). Pellerin 
and Magistretti originally proposed the astrocyte-neuron lactate shuttle (ANLS) 
model, wherein lactate released from astrocytes serves as a buffer compound in 
response to a glutamate-induced glycolysis stimulus [25]. Then, lactate is exported 
to neurons, where it is converted to pyruvate to fuel oxidative phosphorylation.

Thus, the ANLS model suggests that lactate, not glucose, provides energetic 
support for firing neurons [26]. Glutamate and glycine are active participants in 
these metabolic processes. Exclusion of most blood-borne glutamate at the blood-
brain barrier (BBB) and a net removal of glutamine from the brain indicate that the 
cerebral pools of glutamate are largely produced within the brain [27]. The stabil-
ity of glutamate concentration is maintained by two main reactions. Glutamine 
synthetase (GS), which is found in astrocytes, is the only known enzyme to date 
that is capable of a reversible conversion between glutamine and glutamate and 
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ammonia in the mammalian brain [28]. Furthermore, cells can convert glutamate 
to glutamine in an ATP-dependent process catalyzed by glutamine synthetase. 
Astrocytic uptake of glutamate and release of glutamine, together with neuronal 
uptake of glutamine and release of glutamate, constitute the glutamate-glutamine 
cycle [29]. However, much of the glutamate taken up by astrocytes is destined for 
oxidative degradation, which first requires conversion to the TCA cycle intermedi-
ate 2-oxoglutarate. This can take place via transamination by aminotransferase (AT) 
or via oxidative deamination by glutamate dehydrogenase (GDH) [30].

Once glycine passes into a cell by uptake by GlyTs, the intracellular glycine 
concentration can be regulated via synthesis from L-serine within the cell, which 
itself can be synthesized from glycolysis intermediates and L-glutamate [24]. The 
major pathway for the glycine catabolism involves the oxidative cleavage of glycine 
to CO2, NH4+, and a methylene group (–CH2–), which is accepted by tetrahydrofo-
late (H4folate) in a reversible reaction catalyzed by the glycine cleavage system (also 

Figure 2. 
A scheme of the metabolic pathways involved in general glutamate/glycine transformations. The reactions occur 
in various intracellular localizations and can be duplicated in different compartments. The main metabolic 
pathways (glycolysis and the tricarboxylic acid (TCA) cycle) are labeled. The enzyme abbreviations are as 
follows: GM: glutaminase; GS: glutamine synthetase; GDH: glutamate dehydrogenase; GL: glutamylcysteine 
ligase; GTS: glutathione synthetase; AG: asparaginase; AT: aminotransferase; PPC: phosphoenolpyruvate 
carboxykinase; PC: pyruvate carboxylase; PDC: pyruvate dehydrogenase complex; PK: pyruvate kinase; LDH: 
lactate dehydrogenase; SDH: serine dehydrogenase; STM: serine transhydroxymethylase; and GCS: the glycine 
cleavage system. Other abbreviations are as follows: NAD+: Nicotinamide adenine dinucleotide (oxidized); 
NADH: Nicotinamide adenine dinucleotide (reduced); ATP: Adenosine triphosphate; ADP: Adenosine 
diphosphate; and THF:Tetrahydrofolate.
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called glycine synthase) [31]. The glycine cleavage system is essentially reversible 
but catalyzes glycine synthesis significantly only under anaerobic conditions, 
such as in anaerobic bacteria or anaerobic systems in vitro supplemented with 
NADH+H+ [32].

Taken together, all known information about the metabolic pathways suggests 
that glutamate and glycine self-regulate the processes of their concentration restora-
tion and mutual transformation. Additionally, oxidative phosphorylation in the 
mitochondria also plays a key role in the balance of these AAs.

4. CNS receptors of amino acids

The neuromediator function of AAs in the CNS is performed through the 
activation of membrane receptors. After being released from the presynaptic 
membrane into a synaptic cleft, glutamate and glycine rapidly diffuse to a postsyn-
aptic membrane, where appropriate receptors are further activated.

Glutamate receptors are divided into two groups: ionotropic glutamate receptors 
(iGluRs) and metabotropic glutamate receptors (mGluRs). Excitatory neurotrans-
mission throughout the CNS is mediated by ligand-gated ion channels, including 
ionotropic glutamate receptors (iGluRs) [33]. Abnormalities in iGluRs lead to a 
wide range of neurological diseases. Glutamate, the primary neurotransmitter in 
almost all synapses in the CNS, is released from presynaptic terminals and diffuses 
to the postsynaptic membrane, where it binds to iGluRs. This process leads to the 
opening of ion channels, allowing cations to flow in. Thus, the transmembrane 
channel rapidly depolarizes the postsynaptic membrane. The decrease in membrane 
potential initiates signal transduction in the postsynaptic neuron. In the iGluR fam-
ily, four subtypes of integral membrane proteins have been identified in vertebrates 
based on their pharmacological properties and sequence homologies: α-amino-3-
hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), kainate (KA), N-methyl-D-
aspartate (NMDA), and δ-receptors [34]. Subsequent cloning studies have revealed 
that NMDARs are assembled as heteromers that differ in subunit composition. 
To date, seven different subunits have been identified and categorized into three 
subfamilies according to sequence homology [35]. Each iGluR family member 
exhibits specific kinetic and pharmacological properties in addition to playing 
a unique role in neurotransmission [36]. The iGluRs are ligand-gated ion chan-
nels that are permeable to Na+ and K+ (and Ca2+ in some instances), whereas the 
mGluRs are G protein-coupled receptors that trigger second messenger cascades. 
The early component and the late component of neurotransmission are assumed 
to be mediated by AMPARs and NMDARs/KARs, respectively. This assumption is 
based on receptor kinetics, as AMPARs are faster and NMDARs/KARs are slower. 
Nevertheless, acoustic signals are transferred by all of these iGluRs in a precise and 
reliable manner. Moreover, some auditory processing neurons have a fourth type of 
iGluR, the delta receptor [34]. The open, or conducting, conformation of the iGluR 
ion channel is nonselective for monovalent cations. Membrane excitation is often 
driven by channel permeability to Ca2+. This Ca2+ influx and its physiological and 
pathological consequences depend strongly on the specific iGluR subtype and the 
specific subunits in its oligomeric complex [37].

mGluRs are G protein-coupled receptors (GPCRs) that, following activation, 
regulate both G protein-dependent and G protein-independent signalling pathways. 
According to sequence homology, cell signalling activation, and agonist selectivity, 
the mGluRs have been divided into eight subtypes (from mGlu1 to mGlu8). These 
subtypes comprise three different subgroups (from I to III) [38]. Group I mGluRs 
(mGlu1 and mGlu5) are functionally linked to polyphosphoinositide (PI) hydrolysis 
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and are negatively coupled with K+ channels. Both group II (mGlu2 and mGlu3) and 
group III (mGlu4, mGlu6, mGlu7, and mGlu8) mGluRs negatively regulate adenyl-
ate cyclase and activate mitogen-activated protein kinase (MAPK) and PI-3-kinase 
pathways [39]. mGluRs are usually localized on synaptic and extrasynaptic mem-
branes in both glia and neurons. Group I mGluRs are generally postsynaptic, sur-
rounding ionotropic receptors, and modulate depolarization and synaptic excitability. 
Groups II and III are mostly expressed at the presynaptic level and control the release 
of neurotransmitters [39, 40]. mGluRs are heavily expressed throughout the basal 
ganglia (BG), where they modulate neuronal excitability, transmitter release, and 
long-term synaptic plasticity [41]. These receptors are coupled to different G proteins 
and modulate slow postsynaptic neuronal responses, either through presynaptic or 
postsynaptic machinery or through modulation of astrocyte function [42]. mGluRs 
are highly and diffusely expressed in glial cells. On the one hand, this increases the 
options for therapeutic interventions, but on the other hand, it makes it even more 
difficult to selectively target single receptors to yield neuroprotection (Figure 3) [43].

