
MACHINE LEARNING 
WITH RADIATION 
ONCOLOGY BIG DATA
EDITED BY : Jun Deng, Issam El Naqa and Lei Xing

PUBLISHED IN : Frontiers in Oncology

https://www.frontiersin.org/research-topics/6126/machine-learning-with-radiation-oncology-big-data
https://www.frontiersin.org/research-topics/6126/machine-learning-with-radiation-oncology-big-data
https://www.frontiersin.org/research-topics/6126/machine-learning-with-radiation-oncology-big-data
https://www.frontiersin.org/research-topics/6126/machine-learning-with-radiation-oncology-big-data
https://www.frontiersin.org/journals/oncology


Frontiers in Oncology 1 January 2019 | Machine Learning in Radiation Oncology

Frontiers Copyright Statement

© Copyright 2007-2019 Frontiers 

Media SA. All rights reserved.

All content included on this site,  

such as text, graphics, logos, button 

icons, images, video/audio clips, 

downloads, data compilations and 

software, is the property of or is 

licensed to Frontiers Media SA 

(“Frontiers”) or its licensees and/or 

subcontractors. The copyright in the 

text of individual articles is the property 

of their respective authors, subject to a 

license granted to Frontiers.

The compilation of articles constituting 

this e-book, wherever published,  

as well as the compilation of all other 

content on this site, is the exclusive 

property of Frontiers. For the 

conditions for downloading and 

copying of e-books from Frontiers’ 

website, please see the Terms for 

Website Use. If purchasing Frontiers 

e-books from other websites  

or sources, the conditions of the 

website concerned apply.

Images and graphics not forming part 

of user-contributed materials may  

not be downloaded or copied  

without permission.

Individual articles may be downloaded 

and reproduced in accordance  

with the principles of the CC-BY 

licence subject to any copyright or 

other notices. They may not be re-sold 

as an e-book.

As author or other contributor you 

grant a CC-BY licence to others to 

reproduce your articles, including any 

graphics and third-party materials 

supplied by you, in accordance with 

the Conditions for Website Use and 

subject to any copyright notices which 

you include in connection with your 

articles and materials.

All copyright, and all rights therein,  

are protected by national and 

international copyright laws.

The above represents a summary only. 

For the full conditions see the 

Conditions for Authors and the 

Conditions for Website Use.

ISSN 1664-8714 

ISBN 978-2-88945-730-4 

DOI 10.3389/978-2-88945-730-4

About Frontiers

Frontiers is more than just an open-access publisher of scholarly articles: it is a 

pioneering approach to the world of academia, radically improving the way scholarly 

research is managed. The grand vision of Frontiers is a world where all people have 

an equal opportunity to seek, share and generate knowledge. Frontiers provides 

immediate and permanent online open access to all its publications, but this alone 

is not enough to realize our grand goals.

Frontiers Journal Series

The Frontiers Journal Series is a multi-tier and interdisciplinary set of open-access, 

online journals, promising a paradigm shift from the current review, selection and 

dissemination processes in academic publishing. All Frontiers journals are driven 

by researchers for researchers; therefore, they constitute a service to the scholarly 

community. At the same time, the Frontiers Journal Series operates on a revolutionary 

invention, the tiered publishing system, initially addressing specific communities of 

scholars, and gradually climbing up to broader public understanding, thus serving 

the interests of the lay society, too.

Dedication to Quality

Each Frontiers article is a landmark of the highest quality, thanks to genuinely 

collaborative interactions between authors and review editors, who include some 

of the world’s best academicians. Research must be certified by peers before entering 

a stream of knowledge that may eventually reach the public - and shape society; 

therefore, Frontiers only applies the most rigorous and unbiased reviews. 

Frontiers revolutionizes research publishing by freely delivering the most outstanding 

research, evaluated with no bias from both the academic and social point of view.

By applying the most advanced information technologies, Frontiers is catapulting 

scholarly publishing into a new generation.

What are Frontiers Research Topics?

Frontiers Research Topics are very popular trademarks of the Frontiers Journals 

Series: they are collections of at least ten articles, all centered on a particular subject. 

