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Preface to ”Outstanding Topics in Ocean Optics”

The transfer of radiant solar energy has vital implications for life and climate on Earth.

The interactive nature between radiative transfer and various dissolved and particulate constituents

of seawater is at the core of ocean optics science and applications. By the late 1970s, the fundamentals

of modern optical oceanography were essentially identified. At that time, the era of optical remote

sensing of the ocean also began with the launch of the first proof-of-concept satellite ocean color

sensor in 1978. In the past two decades, several satellite missions with ocean color measurements

have been launched, providing a new uninterrupted view of the global ocean. In particular, these

achievements in optical remote sensing have been reshaping the research landscape towards a

better understanding of ocean biology, biogeochemistry, and ecosystems, and their roles in the

Earth’s system processes. Recent years have also seen an increase in the use of optical technologies

on autonomous in situ oceanographic platforms. As a result of these advances, optical theory

and measurements are now firmly embedded in studies of a great variety of ocean science and

engineering questions.

The optical applications in oceanography rely on intricate linkages between the optical

variability in the ocean and a combination of many physical, biological, chemical, and geological

processes that control the sources and fates of various optically-significant constituents of seawater.

These analyses are, however, incomplete without a firm understanding of radiative transfer and

interactions between light and the highly complex and variable constituent composition of seawater.

In spite of decades of research, there are still unexplored areas of research and unrealized potential

applications of ocean optics which are largely associated with challenges to further advance our

understanding of interactions of light with the complex optical medium of seawater at a higher

level of detail than in past approaches. Future progress in optical remote sensing and other optical

applications in oceanography demand such further advances. While it is true that over the past

few decades the community of scientists who use optical techniques has grown considerably and the

oceanographic literature has seen a surge of papers that have been catalyzed by and related to satellite

ocean color observations, it is also significant to note that available resources and the community’s

efforts to pursue the outstanding and potentially impactful basic topics in ocean optics which are

”out-of-ordinary” and not directly related to ocean color science have been disproportionally low. As

a result, fundamental scientific understanding has not always kept pace with technological advances

and demand resulting from potential applications.

The goal of this Special Issue entitled ”Outstanding Topics in Ocean Optics” has been to draw

together a series of papers across a wide range of topics in the field of ocean optics, which generally

share a common denominator of frontier research topics that are unique, uncommon, or outstanding

in the literature. The intention of this volume is to present the reader with a sampler of exciting

research topics that are underway and to provide a balanced view of the extraordinary breadth

of research in ocean optics. Leading experts in topics as diverse as measurements and modeling

of radiative transfer, light fields, light scattering and polarization, ocean color, benthic optical

properties, and the use of optical techniques and approaches for characterizing seawater constituents

have contributed to this volume, which makes it special in both its scope and authority. Most

of these contributions are indicative of the richly multidisciplinary aspect of modern research in

optical oceanography.

Recent progress in the radiative transfer modeling of a coupled atmosphere—snow/ice—ocean

ix



system is reviewed by Stamnes and his co-workers. The theme of underwater light field

characterization is central to a few papers. Gleason and co-workers present both theoretical and

experimental data of polarization of upwelling radiance in the surface ocean, and Li and co-workers

present results from a unique set of measurements of downwelling and upwelling (both plane and

scalar) irradiances in the ocean euphotic layer. The paper by Massicotte and co-workers addresses

the estimation of in-water light field below spatially heterogeneous sea ice cover. Several papers in

the Special Issue exhibit a particular focus on light scattering in the ocean. Zhang and Hu discuss

light scattering by pure seawater as a function of water temperature. Sun and co-workers review

the formalism of Mueller scattering matrix for realistic non-spherical particles suspended in ocean

waters. Koestner and co-workers report on measurements of the volume scattering function and

degree of linear polarization of light scattered by marine particulate assemblages. The papers by Lain

and Bernard and Duforêt-Gaurier and co-workers are focused on the light-scattering properties of

phytoplankton, including potential implications for the assessment of phytoplankton communities

from satellite ocean color observations. The paper by Twardowski and Tonizzo describes an approach

for modeling ocean color, which explicitly incorporates the angularly-resolved light scattering of

seawater. Two papers are devoted to algorithms for estimating ocean data products from global

satellite observations of ocean color. Specifically, Aurin and co-workers address the estimation

of absorption parameters of colored dissolved organic matter and the concentration of dissolved

organic carbon, and Wang and co-workers the estimation of concentrations of multiple phytoplankton

pigments. Topics associated with benthic optical properties and optical remote sensing of sea floor are

covered in three papers. Fournier and co-workers describe an approach for modeling the reflectance

of a sea bottom covered with mineral compounds and vegetation. Hedley and co-workers present

a model for examining the effects of the three-dimensional structure of coral reefs on benthic

reflectance and water-leaving light, and Ackleson and co-workers examine the effects of sensor

noise on the optical remote sensing of shallow coral reefs. Last but not least, the utility of field

optical measurements for characterizing the particulate and dissolved constituents of seawater

is demonstrated in three papers. Agagliate and co-workers describe the use of flow cytometry

measurements of discrete seawater samples as a means of estimating the concentrations of suspended

particulate matter, particulate organic carbon, and chlorophyll-a. Boss and co-workers examine the in

situ measurements of different inherent optical properties as a tool for studying the characteristics of

suspended sediment in a bottom boundary layer. Zielinski and co-workers describe the capabilities

of an in situ technique of excitation—emission matrix spectroscopy for assessing the fluorescent

dissolved organic matter in natural waters. We note that the papers in this volume are ordered

according to the date of submission, and not according to subject areas.
We foresee that this collection of papers will be of interest and useful to a broad audience

of professional ocean scientists, engineers and advanced students with an interest in ocean optics

and applications of optical methods in oceanography. We also hope that the broad perspective

and delightful variety of ideas presented in these papers will help to inspire and motivate

researchers around the globe to conduct different types of studies using state-of-the-art science and

methodologies, which will lead to new discoveries in ocean optics and the further enhancement of

optical applications in oceanography. We wish to express our gratitude and appreciation to all authors

who provided contributions to this Special Issue. We also thank the staff personnel of Applied Sciences

for their assistance in the production of this Special Issue.

Dariusz Stramski, Hubert Loisel 
Special Issue Editors
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Abstract: Models of particle density and of organic carbon and chlorophyll-a intraparticle
concentration were applied to particle size distributions and particle real refractive index distributions
determined from flow cytometry measurements of natural seawater samples from a range of UK
coastal waters. The models allowed for the estimation of suspended particulate matter, organic
suspended matter, inorganic suspended matter, particulate organic carbon, and chlorophyll-a
concentrations. These were then compared with independent measurements of each of these
parameters. Particle density models were initially applied to a simple spherical model of particle
volume, but generally overestimated independently measured values, sometimes by over two
orders of magnitude. However, when the same density models were applied to a fractal model
of particle volume, successful agreement was reached for suspended particulate matter and both
inorganic and organic suspended matter values (RMS%E: 57.4%, 148.5%, and 83.1% respectively).
Non-linear organic carbon and chlorophyll-a volume scaling models were also applied to a spherical
model of particle volume, and after an optimization procedure achieved successful agreement
with independent measurements of particulate organic carbon and chlorophyll-a concentrations
(RMS%E: 45.6% and 51.8% respectively). Refractive index-based models of carbon and chlorophyll-a
intraparticle concentration were similarly tested, and were also found to require a fractal model
of particle volume to achieve successful agreement with independent measurements, producing
RMS%E values of 50.2% and 45.2% respectively after an optimization procedure. It is further shown
that the non-linear exponents of the volume scaling models are mathematically equivalent to the
fractal dimensionality coefficients that link cell volume to mass concentration, reflecting the impact
of non-uniform distribution of intracellular carbon within cells. Fractal models of particle volume
are thus found to be essential to successful closure between results provided by models of particle
mass, intraparticle carbon and chlorophyll content, and bulk measurements of suspended mass and
total particulate carbon and chlorophyll when natural mixed particle populations are concerned.
The results also further confirm the value of determining both size and refractive index distributions
of natural particle populations using flow cytometry.

Keywords: forward modeling; suspended matter; marine particles; fractal structure; organic carbon;
chlorophyll-a

1. Introduction

The determination of suspended particulate mass concentrations (minerogenic mass, biomass,
chlorophyll content) in marine particle populations is a matter of particular interest to ocean sciences,

Appl. Sci. 2018, 8, 2676; doi:10.3390/app8122676 www.mdpi.com/journal/applsci1
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and one of the key aspects of the characterization of the properties of marine particles. The relationship
between particulate mass properties and optical properties of seawater is important for understanding
the formation of optical remote sensing signals and their interpretation.

In previous work carried out on a set of seawater samples collected in UK coastal waters (UKCW
dataset), a Mie-based flow cytometric method (FC method) was developed to determine particle size
distributions (PSDs) and real refractive index distributions (PRIDs), and its results used as inputs for
Mie theory forward modelling to reconstruct not only bulk inherent optical properties (IOPs), but
also individual fractions and optical contributions from inorganic, organic, and fluorescent particle
subpopulations [1,2]. Although flow cytometric determination of particle physical properties and the
subsequent modelling of IOPs have some precedent [3–5], no true effort has been devoted to extending
the procedure to the reconstruction of particulate mass concentrations from flow cytometric data.
Indeed, coupled with models of particle density and carbon intraparticle concentration, particle size,
and real refractive index distributions offer the chance to explore the biogeochemical properties of a
particle population from a new perspective.

In this study, models of organic and inorganic particle density are adapted from literature
and applied to the UKCW dataset to produce modelled values of suspended particulate matter
(SPM), organic suspended matter (OSM), and inorganic suspended matter (ISM). Furthermore,
cell volume scaling models and refractive index-based models are also adapted from literature to
allow estimation of intraparticle carbon (Ci) and intraparticle chlorophyll-a (Chli) content, ultimately
producing modelled values of particulate organic carbon (POC) and chlorophyll-a concentrations
(ChlA) from the particle data of the UKCW dataset. The modelled values thus obtained are then
compared against the results of actual biogeochemical measurements, and the parameters used to
assess carbon and chlorophyll concentrations are optimized on a dataset-wide basis to explore the
physiology of the cells encountered during the He442 research cruise. A summary of the abbreviations
and notations used throughout the study is given in Table 1.

Table 1. Abbreviations and notations used in this study.

Notation Definition

ChlA Chlorophyll-a concentration, mg m−3

FC Flow cytometer; flow cytometry
IOP Inherent optical property
ISM Inorganic suspended matter, g m−3

OSM Organic suspended matter, g m−3

SPM Suspended particulate matter, g m−3

POC Particulate organic carbon, mg m−3

PRID Particle real refractive index distribution
PSD Particle size distribution
RMS%E Root-mean-square percentage error
RMSE Root-mean-square error
UKCW UK coastal waters (dataset)

a, aC, achl
Slopes of the refractive index-based models and of the of the Ci and Chli optimized
refractive index-based models respectively, kg m−3

b y-intercepts of the refractive index-based models, kg m−3

F(r) Fractal dimension, dimensionless

h1, h2
Power law exponents of the optimized POC and ChlA volume scaling functions
respectively, dimensionless

k Particle size distribution scaling coefficient, mL−1

k1, k2
Scaling coefficients of the optimized POC and ChlA volume scaling functions respectively,
pg μm−3

mtot Total particle mass, mg
Ci Intraparticle carbon concentration, kg m−3

Chli Intraparticle chlorophyll-a concentration, kg m−3

2
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Table 1. Cont.

Notation Definition

N(D) Number concentration of particles within particle size bin corresponding to particle
diameter D, mL−1

N’(D) Density function of the particle size distribution, mL−1 μm−1

Nr
Number of particles within particle size bin corresponding to particle radius r,
dimensionless

ND,nr
Number of particles within particle bin corresponding to particle diameter D and real
refractive index nr, dimensionless

no Real refractive index of the dry matter fraction of the particle, dimensionless
nr Real refractive index of the particle, dimensionless
ni Imaginary refractive index of the particle, dimensionless

nr,1, nr,2
Average real refractive indices at the upper and lower extremes of the particle size
distribution respectively, dimensionless

r, D Particle radius and particle diameter, μm
ro Primary particle radius, μm
VD Particle volume, μm3

Vo Volume of the dry matter fraction of the particle, μm3

y(r) Volume scaling function
B Fractal dimension exponent, dimensionless
γ Power law slope, dimensionless
P Particle density, g/m3

ρnr Density of a particle with real refractive index nr, g/m3

ρo Density of the dry matter fraction of the particle, g/m3

2. Materials and Methods

2.1. Theory

2.1.1. Particle Mass Modelling from Apparent Density of Hydrated Matter

Calculations for modelled values of SPM, OSM, and ISM were made following the technique
presented by Zhang et al. [6]. Building on the approach presented by Morel & Ahn [7] and
Babin et al. [8] the technique estimates a density value for the particulate matter which is dependent on
the real part of the refractive index of the particles and is designed to account for their water content.
Since this value is neither the value of the dry matter fraction of the particle nor that of water, but rather
a combination of the two, this global density is also known as “apparent” density. The equation takes
the form

ρ = ρoVo = ρo
nr − 1
no − 1

, (1)

where nr is the real refractive index of the whole particle and no, ρo, and Vo are respectively the real
refractive index, density, and fractional volume of the dry matter fraction of the particle. All refractive
index values are given relative to water.

Values for the ρo/(no − 1) ratio were defined following those employed by Zhang et al. [6].
For organic particles (defined as the fraction of the particle population with nr < 1.1) the mean value of
the ratio was set at (8.56 ± 1.1) × 106 g/m3. These are particles with high water content, as high as
~80 ± 10% for algal cells [9]. For mineral particles (defined as the fraction of the particle population
with nr ≥ 1.1) the mean value of the ratio was instead set at (15.52 ± 1.84) × 106 g/m3. These particles
have low water content; when the fractional volume of dry matter reaches unity (i.e., water content
within the particles is zero) the apparent density of the particle becomes equal to the density of the
dry mineral matter and can be calculated accordingly. Zhang et al. [6] find nr = 1.16 as the threshold
above which Vo = 1, and give ρ = [(6.42 ± 0.85)nr − (4.86 ± 0.99)] × 106 g/m3 as the corresponding

3
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density based on a linear regression of literature values of density and refractive index for a number of
mineral species. Overall, the final expression of Equation (1) used in practice was

ρ =

⎧⎪⎨⎪⎩
8.56 × 106(nr − 1)
15.52 × 106(nr − 1)

6.42 × 106nr − 4.86 × 106

nr < 1.1
1.1 ≤ nr < 1.16

nr ≥ 1.16
(2)

with all density values given as g/m3.

2.1.2. Particulate Organic Carbon and Chlorophyll-a Cell Volume Scaling

Organic carbon and chlorophyll-a concentrations within a cell are not linear functions of the cell
volume (also defined as biovolume by some authors); Ci and Chli values can be instead derived using
empirical relationships defined by volume scaling exponents, which can be then summed over organic
and fluorescent PSDs to obtain POC and ChlA values respectively, i.e.,

C = ∑
r

y(r)Nr (3)

where C represents either POC or ChlA, y(r) is the corresponding size-dependent total carbon or
chlorophyll concentration per cell and Nr is the number of particles within each size bin. A number of
these empirical conversion relationships can be found in the literature for the modelling described
here: four sets of parameters for carbon [10–12] and two sets of parameters for chlorophyll-a [11,13]
were employed. These are presented in Table 2.

Table 2. Particulate organic carbon and chlorophyll-a cell volume scaling models used in this study

POC & ChlA Cell Volume Scaling

Particulate Organic Carbon Source

y(r) = 0.433V(r)0.863 [10]
y(r) = 0.109V(r)0.991 [11]
y(r) = 0.288V(r)0.811 [12] (diatoms)
y(r) = 0.216V(r)0.939 [12] (non-diatom mixed protists)

Chlorophyll-a Source

y(r) = 0.00429V(r)0.917 [11]
y(r) = 0.0398V(r)0.863 [13]

2.1.3. Refractive Index-Based Estimation of Particulate Organic Carbon and Chlorophyll-a

Research carried out in the 1990s demonstrated that cell volume is not the only parameter that
can be used to estimate Ci and Chli values. In a series of studies [14–18], a number of empirical
relationships were established for various phytoplankton species between the real refractive index
nr and Ci and between the imaginary refractive index (ni) and Chli. Expanding on this premise,
Stramski [19] established refractive index-based linear models for the estimation of Ci and Chli based
on data from two phytoplankton species

Ci = 3441.055nr(660 nm)− 3404.99 (4)

Chli = 996.86ni(675 nm) + 1.17. (5)

A follow-up work by DuRand et al. [20] established slightly modified relationships with the
inclusion of data from additional phytoplankton species

Ci = 3946nr(650 nm)− 3922 (6)
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Chli = 1244ni(675 nm)− 0.32. (7)

These can then be associated with a particle volume model and with particle sizes as provided
by PSDs to determine POC and ChlA values. Both sets of equations were employed in this work.
The nr values contained in the PRIDs were originally determined by the FC method for λ = 488 nm,
i.e., the wavelength of the laser source used within the flow cytometer [1]; however, nr values are
only weakly dependent on the wavelength (e.g., [21]), and Equations (4) and (6) are thus likely to be
usable as is for the UKCW PRIDs as well. The FC method does not provide any information on the ni
values; as will be described in Section 2.2.4, these were derived from literature. The relevant ni value
(i.e., for organic particles at λ = 675 nm) was adapted from Babin et al. [8] as ni = 1.620 × 10−3.

2.2. Methods

The particle density, carbon and chlorophyll cell volume scaling, and Ci and Chli refractive-index
based estimation models were applied to the PSDs and PRIDs of the UKCW dataset as determined by
the FC method, which can be found described in detail in [1]. A description of the dataset and of the
measurement protocols (particularly those relative to SPM, ISM, OSM, POC, and ChlA measurements)
is summarised below. Resulting mass concentrations obtained by modelling from FC data were then
compared with corresponding suspended matter, organic carbon, and chlorophyll concentration values
determined from traditional sample analysis. Cumulative contributions from different size classes
were also calculated for SPM, ISM, OSM, and POC.

2.2.1. UK Coastal Waters (UKCW) Dataset

The UKCW dataset consists of natural water samples obtained during the He442 research cruise
in UK waters (4–21 April 2015) on board the R/V Heincke (Alfred-Wegener-Institute, Bremerhaven,
Germany). Sixty-two stations were sampled across a variety of optical water conditions around the
coast of the UK (Figure 1), supplying a total of 50 samples with complete sets of FC data and matching
data from other instruments and independent measurements. This included SPM, ISM, OSM, POC,
and ChlA values obtained from lab analysis of the water samples retrieved during the research cruise.
Wind conditions were favourable throughout, ranging from calm to moderate gale, and did not hamper
the measurement process at any point during the cruise. Day-to-day weather ranged widely from clear
sky conditions to heavy rain, although good weather was generally prevalent. Of particular note was
the very high particle load found in Bristol Channel waters, which resulted in particularly large values
of SPM, ISM, and OSM, as will be described in the following.

Figure 1. Track of the He442 research cruise, which took place in April 2015 in UK coastal waters
aboard R/V Heincke. Out of the 62 measurement stations visited a total of 50 complete sets of data
were retrieved, matching flow cytometric data, and ancillary measurements (blue circles). Yellow circles
denote stations where two samples were taken. The figure was adapted and modified with permission
from Figure 1 of Agagliate et al. [2].
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2.2.2. Depth Profiling

Main depth profiling was done via an instrument frame equipped with Niskin bottles for sample
retrieval. The frame was lowered through the water column at each of the stations, kept at a maximum
depth for a first round of sampling, then raised to near surface depth to retrieve further samples.
The samples were taken from the Niskin bottles on the frame as quickly as possible after the frame was
back on deck and filled into 10-L plastic containers. In waters with high turbidity the Niskin bottles
were flushed twice to avoid settling out of particulate matter. Forty-eight out of the 50 samples of
the UKCW dataset are surface samples (depth: 5–7 m), with further two samples taken from bottom
depths instead. The prevalence of surface samples within the dataset is due to the focus of the cruise,
which was on developing data sets in support of the Sentinel remote sensing missions.

2.2.3. Flow Cytometry Measurement Protocol

All samples were measured by a CytoSense flow cytometer (CytoBuoy b.v., Woerden,
The Netherlands) once for each of four sensitivity settings of the side scattering photomultiplier
tube (50, 60, 70, 80), for 6 min and at a flow rate of 0.5 μL/s. Side scattering was used as the trigger
channel in all cases. The reader is directed to [1] for a detailed description of the CytoSense flow
cytometer and its operation, particularly in the context of the UKCW dataset. Additional measurements
of standard polymer beads necessary for calibration of the FC method were taken daily across the
whole sampling period. A detailed description of the FC method and of the procedure followed to
reconstruct PSDs and PRIDs can also be found in [1], where the application of the method to the
UKCW dataset is also discussed specifically.

2.2.4. PSD Extrapolations

The mass concentration modelling will require the entire optically relevant particle distribution
to be included as the input, or the output will not be comparable with independently measured
mass concentration values. The FC method was found to reliably retrieve particle diameters between
~0.5–10 μm [1]. This range covers a large fraction of the contribution to scattering and backscattering,
but the whole optically relevant range spans from tens of nanometers to a few millimeters [22,23].
The undetectable fraction of the particle population has to be accounted for using an approximation of
the PSD to extend the range of the distribution over the whole relevant range.

Ever since pioneering work in the ’60s and ’70s found that the number of particles suspended
in the ocean increased continuously and monotonically towards smaller scales [24,25], power law
distributions of the type used by Junge [26] for aerosols have been the most common form of
approximation for natural seawater particle populations [27,28]. The PSDs determined by the FC
method for the UKCW dataset broadly conformed to this model, and consequently, following in the
steps of Green et al. [5], a least squares best fit of the UKCW PSDs through power law distributions as
defined by

N(D) = N′(D)dD = kD−γdD (8)

was used to extend the range of the measured PSDs (Figure 2). Here N(D) is the number concentration
of particles within the size bin corresponding to diameter D, N’(D) the density function of the PSD,
dD the width of the size bin, k the scaling coefficient of the PSD, and γ its slope. The form given in
Equation (8) is necessary because the FC PSDs have bin-like nature; accordingly, the extrapolations
need to be bin-like as well.

Values for the real refractive index nr in the Junge extensions must also be accounted for using
some approximation of the PRID to extend the range of known refractive indices; this was done by
averaging nr at the extremes of the measured PSD fraction (last four bins on either side) and using
these averaged values on the respective arms of the extension (Figure 2). Since the FC method does
not offer any information on the imaginary part of the refractive indices, ni values are unknown both
in the available FC PSDs and in their extrapolations. Typical values for ni were therefore adapted
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from literature (Figure 8 of Babin et al. [8]), for both organic and inorganic particles. These were then
assigned to the particles according to the value of the real refractive index of each bin, both directly
determined by the FC method and extrapolated.

Figure 2. Power law best fit and real refractive index approximation in a typical natural particle
population sample. Independent nr values obtained by averaging the nr of particles at the extremes of
the PSD (nr,1, nr,2) were used to approximate the real refractive index within the respective ends of the
PSD extrapolation (dotted line). The figure was adapted and modified with permission from Figure 3
of Agagliate et al. [2].

2.2.5. Suspended Particulate Matter and Inorganic/Organic Suspended Matter

Suspended particulate matter (SPM) was obtained from each sample following procedures
detailed by Röttgers et al. [29]. The sample was filtered through filter pads under low vacuum (47-mm
Whatman GF/F glass-fiber filters), then immediately placed in a petri dish after filtration and put to
dry in a vacuum desiccator: SPM values were subsequently obtained by weighing the mass of dried
sample and dividing it by the sample volume used. SPM values ranged between 45.519 and 0.113 g/m3,
with highest values found in the Bristol Channel and lowest values found in the North Sea, although
variance in this latter area was large. Further separation into organic suspended matter and inorganic
suspended matter fractions (OSM and ISM, also found in literature respectively as particulate organic
matter and particulate inorganic matter, POM and PIM) was obtained by volatization of organics at
500 ◦C. ISM values ranged between 38.373 and 0.038 g/m3, and followed a geographic pattern similar
to that of SPM. OSM values ranged between 4.487 and 0.053 g/m3, and were found to be more evenly
distributed across the cruise track. The lowest value was found in the Irish Sea, while the highest was
found once again in the Bristol Channel, due to the very large particle load of its turbid waters.

2.2.6. Particulate Organic Carbon

Particulate organic carbon (POC) concentrations were determined by catalytic combustion using
a Vario TOC Cube instrument (Elementar, Langenselbold, Germany). Between 0.5 and 1 L of collected
water for each sample were initially filtered onto 25-mm, combusted Whatman GF/F glass-fiber filters.
The filters were then frozen and transported to the home laboratory. Once there, the filters were dried
at 55 ◦C, packed into tin capsules and analyzed for their carbon content. Separation or removal of
inorganic carbon was not considered, as concentrations of inorganic carbon (calcite or carbonates)
are assumed low for these waters. Calibration of the POC/TOC analyzer was done regularly using
sulphanilamide as the calibration standard. POC values were found to range between 2.307 × 103 and
6.783 × 101 mg/m3, and followed a geographic pattern similar to that of OSM. Lowest values were
found around Skye and the Hebrides, and highest values in the Bristol Channel.
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2.2.7. Chlorophyll-a

Chlorophyll-a concentration (ChlA) was determined using high-performance liquid
chromatography (HPLC) following Zapata et al. [30]: specifically, ChlA was determined from
fluorescence values using excitation at 440 nm and emission at 650 nm and by comparison with
standards of known chlorophyll concentration. ChlA values ranged between 7.620 and 0.096 mg/m3,
with lowest values found in the Firth of Clyde and highest values found in the North Sea.

3. Results

3.1. PSDs and PRIDs

The PSDs retrieved by the FC method for the UKCW dataset were found to broadly follow power
law distributions, with the main difference between stations being the overall concentration of the
particle population (Figure 3a). Two obvious outliers are present, corresponding to samples from the
turbid waters of the Bristol Channel; close inspection reveals structures that may be closer in nature
to models such as the double gamma distribution proposed by Risović [31], and that indeed may be
identified to a lesser degree in the other samples as well. Nonetheless, the power law approach remains
a reasonable approximation for a large majority of the dataset, and was used for PSD extrapolations
accordingly for all samples including the Bristol Channel ones.

Figure 3. Collective view of (a) all 50 UKCW PSDs and (b) UKCW PRIDs produced by the FC method.
Note that real refractive index values above 1.15 are not precise, but still indicate high refractive
indices [1]. (c) Total, organic, inorganic, and fluorescent PSDs for a typical sample of the UKCW
dataset and (d) power law extension of the total, organic and inorganic PSDs. Note that the extended
organic and inorganic PSDs intersect the extended total PSD; therefore the sum of the extended
organic and inorganic PSDs is not exactly equal to the extended total SPM. To evaluate the error
thus introduced, SPM values are modelled both from the total PSD and by summing model ISM and
OSM values. Panels (a,b) of the figure were adapted and modified with permission from Figure 2 of
Agagliate et al. [2].
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Particle refractive index distributions were found to be fairly homogeneous across all samples
(Figure 3b), with distribution peaks found between 1.05–1.15 and within expectations for the real
refractive index of the most common components of marine particle populations [9,32]. By exploiting
the particle composition information given by the PRIDs, the total PSD of each UKCW sample was
further separated into an inorganic PSD, an organic PSD, and a fluorescent fraction, which is itself a
sub-fraction of the organic PSD (Figure 3c). These were used to calculate ISM, OSM & POC, and ChlA
respectively, while SPM was calculated both from the total PSD and as the sum of the model ISM and
OSM. To account for the fraction of the particle population undetected by the FC method, the total
organic and inorganic PSDs were extended between 0.05 and 2000 μm as suggested by Davies et al. [23],
following Equation (8) (Figure 3d); note that since the PSD extrapolations only approximate the particle
populations outside the FC method detection range, the sum of the extended organic and inorganic
PSDs generally is not exactly equal to the extended total PSD, making the dual calculation of SPM both
from total PSD and as the sum of model ISM and OSM values a useful check of the error so introduced.

3.2. Particle Mass Modelling

Keeping with the assumption of particle sphericity used in the Mie-based models employed by the
FC method, a first attempt of total particle mass calculation for the total, organic and inorganic fractions
of the particle population was made as a simple bin-by-bin summation of spherical masses, i.e.,

mtot = ∑
D,nr

ρnrVD ND,nr, (9)

where ρnr is the apparent density of a particle with real refractive index nr as defined in Equation
(2), VD is the volume of a sphere of diameter D, D and nr are the diameter and real refractive
index corresponding to each bin, and ND,nr is the number concentration of particles within each
bin. Given Equation (9) SPM, ISM, and OSM can then be obtained respectively by summing over the
entire range of refractive indices or by limiting the summation to real refractive index values above
or below the nr = 1.1 threshold. The model SPM, ISM, and OSM values produced using this simple
particle volume model however grossly overestimated the corresponding UKCW measurements,
in certain cases by over two orders of magnitude (Figure 4).

A second calculation attempt was therefore carried out using a slightly modified version of the
particle volume and total mass model employed in Zhang et al. [6]. This model is designed to account
for the fractal nature of some marine particles, which can exist as aggregates of smaller units rather
than as individuals exclusively, and takes the form

mtot = ∑
r,nr

4π

3

(
r
ro

)F(r)
r3

oρnr Nr,nr, (10)

where

F(r) = 3
(

r
ro

)β

. (11)

Here it is assumed that the flow cytometer has measured the radius r of an aggregate particle,
which is itself constructed from primary particles of radius ro. F(r) is known as the fractal dimension of
the aggregate. The value of ro and of exponent β are given as 0.5 μm and −0.0533 respectively [33],
and for r < ro the value of F is fixed at 3. Crucially, the implementation of the model used here substitutes
summation for the original integration to reflect the nature of the FC PSDs, extends the original range
of 0.25–1000 μm to the 0.05–2000 μm range suggested by Davies et al. [23] and implements the effective
radius r directly as half the particle diameter D determined by the FC method (rather than as the
geometric formulation 4/3 × V/A used by Zhang et al. [6], where A is the average projected area).
This usage of Mie-derived parameters within a fractal model of mass highlights the dual nature of such
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modelling procedure: Mie theory is initially employed within the FC method to retrieve an optical size
for the particles; the fractal model then reconciles this value with their physical size.

Over the extended size range the value of F was found to vary between 3 (its maximum possible
value) and 1.998. The SPM, ISM, and OSM values produced using this fractal procedure were found to
model the corresponding UKCW measurements much better than those produced using the simple
spherical model, with RMS%E values 57.4%, 148.5%, and 83.1% for SPM, ISM, and OSM respectively
(Figure 5). SPM values obtained as the sum of ISM and OSM were found to be close to those derived
from the total PSD (RMS%E value 65.2%), indicating that the error introduced by the PSD extension
is small. The two Bristol Channel samples, which deviated most obviously from the power law PSD
model, produced clear outliers on all three accounts and were not included in the analysis. Median
cumulative distributions of SPM, ISM, and OSM were also produced, showing that in a majority of
samples 90% of the contribution to all three parameters is from particles between 0.2 and 200 μm
(Figure 6).

Figure 4. Comparison of modelled vs. measured (a) SPM, (b) ISM, and (c) OSM values for a simple
spherical volume model. SPM values derived from the total PSD are represented as dark grey squares,
while SPM values calculated as the sum of ISM and OSM are represented as light grey diamonds.
The dashed grey lines indicate the 1:1 relationship.

 

Figure 5. Comparison of modelled vs. measured (a) SPM, (b) ISM, and (c) OSM values for the fractal
volume model. SPM values derived from the total PSD are represented as dark grey squares, while SPM
values calculated as the sum of ISM and OSM are represented as light grey diamonds. The dashed grey
lines indicate the 1:1 relationship.

Figure 6. Cumulative distributions of modelled (a) SPM, (b) ISM, and (c) OSM values for the fractal
volume model. The SPM curves refer to SPM values calculated from the total PSD. Solid, dashed,
and dotted lines represent median, upper/lower quartiles, and maximum/minimum values respectively.
The light grey horizontal lines mark the middle 90% of the contribution (i.e., from 5% to 95%) to the
total value of each parameter.
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3.3. Particulate Organic Carbon and Chlorophyll-a Concentration Modelling

For POC and ChlA modelling, the particle volume V was once again defined using a simple
spherical model. The first to be applied were the cell volume scaling models (Table 2). Of the four
models used to calculate POC values, only the diatom model given by Menden-Deuer and Lessard [12]
produced results compatible with POC measurements (RMS%E: 92.9%, Figure 7a). This possibly reflects
the taxonomical composition of the algal populations encountered during the He442 research cruise
being mainly composed of diatom species typically associated with the spring bloom. The median
cumulative distribution of POC for the diatom model shows an almost linear contribution from all
size classes in a majority of samples, although results are shown to range widely from cases where the
contribution is dominated by small particles to cases where, oppositely, the largest particles contributed
the most (Figure 7b). This is likely the result of the interaction between the model parameters and the
slope of the PSDs, and may also indicate that the parameters of the model work well for a majority, but
not all of the samples. The two chlorophyll-a models both produced unsatisfactory results, with one
data set underestimating ChlA, and the other over-estimating ChlA (Figure 8). The RMS%E values
for the two sets were found to be 64.2% and 212.3% respectively. Although the overall quality of the
match-up was low, the underlying structure of the data suggests that the form of the relationship
might be useful subject to appropriate optimization.

Figure 7. (a) Comparison of modelled vs. measured POC. POC values calculated using the diatom
model (Menden-Deuer & Lessard, 2000) are represented by dark grey squares; the RMS%E value refers
to these. POC values calculated using the other three models are represented by light grey diamonds
and triangles; (b) Cumulative distribution of modelled POC for the diatom model. Solid, dashed,
and dotted lines represent median, upper/lower quartiles, and max./min. values respectively. The light
grey horizontal lines mark the middle 90% of the contribution (i.e., from 5% to 95%) to the total POC
value. The dashed grey line indicates the 1:1 relationship.

Figure 8. Comparison of modelled vs. measured ChlA. ChlA values calculated using the
Montagnes et al. [11] model and the Álvarez et al. [13] model are represented by dark grey squares and
light grey diamonds respectively. The dashed grey line indicates the 1:1 relationship.
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When the refractive index-based Ci and Chli estimation models (Equations (4)–(7)) were applied
to POC and ChlA modelling, the comparison between modelled and measured values of POC
produced results (Figure 9a) which echo those found for SPM, ISM, and OSM when simple spherical
particle volumes are used (see Figure 4). As was the case for particle mass values, the model POC
values grossly overestimated the corresponding UKCW measurements, in certain cases by over two
orders of magnitude. In contrast, the comparison between modelled and measured values of ChlA
(Figure 9b) produced results which are similar to those found with the Montagnes et al. [11] cell
volume scaling model (see Figure 8): both the Stramski and the DuRand models i.e., Equations (5)
and (7) underestimated the measured ChlA values, producing RMS%E values of 63.3% and 76.5%
respectively. Following the successful application of a fractal model of particle volume to the modelling
of SPM, ISM, and OSM values, the same fractal model was applied to the refractive index-based Ci
and Chli estimation as well by simple substitution of the ρ term of Equation (10) with either Ci or Chli.
The POC values produced using the fractal procedure were found to model the corresponding UKCW
measurements much better than those produced using the simple spherical model, with RMS%E
values of 51.4% and 49.2% for the Stramski [19] and Durand et al. [20] models respectively (Figure 9c).
However, the modelled values of ChlA were driven to further underestimate the measured values by
the adoption of fractal volumes. RMS%E values for this new ChlA comparison were found to be 80.7%
and 88.1% for the Stramski [19] and Durand et al. [20] models respectively (Figure 9d).

Figure 9. Comparison of (a) modelled vs. measured POC and (b) modelled vs. measured ChlA when
a spherical model of particle volume is employed, and comparison of (c) modelled vs. measured
POC and (d) modelled vs. measured ChlA when a fractal model of particle volume is employed
instead. POC and ChlA values calculated using the Stramski [19] and Durand et al. [20] models are
represented by dark grey squares and light grey diamonds respectively. The dashed grey lines indicate
the 1:1 relationship.

3.4. Particulate Organic Carbon and Chlorophyll-a Concentration Modelling Optimization

A simple inversion of the procedure used to calculate POC and ChlA values allows for the
empirical optimization of the parameter pairs used in the cell volume scaling models. Maintaining the
general form

y(r) = kV(r)h, (12)
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arrays of values for the parameters k and h can be generated, combined, and substituted in
Equation (12), and the results compared and fitted against available measurements to identify the
best parameter combinations, respectively (h1, k1) and (h2, k2) for POC and chlorophyll-a intraparticle
concentrations. The optimization was initially applied to the whole UKCW dataset. Three parameter
arrays were generated, one shared by exponents h1 and h2 plus one each for factors k1 and k2. The ranges
were designed to encompass the parameter values of the models used thus far: specifically, 201 linearly
spaced values for exponents h1 and h2 in a 0.6–1 range, 301 linearly spaced values for factor k1 in a
0.05–0.65 range and 461 linearly spaced values for factor k2 in a 0.004–0.05 range. Each (h1, k1) and
(h2, k2) combination was then applied dataset-wide, compared against measured POC and ChlA and
evaluated using the goodness-of-fit of a forced linear fit of the 1:1 line. The best parameter combinations
were selected as those that minimized the RMSE values of the forced fit. The best POC model for the
UKCW dataset was found as

y(r) = 0.442V(r)0.720 (13)

while the best chlorophyll-a model was found as

y(r) = 0.029V(r)0.736. (14)

Comparisons of the optimized model results with the measured POC and ChlA values of the
UKCW dataset are shown in Figure 10. RMS%E values for the comparisons were found to be 45.6%
and 51.8% for POC and ChlA respectively.

Figure 10. Comparison of (a) POC and (b) ChlA values as determined by the optimized models of
Equations (13) and (14) vs. their respective measured values. The dashed grey lines indicate the
1:1 relationship.

An analogous optimization procedure can be applied to the refractive index-based Ci and Chli
estimation models. Maintaining the use of fractal particle volumes and the general form

Cx = anx − b (15)

common to both models as described by Equations (4)–(7), where Cx is either Ci or Chli and nx is
respectively either nr or ni, arrays of values for the parameters a and b can be generated, combined and
substituted in Equation (15), and the results compared and fitted against available measurements to
identify the best parameter combinations. Interestingly, for both POC and ChlA the procedure could
not identify single parameter combinations that minimized the RMSE; indeed, in both cases what was
found was instead a continuum of parameter pairs which all minimized the RMSE to very similar
values across the entire parameter ranges. We interpret this to be indicative of an excess of degrees of
freedom in the relationship described by Equation (15) for the models to be properly constrained.

Returning to the physical basis of these relationships given in Stramski [19], the empirical linear
relationship between Ci and nr reflects a physical realization that increasing carbon content will
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generally increase real refractive index. Here we consider the implication of a natural boundary
condition for this relationship: when nr = 1 then Ci = 0. Including this constraint results in a slightly
modified form of relationship

Ci = aC(nr(660 nm)− 1) (16)

We note that this is equivalent to forcing the Stramski [19] regression (Figure 2 therein)
through (nr, Ci) = (1, 0). Given the experimental uncertainties noted in Stramski [19] and the similarity
of the a and b components of the original regressions, we believe that the form proposed by Equation
(16) is broadly comparable but better reflects the physical relationship under investigation. Similarly,
in the case of Chli and ni Stramski [19] provides a clear physical basis for a simple linear relationship
based on earlier work by Morel and Bricaud [34]. A small offset is found in the resulting best-fit
regressions, which is either small and positive (see Equation (5) here, Stramski [19]), or small and
negative (see Equation (7) here, Durand et al. [20]). The initial model suggests that ni(675 nm) ought to
be a simple linear function of Chli, but in practice the small offset could represent residual absorption by
pigments other than ChlA (Stramski [19]), or it could be a statistical artefact associated with limitations
in data quality (the discrepancy in sign between the two aforementioned studies is possibly significant).
In either case, a slightly modified version of the ni and Chli relationship can be given as

Chli = achlni(675 nm) + const. (17)

However, it must be noted that the information contained in our data does not provide an
indication of the appropriate value for the constant offset in Equation (17): indeed, the absence of
a well-determined pair of best parameters when optimization is executed on both a and b terms
of the linear model shows that minimal error for the dataset may be reached for any value of the
offset. Therefore, the only likely way forward is to use the single well-defined scenario available i.e.,
the assumption of negligible residual absorption by pigments other than Chli. Under this assumption,
the constant offset equals zero.

Once applied to Equations (16) and (17), the optimization procedure thus defined identified
minimal RMSE values for relationships

Ci = 6880(nr(660 nm)− 1) (18)

Chli = 8320ni(675 nm). (19)

Comparisons of the optimized model results with the measured POC and ChlA values of the
UKCW dataset are shown in Figure 11. RMS%E values for the comparisons were found to be 50.2%
and 45.2% for POC and ChlA respectively.

Figure 11. Comparison of (a) POC and (b) ChlA values as determined by the optimized models of
Equations (17) and (18) vs. their respective measured values. The dashed grey lines indicate the
1:1 relationship.
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4. Discussion

The modelling of suspended matter parameters for the samples of the UKCW dataset produced
an interesting result: PSDs and PRIDs generated using a sphere-based, Mie-derived methodology
produced SPM, ISM, and OSM values which compared poorly with their corresponding measured
parameters when paired with an equally simple spherical volume model (Figure 4). However, the same
PSDs and PRIDs produced comparable results when used directly as inputs for a fractal model of
particle volume instead (Figure 5). This reflects two important aspects that should be considered
carefully. The first is that the particle diameters found by the FC method are equivalent diameters
rather than a direct measure of the physical dimension of the particles strictly [2]. The second is
that natural particle populations are not solid spheres, so it is necessary to consider the impact of
volume scaling and shape effects on apparent densities. The fractal model effectively rescales apparent
particle densities across the size range. This is a feature of dealing with polydisperse natural particle
populations that may not be encountered when dealing with effectively monodisperse algal cultures.

Application of volume scaling models (Figures 7a and 8) was moderately successful in
determining POC and ChlA concentrations, although the variable rate of success between models
mirrors the lack of consensus on a single model to accurately represent size–physiology relationships
in marine phytoplankton. Indeed, a single set of model parameters is likely to be insufficient to
adequately represent the metabolic complexity of all algal organisms [35]. This seems to substantiate
the concerns expressed by Stramski [19] in noting the large variability between results obtained using
different cell volume scaling models. Nevertheless, the further application of an empirical optimization
procedure produced good match-ups between modeled and measured POC and ChlA values across
the UKCW dataset (Figure 10).

Refractive index-based models of Ci and Chli were found to require a fractal model of particle
volume to produce modelled values comparable with measured ones, particularly in the case of POC
(Figure 9). This mirrors the results found for the particle density models for SPM, ISM, and OSM,
and suggests that fractal models of volume are necessary to reconcile linear formulations of particle
density and intraparticle carbon content with corresponding bulk measurements when natural particle
populations with a wide size range and complex composition are involved. The matter is less clear
in the case of ChlA, for which the refractive index-based models underestimated measured values
in the case of spherical volumes, and even more so in the case of fractal volumes. Since the particle
volume model must be consistent between POC and ChlA, we interpret this not as an issue with
the fractal approach but rather as a sign that other elements within the overall procedure may be
problematic. For example, it is important to remember that the imaginary refractive indices used in
the Chli estimation represent an approximation based on a single ni value derived from the literature.
A simple optimization procedure shows that the modelled ChlA values of Figure 9b,d are reconciled
with the corresponding measured values if ni(675 nm) = 12.3 × 10−3 and ni(675 nm) = 11.1 × 10−3 in
the fractal volume case and if ni(675 nm) = 4.2 × 10−3 and ni(675 nm) = 4.6 × 10−3 in the spherical
volume case (Stramski [19] and Durand et al. [20] models respectively in both cases). All four values
are within the range shown in Table 1 of Stramski et al. [36], suggesting that a more dynamic range of
ni values may in fact improve the agreement between measurements and prediction. Furthermore,
the fluorescent PSDs used in the ChlA calculations are not always easily reconciled with a Junge-like
size distribution, and thus cannot be extended beyond the FC functional size range in a straightforward
manner (Figure 3c). This can easily lead to unobserved particle fractions (especially for particle sizes
above ~10 μm) and thus to underestimation of the actual total fluorescence.

This underestimation has a direct effect on the parameter values of the optimized refractive
index-based models, which were found to be very large compared to those found in the literature
(Equations (4)–(7), (18), and (19)). However, it should be noted that while the large value of the
parameter achl can be explained by the issues mentioned above, the large value of the parameter aC may
instead be explained by the very different context of the model’s application. The original Ci model was
developed from the analysis of a small number of cultured phytoplankton species, which compared to
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the varied composition and extended size range of the He442 samples are essentially monotypic and
probably log-normally distributed in their size. For both parameters, the good agreement obtained here
(Figure 11) further confirms that fractal models of particle volume are appropriate and essential for
successful closure between the results provided by linear formulations of biogeochemical parameters
and their corresponding bulk measurements when natural mixed particle populations are concerned.

Given the results obtained for SPM, ISM, and OSM and for refractive index-derived values of POC
and ChlA using a fractal model of particle volume, at a first glance the application of POC and ChlA
volume scaling models to simple spherical volumes appears incongruous. However, close inspection
of Equations (10)–(12) reveals that the POC and ChlA empirical volume scaling relationships hide
proportionalities which are very close to those of the SPM, ISM, and OSM models. Specifically, from
Equations (10) and (12) and for a single particle

m = r3−F(r)
o ρ

(
4π
3

)1− F(r)
3
(

4
3 πr3

) F(r)
3

=

= u(r)V
F(r)

3 ∝ y = kVh.
(20)

Of particular interest then is the comparison between the exponents h and F(r)/3. Over the
0.05–2000 μm size range considered here, the value of F(r) was found to vary between 3 and ~2,
producing values of F(r)/3 between 1 and 2/3. These not only cover the range of values of exponent h
in literature-derived and UKCW optimized volume scaling models for both POC and ChlA, but also
echo general results found in literature for the volume scaling coefficients of chlorophyll and organic
carbon. A physical interpretation of these results is that intracellular carbon is not uniformly distributed
within cells, and this non-uniform distribution of intracellular carbon causes the observed non-linear
relationship with cell volume. Based on the analysis above, we have found that the observed exponent
in the cell volume model reflects the non-uniform distribution of carbon within the cell and can be used
to predict the subsequent impact on the fractal dimensionality of the particle. As shown earlier in the
paper, the fractal dimension of the particles controls the relationship between particle size distribution
and observed mass concentrations (Figure 5).

Non-uniform distribution of intracellular carbon is also closely linked with cellular metabolism.
Metabolic rate under optimal growth conditions is seen to scale with volume following a 3/4 exponent
for a large number of organisms in what is known as the 3/4 rule or Kleiber’s rule [37], and in
phytoplankton this relationship is directly tied to the photosynthetic rate, and ultimately to the
intracellular chlorophyll-a concentration. In general, phytoplankton cells regulate their pigment
concentration in response to environmental irradiance changes [37]. Values for the volume scaling
coefficient are then variably predicted to range between 3/4 and 2/3 for optimal growth and light
limited conditions respectively [37], or to reach ~1 when nutrients are abundant [35]. Álvarez et al. [13]
report values between 3/4 and 1, and Mei et al. [38] modelled cellular growth rate scaling exponents
using chlorophyll-a intraparticle concentration scaling exponents ranging between 2/3 and 1. Similarly,
empirical estimates of the scaling between cell volume and particulate carbon also vary. Some
authors find carbon intraparticle concentration to decrease proportionally with increasing cell size i.e.,
h < 1 [10,12], while other find it to be isometric to cell size i.e., h ~1 [11].

Ultimately, the results presented in this study seem to suggest that, while cellular metabolic
rate can be logically expected to play an important part in defining chlorophyll and organic carbon
concentrations within organic particles, structural characteristics of the organic particles as described
by fractal models can also offer a complementary interpretation for the proportionalities observed
in nature and described in existing microbiology literature. This opens up interesting avenues for
future research. For example, a simple attempt at repeating the optimization procedure for parameters
k1 and k2 while substituting F(r)/3 for volume scaling coefficient h produced values k1 = 0.232 for
POC and k2 = 0.100 for ChlA. The latter value is much larger than corresponding parameters found
within the literature-derived ChlA volume scaling models employed in this work; furthermore, in both
cases, modelled values of POC and ChlA resulted in a larger RMS%E when compared with their
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respective measured values from the UKCW dataset, respectively 61.2% and 93.6% for POC and
ChlA. This may suggest that the application of fractal volumes to organic carbon and chlorophyll-a
concentrations determination via volume scaling models will require a different set of values for the
primary radius ro and/or exponent β compared to those used in the estimation of suspended matter
concentrations. Coincidentally, this might also be further explanation for the underestimation found in
modelled POC and especially ChlA values derived from refractive index based models of Ci and Chli
when fractal volumes are applied. Most certainly, further in-depth research will be needed to answer
these questions.

5. Conclusions

The results obtained by the FC method for the UKCW dataset were combined with models of
particle density and of organic carbon and chlorophyll-a intraparticle concentrations to investigate the
biogeochemical properties of the particle populations. The success of the resulting SPM, ISM, OSM
and (after empirical optimization) POC and ChlA estimations lends further credibility to the PSD
and PRID determination capabilities of the FC method, and further supports the usefulness of flow
cytometry and of the FC method as a tool to complement other established techniques.

The fact that a fractal model of particle structure was key to ensure the quality of the SPM, ISM,
OSM and refractive index-derived POC and ChlA match-ups suggests that the FC method observes
particles as equivalent spheres, and has therefore the potential to be to some extent resilient both to
particles which violate Mie-compatible aspect ratios and to the break-up of flocs and aggregates which
derives from the flow cytometric measurement technique. Furthermore, this characteristic makes FC
method results more readily comparable with those of other more common marine optics instruments,
which for the most part observe bulk seawater IOPs and PSDs. It should be also noted that while the
dataset was chiefly composed of surface water samples, no particular limitation exists a priori for the
application of the FC method in its present form to samples from any water depth.

The volume scaling models used to calculate POC and ChlA were successfully applied to simple
spherical particles instead. This may appear incongruous at first; however, these models too are
revealed to hide proportionalities analogous to those caused by fractal structures, shining interesting
new light on the volume scaling coefficients described in marine microbiology literature. We have
shown here that the volume scaling models provide a route to better understand the impact of carbon
distribution within particles and resulting fractal dimensionality, while the successful optimization
of refractive index-based models reinforces previous findings that cell composition in the form of
intracellular carbon concentration is well represented by corresponding changes in real refractive
index. Finally, the size discrimination offered by FC also allows for a better understanding of the
contribution of different size classes to the bulk biogeochemical properties, as it previously did for the
IOPs of natural particle populations [2]. Taken in combination, these results represent a significant
demonstration of the quality of size and refractive index information that is provided by FC data.

Author Contributions: J.A. and D.M. conceived and outlined the concept for this study; R.R. coordinated work
during the HE442 research cruise; D.M. and R.R. supervised the retrieval of water samples; J.A. carried out
flow cytometry operations; R.R. and K.H. carried out SPM, ISM, OSM, POC, and ChlA measurements on the
water samples; J.A. analyzed the data; R.R. provided the Methods paragraphs relative to SPM, ISM, OSM, POC,
and ChlA measurements; J.A. wrote the paper.

Funding: The HE442 cruise with RV Heincke was conducted under funding by the Alfred Wegener Institute
Helmholtz Centre for Polar and Marine Research (AWI), grant AWI-HE442. This research was further funded
by the Scottish Funding Council (SFC) (grant HR09011) via Marine Alliance for Science and Technology for
Scotland (MASTS). This work was originally conceived thanks to work conducted under award of NERC grant
NE/H021493/1 to McKee and co-investigators.

Acknowledgments: Agagliate and McKee gratefully acknowledge financial support from the MASTS pooling
initiative. The authors wish to thank the captain and the crew of RV Heincke for their support and help during the
HE442 research cruise. The authors also duly thank D. Stramski and two anonymous reviewers, who all helped
improve this manuscript with their comments and suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

17



Appl. Sci. 2018, 8, 2676

References

1. Agagliate, J.; Röttgers, R.; Twardowski, M.S.; McKee, D. Evaluation of a flow cytometry method to determine
size and real refractive index distributions in natural marine particle populations. Appl. Opt. 2018, 57,
1705–1716. [CrossRef] [PubMed]

2. Agagliate, J.; Lefering, I.; McKee, D. Forward modelling of inherent optical properties from flow cytometry
estimates of particle size and refractive index. Appl. Opt. 2018, 57, 1777–1788. [CrossRef] [PubMed]

3. Ackleson, S.G.; Spinrad, R.W. Size and refractive index of individual marine particulates: A flow cytometric
approach. Appl. Opt. 1988, 27, 1270–1277. [CrossRef] [PubMed]

4. Green, R.E.; Sosik, H.M.; Olson, R.J.; DuRand, M.D. Flow cytometric determination of size and complex
refractive index for marine particles: Comparison with independent and bulk estimates. Appl. Opt. 2003, 42,
526–541. [CrossRef] [PubMed]

5. Green, R.E.; Sosik, H.M.; Olson, R.J. Contributions of phytoplankton and other particles to inherent optical
properties in New England continental shelf waters. Limnol. Oceanogr. 2003, 48, 2377–2391. [CrossRef]

6. Zhang, X.; Stavn, R.H.; Falster, A.U.; Gray, D.; Gould, R.W., Jr. New insight into particulate mineral and
organic matter in coastal ocean waters through optical inversion. Estuar. Coast. Shelf Sci. 2014, 149, 1–12.
[CrossRef]

7. Morel, A.; Ahn, Y.-H. Optical efficiency factors of free-living marine bacteria: Influence of bacterioplankton
upon the optical properties and particulate organic carbon in oceanic waters. J. Mar. Res. 1990, 48, 145–175.
[CrossRef]

8. Babin, M.; Morel, A.; Fournier-Sicre, V.; Fell, F.; Stramski, D. Light scattering properties of marine particles
in coastal and open ocean waters as related to the particle mass concentration. Limnol. Oceanogr. 2003, 48,
843–859. [CrossRef]

9. Aas, E. Refractive index of phytoplankton derived from its metabolite composition. J. Plankton Res. 1996, 18,
2223–2249. [CrossRef]

10. Verity, P.G.; Robertson, C.Y.; Tronzo, C.R.; Andrews, M.G.; Nelson, J.R.; Sieracki, M.E. Relationships between
cell volume and the carbon and nitrogen content of marine photosynthetic nanoplankton. Limnol. Oceanogr.
1992, 37, 1434–1446. [CrossRef]

11. Montagnes, D.J.S.; Berges, J.A.; Harrison, P.J.; Taylor, F.J.R. Estimating carbon, nitrogen, protein, and
chlorophyll a from volume in marine phytoplankton. Limnol. Oceanogr. 1994, 39, 1044–1060. [CrossRef]

12. Menden-Deuer, S.; Lessard, E.J. Carbon to volume relationships for dinoflagellates, diatoms, and other
protist plankton. Limnol. Oceanogr. 2000, 45, 569–579. [CrossRef]

13. Álvarez, E.; Nogueira, E.; López-Urrutia, Á. In Vivo Single-Cell Fluorescence and Size Scaling of
Phytoplankton Chlorophyll Content. Appl. Environ. Microbiol. 2017, 83, e03317-16. [CrossRef] [PubMed]

14. Stramski, D.; Morel, A. Optical properties of photosynthetic picoplankton in different physiological states as
affected by growth irradiance. Deep Sea Res. Part A Oceanogr. Res. Pap. 1990, 37, 245–266. [CrossRef]

15. Stramski, D.; Reynolds, R.A. Diel variations in the optical properties of a marine diatom. Limnol. Oceanogr.
1993, 38, 1347–1364. [CrossRef]

16. Stramski, D.; Shalapyonok, A.; Reynolds, R.A. Optical characterization of the oceanic unicellular
cyanobacterium Synechococcus grown under a day-night cycle in natural irradiance. J. Geophys. Res. 1995,
100, 13295–13307. [CrossRef]

17. Reynolds, R.A.; Stramski, D.; Kiefer, D.A. The effect of nitrogen limitation on the absorption and scattering
properties of the marine diatom Thalassiosira pseudonana. Limnol. Oceanogr. 1997, 42, 881–892. [CrossRef]

18. Durand, M.D.; Olson, R.J. Diel patterns in optical properties of the chlorophyte Nannochloris sp.: Relating
individual-cell to bulk measurements. Limnol. Oceanogr. 1998, 43, 1107–1118. [CrossRef]

19. Stramski, D. Refractive index of planktonic cells as a measure of cellular carbon and chlorophyll a content.
Deep Sea Res. Part I Oceanogr. Res. Pap. 1999, 46, 335–351. [CrossRef]

20. Durand, M.D.; Green, R.E.; Sosik, H.M.; Olson, R.J. Diel Variations in Optical Properties of Micromonas Pusilla
(Prasinophyceae). J. Phycol. 2002, 38, 1132–1142. [CrossRef]

21. Stramski, D.; Morel, A.; Bricaud, A. Modeling the light attenuation and scattering by spherical phytoplanktonic
cells: A retrieval of the bulk refractive index. Appl. Opt. 1988, 27, 3954–3956. [CrossRef] [PubMed]
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Abstract: Although the light fields and apparent optical properties (AOPs) within the ocean euphotic
layer have been studied for many decades through extensive measurements and theoretical modeling,
there is virtually a lack of simultaneous high spectral resolution measurements of plane and scalar
downwelling and upwelling irradiances (the so-called irradiance quartet). We describe a unique
dataset of hyperspectral irradiance quartet, which was acquired under a broad range of environmental
conditions within the water column from the near-surface depths to about 80 m in the Gulf of
California. This dataset enabled the characterization of a comprehensive suite of AOPs for realistic
non-uniform vertical distributions of seawater inherent optical properties (IOPs) and chlorophyll-a
concentration (Chl) in the common presence of inelastic radiative processes within the water column,
in particular Raman scattering by water molecules and chlorophyll-a fluorescence. In the blue
and green spectral regions, the vertical patterns of AOPs are driven primarily by IOPs of seawater
with weak or no discernible effects of inelastic processes. In the red, the light field and AOPs
are strongly affected or totally dominated by inelastic processes of Raman scattering by water
molecules, and additionally by chlorophyll-a fluorescence within the fluorescence emission band.
The strongest effects occur in the chlorophyll-a fluorescence band within the chlorophyll-a maximum
layer, where the average cosines of the light field approach the values of uniform light field, irradiance
reflectance is exceptionally high approaching 1, and the diffuse attenuation coefficients for various
irradiances are exceptionally low, including the negative values for the attenuation of upwelling plane
and scalar irradiances. We established the empirical relationships describing the vertical patterns
of some AOPs in the red spectral region as well as the relationships between some AOPs which
can be useful in common experimental situations when only the downwelling plane irradiance
measurements are available. We also demonstrated the applicability of irradiance quartet data in
conjunction with Gershun’s equation for estimating the absorption coefficient of seawater in the
blue-green spectral region, in which the effects of inelastic processes are weak or negligible.

Keywords: oceanic light field; irradiance quartet; apparent optical properties; inelastic processes;
Gershun equation; ocean euphotic zone

1. Introduction

The ocean epipelagic zone that extends from the surface to approximately 200 m depth is extremely
important for ocean-atmosphere interactions with implications to climate and supporting life on Earth.
Most solar radiation incident on the ocean is absorbed within this layer [1,2]. In the euphotic layer
that overlaps with the upper portion or the entire epipelagic zone in very clear ocean waters, there is
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enough light to support the process of photosynthesis, which contributes nearly half of the world’s total
biological primary production [3]. The studies of light propagation and light field characteristics are
crucial for understanding many physical and biological processes in the upper ocean, which are driven
by or depend on solar radiation. For example, for studying the heating rate, the radiometric quantities
of spectral downward plane irradiance, Ed(z, λ), and the spectral upward plane irradiance, Eu(z, λ),
are essential [4]. The symbols z (units of m) and λ (units of nm) stand for depth in the ocean and light
wavelength in vacuum, respectively. In photosynthesis studies the key quantity of photosynthetically
available radiation (PAR) is best represented on the basis of radiometric quantity of spectral scalar
irradiance, Eo(z, λ), and its integration over the spectral range of 350–700 nm or 400–700 nm with
conversion from energy units to quantum units [5–9]. This measure of PAR is hereafter referred to
as the PAR quantum scalar irradiance, EoPAR. In the past, however, the PAR estimates in the ocean
have been often based on the measurements of downward plane irradiance [10], so this measure of
PAR will be referred to as PAR quantum downward irradiance, EdPAR. The PAR estimate in terms of
EoPAR is superior to EdPAR, mainly because it does not ignore the contribution of upwelling light to
photosynthetically available radiation and the measurement of Eo with a spherical collector gives equal
weight to quanta arriving at a point from all possible directions, in contrast to the cosine weighting
in the measurement of Ed with a plane collector. For simplicity, the explicit dependence of optical
quantities on z and λ is omitted hereafter unless causing ambiguity (symbols and definitions are
summarized in Table 1, see also [9] for terminology and definitions used in hydrologic optics).

Table 1. Symbols of basic variables used in this study.

Symbol Description Units

λ Light wavelength in vacuum nm
z Depth in water m
θs Solar zenith angle degree
a Absorption coefficient m−1

b Scattering coefficient m−1

c Beam attenuation coefficient (sum of a and b) m−1

Lu Spectral upwelling radiance at zenith direction W m−2 sr−1 nm−1

Ed, Eu Spectral downwelling and upwelling plane irradiances W m−2 nm−1

Eo, Eod, Eou Spectral total, downwelling, and upwelling scalar irradiances W m−2 nm−1

Kx Diffuse attenuation coefficients for irradiance or radiance x m−1

μ, μd, μu Average cosines of total, down- and upwelling light fields dimensionless
R Irradiance reflectance dimensionless

Chl Chlorophyll-a concentration mg m−3

Subscripts
w Water
p Suspended particulate matter
g Colored dissolved organic matter (CDOM)

Radiometric measurements in the ocean started in the early 1930s and a summary of pioneering
work can be found in [11]. Example early studies include measurements of spectral irradiance,
e.g., [12,13] and the angular distribution of radiance, e.g., [14–16], and determinations of some
apparent optical properties (AOPs) of the ocean from light measurements, e.g., [12,17,18]. Early
reports on radiometric and other optical measurements in the ocean can be also found in the Russian
literature, e.g., [19].

More recent studies have considerably expanded these early measurements by using advanced
instrumentation and various deployment approaches, e.g., [20–32]. Much research interest in recent
decades has been concentrated on ocean reflectance in relation to applications of ocean color remote
sensing. For these applications, many radiometric measurements have been collected for spectral
upwelling (zenith) radiance, Lu, and Ed, and optionally also for Eu [32–34]. Note that the zenith radiance
indicates that the measured light travels toward zenith. The analysis of radiometric measurements
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driven by the interest in ocean color has been typically focused on near-surface layer, approximately the
top 10–20 m. With regard to AOPs, most experimental efforts have been placed on the determinations
of (i) the spectral diffuse attenuation coefficients Kd, Ku, and KLu for Ed, Eu, and Lu, respectively; (ii) the
spectral irradiance reflectance, R = Eu/Ed; and (iii) the spectral remote-sensing reflectance just above
the sea surface, Rrs(z = 0+) = Lw(z = 0+)/Ed(z = 0+) where Lw is the spectral water-leaving radiance and
z = 0+ is just above the sea surface, e.g., [32,34–43]. Note also that the measurements of both Ed and Eu

allow for determination of the net irradiance, E = Ed − Eu, and the diffuse attenuation coefficient for
net irradiance, KE.

In contrast to the plane irradiances Ed and Eu, the measurements of spectral scalar irradiance, Eo,
including its downward, Eod, and upward, Eou, components have seldom been conducted. In particular,
simultaneous measurements of the irradiance quartet that includes Ed, Eu, Eod, and Eou have been very
rare [44] and we are unaware of explicit presentation of experimental data of the complete irradiance
quartet in the literature. This greatly limits the availability of experimental data of the average
cosines that provide a simple way of specifying the angular structure of the light field. The average
cosines include: (i) the average cosine for the downwelling light field, μd = Ed/Eod; (ii) the average
cosine for the upwelling light field, μu = Eu/Eou; and (iii) the average cosine for the entire light field,
μ = (Ed − Eu)/(Eod + Eou) ≡ E/Eo [8,9]. We note that according to the original concept and definition
of AOPs introduced by Preisendorfer [45,46], the average cosines (and the reciprocal of the average
cosines referred to as the distribution functions) can be considered AOPs. Preisendorfer [46] provides
the following definition of AOPs: “The apparent optical properties of a natural hydrosol are those
radiometrically determined scattering- and absorbing-induced quantities which generally depend on
the geometrical structure of the light field (i.e., whether the light field is more or less collimated or
diffuse) but which have enough regular features and enough stability to be entitled to the appellation
optical property”. In some studies, however, for example in the work of Kirk [10,47], the average
cosines are considered just as simple parameters that specify the angular structure of the light field,
and not AOPs. In this paper, we choose to refer to the average cosines as AOPs, which is consistent
with the traditional view [9,46,48] and simplifies the narrative structure of the presentation of our
results for the three classes of parameters (i.e., K-coefficients, reflectances, and average cosines) which
are derived from radiometric quantities. The issue of whether or not we refer to the average cosines as
AOPs has no impact on the presented results.

The scarcity of simultaneous measurements of E and Eo has also greatly limited the potential
use of the so-called Gershun equation [49] for estimating the absorption coefficient of seawater, a,
from radiometric measurements or AOPs. This equation can be derived directly from the 1-D scalar
(i.e., depth dependence only and no consideration of polarization of light) radiative transfer equation
(RTE) for radiance, and takes a simple form a = KE·μ when the inelastic radiative processes and
internal sources are ignored [9]. The inelastic processes in the ocean include Raman scattering by water
molecules, fluorescence by phytoplankton pigments, especially chlorophyll-a, and fluorescence by
colored dissolved organic matter (CDOM). Few experimental studies have incorporated measurements
of both spectral plane and scalar irradiances [18,44] or derived the irradiance quartet from radiance
measurements limited to a single or a few wavebands [20,29,31,50] to examine the application of
Gershun’s equation. Højerslev [51] demonstrated that the irradiances involved in Gershun’s equation,
E and Eo, can be measured with two irradiance sensors equipped with spherical collectors oriented
in upward and downward looking directions and masked so that they each collect light over a
hemispherical portion of the collector. This latter approach was also used by Spitzer and Wernand [52]
to determine the absorption coefficient of seawater from Gershun’s equation.

In principle, theoretical simulations of radiative transfer (RT) in the ocean enable the analysis
of essentially all radiometric quantities of underwater light field and AOPs for various pre-defined
scenarios of input data of inherent optical properties (IOPs) of seawater and boundary conditions
at the sea surface and ocean bottom. There is a large body of literature in this area with a great
majority of studies focusing on the so-called inverse problem or developing methods for estimating
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IOPs from radiometric measurements of natural light field or AOPs in a water body (see [53] for a
review of this topic). In general, the limitations of such RT models are set by the assumptions used
in their development, which include the assumptions regarding the vertical structure of IOPs and
inelastic processes. The RT simulations have usually assumed a homogeneous water column and
ignored all or some inelastic processes [47,54–60]. If included, the vertical stratification normally
requires some idealized parameterization of the depth profile of IOPs, e.g., [60–64]. The models
based on such simplifying assumptions can be satisfactory within certain limitations for the purposes
of their development, for example the retrieval of average IOPs in the near-surface ocean layer.
Notwithstanding the simplifying assumptions about the ocean environment, the RT modeling has
provided insights into the complexity of the effects of the vertical inhomogeneity of the water
column [60,62,63,65,66] and inelastic processes [60,67–75] on in-water and water-leaving light fields
as well as AOPs. However, a comprehensive theoretical analysis of all (or nearly all) radiometric
quantities (including plane and scalar irradiances) as well as the three AOP classes (K-coefficients,
reflectances, and average cosines) throughout the water column for a variety of complex environmental
scenarios is not easily tractable, especially for various naturally-occurring vertical profiles of IOPs
within the upper ocean. Such analysis has usually remained beyond the scope of RT modeling;
rare examples are found in Morel and Gentili [60], which focused on the well-lit upper ocean layer,
and Li et al. [64], which focused on the dimly-lit mesopelagic zone (z > 200 m). Morel and Gentili [60]
demonstrated, for example, the intricate patterns of the influences of many factors, including the sun
position, seawater IOPs (as driven primarily by chlorophyll-a concentration, Chl, and co-varying water
constituents), and Raman scattering, on the various AOPs within a hypothetically homogeneous ocean.

In spite of decades of experimental and theoretical studies of optical radiometry of the ocean,
there exist some gaps or interesting questions, which deserve further attention. This study has been
motivated by a few such questions, in particular (i) how the spectral and vertical patterns of light field
characteristics and AOPs are affected by the interplay of inelastic processes (i.e., Raman scattering
and chlorophyll-a fluorescence) and the actual non-uniform vertical distributions of Chl (and hence
the vertically varying IOPs) within the euphotic layer; (ii) what relationships can be established
between different AOPs using the depth-resolved data within the euphotic layer; and (iii) what is
the quality and applicability of estimation of seawater absorption coefficient from measured AOPs
and Gershun’s equation under real conditions of non-uniform vertical distributions of Chl and IOPs,
and inelastic processes within the euphotic layer. To address these questions, we collected simultaneous
hyperspectral measurements of the irradiance quartet (Ed, Eu, Eod, and Eou) and the zenith radiance Lu

from the surface to depths of 60–80 m in the Gulf of California. This dataset is unique because it allows
conducting a case study of a comprehensive set of radiometric quantities and all essential AOPs for a
broad range of specific optical and biogeochemical conditions within the water column as described
by the actual vertical profiles of Chl and IOPs.

2. Methods

2.1. Study Area

The field data were collected in the Gulf of California onboard the R/V New Horizon in June 2010
and June–July 2011 (Figure 1). A total of 11 stations were investigated in 2010 and 14 stations in 2011.
These stations were located within three regions of the Gulf of California, Guaymas Basin, Carmen
Basin, and Farallon Basin, which differ significantly in terms of water optical properties. The Guaymas
Basin is the central part of the Gulf of California, Farallon Basin is the southernmost part of the Gulf
of California, and Carmen Basin is located between the Guaymas and Farallon Basins. The Gulf of
California has unique oceanographic and ecosystem characteristics [76,77]. According to Jerlov’s
optical classification of natural water bodies based on near-surface values of Kd(λ) [11], the waters
in the Guaymas Basin range typically between the oceanic Type IB and Type II, the Carmen Basin
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waters between the oceanic Type I and Type IA, and the Farallon Basin waters between Type II and
coastal Type 1.

Figure 1. Location of stations in the Gulf of California where underwater radiometric and ancillary
measurements were made. Circles indicate the station sites in 2010 and squares in 2011. Optical
measurements were made at four, three, and four stations in the Guaymas, Carmen, and Farallon Basins,
respectively. Stars indicate two stations where the absorption and beam attenuation measurements
with an ac-9 instrument were made in 2011.

2.2. CTD Measurements

At each station, a conductivity-temperature-depth (CTD) package equipped with Niskin bottles
was deployed to determine the depth profiles of seawater physical parameters (temperature T, salinity
S, and density anomaly σ), chlorophyll-a fluorescence, and non-water optical beam attenuation
coefficient at 660 nm, cnw(z, 660) (i.e., the total beam attenuation of seawater after subtraction of pure
seawater contribution). Water samples were also collected at discrete depths with the CTD-Rosette for
subsequent determinations of Chl in the laboratory.

The CTD package was deployed from water surface to ~500 m depth. The acquired raw data
were processed using a manufacturer’s software, SBEDataProcessing v7.23.2 (Sea-Bird Electronics Inc.,
Bellevue, WA, USA), and converted to values in physical units with calibration files. The processing
software automatically aligned the measurements of each sensor to the common depth vector.
The calibrated data were subsequently split into down- and up-casts. Preliminary inspection of
the data showed that the up-casts of CTD measurements often exhibited less noise and thus were
chosen for further processing. Depth profiles of each parameter were despiked using a running
median method and smoothed using a Savitzky-Golay filter in Matlab R2015b (MathWorks, Natick,
MA, USA). The profiles were then binned to 0.5 m depth resolution to yield the final data of T, S,
σ, chlorophyll-a fluorescence, and cnw(660). The cnw(660) was considered to be equivalent to the
particulate attenuation coefficient at 660 nm, cp(660), because the absorption of dissolved material at
660 nm was assumed negligible.

2.3. Chlorophyll-a Concentration

The chlorophyll-a concentration, Chl, was determined for discrete water samples obtained from
the Niskin bottles deployed during the CTD-Rosette casts. The particulate material was collected
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by filtration onto glass-fiber filters (GF/F) and stored in liquid nitrogen for post-cruise analysis.
The samples collected in 2010 were analyzed with High-Performance Liquid Chromatography (HPLC)
using the method described in [78]. The total Chl, which represents the summed contributions of
monovinyl chlorophyll-a, divinyl chlorophyll-a, chlorophyllide-a, and the allomeric and epimeric forms
of chlorophyll-a, was determined. In 2010, Chl was usually determined for water samples collected
at two depths, 1–3 m below the sea surface and around the depth of chlorophyll-a fluorescence
maximum, zChlmax. In 2011, water samples were also collected below zChlmax, resulting in three water
samples at each station. These samples were analyzed spectrophotometrically to determine Chl.
The absorbance spectra of acetone extracts of pigments were measured inside an integrating sphere of
a spectrophotometer (Perkin-Elmer Lambda 18 equipped with a 15-cm sphere) from 290 to 860 nm
with 1-nm interval. The Chl concentrations were computed from absorbance values at 630, 647, 665,
and 691 nm using the equation of Ritchie [79].

Based on Chl determinations at discrete depths, depth profiles of Chl were derived by calibrating
the chlorophyll-a fluorescence profiles from the CTD cast. The values of fluorescence at depths of
Chl determination were used to establish a relationship between the fluorescence signal and Chl.
The squared correlation coefficient r2 of this relationship was 0.942 and 0.938 for the data collected in
2010 and 2011, respectively. With this relationship, the depth profiles of Chl were constructed using the
depth profiles of measured fluorescence at all stations (see Figure 2 for an example). We note that the
analysis and discussion of our results do not, however, rely strongly on exact values of Chl, but rather
on relative changes in Chl.

Figure 2. Vertical profiles of water temperature T, density anomaly σ, chlorophyll-a concentration Chl,
and beam attenuation coefficient of particles at 660 nm cp(660) measured at two contrasting stations.
(a) Station in the Guaymas Basin (27.54◦ N, 111.64◦ W) with lower Chl and cp and smaller solar zenith
angle of ~5◦ and (b) station in the Farallon Basin (25.28◦ N, 109.58◦ W) with higher Chl and cp and
larger solar zenith angle of ~57◦.

2.4. Radiometric Quantities and Apparent Optical Properties

Underwater radiometric measurements, including the irradiance quartet, Ed, Eu, Eod, and Eou

(for all stations) and upwelling zenith radiance Lu (for a few stations in 2011), were collected using
an instrument package equipped with five RAMSES sensors (TriOS Mess- und Datentechnik GmbH,
Rastede, Germany). Concurrent in-air downwelling plane irradiance, Es(λ), was also measured with
an additional sensor mounted on board the ship. These sensors typically acquired signal over the
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approximate spectral range 320–950 nm (with slight difference among sensors) with ~3.3 nm spectral
interval across the spectrum. The radiance sensor had a 20◦ field of view in air. All five in-water sensors
were mounted on a common frame and aligned to the exact same depth level (Figure 3). The in-water
package was lowered into water from the sun-exposed side of the vessel at a distance of ~15 m from
the vessel to minimize ship-induced light field perturbations [80,81]. Vertical profile measurements
were taken at several discrete depths from a few meters below the surface to depths of 50 to 80 m
depending on the station. The package was stopped and held every 3–10 m to acquire 5–10 spectral
scans at each measurement depth. The integration time of each sensor was automatically adjusted to
the light intensity at each measurement depth to ensure an adequate signal to noise ratio. The depth
resolution of discrete measurements was highest near the surface and decreased to 10 m below the
20 m depth. Generally, at least one measurement was made near the depth of the Chl maximum as
indicated by the chlorophyll-a fluorescence profile from the CTD cast.

 

Figure 3. The instrument package used to measure the irradiance quartet and upwelling radiance.
As shown, the five radiometric sensors are aligned to the same depth level.

The raw radiometric data acquired in the field were converted to physical units of spectral
irradiance (W m−2 nm−1) and spectral radiance (W m−2 sr−1 nm−1). For the underwater
measurements, the correction for immersion effect was made for each sensor with the coefficients
provided by the manufacturer, which were verified and revised in the laboratory experiment [82].
All measurements were matched to each other by their time stamp and assigned depth. Each spectrum
was filtered using the Savitzky-Golay filter in Matlab R2015b to minimize noise, and the linear
interpolation was then applied to obtain the final spectral data with a 1 nm spectral interval. The quality
of radiometric measurements was best when the irradiance magnitude was higher than the detection
limit of 10−6 W m−2 nm−1. The measurements of Lu below ~30–40 m were often not possible because
of insufficient sensitivity of the sensor. All measurements with a signal below the detection limit
were excluded from the analysis. As a result, at some stations the greatest depth of measurements
of upwelling irradiance in the red spectral region was somewhat smaller (by ~10–20 m) compared
with measurements of upwelling irradiance in the blue-green spectral region or measurements of
downwelling irradiances. The underwater irradiance and radiance data that passed quality criteria
were adjusted to eliminate the effects of temporal changes in sky conditions during vertical profiling
with the underwater system. This was accomplished by appropriate normalization of underwater data
acquired at different depths using simultaneously acquired data of Es.

The data of irradiance quartet were used to derive a comprehensive set of AOPs at each
discrete depth, including, μd, μu, μ, R (all dimensionless), and various diffuse attenuation coefficients,
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collectively denoted with a symbol K (units of m−1). The K coefficients for various irradiances were
derived from

Kx(z1 + Δz, λ) = − ln Ex(z2, λ)− ln Ex(z1, λ)
z2 − z1

, (1)

where x represents d, u, od, and ou, z1 is a depth corresponding to the upper boundary of the
layer over which Kx is determined, z2 is the lower boundary of this layer, and Δz = (z2 − z1)/2.
Similarly, other Kx coefficients were also calculated, specifically the diffuse attenuation coefficient
of net irradiance, KE, by replacing Ex with net irradiance, E = Ed − Eu, and the diffuse attenuation
coefficient of upwelling zenith radiance, KLu, by replacing Ex with Lu. PAR quantum scalar irradiance,
EoPAR (in units of μmol quanta m−2 s−1), was calculated by the conversion of spectral Eo from energy
units to quantum units and integration between 400 and 700 nm. Similarly, PAR quantum downward
irradiance, EdPAR, was calculated from spectral Ed. The corresponding diffuse attenuation coefficients,
KoPAR and KdPAR, were calculated by replacing Ex with EoPAR and EdPAR, respectively, in Equation (1).

The spectra of all AOPs were inspected to ensure the quality of data. Because at each depth
multiple radiometric measurements were taken, AOPs were initially determined from each radiometric
measurement. The unrealistic AOPs, for example R > 1 or average cosines > 1, or obvious outliers were
then discarded. The abnormal data were often observed near the surface, most likely owing to the
effects of wave-induced light fluctuations in Ed and Eod [83,84]. After this quality control, the accepted
spectra of radiometric quantities were averaged to generate final data of irradiances and radiance
for each depth of measurement. The average spectra of irradiances and radiance were then used to
compute the final AOPs. Such final data from 11 stations (five in 2010 and six in 2011; see Figure 1) that
included valid measurements at more than four depths were selected for further analysis in this study.

2.5. Absorption and Beam Attenuation Coefficients

The non-water absorption coefficient, anw(z, λ) = a(z, λ) − aw(λ), and non-water beam attenuation
coefficient, cnw(z, λ) = c(z, λ) − cw(λ), were measured at five stations in 2011 with an ac-9 instrument
equipped with nine spectral bands; 412, 440, 488, 510, 532, 555, 650, 676, and 715 nm (WET Labs, Inc.,
Philomath, OR, USA). a(z, λ) and c(z, λ) are the total absorption and beam attenuation coefficients
of seawater and aw(λ) and cw(λ) represent the pure seawater contributions to these coefficients,
respectively. Note that anw(z, λ) is often written as a sum of ap(z, λ) and ag(z, λ) where the subscripts
p and g represent the contributions associated with suspended particulate matter and CDOM,
respectively. The coefficient cnw(z, λ) can be written as a sum of anw(z, λ) and bp(z, λ), where bp(z, λ)
represents the particulate component of the total scattering coefficient of seawater, b(z, λ).

Vertical profiles of ac-9 data were obtained from the surface to ~500 m depth. The first step
of data processing included quality checking of downcast and upcast measurements and rejecting
doubtful and excessively noisy data. Because data were often missing for the upcast profiles within
the top ~30–50 m layer, only the downcast data were used for further processing, which included
temperature and salinity correction [85], subtraction of a baseline determined with Milli-Q water before
the cruise, and binning to 0.5 m depth resolution. The anw(z, λ) values were additionally corrected for
the scattering error by subtracting the values at 715 nm at all ac-9 wavelengths. After quality control,
only two stations (indicated in Figure 1) provided ac-9 data with concurrent radiometric measurements
described in Section 2.4.

2.6. Regression Analysis

The presented results of regression analysis are mostly based on the Model I regression method
because our objective was to formulate a functional relationship for estimating the ordinate variable
y from the abscissa variable x [86]. The ordinary least squares method was applied for all linear
relationships and the nonlinear least squares method was applied to all non-linear relationships.
The regression calculations were performed using standard fitting methods in Matlab R2015b.
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The ordinary (untransformed) variables x and y were used as input to the fitting procedure. The fitting
process in Matlab R2015b also outputs root mean squared error, RSME, that is calculated as:

RMSE =

√√√√√ N
∑

i=1
(yi − xi)

2

N − m
, (2)

where N is the total number of data points and m is the number of coefficients fitted via the
regression analysis.

In one case of our data analysis, we applied the Model II regression method in which the
relationship was estimated using the slope of major (principal) axis of the bivariate dataset (Section 3.3).
In this specific analysis we compared the estimates of the absorption coefficient obtained with
two different experimental methods based on irradiance quartet and ac-9 measurements.

3. Results and Discussion

3.1. Contrasting Examples of Light Field Characteristics and AOPs

Our measurements show that the bio-optical properties within the Gulf of California exhibited a
large range of variability, which is summarized in terms of Chl and cp(660) data in Table 2. The examined
water column extended from the surface to a maximum measurement depth of 80 m. The depth
of euphotic layer, zeu, was determined using a conventional criterion by estimating a depth at
which the surface PAR (i.e., EoPAR) was reduced to 1%. The depth zeu ranged from about 30 to
60 m depending on time and location of measurement. Typically, our measurements (at least in the
blue-green spectral region) extended ~10–30 m below zeu, and these maximum measurement depths
corresponded to ~0.1–0.5% of surface EoPAR. Because phytoplankton have specific energetic demand
rather than demand for percentage of light, it is reasonable to expect that the compensation depth of
phytoplankton photosynthesis for specific latitude, season, and optical water types investigated in
our study was greater than zeu, probably closer to 0.1% of surface PAR [87]. Therefore, we refer to the
entire investigated water column as the euphotic layer.

Table 2. Summary of data characterizing the shallowest and greatest depths of radiometric
measurements, the depth of chlorophyll-a maximum, and the corresponding chlorophyll-a
concentration, Chl, and particulate beam attenuation coefficient at 660 nm, cp(660), for these depths
based on all stations during the 2010 and 2011 cruises in the Gulf of California. For each of these
variables the average value ± standard deviation with the minimum and maximum values in
parenthesis are given. In addition, the minimum and maximum values of the solar zenith angle
θs and the data characterizing the euphotic depth zeu (the average value ± standard deviation with the
minimum and maximum values in parenthesis) are shown for all stations.

Depth of Measurement Shallowest Greatest Chl Maximum

z (m)
5.4 ± 2.9 64.9 ± 12.1 33.0 ± 9.9
(1.2, 10.5) (47.6, 80.7) (20.4, 50.5)

Chl (mg m−3)
0.067 ± 0.067 0.13 ± 0.15 0.81 ± 0.54
(0.005, 0.24) (0.004, 0.42) (0.25, 2.17)

cp(660) (m−1)
0.173 ± 0.035 0.089 ± 0.048 0.239 ± 0.076
(0.103, 0.238) (0.043, 0.202) (0.125, 0.405)

Solar zenith angle θs (degrees) 0.5–57.1

Euphotic depth zeu (m) 40.5 ± 8.9
(29.3, 60.0)
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Within the examined water column, Chl varied from extremely low levels on the order of 10−3

to more than 2 mg m−3 with the highest values observed within the Chl maximum (Chlmax) layer
and the lowest values either near the surface or at the deepest measurement depths (~60–80 m).
The shape of the Chl(z) vertical profile also changed significantly within the study area. The depth
zChlmax of Chlmax ranged from about 20 m to 50 m. The full width half maximum (FWHM) of the Chlmax

layer, when fitted to a Gaussian function, ranged from 5 m to 30 m. Significant variations spanning
one order of magnitude from about 0.04 to 0.4 m−1 were also observed in cp(z, 660). In addition,
our measurements were conducted under a broad range of the solar zenith angle, θs, varying between
0.5◦ (i.e., the sun nearly at zenith) to 57.1◦. Such broad range of environmental conditions is evident in
terms of diverse scenarios in the measured light field characteristics and AOPs.

In this section we discuss two contrasting scenarios of light fields and AOPs within the euphotic
layer, one was located in the Guaymas Basin which was observed in 2011 (Figure 2a) and the other
in the Farallon Basin which was observed in 2010 (Figure 2b). Figure 2 compares the vertical profiles
of T, σ, Chl, and cp(660) at both stations. These two stations have highly contrasting Chl profiles and
also exhibit noticeable differences in the cp(660) profiles. Although both stations had a similar depth
of Chlmax (~30 m) the magnitude and FWHM of the Chlmax layer were very different. Specifically,
the magnitude of Chlmax in the Farallon Basin (1.3 mg m−3) was about twice as high as compared with
that observed in the Guaymas Basin (0.64 mg m−3). The FWHM was also considerably larger in the
Farallon Basin, i.e., 25 m vs. 10 m in the Guaymas Basin. In general, the magnitudes of cp(660) for
these two stations did not differ significantly but the vertical distributions were different. In particular,
there was a noticeable local maximum of cp(660) near the depth of Chlmax in the Guaymas Basin, and no
similar feature was observed in the Farallon Basin. The observed optical differences between the
stations could have been caused by differences in the characteristics of suspended particulate matter
such as organic and mineral composition. In addition, whereas the measurements were made under
clear skies, the solar zenith angle was dramatically different at these two stations, 5.5◦ in the Guaymas
Basin (the measurement was taken around noon at 12:45 p.m. local time) and 57.1◦ in the Farallon
Basin (the measurement taken late afternoon at 4:35 p.m.). Thus, the comparison of these two stations
provides an illustration of differences in the light field and AOPs, which were affected not only by
water optical properties but also solar zenith angle. We will first present the data of irradiance quartet
(Figure 4) and AOPs (Figures 5 and 6) for the station in the Guaymas Basin, and then the AOPs for the
station in the Farallon Basin (Figure 7).

The spectra of irradiances, Ed, Eu, Eod, and Eou, at several discrete depths within the top 70 m
of the water column are presented in Figure 4a–d. These results illustrate the well-known general
pattern of the vertical change in the irradiance spectra in the upper ocean, including a decrease in
the magnitude and narrowing of the spectral distribution with an increase in depth, e.g., [11]. In the
investigated waters, all four irradiances exhibited well-pronounced maximum at a wavelength of
about 495 nm at the deepest measurement depth of 67 m, but the spectral distributions of downwelling
light, Ed and Eod, were clearly broader with relatively more light in the green compared with the
distributions for the upwelling light, Eu and Eou. A remarkable feature associated with vertically
non-uniform fluorescence of chlorophyll-a was also evident in the irradiance spectra. At a depth of
29 m that coincides with zChlmax the spectra of Ed and Eod showed a distinct maximum in the spectral
band of maximum fluorescence centered around 683 nm. This maximum was even more pronounced
in the spectra of Eu and Eou. This feature weakened greatly for Ed and Eod at depths shallower or
deeper than zChlmax, but was preserved in the spectra of Eu and Eou throughout the water column,
which was expected as long as Chl did not drop to a very low level.
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Figure 4. Spectra and vertical profiles of the irradiance quartet, Ed (a,e), Eod (b,f), Eu (c,g), and Eou

(d,h), measured at the station in the Guaymas Basin shown in Figure 2a. In panels (a–d) different colors
represent the measurement depths as indicated in (a). In (e–h) different colors and symbols represent
selected light wavelengths as indicated in (e).

Figure 5. Spectra and vertical profiles of average cosines of underwater light field, μd (a,e), μu (b,f) and
μ (c,g) as well as irradiance reflectance, R (d,h), derived from the irradiance quartet for Guaymas Basin
shown in Figure 4. In panels (a–d) different colors represent depths as indicated in (a). The black arrow
in (d) indicates a spectral feature caused by Raman scattering of water molecules. In (e–h) different
colors and symbols represent light wavelengths as indicated in (e).
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Figure 6. Spectra and vertical profiles of diffuse attenuation coefficients, Kd (a,e), Kod (b,f), Ku (c,g), and
Kou (d,h), derived from the irradiance quartet for Guaymas Basin in Figure 4. In panels (a–d) different
colors represent the mid-point depths of the layers within which the K coefficients were determined as
indicated in panel (a). Dashed lines represent the spectrum of pure water absorption coefficient, which
is a theoretical minimum of K for a hypothetical case when no inelastic processes and true emission
sources are present. In (e–h) different colors and symbols represent the light wavelengths as indicated
in panel (e) and dashed lines represent pure water absorption at respective wavelengths.

Figure 7. Vertical profiles of average cosines, irradiance reflectance, and diffuse attenuation coefficients
for the station in the Farallon Basin shown in Figure 2b. Data for μd panel (a); μu (b); μ (c); R (d); Kd (e);
and Ku (f) are shown for selected light wavelengths as indicated in panel (a).
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The effects of vertically non-uniform IOPs and chlorophyll-a fluorescence were also clearly
revealed in the depth profiles of the irradiance quartet at four selected wavelengths (Figure 4e–h).
Because the unscattered and elastically scattered light in the red spectral region was efficiently
removed within the near-surface layer owing to strong absorption by water molecules, the vertical
profiles in the red (650 and 683 nm) were affected by inelastic processes (Raman scattering and
chlorophyll-a fluorescence) to much greater extent compared with shorter wavelengths, and hence
differed significantly from the profiles in the blue and green (440 and 550 nm). The slope of the profiles
in the blue and green showed relatively small variations with depth, which were driven primarily
by vertical inhomogeneity in IOPs associated with the strength of absorption and elastic scattering
processes. For example, at 440 nm all four irradiances showed steeper profiles (i.e., higher attenuation
rate with depth) within the Chlmax layer, which can be attributed largely to enhanced absorption of
blue light by phytoplankton. In contrast, the slope of irradiance profiles in the red varied within
the water column to much greater extent compared with shorter wavelengths. For example, in the
650 nm band the profiles of Ed and Eod became gradually less steep with depth, which can be attributed
largely to the increasing contribution of Raman scattering. In the 683 nm band where the contribution
of chlorophyll-a fluorescence was strongest, Ed and Eod remained nearly constant with increasing
depth within the upper portion of the Chlmax layer (note that no data is available to resolve the depth
variations throughout the lower portion of the Chlmax layer as the next data point at 50 m was near the
base of the Chlmax layer). The effects of inelastic processes were, however, most pronounced for Eu and
Eou in the red spectral region. At 683 nm the effect of chlorophyll-a fluorescence on the upwelling light
field was so strong that both Eu and Eou increased with depth within the upper portion of the Chlmax

layer. Although Raman scattering is known to have very important contribution to the upwelling
light in the red [9,60,64,71,88], our data show that the fluorescence effect in the 683 nm band can be
dominant in the presence of Chlmax layer. At 650 nm Eu and Eou remain nearly constant within the
upper portion of the Chlmax layer. This suggests that the fluorescence fingerprint in the upwelling
irradiances is still noticeable at this wavelength, which can be attributed to relatively broad emission
band of chlorophyll-a fluorescence (FWHM of ~20–25 nm) [89,90].

The vertical variations in the spectral AOPs derived from the irradiance quartet measurements
reveal features that were clearly associated with the effects of inelastic processes in the presence of
non-uniform profiles of Chl and IOPs (Figures 5 and 6). The spectra and depth profiles of the average
cosines, μd, μu, and μ, were relatively weakly variable within the blue-green spectral region where
the effects of inelastic processes are much weaker compared with the long-wavelength portion of the
spectrum (Figure 5a–c,e–g). In the spectral range of 400–580 nm, the values of μd and μ were in the
range 0.7–0.9 with higher values observed at shallower depths and related to the high solar elevation
in the clear sky during the measurement. Thus, the downwelling light field or the entire light field was
characterized by the predominant downward direction of light propagation within 45◦ of the vertical.
The values of μu in the blue-green were around 0.4 suggesting more uniform angular distribution of
upwelling light field. Our data of average cosines in the blue-green are in the range of theoretical and
experimental values reported in other studies [9,10,29,52,60,73]. In the red spectral region, the average
cosines exhibited large variations owing to the effects of inelastic processes within the non-uniform
water column. We observed a large rapid decrease in μd and μ below the near-surface layer (below
10 m) to about 0.5 and 0.05, respectively, at depths ≥20 m. For μu in the red we observed a variation
between about 0.45 and 0.65. The observed values of average cosines in the red differ significantly
from those which would have occurred if inelastic processes were absent [9,73]. In the presence of
inelastic processes, the light field in the red approached a more uniform distribution with increasing
depth quite rapidly, and could achieve a nearly isotropic distribution within moderately strong Chlmax

layer at relatively shallow depths, such as ~30 m in the examined case (Figure 5e–g). Note also that,
unlike Raman scattering that leads gradually to a more uniform light field in the red with increasing
depth, the vertically non-uniform chlorophyll-a fluorescence caused additional depth variations in
the angular distribution of light field within the 683 nm band. In contrast, in the blue-green region

32



Appl. Sci. 2018, 8, 2677

where the effects of inelastic processes are much weaker, the light field remained highly directional
throughout the examined euphotic layer (Figure 5e–g).

Similar to the average cosines, the spectral irradiance reflectance R (Figure 5d,h) showed relatively
little variation with depth in the blue-green spectral region as the R values ranged between 0.01 and
0.025. In contrast, R exhibited very large vertical variations at wavelengths longer than about 580 nm.
In the red R varied from about 0.003 at 6 m to 0.8 at zChlmax = 29 m, and relatively high values
(0.2–0.4) persisted below the Chlmax layer (Figure 5h). Similar observations were previously reported
by Dirks and Spitzer [37]. This result was caused by inelastic processes, including a dominant effect of
chlorophyll-a fluorescence that produces a maximum in the R spectra within the fluorescence emission
band centered at 683 nm (Figure 5d). At shorter wavelengths within the approximate range 580–650 nm
that was away from significant effect of chlorophyll-a fluorescence, Raman scattering appeared to
exert a dominant influence on R throughout much of the examined water column. Owing to this
inelastic process a shoulder-like feature was seen in the R spectra around 600 nm at intermediate
measurement depths (16–49 m), which developed into a distinct maximum with further increase of
depth to 67 m (Figure 5d). This pattern is consistent with an increasing role of Raman scattering with
depth [37,69,70,73]. These results also suggest that the effects of Raman scattering were more easily
detectable or distinguishable from the effects of chlorophyll-a fluorescence in the data of AOPs than in
the irradiance data.

Figure 6 shows the attenuation coefficients for the four irradiances, specifically Kd, Ku, Kod, and Kou,
as derived from the measurements of irradiance quartet, Ed, Eu, Eod, and Eou, respectively. Similar
to other AOPs discussed above, the K-coefficients were less variable in the blue-green than in the
red portion of the spectrum, both in terms of the spectral shape (Figure 6a–d) and vertical profiles
(Figure 6e–h). One of the most remarkable features was that the K-coefficients in the red (more
specifically for λ > 580–600 nm) were generally smaller than the pure water absorption coefficient,
aw. This feature resulted from inelastic processes and was more pronounced for Ku and Kou than Kd
and Kod. In the chlorophyll-a fluorescence band, Kd and Kod approached zero in the upper portion
of the Chlmax layer (Figure 6e,f), which is consistent with an earlier observation that Ed and Eod are
nearly constant within that layer (Figure 4e,g). A stronger effect within the 683 nm band was observed
for the Ku and Kou coefficients that assume negative values in the upper portion of the Chlmax layer
(Figure 6g,h). This is again consistent with the measurements of Eu and Eou which both increased with
depth within that layer (Figure 4f,h). Similar increase of Eu in the red band (685 nm) with depth within
the Chlmax layer was previously observed by Dirks and Spitzer [37]. The presence of negative values
for the attenuation of upwelling irradiance was also demonstrated through RT simulations of light
field within highly scattering near-surface layer of bubble clouds entrained by wave breaking [91].
Other interesting features of the long-wavelength portion of K-spectra include a maximum at 683 nm
below zChlmax (for all K-coefficients, see Figure 6a–d) or a maximum that could peak at wavelengths
longer than about 600 nm but shorter than 683 nm at depths above zChlmax (especially for Kd and
Kod, see Figure 6a,b). These features arise from differential spectral effects of inelastic processes as
a function of increasing wavelength. It is also interesting to note that a distinct feature at these
intermediate depths was observed in the spectra of μd and μ (Figure 5b,d). This can be explained by
higher attenuation coefficient leading to more light concentrated around the vertical direction.

In contrast to the red portion of the spectrum, in the blue-green spectral region where the effects of
inelastic processes are much weaker, the K-coefficients were higher than aw(λ). At these wavelengths,
especially at 440 nm, the vertical profiles of K-coefficients exhibited maximum values within the
Chlmax layer, and hence generally resembled the shape of Chl(z) profile. It is also noteworthy that
the K-coefficients at all different wavelengths became nearly identical at the greatest depth of about
60 m used in these determinations (Figure 6e–h). This was primarily because the effect of Raman
scattering generally led to a gradual decrease of K-coefficients in the red, for example at 650 nm,
with increasing depth until approaching the level of K-coefficients in the blue and green. This pattern
that eventually led to relatively flat K-coefficients has been demonstrated previously in experimental
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data and theoretical results from RT simulations [37,64,73]. It is, however, important to emphasize that
we do not suggest that the light field in the examined case has reached an asymptotic regime within the
deepest portion of the examined layer (i.e., ~60–70 m) where we observe such similarity of K-coefficients
and relatively constant AOPs with depth. While such patterns can be associated with the asymptotic
regime, previous deep-sea RT simulations demonstrated that a nearly asymptotic light field could
generally be reached only at significantly greater depths within the ocean mesopelagic zone [64,73].

For comparison with the results discussed above in the Guaymas Basin, Figure 7 shows the
vertical profiles of AOPs obtained from measurements at a station in the Farallon Basin where the
Chlmax layer was significantly broader with a two-fold higher Chlmax and the solar elevation was
significantly lower (see Figure 2). As a result of these differences in the environmental conditions,
which could also include differences in the IOPs, some features of AOPs measured in the Farallon
Basin were different compared to those in the Guaymas Basin. We note, however, that the data from
the Farallon Basin do not extend throughout the entire Chlmax layer but end at 40 m which is about 10 m
below zChlmax. The values of the average cosines in the blue-green spectral region in the Farallon Basin
were much lower (Figure 7a–c) than those in the Guaymas Basin (Figure 5f–h). The lower values of μd
and μ in the blue and green can be explained by the higher solar zenith angle and slightly higher IOPs
as indicated by the cp(z, 660) profiles (Figure 2b). This result is consistent with previous experimental
and modeling results [29,60,92–94]. The observation of very low values (0.25–0.35) of μu in the blue
and green (Figure 7b) will be discussed is some detail in Section 3.2.1, but it is interesting to note that
the values less than 0.35 were previously reported on the basis of RT simulations of highly scattering
environment within near-surface bubble clouds [91]. In the red where the effects of inelastic processes
are strong, the vertical profiles of average cosines exhibited similar features to those described earlier
for the station in the Guaymas Basin. Overall, our data of the average cosines support the notion that
sun position in a clear sky sets the values of μd and μ near the ocean surface, which then change with
depth in a manner dependent on the interplay of the vertical structure of IOPs and inelastic processes,
and μu may vary within a broader range than commonly assumed. It is thus important to emphasize
that the average cosines are sensitive to surface illumination, especially for the downwelling and
total light in the near-surface layer, so these average cosines may potentially serve as AOPs or useful
descriptors of near-surface water bodies only under specified surface boundary conditions.

The vertical profiles of R in the Farallon Basin (Figure 7d) showed patterns that were similar to
those observed in the Guaymas Basin (Figure 5e), but the R values were generally higher because
of higher Chl and water turbidity at the station in the Farallon Basin. The properties of particulate
assemblages, including the composition and size distribution, could have also been different at these
stations. The Kd and Ku values within the Chlmax layer in the Farallon Basin (Figure 7e,f) were not as
low as in the examined case from the Guaymas Basin (Figure 6e,g). This observation also applies to
Kod and Kou (not shown in Figure 7). In particular, unlike in the Guaymas Basin case, the chlorophyll-a
fluorescence within the much stronger Chlmax layer in the Faralllon Basin did not produce a minimum
of Ku with negative values around the depth of zChlmax (Figure 7f). This lack of distinct negative
minimum of Ku can be attributed to the weakening of the effects of inelastic processes when the water
column becomes more turbid, as previously demonstrated by RT simulations [60]. In addition, it is
also likely that the influence of Chlmax is less profound when the FWHM of the Chlmax layer is large,
which is the case for the station in the Farallon Basin.

3.2. Overall Variability and Relationships Involving the Apparent Optical Properties

In this section we examine the overall variability of AOPs and the relationships involving AOPs
and some environmental factors (depth, solar zenith angle, Chl) using the entire dataset collected in
the Gulf of California.
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3.2.1. Average Cosines

As indicated earlier the average cosines serve as simple proxies of the angular structure of the light
field and they have or have not been treated as AOPs by different investigators in the past [9,10,46,48].
Based on our measurements of irradiance quartet the average cosine of underwater light field, μ,
ranged from about 0.38 to 0.88 in the blue and green spectral regions. In the red, the range was
much larger, from 0.07 to 0.94, owing to strong effects of inelastic processes. The average cosine for
downwelling light field, μd, varied from 0.41 to 0.91 in the blue and green and 0.37 to 0.98 in the red.
The approximate range for the average cosine for the upwelling light field, μu, was 0.2–0.5 in the blue
and green and 0.27–0.75 in the red. Our data are consistent but generally exhibit a broader range
of values compared with relatively few experimental data of average cosines reported in literature.
Højerslev [18] reported on measurements of Eo, Ed, and Eu in the Mediterranean Sea and Norwegian
fjord. Using his data, we calculated that μ was in the range of 0.47–0.95 in the blue-green spectral
region (427, 477, and 532 nm) between the sea surface and 70 m depth, and 0.7–0.97 in the red (633 nm)
within top 20 m layer. Spitzer and Wernand [52] reported on measurements of μ in the range 0.7–0.9 at
wavelengths shorter than 600 nm and depths between 24 and 55 m. Lewis et al. [29] measured the
full angular distribution of radiance at a single wavelength of 555 nm in surface waters of the Pacific
Ocean off Hawaii Islands, Santa Barbara Channel, and in Bedford Basin, and used these measurements
to determine the ranges for μ, μd, and μu, which were approximately 0.41–0.82, 0.5–0.94, and 0.2–0.48,
respectively. Our determinations in the blue and green are generally consistent with the data from
literature. The comparison for the red spectral region is, however, more limited because only few
fragmentary data in the red have been previously reported. Our measurements of the average cosines
in the red exhibited a very wide range of variability within the water column, providing a more
comprehensive characterization of the average cosines that are strongly affected by inelastic processes
in this spectral region.

It has long been recognized that at near-surface depths in relatively clear ocean waters,
the downwelling radiance distribution, and hence μd, are strongly dependent on the sun position
in clear sky or more generally on sky conditions, for example clear skies vs. overcast skies [11].
Such sensitivity of the downwelling average cosine to surface illumination conditions cautions against
its indiscriminate use as a general descriptor (in the sense of AOPs) of water bodies, especially in the
surface layers, and emphasizes a need for specifying surface boundary conditions. Our data collected
within the top 10 m layer in the Gulf of California support the general trend of a decrease in near-surface
μd with increasing solar zenith angle regardless of light wavelength (Figure 8a). For comparison, the
best fit lines to experimental data of Aas and Højerslev [94] obtained at a 5 m depth (Mediterranean
Sea) in the blue (465 and 474 nm) and experimental data of Lewis et al. [29] at a 5 m depth (open ocean
waters in the Pacific) in the green (555 nm) are also shown in Figure 8a. In contrast, our data of μu at
near-surface depths did not exhibit a clear dependence on the solar zenith angle (Figure 8b). We note,
however, that Aas and Højerslev [94] and Lewis et al. [29] suggested a very weak dependence based
on their data, as indicted in Figure 8b.

The increased role of inelastic processes, especially Raman scattering, with increasing depth is
illustrated for the average cosines in the red part of the spectrum in Figure 9. This effect was particularly
well-pronounced for the downwelling light field in terms of a well-behaved trend of a decrease in
μd with increasing depth towards μd = 0.5, which is clearly seen in our data at the two examined
wavelengths in the red, 650 nm and 683 nm (Figure 9a). The best-fit exponential functions to the
data are:

μd(650) = 0.5058 exp(−0.0460 z) + 0.5140 (r2 = 0.828, RMSE = 0.061, N = 65); (3a)

μd(683) = 0.6512 exp(−0.0715 z) + 0.4659 (r2 = 0.855, RMSE = 0.067, N = 65), (3b)

where r2 is the determination coefficient and N the number of observations. A distinct group of
outlying data marked in Figure 9a was collected at significantly larger solar zenith angle (θs = 57.1◦)
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than the remaining data. These outliers were not included in the regression analysis. Whereas at 650 nm
Raman scattering is expected to have a dominant effect, at 683 nm chlorophyll-a fluorescence can
have an additional significant or even dominant effect at certain depths, depending on chlorophyll-a
concentration and its variation within the water column. The combined effects of Raman scattering
and chlorophyll-a fluorescence at 683 nm result in faster decrease of μd(683) with depth from the
near surface through the lower portion of the Chlmax layer compared with μd(650). In addition,
in our dataset the interplay of vertically variable chlorophyll-a fluorescence and Raman scattering
throughout the water column does not seem to have a noticeable deteriorating effect on the strength of
the relationship μd(683) vs. z as compared with μd(650) vs. z.

Figure 8. (a) Relationship between μd at selected light wavelengths as indicated and solar zenith angle
θs. (b) Same as (a) but for μu. The presented data were collected at all stations within the top 10 m layer.
For comparison, solid lines in (a,b) represent the relationship reported by Lewis et al. [29] and dashed
lines by Aas and Højerslev [94]. Dotted line in (a) represents μd = cos(θsw) where θsw is the zenith angle
of the refracted solar beam just beneath the ocean surface obtained from Snell’s law.

Figure 9. Average cosines in the red spectral bands (650 and 683 nm) plotted as a function of depth
z using data from all stations and depths. (a) μd(z, 650) (crosses) and μd (z, 683) (open circles) vs. z.
(b) Same as (a) but for μu. Data points surrounded by dotted lines in (a) are for the station in the
Farallon Basin with the solar zenith angle significantly larger (~57◦) than at other stations. Solid lines
show the best-fit regression functions for the average cosines vs. depth.
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In contrast to μd, μu in the red did not exhibit such strong dependence on depth although it is clear
that μu assumed generally lower values near the surface (Figure 9b). The r2 values for the μu vs. z data
dropped to 0.488 at 650 nm and 0.147 at 683 nm. The differences in the patterns of depth dependencies
for μd and μu can be attributed to relatively smaller role played by inelastic processes at near-surface
depths for the downwelling light field compared with the upwelling light field in the red spectral
region. It is also important to point out that in comparison with our dataset the dependence of μd on
depth is expected to be reduced for datasets collected in turbid waters, at large solar zenith angles,
and/or heavily overcast skies. Under such conditions the near-surface values of μd are expected to be
lower (i.e., closer to 0.5) compared with most of our near-surface data, and hence the expected changes
of μd with depth would not be as well pronounced. Thus, the strong sensitivity of near surface μd to
illumination conditions at the sea surface suggests that no single relationship can describe a change of
μd with depth. This is illustrated in Figure 9a which includes an outlying case of data points collected
at significantly larger θs than the remaining data, emphasizing a need to pay particular attention to the
possible effect of solar zenith angle. In addition, it is important to emphasize that in the blue-green
spectral region where the effects of inelastic processes are weaker, the average cosines exhibited much
less distinct dependency on depth (see Figures 5e–g and 7a–c).

Our analysis also shows that regardless of light wavelength, none of the average cosines were
related significantly to Chl in our dataset. The highest r2 of 0.42 was found between μd(z, 650) and
Chl(z) (not shown). For μd in the blue-green where inelastic processes are less important than in the red,
and for μu at all examined spectral bands, the relation was much weaker or essentially indiscernible.
This lack of relation with Chl is not surprising because the average cosine within the water column,
if not dominated by inelastic processes, depends on the interplay of the inherent absorption and
scattering properties of seawater in rather complex way [85], and Chl cannot adequately represent
such effects.

Similar patterns observed in our data of μ and μd (e.g., Figure 5) indicate that these two average
cosines were well correlated. The relationships between μ and μd obtained with our data are presented
in Figure 10a. Specifically, the linear relationship for the blue-green spectral region as determined from
the data collected at various depths and two wavelengths, 440 nm and 550 nm, is:

μ = 0.996 μd − 0.0352
(

r2 = 0.978, RMSE = 0.042, N = 158
)

. (4a)

On the basis of data at two wavelengths in the red, 650 and 683 nm, the relationship is:

μ = 1.51 μd − 0.472
(

r2 = 0.929, RMSE = 0.167, N = 134
)

. (4b)

These relationships indicate that reasonably good estimates of μ can be obtained from downwelling
irradiance measurements. As seen, μ and μd in the blue-green were typically close to one another
within the examined euphotic layer. In the red, the correlation is marginally lower and still very strong
but μ tends to be somewhat smaller than μd over a nearly complete data range with the exception of
the highest values.

In contrast to μ vs. μd relationship, μu and μd were not correlated or very weakly correlated
(Figure 10b). The r2 values for the blue-green and red spectral regions are 0.026 and 0.109, respectively.
Therefore, μu cannot be estimated from μd or vice versa, which means that a complete irradiance
quartet or radiance angular distribution is required for investigating both μu and μd. Figure 10b also
reveals that the μu data in the blue-green appeared to be grouped in at least two distinct clusters,
one with μu > ~0.3 and the other with μu < ~0.3. A large number of μu measurements fells in the
range from 0.2 to ~0.3, suggesting that much of the upwelling light in these cases propagated relatively
close (within ~10◦–20◦) to the horizontal direction. This is not consistent with a common assumption
that the angular distribution of upwelling light field is more isotropic. Nonetheless, such low values
of μu were also observed by Lewis et al. [29] and reported on the basis of RT simulations within
highly-scattering bubble clouds at near-surface depths [91] and for certain combinations of absorption
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coefficient, scattering coefficient, and scattering phase function in the water column (C. Mobley,
personal communication). A closer inspection of our data indicates that the group with μu < ~0.3
was generally characterized by relatively larger values of cp(z, 660), especially within the top 30–40 m,
compared to the group with μu > ~0.3. This is seen in the example data shown in Figures 3, 5b,f and 7b,
supporting the notion that certain suites of IOPs can play an important role for producing low values
of μu.

Although the behavior of average cosines in natural waters can be complex, these quantities are
usually assumed to be constant or vertically uniform when used in the context of ocean color remote
sensing applications, bio-optical modeling, and/or estimation of water constituents, e.g., [39,95–99].
The assumption that μ obtained from simulations for a homogeneous water column is representative
of a stratified water column was also used [100,101]. The present study demonstrates that these
simplifying assumptions are not valid. Further studies to determine how such assumptions lead to
errors in data products of interest are needed. For example, Sathyendranath and Platt [102] reported
that oceanic primary productivity could be systematically underestimated by 5 to 13% when ignoring
the angular distribution of the underwater light field, for which the average cosines serve as simple
yet useful proxies.

Figure 10. Relationships between average cosines based on measurements from all stations and depths.
Data for (a) μ vs. μd and (b) μu vs. μd are shown for selected light wavelengths as indicated in panel
(a). In (a) data points for the blue and green (440 nm and 550 nm) were combined to determine the
best-fit regression function (blue line) and data points for the red (650 nm and 683 nm) were combined
to determine the best-fit regression function (red line).

3.2.2. Irradiance Reflectance

Similar to the average cosines, the variations in the irradiance reflectance, R, throughout the
euphotic layer are characterized by a much broader range in the red spectral region where the effects
of inelastic processes are very strong compared with the blue-green part of the spectrum where these
effects are much weaker. Our data of R in the blue-green ranged from 0.006 to 0.056, whereas in the
red from 0.0015 near the surface to 0.75 around zchlmax. The observed range in the blue-green is similar
to that of 0.006–0.063 based on Ed and Eu measurements reported by Højerslev [18] for 427, 477, 532,
and 572 nm between the surface and ~70 m. The R values at 633 nm in Højerslev’s dataset range
from 0.001 to 0.004, but these values were determined only at shallow depths, typically less than 5 m.
Our data in the red extend to much higher values within the euphotic layer owing to strong inelastic
effects in this spectral region, which is consistent with a few measurements from undisclosed locations
reported by Dirks and Spitzer [37].

As emphasized before, the increasing role of inelastic processes with increasing depth is most
significant in the long-wavelength part of the spectrum. This effect is clearly seen in our data of R
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plotted as a function of depth for wavelengths of 650 and 683 nm (Figure 11). Both R(650) and R(683)
showed gradual increase from the values of the order of 10−3 near the surface to more than 0.1 within
the mid- to deep portions of the examined water column. These data suggest that depth can serve as
a useful proxy for the vertical changes in R in the red part of the spectrum. The best-fit exponential
functions to the data are:

R(650) = 100.7633 ln(z)−3.6633 (r2 = 0.820, RMSE = 0.331, N = 74) (5a)

R(683) = 100.7690 ln(z)−3.2582 (r2 = 0.794, RMSE = 0.362, N = 74). (5b)

Whereas these vertical trends in R reflect primarily the increasing effect of Raman scattering with
depth, the effects of chlorophyll-a fluorescence were also evident within the 683 nm band. The values of
R(683) were comparable to R(650) near the surface but increased faster with depth owing to increasing
Chl and associated fluorescence until the Chlmax was reached. Consequently, R(683) tended to have
the highest values at depths close to zChlmax, which was about 30 m for most investigated stations in
this study.

The dominant role of Raman scattering and additional complexities caused by chlorophyll-a
fluorescence emission in the red spectral region indicate that this part of the spectrum is not well suited
for establishing a relationship between R and Chl within the euphotic layer. The analysis of our entire
dataset including all measurement depths confirmed the lack of relationship between R in the red and
Chl (not shown). For example, a very low determination coefficient (r2 in the range of ~0.091–0.155)
was found between the log-transformed data of red (650 or 683 nm)-to-green (550 nm) reflectance
ratios and Chl. In contrast, our data of the blue-to-green reflectance ratio, R(440)/R(550), and Chl
collected at all measurement depths exhibited a relationship with significantly higher determination
coefficient of 0.608 (not shown). Although this may not seem surprising given the common use of
the blue-to-green ratio of ocean surface reflectance (typically the remote-sensing reflectance rather
than irradiance reflectance) for estimating surface Chl in the context of remote sensing applications,
e.g., [103,104], it is important to emphasize a distinct difference which is that our data represent
irradiance reflectance and Chl measured at different discrete depths within the entire euphotic layer
down to depths as high as ~80 m.

Figure 11. Irradiance reflectance R in the red spectral bands (650 and 683 nm as indicated) plotted
as a function of depth z using data from all stations and depths. Solid lines represent the best-fit
regression functions.
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3.2.3. Diffuse Attenuation Coefficients

The diffuse attenuation coefficients K in our dataset span a relatively wide range of values.
For example, the ranges for Kd at 440, 550, 650, and 683 nm are 0.031–0.246, 0.054–0.168, 0.072–0.514,
and 0.044–0.635 m−1, respectively. The ranges for Ku at the same wavelengths are 0.041–0.253,
0.021–0.192, 0.018–0.421, and −0.095–0.374 m−1, respectively. The lowest values of Ku at longer
wavelengths (green and red) were significantly smaller than those for Kd and can even include the
negative values because the inelastic processes exerted a stronger reducing effect on Ku than Kd.
The possibility of negative values of the K-coefficients at 685 nm within the Chlmax layer were also
demonstrated through earlier observations and modeling [37].

Because Ed has been by far the most commonly measured radiometric quantity in the ocean,
Kd in the surface layer is relatively well documented in the literature. An overview of early data of
Kd, including the classification of optical water types based on the spectral Kd within the top 10 m
layer of the ocean, is given in Jerlov [11]. The range of Kd values observed in our study in the blue
spectral region indicates that the investigated waters in the Gulf of California fall between the oceanic
water Types IB or II and the coastal water Type 1 according to Jerlov’s classification. Following an
increased interest in ocean color remote sensing in early 1970s and the introduction of the concept
of bio-optical state of ocean waters representing a measure of the effect of biological processes on
ocean optical properties [105], several studies examined experimental data of Kd in the context of
the relationship with chlorophyll-a concentration over a broad range of these variables measured in
various oceanic waters [35,38,39,106]. In those studies, Kd was typically estimated to represent the
top layer from the ocean surface to one attenuation depth (1/Kd) or euphotic depth (1% of surface
PAR). The lowest limiting values of spectral Kd for the clearest natural waters were also estimated,
for example 0.017 m−1 or 0.00885 m−1 at 440 nm, 0.0648 m−1 or 0.05746 m−1 at 550 nm, and 0.35 m−1

or 0.34052 m−1 at 650 nm by Morel and Maritorena [39] and Smith and Baker [107], respectively.
These estimates were generally consistent with the lowest measured values in the datasets presented
in [11,38,39] although, to our knowledge, the lowest reported measurements of Kd in the blue are
0.012 m−1 at 420 nm [26]. The lowest Kd values in the blue in our dataset are thus 1.8 to 3.5 higher
than these previous estimates for the clearest waters. In the red, our data of Kd collected within the
top 10 m layer (Figures 6e and 7e) are similar or somewhat higher than the previous determinations
for the clearest waters. At larger depths, Kd in the red was reduced owing to the increasing effect
of inelastic processes with depth. This effect on the vertical changes in both Kd and Ku in the red
spectral region is illustrated for our dataset in Figure 12. Both K coefficients decrease considerably
with depth. This reduction is more pronounced at 683 nm than 650 nm. Ku decreased more rapidly
than Kd and approached a relatively stable level of values at shallower depths (i.e., about 15–20 m)
than Kd. The best-fit exponential functions to the data in Figure 12 are:

Kd(650) = 0.4792 exp(−0.0451 z) + 0.0387 (r2 = 0.925, RMSE = 0.033 m−1, N = 66) (6a)

Kd(683) = 0.7229 exp(−0.0947 z) + 0.0846 (r2 = 0.898, RMSE = 0.050 m−1, N = 66) (6b)

Ku(650) = 0.5614 exp(−0.2258 z) + 0.0730 (r2 = 0.806, RMSE = 0.032 m−1, N = 64) (6c)

Ku(683) = 1.0000 exp(−0.4711 z) + 0.0641 (r2 = 0.391, RMSE = 0.062 m−1, N = 64). (6d)

The relationship for Ku(683) is greatly inferior because at this wavelength the effect of Raman scattering
is reinforced by chlorophyll-a fluorescence emission, which resulted in a very steep decrease of Ku(683)
in the top 20 m (Figure 12b).

In contrast to Kd, other K coefficients are poorly documented in the literature. It is therefore
useful to examine the relationships between Kd and other K coefficients using our dataset containing
depth-resolved measurements within the euphotic layer. The results from this analysis are shown
in Figure 13. Not shown in the figure are results that indicated a very good linear relationship with
close agreement between the Kd and Kod values (r2 = 0.985) and between Ku and Kou (r2 = 0.953).
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This agreement was generally observed regardless of light wavelength and depth of measurement
within our dataset.

The relationship between Ku and Kd is reasonably good in the blue and green spectral regions
(Figure 13a). For example, at 440, 490, and 550 nm the best-fit linear relationships are:

Ku(z, 440) = 1.0115 Kd(z, 440) + 9.47 × 10−3 (r2 = 0.828, RMSE = 0.023 m−1, N = 66) (7a)

Ku(z, 490) = 1.0220 Kd(z, 490) + 1.71 × 10−3 (r2 = 0.691, RMSE = 0.021 m−1, N = 66) (7b)

Ku(z, 550) = 1.4699 Kd(z, 550) − 4.83 × 10−2 (r2 = 0.672, RMSE = 0.023 m−1, N = 66). (7c)

As the wavelength increases into the red spectral region the relationship weakens considerably or
nearly vanishes as suggested by the large scatter of data points for 650 nm and 683 nm in Figure 13a.
For these wavelengths, the r2 values drop to 0.444 and 0.079, respectively. This result can be attributed
to increased effects of inelastic processes with increasing wavelength, which act differentially on the
downwelling and upwelling light attenuation. It is noteworthy that one possible application of the
relationships between Ku and Kd in the blue and green is to use the Kd measurements for extrapolating
Eu measurements to deeper depths where upwelling light is no longer detectable with the Eu sensor
but is still detectable with the Ed sensor. However, a special caution must be exercised for situations
with large solar zenith angles, as evidenced by one outlying data point in our dataset which was
obtained for relatively large θs of 57.1◦ compared with the remaining data. While it is known that at
large θs Kd tends to increase significantly in the surface layer [11,17], the effect of solar angle is expected
to be less pronounced for Ku. Such result is seen in our dataset in Figure 6e,f for the near-surface
measurements taken at the example station in the Farallon Basin.

Our analysis shows that the linear relationship can be also used for estimating the diffuse
attenuation coefficient of net irradiance, KE, from Kd using the depth-resolved data in the euphotic
layer (Figure 13b). For the blue-green spectral region the best-fit relationship is nearly a perfect
1:1 line with the correlation coefficient r2 > 0.998. Specifically, the slope and offset parameters of
the linear fit are: 1.0001 and −1.67 × 10−4 m−1 for 440 nm, 0.9999 and 1.66 × 10−5 m−1 for 490 nm,
and 1.0015 and 1.78 × 10−5 m−1 for 550 nm (N = 66 for each wavelength). For the red spectral region,
the best fit parameters are still very close to the 1:1 line, specifically 0.9746 and 1.26 × 10−2 m−1 for
650 nm and 0.9857 and 1.92 × 10−2 m−1 for 683 nm (N = 62 for each wavelength). The r2 values at
these wavelengths are only slightly lower than in the blue-green region and remained above 0.965.
These results indicate that the magnitudes and behavior of KE throughout the water column were
consistent with those of Kd regardless of the spectral region including the long-wavelength portion
of the spectrum where the effects of inelastic processes are strongest. Therefore, the use of a single
relationship between KE and Kd may be satisfactory regardless of wavelength. Such relationship
determined from the combined data collected at wavelengths of 440, 550, and 650 nm is:

KE(z) = 1.0093 Kd(z) + 7.88×10−4 (r2 = 0.996, RMSE = 0.006 m−1, N = 194). (8)

This relationship is plotted in Figure 13b. It can be useful when KE is required, for example for the
analysis of Gershun’s equation, when Ed measurements are available but are not accompanied by
Eu measurements.

Similar to KE vs. Kd, the linear relationship between the Ko and Kd values measured throughout the
water column is also quite robust regardless of light wavelength (Figure 13c). The plotted regression
line corresponds to the best fit obtained from the combined data collected at 440, 550, and 650 nm:

Ko(z) = 0.9480 Kd(z) − 1.24 × 10−3 (r2 = 0.984, RMSE = 0.015 m−1, N = 192). (9)

This type of relationship can be useful in the absence of scalar irradiance measurements throughout
the water column which is a common situation, but when the measurement or estimate of spectral Eo

41



Appl. Sci. 2018, 8, 2677

just below the surface is available. In such case, Eo can be propagated throughout the water column
on the basis of vertical measurements of spectral Ed using the relationship between Ko and Kd. The
resulting depth profile of spectral Eo can, in turn, be subject to conversion to quantum units and
spectral integration to obtain the depth-resolved PAR quantum scalar irradiance, EoPAR.

Assuming the availability of EoPAR just below the surface, e.g., [108], another relationship between
the K coefficients can be useful for estimating EoPAR at different depths from vertical measurements
of spectral Ed. This relationship of KoPAR vs. Kd on the basis of data collected throughout the water
column is shown in Figure 13d. In this analysis we ignored, however, the data collected at near-surface
depths (<5 m) because KoPAR decreases rapidly with depth within the near-surface layer owing to
high absorption by water molecules within the long-wavelength portion of the spectrum [10,109–111].
Figure 13d demonstrates that there is a reasonably good linear relationship between KoPAR and Kd
in the blue and green spectral regions, as illustrated for 440 nm, 490 nm, and 550 nm. The best-fit
relationships are:

KoPAR(z) = 0.5643 Kd(z, 440) + 3.07 × 10−2 (r2 = 0.911, RMSE = 0.029 m−1, N = 54) (10a)

KoPAR(z) = 0.8504 Kd(z, 490) + 2.41 × 10−2 (r2 = 0.923, RMSE = 0.015 m−1, N = 54) (10b)

KoPAR(z) = 1.2256 Kd(z, 550) − 2.52 × 10−2 (r2 = 0.856, RMSE = 0.012 m−1, N = 54). (10c)

A closer examination also showed that KPAR(z) ≈ [Kd(z, 490) + Kd(z, 550)]/2:

KoPAR(z) = 1.0182[Kd(z, 490) +Kd(z, 550)]/2 − 2.61 × 10−3

(r2 = 0.908, RMSE = 0.010 m−1, N = 54).
(10d)

Being very close to the 1:1 line, this relationship provides a convenient approximation to KoPAR(z)
based on Kd(z) and is plotted in Figure 13d.

Because of unavailability or scarcity of scalar irradiance measurements, the measurements of
downward plane irradiance have been typically used in the past for estimating photosynthetically
available radiation in terms of PAR quantum downward irradiance, EdPAR [11,105,109–111]. Kirk [10]
provides a comprehensive overview of KdPAR values for various oceanic, coastal, estuarine, and inland
aquatic environments. Our dataset shows a strong linear relationship between KoPAR and KdPAR
throughout the examined water column (Figure 13e):

KoPAR(z) = 0.9516 KdPAR(z) - 3.12 × 10−3 (r2 = 0.937, RMSE = 0.012 m−1, N = 54). (11)

This relationship provides an alternative to Equation (10d) for the use in a situation when EoPAR just
below the surface and vertical measurements of spectral Ed are available.

It is noteworthy to mention that because of widespread interest in the determinations of
remote-sensing reflectance the contemporary underwater radiometric systems are often configured
to include only two sensors, one for the spectral measurements of Ed and another for the spectral
measurements of upwelling zenith radiance, Lu. Because such systems lack the measurement of Eu,
it is useful to examine the relationship between Ku and KLu. The analysis of our dataset indicates
that a single linear relationship provides reasonably good estimates of Ku from KLu regardless of light
wavelength and depth (Figure 13f):

Ku = 0.9838 KLu − 0.0010 (r2 = 0.905, RMSE = 0.016 m−1, N = 52). (12)

This relationship was obtained from data collected at three wavelengths, 440, 550, and 650 nm. Note
that the slope coefficient of the regression is close to 1 but many data points of Ku in the blue and green
spectral bands are higher than KLu. This tendency is not seen in the red band, however.
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Figure 12. Diffuse attenuation coefficients in the red spectral bands (650 and 683 nm) plotted as a
function of depth z using data from all stations and depths. (a) Kd(z, 650) (crosses) and Kd(z, 683) (open
circles) vs. z. (b) Same as (a) but for Ku. Solid lines represent the best-fit regression functions.