Glycine receptors (GlyRs), along with certain γ-aminobutyric acid receptors 
(GABAARs), are the principal determinants of fast inhibitory synaptic neuro-
transmission in the central nervous system (CNS). GlyR and GABAAR belong to 
the superfamily of pentameric ligand-gated ion channels (pLGICs) [33]. The two 
neurotransmitters (glycine and GABA) may be functionally interchangeable, and 
the multiple receptor subtypes with inhibitory influences provide diverse mecha-
nisms for maintaining inhibitory homeostasis [35]. Inhibitory glycine receptors 
(GlyRs) are anion-selective ligand-gated ion channels (LGICs), which, together 
with GABAA receptors (GABAARs), nicotinic acetylcholine receptors (nAChRs), 
and serotonin type 3 receptors (5HT-3), form the eukaryotic Cys-loop family [36]. 
Several endogenous molecules, including neurotransmitters and neuromodulators 
(such as glutamate, Zn, and Ni), and exogenous substances, such as anaesthetics 
and alcohols, modulate GlyR function [40].

5. Participation in development of pathological processes

Despite their obvious physiological roles in protein synthesis, the cellular effects 
of glycine and glutamate in the CNS seem to be quite different. If glycine has been 

Figure 3. 
A reconstruction of possible AA ionotropic receptors in the CNS. The images were created using the data 
collected in the Protein Data Bank (PDB) (https://www.rcsb.org/). The scaled images show GlyR (6UBS, 
Danio rerio, [44]), AMPAR (5IDE, Rattus norvegicus, [45]), KAR (6KZM, Rattus norvegicus, [46]) and 
NMDAR (7EOQ , Homo sapiens, [47]).
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contemplated an “angel” compound, due to its generally positive effects, then 
glutamate has usually been considered a “demon” compound, owing to its generally 
negative effects. Although the last claim is far from accurate, the first is supported 
by many experimental findings. Indeed, the effect of glycine has always been 
reported as positive. It protects against oxidative stress caused by a wide variety of 
chemicals, drugs, and toxicants at the cellular or organ level in the liver, kidneys, 
intestines, and vascular system [34, 37]. Glycine is a major component of collagen 
molecules that is vital to stabilizing them to form a triple helix [48]. Administration 
of glycine attenuates diabetic complications in a streptozotocin-induced diabetic 
rat model [49]. Supplemental glycine effectively protects muscles in a variety of 
wasting models, including cancer cachexia, sepsis, and dieting [50]. Glycine may 
prevent ischaemia–reperfusion injury by direct cytoprotection, presumably by 
inhibition of the formation of plasma membrane pores and of the inflammatory 
response [38]. The cytoprotective and modulatory effects of glycine have been 
observed in many nonneuronal cell types. The action of glycine is mediated by 
classic or unconventional GlyRs, both inside and outside of the nervous system [51]. 
Glycine cytoprotection substantially overlaps with the number of agents that act 
on neuronal receptors with glycine as an agonist or coagonist. This observation has 
been confirmed by molecular pharmacology studies from multiple laboratories. The 
studies indicate highly constrained steric and conformational requirements for the 
interaction, which, along with the rapid on-off timing of the effects, is consistent 
with the involvement of reversible ligand-binding site interactions [52].

In contrast, glutamate is considered a toxic agent that yields excitotoxicity at 
overload concentrations. Indeed, the neurotoxic potential of glutamate has been 
recognized since the 1950s [53]. For example, a major driver of white matter demise 
is excitotoxicity, a consequence of the excessive glutamate released by vesicular 
and nonvesicular mechanisms from axons and glial cells. This excessive glutamate 
concentration results in overactivation of iGluRs profusely expressed by all cell 
compartments in white matter [54]. Generally, excitotoxicity involves a large inflow 
of Ca2+ and Na+ into neurons up to the conditions when Ca2+ concentrations reach 
critical levels, leading to cell injury or death [55]. Moreover, ambient extracellular 
glutamate is lower than the concentration known to trigger excitotoxicity and sub-
sequent neurodegeneration; excitotoxicity is known to occur at extracellular gluta-
mate concentrations as low as 2 to 5 μM, with swelling and apoptosis predominating 
at <20 μM glutamate and fast necrosis at >100 μM glutamate [56]. Excitotoxic 
neuronal death is involved in neurodegenerative diseases of the CNS, such as mul-
tiple sclerosis [57], Alzheimer’s disease [58], Parkinson’s disease [59], Huntington’s 
disease [60], stroke, epilepsy, alcohol withdrawal, and amyotrophic lateral sclerosis 
[61]. However, the role of glutamate is not only excitotoxic. The assumption that 
neurodegenerative disease treatments should “fight against” glutamate is incorrect 
given the wrong function of glutamate in the CNS. As a part of normal physiological 
excitation, this AA must be properly regulated, but battling with glutamate recep-
tors or the transport system will cause serious negative consequences. Instead, the 
level and functional activity of glutamate may be adjusted by metabolic processes, 
including glycine and oxidative phosphorylation, in mitochondria.

6.  Balance is achieved through mutual interactions of the excitatory  
and inhibitory effects of amino acids

Because glutamate is the major mediator of excitatory signals as well as of 
nervous system plasticity, including cell elimination, it follows that glutamate needs 
to be present at the right concentrations in the right places at the right time [17]. 
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These conditions are regulated by GS, GM, and EAATs and convectional diffusion 
in ISF. There is evidence that extracellular glutamate is not compartmentalized by 
EAATs under some conditions [62]. The most obvious shift in glutamate levels is 
observed under high GDH and AT activity. The general activation of bioenerget-
ics decreases the excessive glutamate concentration by stimulating the TCA cycle. 
Moreover, glycine can participate in this shift in a variety of ways. GlyT-1 controls 
glycine release and reuptake, determines glycine availability at glycine binding sites 
on NMDA receptors [36] and coordinates neuronal-glial interactions at glutamater-
gic synapses [19]. Thus, glycine assists glutamate in the activation of astrocytes and 
further stimulates the mitochondria according to the ANLS hypothesis. Glycine can 
conjugate with glutamate in the GSH synthesis pathway (Figure 1). This mechanism 
is essential to maintain the redox status of neurons and to prevent oxidative stress 
and high levels of reactive oxygen species (ROS) synthesis. Neuronal mitochondria 
are the target of glutamate, which attenuates succinate dehydrogenase (a key enzyme 
of the TCA cycle) inhibition by oxaloacetate [63], with further induction of ROS 
production [64]. However, glycine can prevent excessive hydrogen peroxide produc-
tion induced by glutamate in brain mitochondria [65], thereby reducing the prooxi-
dant effects of the excessive glutamate concentrations.

Figure 4. 
The transport and activation of receptors in glycinergic and glutamatergic synapses. The transport system 
is tightly linked with glucose consumption. This transport system occurs in both astrocytes and neurons, but 
according to the ANLS model, the majority of glucose is consumed in astrocytes, with further diffusion of 
lactate to neurons. Lactate transport is facilitated by monocarboxylate transporters (MCTs), which have 
two different isoenzymes. MCT1 is expressed in astrocytes, and MCT2 is found in neurons [69]. Glutamate-
glutamine cycling occurs between central astrocytes and neurons, mediated by sodium-coupled neutral 
amino acid transporters (SNATs). Transport is mediated by two isoforms, SNAT3 and SNAT1 [70]. ISF: 
interstitial fluid.
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Interestingly, the effects of amino acids can vary depending on the species. For 
example, in a chick model, injections of L-glutamate, NMDA, and AMPA attenu-
ated total distress vocalizations and induced sedation [66]. The association between 
glutamate and inhibition/sedation is even stronger because the brain contains a 
considerable level of glutamate decarboxylase, which directly catalyzes the decar-
boxylation of glutamate to GABA [27]. Additionally, glycine is not always associated 
with direct inhibition in the CNS. Indeed, in mature neurons, where there is a low 
intracellular Cl− concentration maintained by K+- Cl− cotransporter 2 (KCC2), 
activation of GlyRs elicits an influx of Cl−, leading to rapid hyperpolarization and 
postsynaptic inhibition [67]. In contrast, in immature neurons, activation of GlyRs 
results in efflux of Cl−, leading to neuronal depolarization; this opens voltage-
dependent Ca2+ channels, elicits action potentials, and establishes early network 
activity and excitation in the developing nervous system [68].