With their unique mix of varied contributions from Original Research to Review 

Articles, Frontiers Research Topics unify the most influential researchers, the latest 

key findings and historical advances in a hot research area! Find out more on how 

to host your own Frontiers Research Topic or contribute to one as an author by 

contacting the Frontiers Editorial Office: researchtopics@frontiersin.org

https://www.frontiersin.org/research-topics/6126/machine-learning-with-radiation-oncology-big-data
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:researchtopics@frontiersin.org


Frontiers in Oncology 2 January 2019 | Machine Learning in Radiation Oncology

MACHINE LEARNING WITH 
RADIATION ONCOLOGY BIG DATA

Image: Immersion Imagery/Shutterstock.com

Topic Editors: 
Jun Deng, Yale University, United States
Issam El Naqa, University of Michigan, United States
Lei Xing, Stanford University, United States

Citation: Deng, J., Naqa, I. E., Xing, L., eds. (2019). Machine Learning With Radiation 
Oncology Big Data. Lausanne: Frontiers Media. doi: 10.3389/978-2-88945-730-4

https://www.frontiersin.org/research-topics/6126/machine-learning-with-radiation-oncology-big-data
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/research-topics/6126/machine-learning-with-radiation-oncology-big-data


Frontiers in Oncology 3 January 2019 | Machine Learning in Radiation Oncology

Table of Contents

05 Editorial: Machine Learning With Radiation Oncology Big Data

Jun Deng, Issam El Naqa and Lei Xing

07 Deep Deconvolutional Neural Network for Target Segmentation of 
Nasopharyngeal Cancer in Planning Computed Tomography Images

Kuo Men, Xinyuan Chen, Ye Zhang, Tao Zhang, Jianrong Dai, Junlin Yi and 
Yexiong Li

16 Design and Selection of Machine Learning Methods Using Radiomics and 
Dosiomics for Normal Tissue Complication Probability Modeling of 
Xerostomia

Hubert S. Gabryś, Florian Buettner, Florian Sterzing, Henrik Hauswald and 
Mark Bangert

36 An Ensemble Approach to Knowledge-Based Intensity-Modulated 
Radiation Therapy Planning

Jiahan Zhang, Q. Jackie Wu, Tianyi Xie, Yang Sheng, Fang-Fang Yin and 
Yaorong Ge

45 Lung Nodule Detection via Deep Reinforcement Learning

Issa Ali, Gregory R. Hart, Gowthaman Gunabushanam, Ying Liang, 
Wazir Muhammad, Bradley Nartowt, Michael Kane, Xiaomei Ma and Jun Deng

52 Machine Learning in Radiation Oncology: Opportunities, Requirements, 
and Needs

Mary Feng, Gilmer Valdes, Nayha Dixit and Timothy D. Solberg

59 How Big Data, Comparative Effectiveness Research, and Rapid-Learning 
Health-Care Systems Can Transform Patient Care in Radiation Oncology

Jason C. Sanders and Timothy N. Showalter

63 Exploring Applications of Radiomics in Magnetic Resonance Imaging of 
Head and Neck Cancer: A Systematic Review

Amit Jethanandani, Timothy A. Lin, Stefania Volpe, Hesham Elhalawani, 
Abdallah S. R. Mohamed, Pei Yang and Clifton D. Fuller

84 Deep Learning Renal Segmentation for Fully Automated Radiation Dose 
Estimation in Unsealed Source Therapy

Price Jackson, Nicholas Hardcastle, Noel Dawe, Tomas Kron, 
Michael S. Hofman and Rodney J. Hicks

91 Machine Learning and Radiogenomics: Lessons Learned and Future 
Directions

John Kang, Tiziana Rancati, Sangkyu Lee, Jung Hun Oh, Sarah L. Kerns, 
Jacob G. Scott, Russell Schwartz, Seyoung Kim and Barry S. Rosenstein

112 The Role of Machine Learning in Knowledge-Based Response-Adapted 
Radiotherapy

Huan-Hsin Tseng, Yi Luo, Randall K. Ten Haken and Issam El Naqa

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/research-topics/6126/machine-learning-with-radiation-oncology-big-data