Figure 13. Relationships between diffuse attenuation coefficients based on measurements from all
stations and depths. (a) Ku vs. Kd; (b) KE vs. Kd; (c) Ko vs. Kd. (d) KdPAR vs. Kd; (e) KoPAR vs. KdPAR;
and (f) Ku vs. KLu. In (a–c,f), different symbols represent data at different light wavelengths as indicated.
In (d) symbols indicate the relationships between KoPAR(z) and different K-coefficients as indicated,
including the relationship between KoPAR(z) and [Kd(z, 490) + Kd(z, 550)]/2. The best fit regression
functions (solid lines) are shown for (a) data at 440 nm and 550 nm analyzed separately, (b,c) combined
data at 440 nm, 550 nm, and 650 nm, (d) data of KoPAR(z) vs. [Kd(z, 490) + Kd(z, 550)]/2, and (e,f) all
data displayed in these panels. Dashed lines represent the 1:1 agreement between the variables.

43



Appl. Sci. 2018, 8, 2677

3.3. Application of Gershun’s Equation

The underwater radiometric measurements in conjunction with the use of Gershun’s equation
provide a method for determining the absorption coefficient of seawater, a(λ, z), as a product of
KE(λ, z) and μ(λ, z). The main limitation of this radiometric method is that Gershun’s equation
was derived from a simplified radiative transfer equation that ignores inelastic processes of Raman
scattering and fluorescence and internal sources (i.e., true light emission) such as bioluminescence,
e.g., [9,11,49]. Therefore, in principle, this method can work satisfactorily only for cases in which the
contributions of inelastic processes and internal sources are negligible. Because bioluminescence is
typically intermittent and discrete under natural conditions in the ocean, the primary limitation of
the applicability of Gershun’s equation in the upper ocean or euphotic layer is associated with the
presence of inelastic processes. In spite of these limitations, this radiometric method offers a unique
benefit resulting from the estimation of the absorption coefficient that is representative of relatively
large volume of seawater. This is because the radiometric measurements and AOPs are representative
of much larger volumes of water compared with small volumes involved in direct IOP measurements
including in situ absorption meters.

We examined the applicability of the radiometric method using our data collected at two stations,
one in the Carmen Basin and another in the Farallon Basin (see Figure 1), where concurrent radiometric
and ac-9 measurements were made. In this analysis, we compare the values of the absorption coefficient,
aac9(z, λ), measured with the ac-9 instrument with those derived from Gershun’s equation, i.e., aAOP(z,
λ) = KE(z, λ)·μ(z, λ). In order to enable such comparison, the data of aac9(z, λ) and μ(z, λ) were adjusted
to common depths corresponding to the determinations of KE(z, λ). Specifically, μ(z, λ) was linearly
interpolated to obtain the values for depths at which KE(z, λ) was determined, i.e., the mid-points
between the discrete depths (see Equation (1)) where the radiometric measurements, and hence μ(z, λ),
were made. The high depth resolution ac-9 data required only minor interpolation to these mid-point
depths. In addition, the high spectral resolution data of KE(z, λ) and μ(z, λ) were linearly interpolated
to ac-9 wavelengths. Our comparative analysis of aAOP(z, λ) and aac9(z, λ) is focused on five ac-9
wavelengths, 440, 488, 555, 650, and 676 nm.

In addition to the effects of inelastic processes and mismatch of spatial scales of AOP and ac-9
measurements, it is noteworthy to mention other sources of uncertainty that can affect the comparisons
of aac9(z, λ) and aAOP(z, λ). The accurate direct in situ measurements of a(z, λ) with instruments such as
ac-9 are difficult, mainly because of scattering error and stringent calibration requirements [112–114].
The determinations of KE(z, λ) and μ(z, λ) require measurements with four (Ed, Eu, Eod, Eou) or at least
three (Ed, Eu, Eo) radiometric sensors, so these determinations are critically dependent on accurate
calibrations of multiple sensors. The accuracy of determinations of KE(z, λ) for specific depths can
be also affected by relatively low depth resolution of radiometric measurements that were taken at
several discrete depths in our study.

In spite of multiple sources of uncertainty, we found reasonably good agreement between aAOP
and aac9 throughout the euphotic layer for the blue and green spectral regions where the effects of
inelastic processes were relatively weak (Figure 14a–c). As shown for the example data collected
in the Farallon Basin, the applicability of Gershun’s equation within the examined water column
extends from the short-wavelength portion of the spectrum to about 580 nm, as indicated by the
vertical dotted line in Figure 14a. At longer wavelengths this application failed owing to stronger
effects of Raman scattering and chlorophyll-a fluorescence, even at the shallowest depth of 7.2 m
examined in this case (Figure 14a,b). As the Raman scattering effects continue to accumulate with
increasing depth the short-wavelength boundary of the affected spectral region is expected to shift
towards shorter wavelengths [60,64,73]. Therefore, one can expect that at depths greater than those
examined in our study the application of Gershun’s equation may fail for wavelengths shorter than
~580 nm. Figure 14b also shows that somewhat larger discrepancy between aAOP and aac9 at 440 nm
was observed within the Chlmax layer around the depth of zChlmax. This may be associated with the
limitation that the radiometric measurements were taken at discrete depths with relatively low depth
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resolution (i.e., 10 m below z = 20 m), as opposed to nearly continuous depth profiles which would be
required for better determinations of KE(z, λ) within the optically heterogeneous layer.

Figure 14. Comparison of the absorption coefficient of seawater measured with an ac-9 instrument (aac9)
and estimated from AOPs using the irradiance quartet measurements and Gershun’s equation (aAOP).
(a) Spectra of absorption coefficient at depths for which the determinations of KE were made on the basis
of radiometric measurements taken at one station in the Carmen Basin where ac-9 measurements were
made during the 2011 cruise. The vertical dotted line indicates the transition region to long-wavelength
portion of the spectrum where the use of Gershun’s is inadequate because of the effects of inelastic
processes. (b) Vertical profiles of absorption coefficient measured with the ac-9 instrument (solid
lines) and estimated from AOPs (dashed lines) at selected light wavelengths as indicated. Data were
collected at the same station as in panel (a). (c) Direct comparison between aAOP and aac9 at selected
blue and green spectral bands as indicated. Data were collected at one station in the Guaymas Basin
and one station in the Carmen Basin where ac-9 measurements were made during the 2011 cruise.
(d) Relationship between KE·μ and Kd·μd for the blue-green spectral regions based on data at the three
selected light wavelengths as indicated. Solid lines in (c,d) represent the best-fit regression functions
and dashed lines the 1:1 agreement between the variables.

Figure 14c shows that aAOP and aac9 compare favorably for the combined dataset from the
two stations, which includes data points for the three wavelengths from the blue-green spectral
region (440, 488, and 555 nm) and all discrete depths included in this analysis (i.e., where KE was
determined). The best linear fit to the data is very close to the 1:1 line and the correlation is strong
(r2 = 0.750). This was the only case in this study when Model II regression analysis was applied (see
Section 2.6). If the ac-9-measured values are tentatively assumed to represent true values, then the
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statistical indicators suggest a very small bias of aAOP estimates as the median value for the ratio
of aAOP/aac9 is very close to 1 (0.989) and the mean difference between aAOP and aac9 is very small
(−0.0016 m−1). The median absolute percent difference between aAOP and aac9 is 12.4% and the root
mean square deviation is 0.0116 m−1.

Because of tight relationships μ vs. μd (Figure 10a) and KE vs. Kd (Figure 13b), it is natural to
expect a good relationship between the products KE·μ and Kd·μd. This is indeed the case as shown for
our data combining the three wavelengths from the blue-green spectral region (440, 490, and 550 nm)
and all examined discrete depths at all stations (Figure 14d). The best-fit linear fit to the data is:

KE·μ = 0.980 Kd·μd − 0.0017
(

r2 = 0.999, RMSE = 0.003 m−1, N = 36
)

. (13)

By indicating that KE·μ can be quite accurately estimated from Kd·μd, this relationship has
important practical ramifications. Specifically, the measurements of three (Ed, Eu, Eo) or four (Ed, Eu,
Eod, Eou) irradiances required for determining the absorption coefficient from Gershun’s equation can
be replaced with just two downwelling irradiance measurements (Ed and Eod), thus significantly
simplifying the experimental requirements. We note that the use of two AOPs based on the
downwelling light field, Kd and μd, has been previously introduced in the context of estimation of
absorption by phytoplankton and CDOM, as well as chlorophyll-a concentration from measurements
of Ed alone [96,115]. The modeling formalism based on Ed alone required assumptions about μd and
the backscattering coefficient of seawater.

4. Summary

Although quantitative radiometric measurements in the ocean have a long-recorded history
with the beginning in the early 1930s, the measurements of scalar irradiance have been rare and
simultaneous measurements of downward and upward plane and scalar irradiances (Ed, Eu, Eod,
and Eou), the so-called irradiance quartet, are virtually lacking. To our knowledge, this is the first-ever
study to report data of high spectral resolution measurements of irradiance quartet within the ocean
euphotic layer and the apparent optical properties (AOPs) derivable from this quartet, including a
complete set of average cosines characterizing the angular structure of underwater light field, i.e.,
the downwelling (μd), upwelling (μu), and total (μ) light field. Because the experimental irradiance
data collected in the past have been fragmentary in terms of incomplete set of irradiances or limited
spectral coverage in rare experiments when Ed, Eu, and Eo were measured directly or derived from
radiance measurements, currently available descriptions and understanding of underwater light field
and AOPs associated with a complete irradiance quartet have relied mostly on theoretical simulations
of radiative transfer in the ocean. Such simulations unavoidably involve some idealized assumptions
about the real environment. Thus, the experimental data presented in this paper provide a unique
and revealing resource on the patterns of irradiance quartet and associated suite of AOPs within a real
water column that was characterized by the interplay of non-uniform vertical distribution of inherent
optical properties (IOPs) of seawater and the effects of inelastic radiative processes such as Raman
scattering by water molecules and chlorophyll-a fluorescence.

Our dataset was collected in the Gulf of California within the euphotic layer from the near-surface
depths to ~80 m and covered a broad range of IOPs, sky conditions, and solar zenith angle. Our data
show that in the blue and green spectral regions, the vertical patterns of AOPs were driven primarily
by IOPs of seawater with weak or no discernible effects of inelastic radiative processes. In contrast,
in the red spectral region the radiometric variables characterizing the light field and the AOPs were
strongly affected or totally dominated by inelastic processes of Raman scattering, and additionally
by chlorophyll-a fluorescence within the fluorescence emission band, the latter being particularly
well-pronounced within the chlorophyll-a maximum layer. Some of the most notable features
caused by inelastic processes in the red include the values of average cosines which approached
those of the uniform light field, exceptionally high values of irradiance reflectance R approaching
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1, and exceptionally low values (i.e., smaller than the seawater absorption coefficient) of the diffuse
attenuation coefficients, K, for various irradiances, including the negative values for the attenuation
of upwelling irradiances in the chlorophyll-a fluorescence emission band within the chlorophyll-a
maximum layer.

Whereas details of the vertical patterns in the light field characteristics and AOPs depended
on the interplay of inelastic processes and vertically non-uniform IOPs including the chlorophyll-a
concentration, there were general vertical patterns associated with an increase in the contribution
of inelastically produced light with increasing depth. We observed, for example, that the vertical
patterns of some AOPs in the red, such as μd, μ, R, Kd, and Ku, can be approximated by relatively
simple functions of depth. We also established empirical relationships between some AOPs, which can
be useful in common experimental situations when only data on downwelling plane irradiance
are available. For example, we proposed single relationships for estimating KE(z) and Ko(z) from
Kd(z) at any depth z within the examined depth range regardless of light wavelength. Similarly, we
also determined that a single relationship can be used for estimating Ku(z) from Kd(z) within the
blue-green spectral region, in which the effects of inelastic processes are generally weak. Our results
also demonstrated that below the near-surface layer (i.e., z approximately greater than 5 m in our
dataset) the values of KoPAR(z) can be estimated from measurements of Kd(z) in the blue-green bands
using a single relationship. Typically, the empirical relationships are expected to be applicable within
a range of environmental conditions consistent with the dataset used in the development of the
relationships. This limitation also applies to the relationships established in this study, in which we
covered a fairly broad range of conditions (Table 2).

We tested the use of irradiance quartet measurements in conjunction with Gershun’s equation
for estimating the absorption coefficient of seawater and found that in the blue-green spectral region
such estimates agree reasonably well with direct determinations of the absorption coefficient from
measurements with the ac-9 instrument. As the Gershun equation is inadequate in situations when
inelastic processes are significant, no agreement was observed at light wavelengths longer than
about 580 nm. Specifically, in the long-wavelength portion of the spectrum the absorption coefficients
estimated from Gershun’s equation were greatly underestimated due to the effects of inelastic processes.
The analysis of our data from the entire examined depth range also showed that the product of
two AOPs in the blue-green spectral region, KE·μ, which is used for estimating the absorption
coefficient from Gershun’s equation, can be adequately estimated from the product Kd·μd. This is
potentially useful because the determinations of KE·μ require the measurements of irradiance quartet
or at least three irradiances Ed(z), Eu(z), and Eo(z), whereas the determinations of Kd·μd require a
simpler experimental design with only two irradiances, Ed and Eod.
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Abstract: The remote sensing of chlorophyll a concentration from ocean color satellites has been an
essential variable quantifying phytoplankton in the past decades, yet estimation of accessory pigments
from ocean color remote sensing data has remained largely elusive. In this study, we validated
the concentrations of multiple pigments (Cpigs) retrieved from in situ and MEdium Resolution
Imaging Spectrometer (MERIS) measured remote sensing reflectance (Rrs(λ)) in the global oceans.
A multi-pigment inversion model (MuPI) was used to semi-analytically retrieve Cpigs from Rrs(λ).
With a set of globally optimized parameters, the accuracy of the retrievals obtained with MuPI is
quite promising. Compared with High-Performance Liquid Chromatography (HPLC) measurements
near Bermuda, the concentrations of chlorophyll a, b, c ([Chl-a], [Chl-b], [Chl-c]), photoprotective
carotenoids ([PPC]), and photosynthetic carotenoids ([PSC]) can be retrieved from MERIS data with
a mean unbiased absolute percentage difference of 38%, 78%, 65%, 36%, and 47%, respectively.
The advantage of the MuPI approach is the simultaneous retrievals of [Chl-a] and the accessory
pigments [Chl-b], [Chl-c], [PPC], [PSC] from MERIS Rrs(λ) based on a closure between the input
and output Rrs(λ) spectra. These results can greatly expand scientific studies of ocean biology and
biogeochemistry of the global oceans that are not possible when the only available information is
[Chl-a].

Keywords: phytoplankton pigments; ocean color; remote sensing; MERIS; global oceans

1. Introduction

Ocean color remote sensing has been focused on phytoplankton due to the important role that they
play in the global biogeochemical cycles and ocean food webs [1,2]. With the development of remote
sensing technology, a variety of approaches have been developed to remotely obtain information about
phytoplankton, such as their chlorophyll concentration [3–5], functional groups, and size classes [6–11].
The most widely used satellite-based product of phytoplankton is chlorophyll a concentration ([Chl-a],
mg·m−3) [3–5,12,13]. Satellite retrieved [Chl-a] has been utilized in estimation of phytoplankton
biomass, primary production, and detection of harmful algal blooms [14,15]. However, many studies
have indicated that [Chl-a] alone is not a good indicator of phytoplankton biomass or physiological
status [16–20]. Some accessory pigments have been recognized as biomarkers for phytoplankton
groups or species [18,21–24]. These accessory pigments provide better estimation of the biomass
of particular phytoplankton groups or species, such as phycocyanin (PC) for cyanobacteria [25,26].
The variation in the accessory pigment composition has been widely used in estimating different
phytoplankton functional groups [27–42], and physiological status of the phytoplankton [43,44].
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In an effort to obtain pigment concentrations beyond [Chl-a] from remote sensing reflectance
(Rrs(λ), sr−1), phycocyanin concentration, instead of [Chl-a], has been retrieved and used as a better
index for cyanobacteria biomass and potential toxicity for cyanobacteria bloom waters [25,26]. To obtain
phycocyanin and [Chl-a], empirical and semi-analytical methods have been proposed and good
results obtained in their application to bloom detection and monitoring [13,25,26]. Either empirical or
analytical, these methods are based upon relationships between bio-optical information and one or
two pigment concentrations.

Empirical approaches have been the most widely used to obtain information for two or more
pigments. Similar to the empirical relationships used by NASA for the estimation of [Chl-a] from
Rrs(λ) [4], Pan et al. [45] developed empirical relationships between High-Performance Liquid
Chromatography (HPLC) measured pigment concentrations and Rrs(λ) for coastal waters in the
northeast coast of the United States. Moissan et al. [46] directly used satellite-derived [Chl-a] as model
input to retrieve other pigments in the Atlantic Ocean off the east coast of United States with the
underlining assumption that all accessory pigments co-vary with chlorophyll a.

Semi-analytical models, which are based on mechanistic relationships derived from radiative
transfer, allow the estimation of inherent optical properties (absorption and backscattering) from Rrs(λ)
measured by any radiometer [47–62]. These semi-analytical models make it possible to obtain optical
properties of the water components simultaneously from measured Rrs(λ). Taking advantage of this
property of semi-analytical algorithms, Wang et al. [63] incorporated the Gaussian decomposition
method proposed by Hoepffner and Sathyendranath [64] into a semi-analytical model, termed as
multi-pigment inversion model (MuPI), and demonstrated the potential of obtaining Gaussian peak
heights representing the absorption coefficients from various pigments. Chase et al. [65] also adopted
a similar scheme and applied it to hyperspectral in situ Rrs(λ) measurements from the open ocean
for the estimation of accessory pigments. However, as demonstrated in many studies [37,39,64–66],
the assumption that each Gaussian amplitude represents the light absorption of one specific pigment is
not always feasible. This is further shown in Chase et al. [65] where mixed results were obtained when
a Gaussian peak height was linked with a single pigment. In this study, with in situ data from the
global oceans, a thorough examination between the Gaussian peak heights and pigment concentrations
was conducted.

The purpose of this study is twofold: (1) to evaluate the updated MuPI in retrieving concentrations
of multiple phytoplankton pigments across the global ocean from MEdium Resolution Imaging
Spectrometer (MERIS) measurements, and (2) to present the spatial distributions of accessory pigments
across the global ocean that were previously not available. Model parameters were updated, and its
performance was evaluated with different datasets covering a large dynamic range of ocean water
conditions. The model was then applied to satellite remote sensing data from MERIS to obtain the
global distribution and variation of different pigment concentrations. Finally, limitations and future
developments of the MuPI model are discussed.

2. Data and Methods

2.1. Datasets and Study Sites

The datasets used in this study can be broadly classified into six different categories: (a)
phytoplankton absorption coefficients (aph(λ)) from the global oceans; (b) simultaneously collected
aph(λ) and HPLC; (c) simultaneously measured Rrs(λ), aph(λ) and/or HPLC; (d) HPLC time series; (e)
Rrs(λ) from MERIS imagery; and (f) HydroLight simulated Rrs(λ), aph(λ), particulate backscattering
coefficients (bbp(λ)) and absorption coefficients of colored dissolved and detrital matters (adg(λ))
(International Ocean-Color Coordinating Group (IOCCG) dataset [50]). Table 1 provides an overview
of the different datasets, time, size, variables, [Chl-a] range, and the main usage. The description of
each dataset and the data measurements are included in the following paragraphs.
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Table 1. Datasets, time, variables, size and their usages in this study. Cpigs: pigment concentrations, N:
the number of samples, NA: not applicable.

Datasets/Cruises Time Size (N) Measurements Chl-a (mg·m−3) Usage

SeaBASS
2001–2012 1619 aph(λ) NA Gaussian curves

1991–2007 430 aph(λ), HPLC 0.02–13.2 aGau(λ) vs. Cpigs
relationships

IOCCG NA 500
Rrs(λ), aph(λ),
adg(λ), bbp(λ) 0.03–30

aGau(λ) and Cpigs
validation

Tara Oceans
expedition 2010–2012 23 Rrs(λ), aph(λ),

HPLC 0.02–0.95

VIIRS cal/val 2014–2015 21 Rrs(λ), aph(λ),
HPLC 0.15–1.5

BIOSOPE 2004 31 Rrs(λ), aph(λ),
HPLC 0.00036–3.06

BATS 2002–2012 148 HPLC 0.002–0.486 Cpigs variation
MERIS 2002–2012 148 Rrs(λ) 0.037–0.325

A series of aph(λ) spectra measured with the quantitative filter technique (QFT [67]) were used
to find the globally optimized Gaussian parameters and the relationships among them. This dataset
was obtained by searching the SeaWiFS Bio-optical Archive and Storage System (SeaBASS), which
covers 1619 stations across the global oceans observed during 2001–2011. A set of 430 observations that
had aph(λ) and HPLC measurements coincidently observed were obtained from this dataset and were
further randomly separated into two equal subsets (N = 215). The Subset_1 was used for regression
analysis between Gaussian peak height (aGau(λ)) and pigment concentrations (Cpigs) to obtain the
relationships among them; and the Subset_2 together with the aph(λ) and HPLC from Tara Oceans,
BIOSOPE, and VIIRS cal/val cruises were used to validate the relationships obtained from Subset_1.

The Tara Oceans expedition contains 23 match-ups of Rrs(λ), aph(λ) and HPLC around the global
ocean. The BIOSOPE dataset includes 31 match-ups of Rrs(λ), aph(λ) and HPLC which were collected
in the southeastern Pacific Ocean (obtained from: http://www.obs-vlfr.fr/proof/vt/op/ec/biosope/
bio.htm). The VIIRS cal/val dataset is composed of 21 Rrs(λ), aph(λ) and HPLC measurements obtained
from cruises covering the coastal oceans in North Atlantic Ocean off the United States east coast.
The BATS (Bermuda Atlantic Time-Series Study) dataset is composed of HPLC time series from
2002 to 2012 and was obtained from the Bermuda Atlantic Time-Series Study (near Bermuda) (http:
//bats.bios.edu/bats_measurements.html). All of the in situ measurements used are from the surface,
defined as a depth ≤5 m. The sampling locations of all these measurements are shown in Figure 1.

The IOCCG dataset was simulated using HydroLight software version 5.1 [68]. It was designed
to cover the dynamic range observed across the global ocean but is biased to coastal waters (http:
//www.ioccg.org/data/synthetic.html). The Rrs(λ), aph(λ), adg(λ) and bbp(λ) obtained from this dataset
were used to validate the MuPI retrievals.
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Figure 1. In situ data distribution, the (o) are the stations for quantitative filter technique (QFT) aph(λ)
from SeaBASS, (o) and (+) are the subset_1 and subset_2 stations of matchups of aph(λ) and HPLC
from SeaBASS, (o) is the HPLC location for BATS (Bermuda Atlantic Time-Series Study), (o) are the
BIOSOPE Rrs(λ), aph(λ) and HPLC locations, (o) are locations of the Rrs(λ), aph(λ) and HPLC from
VIIRS val/cal cruises in 2014 and 2015, and (o) are the locations of Rrs(λ), aph(λ) and HPLC from Tara
Oceans expedition.

2.2. Radiometric Measurements

The in situ remote sensing reflectance, Rrs(λ), was calculated based on the measurements of
radiance and irradiance sampled with the Radiometer Incorporating the Skylight-Blocked Apparatus
(RISBA) [69], Hyper Spectral Radiometer HyperPro free-fall profiler (Satlantic, Inc. Halifax, Nova
Scotia, Canada), or above water radiometers [70]. The Rrs(λ) spectra from 350–800 nm with different
spectral increments were interpolated to 1 nm resolution.

Standard Level 3 MERIS Rrs(λ) was acquired from the National Aeronautics and Space
Administration (NASA) ocean color website (https://oceancolor.gsfc.nasa.gov). The HPLC data
from BATS were matched to Level 3 MERIS 8-day products, at 4 km resolution and plus or minus one
pixel (3 × 3 window). This criterion, although less restricting than NASA’s 3-h window for data and
algorithm validation [71], was adopted to maximize the number of match-ups.

The MuPI model was applied to MERIS Rrs(λ) imagery from 2002–2012 to obtain the seasonal
variation of chlorophyll a, b, c, photoprotective and photosynthetic carotenoids concentrations ([Chl-a],
[Chl-b], [Chl-c], [PPC], [PSC]) near Bermuda. As examples, global maps of these five different pigments
were also obtained from MERIS Rrs(λ) imagery of 2007. The ratios of these concentrations to [Chl-a]
are also presented to highlight their independence from chlorophyll a.

2.3. Absorption Measurements

Water samples for absorption and HPLC measurements were filtered onto a GF/F filter and
stored in liquid nitrogen before laboratory measurements. Spectrophotometers were used to measure
the absorbance and then to calculate the absorption coefficient of particles (ap) and detrital matter (ad).
The phytoplankton absorption coefficient (aph(λ)) were obtained by subtracting ad from ap following
NASA Ocean Optics Protocols, Revision 4, Volume IV protocol [72]. These aph(λ) spectra generally
cover 400–800 nm with spectral resolution around 3 nm. They were interpolated into 1 nm resolution
for studies here.

Following Hoepffner and Sathyendranath [37,64] and Wang et al. [63,73], the phytoplankton
absorption coefficients were decomposed into 13 Gaussian curves using the least square curve fitting
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technique provided in MATLAB and Statistics Toolbox (Release 2016a, MathWorks, Inc. Natick,
MA, USA):

aph(λ) =
n

∑
i=1

aGau(λi) exp

[
−0.5

(
λ − λi

σi

)2
]

(1)

where σi and aGau(λi) are the width and peak magnitude of the i-th Gaussian curve at peak center (λi)
as shown in Table 2. The obtained aGau(λ) are used as ground truth to validate the inversion results
from Rrs(λ).

Table 2. The 12 Gaussian curves corresponding to the phytoplankton pigment absorption coefficients,
with Peak_loc as the center location of each pigment absorption peak and width as the full width
at half maximum (FWHM). The relationships indicate the power-law relationships used to estimate
the Gaussian peak amplitudes from the two independent variables: x1: aGau(434) and x2: aGau(492).
Chl-a: chlorophyll a, Chl-b: chlorophyll b, Chl-c: chlorophyll c, PPC: photo-protective carotenoids, PSC:
photosynthetic carotenoids, PE: phycoerythrin and PC: phycocyanin.

Peak Pigments Peak_loc (nm) Width(FWHM) (nm) Relationships R2

1 Chl-a 406 16 1.13x1
1.01 0.98

2 Chl-a 434 12 x1 –
3 Chl-c 453 12 0.60x1

0.95 0.99
4 Chl-b 470 13 0.51x1

0.97 0.98
5 PPC 492 16 x2 –
6 PSC 523 14 0.87x2

1.17 0.99
7 PE 550 14 0.79x2

1.27 0.96
8 Chl-c 584 16 0.40x2

1.17 0.96
9 PC 617 13 0.34x1

1.14 0.93
10 Chl-c 638 11 0.47x2

1.19 0.96
11 Chl-b 660 11 0.30x2

1.11 0.94
12 Chl-a 675 10 0.86x1

1.11 0.98

2.4. Pigment Concentrations

All the HPLC analyses were carried out according to the method following or adapted from Van
Heukelem and Thomas [23]. The concentrations of chlorophyll a, b, c, photo-protective carotenoids
(PPC) and photosynthetic carotenoids (PSC) were estimated from HPLC measurements as:

(A) Total chlorophyll a (Chl-a) = chlorophyll a + divinyl chlorophyll a + chlorophyllide a;
(B) Total chlorophyll b (Chl-b) = chlorophyll b + divinyl chlorophyll b;
(C) chlorophyll c (Chl-c) = chlorophyll c1 + chlorophyll c2;
(D) PPC = α-carotene + β-carotene + zeaxanthin + alloxanthin + diadinoxanthin;
(E) PSC = 19′-hexanoyloxyfucoxanthin + fucoxanthin + 19′-butanoyloxyfucoxanthin + peridinin.

MERIS [Chl-a] was estimated from the Level 3 Rrs(λ) following the standard algorithm OC4E
provided by NASA [4]. Details about this algorithm can be found on the following webpage: https:
//oceancolor.gsfc.nasa.gov/atbd/chlor_a/.

2.5. Pigment Retrieval from Rrs(λ)

2.5.1. aGau(λ) from Rrs(λ)

The multi-pigment inversion model (MuPI) was used to retrieve aGau(λ) from Rrs(λ).
Wang et al. [63,73] developed this semi-analytical inversion model (MuPI) to retrieve aGau(λ) from
hyper- or multi-spectral Rrs(λ). A brief description of MuPI is presented here. The functional

57



Appl. Sci. 2018, 8, 2678

relationship between Rrs(λ) and inherent optical properties (IOPs) is taken from Gordon et al. [47] and
Lee et al. [49]:

Rrs(λ) = 0.52
2

∑
i=1

gi

[
bb(λ)

a(λ) + bb(λ)

]i
/

{
1 − 1.7

2

∑
i=1

gi

[
bb(λ)

a(λ) + bb(λ)

]i
}

(2)

where g1 (sr−1) and g2 (sr−1) are fixed to 0.089 and 0.125 sr−1. The IOP spectra, a(λ) and bb(λ), are
partitioned into relevant components

bb(λ) = bbw(λ) + bbp(λ) (3)

a(λ) = aw(λ) + aph(λ) + adg(λ) (4)

with bbw(λ) for seawater backscattering coefficient [74] and aw(λ) for seawater absorption
coefficient [75,76]. Phytoplankton absorption coefficient (aph(λ)) is modeled following Equation (1);
bbp(λ), particulate backscattering coefficient, is modeled following Equations (5) and (6) [49]; and
the combined dissolved and detrital particulate absorption coefficient adg(λ) is modeled using
Equation (7) [52,77,78].

bbp = bbp(λ0)

(
λ0

λ

)η

(5)

η = 2
(

1 − 1.2 exp
(
−0.9

Rrs(440)
Rrs(550)

))
(6)

adg(λ) = adg(λ0) exp(−S(λ − λ0)) (7)

where λ0 is a reference wavelength (nearest to 440 nm), S is the spectral decay constant for absorption
of detrital and dissolved materials and kept as an unknown within 0.007 to 0.02 nm−1 [52,77,78]. η is
the power-law exponent for the particulate backscattering coefficient calculated from the Rrs(440) to
Rrs(550) ratio following Lee et al. [49].

In the determination of Gaussian parameters (σi and λi) for aph(λ) in the global scale, we also
tested various combinations of parameters using data published in the literature [63–65]. The existing
parameters were not successful at obtaining satisfactory results for every data range due to various
reasons, including the fact that the initial datasets used to obtain the parameters had a small dynamic
range unable to cover varied conditions such as coastal regions and non-bloom natural oceanic waters.
Thus, a refinement of the parameters σi and λi was conducted using the aph(λ) dataset obtained from
SeaBASS to improve the overall performance of the MuPI model for global oceans. The non-linear
least square fitting procedure in MATLAB was used to solve Equation (1). A set of refined Gaussian
parameters for σi and λi were obtained and are presented in Table 2. For oceanic waters, as the
absorption coefficient from water molecules contributes >80% of the total absorption coefficient for
wavelengths >550 nm, it is difficult to obtain accurate aGau(λ) by directly inverting Rrs(λ) in the longer
wavelengths. On the other hand, since the Gaussian peaks at 434 and 492 nm cover the main absorption
features of the different pigments, the two aGau(λ) at 434 and 492 nm were chosen as the independent
variables in this effort.

Following Wang et al. [73], the implementation of this model used two Gaussian peak heights
[aGau(λ1) and aGau(λ2)] to reconstruct aph(λ), in which empirical relationships as shown in Table 2 were
used. These relationships between aGau(λ) were obtained by regression analysis with the purpose of
reducing the unknowns in the Rrs(λ) inversion procedure [63,73]. With this design, there will be five
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unknowns [aGau(λ1), aGau(λ2), bbp(λ0), adg(λ0) and S] to be retrieved from a Rrs(λ) spectrum, which is
obtained by a minimization of the cost function (Equation (8)):

δ =

√
1

Nλ

Nλ

∑
i=1

(
R̂rs(λi)− Rrs(λi)

)2

1
Nλ

Nλ

∑
i=1

Rrs(λi)

(8)

with Nλ as the wavelength number, Rrs(λ) as the measured, and R̂rs(λ) the modeled spectrum,
respectively. Basically, δ value provides a measure of the relative difference between the input and
output Rrs spectra. The generalized reduced gradient (GRG) nonlinear optimization procedure [79]
was used to solve Equation (8).

The statistical indices used to estimate the agreement between the two values (R̂ and R) was the
unbiased absolute percentage difference (UAPD), defined as Equation (9) and root mean square error
(RMSE, Equation (10)) with N as the number of samples.

UAPD =

∣∣R̂ − R
∣∣

0.5
(

R̂ + R
) × 100% (9)

RMSE =

√
1
N

(
R̂ − R

)2 (10)

2.5.2. aGau(λ) Versus Cpigs

Hoepffner and Sathyendranath [64] indicated that each Gaussian curve represents the absorption
contributed by one or multiple pigments. However, attempts to obtain the concentration of a specific
pigment from a single Gaussian curve is not always successful [39,65,66]. For a better understanding
of the Gaussian curves and their relationships with Cpigs, a series of regression analyses were applied
to relate aGau(λ) with Cpigs for data from SeaBASS. The t-statistics and p-value were calculated to
test the significance of the parameters. Using p < 0.05 as the criteria, the significant contributors
to each Gaussian peak and the corresponding R2 of these parameters were obtained (see Table 3).
The possible existence of other pigments that are not detectable with current HPLC techniques, such
as phycoerythrin (PE) and phycocyanin (PC), likely explains the relatively lower R2 values for Peaks 7,
8, 9 and 10.

After a series of multivariable regression analyses, it was found that Cpigs could be estimated
from aGau(λ) following the function:

log10(Cpigs) = a0 +
n

∑
i=1

ai log10(aGau(λi)) (11)

The corresponding aGau(λ), parameters, and the R2 value are shown in Table 4. Further, it was
found that the estimated Cpigs agree with the measured values very well throughout the concentration
range when the relationships were applied to the validation dataset (with data points scattered closely
to the 1:1 line; Figure 2).

59



Appl. Sci. 2018, 8, 2678

 

Figure 2. aGau(λ) estimated pigment concentrations versus the measured concentrations from HPLC
using the aph(λ) and HPLC from SeaBASS: A: chlorophyll a (Chl-a), B: chlorophyll b (Chl-b), C:
chlorophyll c (Chl-c), D: photoprotective carotenoids (PPC), and E: photosynthetic carotenoids (PSC).

Table 3. The p-value and R2 from the t-statistics, with aGau(λ) at 12 different wavelengths: 406, 434, 453,
470, 492, 523, 550, 584, 617, 638, 660, and 675 nm, and Chl-a: chlorophyll a, Chl-b: chlorophyll b, Chl-c:
chlorophyll c, PPC: photo-protective carotenoids, PSC: photosynthetic carotenoids.

p-Value
Peak
406

Peak
434

Peak
453

Peak
470

Peak
492

Peak
523

Peak
550

Peak
584

Peak
617

Peak
638

Peak
660

Peak
675

Chl-a 0.01 0.00 0.00 0.01 0.03 0.00 0.00 0.00 0.00 0.00
Chl-b 0.03 0.00
Chl-c 0.04 0.03 0.00 0.04
PPC 0.00 0.00 0.00 0.00
PSC 0.00 0.02 0.01
R2 0.80 0.87 0.83 0.87 0.83 0.78 0.64 0.68 0.76 0.73 0.81 0.91
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Table 4. Parameters for estimation of pigment concentrations: the pigment-specific aGau(λ), coefficients
and R2. Chl-a: chlorophyll a, Chl-b: chlorophyll b, Chl-c: chlorophyll c, PPC: photo-protective
carotenoids, PSC: photosynthetic carotenoids.

Pigments aGau(λ) Parameters (a0, a1, . . . , ai) R2

Chl-a 675 1.804, 0.975 0.89
Chl-b 434, 453, 470 −0.066, 2.470, −3.073, 1.379 0.72

Chl-c 470, 492, 523, 675 1.334, 2.022, −3.125, 0.745,
1.119 0.83

PPC 453, 470 0.734, 1.311, −0.416 0.76
PSC 470, 492, 523 1.67, 3.034, −2.670, 0.725 0.84

3. Results

3.1. Retrievals from Rrs(λ)

3.1.1. aGau(λ) Validation

The MuPI model was first tested with datasets that contained different levels of chlorophyll a
concentration from the IOCCG synthesized data and different cruises in the global ocean. The main
purpose of this test was to evaluate, and validate, the implementation of the MuPI approach for a wide
range of environments. A mean UAPD of 36% was obtained between aGau(λ) from Rrs(λ) inversion
and aGau(λ) from water samples throughout the data range for different datasets (see Figure 3).
The differences in statistical results, noted in Table 5 for aGau(λ) retrieval from different datasets, are
strongly influenced by their different dynamic ranges and characteristics as implied in Section 2.1.

Figure 3. aGau(λ) heights retrieved from Rrs(λ) at MEdium Resolution Imaging Spectrometer (MERIS)
bands versus measured Gaussian peak (decomposed from aph(λ)) for the data from different datasets
(shown in different colors).
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Table 5. Mean (Mea.) and median (Med.) of the unbiased percentage errors for aGau(λ) retrieval from
Rrs(λ) for different datasets.

Peak Center
IOCCG Tara Oceans BIOSOPE VIIRS Cruises

Mea. Med. Mea. Med. Mea. Med. Mea. Med.

406 45 45 34 27 34 28 28 20
434 37 36 34 28 26 25 28 13
453 47 49 28 24 23 18 27 15
470 35 34 29 25 30 27 31 18
492 34 31 26 21 22 18 29 18
523 44 34 38 28 34 29 48 44
550 45 35 53 41 37 34 41 35
584 55 48 48 37 38 36 53 57
617 51 45 47 38 36 29 37 40
638 54 42 66 68 41 35 41 35
660 52 48 35 23 32 29 43 34
675 46 40 30 26 60 56 32 21

3.1.2. bbp(λ) and adg(λ) Validation

The backscattering coefficients of particles and absorption coefficients of detrital and dissolved
materials retrieved from Rrs(λ) by MuPI have also been validated with the IOCCG dataset (with
values at 440 nm as examples). The bbp(440) showed very high accuracy with mean UAPD of 4.8%,
and all samples showed no bias in the entire data range as presented in Figure 4A. The estimated
adg(440) also showed very good agreement with the simulated values, with the mean UAPD of 21.3%.
No inter-comparisons were made for the products adg(λ) and bbp(λ) for other datasets because of
lacking corresponding measured data.

 

Figure 4. MuPI retrieved adg(440) and bbp(440) versus those from the International Ocean-Colour
Coordinating Group (IOCCG) dataset.

3.2. Cpigs from Satellite Remote Sensing

3.2.1. Cpigs Validation and Their Seasonal Variation

The ability of MuPI to capture the magnitudes of Cpigs and their seasonal variability from satellite
Rrs(λ) was then validated using a time series of HPLC measurements at BATS from the years 2002
to 2012. During this period of time, Cpigs varied in these ranges: [Chl-a]: 0.016–0.486 mg·m−3,
[Chl-b]: 0.001–0.108 mg·m−3, [Chl-c]: 0.001–0.206 mg·m−3, [PPC]: 0.004–0.147 mg·m−3, and [PSC]:
0.003–0.106 mg·m−3.

To obtain Cpigs from satellite Rrs(λ), aGau(λ) were inverted first from Rrs(λ) using MuPI, then
Equation (11) was applied to convert the retrieved aGau(λ) to Cpigs. As shown in Figure 5, it is found
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that there are good matches in the magnitudes and the seasonal cycles for the five pigments, with
mean UAPD values as 38%, 78%, 65%, 36%, and 47% (and the medians are 34%, 79%, 64%, 30% and
55%) for [Chl-a], [Chl-b], [Chl-c], [PPC] and [PSC], respectively. The [Chl-a] accuracy is comparable
with the NASA adopted standard [Chl-a] algorithms, for which the color index (CI) algorithm [5]
showed a mean UAPD of 38.6% and OC4E of 46.7%. There are many reasons for the relatively low
accuracy in the retrieval of [Chl-b] and [Chl-c], which include very low concentrations (e.g., in situ
[Chl-b] and [Chl-c] were close to the HPLC detection minimum), as well as uncertainties in satellite
measured Rrs(λ), and the derived aGau(λ) from Rrs(λ).

Figure 5. Time series of pigment concentrations from BATS HPLC and MERIS Rrs(λ), and the
determination coefficients (R2). A: Chl-a: chlorophyll a, B: Chl-b: chlorophyll b, C: Chl-c: chlorophyll c,
D: PPC: photoprotective carotenoids, E: PSC: photosynthetic carotenoids, F: the scatterplot of estimated
versus in situ pigment concentrations.

Beyond the seasonal cycles in Cpig magnitudes, variation in pigment composition over time
implied in the change of pigment ratios was also noticed in Figure 6A. On further examination, we
found the ratios derived from MERIS Rrs(λ) using MuPI can pick up the variation in the [Chl-b],
[Chl-c], [PPC], [PSC] to [Chl-a] ratios observed from HPLC measurements very well with the mean
UAPD of 50%, 47%, 25%, 37%, and median of 38%, 39%, 19% and 29% respectively (Figure 6B). Since
these phytoplankton pigment ratios do not co-vary with the [Chl-a] product and cannot be empirically
estimated from [Chl-a] alone, the Gaussian peaks and multiple pigments retrieved here provide a
valuable glimpse into potential applications of these ratios in ocean changes that can be studied at
large spatial and high temporal scales.
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Figure 6. A: Time series of phytoplankton pigment to chlorophyll a (Chl-a) ratios at BATS from HPLC
measurements. B: Chl-b, Chl-c, PPC and PSC to Chl-a ratios from HPLC versus from MERIS measured
Rrs(λ) using MuPI.

3.2.2. Global Distribution of Cpigs

As an example, MuPI was applied to MERIS L3 global annual (2007) average Rrs(λ) to obtain the
global distribution of the five different pigment concentrations (Figures 7 and 8) and their ratios to
[Chl-a] (Figure 9). The global patterns of [Chl-a], [Chl-b], [Chl-c], [PPC], and [PSC] mimic the major
gyre systems and other large-scale circulation features of the world ocean. High values of Cpigs are
found within regions of persistent large-scale upwelling (e.g., subarctic gyres, equatorial divergences,
eastern boundary currents, etc.), while low values are observed where large-scale downwelling is
observed (e.g., subtropical gyres).

The basin-scale [Chl-a] distribution follows the pattern reported in the literature [4,5].
In comparing the global map of [Chl-a] derived in this study with the standard product from NASA
ocean color website (Figure 7), some differences were noticed. In the previous section, when using
HPLC data from BATS for validation, the retrieved [Chl-a] showed higher accuracy via MuPI than
that from the standard OC4E algorithm. To better understand the differences in [Chl-a] distribution
at the global scale, a validation dataset from SeaBASS was used. This dataset was obtained by
searching match-ups of in situ measured [Chl-a] with those from MERIS Rrs(λ). A dataset containing
608 pairs of [Chl-a] and MERIS Rrs(λ) were obtained in which [Chl-a] concentrations ranged from
~0.017 to ~40.3 mg·m−3 (locations shown in Figure 7A). In comparing the estimated [Chl-a] from
two different methods with in situ measurements (Figure 7C), MuPI and OC4E showed comparable
results with mean UAPD of 48.8% and RMSE of 4.51 mg·m−3 for OC4E and mean UAPD of 49.3% and
RMSE of 4.05 mg·m−3 for MuPI. As shown in Figure 7C, the [Chl-a] estimated from OC4E is biased
slightly high (~10%) in the range of 1–10 mg·m−3 compared with results from MuPI. This range of
[Chl-a] (1–10 mg·m−3) is mainly from coastal and inland waters for which the influences from colored
dissolved and detrital matter result in lower accuracy in band-ratio estimated [Chl-a] [80]. For several
samples, the [Chl-a] values from MuPI are biased low (~70%) as shown in Figure 7C. There are two
possible reasons for this: (1) bad input MERIS Rrs(λ), not only the values but also the spectral shape,
especially at the blue bands that are susceptible to poor atmospheric correction, where negative values
are often observed for coastal waters [81]; (2) the limitation of the algorithm as a result of the empirical
parameters used to reduce the unknowns in MuPI, and the low contribution of aph(λ) to the total
absorption coefficients in the 400–750 nm range, which will be further discussed in Section 4.

The pigment ratios to [Chl-a] showed complicated patterns (Figure 9). In high [Chl-a] regions,
[Chl-b]/[Chl-a] and [PPC]/[Chl-a] are low. In some low [Chl-a] regions, the ratios of [Chl-c]/[Chl-a]
and [PSC]/[Chl-a] are relatively high, such as in the East Pacific Ocean. These results agree with
previous findings about the global distribution of phytoplankton groups and pigment ratios, as lower
[PPC]/[Chl-a] ratios correspond to high [Chl-a] and larger particle size [9,17,82–84]. As recorded in
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the literature, in different regions of the global ocean, the quality and quantity of light and nutrient,
as well as temperature, is highly variable [85]. These highly unpredictable and rapid changes of the
environment usually result in phytoplankton taxonomic composition variation (long-term adaptation)
or physiological acclimation (short-term acclimation) [24]. The variation in pigment ratios obtained
from MuPI can directly reflect these changes in phytoplankton and provide valuable information for
phytoplankton studies in large spatial and high temporal scales.

 

Figure 7. Global distributions of chlorophyll a concentration estimated from 2007 MERIS L3 Rrs(λ)
imagery using NASA standard algorithm OC4E (A) and MuPI model (B). The locations (o) of in situ
Chl-a and MERIS Rrs(λ) matchups for further comparison of OC4E and MuPI were plotted on the
OC4E Chl-a map. C: Chlorophyll a concentration (Chl-a) from in situ measurements and from those
estimated from matchups of MERIS Rrs(λ) using OC4E and MuPI algorithms with mean UAPD of
48.8% and RMSE of 4.51 mg·m−3 for OC4E and mean UAPD of 49.3% and RMSE of 4.05 mg·m−3

for MuPI.
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Figure 8. Global distributions of chlorophyll b (Chl-a), chlorophyll c (Chl-c), photoprotective
carotenoids (PPC) and photosynthetic carotenoids (PSC) from 2007 L3 annual MERIS Rrs(λ) imagery.

Figure 9. Global distributions of the accessory pigment to chlorophyll a ratios: ratio of concentrations
of chlorophyll b (Chl-b/Chl-a), chlorophyll c (Chl-c/Chl-a), photoprotective carotenoids (PPC/Chl-a),
and photosynthetic carotenoids to chlorophyll a (PSC/Chl-a).

4. Discussion

Based on the initial model of Wang et al. [63] that was developed for bloom waters, we have
demonstrated that using a set of refined parameters for the Gaussian curves for global waters (Table 2),
the MuPI model demonstrates consistent performance in aGau(λ) retrievals on a global scale, as shown
in Figures 3 and 4 and Table 5. Compared with HPLC measurements, the estimates of [Chl-a], [Chl-b],
[Chl-c], [PPC] and [PSC] from satellite Rrs(λ) showed reasonable accuracies, with the mean UAPD of
38%, 78%, 65%, 36%, and 47% respectively (Figure 5). Further, the distribution of these pigments and
their ratios to [Chl-a], were obtained from MERIS measurements on the global scale (Figures 8 and 9).

The phytoplankton pigment ratios are critical indicators of the variation in phytoplankton groups
and species due to their physiological adaptation to changes in nutrients, temperature, and light
availability over time and space. The HPLC measured pigment concentrations and ratios have been
widely used for determining the phytoplankton taxonomic composition and estimating the biomass
of different groups, such as in CHEMTAX [27] and PFT analyses [10]. However, lacking effective
methods, the estimation of phytoplankton pigments from satellite remote sensing has been limited
to only [Chl-a] in the past decades [3–5], and the efforts made to obtain the accessory pigments
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have been more or less based on empirical relationships with Chl-a [45,46]. Thus, these products
provided limited ability to capture the variation in the physiological status of phytoplankton. However,
these unknown physiological variations in phytoplankton pigments have been one of the main
uncertainties in traditional phytoplankton remote sensing models that use [Chl-a] as input to represent
the phytoplankton biomass, such as the traditional [Chl-a] based primary productivity [14,20]. MuPI,
as shown in this study, fills in this gap by obtaining not only the accessory pigment concentrations but
also their ratios to [Chl-a] on the global scale, and reasonable accuracy has been obtained in validation
with in situ data.

[Chl-a] is by far the easiest quantity to validate as it is routinely measured. An independent
evaluation of the model has been conducted with the MERIS match-up dataset (Figure 7). This dataset
contains nearly simultaneous in situ [Chl-a] measurements and MERIS Rrs(λ) at coincident locations.
To evaluate other pigments, an independent evaluation was conducted with MERIS Rrs(λ) and in
situ HPLC match-ups from 2002 to 2012 near Bermuda (Figure 5). The match-up dataset contains
data from different seasons over a decadal scale. Use of the model with the match-up dataset from
BATS confirms good overall behavior of the MuPI model for pigment concentration and pigment ratio
retrievals, demonstrating the ability of the model to obtain accurate information from satellite ocean
color imagery. However, because of the limitation of in situ pigment concentrations, the potential of
obtaining PE and PC concentrations from satellite remote sensing data was not addressed in this study.

The main difficulty in making the model more applicable with any waterbody comes from
the parameterization of the Gaussian curves, particularly the empirical relationships among aGau(λ).
Although it is reasonably straightforward to optimize the parameters with each dataset to obtain better
retrievals, it would be extremely difficult (if not impossible) to do so when in situ measurements from
the target location are hard to obtain. Instead, a set of globally optimized parameters were obtained
using a dataset that covers a large dynamic range of the global ocean. Another challenge for aGau(λ)
retrieval in the open ocean lies in the low contribution of pigment absorption to the total absorption
coefficient around 550–650 nm. Thus, it is difficult to directly invert Rrs(λ) to obtain pigment absorption
coefficients at the longer wavelengths (>550 nm).

This version of the MuPI model should be considered interim because the model could be further
updated when more global data become available. In its present form, the model is optimized to
work with Rrs(λ) data from the first nine MERIS bands. As a first step, several components of the
Gaussian model were deliberately formulated by use of empirical relationships to limit the number of
unknowns to be solved via the spectral optimization procedure. This is particularly true for estimation
of 13 aGau(λ) from two independent Gaussian curves, which significantly reduced the unknowns.
Instead of the Gaussian scheme, another potential way to obtain different pigment information from
remote sensing data is through the specific absorption coefficients as adopted by many studies [46,86].
However, the specific absorption coefficients have significant limitations, such as the variation of the
coefficients in different waters and the lack of routine measurements of some pigments, such as PE
and PC [46,86,87].

With the information of accessory pigments obtained from MuPI, different biogeochemical studies
could be conducted: 1. Remotely sensed PE and PC concentrations could be validated and applied
to the estimation of cyanobacteria on a global scale. 2. The pigment ratios could be used as a direct
indicator for estimation of phytoplankton functional types or functional traits, and phytoplankton
physiological variation over space and time. 3. The pigment absorption coefficients (photoprotective
and photosynthetic) could be estimated from satellite remote sensing data and incorporated into
models for more accurate estimation of primary productivity.

5. Conclusions

The multi-pigment inversion model, namely MuPI, which semi-analytically obtains concentrations
of multiple pigments from remote sensing reflectance, has been validated and applied to MERIS Rrs(λ)
imagery to obtain not only [Chl-a], but also [Chl-b], [Chl-c], [PPC], [PSC] (and subsequently their ratios
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to [Chl-a]) in the global oceans. The obtained pigment concentrations and the pigment ratios showed
good agreement with in situ HPLC data, with the mean UAPD of 38%, 78%, 65%, 36%, and 47%
respectively. Further, at the global scale, the MuPI obtained [Chl-a] from MERIS showed comparable
results with those estimated from the widely used OC4E algorithm with mean UAPD of 48.8% and
RMSE of 4.51 mg·m−3 for OC4E and mean UAPD of 49.3% and RMSE of 4.05 mg·m−3 for MuPI.
However, unlike OC4E, MuPI as a semi-analytical model provided reasonable retrievals of several
parameters {[Chl-a], [Chl-b], [Chl-c], [PPC], [PSC], adg(440) and bbp(440)} simultaneously from satellite
obtained remote sensing reflectance. The information of these accessory pigments would extend the
application of satellite ocean color data in global biogeochemical studies that was previously limited
due to [Chl-a] as the only available pigment.
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Abstract: The latest model for light scattering by pure seawater was used to investigate the anomalous
behavior of pure water. The results showed that water exhibits a minimum scattering at 24.6 ◦C, as
compared to the previously reported values of minimum scattering at 22 ◦C or maximum scattering
at 15 ◦C. The temperature corresponding to the minimum scattering also increases with the salinity,
reaching 27.5 ◦C for S = 40 psu.

Keywords: light scattering; light scattering by pure water; light scattering by pure seawater;
anomalous properties of water

1. Introduction

Light scattering by pure water or pure seawater is a fundamental quantity in aquatic optics.
Because of hydrogen bonding, many bulk properties of water exhibit anomalous behavior with
temperature that is unlike any other liquids [1,2]. For example, liquid water has a maximum density
near 4 ◦C [3], a minimum isothermal compressibility near 46 ◦C [4] and a maximum refractive index
near 0 ◦C [5]. The scattering seems to behave “anomalously” too [6]. Cohen and Eisenberg [6]
measured the scattering at 436 and 546 nm by pure water at temperatures from 5 to 65 ◦C, and found
a scattering minimum at approximately 22 ◦C that is consistent with their theoretical estimate using
the Einstein–Smoluchowski equation and the temperature variation of the isothermal compressibility.
Using the same Einstein-Smoluchowski equation, with inputs re-evaluated using newer experimental
results, Buiteveld et al. [7] improved the estimate of light scattering by pure water, which showed a
better agreement with the spectral values measured by Morel [8]. However, their model predicts a
maximum scattering at 15 ◦C, which differs from Cohen and Eisenberg [6] not only in value but in
the behavior as well. To the best of our knowledge, few other studies have explored the temperature
behavior of scattering by water. In addition, it is still unknown whether and how this temperature
dependence of scattering by water would vary in the presence of sea salts.

2. Methods

Recently, Zhang and coworkers refined the models for light scattering by pure water [9], by pure
seawater [10,11], and by simple sea salt solutions [12] using the improved measurements of the key
thermodynamic parameters, and their models agree with the spectral scattering measurements [13,14]
for both pure water and seawater within the experimental errors (2%). Localized fluctuation in density
for pure water, as well as additional fluctuations in the mixing ratio of salt ions and water for pure
seawater, lead to microscopic inhomogeneities in the refractive index (n) [15], which in turn cause
scattering of light. Since the fluctuations in density and mixing ratio are independent, the scattering
coefficient of seawater, b (m−1) can be expressed as

b = bd + bc, (1)
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where bd represents the scattering due to density fluctuation, and bc the scattering due to fluctuation of
mixing ratio (concentration). Following Zhang and Hu [9],

bd =
8π3

λ4 (ρ
∂n2

∂ρ
)

2

T
kTβTh(δ), (2)

and following Zhang et al. [11]

bc =
8π3

λ4NA
(

∂n2

∂S
)

2 Mw

ρ

S
−∂ ln aw/∂S

h(δ), (3)

where, respectively, λ, k (=1.38064852 × 10−23 m2·kg·s−2·K−1), and NA (=6.022 × 1023 mol−1) are the
wavelength of light, the Boltzmann constant, and Avogadro’s number; ρ, n, T, βT, S, and δ are the
density, the absolute refractive index, the absolute temperature, the isothermal compressibility, the mass
concentration of salts, and the depolarization ratio of the seawater; and aw and Mw (=18.01528 g mol−1)
are the activity and molecular weight of pure water. Also, h(δ) = (2 + δ)/(6 − 7δ).

In Equation (1), bc vanishes for pure water, and the scattering of light is due entirely to
density fluctuation. Replacing the density derivative in Equation (2) with pressure derivative, i.e.,
(ρ ∂n2

∂ρ )
T
= 2n

βT
( ∂n

∂P )T , Equation (2) becomes the Einstein–Smoluchowski equation

bd =
32π3

λ4
n2

βT
(

∂n
∂P

)
2

T
kTh(δ) (4)

which was used by Cohen and Eisenberg [6] and Buiteveld et al. [7] in evaluating the temperature
dependence of scattering by pure water. Historically, Equation (4) was often used because
the isothermal piezo-optic coefficient (∂n/∂P)T was relatively easier to measure, even though
the uncertainty was high as compared to n(T), n(λ), or n(S) [16]. However, recent theoretical
development [17] has greatly improved our knowledge in (ρ∂n/∂ρ)T . This, together with the
development of Equation (3) to explicitly account for the effect of salinity on scattering [11], has
advanced our capability for modeling scattering by seawater [9–11], and our confidence in using
Equations (1)–(3) to evaluate its temperature effect. The formulae used in the equations to estimate
n, ρ, βT, and aw can be found in Zhang and Hu [9] and Zhang et al. [11], and the Matlab code for
the model can be accessed at https://goo.gl/jKAZgT. Light scattering by seawater is a function of
salinity, temperature, and pressure. In this study, we focus on the temperature and salinity ranges of
0–60 ◦C and 0–40 psu under one atmospheric pressure, which cover the majority of natural inland,
coastal, and oceanic surface water bodies. The presence of sea salts is expected to modify the value
of δ through two contrasting effects: isotropic ions would decrease δ; whereas their electrostatic field
would increase anisotropy, and hence the value of δ [18,19]. Both effects have been observed in pure
salt solutions: δ for KNO3 solution increases and δ for KCl solution decreases, with their respective
concentrations [20]. To the best of our knowledge, however, no studies have been reported on how the
δ of seawater would vary with salinity. For this study, we assumed a constant value of 0.039 for the
depolarization ratio δ for pure water [21] and for seawater [8,9,22,23].

3. Results and Discussion

Light scattering by pure water at 436 and 546 nm was estimated using Equation (2) for
temperatures 0–60 ◦C, and the values normalized to the scattering at 25 ◦C were compared with the
measurements by Cohen and Eisenberg [6] in Figure 1. Between the two wavelengths, the temperature
variations of the scattering are almost identical, showing a minimum scattering at 24.7 ◦C ± 0.2%.
The scattering increases by 4.3% towards 0 ◦C and increases by 4.7% towards 60 ◦C at both wavelengths.
The root mean square difference between our model and the measurements by Cohen and Eisenberg [6]
is approximately 1.3% at both wavelengths. The refractive index model [24] used in Equations (2)
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and (3) were developed using the Austin and Halikas [16] measurements, which had a temperature
precision of 0.1 ◦C. Also, the Cohen and Eisenberg [6] data we used for comparison in Figure 1 had
a temperature precision of 0.1 ◦C as well. Therefore, we report the temperature in this study at
a precision of 0.1 ◦C. We denote the temperature at which the scattering reaches the minimum as
Tmin hereafter. The predicted values of Tmin are close to the value of 22 ◦C measured by Cohen and
Eidenberg [6], but differ significantly in both value and trend from the Buiteveld, et al. [7] model,
which predicts a maximum near 15 ◦C. We believe the difference is largely due to the uncertainty in
modeling (∂n/∂P)T in Equation (4) that was used by Buiteveld, et al. [7]. Austin and Halikas [16]
pointed out that the measurements of the refractive index of water as a function of the pressure, i.e.,
n(P), were of worse quality when compared to those of n(T), n(λ), or n(S). Also, it is well-known that to
numerically approximate a derivative, such as ∂n/∂P, as a ratio of measured values is very sensitive to
the uncertainties in the measurements of n(P). In addition, Buiteveld, et al. [7] derived the temperature
dependency of (∂n/∂P)T by fitting the measurements [25] between 5 and 35 ◦C, which also explains
the relatively large deviation as shown in Figure 1 when extrapolating their model beyond 35 ◦C.

Figure 1. The temperature variations of light scattering by pure water, calculated using the Zhang and
Hu [9] model (i.e., Equation (2)) at 436 and 546 nm and normalized by their respective values at 25 ◦C,
are compared with the estimates using the Buiteveld, et al. [7] model and with the measurements by
Cohen and Eisenberg [6]. Note that the normalized variations estimated by the Zhang and Hu model
overlap with each other at the two wavelengths.

Several bulk properties of pure water needed to estimate the scattering coefficient behave
“anomalously”: density has the maximum near 4 ◦C [3]; isothermal compressibility has the minimum
near 46 ◦C [4]; and the refractive index has the maximum near 0 ◦C [5]. Also, less apparent but
indirectly relevant is that (∂n/∂P)T , as in Equation (4), has its minimum near 50 ◦C [5]. Clearly,
anomalous light scattering by pure water results from the combination of all of these anomalous
properties, as well as its direct proportionality with the temperature (Equation (2) or (4)). Even though
scattering by pure water varies strongly with wavelength, with a spectral slope of −4.28 [9], the
anomalous temperature behavior of scattering varies little with wavelength (Figure 1).

The scattering coefficient at 546 nm as a function of temperature for different salinities is shown
in Figure 2a for bd (due to density fluctuation) and Figure 2b for bc (due to concentration fluctuation).
Both bd and bc vary with temperature in the same anomalous way, all exhibiting a minimum. Also,
both Tmin for bd and Tmin for bc change with salinity—however, with differing patterns. Tmin for bd
decreases about 20% from 24.6 ◦C to 19.1 ◦C for salinity varying from 0 to 40 psu, whereas over the
same salinity range Tmin for bc increases slightly by ~3%, from 32.2 ◦C to 33.2 ◦C. In terms of absolute
magnitude, bd is about 2–10 times greater than bc (Figure 2a), but in terms of change with respect to
salinity, bc is about 10 times greater than bd (Figure 2b). As a result, the change of Tmin for the total
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scattering coefficient, b is dominated by bc, and increases from 24.6 ◦C to 27.5 ◦C for S from 0–40 psu
(Figure 3). It is well known that Tmax for density [26] and Tmin for isothermal compressibility [27]
decrease with the salinity. Here, we show for the first time that Tmin for light scattering increases with
salinity, which is largely due to the temperature variation of scattering introduced by sea salts. Table 1
lists the variations of Tmin for bd, bc, and b at different salinities.

Figure 2. Light scattering by pure seawater at 546 nm as a function of temperature and salinity. (a) bd,
the scattering due to density fluctuation; and (b) bc, the scattering due to concentration fluctuation.
Lines of progressive colors from blue to red correspond to different salinities from 0 to 40 psu, at 5 psu
increments. The dotted line in each plot connects Tmin at different salinities.

Figure 3. Total scattering coefficient by pure seawater at 546 nm as a function of temperature and
salinity. Lines of progressive colors from blue to red correspond to different salinities from 0 to 40 psu
at 5 psu increments. The dotted line connects Tmin at different salinities.

Table 1. Temperatures (Tmin in ◦C) at which the scattering of light at 546 nm by pure seawater due
to density fluctuations (bd), concentration fluctuations (bc), and their total (b) reach the minimum for
various salinities (S).

S (psu) 0 5 10 15 20 25 30 35 40

bd (m−1) 24.6 24.0 23.4 22.7 22.0 21.2 20.5 19.8 19.1
bc (m−1) 32.2 32.3 32.5 32.7 32.8 33.0 33.1 33.2
b (m−1) 24.6 25.3 25.9 26.3 26.6 26.9 27.2 27.3 27.5
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In conclusion, using the latest scattering models for water and seawater, we find that water
exhibits an anomalous light scattering behavior, with a minimum occurring at 24.6 ◦C for pure water,
and that this minimum increases with the salinity, reaching 27.5 ◦C at 40 psu. This temperature behavior
changes little spectrally. Caution should be exercised when using the Buiteveld, et al. [7] model, which
predicts a temperature behavior of scattering that is inconsistent with the measurements [6] or the
results of this study.
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Featured Application: Hyperspectral Bathymetry and near-shore bottom mapping. Retrieving

both depth and bottom types from hyperspectral remote-sensing reflectance requires inverting

the remote-sensing reflectance profile to fit both the inherent optical properties of the water

column and the bottom spectral reflectance profile. In order to obtain a robust fit, the number of

parameters required to characterize the bottom reflectance spectrum must be kept to a minimum.

The model which we have developed allows one to model a good approximation to bottom

spectra by using at most three parameters.

Abstract: Over the near-ultraviolet (UV) and visible spectrum the reflectance from mineral
compounds and vegetation is predominantly due to absorption and scattering in the bulk material.
Except for a factor of scale, the radiative transfer mechanism is similar to that seen in murky optically
complex waters. We therefore adapted a semi-empirical algebraic irradiance model developed
by Albert and Mobley to calculate the irradiance reflectance from both mineral compounds and
vegetation commonly found on the sea bottom. This approach can be used to accurately predict the
immersed reflectance spectra given the reflectance measured in air. When applied to mineral-based
compounds or various types of marine vegetation, we obtain a simple two-parameter fit that
accurately describes the key features of the reflectance spectra. The non-linear spectral combination
effect as a function of the thickness of vegetation growing on a mineral substrate is then accounted
for by a third parameter.

Keywords: remote-sensing reflectance; bathymetry; hyperspectral; bottom mapping; radiative transfer

1. Introduction

The application that supplied the primary impetus for the present work was bathymetry and
near shore bottom mapping. Both problems require inverting the remote-sensing reflectance profile to
simultaneously fit both the inherent optical properties of the water column and the bottom spectral
reflectance profile. In order to obtain robust and reliable results, the number of fitted parameters must
be kept to a minimum. The parameters required to model the water column are already well known
from numerous and extensive remote-sensing reflectance studies and detailed in the semi-empirical
algebraic irradiance model developed by Albert and Mobley [1] that we use as a basis for our work.
The model we are proposing here produces a good approximation to bottom reflectance spectra by
using only three parameters.

In the near-ultraviolet (UV) and visible, the reflectance from mineral compounds and vegetation
is predominantly due to absorption and backscattering in the bulk material. For most inorganic
liquids or solids such as minerals the absorption comes from the broadened far wing of electronic
transitions in the deep UV [2–4] and the backscattering is dominated by reflections at the interface
between the crystalline grains of the material. For vegetation the absorption is primarily due to the
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chlorophyll-a and accessory pigments contained in the plant chloroplasts while the backscattering is
due to reflections at the membranes of the cells and their inner components. The radiative transfer
processes in both minerals and vegetation, even though occurring on a much smaller scale, are very
similar to that occurring in murky waters. This prompted us to adapt a semi-empirical model for
murky type II waters due to Albert and Mobley [1] and generalize its results with another model due
to Aas [5].

Except for the obvious size scale factor, the key difference between the radiative transfer that
occurs in minerals and vegetation against that found in murky waters is due to the physics of the
backscattering term. We assume the backscattering term comes from the reflection of the interfaces
between the structural elements of the solid. The surfaces of the interfaces are modeled to be rough
and randomly oriented. The formulas for this type of backscattering are identical to those derived
for randomly oriented particles with rough surfaces [6,7]. The formulas scale as a function of the
relative index of refraction of the solid grains and the material of the gap. If the original reflectance
was measured for dry samples, the gaps contain air. If the sample is immersed the gaps are water filled
and the relative index is smaller. This occurs at or just below the surface of solid rocks and depends on
the porosity and on the state and time of immersion. The same effect occurs to an even greater depth
when the mineral is in powdered form such as sand We have used this effect to predict the immersed
reflectance spectra given the reflectance measured in air. This new model allows one to use the vast
library of spectral reflectance signatures measured in air to the underwater environment. We have also
used the model in our bathymetric work by measuring the hyperspectral signature of the coastline
and modifying it to use as bottom reflectance. We have found this approach to be particularly effective
with sand beaches. The only parameter that needs to be estimated is the mean index of refraction of
the sand grains which is very close to either silica or in some cases calcite.

To properly model vegetation absorption several effects must be accounted for. The absorption
spectrum of chlorophyll-a and accessory pigments at low concentrations is modified by saturation
of the absorption through the chloroplasts as the concentration increases. This is known as the
package effect and has been extensively studied for spherical chloroplast by Morel and Bricaud [8].
We extend this work to include disk-shaped chloroplast. We then use the resulting formulas to fit with a
single parameter the measured phytoplankton absorption spectra as a function of concentration [9,10].
The backscattering cellular interfaces are assumed to be composed of cellulose and the reflectance
spectra are computed for several types of algae and underwater vegetation.

The spectra show that, as is well known, vegetation is actually translucent which means that when
it grows over a mineral substrate the reflectance spectra changes significantly as a non-linear function
of the thickness. We use a normalized version of the Albert and Mobley model for finite depth [1]
to evaluate this effect. The reflectance from the mineral substrate replaces the bottom reflectivity
in the model and the water column absorption and backscatter properties are replaced by those of
the vegetation. If the vegetation cover is complete over one pixel, the complete vegetation model
depends on three parameters: the concentration of chlorophyll-a, the chloroplast absorption saturation
parameters and the thickness.

The aim of the present work is to help limit the number of fit parameters in order to better
constrain the water depth value. This is particularly significant in conditions were there is little or no
a priori knowledge of the bottom type. For convenience, Table 1 lists the symbols we use and their
definitions and units.

Table 1. List of abbreviations, symbols, definitions and units.

Symbol or Abbreviation Definition, Units

a(λ) Absorption coefficient, m−1

acl(λ) Cellulose absorption coefficient, m−1

aw(λ) Pure water absorption coefficient, m−1

a∗(λ) Extended Bricaud specific absorption coefficient, m2/mg
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Table 1. Cont.

Symbol or Abbreviation Definition, Units

a∗o (λ) Specific absorption coefficient at low concentration, m2/mg
a∗r (λ) Specific absorption coefficient at the reference concentration
a∗v(λ) Specific absorption coefficient at any concentration, m2/mg
A1, A2 Coefficients for the finite thickness translucent model

αo Amplitude coefficient for the mineral fit, units λ−ν

bb(λ) Backscattering coefficient in air, m−1

bbw(λ) Backscattering coefficient in water, m−1

<cos> Mean scattering cosine
<d> Mean diameter of the scattering structures, m−1

δ(λ) Bottom reflectance attenuation coefficient, m−1

f Fitting parameter for alternate Rspc−∞ formula
fcl Mass fraction of cellulose in a vegetation cell
fvp Fraction of vegetation cover per pixel

γ(λ) Translucent substance irradiance attenuation coefficient, m−1

κ0, κ1W,κ2W , κ1b, κ2b Coefficients for the finite thickness translucent model
λ Wavelength in air, microns
λ0 Wavelength coefficient for the mineral fit, microns
ν Power coefficient for the mineral fit, dimensionless

μ(d) Mean value of the cell size, microns
n Real Index of refraction in air

ncw Index of refraction of cell walls
nw Real Index of refraction in water
nc Number of cells per unit volume, m−3

ncp Number of chloroplasts per cell
N Number of scattering elements per unit volume, m3

p1, p2, p3, p4, p5, Coefficients of the irradiance reflectance model
p(θ, λ) Total scattering phase function.

Qa Absorption efficiency, dimensionless
R∞ Irradiance reflectance with no bottom contribution

Rspc−∞ Spectralon reference normalized irradiance reflectance
Rb Bottom irradiance reflectance
Rm Mixed pixel irradiance reflectance
Rt Irradiance reflectance for translucent materials

ρchl Chlorophyll-a mass density, mg/m3

ρcp Chlorophyll-a mass density inside the chloroplasts, mg/m3

ρr Chlorophyll-a mass density concentration reference, mg/m3

σg Geometric cross-section, m2

σb(λ) Backscattering cross section, m2

σ(d) Standard deviation of the cell size, microns
σr(%) Standard deviation of the relative error, units %

θs Sun zenith angle in water
τcp Thickness of the disk shaped chloroplasts, m
ub Backscattering coefficient times zb, dimensionless
ucp ρcpτcp, units, mg/m2

ur ucp at the reference chlorophyll-a concentration ρr
Vc Volume of vegetation cell, m3

Vcp Volume of chloroplast, m3

Vm Volume of vegetation filled by cells, m3

x(λ) Backscattering albedo in air, dimensionless, range 0 to 1
xba(λ) Backscattering albedo in air, dimensionless, range 0 to 1
xbw(λ) Backscattering albedo in water, dimensionless, range 0 to 1

zb Translucent material layer thickness, m−1

ωb Backscattering reflection coefficient for random orientation
ωt Reflection coefficient for random orientation, range 0 to 1
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2. Materials and Methods

2.1. Basic Model

The key parameter in any radiative transfer model of reflectance is a parameter we will refer to in
this paper as the backscattering albedo x(λ). This defined as the ratio of the total scattering in the back
hemisphere to the sum of the absorption and total backscattering.

x(λ) =
bb(λ)

a(λ) + bb(λ)
, (1)

In the above expression a(λ) is the absorption coefficient while bb(λ) is the backscattering
coefficient. The backscattering coefficient is defined in standard form by the following expression.

bb(λ) = 2π
∫ π

π/2
p(θ, λ) sin θ dθ , (2)

In the expression above p(θ, λ) is the scattering phase function. The main aim of our work from
now on is to obtain expressions for the various contributions to both bb(λ) and a(λ). Figure 1 shows
graphically the various mechanisms discussed above and will serve as a guide in this task.

Figure 1. This figure is a schematic of the microstructure elements relevant to scattering and absorption
for both minerals (grains) and vegetation (cells). The incident light rays (1) are reflected (2) and
transmitted at the first surface (3). The rays transmitted through the first surface are subsequently both
reflected back from the inner surfaces of the grains (4) and absorbed. The rays that penetrate deeper
(5) are multiply scattered before coming back to the surface and have a near Lambertian (uniform)
scattering distribution.

The materials of interest to us, minerals and vegetation, absorb little per grain or cell and the light
ray will encounter many inner surfaces before being scattered back out. In our evaluation of bb(λ) we
will treat the reflection from the first surface boundary as similar to that of the inner deeper boundaries.
The formulas we will use for the backscattering from the inner surfaces of minerals are those which
describe reflection from rough surface elements with random orientation. For vegetation we will use
the formulas for backscattering from smooth surfaces which is a more appropriate representation.
This model has been used recently to describe the backscattering from complex naturally occurring
structures such as coccoliths [6,7]. The backscattering cross-section function for the reflection from a
randomly oriented set of uniform (Lambertian) diffusers is given by:
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σb(λ) = σg ωt(n)2π
∫ π

π/2

4
3π

(sin θ − θ cos θ) sin θdθ =
5
6

σg ωt(n) , (3)

σg is the geometric cross-section of an individual scattering structure and ωt(n) is the Fresnel
reflectance integrated over a set of randomly oriented surfaces of relative index of refraction n that
together compose the surface of those structures. The total backscattering coefficient of the ensemble
of the scattering elements is by definition:

bb(λ) =
5
6

ωt(n) N σg , (4)

Assuming that the number density of the scattering structures N is such that the sum of their
geometric cross-sections is equal to the area of the material normal to the impinging light, we obtain
the following formula for the backscattering coefficient of the material.

bb(λ) =
5
6

ωt(n)
d

, (5)

where <d> is the mean diameter of the scattering structures. ω(n) for unpolarised light is given by the
following formulas [3,4].

ωt =

(
ω⊥ + ω‖

2

)
, (6)

ω⊥ =
(3n + 1)(n − 1)

3(n + 1)2 , (7)

ω‖ =
1

(n2+1)3
(n2−1)2

{(
n4 − 1

)(
n6 − 4n5 − 7n4 + 4n3 − n2 − 1

)
+2n2

[(
n2 − 1

)4 ln
(

n−1
n+1

)
+ 8n2(n4 + 1

)
ln(n)

]}
,

(8)

Corresponding formulas for smooth surfaces are:

ωb⊥ =
3n4 − 16n3 + 12n2 − 1 + 2

(
2n2 − 1

)3/2

6(n2 − 1)2 , (9)

ωb‖ = ωb⊥

[
(3 − ln 16) +

37
40

(
n − 1
n + 1

)]
, (10)

ωb =

(
ωb⊥ + ωb‖

2

)
(11)

bb(λ) =
ωb(n)
<d>

, (12)

The formulas above were derived assuming the same Fresnel coefficients for both the entrance
and exit faces of the scattering structures. We do this because for most randomly oriented convex
objects the outgoing light ray has a nearly symmetrical angular relationship with the incoming light
ray which implies close to identical surface reflectivity. This symmetrical relationship is strictly true
for the extreme cases of spherical, cylindrical and flat plate shapes. Given the near universality of the
relationship we expect that in almost all cases of interest to us any deviation from it will be small and
to first order can be neglected.

2.2. Dry to Wet Reflectance Ratio

Note that the wavelength dependence of the backscattering coefficient is a direct consequence
of the wavelength dependence of the relative index of refraction. One important consequence of this
dependence on the relative index of refraction is the reduction in bb(λ) when the interfaces between
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the grains are filled with water instead of air. This effect is the source of the lowering of the irradiance
reflectance of materials and vegetation immersed in water. Because the interstitial gaps are small the
grain structure and spacing <d> is the same in both cases, we can estimate the water to air ratio directly.

bbw(λ)

bb(λ)
=

ωt(n/nw)

ωt(n)
, (13)

Since the absorption does not change, we can directly estimate the ratio of backscattering albedo.

xbw(λ)

xba(λ)
=

a(λ)
bb(λ)

+ 1[
ωt(n)

ωt(n/nw)

]
a(λ)
bb(λ)

+ 1
, (14)

xbw(λ) is the backscattering albedo in water while xba(λ) is the corresponding backscattering
albedo in air.

We can at this time estimate the wet to dry reflectivity factors for three of the most important and
frequently found components of materials and vegetation, crystalline quartz, calcite and cellulose.

These are shown in Figure 2. The detailed formulas as a function of wavelength for these important
indices are given in Appendix A. These indices can be found in references [11–15].

 

Figure 2. Wet to dry angularly averaged Fresnel reflectivity factors as a function of wavelength for
important components of materials and vegetation: crystalline quartz, calcite and cellulose.

2.3. Basic Irradiance Reflectance Model

To estimate the irradiance reflectance from the backscattering albedo we use the Albert and
Mobley algebraic radiance model valid for the infinitely deep medium case. The model is based
on a careful analysis of solutions of the radiative transfer equation by the Hydrolight code for over
177,000 cases that encompass the full range of parameters for optically complex waters [1].

R∞ = p1x
(

1 + p2x + p3x2 + p4x3
)(

1 + p5
1

cos θs

)
, (15)

In this formula R∞ is the irradiance reflectance over waters deep enough that there is no
contribution from the bottom reflectance. θs is the sun angle just below the surface of the scattering
medium. Standard irradiance reflectance measurements are carried out by comparing the signal
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from a high-quality diffuse reflecting surface (Spectralon) that fills the field of view of the portable
spectrometer to the signal from the substance to be measured under the same illumination conditions.
Therefore, we must normalize the original Albert and Mobley expression to have R∞ = 1 when x = 1.

Rspc−∞ =
p1x

(
1 + p2x + p3x2 + p4x3)

p1(1 + p2 + p3 + p4)
, (16)

We have used the notation Rspc−∞ in Equation (16) to clearly note that we are referring to the
calibrated Spectralon normalized irradiance reflectance but from now on we will simply assume that
all reflectances have been properly normalized. Table 2 gives the coefficients of Equations (15) and (16).

Table 2. Coefficients of the Albert-Mobley model for the infinite medium depth case.

Coefficient R∞

p1 0.1034
p2 3.3586
p3 −6.5358
p4 4.6638
p5 2.4121

The expression that Albert and Mobley use is based on an extensive empirical survey carried out
with an exact radiative code. The results of this survey are fitted as a fourth order polynomial which is
an inconvenient form to use if we need in some cases to reverse the process and, for instance, estimate
x from Rspc−∞. Aas [5] developed a two-stream radiative model and obtained approximate solutions
for the irradiance reflectance from an infinite depth medium. We found that we could closely match
the result of Albert and Mobley by parametrizing the formulas given by Aas. This approach yields
simpler more general formulas that can easily be inverted as desired.

Rspc−∞ =

(
1 + f 2)−√

(1 + f 2)
2 − 4 f 2x2

2 f 2x
, (17)

f is an empirical parameter that varies from 0 to 1. A very close fit to the results of Albert and
Mobley is obtained with = 0.79. We have used the notation Rspc−∞ in Equations (16) and (17) to clearly
note that we are referring to the calibrated Spectralon normalized irradiance reflectance but from now
on we will simply assume that all reflectance have been properly normalized to unity. Formula (17) is
easily inverted to obtain x as a function of R if required.

x =

(
1 + f 2

f

)(
f R

1 + f R2

)
, (18)

The value of f is correlated with but not equal to the mean cosine of the total scattering function
<cos> which is defined as follows.

< cos > = 2π
∫ π

0
p(θ, λ) cos θ sin θ dθ , (19)

when f = 0, the single scattering is nearly isotropic and the irradiance reflectance is equal to the
backscattering albedo. When f approaches 1 the single scattering becomes highly forward peaked.
Note that p(θ, λ) is the total scattering function and it includes both the reflected and the transmitted
part of the radiation. The transmitted part is controlled by refraction and diffraction which dominate
scattering in the forward hemisphere for grains or cells much larger that the wavelength. In the cases
that concern us in this work the grains or cells are large enough that the transmitted part controls the
value of the mean cosine.
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2.4. Irradiance Reflectance Model for Translucent Subtances

There is one more common case we have to concern ourselves with: translucent organic materials
growing on a mineral substrate. In order to model this situation we use the irradiance reflection model
for finite bottom depth of Albert and Mobley [1]. The irradiance reflectance of the underlying material
is used as a bottom irradiance reflectance Rb in this case. The irradiance reflectance of the combination
of translucent overlay of reflectance R∞ and thickness zb with a substrate of reflectance Rb is modeled
by the following equations.

Rt = R∞

[
1 − A1e−γ(λ)zb

]
+ Rb A2e−δ(λ)zb , (20)

with:

δ(λ) =
[
κ0 + (1 + x(λ))κ1w(1 + κ2w)

]( bb(λ)

x(λ)

)
, (21)

γ(λ) =
[
κ0 + (1 + x(λ))κ1b(1 + κ2b)

]( bb(λ)

x(λ)

)
, (22)

Table 3 gives the coefficients of Equations (20)–(22).

Table 3. Coefficients of the Albert-Mobley model for the finite medium depth case.

Coefficient R∞

A1 1.0000
κ0 1.0546

κ1W 1.9991
κ2W 0.2995
A2 1.0000
κ1b 1.2441
κ2b 0.5182

The new parameter that controls the behavior of the combined solution is ub = bb(λ)zb. Assuming
the overlaying vegetation completely covers the substrate then, as the thickness of the overlay zb
increases, the combined reflectance Rt goes to the reflectance of the overlay R∞ while when zb becomes
small the combined reflectance approaches Rb as expected. What the model above shows is that the
usual approach of linearly combining the separate reflectance signatures of the mineral substrate
and the organic cover according to the weights of their relative areas only works in the limit where
the cover is thick enough. For thin organic covers there is an exponential transfer of signature from
substrate to cover which is a strong function of wavelength through the backscattering albedo of the
translucent overlay x(λ).

3. Results

3.1. Specific Properties of Minerals

As mentioned briefly in the introduction, in the near-UV and visible the reflectance from mineral
compounds is predominantly due to absorption and backscattering in the bulk material. For minerals
this absorption comes from the broadened far wing of the lowest energy electronic transitions in
the deep UV [2–4] and the backscattering is dominated by reflections at the interface between the
crystalline grains of the material. The usual method for obtaining the absorption spectrum of mineral
compounds is to measure the transmission loss through a sample of known thickness made from
mineral powder that has been pressed and sintered. This is a time-consuming process that requires
great care to obtain sufficiently low backscatter. Using our model opens up the possibility of obtaining
the relative absorption spectra in the visible near-infrared (IR) region by simply measuring their
irradiance reflectance.
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Given the irradiance reflectance R we first obtain the backscattering albedo x from Equation (18).
Using the definition of the backscattering albedo (1) and the Formula (5) we derived for bb(λ) we
obtain the following expression for the absorption spectrum:

<d> a(λ) =
5
6

ωt(n)
(1 − x)

x
, (23)

Except for the scale factor of the mean crystalline grain size <d> we can now directly obtain
the absorption spectrum for any substance for which we have measured an irradiance reflectance.
We will use a simple approximate empirical functional form for the far wing absorption spectrum of
an electronic transition which includes the cases of broadening due to internal collision and Van der
Wall like interactions in the bulk of the material.

<d> a(λ) =
αo

(λ − λo)
ν , (24)

Note that there is still a considerable amount of physical meaning to the parameters in the formula
above. λo is an estimate of the central wavelength of the lowest energy electronic transition. The value
of ν is a function of the shape of the interaction potential of the molecular components of the crystalline
grain. In the limiting case of an abrupt delta function like interaction potential ν = 2 and Equation (24)
becomes a far wing Lorentzian profile [4] which is the standard abrupt collison lineshape. In the case
of a sample of Trenton Limestone measured on the shore of Lake Ontario we obtain a very good fit
of <d> a(λ) using the ν = 1 solution. This solution is indicative of a smoothly varying interaction
potential similar to that of a linear spring.

<d> a(λ) =
0.081

(λ − 0.183)
, (25)

Many other values of ν are obviously possible and depend on the form of the interaction potential.
Using expression (25) we can reconstruct the reflectance spectrum. Figure 3 shows a graph of the fit
between the original reflectance and the one computed using our formulas.

 

Figure 3. Comparison of the dimensionless parameter grain size times absorption coefficient estimated
using Formula (23) for various mineral compounds (solid lines) with the fit (dashed lines) obtained
using Equation (25). The fit parameters are given in the corresponding entries of Table 4. The spectral
features seen in the experimental reflectance of the Trenton limestone sample are due to an interstitial
chlorophyll-a residue lying on top of the limestone.
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The fits are quite accurate over the visible spectrum from 0.35 to 0.90 micron and we expect similar
accuracy for materials whose absorption is not dominated by inclusions containing color centers.
The results presented in Table 4 demonstrate that this is indeed the case.

Table 4 is the result of the fit for a set of materials of interest that could possibly be found on
the bottom of the water column. The fit was constrained to a region from 0.42 to 0.90 microns. This
wavelength zone was chosen to avoid the reflectance measurement accuracy problems that notoriously
plague the near-UV and deep blue region of the spectrum. The standard deviation of the relative error
in percent between the model and the data σr(%) is given in the last column.

Table 4. This is a table of the functional fits to various minerals according to the formula.

Substance ao ν λo σr(%)

California Sand 0.01055 0.708 0.346 5.0
Hawaii Sand 0.04631 1.438 0.102 4.8

Greenland Sand 0.03323 0.453 0.350 4.9
Limestone (Trenton) 0.08401 1.217 0.102 3.8
Limestone (Fossil) 0.01662 0.688 0.348 6.6

Clay 0.02180 1.273 0.350 5.9
Sandy Loam 0.01087 1.882 0.195 4.1

Gray Silty Loam 0.00850 1.636 0.298 3.3
Brown Loam 0.01292 1.595 0.286 3.4
Dark Loam 0.02345 1.395 0.350 4.5

Granite 0.02102 0.737 0.304 8.6
Schist 0.11558 0.134 0.338 0.9
Shale 0.02988 0.738 0.113 1.5
Shale 0.04426 1.165 0.101 6.5
Shale 0.02364 0.219 0.344 2.8
Shale 0.11558 0.368 0.350 3.3

Siltstone 0.02669 0.229 0.345 3.9
Siltstone 0.01803 0.377 0.343 4.2

The low standard deviation of the relative error shows that the fits are very close and are in several
cases within the instrumental reflectance measurement variation. Formula (24) can, therefore, serve
to fit experimentally measured reflectances. We originally hoped that in the limit, the values of the
parameters λo, ν and αo could even be used as markers to identify an unknown material. The results
given in Table 3 are not encouraging in this respect as there is a great deal of variability even for similar
materials. The situation is, however, not hopeless as we have noted that several of the signatures are
affected by the presence of absorbtion by organic compounds and by the colour centers of mineral
inclusions. Whether these effects can be properly adressed will require further studies. We begin to
address the problem of the presence vegetation in the following sections.

3.2. Specific Properties of Vegetation

Absorption in vegetation is controlled by the absorption of the chlorophyll-a filled chloroplasts in
the cell. As the concentration of chlorophyll-a and/or the size of the chloroplasts increases the
absorption through the cell increases until the chloroplast absorbs more of the light at a given
wavelength until in the limit of large concentrations and/or size it becomes a dark spot masking all the
light its surface intercepts at this wavelength. This absorption saturation effect was first extensively
studied by Morel and Bricaud [8] who called it the package effect. This is the factor that dominantes
the variability in the absorption spectrum for different types of vegetation.

To compute this effect first we need formulas for the absorption efficiency Qa of the chloroplasts.
These are derived in Appendix B for both the original model that asssumed a spherical shape for the
chloroplasts and for a new model that assumes disk-like chloroplasts.

As mentioned in Appendix B, the exact formulas can be approximated to a sufficent accuracy by
a simpler exponential model. From now on we will use the more realistic disk-like shape to model the
absorption saturation effect.
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a∗v(λ) =
(

1
2 ucp

)(
1 − e−a∗o (λ)2 ucp

)
, (26)

With:
ucp = ρcpτcp , (27)

a∗o (λ) is the specific mass absorption coefficient of chlorophyll-a at low concentration in units of
m2 gr−1. ρcp is the chlorophyll-a mass density inside the chloroplast in gr m−3 and τcp is the thickness
of the chloroplast disk in meters. The mean thickness of a randomly oriented set of disks is 2 τcp which
explains the factor of 2 seen in Equation (26).

We verified the validity of this model by first comparing the theory for disks given by Equation (26)
with the Bricaud et al. [9] empirical formula for chlorophyll-a absorption in type I waters which is
based on in-depth analysis of a compilation of most of the available datasets. To do this we rewrite
Equation (26) as a specific absorption gain function:

a∗v(λ)
a∗o (λ)

=

(
1

a∗o (λ) 2 ucp

)(
1 − e−a∗o (λ)2 ucp

)
, (28)

As can be seen in Figure 4, the overall behavior of the absorption is captured by the gain formula
and this over three orders of magnitude in chlorophyll-a density. We note that the hysteresis seen in
the empirical curves is due to an additional wavelength shift as a function of chlorophyll-a density.
This effect was in fact observed by Gitelson [16]. The results shown in Figure 4 are a strong indication
that the dominant effect in the spectral variation as a function of chlorophyll-a density is the absorption
saturation effect. There was a large amount of variability in the original experimental data sets on which
the empirical formulas are based so the discrepancies are not surprising. However, in the case that
concerns us, which is the absorption in vegetation itself, the number density of phytoplankton which
is the main uncontrolled empirical variable becomes severely constrained. The bulk chlorophyll-a
mass density ρchl is given by:

ρchl = nc ncp ρcpVcp , (29)

 

Figure 4. Graph of the ratio of the specific absorption gain to the unsaturated absorption gain.
The dotted lines are from the empirical formula of Bricaud et al. [9] for chlorophyll-a. The solid
lines are from Equation (21) with the parameters noted.
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The number density of cells is nc , the number of chloroplasts per cell is ncp and the volume of
each chloroplast is Vcp. In the open ocean, nc may be weakly correlated with the other parameters
while in a continuous block of cells as is the case in vegetation there is a very strongly constrained
relationship. We can see this as follows. For a volume of vegetation Vm filled by cells with a volume Vc

we have:

ρchlVm =

(
Vm

Vc

)
ρcp ncp Vcp = Vm ρcp

(
ncp Vcp

Vc

)
, (30)

ρchl = ρcp

(
ncp Vcp

Vc

)
, (31)

We expect the ratio of the total volume of chloroplasts ncp Vcp to the cell volume Vc to be almost
constant. The variability induced by nc for open water has disappeared and the bulk chlorophyll-a
concentration is now as expected simply proportional to the chlorophyll-a concentration inside the
chloroplasts that we use to estimate the absorption saturation.

The main implication of the discussion above is that we expect to be able to model the spectral
shape of the absorption spectrum of chlorophyll-a with a single fitting parameter ucp. Before this
becomes feasible, there are, however, several significant hurdles which have to be overcome. First,
the Bricaud formula for chlorophyll-a absorption can be scaled to any concentration no matter how
small even for ranges that lie well outside the zone of the data used for the original fit. This creates
a problem when trying to determine a∗o (λ) as a limiting value for low chlorophyll-a concentrations
as we can extrapolate back to unphysically small values of concentration. Ciotti et al. [10] used a
different approach to model the chlorophyll-a absorption from naturally occurring populations of
organisms. They determine the absorption spectra for two limiting populations of organisms, the nano
population and micro population. For low concentrations of chlorophyll-a the absorption spectrum of
the nano population applies while for high concentrations the spectrum of the micro population is the
appropriate one to use. As the concentration of chlorophyll-a increases, the spectrum evolves as a linear
combination of both these extreme cases. We first attempted to use the nano population spectrum
from Ciotti et al. [10] as the limiting case a∗o (λ) for low chlorophyll-a concentrations. Unsurprisingly,
we found that the difference between our model and the Bricaud form diverged significantly at the
higher concentrations.

This is problematic since for vegetation, which is the case of interest for us, the chlorophyll-a
concentrations are expected to be large. In fact, they exceed the range of validity of the Bricaud
formulas. To handle these extreme cases with a reasonable expectation of accuracy we decided to
take a different approach. The technique is based on using a Bricaud spectrum at a given reference
value with sufficiently high chlorophyll-a concentration but in a zone where the fit is still valid and
extending the range from that point using the gain saturation equations. The rationale to do this is
based on the fact that the concentration exceeds the measurement range and until data is available
there is no other valid approach. This extension method proceeds as follows. Defining ur as the value
of ucp at a reference bulk concentration ρr we have:

a∗r (λ)2ur =
(

1 − e−ao(λ)2ur
)

, (32)

ao(λ)2ur = ln[1/(1 − a∗r (λ)2ur)], (33)

ao(λ) =

(
1

2ur

)
ln[1/(1 − a∗r (λ)2ur)] , (34)

This ao(λ) is completely determined by the reference spectrum a∗r (λ) and the value we choose for
ur. Note that for ao(λ) to stay finite at all wavelengths there is a maximum value that ur can take:

maxur =

(
1

max[2 a∗r (λ)]

)
, (35)
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Using (34) we can write that:

ao(λ)2 ucp =

(
ucp

ur

)
ln[1/(1 − a∗r (λ)2ur)] , (36)

Finally, we obtain the following general expression for an extended Bricaud absorption spectrum
that can be used at chlorophyll-a densities appropriate for vegetation:

a∗(λ) =
(

1
2 ucp

)(
1 − e−ao(λ)2ucp

)
, (37)

As a final practical step we need to determine what value of ρr we will use a reference spectrum
and what value of ur leads to the most reliable extrapolation. To do this we first choose the Bricaud
spectrum for 5.0 mg/m3 which is a value at the high end of the bulk concentration range but still well
below the 20.0 mg/m3 extreme limit of the data on which the formula was based. To determine the
best value of ur we varied that parameter until we obtained the best fit to the Bricaud spectra at 1.0, 3.0
and 10.0 mg/m3. In all these cases we found that the optimum reference ur asymptotically approached
maxur(λ). In practice, therefore, we recommend using a value of 0.99 maxur(λ).

To completely model the absorption due to vegetation we need to include the absorption of water
and of the cellulose that makes up the walls and internal structures of the cell. The absorption spectrum
of water is taken from the data of Pope and Fry [17] for the zone from 0.38 to 0.70 microns and from
the data of Kou [18] normalized to the data of Pope and Fry in their wavelength overlap zone for the
0.65 to 2.5 microns range.

The specific absorption spectrum of naturally occurring lignin cellulose from 0.4 to 2.5 microns
is given in [19]. The spectrum of crystalline cellulose from 0.2 to 0.5 micron in arbitrary units can be
found in reference [20]. We used the overlap zone from 0.4 to 0.5 microns with the calibrated spectrum
in [16] to transform the UV-visible spectrum given in [20] to specific absorption in units of m2·gr−1.
We will use the pure water, chlorophyll-a and cellulose absorption spectra to model the irradiance
reflectance spectra of algae and other marine vegetation.

3.3. Modeling Algae

We are now in a position to analyse the spectral signature of algae and other marine vegetation.
The spectra we will be using were collected on the shores of Janvrin Island in Nova Scotia. These
calibrated reflectance spectra range from 0.35 to 2.5 microns. This range extends beyond the wavelength
band over which chlorophyll-a absorption has a significant amplitude. This is fortunate in as much as
we can use the reflectance measured in the wavelength range over 0.90 micron to obtain a measurement
of <d>. This is because the components which dominate absorption in that wavelength range are water
and cellulose and their absolute values and relative abundances are well known. In that spectral band,
therefore, we have:

<d> =

(
1 − x(λ)

x(λ)

)
ωb(ncw/nw)

[aw(λ)(1 − fcl) + fcl acl(λ)]
, (38)

fcl is the mass fraction of cellulose in the cell and ncw is the index of refaction of the walls of the
cell and its subcomponents and nw is the index of refraction of water. This cell wall index has been
estimated for both the mesophyll and antidermal cell walls by Baranoski [12]. Since both are quite
close to one another we use their average value as an estimate for ncw.

We can use the fact that the mean spacing between backscattering layers <d> should be
independent of wavelength to estimate fcl . To do this, we vary fcl to minimize the variance in
the estimate of <d> as a function of wavelength computed with Equation (39). We use the wavelength
range from 0.90 to 1.35 micron. We need to be above 0.90 microns to ensure that we are completely
out of the zone where there could be remaining absorption by chlorophyll-a and other pigments in
the algae. We also must stay below 1.35 micron to remain below the large water absorption band
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which reduces the irradiance signal to levels where instrument noise totally dominates. Figure 5 and
Table 5 show the result of such a fit to the reflectance spectra of wet Fucus sp. and a drying mixture of
Fucus sp. and F. serratus from Janvrin Island in Nova Scotia. These samples were chosen because they
represent the extreme values of the reflectance spectra we measured. The results show the potential of
this approach to estimate the status of the vegetation. In this case the Fucus sp. is much more saturated
with water than the drying mixture sample while the mean backscattering feature size of the mixture
is larger. The ratio of the standard deviation to the mean value of <d> is of the order of 5% in both
cases which shows that a constant mean value <d> is a good model for the data.

Table 5. Functional fits to the mean spacing of backscatter layers <d>.

Substance fcl <d>(microns) σ<d> σ<d>/μ<d>

Fucus sp. 0.043 3.29 0.15 0.048
Fucus sp. & F. serratus 0.164 4.07 0.21 0.054

 

Figure 5. Fit of the mean backscatter distance derived from the irradiance reflectance of wet Fucus sp.
and a drying mixture of Fucus sp. and F. serratus from Janvrin Island in Nova Scotia. In the zone below
0.90 microns the absorption of the chlorophyll-a and various pigments starts to dominate while in the
zone above 1.35 microns the absorption of water becomes large enough that the resulting irradiance
reflectance signal is dominated by noise. The full parameters of the fit are given in Table 5.

Once we have obtained the value of <d> we can use it in the wavelength range where the
absorption of cholorophyll is dominant.

av(λ) = ρchl a∗v(λ) =
(

1
<d>

)(
1 − x(λ)

x(λ)

)
ωb(ncw/nw)− [aw(λ)(1 − fcl) + fcl acl(λ)] , (39)

As a final step we can now estimate the absorption saturation parameter ucp and the bulk
cholorophyll concentration ρchl by using Equation (39) and performing a non-linear least squares fit
on the ratio of the experimental absorption obtained with the procedure described above to the low
chlorophyll-a concentration limit a∗o (λ).(

ρchl
2 ucp

)(
1 − e−a∗o (λ)2 ucp

)
=

(
1

<d>

)(
1−x(λ)

x(λ)

)
ωb(ncl/nw)− [aw(λ)(1 − fcl) + fcl acl(λ)] , (40)

Figure 6 shows the result of such a fit for a reflectance spectrum of wet Fucus sp. and a drying
mixture of Fucus sp. and F. serratus. Note the significant noise increase in the short wavelength region.
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This is due to the signal to noise of the reflectance measuring instrument in the blue and near UV. This
significant spectral variation of the signal to noise forces us to use of an appropriate weighing function
in performing the fit.

 

Figure 6. Fit of the absorption spectrum of wet Fucus sp. and a drying mixture of Fucus sp. and
F. serratus with the extended Bricaud model. Note the noise due to the instrumental signal to noise
degradation in the blue wavelength range. This effect was compensated by weighing the fit function
inversely proportional to the S/N. The blue and yellow curves are the derived spectrum from the
reflectance measurements and Equation (29). The green and red curves are the fit using Equation (37).

Once this weighing is applied we can see that the resulting modeled absorption spectrum
approaches the experimental results.

In order to further verify the accuracy of the predictions of the model we have used the parameters
of the fit to compute directly the predicted irradiance reflectance spectra and compare them to the
original measured spectra. The results are shown in Figure 7 below.

 

Figure 7. Comparison of modeled irradiance reflectance spectrum of wet Fucus sp. and a drying
mixture of Fucus sp. and F. serratus (yellow curves) with the experimental measurements (blue curves).
Note the noise degradation of the instrumental signal in the blue wavelength range. This reduced
sensitivity may explain part of the incipient discrepancy in that spectral region.
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The error between the modeled and measured reflectance signatures is of the same relative
magnitude as the corresponding error in the absorption fit shown in Figure 6. Given the simplicity
and generality of the model the overall precision of the fit is sufficient to satisfy our original purpose
of hyperspectral bathymetry in uncharted waters.

One should note that the present model does not explicitely involve accessory pigments such
as fucoxanthin which is known to be present in Fucus. It is based on the transformation due to
absorption saturation in the chloroplasts (package effect) of the spectrum of phytoplankton. This
phytoplankton spectrum is taken here as an archetype of a naturally occuring assemblage of various
pigments dominated by chlorophyll-a. The absorption saturation effect shifts the resulting reflectance
spectrum to the yellow and red which accounts for the relative closeness of the fit even without specific
contributions from the accessory pigments. In the bathymetry application which most concerns us,
the overall spectral shift and absolute level of the absorption are the key parameters needed to obtain
reliable estimates of the depth. Given the exact pigment composition one could obviously improve the
fit to the reflectance spectrum. However, this would defeat the purpose of obtaining the depth and the
bottom spectrum without any a priori information other than the reflectance spectrum of the shoreline.
This approach can, however, be improved by an iterative technique as we shall see in the discussion.

3.4. Non-Linear Effects of Vegetation Cover

We can now compute the effect of translucent vegetation growing over a mineral substrate.
Because we have already obtained the mean cell size of the algae <d> we can directly compute its
bb(λ) from Equation (5). This allows us to evaluate all the terms in Equation (16) and solve for the
reflectance spectrum as a function of the actual thickness of the vegetation layer.

Figure 8 shows the variation in the spectral reflectance signature as a function of thickness for
fucus over Trenton limestone. In the near IR, the spectra evolve from a high reflectance translucent
signature for the pure Fucus to the low reflectivity of the wet limestone while in the visible zone that
trend is reversed and the spectra go from the low reflectance of pure Fucus to the higher reflectance of
wet limestone.

 

Figure 8. Computed variation of the spectral signature of translucent fucus vegetation over Trenton
limestone as a function of the thickness of the layer. The mean spacing between scattering surfaces <d>
is 3.3 microns.
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Note that in cases where we don’t have a separate estimate of bb(λ) we simply need to use
directly the parameter ub = bb(λ) zb. Given that we know the limiting spectra for the pure vegetation
and for the mineral substrate ub is the only parameter required to define the reflectance spectrum of
their combination.

4. Discussion

The simple model presented in the previous sections leads to several important insights into
the behavior of the irradiance reflectance spectra of minerals and vegetation in the underwater
environment. The first significant result is that we are now able to estimate the ratio of the reflectance
of materials immersed in water to their dry state. Figure 9 shows the ratio of irradiance reflectance for
limestone and for beach sand that can be computed using Equations (14) and (17) from our model.

 

Figure 9. Computed irradiance reflectance for wet limestone and beach sand. The spectral signature
for dry limestone comes from the shore of Lake Ontario. The signature of dry sand comes from a beach
in Santa Barbara.

The ability to transfer reflectance spectra measured in air to their in-water equivalent is of great
importance in practice as there are many comprehensive sources of spectral signatures measured in air
while very few data are available under water due to the obvious difficulties in measurement. These
underwater reflectance spectra are the backbone of all near shore shallow water hyperspectral surveys
and the accuracy of any depth or bottom cover composition depends directly on their estimates.

Using the algebraic radiative transfer model, we have shown that we can estimate directly from
reflectance measurement the relative absorption spectrum <d> a(λ). Using these spectra, we have
managed to obtain a simple and accurate fitting function whose structure is nevertheless based
on fundamental physical considerations in far wing line broadening of the absorption from the
lowest energy electronic transition in the material. Note that, strictly speaking, this fitting function is
only appropriate for dielectric materials since the presence of the conduction bands in metals is not
accounted for. The existence of this simple function valid over the range of wavelength of relevance to
underwater hyperspectral measurements opens the possibility of identifying the material by a direct
fit to the absorption parameters obtained from an inversion of the irradiance reflectance measurements
of the water column using the algebraic radiative transfer model. The variance of the ν and λo

parameters seen in Table 4 which control the spectral shape of the material may be indicative of a
fundamental difficulty in obtaining directly bottom-type identification from the measured airborne
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hyperspectral reflectance. Addressing the scope and precise nature of this problem will be the subject
of a further study.

We have also obtained a similarly simple four-parameter fitting function to the reflectance spectra
of vegetation. The first parameter is the mean size of the vegetative cells <d>, the second parameter is
the chlorophyll-a absorption saturation factor ucp, the third parameter is the mass fraction of cellulose
contained in a cell fcl, and the fourth parameter is the bulk chlorophyll-a mass concentration ρchl.
The backscattering term is controlled by the relative index of cellulose in water and the mean size of the
cells while the absorption is the weighed sum of the absorption of water, cellulose and chlorophyll-a.
The cell absorption is composed the absorption of pure water, cellulose and chlorophyll-a. The shape
of the absorption of chlorophyll-a is controlled by the package effect through the absorption saturation
parameter ucp and its magnitude is controlled by the chlorophyll-a bulk density ρchl. The parameters of
the model are interrelated. Relationships such as the one given in Equation (27) open up the possibility
of obtaining estimates of parameters such as the ratio of the total volume of the chloroplasts to the
total cell volume which could be used as an indicator of cell health.

We have shown that the reflectance of a mix of vegetation and minerals is not just a simple
relative area coverage problem. When vegetation grows on top of a mineral substrate there results a
combined spectrum which depends in a highly non-linear fashion on the product of thickness of the
vegetation times its backscattering coefficient ub. The overall effect for the reflectance spectra Rm(λ) of
pixels which are partially covered in vegetation is a combination of this non-linear mixing and area
coverage factor.

Rm(λ) =
[
Rb(λ)

(
1 − fvp

)
+ fvp Rt(λ)

]
, (41)

fvp is the fractional per pixel vegetation cover. Given that the vegetation is generally expected to
be of the same type and in substantially the same state of health over areas larger than a pixel it will in
many cases be possible to separate the area coverage factor fvp from the backscattering thickness factor
ub. This new information has the potential to increase significantly the level of knowledge about the
ecologically relevant status and distribution of the near shore underwater vegetation.

In summary, the model we proposed here helps limit the number of parameters that need to be
fitted for an analysis of the marine environment with hyperspectral irradiance reflectance spectra.
This is an important factor because of the restricted wavelength band available when working in
the underwater environment. The added complexity of the overlying water column absorption
and scattering spectrum renders extremely difficult and unstable any inversion directly based on
fitting linear combinations of bottom reflectance spectra. The low reflectance values and the low
signal-to-noise ratios as depth increases severely affect the detectable level of spectral variation.
The spectral angle is often near or within the noise band so the only hope for reasonable depth and
type of bottom estimates and identifications are to use general parameters in low numbers. This is
the case with our model. Furthermore, all the parameters in the model have a physical basis and are
amenable to being further constrained in their fitting range by any information available from other
sources such as the size and shape of chloroplasts, size of mineral grains and size of the spacing for
near-surface fragmentation and porosity of rocks and sand.

We are currently using as a default reference the specific absorption spectrum of Bricaud et al. [9].
Given the extensive work in relation to coral reefs on the end member spectra and their variability [21]
it may be possible in future to derive reference spectra better suited to modeling vegetation that
also include a better balanced and more comprehensive mix of accessory pigments. As we have
seen, a substantial part of the vegetation reflectance signature differences and spectral variability
may be explained by the choloroplast absorption saturation effect. The remaining differences could,
therefore, be less significant than appear at first glance, thus potentially reducing the number of
distinct spectral absorption compositions required to model the end member signatures set. The other
potential contribution of the approach we have taken of modeling the reflectance signatures by a
radiative transfer model is that the variability in the spectral signatures clearly outlined for instance by
Hochberg et al. [21] can be related explicitly to several parameters of interest in the study of corals
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such as the thickness of the thin translucent organic cover zb over the mineral substrate (Equation (20)),
the size of the scattering features of the cells, and their chloroplast pigment concentration.

We must remember that bathymetry in unknown waters is one of the main drivers for restricting
the number of variables to optimize to obtain an estimate of the water column depth. The standard
approach of using a combination of linear mixes is problematic when there is no ground truth or a
priori knowledge of the bottom to restrict the space of end members for bottom reflectance. However,
there is a way to use the best features of our model and the linear mixing method. We first solve for
depth using the generic bottom reflectance model proposed here. Once the depth is estimated, we
can use the measured water surface irradiance reflectance to derive the bottom spectrum that would
produce that measured surface irradiance reflectance. Given this bottom spectrum we can then use the
standard linear mixing method to determine the bottom vegetation and mineral types that compose
it, thus extracting valuable information about the bottom type. Given this new information we can
recompute the depth and correct for any error in the original approximate model, therefore maximizing
the benefits of both approaches. This mixed method will be the subject of future investigations.
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Appendix A

The index of refraction equations for water, calcite, quartz and cellulose used in this paper are
given below. Calcite and crystalline quartz are birefringent materials with two orientation dependent
indices of refraction, the extraordinary index for propagation along the direction of the optical axis and
the ordinary index for propagation orthogonal to the optical axis. These were measured by Gosh [8].

n2
co − 1 = 0.73358749 +

0.96464345 λ2

λ2 − 0.0194325203
+

1.8283145 λ2

λ2 − 120.
, (A1)

n2
ce − 1 = 0.35859695 +

0.82427830 λ2

λ2 − 0.0106689543
+

0.14429128 λ2

λ2 − 120.
, (A2)

n2
qo − 1 = 0.28604141 +

1.07044083 λ2

λ2 − 0.0100585997
+

1.10202242 λ2

λ2 − 100.
, (A3)

n2
qe − 1 = 0.28851804 +

1.09509924λ2

λ2 − 0.0102101864
+

1.15662475 λ2

λ2 − 100.
, (A4)

n2
cl − 1 =

1.124 λ2

λ2 − 0.011087
, (A5)

nwq = 1.31405 − 2.02 × 10−6T2
c +

0.01586 − 4.23 × 10−6Tc

λ
− 0.004382

λ2 +
0.0011455

λ3 , (A6)

The wavelength in the expressions above is in microns. nco and nce are, respectively, the ordinary
and extraordinary index of calcite. nqo and nqe are the ordinary and extraordinary index of crystalline
quartz. ncl is the index of pure solid cellulose measured by Sultanova et al. [9]. nwq is the index of pure
water measured by Quan and Fry [10] which is strictly only valid to its full accuracy between 0.4 to 0.7
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microns. In that last expression, Tc is the temperature in degrees centigrade. However, we need for
our approach an expression for the index of water that is valid in the near IR. Schriebener et al. [11]
have proposed such an expression valid from 0.2 to 2.5 microns. We have verified that it does match
with the available data and the Quan and Fry formula over its range of applicability.

(n2
ws−1)

(n2
ws+2)

(
1
ρ

)
= a0 + a1ρ + a2T + a3λ T + a4

λ
2 +

a5(
λ

2−λuv
2
) + a6(

λ
2−λir

2
) + a7ρ2 (A7)

In this expression we have:

T =
Tk

273.15

λ =
λ

0.589

ρ =
ρ

1 g cm3

Table A1. Coefficients of the water index of refraction Formula (A7).

Coefficient Coefficient

ao = 0.244257733 a4 = 1.58920570 × 10−3

a1 = 9.74634476 × 10−3 a5 = 2.45934259 × 10−3

a2 = −3.73234996 × 10−3 a6 = 0.900704920
a3 = 2.68678472 × 10−4 a7 = −1.66626219 × 10−2

λuv = 0.2292020 λir = 5.432937

Formula (A7) is the one we use in this paper because of the extended range we require. We have
verified that it matches to one part in a thousand the index formula given by Quan and Fry and that it
tracks closely the available experimental data on water index in the near IR and UV.

If we assume that the orientation of the optical axis of the calcite and quartz grains is random, we
need to compute the resulting average index as follows. The ordinary index no is the same no matter
the angular orientation of the incoming ray with the optical axis of the crystal. The extraordinary index
ne varies as a function of the angles with respect to the optical axis ne(ϕ, θ). The shape of the variation
is this spheroid defined by:

k2
x

n2
e
+

k2
y

n2
e
+

k2
z

n2
o
=

ω2

c2 (A8)

The light-wave propagation vector is k and its angular frequency is ω with the speed of light
being given by c. The optical axis is along the z direction. Transforming to cylindrical coordinates the
spheroid is symmetrical about the angle ϕ and elliptical in θ. If we assume that the distribution of the
optical axis is random we can derive an expression for the mean extraordinary index.

ne(θ) =
√

n2
o cos θ2 + n2

e sin θ2 , (A9)

<ne> =

∫ π/2
0 ne(θ) sin θ dθ∫ π/2

0 sin θ dθ
, (A10)

The result of the integral is:

<ne> =
no

2

{
1 +

n2
e

n2
o

1√
1 − n2

e /n2
o
+ ln

[
no

ne
+

√
1 − n2

e /n2
o

]}
, (A11)
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The final result for the mean index for random birefringent crystal orientation is:

ne(θ) = <n> =
no + ne

2
, (A12)

We use these formulae to compute the mean index of both calcite and quartz crystals.

Appendix B

To compute the absorption saturation effect, first we need formulas for the absorption efficiency
Qa of the chloroplasts. The original model assumed that the chloroplasts were spherical and that their
absorption efficiency can be modeled using the anomalous diffraction theory which is applicable since
there is almost no difference in the real part of the index of refraction for the chloroplasts and the
surrounding cell medium.

For spherical chloroplasts, the absorption efficiency is given by:

Qa−sph(z) = 2
[

1
2
+

e−z

z
+

(e−z − 1)
z2

]
, (A13)

z = a∗o (λ)u ,

u = ρcpdcp ,

a∗o (λ) is the specific mass absorption coefficient of chlorophyll-a at low concentration in units of
m2·gr−1. ρcp is the chlorophyll-a mass density inside the chloroplast in gr·m−3 and dcp is the diameter
of the chloroplast in meters.

Note that in the limit of small z we have:

Qa−sph(z) =
2z
3

, (A14)

Since in the limit of small concentrations the chloroplast absorption will be unsaturated and
equal to the limiting absorption, we can write the absorption saturation gain function for a spherical
chloroplast as:

Ga−sph(z) =
(

3
2 z

)
Qa−sph(z) , (A15)

The saturated absorption spectrum for spherical chloroplasts can, therefore, be computed as:

a∗v(λ) =
(

3
2 z

)
Qa−sph(z)a∗o (λ) , (A16)

It is interesting to estimate what the effect of chloroplast shape maybe in the estimate of this
packaging effect. Chloroplasts are often disk shaped and we will use the form for the absorption
efficiency for randomly oriented disks.

Qa−dsk(zd) = 2 − E3(zd) , (A17)

With,
zd = a∗o (λ)ρcpτcp = a∗o (λ) ucp, (A18)

τcp is the thickness of the disk. We also define f as the ratio of the thickness τcp of the disk to its
diameter dcp. E3(z) is the exponential integral function of order 3 which is defined as:

En(z) =
∫ ∞

1

e−z t

tn dt ,
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In the limit of small z we have:
Qa−dsk(zd) = 2 zd , (A19)

The gain function for randomly oriented disks becomes:

Ga−dsk(zd) =

(
1

2 zd

)
Qa−dsk(zd) , (A20)

Finally the saturated absorption spectrum for disks can be computed as:

a∗v(λ) =
(

1
2 zd

)
Qa−dsk(zd)a∗o (λ) , (A21)

The exact formulas given above can be approximated to within a 10% relative error by the
following simple exponential forms.

a∗v(λ) =
(

3
2 z

)(
1 − e−2z/3

)
a∗o (λ) , (A22)

a∗v(λ) =
(

1
2 zd

)(
1 − e−2zd

)
a∗o (λ) , (A23)
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Abstract: There is increasing interdisciplinary interest in phytoplankton community dynamics as the
growing environmental problems of water quality (particularly eutrophication) and climate change
demand attention. This has led to a pressing need for improved biophysical and causal understanding
of Phytoplankton Functional Type (PFT) optical signals, in order for satellite radiometry to be used to
detect ecologically relevant phytoplankton assemblage changes. Biophysically and biogeochemically
consistent phytoplankton Inherent Optical Property (IOP) models play an important role in
achieving this understanding, as the optical effects of phytoplankton assemblage changes can be
examined systematically in relation to the bulk optical water-leaving signal. The Equivalent Algal
Populations (EAP) model is used here to investigate the source and magnitude of size- and pigment-
driven PFT signals in the water-leaving reflectance, as well as the potential to detect these using
satellite radiometry. This model places emphasis on the determination of biophysically consistent
phytoplankton IOPs, with both absorption and scattering determined by mathematically cogent
relationships to the particle complex refractive indices. All IOPs are integrated over an entire size
distribution. A distinctive attribute is the model’s comprehensive handling of the spectral and
angular character of phytoplankton scattering. Selected case studies and sensitivity analyses reveal
that phytoplankton spectral scattering is most useful and the least ambiguous driver of the PFT
signal. Key findings are that there is the most sensitivity in phytoplankton backscatter (bbφ) in the
1–6 μm size range; the backscattering-driven signal in the 520 to 570 nm region is the critical PFT
identifier at marginal biomass, and that, while PFT information does appear at blue wavelengths,
absorption-driven signals are compromised by ambiguity due to biomass and non-algal absorption.
Low signal in the red, due primarily to absorption by water, inhibits PFT detection here. The study
highlights the need to quantitatively understand the constraints imposed by phytoplankton biomass
and the IOP budget on the assemblage-related signal. A proportional phytoplankton contribution of
approximately 40% to the total bb appears to a reasonable minimum threshold in terms of yielding a
detectable optical change in Rrs. We hope these findings will provide considerable insight into the
next generation of PFT algorithms.

Keywords: phytoplankton; PFT; ocean colour; satellite radiometry; radiative transfer; optical
modelling

1. Introduction

Phytoplankton across the world’s oceans represent about half of all primary production on
our planet [1,2]. Their growth and function are fundamental to sustaining life: they constitute the
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foundation of the aquatic food web, and serve critical roles in the recycling of essential elements
such as carbon and nitrogen, as well as in remineralisation [3–5]. Being so responsive to nutrient
availability and water temperature, these tiny organisms are key indicators of ecosystem change,
and understanding their community dynamics is key to answering some of the most challenging earth
science questions of our time about the impacts of climate change on local, regional and global scale
aquatic systems and the carbon cycle. The widespread distribution and integral role of phytoplankton
in global marine ecosystems means that these fields of study depend heavily on modelling together
with satellite data for any large scale analysis. In situ data collection is indispensable for local
scale investigations and for ground truthing of satellite and model data, but simultaneous large
scale direct measurements are logistically impossible. Optical measurements in natural waters are
challenging: they are expensive and logistically difficult, technically complex due to large dynamic
ranges of the signal, and overall require delicate, rigorously calibrated instrumentation with precise
knowledge of sources of error. Remote sensing and moored in situ instrumentation are the only
feasible ways to acquire continuous data series, but these largely involve bulk measurements of
the total optical signal. Isolating the respective optical components for laboratory assessment is a
significant further undertaking. In situ and laboratory measurements are consequently extremely
valuable, and appropriate bio-optical models provide essential tools for the analysis and understanding
of these bulk measurements, whether above- or sub-surface.

It has long been appreciated that phytoplankton have a direct effect on the observable colour of
the ocean, and broad scale biomass estimates based on Chl a concentrations derived from satellite
radiometry are widely relied upon despite persistent uncertainty in the accuracy of information derived
from satellite imagery [6,7]. Recently, there has been considerable interest in more detailed information
on phytoplankton assemblage characteristics [8–11], but it has not been widely ascertained to what
degree Phytoplankton Functional Type (PFT) information can be gleaned from satellite data, and at
what level of confidence. Furthermore, descriptions of PFTs differ with context—and the potential for
identifying relationships between the ecological roles of phytoplankton and their optical properties
must also be considered. Understanding the causal effect of biophysical phytoplankton characteristics
on the optical water-leaving signal is at the heart of addressing these questions, and this is undoubtedly
an outstanding topic in ocean optics.

Any useable radiometric PFT-related signal results directly from the interaction of phytoplankton
with their light environment, but the physical basis of this interaction is not well understood in
terms of observed variability across the wide diversity of aquatic environments and phytoplankton
assemblages [12,13]. Generally, in oceanic waters, it is the strong absorption by phytoplankton which
dominates the phytoplankton contribution to the ocean colour signature, and has therefore been
identified as a promising signal in terms of PFT identification. However, distinguishing the effects of
variable phytoplankton absorption due to biomass changes from the effects due to functional type
changes (and further from changes induced by photoacclimation and photoprotective pigments) is
not straightforward. This ambiguity in the phytoplankton community signal is at the core of the
PFT problem. It is then overlaid with further complexity, given that a potential PFT signal from
the phytoplankton component of a water body’s optical constituents must be considered in the
context of the other components in the water, recognising the contributions from the non-algal sources
of optical variability: absorption due to CDOM (Coloured Dissolved Organic Matter) and detrital
particles, i.e., agd(λ), and non-algal backscatter i.e., bbnap(λ) [13]. The blue spectral region of maximum
phytoplankton absorption is also the region most affected by CDOM and detrital absorption. (It should
also be noted that, in the context of satellite radiometry, blue spectral bands display the largest absolute
measurement uncertainties [7,14]. While the blue water-leaving signal may be large in oceanic regions,
resulting in a small relative uncertainty, this is when the signal is overwhelmingly dominated by the
backscattering of water, decreasing confidence in the lesser contributions of agd(λ) and aφ. Generally,
agd product retrievals from the satellite tend to be less robust than those of other IOPs [15,16].)
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A comprehensive guide to PFT approaches is given by Mouw et al. [17], dividing them into
four categories: abundance-based e.g., Hirata et al. [18] and Brewin et al. [19,20]; radiance based
e.g., the PHYSAT method: Alvain et al. [21,22]; absorption based e.g., Devred et al. [23], Ciotti and
Bricaud [24], and PhytoDOAS: Bracher et al. [25]; and scattering based e.g., Kostadinov et al. [10,26] (all
references in [17]). Existing scattering-based approaches [10,11] assume a Jungian (exponential) particle
size distribution and rely on Mie modelling, which does not adequately represent phytoplankton
angular scattering [27], and there are consequently high uncertainties in PSD retrieval where the
particle size distribution slope is low, i.e., highly productive and coastal areas dominated by relatively
large cells [10]. Low biomass (Chl a < 1 mg·m3) oceanic conditions with an absorption-dominated
phytoplankton component of the water-leaving signal can exhibit good relationships with differential
pigment absorption e.g., the diagnostic pigment approach used on satellite Rrs in Uitz et al. [28].
It follows that, in the context of additional non-algal absorption, differentiated spectra show better
similarity than non-differentiated [29], and also that high spectral resolution measurements show
better potential for retrieving phytoplankton assemblage information than multi-spectral Rrs [29]
when retrieving diagnostic features of the first derivative of Rrs. However, other methods using
the fourth derivative of pigment absorption and Rrs to identify fine-scale phytoplankton absorption
features have found that objective discrimination of pigment groups from hyperspectral Rrs may
not be feasible at low biomass < 1 mg·m3 due to the high similarities in the derivative spectra [30].
This suggests that the primary phytoplankton signal in Rrs is due to biomass (Chl a) rather than
the accessory pigments, and that with the exception of uniquely diagnostic pigment absorption
outside the spectral regions of that of Chl a, phytoplankton information cannot be retrieved without
assumptions about PFT relationships with biomass. The PhytoDOAS method also employs a fourth
derivative analysis [25,31] but is performed on hyperspectral top-of-atmosphere satellite measurements,
avoiding the uncertainties associated with poor atmospheric correction, but the sensitivity of this high
spectral resolution approach to biomass and both algal and non-algal scattering contributions to the
IOP budget has yet to be determined.

Generally, phytoplankton absorption- and abundance-based methods rely on empirical
relationships between biomass, functional type and CDOM. Where these quantities co-vary predictably
or are exactly known, empirical PFT algorithms may be successful. However, Brewin et al. [6]
acknowledges that both the abundance-based approaches as well as approaches relying on differential
pigment absorption break down in environments that do not conform to the generalised relationships
between community structure and biomass upon which these approaches are based, usually in elevated
biomass comprised of small cells. The relative contributions of phytoplankton absorption and scatter
to light emerging from seawater change with biomass, size and other functional type traits, and as
the agd(λ) and bbnap(λ) components vary (see Stramski et al. [32] and references therein). The total
water-leaving signal is a delicate balance of the frequently opposing optical effects of biomass and
phytoplankton assemblage variability such as size, pigments and ultrastructure, together with the
optical effects of the non-algal in-water constituents. An interactive webpage demonstrating the first
order effect of variability in these parameters on Rrs is available in the Supplementary Material. It was
observed by Brown et al. [13] that backscatter anomaly maps (i.e., backscatter independent of variability
due to biomass) correlate approximately with PFT distribution maps calculated from optical anomalies
which were initially attributed to differences in phytoplankton accessory pigments [21]. This leads to
the suggestion that radiance-based methods, e.g., the Alvain (PHYSAT) criteria used to distinguish
PFTs, are in fact primarily due to backscattering characteristics [9,13], indicating that phytoplankton
groups either directly determine, or perhaps are simply associated with, backscattering variability
around the mean.

Brown et al. [13] conclude that these relationships can only be fully explored if a method is
applied where the phytoplankton groups are causally linked to the optical conditions. The Equivalent
Algal Populations (EAP) model provides exactly such a method, and is used here to investigate the
impact of size- and pigment-based PFT variability on the optical signal, and to confirm the assertion

104



Appl. Sci. 2018, 8, 2681

that biomass drives the largest part of observed variability in the water-leaving signal, and that the
radiometric signal in the blue is ambiguous due to the effects of agd(λ), and the additional effects of
bbnap(λ) [13,33].

The EAP model is a fully physics-based two-layered spherical model, which calculates, from first
principles, biophysically linked phytoplankton absorption and scattering characteristics from particle
refractive indices reflecting the primary light-harvesting pigments of various phytoplankton groups.
IOPs are calculated at high spectral resolution between 400 and 900 nm and are integrated over an
entire equivalent size distribution [34,35], simulating the dominant optical characteristics of natural
phytoplankton assemblages. The EAP is used here only as a forward model: the intention of this study
is to isolate the biophysical driver(s) of PFT optical signals and determine the associated implications
for detecting PFT changes from satellite radiometry.