Thus, the balance between excitation and inhibition is the result of continuous 
interactions among different processes involving both glutamate and glycine. It is 
essential that the main reactions and regulatory sites are nonhomogenously distrib-
uted in neuronal space and are time-regulated. Convective flow does not restore the 
homogeneity of mediator and metabolite concentrations because of the tortuosity 
of the system [63]. A scheme of the balanced interactions between glycinergic and 
glutamatergic synapses is shown in Figure 4.

7. Clinical applications and perspectives

The first (and obvious) clinical application of AAs is as a reference level to 
indicate different pathologies. This suggestion covers more AAs than those men-
tioned above. For decades, the biochemical analysis of AAs in body fluids has been 
an important diagnostic tool in the detection of congenital errors of metabolism. 
Significant elevations of amino acids in plasma, urine, or CSF have been the 
backbone of many diagnostic procedures [71]. This is because defects in amino 
acid catabolic pathways can be detected by the characteristic accumulation of their 
metabolites. Well-known examples of this are elevated plasma concentrations of 
phenylalanine in phenylketonuria (PKU) and increased concentrations of homo-
cysteine in homocystinuria [71].

In addition, the properties of glutamate/glycine discussed above indicate a 
wide range of potential medical applications for compounds that govern transport, 
receptors, and metabolic systems in the CNS. A classic pharmacological approach 
may be based on the search for chemicals that affect the indicated processes; inter-
actions with the target protein site or reaction must be local and precisely unidirec-
tional and wide metabolic participation of the candidate should be avoided. There 
are several examples to date. Each of the three mGlu subgroups can be considered a 
novel target for the treatment of schizophrenia. All three symptom domains could 
be effectively treated by mGlu5 positive allosteric modulators, which are devoid of 
toxicity and seizure liability according to preclinical data. Furthermore, the poten-
tial antipsychotic and cognitive-enhancing effects of drugs targeting mGlu1 and 
mGlu3 were supported by recent genetic investigations of schizophrenia patients 
[72]. Preclinical studies have revealed that specific mGluR subtypes mediate sig-
nificant neuroprotective effects that reduce toxin-induced midbrain dopaminergic 
neuronal death in animal models of Parkinson’s disease [41]. Additionally, mGluRs 
have emerged as research targets in treating Alzheimer’s disease. In particular, 
mGluR-based compounds producing both symptomatic and disease-modifying 
effects in preclinical models of the disease are of special interest [73]. G protein-
coupled mGluRs expressed by tumor cells, particularly cancer stem cells, might 
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represent new candidate drug targets for the treatment of malignant brain tumors 
[74]. Group III mGluR agonists have been recently identified as promising tools for 
managing affective symptoms, such as the pathological anxiety observed in neuro-
pathic pain. However, the use of mGluR ligands as anxiolytics was disappointing in 
clinical trials. Nevertheless, there is ground for a certain amount of optimism [75].

Pharmacological modulation of glycinergic inhibition could represent a novel 
therapeutic strategy for a variety of diseases involving altered synaptic inhibition, 
primarily in the spinal cord and brain stem but possibly also at supraspinal sites 
[74]. Among the inhibitors of GlyT-1, two candidates have attracted the most atten-
tion. Sarcosine, a known intermediate of glycine metabolism, had positive results 
as a short-term treatment of major depression and for acutely ill and chronically 
stable schizophrenia patients. Another GlyT-1 inhibitor, bitopertin, was expected to 
be effective in treating negative or positive schizophrenia symptoms. However, the 
phase III clinical trials fell short of the primary endpoint, and the investigation was 
halted due to its lack of efficacy in improving negative symptoms [76]. Gelsemium, 
a small genus of flowering plants from the family Loganiaceae, may be used as a 
pain treatment and for its mechanism of action. Gelsemium and its active alkaloids 
may produce antinociception by activating the spinal α3 glycine/allopregnanolone 
pathway in inflammatory, neuropathic, and bone cancer pain without inducing 
antinociceptive tolerance, in contrast to morphine [75].

Another strategy is to directly use AAs for medical treatment. In this scenario, 
glycine is the most appropriate candidate. Glycine has a wide spectrum of protec-
tive properties against different diseases and injuries. As such, it represents a novel 
anti-inflammatory, immunomodulatory and cytoprotective agent [77]. Oral supple-
mentation of glycine at a proper dose is very successful in treating several metabolic 
disorders in individuals with cardiovascular diseases, various inflammatory dis-
eases, cancers, diabetes, and obesity [34]. Glycine was well tolerated at a dose of 0.8 
g/kg body weight a day, resulting in significantly increased serum glycine levels and 
a 7% reduction in negative symptoms in patients with treatment-resistant schizo-
phrenia [78]. An acute high dosage of glycine attenuates the neurophysiological 
representation of the brain’s preattentive acoustic change detection system (mis-
match negativity) in healthy controls, raising the possibility that the optimal effects 
of glycine and other glycine agonists may depend on the integrity of the NMDA 
receptor system [79]. The glycine was effective in the treatment of ischaemic stroke 
patients. In a randomized, double-blind, placebo-controlled study on 200 patients 
with acute (<6 h) ischaemic stroke in the carotid artery area, 1.0–2.0 g/day of gly-
cine was accompanied by a tendency towards decreased 30-day mortality (5.9% in 
the 1.0 g/day glycine and 10% in the 2.0 g/day glycine groups vs. 14% in the placebo 
and 14.3% in the 0.5 g/day glycine groups), an improved clinical outcome on the 
Orgogozo Stroke Scale (p < 0.01) and the Scandinavian Stroke Scale (p < 0.01) and 
a favorable functional outcome on the Barthel Index for Activities of Daily Living 
(p < 0.01) in the 1.0 g/day glycine group compared to those in the placebo group in 
patients with no or mild disability [80]. The molecular mechanism of such an effect 
is based on the ability of glycine to initiate stable vasodilatation of arterioles, which 
has been demonstrated in rat pial vessels and in mesenteric arterioles [81, 82].

8. Conclusions

According to experimental and clinical evidence, AAs are especially useful 
nutrients for the treatment of patients with different diseases. These nutrients not 
only supply a background pool for biochemical reactions, but the functions of the 
metabolites cover a wide range of neurochemical processes, and they are always 
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mutually dependent. Even though some processes are decreased or increased in ill-
nesses, it does not mean that the treatment strategy must be targeted to only correct 
the single altered process. A prominent example is glutamate-induced excitotoxicity 
in neurons. The best strategy to prevent increased glutamate concentrations is to 
maintain bioenergetic processes in neurons and astrocytes at high activity levels and 
to activate glycine-dependent processes. Moreover, it helps to assign the exceeded 
content of the neuromediator to a physiological range and to form stable conditions 
for further health development, avoiding excitotoxicity (Figure 5). Searching for 
exogenous antagonists of metabolic receptors seems to be an incorrect therapeutic 
strategy because the function of the AA-dependent system depends on the basic 
metabolic regulatory core of metabolic processes. Indeed, to find appropriate 
therapeutic methods, further fundamental and clinical investigations are necessary.
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Figure 5. 
Scheme of the mutual influence of inhibition and excitation mediated by glycine and glutamate.
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Chapter 6

Emerging Roles of Non-Coding 
RNA in Neuronal Function and 
Dysfunction
Steven G. Fagan and Shona Pfeiffer

Abstract

Advancements in RNA sequencing technologies in recent years have contributed 
greatly to our understanding of the transcriptome and the now widely recognized 
multifaceted functions of RNA. The discovery and functional analysis of an 
increasing number of novel small non-coding RNAs (ncRNAs) has highlighted 
their importance as critical regulators of gene expression and brain function. In 
particular, two diverse classes of ncRNAs, microRNAs (miRNAs) and tRNA-derived 
small RNAs (tsRNAs), are especially abundant in the nervous system and play roles 
in regulation of gene expression and protein translation, cellular stress responses 
and complex underlying pathophysiology of neurological diseases. This chapter 
will discuss the most recent findings highlighting the dysregulation, functions and 
regulatory roles of ncRNAs in the pathophysiological mechanisms of neurological 
disorders and their relevance as novel biomarkers of injury and therapeutic agents.