Frontiers in Oncology 4 January 2019 | Machine Learning in Radiation Oncology

134 Machine Learning Applications in Head and Neck Radiation  
Oncology: Lessons From Open-Source Radiomics Challenges

Hesham Elhalawani, Timothy A. Lin, Stefania Volpe, Abdallah S. R. Mohamed, 
Aubrey L. White, James Zafereo, Andrew J. Wong, Joel E. Berends, 
Shady AboHashem, Bowman Williams, Jeremy M. Aymard, Aasheesh Kanwar, 
Subha Perni, Crosby D. Rock, Luke Cooksey, Shauna Campbell, Pei Yang, 
Khahn Nguyen, Rachel B. Ger, Carlos E. Cardenas, Xenia J. Fave, 
Carlo Sansone, Gabriele Piantadosi, Stefano Marrone, Rongjie Liu, 
Chao Huang, Kaixian Yu, Tengfei Li, Yang Yu, Youyi Zhang, Hongtu Zhu, 
Jeffrey S. Morris, Veerabhadran Baladandayuthapani, John W. Shumway, 
Alakonanda Ghosh, Andrei Pöhlmann, Hady A. Phoulady, Vibhas Goyal, 
Guadalupe Canahuate, G. Elisabeta Marai, David Vock, Stephen Y. Lai, 
Dennis S. Mackin, Laurence E. Court, John Freymann, Keyvan Farahani, 
Jayashree Kaplathy-Cramer, and Clifton D. Fuller

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/research-topics/6126/machine-learning-with-radiation-oncology-big-data


EDITORIAL
published: 27 September 2018
doi: 10.3389/fonc.2018.00416

Frontiers in Oncology | www.frontiersin.org September 2018 | Volume 8 | Article 416

Edited and reviewed by:

Timothy James Kinsella,

Warren Alpert Medical School of

Brown University, United States

*Correspondence:

Jun Deng

jun.deng@yale.edu

Specialty section:

This article was submitted to

Radiation Oncology,

a section of the journal

Frontiers in Oncology

Received: 04 September 2018

Accepted: 07 September 2018

Published: 27 September 2018

Citation:

Deng J, El Naqa I and Xing L (2018)

Editorial: Machine Learning With

Radiation Oncology Big Data.

Front. Oncol. 8:416.

doi: 10.3389/fonc.2018.00416

Editorial: Machine Learning With
Radiation Oncology Big Data

Jun Deng 1*, Issam El Naqa 2 and Lei Xing 3

1Department of Therapeutic Radiology, Yale University, New Haven, CT, United States, 2Department of Radiation Oncology,

University of Michigan, Ann Arbor, MI, United States, 3Department of Radiation Oncology, Stanford University, Stanford, CA,

United States

Keywords: big data, machine learning, artificial intelligence, personalized medicine, personalized radiotherapy

Editorial on the Research Topic

Machine Learning With Radiation Oncology Big Data

INTRODUCTION

Half of all cancer patients may receive radiotherapy as part of their treatment. With the wealth
of diverse data generated every day in the clinic, the radiation oncology community possesses a
unique advantage in harnessing these massive data with the predictive power of machine learning
methods for the benefit of millions of cancer patients undergoing radiotherapy worldwide. In this
Research Topic “Machine Learning with Radiation Oncology Big Data,” a wide range of clinical
applications involving variousmachine learning algorithms have been described and demonstrated,
with the hope of ushering in more widespread applications of artificial intelligence in medicine,
particularly in cancer radiotherapy in order to achieve a truly individualized radiation oncology
and an evidence-based learning healthcare system.

TOPICS COVERED IN THIS RESEARCH TOPIC

- Knowledge-based treatment planning: Zhang et al.
- Knowledge-based response-adapted radiotherapy: Tseng et al.
- Radiomics image analysis: Elhalawani et al., Jethanandani et al.
- Radiogenomics and outcome modeling: Kang et al.
- Automated contouring and nodule detection: Jackson et al., Ali et al., Men et al.
- Comparative effectiveness research: Sanders and Showalter.
- Machine learning in radiation oncology overview: Feng et al.
- Normal tissue complication probability modeling: Gabryś et al.