In this study, the term “Phytoplankton Functional Type” is used in a broad sense of the dominant
characteristics of a phytoplankton assemblage, with respect to both cell size and accessory pigments,
from an optical perspective.

Study Objectives and Outline

The aim of this work is to investigate the magnitude and spectral location of optical water-leaving
signals resulting from phytoplankton assemblage changes; to determine how these signals respond to
changes in biomass and functional type; to evaluate their optical ambiguity in the context of the optical
effects of other in-water constituents; and to assess their robustness against measurement uncertainties
in satellite radiometry. This work does not present a PFT detection method, but instead aims to identify
the reasonable limits of PFT detection from satellite, inferred from appropriate illuminative case studies
and sensitivity analyses demonstrating the source and magnitude of PFT signals in terms of both cell
size (assemblage De f f ) and accessory pigments.

To give context to the discussion on the case studies, an analysis is first made of the contribution of
the phytoplankton-driven signal to the bulk Rrs, and how this relates to the proportional contribution
of phytoplankton to the IOP budget. A Southern Ocean based case study then demonstrates the
optical impact on the Rrs of transitioning assemblages in terms of both biomass and De f f changes.
This discussion is developed further with a Benguela-like example more representative of productive
upwelling systems investigating the relative magnitude of pigment-driven PFT changes. A sensitivity
analysis then shows the spectral position and magnitude of the accessible phytoplankton optical signal
in Rrs as biomass and De f f vary. The source of these signals is traced back to phytoplankton backscatter
and its relationship with biomass, and ambiguity associated with non algal variability is evaluated.

It is clear that the case studies reflect simplified representative examples of much wider pigment-
and size-related variability in nature, but the described dependence of absorption-driven pigment
signals versus scattering-driven cell size signals on biomass holds across assemblage types. Optical PFT
effects are most easily identified in relatively high biomass environments (Chl a > 1 mg·m3) [36–38],
and where the IOP budget is dominated by phytoplankton [37,39], and so the case studies deal with
these water types. However, as the sensitivity analysis shows, together with the contextual discussion
around ambiguity and uncertainty in satellite Rrs, the conclusions of this study have implications for
the identification of PFT changes from satellite Rrs across all water types.

2. Methods: Modelling Approach

2.1. The Requirement for a Biophysically Consistent PFT Optical Model

The EAP model was developed to understand the causality-driven impact of different
phytoplankton assemblages on the water-leaving optical signal. Optical variability in phytoplankton
is known to be driven by particle size (effective diameter De f f ) [32,40,41], pigment quantity and
type, cellular material, shape and internal structure, fine-scale morphology, and aggregation [42–45].
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The model focuses primarily on particle size as given by the De f f parameter, which is of fundamental
importance both optically and ecologically [10,46].

Due to immense species diversity and variability in distribution, the Phytoplankton Functional
Type (PFT) approach (e.g., Sathyendranath et al. [8], Alvain et al. [21], Ciotti and Bricaud [24],
Bouman [47]) groups phytoplankton species according to their biogeochemical function and attempts
to relate this to their biophysical characteristics, with size as a major consideration [10,46,48].
This approach is important for oceanic waters, characterised by widespread but low biomass,
which contribute the largest proportion of global oceanic primary production [1]. Cell size governs
many biological traits [49]; smaller phytoplankton are ubiquitous and play an important role in nutrient
recycling, while larger phytoplankton often display the highest growth rates [49]. The dynamics of
phytoplankton ecology have profound and intricate influence not only on oceanic biogeochemistry
(e.g., acidification, and its effects on both CO2 uptake and on marine life) but also at higher trophic
levels e.g., on fish ecology, as certain phytoplankton environments promote the development of
different fish populations [48]. A size-based PFT approach is particularly meaningful in the context of
carbon sequestration [46], as particle size determines sinking rates for a large part.

However, phytoplankton ecology is complex, and modelling PFTs with adequate parameterisation
in a biogeochemical context is consequently extremely challenging [12]. Following the EAP’s
conceptual intent to understand the impact of De f f as the primary optical determinant once the effect
of biomass has been accounted for, other sources of bio-optical variability are intentionally constrained.
PFTs can therefore, to the first order, be approached from a size-based perspective, and the EAP model
consequently lends itself extremely well to PFT sensitivity studies in terms of its ability to isolate small
differences in reflectance resulting only from variability in assemblage size distribution [37]. The model
does additionally provide scope for varying other biophysical attributes within a population (such as
the pigment-determined spectral refractive indices, the shape of the size distribution itself, the ratio of
core to shell sphere volumes, and the cellular Chlorophyll a density of the cells in the distribution),
as required. It should be noted, however, that the model is not intended as a full representation of
phytoplankton optical complexities, and there is certainly ecologically significant natural variability
in phytoplankton IOPs e.g., dependent on their growth state [50], in response to growth irradiance,
nutrient availability and water temperature [51–53] and diel cycles [54,55]. These effects can be a large
(e.g., 80% increase in the phytoplankton scattering cross section between sunrise and sunset [54]),
and while they are not explicitly addressed here, they serve to add further uncertainty to PFT retrievals
from the optical water-leaving signal.

Empirically based phytoplankton abundance-type approaches, following observed relationships
between phytoplankton assemblage taxonomic information (e.g., pigments) and biomass, show good
results in low biomass conditions (i.e., where phytoplankton absorption dominates the phytoplankton
IOP contribution), and where the covariability of the phytoplankton optical contribution with that of
other in-water constituents generally holds [56], but do not address the sources of second order
variability or optical causality [13], or the likelihood that these empirical relationships will not
withstand the ecological shifts resulting from changing climatic conditions [6]. A biophysical approach
to PFTs not only allows improved analysis of sensitivity and causality but is likely to have greater
validity in a future ocean (see also [57]).

The optical impact of a phytoplankton assemblage interacting with its aquatic environment is
by no means straightforward, and a rigorous IOP model such as the EAP can systematically vary
phytoplankton biogeophysical attributes in the context of likely additional non-algal absorption and
scatter, and can examine the resulting effects on the light field when used in combination with a
Radiative Transfer (RT) model. The value of this reductionist approach has been demonstrated [58,59]
(and furthermore by Stramski et al. [32]) for separating and understanding the effects of various
phytoplankton groups and accompanying in-water constituents on the oceanic light field and emergent
Rrs. There is a bulk effect attributable simply to biomass, for which Chlorophyll a (Chl a) is used as a
proxy, and which for the most part dominates the phytoplankton-related signal in Case 1 waters [60]
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(It is acknowledged that Chl a concentration and biomass are not equivalent, as biomass includes
non-pigmented biological matter in quantities which may not be proportional to pigmented matter.
However, for the purposes of this study, biomass and Chl a concentration are used interchangeably,
as this work is approached from a purely optical perspective and ignores non-pigmented biological
matter.). PFT characteristics generally result in optical effects secondary to those of Chl a: accessory
pigments dominate assemblage absorption characteristics [61], and particle size is usually the primary
determinant of phytoplankton scattering characteristics [62] (excepting the influence of ultrastructure
in certain species, e.g., highly scattering liths or vacuoles). Natural waters are also subject to non-algal
absorption, the dissolved part of which is frequently referred to as Coloured Dissolved Organic Matter
(CDOM) or gelbstoff, but which may also have a particulate component in addition to non-algal
scatter that can include scatter by detrital matter, sediment, bacteria, and/or bubbles. These quantities
absorb and scatter light with spectral signatures distinct from those of phytoplankton, and their
subsequent optical interactions and resulting effect on the total water-leaving signal are highly complex.
Understanding the interaction between cells’ biophysical characteristics and the light field in the
presence of these additional optically active constituents is central to determining which parts of the
optical signal are useable for PFT diagnostics, and, likewise, where signal ambiguity is prohibitive.

2.2. Equivalent Algal Populations Model: Principal Attributes

The EAP model has been used for a variety of applications [35,37,63,64]. It can be assumed
that a model demonstrated as successful in phytoplankton-dominated waters [65] addresses the
phytoplankton component accurately. Models designed for low biomass, with simplistic and
absorption-decoupled phytoplankton scattering models, tend to underperform in higher biomass
conditions when phytoplankton IOPs dominate [65]. It follows that the phytoplankton component
of the combined optical properties is not generally well represented in these models. Following a
reductionist approach, good information on the phytoplankton component is a prerequisite for any
quantitative comment on the optical contribution of respective PFTs, or identifying changes in the
bulk optical properties of seawater as dominant PFTs change. Only when representing the detailed
nature of phytoplankton optics, with absorption and scattering biophysically consistent—as they are
in nature—is a causal understanding of their interactive effect on the optical signal possible [32,66].

The EAP model exhibits a two-layered sphere particle and equivalent size-based community
structure [27], which enables the calculation of phytoplankton IOPs from first principles, presenting a
valuable opportunity for furthering the understanding of causal relationships between phytoplankton
physiology and their optical characteristics based on quantified community structure. It is emphasised
that this is not an empirical model and its use here is not to provide optical closure, but rather to
identify and understand the biophysical drivers of phytoplankton optics and their contribution to an
observable signal in the context of different water types.

At the core of the model are the phytoplankton particle refractive indices, with the imaginary
part of the refractive index approximately representing that portion of light that is absorbed by the
cell, and the real part of the refractive index representing that portion of light which is scattered.
The imaginary and real parts of the refractive index spectra are numerically linked through the
Kramers–Kronig relations [67], whereby the real part of the refractive index n(λ) is calculated as the
imaginary part of a Hilbert transform of the imaginary refractive index, originally derived from cellular
absorption measurements. It should be noted that the imaginary refractive index characterises the
absorption of the intracellular material and has no dependency on cell size. This has implications for
the applicability of the model to a wide range of cell sizes, and is discussed further in Appendix A.1.

With a real refractive index of 1.12 for the ’chloroplast’ sphere, and as 1.02 for the ’cytoplasm’
sphere, this yields an overall particle spectral real refractive index of between 1.03 and 1.04 for
phytoplankton cells (see also Stramski et al. [32], Aas [68]). Full details of the refractive index
calculations can be found in Bernard et al. [69].
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In this model, the imaginary part of the refractive index is also numerically linked to the specified
intracellular Chl a concentration [27,52,54,55,70]. For eukaryotic particles, a core sphere represents the
cytoplasm (which contains approximately 80% water, and is almost colourless), while an outer sphere
represents the more refractive chloroplast, where the pigmented material (generally Chl a in the largest
part) is also strongly absorbing.

A critical feature of the model is that Chl a-specific absorption (a∗φ) is constrained at 675 nm to
reflect the theoretical maximum absorption by unpackaged phytoplankton of 0.027 mg/m2 as per
Johnsen et al. [71]. This is incorporated into the calculation of the imaginary refractive index of the
chloroplast layer n′

chlor (outer sphere), based on the assumption that the cytoplasm layer (inner sphere)
has no signficant absorption at 675 nm:

n′
chlor(675) =

675
nmedia

πcia∗sol(675)
4Vv

, (1)

where nmedia = 1.334 and Vv is the relative chloroplast volume, ci is the intracellular Chl a, and a∗sol(675)
is the Chl a-specific absorption at 675 nm of that pigment in solution, i.e., unpackaged [27].

The effect of constraining the unpackaged absorption in this way is to establish a quantitative
relationship between the intracellular Chl a and the cell volume; a relationship that is biophysically
consistent as the cell size varies [27]. This results in an effectively decreasing Chl a-specific absorption
with increasing size, observable in the resulting optics as the “package effect” [40,72].

When coupled with a radiative transfer model—here, Hydrolight-Ecolight (Numerical Optics,
Ltd., Devon, UK) is used—the interactions of phytoplankton IOPs (in combination with those of
other in-water constituents) with the surrounding light field can be examined systematically. A full
physics-based model such as this has the additional advantage of providing not only biophysically
interrelated particle absorption, scattering and backscattering, but IOPs for assemblages that are
integrated over the entire assemblage size distribution, and which are fully angularly resolved.
This presents the unique opportunity of closely examining simuluated phytoplankton phase functions,
which are notoriously difficult to measure, and whose behaviour in terms of variability in particle size
and wavelength is poorly understood. With no decoupling of absorption and backscattering, and IOPs
integrated over the entire size distribution, the model provides an unprecedented opportunity to
examine the drivers of variability in phytoplankton optical signals systematically.

2.3. Case Study Methods

The complex optical interactions of De f f and biomass, and the question of whether they can
be separated into a useable PFT signal from a background environment of further non-algal optical
complexity, is best addressed by investigating specific ecological events of interest to the remote
sensing community.

The case studies outlined in the Introduction consider phytoplankton from two groups—a Chl
a-carotenoid phytoplankton group, representing phytoplankton dominated by Chl a, and fucoxanthin
and/or peridinin; and a Chl a- and phycoerythrin-containing group [27]. The former group is
chosen as representative of a wide range of phytoplankton across size classes, and the latter for the
unique absorption characteristics of phycoerythrin-associated phytoplankton species. This selection
is intentionally kept limited in order to assess the relative magnitude of particle size- vs. accessory
pigment-related optical signals in likely ecological scenarios, in the context of changing biomass.

Refractive indices for the chloroplast spheres are derived from measurements of cells from
blooms in the Benguela—dinoflagellate and diatoms, dominated by Chl a and the carotenoid pigments
fucoxanthin and peridinin—as well as for a phycoerythrin-associated cryptophyte group (based on
a Mesodinium rubrum/Myrionecta rubra—dominated assemblage [27]). A justification for using these
derived refractive indices across wide size ranges of modelled phytoplankton assemblages is included
in Appendix A.1. Phytoplankton assemblages are modelled using a Standard Normal size distribution
with a nominal effective variance of 0.6, recognising that while Jungian (exponential) distributions
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are frequently used for bulk particulate in oceanic conditions, the former is more appropriate for
representing the increased species monospecifity associated with elevated biomass ([34]), and the case
studies refer mainly to biomass > 1 mg·m3. Assemblages are modelled with appropriate effective
diameters to represent the effective diameters of measured size distributions in the case studies.
The resulting IOPs are presented, with explanatory notes, in Appendix A.2. (A cyanobacterial group
with substantially altered geometry to represent vacuolated cells has also been developed [63]).

Phytoplankton IOPs are combined, in various proportions as indicated, with appropriate non-algal
optical constituents as detailed for each experiment. The phytoplankton-related optical signal is
assessed against variability in the non-algal contributions (detailed in Appendices A.3 and A.4),
so their absolute magnitude is not critical. Both agd(λ) and bbnap(λ) do, however, assume a smooth
spectral shape with predictable spectral structure. The potential for additional spectral features in
these contributions is not addressed here, and would add further complexity (and hence ambiguity) to
resolving phytoplankton scattering characteristics. Water types are considered homogenous with depth
(i.e., IOPs constant with depth), generic atmospheric and geographic conditions, and the full radiative
transfer solution is calculated by Hydrolight at a spectral resolution of 5 nm. Given the technical
challenges with using EAP phase functions for modelling high resolution spectra [35], a Fournier
Forand phase function chosen for the backscatter fraction of the combined particulate IOPs is used at
each wavelength throughout these experiments. A basic fluorescence efficiency model is included for
completeness (detailed in Appendix B.2), but modelling this spectral region accurately is challenging
and outside of the scope of this work, so the features of this spectral region are not discussed in terms
of PFT sensitivity.

2.3.1. Southern Ocean Case Study: Separating the Effects of Biomass From the Effects of De f f Change

As shown in Lain et al. [65] and Lain et al. [35], where the water-leaving signal is
phytoplankton-dominated (e.g., in the Benguela system), it is quite reasonable to expect that some PFT
information may be derived from the bulk radiometric signal. However, the challenge for the ocean
colour community is determining the PFT signal in low biomass oceanic conditions, for example in the
Southern Ocean.

Phytoplankton dynamics in the Southern Ocean are particularly important for their role in
uptake of anthropogenic CO2 (around half of all oceanic uptake), and hence carbon sequestration [3,4].
Variability in phytoplankton ecology is directly linked to mineral and nutrient cycles: assemblages
of large diatoms drive primary productivity and carbon export, while assemblages of small
phytoplankton play a significant role in nutrient recycling although the net productivity is very
low [73].

The third Southern Ocean Seasonal Cycle Experiment (SOSCEx III) undertaken on the SANAE
55 cruise (austral winter 2015) provides the phytoplankton size distribution and Chl a data for this
experiment [74]. Assemblage De f f were calculated from Coulter Counter measurements, and Chl
a determined by fluorometric analysis [5]. The additional agd(λ) and bbnap(λ) components were
estimated guided by observations in [75,76] respectively, noting that these are simply used to
approximate the bulk Rrs and do not influence any of the other results, as they are discussed in
terms of likely variability rather than absolute magnitudes. EAP phytoplankton IOPs with generalised
Chl a-carotenoid eukaryotic refractive indices were calculated according to the measured De f f and Chl
a concentrations, and were combined with these estimates and run through Hydrolight to produce the
modelled Rrs.

Given that the refractive indices used to model the EAP IOPs for this example are from the
generalised Chl a-carotenoid group suitable for diatom and dinoflagellate species, the likelihood of
encountering Phaeocystis sp. in the Southern Ocean must be addressed. Given the oceanographic
context, as the De f f of 16 μm is reached, it can reasonably be assumed that the assemblage comprises
both diatoms and Phaeocystis. The main accessory pigment in Phaeocystis is 19-hexanolyoxyfucoxanthin,
a derivative of fucoxanthin, a dominant light harvesting pigment in diatoms, and so it may be
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reasonable to model the intracellular absorption properties of individual cells with the generalised
eukaryote refractive indices, but this species forms large floating colonies which result in quite different
optical effects, and this cannot currently be addressed with the model. Thus, while the likely presence
of Phaeocystis is acknowledged, it is not explicitly catered for in the modelling. This does not affect the
observations on identifying changes in De f f in the discussion below.

2.3.2. Benguela-Like Case Study: Addressing Pigment Variability

The assemblages modelled in the first case study address optical changes due only to biomass
(i.e., concentration of Chl a pigment) and size (assemblage De f f ), as the same set of generalised
Chl a-carotenoid refractive indices is used for all phytoplankton particles represented. However, this
approach addresses only a small subset of important changes in phytoplankton assemblage type, and in
the presence of variability in dominant accessory pigments, the EAP model can be set to incorporate
different refractive indices as appropriate for phytoplankton displaying accessory pigments other
than carotenoids.

To illustrate the effects of pigment variability, this case study simulates a transition from a high
biomass Myrionecta rubra-dominated assemblage, to a high biomass peridinin (carotenoid)-containing
dinoflagellate-dominated assemblage. M. rubra is a fascinating but troublesome ciliate species,
and enjoys an endosymbiontic relationship with cryptophytes containing the diagnostic pigment
phycoerythrin [77], and so “borrows” their characteristic red colour. M. rubra blooms can reach
extraordinary biomass, resulting in darkly pigmented ’red tide’ waters that have negative impacts
both ecologically (depletion of nutrients, and the potential for anoxia as the bloom dies), as well as on
the recreational use of coastal waters [77]. Again, assemblages are modelled using a Standard normal
size distribution and the same values of ε are used as for the carotenoids. This ensures that, in this
example, all assemblage changes observed are due only to pigment-related differences.

It should be made clear that the modelled transition is not intended to represent a likely ecological
succession (except possibly a Lagrangian one, if a dinoflagellate bloom is advected into a previously
M. rubra-dominated region), but rather to test what biomass and pigment differences are required for
the detection of distinct optical conditions, particularly in the context of remote sensing.

2.3.3. Spectral Shape and Sensitivity Analyses

To test the sensitivity of the EAP model, a general allometric approximation of changing De f f
from 2 to 8 μm was chosen for this analysis, which ranges from 0.1 to 10 mg/m3. It is recognised that
this scenario does not represent all possible ecological changes, but is a reasonable approximation
for a mid-range biomass diatom and dinoflagellate-dominated environment where there may be a
detectable PFT signal.

3. Results and Discussion

3.1. Quantifying the Contribution of Phytoplankton to the Rrs Signal

Remembering that the Remote Sensing Reflectance (Rrs) is grossly proportional to bb/a [78],
it should be noted that, for a given De f f and phytoplankton group, bbφ/aφ will be constant
for any given concentration of Chl a because the package effect observed with increasing Chl a
concentration is implicit in the model (see the comparison of Bricaud and EAP a∗φ for varying Chl a
concentrations in Lain et al. [65]). However, the contribution of the phytoplankton IOPs to the total,
i.e., bbφ/aφ as a percentage of total bb/a, will vary. The EAP model, used together with Hydrolight,
allows the inspection of any component optical quantity of interest, and here, the contribution of the
phytoplankton IOPs to the total IOP budget is investigated. EAP phytoplankton IOPs are used with
Hydrolight to calculate a full radiative transfer solution resulting in a new theoretical quantity, Rrsφ.
This quantity is introduced as an approximate quantification of the phytoplankton contribution to the
bulk Rrs, in order to more intuitively understand the relative optical contributions in terms of remote
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sensing. While acknowledging that Rrs is not an additive quantity, Rrsφ is the calculation of reflectance
with only water and phytoplankton IOPs. It does not account for any optical interaction between the
phytoplankton and other in-water constituents likely to be present in natural waters, such as CDOM
or detrital and mineral particles. These interactions are assumed to be secondary to the contribution of
phytoplankton, but have not been quantified. It is anticipated that trans-spectral effects are most likely
to suffer from this type of subtractive approach, but a full photon tracing model (such as a Monte
Carlo model) would be needed to ascertain this. By modelling the phytoplankton contribution to the
water-leaving signal, we can assess the availability of signal for PFT retrieval.

Being able to identify the spectral regions sensitive to changes in phytoplankton assemblage
(focusing on those due to change in assemblage De f f ) is valuable, especially to identify spectral
regions which might be sufficiently independent from the ambiguity introduced by other in-water
constituents. This allows the quantification of the phytoplankton signal with confidence, even where
these other constituents are not well characterised. The spectral regions of maximum proportional
phytoplankton signal are the ones which hold potential for detecting PFT changes from an in-water
perspective, as these represent the regions of the largest phytoplankton-related signal variability as the
assemblage changes.

The resulting contribution of phytoplankton to the total Rrs is shown in Figure 1, for typical
Case 1 waters as a simple illustrative example. In this example, agd covaries with Chl a while bbnap is
constant. This represents the combined acdom, known to approximately covary with Chl a, and detrital
absorption adet, which is assumed to be small with respect to acdom [79] and approximately constant
(adet is neglected altogether in some IOP models e.g., Alvain et al. [9]). As CDOM does not scatter,
bbnap represents the scatter of only the detrital component of the non-algal constituents. Thus, it is
assumed that biomass increases together with acdom, against a relatively unchanging background
detrital population whose IOPs are dominated by backscatter. As the phytoplankton contribution to
the IOP budget increases (i.e., generally, as biomass increases), the impact of the other constituents is
proportionally less in the Rrs. This varies with De f f , and is observable in Figure 1 to a greater degree
in the Rrs with a smaller (nominal) De f f of 2 μm as compared with a larger (nominal) De f f of 12 μm to
show the higher level of phytoplankton backscatter of small cells contributing to brighter Rrs, which is
less sensitive to the addition of scattering from other sources.

For each De f f , it is evident that the phytoplankton percentage contribution to the bulk Rrs increases
with biomass. However, it can be seen that there is a dependency on De f f which, when considered
in the context of transitioning assemblages, is not straightforward. This observation indicates a
requirement to go beyond the Case 1/Case 2 water type distinction for PFT signal analysis and
applications: the differential in phytoplankton scatter as De f f varies in both water types must be
considered as well as variable bbnap in Case 2. When it comes to retrieving information about the
phytoplankton IOPs, their proportional contribution to the bulk water-leaving signal (or the total IOPs)
should be considered. Figure 2 demonstrates the proportional IOP contributions for the 0.1, 1 and
10 mg/m3 cases.

3.2. Case Study 1: Separating the Effects of Biomass from the Effects of De f f Change

Figure 3 presents two distinct events which illustrate the interdependency of the size and biomass
signals. Modelled Rrs are shown for selected adjacent stations (20 to 21 is marked A; 12 to 13 is marked
B) where a nominal threshold of change detectable by satellite is reached in the blue and green spectral
regions, in other words, where a change in Rrs would be evident on a satellite image. Given the
ambiguity in the causality of the phytoplankton signal, assessing the magnitude of changes to the
water-leaving signal as the in-water constituents vary will give an indication of whether there may
be enough radiometric signal at TOA to even detect the change. A threshold in situ measurement
resolution of 1 × 10−4 sr−1 [80] is taken as an indication of sensitivity to detecting change in Rrs by
direct measurement. Given an average estimated uncertainty in satellite Rrs of ± 0.6 × 10−3 sr−1

across the spectrum [81], here a conservative 1 × 10−3 sr−1 is used to indicate a potentially detectable
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change in water-leaving signal from satellite. These thresholds are not definitive and are used purely
for the purpose of contextualising the discussion. Both examples in Figure 3 display large changes in
Rrs, but these are causally distinct: (A) represents a large change in Chl a concentration and in De f f ,
while (B) represents a large change in Chl a concentration but a negligible change in De f f .

Figure 1. Relative contribution of phytoplankton to total Rrs (with agd(400) = 0.07 · [Chla]0.75,
and bbnap(550) = 0.005 m−1) for increasing biomass with De f f = 2 and 12 μm. These populations
are idealised examples and not intended to represent any observed relationship between Chl a
concentration and De f f .
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Figure 2. Example proportional phytoplankton to total Inherent Optical Property (IOP) contributions
for Case 1 waters, for idealised eukaryote assemblages of 2 and 12 μm.
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Station 20 to 21 therefore represents a significant phytoplankton community shift, as large changes
in both De f f (from 6 to 16 μm) and Chl a concentration (from 1 to 11 /m3) were recorded. To isolate
this change in phytoplankton signal, the differences in Rrsφ for an assemblage with De f f = 6 μm
and an assemblage with De f f = 16 μm are presented in Figure 4A for the measured range of Chl a
concentration. Note that the large differences of about 2 × 10−3 sr−1 in Rrs in the blue, observable in
Figure 3A, only appears at very low biomass in Figure 4A as this difference in Rrs is almost entirely
due to the difference in biomass and not a change in De f f . The spectral location of the most promising
size-related signal for PFT retrieval is evidently dependent on biomass, and, at low biomass, it is
positioned near 435 nm, while, at higher biomass, it is around 570 nm. As this is the phytoplankton-only
signal, the question remains to what extent this signal is expressed in the bulk Rrs, when the optical
impact of the non-algal constituents is also considered.

Figure 4. Southern Ocean stations 20 to 21: δRrsφ is shown for δDe f f of 6 to 16 μm (A). The effect of
agd(λ) at 435 nm is shown in (B), and bbnap(λ) at 570 nm in (C). The units of the colour bars are sr−1.

Working with the change in phytoplankton size signal identified at 435 nm (bottom left corner,
Figure 4A), agd(λ) is added at increasing concentrations to simulate a range of bulk Rrs at 435 nm
in Figure 4B, and bbnap(λ) is likewise added incrementally at 570 nm in Figure 4C. In these plots,
horizontal gradients indicate Rrs sensitivity primarily to the constituent on the y axis, while vertical
gradients indicate that the change in Rrs is driven by the biomass, and is not sensitive to variability on
the y axis.

Figure 4B shows that the difference in bulk Rrs for the given δDe f f is only detectable at
the satellite threshold level (shown in yellow) at low biomass under very low agd(λ) conditions.
As biomass increases, increasing absorption by phytoplankton as well as by additional agd(λ),
reduces the magnitude of the water-leaving signal and renders any δDe f f information ambiguous.
When additionally considering the brightening effect of bbnap(λ) in the blue (not quantified here),
it can readily be perceived that the water-leaving signal is too complex at 435 nm to retrieve useful
size information.

In Figure 4C, the relationship with bbnap(λ) at 570 nm is more straightforward. Change in Rrs due
to δDe f f is detectable in the bulk Rrs at the satellite threshold (in red) from about 2.5 mg/m3 upwards
regardless of the bbnap(λ) contribution, at least for Case 1 type conditions. The magnitude of this signal
is almost entirely biomass driven. (This is in line with the observation made by [13] that the MODIS

115



Appl. Sci. 2018, 8, 2681

wavebands at 531 and 551 nm are good indicators of backscatter anomalies because their magnitude is
proportional to the addition or removal of particulate backscattering, and the longer wavelength band
at 551 nm is less affected by variability in both agd(λ) and phytoplankton absorption [10].)

It should be appreciated, though, that Rrsφ in these figures is representing the change in Rrs

due to size at a particular biomass (i.e., biomass is constant while assemblage characteristics vary),
effectively removing the effects of simultaneous biomass changes. Figure 5 simulates a transition from
6 to 16 De f f with biomass 1 to 11 mg/m3, where the intermediate values of both De f f and Chl a are
simply linearly interpolated. The vertical lines highlight 435 and 570 nm which were identified in
Figure 4A as being the spectral regions of greatest size-driven signal. In Figure 5, while biomass and
size effects combine to form large changes in Rrsφ in the blue, it is the smaller signal around 570 nm that
contains the most size-driven change as it is not affected by biomass to the same degree. Figure 4B,C
show that the signal at 435 nm is sensitive to the effects of variable agd, while the phytoplankton signal
at 570 nm remains robust against variability in the non-algal optical contributions.

Figure 5. A simulated transition from 6 to 16 De f f with biomass 1 to 11 mg/m3. Intermediate values of
De f f and Chl a are simply linearly interpolated. The lines highlight 435 nm and 570 nm, regions of
maximum size signal, which are (at 435 nm) and are not (at 570 nm) sensitive to the effects of additional
optical constituents.

By contrast, stations 12 to 13 exhibit a large change in Rrs—seen first in Figure 4B; shown again in
Figure 6A—with an increase in Chl a from 0.9 to 7.1 mg/m3 but only a very small change in De f f from
7 to 8 μm. This is likely, given the location in the lee of the South Sandwich Islands, to reflect a diatom
bloom associated with island wake effects, due to fertilisation by terrestrial iron [82]. Tracing the signal
due to this change in De f f across all Chl a concentrations in this range in Figure 6B shows that there is a
size related signal between 550 and 600 nm, but it is of an order of magnitude less than in the previous
example, and so does not show potential for detection by satellite radiometry. This is illustrated further
in the lower panel (C), showing the location of this signal but also that it is almost all attributable to
biomass—as shown by the Rrsφ representing De f f 7 at 7.1 mg/m3 i.e., what the higher biomass Rrs

would look like without the increase in effective diameter as the assemblage changes. It can be seen
quite clearly from these spectra that a difference in the blue due only to this δDe f f , with any variability
agd(λ), would not be detectable by any means.

It should be noted that the spectral locations of maximum δDe f f features are a direct consequence
of the spectral nature of the IOPs used in the modelling, and that both of these examples use
the same Chl a-carotenoid refractive indices to generate the phytoplankton IOPs. In other words,
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as phytoplankton IOPs are adjusted to represent pigment differences, the spectral character of the
assemblage change will vary. A slight migration in the exact location of the maximum available
δDe f f signal is observable with different ranges of De f f , although within the Chl a-carotenoid group it
remains between 550 and 600 nm for any difference in De f f between 1 and 40 μm. (This is discussed in
more detail later with respect to Figure 9, and an additional figure is shown in Appendix.)

Figure 6. Modelled Rrs for Stations 12 and 13 (A), with EAP eukaryote phytoplankton IOPs, and agd(λ)

and bbnap(λ) components estimated guided by observations in [75,76], respectively; (B) shows δRrsφ

for this large change in Chl a concentration (1 to 7 mg/m3) but a small δDe f f of 7–8 μm. The unit
of the colour bar is sr−1. Note that the results are one order of magnitude less than in the previous
example; (C) shows the negligible effect on Rrsφ of a change in De f f from 7 to 8 μm at the measured
Chl a concentrations.

3.3. Case Study 2: Addressing Pigment Variability

Both the phycoerythrin-containing and peridinin-containing assemblages are modelled here,
Figures 7 and 8) with De f f of 12 μm, so the simulated optical changes as the assemblage changes from
M. rubra-dominated to dinoflagellate-dominated are all due to differences in pigmentation, for any
given Chl a concentration. From the log-scale Rrs, it is evident that the pigment-related differences in
Rrs become larger as biomass increases. In the very high biomass blooms (≥30 mg·m−3) typical of the
Benguela system, it is known that M. Rubrum—containing assemblages are identifiable from MERIS
satellite imagery [83] due to the effects of the diagnostic phycoerythrin peak (at 565 nm) appearing in
the 560:520 nm band ratio.

An analogous study of the sensitivity of the maximum δRrsφ signal to non-algal constituents is
made at 570 nm for the pigment-driven feature appearing at high biomass (10 mg·m3, Figure 9).
The sensitivity of pigment-driven differences to non-algal effects is in contrast to the Southern
Ocean size example in that it is largely driven by variability in bbnap(λ). As biomass increases
past 10 mg·m3, the magnitude of the δRrsφ grows as bbnap(λ) increases, showing no impact at all of
biomass past 20 mg·m3. What this means is that while significant biomass is required to detect pigment
changes, past a certain upper biomass limit, the magnitude of the pigment differential signal grows
proportionally as Rrs is augmented by non-algal scatter.
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Figure 7. Benguela-like pigment-based experiment: Modelled Rrs shown for Chl a-carotenoid
pigmented assemblages (solid lines) and phycoerythrin containing assemblages (dotted lines) for
identical Chl a concentrations, at 0.1, 0.3, 3, 10 and 30 mg·m−3. There is no change in De f f ,
both are 12 μm. The non-algal optical constituents are modelled with agd(400) = 0.07 ∗ [Chla]0.75,
and bbnap(550) = 0.005 m−1.

Figure 8. δRrs shown for a change from a high biomass Myrionecta rubra-dominated assemblage, to a
high biomass peridinin (carotenoid)-containing dinoflagellate-dominated assemblage. There is no
change in De f f .

Absorption-based pigment differences are therefore sensitive to scattering variability unless
the biomass is very high, and this is particularly relevant in spectral regions affected by scattering
variability due to changes in De f f (Figure 4). Noting the log-scale Chl a axis of Figure 9, it can be
observed that while the respective magnitudes of the pigment-driven (De f f = 12 μm, Figure 9) and
size-driven (De f f from 6 to 16 μm, Figure 4) signals are comparable at the point that pigment differences
appear (i.e., 10 mg·m3), the size-driven feature is more sensitive at lower biomass—detectable at around
2 mg·m3 for the given change in De f f . This sensitivity will be affected by the size range in question and
also by pigment concentrations, but it can be inferred that, generally, where size changes of this range
(or larger) take place together with pigment changes, it is the size change that drives the variability
in the water-leaving signal, and changes in the reflectance due to a substantial change in De f f are
observable at lower biomass than those due to pigment changes.
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Figure 9. δRrs sensitivity to agd and bbnap at 570 nm, for a high biomass Myrionecta rubra-dominated
assemblage, to a high biomass peridinin (carotenoid)-containing dinoflagellate-dominated assemblage.

This applies equally to accessory pigments other than phycoerythrin absorbing in spectral regions
affected by phytoplankton scatter and/or by variability in non-algal scatter. This speaks to the
importance of both the magnitude of the change in bbφ(λ)/aφ(λ) and the proportional contribution of
bbφ(λ)/aφ(λ) to the total bb(λ)/a(λ) when evaluating the potential for accessing these signals from
Rrs (see Figure 2).

This result also implies that there are cases where the δDe f f signal is augmented by pigment
changes, for example when moving from small fucoxanthin- or peridinin-dominated cells to large
phycoerythrin-dominated cells, as the optical effect of reduction in backscatter around 560–570 nm
by large cells will be enhanced by additional pigment absorption in the δRrs signal. However,
there remains a complex optical relationship with biomass, and this effect needs to be properly
accounted for in order to accurately detect the augmented signal.

The EAP approach to pigments does not address the extent to which fine spectral resolution
accessory pigment absorption features persist in Rrs, nor their retrieval from hyperspectral radiometry.
The intention with the EAP model is to demonstrate the dependence on biomass to retrieve absorption
features, and the inherent signal ambiguity as the contrasting optical effects of bbφ(λ) and aφ(λ)

interact to form the phytoplankton signal within the Rrs. It is worth noting that hyperspectral
radiometry will not overcome the inherent signal-related constraints identified in this study.

3.4. Radiometric Sensitivity of EAP Size-Based PFT Detection—Magnitude of δRrsφ

Having established that at low biomass the PFT signal in the blue is easily overwhelmed by
the effects of agd(λ) and bbnap(λ), and that pigment effects are generally secondary to those of δDe f f ,
the PFT signal due to phytoplankton scattering in the 500 to 600 nm region can be evaluated for
sensitivity in terms of changes in De f f and biomass. To this end, the EAP model is again coupled with
Hydrolight to simulate expected variability in Rrs due to changes in De f f with the aim of evaluating
the sensitivity of the model.

Figure 10A demonstrates how the combined effects of biomass and De f f interact to form the
maximum available δRrsφ signal at low biomass and small size ranges. The figure shows that this
maximum lies between 520 and 570 nm—the exact wavelength varies with both size difference and
biomass. The shifting position of maximum δRrsφ is shown in Figure 10B. Increasing biomass improves
the ability to trace the size-related effects, and a De f f change from 2 μm up to at least 8 μm is not
detectable at the threshold in oceanic conditions with Chl a < 1 mg/m3.
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Figure 10. Maximum δRrsφ for δDe f f from a starting assemblage with De f f 2 μm, as Chl a varies
(A). Note that the δRrsφ occurs at different wavelengths from 500 to 600 nm (B), and this shows the
maximum signal, so there is no exact wavelength information in (A). Using a difference of 1 × 10−3

sr−1 as a threshold for detection by satellite, it can be seen that, while the maximum size change here (2
to 8 μm) is not detectable with Chl a < 1 mg/m3, by 10 mg/m3, even a small change in De f f results in
a detectable change in Rrs.

Using 1 × 10−3 sr−1 as a threshold for detection by satellite, it can be seen that an ecologically
significant shift in De f f from 2 or 3 to 6 μm, such as at the onset of an oceanic bloom, looks potentially
detectable from about 2 mg/m3. By 10 mg/m3, even a small change in De f f results in a detectable
change in Rrsφ, but, as biomass falls below this, the change in De f f must be increasingly large to be
detected. This is consistent with inversion studies of EAP sensitivity [37]. Note that this experiment
addresses only the phytoplankton-related signal, and that when attempting to identify these signals in
the bulk Rrs, it is necessary to consider the sensitivity of the phytoplankton signal to the optical effects
of the non-algal constituents. These results can be considered to show the minimum threshold for
potential detection i.e., the signal is further ambiguated by non-algal optics in a real-world context.

The spectrally shifting nature of the δRrsφ signal for oceanic PFT applications provides a strong
case for hyperspectral sensors in the 520 to 570 nm wavelength region. The extent to which the δRrsφ

signal persists in fixed waveband ratios is investigated in the next section on shape sensitivity.

3.5. Spectral Shape Sensitivity of EAP Size-Based PFT Detection

To further test the sensitivity of the EAP model and the causal IOP variability in terms of
identifiable changes in spectral shape from a multi-spectral perspective, Rrsφ ratios for 440:560 nm
(blue:green), 560:665 nm (green:red) and 665:710 nm (red:NIR) wavelengths were calculated for a range
of De f f and biomass.

These are shown in Figure 11, representing corresponding changes in the Rrsφ and in the
phytoplankton backscattering, for these wavelength pairs. The B:G Rrsφ ratio shows a strong biomass
dependency and a small sensitivity to size at large sizes, for 0.5 ≤ Chl a ≤ 4.5 mg/m3. The R:NIR ratio
shows some sensitivity to larger sizes from about 3 mg/m3, but this decreases as biomass increases.
The G:R ratio shows a significant size-related feature for small sizes (≤ 6 μm) from biomass of about 2
mg/m3 upwards (encircled in Figure 10). This is where a peak in the corresponding bbφ ratio appears,
suggesting that the large change in magnitude of the Chl a-specific backscatter b∗b φ between small De f f
(Figure 12) is directly responsible for the sensitivity in the Rrsφ G:R ratio seen in Figure 11.
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Figure 11. Rrsφ ratios for blue:green, green:red and red:NIR (Near Infra-Red) wavelengths as shown,
for Chl a concentrations of 0.1 to 20 mg/m3 and De f f 1 to 40 μm. The B/G ratio shows a strong biomass
dependency and a small sensitivity to size at large sizes, for 0.5 ≤ Chl a ≤ 4.5 mg/m3. The bbφ ratios all
display a strong size signal at 2–4 μm, and the G/R ratio shows a corresponding size-related feature.

This is an important finding. There is a marked size dependency in all of the b∗b φ ratios, with the
greatest rate of change somewhere between De f f 2 and 8 μm, but it is only in the case of the G:R ratio
that the magnitude of the backscatter is sufficient for this signal to be identifiable in the Rrsφ. Given that
the radiometric signal in the blue is greatly reduced by large phytoplankton absorption and agd, and the
red and NIR wavelengths are similarly affected by the absorption of water, it can be concluded that
the main driver of the useable PFT signal in the green and red is phytoplankton backscatter.

Figure 13 shows the rapid increase in the proportional contribution of phytoplankton to total
backscatter at 560 and 665 nm. It is known that, for typical diatom/dinoflagellate assemblages, the
560 nm region is more influenced by backscatter than by absorption. The fact that the magnitude of the
total backscatter is much lower at 665 than at 560 nm, together with the strong absorption by water in
this region, result in a small useable Rrs signal. A contribution of approximately 40% of phytoplankton
to total bb at 560 nm corresponds with the limits of detectable δRrsφ (see Figure 2), indicating that
this is the proportion at which phytoplankton backscatter starts driving the total water-leaving signal
around 560 nm. Consequently, this is the minimum contribution for which some δDe f f information
may be known. For an oceanic bloom example δDe f f from 2–6 μm, this threshold contribution is
reached at about 2 mg/m3, while to detect an example δDe f f of 10 to 20 μm in a eukaryotic succession,
extremely high biomass is required. The mid-range biomass sensitivity demonstrated here presents
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opportunities for identifying higher resolution size classes than the 2 to 20 μm and >20 μm categories
currently frequently employed [6,8,10,84]. The ability to achieve better resolution within the 2–20 μm
size class is particularly desirable for marine ecosystem modelling [6].

Figure 12. b∗b φ shown for De f f 1 to 10 μm. The largest differences in backscatter across the spectrum
occur between 1 and 4 μm, with the exception of the overlapping of b∗b φ in the red and NIR.

Figure 13. Percentage contribution of phytoplankton to total backscatter (including water, and with
nominal bbnap(550) = 0.005), shown for De f f 1 to 40 μm and Chl a from 0.1 to 20 mg/m3, at 440, 560
and 665 nm.

3.6. Considering Uncertainties

Particularly when considering δRrs retrievals from satellite, it is important and necessary to
contextualise the magnitude of the PFT signal with respect to uncertainties on the satellite radiometry. A
brief study on model and associated radiometric uncertainty is available in Appendix D. An important
observation is that, while the 500 to 600 nm region of the promising PFT signal may be mostly
insensitive to the effects of non-algal constituents, it is also where variability in Rrs due to the
different approaches to phytoplankton phase functions is important, emphasising the critical role of
phytoplankton scatter in this signal.

4. Conclusions

The distinct causal optical effects of variations in phytoplankton biomass, mean assemblage size,
pigment-related spectral variability and non-algal constituents are not easily identified, with substantial
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interdependency and spectral ambiguity. Consistent with previous studies [37,39], it can be seen here
that ambiguity is critical in attempting to resolve the phytoplankton community structure signals.

The case studies illustrate how most of the Rrs signal that is due to phytoplankton is driven by
biomass, an expected result. This concept underpins, after all, the primary missions of most ocean
colour sensors: resolving variability in phytoplankton biomass. The study shows that quantitative
consideration of the constraints of biomass and the phytoplankton contribution to the total IOP budget
is required when addressing the PFT question.

The key findings include the assertions that most of the absorption driven phytoplankton signal
in Rrs in the blue is too ambiguous to use, and that the most useful PFT signal is caused by spectral
backscatter. Furthermore, the ability to assess the PFT signal against non-algal optical contributions is
largely driven by biomass and the IOP budget.

Overall, spectral scattering properties of natural waters are not well characterised [85,86],
and phytoplankton spectral backscattering characteristics are underexploited in terms of their impact
on the water-leaving signal. The importance of better representing the angular and spectrally variable
nature of phytoplankton scattering has been established [35], and it is clear that phytoplankton
backscatter is at the heart of the PFT question.

The size-related PFT signal is driven by phytoplankton scattering, and spectral regions where
scattering is at its most sensitive to De f f show the most potential for PFT detection from the total
water-leaving signal. There is most sensitivity to size-related changes in bbφ in the 1–6 μm size
range. Phytoplankton size-related features, most likely driven by phytoplankton absorption variablity,
appear in Rrs around 430 nm at low biomass, and scattering-driven size-related features in the 520
to 570 nm spectral region at elevated biomass. The water-leaving signal in the blue spectral region
is highly complex and ambiguous, being the result of varied and contrasting effects of absorbing
and scattering characteristics of both algal and non-algal in-water constituents. Consequently, the
size-related signal appearing in low biomass waters (<1 mg/m3) may be useful only when agd(λ) and
bbnap(λ) are exactly known. Accessory pigment absorption features that persist in Rrs in low biomass
suffer from the same vulnerability to uncertainty in the non-algal constituents. Satellite measurement
uncertainty and agd(λ) retrievals may in future be improved (e.g., with the use of radiometry in the
UV), but, given current uncertainties, achieving sufficiently accurate satellite estimates of the non-algal
optical components is unlikely for this purpose.

This finding exposes a vulnerability in historical approaches to phytoplankton identification
and quantification based on the features of phytoplankton absorption characteristics in the blue.
Satellite PFT methods using this approach all suffer from this shortcoming where assemblage-related
variability is secondary to biomass effects, and where phytoplankton relationships with agd(λ) and
bbnap(λ) are not precisely known. These approaches additionally rely on implicit relationships between
Chl a and De f f which may not always hold. This work shows that, at low biomass (< 1 mg·m3),
where Rrs is absorption-dominated, it is unlikely that there is sufficient size- or pigment-driven PFT
signal to be retrieved from satellite radiometry without making these assumptions. (Phytoplankton
whose prominent absorption features are at longer wavelengths, such as phycocyanin-containing
cyanobacteria, present a different case). Isolating variability in Rrsφ as De f f and biomass vary shows
that an example oceanic bloom δDe f f from 2 to 6 μm is only detectable at the satellite measurement
threshold of 1 × 10−3 sr−1 when the biomass reaches about 2 mg/m3 (Figure 10A).

Consequently, it is the size-related backscatter-driven signal in the 500 to 570 nm region,
appearing at substantial biomass, that is the most useful for PFT identification from satellite radiometry
as it is sufficiently insensitive to reasonable variability in both agd(λ) and bbnap(λ) (when composed of
small particles) (Figure 4). Variability in scatter due to non-algal particulate in the same size range
as phytoplankton will likely ambiguate the distinctive spectral scatter of PFT changes, and this has
not yet been tested. The location of the maximum δRrsφ size feature shifts between 520 and 570 nm
(Figure 10B), suggesting strongly that hyperspectral data in this region would add greater capability
here. Further analysis is needed to quantify the potential advantages of hyper- over multi-spectral
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data with respect to this shifting maximum signal, and also with respect to the reduced SNR implicit
in narrow waveband measurements.

Understanding the proportional phytoplankton contribution to the total IOP budget and the
resulting water-leaving signal is central to the determination of sufficient phytoplankton-driven signal
containing PFT information. The proportional ’net’ contribution of phytoplankton i.e., bbφ/aφ as a
percentage of total bb/a, has been identified as the driver of PFT sensitivity in the Rrs. Given the
detectable differences in Rrs as size and biomass change, a proportional phytoplankton contribution of
approximately 40% to the total bb appears to a reasonable minimum threshold in terms of yielding
a detectable optical change. The proportional contribution always varies with the non-algal optical
constituents agd(λ) and bnap(λ).

Despite the many sources of model uncertainty and the requirement for model validation in
specific regions, these results indicate the necessity of approaching PFTs from a strongly biophysical
perspective. There is a great need for better characterisation of phytoplankton community structure
and improved handling of the complex spectral and angular nature of phytoplankton scattering.

The EAP model code in Matlab R2018a (The Mathworks Inc., Natick, Mass, United States) or
in Python 3.7, as well as the Fortran routine for Hydrolight allowing the choice of discretised EAP
phase function based on wavelength rather than backscatter fraction (see Appendix D: Uncertainties),
are freely available to the community. Please contact the corresponding author.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3417/8/12/
2681/s1, Visualisation Tool: Interactive visualisation of spectral Rrs with assemblage De f f shown for 2–20 μm,
with user-controlled Chl a concentration, agd(400) and bbnap(550).
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Appendix A. Phytoplankton Assemblage Variability in the EAP Model

The successful validation of the model in very high biomass Benguela conditions [65] gives confidence in the
representation of the phytoplankton component of the water-leaving signal, as it is known that, in these cases, the
Rrs is overwhelmingly dominated by phytoplankton. It is concluded in Lain et al. [65] that it is the EAP’s detailed
handling of phytoplankton spectral backscatter that sets it apart from other IOP models. The core mathematics of
the model are fully described in Bernard et al. [27]. A detailed study of EAP phytoplankton angular scattering
and phase functions is available in Lain et al. [35].

Appendix A.1. Justification for Using Measurement-Derived Refractive Indices across Wide Size Ranges

The main light-harvesting pigments in typical diatom and dinoflagellate assemblages (fucoxanthin and
peridinin, respectively)—while chemotaxonomically distinct—display the typical broad, featureless absorption
spectra characteristic of carotenoids, with peaks centered around 500 nm [87] and vary well within the natural
variability of phytoplankton absorption (Figure A1). They consequently have similar refractive indices [27] and
so these types were combined into a generalised set of diatom/dinoflagellate IOPs, as no significant difference
was found between the dinoflagellate and diatom groups in terms of their optics that could not be attributed
to the respective particle sizes (see also [38,88]). This group of IOPs should correctly be referred to as Chl
a-carotenoid IOPs.
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Figure A1. Pigment absorption spectra from Bricaud et al. [87], reprinted with permission from the
American Geophysical Union. The broad featureless absorption spectra of fucoxanthin and peridinin
peaking at around 500 nm are shown by the thin and thick brown lines, respectively.

While the measurements and refractive index derivations [89] were performed for cells of approximately 12 to
20 μm, it should be made clear that the imaginary refractive index characterises the absorption of the intracellular
material and has absolutely no dependency on cell size. It can be inferred therefore that these refractive indices
can be used to represent a range of phytoplankton sizes displaying dominant Chl a and carotenoid pigments.
Southern Ocean nanophytoplankton comprise mainly diatoms and dinoflagellates, but also chlorophytes and
haptophytes in smaller proportions [90,91]. The latter two phytoplankton groups are generally dominated by
Chl a and the fucoxanthin pigment derivatives 19’-hex-fucoxanthin and 19’-but-fucoxanthin [91], which display
somewhat elevated absorption peaks located at slightly shorter wavelengths with respect to fucoxanthin [87,92].
The optical influence of these derivative pigments is assumed to be negligible in the context of the case studies
for two reasons. Firstly, in the nanophytoplankton group as a whole, the fucoxanthin-derived pigments occur
in far lesser concentrations than that of fucoxanthin itself [91], which is represented by the refractive indices.
This is reinforced by the derivation of a nanophytoplankton group of refractive indices in non-bloom conditions
(De f f = 2 μm), whose impact on the IOPs of small cells was not sufficiently different from the diatom-dinoflagellate
group to warrant its routine use for small cells. Secondly, these pigments act to increase phytoplankton absorption
around the 450 nm spectral region, identified the spectral region as very vulnerable to small variability in agd,
and to large satellite Rrs measurement uncertainty, so the conclusions regarding the spectral regions containing
the most useful signatures for PFT detection still hold.

EAP sensitivity testing has indicated that increasing the intracellular Chl a density Ci may be appropriate for
small cells, but this is not explored here.
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Appendix A.2. EAP Phytoplankton IOPss

Phytoplankton-specific IOPs are presented in Figures A5 and A6 for generalised Chl a-carotenoid
assemblages and for phycoerythrin-containing assemblages, respectively.

Figure A2. EAP Eukaryote Chl a-carotenoid-dominated IOPs for a range of assemblage De f f .

Figure A3. EAP Phycoerythrin-containing IOPs (based on Myrionecta Rubra), used for
cryptophyte-dominated assemblages in the Benguela, and Synechococcus sp. in the Southern Ocean.

Appendix A.3. EAP agd(λ) Parameterisation

A simple exponential combined gelbstoff and detrital absorption term agd(λ) [93,94] is used as a
representative of commonly occurring conditions in the Benguela:

agd(λ) = agd(400) exp[−S(λ − 400)]. (A1)

The exponential slope factor S is given a constant value of 0.012 [95]. This value, derived for the Benguela
system, is not adjusted for the agd(λ) term used in the Southern Ocean Case Studies. This is acknowledged as
a source of uncertainty, but supporting literature suggests that values in the range 0.0140 ± 0.0032 nm−1 cater
adequately for a variety of water types [93].

An observed relationship of

agd(400) = 0.0904 log[Chla] + 0.1287 (A2)
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from measurements in the Benguela is used to scale the gelbstof/detrital exponential term, and agd(750) onwards
is assumed to be zero. This parameterisation was derived for high biomass environments. At very low biomass (<
1 mg/m3), the log[Chla] term becomes negative, and so, for the Southern Ocean case studies, this parameterisation
was amended to

agd(400) = 0.07 · [Chla]
0.75 (A3)

following Alvain et al. [21], noting that the referenced parameterisation is for 440 nm and not 400, but also that the
agd term is used as an approximate measure of total signal sensitivity, and so, in this sense, an absolutely accurate
term is not a requirement.

Appendix A.4. EAP bbnap(λ) Parameterisation

Non-algal backscattering is modelled after Roesler and Perry [96] who describe a small particle backscattering
term represented by a power law relationship (their bbs, referred to as bbnap in the EAP model). It has a constant
spectral shape dependent only on wavelength, but variable in magnitude.

bbnap(λ) = λ−1.2. (A4)

This is then adjusted to a selected value of bbnap(550), as detailed in the text.
Small particle (non-algal) scatter bnap is approximated as 50 times the bbnap in the Benguela examples and as

100 times the bbnap in the Southern Ocean examples. This yields a non-algal particulate backscattering probability
(b̃bnap) of 0.02 (2%) and 0.01 (1%), respectively. This is assumed to be reasonable given that it has been shown that
the total particulate backscattering probability b̃b varies in the range 1.2 to 3.2 % in coastal waters dominated by
non-algal particles (i.e., Case 2) [97], and that generally accepted values for b̃b in Case 1 waters is around 1% [98].

Keeping the non-phytoplankton backscattering constant with Chl a results in a dependent but nonlinear
relationship, resulting in an overall b̃b that decreases as Chl a increases (Figure A4), noting the spectral variability
of small phytoplankton at elevated biomass.

Figure A4. Bulk backscatter ratio shown for De f f 2 and 12 μm, with nominal bbnap(550) = 0.01 m−1

and bnap as 50 times the bbnap, as for a coastal environment, shown for Chl a of 0.5, 1.0 and 2.0 mg/m3.
The elevated backscatter ratio of coastal environments with respect to the Southern Ocean (where bnap

is modelled as 100 times the bbnap) is attributed to the contribution of terrestrial mineral particles with
a high refractive index [66,99].
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Appendix B. Measurements and Modelling Parameters

Appendix B.1. Chl a

Chl a measurements are made using a Turner 10-AU Fluorometer (Turner Designs, San Jose, CA, USA),
following Holm-Hansen et al. [100].

Appendix B.2. Model Parameters Used for Hydrolight-Ecolights

For most of the experiments, Ecolight’s 2-component IOP model was used to generate Rrs(λ). The “clearest
natural water” IOPs were selected for Component 1 (water). IOPs for component 2 (everything else) were
precomputed in Matlab from the EAP phytoplankton IOPs and additional agd(λ) and bbnap(λ) contributions
as required.

Fluorescence quantum efficiency φ was approximated by Chl a concentration:

<10 mg/m3 = 1%
10–50 mg/m3 = 0.6%
50–100 mg/m3 = 0.2%
>100 mg/m3 = 0.1%.

These values are based on MODIS φsat climatologies [101], and measurements [102] to characterise the
reduction in φ as eutrophication increases.

A constant set of generalised atmospheric conditions was selected for all experiments. An annual average
for solar irradiance and a solar zenith of 30◦ was used in lieu of time and location.

Appendix C. Position of Maximum δRrsφ

Further to Figure 9B in the main text, Figure A5 shows the position of maximum δRrsφ for
assemblage changes from 8 μm and 14 μm, respectively, for Chl a concentrations between 10 and
20 mg/m3. It can be seen that, at these high biomass concentrations, there is no spectral migration of
the maximum δRrsφ with biomass, and that once the maximum δRrsφ signal reaches 570 nm, its location
does not change with increasing De f f for biomass up to 20 mg/m3. This has been tested up to 40 μm (not shown).

Figure A5. Spectral position of maximum δRrsφ for assemblage changes from 8 μm and 14 μm,
respectively

Appendix D. Uncertaintiess

Uncertainties in satellite radiometry are given in the main text, and model error in terms of
uncertainty/variability in the phase function is described fully in [35]. There are many additional
sources of uncertainty in the model (non-sphericity of phytoplankton, approximations in size
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distribution, Chlorophyll a density, to name a few), and further work is needed to quantify them appropriately.
For demonstrative purposes here, given that any retrieval of size properties would be performed with the
model itself, the model uncertainty is constrained to just that of the phase function variability, as this has a size
implication in itself, as shown in [35].

In Figure A6, the model uncertainty is shown for Rrsφ against a background of total Rrs with nominal
additional agd(λ) and bnap(λ), together with the satellite Rrs measurement uncertainty. Despite the small model
uncertainty on the phytoplanton signal in the blue, the huge impact of additional agd(λ) and the large satellite
radiometric uncertainty clearly show the large degree of ambiguity and potential error in the retrieval of the
phytoplankton component, even if the agd(λ) is exactly known. Satellite-derived agd(λ) (and CDOM) products
have large uncertainties: r2 of less than 0.25 for three different agd(λ) algorithms against in situ data [16]—noting
that dependence on the atmospheric correction means that a significant level of error is propagated through the
algorithms from this source, particularly in the blue.

Figure A6. Total Rrs with satellite measurement uncertainties in the blue and red bands from [16] and
linearly interpolated between them. An indication of model uncertainty on the Rrsφ is calculated by
the spectral differences resulting from the use of a combined bbp(λ)-specific Fournier Forand phase
function independent of wavelength, vs. wavelength- and bbφ(λ)-dependent EAP phase functions.

The most significant spectral regions of Figure A6 in the context of this study are those where the uncertainty on
Rrsφ overlap with the bulk satellite Rrs measurement uncertainty in each example. These are the spectral regions
where the phytoplankton-specific signal dominates the bulk signal to the point that they are arguably indistinguishable,
so these regions are particularly promising in terms of PFT detection from the bulk Rrs. It is also encouraging to note
that the regions of maximum δDe f f previously identified fall within these regions, meaning that particularly close
to 570 nm, the bulk signal not only closely reflects the causal phytoplankton signal but is also not very sensitive to
reasonable variability in agd(λ) and bnap(λ). However, it is an important consideration that these are also regions
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of large uncertainty in the size signal, and that, as De f f increases, the Rrs expression of reduced phytoplankton scatter
becomes more vulnerable to variable bnap(λ).

At low biomass, the phytoplankton signal falls well outside of the bulk measurement uncertainty, but the
question of whether phytoplankton IOPs could be retrieved from the bulk depends on the resulting proportional
contribution to the total. With reduced bbφ/aφ, even small variability in the non-algal contribution to bb/a results
in signal ambiguity. In this case, the additional agd(λ) and bnap(λ) contributions need to be exactly known, in
order to be able to retrieve any PFT information.

It can also be observed in Figure A6 that the magnitude of model uncertainty is less, and the proportional
contribution of phytoplankton to the bulk IOPs is greater, at wavelengths slightly shorter than those of the
maximum δDe f f in the case studies. Thus, the spectral location of the largest observable δDe f f signal may not
necessarily be the most revealing of PFT discrimination in terms of the associated uncertainties. A sophisticated
uncertainty model would be necessary to calculate the respective advantages of reduced contribution uncertainties
on a smaller signal vs. slightly larger uncertainties on a larger workable signal. It is also worth considering
that, even where the bulk and Rrsφ signals are distinct, there are spectral regions where they are parallel i.e.,
maintain the same shape. It can be concluded that the phytoplankton contribution determines the spectral shape
in these regions—although the uncertainty associated with a smooth bbnap(λ) curve is also not quantified here.
This information could potentially be exploited to investigate PFT signal from the bulk Rrs.

Further work on incorporating EAP phase functions into Hydrolight has enabled the Rrsφ presented here to
include the fluorescence term, and this is also a spectral region of a large proportional phytoplankton contribution
together with small model uncertainty as calculated by the difference in approach to scattering phase functions.
This region (around 685 nm) appears in the maximum δRrs plots from the case studies, but has not been discussed
as confidence in modelling this spectral region accurately needs to be improved with respect to natural variability
in a fluorescence quantum yield and phytoplankton response to the light environment. However, it is known that
this region holds further useful information on phytoplankton health [103] as well as size.

Overall, the uncertainties in both measured and modelled quantities should be considered in terms of
the proportional contribution by phytoplankton. The highest proportional phytoplankton contribution to the
bulk optics, and therefore the most promising signal for PFTs, occurs where elevated scatter due to biomass
is complemented by the elevated scatter of small phytoplankton cells. Approaches to modelling the phase
functions result in an inherent ambiguity of about 4 μm at very high biomass, but this drops with biomass and
as De f f increases.
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Abstract: A tutorial review is provided of forward and inverse radiative transfer in coupled
atmosphere-snow/ice-water systems. The coupled system is assumed to consist of two adjacent
horizontal slabs separated by an interface across which the refractive index changes abruptly from
its value in air to that in ice/water. A comprehensive review is provided of the inherent optical
properties of air and water (including snow and ice). The radiative transfer equation for unpolarized
as well as polarized radiation is described and solutions are outlined. Several examples of how
to formulate and solve inverse problems encountered in environmental optics involving coupled
atmosphere-water systems are discussed in some detail to illustrate how the solutions to the radiative
transfer equation can be used as a forward model to solve practical inverse problems.

Keywords: vector radiative transfer; polarization; coupled systems; atmosphere; ocean; forward
modeling; inverse problems

1. Introduction

Reliable, accurate, and efficient modeling of electromagnetic radiation transport in turbid media
has important applications in studies of Earth’s climate by remote sensing. For example, such modeling
is needed to develop forward-inverse methods used to quantify types and concentrations of aerosol
and cloud particles in the atmosphere, as well as dissolved organic and particulate biogeochemical
matter in lakes, rivers, coastal water, and open-ocean water, and to simulate the performance of
remote sensing detectors deployed on aircraft, balloons, and satellites. Accurate radiative transfer
(RT) modeling is also required to compute irradiances and scalar irradiances that are used to compute
warming/cooling and photolysis rates in the atmosphere, solar energy deposition in the cryosphere
including frozen fresh water (lakes and rivers), sea ice, and glaciers, as well as primary production rates
in the water. Finally, RT modeling is needed to compute the Stokes vector describing the polarization
state of the radiation field, which is desired in many remote sensing applications.

Accurate, efficient, and easy-to-use radiative transfer (RT) simulation tools are important because
they (i) can be used to generate irradiances as well as total and polarized radiances (including degree of
polarization) at any location and direction; (ii) will provide accurate results for given input parameters
and specified inherent optical properties (IOPs); (iii) will lead to significant progress in research
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areas such as remote sensing algorithm development, climate research, and other atmospheric and
hydrologic applications.

Available tools for atmospheric applications include: (i) SBDART [1], Streamer [2], and LibRadtran
(www.libradtran.org), which all apply to the atmosphere only; there is no coupling to an underlying
surface consisting of e.g., solid (snow/ice) or liquid water; (ii) Hydrolight, which applies to water only,
provides water-leaving radiance, but not top-of-the-atmosphere (TOA) radiance; there is no coupling
to the atmosphere (assumed to be a boundary condition). To remedy this situation a new Accurate
Radiative Transfer (AccuRT) tool was developed to facilitate well-tested and robust RT simulations
in coupled systems consisting of two slabs with different refractive indices. Please note that we here
use the word “water” generically to describe the solid phase (i.e., snow and ice) as well as the liquid
phase. The AccuRT tool accounts for reflection and transmission at the interface between the two slabs,
and allows each slab to be divided into a sufficient number of layers to resolve the variation in the
IOPs with depth.

Notation

Radiative transfer practitioners in the atmosphere, liquid water (ocean, lakes, rivers) and
cryosphere (snow/ice) communities use different nomenclatures and terminologies. This situation
can be confusing and frustrating to students and researchers addressing interdisciplinary problems in
environmental optics. In this paper, we will adopt the notation of [3]. Letting z be the vertical position
in the plane-parallel medium under consideration, and letting Θ be the scattering angle, we will
denote the:

1. the absorption coefficient [m−1] by the letter α(z);
2. the scattering coefficient [m−1] by the letter β(z);
3. the extinction coefficient [m−1] by the letter γ(z) = α(z) + β(z);
4. the single-scattering albedo by �(z) = β(z)/(α(z) + β(z));
5. the volume scattering function [m−1sr−1] by vsf(z, cos Θ, φ) and the related scattering phase

function (dimensionless) by p(z, cos Θ, φ);
6. the scattering phase matrix (dimensionless) by PS(Θ) in the Stokes vector representation IS =

[I, Q, U, V]T and by P(Θ) in the Stokes vector representation I = [I‖, I⊥, U, V]T .

The corresponding notation used in the Ocean Optics community is a instead of α, b instead of β,
and c instead of γ. Since α, β, and γ are the three first letters in the Greek alphabet it should be easy to
recall the connection with a, b, and c.

This tutorial review is organized as follows. In Section 2 the input parameters needed to describe
the coupled system are specified. Then in Section 3 we describe the inherent optical properties (IOPs)
of the two adjacent coupled slabs, consisting of absorption and scattering coefficients as well as
scattering phase functions. In addition, one needs the scattering phase matrix for polarized radiation.
For unpolarized radiation only one element of this matrix, namely the scattering phase function,
is required. These IOPs appear in the radiative transfer equation (RTE) described in Section 4, where we
also review how to formulate and solve the RTE for unpolarized as well as polarized radiation.
In Section 5 we provide several examples of how the solution of the forward problem discussed in
Section 4 can be used to solve the corresponding inverse problem. In the forward problem, the IOPs
are assumed to be known, so that the solution of the RTE provides the total (and polarized) radiances.
To solve the inverse problem we ask: given the measured total (and/or polarized) radiances can we
determine the IOPs? The inverse problem is generally much more difficult to solve than the forward
problem. It can be formulated as a classical, nonlinear minimization problem, which can be solved
in an iterative manner. We will also demonstrate how neural networks can be used to help tackle
the inverse problem in a reliable and efficient manner. Finally, in Section 6 we briefly discuss some
remaining problems in Ocean Optics, while in Section 7 we provide a brief summary.
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2. Input and Output Parameters for the Forward Radiative Transfer Problem

2.1. Input Parameters

The following input parameters must be specified (i) the physical properties of each of the two
slabs that constitute the coupled system, (ii) the radiative energy input at the top of the upper slab
(top-of-the-atmosphere, TOA), and (iii) the boundary conditions at the bottom of the lower slab
(water bottom). Each of the two slabs is assumed to be a plane-parallel, vertically stratified structure
in which the scattering and absorption properties, i.e., the IOPs are defined in Section 3. To resolve
changes in the IOPs as a function of vertical position z, each slab can be divided into several adjacent
layers such that the IOPs are constant within each layer, but allowed to vary from one layer to the next.
The impact of a wind-roughened air-water interface is described in Section 5.3.

To specify the IOPs, we will use the concept of materials, which are radiatively significant
constituents in the atmosphere-water system. Examples of such materials are atmospheric gases,
aerosols, clouds, snow, ice, pure water and water impurities. These materials can be designed to
account for the wavelength dependence of the IOPs so that all one needs to do is to decide which of
them to include in each layer. More specifically the following input parameters must be specified:
(i) solar beam irradiance [W·m−2]; (ii) wavelength range, number of center wavelengths and widths
[nm]; (iii) solar zenith angle(s) in degrees; (iv) the number of “discrete ordinate streams” used to solve
the radiative transfer equation (RTE) as described in Section 4; (v) IOPs of materials used. Specifications
required for the upper slab include (i) layer boundaries, ground-level altitude (sea-level is default);
(ii) atmospheric type; (iii) aerosol particle types (e.g., a bimodal lognormal volume distribution) for each
layer as described in Section 3.4.2; (iv) cloud particles as described in Section 3.4.3; (v) snow particles
as described in Section 3.5. Specifications required for the lower slab include (i) layer boundaries;
(ii) ice material as described in Section 3.5; (iii) refractive index as a function of wavelength in the lower
slab (water)—set to “one” in the upper slab (atmosphere); (iv) water impurities; (v) water bottom
albedo.

2.2. Output Parameters

Once the input parameters above have been specified, the solution of the RTE as described
in Section 4, will provide two types of output, namely, (i) irradiances and mean intensities (scalar
irradiances in Ocean Optics terminology) at specified vertical positions in the coupled system; (ii) total
and polarized radiances in desired directions at specified vertical positions in the coupled system.

3. Inherent Optical Properties (IOPs)

3.1. General Definitions

An inherent optical property (IOP) depends only on the medium itself, and is independent of
the ambient light field within the medium [4]. An apparent optical property (AOP) depends also on
the illumination, i.e., on light propagating in particular directions inside and outside the medium
(Apparent optical properties (1) depend both on the medium (the IOPs) and on the geometric
(directional) structure of the polarized radiance distribution, and (2) display enough regular features
and stability to be useful descriptors of a water body [4]. Hence, a radiance or an irradiance would
satisfy only the first part of the definition, while a radiance reflectance or irradiance reflectance,
obtained by division of the radiance or the upward irradiance by the downward irradiance, would
satisfy also the second part of the definition.).

Two important IOPs are the absorption coefficient α(z) and the scattering coefficient β(z)
defined as [3]

α(z) =
1
Ii

(
dIα

dz

)
, β(z) =

1
Ii

(
dIβ

dz

)
[m−1]. (1)
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Here Ii is the incident radiance entering a volume element dV = dAdz of the medium of cross
sectional area dA and thickness dz, and dIα > 0 and dIβ > 0, respectively, are the radiances that are
absorbed and scattered in all directions as the light propagates the distance dz along the direction of
the incident light. The extinction coefficient is given by γ(z) = α(z) + β(z), and the single-scattering
albedo is defined as �(z) ≡ β(z)/γ(z).

The angular distribution of the scattered light is given in terms of the volume scattering function
(vsf), which is defined as

vsf(z, Ω̂′, Ω̂) =
1
Ii

d2 Iβ

dzdω
=

1
Ii

d
dz

(
dIβ

dω

)
[m−1 sr−1]. (2)

Here Ω̂′ and Ω̂ are unit vectors, and d2 Iβ is the radiance scattered from an incident direction
Ω̂′ into a cone of solid angle dω around the direction Ω̂ as the light propagates the distance dz
along the direction Ω̂′ (see Figure 1). The plane spanned by Ω̂′ and Ω̂ is called the scattering plane,
and the scattering angle Θ is given by cos Θ = Ω̂′ · Ω̂. Integration of Equation (2) over all scattering
directions yields

β(z) =
1
Ii

d
dz

∫
4π

(
dIβ

dω

)
dω =

1
Ii

(
dIβ

dz

)
=

∫
4π

vsf(z, Ω̂′, Ω̂)dω =
∫ 2π

0

∫ π

0
vsf(z, cos Θ, φ) sin ΘdΘdφ [m−1] (3)

where Θ and φ are respectively the polar angle and the azimuth angle in a spherical coordinate system
in which the polar axis is along Ω̂′. As indicated in Equation (3), the volume scattering function
[vsf(z, cos Θ, φ)] is generally a function of both Θ and φ, but for randomly oriented scatterers one may
assume that the scattering potential is spherically symmetric implying that there is no dependence on
azimuth, so that vsf = vsf(z, cos Θ). Then one finds, with x = cos Θ

β(z) = 2π
∫ π

0
vsf(z, cos Θ) sin ΘdΘ = 2π

∫ 1

−1
vsf(z, x)dx [m−1]. (4)

A normalized vsf, denoted by p(z, cos Θ) and referred to hereafter as the scattering phase function,
may be defined as follows

p(z, cos Θ) = 4π
vsf(z, cos Θ)∫

4π vsf(z, cos Θ)dω
=

vsf(z, x)
1
2

∫ 1
−1 vsf(z, x)dx

(5)

so that
1

4π

∫
4π

p(z, cos Θ)dω =
1
2

∫ 1

−1
p(z, x)dx = 1. (6)

The scattering phase function has the following physical interpretation. Given that a scattering
event has occurred, p(z, cos Θ)dω/4π is the probability that a light beam traveling in the direction Ω̂′

is scattered into a cone of solid angle dω around the direction Ω̂.
The scattering phase function [p(z, cos Θ)] describes the angular distribution of the scattered

light, while the scattering coefficient β(z) describes the total amount of scattered light integrated over
all scattering directions. A convenient measure of the “shape” of the scattering phase function is the
average over all scattering directions (weighted by p(z, cos Θ)) of the cosine of the scattering angle
Θ, i.e.,

g(z) = 〈cos Θ〉 = 1
4π

∫
4π

p(z, cos Θ) cos Θ dω

=
1
2

∫ π

0
p(z, cos Θ) cos Θ sin ΘdΘ =

1
2

∫ 1

−1
p(z, x)xdx. (7)
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The average cosine g(z) is called the asymmetry factor of the scattering phase function. Equation (7)
yields complete forward scattering if g = 1, complete backward scattering if g = −1, and g = 0
if p(z, cos Θ) is symmetric about Θ = 90◦. Thus, isotropic scattering also gives g = 0. Similarly,
the probability of scattering into the backward hemisphere, is given by the backscattering ratio
(or backscatter fraction) b, defined as

b(z) =
1
2

∫ π

π/2
p(z, cos Θ) sin Θ dΘ =

1
2

∫ 1

0
p(z,−x)dx. (8)

The scattering phase function p(z, cos Θ) depends on the refractive index as well as the size
and shape of the scattering particles, and will thus depend on the physical situation and the
practical application of interest. Two different scattering phase functions, which are useful in practical
applications, are discussed below.

Ω̂

θ

θ′

φ

z

y

A

C

φ′

B Θ

x

Ω̂′

O

Figure 1. Coordinate system for scattering by a volume element at O. The points C, A and B are
located on the unit sphere. The incident light beam with Stokes vector Iinc

S is in direction OA(θ′, φ′)
with unit vector Ω̂′, the scattered beam with Stokes vector Isca

S is in direction OB(θ, φ) with unit vector
Ω̂ [5].

3.1.1. Rayleigh Scattering Phase Function

When the size d of the scatterers is small compared with the wavelength of light (d < 1
10 λ),

the Rayleigh scattering phase function gives a good description of the angular distribution of the
scattered light. The Rayleigh scattering phase function for unpolarized light is given by

p(cos Θ) =
3

3 + f
(1 + f cos2 Θ) (9)

where the parameter f = 1−ρ
1+ρ , and ρ is the depolarization ratio, attributed to the anisotropy of the

scatterer (molecule) [6–8]. Originally this scattering phase function was derived for light radiated
by an electric dipole [9]. Since the Rayleigh scattering phase function is symmetric about Θ = 90◦,
the asymmetry factor is g = 0. If the Rayleigh scattering phase function is expanded in Legendre
polynomials, the expansion coefficients χ� [see Equation (117) below] are simply given by χ0 = 1,
χ1 = 0, χ2 = 2 f

5(3+ f ) , and χ� = 0 for � > 2.
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Using ρ = 0.0286 for air at 500 nm [10], we get f = 1−ρ
1+ρ = 0.944, and using ρ = 0.039 [11,12]

for water, we get f = 1−ρ
1+ρ = 0.925. Hence, for Rayleigh scattering, the scattering phase function

moments become:

• χ0 = 1, χ1 = 0, χ2 = 0.0957 and χ� = 0 for � > 2 for air, and
• χ0 = 1, χ1 = 0, χ2 = 0.0943, and χ� = 0 for � > 2 for water.

3.1.2. Henyey-Greenstein Scattering Phase Function

Henyey and Greenstein [13] proposed the one-parameter scattering phase function given by
(oppressing the dependence on the position z)

p(cos Θ) =
1 − g2

(1 + g2 − 2g cos Θ)3/2 (10)

where the parameter g is the asymmetry factor defined in Equation (7). The Henyey–Greenstein (HG)
scattering phase function has no physical basis, but is very useful for describing a highly scattering
medium, such as turbid water or sea ice, for which the actual scattering phase function is unknown.
The HG scattering phase function is convenient for Monte Carlo simulations and other numerical
calculations because it has an analytical form. In deterministic plane-parallel RT models it is also
very convenient because the addition theorem of spherical harmonics can be used to expand the
scattering phase function in a series of Legendre polynomials [3,14], as reviewed in Section 4.1.1.
For the HG scattering phase function, the expansion coefficients χ� in this series [see Equation (117)
below] are simply given by χ� = g�, where g = χ1 is the asymmetry factor defined in Equation (7).
The HG scattering phase function is useful for scatterers with sizes comparable to or larger than the
wavelength of light. Although the HG scattering phase function is easy to use, it is not as realistic as
the Fournier-Forand scattering phase function discussed in Section 3.6.1.

3.2. Scattering Phase Matrix

The theoretical development of vector radiative transfer theory may start with the Stokes vector
representation I = [I‖, I⊥, U, V]T , where the superscript T denotes the transpose. In terms of the
complex transverse electric field components of the radiation field E‖ = |E‖|e−iε1 and E⊥ = |E⊥|e−iε2 ,
these Stokes vector components are given by:

I‖ = E‖E∗
‖

I⊥ = E⊥E∗
⊥

U = 2|E‖||E⊥| cos δ

V = 2|E‖||E⊥| sin δ (11)

where δ = ε1 − ε2. The connection between this Stokes vector representation, I = [I‖, I⊥, U, V]T ,
and the more commonly used representation IS = [I, Q, U, V]T , where I = I‖ + I⊥ and Q = I‖ − I⊥,
is given by:

IS = DI (12)

where

D =

⎛⎜⎜⎜⎝
1 1 0 0
1 −1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎟⎠ , D−1 =
1
2

⎛⎜⎜⎜⎝
1 1 0 0
1 −1 0 0
0 0 2 0
0 0 0 2

⎞⎟⎟⎟⎠ . (13)
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The degree of polarization is defined as

p = [Q2 + U2 + V2]1/2/I (14)

so that 0 ≤ p ≤ 1, where p = 1 corresponds to completely polarized light and p = 0 to natural
(unpolarized) light. The degree of circular polarization is defined as

pc = V/I (15)

the degree of linear polarization as
pl = [Q2 + U2]1/2/I (16)

and alternatively, when U = 0 as

pl =
|Q|

I
=

|I⊥ − I‖|
I⊥ + I‖

. (17)

The transverse electric field vector [E‖, E⊥]T of the scattered field can be obtained in terms of the
transverse field vector [E‖0, E⊥0]

T of the incident field by a linear transformation:(
E‖
E⊥

)
= A

(
E‖0
E⊥0

)

where A is a 2 × 2 matrix, referred to as the amplitude scattering matrix, which includes a 1/r
dependence of the scattered field. The corresponding linear transformation connecting the Stokes
vectors of the incident and scattered fields in the scattering plane is called the Mueller matrix
(in the case of a single scattering event). For scattering by a small volume containing an ensemble of
particles, the ensemble-averaged Mueller matrix is referred to as the Stokes scattering matrix F. Finally,
when transforming from the scattering plane to a fixed laboratory frame, the corresponding matrix is
referred to as the scattering phase matrix P.

3.2.1. Stokes Vector Representation IS = [I, Q, U, V]T

The scattering geometry is illustrated in Figure 1. The plane AOB, defined as the scattering
plane, is spanned by the directions of propagation of the incident parallel beam with Stokes vector
Iinc

S and the scattered parallel beam with Stokes vector Isca
S . Here the subscript S pertains to the Stokes

vector representation IS = [I, Q, U, V]T . The scattered radiation, represented by the Stokes vector
Isca

S , is related to the incident radiation, represented by the Stokes vector Iinc
S , by a 4×4 scattering

matrix [see Equations (18) and (19) below] and two rotations are required to properly connect the
two Stokes vectors as explained below. We describe the Stokes vector of the incident beam in terms
of two unit vectors �̂′ and r̂′, which are normal to one another and to the unit vector Ω̂′ = r̂′ × �̂′

along the propagation direction of the incident beam. Similarly, we describe the Stokes vector of the
scattered beam in terms of two unit vectors �̂ and r̂, which are normal to one another and to the unit
vector Ω̂ = r̂ × �̂ along the propagation direction of the scattered beam. The unit vector �̂′ is along the
direction of E′

‖ of the incident beam and lies in the meridian plane of that beam, which is defined as the

plane OAC in Figure 1. Similarly, the unit vector �̂ is along the direction of E‖ of the scattered beam
and lies in the meridian plane of that beam, which is defined as the plane OBC in Figure 1. For the
incident beam, the unit vector �̂′, may be defined to be tangent at the point A to the unit circle passing
through the points A and C in Figure 1. For the scattered beam, the unit vector �̂ may be defined to be
tangent at the point B to the unit circle passing through the points B and C in Figure 1. For either beam,
its meridian plane acts as a plane of reference for the Stokes vector, so that the point A in Figure 1 is
the starting point for the unit vector Ω̂′ = r̂′ × �̂′ along the direction of propagation of the incident
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beam, and the point B in Figure 1 is the starting point for the unit vector Ω̂ = r̂ × �̂ along the direction
of propagation of the scattered beam.

As explained above, the Mueller matrix describes scattering by a single particle, and for scattering
by a small volume of particles, the ensemble-averaged Mueller matrix is referred to as the Stokes
scattering matrix FS. If any of the following conditions are fulfilled [15] (i) each particle in the volume
element has a plane of symmetry, and the particles are randomly oriented, (ii) each volume element
contains an equal number of particles and their mirror particles in random orientation, (iii) the particles
are much smaller than the wavelength of the incident light, then the Stokes scattering matrix in the
IS = [I, Q, U, V]T representation has the following form

FS(Θ) =

⎡⎢⎢⎢⎣
a1(Θ) b1(Θ) 0 0
b1(Θ) a2(Θ) 0 0

0 0 a3(Θ) b2(Θ)

0 0 −b2(Θ) a4(Θ)

⎤⎥⎥⎥⎦ . (18)

Each of the six independent matrix elements in Equation (18) depends on the scattering angle Θ,
and will in general also depend on the position in the medium. For spherical particles, the matrix in
Equation (18) simplifies, since a1 = a2 and a3 = a4, so that only four independent elements remain.

As already mentioned, two rotations are required to connect the Stokes vector of the scattered
radiation to that of the incident radiation. As illustrated in Figure 1, the first rotation is from the
meridian plane OAC, associated with the Stokes vector Iinc

S , into the scattering plane OAB, whereas
the second rotation is from the scattering plane OAB into the meridian plane OBC, associated with
the Stokes vector Isca

S . Hence, the Stokes vector for the scattered radiation is given by [16]

Isca
S = RS(π − i2)FS(Θ)RS(−i1)Iinc

S ≡ PS(Θ)Iinc
S . (19)

The matrix RS is called the Stokes rotation matrix. It represents a rotation in the clockwise
direction with respect to an observer looking into the direction of propagation, and can be written as
(0 ≤ ω ≤ 2π)

RS(ω) =

⎡⎢⎢⎢⎣
1 0 0 0
0 cos(2ω) − sin(2ω) 0
0 sin(2ω) cos(2ω) 0
0 0 0 1

⎤⎥⎥⎥⎦ . (20)

Hence, according to Equation (19), the scattering phase matrix, which connects the Stokes vector
of the scattered radiation to that of the incident radiation, is obtained from the Stokes scattering matrix
FS(Θ) in Equation (18) by

PS(θ
′, φ′; θ, φ) = RS(π − i2)FS(Θ)RS(−i1) = RS(−i2)FS(Θ)RS(−i1) (21)

where RS is the rotation matrix described in Equation (20) [16], and RS(π − i2) = RS(−i2) since the
rotation matrix is periodic with a period π.

According to Equation (19) (see also Figure 1), the Stokes vector Iinc
S of the incident parallel beam

must be multiplied by the rotation matrix RS(−i1) before it is multiplied by the Stokes scattering matrix
FS(Θ), whereafter it must be multiplied by the rotation matrix RS(π − i2). These matrix multiplications
are carried out explicitly in some radiative transfer (RT) models including Monte Carlo simulations,
while they are implicitly taken care of in other RT models such as the adding-doubling method [17]
and the discrete ordinate method [18,19] which use the expansion of the scattering phase matrix in
generalized spherical functions [20,21] as discussed in Section 3.2.3.

Carrying out the matrix multiplications in Equation (21) one finds:
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PS(Θ) =

⎡⎢⎢⎢⎣
a1 b1C1 −b1S1 0

b1C2 C2a2C1 − S2a3S1 −C2a2S1 − S2a3C1 −b2S2

b1S2 S2a2C1 + C2a3S1 −S2a2S1 + C2a3C1 −b2C2

0 −b2S1 −b2C1 a4

⎤⎥⎥⎥⎦ (22)

where ai = ai(Θ), i = 1, . . . , 4, bi = bi(Θ), i = 1, 2, and

C1 = cos 2i1, C2 = cos 2i2 (23)

S1 = sin 2i1, S2 = sin 2i2. (24)

A comparison of Equations (18) and (22) shows that only the corner elements of FS(Θ) remain
unchanged by the rotations of the reference planes. The (1,1)-element of the scattering phase matrix
PS(Θ) (and of the Stokes scattering matrix FS(Θ)) is the scattering phase function. Since also the
(4,4)-element of the scattering phase matrix remains unchanged by the rotations, the state of circular
polarization of the incident light does not affect the intensity of the scattered radiation after one
scattering event.

To compute PS(θ
′, φ′; θ, φ) given by Equation (21) we must relate the angles θ′, φ′, θ, and φ on the

left side with the angles i1, i2, and Θ on the right side. Using spherical geometry, we may apply the
cosine rule for Θ, θ, and θ′ successively, in Figure 1, to obtain (u = cos θ, u′ = cos θ′) [5]

cos Θ = uu′ + (1 − u2)1/2(1 − u′2)1/2 cos(φ′ − φ) (25)

cos i1 =
−u + u′ cos Θ

(1 − u′2)1/2(1 − cos2 Θ)1/2 (26)

cos i2 =
−u′ + u cos Θ

(1 − u2)1/2(1 − cos2 Θ)1/2 . (27)

The trigonometric functions for the double angles can be obtained by using

cos 2i = 2 cos2 i − 1 (28)

and
sin 2i = 2 sin i cos i (29)

or

sin 2i =

{
2(1 − cos2 i)1/2 cos i if 0 < φ′ − φ < π

−2(1 − cos2 i)1/2 cos i if π < φ′ − φ < 2π
(30)

where i is i1 or i2. We now have all the information needed to compute the scattering phase matrix [see
Equation (21)] as a function of the three variables u, u′ and φ′ − φ:

PS(u′, u, φ′ − φ) = RS(−i2)FS(Θ)RS(−i1).

If there is no difference in azimuth (i.e. φ′ − φ = 0), then the meridian planes of the incident and
scattered beams in Figure 1 coincide with the scattering plane. Hence there is no need to rotate the
reference planes (R(−i2) and R(−i1) both reduce to the identity matrix), so that

PS(u′, u, 0) = PS(u′, u, π) = FS(Θ). (31)

It follows from Equation (25) that the phase matrix is invariant to three basic changes in the polar
angles u′ and u and azimuthal angles φ′ and φ which leave the scattering angle unaltered: (i) changing
the signs of u and u′ simultaneously: PS(−u′,−u, φ′ − φ) = PS(u′, u, φ′ − φ), (ii) interchange of u and
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u′: PS(u′, u, φ′ − φ) = PS(u, u′, φ′ − φ) (iii) interchange of φ and φ′: PS(u′, u, φ′ − φ) = PS(u′, u, φ− φ′).
Also, if the b2-element in Equation (22) is zero, the circular polarization component decouples from
the other three components. Then, the Stokes parameter V is scattered independently of the others,
according to the phase function a4(Θ), and the remaining part of the scattering phase matrix referring
to I, Q, and U becomes a 3 × 3 matrix:

PS(Θ) =

⎡⎢⎣ a1 b1C1 −b1S1

b1C2 C2a2C1 − S2a3S1 −C2a2S1 − S2a3C1

b1S2 S2a2C1 + C2a3S1 −S2a2S1 + C2a3C1

⎤⎥⎦ . (32)

Finally, in a plane-parallel or slab geometry, there is no azimuth-dependence for light beams
traveling in directions perpendicular to the slab (either up or down). Thus, if either the incident or the
scattered beam travels in a perpendicular direction, we may use the meridian plane of the other beam
as a reference plane for both beams. Since this plane coincides with the scattering plane, Equation (31)
applies in this situation too.

3.2.2. Stokes Vector Representation I = [I||, I⊥, U, V]T

The Stokes vector I = [I||, I⊥, U, V]T is related to IS = [I, Q, U, V]T by

IS = DI (33)

where D is given by Equation (13), so that I = I|| + I⊥, and Q = I|| − I⊥. Denoting the Stokes vector
obtained after a rotation by

I′S = RS(ω)IS (34)

we find
I′ = D−1I′S = D−1RS(ω)IS = D−1RS(ω)D I = R(ω)I. (35)

Hence, the rotation matrix for the Stokes vector in the representation I = [I||, I⊥, U, V]T becomes:

R(ω) = D−1RS(ω)D =

⎡⎢⎢⎢⎣
cos2 ω sin2 ω − 1

2 sin(2ω) 0
sin2 ω cos2 ω 1

2 sin(2ω) 0
sin(2ω) − sin(2ω) cos(2ω) 0

0 0 0 1

⎤⎥⎥⎥⎦ . (36)

The scattering phase matrix P(Θ) in the Stokes vector representation I = [I||, I⊥, U, V]T is related
to scattering phase matrix PS(Θ) in the Stokes vector representation IS = [I, Q, U, V]T by

P(Θ) = D−1PS(Θ)D. (37)

Similarly, the Stokes scattering matrix F(Θ) associated with the Stokes vector representation
I = [I||, I⊥, U, V]T is related to the Stokes scattering matrix FS(Θ) in Equation (18) by

F(Θ) = D−1FS(Θ)D =

⎛⎜⎜⎜⎝
1
2 (a1 + a2 + 2b1)

1
2 (a1 − a2) 0 0

1
2 (a1 − a2)

1
2 (a1 + a2 − 2b1) 0 0

0 0 a3 b2

0 0 −b2 a4

⎞⎟⎟⎟⎠ . (38)

For Rayleigh scattering with parameter f = 1−ρ
1+ρ , where ρ is the depolarization factor defined in

Equation (43), the Stokes scattering matrix in the Stokes vector representation IS = [I, Q, U, V]T is
given by [16,22]
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FS(Θ) =
3

3 + f

⎡⎢⎢⎢⎣
1 + f cos2 Θ − f sin2 Θ 0 0
− f sin2 Θ f (1 + cos2 Θ) 0 0

0 0 2 f cos Θ 0
0 0 0 (3 f − 1) cos Θ

⎤⎥⎥⎥⎦ . (39)

For the first scattering event of unpolarized light, only the (1,1)-element of Equation (39) matters,
and leads to the scattering phase function given by Equation (9).

In the Stokes vector representation I = [I||, I⊥, U, V]T , the corresponding Stokes scattering matrix
for Rayleigh scattering becomes (using Equations (38) and (39) [16]):

F(Θ) =
3

2(1 + 2ζ)

⎛⎜⎜⎜⎝
cos2 Θ + ζ sin2 Θ ζ 0 0

ζ 1 0 0
0 0 (1 − ζ) cos Θ 0
0 0 0 (1 − 3ζ) cos Θ

⎞⎟⎟⎟⎠ (40)

where ζ = ρ/(2 − ρ) = 1− f
1+3 f .

From Equation (40) we see that for an incident beam of natural unpolarized light given by
Iinc = [Iinc

‖ , Iinc
⊥ , Uinc, Vinc]T = [ 1

2 Iinc, 1
2 Iinc, 0, 0]T , the scattered intensities in the plane parallel and

perpendicular to the scattering plane are obtained by carrying out the multiplication Isca = F(Θ)Iinc:

Isca
‖ ∝

3
4(1 + 2ζ)

[2ζ + (1 − ζ) cos2 Θ]Iinc (41)

Isca
⊥ ∝

3
4(1 + 2ζ)

[(1 + ζ)]Iinc. (42)

Thus, for unpolarized incident light, the scattered light at right angles (Θ = 90◦) to the direction
of incidence defines the depolarization ratio:

ρ ≡
(

Isca
‖

Isca
⊥

)
Θ=90◦

=
2ζ

1 + ζ
(43)

whereas the degree of linear polarization becomes [Equation (17)]:

pl =
I⊥ − I‖
I⊥ + I‖

=
(1 − ζ)(1 − cos2 Θ)

1 + 3ζ + (1 − ζ) cos2 Θ
→ 1 − ζ

1 + 3ζ
=

1 − ρ

1 + ρ
= f as Θ → 90◦.

3.2.3. Generalized Spherical Functions—The “Greek Constants”

For unpolarized radiation, only the a1(Θ) element of the Stokes scattering matrix Equation (18) is
relevant, and this element is the scattering phase function given by Equation (5) in general, and by
Equation (9) for Rayleigh scattering. As discussed below, the scattering phase function can be expanded
in Legendre polynomials (see Equation (116)), enabling one to express it as a Fourier cosine series (see
Equation (115)).

In a similar manner, the scattering phase matrix can be expanded in generalized spherical
functions. In the Stokes vector representation IS = [I, Q, U, V]T , the scattering phase matrix is
PS(Θ) = PS(u′, u; φ′ − φ) with u = cos θ, θ being the polar angle after scattering, and u′ = cos θ′,
θ′ being the polar angle prior to scattering. Similarly, φ and φ′ are the azimuth angles after and prior to
scattering, respectively. To accomplish the expansion in generalized spherical functions, the scattering
phase matrix is first expanded in a (M + 1)-term Fourier series in the azimuth angle difference
(Δφ = φ′ − φ):
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PS(u′, u; Δφ) =
M

∑
m=0

{Pm
c (u

′, u)cos m(Δφ) + Pm
s (u

′, u)sin m(Δφ)} (44)

where Pm
c (u′, u) and Pm

s (u′, u) are the coefficient matrices of the cosine and sine terms, respectively,
of the Fourier series.

An addition theorem for the generalized spherical functions can be used to express the Fourier
expansion coefficient matrices directly in terms of the expansion coefficients of the Stokes scattering
matrix FS(Θ) [see Equation (18)] as follows [20,21,23]:

Pm
c (u

′, u) = Am(u′, u) + Δ3,4Am(u′, u)Δ3,4 (45)

Pm
s (u

′, u) = Am(u′, u)Δ3,4 − Δ3,4Am(u′, u) (46)

where Δ3 = diag(1, 1,−1, 1). The matrix Am(u′, u) is given by:

Am(u′, u) =
M

∑
�=m

Pm
� (u)Λ�P

m
� (u

′) (47)

where

Λ� =

⎛⎜⎜⎜⎝
α1,� β1,� 0 0
β1,� α2,� 0 0

0 0 α3,� β2,�
0 0 −β2,� α4,�

⎞⎟⎟⎟⎠ (48)

and

a1(Θ) =
M

∑
�=0

α1,�P0,0
� (cos Θ) (49)

a2(Θ) + a3(Θ) =
M

∑
�=2

(α2,� + α3,�)P2,2
� (cos Θ) (50)

a2(Θ)− a3(Θ) =
M

∑
�=2

(α2,� − α3,�)P2,−2
� (cos Θ) (51)

a4(Θ) =
M

∑
�=0

α4,�P0,0
� (cos Θ) (52)

b1(Θ) =
M

∑
�=2

β1,�P0,2
� (cos Θ) (53)

b2(Θ) =
M

∑
�=2

β2,�P0,2
� (cos Θ). (54)

Here the so-called “Greek constants” αj,� and β j,� are expansion coefficients, and aj(Θ) and bj(Θ)

are the elements of the Stokes scattering matrix FS(Θ) in Equation (18). An example of Greek constants
for Rayleigh scattering is provided in Table 1 (see [24]):

Table 1. Expansion Coefficients for Rayleigh Scattering.

� α1,� α2,� α3,� α4,� β1,� β2,�

0 1 0 0 0 0 0
1 0 0 0 3d/2 0 0
2 c/2 3c 0 0

√
3/2c 0
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where

c =
2(1 − ρ)

2 + ρ
d =

2(1 − 2ρ)

2 + ρ

and ρ is the depolarization ratio given by Equation (43).
The matrix Pm

� (u) occurring in Equation (47) is defined as:

Pm
� (u) =

⎛⎜⎜⎜⎝
Pm,0
� (u) 0 0 0

0 Pm,+
� (u) Pm,−

� (u) 0
0 Pm,−

� (u) Pm,+
� (u) 0

0 0 0 Pm,0
� (u)

⎞⎟⎟⎟⎠ (55)

where
Pm,±
� (u) =

1
2
[Pm,−2

� (u)± Pm,2
� (u)] (56)

and the functions Pm,0
� (u) and Pm,±2

� (u) are the generalized spherical functions. More details about these
functions and how they are computed are available in Appendix B of the book by Hovenier et al. [5].

We note that in the scalar (unpolarized) case all the components of the Stokes scattering matrix
FS(Θ) [see Equation (18)] are zero except for a1(Θ), and:

a1(Θ) =
M

∑
�=0

α1,�(τ)P0,0
� (cos Θ) ≡ p(τ, cos Θ) ≈

M

∑
�=0

(2�+ 1)χ�(τ)P�(cos Θ) (57)

since P0,0
� (cos Θ) ≡ P�(cos Θ), where P�(cos Θ) is the Legendre polynomial of order �, and α1,�(τ) ≡

(2�+ 1)χ�(τ). Note also that the expansion coefficients given above are for the scattering phase matrix
PS(Θ), which relates the incident and scattered Stokes vectors in the representation IS = [I, Q, U, V]T .

3.3. IOPs for a Size Distribution of Particles

Particles encountered in nature consist of a variety of chemical compositions, sizes, and shapes.
The chemical composition determines the refractive index of the particle, and unless the composition
is the same throughout the particle, the refractive index will depend on location inside the particle.
The computation of IOPs for such a collection of particles requires solutions of Maxwell’s equations
for electromagnetic radiation interacting with an inhomogeneous, non-spherical particle of a given
size. Then one needs to integrate over size and shape for particles of a given chemical composition,
and finally average over the particle composition. To avoid having to deal with this complexity it
is frequently assumed that the particles are homogeneous with a constant refractive index, and that
the shape can be taken to be spherical. Even with these assumptions, one still needs to deal with the
variety of particles sizes encountered in nature.

For a spherical particle with a specified radius and refractive index, Mie theory (and its numerical
implementation) may be used to generate IOPs for a single particle. Thus, if we have computed the
IOPs for a single spherical particle with specified refractive index and a given size, we may compute
the absorption and scattering coefficients and the scattering phase function for a polydispersion of
particles by integrating over the particle size distribution (PSD):

αp(λ) =
∫ rmax

rmin

αn(λ, r)n(r)dr =
∫ rmax

rmin

πr2Q′
α(λ, r)n(r)dr (58)

βp(λ) =
∫ rmax

rmin

βn(λ, r)n(r)dr =
∫ rmax

rmin

πr2Q′
β(λ, r)n(r)dr (59)

pp(λ, Θ) =

∫ rmax
rmin

p(λ, Θ, r)n(r)dr∫ rmax
rmin

n(r)dr
(60)
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where n(r) is the PSD and αn(λ, r), βn(λ, r), and p(λ, Θ, r) are the absorption cross section,
the scattering cross section, and the scattering phase function per particle of radius r. The absorption
or scattering “efficiency”, Q′

α(r) or Q′
β(r), is defined as the ratio of the absorption or scattering cross

section for a spherical particle of radius r to the geometrical cross section πr2. The scattering phase
function p(λ, Θ, r) in Equation (60) is the a1(Θ) element of the Stokes scattering matrix [Equation (18)].
Since a Mie code can be used to compute all elements of the Stokes scattering matrix in Equation (18),
we may use an expression analogous to Equation (60) to carry out the integration over the PSD for
each of the matrix elements.

IOPs for a Mixture of Different Particle Types

Consider a particle mixture consisting of a total of N particles per unit volume in a layer of
thickness Δz, and let N = ∑i ni and fi = ni/N, where ni is the concentration and fi the fraction
of homogeneous particles (with fixed chemical composition or refractive index) of type labeled
i. To compute IOPs for the mixture of particles, we define βn,i = scattering cross section, αn,i =

absorption cross section, γn,i = βn,i + αn,i = extinction cross section, and �i = βn,ini/γn,ini =

βi/γi = single-scattering albedo, where the subscript i stands for particle type. Weighting by number
concentration may be used to create IOPs for the particle mixture. Thus, by combining the absorption
and scattering cross sections, and the moments of the scattering phase matrix elements, one obtains
the following IOPs for the mixture (subscript m stands for mixture):

Δτm = Δz ∑
i

niγn,i = Δz ∑
i

γi = γmΔz (61)

�m =
βm

γm
=

∑i βn,ini

∑i γn,ini
=

∑i βi

∑i γi
=

∑i �iγn,i fi

∑i γn,i fi
(62)

χm,� =
∑i βn,iniχi,�

∑i βn,ini
= N

∑i βn,i fiχi,�

βm
=

∑i fi�iγn,iχi,�

∑i fiβn,i
(63)

where Δτm = layer optical depth; βm = total scattering coefficient; γm = total extinction coefficient;
�m = single-scattering albedo; and χm,� = scattering phase function expansion coefficient for the
particle mixture. A mixing rule similar to Equation (63) may be used for each element of the scattering
phase matrix.

3.4. Atmosphere IOPs

The stratified vertical structure of the bulk properties of an atmosphere is a consequence of
hydrostatic balance. By equating pressure forces and gravitational forces and invoking the ideal gas
law, one may derive the barometric law for the pressure p(z) as function of altitude z above the surface
z0 [14]:

p(z) = p(z0) exp
[
−

∫ z

z0

dz′/H(z′)
]

(64)

where H(z) = kT(z)/M̄g is the atmospheric scale height, M̄ is the mean molecular weight, k is is
Boltzmann’s constant, g is the acceleration due to gravity, and T(z) is the temperature. The ideal gas
law allows one to write similar expressions for the bulk density ρ(z) and the bulk concentration n(z).
Clearly, from a knowledge of the surface pressure p(z0) and the variation of the scale height H(z) with
height z, Equation (64) allows us to determine the bulk gas properties at any height. Equation (64)
applies to well-mixed gases, but not to short-lived species such as ozone, which is chemically created
and destroyed, or water, which undergoes phase changes on short time scales.

3.4.1. Gases in the Earth’s Atmosphere

The total number of air molecules in a 1 m2 wide vertical column extending from sea level to the
top of the atmosphere is about 2.15 × 1029. In comparison, the total amount of ozone (a trace gas) in

149



Appl. Sci. 2018, 8, 2682

the same vertical column is about 1.0 × 1023. Anderson et al. [25] compiled six model atmospheres
including, (i) the US Standard atmosphere 1976, (ii) tropical, (iii) midlatitude summer, (iv) midlatitude
winter, (v) subarctic summer, and (vi) subarctic winter (see Appendix U of [14] for a numerical
tabulation of these models). These atmospheric models contain profiles of temperature, pressure,
and the concentrations of the main atmospheric constituents, molecular nitrogen (N2) and molecular
oxygen (O2). In addition, they contain profiles of the concentrations of several trace gases including
water vapor (H2O), ozone O3, carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), and the
chlorofluoromethanes (CFCs) in the Earth’s atmosphere.

The clear atmosphere (no clouds or aerosols) molecular (Rayleigh) scattering coefficient can be
expressed as

σRay(λ, z) ≡ σRay,nn(z) =
32π3(mr − 1)2

3λ4n(z)
[m−1] (65)

where n(z) is the bulk air concentration (see Equation (64)), mr is the real part of the refractive index,
and σRay,n is the Rayleigh scattering cross section. Please note that since mr depends on wavelength,
the Rayleigh scattering coefficient does not have an exact λ−4 dependence. For air, a convenient
numerical formula for the Rayleigh scattering cross section (accurate to 0.3%) is given by [14]

σRay,n = λ−4
3

∑
i=0

aiλ
−2i × 10−28 [cm2] (0.205 < λ < 1.05 μm)

where the coefficients are a0 = 3.9729066, a1 = 4.6547659 × 10−2, a2 = 4.5055995 × 10−4,
and a3 = 2.3229848 × 10−5. The scattering phase function is given by Equation (9).

Computer codes like MODTRAN [26,27] have been developed to provide atmospheric
transmittance and thereby absorption coefficients for all important atmospheric trace gases for a
large variety of atmospheric conditions. In AccuRT we use a band model based on MODTRAN [28]
to generate absorption coefficients and optical depths due to atmospheric gases including O2, H2O,
CO2, O3, CH4, and NO2. An example of how to use this approach to deal with gaseous absorption in
shortwave near infrared bands for an atmosphere overlying a snow surface is provided in [29].

3.4.2. Aerosol IOPs

If we know the size distribution and the refractive index of the aerosol particles, we may use
available aerosol models to generate aerosol IOPs. For example, one may use the aerosol models
employed in the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Database Analysis System
(SeaDAS), and described by Ahmad et al. [30]. Alternatively, we may use the OPAC models [31].
For atmospheric correction of ocean color imagery, it is customary to assume a lognormal distribution
of aerosol sizes [32]. Based on AERONET data [33,34], Ahmad et al. [30] adopted a bimodal lognormal
volume size distribution:

v(r) =
dV(r)

dr
=

1
r

dV(ln r)
d ln r

=
2

∑
i=1

Vi√
2πσi

1
r

exp

[
−

(
ln r − ln rvi√

2σi

)2]
(66)

where the subscript i represents the mode, Vi is the total volume of particles with mode i, rvi is the
mode radius, also called the volume geometric mean radius, and σi is the geometric standard deviation.
Please note that since the numerator in the exponential of Equation (66), ln(r/rvi), is dimensionless, so
is σi. Since ∫ ∞

0

dr√
2πσ

1
r

exp

[
−

(
ln r − ln rv√

2σ

)2]
= 1

integration over all sizes for both modes, yields:
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∫ ∞

0
v(r)dr = V1 + V2 = V.

In terms of the number density (concentration), Equation (66) becomes

n(r) =
dN(r)

dr
=

1
r

dN(r)
d(ln r)

=
2

∑
i=1

Ni√
2πσi

1
r

exp

[
−

(
ln r − ln rni√

2σi

)2]
(67)

where the number of particles Ni and the mean geometric (or mode) radius rni are related to Vi and rvi
as follows

ln rni = ln rvi − 3σ2
i (68)

Ni =
Vi

4
3 πr3

ni
exp(−4.5σ2

i ) (69)

and integration over all sizes for both modes, yields:∫ ∞

0
n(r)dr = N1 + N2 = N.

If we use the subscript i = f to denote the fine mode, and the subscript i = c to denote the coarse
mode, we have V = Vf + Vc, and the volume fraction of fine mode particles becomes fv = Vf /V.

Relationship between Effective Radius and Mode Radius

The particle size distribution may also be characterized by an effective radius

reff =

∫ rmax
rmin

n(r)r3dr∫ rmax
rmin

n(r)r2dr
(70)

and an effective variance

veff =

∫ rmax
rmin

(r − reff)
2n(r)r2dr

r2
eff

∫ rmax
rmin

n(r)r2dr
(71)

where r2
eff is included in the denominator of Equation (71) to make veff dimensionless [35]. The effective

radius, reff, can be used to describe the IOPs in an approximate manner as will be discussed below for
cloud as well as snow/ice materials. For a single mode, the lognormal size distribution is given by
[see Equation (67)]

n(r) =
dN(r)

dr
=

N√
2πσ

1
r

exp

[
−

(
ln r − ln rn√

2σ

)2]

where rn is the mode radius, n(r) is the number density or PSD in units of [m−3 · m−1] and
N =

∫ ∞
0 n(r)dr [m−3] is the total number of particles per unit volume since

∫ ∞

0

dr√
2πσ

1
r

exp

[
−

(
ln r − ln rn√

2σ

)2]
= 1. (72)

With the change of variable x = ln(r/rn)√
2σ

, Equation (72) becomes

1√
π

∫ +∞

−∞
exp(−x2)dx = 1 (73)

and it can be shown that [35]:
reff = rn exp[2.5σ2], (74)
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and
veff = exp [σ2]− 1 (75)

(see [3] for details).

Impact of Relative Humidity

A change in the relative humidity (RH) will affect bot the size and refractive index of a particle.
The particle radius can be parameterized as a function of RH from the wet-to-dry mass ratio:

r(aw) = r0

[
1 + ρ

mw(aw)

m0

]1/3
(76)

where the water activity aw of a soluble aerosol at radius r [μm] can be expressed as

aw = RH exp
[−2σVm

RwT
1

r(aw)

]
. (77)

Here r0 is the dry particle radius (RH = 0), ρ is the particle density relative to that of water, mw(aw)

is the mass of condensed water, m0 is the dry particle mass (RH = 0), σ is the surface tension on the
wet surface, Vm is the specific volume of water, Rw is the gas constant for water vapor, and T is the
absolute temperature [K] [36]. Similarly, the change in refractive index with RH can be determined
from [36]

m̃c = m̃c,w + (m̃c,0 − m̃c,w)
[ r0

rRH

]3
(78)

where m̃c,w and m̃c,0 are the complex refractive indices of water and dry aerosols, respectively, and r0

and rRH are the radii of the aerosols in the dry state and at the given RH, respectively. From these
formulas we note that the magnitude of the particle growth and the change of refractive index with
increasing RH depend on the size r0 of the dry aerosol but also on the type of aerosol through the
water uptake [the ratio mw(aw)/m0 in Equation (76)] [36–38].

A Mie code [39] is needed to compute the IOPs of aerosol particles [Q′
α(r), Q′

β(r), and pp(λ, Θ, r) in
Equations (58)–(60)], and numerical integration is required to evaluate the integrals over the lognormal
size distributions to obtain αp(λ), βp(λ), and pp(λ, Θ). For polarized radiation all elements of the
scattering phase matrix as well as the Greek constants appearing in Equation (48) must be computed.
For a bimodal lognormal volume size distribution [Equation (66)] one must specify the fine mode
volume fraction fv = Vf /V, where V = Vf + Vc, the volume mode radii rv f and rvc as well as the
corresponding standard deviations σf and σc in addition to the refractive index of the particles relative
to air.

In analogy to the liquid water content (see Equation (81) below), we may introduce the aerosol
mass content (AMC) for each mode defined as

AMC = ρa

∫ rmax

rmin

(
4π

3

)
r3n(r)dr ≡ ρa fV [kg · m−3] (79)

where n(r) is the aerosol size distribution [m−3 · m−1], ρa is the bulk aerosol density [kg · m−3], and
fV is the aerosol volume fraction (not to be confused with the fine mode volume fraction, fv) given by:

fV ≡
∫ rmax

rmin

(
4π

3

)
r3n(r)dr = AMC/ρa (dimensionless). (80)

Typical values of atmospheric aerosol densities are ρa ≈ 1 g · cm−3 = 1 × 106 g · m−3. Hence,
an AMC value of 10−6 g · m−3 would yield fV = 10−12.
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3.4.3. Cloud IOPs

Clouds consist of liquid water droplets or ice (frozen water) particles. While liquid water droplets
can be assumed to have spherical shape, ice crystals can have a variety of non-spherical shapes.
If we assume for simplicity that all cloud particles consist of spherical water droplets or spherical ice
particles, (For ice crystals, a spherical model may be unrealistic. For a good introduction to this topic,
see the textbook by Wendisch and Yang [40].) we can use a Mie code to compute their IOPs because
their refractive index is known. Hence, we may use Equations (58)–(60) to compute αp(λ), βp(λ),
and pp(λ, Θ).

The real part of the refractive index of pure water needed in the Mie computations may be
taken from [41], while the imaginary part m̃i,w is calculated from the absorption coefficient (αw(λ) =

4πm̃i,w/λ) obtained from published data [42–44] for wavelengths between 340 and 700 nm, and from
another source [45] for wavelengths between 720 and 900 nm.

It is customary to introduce the liquid water content (LWC) defined as

LWC ≡ ρw

∫ rmax

rmin

(
4π

3

)
r3n(r)dr ≡ ρw fV [kg · m−3] (81)

where n(r) is the cloud droplet size distribution [m−3 · m−1] and ρw is the liquid water mass density
[kg · m−3] and fV stands for the dimensionless liquid (cloud) particle volume fraction defined in a
similar manner as AMC in Equation (80), i.e., fV = LWC/ρw. For a liquid water cloud, a typical value
for LWC is about 0.5 g · m−3, implying that fV = 5 × 10−7 for ρw = 103 kg · m−3. In Equation (70) for
the effective radius, the numerator is proportional to the concentration or LWC, while the denominator
is related to the scattering coefficient:

βc =
∫ ∞

0
dr(πr2)Qβ(r) n(r)dr [m−1].

If the size of the droplet is large compared to the wavelength λ, then Qβ(r) → 2. Therefore, in the
visible spectral range where 2πr/λ � 1, we find:

βc ≈
3
2

1
ρw

LWC
reff

=
3
2

fV

reff
[m−1]. (82)

For ice cloud particles assumed to be spherical in shape a similar expression for the scattering
coefficient is obtained with fV being the ice particle volume fraction. For a liquid water cloud with
fV = 5 × 10−7 and reff = 5 × 10−6 m, we get βc =

3
2

fV
reff

= 0.15 m−1, and hence an optical thickness of
15 for a 100 m thick cloud layer.

3.5. Snow and Ice IOPs

3.5.1. General Approach

Assuming that snow grains and sea ice inclusions have spherical shape, we may obtain their
IOPs from Mie computations, which require the refractive index and the size distribution of the
particles as input. Then, the IOPs, i.e., the absorption and scattering coefficients and the scattering
phase function, αp(λ), βp(λ), and pp(λ, Θ), can be obtained from Equations (58)–(60). This approach
leads to computed snow albedo values that agree surprisingly well with available observations [46,47].
The following reasons why large errors are not incurred by assuming spherical shape have been
advocated by Craig Bohren as quoted elsewhere [48]: The orientationally averaged extinction cross section
of a convex particle that is large compared with the wavelength is one-half its surface area. The absorption
cross section of a large, nearly transparent particle is proportional to its volume almost independent of its
shape. The closer the real part of the particle’s refractive index is to 1, the more irrelevant the particle shape.
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The asymmetry parameter of a large particle is dominated by near-forward scattering, which does not depend
greatly on particle shape.

Hence, we may assume that snow grains and ice inclusions (air bubbles and brine pockets) consist
of homogeneous spheres with a single-mode lognormal volume size distribution [see Equation (66)],
and use the refractive index data base for ice compiled by [49]. Specifying the effective radius reff
and the width of the distribution σ, one obtains the geometrical mean radius rn from Equation (74).
Since the complex refractive index is prescribed, rn and σ constitute the only input required for a
Mie code (see Section 3.4.2), which can be used to compute absorption and scattering coefficients as
well the scattering phase function. One may choose to use only the first moment of the scattering
phase function in conjunction with the Henyey-Greenstein scattering phase function because the Mie
scattering phase function is unrealistic for non-spherical snow grains and ice inclusions.

3.5.2. Fast, yet Accurate Parameterization of Snow/Ice IOPs

Building on previous work [50–52], Stamnes et al. [53] created a generic tool for computing
snow/ice IOPs (τ, �, and g). This tool can be used to generate wavelength-dependent ice/snow
IOPs from ice/snow physical parameters: real and imaginary parts of the ice/snow refractive index,
brine pocket concentration and effective size (sea ice), air bubble concentration and effective size (sea
ice), volume fraction and absorption coefficient of sea ice impurities, asymmetry factors for scattering
by snow grains, brine pockets, and air bubbles, and sea ice thickness. We can compute Q′

α(r), Q′
β(r),

and pp(λ, Θ, r) using a Mie code, but evaluation of Equations (58)–(60) requires knowledge of the
particle size distribution n(r), which is usually unknown. Equations (58)–(60) can be considerably
simplified by making the following assumptions [53]:

• The particle distribution is characterized by an effective radius [Equation (70)], which obviates
the need for an integration over r.

• The particles are weakly absorbing, so that [51]

Q′
α(r) ≡ Q′

α ≈
16π reff m̃i,p

3λ

1
mrel

[m3
rel − (m2

rel − 1)3/2] (83)

where m̃i,p is the imaginary part of the refractive index of the particle, λ is the wavelength in
vacuum, and mrel = m̃r,p/m̃r,med is the ratio of the real part of the refractive index of the particle
(m̃r,p) to that of the surrounding medium (m̃r,med).

• The particles are large compared to the wavelength (2πr/λ � 1) which implies

Q′
β(r) ≡ Q′

β = 2. (84)

The scattering phase function may be represented by the one-parameter Henyey-Greenstein
scattering phase function [see Equation (10)], which depends only on the asymmetry factor
defined in Equation (7).

With these assumptions, Equations (58)–(59) become:

αp(λ) = α(λ)
1

mrel

[
1 − (m2

rel − 1)3/2] fV (85)

βp(λ) =
3
2

fV

reff
. (86)

Here α(λ) = 4πm̃i,p/λ is the absorption coefficient of the material of which the particle is
composed, and fV ≡ 4π

3

∫
n(r)r3dr ≈ 4

3 πr3
effne, where ne = number of particles per unit volume with

radius reff. Since Equation (86) is identical to Equation (82), it is clear that fV represents the volume
fraction of the particles as defined in Equation (80).
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For wavelengths λ ≤ 1.2 μm, the absorption and scattering efficiency for snow grains, brine
inclusions in sea ice, and air bubbles in ice may be parameterized by Equations (83) and (84), and the
asymmetry factor g can be held constant with wavelength and set equal to 0.85, 0.89, and 0.997 for
air bubbles, snow grains, and brine pockets, respectively. To extend the validity to NIR wavelengths,
we may use the following modified parameterizations [53]:

Qα = 0.94[1 − exp(−Q′
α/0.94)]; Qβ = 2 − Qα; g = g(1−Qα)0.6

0 (87)

where Q′
α is given by Equation (83). Here g is the asymmetry factor of the scattering phase function,

and g0 is the asymmetry factor for non-absorbing particles. For large particles (r > ∼ 50 μm) g0

depends only on the real part of the refractive index. For a medium consisting of several absorbing
and scattering constituents the total absorption and scattering efficiencies are just the sum of those
due to the separate constituents. The optical thickness τ and single-scattering albedo � for a slab of
thickness h become [53]:

τ = πr2
effNh(Qα + Qβ); � =

Qβ

Qα + Qβ
(88)

where N is the total number of particles per unit volume, and Qα and Qβ are the total absorption and
scattering efficiencies, each equal to the sum of those due to the separate constituents. These modified
parameterizations work well for all wavelengths for Qα, while for Qβ and g they work well for
wavelengths shorter than about 2.8 μm, but deviate significantly from predictions by Mie theory for
longer wavelengths. Thus, for wavelengths longer than 2.8 μm one should preferably use results from
the computationally less efficient Mie theory. Note that for wavelengths shorter than 2.8 μm, where the
parameterizations work well, the variations in m̃r,p and m̃i,p are large. Thus, one would expect these
parameterizations to be valid for most types of large particles [53].

3.5.3. Impurities, Air Bubbles, Brine Pockets, and Snow

If the volume fraction of impurities within a snow grain or brine pocket is not too large, which is
the case for typical situations occurring in nature, scattering by impurities can be ignored, so that
their effects can be included by simply adding the imaginary part m̃i,imp of the refractive index for
impurities to m̃i,p in Equation (83). For typical impurities in snow and ice, the wavelength dependence
of m̃i,imp can be parameterized as [53]

m̃i,imp(λ) = m̃i,imp(λ0) (λ0/λ)η (89)

where η would be close to zero for black carbon, but larger for other impurities, and m̃i,imp(λ0 =

440 nm) has values that depend on the type of impurity. Equation (89) is based on the observation
that the absorption coefficient α of non-algal impurities tend to have a smooth increase towards
shorter wavelengths [54–57], and α is connected to the imaginary part of the refractive index through
α = 4π m̃i,imp/λ. For snow, the number of snow grain particles per unit volume is N = 1

4
3 πr3

eff

ρs
ρi

,

where reff is the effective particle radius, while ρs and ρi are the mass densities of snow and pure ice,
respectively. The optical thickness and the single-scattering albedo can be calculated from Equations (87)
and (88), using the refractive indices of pure ice [49] and impurities [Equation (89)].

We assume that sea ice consists of pure ice with embedded brine pockets, air bubbles,
and impurities. To include the effects of the embedded components, we first calculate the absorption
coefficient α for sea ice [53]

α = πr2
brNbrQα,br +

[
1 − 4

3
πr3

brNbr −
4
3

πr3
buNbu

] 4π(m̃i,p + fimpm̃i,imp)

λ
(90)

where fimp is the volume fraction of impurities, Nbr and Nbu are the number concentrations of brine
pockets and air bubbles, respectively, rbr and rbu are the corresponding effective radii, and Qα,br is the
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absorption efficiency for brine pockets. The two terms on the right side of Equation (90) represent
the absorption coefficients of brine pockets and surrounding ice (including impurities), respectively.
In Equation (90), we have used the general relation α = 4π m̃i,p/λ, where λ is the wavelength in
vacuum, and the expression inside the square brackets is the volume fraction of the ice surrounding all
brine pockets and bubbles.

The air bubbles were assumed to be non-absorbing (Qα,bu = 0), and the impurities were assumed
to be uniformly distributed in the ice with m̃i,p and m̃i,imp being the imaginary parts of the refractive
indices for pure ice and impurities, respectively. For brine pockets, which are in the liquid phase,
the refractive index of sea water was used. The volume fraction fimp of impurities typically lies in the
range between 1 × 10−7 and 1 × 10−5. The scattering coefficient β of sea ice is given by [53]

β = βbr + βbu; βbr = πr2
brNbrQβ,br; βbu = πr2

buNbuQβ,bu (91)

where βbr and βbu are the scattering coefficients for brine pockets and air bubbles, respectively,
and Qβ,br and Qβ,bu are the corresponding scattering efficiencies. Here we have ignored the scattering
coefficient for pure sea ice because it is very small compared to either βbr or βbu. The optical thickness
τ, the single-scattering albedo �, and the asymmetry factor g for sea ice now become

τ = (α + β)h; � =
β

α + β
; g =

βbrgbr + βbugbu
βbr + βbu

(92)

where h is the sea ice thickness.
The merit of these IOP parameterizations have been provided by comparisons with field

measurements and laboratory data [50–53].

3.6. Ocean IOPs—Bio-Optical Models

In open ocean water, it is customary to assume that the IOPs of particulate matter can be
parameterized in terms of the chlorophyll concentration. In coastal water, the IOPs will depend
on the presence of “impurities” consisting of inorganic (mineral) particles, organic (algae) particles,
and Colored Dissolved Organic Matter (CDOM) in addition to pure water. Due to the complexity of
coastal water, we introduce three bio-optical models that have been adopted to represent different
types of water. The CoastColour Round Robin (CCRR) model [58] is a useful proxy for turbid coastal
water frequently observed in estuary areas, where suspended sediment (i.e., mineral) particles have
a strong influence on water IOPs. The Santa Barbara Channel (SBC) and Garver-Siegel-Maritorena
(GSM) bio-optical models described below provide useful representations of clean to moderately
turbid water, where the IOPs are primarily dominated by algae. By varying the slope parameter S that
describe the CDOM spectral absorption (see Equation (109) below), the GSM model may be used to
represent CDOM dominated water.

As mentioned in Section 3.4.3, for pure water we may adopt the real part of the refractive index of
pure water from [41], and we use the absorption coefficient αw(λ) based on published data [42–44]
for wavelengths between 340 and 700 nm, and other data [45] for wavelengths between 720 and
900 nm. Pure water scattering coefficients βw(λ) are based on published data [7], and the Rayleigh
scattering phase function is given by Equation (9) with depolarization ratio ρ = 0.039, and thus
f = (1 − ρ)/(1 + ρ) = 0.925 (see Section 3.1.1).

3.6.1. The CCRR Water Impurity IOPs

Here we first describe a bio-optical model used in the CoastColour Round Robin (CCRR) effort [58].
The CCRR bio-optical model consists of the three input parameters chlorophyll concentration
(CHL), mineral concentration (MIN), and αCDOM(443), which are allowed to vary. According to
this decomposition into three basic components, the “mineral particle” component can include also
non-algae particles whose absorption does not covary with that of the algae particles [58].
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Mineral Particle IOPs

The absorption coefficient for mineral particles at 443 nm is given by [59] (Note on units:
αMIN(λ)/MIN = 0.041 has units [m2·g−1], so that if MIN has units of [g·m−3], then the units of
αMIN(λ) will be [m−1].):

αMIN(443) = 0.041 × 0.75 × MIN

and its spectral variation is described by [58,59]:

αMIN(λ) = αMIN(443)[exp(−0.0123(λ − 443))]. (93)

The scattering coefficient at 555 nm is given by [60]

βMIN(555) = 0.51 × MIN

and the spectral variation of the attenuation coefficient is

γMIN(λ) = γMIN(555)× (λ/λ0)
−c; c = 0.3749, λ0 = 555 nm (94)

where

γMIN(555) = αMIN(555) + βMIN(555)

= [0.041 × 0.75 exp(−0.0123(555 − 443)) + 0.51]× MIN

= 0.52 × MIN.

The spectral variation of the scattering coefficient for mineral particles follows from

βMIN(λ) = γMIN(λ)− αMIN(λ). (95)

The average Petzold phase function with a backscattering ratio of 0.019 [4], may be used to
describe the scattering phase function for mineral particles.

Algae Particle IOPs

The absorption coefficient for pigmented particles (algae particles or phytoplankton) can be
written [61]:

αpig(λ) = Aφ(λ)× [CHL]Eφ(λ) (96)

where Aφ(λ) and Eφ(λ) are given by [61], and where CHL is the chlorophyll concentration,
which represents the concentration of pigmented particles (algae particles or phytoplankton).

The attenuation coefficient for pigmented particles at 660 nm is given by [62]:

γpig(660) = γ0 × [CHL]η ; γ0 = 0.407; η = 0.795

and its spectral variation is taken to be [63]:

γpig(λ) = γpig(660)× (λ/660)ν (97)

where

ν =

{
0.5 × [log10 CHL − 0.3] 0.02 < CHL < 2.0

0 CHL > 2.0.

The spectral variation of the scattering coefficient for pigmented particles follows from the
difference:

βpig(λ) = γpig(λ)− αpig(λ). (98)
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The scattering phase function for pigmented particles may be described by the Fournier-Forand
phase function (see below) with a backscattering ratio equal to 0.006 [63,64].