Keywords: non-coding RNA (ncRNA), microRNA (miRNA),  
tRNA-derived small RNAs (tsRNA), tRNA-derived stress-induced RNA (tiRNA), 
tRNA fragments (tRFs), epigenetics, molecular biology, neurological disorders

1. Introduction

Normal neuronal function and development is reliant on tightly controlled 
regulation of gene expression at many levels. Advancements in transcriptomics 
and functional validation has elucidated key biological roles for non-coding RNAs 
(ncRNAs), transcripts do not encode proteins, in the regulation of a wide range of 
neuronal functions and pathophysiological processes. Over the past two decades 
large international collaborative research efforts such as the Human Genome Project 
and the ENCODE (Encyclopedia of DNA Elements) project have estimated that 
approximately 80% of the mammalian genome transcribes ncRNA and that 97% of 
RNA transcripts in the cell are non-coding [1–3]. This remarkable and unexplored 
area of molecular biology has since yielded many more types of ncRNA that have 
been shown to play a crucial role in a variety of biological processes.

ncRNA are classified either by their length or by functionality (Table 1). Small 
ncRNA are considered transcripts <200 nucleotides (nts) in length and long ncRNA 
are those >200 nts. Housekeeping ncRNA are constitutively expressed and are 
involved in mechanisms of cellular activity that are vital for cell viability. These 
include rRNA, tRNA and the more recently identified small nuclear RNA (snRNA), 
small nucleolar RNA (snoRNA) and telomerase RNA (TERC). Regulatory ncRNA 
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regulate gene expression through epigenetic, transcriptional and post-transcrip-
tional mechanisms, and include microRNA (miRNA), tRNA-derived small RNA 
(tsRNA), piwi-interacting RNA (piRNA), long non-coding RNA (lncRNA) and 
circular RNA (circRNA) [4].

This chapter will focus on two classes of ncRNA, miRNA and tsRNA, which are 
highly enriched in the central nervous system (CNS) with important roles in neuro-
nal function and dysfunction. The central roles played by these classes of ncRNAs 
and their dysregulation in disease, particularly their ability to regulate multiple 
genes, place them as promising biomarkers and therapeutic targets, entering many 
clinical trials.

2. microRNA

2.1 miRNA biogenesis and mechanism of action

miRNAs are transcribed by RNA polymerase II/III from either independent 
miRNA genes (monocistronic), as clusters of up to a few hundred miRNA (polycis-
tronic) or from the introns of protein-coding genes (intronic). Approximately half 
of miRNAs are considered intronic, however a functional relationship between miR-
NAs and host genes is rarely found. Long primary miRNA (pri-miRNA) transcripts 
are processed in the nucleus by a microprocessor complex containing ribonuclease 
III, Drosha, and RNA-binding protein subunit DGCR8 (DiGeorge syndrome critical 
region 8). Cleavage of the pri-miRNA by Drosha results in a 2 nt 3′ overhang and 
the characteristic ‘hairpin’ structure of the 65 nt precursor miRNA (pre-miRNA). 
The pre-miRNA is then exported to the cytosol by the exportin-5 (XPO5)/RanGTP 
complex, where it is further processed by the endonuclease Dicer, removing the 
terminal loop resulting in a double stranded miRNA containing the mature miRNA 
guide strand and passenger strand, typically 21 – 23 nts in length (Figure 1A).

The RNA-induced silencing complex (RISC) is a heterogeneous multi-protein 
complex that uses one miRNA strand as a template to target complimentary mRNAs 

Class Abbreviation Full name Size (nts)

Housekeeping RNAs rRNA Ribosomal RNA 120–4500

snoRNA Small nucleolar RNA 60–400

snRNA Small nuclear RNA 100–300

tRNA Transfer RNA 76–90

TERC Telomerase RNA —

Regulatory RNAs circRNA Circular RNA 100–10,000

eRNA Enhancer RNA 50–2000

lncRNA Long non-coding RNA >200

tsRNA tRNA-derived small RNA 16–50

piRNA piwi-interacting RNA 26–32

siRNA Small interfering RNA 20–25

miRNA microRNA 21–23

Y RNA — —

Table 1. 
Classification of ncRNAs.
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for degradation or translational repression, post-transcriptionally regulating gene 
expression. The double-stranded miRNA duplex is loaded into a binding pocket 
within an Argonaute family (Ago1-4) protein, which constitutes the principal 
component of RISC, mediated by Hsc70/Hsp90. The miRNA is unwound to 
single-stranded miRNAs and one ‘guide strand’ is anchored into the Ago protein, 
determining the specificity of the RISC, while the passenger strand is subject to 
degradation. The directionality of the mature miRNA guide strand originating from 
the 5′ or 3′ arm of the pre-miRNA duplex determines the miRNA-5p and -3p spe-
cies. While typically one strand is preferentially loaded, for some miRNA duplexes 
both arms can give rise to functional mature miRNAs that can be loaded into Ago 
proteins and used to guide the RISC to mRNA transcripts.

Recognition of target mRNA occurs by complementary base pairing between the 
miRNA seed region (2–8 nt) of the 5′ end of the guide strand and the mRNA tran-
script, typically within the 3′ UTR; however miRNA can also bind within mRNA 
promoter regions, the coding sequence, and 5′ UTR. The Ago protein present and 
the degree of complementarity between the guide and target strand determines 
the mechanism of gene silencing, triggering target degradation or translational 
repression. Importantly, the short seed sequence requirement for mRNA targeting 
confers ability for individual miRNAs to target multiple genes across several differ-
ent pathways. Similarly, an individual mRNA may contain target sites for multiple 
miRNAs, placing miRNAs in a powerful position in the regulation and modulation 
of the transcriptomic landscape. Dysregulation of miRNAs, therefore, has signifi-
cant implications and consequences for biological functions in physiological and 
pathological conditions.

2.2 miRNA functions

2.2.1 Neuronal development and function

An extensive catalog of work has demonstrated the involvement of miRNAs 
across the development, function and maintenance of the CNS. The cell-specific 
deletion of Dicer inhibits the maturation of miRNA and has been shown to delay 
embryonic CNS development, alter dendritic and spine morphology and lead to 
early postnatal death [5–7]. Specific miRNAs have been identified with central roles 
in regulation of adult neural stem cell proliferation [8–10] and the differentiation 
of cells into specific neuronal sub-types [11–14]. Post-transcriptional regulation of 
N-cadherin expression by the miR-379-410 cluster mediates neuronal migration 
[15] and miR-132 is involved in the activity-dependent integration of neurons into 
the adult dentate gyrus [16].

Figure 1. 
Illustration of the biogenesis of (A) miRNA and (B) tsRNA.
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The controlled extension of neuronal processes as well as the generation of 
adaptable synapses are key in the development of functional neural networks in 
the CNS. A number of miRNAs have been closely associated with the regulation 
of axonal and dendritic morphology, and synaptic plasticity. Neurite outgrowth 
is highly dependent on extracellular trophic cues that stimulate cAMP response 
element binding protein (CREB) transcription factor, a target of which is miR-132. 
In axons, miR-132 downregulates the activity of the GTPase-activating protein 
p250 GAP resulting in axonal sprouting [17]. A number of counteracting miRNAs 
tightly regulate axonal length. The miR-17/92 cluster downregulates PTEN result-
ing in activation of the mTOR pathway and axonal extension [18], whereas miR-9 
has been shown to locally repress Map1b expression and inhibit axonal growth [19]. 
Conversely, miR-9 promotes dendritic development and its loss results in reduced 
dendritic length and complexity [20]. Similar to axonal extension, miR-132 has 
been shown to positively regulate dendritic length, arborization and spine density 
in dendritic extensions in an activity-dependent manner [21, 22]. miR-132-medi-
ated regulation of spine density has been attributed to its direct association with 
matrix metalloproteinase-9 [23] and miR-132-medited repression of p250GAP in 
dendritic spines has been associated with Leptin-induced synaptogenesis [24]. In 
Drosophila melanogaster miR-284 has been shown to affect the expression of the 
glutamate receptors GluRIIA and GluRIIB indicating a role in the regulation of 
synaptic strength [25] and in higher order animals the inhibition of miR-132 and 
miR-219 have been associated with disturbed circadian rhythm and the impairment 
of memory acquisition [26].