PAPERS INCLUDED IN THIS RESEARCH TOPIC

In this review paper, Elhalawani et al. summarized the feedback of eight contestants who
participated in a recent radiomics challenge in head and neck radiation oncology, and discussed
some of the challenges in sharing and directing existing datasets toward clinical implementation of
radiomics in radiation oncology.

Tseng et al. discussed recent development in the knowledge-based response-adapted
radiotherapy for personalized radiotherapy management. They addressed three specific questions
that are necessary to realize it clinically: (1) what knowledge is needed, (2) how to estimate
radiotherapy outcomes accurately, and (3) how to adapt optimally.

Kang et al. presented an overview of machine learning algorithms in the application
of radiogenomics to combine genomics signatures with radiotherapy. They summarized

5
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the important lessons learned for the proper integration of
machine learning into radiogenomics analysis.

Jackson et al. introduced a convolutional neural network
approach for fully automated contouring of kidneys and
automated radiation dose estimation in an unsealed source
therapy, which provides comparable accuracy to humans while
largely reducing the planning time.

In a systematic review, Jethanandani et al. explored the various
applications of radiomics in magnetic resonance imaging of head
and neck cancer, and identified the lack of standardization in
study design as a major limitation to their clinical relevance.

Sanders and Showalter described their vision of combining
big data with comparative effectiveness research methodologies
within the framework of a rapid-learning healthcare system in
order to accelerate discovery and realize a fully individualized
radiation treatment.

Feng et al. identified specific opportunities in a long chain of
radiotherapy processes where machine learning could improve
the quality and efficiency of patient care in radiation oncology, as
well as the needs required to realize them at both the community
and institutional levels.

Ali et al. presented a robust non-invasive deep reinforcement
learning method to predict the presence of lung nodules, a
common precursor to lung cancer, based on 888 lung CT scans
of the lung nodule analysis (LUNA) challenge.

Zhang et al. proposed an ensemble approach to knowledge-
based intensity modulated radiation therapy treatment planning,
and demonstrated its advantages in terms of robustness against
small training set sizes, mis-labeled cases, and dosimetric inferior
plans.

Gabryś et al. investigated whether machine learning with
dosimetric, radiomic, and demographic features can allow for
more precise xerostomia risk assessment. They identified the
need for the development of personalized data-driven risk
profiles for normal tissue complication probability (NTCP)
modeling.

Men et al. developed an end-to-end deep
deconvolutional neural network for segmentation
of nasopharyngeal tumor volumes to improve the
consistency of contouring and streamline radiotherapy
workflows, but cautioned that careful human review
and a considerable amount of editing would still be
required.

CONCLUSIONS AND OUTLOOK

The 11 papers included in this Research Topic produced
some promising results and offered visionary perspectives
regarding the role of machine learning with radiation
oncology big data. The clinical applications demonstrated
here are considered just the tip of the iceberg of the
incoming full-spectrum applications of human intelligence
and artificial intelligence in radiation oncology. While still
in its infancy stage, we envisage that artificial intelligence
together with human intelligence can provide something
much better than either one could perform alone in the near
future.
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Deep Deconvolutional neural 
network for Target segmentation of 
nasopharyngeal cancer in Planning 
computed Tomography images
Kuo Men, Xinyuan Chen, Ye Zhang, Tao Zhang, Jianrong Dai*, Junlin Yi* and Yexiong Li

National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College,  
Beijing, China

Background: Radiotherapy is one of the main treatment methods for nasopharyngeal 
carcinoma (NPC). It requires exact delineation of the nasopharynx gross tumor volume 
(GTVnx), the metastatic lymph node gross tumor volume (GTVnd), the clinical target vol-
ume (CTV), and organs at risk in the planning computed tomography images. However, 
this task is time-consuming and operator dependent. In the present study, we developed 
an end-to-end deep deconvolutional neural network (DDNN) for segmentation of these 
targets.