CDOM IOPs

The absorption by CDOM is given by [60]:

αCDOM(λ) = αCDOM(443)× exp[−S(λ − 443)]; S = 0.0176. (99)

The total absorption and scattering coefficients due to water impurities for the CCRR IOP model
are given by:

αtot(λ) = αMIN(λ) + αpig(λ) + αCDOM(λ) (100)

βtot(λ) ≡ βp(λ) = βMIN(λ) + βpig(λ). (101)

Scattering Phase Function for Particles

Measurements have shown that the particle size distribution (PSD) function in oceanic water
can be accurately described by an inverse power law (Junge distribution) F(r) = Cr/rξ , where F(r) is
the number of particles per unit volume per unit bin width, and r [μm] is the radius of the assumed
spherical particle. Cr [cm−3 · μmξ−1] is the Junge coefficient, and ξ is the PSD slope, which typically
varies between 3.0 and 5.0 [65,66]. By assuming an inverse power law (Junge distribution) for the
PSD, [67] derived an analytic expression for the scattering phase function of oceanic water (hereafter
referred to as the FF scattering phase function), given by [64]

pFF(Θ) =
1

4π(1 − δ)2δν

{
ν(1 − δ)− (1 − δν) +

4
u2 [δ(1 − δν)− ν(1 − δ)]

}

+
1 − δν

180
16π(δ180 − 1)δν

180
[3 cos2 Θ − 1] (102)

where ν = 0.5(3 − ξ), u = 2 sin(Θ/2), δ ≡ δ(Θ) = u2

3(m̃r−1)2 , δ180 = δ(Θ = 180◦) = 4
3(m̃r−1)2 , Θ is the

scattering angle, and m̃r is the real part of the refractive index.
Integrating pFF(Θ) over the backward hemisphere (setting x = cos Θ), one obtains the

backscattering ratio or backscatter fraction defined in Equation (8) [64]

bFF =
1
2

∫ π

π/2
pFF(cos Θ) sin ΘdΘ =

1
2

∫ 1

0
pFF(−x)dx

= 1 − 1 − δν+1
90 − 0.5(1 − δν

90)

(1 − δ90)δ
ν
90

(103)

where δ90 = δ(Θ = 90◦) = 4
3(m̃r−1)2 sin2(45◦) = 2

3(m̃r−1)2 . Equation (103) can be solved for ν in terms
of bFF and δ90, implying that ν and thus ξ can be determined if the real part of the refractive index m̃r

and the backscatter ratio bFF are specified. As a consequence, the FF scattering phase function can be
evaluated from a measured value of bFF if the real part of the refractive index m̃r is known.

As already mentioned, in the CCRR bio-optical model, the Petzold scattering phase function with
a backscattering ratio of 0.019 is used to represent mineral (non-algal) particles. These scattering phase
functions are shown in Figure 2 together with the Rayleigh scattering phase function, which represents
scattering by water molecules.
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Figure 2. Rayleigh, Fournier-Forand, and Petzold scattering phase functions used to represent
scattering by water molecules, pigmented particles, and non-algal particles, respectively, in the CCRR
bio-optical model. To generate the FF scattering phase function the values ξ = 3.38 and m̃r = 1.068
were used.

A moment-fitting program [68] may be used to create Legendre expansion coefficients χ�,PET and
χ�,FF for the Petzold and FF scattering phase functions. Hence, the total scattering phase function
Legendre expansion coefficients are given by:

χ� =
βpig(λ)χ�,FF + βMIN(λ)χ�,PET + βw(λ)χ�,water

βpig(λ) + βMIN(λ) + βw(λ)
. (104)

Thus, to use the CCRR bio-optical model one must specify the three input parameters CHL, MIN,
and αCDOM(443).

3.6.2. The SBC and GSM Bio-Optical Models

Based on field measurements conducted in the Santa Barbara Channel and compiled in the
NOMAD data base [69], Li et al. [70] constructed a local bio-optical model representative for the SBC
coastal waters. Another frequently used bio-optical model is the GSM model [71,72], which is included
in NASA’s SeaDAS software package. GSM is a global model which has the same structure as the SBC
model, but with different coefficients.

In the SBC model, the water body, in addition to pure water, is assumed to be described by three
parameters that can be varied: (i) the chlorophyll concentration [CHL] (a proxy for the concentration
of pigmented particles), the CDOM absorption coefficient at 443 nm [αCDOM(443)], and the total
scattering coefficient at 443 nm [βtot(443)]. The IOPs of the SBC model are described by:

αSBC
pig (λ) = aSBC

1 (λ)[CHL]a2(λ) (105)

αSBC
CDOM(λ) = αSBC

CDOM(443) exp[−S(λ − 443)]; S = 0.012 (106)

βSBC
tot (λ) = βSBC

tot (443)(λ/443). (107)

Similarly, for the GSM model the IOPs are described by
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αGSM
pig (λ) = aGSM

1 (λ)[CHL] (108)

αGSM
CDOM(λ) = αGSM

CDOM(443) exp[−S(λ − 443)]; S = 0.0206 (109)

βGSM
tot (λ) = βGSM

tot (443)(λ/443)1.0337. (110)

Please note that the wavelength dependent factors aSBC
1 (λ) and a2(λ) in Equation (105) as well as

aGSM
1 (λ) in Equation (108) are determined from field measurements compiled in the NOMAD data

base. For simplicity we will assume here that αSBC
pig (λ) = αGSM

pig (λ) ≡ αCCRR
pig (λ), so that the difference

between the three models lies in the treatment of scattering and CDOM absorption.
For both the SBC and GSM models, CDOM represents a combination of colored dissolved organic

matter and mineral particles. Hence, values of αSBC
CDOM(443) in Equation (106) and αGSM

CDOM(443) in
Equation (109) should be compared to the sum αCCRR

CDOM(443) + 0.041 × 0.75 MIN. The total suspended
particle scattering coefficient is βSBC

tot (λ) and βGSM
tot (λ) in the SBC and GSM model, respectively, each

being comparable to βtot(λ) = βMIN(λ) + βpig(λ) in the CCRR model.
The most significant difference between these three models is that the SBC and GSM models do

not separately include mineral particles although the total scattering coefficient does include the total
suspended particle scattering. Another difference is that the CCRR model is based on three different
reference wavelengths, namely 443 nm for αMIN, 555 nm for γMIN, and 660 nm for αpig, while the SBC
and the GSM models are based only on 443 nm as a reference wavelength. In the SBC and GSM models
one may use the FF scattering phase function for pigments, but other scattering phase functions, such
as the Petzold scattering phase function may work better in coastal areas.

4. Radiative Transfer in Coupled Atmosphere-Water (Including Snow/ice) Systems

4.1. Radiative Transfer Equation—Unpolarized Radiation

In the AccuRT computational tool, one considers a coupled system consisting of two adjacent
slabs (atmosphere overlying a water body) separated by a plane, horizontal interface. The refractive
index changes abruptly across this interface from a value m̃c,1 in the upper slab (hereafter slab1, the
atmosphere) to a value m̃c,2 in the lower slab (hereafter slab2, a water body). If the IOPs in each of the
two slabs vary only in the vertical direction denoted by z, where z increases upward, the corresponding
vertical optical depth, denoted by τ(z), is defined by

τ(z) =
∫ ∞

z
[α(z′) + β(z′)]dz′ (111)

where the absorption and scattering coefficients α and β are defined in Equations (1). Please note
that the vertical optical depth is defined to increase downward from τ(z = ∞) = 0 at the top of the
atmosphere. In either of the two slabs, assumed to be in local thermodynamic equilibrium so that they
emit radiation according to the local temperature T(τ(z)), the diffuse radiance distribution I(τ, u, φ)

can be described by the radiative transfer equation (RTE)

μ
dI(τ, u, φ)

dτ
= I(τ, u, φ)− S(τ, u′, φ′) (112)

where

S(τ, u′, φ′) = S∗(τ, u′, φ′) + [1 − �(τ)]B(τ) +
�(τ)

4π

∫ 2π

0
dφ′

∫ 1

−1
p(τ, u′, φ′; u, φ)I(τ, u′, φ′)du′. (113)

Here u is the cosine of the polar angle θ, φ is the azimuth angle, �(τ) = β(τ)/[α(τ) + β(τ)] is
the single-scattering albedo, p(τ, u′, φ′; u, φ) is the scattering phase function defined by Equation (5),
and B(τ) is the thermal radiation field given by the Planck function. The differential vertical optical
depth is (see Equation (111))
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dτ(z) = −[α(τ) + β(τ)]dz (114)

where the minus sign indicates that τ increases in the downward direction, whereas z increases in the
upward direction, as noted above. The scattering angle Θ and the polar and azimuth angles are related
by (see Equation (25))

Ω̂′ · Ω̂ = cos Θ = cos θ cos θ′ + sin θ′ sin θ cos(φ′ − φ).

By definition, θ = 180◦ is directed toward nadir (straight down) and θ = 0◦ toward zenith
(straight up). Thus, u = cos θ varies in the range [−1, 1] (from nadir to zenith). For cases of oblique
illumination of the system, φ = 180◦ is defined to be the azimuth angle of the incident light.

4.1.1. Isolation of Azimuth Dependence

The azimuth dependence in Equation (112) may be isolated by expanding the scattering phase
function in Legendre polynomials, P�(cos Θ), and making use of the addition theorem for spherical
harmonics [14]

p(cos Θ) = p(u′, φ′; u, φ) =
2N−1

∑
m=0

(2 − δ0,m)pm(u′, u) cos m(φ′ − φ) (115)

where δ0,m is the Kronecker delta, i.e., δ0,m = 1 for m = 0 and δ0,m = 0 for m �= 0, and

pm(u′, u) =
2N−1

∑
�=m

(2l + 1)χ�Λ
m
� (u

′)Λm
� (u). (116)

Here

χ� =
1
2

∫ 1

−1
P�(cos Θ)p(cos Θ)d(cos Θ) (117)

is an expansion coefficient and Λm
� (u) is given by

Λm
� (u) ≡

√
(�− m)!
(�+ m)!

Pm
� (u) (118)

where Pm
� (u) is an associated Legendre polynomial of order m. Expanding the radiance in a similar way,

I(τ,u, φ) =
2N−1

∑
m=0

Im(τ,u) cos m(φ − φ0) (119)

where φ0 is the azimuth angle of the incident light, one finds that each Fourier component satisfies the
following RTE (see [14] for details)

μ
dIm(τ, u)

dτ
= Im(τ, u)− �(τ)

2

∫ 1

−1
pm(τ, u′, u) Im(τ, u)dμ − S∗m(τ, u) (120)

where m = 0, 1, 2, . . . , 2N − 1 and pm(μ′, μ) is given by Equation (116).

4.1.2. The Interface between the Two Slabs—Calm (Flat) Water Surface

When a beam of light is incident upon a plane interface between two slabs of different refractive
indices, one fraction of the incident light will be reflected and another fraction will be transmitted
or refracted. For unpolarized light incident upon the interface between the two slabs, the Fresnel
reflectance ρF is given by
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ρF =
1
2
(ρ⊥ + ρ‖) (121)

where ρ⊥ is the reflectance for light polarized with the electric field perpendicular to the plane of
incidence, and ρ‖ is the reflectance for light polarized with the electric field parallel to the plane of
incidence [3,14,73,74]. Thus, one finds

ρF =
1
2

[∣∣∣∣ μ1 − mratμt

μ1 + mratμ2

∣∣∣∣2 + ∣∣∣∣μ2 − mratμ1

μ2 + mratμ1

∣∣∣∣2
]

(122)

where μ1 ≡ μair = cos θ1, θ1 being the angle of incidence, μ2 ≡ μocn = cos θ2, θ2 being the angle of
refraction determined by Snell’s law (m̃r,1 sin θ1 = m̃r,2 sin θ2), and mrat = m̃c,2/m̃c,1. Similarly, the
Fresnel transmittance becomes

TF = 2mrelμiμt

[∣∣∣∣ 1
μi + mratμt

∣∣∣∣2 + ∣∣∣∣ 1
μt + mratμi

∣∣∣∣2
]

(123)

where mrel = m̃r,2/m̃r,1.

4.1.3. A Wind-Blown (Rough) Air-Water Interface—Pseudo-Two-Dimensional BRDF Treatment

A calm (flat) atmosphere-water interface occurs only for very low wind speeds. A wind-roughened
water surface occurs more frequently and is therefore more realistic.

Consider a Cartesian coordinate system (x, y, z) in which z is the vertical coordinate. To calculate
the slope distribution, p(zx, zy), we consider a plane wave incident on a rough surface characterized
by a Gaussian random height distribution z = f (x, y) = f (r⊥) where f (r⊥) = f (x, y) with mean
height 〈z〉 = 〈 f (x, y)〉 ≡ 〈 f (r⊥)〉 = 0. We now focus on a particular tilted surface facet that makes a
polar angles θn with respect to the vertical direction and a relative azimuth angle α. Let the incident
solar radiance Ii be at a zenith angle θ0, the reflected radiance Ir be at zenith angle θ, and the relative
azimuth between Ii and Ir be at angle Δφ. Then the slope of the tilted surface facet has components zx

and zy defined by:

zx =
∂z
∂x

=
∂ f (x, y)

∂x
= sin α tan θn zy =

∂z
∂y

=
∂ f (x, y)

∂y
= cos α tan θn.

For an anisotropic distribution of slope components (dependent on the wind direction), we define
new slope components as follows:

z′x = cos(χ)zx + sin(χ)zy z′y = − sin(χ)zx + cos(χ)zy

where χ = φs − φW = rotation from the sun-observation system (x, y, z) and φW = the wind direction.
The slope distribution can be written as a Gram-Charlier series [75]:

p(z′x, z′y) =
1

2πσxσy
exp [−1

2
(

z′x
2

σ2
x
+

z′y
2

σ2
y
)]
[
1 − Δ(ξ, η)

]
(124)

where ξ = z′x
σx

, η =
z′y
σy

, σ2
x and σ2

y are variances of z′x and z′y, and the function Δ(ξ, η) represents the
departure of the slope distribution from a strict two-dimensional (2D) Gaussian due to skewness
and peakedness.

Please note that in the absence of skewness and peakedness (Δ(ξ, η) = 0) the Gram-Charlier
series reduces to a 2D Gaussian distribution:

p(z′x, z′y) =
1

2πσxσy
exp [−1

2
(

z′x
2

σ2
x
+

z′y
2

σ2
y
)]. (125)
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Furthermore, for an isotropic slope distribution χ = 0 so that z′x = zx and z′y = zy, σx = σy.
Therefore σ2 = σ2

x + σ2
y = 2σ2

x = 2σxσy, and hence

1
2
(

z′x
2

σ2
x
+

z′y
2

σ2
y
)] =

z2
x + z2

y

2σxσy
=

z2
x + z2

y

σ2 ; and z2
x + z2

y = tan2 θn(sin2 α + cos2 α) = tan2 θn

since zx = sin α tan θn and zy = cos α tan θn. Thus, we obtain a 1D Gaussian:

p(μn, σ) = p(zx, zy) =
1

πσ2 exp (−
z2

x + z2
y

σ2 ) =
1

πσ2 exp (− tan2 θn

σ2 ) =
1

πσ2 exp (−1 − μ2
n

σ2μ2
n
). (126)

where

μn = cos θn =
μ + μ′√

2(1 − cos Θ)
(127)

cos Θ = −μμ′ +
√

1 − μ2
√

1 − μ′2 cos(Δφ). (128)

A Pseudo Two-Dimensional (Wind-Direction Dependent) Treatment of the BRDF

At the bottom of the atmosphere (τ = τatm), the upward reflected radiance I+refl(τatm, μ′, φ′) is
connected to the downward incident diffuse radiance I−inc(τatm, μ, φ) and the attenuated direct radiance
F0e−τatm/μ0 through the sea surface reflection that is described by the BRDF ρ(μ, μ′, Δφ):

I+refl(τatm, μ′, φ′) = μ0 ρ(μ0, μ′, φ′) F0 e−τatm/μ0 +
∫ 2π

0

∫ 1

0
μ ρ(μ, μ′, Δφ)I−inc(τatm, μ, φ)dμdφ (129)

where Δφ = φ′ − φ, and the solar azimuth angle was set to φ0 = 0◦ so that Δφ = φ′ − φ0 = φ′ for the
direct beam reflection ρ(μ0, μ′, φ′).

The 1D BRDF ρ(μ, μ′, Δφ′) can be written as:

ρ(μ, μ′, Δφ) =
1

4μ′μ(μn)4 · p(μn, σ) · ρF · s(μ, μ′, σ) (130)

μn =
μ + μ′√

2(1 − cos Θ)
(131)

cos Θ = −μμ′ +
√

1 − μ2
√

1 − μ′2 cos(Δφ). (132)

Here μ = cos θ, θ being the view zenith angle for the incident light, μ′ = cos θ′, θ′ being the view
zenith angle for the reflected light, Δφ is the relative azimuth angle, and Θ is the scattering angle.
In Equation (130), ρF is the Fresnel reflectance (see Equation (121)), s(μ, μ′, σ) describes the effect of
shadowing, and p(μn, σ) is the surface slope distribution (Equation (126)).

In a plane-parallel (1D) geometry, the radiance and the BRDF depend only on the difference
Δφ = φ′ − φ in azimuth between the direction of incidence (θ′, φ′) and observation (θ, φ).
Hence, in a strict plane-parallel geometry, it is impossible to model a wind-direction dependent
(azimuthally-asymmetric) BRDF. As a consequence, most treatments of water surface roughness effects
are limited to a 1D treatment [76,77].

In the 1D discrete ordinate method, the radiance I(τ, μ, φ) and the BRDF ρ(μ, μ′, Δφ) are expanded
into a Fourier cosine series to isolate the azimuth dependence [14]. The pseudo two-dimensional
treatment of the BRDF employs a 2D BRDF to compute the direct beam reflectance, but a 1D
(Fourier expanded) BRDF to compute the reflectance due to diffuse, multiply scattered light. A post-
processing step, which corrects the direct beam reflectance (1D → 2D), is used for implementation.
This post-processing method is similar to the Nakajima-Tanaka (NT) single-scattering correction [78],
which retains the multiply scattered radiance, but corrects the singly scattered radiance without
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considering boundary reflection. In DISORT3, Lin et al. [79] improved the NT procedure by adding
a BRDF correction and the same strategy was used to add a 2D BRDF correction [80]. Hence,
the correction term for radiance Iss corr(τ̂,±μ, φ) can be written as:

I±ss corr(τ̂, μ, φ) = I±∗
ss (τ̂, μ, φ)− Ĩ±∗

ss (τ̂, μ, φ) + μ0F0

{
ρ2D(μ, φ;−μ0, φ0)− ρ1D(μ, φ;−μ0, φ0)

}
e−

τ̂b
μ0
+

τ̂−τ̂b
μ . (133)

Here τ̂ and τ̂b are the scaled optical thicknesses at the height of interest and the lower boundary,
respectively [78,79]. On the right hand side of Equation (133), I±∗

ss (τ̂, μ, φ)− Ĩ±∗
ss (τ̂,±μ, φ) is the original

NT correction [78], ρ2D(μ, φ;−μ0, φ0) is the new 2D BRDF used to compute the 2D single-scattering
contribution, ρ1D(μ, φ;−μ0, φ0) is the 1D (Fourier expanded) BRDF used to compute the approximate

multiple scattering contribution, and e−
τ̂b
μ0

+
τ̂−τ̂b

μ is the beam attenuation coefficient.
For multiply scattered light, we use a 1D Gaussian surface slope distribution given by

Equation (126), which is widely used in remote sensing applications to represent the slope statistics
of water waves with the numerical value of the slope variance parameterized in terms of the wind
speed [75]. The 1D BRDF given by Equations (130)–(132) and (126) is suitable for describing “skyglint”,
that is, the reflectance of downward diffuse light from a rough water surface, because multiple
scattering in the atmosphere has made the radiation field approximately 1D, implying that 2D BRDF
effects become relatively unimportant for the reflected diffuse skylight [76,77]. Similarly, the slope
distribution for a 2D Gaussian surface is given by Equation (125). It will be shown in Section 5.3 that a
2D BRDF treatment is required in RT models to reproduce detailed measurements of the BRDF [80].

4.2. Radiative Transfer Equation—Polarized Radiation

To generalize Equation (112) to apply to polarized radiation, we note that the multiple
scattering term Sms(τ, u, φ) = �(τ)

4π

∫ 2π
0 dφ′ ∫ 1

−1 du′p(τ, u′, φ′; u, φ)I(τ, u′, φ′) in Equation (113) must be
replaced by

Sms(τ, u, φ) =
�(τ)

4π

2π∫
0

dφ′
1∫
−1

du′P(τ, u′, φ′; u, φ)I(τ, u′, φ′) (134)

where I(τ, u′, φ′) is the Stokes vector, and P(τ, u′, φ′; u, φ) is the scattering phase matrix (see Section 3.2).
The first element of the vector Sms(τ, u, φ) represents the energy per unit solid angle, per unit frequency
interval, and per unit time that is scattered by a unit volume in the direction (u = cos θ, φ). Hence,
in a plane-parallel (slab) geometry, the integro-differential equation for polarized radiative transfer is
expressed in terms of a Stokes vector I(τ, u, φ) as

u
d I(τ, u, φ)

dτ
= I(τ, u, φ)− S(τ, u, φ) (135)

where the source vector is

S(τ, u, φ) =
�(τ)

4π

∫ 2π

0
dφ′

∫ 1

−1
du′ P(τ, u′, φ′; u, φ)I(τ, u′, φ′)

+ Q(τ, u, φ). (136)

In the upper slab (slab1, atmosphere), the source term Q(τ, u, φ), due to thermal and beam sources,
is given by:

Q1(τ, u, φ) =
�(τ)

4π
P(τ,−μ0, φ0; u, φ)Sbe−τ/μ0 + [1 − �(τ)] St(τ)

+
�(τ)

4π
P(τ, μ0, φ0; u, φ)RF(−μ0, mrel)Sb e−

(2τa−τ)
μ0 . (137)
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The first term on the right hand side of Equation (137) describes the incident beam Sb in direction
(−μ0, φ0), which is attenuated at depth τ by a factor e−τ/μ0 and undergoes single scattering into the
direction (u, φ). For an unpolarized incident beam Sb has the form

Sb = [I0/2, I0/2, 0, 0]T or [I0, 0, 0, 0]T (138)

where the first or second expression corresponds to the choice of Stokes vector representation,
[I‖, I⊥, U, V]T or [I, Q, U, V]T . The second term on the right hand side of Equation (137) is due to
thermal emission, which is unpolarized, and St(τ) is given by

St(τ) = [B(T(τ))/2, B(T(τ))/2, 0, 0]T or [B(T(τ)), 0, 0, 0]T (139)

where B is the Planck function, and where the first or second expression corresponds to the choice
of Stokes vector representation. We have set μ0 ≡ |u0| ≡ | cos θ0|, where θ0 is the polar angle of the
incident light beam. The third term on the right hand side of Equation (137) describes radiation due
to the incident beam Sb that has been attenuated by the factor e−τa/μ0 before reaching the air-water
interface, undergoing Fresnel reflection given by the reflection matrix RF(−μ0, mrel), attenuated by the
factor e−(τa−τ)/μ0 to reach the level τ in the atmosphere, and finally singly scattered from direction
(μ0, φ0) into direction (u, φ) described by the factor �(τ)

4π P(τ, μ0, φ0; u, φ). Thus, the incident beam
propagates though the entire atmosphere and a portion of it is reflected upwards by the interface to
reach depth τ in the atmosphere, which explains the factor e−(2τa−τ)/μ0 .

In the lower slab (slab2, water), the source term becomes

Q2(τ, u, φ) =
�(τ)

4π
P(τ,−μw

0 , φ0; u, φ)Sb e−τa/μ0

×TF(−μ0, mrel)
μ0

μw
0

e−(τ−τa)/μw
0

+ [1 − �(τ)] St(τ) (140)

where TF(−μ0, mrel) is the Fresnel transmission matrix. The first term in Equation (140) is due to the
incident beam Sb that has been attenuated through the atmosphere by the factor e−τa/μ0 , transmitted
into the water by the factor TF(−μ0, mrel)

μ0
μw

0
, further attenuated by the factor e−(τ−τa)/μw

0 to reach depth
τ in the water, and singly scattered from the direction (−μw

0 , φ0) into the direction (u, φ) which explains

the factor �(τ)
4π P(τ,−μw

0 , φ0; u, φ). The second term in Equation (140) is due to thermal emission in
the water.

Isolation of Azimuth Dependence

We start by expanding the scattering phase matrix in a Fourier series:

P(u′, u; φ′ − φ) =
M

∑
m=0

{
Pm

c (u
′, u) cos m(φ′ − φ) + Pm

s (u
′, u) sin m(φ′ − φ)

}
. (141)

To isolate the azimuth dependence of the radiation field we expand the Stokes vector I(τ, u, φ) in
Equation (135) and the source term Q1(τ, u, φ) in Equation (137) or Q2(τ, u, φ) in Equation (140) in a
Fourier series in a manner similar to the expansion of the scattering phase matrix in Equation (141):

I(τ, u, φ) =
M

∑
m=0

{
Im

c (τ, u) cos m(φ0 − φ) + Im
s (τ, u) sin m(φ0 − φ)

}
(142)
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Qp(τ, u, φ) =
M

∑
m=0

{
Qm

cp(τ, u) cos m(φ0 − φ) + Qm
sp(τ, u) sin m(φ0 − φ)

}
(143)

where the subscript s or c denotes sine or cosine mode and the subscript p indicates the slab, p = 1
for slab1, and p = 2 for slab2. Using these expansions it can be shown that we obtain the following
equations for the Fourier components (see [3] for details)

u
dIm

c (τ, u)
dτ

= Im
c (τ, u) − �(τ)

4

∫ 1

−1
du′

{
Pm

c (τ, u′, u) Im
c (τ, u′) (1 + δ0m)

− Pm
s (τ, u′, u) Im

s (τ, u′)
}

− Qm
c (τ, u) (144)

u
dIm

s (τ, u)
dτ

= Im
s (τ, u) − �(τ)

4

∫ 1

−1
du′

{
Pm

c (τ, u′, u) Im
s (τ, u′)

+Pm
s (τ, u′, u) Im

c (τ, u′)
}

− Qm
s (τ, u). (145)

The discrete ordinate method consists of replacing the integration over u′ by a discrete sum using
Gaussian quadrature points uj (the discrete ordinates) and corresponding weights wj. One obtains for
each Fourier component:

ui
dIm

c (τ, ui)

dτ
= Im

c (τ, ui)

− �(τ)

4

N

∑
j=−N

j �=0

wj

{
(1 + δ0m) Pm

c (τ, uj, ui) Im
c (τ, uj) (146)

− Pm
s (τ, uj, ui) Im

s (τ, uj)

}
− Qm

c (τ, ui), i = ±1, . . . ,±N

ui
dIm

s (τ, ui)

dτ
= Im

s (τ, ui)

− �(τ)

4

N

∑
j=−N

j �=0

wj

{
Pm

c (τ, uj, ui) Im
s (τ, uj) (147)

+ Pm
s (τ, uj, ui) Im

c (τ, uj)

}
− Qm

s (τ, ui), i = ±1, . . . ,±N.

The convention for the indices of the quadrature points is such that uj < 0 for j < 0, and uj > 0
for j > 0. These points are distributed symmetrically about zero, i.e., u−j = −uj. The corresponding
weights are equal, i.e., w−j = wj.

Each of the two slabs (atmosphere and water) is divided into several adjacent layers, large enough
to resolve vertical changes in the IOPs of each slab. Equations (147) and (148) apply in each layer in
the atmosphere or water. As described in some detail elsewhere [3] the solution involves the following
steps:

1. the homogeneous version of Equations (147) and (148) with Qm
c = Qm

s = 0 yields a linear
combination of exponential solutions (with unknown coefficients) obtained by solving an algebraic
eigenvalue problem;

2. analytic particular solutions are found by solving a system of linear algebraic equations;
3. the general solution is obtained by adding the homogeneous and particular solutions;
4. the solution is completed by imposing boundary conditions at the top of the atmosphere and the

bottom of the water;
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5. the solutions are required to satisfy continuity conditions across layer interfaces in the atmosphere
and the water, and last but not least to satisfy Fresnel’s equations and Snell’s law at the atmosphere-
water interface, where there is an abrupt change in the refractive index;

6. the application of boundary, layer interface, and atmosphere-water interface conditions leads to a
sparse system of linear algebraic equations, and the numerical solution of this system of equations
yields the unknown coefficients in the homogenous solutions.

4.3. Summary of AccuRT

We have described a computational tool, AccuRT, for radiative transfer simulations in a coupled
system consisting of two adjacent horizontal slabs with different refractive indices. The computer
code accounts for reflection and transmission at the interface between the two slabs, and allows for
each slab to be divided into a sufficiently large number of layers to resolve the variation in the IOPs,
described in Section 3, with depth in each slab.

The user interface of AccuRT is designed to make it easy to specify the required input including
wavelength range, solar forcing, and layer-by-layer IOPs in each of the two slabs as well as the two
types of desired output:

• irradiances and mean radiances (scalar irradiances) at desired vertical positions in the coupled
system;

• total radiances and polarized radiances (including degree of polarization) in desired directions
and vertical positions in the coupled system.

5. Examples of Forward-Inverse Modeling

5.1. Introduction

A primary goal in remote sensing of the Earth from space is to retrieve information about
atmospheric and surface properties from measurements of the radiation emerging at the top-of-the-
atmosphere (TOA) at several wavelengths [24,81]. These retrieval parameters (RPs), including cloud
phase and optical depth, aerosol type and loading, and concentrations of aquatic constituents in an
open ocean or coastal water area, depend on the inherent optical properties (IOPs) of the atmosphere
and the water. If there is a model providing a link between the RPs and the IOPs, a forward radiative
transfer (RT) model can be used to compute how the measured TOA radiation field should respond to
changes in the RPs, and an inverse RT problem can be formulated and solved to derive information
about the RPs [3,82]. A forward RT model, employing IOPs that describe how atmospheric and aquatic
constituents absorb and scatter light, can be used to compute the multiply scattered light field in any
particular direction (with specified polar and azimuth angles) at any particular depth level (including
the TOA) in a vertically stratified medium, such as a coupled atmosphere-water system [83]. In order
to solve the inverse RT problem it is important to have an accurate and efficient forward RT model.
Accuracy is important in order to obtain reliable and robust retrievals, and efficiency is an issue
because standard iterative solutions of the nonlinear inverse RT problem require executing the forward
RT model repeatedly to compute the radiation field and its partial derivatives with respect to the RPs
(the Jacobians) [82].

In addition to scalar forward RT models, vector RT models that consider polarization are important
(see Section 4). Numerous RT models that include polarization effects are available (see Zhai et al. [84] and
references therein for a list of papers), and the interest in applications based on vector RT models that
apply to coupled atmosphere-water systems is growing. Examples of vector RT modeling pertinent to
a coupled atmosphere-water system include applications based on the doubling-adding method [85–87],
the successive order of scattering method [84,88,89], the matrix operator method [90,91], and Monte Carlo
methods [92,93].

The purpose of this section is not provide a comprehensive review of forward-inverse
methodology, but rather to provide a few examples of how RT modeling involving coupled atmosphere-

167



Appl. Sci. 2018, 8, 2682

water systems described in the previous sections can be used to solve the inverse problem with an
emphasis of how machine learning techniques (neural networks) can be used to our advantage.

5.2. Bidirectional Reflectance of Water—Why Is It Important?

The Bidirectional Reflectance Distribution Function (BRDF) is defined as the ratio of the reflected
radiance to the incident power per unit surface area:

ρ(μ, φ;−μ′, φ′) =
dIrefl(τ

∗, μ, φ)

I(τ∗,−μ′, φ′) μ′ dμ′dφ′ . (148)

Here dIrefl(τ
∗, μ, φ) is the reflected radiance in direction (μ, φ), while I(τ∗,−μ′, φ′) is the incident

radiance in direction (−μ′, φ′). Understanding bidirectional effects including sunglint is important for
several reasons [63,94]:

1. correct interpretation of ocean color data;
2. comparing consistency of spectral radiance data derived from space observations with a single

instrument for a variety of illumination and viewing conditions;
3. merging data collected by different instruments operating simultaneously.

The BRDF defined in Equation (148) has unit per steradian [sr−1]. The remote sensing reflectance
defined as Rrs = I(0+, μ, φ)/F−(0+), where 0+ refers the level just above the air-water interface, and
F−(0+) is the downward irradiance, also has unit [sr−1]. It should be noted that the frequently used
bidirectional reflectance factor defined as BRF = πRrs is dimensionless, because π has unit [sr].

A BRDF correction algorithm [63] (denoted as MAG02) was developed for application to open
ocean water based on the following expression for the normalized water-leaving radiance nLw

nLw = Lw × R0

R
× f0(τa, W, IOP)

Q0(τa, W, IOP)
×

[
f (θ0, θ, Δφ, τa, W, IOP)
Q(θ0, θ, Δφ, τa, W, IOP)

]−1

where W is the wind speed, and the function R accounts for refraction and reflection effects when
radiances propagate through the air-water interface. The function f relates the irradiance reflectance
(R = F+/F−) to the IOPs, and the function Q is a bidirectional function, defined as Q(θ0, θ′, Δφ) =

F+(0−)/I+(0−, θ0, θ′, Δφ). The subscripts “0” on R0, f0 and Q0 are the values of the three functions
evaluated in the nadir direction.

However, the MAG02 algorithm requires knowledge of CHL to derive the f /Q correction factor,
and it does not work well in turbid (coastal) water. To remedy these shortcomings, Fan et al. [95]
developed a neural network method to correct for bidirectional effects in water-leaving radiances for
both clear (open ocean) and turbid (coastal) water. This neural network algorithm directly derives the
entire spectral nadir remote sensing reflectances Rrs(λi, θ0) from the angular values Rrs(λi, θ0, θ, Δφ),
without any prior knowledge of the water IOPs. Based on AccuRT simulations, Fan et al. [95]
showed that differences in spectral Rrs values are significant between clear (open ocean) and turbid
(coastal) water, but relatively small between nadir- and slant-viewing directions for a given water type.
Consequently, a trained Radial Basis Function Neural Network (RBF-NN) can be used to convert the
spectral Rrs values from the slant- to the nadir-viewing direction.

To this end, AccuRT was used to simulate Rrs values at both nadir- and slant-viewing directions
for a 13-layer atmosphere with aerosols added in the bottom 0–2 km layer, by randomly selecting
aerosol models based on fraction of small-mode aerosol particles ( fa) and relative humidity (RH).
The CCRR bio-optical model, parameterized in terms of CHL, CDOM, and MIN as described above,
was used to represent the water IOPs. To obtain the water-leaving radiance, the upward radiance
was computed just above the ocean surface twice using AccuRT. Assuming the ocean to be black,
i.e., totally absorbing (no scattering), the upward radiance was first computed just above the ocean
surface, I+black(0

+, λ, θ0, θ, Δφ), which includes the radiance due to Fresnel reflection of direct attenuated
sunlight and skylight by the air-water interface, but no radiance from the water. The second time the
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ocean with water and its embedded constituents, was included and the radiance I+(0+, λ, θ0, θ, Δφ)

was computed. Hence, I+(0+, λ, θ0, θ, Δφ) included the water-leaving radiance as well as the Fresnel
reflected direct attenuated sunlight and skylight. Then the water-leaving radiance was obtained from
the difference

Lw(0+, λ, θ0, θ, Δφ) = I+(0+, λ, θ0, θ, Δφ)− I+black(0
+, λ, θ0, θ, Δφ). (149)

To work satisfactorily, a neural network must be properly trained. For this purpose AccuRT
was used to generate a training dataset containing 30,000 data points of I+(0+, λ, θ0, θ, Δφ) and
I+black(0

+, λ, θ0, θ, Δφ) at seven wavelengths, 412, 443, 490, 510, 560, 620, and 665 nm, which are
similar to the wavelengths used in the MAG02 algorithm. The synthetic dataset was generated by
randomly selecting 5000 combinations of the aerosol optical depths at 865 nm (τa(865)), the fraction
of small aerosol particles ( fa), the relative humidity (RH), and the three ocean parameters: CHL,
MIN, and CDOM. To cover a wide range of water and atmospheric IOPs, these six parameters
were randomly sampled logarithmically from the following ranges: (i) τa(865): 0.001–0.5, (ii) fa:
1–95 [%], (iii) RH: 30–95 [%], (iv) CHL: 0.01–100 [mg·m−3], (v) MIN: 0.01–100 [g·m−3], (vi) CDOM:
0.001–10 [m−1]. Then for each case in the 5000 combinations, six combinations of the Sun-sensor
geometry were randomly selected in the following ranges: (i) θ0: 0–80 [◦], (ii) θ: 0–70 [◦], (iii) Δφ:
0–180 [◦]. The downward irradiance just above the ocean surface (F−(λ, 0+)) was also computed for
each case as well as the remote sensing reflectance:

Rrs(λ, θ0, θ, Δφ) =
Lw(0+, λ, θ0, θ, Δφ)

F−(λ, 0+)
(150)

where Lw(0+, λ, θ0, θ, Δφ) is given by Equation (149).
The remote sensing reflectances were arranged into two groups: (i) one consisting of all the angle-

dependent remote sensing reflectances Rrs(λi, θ0, θ, Δφ), the other consisting of the the corresponding
nadir remote sensing reflectances, Rrs(λi, θ0). Then a neural network with two hidden layers was
created. The first layer used RBFs as neurons, while the second layer used a linear function as neurons.

The input to the neural network training was the three geometry angles θ0, θ, Δφ plus the
angle-dependent remote sensing reflectances Rrs(λi, θ0, θ, Δφ), while the output consisted of the
corresponding nadir remote sensing reflectances, Rrs(λi, θ0). After the training, the nadir remote
sensing reflectances can be derived from a single equation:

Rrs(λi, θ0) =
N

∑
j=1

aij exp[−b2
Nin

∑
k=1

(pk − cjk)
2] + di (151)

where N is the number of neurons, b and cjk are the bias and weight in the first layer, aij and
di are the weight and bias in the second layer. These weights and biases are optimized from the
training procedure to minimize the error between the neural network derived Rrs(λi, θ0) and the
actual Rrs(λi, θ0) values in the training dataset. Nin is the number of input parameters, which in our
neural network equals 10: three geometry angles plus seven wavelengths. The input parameters are
denoted by pk, which in this case are the three geometry angles and the angle-dependent remote
sensing reflectances, Rrs(λ, θ0, θ, Δφ), at each of the seven wavelengths.

As discussed by Fan et al. [95], this neural network approach to convert remote sensing reflectances
from actual slant-viewing to nadir-viewing directions was tested using synthetic data as well as field
measurements. The results can be summarized as follows (see [95] for details):

• The generally anisotropic remote sensing reflectance of oceanic water must be corrected in
remote sensing applications that make use of the nadir water-leaving radiance (or remote sensing
reflectance) to derive ocean color products.
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• The standard MAG02 correction method [63], based on the open ocean assumption, is unsuitable
for turbid waters, such as rivers, lakes, and coastal water. The MAG02 method requires the
chlorophyll concentration as an input, which is a drawback in remote sensing applications,
because the chlorophyll concentration is generally produced from the corrected remote
sensing reflectance.

• To meet the need for a correction method that works for water that may be dominated by turbidity
or CDOM, Fan et al. [95] developed a neural network method that directly converts the remote
sensing reflectance from the slant-viewing to the nadir-viewing direction.

• The neural network was trained using remote sensing reflectances at slant and nadir directions
generated by a radiative transfer model (AccuRT), in which scattering phase functions for algal
and non-algal particles were adopted. Therefore, the remote sensing reflectance implicitly contains
information about the shape of the scattering phase function which affects the BRDF.

• This method uses spectral remote sensing reflectances as input. Hence, it does not require any
prior knowledge of the water constituents or their optical properties.

• Tests based on synthetic data show that this method is sound and accurate. Validation using field
measurements [96] shows that this neural network method works equally well compared to the
standard method [63] for open ocean or chlorophyll-dominated water. For turbid coastal water a
significant improvement over the standard method was found, especially for water dominated by
sediment particles.

5.3. Sunglint: A Nuisance or Can Can It Be Used to Our Advantage?

For clarity, we should note that “glint” here refers only to Fresnel reflectance from the (calm
or “wind-roughened”) water surface. In the presence of glint, satellite remote sensing remains
a challenging problem [97]. The contribution from glint to the TOA radiance is large enough to
dominate the signals received by sensors deployed in space. Algorithms developed for current satellite
sensors such as the Sea-viewing Wide Field of view Sensor (SeaWiFS), the MODerate-resolution
Imaging Spectroradiometer (MODIS), the MEdium Resolution Imaging Spectrometer (MERIS),
the Polarization and Directionality of Earth Reflectances (POLDER) instrument, and the Global Imager
(GLI), use different correction algorithms [77,98,99] based on the same principle: estimate the glint
contribution inferred from a statistical glint model and a direct beam reflectance and then remove its
contribution from the signal received by the sensor.

To analyze remotely sensed radiances obtained by instruments such as SeaWiFS, MODIS,
and MERIS, NASA has developed a comprehensive data analysis software package (SeaWiFS Data
Analysis System, SeaDAS), which performs several tasks, including cloud screening and calibration,
required to convert the raw satellite signals into calibrated TOA radiances. The SeaDAS software
package also has tools aimed at quantifying and removing the atmospheric contribution to the
TOA radiance (atmospheric correction) as well as contributions from whitecaps and sunglint due to
reflections from the ocean surface [81].

In the SeaDAS algorithm (and similar algorithms) a sunglint flag is activated to mask out pixels
for which the reflectance or BRDF, exceeds a certain threshold. If the reflectance for a given pixel is
above the threshold, the signal is not processed. If the reflectance is below the threshold, a directly
transmitted radiance (DTR) approach is used to calculate the TOA sunglint radiance in the SeaDAS
algorithm. Thus, it is computed assuming that the direct beam and its reflected portion only experience
exponential attenuation through the atmosphere [77], that is

ITOA
glint (μ0, μ, Δφ) = F0(λ)T0(λ)T(λ)IGN (152)
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T0(λ)T(λ) = exp
{
− [τM(λ) + τA(λ)]

( 1
μ0

+
1
μ

)}
(153)

where μ0 and μ are cosines of the solar zenith angle and polar viewing angle, respectively, and the
normalized sunglint radiance IGN is the radiance that would result for a transparent atmosphere if the
incident solar irradiance were F0(λ) = 1. The Rayleigh (molecular) and aerosol optical thicknesses are
denoted τM(λ) and τA(λ), respectively. The downward diffuse incident light (sunlight being multiply
scattered by atmospheric molecules and aerosols before hitting the rough sea surface) also contributes
to the upward reflectance. In the SeaDAS algorithm, such diffuse light reflectance that accounts for the
effect of ocean surface roughness has been included only in the Rayleigh lookup tables [100].

Radiative transfer (RT) simulations may provide a more complete look at the glint problem [87].
An RT model can be used for accurate quantification of contributions not only from direct sunglint,
but also from skyglint due to multiply scattered light [101]. Hence, RT simulations can be used to test
current correction methods and explore the potential for extending remote sensing into strong glint
situations masked out by the current SeaDAS algorithm.

As alluded to in Section 4.1.3, plane parallel RT models assume that the BRDF depends only
on the difference in azimuth between the sun-sensor directions. Therefore, they are intrinsically
one-dimensional, and cannot be used to simulate the directional dependence of realistic slope
distributions that require a wind-direction dependent (hereafter referred to as 2D BRDF) treatment.
Also, few studies have focussed on validation of realistic 2D BRDF implementations due to the general
lack of a complete set of reflectance measurements that would be suitable for testing purposes.

To enable more realistic simulations of ocean glint reflectance, Lin et al. [80] developed a RT
model with a 2D BRDF to mimic the nature of actual sea surface slope distributions (see Section 4.1.3
for details). Reflectance measurements obtained by an instrument deployed on a National Aeronautics
and Space Administration (NASA) aircraft were used for validation. The goal was to match simulated
reflectances with those measured by the instrument deployed on the NASA airplane, and to use
RT simulations as a forward model to invert the measured reflectance in order to retrieve wind
direction, sea surface slopes in the crosswind and upwind directions, and aerosol optical thickness.
These parameters are important for atmospheric correction, which is the largest source of error and
uncertainty in determining water-leaving radiance from space.

5.3.1. BRDF Measurements

NASA CAR Instrument

The measurements used by Lin et al. [80] were obtained under clear sky conditions from the
NASA Cloud Absorption Radiometer (CAR) deployed aboard the University of Washington Convair
580 (CV-580) research aircraft [102]. The CAR is an airborne multi-wavelength scanning radiometer
that measures scattered light in 14 spectral bands between 0.34 and 2.30 μm. To measure BRDFs,
the airplane flew in a circle about 3 km in diameter, taking roughly 2–3 min to complete an orbit about
200 m above the surface. A servo control system is installed to allow the instrument to point at any
angle from zenith to nadir, and to compensate for variations in airplane roll angle down to a fraction of
a degree. Multiple circular orbits were acquired over a selected surface so that average BRDFs would
be smooth. Radiometric calibration was performed at Goddard Space Flight Center prior to and just
after the field experiment and a linear change between them is assumed. For more details about the
BRDF measurements, see [102] and the official NASA link (http://car.gsfc.nasa.gov/).

CAR measurements provide accurate BRDFs for all geometry angles including zenith viewing
angles from the nadir (θ = 0◦) to the horizon direction (θ = 90◦) over all relative azimuth angles
(0–360◦). The resolution for both polar and azimuth angles is 1◦. The BRDF measurements are also
accompanied by concurrent measurements of atmospheric aerosol optical thickness above the airplane
and wind speeds from the NOAA Marine Environmental Buoy Database.
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5.3.2. Radiative Transfer Simulations

The DISORT code [103] implemented in AccuRT provides accurate computations of singly and
multiply scattered radiances in a turbid medium. The DISORT code has been used in a great variety of
studies including remote sensing applications. Lin et al. [79] developed an upgraded version called
DISORT3 with improved BRDF capabilities. The DISORT3 code can be obtained from the following
web site: http://lllab.phy.stevens.edu/disort/. DISORT3 was further modified and optimized [80] to
simulate the 2D (wind-direction dependent) nature of the surface reflectance.

Atmospheric Input & Output

To minimize the influence of light backscattered from the water, we used a near infrared
wavelength at 1036 nm, with significant water absorption, and adopted two atmospheric layers:
one Rayleigh (molecular) layer (2–10 km) and one layer with aerosols and molecules homogeneously
mixed (0–2 km). Based on the US standard atmosphere [104], the single-scattering albedo at 1036 nm
is �mol = 0.9610 in the upper layer (molecular scattering and water vapor absorption, no aerosols)
and the upper layer optical thickness is τmol = 0.00645. In the lower layer, we adopted an aerosol
model implemented in SeaDAS [30]. The inherent optical properties (IOPs) of aerosols and molecules
were then combined to give a “mixed” single-scattering albedo �mix = (βmol + βaer)/(γmol + γaer) =

0.9772, where βmol and βaer are scattering coefficients, and γmol and γaer are extinction coefficients for
molecules and aerosols, respectively.

The simulated atmospheric output is the radiance I(τ, μ, φ) in arbitrary directions (μ, φ).
However, for comparison with measurements, we used the bidirectional reflectance factor defined as
BRF(τ, μ, φ) = π I(τ, μ, φ)/μ0F0, where μ = cos θ, θ is the zenith view angle, φ is the azimuth angle,
τ is the optical thickness (at aircraft altitude), μ0 = cos θ0, θ0 being the solar zenith angle, and F0 is the
extraterrestrial solar irradiance. Please note that this BRF is defined such that it would represent the
reflected irradiance normalized by the TOA incident irradiance μ0F0 if the radiance were to be isotropic.

5.3.3. Comparison between Measured and Simulated Reflectances

Retrieval Surface Roughness and Aerosol Parameters

Although the variances in the crosswind and upwind directions, σ2
c and σ2

u, can be parameterized
in terms of wind speed and direction [75], they may instead be considered to be model input parameters
describing the 2D surface slope distribution. For a 1D surface, the slope variance is then automatically
given as σ2 = σ2

u + σ2
c . This approach has the advantage that the slope variances do not depend on

parameterizations in terms of wind speed, which provides more freedom to reproduce the measured
2D glint pattern by varying σc and σu.

In addition to reflection from Gaussian surface slope facets, multiple surface reflections,
shadowing [see Equation (130)], and polarization effects also influence the glint signal [105,106].
Since multiple reflections and shadowing become important only for very low solar elevations
and polarization effects are relatively unimportant at 1035 nm due to weak molecular (and aerosol)
scattering, these effects can be ignored [80].

To determine the optimum match between model-simulated and CAR-measured reflectances,
we need to invert the measurements to find the best estimate of the model parameters described
by the state vector x = [σ2

c , σ2
u, φwind, τmix]

T including the four retrieval parameters: (i) the slope
variance in the crosswind direction, σ2

c , (ii) the slope variance in the upwind direction, σ2
u, (iii) the wind

direction, φwind, and (iv) the optical thickness τmix of the layer with a mixed population of aerosols
and molecules. To this end, [80] used a Gauss-Newton/Levenberg-Marquardt non-linear inversion
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algorithm, in which the residual between reflectances produced by the RT forward model F(x) and the
CAR measurements, stored in the vector y, is minimized. The kth iteration of x yields:

xk+1 = xk +
[
JT

k Jk + γkI
]

JT
k (F(xk)− yk) (154)

where the vector J contains the Jacobians of the forward model, I is identity matrix, and the parameter
γk (0 ≤ γk ≤ ∞) is chosen at each step of the iteration to minimize the residual. If γk = 0 we have a
classic Gauss-Newton method, while if γk is large we have a steepest descent method.

Figure 3 shows a comparison of model-simulated and measured reflectances at 1036 nm on 20 July
2001. Clearly, model-simulated results agree very well with the measurements, reproducing the main
characteristics of the glint pattern. Both the shape of the simulated glint ellipse and its tilt are generally
well matched with the measurements.
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Figure 3. Comparison between model-simulated and measured reflectances. The measurements are in
solid blue and the simulations in dashed red lines. The dip in the measured reflectance in the lower left
panel is due to aircraft shadowing. [Reproduced from Figures 1a and 2a of [80].]

The shape of the elliptical glint pattern in Figure 3 is determined by the crosswind and upwind
slope variances (σ2

c and σ2
u), while the wind direction is determined from the tilt angle. Such a titled

ellipse indicates that use of the 2D asymmetric Gaussian BRDF is needed to fit the angular distribution
of the reflectance measurements, and that a 1D Gaussian is insufficient because it averages those slopes
(σ2 = σ2

c + σ2
u) to give only a circular glint pattern. Figure 4 shows a comparison of 1D and 2D results

for the case shown in Figure 3. It is clear that model simulations based on a 1D Gaussian BRDF are
unable to match the measured tilted elliptical glint pattern. Hence, employing a 2D BRDF in the data
analysis is essential.
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Figure 4. Comparison between model-simulated reflectances assuming a 1D Gaussian BRDF (left),
a 2D Gaussian BRDF (middle), and measurements (right) obtained on 10 July 2001.

Since the surface roughness parameters (σ2
c , σ2

u, σ2, and wind direction) inferred from the channel
at 1036 nm are independent of wavelength, this information can be applied at shorter wavelengths
(472, 672, and 870 nm) to improve the ocean color retrieval in the sun-glint area. The aerosol and ocean
parameters can be retrieved from radiances outside the glint region (viewing angles 20–60 degrees and
relative azimuth angles 120–240 degrees) using multi-angle reflectances in three CAR channels at 472,
682, and 870 nm. For this purpose, Lin et al. [80] used AccuRT, a RTM for the coupled atmosphere-ocean
system (described in Sections 2–4) combined with an optimization technique [see Equation (154)] to
retrieve aerosol and water constituent parameters simultaneously [70,107]. The Ahmad et al. aerosol
model [30] and the CCRR bio-optical model [58] were used in AccuRT for this retrieval.

In this case, the retrieved aerosol optical depth at 870 nm was 0.086, the Ångstrøm coefficient (472
to 870 nm) was 1.463, the chlorophyll concentration was 0.67 mg·m−3, the colored dissolved organic
matter (CDOM) absorption coefficient at 443 nm was 0.07 m−1, and the mineral particle concentration
(MIN) was 0.009 g·m−3. When these retrieval results were applied to the BRDF simulation, a very
good match to the CAR measurements were obtained, especially in the glint area [80]. Hence, the glint
information retrieved from the channel at 1.036 nm can be used in ocean color remote sensing to
estimate the glint contribution at visible and NIR ocean color channels.

5.3.4. Summary of Glint Issues

The results discussed above may be summarized as follows:

• A wind-direction dependent Gaussian surface BRDF that uses (1) a 2D slope distribution for
singly scattered light, and (2) a 1D slope distribution for multiply scattered light, can be used to
successfully simulate BRDF measurements obtained by NASA’s Cloud Absorption Radiometer
(CAR) at the 1036 nm wavelength.

• Upwind and crosswind slope variances, wind direction, and aerosol optical depth, can be
accurately retrieved through forward-inverse modeling.

• The glint parameters (slope variances and wind direction) can be applied to estimate the
glint contribution at visible and NIR wavelengths, resulting in a very good match between
model-simulated and measured reflectances.

• An advantage of RT simulations of glint reflectance is its inclusion of contributions from the
diffuse or multiply scattered light due to scattering by atmospheric molecules and aerosols.
The diffuse light reflectance (“skyglint”) gives an additional glint signal in addition to “sunglint”
resulting from the direct beam reflectance.

• Simulations show that the diffuse glint may contribute more than 4% at 472 nm for a wind speed
of 2 m/s, and more than 8% when the wind speed increases to 8 m/s. Hence, the diffuse light
reflectance should be considered in the visible bands, especially for large wind speeds.
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• A simplified version of the pseudo 2D BRDF and glint reflectance method described above has
been implemented in the AccuRT model for the coupled atmosphere-ocean system.

5.4. Retrievals of Atmosphere-Water Parameters from Geostationary Platforms: Challenges and Opportunities

Simultaneous retrieval of aerosol and surface properties by means of inverse techniques based on
a coupled atmosphere-surface radiative transfer model and optimal estimation can yield improved
retrieval accuracy in complex aquatic environments compared with traditional methods. At high
latitudes low solar elevations is a problem, and if one desires to do satellite remote sensing from a
geostationary platform in order to study diurnal variations, then large solar zenith and viewing angles
become important issues to be resolved.

Satellite remote sensing for such complex situations/environments represents specific challenges
due to:

• (i) the complexity of the atmosphere and water inherent optical properties,
• (ii) the unique bidirectional dependence of the water-leaving radiance, and
• (iii) the desire to do retrievals for large solar zenith and viewing angles.

Hence, one needs to consider challenges related to how

1. atmospheric gaseous absorption, absorbing aerosols, and turbid waters can be addressed by using
a coupled forward model in the retrieval process,

2. corrections for bidirectional effects will be accomplished,
3. the curvature of the atmosphere will be taken into account, and
4. uncertainty assessments and error budgets will be dealt with.

The generic problem is illustrated in Figures 5 and 6, which show that

• there is a significant change in sub-surface color with increasing chlorophyll concentration, while at
the same time

• there is only a slight change in color at the TOA, where the spectra are dominated by light from
atmospheric scattering.
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Figure 5. Simulated upward radiance in the nadir direction at the top of the atmosphere and close to
the ocean surface. Solar zenith angle = 45◦, US Standard atmosphere with aerosol optical depth = 0.23
at 500 nm. (Left) Clear water with chlorophyll concentration = 0.1 mg·m−3, MIN = 0.003 g·m−3,
CDOM443 = 0.003 m−1 (CCRR bio-optical model). (Right) Turbid water with chlorophyll concentration
= 10 mg·m−3, MIN = 0.1 g·m−3, CDOM443 = 0.1 m−1.
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Figure 6. The ratio of the values for turbid water to those for clear water in Figure 5.

Most ocean color algorithms consist of two steps:

1. First, one does an “atmospheric correction” (assuming the water to be black at NIR wavelengths)
to determined the water-leaving radiance.

2. Second, one retrieves the desired aquatic parameters from the water-leaving radiance.

In the visible, up to 90% of the radiance measured by a satellite sensor typically comes from the
atmosphere implying that:

• Atmospheric correction becomes a very challenging task unless the near-infrared (NIR) black-pixel
approximation (BPA) is valid.

• Estimation of diffuse transmittance is also important, but difficult because it depends on the
angular distribution of the radiance just beneath the water surface.

Also, accurate characterization of the atmosphere is important because:

• a small uncertainty in the atmospheric correction may lead to a big error in the inferred aquatic
parameters, and

• aerosol optical properties vary considerably in space and time.

5.4.1. The OC-SMART Optimal Estimation Approach

To address this situation, the OC-SMART (Ocean Color—Simultaneous Marine and Aerosol
Retrieval Tool) approach was developed. The goal was to improve retrieval accuracy by use of AccuRT
forward modeling and Optimal Estimation/Levenberg-Marquardt (OE/LM) inversion [108]:

• AccuRT: accurate discrete-ordinates radiative transfer model for the coupled atmosphere-ocean
system; delivers a complete set of simulated radiances and Jacobians (weighting functions).

• OE/LM inversion: is an iterative, nonlinear least squares cost function minimization with a priori
and Levenberg-Marquardt regularization.

• For retrievals of aerosol and aquatic parameters from Ocean Color data, we define a 5-element
state vector:

x = {τ865, fa, CHL, CDM, BBP}
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consisting of

– 2 aerosol parameters (τ865 = optical depth at 865 nm and fa = bimodal fraction of particles),
– 3 marine parameters (chlorophyll concentration, CHL, combined absorption by detrital and

dissolved material at 443 nm, CDM, and backscattering coefficient at 443 nm, BBP).

At each iteration step, the next estimate of the state vector is given by the OE/LM inversion [70]

xn+1 = xn + [(1 + γn)S
−1
a + JT

n S−1
m Jn]

−1{JT
n S−1

m (ym − yn)− S−1
a (xn − xa)}. (155)

In Equation (155) ym is the vector of measured TOA radiances; yn = F(xn, b) is the vector of
simulated TOA radiances generated by the AccuRT forward model; yn is a (non-linear) function of the
state vector xn of retrieval elements, and b represents model parameters; Jn is a matrix of simulated
radiance partial derivatives with respect to the state vector elements xn (the Jacobians); xa and Sa

are the a priori state vector and covariance matrix, respectively, and Sm is the measurement error
covariance matrix. γn is the Levenberg-Marquardt (LM) regularization parameter, When γn → 0
Equation (155) becomes the standard Gauss-Newton Optimal Estimation (OE), and when γn → ∞
it tends to the steepest descent method. AccuRT returns simulated radiances (yn) and Jacobians (Jn)
required to update the state vector estimate (xn) according to Equation (155) above.

One issue with the OC-SMART approach is that it is relatively slow due to the need to call the
forward AccuRT model repeatedly in the iterative inversion to compute radiances and Jacobians.
To deal with that problem, one could use AccuRT instead to create a training ensemble in order to
construct a Radial Basis Function Neural Network. This approach typically leads to an increase in
computational speed by a factor of about 1000. In this way one replaces the AccuRT forward model
(thousands of lines of code) with the following single equation (similar to Equation (151)):

Ii =
N

∑
j=1

aij exp[−b
K

∑
k=1

(Pk − cjk)
2] + di

where Ii it the TOA radiance in channel i = 1, . . . , 8, K = # of input parameters, and ai,j, b, cj,k, di are
the coefficients to be optimized in the network training.

The Jacobians (partial derivatives) J are also required for the non-linear optimal estimation using
Equation (155). These Jacobians can be calculated by taking partial derivatives of Ii respect to each
input parameter:

Jik =
∂Ii
∂Pk

= −2
N

∑
j=1

aijb2(Pk − cjk) exp{
K

∑
k=1

(Pk − cjk)
2}. (156)

Fan et al. [107] applied the OC-SMART algorithm to a MODIS image obtained on 18 April 2014
over a Norwegian coastal area and compared retrieval results with the standard SeaDAS retrievals
as shown in Figure 7 with OC-SMART results at the top and SeaDAS results at the bottom. From left
to right, the columns are τ869, fa, CHL, CDOM and bbp, respectively. The first two columns are
retrieved aerosol parameters. Our results are very similar to the SeaDAS retrievals, which makes sense
because the two algorithms share the same aerosol model. However, the marine parameters show
some differences and we should point out that in OC-SMART, we used the GSM bio-optical model
when we retrieved the ocean parameters. The SeaDAS CHL retrieval shown in Figure 7 is from the
OC4v6 algorithm. SeaDAS failed when using the GSM model due to negative water-leaving radiances
resulting from an incorrect atmospheric correction, which is a common issue in traditional atmospheric
correction algorithms. The aerosol optical depths was determined at a near infrared (NIR) wavelength
(τ869) and then extrapolated to shorter wavelengths. Since the water-leaving radiance is only a small
fraction of the TOA radiance measured by the satellite instrument, a small error in the aerosol retrieval
may cause the water-leaving radiance to become negative. We also found the OC-SMART results to
be close to the field measurements. The CHL value was 0.56 [mg/m3] while the field measurements
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showed an average of 0.86 ± 0.34 [mg/m3] in the spring season. The CDOM absorption coefficient
was 0.15 [m−1] and the field measurements show an average of 0.14 ± 0.06 [m−1].

Figure 7. MODIS image comparison between OC-SMART (top) and standard SeaDAS (bottom)
retrievals on 18 April 2014 over a Norwegian coastal area [107]. From left to right: τ869, f, CHL, CDOM
and bbp, respectively.

5.4.2. The OC-SMART Multilayer Neural Network Approach

In open ocean areas where the water IOPs are correlated with pigmented particles, standard
atmospheric correction (AC) algorithms seem to work reasonably well. However, in turbid coastal
water areas the IOPs of suspended inorganic particles, and colored dissolved organic matter (CDOM)
may vary independently of pigmented particles. Therefore, in turbid coastal waters standard AC
algorithms often exhibit large inaccuracies that may lead to highly uncertain and frequently negative
water-leaving radiances (Lw) or remote sensing reflectances (Rrs values). To address this problem,
Fan et al. [109] introduced a new atmospheric correction algorithm for coastal water areas based
on a multilayer neural network (MLNN) method. A coupled atmosphere-ocean radiative transfer
model (AccuRT) was used to simulate the Rayleigh-corrected radiance (Lrc) at the TOA and the Rrs

just above the surface simultaneously, and to train a MLNN to derive the aerosol optical depth (AOD)
and Rrs values directly from the TOA Lrc. The method was validated using both a synthetic dataset
and Aerosol Robotic Network–Ocean Color (AERONET–OC) measurements.

Extensive testing has shown that this MLNN approach has several advantages [109]:

1. It significantly improved the quality of retrieved remote sensing reflectances (compared to the
SeaDAS NIR algorithm) by reducing the average percentage difference (APD) between MODIS
retrievals and ground-truth (AERONET-OC) validation data.

2. In highly absorbing coastal water, such as the Baltic Sea, it provides reduction of the APD by more
than 60%, and in highly scattering water, such as the Black Sea, it provides reduction of the APD
by more than 25%.

3. It is robust and resilient to contamination due to sunglint and adjacency effects of land and
cloud edges.

4. It is applicable in extreme conditions such as those encountered for heavily polluted continental
aerosols, extreme turbid water, and dust storms.

5. It does not require shortwave infrared (SWIR) bands, and is therefore suitable for all ocean
color sensors.

6. It is very fast and suitable for operational use.

Recent addition of training data to make it representative for a variety of water types has shown
that this approach can produce a seamless (smooth) transition between turbid coastal water areas and
clean open ocean areas.
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5.4.3. Issues Specific to Geostationary Platforms

Low Solar Elevations

With geostationary platforms one has the opportunity to investigate diurnal variations in water
properties. Hence, there is a desire to obtain useful observations throughout the day from sunrise
to sunset. However, for solar zenith angles larger than about 75◦ (and large viewing angles) the
plane-parallel approximation (PPA) becomes invalid, and we need to take Earth curvature into account,
as discussed in a recent paper [110]. An approximate way to deal with this problem is the so-called
pseudo-spherical approximation (PSA), in which the direct beam single scattering (solar pseudo-source)
term is treated in spherical geometry: e−τ/μ0 → e−τ Ch(μ0), where the Chapman function Ch(μ0) takes
curvature into account [14,110], while the multiple scattering term is treated using the PPA. Hence,
in the PSA the RTE becomes:

u
dI(τ, u, φ)

dτ
= I(τ, u, φ)−

multiple scattering︷ ︸︸ ︷
�(τ)

4π

∫ 2π

0
dφ′

∫ 1

−1
du′p(τ, u′, φ′; u, φ)I(τ, u′, φ′)

−

single scattering︷ ︸︸ ︷
�(τ)

4π
p(τ,−μ0, φ0; u, φ)F0e−τ Ch(μ0) . (157)

It should be pointed out that low solar elevations is generally a problem at high latitudes also for
polar-orbiting platforms.

Surface Roughness Considerations

As alluded to above, it would be worthwhile considering the advantage gained by using a 2D
rather than a 1D slope distribution to deal with a wind-roughened surface (see Figure 4). Hence,
one should consider using

1. a 2D Gaussian surface slope distribution for singly scattered light, and
2. a 1D Gaussian surface slope distribution for multiply scattered light.

Such an approach may be quite successful, as demonstrated in Figure 3, because a 2D BRDF
simulates sunglint very well, while a 1D BRDF is sufficient to simulate the smoother (more directionally
uniform) skylight.

Use of Vector (Polarized) RT Simulations

Analysis of polarization measurements require vector RT modeling [111], and retrieval results
from radiance-only measurements are likely to be improved by employing a vector (polarized) forward
RT model to compute the radiances and Jacobians used in the inversion step, particularly for modeling
the radiance due to scattering by small aerosol particles at short wavelengths. Also, the increased
information from polarization measurements can lead to significant improvements in atmospheric
correction due to aerosols [112]. Hence, for ocean color retrievals from geostationary platforms,
we should explore the advantage of using the pseudo-spherical approximation combined with

• polarized (vector) radiative transfer simulations,
• a 2D Gaussian distribution of surface slopes,

and neural networks and optimal estimation for

• simultaneous retrieval of atmospheric and marine parameters from multi-spectral as well as
hyperspectral measurements of total and polarized (if available) radiances, and

• assessments of retrieval accuracy and error budgets.
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6. Remaining Problems

6.1. 3-D Radiative Transfer: The LiDAR Problem

Although we have mostly considered plane-parallel systems so far with an emphasis on the
coupling between the atmosphere and the underlying surface consisting of a water body or a snow/ice
surface, there are many applications that require a three-dimensional (3-D) RT treatment. For a clear
(cloud- and aerosol-free) atmosphere, 3-D effects are related to the impact of the Earth’s curvature
on the radiation field as discussed briefly in Section 5.4.3. To include Earth curvature effects it may
be sufficient to employ a “pseudo-spherical” treatment, in which the direct solar beam illumination is
treated in spherical geometry [110,113], whereas multiple scattering is treated in plane-parallel geometry.
In fact, this pseudo-spherical approach has been implemented in many RT codes [114,115]. Also,
there is a large body of literature on 3-D RT modeling with applications to broken clouds, and readers
interested in this topic may want to consult [116] or visit the web-site http://i3rc.gsfc.nasa.gov/.

Finally, 3-D RT modeling may also be important for analysis and interpretation of LiDAR data.
The classical “searchlight problem” [117], which considers the propagation of a laser beam through
a turbid medium, is relevant in this context. Long-range propagation of a LiDAR beam has been
studied both theoretically and experimentally [118]. Monte Carlo simulations are well suited for such
studies [119], and use of deterministic models such the discrete-ordinate method, briefly discussed in
Section 4, have also been pursued to investigate this problem [120,121].

6.2. Time-Dependent Radiative Transfer

Most studies of radiative transfer in the ocean have been concerned with understanding the
propagation of sunlight through natural water bodies [3,4,14,122]. For such applications, the transient
or time-dependent term in the RTE can be ignored, because changes in the incident illumination are
much slower than the changes imposed by light propagation through the coupled atmosphere-water
system. While this assumption is satisfied for solar illumination, LiDAR systems can use pulses that
are shorter than the attenuation distance of seawater divided by the speed of light in water. Also, it has
been pointed out [123] that due to multiple light scattering, understanding the LiDAR signal requires
a solution of the time-dependent RTE. The transient RT problem can be reduced to solving a series of
time-independent RT problems [124].

6.3. Other Issues

Although inelastic scattering processes (Raman and Brillouin) certainly can be very important and
indeed essential in some atmospheric [125–127] and aquatic [128,129] applications, we have limited
our discussion to elastic scattering. In fact, inelastic scattering effects can become important for very
clear water and sky conditions.

Forward radiative transfer models need accurate IOPs as input. Therefore, in situ measurements
are needed of the scattering phase function of hydrosols in clear as well as turbid (coastal) water,
including measurements at a scattering angle close to 180◦. The 180◦-backscatter angle is of particular
interest for LiDAR applications. In view of the growing interest in applications based on RT models
for coupled systems [84,86,87,90–93], there is also a need for systematic and sustained measurements
of the scattering phase (or Muller) matrix, since not much work has been done after the 1984 Voss and
Fry publication [130].

To process hyperspectral data one needs algorithms that can handle large data volumes and deal
with measurement uncertainties in a proper manner. In general, better bio-optical models are also
needed. For example, the approximation that the spectral slope ν = 0 for CHL > 2.0 in Equation (97)
is problematic. Hyperspectral (and potentially polarimetric) measurements are needed to construct
more generally applicable bio-optical models.

In Section 5.4.2 we discussed how a forward-inverse modeling approach, based on AccuRT
simulations for the coupled atmosphere-water system combined with a multilayer neural network
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(MLNN), can be used to infer accurate remote sensing reflectances (Rrs values) from clear as well as
turbid water [109]. The logical next step is to use these Rrs values to infer water IOPs. In fact, several
semi-analytic algorithms have been developed for this purpose including the generalized IOP (GIOP)
algorithm described by Werdell and colleagues [131].

This GIOP approach is currently the default algorithm used by NASA for processing of MODIS
ocean color data. First, the Rrs values are obtained after an atmospheric correction step using NIR
channels. Ocean IOP parameters are then retrieved from the approximate Rrs values (based on
many assumptions) by performing a non-linear inversion. The QAA algorithm [132] is another
semi(quasi)-analytic algorithm, similar to the GIOP, that performs better than the GIOP in some
situations. The GIOP and QAA algorithms generally perform well over the open ocean, but can have
significant issues in coastal water because the atmospheric correction method produces inaccurate Rrs

values that lead to large errors in derived IOPs. Furthermore, the performance of the atmospheric
correction is worse the farther the extrapolation is taken from the NIR to shorter wavelengths, which is
a problem for ocean color sensors with UV channels. Also, particle size distribution and scattering
phase function constitute a priori information in the semi-analytic algorithms that cannot be retrieved.
These limitations make them unsuitable for application to new sensors with increased information
content, such as hyperspectral ocean color sensors. Instruments that can measure the polarization of
light will also be extremely useful for improving aerosol retrievals and thus atmospheric correction
capabilities. The next generation of sensors composed of hyperspectral polarimeters and ocean-capable
LiDAR instruments will enable the use of more advanced retrieval algorithms to more accurately
quantify and monitor the atmosphere-ocean system, particularly in coastal areas. Nevertheless, use of
accurate Rrs values, obtained from new and improved AC methods, such as the MLNN algorithm [109],
in existing semi-analytic algorithms (like GIOP and QAA) is expected to significantly enhance their
performance when applied to current ocean color sensor data obtained over turbid water.

7. Summary

A review has been provided of forward and inverse radiative transfer modeling in coupled
systems consisting of two adjacent, horizontal slabs with different indices of refraction and a rough
interface characterized by a Gaussian distribution of surface slopes in one or two dimensions. Such a
configuration can be used to simulate radiative transfer in coupled atmosphere-snow/ice-ocean
systems. Input and output parameters including boundary conditions for the forward radiative
transfer problem were introduced in Section 2, while in Section 3 a review was provided of inherent
optical properties (IOPs) of the atmosphere, snow/ice and ocean water. These IOPs are required inputs
to the radiative transfer equation introduced in Section 4 both for unpolarized (scalar) and polarized
(vector) radiative transfer. Examples of how to solve inverse problems occurring in remote sensing of
the environment employing optimization techniques as well as the unique power of machine learning
(neural networks) for convenience and efficiency were provided in Section 5. Finally, in Section 6 some
remaining radiative transfer problems were discussed.
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Abstract: The upwelling spectral radiance distribution is polarized, and this polarization varies
with the optical properties of the water body. Knowledge of the polarized, upwelling, bidirectional
radiance distribution function (BRDF) is important for generating consistent, long-term data records
for ocean color because the satellite sensors from which the data are derived are sensitive to
polarization. In addition, various studies have indicated that measurement of the polarization
of the radiance leaving the ocean can used to determine particle characteristics (Tonizzo et al., 2007;
Ibrahim et al., 2016; Chami et al., 2001). Models for the unpolarized BRDF (Morel et al., 2002;
Lee et al., 2011) have been validated (Voss et al., 2007; Gleason et al., 2012), but variations in the
polarization of the upwelling radiance due to the sun angle, viewing geometry, dissolved material,
and suspended particles have not been systematically documented. In this work, we simulated the
upwelling radiance distribution using a Monte Carlo-based radiative transfer code and measured it
using a set of fish-eye cameras with linear polarizing filters. The results of model-data comparisons
from three field experiments in clear and turbid coastal conditions showed that the degree of linear
polarization (DOLP) of the upwelling light field could be determined by the model with an absolute
error of ±0.05 (or 5% when the DOLP was expressed in %). This agreement was achieved even with a
fixed scattering Mueller matrix, but did require in situ measurements of the other inherent optical
properties, e.g., scattering coefficient, absorption coefficient, etc. This underscores the difficulty that is
likely to be encountered using the particle scattering Mueller matrix (as indicated through the remote
measurement of the polarized radiance) to provide a signature relating to the properties of marine
particles beyond the attenuation/absorption coefficient.

Keywords: polarization; ocean optics; upwelling radiance distribution; remote sensing

1. Introduction

The in-water and water-leaving radiance in the ocean is partially polarized and this has
implications for both biological activity [1] and for viewing the ocean from a satellite [2]. The biological
implications of the polarization are a current topic of research [3] but the implications for ocean color
remote sensing are just being exploited [2,4]. Various studies have indicated that measurement of the
polarization of the radiance leaving the ocean can be used to determine particle characteristics [5–7].
In addition to using the polarization of the water leaving radiance for studies of the water properties,
polarization may also be important for processing data from ocean color sensors that have unintended
polarization sensitivities [8,9].
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Measurements of the scalar (without regard to polarization) spectral upwelling radiance
distribution have occurred more frequently since the development of the radiance distribution camera,
RADS [10], and then the upwelling radiance distribution camera, NuRADS [11]. These instruments
use electro-optic camera systems combined with filter changers and fisheye cameras to image the
complete upwelling radiance distribution, for a specific wavelength, in one image. The CCD (charge
coupled device) resolution and optics allow measurement of the radiance distribution with a 1◦ angular
resolution. These systems have been used in studies of the in-water light field [12] and studies of
the angular radiance distribution variations in ocean color algorithms [13,14]. Recently, two new
cameras, polarized radiance camera (PolRADS) [15] and downwelling polarized camera (DPOL) [16],
have been used to make measurements of the polarized spectral upwelling radiance distribution,
as described below.

Measurements of the upwelling, in situ, polarized radiance have typically been done with
variations of a Gershun-tube radiometer, obtaining the angular distribution by changing the viewing
direction of the radiometer [17,18]. These instruments have advantages such as the simplicity of
calibration and the ability to do hyperspectral measurements. Hyperspectral measurements of
the polarized light field have been suggested as a method to measure in situ solar stimulated
fluorescence [19]. Unfortunately, to obtain the full radiance distribution requires many measurements
during which the illumination conditions can change, and spatially varying angular features resulting
from the sea surface may not be captured. By making measurements using fisheye lenses, while limited
to multi-spectral measurements rather than hyperspectral measurements, higher angular spatial
resolution can be obtained nearly simultaneously (typical exposure times are less than 1 s).

Models for the unpolarized bi-directional reflectance distribution function (BRDF) [20,21] have
been validated in Case I [13] and Case II [14] waters, but variations in the polarization of upwelling
radiance due to sun angle, viewing geometry, dissolved material, and suspended particles have not
been systematically documented.

2. Methods

The light field polarization is easily described by use of the four element Stokes vector, I, as in,
for example, Bohren and Huffman [22]. The four components of I are prescribed relative to some
reference plane, which here we choose as the plane defined by the viewing direction and the nadir
direction. Consider an electromagnetic wave of angular frequency ω. If the unit vector �̂ is parallel
to, and the unit vector r̂ is perpendicular to, the reference plane (such that �̂× r̂ is in the direction of

propagation), the electric field can be written as
→
E = E��̂+ Err̂, with:

E� = E�0 exp[i(ωt + δ�)], (1a)

Er = Er0 exp[i(ωt + δr)] (1b)

where E�0 and Er0 are real. The four components of the Stokes vector are then defined as:

I ≡ E�E∗
� + ErE∗

r = E2
l0 + E2

r0 (2a)

Q ≡ E�E∗
� − ErE∗

r = E2
l0 − E2

r0, (2b)

U ≡ E�E∗
r + ErE∗

� = 2El0Er0cosδ (2c)

V ≡ i(E�E∗
r − ErE∗

� ) = 2El0Er0sinδ (2d)

where δ ≡ δr − δ�. A derived parameter that we will use in our comparison is the degree of linear
polarization, DOLP, defined as:

DOLP =

√
Q2 + U2

I2 (3)
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Another useful parameter is the angle of the plane of polarization, χ, which is defined as:

χ =
1
2

arctan
(

U
Q

)
(4)

We measured the Stokes vector over the upwelling hemisphere using the PolRADS and DPOL
cameras and simulated it using a Monte Carlo-based radiative transfer (RT) code. Data were available
from three field campaigns: Hawaii, USA, in December 2005; the Ligurian Sea in March 2009; and the
New York Bight in May 2009.

2.1. Measurements of the Polarized Upwelling Radiance Distribution

In Hawaii, measurements of the polarized upwelling radiance distribution were accomplished
using the PolRADS camera system [15]. PolRADS is based on the NuRADS camera system [12],
which is a compact (30 cm diameter, 30 cm length), multispectral camera that images the upwelling
radiance distribution in six narrow (≈10 nm full-width at half-maximum, FWHM) spectral bands
centered at 412, 436, 486, 526, 548, and 615 nm. In the PolRADS instrument, three synchronized
NuRADS cameras are used, each with a linear polarizer, to simultaneously acquire images. Combining
the images from three NuRADS cameras, when in PolRADS configuration, allows for retrieval of three
elements of the Stokes vector (I, Q, and U, but not V), as well as DOLP.

In the Ligurian Sea and New York Bight, measurements of the polarized upwelling radiance
distribution were accomplished with the DPOL camera system [16]. DPOL is similar to PolRADS
in the sense that simultaneous measurements are made using multiple fisheye lenses with different
polarizing filters in the optical path. DPOL differs from PolRADS by using optical-fiber bundles to
project images from all lenses through a single spectral filter and onto a single CCD array. Eliminating
the redundant filters and cameras makes DPOL much smaller than PolRADS, thereby reducing the
instrument shadow. Furthermore, DPOL has four lenses, rather than the three on PolRADS, enabling
retrieval of all four Stokes vector elements. The spectral filters used on DPOL were also ≈10 nm
FWHM and were centered at 442, 488, 520, 550, 589, and 650 nm. For both PolRADS and DPOL,
the channels above 600 nm will not be used because of instrument self-shading. In addition, because
of its absence on DPOL, the 412 nm channel on PolRads will also not be discussed.

Data acquisition for both the PolRADS and DPOL systems used filter changers to rotate
interference filters and thus sequentially acquire images in each wavelength band. Typical exposure
times were less than one second. However, acquiring a set of images from all wavelengths took about
two minutes due to the time required to read and store the data from the CCD. With both systems,
typical deployments lasted from one to several hours, enabling multiple acquisitions over a range of
solar zenith angles.

Reduction of the raw images consisted of applying calibration factors [15,16] and averaging
images in both space and time to reduce environmental noise. After calibration, but before averaging,
every image was inspected to find the anti-solar point, to correct the geometry of the image, and to
check for obstructions in the field of view such as fish, the power/data cable, the side of the ship,
or other instruments. Calibrated images of the Stokes vectors were then averaged in 10-min bins,
excluding those that had been flagged as unacceptable in the inspection stage. The symmetry of
the images about the principal plane was exploited to further average both halves of each image.
In addition, spatial binning of 3 × 3-pixel windows was performed to produce final average images at
a 1◦ × 1◦ resolution. Each pixel in the final, reduced image, therefore, could have been an average of up
to 90 raw pixels (5 images × 2 image halves × 9-pixel window). The mean and coefficient of variation
(CV = standard deviation divided by the mean) of the Stokes vector components were computed for
each pixel in the reduced image using the up-to-90 raw pixels in the original images. The degree of
linear polarization DOLP was then computed for each pixel from the mean I, Q, and U Stokes vector
components (Equation (3)). Because V was not available from the PolRADS data, DOLP was calculated
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rather than the degree of polarization (DOP); however, in the upwelling lightfield, they are equivalent
because the magnitude of V is negligible [23].

For in situ radiometric measurements, instrument self-shading must be considered [24]. In our
case, instrument self-shading may also affect the DOLP measurements due to camera geometry.
The physical displacement of the multiple lenses used means that the images through different
polarizers will look into the instrument shadow in slightly different directions. When one lens views
a portion of the radiance distribution with less shadow, it will appear brighter in that image. In the
algorithm from which the polarization information is derived, for the scene to be unpolarized requires
that region of the three camera images to be closely matched in intensity. If the region in one camera is
less shaded, it will cause the algorithm to assume that the light field is polarized along the direction
of the linear polarizer in that camera. Thus shadowing, which is not symmetric in all the images,
will appear as an increase in the DOLP, and therefore, a negative model-data DOLP difference.
This effect should be greater in turbid water and for the PolRADS instrument (because of its larger
size) than in clear water or with the DPOL instrument. In our analysis, the area of direct shadow (the
anti-solar point) was excluded from the data set. More subtle shadow areas may exist and could cause
the measured DOLP to be larger than the modelled DOLP (as will be seen, this was not generally the
case in our data set).

2.2. Modeling the Polarized Upwelling Radiance Distribution

A Monte Carlo model was used to solve the vector radiative transfer equation (Equation (5)) for
the propagation of the Stokes vector, I, at wavelength λ,

cos(θ)
dI(λ, τ, θ, φ)

dτ
= −I(λ, τ, θ, φ) + ω0

∫
4π

R(α)P
(
λ, τ, θ′, φ′ → θ, φ

)
R′(α′

)
I
(
λ, τ, θ′, φ′)dΩ′ (5)

The four components of the column vector I = [I, Q, U, V]T were defined in Equation (2).
The single-scattering albedo, ω0, the optical depth of the medium, τ, the scattering phase matrix,
P, and the rotation matrix, R, are defined below. The right-handed coordinate system in Equation (5)
has its origin at the top of the medium, z-axis pointed downward, and x-axis directed away from the
sun. The nadir angle, θ, relative to the z-axis, and the azimuth angle, φ, in the x-y plane, define the
direction of photon propagation. Photons originate in the solar beam, i.e., with θ = θ0, the solar zenith
angle, and φ0 = 0.

The model simulated a horizontally homogenous, two-layer system with a non-absorbing,
Rayleigh-scattering atmosphere over an ocean comprised of Rayleigh-scattering water molecules
plus scattering and absorbing hydrosols (“particles”). Fresnel reflectance at the air–water interface
used the boundary condition defined in Gordon et al. [8]. The single-scattering albedo, ω0, and the
optical depth of the medium, τ, were defined as per usual (e.g., Mobley [25]):

ω0 =
bt(λ)

ct(λ)
, (6)

and τ(λ) =
∫ z

0
ct(λ)dz. (7)

where the parameters at(λ) + bt(λ) = ct(λ) are the total absorption, scattering, and attenuation
coefficients (in m−1), respectively. For the atmospheric layer, at(λ) = 0, therefore ω0 = 1, and τ was
taken from Teillet [26] assuming standard atmospheric conditions. For the oceanic layer, absorption
(aw) and scattering (bw) coefficients of seawater were interpolated to PolRADS and DPOL spectral
bands from Table 1.1 in Pegau et al. [27]. In the Ligurian Sea and New York Bight experiments,
the absorption coefficient of dissolved and particulate constituents (apg) and the particle scattering (bp)
coefficients were measured in situ, depth-weighted, and interpolated as necessary to the PolRADS and
DPOL spectral bands as described by Gleason et al. [14]. No in situ measurements were available from
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Hawaii, therefore for that dataset, apg and bp were derived from Morel and Gentili [28] (Equations (7)
and (8) in reference [28]) using an estimated total chlorophyll concentration of 0.1 g/m3, the long-term
average value at the measurement site. Summing the water and particle contributions gave the total
coefficients required for Equations (6) and (7): at = aω(λ) + apg(λ) and bt = bω(λ) + bp(λ). For each
image data set, the model was run at the corresponding solar zenith angle.

Scattering events in Equation (5) are represented by a 4 × 4 matrix called the Mueller matrix,
M. For example, a photon travelling in direction ξ ′ with Stokes vector I’ would be scattered in
a new direction ξ with Stokes vector I by the linear transformation I(ξ) = MI’(ξ’). Note that M
is defined relative to the scattering plane (as is traditional), the plane defined by vectors ξ’ and
ξ, but we have defined I(θ, φ) relative to the viewing direction and the nadir direction. Pre- and
post-multiplication by the rotation matrix R(α) is required to account for changes in reference frames:
I(θ, φ) = R(α)MR(α’)I’(θ′, φ′), where

R(α) =

⎛⎜⎜⎜⎝
1 0 0 0
0 cos(2α) sin(2α) 0
0 −sin(2α) cos(2α) 0
0 0 0 1

⎞⎟⎟⎟⎠ (8)

The rotation angle α = cos−1(l̂l · l̂r) is measured clockwise from the vector l̂l in the initial reference
frame to the vector l̂r in the rotated reference frame [8].

The scattering phase matrix, P, is a Mueller matrix normalized to the integral of the M11 element
over all solid angles:

P = M/b (9)

where
b = 2π

∫ π

0
M11sin(θ)dθ (10)

Mij represents the ith row and jth column of M, and Θ is the scattering angle.
It is advantageous, when investigating the polarization effects of the Muller matrix, to normalize

in a different way, specifically to the M11 element at each angle Θ (Equation (11)).

Sij(Θ) = Mij(Θ)/M11(Θ) (11)

Then,
P = β̃S (12)

where β̃ = M11/b is the scattering phase function typically used in scalar radiance transfer models.
For our modeling, P in the atmosphere and Pw, the seawater component of the ocean, were both

set to Pr, given by Rayleigh scattering:

Pr =
3

16π

⎛⎜⎜⎜⎝
1 + cos2(Θ) −sin2(Θ) 0 0
−sin2(Θ) 1 + cos2(Θ) 0 0

0 0 2cos(Θ) 0
0 0 0 2cos(Θ)

⎞⎟⎟⎟⎠ (13)

(We examined a few cases using a code that included the (small) depolarization of Rayleigh scattering
in the atmosphere and water by molecular anisotropy and concluded that its omission would not
significantly affect the results.) Particle scattering in the ocean used β̃ [25,29] and two alternative
parameterizations of S. One set of model runs used S from Voss and Fry [30], which was experimentally
determined from samples of seawater (referred to here after as V-F). Note that Voss and Fry found all
off-diagonal elements of S equal to zero, within experimental error, except for S12 and S21. Furthermore,
Voss and Fry found S12 ≈ S21. Subsequent laboratory measurements of the Mueller matrix elements
for phytoplankton [31–33] have been similar to V-F. Specifically, the S12(Θ) element of phytoplankton
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samples tends to have a minimum value of between −0.6 to −0.8 at an angle between 90◦ and 100◦.
In contrast, experiments with solutions of suspended marine sediment have revealed smaller absolute
values for S12(Θ) element near Θ = 90◦ [32]. Because of this, we decided to carry out a second set
of runs with a particle phase matrix having a smaller minimum in S12 near 90◦ (Figure 1). This was
accomplished by replacing the V-F S12(Θ) with that for Rayleigh scattering with a depolarization factor
ρ. ρ is the ratio of light scattered with polarization parallel to the plane of incidence to that scattered
perpendicular to the plane of incidence, when the incident radiation is polarized perpendicular to
the plane of incidence. The element S12(Θ) as a function of ρ is given by Equation (14) [34]. The other
elements of S remained unchanged for this Mueller matrix (referred to as Mod-V-F). Setting ρ = 0.3
resulted in a minimum value of S12(90◦) = −0.37, which is within the range of −0.38 to −0.25 observed
by Volten et al. [32].

S12(Θ) = S21(Θ) =
(1 − ρ)

(
cos(Θ)2 − 1

)
(

1 + cos(Θ)2
)
+

(
3 − cos(Θ)2

)
ρ

(14)

Kuik et al. [35] presented four inequalities, originally derived by Fry and Kattawar [36] and
Hovenier et al. [37], that must be satisfied by the scattering matrix elements of randomly oriented
particles having a plane of symmetry. These inequalities are all satisfied by the modified Mueller matrix.

Figure 1. Non-zero, normalized Muller matrix, S, elements for Rayleigh scattering (blue), V-F (red),
and Mod-V-F (black).

2.3. Model–Data Comparison

Visual comparisons provided a qualitative check that the Stokes vector components from our RT
model were in agreement with the camera data. Quantitative comparisons between the model and
data were performed by computing the model–data difference every 10◦ in nadir from 0◦ to 80◦ and
every 30◦ in azimuth from 0◦ to 180◦. Thus, the difference in DOLP, DOLPdiff, between each model
output, DOLPmodel, and the corresponding average PolRADS or DPOL image, DOLPdata, was computed
at 63 angles using Equation (15).

DOLPdi f f (θ, φ) = DOLPmodel(θ, φ)− DOLPdata(θ, φ) (15)

where DOLPmodel(θ, φ) and DOLPdata(θ, φ) are the DOLP predicted by the RT model and measured
by the corresponding average PolRADS or DPOL image, respectively, at the same 63 nadir and
azimuth angles.
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3. Results

In total, approximately 528 individual images were selected and averaged in 10 min intervals to
produce 219 data sets, which were compared with RT model runs (Table 1).

Table 1. Number, N, of reduced images used for model–data comparisons in each of the three datasets
in each of four spectral bands. Note, the PolRADS and DPOL cameras used different filters with slightly
different band centers; the center of each 10 nm-wide filter is listed in parenthesis.

Experiment N (λ nm) N (λ nm) N (λ nm) N (λ nm)

Hawaii 27 (436 nm) 31 (486 nm) 28 (526 nm) 24 (548 nm)
Ligurian Sea 9 (442 nm) 9 (488 nm) 13 (520 nm) 14 (550 nm)

New York Bight 7 (442 nm) 8 (488 nm) 9 (520 nm) 7 (550 nm)

3.1. Overall View of the Upwelling Polarization Signal

Figure 2 shows an example image for clear water. In the right column, the data parameters are
shown (I, Q, U, DOLP, and χ), while in the center column, the results from the RT model are shown,
where the model inputs are based on the measured parameters for the data (bp, apg, solar zenith angle).
As mentioned earlier, during processing of this data, the symmetry about the principal plane was used
to average the left and right side of the data (with proper handling of the sign of U/I). Thus, to make
these images, this symmetry was used to generate the left side of the data images. The left column is a
single scattering calculation, where the Mueller matrix was assumed to be V-F, and the solar zenith
angle was the value appropriate for the data. As can be seen, the same broad patterns were visible in
the single scattering model, the RT model and data. The I component of the Stokes vector was largest
near the horizon in the direction towards the sun. The Q/I and U/I patterns were very similar in all
three cases. For the DOLP, the single scattering model was significantly different than the data and the
RT model. With single scattering, the maximum DOLP was both larger than in the RT model and the
data, and occurred for all nadir angles at the scattering angle matching the minimum in the S12 and
S21 elements (90–100◦). Interestingly, while it was a subtle effect in the clear water case, the maximum
DOLP in the model and data occurred at the same scattering angle, but at an azimuth of 90◦ relative to
the principal plane (the plane containing the anti-solar position and nadir). This can be contrasted
with the case of the downwelling sky radiance distribution, where the maximum DOLP occurred in
the principal plane, with a decrease in DOLP towards the horizon (for example, Liu and Voss [38]).
The same cause was in effect in both cases: for downwelling radiance, the horizon had more multiple
scattering than the principal plane at the 90◦ scattering angle, while for the upwelling radiance, in the
water, there was more multiple scattering for the principal plane at a 90◦ scattering angle than for nadir
angles closer to the horizon. The other feature in the data for this clear water case was the separation
of the neutral points, areas of zero DOLP, on either side of the principal plane, as has been discussed
previously [39,40]. Finally, the angle of the polarization plane, χ, was very similar in all three cases,
perhaps less well-defined for the data in the area of the low polarization, around the anti-solar position.

An example with more turbid water is shown in Figure 3. Once again, the patterns were generally
the same, however in this case the data are noisier. Note that the data shown in this case has not been
averaged using the left/right symmetry across the principle plane, thus appears less symmetric than
the example in Figure 2. As has been pointed out before [41], the most stable parameter was χ, with the
exception of the area with very low DOLP, in which case the plane of polarization was not well defined.
In general, the images appeared much noisier in the data from the two more turbid sites (New York
Bight and Ligurian Sea) than in the clear water off Hawaii. The pattern of Q/I and U/I tended to shift
more between each image that goes into these data averages. In the scale of Q/I and U/I ranging from
−1 to 1, the standard deviation obtained during averaging the data was approximately 0.05 for the
New York Bight and Ligurian Sea data, while it was 0.012 for the clearer Hawaii data. One can also
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see that in this more turbid case, the single scattering was a poor approximation of all parameters,
with the exception of χ.
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Figure 2. Comparison of the Stokes vector components I, Q/I, U/I, DOLP, and χ for clear water. Shown
are the calculation for single scattering (left column), RT model (center column), and data (right column).
The data were taken on 2 December 2005, at 20:46 UTC off of Oahu, Hawaii. The conditions were:
SZA = 48◦, 442 nm, Chl = 0.1 mg/m3, ct = 0.1 m−1 (calculated from Chl as described in text), ω0 = 0.8,
and clear skies. The intensity for the model was adjusted to match the data at nadir. Each image is a
fisheye projection. Nadir is in the center of the circle, nadir angle is linearly proportional to radius from
center. The angle of the Snell’s circle (48◦ nadir angle) is shown in as the white circle. The principal
plane (plane containing the anti-solar point and the nadir direction) is a vertical line through the center
of the image. The anti-solar direction is towards the bottom of the image, and the sun direction is
towards the top of the image.
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Figure 3. Similar to Figure 2, but for a case with more turbid water. The data were taken on 22 March
2009, at 9:40 UTC in the Ligurian Sea. The conditions were: SZA = 48◦, 550 nm, ct = 0.44 m−1, ω0 = 0.82,
and clear skies. The figure geometry is the same as Figure 2.

3.2. Maximum DOLP and Nadir DOLP

How large can the maximum DOLP be in the upwelling radiance? Figure 4 shows this as a
function of ct/at and ct. We used the variation of the optical properties (ct, bt, bbt, and at) with the
wavelength to fill in the data, thus this figure includes all wavelengths with their appropriate optical
properties. The quantity ct/at can be shown to equal the mean number of scattering events in the
medium taken as a whole [28]. As the water gets more turbid, there is more multiple scattering,
which will decrease the DOLP [7,42]. The maximum DOLP is often outside the Snell’s cone, thus not
retrievable from above the surface, so we also show the maximum value of the DOLP inside the Snell’s
cone in Figure 4. As can be seen, this was less, sometimes significantly less, than the maximum DOLP
in the total upwelling field. Another point was that the maximum DOLP in the total upwelling field
occurred at an azimuth nearly perpendicular to the principal plane, as this position was always at
a 90◦ scattering angle to the sun, and had the largest component of single scattered light due to a
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combination of light attenuation with depth and the relative smoothness of the scattering function in
the backward direction. For the maximum DOLP inside the Snell’s circle, as can be seen in Figures 2
and 3, this azimuthal angle will move towards the principal plane, and hence got closer to the position
where, above the surface, it will be in the region of the solar glitter pattern.

(a) (b) 

Figure 4. Maximum DOLP in upwelling radiance distribution vs ct (a) and ct/at (b). The symbol legend
is the same for both graphs. Filled circles represent the maximum DOLP in the total upwelling field,
while the open circles represent the maximum DOLP in the portion of the upwelling light field inside
the Snell’s circle (nadir angle less than 48◦).

Another interesting parameter is the DOLP at the nadir angle, as this was the direction that many
in situ radiometers make their measurement (Figure 5). Here the RT model results are presented rather
than the data, as in our definition of the reference frame, the nadir direction is a point of singularity,
and the data become excessively noisy at that point.

Figure 5. Nadir DOLP as a function of solar zenith angle and ct/at, computed from the RT model.
Contours are lines of constant DOLP.
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Note that the nadir light field could be significantly polarized and the DOLP could be greater
than 20%. Also, as can be seen, the largest values (22%) occurred at large solar zenith angles (when
the scattering angle decreased to values closer to 90◦), but there was also a trend of decreasing DOLP
as ct/at increased at a constant solar zenith angle due to increasing multiple scattering. The plane of
polarization in all cases was perpendicular to the principal plane.

3.3. Comparison of DOLP Differences

For the first quantitative comparison of the RT model and the data, we looked at scatter plots
comparing the measured and modeled DOLP (Figure 6). For each cruise, a best linear fit line was
calculated, with the y-intercept = 0. The fit was calculated for all of the data, as well as the data inside
the Snell’s circle; however, the calculated slopes were not significantly different, so we will discuss only
the fit for the total image. The slopes were 0.94 (±0.002, r2 = 0.81), 0.88 (±0.006, r2 = 0.84), and 0.82
(±0.008, r2 = 0.76) for Hawaii, New York Bight, and Ligurian Sea, respectively.

Because the DOLP was significantly overestimated in the Ligurian Sea data, the alternative
normalized Mueller matrix Mod-V-F (ρ = 0.30) was tried, with all other parameters the same, resulting
in a slope of 1.20 (± 0.009, r2 = 0.656); we concluded that the depolarization of 0.3 was too strong.
The true average Mueller matrix for this location could be somewhere between the two we used.

Figure 6. Scatter plots of DOLP for model versus data, separated by cruise. Also shown is the best fit
line (with y-intercept = 0) (black line) and 1:1 line (red line). The crosses correspond to data outside the
Snell’s circle (nadir angle larger than 48◦), and the dots to points inside the Snell circle. V-F was used in
the model for (a–c), Mod-V-F was used for (d).
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The correlation between DOLPdiff and several environmental parameters was investigated.
In Figure 7, we show the DOLPdiff variation with solar zenith angle. In this figure, the mean DOLPdiff
was calculated for each data image, along with the standard deviation (shown as error bars). There was
no trend in the data; however, there does appear to have been a slight increase in the magnitude of
the deviation at solar zenith angles greater than 70◦. In general though, in almost all cases, the mean
DOLPdiff was within one standard deviation of zero.

Figure 7. DOLPdiff vs solar zenith angle for each data image. The error bars are ± the standard
deviation of the mean.

In Figure 8, we look at the DOLPdiff dependence on ct and ct/at. While there was no clear trend in
DOLPdiff with ct, a slight trend occurred as a function of ct/at. Low values of ct/at (more absorption,
less multiple scattering) had a slightly larger value of DOLPdiff, while DOLPdiff tended towards 0 with
larger values of ct/at (more multiple scattering). However, the mean DOLPdiff was less than 5% for
almost all cases, and this was within the measurement uncertainty of these instruments in the field.

Finally, in Figure 9, we look at the DOLPdiff as a function of bbt/bt (bbt/bt is the fraction of total
scattering which was in the backwards direction, i.e., scattering angles from 90◦ to 180◦). As bbt/bt

increased, DOLPdiff appeared slightly higher, indicating less agreement at higher values of bbt/bt.
Low values of bbt/bt were indicative of a low refractive index, phytoplankton-dominated environment,
while higher values of bbt/bt indicated an environment with other higher refractive index particles,
perhaps sediment. V-F was based on measurements in a variety of environments (clear ocean water to
more turbid coastal water); however, measurements of the Mueller matrix of phytoplankton cultures
also agreed with V-F. It has often been stated that the polarization resulting from higher index particles
is less than V-F (i.e., larger depolarization at a 90◦ scattering angle) [32]. It is probably the case in our
data set, that as the bbt/bt ratio increases, the S12 and S21 elements of the Mueller matrix should also
decrease in an absolute value sense, but not as much of a decrease as used in Mod-V-F, where the
decrease in this matrix would have caused a significant negative DOLPdiff.
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Figure 8. DOLPdiff as a function of ct and ct/at. Color code of data is given in Figure 7. (a) shows
DOLPdiff vs ct, while (b) is DOLPdiff vs ct/at.

Figure 9. DOLPdiff as a function of bbt/bt. There were no bbt measurements during the Hawaii
data collection.

3.4. Comparison of Q/I and U/I Differences

Rather than calculating DOLP, we could also show the difference between the model result for
Q/I and U/I versus the data, shown in Figure 10 for the Ligurian Sea case. This case is shown because
it was neither the best result, which was for Hawaii, nor the worse, which was New York Bight.
The advantage of DOLP, and the reason most of the results are presented for this parameter, is that it
is independent of the frame of reference, thus small errors in locating the solar plane in each image
cause smaller differences in the comparison. Q/I and U/I comparisons are with respect to the frame
of reference and depend on correctly locating the solar plane in the image, hence the comparison is not
quite as good between the model and data result as with the DOLP. The line fits had a slope of 0.66
(±0.010, r2 = 0.70) for Q/I and 0.71 (±0.013, r2 = 0.67) for U/I. The fact that the scatter is qualitatively
the same in these graphs as in the DOLP figure can be simply understood since Q/I and U/I can be
derived from a combination of the DOLP and the plane of polarization, χ. As mentioned earlier, χ is
a very stable parameter in the upwelling light field. The spread in the data is slightly larger for U/I
versus Q/I because U/I has stronger spatial gradients, and small rotations affect this parameter more
than Q/I.
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Figure 10. Scatter plots of Q/I (a) and U/I (b) for model versus data for the Ligurian Sea data set.
Also shown is the best fit line between the model and data for each parameter (black line). The 1:1 line
is shown in red.

4. Conclusions

We have compared measurements of the polarization properties of the upwelling light field in the
marine environment to radiative transfer models based on the measured inherent optical properties
(IOPs) and an average normalized Mueller matrix for the scattering. For the Ligurian Sea and New
York Bight data sets, the base RT model used the same volume scattering phase function (Petzold)
and Mueller matrix (V-F) for the standard model, with the scattering and absorption coefficients as
measured coincidently on location. For Hawaii, the IOPs were not measured, but were estimated
based on an average Chl value of 0.1 mg/m3 at the measurement location. Even with the fixed
scattering matrix parameters, on average, the DOLPdiff was less than 5%, and in almost every case
was within one standard deviation of zero. Thus, to get more information, or discrimination, from the
DOLP measurements, the uncertainty of the measured DOLP must be smaller than 5%, and the other
parameters (scattering phase function, Mueller matrix, and absorption coefficient) need to be known
well enough to constrain the DOLP model to this accuracy.

Some of the variability in our data was due to instrument noise (on the order of 2%); however,
other noise was due to the variability in the environment resulting from the incident light field
interacting with the wavy air–sea interface. This was more of a problem for the downwelling light
field but was still evident in the upwelling light field. For remote sensing, this radiance (Stokes vector)
would have been propagated through the (wavy) air–sea interface, which would introduce more noise.

The 5% agreement of the model with the data shows that the model will provide sufficient
accuracy for correcting residual polarization effects in ocean color instruments. However, more work
must be done at improving the measurement accuracy of the instrumentation if the goal is to be able
to use polarization effects to characterize (and differentiate with respect to) the physical properties of
the suspended particles other than c/a.
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Abstract: An analytical radiative transfer (RT) model for remote sensing reflectance that includes
the bidirectional reflectance distribution function (BRDF) is described. The model, called ZTT
(Zaneveld-Twardowski-Tonizzo), is based on the restatement of the RT equation by Zaneveld (1995) in
terms of light field shape factors. Besides remote sensing geometry considerations (solar zenith angle,
viewing angle, and relative azimuth), the inputs are Inherent Optical Properties (IOPs) absorption
a and backscattering bb coefficients, the shape of the particulate volume scattering function (VSF)
in the backward direction, and the particulate backscattering ratio. Model performance (absolute
error) is equivalent to full RT simulations for available high quality validation data sets, indicating
almost all residual errors are inherent to the data sets themselves, i.e., from the measurements of IOPs
and radiometry used as model input and in match up assessments, respectively. Best performance
was observed when a constant backward phase function shape based on the findings of Sullivan
and Twardowski (2009) was assumed in the model. Critically, using a constant phase function in the
backward direction eliminates a key unknown, providing a path toward inversion to solve for a and
bb. Performance degraded when using other phase function shapes. With available data sets, the
model shows stronger performance than current state-of-the-art look-up table (LUT) based BRDF
models used to normalize reflectance data, formulated on simpler first order RT approximations
between rrs and bb/a or bb/(a + bb) (Morel et al., 2002; Lee et al., 2011). Stronger performance of
ZTT relative to LUT-based models is attributed to using a more representative phase function shape,
as well as the additional degrees of freedom achieved with several physically meaningful terms in
the model. Since the model is fully described with analytical expressions, errors for terms can be
individually assessed, and refinements can be readily made without carrying out the gamut of full
RT computations required for LUT-based models. The ZTT model is invertible to solve for a and bb
from remote sensing reflectance, and inversion approaches are being pursued in ongoing work. The
focus here is with development and testing of the in-water forward model, but current ocean color
remote sensing approaches to cope with an air-sea interface and atmospheric effects would appear to
be transferable. In summary, this new analytical model shows good potential for future ocean color
inversion with low bias, well-constrained uncertainties (including the VSF), and explicit terms that
can be readily tuned. Emphasis is put on application to the future NASA Plankton, Aerosol, Cloud,
and ocean Ecosystem (PACE) mission.

Keywords: ocean optics; ocean color; remote sensing; radiative transfer approximation; volume
scattering function; NASA PACE mission

Appl. Sci. 2018, 8, 2684; doi:10.3390/app8122684 www.mdpi.com/journal/applsci205



Appl. Sci. 2018, 8, 2684

1. Introduction

Radiative transfer (RT) approximations linking inherent optical properties (IOPs), such as
spectral absorption a(λ) (m−1) and spectral backscattering bb(λ) (m−1) to ocean color remote sensing
reflectance Rrs(λ) are vital to interpreting Rrs because it is not possible to analytically invert the full
RT equation [1,2]. Once forward RT approximations are developed, inversions can then be explored
to solve for IOPs from Rrs and subsequently ocean biogeochemical properties [3]. Ocean color Rrs(λ)
(sr−1) here is defined as Lw(λ)/Ed(λ), or water leaving radiance (W m−2 sr−1 nm−1) normalized to
above water downwelling irradiance (W m−2 nm−1) (see Reference [4] for complete definitions of all
optical parameters and Appendix A, Table A1 for notation).

Ocean color expressions to date have almost exclusively relied on first order approximations of RT
relating Rrs to bb/a through a proportionality represented as f /Q [5–8], or to bb/(a + bb) with multi-term
polynomial expressions based originally on Gordon et al. [9] with coefficients represented as l or
G ([9–12]; see review by Werdell et al. [13]). The coefficients describing the relationship between Rrs

and IOPs are detailed in look-up tables (LUTs), or a neural network in the case of [8], with dependencies
on geometry (i.e., solar zenith, viewing angle, relative azimuth) and in some cases wavelength, wind
speed, atmospheric conditions, and/or chlorophyll concentration [Chl]. The LUTs are generated from
full RT computations with so-called synthetic data sets where IOPs and their interrelationships are
assumed and referenced to [Chl]. LUT coefficients are thus also implicitly dependent on IOPs.

These ocean color relationships have been tremendously useful to the ocean color community for
decades. Morel [14] discusses the first order analytical relationship and the empiricism necessary to
invert. Coefficients describing the relationship between Rrs and IOPs are dependent on the bidirectional
reflectance distribution function (BRDF), which describes the transformation of downwelling irradiance
for different solar zenith angles into the distribution of upwelling radiance. Morel et al. [7] describe the
current state-of-the-art BRDF model (herein referred to as M02), currently implemented operationally
by the ocean color community (NASA Ocean Biology Processing Group (OBPG); [15]) to convert Lw

measured at any viewing geometry to a conceptual “exact normalized” Lw, [Lw]
ex
N , with Sun at zenith

and nadir viewing in a non-attenuating atmosphere. This allows any measurement at any Sun-viewing
geometry to be directly intercompared. Inversion algorithms to derive IOPs are then typically applied
to [Lw]

ex
N and are often based on the same type of first order Rrs to IOP approximation [13,16]. The

current semi-analytical algorithm (SAA) application to water-leaving radiances is thus a two-step
process (after applying calibration coefficients, georeferencing, and atmospheric correction): (1) A
BRDF correction to carry out the conversion to [Lw]

ex
N , followed by (2) application of an inversion

algorithm to derive IOPs (see [13]).
A key potential source of uncertainty in current SAA approaches is associated with the volume

scattering function (VSF; β(ψ) m−1 sr−1, where ψ is scattering angle), and this uncertainty is
ambiguously dispersed in both steps. The VSF dependency is of paramount importance; as Morel and
Gentili [5] note, the BRDF “ . . . is essentially controlled by the shape of the VSF . . . .” Historically, very
few measurements of the VSF have been available to develop and test SAAs. The M02 BRDF tables
were developed from extensive RT modeling using VSF shapes (also known as phase functions P(ψ),
defined as the VSF normalized to total scattering, P(ψ) = β(ψ)/b, with units sr−1) tied to estimated
chlorophyll concentrations [Chl]. To obtain P(ψ) for modeling, Morel et al. [7] first mixed two phase
functions for populations dominated by large and small particles representing high and low [Chl]
extremes, respectively, and then mixed that particulate phase function with the phase function for
molecular seawater to a degree that was also linked to estimated [Chl]. The [Chl] estimate was initially
derived from Rrs with an empirical band ratio algorithm. Uncertainty is thus associated with how close
the assumed P(ψ) used in the BRDF modeling matches the actual P(ψ) associated with any given Lw

measurement. While the M02 model has been validated in Case 1 waters with atmospheric conditions
and IOPs that presumably agree with the underlying atmospheric and bio-optical models [17,18],
there have been limited attempts to assess any embedded phase function uncertainties with actual
VSF measurements in diverse water types [19,20]. No subsequent BRDF approach has demonstrated
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enhanced performance for Case 1 waters relative to the M02 approach while being feasible to implement
for ocean color. However, Talone et al. [21] have recently shown the Lee et al. [11] LUT-based approach
was more accurate for Case 2 waters sampled in the Adriatic, Baltic, and Black Seas.

Uncertainty also arises from exclusively using the bb term in the inversion algorithm, i.e., in step
two of the SAA approach described above. Effort has been devoted to trying to correct this uncertainty
by layering additional VSF dependence in the f /Q proportionality [22]. Interestingly, after the current
M02 BRDF normalization is applied (i.e., measurement geometry transferred to Sun at zenith and nadir
viewing), the scattering parameter that should be most closely linked to [Lw]

ex
N , and thus presumably

should provide the lowest associated uncertainties in IOP retrievals, is β(π) if single scattering is
assumed, which is typically a good approximation [23]. We are not aware however of any algorithm
using β(π) in lieu of bb. The practical but still arbitrary choice of converting measured Lw to [Lw]

ex
N

with Sun at zenith and nadir viewing may thus not optimize uncertainties in inversion algorithms.
The parameter β(π) is almost completely unknown in the ocean, as there are virtually no direct
measurements of β(π) in the literature and typical models of particle scattering with simplified particle
shapes do not account for possible particle-particle coherent scattering that may cause significant, but
poorly understood, enhancement near β(π) [24]. For example, a recent estimate of bb/β(π) made with
a combination of airborne lidar and in situ bb measurements [25] was 50% the value expected from
extrapolation of available β measurements [26].

Although the M02 BRDF correction as currently applied can be considered “conceptual” at
Lw(0,π) without creating a problem from a geometry point of view (i.e., Lw at any viewing geometry
can be corrected to a conceptual standard Lw at another geometry as long as it is consistent), it will
be problematic if we try to develop algorithms based on β(π) to reduce uncertainties because the
necessary data for algorithm development and validation are lacking. This would also suggest a
possible benefit in using the BRDF correction to obtain [Lw]

ex
N at another unique geometry (solar zenith,

viewing angle, and azimuth), one that was representative of single scattering at an angle that we can
measure directly with available instrumentation. To minimize the magnitude of BRDF correction, this
angle could be chosen as the centroid angle of the maximum in the frequency distribution of in-water
single scattering angles observed for polar orbiting satellites, which is about 150◦ (Figure 1). Since we
can accurately measure β at or near 150◦ with commercially available instrumentation (e.g., WET Labs
ECO, In-situ Marine Optics IMO-SC6, and legacy HOBI Labs Hydroscat sensors), there would appear
to be potential to reduce uncertainties with β(150◦)-based algorithms matched to a β(150◦)-based
BRDF correction using M02 relative to the current bb-based algorithms applied to a β(π)-based BRDF
correction. In the former approach, uncertainties associated with the phase function are thus mostly
restricted to the BRDF correction step.

Herein we explore a different approach, working with a RT expression from Zaneveld [27,28] that
explicitly incorporates a dependency on VSF shape, as well as specific viewing geometry. A path to
inversion to IOPs is also presented where SAA steps 1 and 2 mentioned above are combined in a single
relationship and uncertainties related to VSF shape and other parameters can be directly assessed.
This approach has several potential benefits, including (1) a single, fully analytical and invertible
expression describing the RT process for all remote sensing geometries, (2) optimal retention of native
RT relationships with more degrees of freedom than the first order approximation, directly linked to
physically meaningful terms, (3) all parameters including the VSF are explicit in the model with readily
characterized uncertainties, (4) model can be readily enhanced by tuning one or more terms rather than
developing new LUTs from complete recomputations of full RT, and (5) native viewing geometries
produce scattering at angles that can be resolved with available instrumentation. A challenge in an
explicitly VSF-dependent approach is amenability to inversion, as some information about the phase
function is ostensibly required [1,20]. However, it should be pointed out this is also the case with any
model, including the M02 BRDF correction, and subsequent inversion algorithms and their inherent
assumptions about VSF shape. In fact, as is assessed herein, the same assumptions of M02 in linking
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changes in VSF shape with an independent estimate of chlorophyll can be directly applied to this RT
model, with the benefit of being able to directly quantify associated errors.

Figure 1. Refracted, in-water scattering angles made between the solar zenith and viewing angle,
simulated for the upcoming NASA PACE satellite imager through a complete polar orbit (solid blue).
Scattering angle distributions for SeaWiFS were similar. Data courtesy Bryan Franz (NASA GSFC).
Angular weighting functions of commercial backscattering sensors WET Labs ECO-BB, ECO-NTU, and
MCOMS and IMO-SC6 (see text) are overlaid after scaling by 5 × 106.

In this paper we focus on the performance of a forward implementation of the Zaneveld expression
using a modified formulation in terms of IOPs that is now amenable to inversion. Performance of
the inversion to IOPs is being fully assessed in ongoing work. A key advance promoting inversion is
the finding by Sullivan and Twardowski [26] that the shape of the particulate VSF in the backward
direction is relatively constant for a wide range of water types, and so may be represented by a
constant function in an algorithm without introducing significant error. Importantly, we have also now
overcome a limitation in practically assessing this approach by collecting a database of measured VSFs
resolved over a large dynamic range concurrently with other high quality IOPs and radiometry under
ideal cloud-free environmental conditions [29].

2. Forward Model Development

Zaneveld [27,28] derived an exact restatement of the RT equation assuming a plane-parallel,
optically deep water column in terms of upwelling radiance Lu in viewing direction θv:

Lu(θs, θv, φ)

Eod
=

fb(θs, θv, φ) bb
2π

− cos(θv)KLu(θs, θv, φ) + c − fL(θs, θv, φ)b f
, (1)

where Eod is the scalar downwelling irradiance, KLu is the attenuation coefficient for upwelling radiance,
bf is forward scattering, and c is the attenuation coefficient. Parameters fb and fL are light field shape
factors representing the path radiance term of the RT equation [27,28]. Factor fb describes the redirection
of downwelling radiance into the upwelling viewing angle for a given VSF and is normalized to the
redirection that would be observed if the VSF was isotropic. Factor fb is thus directly linked to the shape
of the VSF in the backward direction. The factor fL is defined similarly but describes the redirection
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of upwelling radiance into the upwelling viewing angle and is thus directly linked to the shape of
the near forward VSF. These shape factors are expected to vary within a relatively narrow range
near unity. All terms are a function of depth z and wavelength λ. The Zaneveld expression does not
account for any inelastic processes, such as molecular Raman scattering or fluorescence [30–33]. Using
physically reasoned approximations for fb including the assumption of single scattering, the following
was obtained by Zaneveld ([28]; his Equation (14)):

Lu(θs, θv, φ)

Eod
=

β(ψ)

− cos(θv)KLu(θs, θv, φ) + c − fL(θs, θv, φ)b f
, (2)

where β is the VSF (including water) and ψ is the in-water scattering angle formed between peak
incident sunlight at solar zenith angle θs and scattered light traveling in viewing direction (θv,Φ), where
cos(ψ) = cos(θs)cos(θv) − sin(θs)sin(θv)cos(φ). Azimuth φ is relative to the Sun’s direction. Zenith angles
θ are in-water, refracted through the air-sea interface and determined from a vertically downward
direction. For nadir viewing, ψ = π − θs and −cos(θv) = 1 in the denominator. Note approximations of
Equation (2) provided in Zaneveld [28] assumed only nadir viewing while we retain the full BRDF
functionality here.

In theoretical analyses, Weidemann et al. [34] showed bb retrievals based on the Zaneveld
expression had errors as large as −20% and +40%. However, an extraordinarily wide range of
VSF shapes was applied in their simulated data, including VSF shapes for specific particulate
subcomponents, such as bacteria, minerals, and phytoplankton. These populations were considered
separately as quasi-monodispersions with phase function shapes computed from Lorenz-Mie theory,
i.e., assuming homogeneous spheres. These phase function shapes thus had large oscillations with
respect to angle, structure that we now know is extremely unrealistic for VSFs representative of bulk in
situ particle populations (e.g., [26,35–37]). Weidemann et al. also showed with these phase functions
that the Zaneveld approximation of the shape factor at nadir viewing, i.e., fb ≈ 2πβ(π − θs)/bb, had
an average error of only 5% (their Figure 11) and this included overcast conditions that would not
occur in remote sensing. To our knowledge, the only study attempting to test the Zaneveld model with
directly measured data was He et al. [20] with a subset of the NOMAD data set, which included no
VSF measurements, where performance for the BRDF component of the model was comparable to the
current state-of-the-art [7,11].

Equation (2) demonstrates the direct link between Lu(θs, θv, φ) and β(ψ). However, for the
Zaneveld expression to be a practical tool for ocean color, the terms KLu and fL must be expressed
in terms of IOPs. Furthermore, the IOPs in the model should ideally be coefficients that are closely
linked to reflectance and directly measurable with good accuracy using existing sensor technology. For
example, the term in the denominator [c − fL(θs, θv, φ)b f ] has two IOPs that are difficult to determine
directly because of acceptance angle issues with standard transmissometer designs [38,39]. However,
since fL is close to unity, this term is also closely related to a + bb, immediately recognizable from
commonly used first order approximations. Goals of the next several sections are: 1) To represent
Equation (2) entirely in terms of such IOPs, 2) to rework in terms of the commonly used remote sensing
reflectance Lu/Ed, since these are the measurements currently available in validation data sets, and
3) to include the inelastic effects associated with water Raman scattering.

2.1. Diffuse Attenuation of Upwelling Radiance KLu

For the term KLu, Zaneveld [28] suggested an assumption of equivalency to K∞, the diffuse
attenuation coefficient in the asymptotic regime. Asymptotic theory is based on the principle that the
shape of the light field with depth gradually transforms from being dependent on the incident surface
light field to being constant, azimuthally symmetric (so L is only a function of θ), and dependent only
on IOPs. Attenuation coefficients for all aspects of the light field, i.e., for all radiances and therefore all
irradiances, are equivalent in the asymptotic regime and are also IOPs. This is a critical assumption for
the purposes of model development since K can then be described only in terms of IOPs. Zaneveld
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justified the assumption, even though the omnidirectional light field in surface waters is far from
asymptotic, due to the decoupling of upwelling radiances to downwelling radiance distributions.
Measurements of upwelling radiance fields from the 1960s and 1970s showed a near constant shape
and attenuation rate with depth. Recently, Twardowski and Tonizzo [40] confirmed this assumption
in RT simulations with no more than 3% error when the sun was at solar zenith and the following
relationship held for above water solar zeniths θs

′ up to 75◦:

KLu − K∞

K∞
= F

(
θs

′) = f1θs
′4 + f2θs

′3 + f3θs
′2 + f4θs

′ + f5, (3)

which included a full range of possible natural water types. Coefficients f are provided in Appendix A,
Table A2. Angle θs

′ is related to θs by Snell’s Law, i.e., θs
′ = sin−1(1.34 sin(θs)). Only nadir viewing

was considered in the simulations for KLu in Equation (3), and we make the assumption that KLu for
other viewing angles that define a specific scattering angle ψ can be approximated by Equation (3)
with nadir viewing geometry after assigning a θs

′ that provides an equivalent in-water ψ. For example,
for θs

′ = 60◦, θs will be 40.3◦ and ψ will be 139.7◦ for nadir viewing; we assume the resulting F(60◦)
will also be applicable to any off-nadir viewing angle with ψ = 139.7◦. This assumption has been
verified using Hydrolight RT simulations (methodology addressed in Section 3.2) to no worse than
2% in the solar plane and no worse than 5% within the upwelling hemisphere for in-water scattering
angles consistent with remote sensing (i.e., Figure 1). This assumption implies a rotational reference
frame, where the first order determinant of radiance field shape in the model, i.e., ψ, is preserved. Two
potential drawbacks of this assumption are (1) the influence of skylight may be skewed in the rotated
reference frame, and (2) the range of viewing angles is restricted since the smallest ψ is ~134◦ for
underwater nadir viewing. The range ψ > 134◦, however, comprises >95% of the expected scattering
angles that will be measured by the PACE imager (Figure 1). Further work with field measurements is
needed to verify this assumption. Reformulating Equation (3) in terms of dependency on the in-water
scattering angle, we obtain:

F(ψ) = fA1ψ4 + fA2ψ3 + fA3ψ2 + fA4ψ + fA5. (4)

Coefficients fA are provided in Appendix A, Table A2.
From Gershun’s Law we can set K∞ = a/μ∞, where μ∞ is the average cosine of the asymptotic

light field. After inserting Equation (4) into Equation (2) and allowing for c = a + b, the following
is obtained:

Lu(θs, θv, φ)

Eod
∼= β(ψ)

a
(
1 − cos(θv)ΨKLu(ψ) μ∞

−1
)
+ b − fL(θs, θv, φ)b f

, (5)

where ΨKLu(ψ) = KLu/K∞ = [1 + F(ψ)]. (6)

The parameter ΨKLu is assumed spectrally independent with errors over the full range of possible
water types estimated at <2% [40]. Dividing numerator and denominator of Equation (5) by bb,
we obtain:

Lu(θs, θv, φ)

Eod
∼= β(ψ)

bb
/
[

a
bb

(
1 − cos(θv)ΨKLu(ψ)μ∞

−1
)
+ fL(θs, θv, φ)

(
1 − b̃b

−1
)
+ b̃b

−1
]

, (7)

where b̃b = bb/b is the backscattering ratio. For IOPs we now have the backward phase function in the
numerator; in the denominator we have the recognizable bb/a, as well as b̃b, an IOP that incorporates
information on bulk particle composition (see Section 2.4; [41]), and is not typically associated with
ocean color remote sensing vis-à-vis the common first order approximation of rrs assumed proportional
to bb/a.
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2.2. Average Cosine of the Asymptotic Light Field μ∞

The μ∞ term in Equation (7) must be expressed in terms of IOPs to invert. Using a fit to theoretical
calculations of radiance fields by Prieur and Morel [42], Zaneveld [28] recommended 1/μ∞ be modeled
empirically with respect to the single scattering albedo ω (=b/c) using a quadratic fit. Additionally,
through more detailed RT computations, Berwald et al. [43] found a 4th order dependency of μ∞ on
the albedo.

In the study by Twardowski and Tonizzo [40], μ∞ was parameterized in terms of bb/a instead
of ω, including an assessment across a full range of environmentally representative phase function
shapes using the Fournier-Forand analytical model [44,45]. The data set used in the assessment was
not a representative synthetic data set (i.e., [46]), as it included a full range of possible bb/a values,
possible phase functions, and permutations thereof. Representing μ∞ in terms of bb/a has two distinct
advantages. First, bb and a can be measured with commercially available in situ instrumentation with
accuracies of a few percent [47–49] to enable performance assessment for algorithms. Parameters c and
b cannot be measured without significantly larger errors, typically >25–50%, because of the acceptance
of near forward scattered light in conventional transmissometer designs [38,39]. Secondly, b and c
are not parameters that are closely linked to rrs without additional information, whereas bb and a
are (e.g., Gordon et al. [50]), and a goal here is to represent the entire model in terms of bb and a to
enable inversion.

The Twardowski and Tonizzo [40] parameterization also explicitly depended on ηbb, the fraction
of bb attributable to molecular scattering, ηbb = bbw/(bbp + bbw) [6]. The natural range for ηbb is from
~0 to ~0.98 [40,51], and the range used for bb/a was 10−4 to 10−1. Since the water components of ηbb
may be assumed known [52], the effective unknown here is bbp. After extending the analysis from
Reference [40] to include near zero bb/a and increased resolution in ηbb, the resulting fit was obtained
for μ∞:

μ∞

(
bb
a , ηbb

)
≈

[
m1(log ηbb)

3 + m2(log ηbb)
2 + m3 log ηbb + m4

](
log bb

a

)3

+
[
m5(log ηbb)

3 + m6(log ηbb)
2 + m7 log ηbb + m8

](
log bb

a

)2

+
[
m9(log ηbb)

3 + m10(log ηbb)
2 + m11 log ηbb + m12

]
log bb

a

+m13(log ηbb)
3 + m14(log ηbb)

2 + m15 log ηbb + m16.

(8)

Coefficients m are provided in Appendix A, Table A2. Fits to simulated data were again made
with the polyfit function from MATLAB. Absolute errors %δabs for this fit vary from 0.19 to 3.5 for ηbb
ranging from 0.98 to 0.0098, respectively. Since both bb/a and ηbb are spectrally dependent, μ∞ will be
as well (not shown for clarity).

2.3. Backward Phase Function β(ψ)/bb

The scattering parameters in Equation (7) must be expanded into water and particulate
components. Expanding β(ψ)/bb gives:

β(ψ)

bb
=

βp(ψ) + βw(ψ)

bbp + bbw
, (9)

where the p and w subscripts represent particles and molecular seawater, respectively. In Equation (9),
the pure seawater terms, which are temperature and salinity specific, can be directly computed with
an estimated error of no more than 2% [52]. Introducing a term for the particulate phase function in
the backward direction, Pbb(ψ) = βp(ψ)/bbp, Equation (9) then becomes:

β(ψ)

bb
=

Pbb(ψ)bbp + βw(ψ)

bbp + bbw
. (10)
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Note bbp and bbw both have spectral dependencies as does β/bb, and the unknowns are bbp(λ)
and Pbb(ψ). Equation (10) can be easily rewritten in terms of ηbb, with the same unknowns. In coastal
waters where ηbb is near zero, βp >> βw, bbp >> bbw, and β(ψ)/bb will be approximated by Pbb(ψ). For
clear ocean waters, phase functions are represented by a mixture of both particles and pure seawater
with VSF shapes dependent on ηbb.