2.2.2 Inflammation

Inflammation in the CNS is an important process for the alleviation of infection 
or the resolution of cerebral damage; however, aberrant or chronic inflammation has 
been implicated in a number of neurological disorders [27]. Microglial cells, the resi-
dent immune cells of the CNS, are enriched in a number of miRNAs [28] and expres-
sion of these is altered in response to inflammatory stimuli [29]. Specific miRNAs 
have been associated with the development of a pro- or anti-inflammatory phenotype. 
miR-155 is a well-studied pro-inflammatory mediator in macrophages and microglia, 
targeting a number of anti-inflammatory regulators for degradation induced in 
response to NF-κB dependent TLR signaling. Furthermore, p53-mediated induction 
of miR-155 is known to target anti-inflammatory transcription factor c-Maf, resulting 
in a pro-inflammatory reaction [30]. miR-124 and miR-146a are both widely reported 
negative regulators of CNS inflammation, down-regulating inflammatory mediators. 
miR-146a is also induced through TLR/NF-κB-dependent signaling in response to 
various immune mediators, and subsequently reduces NF-κB transcriptional activity. 
miR-146a expression is inversely correlated with inflammatory-related proteins [31]. 
Similarly miR-124, a highly abundant neuronal and immune cell miRNA, has been 
reported to negatively regulate TLR signaling [32] promote microglial quiescence, and 
reduce microglial MHC-II, TNF-α and ROS production [33].

2.2.3 Apoptosis

Neuronal cell death is a key feature in neurodegenerative diseases and has been 
shown to involve a number of miRNAs. In models of spinal cord injury, activation 
of miR-21-5p and miR-494 as well as the inhibition of miR-29b, reduced apoptosis 
through stimulation of the AKT/mTOR signaling pathway [34–36]. Specific miR-
NAs have been shown to have a more direct effect on the apoptotic cascade. Indeed, 
the inhibition of miR-24, miR-497, miR-15a/16-1, miR-181a and miR-106b-5p 
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increases expression of anti-apoptotic proteins Bcl-w, Bcl-2 and Bcl-xl resulting in 
attenuation of neuronal apoptosis [37–41].

3. tsRNA

Previously thought of as simple degradation products, tsRNA are cleaved 
fragments of full tRNA transcripts. In eukaryotes, tRNA genes are transcribed by 
polymerase III and the 5′ leader sequence and 3′ trailer sequences are removed from 
the pre-tRNA sequence by the endonucleases RNase P and RNase Z, respectively 
[42–44]. The mature tRNA is generated by the addition of a CCA tail by CCase [45, 
46]. Mature tRNAs are 73–90 nt long with a classic ‘cloverleaf ’ secondary structure 
consisting of an anti-codon loop that recognizes mRNA codons, an acceptor stem 
that binds amino acids, a dihydrouridine (D) loop, a thymidine (T) loop and a vari-
able (V) loop [47]. tRNA are a highly modified species with over 170 independent 
modifications reported to date [48]. These modifications are largely localized on the 
anticodon loop, affecting the speed and accuracy of decoding, or the structural core 
of the molecule affecting stability and degradation pathways [49, 50]. tsRNA are 
generated from the cleavage of tRNA by endonucleases and are classified by their 
cleavage site and length as either tRNA-derived stress-induced RNA (tiRNA) or 
tRNA fragments (tRFs).

3.1 Biogenesis and structure of tsRNA

3.1.1 tiRNA

The generation of tiRNA occurs when the stress-induced RNase angiogenin 
(Ang) cleaves mature tRNA at the anticodon loop [51]. This produces transcripts 
31–40 nts long that are defined as either 5′ or 3′tiRNA depending of the presence 
of a 3′ or 5′ end at the anticodon loop respectively (Figure 1B). The production of 
Ang is mediated by the transcription factor hypoxia-inducible factor-1α (HIF-1α) 
and thus tiRNA generation is closely linked with cellular stress [52]. Accumulation 
of tiRNA is known to occur following oxidative stress, heat shock, UV radiation, 
hypoxia and starvation [53–56].

3.1.2 tRF

tRFs are shorter transcripts of 14–30 nts that are produced by cleavage of tRNA 
at the D-loop, T-loop or stem region by Ang, Dicer and another yet to be identified 
member of the RNase superfamily [57]. Cleavage of tRNA at the D-loop generates 
fragments of three different lengths—tRF-5a (14–16 nts), tRF-5b (22–24 nts) or 
tRF-5c (28–30 nts). Similarly, cleavage at the T-loop produces tRF-3a (18 nt) or tRF-
3b (22 nt). The cleavage of pre-tRNA at the 3′ end results in the generation of tRF-1 
(Figure 1B) [57, 58].

3.2 tsRNA mechanism of action

3.2.1 Gene silencing

Similar to miRNAs, tRFs have been associated with the epigenetic regulator 
RISC, however mechanistic details on the role of tsRNA in the RISC remain to 
be elucidated. A recent meta-analysis of short RNA libraries from HEK293 cells 
demonstrated that both tRF-3 and tRF-5 associate with Ago proteins; however, a 
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preference for Ago1, 3 and 4 over Ago2 was identified [59]. Interestingly a subse-
quent study in D. melanogaster revealed an age-related shift in tRF-Ago binding 
demonstrating a preference for Ago2 binding over Ago1 with increasing age [60].

3.2.2 Regulation of protein translation

The synthesis of protein is a central activity in all cells that consumes a high level 
of energy and is dynamic in response to metabolic conditions and external stimuli. 
The regulation of protein translation therefore is a vital process in the maintenance 
of cell viability and the stress response. Canonical cap-dependent translation begins 
with the formation of the eukaryotic initiation factor (eIF) 4F complex containing 
eIF4A, a DEAD-box helicase, eIF4E and eIF4G. The eIF4E subunit binds to the 5’ 
m7GTP cap on target mRNA and the eIF4G subunit is a scaffold protein that medi-
ates the recruitment of other proteins including eIF3 and poly(A) binding protein 
(PABP). eIF4F binding to the 5′ m7GTP cap and the 3′ poly(A) tail circularizes the 
target mRNA and allows the 48S pre-initiation complex, containing the 40S small 
ribosomal subunit, Met-tRNAi

met and eIF2, to scan the 5′ untranslated region and 
find the AUG start codon [61].

The dynamic regulation of protein translation in response to cellular stress and 
metabolic conditions is vital to cell survival. Stress-induced Ang-generated 5′tiRNA 
have been shown to halt the initiation of protein translation and facilitate the pack-
aging of stalled translational complexes into stress granules [54]. Stress granules 
are cytoplasmic RNA-protein complexes that rapidly assemble and disassemble in 
response to cellular stress. This sequestration allows for the utilization of energy stores 
elsewhere and the recommencement of protein translation under optimum conditions 
[62]. Specific 5′tiRNA that contain a terminal oligoguanine (TOG) motif form stable 
G-quadruplex (G4) structures that directly bind the HEAT domain of eIF4G displac-
ing eIF4A and inhibiting scanning of the mRNA target. Furthermore, 5′tiRNA with 
a 5′ monophosphate modification have been shown to bind the RNA binding protein 
YB-1 via the cold shock domain to precipitate the formation of stress granules [63].