Methods: The proposed DDNN is an end-to-end architecture enabling fast training and 
testing. It consists of two important components: an encoder network and a decoder 
network. The encoder network was used to extract the visual features of a medical 
image and the decoder network was used to recover the original resolution by deploying 
deconvolution. A total of 230 patients diagnosed with NPC stage I or stage II were 
included in this study. Data from 184 patients were chosen randomly as a training set 
to adjust the parameters of DDNN, and the remaining 46 patients were the test set to 
assess the performance of the model. The Dice similarity coefficient (DSC) was used 
to quantify the segmentation results of the GTVnx, GTVnd, and CTV. In addition, the 
performance of DDNN was compared with the VGG-16 model.

results: The proposed DDNN method outperformed the VGG-16 in all the segmenta-
tion. The mean DSC values of DDNN were 80.9% for GTVnx, 62.3% for the GTVnd, and 
82.6% for CTV, whereas VGG-16 obtained 72.3, 33.7, and 73.7% for the DSC values, 
respectively.

conclusion: DDNN can be used to segment the GTVnx and CTV accurately. The accu-
racy for the GTVnd segmentation was relatively low due to the considerable differences 
in its shape, volume, and location among patients. The accuracy is expected to increase 
with more training data and combination of MR images. In conclusion, DDNN has the 
potential to improve the consistency of contouring and streamline radiotherapy work-
flows, but careful human review and a considerable amount of editing will be required.

Keywords: automatic segmentation, target volume, deep learning, deep deconvolutional neural network, 
radiotherapy
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inTrODUcTiOn

Nasopharyngeal carcinoma (NPC) is a malignant tumor 
prevalent in southern China. Radiotherapy is one of the main 
treatments for NPC, and its rapid development has played a 
significant role in the improvement of tumor control probability. 
Intensity-modulated radiotherapy and volumetric-modulated 
radiotherapy (VMAT) have become the state-of-the-art methods 
for the treatment of NPC over the past two decades (1, 2). These 
technologies can facilitate dose escalation to the tumor target 
while improving the sparing of organs at risk (OARs), and the 
dose distribution usually has steep gradients at the target bound-
ary. Modern treatment planning system (TPS) requires exact 
delineation of the nasopharynx gross tumor volume (GTVnx), 
the metastatic lymph node gross tumor volume (GTVnd), the 
clinical target volume (CTV) to be irradiated, and OARs to be 
spared in planning computed tomography (CT) images so that 
a radiation delivery plan can be optimized reversely. This task is 
a type of image segmentation and is usually carried out manu-
ally by radiation oncologists based on recommended guidelines  
(e.g., RTOG 0615 Protocol). However, the manual segmentation 
(MS) process is time-consuming and operator dependent. It has 
been reported that the segmentation of a single head-and-neck 
(H&N) cancer case takes an average of ~2.7  h (3). This time-
consuming work may be repeated several times during a course 
of NPC radiotherapy due to a tumor response or significant 
anatomic changes and alterations. In addition, the accuracy of the 
segmentation is highly dependent on the knowledge, experience, 
and preference of the radiation oncologists. Considerable inter- 
and intra-observer variation in segmentation of these regions of 
interest (ROIs) have been noted in a number of studies (4–7).

As a result, a fully automated segmentation method for 
radiotherapy is helpful to relieve radiation oncologists from the 
labor-intensive aspects of their work and increase the accuracy, 
consistency, and reproducibility of ROI delineation. “Atlas-based 
segmentation” (ABS) (8–10) incorporates a prior knowledge into 
the process of segmentation and is one of the most widely used 
and successful image segmentation techniques for biomedical 
applications. In this type of method, an optimal transformation 
between the target image to be segmented and a single atlas or 
multiple atlases containing some ground truth segmentations is 
computed using deformable registration techniques. Then, all the 
labeled structures in the atlas image can be propagated through 
the registration transformation onto the target image automati-
cally. ABS has become a popular method in automatic delineation 
of target and/or OARs in H&N radiotherapy (11–17) due to its 
acceptable results and fully unsupervised mode of operation. Han 
et al. (11) used the object shape information in the atlas to account 