2.4. Backscattering Ratio b̃b

Expanding the backscattering ratio b̃b = bb/b in Equation (7) we obtain:

bb
b

=
bbp + bbw

bp + bw
=

bbp + bbw

bbp/b̃bp + bw
, (11)

where b̃bp is the particulate backscattering ratio. This b̃bp is the “true” b̃bp, distinct from the b̃bp typically
derived from measurements that include c data from transmissometers with significant acceptance
angle errors (e.g., [38,39]) (we note models linking particle biogeochemical properties and measured
b̃bp should account for the acceptance angle of c measurements [41,53]). Bootstrapping exercises using
Equation (7) readily show an impact on reflectance of up to several percent when b̃bp is varied over the
full ~0.003 to ~0.03 dynamic range observed in the oceanic environment [41,53–56]. All terms have
spectral dependencies.

2.5. Shape Factor fL

Zaneveld [28] recommended the term fL, i.e., the dimensionless upwelling radiance shape factor,
could be set to 1.05 with small error. The natural range was estimated at 1 to 1.12 [27]. In the Results,
we develop a new model for this term.

2.6. Remote Sensing Reflectance Formulation

Nearly all ocean RT algorithm work over the last several decades has used reflectance defined
as Lu/Ed instead of Lu/Eod. Zaneveld [28], however, pointed out, as is evident from Equation (1),
Lu/Eod is most closely aligned with RT theory. The irradiance parameter Eod is also less dependent
on solar zenith angle than Ed. Furthermore, sensor technology has been available to measure Eod,
historically from companies Biospherical (www.biospherical.com), Satlantic (www.satlantic.com), and
Trios (www.trio.de). Nonetheless, since nearly all field data over the last several decades has focused
on Ed, any testing and validation of the RT model described here requires modification in terms of
Ed. Substituting Ed/Eod = μd (the average cosine of downwelling radiance, just below the air-water
interface) into Equation (7) gives:

rrs ∼=
1

μd

β(ψ)

bb
/
[

a
bb

(
1 − cos(θv)ΨKLu μ∞

−1
)
+ fL

(
1 − b̃b

−1
)
+ b̃b

−1
]

, (12)

where rrs is the classically known remote sensing reflectance just below the water surface. Full
dependencies of variables not shown for clarity.

2.7. Average Cosine of the Downwelling Light Field μd

A model for μd is now required in the expression from Equation (12). If the sky is ignored and we
assume a negligible fraction of the incident solar beam is scattered in the near-surface, a reasonable
first-order approximation of μd should be μw ≡ cos(θs). Adding in a cardioidal radiance distribution
for skylight, Morel and Prieur [57] obtained:

1
μd

≈ 0.6
μw

+
0.4

0.859
, (13)
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and noted that for sun angles between 8◦ and 62◦, μd varied only from 0.79 to 0.94. Thus, even without
knowledge of solar zenith angle, a median value could be used with an accuracy better than 10%.

Numerator values of 0.6 and 0.4 in Equation (13) represent the fractions of direct (Edd/Ed) and
diffuse (H = Eds/Ed) downwelling light, respectively, which together equal unity. These values primarily
depend on θs’ and horizontal visibility V, the latter of which depends on aerosol optical thickness
(AOT). For 20◦ ≤ θs’ ≤ 60◦ and for H between 0.2 and 0.5, the variability of μd is ~7% for a fixed θs’.

The term μd can be factorized in two parts, one part dependent on the IOPs, the other dependent
on the atmospheric conditions and geometry:

μd

(
θ′s, V,

bb
a

, ηbb

)
≈ M+

d
(
θs

′, V
)
× M∗

d

(
bb
a

, ηbb

)
. (14)

The atmospheric component can be represented as:

M+
d
(
θs

′, V
)
=

[
1−H(θs

′ ,V)
μw

+ H(θs
′ ,V)

0.859

]−1

P3[cos(θs ′)]
. (15)

As mentioned, Morel and Prieur [57] assumed H = 0.4. Gregg and Carder [58] later provided a
relationship for H as a function of θs

′ and V that included skylight. Specifically, the results of ([58];
their Figure 4) can be fit as follows:

H(θ′s, V) =
[
e1V2 + e2V + e3

]
θs

′5 +
[
e4V2 + e5V + e6

]
θs

′4

+
[
e7V2 + e8V + e9

]
θs

′3 +
[
e10V2 + e11V + e12

]
θs

′2

+
[
e13V2 + e14V + e15

]
θ′s + e16V2 + e17V + e18 .

(16)

Coefficients e are provided in Appendix A, Table A2. Note the typical default value used in
Hydrolight is V = 15 km.

The P3 term in the M+
d relationship is a 3rd order polynomial in cos(θs

′) to correct where Morel
and Prieur’s original approximation deviates from the Gregg and Carder relationship at large θs

′. The
P3 term is:

P3[cos
(
θs

′)] = 0.7792 cos3(θs
′)− 1.7366 cos2(θs

′)+ 1.1551 cos
(
θs

′)+ 0.7842.

The IOP-dependent component M∗
d was modeled using the approach in [40] with the extended

bb/a range and ηbb resolution discussed in Section 2.2. The final fitted relationship is:

M∗
d

(
bb
a , ηbb

)
=

[
m∗

d,1 log ηbb + m∗
d,2

](
log bb

a

)3
+

[
m∗

d,3 log ηbb + m∗
d,4

](
log bb

a

)2

+
[
m∗

d,5 log ηbb + m∗
d,6

]
log bb

a + m∗
d,7 log ηbb + m∗

d,8.
(17)

Coefficients m∗
d are provided in Appendix A, Table A2. Absolute percent error with this

relationship relative to computations using full radiative transfer (Hydrolight, see Section 3.2) varies
from 0.06% to 0.4% across all θs’. Error for the full μd expression is <1%. Spectral dependency enters
the expression through the V term, which is dependent on spectral AOT.

2.8. Including Inelastic Water Raman Effects

The molecular water Raman scattering contribution to rrs can be included in Equation (12) as an
additive term, resulting in the expression:

rrs(θs, θv, φ, V, a, bb) ∼= rrs,Raman(θs
′, a, bb) +

1
μd

(
θ′s ,V,

bb
a ,ηbb

) β(ψ)
bb

/
[

a
bb

(
1 − cos(θv)ΨKLu(ψ)μ∞

(
bb
a , ηbb

)−1
)
+ fL(θs, θv, φ)

(
1 − b̃b

−1
)
+ b̃b

−1
]

.
(18)
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Full dependencies for all parameters in the model are shown except for λ; all parameters exhibit
dependence on λ in the model except for ΨKLu(ψ). We note a similar approach has been taken in adding
water Raman effects in other reflectance models (e.g., [59]; reviewed in [13]). The term rrs,Raman can be
derived according to Westberry et al. ([60]; see their Equation (7)) with inputs of above water (z = 0+)
downwelling irradiance Ed(0+,θs’), a, and bb. The NASA Generalized IOP (GIOP) inversion model
implementation [16] also currently uses this Raman formulation. Terms for other inelastic effects,
such as fluorescence from dissolved organic matter and pigments may also be added if representative
models are available.

2.9. ZTT Model Summary

Equation (18) is the final model for ocean color reflectance defined as Lu/Ed, called the ZTT
model hereafter. In Equation (18) the μd term is approximated by Equation (14), the β(ψ)/bb term
approximated by Equation (10), the ΨKLu term described by Equations (4) and (6), the μ∞ term
described by Equation (8), and b̃b represented by Equation (11). The ultimate assignment of the fL
term is addressed in the Results. The geometry variables, Ed(0+,θs’), V, and molecular water scattering
parameters in the above can be considered knowns. The model is fully spectral. Key unknowns are
bb and a (or bb/a and ηbb), and since pure seawater absorption aw in the visible is considered known
with good accuracy [61] the effective unknowns are bbp and absorption by non-water constituents
apg. The two additional unknowns are Pbb(ψ) and b̃bp. In the forward implementation here, these
four parameters must be provided from direct measurements or through some assumptions. In the
inversion implementation, these are the parameters that may be solved through techniques to minimize
errors in the expression if there are enough spectral bands (i.e., degrees of freedom) in rrs, although a
priori assumptions may be required for Pbb(ψ) and b̃bp.

For ocean color reflectance defined as Lu/Eod, the simpler relationship in Equation (7) can be used.
Water Raman effects can still be considered by applying an algorithm, such as in Reference [60].

3. Methods

3.1. Synthetic Dataset

A synthetic data set referenced to [Chl] was developed to test the ZTT model and develop an
expression for the fL term (see Section 4.1). Twenty values of [Chl] were assumed, logarithmically
spaced between 0.01 and 30 mg m−3. Total absorption coefficient (a) was represented by a sum of
four components:

a(λ) = aw(λ) + aph(λ) + ad(λ) + ag(λ). (19)

Pure water absorption aw was taken from Reference [61]. Phytoplankton absorption aph was
calculated from chlorophyll concentration [Chl] and from spectrally averaged absorption coefficients
of micro- and pico-plankton (amicro(λ) and apico(λ), respectively) [62]:

aph(λ) = [Chl] ∗
([

S f apico(λ)
]
+

[(
1 − S f

)
amicro(λ)

])
, (20)

where Sf = [0.25, 0.5, 0.75] is the shape mixing factor. Non-algal particulate absorption ad was given
by [63]:

ad(λ) = ad(440) ∗ e−0.011(λ−440), (21)

where ad(440) is equal to Rd aph(440), with Rd = [0.05, 0.1, 0.5, 1, 2]. Similarly, we used an exponentially
decaying expression for the absorption of chromophoric dissolved organic matter, ag [64]:

ag(λ) = ag(440) ∗ e−0.014(λ−440), (22)

where ag(440) is equal to Rg aph(440), with Rg = [0.1, 0.3, 0.5, 1, 2].
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Total backscattering bb was represented by the sum of water and particulate components:

bb(λ) = bbp(λ) + bbw(λ). (23)

To derive particulate backscattering bbp, total particulate scattering bp was first empirically
estimated at 550 nm [65]:

bp(550) = 0.416[Chl]0.766, (24)

and then extrapolated spectrally [66]:

bp(λ) = bp(550) ∗
(

λ

550

)v([Chl])
, (25)

where v([Chl]) = 0.5(log[Chl] − 0.3) when 0.01 ≤ [Chl] ≤ 2 mg m−3 and v([Chl]) = 0 when [Chl] >
2 mg m−3. The empirical relationship from [41] between the particulate backscattering ratio b̃bp and
[Chl] was then used to derive bbp:

bbp = bpb̃bp = bp ∗ 0.0096[Chl]−0.253. (26)

Pure seawater backscattering bbw was calculated according to Zhang et al. [52].

3.2. Radiative Transfer Simulations

RT simulations of rrs were performed with Hydrolight (Sequoia Scientific, Bellevue, WA),
following the procedure in Tonizzo et al. [29]. Fournier-Forand analytical phase functions were
derived for each [Chl] iteration following the method of Mobley et al. [67].

Inelastic water Raman scattering was not included in the simulations for the synthetic data set, as
this is separately addressed in the model (Equation (18)); fluorescence from any seawater constituents
was also not considered. Note water Raman effects were included in full RT simulations for all field
data (see [29]). Output wavelengths ranged from 350 to 800 nm at 5 nm resolution. Hydrolight default
atmospheric parameters were used for all runs. Computations were run for θs

′ of 10, 30 and 60◦.
Altogether, 1500 different IOP permutations based on [Chl] were simulated for each θs’.

3.3. Field Data Sets

Model performance was assessed using two aggregate data sets. The first is a high quality data set
of 23 stations from the Ligurian Sea, waters around the Marine Optics BuoY (MOBY) west of Lanai, the
southern California coast, and the New York Bight, collected in 2008 and 2009 as part of NASA Spectral
Ocean Radiance Transfer Investigation and Experiment (SORTIE) and NASA Ocean Color Validation
(OCVAL) exercises. Radiometric closure was assessed in detail for these data by Tonizzo et al. [29].
[Chl] ranged from 0.24 to 23.85 mg m−3. The VSF was directly measured using the custom Multi-Angle
SCattering Optical Tool (MASCOT) [26,36] and radiometric uncertainties were rigorously assessed
by Voss et al. [68]. Here we use WET Labs ac-9 absorption measurements corrected for scattering
using independent VSF measurements (i.e., the VSF98P correction [29]; also see Stockley et al. [49] for
detailed evaluation of this correction). The second data set is the NASA NOMAD database, where
80 data records were identified containing the parameters needed for performance assessments here,
i.e., a, bb, b̃bp, [Chl], and rrs. [Chl] ranged from 0.23 to 10.68 mg m−3 in this data set.

3.4. Depth Weighting IOPs

Depth-weighted contributions of IOPs to water-leaving radiance were derived after
Zaneveld et al. [69] using a 2-stream, first derivative approximation. The approach finds the IOP for
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a conceptual homogeneous ocean that reproduces the water-leaving radiance observed in a specific
stratified ocean case. The remote sensing depth weighting for generic IOP X is:

〈X〉 =
∫ z=∞

z=0
X f (z)dz, where f (z) =

d
dz

exp
[
−2

∫ z=∞

z=0
K(z)dz

]
. (27)

The exponential term can also be found in Gordon and Clark [70], where it is mentioned the
2K(z) term should actually be Ku + Kd, but approximating with Kd alone was not expected to lead to
appreciable errors. Several approximations of Kd in terms of IOPs are available from the literature
(e.g., [71,72]). The approximation by Lee et al. [73] for averaged Kd within the euphotic zone is used
here and conveniently represented in terms of a, bb and above water solar zenith θs

′:

Kd =
(
1 + 0.005θs

′)a + 4.18
(

1 − 0.52e−10.8a
)

bb. (28)

For evaluating RT approximations, all IOP terms should ideally be weighted together. For
example, Zaneveld et al. [69] considered the simple R ∝ bb/a approximation and demonstrated that
<bb>/<a> was not equivalent to <bb/a> for an IOP stratified ocean. However, bb and a are considered
independently in the model here and an ultimate objective is to invert the approximation to derive bb
and a independently, so each IOP was individually depth weighted. For all stations sampled in the
validation data set, the difference between surface bb and depth weighted bb was <1%; with a, this was
also the case for most stations, but reached a difference of 5% for one station sampled.

3.5. Metrics for Error Assessment

Mean absolute percent error (MAPE), %δabs, is a commonly used metric in assessing performance
in rrs match ups:

%δabs = 100 ∗ δabs
y

, δabs =
∑n

i=1|yi − ŷi|
n

. (29)

The MAPE metric takes into account the absolute magnitude of the residuals, giving them equal
weight. Other commonly used metrics include root mean square error (RMSE), a measure of accuracy
and potential forecasting errors in simulating rrs when the errors may be assumed to be unbiased and
normally distributed [74]. RMSE gives greater weight to larger errors than δabs. Since bias errors are
often expected to be more significant than random, normally distributed errors in simulations, %δabs is
expected to be the most appropriate metric to assess match ups [29]. Other common metrics (e.g., [75])
are shown in the following plots as appropriate. Also see Werdell et al. [13] for a detailed discussion of
performance metrics.

4. Results

4.1. Developing an Expression for the fL Term

Dynamics of fL were explored in the synthetic data set. As found by Hoge et al. [76], dependencies
on wavelength and θs

′ were most important, and an average spectral shape fL,ave(λ) scaled to solar
zenith according to sin(θs’) was ultimately found to be most representative (Figure 2):

fL
(
θ′s, λ

)
= fL,ave(λ)

[
0.05959 sin

(
θs

′)+ 0.9728
]
. (30)

Function fL,ave(λ) is provided in Appendix A, Table A3. Equation (30) was developed by
minimizing residual errors between results from full radiative transfer and the ZTT model for each
wavelength and each solar zenith angle for the full synthetic data set. Spectral shapes for fL were
relatively consistent in the results, so the term fL,ave(λ) was derived from an average for these results
after spectral normalization. The scaling factor in brackets was a suitable function to minimize errors
with respect to solar zenith angle. Only nadir viewing was again considered in the simulations for
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fL, and we again make the assumption from Section 2.1 that fL for other viewing angles that define a
specific in-water scattering angle ψ can be approximated by fL observed at the nadir viewing geometry
with equivalent ψ. The potential caveats mentioned in Section 2.1 apply here as well. Restating
Equation (30) in terms of ψ, the following is obtained:

fL(ψ, λ) = fL,ave(λ)[0.07762 sin(ψ) + 1.0405]. (31)

Similarities between fL,ave(λ) and a typical ocean absorption spectrum are noted (Figure 2),
resulting from the effects of multiple scattering, where higher relative scattering (lower relative
absorption) promotes a radiance field closer to that which would result from isotropic scattering, i.e.,
where fL approaches unity.

Figure 2. Spectral dependency of the fL shape function at different θs’. Thin lines are solved fL functions
for each θs

′ for the synthetic data set and stars are from the model approximation with constant shape
described by fL,ave(λ) in Equation (30).

Figure 3A shows results deriving rrs using the ZTT model for the synthetic data set, applying
the approximation from Equation (31) for fL and using all synthetic data IOPs as input. This match
up is, thus, effectively assessing combined errors in the ZTT model from the approximations of fL, fb,
KLu, and μd. We note fL was specifically optimized to this data set, so in this respect Figure 3A shows
what may be considered a best-case matchup. MAPE %δabs for the full data set was relatively small at
2.68%. The largest errors were observed in three rrs spectra, with the model showing overestimation
bias centered around 570 nm. These spectra were associated with the highest [Chl] modeled in the
data set and lowest b̃bp.
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Figure 3. rrs derived from the ZTT model with the synthetic data set compared to rrs simulated
using Hydrolight (HL): (A) fL optimized spectrally (i.e., Equation (31) for the synthetic data set with
Fournier-Forand phase functions individually determined for each [Chl]; (B) fL optimized spectrally
for the synthetic data set with constant Pbb,ST(ψ) (see text); and (C) fL set to 1.05 with constant Pbb,ST(ψ).
Colors represent wavelengths, from 400 to 700 nm with gray used for 350 < λ < 400 nm and 700 < λ <
800 nm.

218



Appl. Sci. 2018, 8, 2684

4.2. Assessing Assumption of Constant βp(ψ)/bbp

Sullivan and Twardowski [26] found a high degree of consistency in the shape of the particulate
VSF in the backward direction, i.e., βp(ψ)/bbp, for a large data set covering a wide dynamic range in
bulk particle composition. Deviations from this relationship were no more than 5% through the entire
backward angular range. While it is well known the phase function shape over the full angular range
varies substantially (e.g., [37,41,45,77]), only the shape in the backward direction that is important for
remote sensing and the ZTT model is considered here.

If we assume βp(ψ)/bbp is a constant shape Pbb,ST(ψ) after Sullivan and Twardowski [26] in
the ZTT model, replacing Pbb,FF(ψ,b̃bp) from the synthetic data set, errors increase by only ~0.3%
(Figure 3B). We assume Pbb,ST(ψ) is constant spectrally after [41] and others. This result is significant, as
it demonstrates the potential for eliminating one of the key unknowns in the ZTT model. We note that
an averaged Fournier-Forand phase function in the backward direction could be used in the model,
which would enhance the analytical character of the model, but the Sullivan and Twardowski [26]
averaged phase function, derived from extensive measurements in a wide range of water types, may be
more representative of the natural environment. This is assessed further in the next section. Figure 3C
shows results of setting fL to a constant 1.05 after [28] and using a constant Pbb,ST(ψ). MAPE increases
significantly to 5.85%, showing the importance of using the fL model in the ZTT. Each of the three
distinct data groupings along the 1:1 relationship are associated with the individual solar zeniths that
were used, i.e., 10, 30, and 60◦, highlighting the influence of the fL model in removing the effects of
solar zenith. All ZTT model runs hereafter use the fL model from Equation (31). The constant backward
phase function Pbb,ST(ψ) is used unless another phase function is specified.

4.3. Assessment with High Quality Validation Data

Figure 4A shows results for the ZTT model, with inputs of constant Pbb,ST(ψ) and direct
measurements of apg, bbp, and b̃bp, compared to measured rrs for the validation data set [29]. MAPE
%δabs was 16% for all λ (summarized in Table 1; spectral %δabs provided in Table 2). Interestingly, this
result is slightly more favorable than rrs computed with the full radiative transfer (i.e., Hydrolight)
using measured phase functions, where %δabs was 17% for the same data (as reported in Tonizzo
et al. [29]). Based on closure analyses for these data [29], this 17% error represented the aggregate
inherent error from all sources within the data and computations, i.e., from the IOP and radiometric
measurements, as well as any errors from the assumptions within the Hydrolight RT code. For the
ZTT model evaluated using measured phase functions instead of the constant Pbb,ST(ψ), i.e., the same
approach followed with the full RT computations, %δabs was also 17% (Table 1). The different backward
phase functions applied in the ZTT model are shown in Figure 5. Measured backward phase functions
showed more variability at individual angles than the average Pbb,ST(ψ) derived from a large data set
of diverse Case 1 and Case 2 water types, likely the result of small scale hydrosol patchiness along
the different light paths for individual measurements at each angle. This observation is addressed
further in Section 5. Moreover, the strong agreement in absolute error between full radiative transfer
simulations and the ZTT analytical approximation for this diverse data set is encouraging.

Excluding the effects of water Raman from the ZTT model increased absolute error by 3%,
demonstrating Raman had a significant effect, especially >580 nm (results not shown).

Figure 4B shows ZTT model performance with a further constraint, setting b̃bp constant at 0.006, so
the only IOP inputs were measured apg and bbp. With respect to inversion, this approach has the same
unknowns, i.e., apg and bbp, as current algorithms based on the simple first order approximation [16].
Resulting MAPE %δabs was 17%, comparable to full RT computations. ZTT runs with other fixed b̃bp

are shown in Table 1. Some influence from b̃bp is apparent, which has not been fully appreciated in
previous models based on the first order approximation of rrs to bb/a.
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ZTT model runs with Fournier-Forand phase functions for the particulate component, computed
from measured b̃bp following the method of [67], resulted in %δabs of 19%, 3% higher than results using
the constant Pbb,ST(ψ) (Table 1).

Figure 4. rrs computed from (A) ZTT, (B) ZTT with b̃bp fixed at 0.006, (C) M02, and (D) L11 models,
compared to measured rrs in the high quality validation data set from Tonizzo et al. [29]. Note L11 does
not account for Raman scattering. Chlorophyll input for M02 was derived from spectral absorption
using the Nardelli and Twardowski [78] line height algorithm. MAPE %δabs was 16%, 17%, 21%, and
21%, in A through D, respectively.

Table 1. Summary MAPE %δabs results for simulated or calculated rrs vs measured rrs for all λ.

Approach βp(ψ)/bbp Input
~
bbp Input

%δabs

SORTIE and OCVAL
(23 Stations) 1

NOMAD
(80 Stations)

Full RT 2 directly measured N/A 17 nd 4

Full RT 2 Fournier-Forand 3 measured 20 nd 4

ZTT directly measured measured 17 nd 4

ZTT Fournier-Forand 3 measured 19 25
ZTT Pbb,ST(ψ) measured 16 20
ZTT Pbb,ST(ψ) 0.005 18 22
ZTT Pbb,ST(ψ) 0.006 17 23
ZTT Pbb,ST(ψ) 0.008 18 25
ZTT Pbb,ST(ψ) 0.010 19 27
ZTT Pbb,ST(ψ) 0.015 22 29

ZTT

Large and small population
phase functions with b̃bp of

0.19% and 1.4%, blended
according to [Chl] 5

measured 23 26

Morel et al. [7]
(M02)

Large and small population
phase functions with b̃bp of

0.19% and 1.4%, blended
according to [Chl] 5

N/A 21 25

Lee et al. [11] (L11)
Blend of Petzold6 average and

1% b̃bp Fournier-Forand 3 N/A 21 26

1 see [29]; 2 Hydrolight; 3 derived from b̃bp according to [67]; 4 not determined; 5 algorithm of [7]; 6 [79].

Match ups in rrs were also assessed applying the M02 model, the current standard in BRDF
corrections for ocean color remote imagery (Figure 4C). The proportionality between rrs and bb/a is
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defined as f /Q, which is a function of viewing geometry, wind speed, and [Chl]. [Chl] can be estimated
from an empirical rrs band ratio algorithm. For the assessment here, [Chl] input was either quantified
directly from discrete samples or derived from spectral particulate absorption measurements using
the line height method with specific absorption ap*(676) of 0.0108 m2 mg−1 after [78]. Note that
bootstrapping exercises have shown relatively large errors in this estimated [Chl], i.e., up to +/−50%,
affect %δabs in match ups by typically no more than 1%. The other inputs were measured apg and bbp.
Match up %δabs for M02 was 21% for the data set from [29] (Table 1). Notably, M02 performed well in
the blue spectral region (Table 2).

To derive phase functions, Morel et al. [7] used randomly-oriented spheroidal particles, computing
the scattering phase function with the T-matrix method. Because the computations for spheroids were
lengthy, a single refractive index np of 1.06 was considered with sizes ranging from 0.02 to 14 μm.
A Junge-type particle size distribution was assumed, i.e., a power law model, with exponents of 3.1
and 4.2 representing two end-member populations. Particulate scattering phase functions were then
calculated from (see Figure 5):

Pp(ψ) = αs([Chl])Pps(ψ) + αl([Chl])Ppl(ψ),

with αs + αl = 1, and αs([Chl]) = 0.855
[
0.5 − 0.25 log10([Chl])

]
.

If the Morel et al. [7] approach for deriving the phase function is used as input into the ZTT model,
replacing the constant shape Pbb,ST(ψ), MAPE %δabs increases significantly from 16% to 23% (Table 1).

Finally, match ups in rrs were assessed in a recently published BRDF model from Lee et al. ([11];
called L11 hereafter) that, like M02, developed a LUT based on RT simulations with a [Chl]-referenced
synthetic IOP data set (Figure 4D; Tables 1 and 2). L11 uses a quadratic form of bb/(a + bb) split into
particulate and molecular seawater components with each term scaled by a G coefficient, with solutions
provided in LUTs. In the synthetic data set, Lee et al. [11] used an averaged Petzold phase function
and Fournier-Forand phase function assuming b̃bp = 1% as particulate phase function endmembers. L11
however does not include water Raman effects. Like M02, match up MAPE %δabs was also 21% for all λ.

Figure 5. Phase functions in the backward direction used to assess the ZTT model. “ST2009” is Pbb,ST(ψ)
from [26] with the assumption Pbb,ST(ψ > 170◦) = Pbb,ST(170◦); “Morel” is from Morel et al. [7] with
endmember populations dominated by small and large particles also shown; “Measured” were directly
measured; and “FF” are Fournier-Forand phase functions Pbb,FF(ψ,b̃bp) derived from measured b̃bp
following [67].
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4.4. Assessment with Global NOMAD Data Set

Figure 6A shows results for the ZTT model applied to a subset of 80 measurements from the
NASA NOMAD global data set. IOPs were averaged over the first optical depth. Match up MAPE
%δabs of 20% was observed for this global data set, comparing favorably to the error of 16% observed
with the high quality data set from Tonizzo et al. [29] (Table 1; see Table 2 for spectral breakdown). This
is especially true considering the different IOP and rrs processing approaches (e.g., there are several
scattering error correction options for in-water absorption measurements) used for these data sets. If
b̃bp is constrained to 0.006, MAPE %δabs increases to 23% (Figure 6B). Results from ZTT runs for other
fixed b̃bp are shown in Table 1, where the dependency of performance on b̃bp is again apparent.

If the Morel et al. [7] approach for deriving the phase function from [Chl] is used as input into the
ZTT model, %δabs increased from 20% to 26% for the NOMAD data (Table 1). If measured b̃bp are used
to derive Pbb,FF(ψ,b̃bp) following [67], %δabs increased to 25% for the ZTT model.

Table 2. Summary MAPE %δabs results for calculated rrs vs measured rrs for each λ, for SORTIE and
OCVAL data sets (see Figure 4) and NOMAD data (see Figure 6).

Approach βp (ψ)/bbp Input
~
bbp Input λ (nm)

%δabs

SORTIE and
OCVAL

(23 Stations)

NOMAD
(80 Stations)

ZTT Pbb,ST(ψ) measured

412 (410) 20 17
440 16 20

488 (490) 16 20
510 19 19
532 13 -
555 14 23
650 13 -
665 - 63

ZTT Pbb,ST(ψ) 0.006

412 (410) 20 20
440 16 23

488 (490) 19 23
510 13 25
532 14 -
555 13 26
650 22 -
665 - 63

Morel et al. [7]
(M02)

Large and small population phase
functions with b̃bp of 0.19% and

1.4%, blended according to [Chl]
N/A

412 (410) 17 22
440 14 25

488 (490) 16 25
510 18 26
532 22 -
555 38 21
650 17 -
665 - 71

Lee et al. [11]
(L11)

Blend of Petzold average and 1%
b̃bp Fournier-Forand N/A

412 (410) 22 22
440 21 26

488 (490) 24 27
510 21 27
532 20 -
555 19 24
650 26 -
665 - 66

Match ups are also shown for implementation of the full M02 and L11 models with the NOMAD
data set (Figure 6C,D). MAPE statistics are summarized in Tables 1 and 2. There are several possibilities
for the systematically lower measured rrs in the red spectral region for these data: (1) Suboptimal
surface extrapolation of radiances due to water Raman effects [80,81], (2) residual scattering errors in
reported in-water absorption measurements that may promote a bias to higher values of modeled rrs

(e.g., [29,49]), and/or (3) suboptimal corrections for sensor self-shading, which can be strong in clear
water at longer wavelengths due to water absorption [82,83].
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Figure 6. As in Figure 4, but for the NASA NOMAD data set containing a, bb, rrs, and [Chl]. MAPE
%δabs were 20%, 23%, 25%, and 26% in (A–D), respectively.

5. Discussion

The ZTT analytical model for remote sensing reflectance is based on the restatement of the RT
equation by Zaneveld [27,28] with the following refinements: (1) Full bidirectionality was retained in
the final model (no assumption of nadir viewing), (2) the assumption of asymptotic diffuse attenuation
for upwelling radiances at the surface was analytically described, (3) the entire model was formulated
in terms of bb and a to enable inversion, (4) the VSF was explicitly included with βp(ψ)/bbp set to
a constant shape defined by Pbb,ST(ψ) [26], which showed the strongest performance of any phase
function, including measured phase functions in disparate, diverse data sets, (5) water Raman effects
were added, and (6) for rrs, an analytical model for μd was developed that included dependency on
atmospheric visibility. IOP inputs to the ZTT model are bbp, apg, βp(ψ)/bbp, and b̃bp. Moreover, the ZTT
model enables systematic assessment of the effect of IOPs on the BRDF for the first time.

ZTT showed strong performance in match ups with field data sets spanning a wide range of water
types. In terms of MAPE, the model with constant phase function shape Pbb,ST(ψ) performed as well
as full RT computations. Stronger performance was observed for these available data sets relative to
current state-of-the-art LUT-configured models based on the first order approximation between rrs and
bb/a or bb/(a + bb), i.e., M02 and L11.

MAPE for the ZTT model was slightly better using Pbb,ST(ψ) (%δabs of 16%) when compared to
using directly measured backward phase functions for the validation data set (where %δabs was 17%).
It may be argued, under certain conditions, the broad average Pbb,ST(ψ) may be more accurate than an
isolated measurement because specific bias errors in any single VSF measurement at an individual
angle may be avoided. This of course assumes such biases may be larger than the natural variability in
the shape of the backward phase function. Another explanation is error assessments for the validation
data set were made over a relatively few number of stations, 23. To roughly estimate uncertainty in
this error metric, single stations were sequentially left out of the error determination for ZTT using
Pbb,ST(ψ), which gave a total range in %δabs of 14.8 to 16.8% with standard deviation of 0.6%. A ~1%
difference in error may thus not be particularly meaningful.
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The ZTT model is fully analytical in the sense it is described entirely by equations and “almost
fully analytical” with respect to the inclusion of empiricism. Empiricism comes from optimizing the fL
parameter to our synthetic data set based on [Chl]-based bio-optical models, with MAPE improving by
a significant ~3% compared to setting fL equal to a spectrally constant 1.05. Using the constant Pbb,ST(ψ)
backward phase function shape also introduced empiricism. If sample-specific Fournier-Forand
analytical phase functions, based on b̃bp were used, errors in the validation data set increased by 3–5%
(Table 1).

Particulate phase function shapes from Morel et al. [7] were modeled using the T-matrix approach,
assuming homogeneous spheroidal shapes with constant np of 1.06. Although the endmember phase
function shapes were not consistent with Pbb,ST(ψ) and Pbb,FF(ψ,b̃bp) shapes, many of the blended
phase functions were. If Pbb,ST(ψ) may be considered widely representative, increasing errors may be
expected in applying the M02 model to the lowest and highest Chl conditions where the endmember
phase functions would fully manifest. Phase functions in the Chl range 1 to 10 mg m−3 were in closest
agreement to Pbb,ST(ψ). Applying phase functions derived using the Morel et al. [7] approach in the
ZTT model increased errors relative to using a constant Pbb,ST(ψ) by a significant 7% for the validation
data set of [29] (from 16% to 23%) (Table 1). This error was also larger than the 21% error observed for
M02 (addressed further below).

Since L11 used a Fournier-Forand phase function where b̃bp = 1% and the average Petzold phase
function as endmembers [shown in 26, their Figure 3], many blended shapes from L11 should be
relatively similar in the backward to the Pbb,ST(ψ) used in ZTT (although the Petzold shape does exhibit
systematic discrepancies). This particular Pbb,FF with b̃bp = 1% is actually a very close match to Pbb,ST.
L11 was developed through least-squares fitting with respect to Hydrolight results, so all the blended
phase functions are weighted in the results.

A “typical marine atmosphere” and associated incident sky radiance distribution were used in
the Hydrolight RT computations for the synthetic data set, the effects of which enter the ZTT model
through spectral optimization of the upwelling radiance shape factor fL (Section 4.1). The parameters
ΨKLu and μ∞ were also solved with Hydrolight RT simulations assuming the same atmosphere. The
M02 and L11 models also assumed a single “typical marine atmosphere” in their simulations using
Hydrolight based on Reference [58], so this aspect of the models should be consistent. The μd term in
the ZTT model has added flexibility in accommodating varying atmospheric visibility (closely related
to AOT; [58]) inasmuch as V is an explicit term for μd.

One question arising from this work is, if the phase function shape Pbb,ST may indeed be
considered highly representative, how would a LUT-based model following the approach of M02 but
using Pbb,ST perform? To test this, we developed a LUT based on the first order rrs proportionality to
bb/a, using the synthetic data set described in Section 3.1. The particle phase function was constant,
consisting of Pbb,ST in the backward and a Fournier-Forand phase function with b̃bp = 0.006 for the
forward direction (this had the best performance for the ZTT model in the validation data set [29],
with MAPE = 17%). The LUT approach resulted in a MAPE of 22% for the validation data set and
26% for the NOMAD data. This performance is very close to M02 (21% and 25%, respectively) and
L11 (21% and 26%, respectively). An insight we can take from this analysis is that a component, such
as phase function shape in the different models cannot be considered in a vacuum, i.e., each model
has a large set of assumptions that ultimately influence final performance. Furthermore, although
not always explicitly stated in the literature, field validation efforts are likely to have had a role in
updating assumptions through the course of development and testing of some models to ensure the
model was well aligned with available data. For example, in our case, the fL expression (Section 4.1)
was developed from an assumed synthetic data set and the b̃bp value of 0.006 was recommended as it
ultimately provided the best results with the field validation data sets available.

Recent work by Zhang et al. [84] has suggested the possibility of substantial variability in phase
function shape in the backward direction, including up to a 40% increase for βp(ψ)/bbp in the near
backward relative to βp(120◦)/bbp. These results are in stark contrast to the comprehensive study

224



Appl. Sci. 2018, 8, 2684

of [26] and other published phase functions in the literature (e.g., [35,85]). Other recent works showing
increases in the VSF at ψ > 150◦ [86–88] were made in enclosed cuvettes and did not include any
correction for internal reflections (e.g., [89]), which are typically a difficult problem in laboratory VSF
devices, since the scattered signal in the backward direction is orders of magnitude smaller than the
forward. The Zhang et al. [84] results are also inconsistent with the phase functions used in previous
BRDF models, such as M02, which have been shown to have satisfactory performance in validation
efforts [17,18], even in many Case II coastal waters [19,90]. The recent theoretical rrs modeling study of
Xiong et al. [91] based on the phase function shapes presented in [84], where up to 50% disagreement
with L11 was observed, consequently appear unrealistic.

Calibration and possible bias errors in the VSF device MASCOT used in [26] to derive
Pbb,ST(ψ) have been evaluated in detail [36,48]. The MASCOT is an open path, in situ device with
17 independently calibrated detectors resolving the VSF from 10◦ to 170◦ in 10◦ increments. There
are two calibration coefficients for each channel, a dark offset (obtained with the source occluded)
and a scaling factor to convert digital counts to VSF units m−1 sr−1. Moreover, the observation of a
remarkably consistent shape in the backward phase function for VSFs spanning more than four orders
of magnitude in dynamic range cannot be explained by any known bias error in these coefficients.
In fact this observation argues against any systematic bias, as consistency in phase function shapes
during serial particle suspension experiments is a useful method to assess the accuracy of calibrations.

Recently, He et al. [20] developed a BRDF model also based on Zaneveld [28] but it differs from
our implementation is several ways: (1) only the BRDF aspect was considered; (2) one wavelength
was considered; (3) the formulation was in terms of a LUT (similar to M02 and L11) for aggregated
terms; (4) widely varying backward phase function shapes were assumed after [84] described above;
(5) the μd model depended only on “typical average” sky conditions; and (6) water Raman effects were
excluded. Direct comparisons were thus not possible here.

5.1. Assessing Residual Bias in the Model

The assumption of single scattering in the simplification of fb (Section 2, Equation (2)) is not
expected to invoke significant errors at turbidity levels found for most oceanic and coastal waters [5,13].
As shown by Gordon [23], secondary scattering events for light redirected toward the backward
direction, i.e., downwelling radiance scattered into the upwelling radiance field, has a negligible effect
on the shape of the upwelling radiance distribution because the vast majority of these scattering events
are in the near forward direction. The full effects of multiple scattering were included in relationships
for other terms in the model as they were determined using full RT modeling.

MASCOT VSF measurements used to determine Pbb,ST(ψ) only extended to 170◦, so the application
of this function for ψ > 170◦ in the model is uncertain. There were no ψ > 170◦ in the data sets tested
here, although such scattering angles may be expected for some viewing geometries for the PACE
imager (Figure 1). There is a need for a better understanding of phase function shapes for ψ > 170◦ and
this extends to other applications, such as lidar [92].

Only nadir viewing was considered for the analytical relationships for KLu and fL and we suggest
these relationships may be transferable to other viewing geometries as long as ψ is preserved. This
assumption has been verified in Hydrolight simulations to have small errors for representative cases,
but cannot be assessed with the field data sets available here, which all have nadir viewing. This is
being considered in future work, and, moreover, emphasizes the need for routine measurements of full
upwelling radiance distributions in ocean color validation work as validation only with nadir radiance
Lu(θs,θv = π) neglects the BRDF effects that are essential to any algorithm.

The optimization of fL was based on the [Chl]-based synthetic data set. A significant deviation
from the bio-optical model assumptions of that synthetic data set could lead to a discrepancy in match
ups, however it worth pointing out (1) fL has a relatively weak dependency on IOPs except for the VSF
shape in the backward direction (which is effectively accounted for in the solar zenith dependency in
Equation (30)), and (2) other state-of-the-art models (i.e., M02 and L11) are constructed entirely around
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such synthetic data sets. A benefit of the ZTT model is that an analytical relationship for a specific
term of the model may be replaced later if a more optimal approach is demonstrated.

As shown in Zaneveld [27,28], Lu normalized to Eod is more closely linked to the RT Equation
than Lu/Ed, where an additional μd term must be added to the model (Section 2.6). Adding this term
is expected to increase uncertainty in the RT model and inversion. Scalar irradiance has the additional
advantage of being less dependent on solar zenith angle and sky radiance distributions. As discussed in
Section 2.6, sensor technology is available to measure Eod and inclusion of these measurements in field
efforts focused on algorithm development and validation should be encouraged. When the μd term
must be included in association with Ed measurements, AOT is also a useful validation measurement
that may be made in the field [93] and used to derive visibility V [58] for input in Equation (16) or full
RT computations.

Lastly, potential uncertainties in the full RT computations must be considered, as this was used to
parameterize several ZTT terms. Polarization is not considered in the ZTT model or in Hydrolight,
which is likely important [29,33]. There is a need in the research community for commercially
available RT code with a focus on the ocean that includes full polarization, along with concomitant
measurements of polarized radiance in the field. Neither the Hydrolight simulations or ZTT model
included inelastic effects from DOM fluorescence, which could lead to bias errors as high as about 10%
in the mid-visible [33]. Another potential source of uncertainty is the water Raman estimation [60],
where bias errors as high as 10% can be typical.

5.2. Suitability for Inversion

The ZTT model can be used to directly solve for bb/a using least-squares minimization of a
rrs measurement at any wavelength. This is shown in Figure 7 for the validation data set from
Tonizzo et al. [29], assuming a constant b̃bp of 0.006. The typical value for V of 15 km was assumed.
MAPE %δabs in the inversion was 17%, which matches results from full RT simulations of closure in
the forward direction. Residual errors thus appear almost entirely comprised of the inherent errors of
the data set arising from IOP and radiometric measurements [29]. With respect to the use of Pbb,ST(ψ),
another potential approach to estimating VSF shape as it relates to the upcoming PACE mission is using
planned multi- and hyper-angular polarimetry data from the Hyper-Angular Rainbow Polarimeter-2
(HARP2; contributed by University of Maryland, Baltimore County) and the Spectrometer for Planetary
Exploration—one (SPEXone; contributed by the Netherlands Institute for Space Research) [94]. If
information on the backward shape of the VSF could be gleaned with sufficient accuracy from angular
polarimetry data (only a few angles would be necessary), this could be used directly in the ZTT model.

The ZTT model described here only addresses in-water RT, although the current approach to
normalize water-leaving radiances measured by a satellite imager is expected to directly apply (see [15],
Sections 3.1 and 6]). The BRDF is built-in to the Zaneveld model so an additional step to conceptually
shift the geometry to a normalized geometry standard would not be required for IOP inversion. A
normalized geometry (to nadir viewing or other geometry) could still be applied to intercompare
reflectances in images. Translation to water-leaving radiance by accounting for all the reflection and
refraction effects through the air-sea interface i.e., R (θs,θv) [6,15], can still be applied. Similarly, the
effects of varying Earth-Sun distance and atmospheric attenuation can be removed following the
current approach. Moreover, we would expect a practical implementation of this analytical model to
have similar computational requirements as the current M02 LUT-based approach.
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Figure 7. Comparing measured bb/a to results of inverting ZTT using least-squares minimization
individually at each wavelength. Water Raman effects were removed before applying the ZTT model.

The ZTT model shows b̃bp exerts some influence on rrs (Table 1) and the potential to invert rrs for
b̃bp is also being investigated. The parameter b̃bp has not historically been associated with rrs and could
provide new insights into particle composition in natural waters (e.g., [41]). Even a retrieval of b̃bp
with relatively large errors could be useful for many research applications.

The ZTT model is fully spectral and can be applied over the full anticipated ocean color
hyperspectral wavelength range for the future PACE mission (350–800 nm). A primary goal in model
development was parameterization entirely in terms of a and bb. Inversion approaches, such as the
General IOP (GIOP) inversion using a least-squares minimization to solve for IOP subcomponents [16]
may consequently be readily applied. Spectral bbp and apg can be solved using assumptions for
subcomponent IOP spectra through least squares minimization of Equation (18). This is the step
where empiricism prominently enters the problem as spectral shapes for IOP subcomponents must be
assumed. This is being examined in ongoing work. Further investigation is needed to determine IOP
subcomponent spectra with a high spectral resolution for error minimization over this full spectral
range in inversion, which is currently being assessed by the PACE Science Team [13,95]. Hyperspectral
(i.e., 5 nm) resolution for PACE is expected to improve fidelity in inverting for subcomponents (and
potentially b̃bp) as there will be higher degrees of freedom than for multi-spectral imagers [96,97].

Code for the ZTT model in MATLAB is available at ioccg.org.
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Appendix A

Table A1. Notation.

Symbol Description Units

a total absorption coefficient m−1

ax absorption coefficient, where subscript x = w, p, d, ph, g, pg, pico, and micro specifies
water, particulate, non-phytoplankton particulate, phytoplankton, dissolved,

particulate plus dissolved, picoplankton, and microplankton

m−1

a* specific absorption coefficient m2 mg−1

b total scattering coefficient m−1

bp particulate scattering coefficient m−1

bf forward scattering coefficient m−1

bbx backscattering coefficient, where subscript x = w and p specifies water and particulate m−1

b̃b backscattering ratio -
b̃bp particulate backscattering ratio -
β total volume scattering function (VSF) m−1 sr−1

βx volume scattering function (VSF), where subscript x = w and p specifies seawater and
particulate

m−1 sr−1

c total attenuation coefficient m−1

[Chl] chlorophyll concentration mg m−3

δx error, where subscript x = abs and rel specifies absolute and relative -
Ex planar irradiance, where subscript x = d, ds, and dd specifies downwelling, diffuse

downwelling, and direct downwelling
W m−2 nm−1

Eod downwelling scalar irradiance W m−2 nm−1

f model coefficient for relating irradiance reflectance to bb/a -
fb, fL radiance shape factors -

Φ azimuth angle relative to solar plane ◦, rad
G model coefficient for above-surface remote sensing reflectance sr−1

ψ scattering angle ◦, rad
H fraction of diffuse downwelling light (Eds/Ed) -

ηbb fraction of total backscattering contributed by bbw -
Kx diffuse attenuation coefficient, where subscript x = Lu, u, d, and ∞ specifies upwelling

radiance, upwelling irradiance, downwelling irradiance, and asymptotic
m−1

Lu upwelling radiance W m−2 nm−1 sr−1

Lw water-leaving radiance W m−2 nm−1 sr−1

λ Wavelength nm
M+

d Atmospheric component of μd -
M∗

d IOP component of μd -
μ∞ average cosine of the asymptotic light field -
μd average cosine of the downwelling light field -
μw cosine of the in-water solar zenith -
np particulate refractive index, relative to water -
P phase function (β/b) sr−1

Px particulate phase function (βp/bp), where subscript x = p, ps, and pl specifies
particulate, particulate small-dominant, and particulate large-dominant

sr−1

Pbb,x backward particulate phase function (βp/bbp), where subscript x = ST and FF specifies
functions from References [26,44]

sr−1

Q ratio of upwelling irradiance to nadir radiance sr
rrs remote sensing reflectance, the ratio of upwelling subsurface radiance to downwelling

irradiance
sr−1

Rrs remote sensing reflectance, the ratio of water-leaving radiance to downwelling
irradiance

sr−1

Rd scaling factor for ad -
Rg scaling factor for ag -
Sf mixing factor for aph -
θx zenith angle, where x = s and v specifies solar and viewing ◦, rad
θs’ above water solar zenith angle ◦, rad
v exponent of empirical spectral bp function -
V atmospheric horizontal visibility km
ω albedo (b/c) -

ΨKLu ratio of diffuse upwelling attenuation coefficient to asymptotic attenuation coefficient -
z depth m
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Table A2. Equation Coefficients. Full 15 decimal scaled fixed point precision in MATLAB is provided
to ensure accuracy in calculations.

Equation Symbol Value

Equation (3)

f1 −5.98948784303628 × 10−8

f2 5.95904039870752 × 10−6

f3 −6.975283717755 × 10−4

f4 2.07111856771792 × 10−3

f5 2.69046922858858 × 10−2

Equation (4)

fA1 −3.79435531537314 × 10−7

fA2 2.42117623125973 × 10−4

fA3 −5.76056692150838 × 10−2

fA4 6.04944577004764
fA5 −236.166389774491

Equation (16)

e1 −3.37021020153209 × 10−12

e2 2.25040435584125 × 10−10

e3 −2.25897880448836 × 10−9

e4 4.98402568695743 × 10−10

e5 −3.67440351688922 × 10−8

e6 4.02677827509591 × 10−7

e7 −2.52448256032736 × 10−8

e8 2.09631870150827 × 10−6

e9 −2.43068373614361 × 10−5

e10 5.98295717192273 × 10−7

e11 −5.36922068813161 × 10−5

e12 6.84105803724285 × 10−4

e13 −5.34168078899319 × 10−6

e14 4.95201118318049 × 10−4

e15 −6.09578731164684 × 10−3

e16 5.32097604773773 × 10−4

e17 −2.91276619216202 × 10−2

e18 0.589340234481004

Equation (17)

m∗
d,1 0.00611094400155735

m∗
d,2 −0.00104841847722295

m∗
d,3 0.0498255758922950

m∗
d,4 −0.0117672820980625

m∗
d,5 0.128019358635212

m∗
d,6 −0.0429896134897322

m∗
d,7 0.103528931695373

m∗
d,8 0.950921179229178

Table A3. fL,ave(λ) function, see Equations (30) and (31).

Wavelength Value Wavelength Value Wavelength Value

350 0.990 505 1.018 655 0.992
355 0.990 510 1.013 660 0.993
360 0.992 515 1.009 665 0.998
365 0.992 520 1.005 670 1.000
370 0.992 525 1.002 675 1.001
375 0.995 530 0.999 680 1.000
380 0.997 535 0.996 685 0.995
385 0.997 540 0.995 690 0.994
390 0.998 545 0.992 695 0.993
395 1.000 550 0.989 700 0.994
400 1.000 555 0.987 705 0.994
405 1.000 560 0.985 710 0.996
410 1.002 565 0.982 715 0.997
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Table A3. Cont.

Wavelength Value Wavelength Value Wavelength Value

415 1.003 570 0.981 720 0.999
420 1.006 575 0.982 725 1.000
425 1.008 580 0.983 730 1.000
430 1.010 585 0.984 735 1.000
435 1.013 590 0.986 740 0.999
440 1.016 595 0.987 745 0.999
445 1.020 600 0.988 750 0.999
450 1.023 605 0.988 755 0.999
455 1.024 610 0.989 760 0.999
460 1.025 615 0.989 765 0.999
465 1.025 620 0.989 770 0.999
470 1.026 625 0.990 775 1.000
475 1.026 630 0.990 780 1.000
480 1.026 635 0.990 785 1.001
485 1.026 640 0.990 790 1.002
490 1.026 645 0.990 795 1.002
495 1.024 650 0.990 800 1.002
500 1.022
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Featured Application: This proof-of-concept work of in situ EEMS might find applications on

different autonomous platforms in biogeochemical observing systems for the marine environment.

Abstract: Natural organic matter (NOM) is a key parameter in aquatic biogeochemical processes.
Part of the NOM pool exhibits optical properties, namely absorption and fluorescence. The latter is
frequently utilized in laboratory measurements of its dissolved fraction (fluorescent dissolved organic
matter, FDOM) through excitation–emission matrix spectroscopy (EEMS). We present the design and
field application of a novel EEMS sensor system applicable in situ, the ‘Kallemeter’. Observations
are based on a field campaign, starting in Norwegian coastal waters entering the Trondheimsfjord.
Comparison against the bulk fluorescence of two commercial FDOM sensors exhibited a good
correspondence of the different methods and the ability to resolve gradients and dynamics along the
transect. Complementary laboratory EEM spectra measurements of surface water samples and their
subsequent PARAFAC analysis revealed three dominant components while the ‘Kallemeter’ EEMS
sensor system was able to produce reasonable EEM spectra in high DOM concentrated water bodies,
yet high noise levels must be addressed in order to provide comparable PARAFAC components.
Achievements and limitations of this proof-of-concept are discussed providing guidance towards full
in situ EEMS measurements to resolve rapid changes and processes in natural waters based on the
assessment of spectral properties. Their combination with multiwavelength FDOM sensors onboard
autonomous platforms will enhance our capacities in observing biogeochemical processes in the
marine environment in spatiotemporal and spectral dimensions.

Keywords: natural organic matter; DOM; FDOM; CDOM; Gelbstoff; EEMS; PARAFAC; marine
sensors; Kallemeter; FerryBox; Trondheimsfjord; Norway

1. Introduction

The investigation of natural organic matter (NOM) and especially its dissolved fraction (DOM)
is of high relevance in aquatic sciences. Studies of NOM and DOM include their sinks and
sources as part of the global carbon cycle [1–4], its stability and degradability by abiotic and biotic
processes [5,6], as well as natural and anthropogenic ecosystem effects e.g., from hydrocarbons [7].
Complementary to laboratory approaches, the need to measure DOM directly in the water column
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(in situ) initiated the development of field-applicable optical sensors that can be attached to
autonomous vehicles or ship-based platforms [8]. Addressing the optical properties, namely absorption
and fluorescence, of certain DOM fractions in situ sensors enable a high-resolution assessment of these
ecosystem-relevant parameters or proxies on different observation platforms [9,10]. The absorption
of light from fractions of the DOM pool is a long known feature, which was initially investigated by
the German chemist Kurt Kalle in the early 20th century [11]. Observing an increased absorption of
light towards the blue and ultraviolet (UV) part of the spectrum, he denoted this fraction of DOM
as ‘Gelbstoff’ or ‘yellow substance’ [12,13], apparently inspired by the yellowish color of the samples
taken from the Baltic Sea. Nowadays, this fraction is known as colored or chromophoric dissolved
organic matter, short CDOM [14,15]. The measurement principle for CDOM absorption (an inherent
optical property, or IOP, of natural water bodies) is based on the reduction of light intensity from a
light source to a detector over a certain distance. It typically requires a filtered water sample, since only
the dissolved and not the particulate fraction is of interest, and the latter could introduce errors due
to light scattering. While in situ filtration is technically possible and practiced e.g., in underway
systems [16], it is rather sophisticated and therefore not realized in today’s commercially submersible
CDOM sensors [17]. For a feasible, but still technically complex, approach to derive CDOM absorption
in subsea or underway applications, the scattering loss of photons is suppressed by reflective tubes [18]
or a reflecting cavity [19–21]. Yet in the majority of today’s observing platforms and ship operated
sensor systems, CDOM absorption measurements are not implemented.

The most common sensors within CTD-samplers, FerryBox systems, autonomous underwater
vehicles (AUVs), gliders, biogeochemical Argo floats and alike are CDOM fluorometers. Applying a
UV light source and detecting an emitted fluorescence signal at a higher wavelength (lower energy),
these sensors utilize a principle that Kalle once described as ‘skyblue fluorescence’ [12,22]. In addition
to these single-channel sensors, a few sensor systems commercially exist that enable a selection of
several wavelengths pairs [17]. Recently, a matrix fluorescence sensor was presented that can sense a
set of 4 detection wavelengths for three different excitation wavelengths, thus spanning a matrix of
12 combinations [23]. While CDOM fluorescence is technically speaking a correct term, it can be mixed
up with CDOM (by definition an absorption property) and reports or commercial product descriptions
sometimes tend to incorrectly shorten measurement devices as ‘CDOM sensors’. To reflect the fact
that the fluorescing part of the DOM is a subfraction of the absorbing fraction of DOM, we herein
use FDOM as a designator for fluorescent DOM, as common in recent literature [9,24–26]. Laboratory
measurement of FDOM is typically performed with UV–VIS spectrofluorometers [27,28]. They enable
a free selection of excitation and detection wavelengths and thus different forms of results: (a) emission
spectra (with a fixed excitation wavelength); (b) excitation spectra (with a fixed emission wavelength);
(c) synchronous scans (excitation and emission changing at the same rate); and (d) excitation–emission
matrices (EEM). The latter provides a full scan of a range of excitation wavelengths, performing
for each of these excitation wavelengths a full emission scan. The resulting matrix of fluorescence
intensities, sometimes referred to as ‘optical fingerprint’, is reflecting all fluorescing components and its
peaks are associated with different components from the DOM pool [14,29]. A classical labeling of the
fluorophores in DOM identifies five main peaks A, C, B, T, and M. Those peaks are extensively used to
identify the main composition and origin of FDOM. Previous reports indicate the correlation between
microbial presence and freshly produced DOM (peaks M, B and T), while allochthonous DOM has
been associated to the peaks A and C [29]. EEM spectra are frequently used in recent literature [27,28]
and several parameters are calculated from them, including the humification index [30], biological
index [31], and recently produced material index [32]. A statistical analysis of EEM spectra is often
performed by parallel factor analysis (PARAFAC), a method that identifies the underlying components
from a set of spectra [33,34]. EEM spectroscopy (EEMS) and its spectral analysis can be considered
the state-of-the-art in FDOM assessment, however, to the best of our knowledge, no submersible
sensor exists that enables the high-resolution (in terms of wavelengths intervals) measurement of
excitation–emission matrix spectra with in situ equipment.
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Herein, we will present (i) design and application of a novel in situ EEMS sensor system
(in memory of Kurt Kalle named the ‘Kallemeter’) that enables full optical fingerprints in a
submersible design, and compare these results with (ii) flow-through data from two commercial
FDOM sensors, and (iii) spectral components identified in surface water samples from a laboratory
UV–VIS spectrofluorometer, based on a field campaign in the Trondheimsfjord, Norway.

2. Materials and Methods

The following section starts with a detailed description of the design of the novel ‘Kallemeter’
in situ EEMS sensor system, including initial laboratory measurements to illustrate its performance.
To enable a comparison of bulk fluorescence detected, two commercial FDOM sensors will briefly
be introduced, both operated in a commercially available flow-through sensor system (FerryBox,
-4H-JENA engineering, Jena, Germany). This will be followed by a description of the laboratory
methods applied on discrete water samples, and the subsequently used statistical method to derive
the components of the EEM spectra observed. Finally, we will provide information about the study
site itself.

2.1. Design of an In Situ Capable EEMS Sensor System

The newly-developed submersible EEMS sensor system provides comprehensive excitation–emission
matrices for in situ fluorescence measurements of organic matter in natural waters. This subchapter
presents its design, beginning with a representation of the operation mode in Section 2.1.1. Followed
by this, a description of the technical implementation and the system design is given in Section 2.1.2.
Section 2.1.3 presents the evaluation of the system performance.

2.1.1. Submersible EEMS Sensor System and Modes of Operation

Investigations on fluorescent organic matter can benefit from spatiotemporal information
that enable a comprehensive interpretation of the dataset in context of environmental conditions.
The ‘Kallemeter’ EEMS sensor system supports in situ explorations with three common modes of
operation for field studies: vertical profiling, underway sensing (e.g., installed in a moonpool of a
vessel), and moored operation (e.g., integrated to a subsea platform). Figure 1 shows the deployment of
the EEMS sensor system in profiling mode (Figure 1a) and the deployment in a moonpool of a research
vessel for in situ underway investigations (Figure 1b,c). The submersible design offers automated data
acquisition from water samples to a maximum water depth of 200 m in a freely selectable time interval,
without the support of an operator. Once installed, autonomous long-term investigations from days to
weeks are possible, depending on biofouling [35] of the optical sensor unit and sediment load of the
water filtration unit.

2.1.2. EEMS Sensor System Design and Technical Implementation

The entire EEMS sensor system is designed for a stand-alone operation as an underwater
unit that only needs to be supplied with electrical power from an external power source. In this
way, a moored operation with an external 12 V DC battery pack can also be realized. In case of
shipborne installations like profiling or underway measurements, the system can be connected to an
on-board unit via a 200 m seaworthy cable, as illustrated in Figure 2a. The on-board unit provides
130 V DC power supply and data transmission to the ‘Kallemeter’ via Ethernet. This gives the
opportunity to connect an external PC for remote control of the underwater unit, automatic data
backup, or real-time visualization of the in situ measurements. In addition to the in situ fluorescence
spectrometer unit, the ‘Kallemeter’ was equipped with a turbidity meter (STM/bh, Seapoint Sensors Inc.,
Exeter, NH, USA) and a CTD (Conductivity, Temperature, Depth) (miniCTD probe, ASD Sensortechnik
GmbH, Trappenkamp, Germany). The ‘Kallemeter’ housing is made of a solid PEEK (polyether ether
ketone) tube with steel plates at its ends, which also support the dissipation of thermal energy to the
aquatic environment through internally forced convection, as this is important to provide long-term
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stability of the measurement system (light source and optical measurement devices). The EEMS sensor
system is controlled through an integrated Microsoft Windows 7 PC, digital I/O converters, and
LabVIEW software (version 2013, National Instruments, Austin, TX, USA), using a custom-made control
program (named ‘EEMsea’). The latter allows for comprehensive adjustments of the measurement
procedures, like EEM wavelengths or control of the sampling interval. All EEM datasets are stored in
a comma-separated value (CSV) file format and include system- and sampling-relevant metadata in
the header (e.g., sampling-identifier, internal temperature, and coefficients), which are assigned to the
standardized file structure from PerkinElmer Luminescence Spectrometers ([Info], [Setup], [SampleInfo],
[SampleData]; PerkinElmer, Waltham, MA, USA). Therefore, postprocessing and statistical analysis of
EEM spectra can easily be applied by standard third party software or Matlab Toolboxes (The MathWorks,
Natick, MA, USA) e.g., for PARAFAC [27].

Figure 1. (a) Excitation–emission matrix spectroscopy (EEMS) sensor system in profiling mode on a
winch of a research vessel. (b) EEMS sensor system, installation for in situ underway observations in
the moonpool of the research vessel, top-view. Close to the EEMS sensor system, an acoustic Doppler
current profiler (ADCP) as well as the water intake pump for the FerryBox system were installed in the
moonpool-frame. (c) View from below.

238



Appl. Sci. 2018, 8, 2685

Figure 2. System components of the submersible EEMS sensor system. (a) System connected to an
on-board unit and remote PC-control (optional). (b) Schematic structure of excitation–emission matrices
(EEM) fluorescence spectrometer hardware and optical components (connected by optical fibers 1, 2, 3).
(c) Internal close-up with electronics and optical components. (d) Close-up of the outer components of
the EEMS sensor system.

The entire EEM fluorescence spectrometer design, which is presented in Figure 2b, consists of the
following fluorescence measurement components: In the fluorescence excitation strand, a Xenon flash
lamp (PX-2, Ocean Optics, Largo, FL, USA) is used as a broadband light source, which is coupled to a
monochromator (CM 110, Spectral Products, Putnam, CT, USA) via an optical fiber (1). The output of
the monochromator is coupled via an optical Y-fiber (2) to the reference spectrometer (USB2000+, Ocean
Optics, Largo, FL, USA). Through this, a reference measurement of the excitation spectrum is realized. In
parallel, the optical Y-fiber (2) connects the monochromator output to a flow-through sample cell in which
the sample medium is located. The fluorescence emission strand consists of the detection spectrometer
(QE-Pro, Ocean Optics, Largo, FL, USA) coupled via an optical fiber (3) to the sample flow-through cell.
In the following, details of the fluorescence measuring system and its components are presented.

Fluorescence Excitation Light Source

Some in situ sensor designs use Xenon flash (or pulsed) lamps due to their high energy output
in the ultraviolet (UV) and visible regions of the light spectrum as well as their long lifespan [36].
For these reasons, the ‘Kallemeter’ also utilizes a Xenon flash lamp (PX-2, Ocean Optics, Largo, FL,
USA), which emits pulsed light with a continuous spectrum in a fluorescence relevant excitation
wavelength range from 220 nm to 750 nm. A pulse power of maximum 45 microjoules/pulse (with 5 μs
pulse duration at 1/3 height of pulse) and a lifetime of 109 pulses are expected for this ‘expendable
part’ (estimated 230 days continuous operation @ 50 Hz pulse rate). A stable output from pulse to
pulse is guaranteed for up to 100 Hz repetition rate, so the flash delay results in 10 milliseconds. Since
the total intensity typically decreases slowly over the operating period [37], a measurement of the
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excitation spectrum is implemented to provide metadata of the EEMS sensor system status (presented
in the subsection “Quality status of the excitation wavelengths”).

Control of the Fluorescence Excitation Band

A monochromator (Type CM 110, Spectral Products, Putnam, CT, USA) is used to separate a
narrow excitation band from the spectrum of the Xenon flash lamp. A full width at half maximum
(FWHM) effective bandwidth of 10 nm is realized (therefore no slits are used) and the excitation
wavelengths are selectable from 200 nm to 750 nm in 1 nm steps (with ruled grating AG1200-00300-303).
The monochromator provides a coupling and decoupling angle of 14.8◦ and results to 0.13 numerical
aperture (NA).

Quality Status of the Excitation Wavelengths

A wavelength-calibrated reference spectrometer (USB2000+, Ocean Optics, Largo, FL, USA)
controls the quality status of the excitation. The internally used grid provides a spectral sensitivity
range from 200 nm to 800 nm with a fixed slit width of 100 μm, and a possible integration time from
1 millisecond to 65 s. Reference data are recorded in parallel to the fluorescence measurements but are
not included in the calculation of the EEM spectra. Instead, they only serve as metadata for monitoring
the quality of the excitation light source state over the operation time.

Water Sampling Flow-Through Cell

Various conceptual instrument designs and principles for fluorescence detection hardware are
available for different applications: right angle detection, intersecting cones, flow-through, and fiber
optic designs [36]. The ‘Kallemeter’ sample flow-through cell design combines right angle detection
(the commonly used 90◦ emission–excitation setup in luminescence spectrometry) with fiber optics
and intersecting cones in a closed flow-through design, which is illustrated in Figure 3a. In addition,
the measuring cell makes use of well-directed multireflective intersections of the optical fiber aperture
to achieve multiple excitations and detection cone overlaps. Thus, the optical path within the water
sample is enhanced and an effective increase of factor 2.5 of the fluorescence signal for the highest
signal-to-noise ratio can be achieved (Appendix A, Table A1). Two mirror elements are used for
this purpose, which are arranged opposite to the optical fiber terminations in a way that no direct
fluorescence excitation light can enter in the optical fiber of the detector strand. A concave mirror
(CM127-025-F01 - Ø1/2” UV Enhanced Al-Coated, f = 25.0, Thorlabs, Newton, NJ, USA) is used in
(opposite) combination to the excitation cone. With a focal length of 25 mm, the focus point of the
selected concave mirrors is almost at the end of the optical fibers distance of 22 mm. A planar mirror
(PF05-03-F01 - Ø1/2” UV Enhanced Al-Coated, Thorlabs, Newton, NJ, USA) is used in (opposite)
combination to the emission cone of the optical fibers.

As the sample cell forms the contact point between the optical parts and the water sample, it is
installed in a separate housing at the bottom of the EEMS sensor system (see Figure 2c,d). Thus,
a decoupling of the fluid-carrying and pressurized parts from the sensitive internal structures of the
measurement unit is achieved and a simple sealing and pressure tightness can be realized. The optical
interfaces of the sample cell, which are in contact with a seawater sample, are covered with superior
transparent quartz glass windows (#45-310. TECHSPEC, Ø 15 mm Uncoated, 1λ Fused Silica Window,
Edmund Optics, Barrington, NJ, USA). In order to ensure biogeochemical inertness of the sample cell,
a specific adhesive (LS2-6140, NuSil Technology, Carpinteria, CA, USA) was selected through in situ
tests as a suitable material for connecting the sample cell components and quartz windows. Even after
several days in aqueous solution, this adhesive did not emit any fluorescent substances.
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Figure 3. Details of the EEMS sensor system sample flow-through cell. (a) Measuring area-section
with right angle arrangement of the excitation and emission optical fibers including the concave and
planar mirror, respectively. (b) Cut-section through the flow-through cell with media intake and quartz
glass windows.

The flow-through geometry type results in a greater efficiency in signal output compared to an
open-faced design. Thus it is a good choice for waters with a wide range of NOM concentrations and low
numbers of particles, as the sensor geometry (sample volume) is well defined [36]. A closed flow-through
cell design, as illustrated by the cut-section in Figure 3b, provides shading of the optical inner parts from
ambient light. This is a further benefit for an in situ application as it reduces the effect of biofouling [38].
During the sampling process, the closed sample cell is flushed with the water sample. The inlet side of a
mini submersible pump for profiling applications (SBE 5M-1, Sea-Bird Scientific, Bellevue, WA, USA) is
connected to the water outlet of the sample cell, while a reusable 50-μm nylon screen filtration element
(type series F20 filter housing, Wolftechnik Filtersysteme, Germany) is connected to the sample cell water
inlet via opaque hoses. This prevents an uncontrolled exchange between the ambient water and the
water sample volume during an EEM spectrum measurement. This is particularly important for in situ
underway operations when the ‘Kallemeter’ moves through different water bodies during an ongoing
EEM measurement. Note that the setup presented herein was not equipped with a 0.2 μm or 0.45 μm
filter, as recommended to separate the dissolved from the particulate fraction of organic matter. This is
also the case for common bulk fluorescence sensors, as used in this study for comparison. However, as a
pumped flow-through system, the ‘Kallemeter’ is generally capable of such a filtration unit as used e.g.,
for in situ spectral absorption measurements of CDOM [17].

Main Fluorescence Detector

The main fluorescence detector unit of the ‘Kallemeter’ EEMS sensor system is a wavelength-
calibrated CCD digital spectrometer with a high dynamic range of ~85.000:1 (QE-Pro, Ocean Optics,
Largo, FL, USA). The fluorescence emitted by the water sample is transmitted via an optical fiber, which
is installed at the sample flow-through cell. The spectrometer built-in grating enables the detection in a
full range of emission wavelengths from 200 nm to 950 nm, which corresponds to the detection range of
commonly used laboratory luminescence spectrometers (e.g., the LS55, PerkinElmer, Waltham, MA, USA).
The slit of the detector spectrometer has a width of 100 μm. Long-term stability and noise reduction is
achieved by internal Peltier cooling of the detector to −10◦C, as all fluorescence measurements signals are
subject to alterations as a function of temperature. Temperature changes can arise either from self-heating
of the instrument or from changes in ambient temperature of the deployment environment. Integration
times of 8 milliseconds up to 60 min are selectable to enable stable measurements for environments where
sample signal intensity is small. The spectrometer includes further a second order wavelength filter,
preventing detection of Rayleigh and Raman scattering of higher orders.

The chosen detector spectrometer offers automatic dark measurements without external shutter
units, which is used to obtain related metadata to correct for instrument response variables. As a
routine by the ‘EEMsea’ software, a dark count measurement is carried out once initially per EEM
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spectrum measuring cycle and is automatically subtracted from the fluorescence data. Investigations
of wavelength assigned intensity dark count measurements are presented in Appendix A, Figure A1
through a long-term measurement test (116 h) exhibiting stable operating conditions with no drift or
significant invariance over time.

Optical Fibers

Optical fibers in the system setup are solarization-resistant, as ultraviolet radiation below 260 nm
degrades transmission in silica fibers, also known as UV degradation. The custom-made designs,
as illustrated in Figure 4a, provide maximum fiber diameters (80 single fibers 200 μm core diameter,
Ø 2.6 mm bunch, LOPTEK, Berlin, Germany) and achieve a high transmission (96%) in all relevant
excitation wavelengths (labeled (1) in Figure 2b). The numerical aperture is NA = 0.22. Figure 4b
shows the optical Y-fiber and the single 80 μm fiber to the reference spectrometer that measures the
reference excitation spectrum (labeled (2) in Figure 2b). This constellation prevents super-saturation
or even damage of the reference spectrometer. For the fluorescence emission (detection) strand,
a conventional optical fiber is used (QP1000-2-UV–Vis, Ocean Optics, Largo, FL, USA), connecting the
sample flow-through cell to the main fiber optic spectrometer (labeled (3) in Figure 2b).

Figure 4. (a) Optical fiber coupling of the Xenon flash lamp with the monochromator (labeled (1) in
Figure 2b). (b) Optical Y-fiber coupling of the monochromator with the reference spectrometer and the
water sample flow-through cell (labeled (2) in Figure 2b).

2.1.3. EEMS Sensor System Fluorescence Performance Evaluation

As the complete ‘Kallemeter’ EEMS sensor system is based on a new design, the system
performance for wavelength calibration, fluorescence intensity and signal-to-noise ratio was examined
prior to field application. Considering the main focus of this article being the field application, the most
important facts and a compilation of regularly practiced calibration methods for the in situ EEMS
sensor system will be presented in the following section. All settings for the following measurements
are listed in detail in Table A2 of the Appendix A.

The general procedure to calibrate an in situ fluorometer consists of (i) precalibration with tests
of pressure, mechanical, and electronic stability as well as precision, (ii) signal output calibration to
measure the dark and maximum counts, (iii) internal temperature calibration, (iv) determination and
record of offset values with purified water at different temperatures, and (v) manufacturer calibration
to obtain the scale factor of the fluorometer [36]. Calibration should be repeated in regular intervals,
because environmental conditions can vary and lamp as well as spectrometer performance can degrade
over time. Table 1 summarizes the EEMS sensor system specifications.

Signal-To-Noise Ratio

The signal-to-noise ratio (S/N) of the Raman band of tap water is easy to realize and a widely
used method to quantify the sensitivity of a spectrofluorometer [39,40]. The S/N (where S denotes
signal intensity and N noise intensity) of the Raman band is calculated with the following equation.

S/N = (S − N)/
√

N
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For the ‘Kallemeter’ a S/N of 34 was determined for the Raman band measurement of tap water
as presented in Figure A2.

Table 1. Overview of the ‘Kallemeter’ EEMS sensor system, fluorescence hardware specifications.

Parameter Specification

Light source Pulsed Xenon flash, 9.9 Watts
Excitation range 220–750 nm
Excitation bandpass 10 nm (FWHM)
Excitation monochromator Czerny–Turner design, 110 mm focal length
Excitation wavelength precision / accuracy 0.2 nm/±0.6 nm
Emission range 200–950 nm
Emission bandpass None (full set of wavelengths)
Emission detection spectrograph (QE-Pro), Fixed, 101 mm focal length
Emission detector TE-cooled CCD fiber optic spectrometer
Emission integration time 8 ms to 60 min
Excitation reference measurement (USB2000+), CCD fiber optic spectrometer
Sensitivity Water-Raman S/N 34

Wavelength Calibration

The wavelength calibration of the EEMS sensor system needs no special adjustments by the user,
as both spectrometers used are calibrated by the manufacturers and therefore are supplied with a set
of calibration coefficients. For verification we performed a laboratory check with a reference standard
for molecular fluorescence spectrophotometry (Compound 610; excitation: 440 nm; emission: 480 nm;
nominal concentration of 1 × 10−6 M, Starna Scientific Ltd., Ilford, UK), data not shown. Such a
measurement allows the evaluation of the EEMS optical setup over time and corresponding correction
methods for the emission wavelengths.

Intensity Calibration with Suwannee River Standard

Since 1982, representatives of the International Humic Substance Society (IHSS) have isolated
reference fulvic acids, humic acids, and natural organic matter (NOM) from the Suwannee River
in southeastern Georgia, USA. Suwannee River has a remarkable low variance in its elemental
composition and is therefore a commonly accepted standard. It has a long history as reference material
for multidisciplinary research areas, including the marine community [41]. For the fluorescence
measurement of the ‘Kallemeter’, a sulfuric acid dilution of Suwannee River (sample charge number
2S101H) was used with concentrations of 2.5 ppm and 25 ppm. The EEM spectra of the two concentrations
of Suwannee River standard are shown in Figure 5. Receiving reasonable signal intensity in both samples
indicated sufficient signal intensity for nominal concentrations at marine study sites.

Figure 5. EEM spectra for two concentrations of Suwannee River standard. Excitation wavelengths
were used for the x-axis, while emission wavelengths were applied for the y-axis [42]. Color bar (z-axis)
denotes relative fluorescence intensity.
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2.2. FerryBox-Based Organic Matter Fluorescence Measurements

An important step in the evaluation of the ‘Kallemeter’ is the comparison with other existing
sensors and approaches, here with two commercially available sensors, the Cyclops-7-U (Turner
Designs, San Jose, CA, USA) and the MatrixFlu-UV (TriOS, Rastede, Germany) mounted in a FerryBox
system (4H-JENA engineering, Jena, Germany) installed on the ship during the research cruise
(see Section 2.3). Furthermore a LS-55 spectrofluorometer (PerkinElmer, Waltham, MA, USA) was used
as a common standard for laboratory measurements (see Section 2.4), providing complete EEM spectra
directly comparable with the ‘Kallemeter’. The FDOM sensors either provide only certain parts of the
full EEM (MatrixFlu-UV) or only bulk fluorescence data (Cyclops-7-U).

As described previously [43], there are two versions of the MatrixFlu sensor, one for the visible
wavelengths, with a focus on phytoplankton, and one for the ultraviolet, dedicated to FDOM
components. The latter is used here and referred to as MatrixFlu-UV. The fundamental idea is to
measure the typical peaks of organic matter fluorescence, as described by Coble [29], instead of
assessing the whole excitation and emission spectrum, thus enabling a rapid detection and a high
temporal resolution. This section describes only the sensor’s main features, as its technical design has
been published elsewhere [23,44].

The MatrixFlu-UV sensor consists of an excitation light source with distinct wavelengths combined
with a set of detectors collecting a near field emission of a fluorescence signal at certain wavelengths
directly in the water column (open sensor interface). Each combination of an excitation and emission
wavelength results in a different fluorescence channel. The optical part contains a single semiconductor
device emitting light at three different wavelengths (254 nm, 280 nm, and 320 nm) on the same optical
axes. Four single semiconductor detectors are arranged around it collecting the fluorescent signal in
an angle of approx. 170◦ to the optical axes. Different wavebands are selected via customizable narrow
bandwidth filters (here 280 nm, 360 nm, 460 nm, and 540 nm). By doing this, all possible combinations
result in twelve different channels.

FDOM components referred to in this work are mainly associated to (a) terrestrial or old marine
humic-like substances (peak C), (b) “freshly produced” marine humic-like substances (peak M),
and protein-like Tryptophan substances (peak T) [45,46]. Humic components show a further related
excitation maxima for UV light of higher energy (lower wavelength) but same emission position
or range (peak A) [45]. Data from all MatrixFlu-UV channels are collected simultaneously. For the
comparison with the ‘Kallemeter’ and the other bulk fluorescence sensor (described below), Channel 11
was extracted and evaluated, corresponding to peak C (EX/EM 320 nm/460 nm). Data was averaged
on every minute values and smoothed by a moving mean filter (window size 13). Factory calibration
and further information about the sensor performance are available in [23].

The Cyclops-7-U sensor estimates bulk FDOM concentration by measuring the fluorescence
emission at 470 nm (60 nm peak width) for an excitation at 325 nm (120 nm bandwidth filter [47]).
Thus, for a comparison with the data from this sensor, the ‘Kallemeter’ in situ EEM signal in the area
corresponding to an excitation of 265 to 385 nm and an emission of 440 to 500 nm have been integrated.
This provides a ‘Kallemeter’ derived bulk fluorescence signal that corresponds to the excitation and
emission ranges given in the specifications of the Cyclops-7-U sensor.

2.3. FerryBox Installation and Other Oceanographic Parameters Measured

The water intake of the FerryBox was realized in the moonpool of the research vessel (in approx.
4 m depth) close to the measuring head of the submersed ‘Kallemeter’ to ensure a comparability of the
measurements between the three types of instruments. Besides the FDOM data, readings of standard
oceanographic parameters, such as temperature, salinity, and chlorophyll a fluorescence were also
obtained. All FerryBox data were averaged on minutely values and smoothed by a moving mean filter
(window size 11).
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2.4. FDOM Laboratory Water Samples

Sampling from the near surface water, here defined as the samples collected between 0.1 and
2.0 m, was obtained with a submersible pump system and stored in 5 L white plastic bottles, at all
stations. Samples were filtered in the laboratory immediately after sampling, and stored at 4 ◦C in
previously rinsed glass bottles. CDOM absorption and EEM spectra measurements were completed
within 24 h after sampling.

Samples were filtered with a glass syringe device through GF/F Nucleopore filters (0.2 μm, GE
Healthcare Whatman, Piscataway Township, NJ, USA). CDOM absorbance spectra were obtained
between 220 and 650 nm at 5 nm intervals on a Shimadzu UV-2550PC UV–VIS spectrophotometer
(Shimadzu, Kyoto, Japan) with 10 cm quartz cuvettes. All measurements were performed at room
temperature using freshly produced ultrapurified water (UPW; Milli-Q 185plus water purification
system, Merck Millipore, Burlington, MA, USA) as reference. CDOM absorption was calculated by
multiplying absorbance by 2.303/r, where r is the cuvette length (in meter). FDOM EEM spectra
measurements were conducted at room temperature on a LS55 spectrofluorometer (PerkinElmer,
Waltham, MA, USA) equipped with a Xenon flash lamp, pulsed at line frequency of 60 Hz. The excitation
(EX) and emission (EM) scanning ranges were set to 200 to 400 nm (5 nm interval) and 220 to 550 nm
(0.5 nm interval), respectively. The scanning speed was 1200 nm min−1, the EX and EM slit was set to
10 nm, and the detector gain was at medium range (775 V). Daily measurements of UPW were used
as references. Water Raman scatter peaks were eliminated by subtracting the EEM spectra of UPW
blanks. Inner filter effect and Rayleigh scatter peaks were corrected using the drEEM toolbox [33]. Lamp
variations were normalized to the Raman peak integral (EX: 350 nm) using freshly produced UPW,
therefore producing normalized intensities in Raman units (RU) [39]. EEM spectra were resized due to
high S/N in certain regions. Therefore, excitation wavelengths below 250 nm and emission wavelengths
below 300 and above 550 nm were excluded from the subsequent PARAFAC modeling process.

PARAFAC modeling was performed with the drEEM toolbox (ver.0.2.0) in MATLAB R2015b
(The MathWorks, Natick, MA, USA) according to a method described previously [33], employing the
N-way toolbox as the engine of the PARAFAC algorithm [34]. A three-component model was validated
by split-half analysis, random initialization analysis, and residuals analysis. The model explained up
to 99.95% of the variability within the lab-based LS55 spectrofluorometer EEM dataset.

A similar PARAFAC analysis was applied on the Kallemeter-based EEM spectra along cruise track
between station 11 and 15. Correction for inner filter effects was realized by utilizing the measured
absorption spectra from the nearest station and using Kallemeter blank measurements from an initial
laboratory test with purified water. Four out of 48 spectra were excluded from the analysis, due to high
residual error and leverage load, validating a two-component model that explained up to 61% of the
variability within the dataset through split-half analysis, random initialization analysis, and residuals
analysis. A third component could not be detected.

2.5. Study Site

In order to assess the performance of the ‘Kallemeter’ in comparison with the MatrixFlu-UV and the
FerryBox-mounted Cyclops-7-U fluorescence sensors in the field, the data obtained during an expedition
(HE491) with research vessel R/V Heincke from the coastal sea into the Trondheimsfjord (Norway) were
analyzed. Figure 6 shows a map of the study site and the cruise track investigated. The instruments
were in parallel operation from 19th to 25th of July 2017. The Trondheimsfjord is the third-largest fjord in
Norway with a length of 140 km, a volume of 235 km3, and a surface area of 1420 km2. It is divided in
three basins and has a seaward sill depth of 195 m [48]. It is characterized by comparably high CDOM
concentrations as well as vertical and horizontal gradients [49], making it an ideal test site.
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Figure 6. Overview of the study area (insert). Map shows Trondheimsfjord and its adjacent coastal sea
with cruise track (solid black line) and stations (red dots) of R/V Heincke expedition HE491.

3. Results

The FerryBox data is well suited to provide a first overview of the overall fjord hydrography.
The FerryBox dataset started on 19 July in the Norwegian coastal sea (station 11) heading first
northwards (station 12) and then into the Trondheimsfjord (station 13), through the mid-fjord section
and towards the innermost part of the fjord (station 14). From there, the transect went back to the
mid-section and ended at station 15 on 25 July. There is a considerable difference in all parameters
measured between the area outside and within the fjord (Figure 7), indicating the presence of two
water bodies with different properties. With the exception of salinity, values of all parameters are
higher within the fjord. Salinity is highest towards the ocean side, with values of more than 32, rapidly
decreasing inside the fjord towards the mid-section exhibiting values of around 24. Temperature
increases slightly from around 14 ◦C in the outer section towards 15 to 17 ◦C in the mid- and inner-part
of the Trondheimsfjord. Chlorophyll-a fluorescence (here provided in AU, as the sensor has not been
specifically calibrated for chl-a before the cruise) shows a gradual increase from the seaward part of
the fjord to a maximum at the end of the fjord. FDOM from the Cyclops-7-U fluorometer (provided in
AU) shows, inverse to salinity, a four-fold increase and steep gradient from the seaward side of the
fjord towards the mid- and inner-part.

Comparing the ‘Kallemeter’ bulk fluorescence signal extracted from the EEM spectra against the
bulk fluorescence signal of the MatrixFlu-UV channel 11 and the FerryBox inbuilt Cyclops-7-U FDOM
sensor data (Figure 8), it can be seen that all three signals showed a steep increase on 23 July, when
entering Trondheimsfjord. MatrixFlu-UV exhibited a maximum at the end of that day, followed by a
decrease on 24 July towards a steady level around half of the signal range. FDOM bulk fluorescence
from the FerryBox inbuilt Cyclops-7-U sensor increased in the same steep way towards a higher level
on 23 July. Signal intensity stayed on this level with only a slight decrease in the morning of 24 July.
‘Kallemeter’ bulk fluorescence signal, as indicated by red stars, exhibited the same dynamical behavior
as the Cyclops-7-U. A linear regression analysis was performed (Figure 9) of the extracted ‘Kallemeter’
bulk fluorescence against the Cyclops-7-U sensor (coefficient of determination R2 = 0.96) as well as the
corresponding channel of the MatrixFlu-UV (R2 = 0.88), both attached to the flow through system.
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Figure 7. Underway oceanographic data measured by the FerryBox. From top to bottom: Fluorescent
dissolved organic matter (FDOM) from the Cyclops-7-U bulk fluorometer, chlorophyll a fluorescence,
temperature, and salinity. The left panels display the data as time series, the corresponding right ones
as a map plot. Dashed lines indicate the stations where water samples were collected. Gray lines in the
top-left panel indicate availability of the in situ Kallemeter-based EEM spectra (N = 48).

Figure 8. Comparative view on the extracted underway measurements from the MatrixFlu-UV
(violet), the FerryBox FDOM Cyclops-7-U sensor (green) and the extracted bulk fluorescence signal
from the EEM spectra (red stars), obtained along a transect from the Norwegian coastal sea into
the Trondheimsfjord.
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Figure 9. Comparison of extracted ‘Kallemeter’ bulk fluorescence signal against FerryBox FDOM
Cyclops-7-U sensor (left panel) as well as the corresponding channel of the MatrixFlu-UV (right

panel). Red lines represent the results of a linear regression.

In situ underway EEM measurements, measured by the ‘Kallemeter’ in the moonpool of R/V
Heincke, provided a total of 48 spectra in 5 days (20 to 25 July). All fluorescence information and
metadata were continuously recorded from open water into the Trondheimsfjord. A comparison of
normalized EEM spectra of the lab-based LS55 fluorometer with the corresponding nearest normalized
Kallemeter-based EEM spectra at stations 12–15 (Figure 10; station 11 had no close match-up within
a time frame of ±1 h) shows good similarity for stations 14 and 15, where signal intensities are
5-times higher as compared to stations 12 and 13 (compare Figure 8). These lower concentrations of
fluorescent organic matter at stations 12 and 13 were only resolved from the apparently more sensitive
laboratory LS55 spectrofluorometer, thus illustrating the current limits of the ‘Kallemeter’ with respect
to low concentrations and the effects of noise. Please note that we applied normalization to the EEM
spectra to enable a comparison of spectra signatures measured, independent from the signal strength.
A non-normalized set of ‘Kallemeter’ EEM spectra is provided in the appendix (Figure A3) showing
for every fourth dataset (a) an EEM spectra with EX wavelengths 230–550 nm, Δλ = 10 nm, integration
time of 60 s and two averaged scans, slit = 10 nm, EM wavelengths 189–990 nm, and (b) an emission
scan with EM wavelengths 189–990 nm for 250 nm EX wavelength. These Kallemeter-based EEM
spectra show an increase in fluorescence intensities inside Trondheimsfjord as compared to the coastal
water conditions in the EM wavelength range from 400 to 550 nm.

PARAFAC analysis of the lab-based LS55 spectrofluorometer EEM spectra from water samples
gathered at different depths demonstrated the presence of three main components (C1, C2, and C3) in
the water samples (Figure 11, top panel). These components were characterized by their excitation and
emission pairs (EX/EM) as follows. Component (C1) corresponding to terrestrial humic-like peaks AC

and C, component (C2) corresponding to marine humic-like peaks AM and M, and component (C3)
corresponding to protein-like Tryptophan peak T, as suggested by Coble [29]. The spectral composition
of the recorded lab-based LS55 spectrofluorometer EEM spectra (provided in Table 2) shows that the
fluorescent intensity of the peaks C1, C2, and C3 remains constant between the open ocean stations
(ST11 and ST12) and the outer section of the fjord (ST13). Once the mid- and inner-part of the fjord
was reached, we recorded a sharp increment (by a factor of 5) in the fluorescent intensity for the
components C1 and C2 (ST14 and ST15), while C3 stays nearly constant.

Performing PARAFAC analysis of the Kallemeter-based EEM spectra along the transect resulted
in a model with two components validated (Figure 11, bottom panel). These components, even though
influenced by the noisy EEM spectra that suited as model dataset, can be related according to their
excitation/emission pairs to the presence of terrestrial humic-like peaks AC and C, and marine
humic-like peaks AM and M. Although reasonable EEMS where produced by the ‘Kallemeter’,
the presence of noise and suspended materials in the samples must be addressed in the future,
in order to minimize the observed displacement on the peak’s position.
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Figure 10. Normalized EEM spectra from lab-based water sample analysis with the LS55 laboratory
spectrofluorometer (left) and nearby (match-up of ±1 h) in situ measurements with the Kallemeter
(right) for stations 12–15 of R/V Heincke expedition HE491 along a transect from the coastal ocean into
the Trondheimsfjord. Notice that FDOM intensity in stations 14 and 15 are 5-times higher compared to
stations 12 and 13.
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Figure 11. Top panel: PARAFAC-derived principal fluorescent components from lab-based EEM
spectra from water samples at stations 11–15. From left to right: (C1) Terrestrial humic-like peaks AC

and C; (C2) marine humic-like peaks AM and M; and (C3) protein-like Tryptophan peak T, all peaks
denoted after Coble [29]. Color bar shows Raman units (RU). Bottom panel: PARAFAC derived
principal fluorescent components from Kallemeter-based EEM spectra along the transect.

Table 2. Spectroscopic composition of the lab-based LS55 spectrofluorometer EEM spectra analyzed water
samples in Trondheimsfjord. C1, C2, and C3 represent the intensity of PARAFAC components in Raman units.

Sample Number Station Depth (m) C1 (RU) C2 (RU) C3 (RU) Date

1 ST11 0.10 0.0364 0.0302 0.0238

20 July 20172 ST11 0.50 0.0349 0.0298 0.0243
3 ST11 1.50 0.0354 0.0297 0.0283
4 ST11 2.00 0.0331 0.0289 0.0304

5 ST12 0.10 0.0252 0.0194 0.0162

22 July 20176 ST12 0.50 0.0231 0.0177 0.0106
7 ST12 1.50 0.0226 0.0174 0.0127
8 ST12 2.00 0.0227 0.0177 0.0130

9 ST13 0.10 0.0355 0.0278 0.0214

23 July 201710 ST13 0.50 0.0355 0.0295 0.0287
11 ST13 1.50 0.0323 0.0255 0.0173
12 ST13 2.00 0.0322 0.0263 0.0191

13 ST14 0.10 0.1772 0.1054 0.0363

24 July 201714 ST14 0.50 0.1745 0.1017 0.0247
15 ST14 1.50 0.1763 0.1035 0.0248
16 ST14 2.00 0.1749 0.1028 0.0263

17 ST15 0.10 0.1471 0.0904 0.0378

25 July 201718 ST15 0.50 0.1493 0.0899 0.0233
19 ST15 1.50 0.1543 0.0928 0.0241
20 ST15 2.00 0.1530 0.0919 0.0232
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4. Discussion, Limitations, and Conclusions

The main objective of this study was to present a novel in situ EEMS sensor system—the
‘Kallemeter’—enabling full optical fingerprints in a submersible design. We presented the design
of this system within the methods Section 2.1 and illustrated its application based on laboratory
samples of diluted Suwannee River standards with 2.5 ppm and 25 ppm, respectively. Fluorescence
exhibited around EX: 240 nm and EM: 450 nm was corresponding to terrestrial humic-like peak
C substances, as expected for Suwannee River standards, with increasing intensity and additional
visible contributions extending to higher excitation wavelengths [50,51]. The assessment of the
‘Kallemeter’ EEMS sensor systems’ signal-to-noise ratio (S/N) based on the Raman peak of water
in a tap-water sample, provided an S/N of 34. Compared to commercially available laboratory
spectrofluorometers that exhibit S/N of 500 or higher the ‘Kallemeter’ is much more limited in resolving
low signal intensities [39]. Part of this is based on the different optical components implemented,
e.g., a fiber optic spectrometer compared to a monochromator plus photomultiplier setup for the
LS55 spectrofluorometer, still considered as the gold-standard for high sensitivity applications. Also
the choice of the excitation light was influenced by power- and heat-considerations and therefore
restricted to <10 Watts, where other laboratory instruments like the Aqualog (Horiba, Kyoto, Japan)
are equipped with up to 150 Watt Xenon flash lamps [52]. The strongest influence can be assumed
from the application of fiber optics within the sensor, resulting in losses while coupling light in and
out as well as transmitting it in the fiber. The use of fiber optics is a result of the compact design that a
submersible housing requires—a potential redesign of the ‘Kallemeter’ will take this into account and
try to partially avoid the use of optical fibers through direct light paths.

The field application of the ‘Kallemeter’ was realized in the moonpool of R/V Heincke on
transect from Norwegian coastal waters into the Trondheimsfjord in July 2017. The system was
successfully operated for five days in a fully submerged installation. EEM spectra derived from
this application showed very low fluorescence intensities superimposed by noise components for all
coastal sea measurements and the outer fjord area, while mid- and inner-fjord measurements exhibited
clear broad signals of approximately EX: 250–300 nm and EM: 400–500 nm. These observations are
consistent with the spectral component intensities derived from laboratory UV–VIS spectrofluorometer
(LS55, PerkinElmer, Waltham, MA, USA) measurements of surface water samples. With respect to
components C1 and C2 derived from PARAFACS analysis these were ranging for the outer fjord
between 0.02 and 0.04 Raman Units, while mid- and inner-fjord values ranged between 0.09 and
0.18 RU. The direct comparison of normalized EEM spectra from the lab-based spectrofluorometer
and the ‘Kallemeter’ (Figure 10) illustrated both, the capability of the ‘Kallemeter’ to provide full
EEM spectra if fluorescent organic matter concentrations are sufficiently high (stations 14 and 15), and
the limitation to resolve low concentrations against the background noise as encountered at stations
12 and 13 in coastal waters. The latter is a result of the lower S/N and sensitivity, discussed above.
The application of the ‘Kallemeter’ EEMS sensor system in its current form therefore seems to be
limited towards areas with an increased amount of fluorescent organic matter, typically encountered
in near coastal areas, estuaries and inland waters. Furthermore a study of the impact of noise or signal
degradation applied on EEM spectra that serve as PARAFAC model input would be of interest to
assess general limitations, however that is beyond the scope of this study.

The PARAFAC analysis of the Kallemeter-based EEM spectra enabled us to model two
components, corresponding to terrestrial humic-like peaks AC and C, and marine humic-like peaks
AM and M. This was compared to a PARAFAC analysis of the LS55 spectrofluorometer EEM spectra
from near surface water samples at the distinct stations that successfully validated three components.
While lab-based components 1 and 2 resemble the in situ Kallemeter components (even though
limited by high noise influence), the third component, namely the protein-like Tryptophan peak
T, could not be reproduced from the ‘Kallemeter’ data. Since peak T could be quantified in the
laboratory measurements to an average intensity of 0.023 Raman units without any signal increase in
the Trondheimsfjord, we consider this as a current limitation for the ‘Kallemeter’.
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The ability to perform a PARAFAC analysis on automatically measured in situ EEM spectra
is a major achievement and, to the best of our knowledge, the first of its kind. We encountered a
couple of challenges to that end, that we provide here as current limitations but also avenues for
future improvements. (A) Since we did not filter the water entering the measurement cell with 0.2 μm
(only applying 50 μm to keep coarse material out) the signal observed is originating from dissolved,
colloidal and particulate fractions of organic matter. For low amounts of particulate material this might
not be a problem and indeed all in situ FDOM bulk fluorescence sensors (including the two used in
this study for comparison) are also measuring unfiltered samples. However, for direct comparison with
laboratory measured (filtered) FDOM EEM spectra this can be considered an obstacle. To overcome this,
the installation of a filter unit at the inlet, containing an appropriate 0.2 μm filter can be easily realized in
future applications of the ‘Kallemeter’. It can be speculated that part of the noisiness of the spectra and
PARAFAC components can be associated to the influence of particulate material. (B) All EEM spectra
need to be corrected for the inner filter effect (IFE). This typically requires a parallel measurement of the
absorption spectra of the filtered water sample over the same wavelength range. The ‘Kallemeter’ itself is
not suited to perform this absorption measurement, therefore we applied absorption spectra from water
samples analyzed with a laboratory spectrophotometer. These were only available at the five stations
investigated and not at the 48 measurement locations of the ‘Kallemeter’. Assigning absorption spectra
from samples that were gathered up to 24 h earlier or later is introducing uncertainties, even though
we took care to respect the different oceanographic gradients encountered in the matching procedure.
A much better way to account for this need of parallel absorption measurements will be to use automated
in situ capable methods [53]. (C) Applying mirrors in the sample flow through cell, we increased the
fluorescence signal intensity by a factor of 2.5, however IFE corrections applied to correct EEM spectra
do not consider these and are therefore overcorrecting. Luciani et al. [54] showed how mirrors change
the fluorescence signal and can be at the same time utilized to correct for IFE, if measurements with and
without mirrors are performed on the same sample. This could be another methodological improvement
to overcome constraints mentioned above.

Comparing the results from the bulk fluorescence signal of the ‘Kallemeter’ (calculated from
the EEM spectra) with the flow through data from the commercially available FDOM sensors (a)
inside the FerryBox (Cyclops-7-U, Turner Design, San Jose, CA, USA) and (b) the channel 11 from
the recently developed matrix fluorescence sensor (MatrixFlu-UV, TriOS, Rastede, Germany), a good
correspondence could be observed. The maximum exhibited on 23 July and the following decrease
in the ‘Kallemeter’ fluorescence intensity (compare Figure 8) seems to be better reproduced by the
Cyclops-7-U FDOM sensor. The corresponding MatrixFlu-UV channel is able to reproduce the same
steep increase, however shows a signal reduction afterwards, not represented by the other methods
applied in this study. As this study reports one of the first field datasets achieved with the MatrixFlu-UV
sensor we cannot judge on this readings but see a clear need to investigate the sensors responses.

The MatrixFlu-UV sensor was investigated herein only with respect to one of its 12 channels
representing a main spectral component in the investigated environment. It is therefore herein utilized
as single-channel sensor and its further value in rapid quasi-EEM spectra measurements will be
investigated in future works. Other multichannel approaches exist, with two [55] or three [56]
combinations technically built up from single EX/EM combinations. A recent study of Nordic
seas FDOM intensities [57] utilized a novel three-channel fluorometer (WETStar, Sea-Bird Scientific,
Bellevue, WA, USA). This system excites the water sample in a flow-through cell with two LEDs
at 280 nm and 310 nm. Two detectors measure the emission at 350 nm and 450 nm, allowing for
a combination of channels in specific peak areas: peak C (with EX/EM 310 nm/450 nm), peak AC

(with EX/EM 280 nm/450 nm), and peak T (with EX/EM 280 nm/350 nm). All applications mentioned
above underline the potential of multichannel FDOM measurements for specific components dominant
in natural water bodies. The technological step from multichannel sensing to real excitation–emission
matrix spectroscopy with high spectral resolution in both, the excitation and the emission sides, is huge,
since it requires complete different technologies. An interim step with six (up to 12) distinct LED
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excitation wavelengths and emission spectra with 7.5-nm spacing (named ‘LEDIF’) was presented as
part of a field-deployable optical system [58].

The ‘Kallemeter’ represents, to the best of our knowledge, the first submersible EEMS sensor
system that performs full optical fingerprints. While the detection side is comparable to the LEDIF
approach, using a fiber optical spectrometer, excitation was realized in our system by a Xenon flash
lamp and an embedded controlled monochromator. This enabled us to achieve 10-nm steps in the
excitation wavelengths selection (and finer steps are technically feasible); however, it also slows down
the measurement process to approx. 30 min per individual sample. This is in the same order of
magnitude as the LS55 (PerkinElmer, Waltham, MA, USA) UV–VIS laboratory spectrofluorometer
used in this study. Faster laboratory systems exist nowadays (e.g., Aqualog, Horiba, Kyoto, Japan) that
enable EEM spectra measurements below 5 min that require, however, further technical improvements
(e.g., a TE cooled back-illuminated CCD fluorescence detector, and a high power Xenon flash lamp).
Modern ocean observing strategies combine sensors with high spatiotemporal resolution but limited
information depth with more sophisticated sensors, that provide a high depth of information but are
limited in their spatial and temporal resolution [8]. The ‘Kallemeter’ is one of those highly sophisticated
sensors and will likely, as others in that field [59,60], improve in its operational specifications,
i.e., size, weight, and power. Multichannel fluorescence sensors for FDOM are already smaller,
lightweight, and less power consuming. Their application on different autonomous platforms has been
demonstrated [17,55,58]. Thus, they are the linkage towards resolving rapid changes and processes.
An assessment of fluorescent organic matter in high spatiotemporal and spectral resolution is therefore
technically feasible and likely to become standard in future biogeochemical ocean observatories.
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Appendix A

Figure A1. Dark counts of the ‘Kallemeter’ fluorescence detection spectrometer, measured by a
long-term in situ test of 50 full EEM spectra (presented as an overlay) over a period of 116 h exhibiting
a constant slight intensity gradient against the ordinate (wavelength).

Figure A2. Signal to noise measurement of tap water with the ‘Kallemeter’ fluorescence detection
spectrometer (grey line, integration time 300 s), and the LS55 laboratory spectrofluorometer (black line,
2nd maxima masked), both excitation wavelengths are 260 nm.

Table A1. Comparison of different mirror combinations within the measuring cell. Shown: Mirror on
(opposite) excitation and emission side, maximum value of the fluorescence signal, signal-to-noise
ratio (S/N). Measured: Compound 610 from Starna Scientific Ltd. (Ilford, UK), flash lamp frequency:
100 Hz, excitation wavelength 440 nm, integration time: 5 s.

Excitation Side Emission Side Max [counts] S/N

Concave Concave 678 156
Concave Planar 571 157
Planar Concave 650 187
Planar Planar 570 145
Absent Absent 346 94
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Figure A3. In situ underway measurements of EEM spectra, obtained from the moonpool of R/V
Heincke (HE491) along transect from the coastal ocean into the Trondheimsfjord.
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Table A2. EEMS measurement parameters for intensity calibration procedures.

Parameter Settings

Excitation start 200 nm
Scan steps 5 nm

Excitation end 450 nm
Dark correction True

Dark noise multi scan 20
CM110 offset correction None

CM110 slits None
Integration time 6 s
Scans to average 10

Box car 0
Trigger mode 0

Detector temperature −10 ◦C
PX-2 connect Reference

Multiple strobe On
Flash delay 10 milliseconds
Warm-up None
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Featured Application: This paper provides guidance for selecting an appropriate method for

calculating the Mueller matrix associated with oceanic particles of arbitrary morphologies and

refractive indices.

Abstract: The complete Stokes vector contains much more information than the radiance of light for
the remote sensing of the ocean. Unlike the conventional radiance-only radiative transfer simulations,
a full Mueller matrix-Stokes vector treatment provides a rigorous and correct approach for solving
the transfer of radiation in a scattering medium, such as the atmosphere-ocean system. In fact,
radiative transfer simulation without considering the polarization state always gives incorrect results
and the extent of the errors induced depends on a particular application being considered. However,
the rigorous approach that fully takes the polarization state into account requires the knowledge of
the complete single-scattering properties of oceanic particles with various sizes, morphologies,
and refractive indices. For most oceanic particles, the comparisons between simulations and
observations have demonstrated that the “equivalent-spherical” approximation is inadequate. We will
therefore briefly summarize the advantages and disadvantages of a number of light scattering
methods for non-spherical particles. Furthermore, examples for canonical cases with specifically
oriented particles and randomly oriented particles will be illustrated.

Keywords: ocean optics; light scattering; Mueller matrix; volume and surface integral methods

1. Introduction

It is well known that the scattering of light by a particle is determined by the detailed
characteristics of the scattering particle, particularly its size, chemical composition (thus, the index of
refraction), the overall shape, and detailed surface texture (e.g., surface roughness). Oceanic particles
vary greatly in size and morphology. While the Lorenz-Mie theory has been used frequently to simulate
the optical properties of oceanic particles (e.g., [1–5]), these particles are predominately nonspherical.
Significant differences exist in the optical properties simulated by using “equivalent” spheres and
non-spherical shapes, such as spheroids (e.g., [6]). In addition, even the simplest biological cell has
a membrane and plasma contained within the membrane. Previous studies have shown that accounting
for the cell structure can better simulate the optical properties of various phytoplankton species,
particularly the scattering at large scattering angles [5,7–11]. Advanced light scattering methods have
been developed to deal with complex shape and structure. Here, we briefly summarize light-scattering
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computational methods for oceanic particles. Light scattering in an absorbing medium has been
extensively discussed [12–14]. For generality, however, only a nonabsorbing medium is discussed
here. Beginning with Maxwell’s equations, in Section 2, we will show exact volume-/surface-integral
equations for mapping the near field to the far field. Furthermore, we introduce both the amplitude
scattering matrix and the scattering phase matrix. In Section 3, several scattering methods will be
introduced. In Section 4, discussions are given that are based on oriented particles and particles in
random orientation.

2. Fundamental Concepts for Mueller Matrix Calculations

2.1. Maxwell’s Equations and the Volume/Surface-Integral Equations

Since all of the rigorous light-scattering computational methods should obey Maxwell’s equations,
we will first give a brief introduction to the role that both the volume/surface methods for mapping the
near field to far field play in the final solutions. We will only consider time-harmonic electromagnetic
waves and dielectric particles. The dielectric particles are assumed to be isotropic and have a linear
response to an applied field. In this case, Maxwell’s equations in the medium while using SI units are
as follows:

∇
.
·E (

→
r ) = 0, ∇× E(

→
r ) = −μ

∂H(
→
r )

∂t
, (1)

∇
.

·H (
→
r ) = 0, ∇× H(

→
r ) = ε

∂E(
→
r )

∂t
, (2)

where E and H are the electric and the magnetic fields, respectively; ε and μ are the permittivity
and permeability of the medium. Using the Fourier transformation, an arbitrary incident field in the
time-domain can be transformed into the summation of the fields in the frequency-domain, or the
time-harmonic fields. Assuming that the time-harmonic field follows exp(−iωt), where ω is the
angular frequency of the electromagnetic wave, Maxwell’s equations in a time-independent form
become:

∇
.
·E (

→
r ) = 0, ∇× E(

→
r ) = iωμH(

→
r ), (3)

∇
.

·H (
→
r ) = 0, ∇× H(

→
r ) = −iωεE(

→
r ). (4)

Using Equations (3) and (4), the vector Helmholtz equations for the electric and magnetic fields are(
∇2 + k2

)
E(

→
r ) = 0, (5)

(
∇2 + k2

)
H(

→
r ) = 0, (6)

where k is the wave number and k2 = ω2με. For oceanic particles, the surrounding medium and the
scattering particles are assumed to be nonmagnetic, thus μ = μ0, where μ0 is the vacuum permeability.
The light speed c in vacuum is equal to 1/

√
μ0ε0, where ε0 is the permittivity in vacuum. Consequently,

the refractive index m of the medium is m = c/v =
√

ε/ε0, where v is the light speed in the medium.
Since the electric and the magnetic fields are dependent on each other, we will use the electric field to
describe the electromagnetic field.

The volume integral and surface integral equations of the electric field can be deduced from
Maxwell’s equations and the vector Green function [15]. In the far-field regime, they can be expressed
in the form

Esca (
→
r )

∣∣∣
r→∞

=
exp(ikr)
−ikr

ik3

4π

∫
V

d3→r
′{
(m2 − 1)

[
r̂ × r̂ × E(

→
r
′
) exp(−ikr̂·→r ′

)
]}

, (7)
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Esca (
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exp(ikr)
−ikr
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4π
r̂ ×

∮
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′{[

n̂s × E(
→
r
′
)
]
− ωμ0

k
r̂ ×

[
n̂s × H(

→
r
′
)
]}

, (8)

where the parameters are given in Figure 1; n̂s is the outward normal to the surface. It is evident that
the scattered far field only depends on the scattered directions with an outgoing spherical wave factor
exp(ikr)/kr.

 

Figure 1. Parameters used for light scattering by a dielectric particle. The field point
→
r is outside the

scattering particle with wavenumber k, permittivity ε, and permeability μ0 and the point
→
r
′

is inside
the particle with wave number k1, permittivity ε1, and permeability μ0.

2.2. Amplitude Scattering Matrix and Mueller Matrix

Let the incident direction of the incoming wave be along the z-axis of the laboratory frame of
reference. The incident direction and the scattered direction define a scattering plane and the incident
and scattered fields can be expanded into parallel and perpendicular components with respect to the
scattering plane. Consequently, the amplitude scattering matrix S can be given by [16](

Esca
‖

Esca
⊥

)
=

exp(ikr − ikz)
−ikr

S

(
Einc
‖

Einc
⊥

)
, (9)

where E‖ and E⊥ denote the parallel and perpendicular components of the electric field with respect
to the scattering plane and S is a 2 × 2 complex matrix. The Stokes parameters in a non-absorbing
medium are defined based on the measurable quantities, which are normally expressed in terms of
a four-element column vector, the Stokes vector I, as follows:

I =

⎛⎜⎜⎜⎝
I
Q
U
V

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
E‖E∗

‖ + E⊥E∗
⊥

E‖E∗
‖−E⊥E∗

⊥
E‖E∗

⊥ + E⊥E∗
‖

i
(

E‖E∗
⊥−E⊥E∗

‖
)

⎞⎟⎟⎟⎟⎠. (10)

In the above equation, i is the imaginary unit and a constant factor,
√

ε/μ0/2, is neglected since
usually relative quantities are measured. The Mueller matrix (also called the scattering phase matrix
in the literature) is the transformation matrix from the incident to the scattered Stokes parameters,
as follows:

Isca =
1

(kr)2 PIinc, (11)
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where the 4 × 4 Mueller matrix P can be given as quadratic expressions of the amplitude scattering
matrix S, as follows [17,18]:

P = A(S ⊗ S∗ )A−1, (12)

where asterisk denotes the complex conjugate and symbol ⊗ denotes the tensor product, and the
constant matrix A is

A =

⎛⎜⎜⎜⎝
1 0 0 1
1 0 0 −1
0 1 1 0
0 i −i 0

⎞⎟⎟⎟⎠, A−1 =
1
2

A†, (13)

in which the symbol † (sometimes called the dagger) is composed of two operations; namely,
complex conjugating (the * symbol), and then transposing the original matrix and the order of these
operations is unimportant. Note that the Stokes parameters have the units of irradiance [19], and on the
other hand, the corresponding radiance is invariant over distance if no scattering or absorption occurs.

If the incident light is unpolarized, the scattering cross-section can be given in terms of the element
P11 by

Csca =
1
k2

∫
4π

dΩP11(θ, ϕ). (14)

The phase function is defined as:

p =
4π

k2Csca
P11, (15)

and the scattering phase matrix can be defined as:

F =
4π

k2Csca
P. (16)

The symmetry relations of the phase matrix have been extensively discussed in general and also
for forward and backward scattering [20–22]. For an arbitrary particle without mirror symmetry in the
scattering plane, the scattering phase matrix of a particle in random orientation is in the form

F =

⎛⎜⎜⎜⎝
a1 b1 b3 b5

b1 a2 b4 b6

−b3 −b4 a3 b2

b5 b6 −b2 a4

⎞⎟⎟⎟⎠, (17)

where there are only 10 independent parameters. For a particle with mirror symmetry in the scattering
plane, the scattering phase matrix of a particle in random orientation is reduced to a block-diagonal
matrix, as follows:

F =

⎛⎜⎜⎜⎝
a1 b1 0 0
b1 a2 0 0
0 0 a3 b2

0 0 −b2 a4

⎞⎟⎟⎟⎠, (18)

where there are only six independent parameters. Equations (17) and (18) represent the scattering
phase matrix of a particle in random orientation. For a collection of particles with a size distribution,
the collective scattering phase matrix can also be defined in terms of the distribution and the reader is
referred to the book by Mobley [23].

All of the scattering quantities have been presented and we are now faced with the problem of
obtaining the near fields or directly the far fields satisfying Maxwell’s equations.
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3. General Scattering Method for Suspended Particles

The governing principle for light scattering by particles is Maxwell’s equations. The scattering
solution is called Rayleigh scattering if x « 1 and |mx|« 1 [16,20], where the size parameter x is
defined as 2πrv/λ with rv being the radius of a sphere or volume-equivalent sphere and λ the incident
wavelength in the surrounding medium. The analytical solutions to Maxwell’s equations are only
effectively available for spheres [16,20]. For a prolate or oblate spheroid, the analytical solution is
given in a series of the spheroidal wave functions by Asano and Yamamoto [24] and Asano and
Sato [25]. However, the analytical solutions for a spheroid are only computationally effective for
small particles due to numerical instability in computing the spheroidal wave functions for large
particles. For an infinite circular cylinder, the analytical solution can be easily computed [16]. However,
the infinite morphology does not exist in nature. For a particle with spherical symmetry, such as
a homogeneous sphere or a multi-layered sphere, the analytical solution can be obtained by using the
Lorenz-Mie theory for any size [16,20]. The advantage of using the spherical model is the computational
efficiency, while the disadvantage is the appearance of spherical artifacts, such as the rainbow or
glory, which have seldom been observed for ocean water (e.g., [26]). For a non-spherical particle,
the solution of Maxwell’s equations consists of two categories: rigorous and approximate solutions.
The rigorous solutions can be further divided into numerically exact solutions and semi-analytical
T-matrix solutions.

3.1. Numerically Exact Methods

As the name implies, numerically exact solutions use numerical methods to directly solve
Maxwell’s equations or the volume or surface integral equations derived from Maxwell’s equations.
The computational precision depends on the numerical resolution.

The finite difference time-domain method (FDTD) is based on the discretization of Maxwell’s
equation Equations (1) and (2) both in time and space [27]. The FDTD method uses the Yee grid to
discretize the space, which was developed by Yee [28] and reviewed by Taflove [27], and Yang and
Liou [29,30]. Since the computational space has to be confined to a finite region, a perfectly matched
layer is used to absorb all of the electromagnetic waves in the computational boundary and avoid any
artificially reflected electromagnetic waves back into the computational region [31]. The computational
region usually with cuboid shape has to encompass the scattering particle so the computational region
is always larger than the scattering particle in the FDTD application. The electromagnetic fields on the
grids are updated with the advance of time so the FDTD is an initial value problem.

For a time-harmonic field or a field in the frequency domain, Maxwell’s equations become the
vector Helmholtz equations that are given in Equations (5) and (6). The vector Helmholtz Equations (5)
and (6) can be discretized in space while using the finite-element method (FEM) [32]. The boundary
condition on the particle surface and the continuity condition on the neighboring grid give a series
of linear equations. The FEM is a boundary value problem. A major challenge for applying the FEM
to light scattering is choosing the finite region covering the scattering particle so that the field in the
computational region satisfies the radiation condition in the far field [33]. Like the FDTD method,
the computational region for the FEM is also larger than the region that is occupied by the scattering
particle, which can constrain the application regime of the FEM.

Using the vector Green function, the differential equations become the volume-integral or the
surface-integral equations given by Equations (7) and (8). Even though the volume-integral and
the surface-integral methods are equivalent, the volume-integral method is numerically more stable
than the surface-integral method because the volume-integral equation in Equation (7) is a Fredholm
integral equation of the second kind whose matrix equation is usually diagonally dominant [34].

The discrete-dipole approximation (DDA) method is a typical volume-integral method. The DDA
was first proposed by Purcell and Pennypacker [35] and it was reviewed by Draine [36,37] and by
Yurkin and Hoekstra [38]. In the DDA method, the particle volume is discretized into usually cubic
cells, as shown in Figure 2. Each cubic cell is represented while using an electric dipole and the excited
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field at that cell is composed of the original incident field and the field from all other cells but excluding
the cell itself. The dipoles generate a series of linear equations and the fields with respect to all dipoles
can be obtained by solving the corresponding linear equations. Once the total field with respect to
each cell is obtained, the amplitude scattering matrix and Mueller matrix can straightforwardly be
computed. It is evident from Equation (7) that the computational region is equal to the volume of
a scattering particle. That makes the DDA method computationally efficient when compared to other
numerically exact methods.

 

Figure 2. Discretization of a particle volume in the discrete-dipole approximation (DDA) method.

Two numerical implementations of the DDA are a FORTRAN implementation referred to as
DDSCAT by Draine and Flatau [39] and a C implementation referred to as ADDA by Yurkin and
Hoekstra [40]. The DDSCAT is parallelized for scattering only in different orientations so the
memory requirement might restrict the computational capability for large particles. The ADDA
is parallelized by distributing grids (dipoles) into different CPUs so the ADDA can handle particles of
large sizes. The DDA method has been extensively used to simulate light scattering of oceanic particles.
For instance, the light scattering of Emiliania huxleyi coccolithophore was simulated while using the
DDSCAT by Gordon et al. [41] and using the ADDA by Zhai et al. [42]. Another example of the use of
ADDA is the light scattering of dinoflagellates by Liu and Kattawar [43], where the chiral structure
of the chromosomes is implemented by using discrete dipoles. This chiral structure leads to optical
activity for certain dinoflagellates and another reason for measuring the complete single scattering
Mueller matrix, which should be a fruitful area of research in remote sensing of the oceans.

The typical feature of a numerically exact method is that the error asymptotically approaches zero
if the corresponding numerical grid that is associated with the method asymptotically reaches zero.
Another feature for oceanic particles is that the convergence rate is much faster than the convergence
rate of atmospheric particles because the relative refractive indices with respect to oceanic particles are
close to unity. Moreover, the composition of a particle using the numerically exact methods can be
arbitrary, homogeneous or inhomogeneous, or even different grid by grid.

For all of the numerically exact methods, the Mueller matrix is given in terms of the amplitude
scattering matrix and they both depend on the incident direction. Consequently, the light scattering
computation of a particle in random orientation while using these methods can usually be given by
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numerically summing the light scattering for different orientations. The convergence in the random
orientation computation becomes significantly more difficult with increasing particle size so the
computation will become time-consuming.

3.2. Semi-Analytical T-Matrix Method

The T-matrix method was originally proposed by Waterman [44,45]. The incident and scattered
fields are expanded in a series of the vector spherical wave functions. The T-matrix connects the incident
and scattered expansion coefficients because of the linearity of Maxwell’s equations. The T-matrix
of a particle only depends on the intrinsic properties of the particle, such as the refractive index,
morphology, and the orientation of the particle frame of reference and its origin location, but not
on the incident state. Corresponding to Equations (7) and (8), the T-matrix can be obtained using
the surface-integral and volume-integral methods. The computational method of the T-matrix based
on the surface integral is called the extended boundary condition method (EBCM) or the null field
method, and it was reviewed by Tsang et al. [46], Mishchenko et al. [47,48], Mishchenko and Travis [49],
and Doicu et al. [50]. The T-matrix method based on the volume integral equation is called the
invariant-imbedding T-matrix method (IITM) and it was originally proposed by Johnson [51]. The IITM
was reviewed and developed by Bi et al. [52]. For a particle with axial symmetry, the T-matrix is
decoupled into a block-diagonal form, so the computation is significantly simplified. The applications
of the EBCM on spheroids, cylinders, and Chebyshev shapes are exceptionally effective [49]. However,
when a particle has a large size or an aspect ratio far from unity or one that is asymmetric, the matrices
in the T-matrix computation are often ill-conditioned. The T-matrix method that is based on the volume
integral is much more stable than the EBCM because the volume integral equation in Equation (7) is
a Fredholm integral equation of the second kind, which is often less ill-conditioned [34]. The extreme
stability of the IITM has been validated by applying the IITM to particles with large sizes, extreme aspect
ratios, or asymmetric particles [52,53]. For instance, the IITM were used to compute the light scattering
of oceanic particles, such as Emiliania huxleyi coccoliths and coccolithophores by Bi and Yang [54],
and diatoms by Sun et al. [11].

When compared to the numerically exact methods, the significant advantage of the T-matrix
solution is the analytical realization for a particle with a random orientation. The computational time
of T-matrix methods is usually shorter than the numerically exact methods because T-matrix methods
use matrix inversion instead of iterations. Moreover, in contrast to the relatively large refractive indices
of atmospheric particles, such as ice crystals (m ~1.33) and aerosols (roughly m > 1.5), the relative
refractive indices of oceanic particles are usually smaller than 1.2. For this reason, using the T-matrix
method for oceanic particles normally yields faster convergence and higher computational efficiency
than for atmospheric particles. However, the computational time and memory requirements of the
T-matrix are strongly related to the radius of the circumscribed sphere of a particle and its morphology.
For instance, for a needle particle with small volume but large circumscribed radius or a complex
morphology, such as a porous particle, T-matrix methods are not as efficient as the numerically
exact methods.

The numerically exact solutions can provide results for particle size parameters x ~100 or less;
for the T-matrix solutions EBCM can reach x ~180, and the IITM can yield accurate results for x ~300.
For even larger oceanic particles, approximate solutions must be used.

3.3. Physical-Geometric Optics Method

When the particle size is much larger than the incident wavelength, Maxwell’s equations can
be approximated by the eikonal equation [55]. The eikonal equation is the theoretical foundation
of the geometric optics method. The key process for the geometric optics method is ray-tracing.
The ray-tracing process of the geometric optics method consists of two parts: one is the diffracted rays
and another is the transmitted rays, including external reflection, refraction without internal reflection,
refraction with one internal reflection, and so on. The conventional geometric optics method (CGOM)
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considers the diffracted and the transmitted rays separately and it assumes equal contributions from
the diffracted and transmitted rays under the assumption that the extinction efficiency is 2. Moreover,
the CGOM does not consider the ray spreading effect from the near field to the far field, that is, there is
no mapping process for the CGOM. The CGOM is applied to compute the light scattering of large
particles with a large refractive index, such as ice particles (e.g., [56,57]). The CGOM can be improved
by considering the ray spreading effect for a particle in random orientation. The improved geometric
optics method (IGOM) can be used to compute light scattering of an intermediate particle or even
a small particle [58,59].

For oceanic particles, the diffracted and transmitted rays have strong destructive interference
so they cannot be separately handled. The physical-geometric optics method (PGOM) considers not
only the interference between the diffracted and transmitted rays, but also the ray spreading effect in
the far field [60]. Equations (7) and (8) are fundamental to the PGOM, which substantially extend the
applicability of the principles of geometric optics in conjunction with physical optics to from large
to moderate particles. For faceted particles, the ray-tracing process can be analytically accomplished
since the phase change on a facet is linear [61–63]. The PGOM can be effectively used to compute the
light scattering properties of oceanic particles.

4. Computational Results and Discussion

4.1. Dinoflagellate Simulation Using ADDA

Phytoplankton are one of two main categories of oceanic organisms and a significant component
of the marine ecosystem that travel along the ocean currents. Many phytoplankton are positioned
with preferred orientations due to the ocean flow [64]. Most phytoplankton are single-celled, such as
dinoflagellates, diatoms, and coccolithophores. The bloomed phytoplankton can cause huge economic
losses and influence environmental health, such as the red tide bloom of dinoflagellates in Florida [65].
Optical properties of an individual or bulked phytoplankton are essential to study phytoplankton
populations (e.g., [66]). As mentioned in Section 3, dinoflagellates, diatoms, and coccolithophores have
been simulated using the DDA and IITM [11,41–43,54]. Dinoflagellates have a large group of species
so we take them as an example to describe the application of a scattering method.

Laboratory observation using transmission electron microscopy showed that the nucleus of
dinoflagellates contains cylindrical chromosomes [67–69] and the chromosomes are arranged by
ordered helical structures [69,70]. The helical structures are responsible for the strong circularly
polarized effect that was observed in dinoflagellates [43,71,72]. The Mueller matrix element P14 reflects
the circular polarization of a scattering particle and can be used as an index to indicate the strong
circularly polarized effect [16,20]. Liu and Kattawar employed the ADDA code to fully simulate a single
cell of a dinoflagellate and compute the 16 Mueller matrix elements [43], where the chromosomes
are constructed using the plywood model [73]. For computational efficiency, only the nucleus with
dozens of randomly positioned chromosomes is simulated. A chromosome is modeled as a cylindrical
capsule with many layers, where every layer with fixed diameter contains parallel fibrils and the
helical structure is described by making two adjacent layers with a constant rotation angle between
them. The height with one period of rotation for the parallel fibrils is called the pitch. The chromosome
simulation in the DDA method was performed by constructing fibrils in terms of dipoles and these
fibrils were then arranged in layers and each layer was twisted a certain amount to make a helical
shaped capsule to represent the chromosome. The diameter, the constant rotation angle, the number of
helical periodicities, the pitch, the incident wavelength, and the incident directions can be changed to
examine the circularly polarized effect of the helical structure. The important conclusions while using
the ADDA code are given by Liu and Kattawar, as follows [43]:

• Strong back scattering signals from Mueller matrix element S14 are indeed from the helical
structures of the chromosomes.
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• Strong S14 back scattering signals are observed when the incident wavelength in the ocean is
matched with the pitch of the helical structure, even if the chromosomes are under the random
orientation condition.

• Strong S14 back scattering signals are observed when the incident direction is close to the main
axis of the helical structure.

• The helical structure with constant rotation angle has stronger S14 back scattering signals than the
helical structure with random rotation angle.

These conclusions suggest potential applications on the detection of the dinoflagellate and also
the appropriate incident wavelength to match the pitch of helical structure.

4.2. Oceanic Particle Simulation Using ADDA, IITM, and PGOM

Section 4.1 describes an example of dinoflagellates while using the ADDA to compute the 16
Mueller matrix elements that were given by Liu and Kattawar [43], where the chromosome of the
dinoflagellate has complex helical structure and is simulated mostly in fixed orientations. Generally,
a simple nonspherical shape in random orientation is used to simulate the optical properties of oceanic
particles. A hexahedron particle here is used as an example of an oceanic particle to show how Mueller
matrix elements can be calculated by three typical methods: the ADDA, the IITM, and the PGOM.
The relative refractive index of the particle is set to be 1.12 + i0.0005 and the incident wavelength is
0.658 μm. Only the Mueller matrix of the particle under the random orientation condition is given.

Figure 3 shows the comparisons of the non-zero Mueller matrix elements calculated by the
IITM and the ADDA. The volume equivalent radius is 1 μm. The element P11 is normalized to
give the normalized phase function while other elements are normalized by the element P11. The
simulation results calculated by the IITM and the ADDA are perfectly matched since they both are
the exact solutions of Maxwell’s equations. However, the computation using the IITM is much more
efficient than the computation using the ADDA since the random orientation process is realized by
ADDA through considering a large number of orientations. On the other hand, the ADDA for a fixed
orientation in this case is more efficient than the IITM since the IITM has to compute the T-matrix of the
particle, regardless of whether it is in a fixed orientation or under the random orientation condition.

Figure 3. Comparisons of Mueller matrix elements of a hexahedron particle calculated by the
invariant-imbedding T-matrix method (IITM) and the ADDA. The volume equivalent sphere radius is
1μm and the incident wavelength is 0.658 μm. The relative refractive index is 1.12 + i0.0005.
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Figure 4 shows the comparisons of the Mueller matrix elements calculated by the IITM and the
PGOM. The volume equivalent sphere radius is 8 μm. The PGOM results agree quite well with the
IITM results, especially for the forward and backward scattering directions. Even though the PGOM is
an approximate solution of Maxwell’s equation, the process of including the interference between the
diffracted and transmitted rays and mapping the near field to the far field significantly enhances its
accuracy. The advantage of the PGOM is that it is computationally much more efficient than the IITM.