Current knowledge on the effect of tRFs on protein translation is less advanced. 
Research in prokaryotic cells has demonstrated that tRF-5c of Val-GAC can bind 
the small ribosomal subunit and interfere with peptidyl transferase activity thereby 
inhibiting protein translation [64, 65]. In eukaryotic cells the tRF-3b of Gly-GCC 
reduced the level of specific protein with no concomitant reduction on mRNA levels 
indicating regulation at the translational level [66].

3.3 tsRNA functions

3.3.1 tsRNA and apoptosis

Disruption to the tsRNA system has been associated with increased cell death. 
Hypo-methylation of tRNA that arises from the inhibition of NSun2 increases 
cleavage by Ang and the accumulation of 5′tiRNA. The subsequent sustained 
depression in protein translation results in neuronal shrinkage, impaired synapse 
formation, cell death and is associated with neurodevelopmental deficiencies [67]. 
Loss-of-function mutations in the RNA kinase CLP1 has been shown to increase the 
level of tyrosine pre-tRNA fragments resulting in exaggerated p53 activation and 
vulnerability to cell death in cells exposed to oxidative stress [68]. Conversely, Ang 
has been shown to reduce cell death in neurons exposed to hyperosmotic stress in a 
tiRNA-mediated fashion. Specific Ang-generated tiRNA interact with cytochrome 
c and form a ribonucleoprotein complex that limits the formation of apoptosomes 
and reduces caspase-3 activation [53].
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3.3.2 tsRNA and inflammation

Little research has been carried out on the involvement of tsRNA in the immune 
system; however, the expression of 5′tiRNA and tRF5 has been reported in mouse 
leukocytes and human monocytes respectively [69]. It is possible that tsRNAs play a 
regulatory role in the cellular response to inflammatory signals. In human chondro-
cytes, the pro-inflammatory cytokine IL-1β was shown to increase the expression 
of specific tRF-3s [70]. These fragments downregulated the cytokine signaling 
molecule JAK3 in an Ago-dependent manner. Furthermore, tsRNA may possess the 
ability to stimulate the immune response with reports demonstrating that tsRNA 
bind directly to Toll-like receptors on T-helper 1 and cytotoxic T cells [71].

4. ncRNA in neurological disease

4.1 Parkinson’s disease

Parkinson’s disease (PD) is characterized by the progressive loss of dopaminer-
gic neurons resulting in the deterioration of motor function. Altered expression 
of miR-133b has been reported in the midbrain of PD patients. This is notable as 
the transcription factor Pitx3 is a target of miR-133b and is involved in the matura-
tion and function of dopaminergic neurons [12]. Gain-of-function mutations to 
the leucine-rich repeat kinase 2 (LRRK2) has been closely associated with both 
sporadic and inherited forms of PD [72]. A reduction in miR-205 has been observed 
in sporadic PD patients with increased LRRK2 protein expression. Furthermore, 
in vitro studies revealed that miR-205 reduces LRRK2 expression and alleviates its 
neurodegenerative effect [73]. Conversely, LRRK2 has been shown to disrupt miR-
187* and let-7-mediated regulation of protein translation resulting in a pathogenic 
overproduction of E2F1/DP [74]. Another PD-related gene SNCA has been reported 
as a potential target of miR-7, miR-153 and miR-433 [75, 76]. miR-124 has been 
reported to play protective roles in dopaminergic neuronal apoptosis and autophagy 
in PD by regulating the AMPK/mTOR pathway. Suppression of miR-124 was been 
shown to regulate AMPK/mTOR signaling, significantly increasing p-AMPK activ-
ity and autophagy-associated Beclin 1 and LC3 II/LC3 I ratio [77].

In two independent studies, variations to the tsRNA-generating enzyme Ang 
have been reported in a subset of PD patients [78, 79]. Altered expression of tsRNA 
have also been reported in the amygdala [80], prefrontal cortex, cerebral spinal 
fluid and serum of PD patients [81]. Further work is required to elucidate the 
involvement of tsRNA in the pathogenesis of PD.

4.2 Alzheimer’s disease

Alzheimer’s disease (AD) is an age-related neurodegenerative disorder char-
acterized by the progressive loss of cognition and memory due to severe neuronal 
cell loss. Hallmarks of the disease include the formation of extracellular amyloid 
plaques and intracellular neurofibrillary tangles of hyperphosphorylated tau. Given 
the high degree of cell death and chronic inflammation in the CNS, it is unsurpris-
ing that a large number of miRNAs are differentially expressed in AD [82–85], 
however, a number of miRNAs have also been shown to affect the pathogenic 
mechanisms of the disease.

Alternative splicing of amyloid precursor protein (APP), the parent molecule 
of pathogenic Aβ, is regulated by miR-124. Indeed, miR-124 is downregulated in 
the AD brain and its expression was shown to inhibit polypyrimidine tract binding 
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protein 1 (PTBP1) resulting in increased APP with exon 7 and 8 inclusion [86]. 
Alterations of this kind have been associated with increased Aβ production [87]. 
Furthermore, miR-98 reduces the expression of insulin-like growth factor 1 (IGF-1) 
which is involved in the processing of APP. Overexpression of miR-98 downregu-
lates IGF-1 resulting in increased Aβ production and tau phosphorylation [88]. 
The expression of tau is affected by the levels of miR-34a and miR-26b [89, 90]. 
Overexpression of miR-26b also leads to aberrant cell cycle entry that involves the 
nuclear export and activation of cyclin-dependent kinase 5 (CDK5), a major kinase 
involved in tau phosphorylation [89]. Finally, pro-inflammatory NFκB-associated 
miRNAs such as miR-7, miR-9, miR-34a, miR-125b, miR-46a and miR-155 are all 
upregulated in AD [85]. Presenilin 2 (PS2) mutations have been implicated in the 
development of autosomal dominant AD, and microglial knockout of PS2 reduces 
miR-146 expression and results in an increased pro-inflammatory response [91]. 
The level of inflammation in the CNS is a strong determining factor for disease 
progression in AD [92].

Limited work has been carried out to date on the involvement of tsRNA in AD; 
however, similar to PD, mutation of tsRNA-generating enzyme Ang has been identi-
fied. In an Italian cohort of AD patients nonsense mutations in ANG were identified 
with 0.2% frequency resulting in a 51 amino acid shortening in the protein [93].

4.3 Stroke

Stroke remains one of the leading causes of death and disability worldwide, 
conferring a high morbidity, disability, and mortality. Cerebral ischaemia triggers 
a complex cascade of physiological, biochemical and gene expression changes 
primarily resulting from impaired cellular energetics and the collapse of ion 
gradients. In particular, ischaemia-mediated glutamate elevation and subsequent 
over-activation of glutamate N-methyl-D-aspartate (NMDA) receptors is central to 
excitotoxic neuronal injury and cell death during ischaemic stroke [94, 95].

miR-107 has been shown to play a key role in the regulation of excitotoxicity in 
ischaemic neuronal injury, associated with increased glutamate accumulation both 
in vivo and in ischaemic stroke patients [96]. Increased miR-107 following ischaemic 
stroke inhibits GLT-1 expression, an abundant glutamate transporter, resulting in 
the accumulation of glutamate. Hypoxamir miR-210 has been widely reported as a 
miRNA ubiquitously expressed in ischaemic cells and tissues, with a central role in 
adaptation to low-oxygen environments such as tumourigenesis and ischaemia [97]. 
Robust induction of miR-210-3p following ischaemic stroke in vivo has been associ-
ated with modulation of PI3K-p70S6K signaling in response to AMPK activation and 
NMDA receptor-mediated glutamate excitotoxicity [98]. A number of other miRNAs 
have also been reported to play roles in the regulation of glutamate neurotransmis-
sion and excitotoxicity in ischaemic stroke, including miR-223, miR-181, miR-125a, 
miR-125b, miR-1000, miR-132 and miR-124a [99].

miR-223 has been shown to regulate the functional expression of glutamate 
receptor AMPAR subunit GluR2 and NMDAR subunit NR2B, which control neu-
ronal excitability in response to glutamate, reducing neuronal excitability and cell 
death by inhibition of NMDA-induced calcium influx in hippocampal neurons 
[100]. One of the most abundantly expressed neuronal miRNAs, dysregulation 
of miR-124 has been implicated in many CNS disorders and has been shown to be 
downregulated following ischaemic stroke [101]. Downregulation of miR-124 in 
vivo following ischaemic stroke has been associated with upregulation of death-
associated protein kinase 1 (DAPK1), identified as a direct target of miR-124, 
caspase-3, and cleaved caspase-3, while over-expression of miR-124 was shown 
to significantly decrease DAPK1, caspase-3, cleaved caspase-3 levels and reduce 
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NMDA- and oxygen-glucose deprivation (OGD)-induced neuronal death in vivo 
[102]. Moreover, the neuroprotective role of miR-124 has been associated with 
decreased expression of pro-apoptotic protein Bax and increased expression of 
anti-apoptotic Bcl-2 and Bcl-xl [103].