for large inter-subject shape differences. Sjöberg et al. (12) applied 
fusion of multiple atlases to improve the segmentation accuracy 
than single atlas segmentation. Tao et al. (13) used ABS to reduce 
interobserver variation and improve dosimetric parameter con-
sistency for OARs. Teguh et  al. (14) evaluated autocontouring 
using ABS and found it was a useful tool for rapid delineation, 
although editing was inevitable. Sims et al. (15) did a pre-clinical 
assessment of ABS and showed that it exhibited satisfactory sensi-
tivity; however, careful review and editing were required. Walker 
et al. (16) concluded ABS was timesaving in generating ROI in 
H&N, but attending physician approval remained vital. However, 
there are two main challenges using the ABS method. First, due 
to the anatomical variations of human organs, it is difficult to 
build a “universal atlas” for all human organs. The ROI may be 
considerably different according to the body shape and body size 
of the patient. The variability should be taken into account to 
construct a patient-specific atlas from all atlas images, but there 
are difficulties for target images with a large variability in shape 
and appearance. Second, a large disadvantage of using ABS is the 
large computation time that is involved in registering the target 
image to its atlas image (18). Moreover, it often requires the target 
image to be aligned to multiple atlases, which will increase the 
process of registration several times.

Deep learning methods have achieved enormous success in 
many computer vision tasks, such as image classification (19–21), 
object detection (22, 23), and semantic segmentation (24–26). 
Convolutional neural networks (CNNs) have become the most 
popular algorithm for deep learning (21, 27). CNNs consist of 
alternating convolutional and pooling layers to automatically 
extract multiple-level visual features and have made significant 
progress in computer-aided diagnosis and automated medical 
image analysis (28–31). Melendez et  al. (29) applied multiple-
instance learning for tuberculosis detection using chest X-rays 
and reported an AUC of 0.86. Hu et  al. (30) proposed a liver 
segmentation framework based on CNNs and globally optimized 
surface evolution, yielding a mean Dice similarity coefficient 
(DSC) of 97%. Esteva et  al. (31) trained a CNN using a large 
dataset to classify skin cancer and achieved higher accuracy 
than dermatologists. In addition, CNNs have been applied in 
the segmentation of many organs and substructures, such as 
cells (32), nuclei (33), blood vessels (34), neuronal structures 
(35), brain (36), ventricles (37), liver (38), kidneys (39), pancreas 
(40), prostate gland (41), bladder (42), colon (43), and vertebrae 
(44) with relatively better overlap compared with state-of-the-art 
methods. However, these studies have been confined mostly to 
the field of radiology.

Furthermore, there has been increasingly more interest in 
applying CNNs to radiation therapy (45–48). Recently, Ibragimov 
and Xing (49) used CNNs for OARs segmentation in H&N CT 
images and obtained DSC values that varied from 37.4% for 
chiasm to 89.5% for mandible. This was the first report on OAR 
delineation with CNNs in radiotherapy; however, no target was 
segmented. In this work, we developed a deep deconvolutional 
neural network (DDNN) for the segmentation of CTV, GTVnx, 
and GTVnd for radiotherapy of NPC. The experimental results 
show that the DDNN can be used to realize the segmentation of 
NPC targets while planning CT images. DDNN is an end-to-end 

Abbreviations: NPC, nasopharyngeal carcinoma; GTVnx, nasopharynx gross 
tumor volume; GTVnd, metastatic lymph node gross tumor volume; CTV, clini-
cal target volume; OARs, organs at risk; CT, computed tomography; H&N, head 
and neck; GT, ground truth; CNNs, convolutional neural networks; DDNN, deep 
deconvolutional neural network; DSC, Dice similarity coefficient; TCP, tumor 
control probability; IMRT, intensity-modulated radiotherapy; VMAT, volumetric-
modulated radiotherapy; TPS, treatment planning system; ROIs, regions of inter-
est; ABS, Atlas-based segmentation; BN, batch normalized; ReLU, rectified linear 
non-linearity.
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FigUre 1 | Overall framework of the proposed algorithm.
FigUre 2 | The detailed architecture of deep deconvolutional neural 
network.
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architecture consisting of two important components, including 
an encoder and a decoder. Different from typical CNNs, we per-
formed a reversed deconvolution at decoder networks to rebuild 
high-resolution feature maps from low-resolution ones. Our work 
is the first attempt at applying DDNN for the auto-segmentation 
of a target for the planning of radiotherapy in NPC.