Figure 4. Comparisons of Mueller matrix elements of a hexahedron particle calculated by the IITM
and the physical-geometric optics method (PGOM). The volume equivalent sphere radius is 8 μm and
the incident wavelength is 0.658 μm. The relative refractive index is 1.12 + i0.0005.

5. Conclusions

A general introduction for calculating the Mueller matrix of suspended particles in the ocean
is given. The surface and volume integral equations of the electromagnetic field can be given from
Maxwell’s equations. Also, the amplitude scattering matrix and the Mueller matrix with respect to
light scattering can be defined to describe the polarization state of a suspended particle. To calculate
the amplitude scattering matrix and Mueller matrix, the scattering methods are introduced based on
the following categories: numerically exact methods, semi-analytical T-matrix methods, and geometric
optics methods. For clarity, three typical methods: the DDA method, the IITM, and the PGOM,
are briefly presented. Moreover, the Mueller matrix of an arbitrarily generated hexahedron particle
under the random orientation condition is computed while using the ADDA and the IITM when the
volume equivalent sphere radius is 1 μm and using the PGOM and the IITM for a volume equivalent
sphere with a radius of 8 μm, while the incident wavelength is 0.658 μm. Perfect agreement between the
ADDA and the IITM are given since both methods are considered to be the exact solutions. The IITM
is more computationally efficient than the ADDA when the particle is under the random orientation
condition. Excellent agreement between the PGOM and the IITM are obtained especially for the
forward and the backward scattering directions. The PGOM is more computationally efficient than
the IITM because of the ray-tracing process. Consequently, the Mueller matrix of suspended particles
can be computed by using numerically exact methods, T-matrix methods, and the physical-geometric
optics method to cover a complete size range.
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Featured Application: Methods and algorithms developed in this manuscript may be applied

to ocean color satellite or aircraft imagery for the remote sensing of oceanic CDOM spectral

absorption, CDOM spectral slope, and DOC.

Abstract: A Global Ocean Carbon Algorithm Database (GOCAD) has been developed from over
500 oceanographic field campaigns conducted worldwide over the past 30 years including in situ
reflectances and coincident satellite imagery, multi- and hyperspectral Chromophoric Dissolved
Organic Matter (CDOM) absorption coefficients from 245–715 nm, CDOM spectral slopes in eight
visible and ultraviolet wavebands, dissolved and particulate organic carbon (DOC and POC,
respectively), and inherent optical, physical, and biogeochemical properties. From field optical
and radiometric data and satellite measurements, several semi-analytical, empirical, and machine
learning algorithms for retrieving global DOC, CDOM, and CDOM slope were developed, optimized
for global retrieval, and validated. Global climatologies of satellite-retrieved CDOM absorption
coefficient and spectral slope based on the most robust of these algorithms lag seasonal patterns of
phytoplankton biomass belying Case 1 assumptions, and track terrestrial runoff on ocean basin scales.
Variability in satellite retrievals of CDOM absorption and spectral slope anomalies are tightly coupled
to changes in atmospheric and oceanographic conditions associated with El Niño Southern Oscillation
(ENSO), strongly covary with the multivariate ENSO index in a large region of the tropical Pacific,
and provide insights into the potential evolution and feedbacks related to sea surface dissolved
carbon in a warming climate. Further validation of the DOC algorithm developed here is warranted
to better characterize its limitations, particularly in mid-ocean gyres and the southern oceans.

Keywords: ocean color database; oceanic carbon; chromophoric dissolved organic matter; dissolved
organic carbon; CDOM spectral slope; ocean color remote sensing; algorithm development; ocean
color algorithm validation; ocean optics; CDOM climatology; CDOM and ENSO; machine learning

1. Introduction

1.1. Background

In 1896, Svante Arrhenius introduced the theory that adding carbon dioxide (CO2) to the
atmosphere enhances the planetary greenhouse effect. Over the intervening century, it became clear
that the marine dissolved organic carbon (DOC) pool comprised the vast majority of the organic carbon
in the oceans, and was nearly equivalent to the atmospheric pool of CO2 [1]. In fact, remineralization of
just 1% of the DOC in the oceans (e.g., by microbial metabolism and photo-oxidation) would generate
a flux of CO2 into the atmosphere greater than that resulting from all the fossil fuel burned in a
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year [2]. Recently, Belanger et al. [3] estimated that photoproduction of CO2 from Chromophoric
Dissolved Organic Matter (CDOM) has already increased by ~15% in Arctic waters due to an increase
in ultraviolet radiation and the decrease in sea ice associated with global warming. Positive feedbacks
such as this have potentially serious consequences for humans and ecosystems alike, and emphasize
the urgency to develop robust, global algorithms for retrieving oceanic carbon products remotely
and synoptically.

CDOM (refer to Table 1 for terms and abbreviations) is used to describe an often difficult to
define fraction of the DOC pool (see Section 1.4) which has historically been called gilvin, gelbstoff,
or simply “yellow substance”. As its name suggests, the presence of CDOM imparts color to the
water column through absorption of light by various chromophores, thereby providing an effective
means of detecting CDOM remotely from ocean color reflection. Found in all natural waters and
generally in highest concentration near shore, CDOM results from the breakdown products of plants
and other organic matter into humic materials, and plays a significant role in aquatic photochemistry,
photobiology, and as a tracer of the origins of oceanic water masses, e.g., [4,5]. DOC and CDOM
can be terrigenous or autochthonous (i.e., deriving from in situ primary and bacterial production in
river to ocean waters), with the DOC variously composed of high molecular weight (HMW) humic
substances (which tend to be more labile) and low molecular weight (LMW) humics (such as fulvic
acids), depending on its origin, labile fraction, age, and whether it has transitioned from fresh waters
to marine [6–12]. Most estuarine and nearshore CDOM is terrigenous, and as it mixes in rivers on its
transit to marine waters, the amount of HMW material declines from flocculation, photo-oxidation
and microbial decomposition leaving marine waters dominated by LMW CDOM (e.g., [6]), a condition
imparting a characteristic spectral shape to inherent light absorption by CDOM (ag(λ), where λ is
wavelength) [7]. Inherent optical properties (IOPs) of the water column, such as the absorption
and backscattering coefficients, depend on the composition and concentration of the dissolved and
suspended material present, as well as the size and structure of the particles, and water itself. CDOM
concentration—for which ag(λ) is the common proxy following Beer’s law—varies widely in the ocean,
tending to be highest near river outflows, but may also be high in upwelling regions and other regions
of autochthonous, plankton-based production through exudation, excretion, and microbial breakdown
of detritus [8]. It is degraded over time both by microbial activity, photooxidation, and other abiotic
processes, ultimately resulting in remineralization of the carbon, and release from the ocean as CO and
CO2. In the case of the CDOM fraction of DOC, degradation over time scales of days to millennia can
significantly change the magnitude and spectral characteristics of ag(λ).

Table 1. Definition of terms, units, and abbreviations.

Units Definition

ag(λ) m−1 CDOM absorption coefficient
ad(λ) m−1 NAP absorption coefficient
adg(λ) m−1 NAP and CDOM absorption coefficient
ap(λ) m−1 Particulate absorption coefficient
bbp(λ) m−1 Particle backscattering coefficient
bbt(λ) m−1 Total backscattering coefficient

CDOM Colored Dissolved Organic Matter
Chl mg m−3 Chlorophyll concentration

DOC, DOM μmol L−1 Dissolved Organic Carbon, -Material
Es(λ) W m−2 nm−1 Downwelling surface irradiance
Lw(λ) W m−2 nm−1 sr−1 Water leaving radiance
Lwn(λ) W m−2 nm−1 sr−1 Normalized water leaving radiance
POC μmol L−1 Particulate Organic Carbon

Rrs(λ) sr−1 Remote sensing reflectance
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Table 1. Cont.

Units Definition

Sg(λ1-λ2) nm−1 Exponential slope of CDOM and in select spectral range
SPM mg m−3 Suspended Particulate Material
TOC μmol L−1 Total Organic Carbon
AOP Apparent Optical Properties
GIOP Generalized IOP Algorithm

GOCAD Global Ocean Carbon Algorithm Database
HMW High Molecular Weight

IOCCG International Ocean-Colour Coordinating Group
IOP Inherent Optical Properties

LMW Low Molecular Weight
MLR Multiple Linear Regression Algorithm

MODIS Moderate Resolution Imaging Spectroradiometer
NAP Non-Algal Particulate

NOMAD NASA bio-Optical Algorithm Dataset
QAA Quasi-Analytical Algorithm
RFTB Random Forest Tree Bagger Algorithm
SAA Semi-Analytical Algorithm

SeaBASS SeaWiFS Bio-optical Archive and Storage System
SeaWiFS Sea-viewing Wide Field-of-view Sensor

UV, UVA, UVB Ultraviolet spectrum, 315–400 nm, 280–315 nm
VIS Visible spectrum

CDOM absorption is a superposition of the spectral absorption by its varied chromophores, and
increases roughly exponentially (or hyperbolically [9]) with decreasing wavelength in the visible (VIS)
and ultraviolet (UV) spectral ranges, as described in the next section. CDOM tends to dominate the
blue and UV spectrum in many coastal and estuarine environments (e.g., [7,10–12]), and is the most
important factor controlling UV and blue light penetration even in the open ocean [13] despite its
generally lower concentration and distance from land. Within the visible spectrum, ag(λ) reduces
the photosynthetically available radiation supporting phytoplankton and macrophytic growth, and
generates heat in the surface layer of the water column, thus affecting mixing [14]. In the UV, CDOM
causes surface heating as well, but also acts to protectively shade aquatic organisms, thus reducing the
amount of damaging high frequency radiation reaching vulnerable cell structures.

From the passive remote sensing perspective, CDOM reduces the amount of blue light available
for reflection out of the water column, and can therefore have a significant impact on ocean color
algorithms, for example increasing uncertainty in blue-green band-ratio algorithms designed to
estimate chlorophyll-a concentration (Chl) from its absorption peak near 443 nm [13,15]. These types
of Chl algorithms assume covariance in Chl, CDOM, and other water column constituents (i.e., the
“Case 1 waters” assumption [16]). By contrast, semi-analytical algorithms (SAAs) that invert the
ocean color signal to retrieve individual component absorption spectra (particles, CDOM, water) are
stymied by the presence of non-algal particulates (NAPs), which have a similar spectral shape to
CDOM. As a result, these approaches tend to retrieve only the sum of these two elements [17] (and
references therein).

1.2. Spectral Shape of CDOM

The CDOM absorption coefficient is generally modeled with an exponentially decaying function
with increasing wavelength, λ.

ag(λ) = ag(λ0) e−Sg (λ−λ0) (1)

where Sg is the spectral slope parameter and λ0 is a reference wavelength. Sg in various spectral ranges
in the UV and VIS contains information about CDOM’s photoreactive state, chemical composition,
molecular weight distribution, and origin [4,7,18–21].
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While the single exponential model in Equation (1) is accurate within limited wavebands,
CDOM spectral slope, Sg, is not constant across the UV and VIS and depends on the wavelength
range used, spectral resolution, and reference wavelength λ0. Furthermore, comparative analysis
of CDOM spectral shape as reported in the literature has been confounded by the multitude of
methodologies and reference wavebands used historically to calculate Sg [9]. For instance, a linear fit
to logarithmically transformed ag data yields results for Sg biased by higher wavelength absorption,
whereas a least-squared difference minimization fitting favors the lower wavelengths where the
magnitude of ag is higher, and is considered more accurate [7,22]. Changes to Sg resulting from
photodegradation are wavelength dependent, i.e., increasing below 460 nm and decreasing above
510 nm [23], although when calculated across the VIS from 412–555, slope is expected to increase
through the destruction of large humic complexes resulting in lower molecular weight CDOM [24].
This effect appears to reverse over time as more refractory, low-molecular weight compounds are
also degraded, thereby reducing CDOM absorption at shorter wavelengths relative to longer, and
decreasing spectral slope across the VIS.

All these factors lead to challenges in comparing CDOM spectral slope between studies, and
a more standardized approach to CDOM spectral shape measurement still seems warranted [19].
The concept of the spectral slope curve, Sg(λ)—analogous to the first derivative of Sg with respect
to λ—was explored by Loiselle et al. in 2009 [23]. Calculating Sg from natural waters, cultures, and
laboratory standards at 20 nm waveband intervals between 200–700 nm, they showed that Sg(λ)
had complex spectral characteristics including peaks near 390 nm likely indicating a prevalence of
autochthonous production of fulvic acid-type CDOM, and near 280 nm possibly due to the release
of proteins or phenols by phytoplankton. While the spectral slope curve approach of Loiselle et al.
2009 represents an elegant method for quantifying many subtle characteristics of CDOM spectral
shape when compared to, for example, using a single slope parameter across the UV and VIS, it does
require relatively high spectral resolution data collection. Historically, this was not always available or
reported, and here we focus on a set of eight different spectral ranges commonly seen in the literature
and described in detail below.

1.3. Remotely Sensing CDOM and Sg

As interest in CDOM has grown in recent years, numerous empirical ocean color algorithms for
retrieving CDOM within limited geographic regions have emerged, e.g., [25–30]. A smaller number
of more generally applicable, global empirical algorithms have also been developed, including one
for retrieving a unitless index of CDOM prevalence, though it does not retrieve ag(λ) or Sg and
depends upon Case 1 assumptions. More recently, Tiwari and Shanmugam published global empirical
algorithms for both ag(λ) and Sg [31,32]. These were optimized and tested using field data aggregated
in NOMAD (the NASA bio-Optical Marine Algorithm Dataset version 2 [33]) and the synthetic ocean
color dataset developed by the International Ocean Colour Coordinating Group (IOCCG) for the
purpose of algorithm development and validation [34].

Other approaches to retrieving CDOM remotely depend on the premise that sea-surface reflectance
is approximately inversely proportional to the total absorption coefficient [16,35,36], which can be
linearly separated into various contributions by particulate and dissolved constituents. This forms
the basis to semi-analytical ocean color algorithms (SAAs) for retrieving constituent absorption,
e.g., [37–39], but, as already mentioned, owing to the similarity in spectral shape of non-algal particulate
(i.e., detrital, microbial, and sedimentary) absorption and ag(λ), SAAs generally retrieve only their
sum, adg [17]. To circumvent this difficulty, empirical methods are sometimes added to SAAs to help
distinguish non-algal from dissolved absorption [40–45].
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1.4. Remotely Sensing DOC

One of the most challenging aspects of developing robust, global ocean color algorithms for
DOC is that the relationship between DOC and CDOM (i.e., the DOC-specific absorption) is highly
variable, in some cases negatively correlated (e.g., Southern Ocean, [46]) and often poorly defined,
particularly in open ocean areas such as the Sargasso Sea [47,48]. In some cases, the relationship is
better constrained within a particular region and season, as shown by measurements made in the
Mid-Atlantic Bight on the eastern shelf of North America [28]. Because absorption by CDOM is the
only way in which ocean color is impacted by DOC, some other independent knowledge of water type
is needed for retrieval of DOC from space.

1.5. Algorithm Development Data

One of the most confounding challenges in the development of both empirical and semi-analytical
algorithms is the lack of a large, comprehensive database containing a broad enough dynamic range
in optical characteristics to be representative of the majority of the world’s oceans, while also having
realistic combinations of inherent optical properties, which are not guaranteed in large, synthetic,
modeled datasets. NOMAD represents the first (and most recent, as of this writing) major effort
to provide the ocean color community with such a dataset. It was aggregated and selected from
all of the relevant field data submitted to the NASA SeaBASS archive (http://seabass.gsfc.nasa.
gov/), and has been extremely useful to those in the ocean color algorithm community since its
original publication in 2005 and update in 2008. However, NOMAD was not focused on CDOM. For
example, while it contains about 3700 coincident radiometric and phytoplankton pigment observations,
coincident radiometric and CDOM observations number just ~1200. In part, this is because CDOM
data collected using in situ instrumentation were excluded for various reasons discussed at greater
length below. The remaining CDOM records—those measured from discrete water samples—were
modeled spectrally at the preselected NOMAD wavebands after fitting field data to Equation (1),
and do not extend into the UV where spectral shape can provide useful insights into the origin and
photooxidation state of CDOM. NOMAD does not contain any DOC data observations.

Using the methodology described in the next section, we extend the NOMAD approach to
create a global ocean color algorithm development database better suited to DOC and its optical
components, CDOM and CDOM spectral slope, ultimately including over 51,000 field observations
of surface-averaged inherent optical properties. These are matched to between ~8000 and ~11,000
coincident estimates of sea surface reflectance made from in situ measurements as well as satellite
imagery from SeaWiFS and MODIS Aqua and Terra instruments. The global ocean carbon algorithm
database (hereafter Global Ocean Carbon Algorithm Database (GOCAD) records are split into
independent sets of field stations for training/optimization (i.e., with in situ radiometry) and validation
(i.e., with satellite imagery) of algorithms, as described in the Section 2. A basic overview of the most
relevant aspects of the global dataset is presented in Section 3.1. In Section 3.2, empirical and SAA
approaches to retrieval of DOC, CDOM, and CDOM slope are developed and discussed. Finally,
algorithms are applied to global climatological satellite imagery and discussed in Section 3.3.

2. Methodology

2.1. Database Assembly Overview

Field measurements of CDOM, DOC, remote sensing reflectance, Rrs(λ), and ancillary data and
metadata were downloaded from SeaBASS and the Hansell/Carlson collection (https://hansell-
lab.rsmas.miami.edu/research/data-collection/index.html) in April 2013. Coincident, Level 2 (L2)
SeaWiFS and MODIS Aqua and Terra satellite imagery at all field stations were downloaded from
the NASA Ocean Color website (http://oceancolor.gsfc.nasa.gov). Due to the size of aggregated
datasets for each of the key constituents (e.g., 117,291 raw CDOM records, 31,474 raw DOC records,
115,773 in situ reflectance records, and ~177,000 matching satellite scenes), extensive automation in the
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processing, quality control, and merging of the databases was a necessity. A station-by-station analysis
(or field experiment-specific analysis, as in [33]) of the data for establishing the customized spatial and
temporal thresholds for matching coincident inherent and apparent optical properties and satellite
imagery was not feasible. Relatively broad guidelines conducive to automation were established, as
described in detail in the following sections. We assume, for example, that geospatial and temporal
variability of CDOM and DOC is higher in coastal and shelf waters (defined here as samples collected
in waters of 1000 m depth or less) than in the pelagic.

2.2. Field Data

Targeted searches of SeaBASS were conducted for all records containing ag, DOC, or in situ
reflectances (see 2.2.3). Resultant data from the following physical, bio-optical, and biogeochemical
fields were also retained where they happened to be present in SeaBASS files: depth, temperature,
salinity, anap, ap, apg, adg, bbt, particulate organic carbon (POC), total organic carbon (TOC), and Chl.
Ancillary data including time and date, latitude, longitude, and bottom depth were also retained, as
well as complete SeaBASS metadata for each record. Carbon data were downloaded from each of
the data repository resources linked in the Hansell/Carlson DOM Data Collection (http://yyy.rsmas.
miami.edu/groups/biogeochem/Data.html). These were also queried for all the parameters above
and assigned metadata for each cruise. Table 2 provides a complete listing and overview of all the
field experiments retained in the final, quality-controlled database.

279



Appl. Sci. 2018, 8, 2687

T
a

b
le

2
.

Su
m

m
ar

y
of

fie
ld

da
ta

co
lle

ct
io

n
ca

m
pa

ig
ns

.

N
u

m
b

e
rs

o
f

S
ta

ti
o

n
s

E
x

p
e

ri
m

e
n

t
P

ri
n

ci
p

a
l

In
v

e
st

ig
a

to
rs

C
ru

is
e

s
C

D
O

M
C

D
O

M
&

IS
*

C
D

O
M

&
S

A
T

**
D

O
C

D
O

C
&

IS
*

D
O

C
&

S
A

T
**

M
in

.
L

a
t

M
a

x
.

L
a

t
M

in
.

L
o

n
M

a
x

.
L

o
n

Y
e

a
r(

s)

M
U

R
I

A
.N

ee
le

y,
S.

Fr
ee

m
an

,J
.

C
ha

ve
s,

C
.M

cC
la

in
1

0
0

0
6

0
0

19
.1

26
20

.6
92

−
15

7.
36

−
15

6.
32

20
12

EG
EE

3
A

.S
ub

ra
m

an
ia

m
1

9
0

0
0

0
0

−
6.

00
3

3.
32

7
−

10
.0

08
7.

99
2

20
06

EG
EE

5
A

.S
ub

ra
m

an
ia

m
1

2
0

0
0

0
0

−
5.

97
7

−
5.

62
5.

85
7.

99
7

20
07

M
A

N
TR

A
PI

R
A

N
A

A
.S

ub
ra

m
an

ia
m

5
41

2
2

0
0

0
3.

38
6

25
.0

02
−

15
8.

02
−

42
.2

76
20

01
–2

00
3

M
A

SS
BA

Y
A

.S
ub

ra
m

an
ia

m
7

39
0

13
0

0
0

41
.8

5
42

.6
19

−
70

.8
95

−
70

.2
28

20
02

–2
00

5
IO

FF
E

A
.K

hr
ap

ko
,S

.E
rs

ho
va

1
16

4
56

51
0

0
0

−
66

.4
6

48
.5

9
−

67
.9

8
−

5.
54

20
01

–2
00

2
B0

1
A

.M
an

ni
no

2
15

5
0

16
5

0
36

.7
13

37
.7

86
−

76
.0

18
−

74
.6

44
20

05
B0

2
A

.M
an

ni
no

2
28

18
6

30
17

6
36

.6
85

38
.9

18
−

76
.0

69
−

74
.5

02
20

05
B0

3
A

.M
an

ni
no

2
26

0
14

29
0

16
36

.4
13

38
.8

7
−

76
.0

22
−

74
.4

99
20

06
B0

4
A

.M
an

ni
no

2
30

19
6

46
19

9
36

.5
02

38
.9

08
−

76
.0

19
−

74
.2

99
20

06
B0

5
A

.M
an

ni
no

1
15

0
5

15
0

5
36

.4
31

38
.5

86
−

76
.0

17
−

73
.5

17
20

06
BI

O
D

01
A

.M
an

ni
no

1
15

11
1

15
11

1
42

.3
61

43
.5

74
−

70
.6

96
−

69
.8

63
20

07
BI

O
D

02
A

.M
an

ni
no

1
17

14
6

17
14

6
42

.5
93

43
.7

08
−

70
.7

8
−

69
.6

91
20

07
BI

O
D

03
A

.M
an

ni
no

1
13

12
0

12
11

0
41

.2
01

42
.8

12
−

70
.7

71
−

70
.4

45
20

07
C

BM
01

A
.M

an
ni

no
1

2
0

0
0

0
0

36
.9

65
37

.1
7

−
76

.1
72

−
76

.0
29

20
04

C
BM

02
A

.M
an

ni
no

1
4

0
3

0
0

0
36

.9
87

37
.1

82
−

76
.1

63
−

76
.0

18
20

04
C

BM
03

A
.M

an
ni

no
1

4
0

2
0

0
0

36
.9

87
37

.1
82

−
76

.1
63

−
76

.0
18

20
04

C
BM

04
A

.M
an

ni
no

1
4

0
0

0
0

0
36

.9
87

37
.1

82
−

76
.1

63
−

76
.0

18
20

04
C

BM
05

A
.M

an
ni

no
1

4
0

3
0

0
0

36
.9

87
37

.1
82

−
76

.1
63

−
76

.0
18

20
04

C
BM

06
A

.M
an

ni
no

1
4

0
3

0
0

0
36

.9
87

37
.1

82
−

76
.1

63
−

76
.0

18
20

05
C

BM
07

A
.M

an
ni

no
1

3
0

2
0

0
0

37
.0

46
37

.1
82

−
76

.1
38

−
76

.0
18

20
05

C
BM

08
A

.M
an

ni
no

1
3

0
0

0
0

0
37

.0
47

37
.1

82
−

76
.1

37
−

76
.0

19
20

05
C

BM
09

A
.M

an
ni

no
1

5
0

0
0

0
0

36
.9

87
37

.1
81

−
76

.1
61

−
76

.0
17

20
05

C
BM

10
A

.M
an

ni
no

1
4

0
3

0
0

0
36

.9
87

37
.1

81
−

76
.1

61
−

76
.0

17
20

05
C

BM
11

A
.M

an
ni

no
1

4
0

0
0

0
0

37
.0

46
37

.1
82

−
76

.1
36

−
76

.0
19

20
06

C
BM

12
A

.M
an

ni
no

1
4

0
0

0
0

0
36

.9
87

37
.1

82
−

76
.1

61
−

76
.0

18
20

06
C

O
I1

A
.M

an
ni

no
1

4
2

3
4

2
3

36
.6

9
36

.9
69

−
76

.0
17

−
75

.7
13

20
07

C
O

I2
A

.M
an

ni
no

1
4

1
3

4
1

3
36

.6
9

36
.9

69
−

76
.0

17
−

75
.7

1
20

07
C

O
I3

A
.M

an
ni

no
1

4
1

0
3

0
0

36
.6

9
36

.9
69

−
76

.0
17

−
75

.7
13

20
07

C
V

1
A

.M
an

ni
no

1
53

0
24

51
0

23
35

.7
45

42
.4

98
−

75
.7

06
−

65
.7

36
20

09
C

V
2

A
.M

an
ni

no
1

69
0

35
69

0
35

36
.4

75
43

.0
62

−
75

.7
85

−
66

.0
88

20
09

C
V

3
A

.M
an

ni
no

1
43

0
9

43
0

9
37

.0
89

43
.1

12
−

75
.6

77
−

65
.7

79
20

10
C

V
4

A
.M

an
ni

no
1

79
0

30
78

0
30

36
.0

73
44

.2
33

−
75

.9
11

−
65

.7
72

20
10

C
V

5
A

.M
an

ni
no

1
67

0
24

63
0

24
36

.1
42

44
.2

99
−

75
.8

59
−

65
.7

75
20

10
C

V
6

A
.M

an
ni

no
1

92
0

18
92

0
18

36
.1

87
43

.9
28

−
75

.7
89

−
65

.7
68

20
11

D
01

A
.M

an
ni

no
1

4
2

2
4

2
2

36
.7

97
36

.9
66

−
76

.0
2

−
75

.7
19

20
05

D
02

A
.M

an
ni

no
1

6
6

6
6

6
6

36
.8

05
36

.9
73

−
76

.0
2

−
75

.7
12

20
05

D
03

A
.M

an
ni

no
1

5
2

0
5

2
0

36
.8

03
36

.9
68

−
76

.0
18

−
75

.7
18

20
06

D
04

A
.M

an
ni

no
2

6
3

0
6

3
0

36
.8

01
36

.9
66

−
76

.0
15

−
75

.6
4

20
06

O
C

V
1

A
.M

an
ni

no
1

26
26

18
26

26
18

40
.2

18
40

.7
31

−
74

.1
53

−
73

.4
79

20
07

O
C

V
2

A
.M

an
ni

no
1

22
18

2
22

18
2

40
.2

08
40

.7
24

−
74

.1
51

−
73

.4
51

20
07

–2
00

9
O

C
V

3
A

.M
an

ni
no

1
8

8
0

8
8

0
40

.3
92

40
.7

39
−

74
.1

56
−

73
.5

54
20

08

280



Appl. Sci. 2018, 8, 2687

T
a

b
le

2
.

C
on

t.

N
u

m
b

e
rs

o
f

S
ta

ti
o

n
s

E
x

p
e

ri
m

e
n

t
P

ri
n

ci
p

a
l

In
v

e
st

ig
a

to
rs

C
ru

is
e

s
C

D
O

M
C

D
O

M
&

IS
*

C
D

O
M

&
S

A
T

**
D

O
C

D
O

C
&

IS
*

D
O

C
&

S
A

T
**

M
in

.
L

a
t

M
a

x
.

L
a

t
M

in
.

L
o

n
M

a
x

.
L

o
n

Y
e

a
r(

s)

O
C

V
5

A
.M

an
ni

no
1

11
11

3
11

11
3

39
.5

84
41

.0
28

−
73

.9
01

−
71

.7
49

20
09

PL
6

A
.M

an
ni

no
1

4
0

3
4

0
3

36
.8

02
36

.9
68

−
76

.0
17

−
75

.7
13

20
07

G
O

M
EC

C
-2

A
.M

an
ni

no
,J

.S
al

is
bu

ry
1

67
0

1
92

0
2

25
.9

99
43

.0
32

−
90

.8
09

−
68

.0
1

20
12

G
EO

-C
A

PE
A

.M
an

ni
no

,M
.

M
ul

ho
lla

nd
1

59
53

6
54

51
6

38
.0

98
39

.1
7

−
76

.4
91

−
76

.0
84

20
11

M
O

N
TE

R
EY

BA
Y

B.
A

rn
on

e,
R

.G
ou

ld
1

57
51

11
0

0
0

36
.2

71
36

.9
88

−
12

3.
13

−
12

1.
81

20
03

W
O

C
E

P1
4S

P1
5S

B.
Ti

lb
ro

ok
1

0
0

0
10

7
0

0
−

66
.9

9
−

0.
00

3
−

17
4.

79
17

3.
98

2
19

96
C

ar
bo

n
Tr

an
sp

or
tM

S
R

.
C

.D
el

C
as

ti
llo

2
9

0
6

0
0

0
28

.2
95

28
.9

25
−

89
.7

43
−

89
.4

11
20

01
–2

00
3

G
as

Ex
C

.D
el

C
as

ti
llo

1
44

10
3

0
0

0
−

53
.7

5
−

50
.1

4
−

38
.5

54
−

36
.6

22
20

08
Bi

g
Be

nd
C

.H
u

10
15

6
61

36
0

0
0

29
.1

68
29

.6
7

−
83

.6
35

−
83

.2
01

20
10

–2
01

1
G

EO
-C

A
PE

C
BO

D
A

Q
C

.H
u

2
16

12
0

23
11

2
38

.0
98

39
.1

7
−

76
.4

87
−

76
.0

83
20

11
G

O
M

O
il

Sp
ill

C
.H

u
3

10
0

1
0

0
0

28
.5

84
29

.1
−

88
.4

2
−

87
.3

23
20

10
G

lid
er

ca
lib

ra
ti

on
C

.H
u

1
8

0
4

0
0

0
27

.4
52

28
.4

65
−

83
.9

92
−

83
.0

72
20

09
–2

01
1

G
lid

er
va

lid
at

io
n

C
.H

u
1

13
0

6
0

0
0

27
.3

56
27

.4
8

−
83

.1
15

−
83

.0
51

20
09

SW
FL

C
.H

u
3

21
3

2
0

0
0

24
.8

27
26

.4
9

−
82

.3
18

−
81

.1
41

20
10

–2
01

1
Ta

m
pa

Ba
y

C
.H

u
5

85
71

5
0

0
0

27
.5

78
27

.9
91

−
82

.7
83

−
82

.4
08

20
08

–2
01

2
W

es
tF

lo
ri

da
Sh

el
f

C
.H

u
5

13
4

67
53

0
0

0
25

.0
57

28
.4

39
−

83
.7

85
−

81
.1

43
20

05
–2

00
8

M
O

C
E

C
.T

re
es

,D
.C

la
rk

2
40

0
17

0
0

0
21

.7
93

36
.8

75
−

12
2

−
10

5.
75

19
92

–1
99

9
Bo

w
do

in
Bu

oy
C

.R
oe

sl
er

1
2

0
0

0
0

0
43

.7
62

43
.7

95
−

69
.9

88
−

69
.9

47
20

11
Pe

nB
ay

Su
rv

ey
C

.R
oe

sl
er

1
0

0
0

0
0

0
44

.2
6

44
.2

6
−

68
.9

83
−

68
.9

83
20

08
Sa

n
D

ie
go

C
oa

st
al

Pr
oj

ec
t

D
.S

tr
am

sk
i,

M
.S

tr
am

sk
a

1
15

0
0

0
0

0
32

.5
58

32
.7

58
−

11
7.

26
−

11
7.

13
20

04
–2

00
6

N
A

SA
G

ul
fo

fM
ai

ne
D

.P
hi

nn
ey

,D
.P

hi
nn

ey
,J

.
Br

ow
n

4
46

0
6

0
0

0
41

44
.2

45
−

70
.5

67
−

67
.1

62
19

98
–1

99
9

N
O

A
A

G
ul

fo
fM

ai
ne

D
.P

hi
nn

ey
,D

.P
hi

nn
ey

,J
.

Br
ow

n
4

37
0

4
0

0
0

40
.2

09
44

.3
44

−
70

.0
56

−
65

.5
49

19
96

–1
99

8

Pa
na

m
a

C
it

y
Fl

or
id

a
D

.P
hi

nn
ey

,D
.P

hi
nn

ey
,J

.
Br

ow
n

1
0

0
0

0
0

0
30

.1
67

30
.1

72
−

85
.8

57
−

85
.8

52
20

01

Pl
um

es
an

d
Bl

oo
m

s
D

.S
ie

ge
l

5
88

1
22

0
0

0
34

.0
24

34
.4

64
−

12
0.

56
−

11
9.

28
20

01
–2

00
3

C
LI

VA
R

A
13

.5
20

10
D

.H
an

se
ll

1
0

0
0

64
0

4
−

54
4.

62
−

3.
00

2
1.

83
5

20
10

C
LI

VA
R

I0
5

20
09

D
.H

an
se

ll
1

0
0

0
1

0
0

−
31

.1
9

−
31

.1
9

82
.5

64
82

.5
64

20
09

C
LI

VA
R

I0
8S

20
07

D
.H

an
se

ll
1

0
0

0
28

0
2

−
65

.7
1

−
28

.3
2

81
.9

62
95

.0
14

20
07

C
LI

VA
R

P0
2

20
04

D
.H

an
se

ll
1

0
0

0
56

0
7

29
.9

91
32

.6
44

−
17

7.
99

17
9.

54
5

20
04

C
LI

VA
R

P1
6N

20
06

D
.H

an
se

ll
1

0
0

0
78

0
2

−
17

56
.2

8
−

15
3.

22
−

15
0

20
06

C
LI

VA
R

P1
6S

20
05

D
.H

an
se

ll
1

0
0

0
57

0
1

−
71

−
16

−
15

0.
04

−
14

9.
91

20
05

C
LI

VA
R

P1
8

20
07

D
.H

an
se

ll
1

0
0

0
72

0
4

−
68

.9
1

22
.7

−
11

0.
04

−
10

2.
54

20
07

H
LY

-0
2-

01
D

.H
an

se
ll

1
0

0
0

21
0

0
64

.9
8

73
.4

31
−

16
9.

14
−

15
4.

4
20

02
H

LY
-0

2-
03

D
.H

an
se

ll
1

0
0

0
38

0
1

65
.6

68
73

.6
98

−
16

8.
86

−
15

1.
94

20
02

H
LY

-0
40

3
D

.H
an

se
ll

1
0

0
0

36
0

0
65

.6
61

73
.8

27
−

16
8.

9
−

15
2.

02
20

04
SR

03
D

.H
an

se
ll

1
0

0
0

24
0

0
−

65
.5

7
−

44
.3

8
13

9.
65

8
14

6.
18

9
20

08

281



Appl. Sci. 2018, 8, 2687

T
a

b
le

2
.

C
on

t.

N
u

m
b

e
rs

o
f

S
ta

ti
o

n
s

E
x

p
e

ri
m

e
n

t
P

ri
n

ci
p

a
l

In
v

e
st

ig
a

to
rs

C
ru

is
e

s
C

D
O

M
C

D
O

M
&

IS
*

C
D

O
M

&
S

A
T

**
D

O
C

D
O

C
&

IS
*

D
O

C
&

S
A

T
**

M
in

.
L

a
t

M
a

x
.

L
a

t
M

in
.

L
o

n
M

a
x

.
L

o
n

Y
e

a
r(

s)

W
O

C
E

A
R

01
A

05
D

.H
an

se
ll

1
0

0
0

45
0

6
24

.4
99

27
.6

22
−

79
.9

37
−

14
.2

24
19

98
A

C
E-

A
SI

A
G

.M
it

ch
el

l,
M

.K
ah

ru
1

45
22

10
0

0
0

28
.2

07
38

.9
05

−
17

7
17

8.
05

20
01

A
M

LR
G

.M
it

ch
el

l,
M

.K
ah

ru
7

47
0

7
0

0
0

−
63

.0
1

−
57

.5
−

68
.1

86
−

53
.2

96
20

00
–2

00
7

A
er

os
ol

s
In

de
x

G
.M

it
ch

el
l,

M
.K

ah
ru

1
21

3
9

0
0

0
−

34
.5

3
27

.3
68

−
60

.6
15

85
.1

66
19

99
C

A
LC

O
FI

G
.M

it
ch

el
l,

M
.K

ah
ru

16
17

9
8

29
0

0
0

29
.8

47
36

.0
57

−
12

4.
33

−
11

7.
3

19
96

–2
00

2
Se

a_
of

_J
ap

an
G

.M
it

ch
el

l,
M

.K
ah

ru
1

17
1

1
0

0
0

34
.5

03
43

.3
02

12
8.

88
3

13
9.

88
3

19
99

A
rc

00
G

.C
ot

a
1

14
0

0
0

0
0

70
.3

28
72

.4
12

−
16

7.
59

−
14

4.
63

20
00

LA
B9

7
G

.C
ot

a
1

10
0

0
0

0
0

44
.1

37
60

.3
8

−
58

.1
9

−
43

.9
99

19
97

La
b2

00
0

G
.C

ot
a

1
6

0
2

0
0

0
49

.5
18

60
.0

47
−

58
.7

49
−

48
.8

99
20

00
La

b9
6

G
.C

ot
a

1
10

0
0

0
0

0
52

.0
8

60
.9

99
−

58
.0

06
−

47
.9

08
19

96
O

R
C

A
C

he
s.

Li
gh

t
To

w
er

G
.C

ot
a

1
3

0
2

0
0

0
36

.9
36

.9
−

75
.7

1
−

75
.7

1
20

00

R
es

95
G

.C
ot

a
1

1
0

0
0

0
0

74
.6

45
74

.6
45

−
95

.9
1

−
95

.9
1

19
95

R
es

96
G

.C
ot

a
1

6
0

0
0

0
0

74
.6

44
74

.6
46

−
94

.9
15

−
94

.9
05

19
96

N
SF

-B
W

Z
G

.M
it

ch
el

l
2

0
0

0
0

0
0

−
62

.2
6

−
60

.6
3

−
58

.3
75

−
55

.6
20

04
–2

00
6

Be
nt

hi
c

Ec
ol

.f
ro

m
Sp

ac
e

H
.D

ie
rs

se
n,

R
.

Z
im

m
er

m
an

4
8

0
0

0
0

0
24

.7
23

29
.8

47
−

85
.3

82
−

80
.7

05
20

05
–2

00
6

K
ie

be
r

Ph
ot

oc
he

m
is

tr
y

03
H

.S
os

ik
1

17
0

5
0

0
0

35
.2

78
41

.0
75

−
75

.2
18

−
71

.1
27

20
03

M
V

C
O

H
.S

os
ik

34
12

9
0

23
0

0
0

41
.1

43
41

.3
42

−
70

.6
38

−
70

.4
15

20
05

–2
01

1
G

O
C

A
L

J.R
.V

Z
an

ev
el

d,
W

.S
.P

eg
au

6
14

0
0

48
0

0
0

22
.9

14
31

.1
16

−
11

4.
64

−
10

7.
75

19
96

–1
99

9
PR

EP
P

J.
C

he
n

5
47

0
0

0
0

0
22

.1
5

22
.5

55
11

3.
67

3
11

4.
43

20
01

SA
B

M
ap

pi
ng

J.
N

el
so

n,
A

.S
ub

ra
m

an
ia

m
2

18
0

10
0

0
0

30
.8

23
31

.9
93

−
81

.0
24

−
80

.2
21

20
05

G
EO

TR
A

C
ES

J.
C

ha
ve

s
1

0
0

0
9

0
0

17
.3

5
36

.7
66

−
24

.4
96

−
12

.8
25

20
10

C
O

O
A

J.
Sa

lis
bu

ry
,D

.V
an

de
m

ar
k,

C
.H

un
t

3
0

0
0

14
0

4
42

.8
61

43
.7

57
−

70
.6

6
−

69
.7

82
20

08

N
O

A
A

C
SC

J.
Br

oc
k,

A
.S

ub
ra

m
an

ia
n,

K
.W

at
er

s
1

10
0

0
0

0
0

31
.3

35
31

.9
65

−
81

.1
28

−
80

.4
54

19
96

BO
A

K
.C

ar
de

r
1

62
62

0
0

0
0

27
.5

79
59

.8
41

−
91

.7
68

−
15

.4
9

19
91

–1
99

3
Ec

oH
A

B
K

.C
ar

de
r

19
39

8
20

8
12

6
0

0
0

25
.3

27
.5

72
−

84
.3

94
−

81
.2

59
19

99
–2

00
3

O
ke

ec
ho

be
e

K
.C

ar
de

r
1

4
4

0
0

0
0

27
.1

49
27

.1
99

−
80

.7
94

−
80

.7
88

19
97

R
ed

ti
de

K
.C

ar
de

r
2

13
11

7
0

0
0

27
.2

89
28

.0
98

−
83

.2
53

−
82

.8
66

20
05

TO
TO

K
.C

ar
de

r
3

86
75

40
0

0
0

24
.8

84
27

.5
−

82
.7

76
−

77
.5

87
19

98
–2

00
0

A
C

E-
IN

C
L.

W
.H

ar
di

ng
_J

r.,
M

.
M

al
lo

ne
e,

A
.M

ag
nu

so
n

6
21

0
0

0
0

0
38

.3
03

38
.7

54
−

76
.6

2
−

76
20

02
–2

00
3

BI
O

C
O

M
PL

EX
IT

Y
L.

W
.H

ar
di

ng
_J

r.,
M

.
M

al
lo

ne
e,

A
.M

ag
nu

so
n

11
55

0
15

0
0

0
36

.8
63

39
.3

49
−

76
.4

51
−

75
.8

78
20

01
–2

00
4

LM
ER

-T
IE

S
L.

W
.H

ar
di

ng
_J

r.,
M

.
M

al
lo

ne
e,

A
.M

ag
nu

so
n

17
22

0
0

22
0

0
0

36
.8

66
39

.4
21

−
76

.5
17

−
75

.7
49

19
96

–2
00

0

SG
ER

L.
W

.H
ar

di
ng

_J
r.,

M
.

M
al

lo
ne

e,
A

.M
ag

nu
so

n
1

11
0

5
0

0
0

36
.9

5
38

.5
−

76
.4

81
−

75
.9

98
20

03

282



Appl. Sci. 2018, 8, 2687

T
a

b
le

2
.

C
on

t.

N
u

m
b

e
rs

o
f

S
ta

ti
o

n
s

E
x

p
e

ri
m

e
n

t
P

ri
n

ci
p

a
l

In
v

e
st

ig
a

to
rs

C
ru

is
e

s
C

D
O

M
C

D
O

M
&

IS
*

C
D

O
M

&
S

A
T

**
D

O
C

D
O

C
&

IS
*

D
O

C
&

S
A

T
**

M
in

.
L

a
t

M
a

x
.

L
a

t
M

in
.

L
o

n
M

a
x

.
L

o
n

Y
e

a
r(

s)

O
N

R
-M

A
B

L.
W

.H
ar

di
ng

_J
r.,

M
.

M
al

lo
ne

e,
A

.M
ag

nu
so

n
2

31
0

0
0

0
0

36
.4

39
.1

34
−

75
.9

49
−

71
.9

93
19

96
–1

99
7

O
ce

an
C

ol
or

C
al

V
al

M
.S

.T
w

ar
do

w
sk

i,
A

.H
.

Ba
rn

ar
d,

J.R
.V

.Z
an

ev
el

d
1

14
13

0
0

0
0

40
.2

08
40

.5
11

−
74

.0
54

−
73

.4
48

20
07

To
ky

o
Ba

y
M

.K
is

hi
no

1
1

0
0

0
0

0
35

.2
23

35
.2

23
13

9.
71

8
13

9.
71

8
19

84
G

lo
ba

l_
C

D
O

M
N

.N
el

so
n,

D
.S

ie
ge

l
2

19
0

3
0

0
0

−
8.

45
8

7.
00

4
−

14
0.

07
−

12
4.

35
20

05
–2

00
6

C
LI

VA
R

N
.N

el
so

n,
D

.S
ie

ge
l,

C
.

C
ar

ls
on

9
80

17
4

45
8

4
−

68
.3

6
59

.5
−

15
0

95
.0

28
20

03
–2

00
8

TA
O

20
05

N
.N

el
so

n,
D

.S
ie

ge
l,

C
.

C
ar

ls
on

1
61

0
9

0
0

0
−

8.
89

12
−

14
0.

2
−

12
4.

35
20

05

TA
O

20
06

N
.N

el
so

n,
D

.S
ie

ge
l,

C
.

C
ar

ls
on

2
78

0
7

0
0

0
−

8.
45

8
10

.0
12

−
14

0.
17

−
12

3.
55

20
06

BB
O

P
N

.N
el

so
n,

D
.S

ie
ge

l
11

6
78

7
9

40
0

6
31

.4
46

31
.8

15
−

64
.9

91
−

64
.0

19
19

94
–2

01
1

A
ct

iv
e

Fl
uo

re
sc

en
ce

20
01

R
.M

or
ri

so
n,

H
.S

os
ik

1
4

0
0

0
0

0
31

.9
19

40
.0

97
−

70
.5

28
−

69
.7

84
20

01

K
ie

be
r

Ph
ot

oc
he

m
is

tr
y

02
R

.M
or

ri
so

n,
H

.S
os

ik
1

69
0

7
0

0
0

38
.7

09
42

.5
11

−
75

.5
64

−
67

.5
99

20
02

G
LO

BE
C

R
.M

or
ri

so
n,

H
.S

os
ik

5
23

0
9

0
0

0
41

.7
53

43
.7

99
−

70
.4

45
−

65
.6

85
19

97
–1

99
9

FR
O

N
T

R
.M

or
ri

so
n,

H
.S

os
ik

3
9

0
4

0
0

0
42

.2
45

40
.9

85
−

70
.5

58
−

71
.7

5
20

00
–2

00
2

C
LI

VA
R

A
16

N
20

03
R

.F
re

el
y

1
0

0
0

69
0

8
−

6.
00

4
63

.2
95

−
29

.0
01

−
19

.9
94

20
03

C
LI

VA
R

A
16

S
20

05
R

.F
re

el
y

1
0

0
0

49
0

3
−

60
.0

1
−

2.
33

4
−

36
.2

1
−

24
.9

97
20

05
C

LI
VA

R
A

20
20

03
R

.F
re

el
y

1
0

0
0

27
0

3
7.

06
4

42
.6

37
−

53
.5

1
−

51
.1

2
20

03
C

LI
VA

R
A

22
20

03
R

.F
re

el
y

1
0

0
0

37
0

6
11

.0
01

39
.8

57
−

69
.9

32
−

64
.1

61
20

03
C

LI
VA

R
I0

9N
20

07
R

.F
re

el
y

1
0

0
0

51
0

2
−

28
.3

1
18

.0
04

86
.7

82
95

.0
13

20
07

N
or

th
C

ar
ol

in
a

20
05

R
.S

tu
m

pf
,P

.T
es

te
r

5
32

4
20

0
0

0
34

.0
96

35
.4

33
−

76
.6

93
−

75
.7

56
20

05
N

or
th

C
ar

ol
in

a
20

06
R

.S
tu

m
pf

,P
.T

es
te

r
2

12
0

6
0

0
0

34
.0

14
35

.2
28

−
76

.3
88

−
76

.0
28

20
06

C
he

sa
pe

ak
e

Li
gh

t
To

w
er

R
.Z

im
m

er
m

an
,G

.C
ot

a
3

71
59

32
0

0
0

36
.8

03
36

.9
69

−
76

.1
01

−
75

.5
51

20
05

–2
00

7

N
or

th
Se

a
R

.D
oe

rf
fe

r
1

32
0

0
0

0
0

52
.2

26
55

.3
67

0.
59

1
8.

12
3

19
94

IC
ES

C
A

PE
S.

B.
H

oo
ke

r,
A

.N
ee

le
y

3
16

09
31

31
85

28
6

56
.2

11
73

.8
28

−
16

8.
98

−
15

0.
44

20
01

–2
01

1
B0

7
S.

B.
H

oo
ke

r,
M

.E
.R

us
s

1
11

0
3

20
0

0
42

.6
5

43
.1

8
−

70
.8

68
−

70
.6

16
20

09
M

A
LI

N
A

S.
B.

H
oo

ke
r,

V.
W

ri
gh

t
1

25
22

0
28

1
0

69
.2

46
72

.0
54

−
14

0.
83

−
12

6.
5

20
09

B0
8

S.
B.

H
oo

ke
r,

J.
C

ha
ve

s
1

0
0

0
2

0
1

31
.6

67
31

.6
98

−
64

.1
69

−
64

.1
64

20
09

C
O

A
ST

A
L

S.
B.

H
oo

ke
r,

M
.E

.R
us

s
1

13
0

10
0

0
0

42
.7

08
43

.4
34

−
70

.7
94

−
69

.8
65

20
08

U
SM

pC
O

2
S.

Lo
hr

en
z

1
1

0
0

0
0

0
28

.8
58

28
.8

58
−

89
.4

7
−

89
.4

7
20

05
C

at
lin

A
rc

ti
c

Su
rv

ey
V.

H
ill

1
8

0
0

0
0

0
78

.7
71

78
.7

71
−

10
4.

72
−

10
4.

72
20

11
A

M
T

W
.B

al
ch

5
23

21
1

77
03

19
18

0
0

0
−

47
.2

7
49

.7
16

−
55

.4
55

18
.6

11
20

05
–2

01
1

G
ul

fo
fM

ai
ne

W
.B

al
ch

33
80

77
0

32
51

0
0

0
42

.6
83

44
.0

58
−

70
.2

67
−

66
.1

72
20

05
–2

00
8

Sc
ot

ia
Pr

in
ce

Fe
rr

y
W

.B
al

ch
47

11
52

1
51

83
97

0
0

0
43

.6
04

43
.7

98
−

70
.0

26
−

66
.1

64
20

01
–2

00
4

20
09

oc
tC

he
sa

pe
ak

e
W

.J.
R

he
a

1
13

10
4

0
0

0
38

.1
36

39
.0

62
−

76
.4

48
−

76
.2

29
20

09
To

ta
ls

53
5

48
57

4
88

57
14

56
8

19
57

25
5

30
2

−
71

78
.7

71
−

17
7.

99
17

9.
54

5
19

84
–2

01
2

*
IS

is
in

si
tu

R
rs

(λ
),

**
SA

T
is

sa
te

lli
te

R
rs

(λ
)

283



Appl. Sci. 2018, 8, 2687

2.2.1. CDOM

CDOM absorption was measured in field experiments using a variety of instruments and protocols.
Examples include in-line filtered (generally 0.2 μm) flow-through systems outfitted with ac-9 or ac-S
absorption and attenuation meters (Wet Labs) and processed to ag(λ) [49–51], as well as discrete
sampling and filtration for bench-top spectrophotometry [52], or in liquid capillary waveguides [53].
Unfortunately, SeaBASS metadata did not historically specify which methods or protocols were used
in data collection or processing, but more recently (since approximately 2012), investigators have been
required to submit ancillary documentation, such as instrument calibration records, and encouraged
to submit documentation retroactively.

CDOM data measured in situ (i.e., with ac-9 or ac-S instruments; 33.5% of the preliminary
CDOM dataset) were subject to particulate and bubble contamination, especially in experiments in
which an automated in-line flow valve switched between filtered and unfiltered water presenting the
opportunity for unfiltered water to reside in the plumbing during CDOM data collection. To identify
and eliminate particle contamination, any CDOM records with a notable (i.e., ≥0.006 m−1) increase in
absorption at 676 nm (a phytoplankton absorption peak) above the absorption curve from 650–715 nm
were considered contaminated and removed (109 records).

Nonlinear, least squares minimization was used to fit ag(λ) to Equation (1) for calculating slopes
of all hyperspectral ag into seven spectral ranges: 275–295 nm, 290–600 nm, 300–600 nm, 350–400 nm,
350–600 nm, 380–600 nm, and 412–600 nm. Multispectral ac-9 data were fitted for slope using the six
wavebands in the 412–555 nm range. To reduce outliers and noisy data, any CDOM slope data found
to be outside of the range 0.005–0.05 nm−1 were considered unrealistic and eliminated, together with
the ag(λ) data used to calculate them. This accounted for only 125 hyperspectral records in the 300–600
nm range (spectrophotometric), but nearly 6,000 records in the 412–600 nm range (predominantly
flow-through). To further reduce outliers and noisy records, Sg and ag data were eliminated where Sg

in any slope range was greater than two standard deviations from the median for the entire database,
or where they were outside the 2nd and 98th percentiles. This reduced the database of CDOM by
nearly 11,000 records. In addition, 460 records were removed for ag(676) > 0.1 m−1, ag(715) > 0.05 m−1,
or an average ag(λ > 680 nm) > 0.05 m−1, and an additional 1,057 CDOM records with extreme outliers
(>4 standard deviations from the median) in the red (λ > 620) were eliminated.

2.2.2. DOC

While DOC was included in about 850 SeaBASS records, the majority of the carbon data retained
after surface and spatial binning (see 2.2.4) were from the Hansell/Carlson datasets. In total, 1957,
625, and 45 stations included DOC, POC, and TOC, respectively. Outliers (1st and 99th percentiles)
were eliminated, and stations were merged with the CDOM records after surface and spatial binning.
Specifically, Hansell/Carlson data were matched to CDOM field stations if they were within 1 h, 2.5 m
depth, and 1 km in continental shelf waters (bottom depth ≤ 1000 m) and within 3 h, 5 m depth, and
5 km off the shelf. Multiple matches within these criteria were averaged and retained if individual
measurements were with 1.5 standard deviations of the mean and the coefficient of variability of the
ensemble was ≤0.25.

2.2.3. In situ Reflectances

SeaBASS searches for field radiometry targeted Rrs (or equivalently Lw and Es, where Rrs = Lw/Es,
or Lwn, where Rrs is Lwn divided by the top of atmosphere solar irradiance [54]). A total of 135,966
independent field observations of Rrs were binned as described in 2.2.4, quality controlled as described
in 2.2.5, and then matched to the CDOM database using the same spatial, temporal, and outlier
elimination criteria used for DOC (2.2.2).
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2.2.4. Bathymetry, Surface Averaging, and Spatial and Spectral Binning

Records with no reported bottom depth (~85% of the database) were matched to the nearest pixel
in the UNESCO GEBCO 08 0.05 degree bathymetry grid (http://www.gebco.net/data_and_products/
gridded_bathymetry_data/documents/gebco_08.pdf). The purpose of GOCAD is the development
of satellite algorithms for surface retrievals, so data collected at depth were discarded as follows: on
the continental shelf (defined here as bottom depth 1000 m or less) samples from deeper than 5 m
were discarded, as were data from deeper than 10 m off the shelf (~34% of the database combined).
57,127 surface records remained. Samples collected in profile within the surface layer (top 5 m on-shelf,
top 10 m off-shelf) were averaged. Samples collected in transect were additionally binned to a 0.5 km
grid and averaged.

All absorption related IOPs were matched to the following wavebands with a 2.5 nm tolerance:
245 nm, 1 nm resolution between 250 and 555 nm, 560, 620, 630, 645, 650, 665, 670, 676, 680, 705, and
715 nm. Backscattering data were similarly matched to 1 nm bands from 400 to 700 nm. Hyperspectral
in situ Rrs(λ) were matched to both SeaWiFS bands (412, 443, 490, 510, 555, and 670 nm) and MODIS
bands (412, 443 488, 531, 547, 667) by weighting the data to the instrument-specific spectral response
functions for SeaWiFS, Aqua, and Terra (https://oceancolor.gsfc.nasa.gov/docs/rsr/rsr_tables/).
Multispectral in situ Rrs(λ) were matched to satellite bands to within a 2.5 nm tolerance.

2.2.5. Additional Quality Controls

In addition to those measures already discussed for CDOM and CDOM slope outliers in
Section 2.2.1, ad(λ) records were considered unrealistic and removed at all wavelengths if they exceeded
12 m−1 anywhere within the spectral range reported. Similarly, ap(λ) was removed if it exceeded
20 m−1, bbt(λ) if it exceeded 0.15 m−1. Rrs(λ) were eliminated if they exceeded 0.075 sr−1 or were less
than −0.001 sr−1 in any band, or if they were outside the 95th percentile for any given band.

2.3. Satellite Imagery and Matching

Ocean color satellite imagery from SeaWiFS, MODIS-Aqua, and MODIS-Terra that matched the
field observations were selected and processed for further analysis. Scripted calls to the NASA GSFC
Ocean Color browser (http://oceancolor.gsfc.nasa.gov/cgi/browse.pl) after the 2012.0 MODIS-Aqua
reprocessing (http://oceancolor.gsfc.nasa.gov/WIKI/OCReproc20120MA.html) were used to identify
and download 1 km nominal nadir resolution L2 SeaWiFS, Aqua, and Terra satellite scenes within 0.05
degrees of field observations on the same day. These were spatially extracted for a 5 × 5 pixel array
around the station location. In <1% of stations, high resolution SeaWiFS imagery was not available,
and Global Area Coverage (GAC; nominally 4.4 km spacing) scenes were substituted. By default,
data were masked based on standard L2 flags using the criteria described in [55]: land, high solar or
satellite zenith angle, clouds, sea ice, high light, stray light, glint, low water leaving radiance, and
atmospheric correction failure. Extracted satellite data were then evaluated for coincidence with field
sampling stations. Criteria were principally based on those of Bailey and Werdell (2006). Specifically,
extracted satellite pixel arrays were retained in the database if the overpass occurred within 8 h of
field sampling. For each waveband of Rrs, negative and outlier pixels within each array (>1.5 standard
deviations from the mean) were set to null values. Data were only retained in each waveband if greater
than 50% of non-land pixels were still valid, with no fewer than five valid pixels in total. Finally,
the mean Rrs values for each array were calculated and retained in the database only if those pixels
had a coefficient of variation (CV) < 0.25 (rather than <0.15 applied in Bailey and Werdell (2006)).
Of the 50,127 field stations with spatially gridded, depth binned and quality controlled CDOM data,
8252 stations had matching quality controlled Aqua imagery, 11,156 matched Terra imagery, and
11,818 matched SeaWiFS imagery.

For the purpose of further quality assurance, several match-up metrics were retained in the final
database, including the time difference, CV, the number of matched satellite pixel arrays for each Rrs
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channel, the areal extent of the matched pixels (nominally ~25 km2), and the distance between the
field sampling location and the central pixel (nominally < ~1 km). Sensor viewing angle, which can
significantly increase error in estimates of satellite Rrs due to increased uncertainties in the atmospheric
correction, is not available on a pixel-by-pixel basis in standard L2 products. On the other hand,
ground sample area, which can be approximated from the geographic coordinates of pixel arrays, is a
good proxy for sensor viewing angle, with larger areas representing larger viewing angles. Area is
also a reasonable metric for accuracy of the geographic collocation, wherein Rrs averaged over larger
areas of the ocean may not be representative of those measured at the sampling location, depending
on the degree of spatial variability of ocean color within the sampled region. These match-up metrics
were described in greater detail in [56].

2.4. Statistical Methods

Various metrics and visualization techniques are employed below to gauge the performance of
algorithms. Retrieval parameters are compared with the same parameter collected in situ for both the
optimization/tuning dataset (i.e., using in situ reflectances) and satellite validation. In addition to
common metrics such as the number of samples (N), the standard deviation (STD), and the squared
correlation coefficient (r2), we evaluate the adjusted r2 (r2’):

r2′ = r2 −
(

1 − r2
)( βn

N − βn − 1

)
, (2)

(where βn is the number of regressors) which adjusts the r2 downward to correct for the number of
predictive values relative to the number of samples in, for example, multiple linear regression. The root
mean square difference (RMSD) was also calculated:

RMSD =

√
∑N

i (modi − re fi)
2

N
, (3)

where “mod” is the model retrieved parameter and “ref” is the field measurement. The centered-
unsigned (or unbiased) RMSD (RMSD*′) was defined as follows:

RMSD∗′ =

√
∑N

i (modi − mean(modi))− (re fi − mean(re fi))
2

N
, (4)

and the signed RMSD*′ is simply the RMSD*′ multiplied by the sign of the difference between the STD
of the model retrieval and the STD of the field data (RMSD*′(σd)). The bias and the normalized bias
(Bias*) are also employed:

Bias∗ = ∑N
i (modi − re fi)

N × STD(re f )
(5)

as well as the percent bias (%Bias),

%Bias = 100 × mean(mod − re f )
mean(re f )

, (6)

and the mean average percent difference,

MAPD = 100 × mean
[

abs
(

mod − re f
re f

)]
. (7)

While most of these metrics are fairly straightforward, a few warrant further explanation and
context. A powerful graphical tool for assessing the skill of model performance—and comparing one
model to another—is the Taylor diagram [57], which combines the RMSD*′, STD, and correlation into
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a single figure in which proximity to the field data indicates how well the pattern of the modeled
data matches the observations. This is made possible in two dimensions because of the relationship
between the RMSD*′, the correlation, and the variances of model and reference. Because the means of
the model and reference are removed prior to calculating higher statistics shown in Taylor diagrams,
they represent the comparisons between the patterns with any bias removed. For this reason, we have
added color here to Taylor diagrams to include %Bias. Another graphical assessment used here which
accounts for the bias (Bias*) and adds a sign to the RMSD*′ is the target diagram [58], in which the
y-axis represents normalized bias of the model, the x-axis is signed-centered RMSD, and distance in
any direction from the origin to the model is the total RMSD. Here, we also include color in our target
diagrams to help visualize the MAPD.

3. Results and Discussion

3.1. Database Characteristics

GOCAD has over 40 times more CDOM records than NOMAD, and nearly 100 times as many
spectra as IOCCG. It contains ag(412) data that is more normally distributed than either NOMAD or
IOCCG, and a Chl distribution similar to NOMAD (Figure 1). IOCCG model data, while covering the
same dynamic range as the two field databases, have unrealistically flat distributions of both CDOM
and Chl, raising concerns for introducing bias when the dataset is used for algorithm development
and optimization. The dynamic range in ag(λ) is larger in GOCAD than NOMAD (e.g., ag(412) from
0.005 to 2.457 m−1, and from 0.0013 to 1.923m−1, respectively), but the data distribution of GOCAD
is narrower than NOMAD and IOCCG (ag(412) 75th minus 25th percentiles of 0.095 m−1, 0.204 m−1,
0.627 m−1, respectively) around a lower mean absorption level (mean ag(412) = 0.120 ± 0.133 m−1,
0.194 ± 0.266 m−1, 0.514 ± 0.745 m−1, respectively), reflecting the predominance of low CDOM,
offshore data in the database. The large number of field records of CDOM in GOCAD, its range and
mean value, all indicate that it is suitable for developing global retrieval algorithms.

The data distributions shown along the bottom row of Figure 1 (with the exception of Chl—see
figure caption) show data used to optimize algorithms developed in this study (i.e., from field stations
with matching in situ radiometry and IOPs), versus data used for validation—in this case with SeaWiFS
wave bands and satellite imagery. For each parameter, distributions of optimization and validation
data were compared for similarity to test by analysis of variance (ANOVA) whether the populations
share a common mean. Optimization and validation dataset were found to differ (p << 0.01) for
CDOM absorption and spectral slope, but not for DOC and salinity. The difference between the
CDOM and DOC match-up datasets results from availability of the data (i.e., stations may not have
both CDOM and DOC measurements in addition to in situ radiometry). Based on the distributions
shown in Figure 1, as well as the geographic distributions highlighted in Figure 3, differences between
the optimization and validation data populations for CDOM absorption and slope appear to derive
from slightly fewer near-shore stations being present in the optimization dataset compared to the
validation set, although there is clearly some endmember representation in the optimization set for
near-shore conditions. We may conclude from this, however, that algorithms for CDOM absorption
and spectral slope developed using these optimization data would perform best in oceanic conditions,
while regional algorithms may be more accurate in coastal waters, or waters with very high CDOM
absorption and low CDOM spectral slope.
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Figure 1. Top row: data distributions and counts (N) of relevant parameters and Chl (for context
only) in Global Ocean Carbon Algorithm Database (GOCAD), NASA bio-Optical Marine Algorithm
Dataset (NOMAD), and the synthetic ocean color dataset developed by the International Ocean Colour
Coordinating Group (IOCCG). Bottom row: comparisons between the subset of GOCAD parameters
used in optimization/tuning (Optim) and validation (Val) of algorithms (shown here with SeaWiFS
match-ups, but also evaluated for MODIS Terra and Aqua with similar results). Populations of salinity
and DOC share a common mean between optimization and validation datasets (ANOVA, p > 0.01).

IOCCG and NOMAD contain no UV CDOM data, so direct comparison of spectral slope is only
possible in the VIS (Figure 2). The median Sg(412–600) is lower for GOCAD, demonstrating again the
predominantly oceanic characteristics (i.e., photodegraded, primarily of marine origin, and presumably
refractory) of the CDOM in the database. Slope decreases significantly (p << 0.01) as the reference
wavelength (i.e., the shortest wavelength in the spectral range) increases from 275–412 nm. Overall,
the variability in spectral slope for each range is quite low—generally no more than a factor of 2–3.
This narrow dynamic range in slope within each waveband presents a challenge for retrieving fine scale
differences in CDOM slope by limiting the sensitivity of algorithms built from inherently uncertain
ocean color. However, errors in the retrievals should be small relative to the absolute magnitude of the
slope even if the algorithm sensitivity (e.g., correlation between retrievals and field measurements)
is low.
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Figure 2. Exponential slope of CDOM in NOMAD, IOCCG, and GOCAD. Median values for S412–600

are highlighted in red for comparison. NOMAD and IOCCG lack UV CDOM.

Geographic locations of GOCAD field stations overlap with NOMAD stations (Figure 3). We can
see that many of the NOMAD stations were ultimately excluded from GOCAD during the quality
assurance analysis described in Section 2.2. Highlighted in the central panel of Figure 3 are
those stations with high-quality in situ radiometry, which were set aside for tuning, training, and
optimization of ocean color algorithms. The geographic distributions of both the training data and
the validation data show a representational combination of stations from both offshore and nearshore
waters, which theoretically improves the odds of being able to retrieve a broad dynamic range of
bio-optical properties, although as pointed out above the optimization data appears to be slightly
dominated by oceanic stations. It is clear from Figure 3 that while there is significant overlap in the
CDOM and DOC datasets in certain regions such as northern Alaska and the mid-Atlantic Bight in the
Northeastern U.S., globally they follow a somewhat different pattern, and many DOC field stations are
not obviously represented in the CDOM dataset.

The dense concentrations of field stations sampled in relatively smaller regions such as the
Northeastern U.S. are difficult to resolve at the small scale in Figure 3. Figure 4 shows three-dimensional
maps of select sub-regions with ag(412), Sg(275–295), and Sg(412–555), including the Northeast US
and coastal Alaska between the Chukchi Sea and the Beaufort Sea. These are set in broad continental
shelves with numerous nearby river outflows. Not surprisingly, CDOM is high throughout the regions
shown in Figure 4 with low spectral slope in the UV. CDOM and Sg(275–295) increase and decrease,
respectively, in close relation to distance from shore, as expected given the considerations discussed
in Section 1.2 and elsewhere. Variability is higher for spectral slope in the VIS (Sg(412–555)), but it
generally follows the opposite pattern from that in the UV, i.e., decreasing with distance from new
sources of CDOM. This is indicative of aging processes as the newly mobilized, near-shore CDOM
mixes seaward and photo- and microbial degradation reduce absorption in the UVA relative to the
UVB (thus increasing Sg(275–295) and relative to the VIS (thus decreasing Sg(412–555)). It may indicate
marine sources of CDOM with chromophores that absorb in the UVA and blue rather than terrestrial
sources that also absorb in the UVB. These patterns are perhaps clearest at the outflows of the Colville
River (~135º W and 70º N) and the Chesapeake Bay (~77º W and 37º N). An interesting exception for
Sg(412–555) can be found in the Gulf Stream transect (~70º W and 37º–40º N; GOMECC-2 experiment,
Table 2), where slope increases upon entering the productive waters at the edge of the Gulf Stream
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despite a lack of CDOM increase, and then rapidly declines upon entering the oligotrophic waters
south of the Gulf Stream.

Figure 3. Global distribution of GOCAD and NOMAD field stations for CDOM (upper) and DOC
(lower). The central panel shows the distributions of data within GOCAD separated into optimization
(Optim) and validation (Val) dataset. Stations used in algorithm tuning are shown as red circles, the
remainder of stations were available for satellite validation. The boxed subregions in the upper panel
are shown in greater detail in Figure 4.
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Figure 4. Examples of CDOM absorption at 412 nm (top row), and CDOM spectral slope in the UVB
(middle row) and VIS (bottom row) from GOCAD show patterns which reflect the sources and age of
CDOM in environments stretching from estuarine, such as the Chesapeake Bay in the eastern U.S., to
stations sampled well offshore.

3.2. Algorithm Tuning and Validation

3.2.1. Algorithm Structures and Optimization

Both empirical and semi-analytical approaches to ocean color retrievals of CDOM, Sg, and DOC
were explored using the GOCAD dataset. Of the former, a band ratio, single exponential decay model
similar to that presented by Mannino (2008) was tested, but found to be better suited for the continental
shelf waters for which it was derived rather than for the deep ocean, and will not be presented here.
A multiple linear regression (MLR) approach was tested matching the natural logarithm of Rrs in four
ocean color bands with the logarithm of ag(λ) and Sg at each waveband described in Section 2.2.1, and
DOC. The least square difference minimization regression, performed using Matlab’s regstats function
(www.mathworks.com), follows the form:

ln(Y) = β0 + β1× ln(Rrs(λ1)) + β2 × ln(Rrs(λ2)) + β3 × ln(Rrs(λ3))

+β4 × ln(Rrs(λ4))
(8)

where β0–β4 are the regression coefficients, Y is the retrieval parameter, and λ1–λ4 are the
sensor-specific wavelengths (i.e., 443, 488, 531, and 547 nm for MODIS, 443, 490, 510, and 555 nm for
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SeaWiFS). Using monthly, binned L3 Aqua imagery for 2010, MLR retrievals were used to establish
the 99th percentiles for each retrieval waveband of ag. Retrievals above these values were considered
outside the scope of this global algorithm, and eliminated. Regression coefficients, statistics, and
thresholds are presented in Figure 5, and Tables 3–5. Model retrievals plotted against field data are
well organized about the 1:1 line with low scatter, particularly in the UVA, which is reflected in high
correlation coefficients and low error and bias. MAPD is below 30% for all bands below 488 nm; from
this band to higher wavelengths, the CDOM signal becomes very weak in most of the global ocean.

Figure 5. MLR retrievals of CDOM plotted against field data for the tuning dataset (i.e., in situ Rrs(λ)).
The solid line shows the fit through the data, and the 1:1 line is dashed.

For the reasons outlined in Section 1.4 (i.e., a large and variable portion of DOC is unpigmented),
DOC derived directly from ocean color alone using MLR was not robust (Table 5; MLR1).
However, satellite retrievals of sea surface salinity are now available thanks to the Aquarius mission
(http://aquarius.nasa.gov/), and for CDOM, salinity was a reasonable choice as an additional proxy
for water type considering it will generally reflect proximity to sources of fresh water and CDOM as
well as distinguishing water masses (e.g., Gulf Stream). Using GOCAD, a multiple linear regression
approach was developed for retrieving DOC from ag(355) (in place of Rrs(λ1) in Equation (8)) and
salinity (in place of Rrs(λ2)), and proved very robust (e.g., r2 = 0.91, %Bias = 0). Using CDOM and
salinity as predictors significantly improved retrievals of DOC (Table 5; MLR2), with r2’ increasing from
0.76 to 0.91, and MAPD dropping by about three percentage points. The strength of the correlation
between field and retrieved DOC to CDOM and salinity is stronger than expected, considering the
many ways in which changes in DOC, CDOM, and salinity may diverge across seasons or from region
to region. It is worth pointing out that other factors may be contributing to the stronger statistical
performance of MLR2 over MLR1, such as the higher number of coincident predictors and retrievals,
as well as the absence of uncertainties associated with reflectance data in the tuning dataset (i.e., DOC
is derived directly from CDOM absorption and salinity). Caution is therefore advised when applying
this DOC algorithm in regions in which DOC is known to change without commensurate changes
in CDOM and/or salinity. For example, the accumulation of DOC in surface subtropical waters
including the BATS field station [59,60] appears to be decoupled from CDOM (Norman Nelson and
Craig Carlson, personal communication).
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Table 3. Coefficients of the MLR algorithm for retrieving CDOM absorption (ag(λ)) following
Equation (8) and metrics of fit for the optimization data set.

ß0 ß1 ß2 ß3 ß4 N r2’ RMSD MAPD %Bias Threshold

[m−1] [%] [%] [m−1]

MODIS

[nm] 443 488 531 547

275 0.089 −0.540 −1.142 3.444 −1.875 100 0.56 0.499 16 −1.4 4.825
355 −2.246 −1.186 −0.558 2.912 −1.336 116 0.90 0.102 16 −0.9 0.9104
380 −2.263 −0.300 −1.882 3.831 −1.787 86 0.83 0.040 15 −1.9 0.4341
412 −2.535 −0.563 −1.294 1.606 0.170 483 0.87 0.048 28 −4.3 0.36419
443 −3.287 −0.727 −0.922 1.278 0.261 462 0.85 0.026 29 −4.3 0.1984
488 −3.722 −0.377 −1.429 1.424 0.300 490 0.82 0.016 34 −5.9 0.1114

SeaWiFS

[nm] 443 490 510 555

275 −2.477 −2.880 2.225 0.480 −0.252 174 0.76 0.659 25 −2.2 4.825
355 −4.199 −2.563 1.214 0.955 −0.040 189 0.87 0.118 26 −2.2 0.9104
380 −4.544 −1.808 0.175 1.181 0.001 150 0.80 0.055 26 −2.4 0.4341
412 −6.004 −0.861 −0.006 −0.346 0.515 8066 0.37 0.035 56 −13.0 0.36419
443 −6.410 −0.743 −0.145 −0.367 0.547 8037 0.33 0.026 58 −13.6 0.1984
490 −7.014 −0.736 0.142 −0.796 0.678 7978 0.28 0.016 65 −15.5 0.1114

Another empirical approach tested here was the machine learning approach known as Random
Forests [61,62], which is a method for multivariate, non-linear, non-parametric regression designed
to help minimize over-fitting of the training dataset. The method improves on standard decision
tree regression performance by using an ensemble of independent decision trees; bootstrapping for
the regression is achieved by repeatedly, randomly resampling the original dataset to provide an
ensemble of smaller independent datasets, which are each used to grow a decision tree (hence the term
random forest tree-bagger, or RFTB). Here, 200 independent decision trees were used, and each tree is
trained on approximately 66% of the training dataset. The inputs (i.e., reflectances) and retrievals of
the regression (i.e., CDOM, CDOM slope, and DOC) were the same as in the MLR. Model performance
and statistics for select bands in the UV and VIS with the training dataset are presented in Figure 6.
Comparisons of model retrievals to field data are fairly well correlated, but error and bias are quite
high, with MAPD reaching several hundred percent.

Table 4. Coefficients of the MLR algorithm for retrieving CDOM spectral slope (Sg(λ)) following
Equation (8) and metrics of fit for the optimization data set.

λ ß0 ß1 ß2 ß3 ß4 N r2’ RMSD MAPD %Bias
[nm−1] [%] [%]

MODIS

[nm] 443 488 531 547

275–295 −3.289 0.270 −0.335 1.051 −0.921 322 0.61 0.002 6.4 −0.3
290–600 −3.471 0.127 −0.251 1.025 −0.843 322 0.38 0.002 6.2 −0.3
300–600 −3.607 0.044 −0.153 0.881 −0.722 324 0.30 0.001 5.7 −0.3
350–400 −3.924 −0.242 0.055 0.935 −0.710 331 0.26 0.001 6.8 −0.3
350–600 −3.908 −0.204 0.098 0.609 −0.463 331 0.22 0.001 6.3 −0.3
380–600 −3.912 −0.152 0.127 0.236 −0.173 340 0.14 0.001 6.3 −0.3
412–600 −4.219 −0.180 0.137 0.168 −0.131 782 0.16 0.002 7.4 −0.5
412–555 4.195 −0.162 0.147 0.096 −0.084 760 0.10 0.002 7.6 −0.5

SeaWiFS

[nm] 443 490 510 555

275–295 −3.012 0.427 −0.459 0.357 −0.228 424 0.77 0.002 6.8 −0.4
290–600 −3.425 0.131 −0.085 0.145 −0.130 424 0.46 0.002 6.6 −0.4
300–600 −3.615 0.004 0.014 0.160 −0.129 426 0.29 0.002 6.0 −0.3
350–400 −3.968 −0.298 0.178 0.301 −0.150 433 0.23 0.002 7.4 −0.4
350–600 −4.058 −0.288 0.091 0.356 −0.138 433 0.33 0.001 6.9 −0.4
380–600 −4.072 −0.226 0.088 0.208 −0.051 445 0.32 0.002 7.2 −0.3
412–600 −4.498 −0.466 0.690 −0.202 −0.015 8550 0.06 0.004 28.5 −5.2
412–555 −4.533 −0.455 0.683 −0.214 −0.012 8425 0.05 0.004 28.2 −5.1
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Table 5. Coefficients of the MLR algorithm for retrieving DOC following Equation (8) and metrics of fit
for the optimization data set.

Algorithm ß0 ß1 ß2 ß3 ß4 N r2’ RMSD MAPD %Bias
[μmol L−1] [%] [%]

MODIS

[nm] 443 488 531 547

MLR1 4.923 0.641 −2.424 3.503 1.692 183 0.76 23.9 13.9 −1.5

SeaWiFS

[nm] 443 490 510 555

MLR1 5.272 0.526 −2.982 2.623 0.089 246 0.68 30.3 18.8 −3.0

ag(355) and Salinity

ag(355) Sal

MLR2 192.718 26.790 −3.558 - - 464 0.91 15.2 10.6 0.0

Figure 6. Random forest tree-bagger (RFTB), quasi-analytical algorithm (QAA), and generalized
inherent optical property (GIOP) retrievals for tuning datasets.

Semi-analytical approaches included the Quasi-Analytical Algorithm of (QAA) [5,63,64], and the
Generalized Inherent Optical Property (GIOP) algorithm [65]. These have the advantage that they
are based on theoretical models for how the light field is affected by the inherent properties of the
water, but can only retrieve IOPs at those wavebands for which Rrs(λ) is measured (i.e., they do not
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extend into the UV for the current and historical suite of satellite sensors). In the future, however,
data from GOCAD and elsewhere could be used in the development of linear matrix inversion-type
semi-analytical algorithms including basis vector models extending into the UV for CDOM, thereby
potentially enabling their retrieval directly using SAAs. In fact, using GOCAD to build more globally
representational basis models extending CDOM into the UV may not only provide better retrievals of
CDOM, but also of the other concurrently retrieved optical properties from linear matrix inversion.
Both the GIOP and QAA invert the Rrs(λ) to retrieve the water column IOPs following the theory that
sea surface reflectance at a given wavelength is proportional to the backscattering coefficient, and
inversely proportional to the absorption coefficient [16,66]. Each uses various assumptions, empirical
parameterizations, and mathematical inversion techniques to solve for the IOPs and partition them into
their constituents. These include the total backscattering coefficient, bbt(λ), backscattering by particles,
bbp(λ), absorption by total particles, by phytoplankton, and by the combination of non-algal particles
and CDOM, adg(λ) = ad(λ) + ag(λ), where ad(λ) is non-algal (or detrital) absorption). These latter
properties are similar in spectral shape, and therefore difficult to partition, which presents a challenge
if we wish to compare the retrievals of SAAs to the other algorithms presented here. Therefore, while
we do not re-develop or re-optimize the SAAs here—using them as published—we do utilize GOCAD
to facilitate the separation of dissolved and detrital absorption components. Specifically, we solve for
ag(λ) by assuming that ad(λ) is a function of the combined backscattering by water, non-algal particles,
and the dissolved absorption by CDOM, which we assume does not backscatter, although there is
some evidence supporting backscattering by colloids [46]. These SAAs retrieve only the combined
bbp(λ) from phytoplankton and non-algal particles, but the latter tend to have a higher refractive index,
and therefore contribute far more strongly to the backscattering signature, e.g., [67] and references
therein. An empirical relationship was developed between ad(410), bbt(550) and adg(410), and then
ag(410) was found by subtracting ad(410) from SAA retrievals of adg(410):

ad(410) = 0.06822 × adg(410) + 1.623 × bbt(550) + 0.0002123 (9)

Due to a paucity of ad(λ) and bbt(λ) observations in GOCAD, this relationship was tuned for
multiple linear regression using the IOCCG synthetic dataset (r2’ = 0.76, RMSD = 0.07, bias = −0.004
m−1, MAPD = 75%, N = 464). ag(410) was expanded using Equation (1) to other wavebands with the
empirical retrieval for Sg(412–555) (derived as per Equation (8) and Table 4). Regression statics for the
optimization data are shown for the QAA and GIOP in Figure 6, with slightly better results in the GIOP.
Although the current version of GOCAD is less well populated with some optical properties than others
(i.e., data collection targeted carbon-related properties and only included others if they happened to
be in the same SeaBASS file), the digital structures for each property mentioned in this section are
included in the database, and future algorithm investigation (particularly using SAAs) would greatly
benefit from incorporation of these data into GOCAD or a similar, climate-scale, global database.

3.2.2. Algorithm Validation

This work represents the most rigorously validated set of global CDOM and DOC algorithms
to date. Optimization/training of algorithms as described in the previous section was conducted on
GOCAD field stations with coincident in situ radiometry. These stations were then set aside from
validation, which was performed only on those remaining stations in GOCAD that had coincident
satellite imagery (i.e., MODIS Aqua, Terra, and SeaWiFS). In addition to the algorithms already
mentioned, two other empirical algorithms based on band ratio approaches were included in validation
analysis. The approach of Shanmugam (2011) [31] (hereafter Shan11) used a power-law relationship
between the ratio of Rrs(443)/Rrs(555) and ag(350) and ag(412), and performed well using the NOMAD
dataset. The ratio of these was then used in another power-law function to solve for Sg(350–412). Tiwari
and Shanmugam (2011) [32] (hereafter TS11) used linear functions to relate the ratio of Rrs(670)/Rrs(490)
to ag(412) and ag(443), and solved for Sg(412–670) analytically by inverting Equation (1). As these
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two algorithms were tuned using SeaWiFS bands, a slight adjustment was made to MODIS input
reflectances to obtain the SeaWiFS reflectances required (only MODIS validation is shown here
graphically).

The performance of all algorithms in independent validation is weaker than for optimization
(Tables 6–8, Figures 7–9). This should not be surprising considering satellite imagery is subject to
higher uncertainty associated with atmospheric correction, where the atmosphere comprises ~90%
or more of the signal received by the satellite sensor. Furthermore, satellite match-ups exacerbate the
issue of temporal and geographic coincidence with in situ measurements. Any regions of moderate to
high variability in surface properties will likely not be well captured by the average of a nominally
5 km × 5 km pixel array. Nevertheless, results are encouraging, particularly for the MLR approach
and particularly in the UV, where the CDOM signal is strongest (in terms of in situ data) and the SAAs
are not currently useful.

Figure 7. Taylor diagrams (top row) and target plots (bottom row) depicting comparative algorithm
performance for retrieving CDOM absorption at 275 nm, 380 nm, and 412 nm from MODIS Aqua.

Figure 7 shows Taylor and target diagrams comparing the CDOM absorption retrieval metrics
for various algorithms as described in Section 2.4. In the UVB (275 nm), and UVA (380 nm), only
the empirical approaches were feasible, while SAAs (i.e., QAA and GIOP) are also shown at 412 nm.
MLR and RFTB perform comparably with respect to correlation between the models and measurements
at 275 nm, although MLR does have significantly lower MAPD and bias (Table 6; MLR highlighted in
bold), and outperforms the RFTB at 380 nm in all but correlation for all sensors. MLR also outperforms
all other CDOM absorption algorithms at 412 nm, although GIOP does not appear significantly
worse as seen by its proximity to field data in the Taylor plots and the origin in the target diagrams.
MLR shows a relatively strong negative bias in most sensors and channels, which is the result of
underestimation in high CDOM waters (data not shown).
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Table 6. Validation of algorithms for retrieving CDOM absorption (ag(λ)).

Algorithm λ N r2 RMSE MAPD %Bias

[nm] [m−1] [%] [%]

MODIS-Aqua

MLR 275 186 0.47 2.499 33 −17
MLR 380 188 0.45 0.117 54 −1
MLR 412 7626 0.33 0.068 33 −10
RFTB 275 191 0.50 3.100 78 37
RFTB 380 243 0.47 0.400 102 28
RFTB 412 6820 0.30 0.100 52 18

Shan11 350 237 0.45 1.669 134 108
Shan11 412 7748 0.28 0.287 92 72

TS11 412 7299 0.39 0.201 102 86
GIOP 412 6116 0.30 0.077 40 −12
QAA 412 6133 0.14 0.137 59 18

MODIS-Terra

MLR 275 291 0.43 2.746 48 −26
MLR 380 326 0.32 0.337 45 −29
MLR 412 10612 0.19 0.081 35 −1
RFTB 275 171 0.35 2.950 72 22
RFTB 380 269 0.35 0.380 125 21
RFTB 412 6962 0.20 0.110 63 34

Shan11 350 345 0.35 1.308 97 75
Shan11 412 10734 0.16 0.311 129 108

TS11 412 9607 0.20 0.202 109 87
GIOP 412 7976 0.12 0.108 51 11
QAA 412 8048 0.05 0.200 91 52

SeaWiFS

MLR 275 342 0.25 2.976 49 −57
MLR 380 418 0.32 0.318 58 −53
MLR 412 10233 0.10 0.081 47 23
RFTB 275 199 0.38 2.660 90 40
RFTB 380 423 0.36 0.370 209 41
RFTB 412 11594 0.06 0.110 55 27

Shan11 350 444 0.51 1.425 108 86
Shan11 412 10451 0.26 0.229 100 79

TS11 412 8890 0.20 0.250 152 128
GIOP 412 7863 0.11 0.085 45 11
QAA 412 7904 0.07 0.162 80 53

Figure 8. Taylor diagrams (top row) and target plots (bottom row) depicting comparative algorithm
performance for retrieving CDOM slope at 275–295 nm, 300–600 nm, and 412–600 nm from MODIS
Aqua. Results from Shan11 and TS11 were suppressed to preserve scale.
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Table 7. Validation of algorithms for retrieving CDOM spectral slope (Sg).

Algorithm Waveband N r2 RMSE MAPD %Bias

[nm] [nm−1] [%] [%]

MODIS-Aqua

MLR 275–295 187 0.62 0.0034 11 6
MLR 300–600 213 0.15 0.0023 10 8
MLR 412–555 7825 0.06 0.0040 32 23
RFTB 275–295 214 0.58 0.0033 8 −1
RFTB 300–600 244 0.20 0.0019 8 4

Shan11 350–600 188 0.01 0.2750 427 366
TS11 412–555 6223 0.02 0.0290 217 −209

MODIS-Terra

MLR 275–295 284 0.41 0.0039 12 3
MLR 300–600 318 0.16 0.0024 10 9
MLR 412–555 10719 0.06 0.0036 27 20
RFTB 275–295 242 0.43 0.0000 10 −3
RFTB 300–600 271 0.11 0.0000 8 5

Shan11 350–600 297 0.03 0.1250 255 176
TS11 412–555 8078 0.00 0.0280 208 −203

SeaWiFS

MLR 275–295 350 0.44 0.0047 14 6
MLR 300–600 417 0.11 0.0021 8 4
MLR 412–555 10883 0.03 0.0029 17 −12
RFTB 275–295 350 0.37 0.0053 11 −7
RFTB 300–600 418 0.09 0.0022 9 5

Shan11 350–600 372 0.01 0.1320 202 140
TS11 412–555 4716 0.03 0.0290 203 −198

CDOM spectral slope was only retrievable with empirical approaches. MLR and RFTB performed
comparably to each other, although RFTB was not tested at Sg(412–555). In the application of retrieval
algorithms for Sg below (Section 3.3), the MLR is used mainly for its simplicity, but we would expect
RTFB retrievals to yield nearly equally accurate results. Shan11 and TS11 performed poorly (Table 7;
MLR highlighted in bold). Correlations between modeled and measured CDOM slope were weak
in the UVA and VIS, but as the dynamic range of the field data is quite low (Figure 2), error and
bias were still low in the retrievals (Table 7). In all sensors and bands for the MLR and RFTB, Sg

tends to be slightly overestimated in waters with low Sg, and slightly underestimated in waters
with high Sg, indicating the weak sensitivity of these empirical approaches also reflected in the low
correlation coefficients.

Table 8. Validation of algorithms for retrieving DOC.

Algorithm N r2 RMSE MAPD %Bias

[μmol
L−1]

[%] [%]

MODIS-Aqua

MLR1 164 0.23 40.8 41 24.7
MLR2 382 0.89 27.8 16 −13.0
RFTB 161 0.57 27.3 26 13.8

MODIS-Terra

MLR1 158 0.23 40.2 32 13.9
MLR2 369 0.90 26.7 15 −12.3
RFTB 114 0.47 29.4 27 12.1

SeaWiFS

MLR1 274 0.29 34.2 34 4.5
MLR2 339 0.89 28.9 15 −14.2
RFTB 182 0.30 25.3 23 6.7
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Figure 9. Taylor diagrams (top row) and target plots (bottom row) depicting comparative algorithm
performance for retrieving DOC from MODIS Aqua and Terra, and SeaWiFS.

As anticipated, MLR retrievals of DOC using ocean color alone were only weakly correlated with
field data (i.e., r2 < 0.3, Table 8). RFTB performed considerably better, but was unable to match the
performance of MLR2 (i.e., regression with retrievals of ag(355) and known salinity; highlighted in
bold in Table 8). Due to the newness of the Aquarius mission, there were too few retrievals available
for incorporation in these validation results, and further validation of this approach is encouraged
based on these results.

We speculated above (Section 3.1) that small differences between the optimization and validation
records may bias algorithm performance to favor oceanic waters. To test this hypothesis, a sensitivity
analysis was evaluated for CDOM absorption retrieval by MLR to test correlations between algorithm
error (percent error between retrievals and field data) and salinity, water column depth, and ag(412)
measured in the field. We found no sensitivity to these factors (r2 < 0.04 in each case, n = 29,757 for
Aqua, Terra, and SeaWiFS combined), indicating that the algorithm is not optimized in a way that
would limit its performance in, for example, high salinity, offshore waters, or fresher waters with high
inputs of fresh CDOM. A geographic distribution of algorithm retrieval error (percent error) for ag(412)
and Sg(412–600) is shown in Figure 10.

A similar sensitivity analysis was evaluated for MLR2 (DOC retrieval) performance at validation
stations to help identify limitations of the algorithm. We tested the correlation between the DOC
retrieval error (percent difference between retrieved and measured DOC) and salinity, water column
depth, and DOC concentration, but found no strong trends in the distribution of error (r2 = 0.17, 0.19,
0.43, respectively, see included figures below), although it could be argued that absolute retrieval
error increases somewhat (overestimates) at the extremely high salinity stations, and at extremely
low DOC stations. In general, it appears that shallow stations underestimate DOC, and deeper
stations tend to overestimate. The geographic distribution of error in algorithm retrievals (Figure 10)
revealed no patterns with respect to distance from shore or nearby fluvial sources, but MODIS Aqua
retrievals did overestimate DOC in southern oceans (south of 40◦ S, 41% ± 16%, n = 18) compared
to minor underestimates from other sensors and at latitudes north of 40◦ S (−8% ± 18%, n = 1054).
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Care should therefore be taken when evaluating algorithm retrievals in these areas. Only 1,090 stations
(all sensors combined) were available for validation of the MLR2 and this analysis of sensitivity, and
their distribution is not uniform across the world’s oceans, but, as shown in Figure 1, a broad spectrum
of water types with a large dynamic range of DOC were represented in both the optimization and
validation datasets. Unfortunately, no validation stations for MLR2 were identified for mid-ocean
gyres, and therefore the performance of the MLR2 in those waters remains poorly defined, and caution
is advised in the interpretation of DOC retrievals in those areas.

Figure 10. Geographic distribution of error in MLR algorithm retrievals of CDOM absorption and
slope in the VIS (top and center), and MLR2 retrievals of DOC (bottom) using validation stations and
satellite imagery.
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Differences between retrieval statistics across satellite platforms using the MLR approaches were
generally small, with Aqua and Terra outperforming SeaWiFS for CDOM absorption (Table 6). All
three sensors performed comparably for Sg and DOC (Tables 7 and 8).

3.3. CDOM, Sg, and DOC Climatology

Because the Aquarius mission (providing sea surface salinity) was limited to <4 year data record
(~August 2011–June 2015), climatologies for retrieved DOC similar to those presented below for ag

and Sg are not possible. Instead, three years (2011–2013) of coincident MODIS Aqua and Aquarius
data were used to generate a three-year mean 9 km global DOC product (Figure 11). An overlay of
in situ surface DOC from GOCAD was examined, but not included here because with no temporal
coincidence in this comparison, strong biases likely to occur in the field data (e.g., field sampling of
high latitudes is proscribed during winter for obvious practical reasons) will not be reflected in the
mean DOC satellite product. Nevertheless, the relatively large (±~50%–~100%) disparities apparent in
several regions—including high latitudes and the Atlantic subtropical gyre—indicate fundamental
weaknesses in the global DOC algorithm. For instance, as mentioned in 3.2.1, the subtropical Atlantic
gyre is characterized by an accumulation of DOM not reflected in the CDOM nor apparently traceable
with changes in salinity, and is therefore overlooked by the DOC algorithm presented here (MLR2).
Based on the tuning statistics, there appears to be merit in the approach, but more study will be
required to establish when and where the algorithm works best, and what (if anything) can be done
for remotely sensing DOC in regions where no robust optical proxies exist.

Figure 11. Retrieved three-year mean, 9 km nominal resolution DOC from Aquarius and MODIS Aqua
using the MLR2 inversion. Validation statistics are reasonably good for the MLR2 (Figure 9, Table 8), but
a larger number and wider geographic distribution of validation stations than are currently available is
required to thoroughly evaluate the geographic and water-type limitations for MLR2, particularly in the
mid-ocean gyres (see text Section 3.2.2). Overestimates of DOC (~41%) retrieved with the MLR2 were
found in the southern oceans (S of 40◦ S)), but only for MODIS Aqua (i.e., not Terra, and no SeaWiFS
stations were identified). Elsewhere (i.e., north of 40◦ S), retrievals tend to slightly underestimate DOC
(<10%). Caution is therefore advised in interpreting MLR2 retrievals in mid-ocean gyres, and in the
southern oceans using Aqua.

As outlined in the introductory sections, a common assumption made in ocean color remote
sensing on a global scale is that CDOM and other water-borne pigmented material covary with Chl.
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A valid concern with empirical approaches to retrieve CDOM from ocean color—particularly for those
that use some of the same spectral bands as Chl algorithms like OC3M—is that they are essentially
tuning themselves to Chl, and not CDOM. While performance metrics for MLR are quite robust
(e.g., Figure 5, Table 3), there remains the possibility that this is true in part because these spectral
bands are sensitive to Chl, and CDOM is simply covarying with Chl as per Case 1 assumptions. In fact,
this was not found to be the case generally from global CDOM and Chl field data in GOCAD (r2 = 0.00,
N = 19,446, λ = 412), nor in the investigation by Siegel et al. (2002), although there exist areas of open
ocean outside of the strong influence of terrestrial run-off and upwelling zones where fluctuations in
CDOM are clearly driven by local productivity.

To quantify the distinction between retrievals of CDOM using MLR and Chl using OC3M, we
calculate retrievals of each over the course of the entire MODIS Aqua mission, and then calculate a
residual of the normalized properties, as defined by:

Chl − CDOM =
Chli

median(Chl)
−

agi(λ)

median
(
ag(λ)

) (10)

where the median is taken over an entire composite image to scale each property by its magnitude.
For example, MODIS imagery was separated into seasonal composites for the entire Aqua era, then
processed to CDOM and Chl, and the residual calculated for each (Figure 12). Bear in mind in this
analysis that OC3M-like algorithms for retrieving Chl have been shown to be strongly influenced by
not only phytoplankton biomass, but also physiology (particularly in tropical and subtropical regions)
as well as the presence of significant absorption by CDOM and non-algal particulates (adg) [68].

The results show that over much of the world’s oceans—particularly at high latitudes, upwelling
zones, and regions influenced by large river plumes—normalized CDOM and Chl diverge by as much
as a factor of three. Interestingly, the regions shown by Siegel et al. (2013) to be most negatively
impacted by adg in terms of empirical Chl retrievals are the same regions which are shown here to
diverge most strongly in terms of the normalized CDOM and Chl residual, indicating that a similar
pattern would be expected even when using Chl retrieval algorithms less susceptible to error induced
by adg. The pattern that emerges is that in open ocean regions characterized by strong seasonal blooms
such as the North Atlantic and North Pacific, high primary productivity in the presence of lower
CDOM (i.e., high residual) is followed after approximately a season by higher CDOM and a collapse
in Chl (i.e., low residual). This can be seen in the boreal Spring–Summer transition in the N. Atlantic
and Pacific, in the bloom and collapse associated with the reversal of the monsoons in the Arabian
Sea between Summer and the following Winter/Spring, and in the Congo and Amazon river plumes
over the same period where the residual often shifts by approximately a factor of six between seasons.
This observed seasonal lag between peak Chl and peak CDOM helps explain why the two properties
rarely covary, as described above for GOCAD, and in [13]. The lag may be explained by the time
required for microbial degradation of the bloom’s less labile particulate detrital material after the
bloom has collapsed.

Application of these algorithms also shows the Spring–Summer transition in the CDOM
absorption (left column, Figure 12) as an increase in CDOM from major river outflows such as
the Amazon and Congo following peak runoff [69], and in the upwelling region of the Arabian Sea
induced by the southwesterly monsoon. In the case of the Amazon River, the CDOM in the distal
plume can be seen well into the following season as it drifts slowly eastward across the Atlantic from
the retroflection of the North Brazil Current [70], indicating that satellite retrievals of CDOM using the
MLR can successfully track surface DOM as it evolves over time scales of weeks to years and over very
long distances. The results shown in Figure 12 are broadly similar to those described in [13] for CDM at
440 nm retrieved using the GSM algorithm [71], and to the empirical algorithm of Shanmugam [31] for
ag(350) (their Figure 12), although we show generally higher absorption across the equatorial regions
and some parts of the Southern Ocean.
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Figure 12. MLR retrievals of ag(380) by season over the entire MODIS Aqua era (left column), and
residuals between Chl and CDOM (right column). Imagery was binned from 4 km resolution monthly
composites between August 2002 and January 2014.

Longer time-scale variability in the Aqua-retrieved CDOM was also apparent from the roughly
twelve years of monthly, 4 km satellite composites. An examination of the monthly CDOM anomaly
(Δag(λ); the monthly ag(λ) divided by the Aqua-era averages for each month) and slope anomaly,
ΔSg(λ), revealed several regions characterized by sharp declines in CDOM during certain years, and
elevations in others, as well as the expected inverse proportionality between CDOM and slope in
the UV. Figure 13 shows an example of this from seasonal Aqua composites of Δag(380) and ΔSg(275)
averaged over periods of El Niño (2002–2005) when surface temperatures are higher, inhibiting vertical
nutrient transport and leading to lower primary productivity, and periods of La Niña (2007, 2008,
2010, 2011), which exhibit roughly the opposite dynamics. A feature in the western equatorial Pacific
stands out starkly as a crescent stretching from about 10º N to 15º S and spanning nearly the entire
100º longitude range from South America to the Solomon Islands. For brevity, we refer to this as
the Western Pacific Crescent (WPC). To test the link between El Niño Southern Oscillation dynamics
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and the CDOM anomaly in the WPC, an average of monthly Δag(380) within the WPC is compared
with the multivariate ENSO index (MEI [72]) and ΔSg(275–295) (Figure 14). The MEI provides a
convenient index for tracking the dominant characteristics associated with ENSO, namely sea-surface
pressure, temperature, wind stress, and cloudiness. Positive MEI represent the warmer El Niño
cycle associated with lower wind stress, a flattening in the trans-Pacific thermocline, and inhibited
productivity in the equatorial Pacific, and negative MEI represents La Niña, which is cooler, and more
productive. The coupling between MEI and Δag(380) and MEI and ΔSg(275) is remarkably strong and
well correlated (Figure 14; r = −0.77, r = 0.80, respectively, and p << 0.01 in each case). As expected,
CDOM and UVB slope are also very well correlated (r = −0.90, p << 0.01). The tight correlation
between CDOM anomaly, CDOM slope anomaly and MEI may help to predict broad changes in
surface CDOM in a future in which warmer sea surface temperatures are expected, particularly in the
western Pacific, as the long-term warming trend leads to oceanic conditions favorable to El Niño-like
conditions [73]. In fact, sustained deficits in surface CDOM available for photooxidation and microbial
remineralization across the WPC, as demonstrated here, is likely to result in a lower partial pressure
of CO2 derived from CDOM, and may therefore increase the flux of CO2 into the ocean from the
atmosphere, although this effect would largely be offset by the decrease in solubility associated with
warmer temperatures in the surface ocean. Another consequence of lower CDOM across this region in
a warming regime may be decreased surface heating through CDOM absorption, potentially providing
some degree of negative feedback to the surface warming trend.

Figure 13. CDOM anomaly (left) and slope anomaly (right) from MLR applied to MODIS Aqua during
Autumn in El Niño years (2002–2005; top panel) and La Niña years (2007, 2008, 2010, 2011; bottom
panel). The Western Pacific Crescent (WPC) feature is defined here as the broad region exhibiting a
notable decline in CDOM during El Niño years, and enhancement during La Niña. UV slope shows
the opposite pattern, with lower slopes during La Niña, although the percentage change is roughly an
order of magnitude lower. The box shows the portion of the WPC subsampled for comparison with
MEI (See Figure 14).
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Figure 14. Multivariate ENSO Index (MEI, in red), CDOM anomaly at 380 nm (black), and UVB slope
anomaly (green, scaled by a factor of −10 for clarity) over the entire MODIS Aqua era for the region
of interest highlighted in Figure 13. Strong negative and positive correlations exist between MEI and
CDOM and slope anomalies, respectively (see text).

4. Summary

The importance of characterizing and tracking change in global oceanic dissolved carbon over
climatic evolutions is only possible synoptically using earth-observing technology. As methods to
measure DOM sources and sinks continue to improve using laboratory and in situ optical techniques,
algorithms and orbital sensor technology must keep pace. With technological and methodological
improvements, however, come inevitable challenges. The nearly three decades of field data presented
here are by necessity compromised in that, for example, no one standard method was employed for
the measurement of spectral CDOM absorption. Similarly, there is obviously no standard algorithm
for global ocean color retrievals of CDOM, as the algorithms must also continuously evolve with our
knowledge of the parameters they retrieve. Many approaches have proven robust in retrieving CDOM
absorption and its spectral slope over the years, though most are regionally optimized with little or no
provision for what ties them together (e.g., proxies for optical water types). Global algorithms have
been hampered by relatively small datasets of coincident radiometry with CDOM and CDOM slope
extending into the UV, and DOC retrievals have been especially challenging due to the highly variable
and often unpredictable fraction of chromophoric content.

In this study, we aggregate a global dataset approximately forty times the size of previous global,
bio-optical databases. Naturally, despite our best efforts to ensure consistency in the data through
quality control, the data within are subject to error and uncertainty, largely because methodologies
and technology have evolved over thirty years. Quantification of the uncertainty in field estimates of
the parameters retrieved here must necessarily precede uncertainty estimates in the algorithms used
to derive them. Efforts are currently underway at NASA and elsewhere to do just that. New field data
are always being collected and archived all over the world by various academic and public-sector
agencies, but only a fraction is broadly distributed through invaluable archives like SeaBASS, in part
because submission is only required of those principal investigators funded by NASA. Future algorithm
development efforts should facilitate more cooperation and collaboration with other agencies collecting
field data around the world encouraging sharing of data within a reasonable time after collection.
To date, GOCAD and SeaBASS coverage in regions such as the Mediterranean and the oceans around
Australia is astonishingly poor. Efforts must be sustained to continue bringing newly collected and
historical data into GOCAD, NOMAD, and similar global, long-term bio-optical databases, and to
expand them to include an even more comprehensive suite of inherent optical properties, which help
support the development of more robust semi-analytical approaches. GOCAD was designed using
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nested and comprehensive Matlab structures conducive to expansion for both newly collected datasets
as well as more complete suites of physical, optical, radiometric, and biogeochemical data. Based on
our experience with SeaBASS, more rigorous quality control and documentation standards should
be applied not only to recent and new submissions, but retroactively to historic data as well. While
some algorithms performed better than others in this non-exhaustive comparison, it is important
that algorithms continue to evolve as the data used to develop them improves, incorporating more
than minor adjustments to empirical coefficients, and moving algorithms for oceanic carbon closer to
theoretical, analytically-based approaches.

A representational suite of approaches, including empirical, semi-analytical, and machine-learning
algorithms was evaluated against GOCAD field data for retrieving ag in six wavebands between 275
and about 490 nm, Sg in eight wavebands in the UV and VIS, and DOC using a wide variety of
metrics. Ultimately, the most versatile and best performing of those tested was a simple, empirical
set of relationships based on multiple linear regression between four wavebands of remote sensing
reflectance (440–555 nm), with the exception of DOC which also required sea surface salinity (e.g., from
Aquarius) to act as a proxy to optical water type. Results varied, with CDOM retrievals showing
regression coefficients to field data (r2) generally over 0.80 for field radiometry to within 16%–34%,
depending on the wavelength, and within 33%–54% for MODIS Aqua validation. CDOM slopes
retrievals were best in the UVB (e.g., r2 = 0.62, MAPD = 11% in satellite validation of Sg(275–295)),
while DOC algorithms only optimized well after the inclusion of salinity (r2 = 0.91, MAPD = 15%), and
did not perform well in validation (e.g., RMSE = 27–29 μmol L−1). Our analysis of the sensitivity of
the DOC algorithm performance to factors such as salinity, DOC, water column depth, and geographic
location ultimately proved inconclusive, exposing only a small anomaly involving overestimates
of DOC in the southern oceans using MODIS Aqua imagery. Further validation—particularly in
mid–ocean gyres where DOC varies very weakly or not at all with CDOM absorption, and salinity
changes are very small—is clearly warranted prior to application of the DOC algorithm in those regions.

Application of CDOM algorithms to monthly and climatological Aqua imagery demonstrated
that global retrievals of CDOM do not covary well with similar empirical retrievals of Chl, but rather
appear to follow Chl on a seasonal lag depending on the region and source of dissolved material. This
helps explain the lack of correlation between CDOM and Chl found in global GOCAD field data and
described in previous studies, and further challenges the use of Case 1 assumptions in bio-optical
remote sensing. Surface CDOM concentration varies in regions such the western equatorial Pacific by
about 150% over the course of long-term climatological shifts associated with ENSO, fluctuating in tight
correlation with the MEI and CDOM slope. Algorithms developed here may be applied to tracking
ENSO behavior in the future, as well as observing changes in CDOM character and concentration
associated with global warming.
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Featured Application: Hyperspectral remote sensing of coral reefs. We present simplifying

factors and guidance on handling or avoiding the potential variability in spectral reflectances

caused by the structural nature of corals and illumination conditions. Results presented here can

be implemented in remote sensing algorithms for bottom mapping of coral reefs, and guide data

collection practice.

Abstract: Shading and inter-reflections created by the three-dimensional coral canopy structure
play an important role on benthic reflectance and its propagation above the water. Here, a plane
parallel model was coupled with a three-dimensional radiative transfer canopy model, incorporating
measured coral shapes and hyperspectral benthic reflectances, to investigate this question under
different illumination and water column conditions. Results indicated that a Lambertian treatment
of the bottom reflectance can be a reasonable assumption if a variable shading factor is included.
Without flexibility in the shading treatment, nadir view bottom reflectances can vary by as much as
±20% (or ±9% in above-water remote sensing reflectance) under solar zenith angles (SZAs) up to 50◦.
Spectrally-independent shading factors are developed for benthic coral reflectance measurements
based on the rugosity of the coral. In remote sensing applications, where the rugosity is unknown,
a shading factor could be incorporated as an endmember for retrieval in the inversion scheme.
In dense coral canopies in clear shallow waters, the benthos cannot always be treated as Lambertian,
and for large solar-view angles the bi-directional reflectance distribution functions (BRDF) hotspot
propagated to above water reflectances can create up to a 50% or more difference in water-leaving
reflectances, and discrepancies of 20% even for nadir-view geometries.

Keywords: remote sensing; hyperspectral; shallow water; coral; derivative; radiative transfer; canopy

1. Introduction

Remote sensing of coral reefs is an important complementary survey technique for science,
monitoring, and management, being able to cover substantially larger areas than in-situ surveys albeit
at lower accuracy [1,2]. A well-established paradigm in coral reef remote sensing is that hyperspectral
data offers the best results for discrimination of both benthic habitats and specific benthic types, such as
corals, algae, and sand [3,4]. Applied studies have shown that benthic habitat classification accuracy
increases with the number of available spectral bands [3,5], specifically in the 400–700 nm range since
the opacity of water beyond 700 nm limits use of NIR wavelengths to only the shallowest waters
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(<2 m). Habitats are broad mapping categories, whereas mapping of specific types, e.g., corals vs.
algae, is very challenging since their spectral reflectances can be similar. Modelling and sensitivity
analyses based on reflectance spectra measured, either in-situ using diver-operated spectroradiometers,
or ex-situ in the lab, imply that spectral separation of benthic types by hyperspectral reflectances is
possible [4,6,7], and there are increasing numbers of applied demonstrations of discriminations of
benthic types (e.g., coral, sand, and algae) from airborne hyperspectral imagery [8–14].

These studies imply that capability for discrimination of coral reef types is reliant on the
discrimination of spectral features of the pigments that are present, such as peridinin in the coral
symbionts, and accessory pigments of algae [8]. Pigment-based reflectance features are present at the
surface of the corals and other benthic types, but the coral reef environment is structurally complex,
with multiple benthic types typically present within even the highest spatial resolution imagery
(e.g., pixels 1 m). Vertical structure in the reef canopy and the benthic types themselves gives rise
to shading, inter-reflections, and a generally complex interaction with the light environment [15,16].
Most sensitivity analyses to date work with empirically measured reflectances of individual types,
at a scale roughly equivalent to their morphology, and use a linear mixing model, which essentially
assumes that the individual types can be treated in the same way as a spatially flat Lambertian
patchwork [4,7]. However, even in a carefully defined lab experiment, the linear mixing model does
not always work well with structural components [17]. Given the complexity of light interaction with
a mixed structural canopy, it is not immediately obvious to what extent a pigment based hyperspectral
reflectance feature present at the scale of a coral surface translates to an above water measurement at
remote sensing scales.

The purpose of the study presented here was to investigate propagation of hyperspectral
reflectances from the surfaces of structural benthos (corals and surrounding substrate) to water
leaving reflectance. The study combined a three-dimensional canopy model [18], with a plane parallel
water-column model (HydroLight [19]) (Figure 1). The model was parameterized by 3D reconstructions
of actual coral shapes and surface reflectances derived from hyperspectral images of the same corals.
A variety of investigations were conducted (Table 1), to track the main factors that mitigate the
transmission of hyperspectral features, and to justify practical simplifications to provide useful results
that can be immediately applied in other contexts. Investigations included the effects of shading,
and water attenuation and scattering, both in the region of individual corals and within mixtures of
corals and surrounding substrates. The three-dimensional model was used to generate fully populated
bi-directional reflectance distribution functions (BRDFs) of mixed canopies, and these were input to
HydroLight to model above water reflectance for different depths, water inherent optical properties
(IOPs), and solar-view geometries.

In summary, specific objectives were:

1. Investigate how the spectral reflectance at the scale of coral macro-morphology (shape) relates to
coral surface-scale spectral reflectance.

2. Quantify the error arising from making simplifying modelling assumptions, such as using a
single reflectance spectrum to represent a coral under different light environments, or excluding
water attenuation and scattering between coral structures within the canopy.

3. Characterize the BRDF of assemblages of corals in different densities.
4. Apply those BRDFs as the bottom boundary in HydroLight, to model BRDF effects in the remote

sensing reflectance arising from canopy BRDF properties in different depths and conditions.

The results indicated that whilst structural factors can introduce substantial variability in spectral
reflectances, this variability can be avoided or accommodated by simplifying factors. The major
variations in spectral reflectance over corals, due to structure and illumination, can be captured by
incorporating a spectrally flat shading factor or black shade endmember into linear mixing models.
Above-water BRDF effects on reflectance can be 20% or more for dense shallow canopies when viewing
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close to the solar plane in typical remote sensing solar-view geometries, but are less apparent if the
solar-view geometry is at 90◦ to the solar plane.

Figure 1. Model setup: (a) Coral surface reflectances were derived from hyperspectral image, and
(b) shape from 3D reconstructions from plaster casts; (c) A plane parallel water column model was
coupled with (d) a 3D canopy model in two ways: (1) (e) To model bottom of water column light
fields over (f) single structures and estimate (g) reflectance over the coral and (h) of a 50% mix with
surrounding substrate; and (2) (i) Directional incident radiance at different angles over (j) assemblages
of structures were used to characterize (k) the bi-directional reflectance distribution function (BRDF).
The BRDF was then input to the water column model to give (l) water-leaving reflectances.

2. Materials and Methods

2.1. Overview

Toward the aims listed above, three-dimensional models of actual coral shapes were input to a 3D
canopy radiative transfer model [18] coupled to a plane-parallel water column model, HydroLight [19].
Six different modelling exercises were conducted (Table 1, Figure 1). These were structured to
progressively incorporate complexity and justify the design of subsequent modelling steps: from
reflectance over a single coral shape only, to then including substrate, then include assemblages of
corals, and finally the water column. Intermediate results from these activities also provided results
of interest, for example, on the validity of using a linear mixing model for bottom of water column
reflectance. The following sections give details on the input data and model set up.

313



Appl. Sci. 2018, 8, 2688

Table 1. Different properties and treatments modelled in this study and the aim of each investigation.
“Res.” indicates if the high- or low-resolution coral structure models were used. “I.” indicates if
interstitial scattering and attenuation by the water around the coral shapes was included (N-No, Y-Yes).
“Position” indicates the notional location of the estimated reflectance.

Modelled Property Res. I.
Derived Reflectance and
Purpose of Activity

Position

1
Reflectance averaged over each of the 16 coral shapes, for the
coral area only (substrate masked out). Bottom of water
column incident radiance distribution generated by
HydroLight with 32 treatments, combining: Solar zenith
angles 10◦ and 50◦; depths 1 m and 10 m; forereef and lagoon
IOPs; and four rotational positions of the coral shape.

high N
π Lu/Ed
Effect of shape on reflectance
over coral area only.

above
canopy

2 low N
π Lu/Ed
Effect of resolution of
3D models.

above
canopy

3

Reflectance averaged over a single coral shape, plus in each
case, surrounding substrate to give a 50% mix in terms of
areal cover. Incident radiance distributions as above.

low N

π Lu/Ed
Validity of linear mixing model
for reflectance over coral and
surrounding substrate.

above
canopy

4 low Y

π Lu/Ed
Effect of ignoring water
scattering and attenuation
within canopy.

above
canopy

5
Azimuthally averaged BRDF function for six canopy
assemblages ranging from 39% to 75% coral cover. BRDF
tabulated in HydroLight standard directional discretization.

low N

π BRDF(θi, θe, Δϕ)
Demonstrate canopy BRDF
effects and generate function for
input to HydroLight.

above
canopy

6
Above-water remote sensing reflectance as a function of
solar-view geometry, depth, and IOPs, for six canopy BRDFs
generated as above.

low N

π Lw(θs, θv, Δϕ)/Ed
Demonstrate above water BRDF
effects under typical solar-view
geometries.

above
water

2.2. Coral Surface Reflectances and Shape

The three-dimensional shape and surface reflectance of 16 corals were used as input to the model.
Live corals of various species, including Porites compressa, Porites evermanni, and Montipora capitate,
were sampled from Mahukona Beach Park, Potters, and Pauko Bay Boat Ramp in Big Island, Hawaii,
in February 2017. For the purposes of this paper, corals were grouped based on sampling depth,
referred to as shallow ‘S’ (<8 m) or deep ‘D’ (10 to 20 m) (Table 2). For practical reasons the corals were
relatively small (<20 cm diameter). Corals were stored in open buckets filled with natural salt water
and kept in a cool water bath that was shaded from the direct sun. Coral samples were imaged in the
air, immediately after being removed from the water, using a tripod-mounted 710 hyperspectral imager
(Surface Optics Corporation). This instrument records an image cube of 520 × 696 pixels with spectral
information at 128 spectral bands, and with 5 nm spacing from 380 to 1040 nm. All images were
made under natural illumination at noon ±2 h, to minimize any shading effects on the coral surfaces.
Images were obtained within 24 h of collection, and before any noticeable degradation. A Labsphere
Spectralon™ Diffuse Reflectance Standard with a reflectance value of 20% was placed in the image
frame during each measurement (Figure 1a). Using the reference, for each coral, a single surface
reflectance, R(λ), i.e., the reflectance at the scale of the coral surface, assuming the surface is locally
flat, was estimated by taking the mean over one or more small areas of the image where the coral
surface was relatively horizontal (Figure 1a). While in reality, the reflectance over a coral surface is
typically variable, in the scope of this study, we were interested in the effect of coral macro-morphology
and canopy structure on reflectance. Hence, each coral was treated as if it had a uniform surface
reflectance. The availability of horizontal areas for extracting surface reflectance possibly biased the
measured reflectances slightly, but the sample areas where sufficiently large to mitigate small scale
influences, such as low pigmented apical polyps (Figure 1a). For the underlying substrate, a spectral
reflectance of dead coral rock was used, this data was from a previous study, collected with a GER
1500 spectroradiometer as described in Reference [17]. All spectra were resampled to 168 bands in
2 nm intervals from 400 nm to 736 nm, as this was the spectral resolution of the modelling software.
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Table 2. Coral shapes used in this study. “Group” indicates grouping based on depth of collection,
shallow (S, <8 m) or deep (D, 10–20 m). Coral 03 was from a site subjected to terrestrial run-off and
was not placed in either group. Polygon counts for the high- and low-resolution models are given.
The final column is discussed in the results and is the maximum percentage difference that choice of
resolution leads to in reflectance averaged over the coral area in any band.

ID Species
Polygon Count Rugosity Max Lu/Ed Difference

Group Low Res. High Res. Low vs. High

03 Montipora capitata n/a 2306 152,185 1.98 0.36
08 Porites evermanni D 1712 69,945 2.74 0.51
10 Porites evermanni D 1832 75,524 2.16 0.28
11 Montipora capitata D 1830 103,394 1.77 0.29
12 Porites evermanni D 2150 51,954 2.16 0.24
16 Porites compressa D 1454 89,703 5.43 1.33
17 Porites evermanni S 2079 124,092 2.05 0.27
18 Porites compressa D 1898 103,430 5.82 0.47
19 Porites evermanni S 1804 183,283 1.61 0.22
31 Porites compressa D 1226 56,726 2.96 0.43
32 Montipora capitata S 2461 100,886 2.01 0.31
33 Porites compressa S 2160 98,502 2.90 0.47
35 Pocillopora sp. S 2966 240,353 3.06 0.21
38 Porites evermanni or lutea S 1908 95,265 1.72 0.17
39 Montipora patula S 2264 133,594 1.81 0.39
40 Porites evermanni or lutea S 1403 56,696 1.45 0.17

To capture the shape of each field-sampled coral, they were impressed into silicone rubber
putty after imaging and the moulds were allowed to air dry. These moulds were transported back
to the University of Connecticut; each mold was filled with plaster to recreate the coral shape
(Figure 1b). Digital 3D models of the plaster cast of natural corals were created using Autodesk
ReCapTM photogrammetry software (version 5.0.1.30). The process involved taking between 20
and 40 overlapping photographs of the plaster corals and converting them into 3D digital models
consisting of a mesh of vertices and triangular surface polygons. Then, the 3D models were edited in
Autodesk® MeshmixerTM (version 3.4.35) to isolate the coral shape from the background. For each
coral, two models were produced: High resolution, ranging from 50,000 to 200,000 triangles, and
low-resolution, typically ~2000 triangles (Table 1). The low-resolution models are computationally
easier to handle, and the first intended test was to determine if low-resolution models would be
sufficient. For interpretation of results, a surface rugosity measure [20] was calculated for each coral
shape, being the ratio of the coral surface area to its projected area (i.e., nadir view areal extent) in the
high-resolution models.

2.3. Radiative Transfer Modelling

The radiative transfer modelling was split into two components: (1) a three-dimensional canopy
model designed to evaluate optical properties just above the canopy or above individual coral
structures (Figure 1d) [18,21], and (2) a plane-parallel water column model (Figure 1c), HydroLight [19].
All modelling was conducted hyperspectrally in 168 bands of 2 nm step, from 400 to 736 nm.

The 3D model has been described and used in a number of previous publications [18,21–23].
The solution method involves breaking down all surfaces and volumes into discrete elements,
triangular surface polygons (as already provided by the 3D digital models), and cubic voxels, for
scattering and attenuating media (the water). In this application, the coral shapes were placed on
a flat underlying substrate that was decomposed into 100 × 100 squares (each being two triangles)
over an area of approximately 20 cm × 20 cm. The model domain can either have light incident
from above with horizontally periodic boundaries (i.e., the model set-up repeats in all horizontal
directions), or be embedded into a “far-field” radiance distribution characterized from all directions
(appropriate for modelling an isolated structure). The model is solved by calculating light transfer
between all pairs of elements and propagating the incident light through the system by iteration,
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for a predetermined number of passes or until convergence is detected. Surfaces are treated as locally
Lambertian, but volumetric elements embody full directional scattering, according to a scattering
coefficient combined with a phase function [18]. As an update to previous work, this model is now
implemented on modern Graphics Processing Units (GPUs), which facilitates improved performance
on computationally demanding applications with many bands and elements.

Since the coral structures were small (~20 cm max. height), it would be inefficient to use the 3D
model for the full water column, since depths up to 10 m were of interest. More efficiently, the 3D
model was coupled to HydroLight in two ways:

1. HydroLight was used to generate a bottom of water column radiance distribution, and this
was used to illuminate the individual coral structures, standing on flat dead coral substrate,
by being used as the input radiance boundary condition (Figure 1e,f). From these model runs,
the reflectance over the coral structure was determined under different illumination conditions to
deduce the average reflectance and its variability due to shading and other effects, across a range
of illumination conditions (Figure 1g,h). Treatments were applied corresponding to the range
limits of interest: Depths of 1 m and 10 m; solar zenith angles of 10◦ and 50◦, azimuth angles of
0◦, 90◦, 180◦, 270◦, and two sets of Inherent Optical Properties (IOPs) denoted “forereef” and
“lagoon” (described below). Water surface roughness was set to correspond to a wind speed of
5 ms−1 but note that only water leaving radiance was used in the results, so surface reflectance
was excluded. This method was used for tests 1 to 4, listed in Table 1.

2. Mixtures of 3D living coral structures were assembled on flat dead coral rock substrate, in areal
cover densities from 39% to 75%. The 3D model was used with horizontal periodic boundaries
to generate a canopy BRDF function, which was then used as a bottom boundary condition
in HydroLight (Figure 1i,j). By this method, spectral water-leaving reflectances derived as
water-leaving radiance at a given wavelength (λ) normalized to downwelling planar irradiance
(Lw(θ, Δϕ, λ)/Ed(λ)), could be derived above the water for different view directions under
different solar zenith angles and water column conditions (Figure 1l). Incorporating the water
column this way spatially averages the results, and scope of the results corresponds to pixels
larger than the coral structures, i.e., pixels ≥ 1 m, since the coral structures were less than 20 cm
across. This modelling covered the same range of depths, solar zenith angles, and the two IOP
treatments mentioned above. This aspect of the work corresponds to activities 5 and 6 in Table 1.

One important test was to determine if water attenuation and scattering within the canopy, i.e.,
at the scale of, and in between, coral shapes was at all important with respect to the derived reflectances.
The 3D model can incorporate volumetric absorption and scattering but it is computationally slow,
especially for computations in 168 bands. The “interstitial” IOPs were incorporated by embedding
the shape in a mesh of 16 × 16 × 16 voxels in activity 4 (Table 1), with IOPs consistent with the
corresponding HydroLight modelling (see below). In the other modelling activities, interstitial IOPs
were not included. Since the coral shapes were small, within the canopy path lengths of only a few
centimeters through the water were achieved. Scattering is predominantly in the forward direction so
on short path lengths it has very little effect; the primary issue was absorption on the paths between
surface patches. An absorption coefficient of 0.4 (approximately as at 700 nm) gives losses of just 4%
on a 10 cm path, so whilst it was not expected that excluding interstitial IOPs would have a substantial
effect, a specific test was conducted, and this is evaluated in the results section.

2.4. Inherent Optical Properties

The two IOP treatments “forereef” and “lagoon” (Figure 2) were configured using the HydroLight
5.3 New Case 2 model [19] to produce total absorption, a(λ), and attenuation, c(λ), values very similar to
representative AC-S measurements taken in forereef and lagoon locations at Glovers Reef in Belize and
in Palau, Micronesia in 2006 [7]. Both treatments had chlorophyll set at 0.12 mg·m−3, but the lagoon
treatment had more scattering and more coloured dissolved organic matter (CDOM). The independent
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CDOM ag(440) (not associated with phytoplankton) was 0.008 m−1 for forereef and 0.04 m−1 for lagoon,
scattering was introduced by a calcareous sand component of 0.01 and 0.4 mg·m−3, respectively. These
component concentrations were derived by trial and error to produce bulk IOPs close to the measured
values, which represented the limit of the range for high clarity (forereef) and high scattering (lagoon)
in the AC-S dataset (see figures in [7]). Under the scattering phase function, Petzold’s phase function
was used throughout, as described in Reference [24]. These IOPs were within the range of those
measured across different reefs of the Pacific [25].

Figure 2. Total absorption, a(λ), and attenuation, c(λ), as used in the two water column inherent optical
property (IOP) treatments, forereef and lagoon (includes the contribution of pure water itself).

2.5. Coral Canopy Assemblages

Incorporating individual corals into a water column model would correspond to a single coral
surrounded by an infinite extent of bare substrate, which is not a situation of practical interest for remote
sensing. Propagation of reflectance through a plane-parallel water column model, such as HydroLight,
necessitates constructing a “pseudo plane-parallel” canopy to characterize a horizontally invariant
bottom boundary BRDF. To this aim, six assemblages of corals on flat substrate were constructed by
randomly manually placing and rotating the individual low-resolution coral models in an area of
20 cm × 20 cm (periodically repeating). Three assemblages were generated using corals from the
shallow group, and three from the deep group. Viewed from above, the areal cover of the corals
versus the substrate varied from 39% to 75%. Assemblages were named based on the group and
percentage cover, specifically: S46, S58, S75, D39, D46, D74. There was no intention to specifically
compare or construct any hypothesis concerning the shallow and deep groups, but it was considered
prudent to be consistent and not to mix deep corals with shallow. The assemblages contained between
7 and 15 individual coral shapes, where some shapes appeared twice or three times in specific
assemblages, but in different rotational positions. These randomly constructed canopies may not be
strictly representative of a real canopy, but they do incorporate a mixture of typical coral morphologies
and surface reflectances and enable an estimate of the optical properties of assemblages of such
structures. In these models the total number of surface polygons, including substrate, varied from
35,000 to 68,000.