In the context of inflammation associated with cerebral ischaemia, miR-181c has 
been shown to inhibit prominent pro-inflammatory cytokine TNF-α in response to 
OGD, reducing microglial activation and neuronal cell death [104]. Furthermore, 
miR-216a, miR-3437b and miR-126-3p or -5p have also been associated with regula-
tion of TNF following cerebral ischaemia.

Recent studies have shown tiRNAs to be upregulated following ischaemia in 
models of OGD in vitro and following ischaemic-reperfusion injury in vivo. Rapid 
and response-specific increases in tiRNA levels have been shown to correlate with 
degree of tissue damage, highlighting the potential role of tiRNA detection as a 
stress biomarker of injury [55, 56, 105, 106]. Furthermore, upregulation of 5′tiRNA 
fragments has been shown to inhibit endothelial angiogenesis following ischaemic 
stroke, indicating a role in modulating cerebral responses to ischaemic injury [106].

4.4 Amyolateral sclerosis

Amyolateral sclerosis (ALS) is the third most common neurodegenerative 
disease and is characterized by the rapid degeneration of cortical and spinal motor 
neurons leading to paralysis and death within 3–5 years of diagnosis [107, 108]. 
Approximately 90% of cases are sporadic, however a number of genetic mutations 
have been identified that account for 11% of sporadic and 70% of familial ALS 
[107, 109]. Mutations involving superoxide dismutase (SOD1), fused in sarcoma 
(FUS), TAR DNA-binding protein 43 (TDP43) and a hexanucleotide repeat expan-
sion on chromosome 9 in open reading frame 72 (C9ORF72) have all been associ-
ated with ALS pathology [109].

Deregulation of miR-142-3p has been identified in both SOD1 and TDP-43 
mutant mice, as well as in serum from ALS patients. Subsequent bioinformatic 
analysis identified TDP-43 and C9orf72 as targets of miR-142-3p, further implicat-
ing this miRNA in ALS pathology [110]. The skeletal muscle-specific miRNA, miR-
206, regulates myogenesis, promotes the formation of neuromuscular junctions and 
is upregulated in ALS [111, 112]. This protective response occurs early in disease 
progression and plateaus [111], and higher levels of miR-206 are found in spinal 
ALS which is associated with lower atrophy rates [113]. Upregulation of miR-155 
has been identified in both sporadic and familial ALS, and its inhibition in SOD1 
mutant mice resulted in increased survival [114]. Finally, a number of miRNA 
associated with regulation of oxidative stress are altered in ALS. X-linked inhibitor 
of apoptosis (XIAP) and the Nrf2-ARE pathway have been closely associated with 
neuronal dysfunction in ALS and are regulated by miR-34a and miR-27a [115, 116].

As seen with other neurodegenerative diseases, mutations to ANG have been 
identified in ALS and repeatedly validated in independent cohorts [79, 117–119]. 
Characterization of these mutations determined a reduction in ribonuclease activity 
and nuclear translocation of Ang [117]. Interestingly, the Ang-generated tiRNA 
5′ValCAC is increased in SOD1G93A mice at symptom onset and correlate with Ang 
expression and slower disease progression. Furthermore, increased 5′ValCAC in 
ALS patient serum samples is correlated with slower disease progression [120].

4.5 Epilepsy

Epilepsy is a heterogeneous group of disorders characterized by spontaneous and 
recurrent seizures that affects approximately 50 million people worldwide [121]. 
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In the majority of instances, seizures can be controlled, however approximately 30% 
of cases are treatment resistant. Seizures arise from abnormal synchronous activ-
ity in hyperexcitable neuronal networks and while this can be attributed to altered 
electrophysiological properties of ion channels and neurotransmitter systems, 
converging lines of research have also indicated a central role for the regulation of 
protein translation [122, 123].

As described in Section 2.2.1, miRNAs play a key role in neuronal excitability 
and connectivity making them prime targets in epilepsy research. The growth, 
spine density and arborization of dendrites are directly regulated by miR-132, 
miR-134 and miR-9 [20–24, 124, 125]. miR-132 is significantly increased in 
the hippocampus of experimental mice undergoing seizure and its inhibition 
has been shown to increase neuronal survival and reduce seizure frequency 
[126, 127]. Upregulation of miR-134 has been identified in resected hippocam-
pal and neocortical tissue of patients with treatment-resistant temporal-lobe 
epilepsy [128]. This was also observed in a number of animal models where 
inhibition of miR-134 was shown to reduce seizure occurrence and increase 
spine volume in hippocampal neurons [128–130]. Neuronal potassium channel 
expression is regulated by miR-92a and miR-324. miR-92a has been shown to be 
increased in temporal lobe epilepsy patients, and in animal models of epilepsy 
inhibition of miR-324 delays the onset of spontaneous seizures [131, 132]. 
Finally, the Ca2+ extruding pump ATP2B4 and the sodium-potassium-chloride 
transporter NKCC1 are regulated by miR-129 and miR-101a respectively. miR-
129 is increased in temporal lobe epilepsy patients and inhibition of miR-1219 
and miR-101a have been shown to reduce hyperexcitability in animal models of 
epilepsy [133, 134].

Recently, serum from two independent cohorts of temporal-lobe epilepsy 
patients have revealed increased levels of three 5′tRFS, 5′AlaTGC, 5′GluCTC and 
5′GlyGCC. These tRFs were detected in resected hippocampal and cortical tissue 
and were not associated with any disease related lesions. Furthermore, these frag-
ments were detected in primary mouse hippocampal neurons and their expression 
was shown to be activity-related [135].

5. ncRNA as a biomarker for disease

5.1 ncRNA biomarkers in Parkinson’s disease

A number of candidate miRNAs have been identified in plasma from PD 
patients by microarray, and validation in an independent cohort revealed the 
expression of miR-1826/miR-450b-3p, miR-626 and miR-505 were significantly 
different between control and PD subjects [136]. In a larger study, miRNAs known 
to be expressed in the CNS and involved in neuronal regulation were identified in 
the plasma of PD patients. The expression of miR-137 was increases and expression 
of miR-124 was decreased in PD patients compared with controls; however, there 
was no relation between these alterations and the severity of disease [137]. Using 
sequencing technologies a number of studies have identified miRNA candidates as 
biomarkers for PD. Subsequent validation by RT-PCR determined that miR-195 was 
increased and miR-185, miR-15b, miR-221, miR-181a, miR-141, miR-214, miR-
146b-5p, miR-193-3p, miR-29c, miR-146a, miR-214 and miR-221 were decreased 
in PD patients [138–140]. Finally, one study identified differential expression of 
miR-1-3p, miR-22-5p and miR-29a-3p in the whole blood of PD patients using 
PCR [141]. It is important to note here that no miRNA has yet been identified as a 
biomarker for PD in two independent studies.
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A number of independent studies have identified Ang variants in PD [78, 79], 
however the investigation of tsRNA as a biomarker for the disease is in its infancy. 
Using deep sequencing analysis of postmortem tissue Pantano et al. identified that 
tsRNA clusters can accurately differentiate between control, PD patients at premo-
tor and motor stages of the disease [80]. Furthermore, in a small study sex-specific 
tsRNA differences were reported in the prefrontal cortex, cerebrospinal fluid and 
serum of PD patients [81].