MaTerials anD MeThODs

Data acquisition
A total of 230 patients diagnosed with NPC stage I or stage II 
that received radiotherapy during January 2011 to January 2017 
in our department were included in our study. All patients were 
immobilized with a thermoplastic mask (head, neck, shoulder) in 
the supine position. Simulation contrast CT data were acquired 
on a Somatom Definition AS 40 (Siemens Healthcare, Forchheim, 
Germany) or Brilliance CT Big Bore (Philips Healthcare, Best, 
the Netherlands) system set on helical scan mode with contrast 
enhancement. CT images were reconstructed using a matrix size 
of 512 × 512 and thickness of 3.0 mm. MR images of all patients 
were acquired to assist the definition of the targets. Radiation 
oncologists contoured the GTVnx, the GTVnd, CTV, and OARs 
in the planning CT using a Pinnacle TPS (Philips Radiation 
Oncology Systems, Fitchburg, WI, USA) system. The GTVnx 
was defined as the primary nasopharyngeal tumor mass. The 
GTVnd was defined as the metastatic lymph nodes. The CTV 
(CTV1  +  CTV2) included GTVnx, GTVnd, high-risk local 
regions that contain the parapharyngeal spaces, the posterior 
third of nasal cavities and maxillary sinuses, pterygoid processes, 
pterygopalatine fossa, the posterior half of the ethmoid sinus, 
cavernous sinus, base of skull, sphenoid sinus, the anterior half of 
the clivus, petrous tips, and high-risk lymphatic drainage areas, 
including bilateral retropharyngeal lymph nodes and level II.

DDnn Model for segmentation
In the present study, we introduced a DDNN model to segment 
the target NPC for radiotherapy. DDNN is an end-to-end seg-
mentation framework that can predict pixel class labels in CT 
images. Figure 1 depicts the flowchart of the proposed model. 
As is shown in Figure 2, the DDNN networks consisted of two 
important components, including an encoder part and a decoder 
part. The encoder network consisted of 13 convolutional layers 

for feature extraction and was used to extract the visual features 
of the medical image, and the decoder network recovered the 
original resolution by deploying deconvolution. Specifically, the 
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TaBle 1 | Dice similarity coefficient (DSC) and Hausdorff distance for 
nasopharynx gross tumor volume (GTVnx), metastatic lymph node gross tumor 
volume (GTVnd), and clinical target volume (CTV).

Dsc (%) hausdorff distance 
(mm)

region of interest cTV gTVnx gTVnd cTV gTVnx gTVnd

Deep deconvolutional 
neural network

82.6 80.9 62.3 6.9 5.1 25.8

VGG-16 73.7 72.3 33.7 11.1 7.7 51.5

FigUre 3 | Boxplots obtained from Dice similarity coefficient analyses.
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In addition, the performance of DDNN was compared with 
VGG-16. The average DSC and Hausdorff distance values for the 
three targets (GTVnx, GTVnd, and CTV) were analyzed with 
paired t-tests between DDNN and VGG-16. All analyses were 
performed with a p-value set to <0.05.

resUlTs

The results for all tested patients and GTVnx, GTVnd, and CTV 
values are summarized in Figure 3 and Table 1. The proposed 
DDNN auto-segmentation showed a better overall agreement 
than the VGG-16 based auto-segmentation, as shown by the DSC 
values. The average DSC value of DDNN was 15.4% higher than 
the VGG-16 average DSC value (75.3 ± 11.3 vs. 59.9 ± 22.7%, 
p < 0.05). Automatic delineation with DDNN produced a good 
result for the GTVnx and CTV, with DSC values of 80.9 and 82.6%, 
respectively. These values showed a reasonable volume overlap of 
the auto-segmented contours and the manual contours. The qual-
ity of the automatically generated GTVnd was barely satisfactory, 
with a mean DSC value of 62.3%. The Hausdorff distance values 
for all targets were reduced by DDNN compared with VGG-16 
(12.6 ± 11.5 vs. 23.4 ± 24.4, p < 0.05).