2.6. Coral Model Outputs and Processing

For activities 1 to 4 (Table 1), the main output of interest was reflectance just above the canopy
under naturalistic illumination conditions, for a typical range of situations, i.e., the kind of reflectance
that could be used as a simple bottom reflectance boundary condition in a remote sensing model
(Figure 1g,h). The key questions were if this reflectance was consistent under different illumination
conditions (hence robust), and the extent of the effect of shading and other spectral mixing processes
due to structure. Toward this aim, for each coral shape and illumination treatment, the model
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generated a 512 × 512 pixel hyperspectral nadir-view image of the coral in orthographic projection (no
perspective) (Figure 1g,h). For activities 1 to 3, the upward radiance directly above the coral shape
only (no substrate) was extracted from this image and averaged to give an average nadir view upward
radiance, Lu(λ), over the coral shape. Reflectance was calculated as Lu(λ)/Ed(λ) and multiplied by
π, for the purpose of comparing to the surface scale diffuse reflectance. For activity 4, which was
concerned with spectral mixing with the substrate reflectance (Table 1), the upward radiance was
averaged over the shape plus enough surrounding substrate to make a 50% areal cover mix between
the coral shape and substrate (Figure 1h). The extent of this area was manually determined as a roughly
consistent border around the shape. Activities 1 to 4 illuminated corals with azimuth angles of 0◦, 90◦,
180◦, and 270◦, so shadows and other effects would be variable between these repeats, corresponding
to the same shape illuminated from different directions.

The evaluation of BRDFs required that the full BRDF function be tabulated in a form suitable
to use as input to HydroLight. HydroLight requires azimuthally averaged BRDFs, i.e., as a function
of relative azimuth only, so the form of the function is BRDF (θi, θe, Δϕ) (units sr−1) in terms
of quad-averaged radiance in the HydroLight directional discretization (directional segments of
10◦ × 15◦, [19]). The incident and exitant zenith angles are denoted by θi and θe, and only the
relative azimuth angle, Δϕ, is relevant. The 3D model can work directly with the input and output
quad-averaged radiances, where a single run of the model illuminates the canopy with radiance from
a single directional quad, and the full hemisphere of exitant quad-averaged radiances is averaged over
a 5 × 5 grid of points over the canopy (Figure 1k), see Reference [21] for more details. A minimum
of 10 model runs can populate the azimuthally averaged function, one run for each incident zenith
angle quad position, θi (Figure 1i). Here, three runs per zenith angle were conducted with the canopy
rotated by 120◦ each time. Mirror image symmetry was assumed BRDF (θi, θe, Δϕ) = BRDF (θi, θe,
−Δϕ), and the reciprocity condition BRDF (θi, θe, Δϕ) = BRDF (θe, θi, −Δϕ) was checked to ensure
there were no major errors and then enforced. Each value in the final function was the average of
12 values in general, although not all values were independent.

3. Results and Discussion

3.1. Effect of Coral Shape on Nadir View Reflectance

Pseudo-color renderings of the 512 × 512 pixel images used to derive the upward radiance over
the corals are shown in Figure 3. These model outputs are for high resolution 3D models, for one
of the 32 bottom of water column illumination treatments. The RGB images were derived from the
168 band model output by forming the product of the spectrum in each pixel with red, green, and blue
visual tristimulus functions [24]. The surface reflectance for some corals was darker than the substrate
reflectance, e.g., coral 03 (Figure 3), but for most, the coral surface reflectance was lighter. The necessity
of obtaining the reflectance from a horizontal surface area in the hyperspectral image (Figure 1a) may
bias the reflectance compared to the true total surface average, but this is of minor consequence in this
study, since the overall brightness of the reflectance is of secondary importance to the spectral shape.
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Figure 3. High resolution model outputs, as a nadir-view orthogonal projected rendering above each
coral, converted to RGB using the tristimulus functions [24]. Illumination conditions are solar zenith
θs = 50◦, forereef IOPs, depth 1 m. These are the high-resolution models without interstitial IOPs
(activity 1, Table 1). Note: Corals are not shown in the same relative scale, bar is 5 cm.

With respect to the modelled reflectance over the coral area (Figure 1g), for all corals, the spectra
averaged over the coral area had a very similar shape to the coral surface reflectance but was darker
due to shading within the coral structure (Figure 4). The different illumination conditions introduced
some variability in the reflectance but in general, this variability was small and certainly smaller than
the shading effect. Coral 16 had the highest variability in reflectance under different illuminations,
as this coral was a relatively vertical structure with an overall irregular shape when viewed from
above; therefore the level of shading was quite dependent on azimuth angle of the incident light.
Regarding corals shapes that were flatter (e.g., coral 39), or with numerous protrusions (coral 35),
different lighting conditions produced little variation in the average reflectance (Figure 4).The first
useful observation from these results was that in general, the average reflectance over the coral shape
up to 690 nm can be represented by a scaled version of the surface reflectance, where the scaling
factor < 1 effectively introduces shading as a black endmember in a linear mixing model, i.e., the
transformation of surface reflectance R(λ) is of the form R’(λ) = R(λ) × f, where 0 ≤ f ≤ 1 and for a flat
Lambertian surface f = 1. Shading endmembers have been used in mineral applications [26]. For each
coral, a single scaling factor was deduced as the median value of the fit from 400 to 690 nm to each of
the 32 treatments (Table 3, Figure 4). These scaling factors varied from 0.50 (coral 16) to 0.84 (coral 39),
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and for flatter coral shapes, the scaling factor was higher since less shading was introduced. Corals 18
and 31, which were also relatively vertical structures, had scaling factors of 0.59 and 0.54, respectively.
Above 690 nm, the fit to the simple shadow model was not as good, as reflectances over the coral area
tended to be higher (Figure 4). It is likely the reason for this is the very high coral surface reflectance
above 690 nm (Figure 4). A part of the coral surface that is shaded will “see” in its hemispherical field
of view other parts of the coral surface. In wavelengths where the coral surface is highly reflective,
those surrounding surfaces will reflect light to the point in question, and so the shading effect will be
less overall.

Figure 4. Reflectance over coral shape area only (no substrate) at the bottom of the water column with
no interstitial water scattering or attenuation included. Plots show surface reflectance (red), reflectance
over coral area under 32 treatments (grey), surface reflectance scaled by shading factor (black), and %
difference of each treatment from scaled surface reflectance (light blue, right hand y-axis).

In each coral, most of the reflectances under different illumination conditions were within ±20%
of the surface reflectance scaled by the mean shade factor (Figure 4). This shading factor, which in our
data ranges from 0.50 to 0.84, could be of immediate use in approaches that use diffuse reflectance as a
bottom boundary condition, for example, model inversion techniques for image processing [27]. If
basic inputs are surface reflectances, a variable shading factor (effectively a shade endmember) could
be included as an additional parameter to be estimated in the inversion, or fixed at a reasonable value,
e.g., ~0.7, or certainly less than one. A variable factor would not only accommodate the difference
between the coral shapes shown here but would also accommodate the residual error in each coral,
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due to variation under illumination conditions (Figure 4). However, this also points to the importance
of the design of in-situ methodologies used for collection of spectral reflectance data [10,11,28,29].
Protocols which include multiple sampling over benthos will likely include a certain amount of
the shading factor already, but this is scale-dependent, i.e., for small branching corals it may be
completely included, whereas for larger massive morphologies the measurements may be closer to
surface reflectances. Moreover, protocols that use shading or artificial light sources may or may not
include the relevant amount of shading for a remote sensing context. Careful consideration of the
relative scale of measurements in the context of the application is required. From our results, the
maximum error in the brightness of the endmember reflectance, when using a surface scale reflectance
instead of macro-morphology scale, could be a factor of as much as 0.5 (or 2). It may be worthwhile to
consider if spectral libraries should be standardized or normalized in this respect, to either include or
not include the shading factor. With this information, there would be the possibility to apply a post-hoc
factor, at least as a rough estimate (between 0.5 and 0.84 in our data, e.g., ~0.67), or as a species-specific
value (Table 3). Another consideration is that for very high spatial resolution imagery (pixels ≤ 0.5 m),
where benthic structure is at a similar scale to the pixels, shading effects may vary from pixel to pixel,
over for example large massive corals, where the sides and top may be imaged in different pixels.

Table 3. Shading factors for coral area only and coral with surrounding substrate in 50% mix. Final
column shows the maximum difference in the reflectance of any band up to 690 nm, when interstitial
attenuation and scattering is included in the canopy model.

ID Species
Shading Scale Factor

Coral only
Shading Scale Factor 50%

Coral-Substrate Mix
Max Lu/Ed diff. with

Interstitial IOPs (≤690 nm)

Range Median Range Median

03 Montipora capitata 0.71–0.79 0.76 0.83–0.88 0.85 2.6%
08 Porites evermanni 0.57–0.69 0.63 0.68–0.77 0.74 2.8%
10 Porites evermanni 0.71–0.82 0.75 0.75–0.84 0.81 1.6%
11 Montipora capitata 0.75–0.84 0.79 0.80–0.85 0.84 1.0%
12 Porites evermanni 0.71–0.77 0.74 0.79–0.85 0.82 1.7%
16 Porites compressa 0.39–0.66 0.50 0.51–0.64 0.59 3.1%
17 Porites evermanni 0.69–0.75 0.72 0.75–0.79 0.78 1.0%
18 Porites compressa 0.50–0.65 0.54 0.55–0.68 0.65 3.0%
19 Porites evermanni 0.69–0.85 0.77 0.78–0.86 0.83 1.9%
31 Porites compressa 0.54–0.65 0.59 0.64–0.71 0.70 2.8%
32 Montipora capitata 0.72–0.78 0.75 0.79–0.83 0.81 1.2%
33 Porites compressa 0.51–0.74 0.67 0.71–0.81 0.78 2.6%
35 Pocillopora sp. 0.62–0.68 0.66 0.70–0.81 0.74 2.1%
38 Porites evermanni or lutea 0.76–0.88 0.82 0.82–0.87 0.86 1.5%
39 Montipora patula 0.81–0.88 0.84 0.83–0.88 0.87 0.7%
40 Porites evermanni or lutea 0.75–0.79 0.76 0.87–0.89 0.88 1.7%

3.2. Effect of 3D Model Resolution

To determine if the low-resolution 3D coral models were sufficient, the modelling of reflectance
over coral shape area (Figure 1g, results in Figures 3 and 4, and Table 3) was duplicated using the
low-resolution versions of the coral 3D structures (activity 2, Table 1). Across all corals and illumination
treatments, the difference in any band when using the low-resolution 3D models was not greater than
0.51%, apart from coral 16 which had a maximum difference of 1.33%. In most corals, the maximum
difference was less than a third of a per cent (Table 2, final column). Visually the outputs were
very similar (Figure 5). Therefore, in general, using the low-resolution structures made almost no
difference to the reflectance averaged over the coral area, and there seemed little need to continue
using the high-resolution models, which with up to ~100,000 polygons cause the 3D radiative transfer
model to run substantially slower. For this reason, the remaining modelling activities used only the
low-resolution models.
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Figure 5. (a) High-resolution model versus; (b) low-resolution model of coral 35, scale bar is 5 cm.

3.3. Linear Mixing of Reflectance over Coral Shapes and Surrounding Substrate

As with the reflectance over the coral shape only, reflectance over a 50% areal mix of coral and
surrounding substrate was consistently darker than a 50% linear mix of the surface reflectances, but
could be well represented in wavelengths less than 690 nm by a uniformly scaled version of that
linear mix (Figure 6). The shading factor when substrate was included was a consistently higher
value (less shading) than the values over coral shape only, where the median for each coral ranged
from 0.59 (coral 16) to 0.88 (coral 40) (Table 3). Individual values were from 4% to 20% higher than
the corresponding values over the coral area only. This occurred because the flat substrate does not
introduce any shading itself but is shaded by the coral structure (Figure 3). Including surrounding
substrate introduces relatively less shading than would occur within the area of the structure. Therefore,
both in the experimental set-up and the physical world, the shading factor is likely dependent on the
ratio of coral cover to substrate.

The previous suggestion of including a variable black shade endmember in a linear mixing model
for bottom reflectance would seem to be further supported by these findings. The shading factor is
dependent on the areal cover of flat substrate included, and the difference was variable from 4% to 20%.
A-priori inclusion of the shading factor, even by careful collection of in-situ spectra to include shadows,
cannot account for the variability due to structural context. However, again the figures presented here
assume that the basic input reflectances are surface reflectances, where for flat substrates such as sand
or dead coral rock this is likely to be the case, whilst for corals some a-priori inclusion of shading is
likely. The possible range of shading factors would have to be modified accordingly.

Figure 7 shows that median shading factors were a clear function of surface rugosity (coral surface
area divided by projected top-down area) for the reflectance over the coral area only (Figure 7a), and
for coral shape and substrate mixes (Figure 7b). Intuitively, the shading factor should be 1 when
rugosity is 1 (flat surface), and very high rugosities should tend to show some positive shading factor
greater than zero. To express these constraints, a simple two-factor negative exponential model was
fit to the plots in Figure 7, of which y = (1 − A) × (exp[−S × (x − 1)] + A, fit for S (slope) and, A, the
asymptotic shading factor. This function gives a good fit in both cases but is just indicative of the
general shape of the relationship, since the validity of the concept of an asymptotic shading factor
is debatable. The slightly reduced shading effect when flat substrate is included, can be seen in the
smaller magnitude slope (S) of the best-fit line in Figure 7b. Note the surface rugosity value refers only
to the coral shape. If rugosity in Figure 7b were calculated incorporating the flat substrate, the rugosity
values would be lower and the relationship would be closer to Figure 7a. Solar zenith angle of 10◦ vs.
50◦ only had a small effect on the shading factor (Figure 7b), but as expected the effect increased with
higher rugosity. Several factors were relevant to the observed small effect of the solar zenith angle, i.e.,
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due to refraction the corresponding sub-surface zenith angles are less, at approximately 7◦–35◦, and
side-ward illumination reduces the irradiance on some surface facets, but at the same time increases
it on others. Considering Figure 2, produced with θs = 50◦, for most corals, only a small part of the
area is actually visibly in shadow. Those with the most shaded area correspond to those where solar
zenith angle has the most effect, e.g., corals 08, 33, and 35, corresponding to the group with rugosity
~3 in Figure 7b. Overall Figure 7 indicates that rugosity, or equivalently species morphology, can be a
robust indicator of the magnitude of the appropriate shading factor. This is consistent with empirical
studies on BRDFs, which have shown that morphology and shadowing between branches are key
determiners of spectral reflectance [16]. If a variable shading factor could be reliably estimated as a
black endmember contribution in a model inversion image analysis [27], this estimate would carry
information on benthic rugosity and benthic type.

Figure 6. Reflectance over coral structure and surrounding substrate to give a 50% mix in areal cover.
Plots show the coral surface and substrate surface reflectances (thin and thick green lines), and a 50%
linear mix of those reflectances (red), reflectance over the coral and substrate area under 32 treatments
(grey), surface reflectance scaled by shading factor (black), and % difference of each treatment from
scaled surface reflectance (light blue, right hand y-axis).
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Figure 7. Median shading factor as a function of surface rugosity: (a) Over coral area only (Figure 4),
and; (b) over coral area and surrounding substrate in a 50% areal mix (Figure 6) with data separated
into solar zenith angles of 10◦ and 50◦. Lines are of the form y = (1 − A) × exp[−S × (x − 1)] + A and
are the least squares best fit, giving (a) A = 0.51, S = 0.72; (b) A = 0.61, S = 0.61.

3.4. Effect of Interstitial Scattering and Absorption

The difference when including interstitial IOPs (scattering and absorption in the water around and
within the coral shape) in the modelling of reflectance averaged over a 50% mix of coral and substrate
was in general, less than 3% in any band for wavelengths less than 690 nm (Table 3), and for most
coral shapes of the order of 2% or less. This showed that the previous back-of-envelope calculation
that suggested a 4% error at 700 nm, based on absorption over path lengths of 10 cm, was quite
reasonable. Beyond 700 nm, absorption by pure water is high and the discrepancy when omitting
interstitial IOPs became larger, up to 5%. However, in a practical application, unless corals almost
touch the water surface, the absorption in the water column above the canopy will dominate over the
within-canopy effect, so the discrepancies above 690 nm are of minor consequence. The cost of 2% or
3% in accuracy when omitting the interstitial IOPs comes at the advantage, not only of substantially
faster computation in the 3D model, but also the BRDF of the canopy can be decoupled from the IOPs
of the overlying water column. That is, a BRDF can be computed based on coral canopy structure and
surface reflectance, and then the overlying water column can be specified with independently varying
IOPs. Therefore, this answers point 4 in Table 1, and is the strategy that was taken in the BRDF and
water column modelling activities (5 and 6 in Table 1). However, this result is scale dependent and
only holds in this case because the coral structures were small. With larger corals and reef structures,
where the vertical distances can be a meter or more, the effect of interstitial water scattering absorption
is likely a more significant component of the reflectance.

3.5. Canopy Assemblage BRDF Effects

The discussion so far has concentrated on nadir view bottom of water column reflectance over
individual corals under naturalistic light conditions, calculated based on the upward directed radiance
and downward irradiance, i.e., πLu(λ)/Ed(λ). Whilst the previous results were fairly insensitive to
illumination conditions, such as solar zenith angle (Figures 4 and 6), view angle effects were not
considered. Direct use of these results as a bottom boundary requires the assumption of Lambertian
reflectance. As such, they are appropriate for incorporation into models where this assumption is
implicit, for example, in model inversion techniques for image analysis [27]. However, to correctly
model propagation of light through the water column in a physically exact model, such as HydroLight,
the full BRDF of canopy assemblages is required (activities 5 and 6, Table 1).

The BRDF function is calculated using light incident only for a specific direction in an otherwise
black radiance field (Figure 1i), so in the model outputs, shading effects are very apparent (Figure 8).
Visually, Figure 8 may appear to contradict Figure 7b, since shading as a function of incident zenith
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angle in Figure 8 appears stronger than implied by Figure 7b. To reconcile this first note that Figure 7b is
expressed in terms of above-surface solar zenith angles of 10◦ and 50◦, and so most closely corresponds
to Figure 8a,b (sub-surface incident angles of 10◦ and 30◦), Figure 8c is a more extreme example.
Furthermore, Figure 8 arises from unidirectional illumination, whereas Figure 7b arises from a more
diffuse illumination, being the sub-surface propagated solar and sky illumination. A final point is that
the increased shadow from Figure 8a to 8b, although visually very apparent, is probably not more
than 10% of the actual image area, so even under unidirectional illumination it likely would not affect
the shading factor by more than 10%, which is comparable to the differences seen for rugosities ~3 in
Figure 7b.

 

Figure 8. Examples from BRDF generation of canopy using reflectances of deep corals at 74% coral
coverage (D74). Shown as nadir-view (θe = 0◦) orthogonal projected rendering above each canopy,
corresponding to incident radiance from: (a) θi = 10◦; (b) θi = 30◦ and; (c) θi = 50◦, respectively, azimuth
ϕs = 0◦. RGB images are created from hyperspectral data using the tristimulus functions and represent
an area of 30 cm × 30 cm.

One of the densest canopy assemblages, D74 (74% coral cover), also tended to have vertically
higher coral structures and consequentially showed the strongest BRDF effect, with an almost linear
effect of view angle in the incident plane (Δϕ = 0), when incident light was at a 50◦ zenith angle
(Figure 9e). The reflected radiance decreased by a factor of seven when varying the view direction
from almost horizontal in the same direction as the incident light, to horizontally toward the incident
light (Figure 9e). In all canopy assemblages there is a clear hotspot effect [30], where brightness is at
a maximum when the incident and view directions are the same. The BRDFs discussed here were
spatially averaged, and the hot spot occurs because the viewing geometry determines the fraction of
shadowed area detected. When the viewing and incident light directions are the same, shadows are
maximally obscured by the illuminated surfaces. Interestingly, for the canopy structures modelled
here, the hotspot effect is stretched out to larger view angles (Figure 9). This is likely a geometrical
consequence of an increasingly horizontal view onto vertical structures illuminated from the side
(Figure 8).

In all canopy assemblages, there were only small BRDF effects at 90◦ to the incident plane
(Δϕ = 90◦) (Figure 9b,d,f). Typically reflectance decreased slightly as the view angle moved from nadir,
although the pattern was stronger for denser canopies, such as D74 (Figure 9), and even included a
slight increase in reflectance close to horizontal, being a pattern also seen in models of dense seagrass
canopies [21].
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Figure 9. Bidirectional reflectance functions (BRDFs) at 550 nm, of three of the composite coral canopies
for shallow (S, 0–10 m) and deep (D, 10–20 m) corals with areal cover: (a,b) 46%; (c,d) 75%; and (e,f) 74%,
in the incident plane (a, c, e, Δϕ = 0◦) and at 90◦ to the incident plane (b,d,f, Δϕ = 90◦). Arrows show
direction of incident light, each plot shows θi of 10◦, 30◦ and 50◦. Negative view zenith angle for
Δϕ = 0◦ (a,c,e) means backward reflection (source and view point in the same hemisphere). Error bars
are ±1 standard error on 12 values from assumed reciprocity, rotational and mirror symmetries.

3.6. Above-Water BRDF Effects

Canopy BRDFs contributed to the directional pattern in water leaving radiance under naturalistic
sky illumination primarily for dense canopies in shallow, clear water (Figure 10). For the 46% cover
canopy, S46, a slight BRDF effect of increased retro-reflection in the incident plane, leading to effective
propagation of the hotspot effect, was evident for depths less than 5 m with a low sun position, θs = 50◦

(Figure 10a). In deeper waters and at 90◦ to the incident plane Lw, it decreased with increased view
angle (Figure 10b,d,f). In deeper waters over sparser canopies, the water column itself becomes a
contributor to the above water BRDF, where at 10 m depth the BRDF response in the solar plane
(Figure 10a) resembles the response at 90◦ to the solar plane (Figure 10b).
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Figure 10. Modelled influence of three-dimensional coral BRDF effects (from Figure 9) on water-leaving
reflectance (π Lw/Ed) at 550 nm for: (a,b) Composite canopies S46 (46% shallow coral cover) and;
(c,d,e,f) D74 (74% deep coral cover), in the incident plane (a,c,e, Δϕ = 0◦) and at 90◦ to the incident
plane (b,d,f, Δϕ = 90◦). Each plot shows results of incident solar zenith angles of 10◦ (dotted lines) and
50◦ (solid lines), and depths 1, 2, 5, and 10 m. Negative view zenith angle for Δϕ = 0◦ (a,c,e) means
backward reflection (source and view point in the same hemisphere).

Regarding the dense 74% coral cover canopy D74, water-leaving BRDF effects in the incident
plane were quite prominent for both the forereef IOP treatment and the higher scattering lagoon waters
(Figure 10c,e). For example, when the water depth was 1 m, the difference in Lw(550) between a view
zenith angle of 50◦ toward and away from a sun at θs = 50◦ was about a factor of 1.5 (~0.06 vs. ~0.04,
Figure 10c,e); whereas this factor was ~1.2 for view zenith angles at ± 20◦. At 90◦ to the incident plane,
even for dense canopies, BRDF effects are less apparent (Figure 10d,f). It is clear that for these modelled
canopies, the assumption of a Lambertian bottom is primarily violated close to the retro-reflected
(hotspot) direction for large zenith angles (>30◦) but could be a more reasonable assumption under
other solar-view geometries. The difference in nadir view water-leaving reflectance at 550 nm for
canopy D74 at 1 m, for solar zenith angle of 50◦ vs. 10◦, was 18% (Figure 10c,d, ~0.047 vs. ~0.057). This
is equivalent to the variation previously shown in reflectance over individual corals under different
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illumination conditions (Figures 4 and 6), which for some corals was as much as ±20%, but here the
variation was reduced by the water column, to effectively ±9%. Mobley et al. [31] estimated ignoring
non-Lambertian bottom effects would in general, cause errors of less than 10% in remote sensing
reflectance. While not strictly a comparison to a Lambertian bottom assumption, a discrepancy of 18%
implies the potential for larger errors.

To avoid across-swath BRDF effects in airborne imagery, the advice is therefore broadly the same
as for avoiding surface glint [32]; thus flying toward or away from the sun will ensure the cross track
view is at 90◦ to the solar plane, and a solar zenith angle > 30◦ both avoids glint and slightly flattens
the BRDF response (Figure 10d,f).

4. Conclusions

A number of conclusions from this work can be made that relate (1) to using Lambertian bottom
boundary conditions and linear mixing models, and (2) to data collection of reflectances and imagery.
In summary:

• If the input reflectances for different benthic types can be considered ‘pure’ surface reflectances,
then structural complexity implies the introduction of a shading scale factor or a black shade
endmember in mixing models is required. In our data, that shading scale factor could be anywhere
from 0.5 to 0.9, whereas for a genuinely flat substrate it would be 1.0.

• The magnitude of the shading factor is inversely related to surface rugosity; hence the shade
factor value could be set based on the expected bottom types, or if derivable in an image analysis,
it would give additional information on benthic type.

• Nadir viewing reflectance over the bottom (Lu/Ed) for individual corals varies as much as ~20%
(more only in exceptional cases) under the range of light environments found on reefs, under
typical remote sensing conditions.

• Regarding view directions beyond a few 10s of degrees from nadir for dense canopies in
shallow water shading, hotspot effects become relevant, leading to potentially a 50% difference
(factor of 1.5) in above water reflectance. At narrower remote sensing geometries (view zenith
angles < 20◦), differences can be 20% (factor of 1.2).

• For all modelled canopy assemblages, there were only small BRDF effects at a relative viewing
angle of 90◦ to the incident solar plane. The advice for minimizing cross-track BRDF effects
in airborne imagery is therefore consistent with that for minimizing surface glint, i.e., fly in a
direction close to the solar plane with a solar zenith angle greater than 30◦.

• Collection of in-situ spectra of benthic types requires consideration of what level of shading
is already included, or whether the data is close to being a surface reflectance measurement.
However, including shading in field measurements cannot fully accommodate the influence of
canopy interactions, because there are effects at canopy scale involving different benthic types.

• These modelling results provide useful concepts and parameter ranges, which can assist in the
interpretation of empirical data and the development of image processing algorithms.
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Abstract: The bulk backscattering ratio ( ˜bbp) is commonly used as a descriptor of the bulk real
refractive index of the particulate assemblage in natural waters. Based on numerical simulations,
we analyze the impact of modeled structural heterogeneity of phytoplankton cells on ˜bbp. ˜bbp is
modeled considering viruses, heterotrophic bacteria, phytoplankton, organic detritus, and minerals.
Three case studies are defined according to the relative abundance of the components. Two case
studies represent typical situations in open ocean, oligotrophic waters, and phytoplankton bloom.
The third case study is typical of coastal waters with the presence of minerals. Phytoplankton
cells are modeled by a two-layered spherical geometry representing a chloroplast surrounding
the cytoplasm. The ˜bbp values are higher when structural heterogeneity is considered because
the contribution of coated spheres to light backscattering is higher than homogeneous spheres.
The impact of heterogeneity is; however, strongly conditioned by the hyperbolic slope ξ of the particle
size distribution. Even if the relative abundance of phytoplankton is small (<1%), ˜bbp increases by
about 58% (for ξ = 4 and for oligotrophic waters), when the heterogeneity is taken into account,
in comparison with a particulate population composed only of homogeneous spheres. As expected,
heterogeneity has a much smaller impact (about 12% for ξ = 4) on ˜bbp in the presence of suspended
minerals, whose increased light scattering overwhelms that of phytoplankton.

Keywords: ocean optics; backscattering ratio; phytoplankton; coated-sphere model; bulk refractive
index; seawater component

1. Introduction

Seawater constituents (water molecules, suspended particles, dissolved substances, and air
bubbles) impact the propagation of light through absorption and scattering processes. In natural
waters, suspended particulate matter is mostly composed of phytoplankton, heterotrophic organisms,
viruses, biogenic detritus, and mineral particles. Absorbing and scattering characteristics of water
constituents are described by the inherent optical properties (IOP) [1] which do not depend on
the radiance distribution but solely on the concentration and chemical composition of dissolved
organic matter, and the concentration, size distribution and chemical composition of particulate matter.
All IOPs can be defined from the absorption coefficient, a, and the volume scattering function, β.
For instance, the scattering, b, and backscattering, bb, coefficients are obtained from the integration of
β over all scattering angles, and only backward scattering angles, respectively.

Owing to the availability of commercial optical backscattering sensors and flow-through
attenuation and absorption meters, in situ measurements of bulk IOP have now been routinely
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performed for more than two decades. While these measurements allow a better description of the IOP
variability in natural waters, they can also be used as proxies for the estimation of the bulk particulate
matter. For instance, the spectral slope of the particulate beam attenuation coefficient, cp, is tightly
linked to the slope of the particle size distribution (PSD), ξ, assuming a Junge-type distribution of
PSD [2–4]. The particulate backscattering ratio bbp/bp is used to obtain information about the particle
composition. Indeed, based on the Lorentz-Mie scattering calculations that assume marine particles
as homogeneous spheres, an analytical relationship between bbp/bp, ξ and ñr was generated [5].
This latter equation is used in conjunction with in situ measurements of bbp, bp, and cp to describe the
variability of the physical nature (i.e., refractive index) of the bulk particulate matter in oceanic and
coastal environments [6–10].

In the past, many theoretical and experimental studies, mainly dedicated to phytoplankton,
showed that while the absorption, attenuation and total scattering of algal cells are correctly described
using the homogeneous sphere model, such model is less appropriate for simulating backscatter.
Indeed, the structural heterogeneity and inner complexity of phytoplankton cells (gas vacuoles,
chloroplast, silica wall, etc.) explain why the measured backscattering signal is higher than predicted by
the Lorentz-Mie theory for homogeneous spheres [11–20]. The underestimation of bbp by homogeneous
spheres may explain the fact that in situ observations of backscattering are significantly higher than
theoretical simulations [21–23].

In this paper, we examine the impact of particle structural heterogeneity on the bulk backscattering
ratio for realistic combinations of optically significant constituents. The purpose of our study is not
to provide a new analytical relationship for bbp/bp as a function of ñr and ξ but rather to assess the
sensitivity of bbp/bp to the modeled structural heterogeneity of phytoplankton cells for some realistic
water bodies. Typical phytoplankton bloom and no bloom conditions, as defined in Stramski and
Kiefer [24], will first be examined. Then, the last case study will account for the presence of mineral
particles, which have a great effect on the scattering properties.

Because the bulk scattering (b) and backscattering (bb) coefficients of a water body result from
additive contributions of all individual constituents that scatter light, we will consider various
sub-populations of marine particles, namely organic detritus, minerals, heterotrophic bacteria, viruses,
and phytoplankton. Robertson Lain et al. [23] showed that the two-layered sphere model is appropriate
for modeling of remote-sensing reflectance and IOPs in high biomass Case 1 waters. The real refractive
index of the chloroplast and the relative volume of the chloroplast are key parameters impacting the
backscattering efficiency of phytoplankton cells. This was recently confirmed by two studies where
measurements of light scattering by phytoplankton cultures were well reproduced by the two-sphere
model [15,16]. For these reasons, in this study, phytoplankton optical properties have been simulated
considering a two-layered sphere model. The size range of the different considered particles (viruses,
bacteria, phytoplankton, and organic detritus), as well as their real and imaginary refractive index
values are defined from literature [21,25].

To establish the foundations of the present study, the different theoretical considerations
as well as the two different numerical codes used for the calculations are first presented. Then,
we describe the different sub-populations of particles and their associated size distribution, refractive
index, and internal structure used to simulate their optical properties. The impact of the modeled
structural heterogeneity of phytoplankton cells is then discussed for the three realistic water bodies as
mentioned previously.

2. Theoretical Considerations

2.1. Backscattering Cross Section for Polydisperse Particle Assemblages

Light scattering is produced by the presence of an object (such as a particle) with a refractive index
different from that of the surrounding medium. The refractive index is expressed in complex form as
n(λ) = nr(λ) + i ni(λ), where λ is the wavelength of the radiation in vacuum in units of nm. The real
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part determines the phase velocity of the propagating wave and the imaginary part accounts for the
absorption. Please note that the refractive index is a relative value dependent upon the surrounding
medium, i.e., relative to the refractive index of the medium. The single scattering process by a particle
is described by the scattering cross section Csca(D, λ) (units m2) and the scattering phase function
F̃(D, θ, λ) (dimensionless) as defined by Mishchenko et al. [26] (Equations (4.51)–(4.53), pp. 100–101):

1
2

∫ π

0
F̃(D, λ, θ) sinθ dθ = 1 (1)

As particles are here assumed to be spherical, F̃ depends only on the particle diameter D, the scattering
angle θ within the arbitrary azimuthal plane of scattering, and the wavelength λ. In the following, λ is
omitted for brevity. To account for polydisperse particulate assemblages, the particle size distribution
(PSD) is defined. For the present study, we adopt a power-law PSD (also named the Junge-like
PSD) which is commonly used to represent the size distribution of marine particles in natural
waters [5,24,27,28]. The ensemble-average normalized phase function is:

F̃(θ) =
∫ Dmax

Dmin

F̃(D, θ)× A D−ξ dD (2)

where Dmin and Dmax define the particle diameter range, ξ is the hyperbolic slope of PSD, and A D−ξ

(units, μm−1) is the relative differential particle size distribution. As in many theoretical studies, the
relative PSD is normalized such that the integral over the entire size range is unity. It follows that F̃(θ)
represents the average normalized phase function per particle. Equation (2) can be written for the
scattering cross section replacing F̃(D, θ) with Csca(D) and F̃(θ) with Csca. The backscattering cross
section of the polydisperse assemblage is defined as:

Cbb
sca =

Csca

2

∫ π

π/2
F̃(θ) sinθ dθ (3)

It can be easily seen from Equations (1)–(3) that the integration of F̃(θ) between 0 and π gives Csca,
the scattering cross section of the polydisperse population. Many numerical codes (including those
described in Section 3) use the normalized phase function F̃(θ) to describe the angular distribution
of the scattered radiation. However, in hydrologic optics, the volume scattering function (VSF),
β̃(θ) (m−1 sr−1), is more commonly used instead of F̃(θ) [29]. The relationship between β̃(θ) and
F̃(θ) is:

β̃(θ) =
N Csca

4π
F̃(θ) (4)

with N the number of particles per cubic meter.

2.2. The Bulk Backscattering Ratio

Marine particles are divided into five different categories: viruses (VIR), heterotrophic bacteria
(BAC), phytoplankton (PHY), organic detritus (DET), and minerals (MIN). Table 1 displays the size
ranges and the refractive indices of the different components as defined by previous studies [21,24,25].
The ensemble-average values of F̃j(θ), Csca,j, and Cbb

sca,j are computed from Equations (1)–(3) for each
particulate component j.
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Table 1. Summary of the seawater constituents.

Component (j) Sphere Model Dmin-Dmax (μm) nr ni

Viruses homogeneous 0.03–0.2 1.05 0
Heterotrophic bacteria homogeneous 0.2–2 1.05 1.0 × 10−4

Phytoplankton cells two or three-layered 0.3–40 1.044 * 1.5 × 10−3 *
Organic detritus homogeneous 0.05–500 1.04 2.3 × 10−5

Minerals homogeneous 0.05–500 1.18 1.0 × 10−4

* the values represent the equivalent refractive indices (Equation (12)). The refractive indices of the spheres
representing the chloroplast and cytoplast are described in Table 2. λ = 532 nm.

The total normalized phase function and total scattering cross section of the water body are
obtained as in Mishchenko et al., 2002 (Equations (4.74) p. 102 and (3.13) p. 71 ):

F̃tot(θ) =

5
∑

j=1
Nj Csca,j F̃j(θ)

5
∑

j=1
Nj Csca,j

(5)

Cbb, tot
sca =

5

∑
j=1

Nj Cbb
sca,j (6)

where Nj is the relative concentration (i.e., the relative number of particles per unit volume of water)
of the considered component. Ctot

sca is defined by replacing Cbb
sca,j with Csca,j in Equation (6).

The total (i.e., bulk) backscattering coefficient (bbp) (units m−1) of the water body is the sum of
the relevant bbp,j associated with each jth group. bbp,j is equal to the polydisperse Cbb

sca,j weighted by
the particle concentration of the jth group:

bbp =
5

∑
j=1

bbp,j = NTOT × Cbb, tot
sca (7)

with NTOT the total particle concentration (particles per m3) in the water body. Similarly, bp is defined
from Equation (7) by replacing bbp with bp and Cbb, tot

sca with Ctot
sca. The bulk backscattering ratio ˜bbp is

the dimensionless ratio:
˜bbp =

bbp

bp
(8)

In this study, we will use the bulk particulate real refractive index (ñr), which reproduces the bulk
scattering properties of a water body. It represents the mean refractive index weighted by the scattering
cross sections of all the particles:

ñr =

5
∑

j=1
nr,j × Nj Csca,j

5
∑

j=1
Nj Csca,j

(9)

Similarly, the bulk imaginary refractive index (ñi) is defined as follows:

ñi =

5
∑

j=1
ni,j × Nj Cabs,j

5
∑

j=1
Nj Cabs,j

(10)

where Cabs,j is the absorption cross section of particles.
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Table 2. Refractive index (nr(chlp) + i ni(chlp)) of the sphere representing the chloroplast for two
morphological models. The refractive index of the sphere representing the cytoplast is constant
(1.02 + i 1.336 × 10−4). The equivalent refractive index of the cell is 1.044 + i 1.5 × 10−3.

Model * 80%–20% 70%–30% 80%–18.5%–1.5%
(%cyt-%chlp)

nr 1.140 1.100 1.144
ni 6.966 × 10−3 4.688 × 10−3 7.531 × 10−3

* The percentages represent the relative volume of the model cytoplasm and chloroplast.

2.3. The Scattering Coefficient as Measured by In Situ Transmissometers

In field measurements, bp is derived from the total absorption and beam attenuation coefficients
(a and c, respectively) as measured by instruments such as WETLabs ac9 and its later variants.
Any detector has a finite field of view (FOV), therefore beam transmissometers are defined by
their acceptance angle θacceptance, which differs from 0o. If we want to compare, in a future study,
our theoretical results to available in situ measurements, bp must be derived from the scattering cross
section, rebuilt from the normalized phase function integrated between θacceptance and π instead of 0
and π [30]. To make a distinction, when Csca is calculated by integrating the scattering function between

θacceptance and π, the symbols Cθa
sca, bθa

p and b̃θa
bp (= bbp/bθa

p ) will be used. As in Twardowski et al. [5],
we set the acceptance angle to 1o, which is consistent with acceptance angles of commercially
available beam transmissometers such as the WETLabs C-Star (1.2o) or WETLabs ac9 (0.93o) ([30] and
references therein).

3. Numerical Modeling of the Marine Particle Scattering

The Meerhoff Mie program version 3.0 [31] and the ScattnLay code [32,33] are used to simulate the
scattering and absorbing properties of homogeneous and multilayered spheres, respectively. Radiative
transfer computations are carried out given the wavelength of the incident radiation equal to 532 nm
and the refractive index of sea water equal to 1.34. The Meerhoff Mie program allows simulations of
a polydisperse ensemble of spheres with a large choice of PSD. The outputs are the ensemble-average
quantities per particle F̃(θ), Csca and Cbb

sca (Equations (2) and (3)). The ScattnLay code performs
computations only for monodisperse particles. To obtain the normalized phase function and cross
sections for a polydisperse population, a numerical integration over the size range must be done
separately (Figure 1, NoS2). Particular attention must be paid to the integration step to guarantee the
accuracy of the numerical integration.

The Meerhoff Mie program is used to generate a first dataset named DS1 based on computations
for homogeneous spheres for the same case studies as in Twardowski et al. [5]. nr ranges from 1.02
to 1.2 (with a 0.2 increment), ni is set to 0.005, Dmin = 0.012 μm, Dmax = 152 μm, and ξ is between 2.5
and 5. Please note that Twardowski et al. [5] did not mix different particle components with different

refractive indices, as they studied b̃θa
bp for a polydisperse population of particles having the same

refractive index. In this case, Equations (5)–(7) are not useful as b̃θa
bp is directly related to Cbb

sca/Cθa
sca.
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Figure 1. Flow chart of the integration procedure applied to the MIE and ScattnLay outputs.

In the second dataset (named DS2), a distinction is made between VIR, BAC, PHY, DET,
and MIN in terms of internal structure, refractive index, and size range. The scattering properties of
phytoplankton cells are modeled using the two-layered sphere model as in Robertson Lain et al. [23].
These investigators showed that a chloroplast layer (chlp) surrounding the cytoplasm (cyt) is an optimal
morphology to simulate optical properties of algal cells. Based on their study, the value of the real part
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of the refractive index of the sphere representing the cytoplasm is fixed to 1.02, and the value of the
imaginary part at 532 nm is 1.336 × 10−4 [23]:

ni(cyt, 532 nm) = ni(cyt, 400 nm)× exp[−0.01 × (532 − 400)] (11)

with ni(cyt, 400 nm) = 0.0005. Concerning the sphere representing the chloroplast, n(chlp) is calculated
according to the Gladstone and Dale formula [34]:

∑
k

nk × ϑk = nequ, (12)

where nk and ϑk are the complex refractive index and the relative volume of the k-th layer, and nequ is
the complex equivalent refractive index of the whole particle. The knowledge of the complex equivalent
refractive index is useful to compare the simulations of heterogeneous spheres among themselves,
regardless of the number of layers and the relative proportion of each layer. The complex equivalent
refractive index is kept constant (nequ = 1.044 + i 1.5 × 10−3). The refractive index of the sphere
representing the chloroplast is described in Table 2 according to the relative volume of the modeled
chloroplast (20% or 30%). We also tested a three-layered sphere model. The outer layer represents
the cell membrane. We assumed that the cell membrane is non-absorbing and have a nr = 1.09 [13].
The second layer represents the chloroplast and the third layer the cytoplasm. The values of nr and
ni for the cytoplasm are identical to nr and ni for the two-layered sphere. The values of nr and ni
for the chloroplast are adjusted according to Equation (12) to keep the complex equivalent refractive
index of the cell constant (Table 2). The relative volumes are 1.5%, 18.5% and 80% for the modeled cell
membrane, chloroplast, and cytoplasm, respectively.

In DS2, multilayered sphere models are not implemented for viruses, heterotrophic bacteria,
organic detritus, and minerals because of the paucity of relevant information about their optical and
morphometrical properties. As we cannot gather enough accurate information about the internal
structure of such particles, the homogeneous sphere model is used. The suitable nr and ni values for
viruses, heterotrophic bacteria, organic detritus, and minerals are obtained from [25] (Table 1).

4. Abundance of the Various Particulate Components

The relative concentrations Nj associated with each particle group are chosen to realistically
represent the mix of marine components and to ensure that the overall size distribution matches the
Junge power law (Tables 3–5 and Figure 2).

In situ laser diffraction measurements of the PSD in different oceanic regions showed that the size
distribution of marine particles can be approximated by the Junge-like power law [35–37]. As discussed
by Reynolds et al. [36], the power law with a single slope is a convenient empirical descriptor of the
PSD, but we have to keep in mind that, in some cases (e.g., in nearshore waters and in the presence
of specific populations of phytoplankton) the particle size distribution deviates from the Junge-like
power law [36–38]. Relatively steep hyperbolic slopes (around 4) are encountered in open ocean waters,
whereas less steep slopes (around 3.3) are characteristic of phytoplankton bloom and/or production
of particle aggregates. In the present study, results are discussed for ξ = 3, 3.5, and 4 as the vast
majority of hyperbolic slopes are in this range (Figure 11 in [36,37]). Results are shown also for ξ

= 2.5 and 5 but hyperbolic slopes greater than 4 are much less likely to occur. Likewise, ξ < 3 are
rare excepted when there is biological growth in the relatively large size classes and/or aggregation.
To compare with typical particulate abundances estimated in natural waters, a total abundance (NTOT)
of 1.1262 ×1014 particles per m3 is considered to be in Stramski et al. [25]. Three case studies are
defined. The first one represents oligotrophic-like waters with no phytoplankton bloom and no-mineral
particles: the phytoplankton abundance (NPHY) spans from 1.1 × 109 (for ξ = 4.9) to 4.6 × 1011 (for ξ =
2.5) particles per m3 (0.001%–0.41% of NTOT). The second one represents waters with a phytoplankton
bloom and no minerals, where NPHY is higher as compared to the oligotrophic-like case: NPHY ranges
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between 8.3 × 109 (for ξ = 4.9) and 2.3 × 1012 (for ξ = 2.5) particles per m3 (0.007%–2% of NTOT).
The third one represents coastal-like waters with minerals and no bloom conditions: minerals are
added proportionally to obtain a bulk real refractive index ñr around 1.1. The mineral abundance
(NMIN) spans from 4.8 × 1012 (for ξ = 4.9) to 1.3 × 1013 (for ξ = 2.5) particles per m3 (4.2%–11.7%
of NTOT).

The abundances of the different particle components can be directly compared to the abundances
provided in Stramski et al. [25] as NTOT is identical. In Stramski et al. [25], ξ = 4, so comparisons
are possible only for this value (Table 6). We note that NPHY is of the same order of magnitude.
Stramski et al. [25] have higher concentrations of DET and MIN and lower concentrations of VIR and
BAC. In their paper, the authors explained that the concentrations of DET and MIN were chosen to
obtain realistic contributions of detrital and mineral absorption. However, they cautioned against
attaching particular significance to their selected DET and MIN concentrations in the context of how
well these values can represent realistic concentrations in specific oceanic water bodies. The abundances
of viruses and bacteria (NVIR and NBAC), used in this study, agree with the Stramski and Kiefer
values [24]. Stramski and Kiefer [24] (Table 1 in their paper) used NVIR between 3.0 × 109 and 4.6 × 1014

particles per m3, NBAC between 3.0 × 1011 and 1.5 × 1012 particles per m3. Middleboe and Brussard,
2017 [39] confirmed that viral abundance can reach up to 1014 particles per m3. For phytoplankton,
Stramski and Kiefer made a distinction between prochlorophytes, cyanobacteria, ultrananoplankton,
larger nanoplankton, and microplankton. Over these different phytoplankton groups, NPHY ranges
between 1.0 × 1011 for picoplankton to 3.0 × 105 for microplankton. They used NPHY ≥ 5 × 1011

particles per m3 when there is a bloom of phototrophic picoplankton.

Table 3. Relative abundance of viruses (VIR), bacteria (BAC), phytoplankton (PHY), and organic
detritus (DET) with the corresponding bulk refractive index (Equations (9) and (10)) for the water body
with no bloom conditions and no minerals (oligotrophic-like).

Relative Abundance Nj (%)

ξ ñr ñi VIR BAC PHY DET

2.5 1.040 4.280 × 10−4 78.85 5.349 0.4059 15.39
3 1.042 7.570 × 10−4 84.74 2.120 0.1002 13.04

3.5 1.043 1.034 × 10−3 88.50 0.8244 0.0281 10.64
4 1.045 9.931 × 10−4 91.15 0.3178 0.0084 8.528

4.9 1.047 6.718 × 10−4 94.35 5.651 × 10−2 0.0010 5.588

Table 4. Relative abundance of viruses (VIR), bacteria (BAC), phytoplankton (PHY), and organic
detritus (DET) with the corresponding bulk refractive index (Equations (9) and (10)) for the water body
with phytoplankton bloom conditions and no minerals (phytoplankton bloom).

Relative Abundance Nj (%)

ξ ñr ñi VIR BAC PHY DET

2.5 1.041 6.195 × 10−4 51.96 3.760 1.995 42.29
3 1.041 1.048 × 10−3 61.91 1.599 0.6165 35.88

3.5 1.042 1.313 × 10−3 69.84 0.6575 0.1922 29.31
4 1.043 1.362 × 10−3 76.18 0.2650 0.0600 23.49

4.9 1.044 1.194 × 10−3 84.55 0.0499 7.367 × 10−3 15.40

338



Appl. Sci. 2018, 8, 2689

Table 5. Relative abundance of viruses (VIR), bacteria (BAC), phytoplankton (PHY), and organic
detritus (DET) with the corresponding bulk refractive index (Equations (9) and (10)) for waters with
minerals and no bloom conditions (coastal-like).

Relative Abundance Nj (%)

ξ ñr ñi VIR BAC PHY DET MIN

2.5 1.103 7.322 × 10−4 70.96 5.311 3.650 × 10−1 11.68 11.68
3 1.108 9.361 × 10−4 78.04 2.105 8.801 × 10−2 9.882 9.882

3.5 1.119 6.253 × 10−4 83.03 0.819 2.391 × 10−2 8.066 8.066
4 1.131 1.376 × 10−4 86.75 0.3155 6.902 × 10−3 6.462 6.462

4.9 1.145 9.794 × 10−6 91.47 5.607 × 10−2 7.782 × 10−4 4.23 4.23

Table 6. Comparisons between abundances defined in the present study and abundances defined by
Stramski et al. [25]. The hyperbolic slope ξ is 4 and NTOT is 1.1262 × 1014 particles per m3.

Abundance (Particles per m3)

Case Study VIR BAC PHY DET MIN

Oligotrophic-like 1.0265 × 1014 3.5796 × 1011 9.4680 × 109 9.6046 × 1012 0
Phytoplankton bloom 8.5799 × 1013 2.9846 × 1011 6.7587 × 1010 2.6455 × 1013 0

Coastal-like 9.7702 × 1013 3.5536 × 1011 7.7733 × 109 7.2774 × 1012 7.2774 × 1012

Stramski et al. [25] 2.5000 × 1012 1.0000 × 1011 2.4759 × 1010 8.2500 × 1013 2.7500 × 1013
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Figure 2. Composite PSD as derived from individual PSDs of the five considered particle groups for (a)
the oligotrophic-like water body and (b) the phytoplankton bloom water body. NTOT = 1.1262 × 1014

particles per m3 and ξ = 4.

An indication of the total chlorophyll-a concentration is given for the oligotrophic-like,
phytoplankton bloom, and coastal-like case studies. For that purpose, we considered the median
intracellular chlorophyll-a values given in Brotas et al. [40]. These authors used Brewin et al. model [41]
to calculate the fractional contributions of pico, nano, and microplankton to total phytoplankton
chlorophyll biomass. Then, they derived the intracellular chlorophyll-a per cell for each size class
from the results of cell enumeration (microscope counts and flow cytometry) and the chlorophyll-a
concentration for that size class given by the Brewin et al. model. The computed median intracellular
chlorophyll-a values were 0.004, 0.224, and 26.78 pg Chla cell−1 for pico, nano, and microplankton,
respectively. In our study, we multiplied the corresponding intracellular chlorophyll-a content by
the numerical abundance of pico-, nano-, and micro-plankton as derived from the PSD and we
summed the chlorophyll-a concentration per class to obtain the total chlorophyll-a concentration
([Chla], units mg m−3) (Table 7).

339



Appl. Sci. 2018, 8, 2689

Table 7. Total chlorophyll-a concentration for the three case studies.

Oligotrophic-Like Phytoplankton Bloom Coastal-Like

ξ [Chla] [Chla] [Chla]

3 8.35 11.51 7.497
3.5 0.773 1.580 0.6889
4 0.102 0.341 0.0884

The chlorophyll-a concentration (mg m−3) is estimated, as an indication, using the relative abundance of
phytoplankton cells described in Tables 3–5 and considering NTOT is 1.1262 × 1014 particles per m3.

We emphasize that total chlorophyll-a concentrations are given as an indication as they depend
on the abundance of phytoplankton, which in turn depends on NTOT and ξ. For the oligotrophic-like
case study, [Chla] ranges from 0.10 for ξ = 4 to 8.4 mg m−3 for ξ = 3. However, in oligotrophic waters,
in situ measurements of PSD showed that ξ values are around 4. For ξ between 3.5 and 4, [Chla] is less
than 1 mg m−3, which is typical [Chla] in oligotrophic waters. In bloom conditions, the hyperbolic
slope can be less than 4. For example, Buonassissi and Dierssen [35] found ξ around 3.3 in bloom
conditions. For ξ = 3.3, we found [Chla] of 1.92 mg m−3. For the coastal case study, [Chla] is low
as compared to in situ [Chla] values in coastal areas. This is because we considered a high load of
minerals as compared to phytoplankton abundance.

5. Results

5.1. Accuracy of Numerical Computations

A numerical integration over θ is required to derive bθa
p and bbp from the normalized phase

function (Section 2). Due to the sharp increase of the normalized phase function in the forward
scattering directions (Figure 3), the selection of the relevant angular step for the numerical integration

is crucial. For that purpose, the impact of angular step (Δθ) on the calculation of b̃θa
p is studied using

Lorentz-Mie simulations in DS1 (Figure 1, NoM2, M3). The normalized phase function of polydisperse
particles F̃(θ) exhibits a maximum around θ = 0o [26]. For small ξ value, that is when the proportion
of large-sized particles compared to smaller particles increases, the forward peak is sharper. Indeed,
for particles with a large diameter as compared to the wavelength, F̃(D, θ) displays a sharp forward
peak [26] due the concentration of light near θ = 0o caused by diffraction. The presence of the peak
in F̃(θ) requires several integration points large enough to provide the desired numerical accuracy.
The numerical integration over θ (Figure 1, NoM2) is performed using the “Trapz” function from the
Numpy package with Python. The “Trapz” function performs an integration along the given axis
using the composite trapezoidal rule. To test the accuracy of the integration and to find the correct
integration step, Δθ, we compare the result of the numerical integration of F̃(θ) between 0 and π

to its theoretical value (=2) (Figure 1, NoM3). When Δθ = 0.05o, corresponding to a total number of
integration steps (Nθ) of 3600, the numerical integration value of F̃(θ) is in the range [1.999–2.000]
for small ξ. For larger ξ, it is in the range [1.800–1.999]. When the value of the numerical integration
is in the range [1.800–1.999], a renormalization factor is applied to F̃(θ) to ensure that the result of
the numerical integration is exactly 2. We could also increase the number of integration points, but it
would increase the computation time. Using a renormalization factor for large ξ is a good compromise
to guarantee the accuracy and save computation time.

For two-layered spheres (i.e., phytoplankton cells), the ScattnLay code provides only normalized
phase functions for monodisperse particles (Figure 1, NoS1), so the numerical integration over the
particle diameter range (Equation (2)) is realized as a separate calculation with the Python “Trapz”
function (Figure 1, NoS2). For monodisperse particles, the normalized phase function displays
a forward peak as explained above but can also display a sequence of maxima and minima due
to interference and resonance features [26,42]. The frequency of the maxima and minima over the
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range of θ increases with both increasing nr and size parameter (=π D/λ). To test the accuracy of
the numerical integration over the particle diameter range (Figure 1, NoS3), we ran the ScattnLay
code for DS1 case studies and compared F̃(θ) and Csca rebuilt from Equation (2) with Lorentz-Mie
computations as the Lorentz-Mie code provides the polydisperse phase functions and cross section
as outputs (Figure 1, NoM1). Note that even a narrow polydispersion washes out the interference
and resonance features, which explains why most natural particulate assemblages do not exhibit such
patterns [26,42] (Figure 3). A perfect match is obtained between the ScattnLay-rebuilt-polydisperse
and Lorentz-Mie-polydisperse F̃(θ) and Csca values when the integration step (ΔD) is set to 0.01 μm
for D in the range [0.03, 2 μm]; 0.1 μm for D in the range [2, 20 μm]; 2.0 μm for D in the range [20,
200 μm]; and 10.0 μm for D in the range [200, 500 μm].
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Figure 3. Interference and resonance features observed for the scattering phase function of
monodisperse particles (light green). The major low-frequency maxima and minima are called the
“interference structure”. The high-frequency ripples are resonance features. The interference and
resonance feature are washed out for a polydisperse assemblage of particles (dark green).

Using the DS1 data set, the impact of the angular integration on the backscattering ratio b̃θa
bp is

examined as a function of the hyperbolic slope ξ for different values of the real refractive index and
two values of total angular steps (i.e., Nθ = 750 and 3600) (Figure 4). The impact of the integration is
noticeable only for ξ values lower than about 3 and relatively high nr values. When the number of
angular steps increases, the curves become flatter at low ξ values. Differences in the curve shape are
reduced if we increase the angular step. For Δθ = 0.24o (Nθ = 750), the present results of the Lorentz-Mie
calculations (solid lines in Figure 4) perfectly match those previously obtained by Twardowski et al. [5]
(not shown). However, in this case (Nθ = 750), the numerical integration is not accurate enough
as the integration of Equation (1) gives values between 1.999 (ξ = 4.9) and 1.04 (ξ = 2.5). In the
following, Δθ is set to 0.05o (Nθ = 3600) and Figure 4 (dashed lines) will be the reference figure for
homogeneous spheres.
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Figure 4. Results of Lorentz-Mie calculations (DS1) of the particulate backscattering ratio b̃θa
bp as

a function of the hyperbolic slope, ξ, and different values of nr and Nθ . The imaginary part of the
refractive index = 0.005 as in Twardowski et al. [5]. This figure can be compared to Figure 1 in
Twardowski et al. [5].

5.2. Impact of the Structural Heterogeneity of Phytoplankton Cells on the Bulk Particulate Backscattering Ratio

The impact of phytoplankton cell structural heterogeneity on b̃θa
bp is examined as a function of ξ

for the three previously described water bodies (oligotrophic-like, phytoplankton bloom, coastal-like)
considering the 80%–20% phytoplankton morphological model (Figure 5a). The real and imaginary
bulk refractive indices for oligotrophic-like, phytoplankton bloom, and coastal-like case studies, vary
with ξ as the relative proportions of the different particle components, having different nr and ni,
vary with ξ (Tables 1–5 and Figure 5b,c). For the no-mineral water bodies (oligotrophic-like and
phytoplankton bloom), ñr stays around 1.04 ± 0.007 (Figure 5b). In contrast, ñi shows large variation
with ξ for both oligotrophic-like and phytoplankton bloom water bodies (Figure 5c). In bloom
conditions, ñi increases as the relative proportion of phytoplankton increases as compared to the no
bloom conditions. In agreement with typical values of the oceanic bulk imaginary refractive index [43],
the ñi values for the particulate populations considered here are always lower than 0.002. In the
presence of mineral particles (coastal-like), ñr increases as MIN have a higher nr than VIR, BAC,
PHY and DET. Its values are between 1.103 (ξ = 2.5) and 1.145 (ξ = 4.9). Values of ñi vary between
9.79 × 10−6 and 9.44 × 10−4.

The impact of the structural heterogeneity of phytoplankton cells is evaluated by comparison
with Lorentz-Mie calculations (particulate assemblages composed of homogeneous spheres only,
regardless of the particle group) performed for low and high bulk refractive index. These case
studies with homogeneous spheres only are named “Homogeneous reference cases”. The real and
imaginary values of the bulk refractive indices are 1.045 and 9.93 × 10−4 for the “Homogeneous
reference case 1”, 1.043 and 1.36 × 10−3 for the “Homogeneous reference case 2”, and 1.131 and
1.37 × 10−4 for the “Homogeneous reference case 3”, respectively (Figure 5b,c). These values
of ñr and ñi were chosen to be equal to values of ñr and ñi obtained for the oligotrophic-like,
phytoplankton bloom, and the coastal-like case study when ξ = 4. “Homogeneous reference cases 1
and 2” with low ñr represent phytoplankton-dominated Case 1 waters and are compared with the
oligotrophic-like and phytoplankton bloom water body, respectively. “Homogeneous reference case
3” with high ñr represents mineral-dominated Case 2 waters and is compared with the coastal-like

water body. The variation of b̃θa
bp due to structural heterogeneity of phytoplankton cells is evaluated

using the relative absolute difference calculated between the homogeneous reference cases (named
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x in Equation (13)) and oligotrophic, phytoplankton bloom or coastal-like water bodies (named y in
Equation (13)):

Δε =
|x − y|
(x + y)

× 200 (%) (13)
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Figure 5. (a) Particulate backscattering ratio b̃θa
bp as a function of the hyperbolic slope for the oligotrophic-like

(red dashed line), phytoplankton bloom (green dashed line), and coastal-like (brown dashed line) water
bodies as described in Section 4. Black and gray lines are for homogeneous reference cases. The gray solid
line corresponds to nr = 1.045, ni = 9.93 × 10−4, the black dashed line to nr = 1.1043, ni = 1.36 × 10−3, and the
black solid line to nr = 1.131, ni = 1.37 × 10−4, respectively. Phytoplankton cells are modeled as two-layered
spheres with a relative volume of the cytoplasm of 20% (%cyt-%chl = 80–20). (b) as in panel (a) but for the
real refractive index. (c) as in panel (a) but for the imaginary part of the refractive index.
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Even if the numerical relative abundance of phytoplankton is very small for the oligotrophic-like

water body (=8.4 × 10−3%), the structural heterogeneity increases the b̃θa
bp value by 58% compared to the

homogeneous case (“Homogeneous reference case 1”). This is consistent with previous studies showing
the large contribution of coated spheres to the backscattering signal [15,16,18,19,22,44]. The value of
Δε calculated between the oligotrophic-like and phytoplankton bloom water bodies is smaller (=22%
at ξ = 4) even if ñi is different (9.93 × 10−4 for oligotrophic-like against 1.36 × 10−3 for phytoplankton
bloom). This latter pattern provides evidence that the structural heterogeneity (coated-sphere model)
has a greater impact on the particulate backscattering ratio than the tested increase in the bulk
imaginary refractive index. The relative absolute differences between the phytoplankton bloom and
“Homogeneous reference case 2” is 41%. When mineral particles are taken into account, Δε is 12%
between the “Homogeneous reference case 3” and the coastal-like water body. This smaller difference
is because phytoplankton have a smaller impact on the bulk scattering when highly scattering particles
such as minerals are added.

The impact of the relative volume of the cytoplasm on b̃θa
bp is now evaluated by comparing the

change of b̃θa
bp as a function of ξ for the 80%–20% and 70%–30% models for the oligotrophic-like and

phytoplankton bloom water bodies (Figure 6). The mean relative difference in b̃θa
bp is about 5.41% with

a maximum value of 11.5 % (ξ = 3) for oligotrophic-like case study. In bloom conditions, the mean
relative difference reaches 13.0% with a maximum value of 23.5% (ξ = 3.2). Figure 7 compares simulated

b̃θa
bp when phytoplankton cells are modeled as two-layered spheres (80%–20%) or three-layered spheres

(80%–18.5%–1.5%). For the oligotrophic-like waters, relative absolute differences are small. They
range between 0.0174% and 1.81% with a mean value of 0.444%. For phytoplankton bloom case study,
they are between 9.84 × 10−3 and 2.86% with a mean value of 0.894%.

Regardless of the morphological model used to optically simulate phytoplankton cells, the b̃θa
bp

reaches an asymptote when ξ decreases for phytoplankton bloom water bodies (b̃θa
bp = 0.005 for ξ = 3.5 and

0.004 for ξ = 2.5). The value of the asymptote is consistent with previous observations [5], which showed
the lowest backscattering ratio (about 0.005) in waters with high chlorophyll-a concentration.

The contribution of the different particle groups to the backscattering ratio is presented in Figure 8
for the 80%–20% model and ξ = 4. For coastal-like waters, the minerals contribute more than 80% of

the total b̃θa
bp, whereas they contribute only 6.5% to the total particulate abundance. This percentage

agrees with the results of Stramski et al. [25] (Figure 12 in their paper). Such high contribution
to backscattering is due to the high real refractive index of minerals. As in Stramski et al. [25],
these results show the important role of minerals even when they are less abundant than organic
living and non-living particles. In oligotrophic-like waters, the contribution of heterotrophic bacteria
ranges from a few to about 30% with a maximum for ξ between 3.5 and 4, which agrees with Stramski
and Kiefer [24]. The contribution of viruses is quite high, about 40–60% for ξ between 4 and 5.
This high contribution is explained by the extreme value of viral abundance (around 1 × 1014 particles
per cubic meter) used in this study [24]. As for bacteria, the contribution of phytoplankton ranges
between a few and 30% with a maximum around ξ = 3. For a ξ value of 4, typical of oligotrophic
waters, the contribution is around 10%. For the phytoplankton bloom study case, the contribution of
phytoplankton cells is between 10% and 60%; maximum values are reached for a PSD slope between 3
and 3.5. Such high percentages are due to the higher backscattering cross section of phytoplankton as
compared to the other particles (Figure 9). The low phytoplankton abundance is offset by the high
Cbb

sca,PHY so that the backscattering coefficient of phytoplankton represents a significant contribution to
the total backscattering.
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Figure 6. Particulate backscattering ratio as a function of the hyperbolic slope for oligotrophic-like and
phytoplankton bloom water bodies. Phytoplankton cells are modeled as two-layered spheres with
a relative volume of the chloroplast of 20 % and 30 %, as indicated.
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6. Concluding Remarks

Modeling phytoplankton cells as two-layered spheres tends to increase the bulk backscattering
ratio because heterogeneous spheres are more efficient backscatterers. Even if the phytoplankton

component has the smallest relative abundance, its impact on b̃θa
bp can be important depending on

the hyperbolic slope of the Junge distribution. This is because phytoplankton cells have the highest

backscattering cross section. For ξ = 4, the relative difference (in absolute value), (Δε), between b̃θa
bp

for the oligotrophic-like and the reference case, having the same bulk refractive index but composed
exclusively of homogeneous spheres, can reach about 58%. When minerals are added, the impact of
phytoplankton decreases as the scattering by minerals dominates.

Considering different sub-populations of particles with different refractive index implies that
the bulk refractive index varies with the value of the hyperbolic slope of the PSD, as the contribution
of each scattering component varies. Consequently, the development of models, similar to the one

proposed by Twardowski et al. [5] to derive ñr from b̃θa
bp and ξ, but accounting for phytoplankton

heterogeneity, is not straightforward. Other aspects of the problem and other parameters such as the
adoption of a 2D or 3D model, the proportion between cytoplasm and chloroplast, or the variation
of phytoplankton refractive index according to the considered species, would have to be taken into
account. One option would be to develop a look-up table approach based on the main parameters

driving the b̃θa
bp variability. For that purpose, other simulations would have to be performed to be able

to identify the pertinent parameters.
In this study, a large set of numerical simulations, as well as a proper methodology have been

developed to simulate the particulate scattering properties of a water body in its complexity. We show
that a special care should be taken in the integration step size when the particulate scattering coefficients
are calculated from the particulate scattering function, especially for relatively small values of the PSD
slope. We show that an integration angular step of 0.05o (Nθ = 3600) is required to obtain the required
accuracy considering the inputs (refractive indices and size range) used in this study.

The method is adapted to be used repeatedly to model a very large variety of particulate
assemblages. While the present study has been limited to three case studies, additional calculations
can be conducted to better represent the variability encountered in oceanic environments in terms of
particulate community and its complexity in terms of mixing, morphology, size, and chemical nature.
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For example, in waters with significant presence of specific populations of phytoplankton or
under bloom conditions, the Junge-like approximation of PSD is usually unsatisfactory [36–38,45].
We also showed that the relative volume of the model chloroplast to the cytoplasm or the presence of
third layer to model the cell wall can all affect the backscattering ratio (about 5–25%). It means that
changes in the phytoplankton structural heterogeneity can explain partly the natural variability of the
backscattering ratio, particularly in bloom conditions.

Further work is required, mainly experimental studies, to better characterize the internal structure
and chemical composition of viruses, heterotrophic bacteria, biogenic detritus, and particle aggregates.
This will allow, as Robertson Lain et al. [23] did for phytoplankton, suitable models to be developed
to describe properly, in numerical code, the morphological properties of various types of particles to
provide more realistic simulations of their optical properties.
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Abstract: The light scattering properties of seawater play important roles in radiative transfer in
the ocean and optically-based methods for characterizing marine suspended particles from in situ
and remote sensing measurements. The recently commercialized LISST-VSF instrument is capable
of providing in situ or laboratory measurements of the volume scattering function, βp(ψ), and the
degree of linear polarization, DoLPp(ψ), associated with particle scattering. These optical quantities
of natural particle assemblages have not been measured routinely in past studies. To fully realize
the potential of LISST-VSF measurements, we evaluated instrument performance, and developed
calibration correction functions from laboratory measurements and Mie scattering calculations for
standard polystyrene beads suspended in water. The correction functions were validated with
independent measurements. The improved LISST-VSF protocol was applied to measurements
of βp(ψ) and DoLPp(ψ) taken on 17 natural seawater samples from coastal and offshore marine
environments characterized by contrasting assemblages of suspended particles. Both βp(ψ) and
DoLPp(ψ) exhibited significant variations related to a broad range of composition and size distribution
of particulate assemblages. For example, negative relational trends were observed between the
particulate backscattering ratio derived from βp(ψ) and increasing proportions of organic particles
or phytoplankton in the particulate assemblage. Our results also suggest a potential trend between
the maximum values of DoLPp(ψ) and particle size metrics, such that a decrease in the maximum
DoLPp(ψ) tends to be associated with particulate assemblages exhibiting a higher proportion of
large-sized particles. Such results have the potential to advance optically-based applications that
rely on an understanding of relationships between light scattering and particle properties of natural
particulate assemblages.

Keywords: marine optics; inherent optical properties; volume scattering function; degree of linear
polarization; marine particles; light scattering measurements; LISST-VSF instrument

1. Introduction

It has long been recognized that inherent light-scattering properties of natural waters are of
crucial importance and have strong potential for wide-ranging applications in aquatic sciences,
including oceanography. These properties are essential inputs to the radiative transfer models used to
compute the ambient light fields in natural water bodies [1–4]. The variability in the light scattering
properties of seawater is driven primarily by the concentration of suspended particles, particle size
distribution, and composition through particle refractive index, internal structure, and shape. Hence,
scattering measurements carry potentially useful information about characteristics of natural particle

Appl. Sci. 2018, 8, 2690; doi:10.3390/app8122690 www.mdpi.com/journal/applsci351



Appl. Sci. 2018, 8, 2690

assemblages. For example, the scattering and backscattering coefficients of suspended particles
have been shown to provide useful proxies of mass concentration of total suspended particulate
matter (SPM), particulate inorganic carbon (PIC), and particulate organic carbon (POC) in the
ocean [5–7]. Multi-angle light scattering measurements provide a means to estimate the particle
size distribution [8–11], including the submicrometer size range [12–14]. The angular pattern of
light scattering can also contain useful information about the composition of particulate assemblages,
including the bulk refractive index of particles [15–19]. In addition, measurements of the scattering
matrix that provide information about polarization effects of light scattering [15,20–23] have the
potential for identifying and discriminating different types of particles, such as phytoplankton
species or minerals, which are present in complex natural assemblages [24–34]. Despite the potential
usefulness of information provided by light scattering measurements, the complexity and variability
in composition of natural particulate assemblages impose significant challenges in achieving an
understanding of bulk light-scattering properties of seawater in terms of detailed compositional
characteristics of particulate matter [35].

The volume scattering function, βp(ψ, λ), and the degree of linear polarization, DoLPp(ψ, λ)

of light scattered by marine particles are of primary interest in this study. Here, ψ denotes the
scattering angle, λ the light wavelength in vacuum, and the subscript p indicates that the quantity is
associated with particles. When the subscript p is omitted, the quantity describes the scattering by the
entire suspension with additive contributions from both water molecules and suspended particles.
The volume scattering function, β(ψ, λ) [in units of m−1 sr−1], is one of the fundamental inherent
optical properties (IOPs) of seawater, which describes the scattered intensity as a function of scattering
angle per unit incident irradiance per unit volume of small sample of water [2]. Several light-scattering
related IOPs can be derived from β(ψ, λ). For example, integrating β(ψ, λ) over all scattering directions
gives the total spectral scattering coefficient, b(λ) [m−1]. In this integration, it is commonly assumed
that light scattering by an assemblage of randomly-oriented scatterers (molecules and particles) in
natural waters is azimuthally symmetric about the incident direction of light beam. When β(ψ, λ) is
normalized by b(λ), the resulting scattering phase function β̃(ψ, λ) [sr−1] provides a useful indicator
of the angular shape of the volume scattering function. In optical remote sensing applications based
on measurements with above-water sensors (e.g., from satellites or aircraft), the spectral backscattering
coefficient, bb(λ) [m−1], is particularly useful. This coefficient can be obtained by integrating β(ψ, λ)

over the range of backward scattering angles [2].
The volume scattering function provides incomplete information, in the sense that it does

not contain information about polarization effects associated with light scattering. A complete
characterization of elastic incoherent interactions of light at arbitrary wavelength λ with a sample
volume of seawater is provided by a 4 × 4 scattering matrix, often referred to as the phase matrix or
Mueller matrix [20–23]. This matrix describes a linear transformation of irradiance and polarization
of an incident beam described by a 4-component Stokes vector into the intensity and polarization
of the scattered beam that is also described by its corresponding Stokes vector. β(ψ, λ) is related to
the first element of the scattering matrix, p11(ψ, λ), and can be obtained from a measurement using
unpolarized light for illumination of sample and measuring the total scattered intensity. The degree of
linear polarization of scattered light, DoLP(ψ, λ), describes the proportion of linearly polarized light
relative to total intensity of the scattered light beam. As described in greater detail below, for various
assemblages of particles including suspended marine particles and when the incident light beam is
unpolarized, this quantity can be derived from the first two elements of the scattering matrix, which
requires measurements involving linear polarization [29,36,37].

Despite the relative importance of β(ψ, λ) and DoLP(ψ, λ) of seawater and the associated
particulate components βp(ψ, λ) and DoLPp(ψ, λ), the ocean optics community has historically relied
mostly on simplified theoretical models (such as Mie scattering theory for homogenous spheres) and a
limited dataset of measurements made with custom-built light scattering instruments. For example,
over the past several decades, a limited dataset of β(ψ, λ) measurements made by Petzold [38] was
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widely used as a standard input for the particulate scattering phase function for radiative transfer
modeling in the ocean. Comprehensive determinations of the scattering matrix for natural seawater
have been very scarce [39–42]. These determinations showed that the off-diagonal matrix elements for
seawater are very small or negligible, indicating very small effects associated with optical activity or
orientational anisotropy of seawater scatterers [37,42]. More recently, several light scattering sensors
have been developed for in situ deployments or laboratory use [43–46], but to our knowledge, none of
these sensors are commercially available. While measurements with these new sensors have already
significantly contributed to the increase of available datasets of β(ψ, λ) (or βp(ψ, λ) which can usually
be satisfactorily estimated by subtracting the contribution associated with water molecules) in various
oceanic environments [44,47,48], the determinations of DoLPp(ψ, λ) for natural assemblages of marine
particles remain very scarce, as indicated by the rarity of scattering matrix measurements of seawater.

Recently, a new light scattering instrument, the LISST-VSF (Sequoia Scientific, Inc., Bellevue,
WA, USA), has become commercially available, and provides the capability of determining both the
volume scattering function and the degree of linear polarization of scattered light at a single light
wavelength (532 nm) with high angular resolution over the range ~0.1◦ to 155◦ [49]. It is capable of
both in situ and benchtop measurements on water samples. This commercial instrument is expected to
enable routine measurements by different groups of investigators, so it has the potential to enhance
our understanding of light scattering properties of seawater and marine particles and advance the
related applications. In this study, we report on LISST-VSF measurements of βp(ψ) and DoLPp(ψ) and
size and compositional characteristics for contrasting natural particulate assemblages from marine
coastal and offshore environments. The particulate scattering (bp) and backscattering (bbp) coefficients
have also been determined from measured βp(ψ).

To fully realize the potential of such quantitative determinations for seawater samples from
this new instrument, we also conducted an evaluation of the LISST-VSF performance through a
series of laboratory experiments using samples of National Institute of Standards and Technology
(NIST) certified standard polystyrene beads ranging in diameter between 100 nm and 2 μm. These
measurements were compared with theoretical simulations of light scattering by bead suspensions
using Mie scattering computations. With this approach, we developed corrections to the determinations
of βp(ψ) and DoLPp(ψ) from LISST-VSF measurements. A validation of the corrected measurements
was performed using independent measurements of multi-angle light scattering with another
instrument, the DAWN-EOS (Wyatt Technology Corporation, Santa Barbara, CA, USA).

2. Methods

The description of methods includes two main parts: first, a description of laboratory
experiments and Mie scattering calculations for standard polystyrene beads which were carried
out to evaluate the performance of the LISST-VSF instrument and develop a calibration correction;
second, a description of measurements on natural assemblages of marine particles from coastal and
offshore oceanic environments.

2.1. Laboratory Experiments and Mie Scattering Calculations to Evaluate LISST-VSF

In order to evaluate the LISST-VSF instrument, light scattering and beam attenuation
measurements were made in the laboratory on samples of nearly monodisperse standard polystyrene
spherical beads with mean nominal diameters of 100, 200, 400, 500, 700, and 2000 nm, which were
suspended in water (Table 1). In addition to LISST-VSF, two other instruments were used in these
experiments, a DAWN-EOS for measuring multi-angle light scattering and a dual beam UV/VIS
spectrophotometer Lambda 18 (Perkin-Elmer, Inc., Waltham, MA, USA) equipped with a 15-cm
integrating sphere (Labsphere, Inc., North Sutton, NH, USA) for measuring the beam attenuation
coefficient of particles in suspension. The use of standard beads ensures that Mie scattering calculations
for homogeneous spherical particles can be used to calculate the Mueller matrix elements for these
particles to determine reference (expected) values of the volume scattering function and the degree of
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linear polarization. The comparison of measurements with such reference values allows for evaluation
of performance of LISST-VSF instrument and formulation of calibration correction functions for
improved determinations of the volume scattering function and the degree of linear polarization from
this instrument. This type of approach, which combines measurements on standard well-characterized
particles with accurate scattering calculations, has been previously used for the evaluation, calibration,
and characterization of light scattering instruments [29,43,44,50]. Although the evaluation results
presented in this study are relevant to the specific version of the LISST-VSF instrument used in
our laboratory, most methodological aspects are generally applicable to evaluation of other light
scattering instruments.

Table 1. Information on the polystyrene bead size standards used to create laboratory sample
suspensions for experiments. The nominal bead diameter (D), catalog number, and actual mean
diameter D (± standard error of estimate) and standard deviation of the mean (SD) provided by the
manufacturer (Thermo Fisher Scientific, Inc.) is listed. The particulate beam attenuation coefficient at
light wavelength 532 nm of the master sample as determined with a spectrophotometer, cSPEC

p , is listed
in addition to specific dilution names and factors (e.g., DF1, DF2, etc.) of the master suspension used
for LISST-VSF measurements at different PMT gain settings. The dilution factors in italic font denote
the experimental data used for generation of the final correction functions CFf and BFf , and those in
boldface font denote the six examples used for statistical evaluation in Table 2.

Nominal D
[nm]

Catalog
No.

D
[nm]

SD
[nm]

cSPEC
p

[m−1]

Dilution Factor
(PMT 500)

Dilution Factor
(PMT 550)

100 3100A 100 ± 3 7.8 58.63 DF1: 96, DF2: 48.5,
DF3: 32.7

DF1: 96, DF2: 48.5,
DF3: 32.67

200 3200A 203 ± 5 5.3 46.26 DF1: 96, DF2: 48.5,
DF3: 32.7

DF1: 96, DF2: 48.5,
DF3: 32.7

400 3400A 400 ± 9 7.3 51.44 DF1: 87.4, DF2: 44.2,
DF3: 29.8 DF1: 87.4

500 3500A 508 ± 8 8.5 20.64 DF2: 20

700 3700A 707 ± 9 8.3 50.93 DF1: 96, DF2: 48.5

2000 4202A 2020 ± 15 21 18.21 DF2: 20

2.1.1. Instrumentation

A LISST-VSF instrument (S/N 1475) was equipped with a custom designed 2 L sample chamber
for benchtop laboratory use. This chamber effectively rejects ambient light and promotes good
mixing conditions to maintain particles in suspension. For sample illumination the LISST-VSF uses a
frequency-doubled YAG laser to produce a beam of light at a wavelength of 532 nm with a Gaussian
beam profile of 3 mm in diameter. A single measurement takes approximately 4 s and consists of two
scans of a 15-cm path within the sample, each with a different linear polarization state of the incident
beam, i.e., parallel and perpendicular to the scattering plane. Scattered intensity is measured at multiple
scattering angles ψ from 0.09◦ to 15.17◦ with 32 logarithmically-spaced ring detectors and from 14◦ to
155◦ with 1◦ interval using a fixed axis Roving Eyeball sensor equipped with photomultiplier tubes
(PMTs). For the Roving Eyeball, scattered light is split between two PMTs with a polarizing prism
allowing for only parallel or perpendicularly polarized light to be detected by each PMT. To enable
measurements of large dynamic range of scattered intensity with a single PMT, the laser power is
dimmed by a factor of 8 for the angular range 14–63◦ and returned to full power for 64–155◦. The beam
attenuation coefficient, c, is also measured at light wavelength of 532 nm for the 15-cm path length of
the sample.
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For incoherent elastic scattering of light at a given wavelength λ by a collection of particles
suspended in water, the Stokes vector of incident light beam, Si = [Ii Qi Ui Vi]

T , where T represents
the transpose operation, is transformed into the Stokes vector of scattered beam, Ss(ψ), by a scattering
matrix, P(ψ). For an ensemble of randomly-oriented particles exhibiting certain symmetry properties
and no optical activity, the scattering matrix simplifies to 6 independent non-zero elements [20,36,51]

Ss(ψ) =

⎡⎢⎢⎢⎣
Is(ψ)

Qs(ψ)

Us(ψ)

Vs(ψ)

⎤⎥⎥⎥⎦ = P(ψ)Si = C

⎡⎢⎢⎢⎣
p11(ψ) p12(ψ) 0 0
p12(ψ) p22(ψ) 0 0

0 0 p33(ψ) p34(ψ)

0 0 −p34(ψ) p44(ψ)

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

Ii
Qi
Ui
Vi

⎤⎥⎥⎥⎦, (1)

where λ has been omitted for brevity, C is a constant factor (for a given sample, light wavelength,
and measurement geometry), p11(ψ) represents the scattering phase function, and the reference plane
is the scattering plane containing the incident and scattered directions [20,51,52]. This form provides a
reasonable description of the measured scattering matrix by suspensions of randomly-oriented marine
particles, including various specific types of particles present in seawater [24,29,33,36,37,42]. In the
case of unpolarized incident light (i.e., Qi, Ui, and Vi are all zero), the volume scattering function
β(ψ) equals (to within a constant factor) p11(ψ), and the degree of linear polarization DoLP(ψ) can be
determined from [29,36,37,53]

DoLP(ψ) =
−p12(ψ)

p11(ψ)
=

−Qs(ψ)

Is(ψ)
. (2)

Positive values of DoLP(ψ) are for dominantly perpendicular polarization and negative values
for dominantly parallel polarization. We note that this definition of DoLP(ψ) has been widely used for
characterizing the inherent scattering properties of various types of particles beyond aquatic particles,
such as aerosol particles and cosmic dust [30,54–58].

The LISST-VSF measurements of forward scattering within the angular range 0.09–15.17◦ are
made with two linear polarization states of the incident beam, but with no polarization analyzers of the
ring detectors. For the ring detectors, the calibrated β(ψ) in absolute units is a standard output of the
manufacturer’s processing software. The absolute calibration is based on the manufacturer-provided
conversion from ring detector counts to physical units using radiant sensitivity of ring detectors [59,60].
Detection of scattered light within the angular range 14–155◦ using the Roving Eyeball sensor employs
measurements made with two linear polarization states of the incident beam and the corresponding
two linear polarization states of the scattered light. The four measurement configurations allow for the
determination of relative values of p11(ψ), p12(ψ), and p22(ψ). The calibrated β(ψ) values within the
Roving Eyeball angular range are obtained by scaling the p11(ψ) data from the Roving Eyeball sensor.
Specifically, the scattering measurements from the first angles of the Roving Eyeball sensor are forced
to match the calibrated β(ψ) values from the overlapping last ring detectors. The DoLP(ψ) values are
obtained from Equation (2) using p11(ψ) and p12(ψ), and are also included in the standard output of
the manufacturer’s processing code.

We also used a DAWN-EOS multi-angle light scattering instrument which provided independent
measurements of β(ψ) and DoLP(ψ) of polystyrene beads suspended in water. These measurements
were made with a sample placed in a 20 mL cylindrical glass vial. The DAWN-EOS instrument used in
this study has been previously characterized and calibrated for such measurement configuration [61].
This instrument uses a diode-pumped frequency-doubled Nd-YAG laser at light wavelength 532 nm
with a Gaussian beam profile of 62 μm in diameter. The interrogated sample volume is on the order of
10 nL. The incident beam can be linearly polarized both parallel and perpendicular to the scattering
plane. The intensity of scattered light is measured simultaneously with eighteen photodiode detectors
and no polarization analyzers, enabling measurements within a range of scattering angles from 22.5◦
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to 147◦. To encompass the large dynamic range of scattered intensity, three selectable gain settings are
available for each detector (gain factors of 1, 21, or 101).

As the DAWN-EOS detectors have no polarization analyzers, they only measure the first
parameter of Stokes vector of the scattered light, Is(ψ). Here we define Is‖(ψ) for the parallel
polarization of the incident beam and Is⊥(ψ) for the perpendicular polarization of the incident beam.
The matrix elements p11(ψ) and p12(ψ) can be obtained (to within a constant factor) from DAWN-EOS
measurements as

p11(ψ) =
Is‖(ψ) + Is⊥(ψ)

2
(3)

p12(ψ) =
Is‖(ψ)− Is⊥(ψ)

2
, (4)

which allows for determination of DoLP(ψ) from Equation (2). The calibration procedure described
in Babin et al. [61] allows for determination of β(ψ) in absolute units. Importantly, the calibration
procedure of DAWN-EOS is fundamentally different from the calibration procedure of LISST-VSF.
The manufacturer’s calibration of LISST-VSF is based on a nominal radiant sensitivity of ring
detectors (amperes of photoelectric current per watt of optical power) traceable to the National
Institute of Standards and Technology [59,60]. In contrast, the calibration of DAWN-EOS is based
on measurements of light scattered at 90◦ by pure toluene with the incident beam having a linear
perpendicular polarization [61]. This calibration relies on the known magnitude of molecular scattering
by toluene. The two different methods employed in calibration of LISST-VSF and DAWN-EOS allow
for comparisons of independent estimates of β(ψ) obtained by these instruments. We also recall that
the DoLP(ψ) estimates obtained with the two instruments within the common range of scattering
angles are based on different polarization measurement configurations used by these instruments.

A Lambda 18 spectrophotometer was used to collect independent measurements of the spectral
beam attenuation coefficient, c(λ), of polystyrene beads suspended in water. These measurements
were made for comparisons with the beam attenuation data obtained with LISST-VSF, and also to
aid in the preparation of samples with appropriate concentrations of polystyrene beads to ensure
that measurements with LISST-VSF and DAWN-EOS were made within the single scattering regime.
The spectrophotometric measurements were made in the spectral range from 290 nm to 860 nm with
1 nm interval, but only data at 532 nm are used in this study. The general applicability of laboratory
spectrophotometers with proper modifications to enable measurements of beam attenuation of particle
suspensions, including colloidal samples, has long been recognized [62,63]. In our study, a sample
of particle suspension was measured in a 1-cm quartz cuvette placed at a significant distance from
the detector (~25 cm from the entrance of the integrating sphere), and field stops were aligned within
the light path to reduce the size of the beam and acceptance angle of the detector to less than 1◦. This
measurement geometry has been used in our previous studies of spectral beam attenuation by various
particle assemblages [64,65].

2.1.2. Experimental Procedure

Baseline measurements of 0.2 μm filtered water were collected with all three instruments used
in the experiments; LISST-VSF, DAWN-EOS, and Lambda 18 spectrophotometer. These baseline
measurements were subtracted from subsequent measurements taken on particle suspensions to
determine the optical properties associated with suspended particles only, i.e., the particulate volume
scattering function, βp(ψ), the particulate degree of linear polarization, DoLPp(ψ), and the particulate
beam attenuation coefficient, cp.

Original manufacturer’s stock samples of standard polystyrene beads (100, 200, 400, 500, 700,
and 2000 nm in diameter) were used to generate master samples using 0.2 μm filtered, deionized,
and degassed water as a medium (with the exception of 2000 nm beads which used 0.2 μm filtered
seawater). In the process of preparation of master samples, the particle concentration was optimized to
ensure that spectrophotometric measurements of beam attenuation coefficient can be performed either
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directly or with small dilution factor (~3) on these samples over 1-cm path length with sufficiently
high signal but negligible multiple scattering effects. The cp values for master samples ranged from
about 18 m−1 to 58 m−1 (Table 1).

The master sample was diluted for measurements with the LISST-VSF to avoid oversaturation of
PMT detectors and multiple scattering over the longer path length (15 cm). For baseline measurements,
the LISST-VSF sample chamber was filled with 1900 mL of 0.2 μm filtered water. The final samples
of particle suspensions were created by addition of 20 to 100 mL of master sample to the LISST-VSF
chamber. For most beads examined in our experiments, more than one particle suspension differing
in terms of particle concentration was measured with LISST-VSF (Table 1). The different particle
concentrations were achieved by different dilution of master sample within LISST-VSF chamber. Owing
to different dilution factors ranging from 20 to 96 (labeled as DF1, DF2, and DF3 in Table 1), the cp values
of LISST-VSF samples ranged from about 0.5 m−1 to 1.8 m−1. For a single bead size, concentration,
and PMT gain, a series of LISST-VSF measurements was composed of 200 measurements taken in
rapid succession (recall that a measurement refers to two scans, each with a different polarization
of incident beam). This measurement series was divided into five sets of 20 measurements and one
set of 100 measurements to enable manual gentle mixing of sample before each set of measurements.
In addition, for the 2000 nm bead suspensions a magnetic stir bar which operated on low speed and
changed direction of rotation every 30 s was used to prevent particle settling during the measurement.

Several LISST-VSF baseline measurements of 0.2 μm filtered water were collected for each
experiment, i.e., for each examined bead size. However, for reasons of consistency and out of the
desire to use an optimal baseline representative of the least contaminated 0.2 μm filtered water,
a single baseline was used for processing of all experimental data collected for various bead sizes and
concentrations except for 2000 nm sized beads which used 0.2 μm filtered seawater. This baseline was
determined on the basis of finding a measurement which exhibited minimal scattering signal detected
by Roving Eyeball and ring detectors and maximum directly transmitted light detected by the laser
transmission sensor. We note, however, that for each PMT gain setting of the Roving Eyeball sensor a
separate baseline was determined.

Measurements using the DAWN-EOS instrument were collected for 100, 200, 400, and 700 nm
beads. Dilution factors of master samples for DAWN-EOS measurements were between 300 and
3000, depending on bead size. The gain settings for each detector were adjusted to the highest setting
that would avoid saturation of signal with incident perpendicular polarization of light. For 400
and 700 nm bead suspensions, two different dilutions were measured. For each polarization state
(i.e., perpendicular and parallel) of incident light, we acquired 1440 measurements with a sampling
frequency of 8 Hz over 3 min. For a given sample, this data acquisition protocol was repeated three
times. Each of these three replications was made with a different randomly-chosen orientation
of sample cylindrical vial within the instrument. The sample was gently mixed between these
replicate measurements. The baseline measurements of 0.2 μm filtered water were acquired using the
same protocol.

As mentioned above, the optical measurements were made on sufficiently-diluted samples
to ensure negligible effects of multiple scattering over a pathlength used by a given instrument.
A criterion for a single scattering regime is generally defined in terms of small optical thickness
of the sample, τ << 1, where τ is a product of the beam attenuation coefficient, c, and pathlength,
r [51,66]. Also, a simple practical test for ensuring that multiple scattering effects are negligible
is to verify a direct proportionality between the measured optical signal and the concentration of
particles in suspension by conducting a series of measurements on the same sample with different
dilutions [51]. Our measurements on bead samples with different dilutions showed an excellent 1:1
relationship between the LISST-VSF measurement and the bead concentration over the range of beam
attenuation coefficient up to at least 2 m−1. The single scattering regime can also be determined
by the condition τ(1-g) << 1, where g is the average cosine of the scattering angle of the volume
scattering function [23,66]. For the 100 nm polystyrene beads, the g value is 0.115, which yields the
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most restrictive condition in our study, τ << 1.13. For all bead samples measured with LISST-VSF,
including all bead sizes and sample dilutions, τ was always less than about 0.3. This condition was also
satisfied for samples measured with a spectrophotometer. For the measurements with DAWN-EOS,
the τ values were even smaller. For the natural seawater samples examined in our study (which
is described below in Section 2.2), the g values (for the total volume scattering function including
the contribution by pure seawater) were about 0.9 or somewhat higher, which yields less restrictive
criterion τ << 10. Our measurements of natural samples clearly satisfied this single scattering condition,
as the highest value of c for the natural samples measured with LISST-VSF was about 2.6 m−1, so τ

was always less than about 0.45, given that the maximum pathlength for LISST-VSF is 17.5 cm for the
scattering angle of 150◦.

2.1.3. Data Processing

Processing of LISST-VSF data was done with a standard processing code provided by
manufacturer (version of 2013) to determine βp(ψ), DoLPp(ψ), and cp, denoted hereafter as βLISST∗

p (ψ),
DoLPLISST∗

p (ψ), and cLISST∗
p respectively (the asterisk indicates that the variable is derived from the

standard processing code without additional corrections developed in this study). Some details specific
to the processing and quality control of our experimental data are provided below.

As a first step in data processing, the baseline values in raw counts were subtracted from each
LISST-VSF measurement of raw counts acquired on samples of bead suspensions. To account for light
attenuation along the path between the scattering volume and the detector, an attenuation correction
factor was calculated using the average cLISST∗

p from the series of measurements and the length of
the path for each scattering angle. Further, to account for the difference in sensitivity of the two
Roving Eyeball PMT detectors, a factor α is used to adjust the measured counts of one PMT detector
relative to the other [67]. The value of α = 0.9335 was determined by averaging all median values
of α derived from each series of measurements for each bead size, particle concentration, and PMT
gain. The α parameter was observed to be nearly constant over the period of experiments (~18 months,
the coefficient of variation < 5%). For each series of measurements a specific scaling factor was
determined to convert p11(ψ) in PMT counts to βLISST∗

p (ψ) in absolute units [m−1 sr−1] for scattering
angles 14–155◦ measured by the Roving Eyeball sensor. First, for each measurement from a given
series of measurements, a scaling factor was determined by matching the PMT counts measured
with Roving Eyeball sensor between 15◦ and 16◦ with βLISST∗

p (ψ) in absolute units obtained from
measurements with the last two ring detectors at 13.01◦ and 15.17◦. Then, using these determinations,
the average scaling factor for a given series of measurements was calculated and used for further
data processing. Note that this scaling was not needed for the determination of DoLPLISST∗

p (ψ) for the
Roving Eyeball angular range, which is calculated from p11(ψ) and p12(ψ) determined in PMT counts
following Equation (2).

Quality control of data was performed by removing the first set of 20 measurements (the remaining
four sets with 20 measurements each were retained) and the first 20 measurements from the set
of 100 measurements. We observed that this was necessary to ensure reasonable stability in the
measured scattering signal. The mean and standard deviation values for each angle based on
all of the 160 remaining measurements in the series were determined, and the outlying single
measurements within the series were identified and rejected from subsequent analysis. Typically,
120 to 130 measurements from a given series of 200 measurements passed the quality criteria.

Example data of uncorrected βLISST∗
p (ψ) for 200 nm and 2000 nm bead suspensions are shown

in Figure 1. The series of measurements that remained after quality control and the median values
of βLISST∗

p (ψ) derived from the series of measurements are shown. We also note that the median
values were very close to mean values for our data (<1% difference for most scattering angles).
The results for 2000 nm beads show a distinct pattern with several scattering maxima and minima
due to constructive and destructive interference of the scattered light from a nearly monodisperse
population of beads that are large relative to the wavelength of light. The 200 nm beads are smaller

358



Appl. Sci. 2018, 8, 2690

than the wavelength of light leading to a more featureless shape of βLISST∗
p (ψ). The variability between

the individual measurements is largest at very small scattering angles, i.e., approximately <4◦, where
the scattering signal for submicron particles is low relative to our baseline measurements. Apart
from small scattering angles, the coefficient of variation (CV) for each scattering angle calculated
from a series of measurements on 200 nm beads is generally very small, ranging from ~3% to <1%,
with the smallest values at angles greater than 64◦ where full laser power is used. The measurements
of 2000 nm beads exhibit somewhat higher CV, i.e., between about 3% and 6%. The higher values of
CV are observed mostly near the angles where minima of βLISST∗

p (ψ) occur.

Figure 1. Measurements of the particulate volume scattering function, βp(ψ), at light wavelength of
532 nm for 200 nm (a,b) and 2000 nm (c,d) diameter polystyrene beads suspended in water. The left
panels depict the angular range of 1–50◦ with logarithmic scaling, and the right panels depict the
range 50–160◦ with linear scaling. The expected reference value, βREF

p (ψ), obtained from Mie scattering
calculations is indicated as a dashed line. Quality-controlled but uncorrected measurements obtained
with the LISST-VSF (gray lines, number of measurements N = 128) and the median value (solid black
line) are shown.

The DAWN-EOS measurements for four bead sizes were also used to calculate βp(ψ) and
DoLPp(ψ), denoted as βDAWN

p (ψ) and DoLPDAWN
p (ψ). First, for each time series of 1440 measurements

with DAWN-EOS, the highest 2% of data was rejected, as these data are assumed to result from
sample contamination with rare, larger particles. Each set of measurements then consists of 1411
measurements of both Is‖(ψ) and Is⊥(ψ) for a specific orientation of sample vial. These measurements
were averaged to represent that orientation. Such results were then averaged for three vial orientations.
This protocol was applied to both the sample and baseline measurements, with the exception that
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baseline values were calculated by averaging the lowest 5% of data. The final Is‖(ψ) and Is⊥(ψ)
for the beads were calculated by subtracting the average baseline from the average sample data.
These particulate Is‖(ψ) and Is⊥(ψ) were then used to determine p11(ψ) and p12(ψ) according to
Equations (3) and (4), from which βDAWN

p (ψ) [61] and DoLPDAWN
p (ψ) (Equation (2)) were determined.

Note that two dilutions of the master suspension for 400 and 700 nm beads were measured with
DAWN-EOS and the average of the two was used to represent these bead sizes. As a final step,
the determined βDAWN

p (ψ) values were rescaled using relevant dilution factors to obtain final results
representing the particle concentration in LISST-VSF samples and enable direct comparisons with
LISST-VSF measurements. Note that such rescaling is not necessary for DoLPDAWN

p (ψ).
With regard to processing of data acquired with a Lambda 18 spectrophotometer, the spectral

data of measured optical density OD(λ) (i.e., measurements made in the absorbance mode of the
spectrophotometer) were converted (after subtraction of baseline measurement) into the particulate
beam attenuation coefficient [m−1] using the relationship cp(λ) = ln(10) OD(λ)/0.01, where ln is
the natural logarithm and 0.01 is the path length in meters. The final particulate beam attenuation
coefficient obtained from spectrophotometric measurements is denoted as cSPEC

p . The estimates of
cLISST∗

p from LISST-VSF measurements were calculated with the standard manufacturer’s processing
code. Because each LISST-VSF measurement consists of two linear polarization states of the incident
beam, the average of these two is used as the final estimate of cLISST∗

p . As a final step, the determined
cSPEC

p values were multiplied by relevant dilution factors to obtain final results representing particle
concentration in LISST-VSF samples and enable direct comparisons with LISST-VSF measurements.

2.1.4. Determination of Correction Functions

In addition to βLISST∗
p (ψ), Figure 1 shows results for the 200 nm and 2000 nm polystyrene beads

based on Mie scattering calculations (more details about these calculations are provided below). These
results are significantly higher (nearly a factor of 2) than the measured values of βLISST∗

p (ψ). We assume
that the Mie scattering calculations for samples of spherical polystyrene beads are sufficiently accurate
to provide reference values for such samples.

In order to correct for the mismatch between the measured and reference values, a calibration
correction function CF(ψ) is defined as

CF(ψ) =
βREF

p (ψ)

βLISST∗
p (ψ)

, (5)

where βREF
p (ψ) is a reference volume scattering function determined according to

βREF
p (ψ) = β̃Mie

p (ψ)bREF
p , (6)

where β̃Mie
p (ψ) is the scattering phase function [sr−1] obtained from Mie scattering computations

and bREF
p is the reference particulate scattering coefficient [m−1]. Note that all quantities in

Equations (5) and (6) are for the LISST-VSF light wavelength of 532 nm.
For each examined suspension of standard polystyrene beads, β̃Mie

p (ψ) was determined from Mie
scattering computations for homogeneous spherical particles. We used the Mie scattering code for
homogeneous spheres of Bohren and Huffman [20], which included our modifications to account for
polydispersity of the sample, i.e., to use particle size distribution as input to the code rather than just a
single particle diameter as in the original code. The computations were performed assuming a relative
particle size distribution (PSD) of Gaussian shape, with 300 evenly spaced size bins about the nominal
mean diameter ± 3 standard deviations, as provided by the manufacturer for each bead size (Table 1).
The use of such PSDs allows us to account for the realistic, small degree of polydispersity of each
sample. The Mie computations also require input of the refractive index of particles. Based on the
study of Ma et al. [68] we assumed that the complex refractive index of polystyrene relative to water at
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532 nm is m = 1.193 + 0.0003i, where the first component is the real part and the second component is
the imaginary part of refractive index. Note that the imaginary part is very small because polystyrene
is a weakly absorbing material in the examined spectral region.

Equation (6) also requires bREF
p , which was determined from the combination of beam attenuation

measurements and Mie scattering calculations as

bREF
p = cLISST∗

p
QMie

b

QMie
c

, (7)

where QMie
b and QMie

c are the single-particle scattering and attenuation efficiency factors, respectively,
obtained from Mie computations. Because the populations of examined beads exhibit a slight degree
of polydispersity, the calculated QMie

b and QMie
c represent the average values of efficiency factors for

a given particle population [69]. Given very weak light absorption of polystyrene beads at 532 nm,

the ratio QMie
b

QMie
c

was found to be >95%. We also note that in addition to cLISST∗
p , we have another potential

measurement of beam attenuation coefficient from the spectrophotometer (cSPEC
p ). Figure 2 shows that

the measurements of cLISST∗
p and cSPEC

p are consistent, and generally agree very well.

Figure 2. Comparison of measurements of the particulate beam attenuation coefficient, cp, at 532 nm
obtained with a spectrophotometer with measurements from the LISST-VSF. The comparison is depicted
for suspensions of polystyrene beads of six different diameters as indicated in the legend, and the 1:1 line
is plotted for reference (dotted black line). Appropriate dilution factors have been applied to account
for the different particle concentrations used in measurements with each instrument. The presented
values correspond to samples measured with the LISST-VSF.

By combining Equations (6) and (7), βREF
p (ψ) can be determined for each LISST-VSF

measurement as

βREF
p (ψ) = β̃Mie

p (ψ) cLISST∗
p

QMie
b

QMie
c

. (8)

Note that the estimates of βREF
p (ψ) can vary between individual measurements because of

variations in cLISST∗
p . Finally, by combining Equations (5) and (8), CF(ψ) can be determined for each

LISST-VSF measurement as

361



Appl. Sci. 2018, 8, 2690

CF(ψ) =
β̃Mie

p (ψ) cLISST∗
p

QMie
b

QMie
c

βLISST∗
p (ψ)

. (9)

The application of this protocol to every individual measurement of βLISST∗
p (ψ) helps to better

capture the variability between individual measurements during a given series of LISST-VSF
measurements on a given sample, for example due to imperfect mixing in the 2 L sample chamber or
potential electronic fluctuations in the instrument.

The smaller-sized particle standards (<500 nm in diameter) appear as the best candidates for
determination of CF(ψ) because they produce a relatively featureless pattern of angular scattering
(see the results for 200 nm beads in Figure 1). The measurements with larger beads (500 nm to 2000 nm)
were not used in these determinations because the angular scattering pattern includes multiple
maxima and minima (see the results for 2000 nm beads in Figure 1), which render the comparison
of βLISST∗

p (ψ) and βREF
p (ψ) particularly sensitive to even small uncertainties in measurements or

theoretical calculations. The results obtained with beads of 100, 200, and 400 nm in diameter were
considered in the determinations of final correction function CFf (ψ) within four angular ranges,
as described below:

CFf (ψ) = (CF100(ψ) + CF200(ψ) + CF400(ψ))/3 for ψ = 0.09–60◦ (10a)

CFf (ψ) = CF200(ψ) for ψ = 61–128◦ (10b)

CFf (ψ) = (CF200(ψ) + CF400(ψ))/2 for ψ = 129–150◦ (10c)

CFf (ψ) = (CF100(ψ) + CF200(ψ) + CF400(ψ))/3 for ψ = 151–155◦. (10d)

The CF200(ψ) data obtained with 200 nm beads provide the main contribution to the determination
of CFf (ψ). The CF100(ψ) data obtained with 100 nm beads are used partially because of increased
uncertainty in the PSD of these beads (CV of nominal mean diameter is 7.8%, see Table 1). The CF400(ψ)

data obtained with 400 nm beads are also used partially and cover the backscattering angles, where
these particular data are useful for correction of an apparent artifact near 130–140◦, which is rather
minor but has been consistently observed with our LISST-VSF instrument for various natural particle
assemblages. The calculations of CF100(ψ), CF200(ψ), and CF400(ψ) were made using data for particle
concentrations and PMT gains which ensured sufficient signal for the ring detectors while avoiding
PMT saturation of the Roving Eyeball sensor (see dilution factors in italic font in Table 1). For a given
bead standard, the final values of correction function at different angles were determined as the median
values of all the relevant determinations.

The final CFf (ψ) was smoothed in the angular range 2.56–155◦ with a 3-point and then a 5-point
moving average. In addition, CFf (ψ) within the near-forward angular range 0.09–4.96◦ was set to a
constant value of CFf (ψ32), where ψ32 = 15.17◦ corresponds to the last ring detector. The rationale
for this assumption is that the scattering signal produced by the examined beads for the first 25 rings
(ψ = 0.09–4.96◦) is comparable to the baseline, while there is good signal relative to the baseline for the
last ring detector.

The final correction simply involves the multiplication of uncorrected βLISST∗
p (ψ) by the correction

function CFf (ψ),
βLISST

p (ψ) = βLISST∗
p (ψ) CFf (ψ), (11)

where βLISST
p (ψ) is the corrected LISST-VSF measurement of volume scattering function (note that the

superscript * is removed from this symbol).
We also determined a correction function for DoLPLISST∗

p (ψ),

BF(ψ) = DoLPLISST∗
p (ψ)− DoLPREF

p (ψ), (12)
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where BF(ψ) quantifies a correction for potential bias in DoLPLISST∗
p (ψ) obtained from the standard

processing code applied to LISST-VSF measurements and DoLPREF
p (ψ) is a reference degree of linear

polarization determined from Mie scattering calculations of the two scattering matrix elements,
pMie

11 (ψ) and pMie
12 (ψ), for a given sample of standard beads. The results for BF100(ψ), BF200(ψ), BF400(ψ),

and the final correction function BFf (ψ) were obtained using a procedure similar to that for
CF100(ψ), CF200(ψ), CF400(ψ), and CFf (ψ). The correction of DoLPLISST∗

p (ψ) simply requires a subtraction
of BFf (ψ),

DoLPLISST
p (ψ) = DoLPLISST∗

p (ψ)− BFf (ψ), (13)

where DoLPLISST
p (ψ) is the corrected degree of linear polarization within the range of scattering angles

from 16◦ to 150◦. Because the DoLPLISST∗
p (ψ) data output from standard processing of LISST-VSF

measurements begins at ψ = 16◦, no correction for the forward scattering angles of the ring detectors
(ψ < 16◦) was determined.

2.2. Measurements and Analysis of Natural Seawater Samples

Optical measurements with the LISST-VSF and ancillary analyses of natural particle assemblages
were performed on seawater samples collected between summer 2016 and spring 2017 in contrasting
marine environments, namely, in open ocean waters off the coast of Southern California, nearshore
ocean waters at the pier of the Scripps Institution of Oceanography (SIO Pier) in La Jolla, and the tidal
estuary of the San Diego River. Overall 17 samples representing a broad range of natural particle
assemblages were analyzed. Most samples (number of samples N = 11) were collected at the SIO Pier.
These samples were collected during typical dry weather conditions, phytoplankton bloom events,
and after heavy rain. The tidal estuary samples (N = 3) include three tidal states between low and
high tide. The offshore samples (N = 3) were collected in the Santa Barbara Channel, about 8 km off
San Diego Bay, and about 2 km off SIO Pier. Seawater samples were collected just beneath the sea
surface using either Niskin bottles or a bucket, except for one offshore sample (off San Diego Bay) that
was collected at the subsurface chlorophyll-a maximum at a depth of 18 m. All samples were analyzed
in the laboratory within 24 h of sampling.

To characterize the concentration and composition of particulate matter for each sample,
we determined the dry mass concentration of total suspended particulate matter, SPM [g m−3],
mass concentration of particulate organic carbon, POC [mg m−3], and mass concentration of the
pigment chlorophyll-a, Chla [mg m−3]. For these determinations, the particles were collected on
glass-fiber filters (GF/F Whatman) by filtration of appropriate volumes of seawater (150–2100 mL
depending on the sample). SPM was determined following a gravimetric method using pre-washed
and pre-weighted filters [7,70]. The determinations of POC were made on precombusted filters with a
standard CHN analysis involving high temperature combustion of sample filters [7,71,72]. Chla was
determined spectrophotometrically using a Lambda 18 spectrophotometer and placing 1-cm cuvettes
containing acetone extracts of the samples inside the integrating sphere. The measured absorbance
values at 630, 647, 665, and 691 nm (after subtraction of acetone baseline values) were used in the
calculation of Chla [73]. For each seawater sample, replicate determinations of SPM and POC were
made on separate sample filters. The final SPM and POC are average values of replicate determinations.
The replicates for SPM and POC agreed generally to within 15% and 10%, respectively. No replicates
were taken for Chla. In addition to information about particle concentration, SPM, POC, and Chla
provide useful proxies of bulk composition of particulate matter. The organic and inorganic fractions
of SPM can be characterized using the ratio POC/SPM, and the contribution of phytoplankton to SPM
using Chla/SPM [65]. These ratios are expressed on a [g/g] basis.

The measurements of particle size distribution (PSD) were made with a Coulter Multisizer 3
(Beckman Coulter, Brea, CA, USA) equipped with a 100 μm aperture, which allows particle counting
and sizing in the range of volume-equivalent spherical diameter from 2 μm to 60 μm. Within this size
range we used 300 log-spaced size bins to provide high resolution PSDs. For each experiment,
0.2 μm filtered seawater was used as a blank that was subtracted from sample measurements.
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Approximately 10 to 15 replicate measurements of 2 mL subsamples of each seawater sample were
collected. After removing outliers, the remaining measurements were summed and divided by the
total analyzed volume to produce an average density function of PSD in particle number per unit
volume per width of size bin. For each sample the power function fit with a slope parameter, ζ, was
determined using these PSD data over the size range 2–50 μm. In these determinations, the linear
regression analysis was applied to log-transformed data, and the last size bins with very low particle
counts were ignored. Although the measured PSDs often showed significant deviations from the power
function fits, we use the slope parameter ζ as a particle size metric, because this is the most common
parameterization of size distribution of marine particles [23,74]. Additionally, assuming spherical
particles, the particle volume distributions were determined from particle number distributions for
each sample. From particle volume distributions, we calculated the percentile-based particle diameters
such as the median diameter, D50

V , and the 90th percentile diameter, D90
V . These parameters have been

shown to provide potentially useful metrics in the analysis of relationships between the optical and
particle size properties in seawater [65].

Measurements and processing of data collected with LISST-VSF for natural seawater samples
were made following a protocol similar to that described above for standard polystyrene bead samples.
For each experiment, baseline measurements were taken on 0.2 μm filtered seawater obtained from a
given seawater sample. However, a single baseline selected from the lowest measured baselines was
used for data processing of all seawater samples to ensure a consistent baseline unaffected by possible
variations associated with the imperfect purity of 0.2 μm filtered seawater prepared during different
experiments. To ensure scattering measurements were acquired in a single-scattering regime, samples
with an average cp over 3.0 m−1 were diluted using 0.2 μm filtered seawater. Dilution was necessary
only for the two most turbid samples collected in the San Diego River Estuary. Between four and eight
sets of 50 measurements were collected for each seawater sample with gentle hand mixing between
the measurement sets, while a magnetic stir bar was on very low speed changing direction of rotation
every 30 s. All results from LISST-VSF measurements for natural seawater samples shown in this paper
represent the CFf (ψ)-corrected volume scattering function of particles, βLISST

p (ψ), and BFf (ψ)-corrected
degree of linear polarization of particles, DoLPLISST

p (ψ). For a given sample the final values of βLISST
p (ψ)

and DoLPLISST
p (ψ) correspond to the median values of the series of measurements that passed the quality

control criteria.
To determine the particulate scattering, bLISST

p , and particulate backscattering, bLISST
bp , coefficients,

the corrected measured βLISST
p (ψ) was first extrapolated in the angular range 150–180◦. The extrapolated

portion of βLISST
p (ψ) was obtained by fitting a specific function to the data of βLISST

p (ψ) in the angular
range 90–150◦. We used two methods for fitting and extrapolating βLISST

p (ψ). The first method is based
on a non-linear least squares best fit of the analytical function proposed by Beardsley and Zaneveld [75].
The second method is based on a linear mixing model that finds a non-negative least squares best fit
for combined contributions of four end members representing shapes of volume scattering functions
associated with scattering by small and large particles, as described in Zhang et al. [76].

A backscattering factor, κ, was determined for the fitted volume scattering function as

κ =
bfit

bp

bfit
bp,150

, (14)

where bfit
bp is the particulate backscattering coefficient determined by the integration of the fitted function

in the angular range 90–180◦ and bfit
bp,150 is the coefficient determined by the integration of the fitted

function in the range 90–150◦. The final estimate of backscattering coefficient, bLISST
bp , was calculated as

bLISST
bp = κ bLISST

bp,150, (15)
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where bLISST
bp,150 is obtained by the integration of βLISST

p (ψ) in the angular range 90–150◦. The final estimate
of scattering coefficient, bLISST

p , was calculated as the sum of bLISST
bp and the forward scattering coefficient

obtained from the integration of βLISST
p (ψ) in the angular range 0.09–90◦.

The calculations of bLISST
p and bLISST

bp were made for each seawater sample using the two methods for
fitting and extrapolation. The particulate backscattering ratio, b̃LISST

bp = bLISST
bp /bLISST

p was also calculated.
We note that the κ values for all examined seawater samples were found to range between 1.125 and
1.138 and 1.118–1.120 for the Beardsley and Zaneveld [75] and Zhang et al. [76] methods, respectively.
An example illustration of fitting and extrapolation methods for one sample collected during high tide
at the San Diego River estuary is depicted in Figure 3. As seen, both the Beardsley and Zaneveld [75]
and Zhang et al. [76] fitted functions are in good agreement with the measured data of βLISST

p (ψ) in the
angular range 90–150◦. However, the extrapolated portion of the Beardsley and Zaneveld [75] function
in the angular range 150–180◦ has somewhat higher values compared with the Zhang et al. [76] function.
Nevertheless, the estimates of bLISST

bp for this sample obtained from the two extrapolation methods
differ only by 0.5%. For all other seawater samples the difference was also small, not exceeding 1.5%.
The final results of bLISST

p and bLISST
bp for seawater samples presented in this study are based on the

Zhang et al. [76] method.

Figure 3. Measured values of the particulate volume scattering function βp(ψ) obtained with the
LISST-VSF after correction (circles) for scattering angles 90–150◦ and illustration of the results of two
model relationships (Beardsley and Zaneveld [75], Zhang et al. [76]) fitted to the data. The illustrated
example measurement was made on a natural sample collected from the San Diego River estuary.

3. Results and Discussion

3.1. Correction Functions for LISST-VSF

The results for CF100(ψ), CF200(ψ), CF400(ψ), and CFf (ψ) are plotted in Figure 4. The final
correction function CFf (ψ) indicates that βLISST∗

p (ψ) is lower than βREF
p (ψ) by a factor of about 2,

and also exhibits some angular variability. One consistent feature in the forward scattering region,
which is independent of the bead size, is a sharp increase in CFf (ψ) with a peak at ring 26 (ψ = 5.84◦).
We observed a similar but inverse feature consistently in natural seawater samples, which suggests
that the behavior of the correction function at these angles is credible. Within the angular range of data
from the Roving Eyeball sensor (16–150◦), the CFf (ψ) values remain generally in the range between
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1.7 and 1.9. For angles larger than 150◦, we did not obtain consistent results of the correction function
for different bead sizes (not shown), so this angular range is omitted from our analysis of LISST-VSF
measurements. Note also that CF400(ψ) differs greatly from CF100(ψ) and CF200(ψ) within the angular
range between about 65◦ and 120◦. This can be attributed to the uncertainty in the determinations
of CF400(ψ) associated with a well-pronounced minimum in the volume scattering function for the
400 nm beads in this angular range. Therefore, the CF400(ψ) data in this angular range were not used
in the determination of final CFf (ψ).

Figure 4. Correction functions, CF(ψ), for the LISST-VSF measurements of particulate volume scattering
function βLISST∗

p (ψ) over the angular range 4.96–150◦ determined for 100, 200, and 400 nm polystyrene
bead suspensions. For each individual bead size, dashed lines represent the median values and
the dotted lines indicate the 25th and 75th percentiles determined from the series of measurements.
The final computed correction function CFf (ψ) is shown in black, and includes the constant value used
for the near-forward angular range from 0.09◦ to 4.96◦.

The results for BF100(ψ), BF200(ψ), BF400(ψ), and BFf (ψ), are shown in Figure 5. As seen, BFf (ψ)

is negative within the examined angular range and varies within a relatively narrow range of values
between about −0.02 and −0.04. Similar to the results for CF400(ψ), the distinct feature of positive bias
observed in the BF400(ψ) data around the scattering angle of 80◦ can be attributed to the uncertainty
associated with a minimum in the volume scattering function for the 400 nm beads in this angular
range. This portion of BF400(ψ) data was not used in the determination of final BFf (ψ).

The performance of the final correction function CFf (ψ) within the range of scattering angles
from 0.09◦ to 150◦ was evaluated by comparing the corrected LISST-VSF measurements of volume
scattering function, βLISST

p (ψ), with reference values of βREF
p (ψ) for six samples of polystyrene beads

(100, 200, 400, 500, 700, and 2000 nm in diameter; see the dilution factors for these samples indicated
in boldface in Table 1). The beads with diameters of 500, 700, and 2000 nm were not used in the
generation of the final correction function, so they provide completely independent data for evaluating
the performance of CFf (ψ). The evaluation with the data for 100, 200, and 400 nm beads is also useful
because the final CFf (ψ) was determined by averaging the results obtained with multiple bead sizes
and concentrations of these samples, and not from a single bead size and concentration. Results of
independent measurements obtained with the DAWN-EOS on four bead suspensions (100, 200, 400,
and 700 nm) are also included in the evaluation analysis for additional comparisons.
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Figure 5. Correction functions, BF(ψ), for LISST-VSF measurements of the degree of linear polarization
of light scattered by particles, DoLPLISST∗

p (ψ) over the angular range 16–150◦ determined for 100, 200,
and 400 nm polystyrene bead suspensions. For each individual bead size, dashed lines represent the
median values and the dotted lines indicate the 25th and 75th percentiles determined from the series of
measurements. The final computed correction function BFf (ψ) is shown in black.

The comparisons of βLISST
p (ψ) and βREF

p (ψ) are shown in Figure 6 for the six polystyrene bead
samples. The presented values of βLISST

p (ψ) are the median values for each angle from each measurement
series. The measured values of βDAWN

p (ψ) are additionally depicted for the 100, 200, 400, and 700 nm
diameter beads. In general, the magnitude and angular dependence of βLISST

p (ψ) exhibits good
agreement with reference values for all bead diameters. Notable differences occur within the minima
of volume scattering function, for example near the angle of 80◦ for the 400 nm beads (Figure 6c). This
issue has been mentioned above in the context of determinations of CFf (ψ) and BFf (ψ). The agreement
observed between βLISST

p (ψ) and βDAWN
p (ψ) lends additional credence to the determined correction

function CFf (ψ) and its application to LISST-VSF measurements.
Figure 7a illustrates the relationship between βLISST

p (ψ) measured at all angles between 3.02◦ and
150◦ and βREF

p (ψ) for the corresponding angles for the six bead samples. The overall agreement is
quite good over a range spanning nearly 4 orders of magnitude. The regions of largest disagreement
correspond to angles measured with the ring detectors, as well as angles corresponding to sharp
minima or maxima in volume scattering function which are observed for the larger beads. Although
the measured minima and maxima occur essentially at the same angles as predicted by Mie scattering
calculations, the measured magnitude of minima or maxima can differ by a few tens of percent from the
reference values. This is illustrated by plots of percent differences between the measured and reference
values (Figure 7b). The oscillations and peaks (both positive and negative) in percent differences
correspond to the minima and maxima in the angular patterns of volume scattering function.
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Figure 6. Comparison of βp(ψ) measurements on suspensions of polystyrene beads of varying diameter
with reference values, βREF

p (ψ). The βLISST
p (ψ) data represent CFf -corrected median values obtained

from a series of measurements with the LISST-VSF. Independent measurements of βp(ψ) obtained with
the DAWN-EOS instrument are also shown as diamonds in panels a, b, c and e. The bead diameters
are indicated in the legend.

Table 2 includes several statistical parameters that quantify the agreement between the data of
βLISST

p (ψ) and βREF
p (ψ) illustrated in Figure 7a. In this analysis we ignore ψ < 3.02◦ due to generally

low scattering signal relative to baseline for these ring detectors. The values of statistical parameters
support the overall good agreement; for example, the median ratio (MR) of βLISST

p (ψ) to βREF
p (ψ) is

very close to 1, and the median absolute percent difference (MAPD) between βLISST
p (ψ) and βREF

p (ψ) is
only ~4%. These median values indicate no overall bias in the corrected measurements of βLISST

p (ψ)

relative to the reference values of βREF
p (ψ) and small statistical differences between βLISST

p (ψ) and
βREF

p (ψ). Table 2 also includes the statistical parameters for a subset of data presented in Figure 7a.
In this subset, the forward scattering measurements with ring detectors were excluded, so the angular
range is 16–150◦. The statistical parameters for this subset are generally improved compared with the
dataset covering the angular range 3.02–150◦. For example, the root mean square difference (RMSD) is
smaller (0.015 m−1 sr−1 vs. 0.21 m−1 sr−1) and the slope of linear regression is closer to 1 (0.958 vs.
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0.723). The improvements in the statistical parameters after removing the ring detector data are related
primarily to much larger values of volume scattering function at forward scattering angles compared
with larger angles, and a tendency to negative bias in βLISST

p (ψ) relative to βREF
p (ψ) at forward angles.

Figure 7. (a) Scatter plot of βLISST
p vs. βREF

p for polystyrene beads of varying diameters as indicated.
Data obtained with the ring detectors and Roving Eyeball sensor are plotted separately, and the 1:1 line
is plotted for reference (dotted black line). (b) Residuals expressed as percentages between βLISST

p and
βREF

p for each bead size as a function of scattering angle.

To further validate the correction of LISST-VSF measurements with the CFf (ψ) function,
we performed comparisons for approximate scattering and backscattering coefficients, bp,150 and bbp,150,
respectively. The approximate scattering coefficient bp,150 was obtained by integrating the volume
scattering function within the angular range from 0.09◦ to 150◦. The approximate backscattering
coefficient bbp,150 was obtained by the integration from 90◦ to 150◦. These calculations were made for
the uncorrected measured βLISST∗

p (ψ), CFf -corrected measured βLISST
p (ψ), and reference βREF

p (ψ). We also
used Mie scattering calculations to estimate the underestimation of the scattering and backscattering
coefficients for the examined polystyrene beads caused by the integration of βREF

p (ψ) up to 150◦ as
opposed to 180◦. We found that the approximate scattering coefficient, bREF

p,150, can be lower by as
much as 7% compared with the “true” scattering coefficient bREF

p . This result was observed for 100 nm
beads. For backscattering the approximate coefficient bREF

bp,150 was found to be lower by as much as
24% for the 500 nm beads. Although the LISST-VSF measurements extend to 150◦ rather than 180◦,
the approximate coefficients are still useful for our validation exercise because most of the angular
range and magnitude of total scattering and backscattering coefficients are included in the integration
up to 150◦. In addition, this validation analysis includes all 20 experiments conducted in this study,
and not just the six example experiments presented in Figures 6 and 7.

Figure 8 compares the reference values of bREF
p,150 and bREF

bp,150 with LISST-VSF values determined from
uncorrected βLISST∗

p (ψ) and CFf -corrected βLISST
p (ψ). In these calculations we used the median values of

βLISST∗
p (ψ) and βLISST

p (ψ) for each measurement series from all 20 experimental combinations of bead
sizes, concentrations, and PMT gains listed in Table 1. For all experiments, the approximate coefficients,
bLISST∗

p,150 and bLISST∗
bp,150 , derived from uncorrected βLISST∗

p (ψ) are nearly half of the reference values of bREF
p,150

and bREF
bp,150. After CFf (ψ) correction the approximate coefficients bLISST

p,150 and bLISST
bp,150 exhibit a nearly 1:1

relationship with bREF
p,150 and bREF

bp,150. The statistical parameters that quantify the overall good agreement
between bLISST

p,150 and bREF
p,150 and between bLISST

bp,150 and bREF
bp,150 are listed in Table 2.
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Table 2. Statistical results evaluating the comparison of corrected data from the LISST-VSF
measurements with reference values obtained from Mie scattering calculations. For βLISST

p , the results
are shown for the angular range 3.02–150◦ which includes the ring data and for the range 16–150◦

without the ring data. R is the Pearson correlation coefficient and the coefficients A and B are the slope
and y-intercept, respectively, determined from a type II linear regression between individual pairs of
Xi and Yi values where Yi represents measured values and Xi reference values. The mean bias (MB)
was calculated as 1/N × ∑N

i=1 (Yi−Xi) and MR represents the median ratio of Yi /Xi. The root mean

squared deviation, RMSD, was calculated as
√

1
N ∑N

i=1 (Yi−Xi)
2, and the median absolute percent

difference, MAPD, was calculated as the median value of
∣∣∣Yi−Xi

Xi

∣∣∣×100. N is the number of data points
used in the analysis.

Data R A B MB MR RMSD MAPD N

βLISST
p (w/ rings) 0.987 0.72 −0.031 m−1 sr−1 −0.028 m−1 sr−1 1.00 0.210 m−1 sr−1 3.94% 876

βLISST
p (w/o rings) 0.998 0.96 −0.002 m−1 sr−1 −0.002 m−1 sr−1 1.00 0.015 m−1 sr−1 3.39% 810

bLISST
p,150 0.995 1.04 −0.048 m−1 −0.007 m−1 1.00 0.043 m−1 2.30% 20

bLISST
bp,150 0.999 0.99 −0.0001 m−1 −0.001 m−1 1.00 0.006 m−1 3.70% 20

DoLPLISST
p 0.989 0.91 −0.046 −0.016 0.99 0.065 5.00% 810

Figure 8. (a) Scatter plot comparing reference values of the particulate scattering coefficient computed
over the angular range 0.09–150◦, bREF

p,150, with values determined from the LISST-VSF, bLISST
p,150 , before

(asterisks) and after (circles) correction with CFf . A type II linear regression model fit to the data
is indicated by the dotted lines. (b) Similar to (a), but for the particulate backscattering coefficient
computed over the range 90–150◦.

Similarly to the validation analysis of CFf (ψ), the performance of the correction function BFf (ψ)

was evaluated by comparing the corrected LISST-VSF measurements of the degree of linear polarization,
DoLPLISST

p (ψ), with reference values of DoLPREF
p (ψ) for six samples of polystyrene beads (100, 200,

400, 500, 700, 2000 nm in diameter). Figure 9 depicts these comparisons. The values of DoLPDAWN
p (ψ)

measured with DAWN-EOS are also depicted for the 100, 200, 400, and 700 nm beads. For all bead sizes,
the magnitude and angular dependence of DoLPLISST

p (ψ) exhibits generally a very good agreement
with both the reference values and DAWN-EOS measurements. For larger beads, notable differences
occur within the minima of the degree of linear polarization, for example near the angle of 80◦ for the
400 nm beads (Figure 9c).
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Figure 9. Similar to Figure 6, but for measured and reference values of particulate degree of linear
polarization DoLPp. Measurements obtained with the LISST-VSF were corrected with BFf .