5.2 miRNA biomarkers in Alzheimer’s disease

In 2014, two independent studies reported a downregulation of miR-125b 
in the serum of AD patients and Tan et al. correlated this with cognitive decline 
[142, 143]. Interestingly, a number of studies have also identified multiple miRNA 
panels that demonstrate diagnostic value. In a small cohort of patients a group of 
7 miRNAs were shown to be differentially expressed in the plasma of AD patients 
[144]. In a larger study, next-generation sequencing identified 140 differentially 
expressed miRNAs. Subsequent validation studies using RT-PCR in a cohort of 202 
patient samples demonstrated a 12-miRNA signature to differentiate between AD 
and control samples to a high degree of sensitivity [145]. Finally, next-generation 
sequencing of exosomes extracted from the blood revealed a 16-miRNA signature 
differentially expressed in AD patients. Validated by RT-PCR and combined with 
known risk factors such as age, sex and apolipoprotein ε4 allele status provided 
prognosis with high sensitivity [146].

5.3 miRNA biomarkers in stroke

The multi-targeting potential of miRNAs places them in a powerful position in 
the diagnosis and prognosis of heterogeneous conditions such as stroke, where early 
diagnosis has significant implications for prognosis. A number of miRNAs have 
been shown to demonstrate diagnostic and prognostic value in acute stroke, and a 
recent systemic review and bioinformatic analysis has highlighted and identified 
the most promising candidates [147]. miR-16 has been identified as significantly 
upregulated in the plasma of acute ischemic stroke (AIS) patients, and upregulation 
of miR-16 is associated with poorer prognosis (mRS 3–6)[148, 149]. Independent 
studies have identified the downregulation of miR-126 in plasma from AIS patients 
as a biomarker of disease severity. Circulating levels of miR-126 negatively corre-
lated with pro-inflammatory cytokine levels and National Institute of Health Stroke 
Scale (NIHSS) scores [150–152]. Similarly, downregulation of circulating miR-355 
has also been reported as having high sensitivity as a biomarker of acute ischaemic 
stroke and to correlate negatively with NIHSS scores in AIS patients [153].

Upregulation of miR-130a has been reported as a potential biomarker in the 
diagnosis of brain oedema and prognosis in haemorrhagic stroke, positively cor-
relating with NIHSS and mRS scores [154]. Moreover, antagonism of miR-130a 
expression in in vivo and in vitro models of ischaemia demonstrated attenuation of 
brain oedema and reduced blood-brain barrier permeability.

5.4 ncRNA biomarkers in amyolateral sclerosis

In a series of studies Freischmidt et al. identified a number of miRNAs differen-
tially expressed in the serum of familial (miR-143-5p/3p, miR-132-5p/3p and miR-
574-5p/3p) and sporadic (miR-1234-3p and miR-1825) ALS, noting that miRNA 
targets in familial ALS were TDP-43 binding RNAs and that the miRNA signature in 
sporadic ALS was highly heterogeneous [155, 156]. A subsequent study determined 
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increased miR-374b-5p, and decreased miR-206 and miR-143-3p in sporadic ALS 
patient serum [157]. Finally, increased expression of miR-424 and miR-206 in 
sporadic ALS patient plasma has been shown to correlate with clinical deterioration 
over time [111].

Recent work has identified 5’tiRNAVal−CAC as a potential biomarker for ALS. This 
tiRNA was found to be increased in the spinal cord of SOD1G93A mice and is signifi-
cantly increased in the serum of patients with slow progressing ALS [120].

5.5 ncRNA biomarkers in epilepsy

Circulating miRNAs have been found to be dysregulated in the serum of epi-
lepsy patients compared with healthy controls. Validation experiments identified 
an upregulation of let-7d-5p, miR-106b-5p, miR-130a-3p and miR-146a-5p, and a 
downregulation of miR-15a-5p and miR-194-5p. The highest diagnostic value was 
found in the upregulated miR-106b-5p [158]. Further studies also revealed miRNAs 
differentially expressed in treatment-resistant compared to treatment-responsive 
and control samples. The expression of miR-194-5p, miR-301a-3p, miR-30b-5p, 
miR-342-5p and miR-4446-3p were altered in drug-resistant epilepsy serum 
samples, with miR-301a-3p showing the highest sensitivity [159]. Finally, sequenc-
ing analysis and RT-qPCR validation identified miR-27a-3p, miR-328-3p and miR-
654-3p as differentially expressed in the plasma of epilepsy patients compared to 
control. Importantly, these miRNAs were detected using a prototype point-of-care 
device that would greatly improve diagnostic capability in-clinic [160].

Recent sequencing analysis has identified three circulating tRFs that are 
increased in the plasma of epilepsy patients. The differential expression of 
5′AlaTGC, 5′GluCTC and 5′GlyGCC was validated by RT-qPCR in an independent 
cohort and detected in resected hippocampal and cortical tissue indicating a 
possible source. Finally, the generation and release of these tRFs was shown to be 
activity-related in mouse hippocampal neuronal cultures [135].

6. ncRNA as a therapeutic target

The direct involvement of miRNA and tsRNA in normal cellular activity, their 
dysregulation during disease pathogenesis and ability to target multiple genes 
within a particular pathway have made ncRNA an attractive and viable therapeutic 
target for the treatment of many neurological diseases. Therapeutic intervention 
strategies include the inhibition of overexpressed ncRNA and the restoration of 
repressed ncRNA. Small interfering RNA (siRNA) and antisense oligonucleotides 
(ASO) are the most common methods of miRNA inhibition. siRNA are short (20–25 
nts) double-stranded RNA molecules that use the RNA interference RISC pathway 
to degrade target RNA. ASOs, also known as antimiRs or antagomiRs, are short 
single stranded oligonucleotides that hybridize with the target RNA and sterically 
interfere with its functionality. Recent advancements include the development 
of locked nucleic acid technology that increases the stability of ASO and siRNA 
[161]. The restoration miRNA expression suppressed in a given pathology through 
the delivery of synthetic double-stranded miRNA mimics, designed to mimic 
endogenous miRNAs, so far has primarily been used in gain-of-function studies to 
elucidate miRNA functions and mechanisms [98].

While a considerable amount of progress has been made with a number of 
miRNAs entering clinical trials, the development of RNA-based therapeutics has 
not been without issue. Double- and single-stranded RNA are recognized by the 
immune system, particularly the Toll-like receptors. To combat this, 2’O-methylation 
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and the neutralization of RNA molecules significantly reduces the immunogenicity 
of RNA-based therapeutics [162–164]. Delivery systems to aid passage across the 
cell membrane and the targeting of specific organs and cells types have also been 
developed. Lipid and metal-based nanoparticles as well as polymer vectors such as 
polyethylene imine, polylactic-co-glycolic acid and poly-amidoamine have improved 
the delivery of RNA-based therapeutics [165]. Furthermore, artificial manipulation 
of miRNAs with the delivery of miRNA mimics in vivo is associated with difficult to 
predict off-target non-specific and unintended alterations in gene expression, and 
toxicity, off-setting potential for therapeutic efficacy [166].

To date the Federal Drug Administration and the European Medicines Agency 
have approved a number of RNA-based therapeutics [167]. Notably the 18-mer ASO 
Nusinersen is an intrathecal administered therapeutic for the treatment of spinal 
muscular atrophy. Phase II and III clinical trials are also ongoing for RNA-based 
therapeutics for the treatment of Huntington’s disease [165].

7. Conclusions

Over the past two decades research into miRNA and, more recently, tsRNA 
has demonstrated the integral role that these ncRNA play in cellular function and 
dysfunction. This has been particularly apparent in diseases of the central nervous 
system. Advancements in sequencing technologies and other RNA detection 
methods have highlighted their utility as biomarkers and the potential for disease 
stratification. RNA-based therapeutic intervention has shown great promise in 
areas with limited treatment options. Rapid improvements in the delivery and 
immunoreactivity of these treatments and the increasing number of clinical trials 
involving RNA-based therapeutics is encouraging.
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