Figure 10a is a scatter plot of DoLPLISST
p (ψ) vs. DoLPREF

p (ψ) which includes all data for the six bead
samples presented in Figure 9. In the region of negative values which correspond to the minima
in the angular pattern of the degree of linear polarization, the DoLPLISST

p (ψ) exhibits a positive bias
relative to DoLPREF

p (ψ). This bias is seen in the form of peaks in the angular pattern of the difference
between DoLPLISST

p (ψ) and DoLPREF
p (ψ) for larger bead sizes (Figure 10b). The peak amplitudes generally

range from 0.05 to 0.3. Importantly, however, aside from these features the data of DoLPLISST
p (ψ) vs.

DoLPREF
p (ψ) are distributed close to the 1:1 line within the major part of the region of positive values

(Figure 10a). This includes the region of maximum values of the degree of linear polarization of
scattered light from natural seawater samples, which are observed at scattering angles near 90◦ or
greater. The overall good agreement between BFf -corrected measured DoLPLISST

p (ψ) and DoLPREF
p (ψ) is

supported by the statistical parameters shown in Table 2 which are calculated on the basis of the entire
dataset presented in Figure 10. For example, the RMSD and MAPD values are small, 0.065 and 5%,
respectively. Also, despite some negative bias for data with negative values of the degree of linear
polarization, the MR for the ratio of DoLPLISST

p (ψ) to DoLPREF
p (ψ) for the entire dataset is 0.993, indicating
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essentially no bias. These statistics would improve if the data within the minima in the angular pattern
of the degree of linear polarization were removed from the analysis.

Figure 10. Similar to Figure 7, but for DoLPp. All data are obtained with the Roving Eyeball sensor,
and the residuals between DoLPLISST

p and DoLPREF
p in (b) are expressed as absolute differences.

3.2. Measured Light Scattering Properties of Natural Particulate Assemblages

Figure 11 depicts the corrected measured volume scattering function, βLISST
p (ψ), and the degree of

linear polarization, DoLPLISST
p (ψ), for three contrasting natural assemblages of particles. The selected

parameters describing the particulate and optical properties of these samples are provided in Table 3.
Sample A was obtained ~8 km offshore from the subsurface chlorophyll-a maximum at a depth of
18 m, sample B was collected just beneath the sea surface at SIO Pier during a calm sunny summer
day, and sample C was collected ~2 km inland at the San Diego River Estuary during low tide.
The SPM range covers about one order of magnitude from 0.36 g m−3 for sample A to 3.18 g m−3

for sample C, which is reflected in significant range of the particulate scattering coefficient, bLISST
p ,

from 0.36 m−1 to 2.23 m−1. Chla was also lowest for sample A (0.75 mg m−3) but highest for sample
B (2.5 mg m−3). Thus, whereas the offshore sample A represents a particle concentration that is
within the range of observations in relatively clear open ocean waters, sample C is representative of
more turbid coastal or nearshore waters [5,7]. Samples A and B have similarly high values of the
ratio POC/SPM (0.43 and 0.47, respectively) and relatively high values of Chla/SPM (2.1 × 10−3

and 2.2 × 10−3, respectively), indicating organic-dominated particulate assemblages with significant
contribution of phytoplankton. In contrast, sample C has much lower values of POC/SPM (0.14) and
Chla/SPM (3.8 × 10−4), indicating inorganic-dominated particulate assemblage and relatively small
role of phytoplankton, despite significant chlorophyll-a concentration (1.21 mg m−3).

These differences in particle properties between the three samples are responsible for the
differences in the magnitude and angular shape of βLISST

p (ψ) and DoLPLISST
p (ψ) presented in Figure 11 and

the optical parameters listed in Table 3. These optical parameters include the particulate backscattering
ratio, b̃LISST

bp , the ratio of βLISST
p (45◦) to βLISST

p (135◦), and the maximum value of DoLPLISST
p (ψ) denoted as

DoLPLISST
p,max. This maximum value occurs at a scattering angle ψmax which is also provided in Table 3.

The offshore sample A has an intermediate value of b̃LISST
bp and the highest DoLPLISST

p,max of about 0.77
associated with the smallest ψmax of 92◦. Sample B from the SIO Pier has the lowest b̃LISST

bp of 0.008
among the three samples, suggesting a relatively steep slope of particle size distribution, relatively
low bulk particle refractive index, or both [17]. This sample also shows the least steep near-forward
scattering pattern (Figure 11c), which suggests a higher proportion of small particles relative to larger
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particles compared with the two other samples. Finally, the most turbid and least organic sample,
sample C, exhibits an enhanced proportion of backscattering with the highest b̃LISST

bp of 0.027. While
this result may suggest a relatively high bulk particle refractive index [17] consistent with the lowest
POC/SPM ratio among the three samples, the additional influence of particle size distribution cannot
be ruled out. Sample C shows steep near-forward scattering pattern (Figure 11c), which is typically
indicative of an increased proportion of large particles relative to small particles. Note that sample C
also has the lowest βLISST

p (45◦)/βLISST
p (135◦) ratio of 12, which indicates a higher degree of symmetry in

the angular pattern of scattering about 90◦, which is consistent with the relatively high value of b̃LISST
bp

for this sample. In addition, sample C has the lowest DoLPLISST
p,max of 0.58.

Figure 11. Measurements of βLISST
p and DoLPLISST

p obtained with the LISST-VSF on natural seawater
samples from the San Diego region representing (a,b) subsurface offshore waters, (c,d) SIO Pier,
and (e,f) San Diego River Estuary. Solid lines represent median values while dotted lines indicate
the 10th and 90th percentiles obtained from a series of measurements on each sample. Insets in (a,c,d)
display greater detail on the near-forward scattering range.
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Table 3. General information on particle characteristics and median values of optical quantities derived
from LISST-VSF measurements for the three example natural seawater samples depicted in Figure 11.
Values of selected optical quantities estimated from the measurements of Petzold [38] are shown
for comparison.

Sample
ID

Chla
[mg m−3]

SPM
[g m−3]

POC/SPM
[g/g]

bp
[m−1]

b̃bp
[dim]

βp(45◦)
βp(135◦)

DoLPp,max
[dim]

ψmax
[deg]

A 0.75 0.36 0.43 0.36 0.012 16.5 0.77 92
B 2.49 1.13 0.47 1.75 0.008 17.1 0.69 96
C 1.21 3.18 0.14 2.23 0.022 12.0 0.58 94

Petzold Measurements
Clear 0.03 0.015 18.0
Coastal 0.19 0.009 17.8
Turbid 1.74 0.020 12.2

For comparison, Table 3 also includes the values for the selected optical parameters estimated from
measurements reported by Petzold [38] for clear ocean waters (off Bahamas), coastal waters (San Diego
coastal region), and turbid waters (San Diego Harbor). These measurements span a generally similar
range of scattering angles as the LISST-VSF (10–180◦ in 5◦ increments), but are based on a spectrally
broader incident beam (75 nm full width half maximum) centered at 514 nm. The estimates of
particulate volume scattering function βp from Petzold’s measurements were obtained by subtracting
pure seawater contribution βw from the measured total β. The βw value was calculated assuming a water
temperature of 15 ◦C and salinity of 33 PSU [77]. Although Petzold’s data include measurements made
in clearer waters compared with our samples, the range of values for the dimensionless parameters
associated with the shape of angular scattering pattern, b̃LISST

bp and βLISST
p (45◦)/βLISST

p (135◦), is very
similar. Specifically, our data for the offshore sample A are similar to Petzold’s data from clear waters,
sample B from the SIO Pier aligns with Petzold’s data from coastal San Diego waters, and sample C
from San Diego River Estuary with Petzold’s data from the San Diego Harbor.

We note that the dotted lines in Figure 11 reflect some variations in βLISST
p (ψ) and DoLPLISST

p (ψ)

between the individual measurements within a given set of measurements for each sample.
For example, on the basis of the collection of 200 to 400 measurements for each of the two linear
polarization states of the incident beam and the scattered light, the coefficient of variation at ψ =
90◦ was 14%, 8%, and 13% for βLISST

p and 20%, 13%, and 15% for DoLPLISST
p for samples A, B, and C,

respectively. These variations between the individual measurements that have been taken in rapid
succession do not necessarily reflect the measurement precision, as they can also be associated with
actual variations in the sample, for example the fluctuations in the presence of relatively rare large
particles within the interrogated sample volume. Another important point is that the small negative
values of DoLPLISST

p observed for some individual measurements at forward scattering angles <30◦

(see the 10th percentile dotted lines in Figure 11b,d,f) are not necessarily an indication of measurement
uncertainty because the negative values, especially in this angular range, are physically possible for
certain types of particles [30,54,56,58].

Figure 12 depicts scatter plots of the relationships between the dimensionless optical parameters,
b̃LISST

bp and DoLPLISST
p,max, and the dimensionless particulate compositional properties, POC/SPM and

Chla/SPM, for all 17 samples examined in this study. The overall range of POC/SPM in our dataset
is 0.04 to 0.6. The presented data have been divided into three groups according to the values
of POC/SPM as follows: the least organic-dominated (or the most mineral-dominated) data with
POC/SPM < 0.15; the most organic-dominated data with POC/SPM > 0.3, and the intermediate data
with 0.15 ≤ POC/SPM ≤ 0.3. The selected boundary values of POC/SPM for discriminating between
the organic-dominated and mineral-dominated groups of data differ from those used in our previous
studies [65,78], but appear to adequately reflect the patterns in the present data. In particular, the most
mineral-dominated samples with POC/SPM < 0.15 form a clear cluster of data points with the highest
b̃LISST

bp (Figure 12a) and the lowest Chla/SPM (Figure 12b,d). We also note that no data were collected
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for POC/SPM between 0.15 and 0.2, so we will refer to all data with POC/SPM > 0.2 as highly organic
because they all represent highly significant or dominant role of organic particles.

Figure 12. LISST-VSF measurements of (a,b) the particulate backscattering ratio, b̃LISST
bp , and (c,d) the

maximum value of the degree of linear polarization of scattered light, DoLPLISST
p,max, as a function of

the POC/SPM or Chla/SPM ratio. The data are divided into three groups defined by the range of
POC/SPM as indicated in the legend.

The scatter plot for the data of b̃LISST
bp vs. POC/SPM suggests the presence of a relational trend with

significant negative correlation between the variables (the correlation coefficient R = −0.73). While the
b̃LISST

bp values are clearly highest for POC/SPM < 0.15, the organic-dominated samples have consistently
lower b̃LISST

bp . This result is consistent with the notion that mineral-dominated particulate assemblages
with relatively high bulk refractive index of particles tend to have higher backscattering ratio b̃bp

compared with organic-dominated assemblages with lower refractive index [17]. However, we also
note that highly organic samples with POC/SPM > 0.2 show no clear relationship and essentially no
correlation between b̃LISST

bp and POC/SPM (R = −0.11). This result may be attributable to the effect
of other particle characteristics on b̃LISST

bp , such as variations in refractive index of particles associated
with changes in the composition of particulate organic matter, variations in particle size distribution,
or both. The scatter plot of b̃LISST

bp vs. Chla/SPM (Figure 12b) provides interesting insight into this
question, as this relationship is significantly better compared with b̃LISST

bp vs. POC/SPM. Whereas the
correlation between b̃LISST

bp and Chla/SPM for all data is strong (R = −0.85), the subset of data for
highly organic samples (POC/SPM > 0.2) has also a relatively high correlation coefficient of −0.51.
This is an important result, suggesting that for particulate assemblages with high organic content,
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the backscattering ratio b̃bp tends to decrease with increasing proportion of phytoplankton in the
particulate assemblage. It is likely that the relationship in Figure 12b is largely driven by a decrease
in the bulk particle refractive index with increasing proportion of phytoplankton in the particulate
assemblage. Because this trend also holds for the subset of highly organic samples, it may indicate that
live phytoplankton cells have generally lower refractive index than non-living organic particles.

In contrast to b̃LISST
bp , the DoLPLISST

p,max data show no clear relational trend and very weak correlation
with POC/SPM (R = 0.31), indicating that the maximum degree of linear polarization does not provide
a useful optical signature for the organic vs. inorganic content of particulate assemblages in our dataset
(Figure 12c). A similar result with no correlation (R = 0.07) is observed for DoLPLISST

p,max vs. Chla/SPM,
indicating that varying proportion of phytoplankton in total particulate assemblage has no discernible
systematic effect on the maximum degree of linear polarization (Figure 12d). We also determined that
there is no significant correlation between DoLPLISST

p,max and b̃LISST
bp in our dataset (R = −0.22), as well as

between ψmax and POC/SPM or Chla/SPM (R = −0.09 and 0.06, respectively). It is also of interest to
note that the range of our DoLPLISST

p,max data is generally consistent with the range of values reported in
literature for natural seawater samples, although the reported range in some earlier studies extends to
somewhat lower values, as low as about 0.4 [15,39–42,79,80].

The assessment of potential presence of systematic effects of particle size distribution (PSD) on
b̃LISST

bp and DoLPLISST
p,max is presented in Figure 13. In this assessment, we use two PSD metrics: the 90th

percentile diameter, D90
V , derived from the particle volume distribution, and the power function slope,

ζ, derived from the particle number distribution. We also tested other percentile-based diameters such
as the median D50

V but no improvements in the examined relationships were observed. Figure 13a,b
shows no trend in the data of b̃LISST

bp associated with variations in the particle size metrics, even though
these metrics vary over a significant dynamic range. This is the case for the entire dataset as well
as a subset of highly organic samples with POC/SPM > 0.2, which supports the interpretation of
results presented in Figure 12b in terms of the role of refractive index. The data of DoLPLISST

p,max vs. D90
V

show the potential for the presence of a relational trend (Figure 13c). Although the scatter in these
data points is significant and correlation is weak (R = −0.47), the lowest values of DoLPLISST

p,max tend to
occur along with the highest values of D90

V . This result indicates that the decrease in the maximum
degree of linear polarization tends to be associated with particulate assemblages exhibiting a higher
proportion of large-sized particles. The potential usefulness of the relationship between the degree of
linear polarization and particle size has been proposed for the first time in 1930 [81], and the trend
observed in our data is consistent with those early results.

4. Concluding Remarks

Our laboratory measurements combined with Mie scattering calculations for samples of standard
polystyrene beads illustrate the value of such an approach for evaluating the calibration and
performance of light scattering instruments. For the specific version of LISST-VSF instrument and
data processing code used in our study, we determined the calibration correction functions for
improved determinations of the particulate volume scattering function βp(ψ) and the degree of linear
polarization DoLPp(ψ). The required correction was found to be particularly significant for βp(ψ)

(a correction factor of ~1.7 to 1.9). The improved determinations of βp(ψ) and DoLPp(ψ) were validated
with measurements on independent samples, and also using another independently-calibrated light
scattering instrument, DAWN-EOS. Although the correction functions developed in this study
are applicable only to the specific version of LISST-VSF instrument and the data processing code
used in this study, our results emphasize a general need for evaluating the performance of light
scattering instruments and minimizing the associated uncertainties in quantitative determinations
from measurements.
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Figure 13. Similar to Figure 12, but with optical quantities shown as a function of the particle size
metrics (a,c) D90

V , representing the diameter corresponding to the 90th percentile of the particle volume
distribution, and (b,d) ζ, the power law slope of the particle number distribution.

The improved protocol for measurements of light scattering with our LISST-VSF instrument was
applied to measurements taken on 17 natural seawater samples from coastal and offshore marine
environments characterized by contrasting assemblages of suspended particles. The particulate
volume scattering function, degree of linear polarization, and backscattering ratio were determined
from LISST-VSF measurements. For our dataset, these light scattering properties exhibit significant
variations related to a broad range of measured particle properties characterizing the organic vs.
inorganic composition and size distribution of particulate assemblages. For example, we observed
negative relational trends between the particulate backscattering ratio and the increasing proportions
of organic particles or phytoplankton in the total particulate assemblage. These proportions were
parameterized in terms of the measured ratio of particulate organic carbon (POC) or chlorophyll-a
(Chla) concentration to the total dry mass concentration of suspended particulate matter (SPM).
The observed trends can be useful in the development of optical approaches for characterizing
the composition of particulate assemblages. Our results also suggest a potential trend between
the maximum degree of linear polarization of light scattered by particles and particle size metrics.
Specifically, the decrease in the maximum degree of linear polarization observed at scattering angles
close to 90o tends to be associated with particulate assemblages exhibiting a higher proportion of
large-sized particles.

Earlier theoretical studies have shown that changes in the angular shape and the maximum value
of the degree of linear polarization depend on particle refractive index and size distribution [82,83];
however, the experimental data of the degree of linear polarization of scattered light for natural marine
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particle assemblages are very scarce. Our results provide a contribution to filling this gap. This type of
data can also be useful for improving an understanding of the polarization properties of marine light
fields including polarization of water-leaving radiance and advancing related applications, including
remote sensing applications [84–90]. The various potential applications of angular light scattering
measurements, including the polarization effects associated with light scattering by marine particles,
call for further efforts in this research area.
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Featured Application: Remote sensing of shallow coral reefs. We present an analysis of sensor

noise impacts on the detection of key coral reef ecological parameters: Bottom depth, benthic

cover, and water constituent concentration related to water quality. The results will help guide

the requirements for future satellite-based remote sensors for application to shallow water

coastal environments.

Abstract: Coral reefs are biologically diverse and economically important ecosystems that are on the
decline worldwide in response to direct human impacts and climate change. Ocean color remote
sensing has proven to be an important tool in coral reef research and monitoring. Remote sensing
data quality is driven by factors related to sensor design and environmental variability. This work
explored the impact of sensor noise, defined as the signal to noise ratio (SNR), on the detection
uncertainty of key coral reef ecological properties (bottom depth, benthic cover, and water quality)
in the absence of environmental uncertainties. A radiative transfer model for a shallow reef
environment was developed and Monte Carlo methods were employed to identify the range in
environmental conditions that are spectrally indistinguishable from true conditions as a function of
SNR. The spectrally averaged difference between remotely sensed radiance relative to sensor noise,
ε, was used to quantify uncertainty in bottom depth, the fraction of benthic cover by coral, algae,
and uncolonized sand, and the concentration of water constituents defined as chlorophyll, dissolved
organic matter, and suspended calcite particles. Parameter uncertainty was found to increase with
sensor noise (decreasing SNR) but the impact was non-linear. The rate of change in uncertainty per
incremental change in SNR was greatest for SNR < 500 and increasing SNR further to 1000 resulted in
only modest improvements. Parameter uncertainty was complicated by the bottom depth and benthic
cover. Benthic cover uncertainty increased with bottom depth, but water constituent uncertainty
changed inversely with bottom depth. Furthermore, water constituent uncertainty was impacted by
the type of constituent material in relation to the type of benthic cover. Uncertainty associated with
chlorophyll concentration and dissolved organic matter increased when the benthic cover was coral
and/or benthic algae while uncertainty in the concentration of suspended calcite increased when
the benthic cover was uncolonized sand. While the definition of an optimal SNR is subject to user
needs, we propose that SNR of approximately 500 (relative to 5% Earth surface reflectance and a
clear maritime atmosphere) is a reasonable engineering goal for a future satellite sensor to support
research and management activities directed at coral reef ecology and, more generally, shallow
aquatic ecosystems.

Keywords: remote sensing; coral reef; sensor noise; retrieval uncertainty
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1. Introduction

Coral reefs are among the most biologically diverse and productive ecosystems [1] and provide
a variety of goods and services to many tropical and sub-tropical coastal nations [2,3]. Coral reef
health and economic value are on the decline worldwide in response to direct human impacts and
global changes in climate [4] and this trend is expected to continue [5–7]. Within human-dominated
environments, rapid and potentially irrecoverable changes in the state of coral reef ecosystems have
been described as regime shifts [8,9], the most notable cause of which is the systematic removal of
herbivores that prevent algae from overgrowing live coral [10]. Thus, the benthic cover offers a key
metric to describe changes in coral reef health and is typically characterized optically as three primary
endmembers; healthy corals and associated organisms, minimal coral cover dominated by fleshy
macroalgae overgrowth, and uncolonized calcareous sand and dead coral rubble [11,12].

Coral reef benthic components, both fauna and flora, are highly diverse in appearance. Hochberg
et al. [13] analyzed over 13,000 reflectance spectra of benthic coral reef components and identified
12 characteristic spectra representing algae, soft and hard coral, and sediments. Subtle differences in
benthic reflectance can be detected in the above-water light field. Airborne imaging spectrometers
providing continuous, high resolution sampling across the visible and near-infrared spectrum have
been shown to yield more accurate discrimination between shallow water benthic types compared to
multispectral systems that provide data at a small number of broad spectral bands [14–18]. Hedley
and Mumby [19] examined the detailed spectral reflectance of various coral species and reported that
spectral unmixing approaches, such as derivative analysis, are potentially effective discrimination
techniques. Botha et al. [20] used radiative transfer simulations to investigate the effect of spectral
sampling to discriminate between coral endmembers and concluded that increasing spectral sampling
and resolution increased the depth from 2 m to 6 m, at which primary reef features can be identified
within clear coastal water. As a result of these and other similar findings, remote sensing methods
operating within the visible and near infrared portions of the light spectrum are rapidly becoming
incorporated into coral reef monitoring efforts [21]. In addition to high spectral fidelity, coral
reef scientists desire high spatial resolution, expressed as ground sampling distance (GSD), of less
than a few tens of meters in order to limit sub-pixel variability and provide meaningful ecological
information [22]. Building upon the lessons of modeling and in situ spectrometry and the positive
applications of airborne imaging spectrometers with high spatial resolution, future satellite sensors
are under development that will strive to provide similar data on a global scale. The NASA Surface
Biology and Geology sensor, formerly the Hyperspectral Infrared Imager, for example, is envisioned
as an imaging spectrometer that will provide continuous spectra between 380 and 2500 nm with 10 nm
channels and a spatial resolution of 30 m [23].

Remote sensing of coral reefs is a challenging problem from environmental and engineering
perspectives. In order to retrieve meaningful benthic and water column signals the confounding effects
associated with environmental variability, e.g., atmospheric conditions and glint from the water surface
must either be removed from the data or avoided. Uncertainty associated with such corrections is often
referred to as environmental noise. From an engineering perspective, the sensor must be designed to
collect as much light per pixel as possible in order to minimize signal variability associated with system
electronics and random variations in light intensity. This variability is commonly referred to as sensor
noise and expressed as the ratio of signal to noise (SNR). The total amount of noise embedded within a
remotely sensed signal is the combination of noise from both environmental and sensor sources.

Light energy received by a remote sensor is expressed as photon flux, φq, and defined as the
average number of photons received by a sensor per unit time per unit area,

φq =
λ

hc
XsysLsat, (1)

where h is Planck’s constant, c is the speed of light, Xsys accounts for system design attributes, including
field of view, aperture and integration time, and Lsat is radiance [24]. Variations in φq attributed to

384



Appl. Sci. 2018, 8, 2691

the sensor include readout noise associated with errors in reading detector signals, digitization noise
due to rounding errors in the conversion of analog signals to digitized values, dark noise resulting
from electric current in the system even when no photons are incident on the detector, and random
variations in the number of photons received, referred to as shot noise. Recent advances in sensor
design have greatly reduced readout, digitization, and dark noise across the designed signal range so
that shot noise forms the primary source of measurement uncertainty. Thus, our investigation assumes
that all non-environmental signal uncertainty is in the form of shot noise.

Shot noise forms a Poisson distribution in φq with a standard deviation σq equal to the square
root of the signal. It follows, therefore, that

SNR = φq/σq =
λ

hc
XsysLsat/

√
λ

hc
XsysLsat. (2)

Since SNR is a function of the radiance received, sensor uncertainty is expressed as a reference
signal to noise ratio, SNR∗, reported for a typical at-sensor radiance, Ltyp, and representing a specified
set of environmental conditions, including solar zenith angle and mean Earth-Sun distance. For aquatic
applications, the reference condition typically includes a clear maritime atmosphere overlying a surface
reflectance of 5%. With knowledge of the reference noise level SNR for any scene radiance, Lsat, can be
computed as

SNR = SNR∗
√

Lsat

Ltyp
. (3)

It can be shown that while SNR is formally defined in terms of photon flux, it applies equally to
radiance [25];

SNR =
φq

σq
=

Lsat

σL
, (4)

where σL is the standard deviation of radiance in units of radiance, e.g., W m−2 nm−1 sr−1. Thus, the
uncertainty in radiance resulting from sensor shot noise alone may be computed as σL = Lsat/SNR.

A recent model analysis of remotely sensed coral reef benthic cover concluded that under most
conditions environmental variability dominates the total noise and that sensor design efforts to
maximize SNR in order to retrieve more subtle benthic signatures are overemphasized [26]. This is an
important point because relaxing SNR requirements within the engineering trade space can result in
potential increases in spectral sampling and spatial resolution. The purpose of this work is to reexamine
the problem posed by this earlier work and to extend the analysis to include uncertainty in the retrieval
of bottom depth and water column properties that impact light attenuation. The analysis omits all noise
imposed by the water surface and the atmosphere and focuses solely on the impacts of SNR. Uncertainty
is defined as the envelope of environmental parameter values imposed by sensor noise that bracket
the true (reference) values. We consider continuous sampling at a resolution of 1 nm within the visible
and near-infrared portions of the electromagnetic spectrum (400 nm ≤ λ ≤ 750 nm). This spectral
sampling is not meant to represent a specific future satellite sensor, but rather an experimental design
to avoid uncertainty imposed by under sampling the spectral domain. While GSD is not explicitly
addressed, the implications of sub-pixel variability are implicit in the results, since benthic cover
heterogeneity was considered in the analysis. The problem is addressed using an analytical radiative
transfer model representing a shallow reef system with an overlying clear, stable atmosphere.

2. Approach

The approach compares scene radiances at the top of the atmosphere representing a reference
condition, i.e., benthic cover, bottom depth, and water clarity, with test conditions that deviate from
the reference condition. Parameters that define a reference condition are highlighted with a prime
symbol (‘) while the symbol is omitted from parameters representing test conditions. For example,
scene radiance at the top of the atmosphere is written as L′

sat for a reference condition and Lsat for a

385



Appl. Sci. 2018, 8, 2691

test condition. The prime symbol is also omitted in instances of general reference. In all conditions, the
atmosphere was defined using a low optical depth maritime aerosol (Table 1) and was held constant
along with solar zenith angle throughout the analysis. The water surface was flat and downwelling
sun and sky irradiance reflected from the water surface was not included in the water signal.

Table 1. Atmospheric parameter definitions and quantities representing a clear maritime atmosphere
used in all model computations.

Parameter Quantity

Aerosol model Maritime
Aerosol relative humidity 90%

Aerosol optical depth (550 nm) 0.06
Atmospheric model Tropical

Precipitable water vapor 5.0 cm
Ozone 0.34 atm-cm

Solar zenith angle 30o

Sun-earth distance 149.6 × 109 km

Reference conditions were compared with radiances representing other possible coral reef
conditions, generated by randomly and independently adjusting water and benthic properties
within realistic ranges. The advantages of this Monte Carlo approach over systematic adjustments
of individual parameters are that (1) fewer computations were required to estimate parameter
uncertainty, (2) all uncertainties were obtained simultaneously, and (3) all parameter interactions
were included in the results. In each case, the randomly generated test spectra were compared with
the reference spectrum and determined to be either indistinguishably similar or sufficiently unique
based on a spectral difference criterion, ε, defined by the condition-dependent SNRs of the two signals.
A flow chart of the modeling procedure is shown in Figure 1. If the reference and test spectra were
indistinguishable, then the test condition was recorded and a new random test condition was generated.
Random tests continued until enough indistinguishable conditions were encountered to reasonably
resolve the range in parameter values. This typically required between 105 and 107 test conditions.
The ensemble of indistinguishable test conditions was then used to identify the range in parameter
values as a measure of detection uncertainty.

Figure 1. Computation flow chart. SNR, signal to noise ratio.
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2.1. Shallow Water Light Model

Light propagation within a shallow reef environment was modeled following the original two-flow
irradiance propagation concepts of Schuster [27] and adapted for a shallow ocean [28–30]. While all
of the terms are spectrally dependent, wavelength notation λ is generally omitted for brevity and
inserted as necessary for clarity.

Water remote sensing reflectance measured just above the water surface is expressed as

Rrs =
0.52 rrs

1 − 1.7 rrs
, (5)

rrs = rrs,∞ +
[ρb

π
− rrs,∞

]
e−(Kd+Ku) D, (5a)

rrs,∞ =
2

∑
i=1

gi

(
bb

a + bb

)i
, (5b)

K =
a
μ

[
1 + (0.425 μ − 0.19)

b
a

] 1
2
, (5c)

where rrs sr−1 is the radiance reflectance measured just below the water surface, ρb is the irradiance
reflectance of the shallow bottom, K m−1 is the attenuation coefficient for diffuse light, the subscripts d
and u refer to the downwelling and upwelling irradiance streams, respectively, and D m is bottom
depth. Equation (5) propagates underwater reflectance through the air/water interface assuming
a flat surface [31]. The reflectance from infinitely deep water (Equation (5b)) is approximated as a
polynomial [32], where bb m−1 is the backscatter coefficient of the water mixture (pure water plus
suspended particles) and a m−1 is the absorption coefficient of the water mixture (pure water plus all
absorbing dissolved and particulate matter). The factors g1 = 0.084 and g2 = 0.125 were derived by
Gordon et al. [32] through extensive Monte Carlo simulations. Diffuse attenuation (Equation (5c)) was
expressed as a function of a, the total scatter coefficient of the water mixture (b m−1), and the average
cosine of the irradiance stream (μ), according to Kirk [33]. For Kd, the attenuation of downwelling
irradiance, μ = cos(θw), where θw is the in-water solar zenith angle. For upwelling irradiance
attenuation, Ku, μ = 0.7.

The inherent optical properties of the water column (a, b, and bb) are defined as linear combinations
of pure water (subscript w) and three primary constituents: Phytoplankton (subscript p), colored
dissolved organic matter (subscript g), and suspended non-algal particulate matter (subscript d),
assumed to be non-absorbing calcite;

a = aw + ap + ag, (6a)

b = bw + bp + bd, and (6b)

bb = bbw + bbp + bbd. (6c)

Pure water optical properties [34] were considered constant. Phytoplankton optical properties
were spectrally dependent and defined as the product of chlorophyll concentration (Cchl mg m−3)
and the chlorophyll-specific coefficients for absorption (a*

chl m2 mg−1) and scatter (b*
chl m2 mg−1).

The spectral shapes for a*
chl and b*

chl were defined as the average of spectra reported by
Stramski et al. [35] for laboratory cultures of phytoplankton. Absorption due to dissolved organic
matter was computed as ag,λ = ag,450 e0.014 (450−λ), where ag,450 is the absorption at the reference
wavelength λ = 450 nm [36]. Light scatter from suspended calcite particles was computed as
bd = Ccalb∗cal

[ 660
λ

]−1.45
, where Ccal g m−3 is calcite concentration and b∗cal m2 g−1 is the calcite-specific

scattering coefficient. For this study, b∗cal = 1.034 and is based on light scatter measurements reported
for calcite-dominated water within intense coccolithophore blooms [37].
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Backscatter from pure water, bbw m−1, was computed according to Zhang and Hu [38]

as bbw = 0.002
[

450
λ

]4.3
. Backscatter from phytoplankton was estimated from data reported by

Stramski et al. [35] and computed as bbp = 0.001 bp. Backscatter from suspended calcite particles
was computed as bbd = 0.043 bd [37].

Benthic reflectance was computed as

ρb =
N

∑
i=1

Biρbi, (7)

where i refers to the bottom type and N is the number of types considered. The fractional benthic cover
of each bottom type Bi is bounded by 0 and 1 and ∑N

i=1 Bi = 1.
Radiance received at the satellite was computed with the Tafkaa atmospheric model [39,40];

Lsat =
τg

πEocos(θs)

[
ρatm +

πRrsτdτu

1 − sπRrs

]
, (8)

where Eo is the extraterrestrial solar irradiance, θs (= 30◦) is the solar zenith angle, τd, τu, and τg are
atmospheric transmittances for downwelling and upwelling irradiance, and absorption by atmospheric
gases, respectively, ρatm is the atmospheric contribution to the upwelling radiance at the satellite, and s
accounts for atmospheric backscattering of water reflectance.

2.2. Spectral Difference

Reference sensor noise, SNR∗, was defined for an Earth surface reflectance of 5%, i.e., πRrs = 0.05,
regardless of wavelength. Equation (8) was then used to compute Ltyp. Note that while SNR∗ was
adjusted throughout the analyses for various reference conditions, Ltyp remained constant.

The spectral difference criterion, ε, was defined as the difference in the top of the atmosphere
radiance representing a reference condition and a test condition relative to sensor noise. Since SNR
changes with scene radiance, the joint radiance variability σ when comparing the reference radiance,
L′

sat, and a test radiance, Lsat, was computed as

σ =

√[
L′

sat
SNR′

L

]2

+

[
Lsat

SNRL

]2
. (9)

The between-spectra difference averaged across the spectral range of interest was computed as

ε =
1
N

N

∑
i=1

∣∣L′
sat − Lsat

∣∣
i/σi, (10)

where N is the number of discrete spectral bands. If ε < 1, i.e., the average radiance difference
was smaller than σ, then the two spectra were regarded as indistinguishable from system noise.
Equation (10) is consistent with the z-statistic for comparing the similarity of two normally distributed
populations [41].

Equation (10) does not offer an absolute measure of spectral discrimination. For example,
wavelengths in the red and near-IR portions of the spectrum are absorbed at higher rates than those in
the mid- and short-range portions of the visible spectrum, due to absorption by pure water. Hochberg
et al. [13] noted this effect and suggested that remote sensing approaches to coral reef environments
are best achieved at wavelengths shorter than 580 nm. Likewise, coral reefs ecosystems are often
sources of colored dissolved organic matter [42] that increases water absorption in the blue portion of
the spectrum. As ε approaches the threshold value, |Lsat − L′

sat|/σ will generally be greater than the
threshold in some portions of the spectrum, likely in the mid-visible range where light transmission is
a maximum, and less than the threshold in the blue and red regions of the spectrum.
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2.3. Model Scenarios

Several scenarios were considered to investigate the effects of environmental conditions on the
detection uncertainty for benthic and water column properties as a function of sensor SNR (Table 2).
In each scenario three reference SNR values were considered; 100, 500, and 1000. The benthic cover
was defined as fractional contributions from the three primary coral reef endmembers; average brown
hermatypic coral (Bc), green fleshy algae (Ba), and uncolonized calcareous sand (Bs). In addition, the
average coral spectrum was compared with that of a specific coral species, Porites astreoides (Bc,p),
in order to test the impact of SNR on coral species discrimination. Total benthic reflectance was
computed as linear combinations of the reflectance spectra representing the specified bottom types
(Figure 2) using data reported by Myers et al. [43] and collected using methods reported in Mazel [44].

Table 2. Summary of Scenario Conditions.

Global Scenario Reference Conditions
SNR = 100, 500, 1000

1 m≤D
′ ≤10 m; ΔD

′
=1 m

C
′
chl=0.1 mg m−3; a

′
g,450=0.2 m−1; C

′
cal=0.3 g m−3

Scenario Benthic Cover Bottom Depth Water Constituents

S1
B′

c = 1; B′
a = B′

s = 0
0 ≤ Bc, Ba, Bs ≤ 1

0.1 m ≤ D ≤ OD∗
0 ≤ Cchl ≤ 1 mg m−3

0 ≤ ag,450 ≤ 1 m−1

0 ≤ Ccal ≤ 1 g m−3

S2 *OD = Optically Deep
Cchl = C′

chl mg m−3

ag,450 = a′g,450 m−1

Ccal = C′
cal g m−3

S3

D = D′
S4 B′

c = 1; B′
c,p = B′

s = 0
0 ≤ Bc, Bc,p, Bs ≤ 1

S5

S5a
Bc = B′

c = 1
Ba = B′

a = 0
Bs = B′

s = 0

S5b
Bc = B′

c = 0
Ba = B′

a = 0
Bs = B′

s = 1

0 ≤ Cchl ≤ 1 mg m−3

0 ≤ ag,450 ≤ 1 m−1

0 ≤ Ccal ≤ 1 g m−3

Figure 2. Benthic reflectance spectra used in model computations.

Water constituent concentrations for all reference conditions were set low to represent a relatively
clear water column; C′

chl = 0.1 mg m−3, a′g,450 = 0.2 m−1, and C′
cal = 0.3 g m−3. The conditions are
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similar to the least clear waters examined by Hedley and others [26]. Diffuse attenuation for this
condition, expressed as the spectrally weighted Kd,

Kd =
∑750

i=400 EsiKdi

∑750
i=400 Esi

, (11)

where Es is the solar and sky irradiance at the water surface, was 0.409 m−1. Test constituent
concentrations were varied randomly between zero and maximum values judged to be reasonable
representations of most coral reef environments; Cchl = 1.0 mg m−3, ag,450 = 1.0 m−1,
and Ccal = 1.0 g m−3. These conditions span the clearest waters to be encountered within coral
reef environments and episodic turbid conditions that might be encountered in close proximity to
population centers. The reference bottom depth for each scenario ranged from 1 to 10 m in increments
of 1 m. For test conditions D was varied randomly between 0.1 m and the maximum depth at which
the test condition could be distinguished from optically deep water.

In the first scenario, S1, the objective was to compute the uncertainty in the signal representing
100% coral imposed by variability in water constituents, bottom depth, and benthic cover type. Since all
parameters were allowed to vary without constraints, this scenario might in practice represent the
application of remote sensing to an environment where the user has no a priori knowledge other than
assumptions regarding parameter value ranges. The resulting uncertainties, therefore, represented the
combined variability in all parameters. The reference benthos was defined as 100% coral cover having
a reflectance equal to the average coral endmember, B′

c= 1.0, and test conditions included random
mixtures of Bc, Ba, and Bs.

In scenario S2, uncertainties associated with endmember benthic cover and bottom depth
retrieval were investigated with the assumption that the water constituent concentrations were
known. This scenario is perhaps analogous to a situation where the coral reef is rather remote
with typically clear water conditions and no direct influence of degraded water quality imposed by a
nearby population center. The reference conditions were identical to S1, test water conditions were set
equal to the reference condition, and bottom depth and benthic cover were varied randomly across the
prescribed ranges.

In scenario S3, uncertainty in benthic cover was investigated with the assumption that water
clarity and bottom depth are known. This scenario is analogous to a coral reef monitoring program
where water quality is measured on a frequent basis, detailed bathymetric data are available, and the
objective is to detect changes in benthic cover type. The reference conditions were identical to S1,
water conditions and depth were set equal to the reference conditions, and only the benthic cover was
allowed to vary randomly.

In scenario S4, the impact of SNR on coral species discrimination was investigated. The reference
benthic cover was assumed to be 100% coral and represented by the average coral reflectance spectra,
B′

c. The test benthic conditions consisted of random mixes of the coral species Porites astreoides (Bc,p)
and the benthic algae endmember (Ba). Water constituent concentration and depth were constant and
equivalent to the reference conditions specified in S1.

Finally, in scenario S5, we investigated the impact of SNR on water property retrieval with
knowledge of endmember benthic cover and bottom depth. As in S3, this scenario is analogous to
the situation in a coral reef monitoring program where benthic cover and bottom depth have been
previously mapped and the objective is to quantify changes in water quality. In addition to changes
in bottom depth, this scenario was devised to test the potential impact of benthic cover on water
constituent uncertainty. Two separate reference conditions were considered: 100% coral cover and 100%
uncolonized sand. In both cases, benthic cover and bottom depth were held constant and equal to the
reference condition and only water constituent concentrations were allowed to change independently.
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3. Results

3.1. Bottom Depth

The maximum depth at which benthic cover could be detected, i.e., where ε > 1 when comparing
the reference condition with the signal representing optically deep water, was affected by a combination
of the concentration of water constituents (as the determinants of K), the benthic composition
(that controls ρb), and the noise envelope surrounding the reference condition (defined by SNR).
For example, considering SNR = 500, the extinction depths for benthic cover representing the three
endmember bottom types were 18.4, 11.4, and 21.6 m for B′

c, B′
a, and B′

s, respectively (Figure 3a).
The difference results from the relative contrast between the optically shallow and deep-water
reflectance. The extinction depth for benthic algae was nearly half that of uncolonized sand because
the spectrally averaged ρb for B′

a was more similar to rrs,∞ and, therefore, became indistinguishable at
a shallower depth compared with B′

s, which was the least similar to optically deep water. For a given
bottom type (results for 100% coral cover are presented as an example), the extinction depth decreased
with SNR (Figure 3b), because the envelope of uncertainty increased with sensor noise (inversely
with SNR). For example, given a bottom composed of 100% coral, the extinction depth was 20.9 m for
SNR = 1000 and was more than 1.5 times the extinction depth (12.6 m) under the same environmental
conditions when SNR = 100.

Figure 3. Average spectral difference parameter, ε, as a function of depth, where L′
sat representing

shallow reef conditions is compared with optically deep water. The water column is relatively clear
(C′

chl = 0.1 mg m−3, a′g,450= 0.2 m−1, and C′
cal = 0.3 g m−3) and the threshold of spectral separation is

ε = 1.0 (gray line). Impacts of cover type (A) are shown for B′
c (solid), B′

a (dot-dash), and B′
s (dash)

and the response to SNR (B) is shown for B'c, where SNR = 100 (dot-dash), 500 (solid), and 1000 (dash).

Uncertainty in the detection of bottom depth increased with increasing reference depth, expressed
as the dimensionless optical depth Do (= D′ Kd) and sensor noise, expressed as the difference between
the upper and lower bounds of spectral similarity and the reference condition, ΔD (Figure 4). Positive
values indicate an overestimation of D′ and negative values indicate underestimation. The rate
of increase in uncertainty with respect to the reference bottom depth was greatest for SNR = 100
and progressively diminished for SNR = 500 and 1000. Retrieval uncertainty was greatest when no
assumptions were made about the environment, i.e., scenario S1, where water constituent concentration
was allowed to vary across the prescribed ranges. However, when water constituent concentration was
constant and set equal to the reference condition (S2), uncertainty in bottom depth retrieval decreased
for each of the SNR values (bottom panel in Figure 4), although uncertainty associated with SNR = 100
remained noticeably greater than for SNR = 500 and 1000.
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Figure 4. Uncertainty in water depth (ΔD), expressed as the difference between the upper and lower
bounds of the test conditions relative to the reference condition, plotted against optical depth (Do) for
variable water constituent concentration (S1, upper figure) and constant constituent concentration (S2,
lower figure).

3.2. Benthic Cover

Uncertainty in the retrieval of endmember benthic cover increased with sensor noise (decreasing
SNR) and the reference bottom depth (Figure 5). As the bottom depth increased, the lower confidence
bound for B′

c decreased from the reference condition of 100% coral cover while B′
a and B′

s increased
from the reference condition of 0% cover. Allowing water constituent concentrations and bottom depth
to vary across the allowable range (S1), coral and benthic algae were indistinguishable for SNR = 100
and Do > 1.1; −1 ≤ ΔBc ≤ 0 and 0.79 ≥ ΔBa ≥ 0, where Δ indicates the difference between the upper
and lower bounds of the test conditions and the reference condition. Negative values indicate under
estimation of reference benthic cover while positive values indicate overestimation. Increasing SNR
to 500 decreased the underestimation of B′

c to −0.28 and the overestimation of B′
a to 0.23. This trend

continued as SNR increased to 1000, but the rate of change as a function of SNR was considerably
less. Uncertainty in distinguishing between B′

c (or B′
a) and B′

s was generally lower, due to a greater
contrast between the vegetated and uncolonized substrates. The increase in uncertainty in benthic
cover with increasing bottom depth is well understood and reported. The impact of SNR on benthic
cover uncertainty was also reported by Hedley et al. [26] and expressed as the statistical overlap
between specific conditions with noise applied, but their analysis did not suggest a large impact of
SNR compared with environmental noise.

Constraining water constituent concentration to the reference condition (S2) resulted in a
decrease in uncertainty in benthic cover detection regardless of SNR. For example, when Do = 1.1,
underestimation of B′

c decreased from the S1 values to −0.78 for SNR = 100, −0.18 for SNR = 500,
and −0.09 for SNR = 1000. Detection uncertainty between coral and benthic algae and between
vegetated and uncolonized substrates decreased similarly. Incorporating knowledge of bottom depth
(S3) decreased uncertainty further; for Do = 1.1, the underestimation of B′

c decreased to −0.58, −0.12,
and −0.06 for SNR = 100, 500, and 1000, respectively.
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Figure 5. Uncertainty in the detection of endmember benthic cover relative to the reference condition,
indicated as zero on the ordinate in each graph. S1 (top row of graphs) represent variable water
constituent concentration and depth across the allowable ranges. S2 (middle row of graphs) represent
variable depth while setting water constituent concentration constant and equal to the reference
condition. S3 (bottom row of graphs) represent depth and water constituent concentration constant
and equal to the reference condition.

Uncertainty in distinguishing between the average coral endmember and the coral species Porites
astreoides (B′

c,p), scenario S4, was consistently greater than the uncertainty in distinguishing between
coral and benthic algae because the coral reflectance spectra were more similar to each other than the
average coral and algae spectra (Figure 6). At the shallowest depths considered, D′ ≤ 3 m (Do ≤ 1.3),
uncertainty in B′

c,p was between two and three times greater than the uncertainty in B′
a. Uncertainty

increased with bottom depth and the difference in uncertainty between the coral covers and that of
algae gradually diminished as the signatures from each benthic cover gradually became more similar,
due to water attenuation. At the same time, detection uncertainty was significantly impacted by sensor
noise. At D′ = 1 m (Do = 0.41), uncertainty in coral cover, ΔB′

c,p, for SNR = 100 was 0.29 relative to the
reference condition B′

c = 1 (100% average coral cover). In other words, a fractional cover of 29% Porites
a. was confused with 100 % average coral cover. At D′ = 2 m, the uncertainty increased to 0.52 (52%
cover). However, increasing SNR to 500 significantly reduced this uncertainty to 0.06 (6%) at 1 m and
0.1 (10%) at 2 m. For SNR = 1000, uncertainty decreased slightly further to ≤0.052 (5.2%).
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Figure 6. Detection uncertainty in the fractional cover of Porites (B′
c,p) and benthic algae (B′

a) relative
to the reference condition (scenario S4, B′

c = 1). The uncertainty in the fractional cover is expressed as
the difference between the upper bound of the test condition and the reference condition (solid gray
line). Note that uncertainty in this scenario can only be positive (overestimated), since in this scenario
B′

c,p and B′
a are zero.

3.3. Water Constituents

Uncertainty associated with the detection of water constituent concentration was affected by
SNR, bottom depth, and benthic cover (Figure 7). Higher SNR consistently reduced detection
uncertainty. However, while benthic cover uncertainty decreased with D′, uncertainty in water
constituent concentration increased in shallow water, due to the diminished water signal. Both a′g,450
and C′

cal were generally detectable with low uncertainty for SNR ≥ 500 and Do > 1; Δag,450 < ± 0.05
m−1 and ΔC′

cal < ± 0.04 g m−3 respectively. At D′ = 1 m (Do = 0.4), retrieval uncertainty for these
parameters increased significantly, especially for SNR = 100. If the benthic cover was spectrally similar
to the material suspended or dissolved within the overlying water column, uncertainty increased.
For example, uncertainty in the detection of chlorophyll concentration was relatively large for scenarios
where the reference benthos was composed of healthy coral (in S1 and S5a), although increasing SNR
did result in a modest reduction in uncertainty. This is because absorption by phytoplankton is similar
to absorption by zooxanthellae, the chlorophyll-containing coral symbiont (in S5a), and the combination
of coral and benthic algae (in S1). For SNR = 100, the reference concentration was indistinguishable
from the entire range of test concentration, 0 ≤ Cchl ≤ 1 mg m−3. However, uncertainty in Cchl detection
improved when the benthic cover was composed of uncolonized sand (in S5b). In this case, increasing
SNR from 100 to 500 resulted in a significant decrease in detection uncertainty. At the same time,
uncertainty in detecting Ccal was smaller when the benthic cover was coral or algae and increased
when the substrate was uncolonized sand.
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Figure 7. Water constituent uncertainty (y-axis) for variable depth and benthic cover (S1) and water
depth and benthic cover equal to the reference condition (S5a and S5b). Scenario S5a represents benthic
cover of 100% coral and S5b represents 100% uncolonized sand. The ordinate scale represents the
difference between the upper and lower boundaries of parameter uncertainty, within the ranges
specified, and the reference condition, indicated as 0 in all graphs.

4. Discussion

It is shown that SNR can impose significant limitations on the ability to detect benthic cover,
bottom depth, and water constituents for all but the shallowest reef conditions considered (D = 1 m).
The threshold criteria for signal detection, ε = 1, essentially quantifies the average difference between
a reference condition and many test conditions relative to sensor noise imposed on the two signals.
If ε > (≤) 1, then the two signals are (are not) detectable as two distinct conditions. Since ε expresses
the spectrally averaged difference, one should expect that ε > 1 in some parts of the spectrum while in
other parts ε < 1. The criteria might, therefore, be viewed as too constraining since there will likely
be unique information remaining where ε > 1. However, the amount of retrievable information will
diminish as portions of the spectrum become progressively immersed within the envelope of sensor
noise. Thus, ε may be viewed as a reasonable proxy for the difference between two similar spectra.

Hedley et al. [26] conducted a sensitivity analysis of sensor and environmental sources of retrieval
uncertainty applied to a hypothetical airborne sensor and concluded that SNR had only a limited
influence on the overall uncertainty relative to environmental sources. While many environmental
sources, such as atmospheric constituent concentration and glint from a wind-roughened water surface,
can easily exceed those associated with SNR, such uncertainty is often spectrally correlated in ways that
are well understood and, therefore, can be mitigated. SNR, on the other hand, forms the foundation of
irreconcilable uncertainty to which environmental sources of uncertainty are added. It is, therefore,
prudent to make sensor development decisions with knowledge of how SNR impacts the overall
uncertainty in the retrieval of key environmental parameters.

From an optical remote sensing perspective, one of the strongest indicators of coral health
is bleaching; a brightening of the coral host, due to the absence of the microalgal symbiont,
zooxanthellae [44]. When present in healthy coral, absorption by photosynthetic pigments contribute
largely to the overall reduction in coral reflectance relative to the calcium carbonate foundation secreted
by the coral host. During a bleaching event, the zooxanthellae vacate the coral host and the overall
reflectance of the coral increases and takes on an appearance more similar to uncolonized calcareous
sediment. Remote detection of bleaching is similar to the problem of estimating healthy coral cover
when surrounded by uncolonized sand, illustrated in scenarios S1, S2, and S3. For SNR = 100,
the difference between the maximum and minimum confidence bounds in the detection of uncolonized
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sand at the shallowest depths considered, D′ = 1 m, ranged from 0.1 (S1) with unconstrained water
constituent concentration and bottom depth to 0.04 with a priori knowledge water constituent
concentration and bottom depth. Increasing SNR to 1000 decreased detection uncertainty by an
order of magnitude. The probability of detecting a bleaching event, assuming that the reflectance of
bleached coral is similar to uncolonized sand, and the resulting change in the fraction of healthy coral
cover would be reasonably high given these uncertainty limits. However, uncertainty increases with
bottom depth for all SNRs considered, particularly for SNR = 100. In addition to SNR the likelihood of
detecting a bleaching event depends on the contrast between healthy and bleached coral. Bleached
coral is not always as bright as the surrounding uncolonized sand [13] and the fraction of symbiont
loss does not always scale with reflectance [45,46]. Therefore, the uncertainty estimates with regard to
bleaching are likely optimistic.

The joint retrieval of both benthic cover and water constituent information is problematic,
regardless of SNR. The least uncertainty in water constituent concentration occurred in optically
deep water where the effects of benthic cover were minimal, but the benthic cover was highly
uncertain. Conversely, the most accurate detection of benthic cover occurred in optically shallow
water, but uncertainty in water constituent concentration was greatest. There is perhaps a glimmer of
hope for the shallow water conundrum in that water constituent uncertainty is lower when the water
constituent and benthic cover result in dissimilar effects on the total water reflectance. If the water
constituent material looks like the benthic cover material, uncertainty in the retrieval of either the
water constituent or benthic cover is large. The converse is also true. Within shallow water, uncertainty
associated with water column chlorophyll and dissolved organic matter (both results in darker water) is
minimal when the bottom is composed of bright, uncolonized sand whereas uncertainty in suspended
calcite sediment (which increases water reflectance) is smallest when the bottom is composed of dark
coral or algae. This raises the possibility of constructing water constituent retrieval algorithms that
are benthic cover specific. For example, one algorithm could potentially retrieve Cchl and ag,450 over
bright, shallow features while an algorithm for retrieving Ccal could apply only to areas of dark benthic
cover. Such an approach, if successful, would likely resolve spatial variability in water quality within a
heterogeneous reef environment and would be an improvement over the practice of retrieving water
constituent concentration from adjacent deep water signals that are then extended to the entire adjacent
shallow reef. Regardless, it is important to note that SNR will have a significant impact on the detection
uncertainty, especially when SNR < 500 and Do < 1.

This study suggests that SNR for shallow coral reef applications could be optimized around
a value of 500. For SNR < 500, uncertainties associated with detecting changes in benthic cover
type, bottom depth and water constituent concentration increase rapidly and limit remote sensing
utility to the shallowest portions of a reef environment. As SNR increases beyond 500 the parameter
uncertainty decreases, but at a much slower rate. Detection of coral reef benthic features, e.g., coral reef
species, seagrasses, benthic algae, and uncolonized sand, has been demonstrated utilizing airborne
scanning spectrometers with SNR approaching 500, computed as the top of atmosphere radiance
from a clear maritime atmosphere and a 5% reflectance surface [14–18]. In comparison, data from the
Landsat-8 Operational Land Imager (OLI) with SNR between 237 and 367 and four relatively broad
visible bands have been applied to surveys of shallow reef flats [47,48] with far less effectiveness.
Roelfsema et al. [49], for example, combined empirically derived geomorphic-ecological rules with
OLI data to map benthic cover type to a maximum depth of 20 m at selected locations within the Great
Barrier Reef system. However, the OLI imagery was only used to characterize benthic cover directly
where D < 0.75 m. In the deeper reef areas, only single-band determinations were used to characterize
the bottom as either uncolonized sand (light pixels) or combinations of coral, rock, and algae (dark
pixels). Combined, these reports are in agreement with the range in uncertainty in benthic cover
detection as a function of depth and SNR indicated in the S1, S2, and S3 scenarios.

The engineering constraints on SNR for a sensor deployed on an aircraft are very different
compared with an identical sensor placed in low Earth orbit (LEO). The number of photons collected
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per pixel is a product of the amount of time that the pixel is viewed (integration time), the solid angle
subtended by the pixel (instantaneous field of view), and the spectral sampling. The most advanced
aircraft sensors to date include the Airborne Visible/Infrared Imaging Spectrometer—AVIRIS [50],
and the Portable Remote Imaging Spectrometer—PRISM [51]. These sensors collect data with high
spatial resolution (GSD < 10 m), fine spectral sampling and resolution (generally < 5 nm), and peak
SNR ≥ 500 within the mid-visible portion of the spectrum. This is possible because the sensors can
be flown at low altitude resulting in a wider field of view for a specified GSD and with slow speed
resulting in longer integration time. Together, these attributes result in high photon flux per pixel.
A LEO sensor orbits at an altitude of approximately 2000 km and travels with a ground speed about
28,000 km h−1. Therefore, for a specific GSD, an identical LEO sensor will collect only a fraction of
the photons that would be received by an aircraft sensor for a specified GSD resulting in a lower SNR.
The SNR of a LEO sensor could be increased by incorporating a larger aperture in order to collect
more light, but this would also increase the manufacturing and launch costs. The design GSD, i.e.,
the instantaneous field of view per pixel, could be increased with minimal impact on size and weight,
but this will result in coarser spatial resolution and potentially significant loss of fine scale information
due to spectral mixing. Finally, the sensor could operate with lower spectral resolution, thus increasing
the number of photons per spectral band, but this would lead to loss of information necessary to
discriminate between spectrally dissimilar properties. Thus, there exists a well-defined SNR trade
space between GSD, spectral sampling, and the cost of manufacturing and launching a LEO sensor,
all of which impact the amount of retrievable environmental information.

The next generation of Earth imaging systems, motivated largely by reasoning articulated in the
latest NASA Decadal Survey of Earth remote sensing needs [52], will attempt to optimize the sensor
design tradeoffs in order to most effectively address concerns about coastal ecosystem responses to
population and climate change [53]. Coral reefs are a key environment globally due to their high
biodiversity and societal services. This study indicates that SNR is a key sensor design attribute for
remote sensing in support of coral reef ecological research and management and, more generally,
investigations of shallow coastal environments and that data value is diminished considerably when
SNR < 500.

5. Conclusions

There are three primary conclusions of this research.
(1) SNR was found to have significant and non-linear impacts on the uncertainty in detecting

change in key environmental parameters associated with shallow coral reef systems (bottom depth,
benthic cover, and the concentration of particulate and dissolved materials within the water column).
In general, uncertainty decreased with increasing SNR and the rate of change in uncertainty per
incremental change in SNR was greatest for SNR < 500. Increasing SNR from 100 to 500 resulted in
significant decreases in parameter uncertainty, but increasing SNR further to 1000 resulted in only
modest improvements in uncertainty.

(2) Regardless of SNR, benthic cover uncertainty increased with bottom depth as reported
by previous researchers. However, uncertainty in water constituent concentration increased with
decreasing water depth, particularly when the geometric depth was less than 1 optical depth.
For Do > 1, uncertainty associated with ag,450 and Ccal was relatively small for SNR ≥ 500. Uncertainty
in the Cchl was high regardless of SNR for all scenarios except when the benthic cover was 100%
uncolonized sand and SNR ≥ 500. Regardless, retrieval of water constituent concentration in shallow
water is problematic.

The sensitivity of uncertainties in water constituent concentrations to benthic cover is unrelated
to SNR, but nonetheless is impacted by sensor noise. The results suggest that it may be possible to
retrieve water constituent concentration in shallow water environments by parsing the imagery based
on benthic brightness, where algorithms developed for absorbing matter, such as chlorophyll and
dissolved organic matter, might be better retrieved over areas of high benthic reflectance, such as
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uncolonized sand, while the concentration of highly scattering suspended particulate matter, such as
calcite sediment, may be better retrieved in areas of dark benthic cover, such as healthy coral and algae.

(3) Lastly, given the change in parameter uncertainty with sensor noise and the likely trade-offs
that will be required for the development of future spaceborne imaging systems with application
to coastal ecosystems, we conclude that SNR = 500 is a reasonable sensor design goal in order to
optimize the utility of such a sensor for application to shallow coral reef environments. Uncertainty in
submerged feature detection and retrieval increases significantly as SNR approaches a value of 100.
While this may result in significant immediate savings in sensor development and launch costs, the
potential loss of environmental information may have larger societal costs in the long run. On the
other hand, increasing SNR above 500 will likely result in much higher sensor development costs that
will be hard to justify based on expected scientific benefits.
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Mathematical Symbols, Units, and Definitions

Symbol Unites Definition
a m−1 Absorption coefficient for water and all impurities
b m−1 Scattering coefficient for water and all impurities
bb m−1 Backscattering coefficient for water and all impurities
B Fraction of benthic cover
c m s−1 Speed of light
C mass m−3 Water constituent concentration
D m Bottom depth
Do Optical depth
Eo W m−2 nm−1 Extraterrestrial solar irradiance
h J s Planck’s constant
K m−1 Diffuse light attenuation coefficient
K m−1 Spectrally weighted diffuse attenuation coefficient
Lsat W m−2 nm−1 sr−1 Earth radiance received by a satellite sensor
Ltyp W m−2 nm−1 sr−1 Typical top-of-atmosphere Earth radiance
rrs sr−1 In-water remote sensing reflectance
Rrs sr−1 Above-water remote sensing reflectance
s Atmospheric scatter of Earth surface reflectance
SNR Signal to noise ratio
Xsys Collective remote sensor attributes
ε Spectral-averaged radiance difference criterion
θs radians Solar zenith angle
λ nm Wavelength of light
μ Average cosine of irradiance
ρatm Atmospheric reflectance due to path radiance
ρb Benthic reflectance
σ W m−2 nm−1 sr−1 Radiance standard deviation
σq photons s−1 Photon flux standard deviation
τ Atmospheric transmittance
φq photons s−1 Photon flux
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Featured Application: Sediment characteristics and dynamics are studied using in situ

optical measurements.

Abstract: Measurements of optical properties have been used for decades to study particle
distributions in the ocean. They are useful for estimating suspended mass concentration as well
as particle-related properties such as size, composition, packing (particle porosity or density), and
settling velocity. Measurements of optical properties are, however, biased, as certain particles, because
of their size, composition, shape, or packing, contribute to a specific property more than others. Here,
we study this issue both theoretically and practically, and we examine different optical properties
collected simultaneously in a bottom boundary layer to highlight the utility of such measurements.
We show that the biases we are likely to encounter using different optical properties can aid our
studies of suspended sediment. In particular, we investigate inferences of settling velocity from
vertical profiles of optical measurements, finding that the effects of aggregation dynamics can seldom
be ignored.

Keywords: particle dynamics; optical properties; suspended sediment

1. Introduction

Optical properties have long been used to study suspended particles and their dynamics (e.g.,
reviews by [1–3]). The most commonly measured optical properties are attenuation and scattering
at different angles (both forward and back). Other optical devices, including ambient radiation
sensors, cameras, and holographic instruments, also produce valuable data, but this paper will focus
primarily on measurements of attenuation and scattering. Measurement volumes are typically small
(from a few mL to tens of mL) and temporal averaging can increase the likelihood that rare large
particles are sampled. Optical measurements can provide relatively direct estimates of mass or volume
concentrations and particle size, and they also can be used to infer information about particle density,
composition, and settling velocity. The primary advantages of using optical properties to study
suspended particles are that they can be obtained at high frequency over long periods, and they are
relatively non-invasive. Interpretation of optical measurements, however, are complicated by the fact
that measurements are affected by all the particles in the suspension, but as we explain below, they do
not respond to all particles equally. Other known disadvantages of optical instruments are that they
saturate at high particle concentrations (e.g., [2]); they are intrusive and can produce turbulent wakes;
they can be affected by ambient light; they can have large power demand; and they are susceptible
to bio-fouling.
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1.1. Optical Proxies of Properties of Sediment Particles

1.1.1. Volume and Mass Concentration

Most of the variation in optical signals measured in the field is due to changes in suspended
particle mass concentrations (SPM; e.g., [4]). Optical estimates of SPM typically are made with
measurements of attenuation or scattering at long visible wavelengths (e.g., 660 nm) or at infrared
wavelengths (e.g., 850 nm), minimizing the impacts from varying dissolved materials and particulate
absorption [5]. Transmitted light, which is reduced by scattering and absorption by particles, is
measured in the near forward direction by so-called transmissometers, and scattered light can be
measured at an angle near 90◦ by nephelometers, or at an angle greater than 90◦ by optical backscatter
sensors (OBS). A multi-site comparison of the application of backscattering, side-scattering, and
attenuation as proxies for SPM demonstrated their ability to predict SPM within 36%, 51%, and 54%
respectively, for 95% of all cases [4]. The differences likely are due to variable sensitivity of each
property to particle size, packing, and composition [1,6–8]. For example, the acceptance angle of
transmissometers acts to filter out responses from larger particles [9]. SPM has also been estimated
from space-based measurements of radiance (e.g., [10]). Remotely-sensed reflectance is most sensitive
to the particulate backscattering coefficient in red and NIR wavelengths [11].

1.1.2. Size

Suspended sediment ranges in size from sub-μm-sized clay platelets to mm-sized sand and even
larger flocs. It also encompasses plankton, non-algal organic particles, and aggregates that can be
mixture of both organic and inorganic particles. We ignore in this paper particles capable of sinking at
speeds >10 mm s−1. These are rarely in suspension and, when they are in suspension, concentrations
may saturate optical instruments. Optical proxies for size information include size distributions
inverted from measurements of near forward scattering at several angles [12], the exponents of
power-law fits of the particulate attenuation or backscattering spectrum [13–15] (but see [16]), and the
fluctuation in optical signals, which can be used to obtain the average size of suspended particles [17].
Images of particles have also been used to derive size distributions, particularly of larger flocs and
aggregates (e.g., [1,3]).

Theoretically, the maximal response of attenuation or scattering per volume (equivalent to mass if
density is constant) occurs for single-grain sediment near (D/λ)(n − 1) ~ 1 where λ is the wavelength
in water (= 0.75λair), D is the particle diameter, and n is the index of refraction of the particle relative
to water ([18], Figure 1). For solid inorganic particles with n = 1.15 at λair = 660 nm, the maximal
attenuation per mass occurs for small particles with diameters between 0.8–3.2 μm. This dependency
decreases as 1/D as D increases, and it increases for larger indices of refraction (Figure 1). Increases in
the index of refraction are typically associated with increases in the inorganic fraction in the particle
suspension [19].

The dependence of attenuation or scattering per unit of suspended mass on size should limit their
use for estimation of SPM in suspensions with varying particle size, yet they are reasonably precise
proxies for SPM across a range of environments, as discussed previously. This paradox is resolved if
particles in suspension are not primarily single solid particles, but rather are agglomerations of particles
separated by relatively large volumes of interstitial fluid and transparent organic material [1,20].
Terminology used to describe particle agglomerations in suspension can be ambiguous. Here we refer
to a “floc” as an agglomeration of material that forms in suspension at relatively short times scales
(e.g., tides) that is susceptible to breakup under increasing shear stress. We use the term “aggregate” to
refer to an agglomeration that has undergone multiple cycles of resuspension and deposition, during
which it has become more compacted and more strongly bound. While the component particles in
flocs and aggregates may be similar, the density and settling velocity of aggregates is greater [21].
Flocs and aggregates typically sink faster than their component particles [22,23]. Flocs are broken by
shear, including that generated by turbulence and by sinking, limiting their maximal size to about
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1 cm [20,22,24–26]. Aggregates, because they are more compact and stronger, are not broken easily by
shear. In terms of their optical properties, flocs, if sufficiently porous, can maintain the efficiency of
scattering of the particles of which they are made [27], resulting in mass-specific optical properties
that are independent of floc size. These theoretical results were validated in laboratory and field
experiments that found that attenuation and backscattering to SPM ratios remained relatively constant
despite large changes in particle size [1,28]. More densely packed aggregates theoretically should
have mass-specific optical attenuation, scattering and backscattering coefficients that decrease with
increasing aggregate size, but at a rate that is less than the 1/D dependence of solid particles. This
theoretical relationship has not been demonstrated with measurements.

Figure 1. Top panels: volume-specific beam attenuation (αv for solid particles (left) and aggregates
(right) as function of (2πD)/λwater (n − 1) where D is diameter, λwater the wavelength in water and
n the index of refraction (which increases between organic and inorganic particles). For aggregates,
naggregate = 1 + F(n − 1), where F is the solid fraction and n the index of refraction of the particles
that comprise the aggregate. In all cases, the volume used to compute αv is that of the solid fraction.
Bottom panels: same as on top but plotted as function of particle diameter. In all the computations
λair = 660 nm and n’ = 0.0001, where n’ is the imaginary part of the index of refraction, representing
absorption. For aggregates we use n = 1.15 (solid) and n = 1.05 (dashed) typical of inorganic and organic
materials, respectively.

1.1.3. Composition

Composition of suspended particles ranges from inorganic clays and silts of varied mineralogy
to organic particles including both pigmented phytoplankton and non-algal particles. An optical
proxy for composition (separating dominance by organic and inorganic particles) is the ratio of
backscattering to total scattering [29,30]. Fluid-filled organic particles such as plankton have lower
indexes of refraction compared to inorganic particles, resulting in a lower backscattering relative to
total scattering. The ratio of chlorophyll-containing particles to total particles, estimated from the ratio
of chlorophyll absorption to the particulate beam attenuation, has also been used as a compositional
proxy in locations where the particle assembly includes a significant inorganic component [31]. In
addition, the ratio of particulate organic carbon to SPM was found to correlate well with the ratio
of particulate absorption at 675 nm to that at 570 nm [32]. It should be noted that optically derived
knowledge of composition and/or size can lead to improved estimates of particulate concentration
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from optical measurements and associated composition (or size)-specific algorithms relative to those
that do not account for variations in particle composition and/or size [1,16,32,33].

1.1.4. Packing

A proxy for bulk particle density has been derived from the ratio of beam attenuation (a mass
concentration proxy) to the total particulate volume (obtained by inverting the forward scattering
measurements with the Laser In Situ Scattering and Transmission (LISST) sensor [28,34,35]). If particle
volume increases due to aggregation (with a significant fluid fraction), particle density will decrease.
This will happen up to the point where the particle has a fractal dimension that is reduced below two,
at which point most light passes through the particle and attenuation is caused only by component
particles. Because the beam attenuation is also closely linked to the summed cross-sectional area
of all the particles, it follows that the above proxy should behave similarly to the suspension’s
volume-to-cross-sectional-area ratio, or Sauter diameter [34].

1.2. Particle Dynamics

In this section, we focus on the bottom boundary layer (BBL; for a recent review of the fluid
dynamics of the BBL see [36]). The particle assembly C is a sum of many types of particles C = ∑i Ci,
each with a specific settling speed, composition, size and any other property that is relevant to either
hydrodynamic or optical properties.

The general conservation equation for particles can be written as:

∂Ci
∂t

+∇(Ci(U − wi)) = ∇(K∇Ci) + ∑j f (Ci−j, Cj) + Si (1)

where Ci is the mass concentration of particles of type i, t is time, U is the 3-D velocity field, wi is the
settling velocity of these particles (we use the convention that it is positive downward), K is a diffusion
coefficient, f (Ci−j, Cj) represents aggregation and disaggregation dynamics creating and destroying
Ci-type particles, and Si represents other sources and sinks (e.g., resuspension/deposition or biological
production/consumption of particles).

To solve Equation (1) for a given flow field, one needs boundary conditions (e.g., flux or
concentration of particles at the boundaries of the domain) and initial conditions (e.g., the state
of the particles at time t = 0). Even then, Equation (1) cannot be solved analytically except for very
simple cases such as we will address next.

Equation (1) can be simplified to represent only the vertical dimension (z, positive upwards),
assuming that horizontal advection of horizontal gradients is negligible relative to vertical processes.
After time averaging (or assuming steady-state), the steady balance between downward settling,
upward diffusion, exchange among particle types (aggregation/disaggregation), and sources/sink is:

− wi
dCi
dz

=
d(KeddydCi)

dz2 + ∑j f (Ci−j, Ci) + Si (2)

where Ci is the time- (and horizontally) averaged concentration of particles of type i, Keddy is an eddy
diffusion coefficient (representing the mixing by the small-scale turbulent field), and wi is a constant
settling velocity for each particle type i.

Large aggregation rates are associated with large particle concentrations, e.g., following a major
resuspension event or during an algal bloom. Large disaggregation rates are associated with large
fluid shears, e.g., in the wave boundary layer, which is a layer a few centimeters thick next to the
bottom. If particle concentrations and fluid shears do not vary greatly throughout a boundary
layer, then an equilibrium size distribution develops, and the aggregation and disaggregation terms
cancel one another. An assumed equilibrium under certain circumstances is unlikely to emerge in
bottom boundary layers, for example when near-bed wave-generated shears are much greater than
current-generated shears higher in the boundary layer.

405



Appl. Sci. 2018, 8, 2692

The law-of-the-wall is often invoked in the BBL, which is consistent with a linear eddy diffusivity
profile where Keddy = κu∗z, and κ is von Kármán’s constant (∼0.4), and u∗ is the friction velocity (a
function of BBL turbulence, e.g., due to wave and current shear). Neglecting aggregation dynamics
and sources/sinks, and integrating Equation (2) in the vertical and solving the resulting differential
equation results in the Rouse equation [37,38] for a homogenous population of particles of type i:

Ci(z) = Ci(za)

(
z
za

)− wi
κu∗

(3)

where za is a reference elevation where a particle concentration is assigned. This is one of several
different analytical solutions for the balance of settling and turbulent mixing, which vary depending on
assumptions about the eddy diffusivity profile [39,40]. An alternative derivation of Equation (3) using
probability theory has also been proposed [41]. Equation (3) predicts a profile that is linear in log(Ci)
versus log(z), and all of the other forms predict similar decreases in concentration with elevation above
the bottom. Because mass concentrations can be summed, the bulk concentration profile is:

Cb(z) = ∑i Ci(z) =∑
i

(
Ci(za)

(
z
za

)− wi
κu∗

)
(4)

It follows that the bulk particle concentration will also decrease with height above the bottom.
Note, however, that if a suspension comprises sub-populations of particle types with differing settling
velocities, each will have a different vertical profile (Equation (3)), and the profile of the summed
concentration will follow Equation (4), which does not, in general, follow the linear shape in log-log
space. In fact, large deviations in the bulk profile from Equation (3), under steady conditions in a
turbulent BBL, are likely indications that a suspension contains particles with diverse settling velocities.

1.3. An Equation for the Vertical Distribution of an Optical Property

The mass concentration of a population of particle type i is Ci = NiViρI, where ρi is individual
particle density, Ni is the number concentration of particles of type i, and Vi is individual particle
volume. By the Beer–Lambert law the bulk optical response (e.g., backscattering or beam attenuation)
of a sub-population bx,i, is the simple sum of the individual contributions so that:

bx,i = αv,i NiVi (5)

and the bulk response to the combined sub-populations is:

bx = ∑i bx,i (6)

where αv,i, is a volume-specific optical property. Volume- or mass-specific optical properties typically
are calculated by using Mie theory (which assumes homogeneous spherical particles) for solid particles,
or by using other models for flocs (e.g., [31]). The calculations of αv,i require as input particle diameter,
index of refraction (a function of composition), wavelength of light, and, for flocs, the fractal dimension
that relates volume concentration to mass concentration. The results are resonance-like functions of
size (Figure 1). Although the application of Mie solutions to backscattering has been challenged based
on observations (e.g., [42]), it is reasonable to relate constant values of αv,i to specific particle types.
Both Equations (5) and (6) rely on the Beer–Lambert law, with underlying assumptions that the light
is monochromatic with parallel rays and, most importantly, that the particles do not scatter the light
multiple times. This is clearly not the case as particle concentrations rise but, at low concentrations,
we may be able to assume that Equations (5) and (6) are valid. Substituting optical response for
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concentration in Equation (3) yields an equation for the optical-response profile for a homogenous
sub-population i with identical αv,i, Vi, and wi:

bx,i(z) = bx,i(za)

(
z
za

)− wi
κu∗

(7)

Equations (6) and (7) can be combined to yield an equation for the bulk response of a heterogeneous
population:

bx(z) = ∑
i

bx,i(za)

(
z
za

)− wi
κu∗

= ∑
i

αv,iCi(za)

ρi

(
z
za

)− wi
κu∗

(8)

As with particle concentrations, we find that the information provided by a profile of optical
properties will depend on how heterogeneous the suspension is. Unlike the concentration profile, the
averaging done by the optical properties depends on how the optics respond to different particles
(Equation (8)). Hence, the more biased an optical property is towards a specific particle type, the better
it can provide information on its specific settling speed.

2. Observations

Field data were obtained from a profiling instrument platform deployed at the Martha’s Vineyard
Coastal Observatory (MVCO) south of Martha’s Vineyard, MA, USA, at the 12-m isobath in the
summer of 2011, as part of the Office of Naval Research (ONR)-funded Optics and Acoustics and
Stress In Situ (OASIS) experiment [43]. The platform was mounted on a pivoting arm that profiled
every 20 min from 10 cm to 2 m above bottom. The platform was equipped with variety of optical and
acoustical sensors. Here we discuss data from a Sequoia LISST 100-X (Sequoia Scientific, Bellevue, WA,
USA), a EcoBB2f (WETLabs, Philomath, OR, USA) triplet measuring dissolved organic fluorescence
and backscattering at two wavelengths (532 and 650 nm), and a WETLabs AC-9 spectral absorption
and beam attenuation meter. Water was pumped from an intake at the tip of the arm into the
10-cm pathlength sampling volume of the AC-9. An automatic valve periodically routed the water
sample through a 0.2-μm filter to remove particulates, leaving the dissolved fraction, to obtain
calibration-independent particulate properties [44]. Shear velocity u∗c [cm/s] associated with mean
flow in the bottom boundary layer (BBL) was inferred from a pair of acoustic Doppler velocimeter
(Sontek, San-Diego, CA, USA) measurements (cf. [45]), and model estimates of the wave–current
combined maximum shear velocity in the wave boundary layer (relevant to sediment resuspension)
were determined using a version of the Grant–Madsen model [46,47]. We have plotted sign(u) u∗c

in Figure 2, where u is the east–west component of the current velocity, to differentiate flood (east,
positive) from ebb (west, negative). The location is dominated by the east–west semi-diurnal tidal
currents, northward swell, and periodic storms (Figure 2). The measurements discussed here were
taken in the bottom boundary layer, which is mostly well mixed.

Waves and currents varied during the experiment, and we have selected four periods with
distinctly different forcing and optical responses (Figure 2). Two periods (Maria and Ophelia) were
associated with offshore passage of hurricanes and arrival of swell waves at the study site. Another
period (Spring tides) was associated with moderate wave conditions and strong spring tidal currents.
The fourth period (Calm) was characterized by low waves and weaker neap tidal currents. For each of
the four periods identified in Figure 2, we show the distribution of the following optical properties (or
properties inferred from optical measurements):

1. Beam attenuation cp(650) [m−1] measured by the AC-9 and particulate backscattering coefficient
(bbp(650) [m−1] measured by the EcoBB2F provide proxies of particulate concentration (e.g., [5],
where higher values associated with higher particle concentrations.

2. Exponent of the power-law fits of the particulate beam attenuation γcp [dimensionless] and
backscattering γbbp [dimensionless] (cp = cp(λ0)(λ/λ0)−γcp, with an analogous formula for γbbp)
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provide proxies for size distribution in the finer sizes (e.g., [13]). Lower values are associated
with larger size averaged particles. γcp is biased towards the smaller (0.5 to 10 μm) particles in
the population [9], and γbbp may be more sensitive to larger particles [15].

3. Sauter diameter Ds [μm] is determined from the ratio of LISST measurements of volume and
area concentrations, summed over size classes i as Ds = 1.5 ∑Vi/∑Ai and reciprocal of particle
density ρa

−1 = ∑Vi/cp [m ppm−1 = μm], using the LISST-based cp. Both are proxies for packing:
larger values of Ds indicate larger, less-dense particle populations, and larger values of ρa

−1 also
indicate less-dense particle populations.

4. Particulate backscattering ratio bbp(532)/bp(532) measured by the EcoBB2F (bbp(532)) and by
differencing of particulate attenuation and particulate absorption from the AC-9 (bp(532)) was a
proxy of composition. Increasing values of this ratio are associated with inorganic particles [29,30].
For very small particles, this ratio is also sensitive to size, increasing for smaller particles.

5. Chlorophyll to attenuation ratio Chl/cp(650) is another proxy of composition where higher values
are associated with higher phytoplankton-based organic content [31].

6. LISST-based size distribution spanning from 2–250 μm at 32 size bins and using a spherical kernel.

Figure 2. Time series of conditions at the 12-m Martha’s Vineyard Coastal Observatory (MVCO) site
during the Optics and Acoustics and Stress In Situ (OASIS) deployment in 2011: beam attenuation at
650 nm measured at 1 m above the bottom (gray), tidal current shear velocity sign(u)u∗c (blue), and
combined wave-current shear velocity u∗cw (purple). Notice labels describing specific periods.

We selected 1-h intervals during each of the different periods identified in Figure 2 when the
concentration profiles estimated from attenuation decreased monotonically with elevation above the
seabed, and the profiles were relatively well approximated by a linear profile in log-log coordinates
(Equation (5)). These profiles were consistent with the steady-state Rouse balance discussed above,
suggesting that we might be able to neglect the effects of horizontal gradients and temporal transients.
The data represent the average of three consecutive profiles, each of which took 20 min to complete.
All properties are displayed as a function of elevation above the bottom in Figures 3–6. Trends in
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vertical profiles and representative values (mean and standard deviation) for each time period are
summarized in Tables 1 and 2.

Figure 3. Profiles of optical parameters at the MVCO site on day 261.1 when waves from Hurricane
Maria were coming to shore (see Figure 2). (a) Beam attenuation (cp(650), black), particulate
backscattering (bbp(650), red), and LISST attenuation (gray). (b) Deviation from the Rouse-profile
fits for the same parameters (i.e., observed minus fit). (c) Power-law exponent of cp(650) (black) and
bbp(650) (red). (d) Sauter diameter (red) and inverse particle density (black). (e) Ratio of chlorophyll
divided by cp(650) (black) and backscattering ratio (red). (f) Spectra of LISST volume concentration as a
function of size at nine elevations. In panels (a, c, d, and e), standard deviation about the mean values
for three consecutive profiles (60 min) are shown with crosses. Dashed lines in panel (a) are log-log
(Rouse) fits to the data. In panel (f), the elevations for each spectrum are indicated by black lines, and
the gray vertical scale indicates 10 μL/L. Numbers in the box denote settling velocities based on Rouse
fits to backscattering, AC-9 particulate attenuation at 660 nm, and LISST attenuation at 670 nm.

409



Appl. Sci. 2018, 8, 2692

Figure 4. Profiles of optical parameters at MVCO on day 268.62 during spring tides and moderate
waves. Panels are as described in Figure 3.

Table 1. Trends in particle parameters as function of depth based on the average of three profiles in
the BBL in each of the four periods denoted in Figure 2. ↘ and ↗ denote profiles that are decreasing
or increasing (respectively) with elevation above the bottom, ∼ denotes that the trend is weak, and |
denotes that there is no trend with elevation.

Parameter Maria Spring Tide Ophelia Calm

bbp(650) | ↘ ↘ ~↘
cp(650) ↘ ↘ ↘ ↘

γbbp ↗ ↘ ↗ ~↗
γcp ↗ ↗ ↗ |
Ds | ↗ ~↗ ~↘

ρa
−1 ~↘ ↗ ~↗ ~↘

bbp(650)/bp(650) ~↗ ↗ | |
Chl/cp(650) ↗ ↗ ~↗ ↗
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Figure 5. Profiles of optical parameters at MVCO on day 275.20 during the passage of Hurricane
Ophelia. Panels are as described in Figure 3.
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Figure 6. Profiles of optical parameters at MVCO on day 281.93 during calm conditions. Panels are as
described in Figure 3.

3. Results

3.1. Suspended Particulate Material (SPM)

The overall concentration of SPM fluctuated through the experiment (Figure 2), as indicated by
variations cp(650) (Figure 2) and bbp(650) (not shown). The time series of cp(650) at 1 m above the
bottom indicates increased SPM during Maria and Ophelia, somewhat reduced SPM during the spring
tides, and low SPM during the calm period. Mean values of cp(650) in the 60-min profiles ranged from
about 1 m−1 during the calm period to 12 m−1 during Ophelia, when wave-induced resuspension
increased SPM in the BBL. Mean values of bbp(650) generally covaried with cp(650), ranging from
0.02 m−1 to 0.30 m−1 for the same periods. The cp(650) and bbp(650) concentrations decreased with
elevation, and the profiles examined here were nearly linear in log-log space (Rouse-like). However,
there was typically more scatter in the profiles of bbp(650), as evidenced by their lower r2 (Table 2),
especially during periods of lower concentrations.
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Table 2. Mean and standard deviation (in brackets) of optical particle parameters computed based on
the average of three profiles in the BBL in each of the four periods denoted in Figure 2. The wave-current
and current shear velocities and the settling velocities inferred from fitting the Rouse profile to cp and
bbp are also listed, with regression coefficient r2 in brackets.

Parameter Maria Spring Tide Ophelia Calm

bbp(650) [m−1] 0.11(0.06) 0.04(0.01) 0.30(0.14) 0.02(0.002)
cp(650) [m−1] 3.87(1.77) 1.19(0.22) 11.81(6.51) 1.06(0.09)

γbbp 0.09(0.02) −0.14(0.06) 0.0(0.01) 0.06(0.07)
γcp 0.33(0.04) 0.43(0.04) 0.34(0.04) 0.42(0.01)

Ds [μm] 87.3(3.0) 210.7(20.5) 50.4(6.0) 147.0(8.7)
ρa

−1 [m ppm−1] 16.6(1.1) 19.1(0.3) 11.5(0.8) 20.8(1.1)
bbp(650)/bp(650) 0.03(0.002) 0.04(0.002) 0.03(0.002) 0.02(0.002)

Chl/cp(650) [μgm−2] 2.8(0.4) 4.3(0.6) 0.9(0.1) 4.2(0.1)
u∗wc [cm/s] 2.3 2.4 4.1 0.8
u∗c [cm/s] 0.6 0.7 1.8 0.4

wsbbp [cm/s] 1.22(0.72) 0.42(0.72) 3.39(0.94) 0.11(~0.0) *
wscp [cm/s] 1.08(0.80) 0.52(0.66) 3.96(0.99) 0.22(0.95)

* fit was not significant. Bold is used to highlight the largest values in each row.

3.2. Settling Velocities Assuming Rouse Profiles

Mean apparent settling velocities inferred from cp(650), cp,LISST and bbp(650) profiles ranged from
about 0.1 to 4 mm/s. Although the settling velocities estimated from each instrument during a given
period were similar, and showed similar trends over the four periods, ws,cp(650) was usually larger than
ws,bbp(650). Particulate beam attenuation measured by the AC-9 is less sensitive to large, low-density
particles, so settling-velocity estimates from cp(650) were likely to favor smaller, denser, faster-settling
aggregates and single-grained particles. Inferred settling speeds were largest during passage of Maria
and Ophelia. They were intermediate during spring tides, and they were lowest during the calm
period. During passage of the two storms the residuals of the Rouse fits showed vertical structure,
with negative residuals higher in the boundary layer and positive residuals lower in the boundary
layer. This pattern indicates that, nearer the bed, the profiles during storms were steeper than the
Rouse balance.

3.3. Size

The spectral exponents of attenuation and backscatter increased slightly with height above the
bed during the calm periods and during the passage of Maria and Ophelia. During the spring tides,
the spectral exponent of attenuation increased with height above the bed, but the spectral exponent of
backscatter decreased with height above the bed. Values of γcp were smaller during passage of the
two storms than during the calm period and during spring tides. Values of γbbp were smallest during
spring tides, even taking on negative values. Values were higher during the storms, and they were
scattered during the calm period.

Sauter diameter and the reciprocal of floc density generally were well correlated because they are
based on similar measurements. Sauter diameter was smaller during passage of Ophelia, when it was
~50 μm, and during passage of Maria, when it was ~100 μm. During the spring tides, Sauter diameter
was largest, with diameters ~200 μm. During the calm period, Sauter diameter was ~150 μm. During
Maria, the spring tides, and the calm period, inverse densities were similar and equal to ~20 μm.
Values were ~10 μm during the passage of Ophelia. During the passage of the two storms, inverse
density and Sauter diameter values diverged near the bed, and during the spring tides, they diverged
higher in the boundary layer.

Size distributions from the LISST provide a more complete understanding of the vertical and
temporal changes in size distribution. During the calm period and during spring tides, the size
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distributions had well-defined modes at the upper end of the LISST range. The widths of the modes
were relatively constant with height above the bed during the calm period, but they were wider nearer
the bed during the spring tide period. During passage of Maria, distributions were unimodal, but
they were more skewed to smaller sizes than during the calmer periods. During passage of Ophelia,
curious bi-modal distributions emerged. One mode was centered on diameters of ~100 μm, and the
other was located in the largest diameter class. This coarser mode was dominant farther away from
the bed, and the finer mode grew larger nearer the bed.

3.4. Composition

The backscattering ratio was relatively high (>0.02) during the full deployment, indicating that
the suspensions were dominated by inorganic particles. The ratio was smaller during the passage of
the two storms than it was during the spring tides. The backscatter ratio was not correlated to the
Chl/cp ratio, which increased away from the bed in each period, consistent with chlorophyll-containing
particles being at lower concentration relative to other particles closer to the bed. Chlorophyll profiles
typically showed no trend with elevation (not shown), consistent with the hypothesis that the increase
in the Chl/cp ratio away from the bed was due to enrichment in faster-settling non-algal particles near
the bottom.

4. Discussion

4.1. Inferences from Optical Properties

The vertical profiles of the attenuation and backscattering coefficients were fit reasonably well
by Rouse profiles, and the estimated settling velocities increased with increasing shear stresses, as
expected. The magnitudes of the estimated settling velocities are within ranges expected for flocs
and for the fine sands typical of the seabed at the MVCO site. The ~0.1 mm s−1 estimated settling
velocities during the calm period were small, and they indicate material that behaved as slowly sinking
washload that is evenly distributed throughout the boundary layer. The ~0.4 mm s−1 estimated settling
velocities during the spring tides are in the range of typical floc-settling velocities, and the ~1 mm s−1

estimated settling velocities during the passage of Maria are typical of flocs (e.g., [48]). The ~4 mm s−1

observed during the passage of Ophelia are larger than typical floc-settling velocities, but they are
representative of very fine sand (D = ~80 μm; [49]) or densely packed aggregates [21].

Interestingly, boundary shear stresses during passage of Maria were similar to boundary shear
stresses during the spring-tide period, yet the estimated settling velocities were more than two times
larger during Maria. Residual plots of the Rouse fits indicate that the profiles had smaller gradients
(lower settling velocities) during spring tides than the profiles near the bed during passage of Maria.
In addition, Sauter diameters were smaller during passage of Maria, as were the spectral exponents
of attenuation. Particle size was inverted during the spring tides, with larger particles farther above
bottom. The spectral exponent of backscattering was lower during the spring tides than during passage
of Maria, and it decreased with height above bottom.

Despite the similar stresses during these two periods, these observations suggest different particle
dynamics. The larger Sauter diameters, inverted particle size, and smaller values of γbbp are consistent
with the hypothesis that flocs dominated the suspension during the spring tides. The flocs were fragile,
and they were disrupted near the bed, but they were able to reform higher in the boundary layer.
The breakage of flocs near the bed decreased bulk estimated settling velocities from the profiles by
transferring mass near the bed from faster-sinking large flocs (~1 mm s−1) into slower-sinking smaller
flocs or single grains. Overall, however, the extensive packaging of small particles into large flocs
during spring tides was associated with small values of γbbp [15]. During the passage of Maria, we
hypothesize that higher bottom shear stresses associated with the larger swell caused resuspension
of fine sand typical of the site (D = ~125 μm; [50]) and caused a greater degree of floc breakup.
Resuspension of sand caused larger gradients in optical properties near the bed. Resuspended sand
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also can account for the broadened peak in the particle size distributions. Greater floc breakup can
account for smaller values of γcp during passage of Maria, because particle mass was transferred out
of large flocs that were not sensed by the AC-9 into smaller flocs or single grains that were [15]. It can
also account for large values of γbbp [15].

During passage of Ophelia, when stress was highest, particle sizes were smallest. This result
suggests that floc breakup was more extensive during Ophelia (e.g., [26]). The finer mode in the LISST
size distributions was similar to the fine sands at the site (D = ~125 μm), and the presence of this
sand, with typical settling velocities of 8 mm s−1 [51], steepened the near-bed profiles of the optical
properties. The appearance of the coarser mode at the upper limit of the LISST size range, however, is
not consistent with greater floc breakup. We hypothesize that these particles were resuspended bed
aggregates that were tougher than flocs and not prone to breakup (cf. [21]). The fact that they were
relatively more abundant higher above the bottom suggests that they had settling velocities smaller
than that of the fine sands (<8 mm s−1), consistent with the estimated settling velocities in the outer
part of the profile of 4 mm s−1.

The hypothesis of sand resuspension during passage of the two storms can be reconciled with
observed variations in the backscatter ratio, which was lower during passage of the two storms
than it was during the period of spring tides. Permeable sand beds can store organic matter in the
interstitial pore spaces [52]. We propose that during resuspension events, this organic material was
resuspended, which caused backscatter ratios to decrease. The observation that the Chl/cp ratio did
not change indicates that the organic matter in the bed interstices was degraded and did not contain
chlorophyllous material.

The relative magnitudes of Sauter diameter and inverse density in the different periods may also
argue for different particle dynamics during passage of the storms. During these periods, the ratios
of Sauter diameter to inverse density were smaller than during the periods of spring tides and calm.
This ratio reduces to the ratio of the beam attenuation coefficient measured by the LISST to the particle
area estimated by the LISST. The inversion of near-forward scattered light measured by the LISST to
particle area assumes that a single refractive index applies to all particles. We hypothesize that small
organic particles liberated from the bed during resuspension had attenuation to particle area ratios
that were smaller than the ratios for particles during the spring tides and during the calm period.

4.2. Broader Advantages and Disadvantages of Optical Measurements

Measurements of optical properties often behave in ways consistent with our expectations. When
they do, their advantages are that they provide robust, relatively non-intrusive, well-understood
first-order information about the suspended particle populations. Their main disadvantages are their
sensitivity to ambient light and limitations in turbid conditions, tendency to foul, and, in some cases,
their large size, power requirements, or data storage limits. The more subtle disadvantages are the
biases that each instrument has, often based on wavelength, angles of illumination, or acceptance angles.
These disadvantages can be turned to advantage by using combinations of different measurements,
each with a different bias, as we have shown here. Combinations of optical measurements (attenuation
and backscatter at various wavelengths, measurements of chlorophyll, size data from the LISST)
provide more information about the size and composition of the particle population.

Simple, time-tested optical measurements such as attenuation and backscatter remain valuable,
even in complicated settings like MVCO. Their main advantage is they yield simple interpretations
in terms of SPM that capture the first-order variations that often can be linked to wave- and
current-induced bottom stress. The main disadvantages are that they can be biased by size and
composition, and the conversion from attenuation or backscatter to SPM can vary, depending on
instruments, particle size, composition [1,2].

The advantages of direct measurements of size from the LISST are clear: they provide information
that cannot be measured directly with simpler optical sensors, and the size information is very useful
for interpreting the dynamic behavior of the particles. One important disadvantage is that LISST
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instruments are large and intrusive. In addition, they have upper limits on sizes and, when larger
particles are present, they can bias results by elevating reported volumes in smaller size classes [53].
Finally, when flocs are present, the LISST may be sensitive to smaller component particles, leading to
over-representation of microflocs when macroflocs are present [54].

Near-bottom profiles of optical properties allow the observations of particle populations to be
interpreted in terms of sediment dynamics. In particular, near-bottom profiles of size from the LISST
have not been previously reported, and offer the advantage of direct observations of size changes in a
region with strong gradients in concentration and turbulent shear.

The nearly-ubiquitous appearance of Rouse-like profiles in optical measurements provides
estimates of settling velocity that can be linked to particle size. The disadvantage of these
interpretations is that the bulk profile can be confounded by changes in particle density (and
therefore settling velocity) or skewed by overlapping profiles of diverse particle populations with
varying vertical distributions. In all the cases illustrated here, relatively good Rouse fits provided
settling-velocity estimates, but they could vary by an order of magnitude between profiles. Additional
information was required to evaluate the underlying particle dynamics, and both floc dynamics and
resuspension were found to be important.

Addition of acoustical measurements [55] could further constrain the particle dynamics and
distribution as their sensitivity to composition, size, and packing differs from optical measurements.
For example, for acoustic backscattering in the MHz frequency range, aggregation decreases the
signal [56] while being sensitive to large single-grain particles (whereas the optical response is not).

Models of resuspension and settling have been used for years to examine the dynamics giving
rise to Rouse-like vertical profiles in the BBL [35,36,57–60]. However, these models have not been
coupled to an optical model so that their output could be validated with optical (and/or acoustical)
observations. Models that now include resuspension as well as aggregation/disaggregation dynamics
(e.g., [61]) can be coupled with optical models (for single grains as well as flocs), making it possible to
express modeled variables (e.g., spatial and temporal concentrations of different types of particles) as
optical measurements and allow for direct comparison with field observations. This also opens the
possibility for assimilating such observational data into the models. Thus, the development of optical
models of sediment dynamics and their evaluation on real-world datasets of is critically important.

5. Conclusions

This paper has described a suite of optical measurements designed to provide information
about suspended particle populations. We have discussed the biases of these measurements and
demonstrated their value in analyses of field observations. In conclusion:

• Near-bottom profiles of optical properties are valuable because they sample particle populations
in a region with strong gradients in turbulence and concentrations.

• Profiles with combinations of instruments can be used to make inferences about sediment
dynamics in the bottom boundary layer. Resuspension of bottom material and dynamics of
aggregation and disaggregation are especially important at the MVCO study site.

• Aggregation/disaggregation dynamics cannot be neglected when interpreting profiles of
properties sensitive to the small particles (e.g., beam attenuation) as the flocs are both a sink and
source for fine particles.

• Combinations of optical instruments provide information about suspended particle population
that individual instruments cannot, because of their individual design and biases. Many of the
disadvantages associated with individual optical sensors can be turned to advantages when
multiple sensors are used.
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Abstract: The vertical diffuse attenuation coefficient for downward plane irradiance (Kd) is an
apparent optical property commonly used in primary production models to propagate incident solar
radiation in the water column. In open water, estimating Kd is relatively straightforward when a
vertical profile of measurements of downward irradiance, Ed, is available. In the Arctic, the ice pack is
characterized by a complex mosaic composed of sea ice with snow, ridges, melt ponds, and leads. Due
to the resulting spatially heterogeneous light field in the top meters of the water column, it is difficult
to measure at single-point locations meaningful Kd values that allow predicting average irradiance at
any depth. The main objective of this work is to propose a new method to estimate average irradiance
over large spatially heterogeneous area as it would be seen by drifting phytoplankton. Using both
in situ data and 3D Monte Carlo numerical simulations of radiative transfer, we show that (1) the
large-area average vertical profile of downward irradiance, Ed(z), under heterogeneous sea ice cover
can be represented by a single-term exponential function and (2) the vertical attenuation coefficient
for upward radiance (KLu), which is up to two times less influenced by a heterogeneous incident
light field than Kd in the vicinity of a melt pond, can be used as a proxy to estimate Ed(z) in the
water column.

Keywords: apparent optical properties; 3D Monte Carlo numerical simulations; downward
irradiance; upward radiance; sea ice heterogeneity; vertical attenuation coefficient; melt ponds

1. Introduction

The vertical distribution of underwater light is an important driver of many aquatic processes such
as primary production by phytoplankton, and photochemical reactions such as the photodegradation
of organic matter. Hence, an adequate description of the underwater light regime is mandatory
to understand energy fluxes in aquatic ecosystems. In open water, when assuming an optically
homogeneous water column, downward irradiance at any given wavelength follows, as a first
approximation, quite well a monotonically exponential decrease with depth, which can be modelled
as follows [1] (Equation (1)):

Ed(z) = Ed(0
−) e−Kd(z) z (1)

where Ed(z) is the downward plane irradiance (W m−2) at depth z (m), Ed(0−) is the downward plane
irradiance (W m−2) just below the surface and Kd(z) is the diffuse vertical attenuation coefficient
(m−1) describing the rate at which downward irradiance decreases with increasing depth. Kd is one
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of the most commonly used apparent optical properties (AOP) of seawater, and a good estimation
of this parameter is important for measuring or modelling primary production. Kd may vary with
depth because of changes in seawater inherent optical properties (IOPs), the angular structure of
the light field, and the effects of inelastic radiative processes such as Raman scattering by water
molecules and fluorescence by phytoplankton pigments or dissolved organic matter. As Kirk [1]
pointed out, for practical considerations in oceanography and limnology, the Kd value, even when
averaged within the euphotic zone, provides a useful proxy to represent the downward irradiance
attenuation in the upper water column. For example, to determine primary production based on
simulated on-deck incubations or photosynthetic parameters derived from photosynthesis–irradiance
curves (P vs. E curves) requires measured or estimated values of Kd (e.g., Morel [2]). Nowadays, Kd is
relatively easy to estimate using commercially available radiometers.

The ice-infested regions of the Arctic ocean are characterized by a complex mosaic made of
sea ice with snow, melt ponds, ridges, and leads [3–5]. Phytoplankton are exposed to a highly
variable light regime while drifting under these heterogeneous features (e.g., Lange et al. [6]).
Estimating primary production of phytoplankton under sea ice requires an approach that is adequate
to capture this large-area variability in the light field. In situ incubations at single locations of seawater
samples inoculated with 14C or 13C are not appropriate because they reflect primary production
under local light conditions, which is not representative of the range of irradiance experienced by
drifting phytoplankton over a large area. One classical approach that is more adequate consists in
conducting on-deck simulated 24-h incubations of seawater samples inoculated with 14C or 13C and
applying the light attenuation at the depths of sample collections, using natural illumination and
neutral filters. An alternative approach consists in calculating primary production using modelled
or measured daily time series of incident irradiance, sea ice transmittance and in-water vertical
attenuation coefficients, combined with photosynthetic parameters determined from P–E curves
measured with short (under two hours) incubations of seawater samples inoculated with 14C. The latter
two methods require that the vertical profile of the irradiance experienced by drifting phytoplankton
be appropriately determined, which is challenging due to surface heterogeneity. Traditionally, one or
very few Ed(z) profiles are measured at discrete locations under sea ice (e.g., Mundy et al. [7]).
Such measurements, however, do not capture the variability induced by sea ice features. In recent
studies, to better document the spatial variability of Ed(z), radiometers were attached to either remotely
operated vehicles (ROV) [4] or a surface and under-ice trawl (SUIT), a net developed for deployment
in ice-covered waters, typically behind an icebreaker [6]. Both a ROV and a SUIT allow a better
description of the light field right under sea ice, which is more appropriate for determining average
irradiance experienced by drifting phytoplankton. Such under-ice measurements can then be combined
with averaged Kd values to propagate light at depth.

Estimating irradiance at depth for primary production measurement or calculation using Kd
values derived from only a few discrete vertical profiles of Ed(z) under heterogeneous sea ice is
problematic whatever the platform for radiometer deployment. Let us consider that phytoplankton,
by continuously drifting horizontally relative to sea ice, are exposed to fluctuations in irradiance due
to surface heterogeneity, and that the relevant light metrics for primary production in such conditions
is irradiance at any depth averaged over some horizontal area. When measuring an irradiance profile
at one given location under sea ice, as the depth of the upward-looking detector increases, light from a
larger area on the underside of the ice enters the detector field of view. In other words, the detector
“sees” different things at different depths. One consequence is that Ed(z) measured that way may not
follow the usual monotonically exponential decrease with increasing depth (Equation (1)). For example,
irradiance profiles measured beneath low-transmission sea ice (e.g., white ice) relative to surrounding
areas showing melt ponds, show subsurface light maxima. The literature reports subsurface maxima
varying between 5 m and 15 m in depth [5,8,9]. Conversely, it is also important to note that Kd
estimations are biased when profiles are measured beneath an area of high transmission (e.g., a melt
pond) relative to surrounding areas [5]. Indeed, with depth, light decreases more quickly than what
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would be expected from the IOPs of the water column. In the field, this situation is more difficult to
identify compared to profiles showing subsurface maxima because the former measurements may
appear to follow a single exponential decrease but would not produce a diffuse attenuation coefficient
that adequately describes the water mass. So, two vertical light profiles measured a few meters
apart under sea ice are often very different. More importantly, local measurements of light under
heterogeneous sea ice do not provide an adequate description of the average light field as it would be
seen by drifting phytoplankton cells at different depths. This makes estimations of primary production
and the interpretation of biogeochemical data challenging in the presence of sea ice.

To fit vertical profiles of Ed(z) under bare ice that do not follow an exponential decay under sea
ice covered with melt ponds, Frey et al. [8] proposes a simple geometric model (Equation (2)).

Ed(z) = πEd(0
−)(1 + P(N − 1) cos2 φ)e−Kd(z) z (2)

where Ed(0−) is the irradiance directly below the ice/snow, P the areal fraction of the ice cover, N the
ratio between ice and melt ponds transmittance and φ a fitting parameter defined as arctan(R/z) with
R the radius of the ice patch and z the depth. A major drawback of this method is that additional
field observations of N and P are required to adequately parametrise the model, which makes its use
more difficult. To address this concern (among others), Laney et al. [9] proposed a semi-empirical
parametrisation that includes a second exponential coefficient in Equation (1) to model light decrease
at the interface between the ice and ocean water at the bottom of the ice layer (Equation (3)):

Ed(z) = Ed(0
−)e−Kd(z) z − (Ed(0

−)− Ed(NS)) e−KNS(z) z (3)

where Ed(0−) is the irradiance that would be observed under homogeneous snow or ice cover, Ed(NS)
is the irradiance under-ice, and KNS(z) describes the decrease of Ed(0−) just under the ice layer.
Both the methods by Frey et al. [8] and Laney et al. [9] make it possible to propagate local Ed(z)
vertically under low transmission ice. However, these methods cannot identify and correct for inflated
Kd when profiles are measured beneath an area of high transmission relative to surrounding areas.
Additionally, when trying to determine primary production by phytoplankton that drift under sea ice
and therefore are not static under sea ice features, what matters is the average shape of the vertical
Ed(z) profile, which may possibly be predictable using a large-area Kd as under a wavy open ocean
surface [10].

In this study, using both in situ data and 3D Monte Carlo numerical simulations of radiative
transfer, we show that the vertical propagation of average Ed(z), Ed(z), is reasonably well
approximated by a single exponential decay with a so-called large area Kd, Kd, under sea ice covered in
melt ponds. We further demonstrate that Kd can be estimated from the vertical attenuation coefficient
for upward radiance (KLu) because the latter is apparently less affected by local surface features of
the ice cover. We implicitly assume that primary production can be adequately modelled using Ed(z),
and we conclude that KLu is an appropriate AOP for predicting the vertical variations in Ed(z) under
sea ice.

2. Material and Methods

2.1. Study Site and Field Campaign

The field campaign was part of the GreenEdge project (www.greenedgeproject.info) which was
conducted on landfast ice southeast of the Qikiqtarjuaq Island in the Baffin Bay (67.4797 N, 63.7895 W).
The field operations took place at an ice camp where the water depth was 360 m, from 20 April to 27 July
2016 (Figure A1 included in Appendix A). During the sampling period, the study site experienced
changes in the snow cover and landfast ice thickness of 0–49 cm and 106–149 cm, respectively.
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2.2. In Situ Underwater Light Measurements

During the campaign, a total of 83 vertical light profiles were acquired using a factory-calibrated
ICE-Pro (an ice floe version of the C-OPS, or Compact-Optical Profiling System, from Biospherical
Instruments Inc., San Diego, CA, USA) equipped with both downward plane irradiance Ed(z) (W m−2)
and upward radiance Lu(z) (W m−2 sr−1) radiometers. The ICE-Pro system is a negatively buoyant
instrument with a cylindrical shape 10 inches in diameter and is not designed for free-fall casts
(as opposed to its open-water version). To perform the profiles, the frame was manually lowered into
an auger hole that had been cleaned of ice chunks. Once it was underneath the ice layer, fresh clean
snow was shovelled back in the hole to prevent the creation of a bright spot right on top of the sensors.
Great care was taken not to pollute the hole surroundings (footsteps, water and slush spillage from
the auger drilling, etc.). The operator then stepped back 50 m, while keeping the sensors right under
the ice, to avoid any human shadow on top of the profile. The frame was then lowered manually at
a constant descent rate of approximately 0.3 m s−1. The above-surface atmospheric reference sensor
was fixed on a steady tripod standing on the floe approximately 2 m above the surface and above all
neighbouring ice camp features. Data processing and validation were performed using a protocol
inspired by the one proposed by Smith and Baker [11]. Measurements were made at 19 wavelengths:
380, 395, 412, 443, 465, 490, 510, 532, 555, 560, 589, 625, 665, 683, 694, 710, 765, 780 and 875 nm. For this
study, Ed and Lu spectra were interpolated linearly between 400 and 700 nm every 10 nm. In situ
diffuse attenuation coefficients (K) for both Ed (Kd) and Lu (KLu) were calculated on a 5 m sliding
window (10–15 m, 15–20 m, . . ., 70–75 m, 75–80 m) starting at 10 m depth to reduce the effects of surface
heterogeneity. A total of 72,044 non-linear models were calculated to estimate both K coefficients
from Equation (1) (83 profiles × 14 depths × 31 wavelengths × 2 radiometric quantities (Ed, Lu)).
A conservative R2 of 0.99 was used essentially to filter out noisy profiles. 42,407 models were kept for
subsequent analysis.

2.3. 3D Monte Carlo Numerical Simulations of Radiative Transfer

2.3.1. Theory and Geometry

3D numerical Monte Carlo simulation is a convenient approach for modelling the light field
under spatially heterogeneous sea surfaces [5,12–14]. They are simple to understand and versatile,
and incident light, IOPs and geometry can be easily changed. In this study, we used SimulO, a 3D
Monte Carlo software program that simulates the propagation of light in optical instruments or in
ocean waters [15]. Our objective was to simulate the propagation of sunlight underneath heterogeneous
ice-covered ocean waters. Simulations were performed in an idealized ocean described by a cylinder
of 120 m radius and 150 m depth (Figure 1). The water IOPs were selected to reflect pre-bloom
conditions in the green–blue spectral region (a = b = 0.05 m−1). These typical averaged values
were measured during the GreenEdge 2016 campaign using an in situ spectrophotometer (ac-s from
Sea-Bird Scientific) and represent the contribution of both pure water and the water constituents.
The scattering phase function was described by a Fournier-Forand analytic form with a 3% backscatter
fraction [16,17]. The inclusion of a 3D sea ice layer at the upper boundary of the ocean would require
extensive computing power because of the high scattering properties of sea ice. Instead, sea ice was
incorporated at the upper boundary of the ocean using a 2D light-emitting surface with a radius of
100 m. The angular distribution and magnitude of the light field emitted by the surface was chosen to
mimic observed field data [18]. SimulO does not allow the use of arbitrary angular distribution for
photon-emitting surfaces. To overcome this problem, two sources of photons were summed up in order
to reproduce an observed under-ice light field (Figure 2). The first source was a regular Lambertian
emitting surface while the second was a Lambertian emitting surface but restricted to an emission
within 60 degrees of the zenith angle. A 5-m radius melt pond was set up at the center of the emitting
surface (Figure 1). The melt pond had the same emitting angular distribution as the surrounding ice.
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Its intensity was four times higher than the surrounding ice, which corresponds to typical conditions
found in the Arctic during summer [19].

25% melt pond cover
20% melt pond cover
15% melt pond cover

10% melt pond cover

 5% melt pond cover

 1% melt pond cover

-50

-25

0

25

50

-50 -25 0 25 50
x-distance (m)

y-
di

st
an

ce
 (m

)

Sampling
distance (m)

5.5
10.5
15.5
20.5

25.5
30.5
35.5
40.5

45.5
50

Melt pond
A

3D volume for which simulated
data was extracted

2D detectors placed
every 0.5 m depth

Homogeneous water column:

a=b =0.05m 1

VSF: Fourrier-Forand 3%

-150

-130

-110

-90

-70

-50

-30

-10

-100 -50 0 50 100
Horizontal distance (m)

De
pt

h 
(m

)

B

Figure 1. Spatial configuration used for the 3D Monte Carlo numerical simulations. (A) Surface view
showing the percentage of the total area covered by the melt pond over the areas described by the black
lines. For each of these areas, light profiles were averaged (see Figure 7). For visualization purpose,
lines of the horizontal sampling distances from the centre of the melt pond have been plotted only at
5 m intervals. (B) 2D side view showing the 3D volume for which simulated data were extracted and
how photon detectors were placed in the water column. Orange arrows indicate incident light sources.
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Figure 2. Comparison of the under-ice measured downward radiance distribution (the average cosine
is ≈0.61, [18]) and the angular distribution of light-emitting source used in the paper.

Given our interest in surface light profiles, 2D horizontal software detectors were placed vertically
every 0.5 m, from 0.5 m up to a depth of 25 m. Detectors include 1 m2 pixels measuring downward
irradiance and upward radiance (5-degree half angle of acceptance). In order to avoid the effect of the
boundary (i.e., absorption by the side of the cylinder used to simulate the water column), data outside
a radius of 50 m were not used (see the green box in Figure 1). A total number of 7.14 × 1010 photons
were simulated to obtain a sufficient number of upwelling photons. The simulation took approximately
6000 h distributed over 2000 CPU cores. Because the geometry was symmetrical azimuthally, irradiance
and radiance were averaged over the azimuth in order to increase the signal-to-noise ratio. Because
of the low scattering coefficients used to reproduce in situ conditions observed during the sampling
campaign, radiance profiles were noisy because a small number of upward photons could be captured.
To address this issue, radiance profiles were smoothed using a Gaussian fit (Figure A2 included in the
Appendix B).

2.3.2. Estimation of Reference and Local Light Profiles

To explore how the melt pond influences the averaged underwater irradiance and radiance
profiles (Figure 1), data from the Monte Carlo simulation were averaged according to six different
radii, corresponding to varying melt pond spatial proportions. The simulated light profiles were
averaged within the following surface areas: (1) 10 m radius (25% melt pond cover), (2) 11.18 m
radius (20% melt pond cover), (3) 12.91 m radius (15% melt pond cover), (4) 15.81 m radius (10%
melt pond cover), (5) 22.36 m radius (5% melt pond cover) and (6) 50 m radius (1% melt pond cover).
For each of these six configurations, the corresponding averaged light profile, Ed(z), was subsequently
viewed as an adequate description of the average underwater light field. For the remainder of the text,
these averaged profiles are referred to as reference light profiles. Furthermore, 50 light profiles, evenly
spaced by 1 m from the melt pond centre, were extracted to mimic local measurements of light and to
calculate associated diffuse attenuation coefficients.

2.4. Statistical Analysis

All statistical analyses and graphics were carried out with R 3.5.1 [20].
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3. Results

3.1. Comparing In Situ Downward Irradiance (Ed) and Upward Radiance (Lu) Measurements

An example showing in situ downward irradiance (Ed) profiles and upward radiance (Lu) profiles
at 16 visible wavelengths measured under-ice is presented in Figure 3. For the Ed profiles, subsurface
light maxima at a depth of around 10 m are clearly visible between 400 and 560 nm. These peaks are
not visible in the yellow/red region (580–700 nm). For the Lu profiles, no subsurface light maxima
were found at any wavelength. To have a closer look at the shape of both Ed and Lu profiles, data below
the 10 m depth were normalized to the value at 10 m (Figure 4). Below 10 m and between 400 and
580 nm, both Ed and Lu profiles presented the same shape (i.e., yield the same rate of attenuation with
increasing depth). At longer wavelengths (≥600 nm), differences between the shapes of Ed and Lu

profiles increased. Irradiance and radiance diffuse attenuation coefficients (Kd and KLu) calculated for
the layers of a 5 m thickness are compared in Figure 5 for all 83 profiles. In the blue/green/yellow
regions (400–580 nm), the determination coefficients between KLu and Kd varied between 0.98 at the
surface (10–15 m) and 0.64 at depth (75–80 m). For most of the surface layers, regression lines lined up
with the 1:1 lines. Slight deviations from the 1:1 lines started to appear below 60 m where Kd was on
average higher than KLu. The relationships including orange and red wavelengths are presented in
Figure A3 included in the Appendix C. A linear regression analysis between all in situ normalized
Ed and Lu profiles showed that determination coefficients (R2) range between 0.75 and 1 (Figure A4).
A sharp decrease and a high variability of calculated R2 occurred beyond 575 nm. This suggests
a gradual decoupling between Ed and Lu profiles at longer wavelengths, likely due to the effect of
inelastic scattering (mostly Raman scattering).
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Figure 3. Examples of in situ downward irradiance (Ed(z)) and upward radiance (Lu(z)) profiles
measured under-ice on 20 June 2016. Note the presence of subsurface maxima in the downward
irradiance profiles and the absence of subsurface maxima in the upward radiance profiles.
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Figure 5. Scatter plots showing the relationships between the measured Kd and KLu in the spectral
range between 400 and 580 nm at different depths (numbers in gray boxes). Red lines represent the
regression lines of the fitted linear models. Regression equations and determination coefficients (R2)
are also provided in each plot. Dashed lines are the 1:1 lines.

3.2. 3D Monte Carlo Numerical Simulations

Figure 6 shows cross-sections of the simulated downward irradiance and upward radiance. A key
difference for the upcoming discussion is that the simulated upward radiance was more homogeneous
compared to the simulated downward irradiance. Figure 7 shows the reference irradiance, Ed(z),
and reference radiance, Lu(z), profiles. The highest irradiance and radiance occurred when the melt
pond occupied 25% of the sampling area, allowing for more light to propagate in the water column.
None of the Ed(z) and Lu(z) reference profiles showed subsurface light maxima. Figure 8 shows the
50 simulated local downward irradiance and upward radiance profiles evenly spaced by 1 m in the
horizontal distance from the melt pond centrer. Local downward irradiance profiles under the melt
pond (0–5 m) showed a rapid decrease with increasing depth described by a monotonically exponential
or quasi-exponential decrease. Local simulated downward irradiance profiles just outside the melt
pond (5–10 m from the melt pond centre) were characterized with subsurface light maxima occurring at
a depth of between approximately 5 and 10 m. Further away from the melt pond centre, downward
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irradiance profiles followed a monotonically exponential or quasi-exponential decrease. None of
the simulated upward radiance profiles presented subsurface light maxima (Figure 8). From local
simulated irradiance and radiance profiles (Figure 8), Kd and KLu were calculated by fitting Equation (1)
between the depths of 0 m and 25 m. Results are presented in Figure 9. Kd varied between 0.065 and
0.157 m−1 and KLu between 0.079 and 0.116 m−1. These Kd and KLu were used to propagate light
downward from surface reference values Ed(0−). Figure 10 shows the profiles resulting from this
calculation. A greater dispersion around the reference profiles (thick black lines in Figure 10) occurred
when using Kd compared to the profiles generated with similarly derived KLu values. The relative
differences between the depth-integrated values of each local profile (coloured lines in Figure 10) and
the depth-integrated values of the reference profiles (thick black lines in Figure 10) were used to quantify
the error of using either Kd or KLu as a proxy to predict downward irradiance in the water column
(Figure 11). Below the melt pond, Kd overestimated the total downward irradiance by up to 40% when
the melt pond occupied 1% of the surface area. In this region, the local K coefficients are inflated.
In the transition region, at a horizontal distance of 5 and 10 m from the centre of the melt pond, where
subsurface maxima are observed, Kd underestimated the downward irradiance by up to 35% when the
melt pond occupied 25% of the surface area. Further away from the edge of the melt pond, the errors
saturated to a maximum of −25%. The same behaviour is observed for KLu but with about two times
less amplitude. The mean relative errors were lower by approximately a factor of two when using KLu
(−7%) compared to Kd (−12%). Also, the prediction errors stabilized at a shorter horizontal distance
from the centre of the melt pond when using KLu (≈10 m) compared with using Kd (≈20 m).
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Figure 6. Cross-sections of simulated downward irradiance and upward radiance fields under a melt
pond with a 5 m radius. The logarithm of the normalized number of photons has been used to create
the scale for visualization. The normalization has been done using the values modelled at a 0.5 m depth
and at a horizontal distance of 50 m from the centre of the melt pond.
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3.3. Inelastic Scattering

Based on in situ data, our results have pointed out that KLu is not a good proxy for Kd at longer
wavelengths (Figures A3 and A4) because of the effect of Raman scattering. To validate this hypothesis,
we used the HydroLight (Sequoia Scientific, Inc., Bellevue, WA, USA) radiative transfer numerical
model to calculate theoretical downward irradiance and upward radiance and their associated vertical
attenuation coefficients in an open water column in the presence of Raman scattering. The simulation
was parametrised using IOPs measured during the field campaign (detailed information can be
found in the supplementary section entitled Raman inelastic scattering included in Appendix A).
The simulation was able to reproduce the observed decoupling between Kd and KLu observed at
wavelengths ≥600 nm (Figure A5). These results are generally consistent with previous findings from
radiative transfer simulations, which demonstrated the depth and spectral dependencies of diffuse
attenuation coefficients as affected by Raman scattering [21,22].

4. Discussion

In the Arctic, melt pond coverage, lead coverage, and ice and snow thickness can vary greatly
in both time and space [23,24]. Due to this sea ice heterogeneity, local under-ice measurements of
downward irradiance are sometimes characterized by subsurface light maxima (Figure 3). To model
such profiles, Laney et al. [9] proposed a semi-empirical parametrisation using two exponential
terms (see Equation (3)). Whereas their method might provide adequate estimations of instantaneous
downward diffuse attenuation coefficients at specific locations, fitting a double exponential might not
be ideal because data are modelled locally and do not provide an adequate description of the average
light field (Ed(z)) as it would be seen, for example, by drifting phytoplankton cells. In such conditions,
this paper argues that under-ice irradiance measurements should be analysed in the context of ice
and surface properties within a radius of several meters over the horizontal distance because local
measurements cannot be used as a proxy of the average light field.

Using in situ light measurements, it was found that Ed and Lu (and therefore Kd and KLu) were
highly correlated below 10 m depth (Figures 4 and 5), even when subsurface light maxima were present
(Figure 3). Furthermore, no subsurface light maxima were observed in the in situ upward radiance
profiles. The reason is that the Lu radiometer measures upwelling photons coming from deeper depth,
which have likely undergone more scattering. These photons thus originate from a larger surface area.
This reinforces the idea that Lu is less influenced by sea ice surface heterogeneity.

Based on Monte Carlo simulations of radiative transfer, our results showed that the average
downward irradiance profile, Ed(z), under heterogeneous sea ice cover follows a single-term
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exponential function, even when melt ponds occupy a large fraction of the study area (Figure 7).
This is similar to what is observed under a wavy ice-free surface [10]. However, estimating Ed(z) for
a given area is not straightforward, as it requires a large number of local profiles under the sea ice.
An intuitive alternative to deriving the attenuation coefficient is to use upward radiance, which is less
influenced by sea surface heterogeneity compared to downward irradiance (Figures 3–5). Monte Carlo
simulations showed that a local estimation of KLu was a good proxy for Kd and that using KLu rather
than Kd provided better estimations of the average downward profile by reducing the average error by
approximately a factor of two (Figure 11).

There are at least two main factors influencing the quality of in situ downward irradiance
measurements under heterogeneous sea ice. The first factor is the horizontal distance from the centre
of the melt pond. Although the relative error of propagating Ed(0−) using both Kd and KLu showed
the same pattern, the largest error occurred when using local estimations of Kd directly below the melt
pond and up to 10 m from the melt pond edge (Figure 11). In contrast, the relative error associated with
the use of KLu was much lower and stabilized just after approximately 10 m from the centre of the melt
pond. The second factor driving the relative error of local measurements is the proportion occupied by
melt ponds over the area of interest (Figure 11). Indeed, higher proportions of melt pond allow for
more light to penetrate in the water column. Hence, local measurements made under surrounding ice
are more likely to show subsurface light maxima (see Frey et al. [8]). Accordingly, when melt ponds
accounted for 1% of the total area, averaged error in Ed(z) using KLu was 1.33% but increased to 18%
when the melt pond occupied 25% of the total area (Figure 11).

5. Conclusions

Our results show that under spatially heterogeneous sea ice at the surface (and for a homogeneous
water column), the average irradiance profile, Ed(z), is well reproduced by a single exponential
function. We also showed that propagating Ed(0−) using KLu is a better choice compared to Kd under
heterogeneous sea ice. Nowadays, radiance measurements are becoming more routinely performed
during field campaigns, so we argue that one should use KLu when available to propagate Ed(0−)
through the water column under sea ice. The main difficulty remains in finding good estimates of
averaged Ed(0−). In recent years, this has become easier with the development of remotely operated
vehicles [3,4,25], remote sensing techniques, and drone imagery. In this study, we used a Monte Carlo
approach to model an idealized surface with a single melt pond (Figures 1 and 6). Figure 11 shows that
the effect of a melt pond with diameter 5 m is minimized at a horizontal distance of approximately 20 m
or more. Therefore, when many melt ponds are characterizing an area, if one has to perform a single
profile, measuring an upward radiance profile under bare ice as far away as possible from any melt
pond would minimize the error in estimating the area-averaged downward irradiance profile using
KLu. Although not representative of a complex Arctic sea ice surface, our simple surface geometry
allowed to study the transition from a high to a low transmission sea ice. Further 3D Monte Carlo
work could include a more complex geometry of heterogeneous surfaces.
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Appendix A
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Figure A1. The field campaign was part of the GreenEdge project (www.greenedgeproject.info) which
was conducted on landfast ice southeast of the Qikiqtarjuaq Island in the Baffin Bay (67.4797 N,
63.7895 W).

Appendix B. Smoothing Radiance Data

Due to the low scattering coefficients used to reproduce in situ conditions observed during the sampling
campaign, radiance profiles were noisy because only few photons were scattered back in the upward direction
(note the different y-scales). To overcome this problem, upward radiance data were smoothed using a Gaussian fit
accordingly to Equation (A1):
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f (x, ϕ, μ, σ, k) = ϕe
−
(x − μ)2

2σ2 + k (A1)

where x (m) is the horizontal distance from the center of the melt pond, σ (m) is the standard deviation controlling
the width of the curve, ϕ is the height of the curve peak (ϕ = 1

σ
√

2π
), μ (m) is the position of the center of the peak,

and k an offset coefficient.
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Figure A2. Examples showing the number of downward irradiance (A) and upward radiance
(B) photons captured by the detectors of the Monte Carlo simulation at different depth ranges (numbers
in gray boxes) as a function of the horizontal distance from the melt pond. The red lines represent the
fitted Gaussian curves.

Appendix C. Raman Inelastic Scattering

Raman scattering is a process by which photons, interacting with water molecules, lose or gain energy and
are scattered at a different wavelength than the one they were originating from. In Figures A3 and A4, one can
observe a decoupling between Kd and KLu at longer wavelengths, possibly due to inelastic Raman scattering. To
validate this hypothesis, we used the HydroLight radiative transfer numerical model to calculate downward
irradiance and upward radiance and their associated attenuation coefficients in a water column.
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Figure A3. Scatter plots showing the relationships between downward irradiance (Ed(z)) and upward
radiance (Lu(z)) between 400 and 700 nm at different depths (numbers in gray boxes). Red lines
represent the regression lines of the fitted linear models. Dashed lines are the 1:1 lines. Note the large
deviations between the data points and the 1:1 line occurring in the orange and red regions (≥600 nm).
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Figure A4. Average determination coefficient R2 and standard deviation (shaded area) of the
regressions between normalized (at 10 m depth) Ed(z) and Lu(z) profiles between 400 and 700 nm.
At each wavelength, average values were computed from the 83 COPS measurements. A sharp decrease
of R2 occurred at wavelength longer than approximately 575 nm, suggesting a gradual decoupling
between Ed(z) and Lu(z) profiles at longer wavelengths, possibly due to the effect of inelastic scattering.

HydroLight Simulations

Two HydrolLight simulations were carried out to model downward irradiance and upward radiance with
and without taking into account Raman inelastic scattering. The simulations were parameterized using an IOPs
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profile (ac-s from Sea-Bird Scientific) measured on the first of May 2015 in the Baffin Bay. Simulations were
performed with the following characteristics:

• A surface free of ice.
• A surface without waves.
• Sun position at noon for May 1st (solar zenith angle = 45.39 degrees).
• A cloudless sky.
• No fluorescence.
• Using HydroLight default atmospheric parameters.
• The scattering phase function of water was described by a Fournier-Forand analytic form with a 3%

backscatter fraction.
• EcoLight option was run.

The HydroLight simulations showed a decoupling between Kd and KLu starting at around 600 nm when
Raman scattering was modelled (Figure A5). Similar decoupling was also observed with the in situ data (see
Figure A3).
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Figure A5. Scatter plots showing the relationships between Kd and KLu calculated from the downward
irradiance and upward radiance profiles modelled with and without Raman scattering. The dashed
lines represent the 1:1 lines.
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