encoder network layers were based on the VGG-16 architecture 
(21), used for high-quality image classification. Different from 
VGG-16, we performed a reversed deconvolution at decoder 
networks to rebuild high-resolution feature maps from low-
resolution. In addition, we replaced the fully connected layers 
with fully convolutional layers for our segmentation task. With 
the adaptation, the networks can achieve pixel segmentation 
in CT images. Please refer to the appendix for more technical 
specifications of the architecture.

experiments
Data from 184 patients out of 230 were chosen randomly as a 
training set to adjust the parameters of the DDNN model, and the 
remaining 46 patients were used as the test set to evaluate the per-
formance of the model. In this work, we implemented our model’s 
training, evaluation, error analysis, and visualization pipeline 
using Caffe (50), which is a popular deep learning framework, 
and then compiled using cuDNN (51) computational kernels. 
For the experiments, we adopted data augmentation techniques, 
such as random cropping and flipping to reduce over fitting.  
We used stochastic gradient descent with momentum to optimize 
the loss of function. We set the initial learning rate to 0.0001, 
learning rate decay factor to 0.0005, and decay step size to 2,000. 
Instead of using a fixed number of steps, we trained our model 
until the mean average precision of the training set converged, 
and then evaluated the model using the validation set. We used 
NVIDIA TITAN XP GPU for all experiments.

Quantitative evaluation
A total of 46 patients were used to assess the performance of the 
model. MSs were defined as the reference segmentations gener-
ated by the experienced radiation oncologists. All the voxels 
that belong to the MS were extracted and labeled. During the 
testing phase, all the 2D CT slices were tested one by one. The 
input was the 2D CT image, and the final output was pixel-level 
classification, which was the most likely classification label. 
Performance of the proposed method was tested and compared 
with the segmentation of the GTVnx, GTVnd, and CTV. The 
DSC and the Hausdorff distance (H) were used to quantify the 
results.

The DSC is defined as shown in Eq. 1 as follows:

 
DSC A B A B

A| B
( , ) | |

| | |
=

+
2 ∩

 
(1)

where A represents the MS, B denotes the auto-segmented struc-
ture and A ∩ B is the intersection of A and B. The DSC results in 
values between 0 and 1, where 0 represents no intersection at all 
and 1 reflects perfect overlap of structures A and B.

The Hausdorff distance (H) is defined as

 H h h( , ) max( ( , ), ( , ))A B A B B A=  (2)

where

 
h a b

a A b B
( , ) max(min )

,
A B = −

∈ ∈
|| ||

 
(3)

and ‖.‖ is some underlying norm on the points of A and B.  
As H(A,B) diminishes, the overlap between A and B increases.
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FigUre 6 | Segmentation results for metastatic lymph node gross tumor 
volume, shown in transverse computed tomography slices.

FigUre 5 | Segmentation results for nasopharynx gross tumor volume, 
shown in transverse computed tomography slices.

FigUre 4 | Segmentation results for clinical target volume, shown in 
transverse computed tomography slices.
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Figures 4–6 show auto-segmentation of CTV, GTVnx, and 
GTVnd for test cases, respectively. In these examples, the auto-
segmented contours of CTV and GTVnx using DDNN were 
close to the MS contours, although inconsistencies existed. 
Only a few corrections were necessary to validate the automatic 
segmentation. However, for the segmentation of the GTVnd, 
there was some deviation from the MS in shape, volume, and 
location.

DiscUssiOn

We have designed an automated method to segment CT images 
of NPC. To the best of our knowledge, this task has not previously 

been reported. Our results suggest that the proposed DDNN 
algorithm can learn the semantic information from nasopharyn-
geal CT data and produce high-quality segmentation of the 
target. We compared the proposed architecture with the popular 
Deeplab v2 VGG-16 model. This comparison revealed that our 
method achieved better segmentation performance. Our DDNN 
method deployed a deeper encoder and decoder neural network, 
which used convolutional filters to extract feature and deployed 
deconvolutional filters to recover the original resolution. Thus, 
detailed segmented results were learned/predicted better than 
bilinear interpolation.

Consistency of target delineation is essential for the improve-
ment of radiotherapy outcomes. Leunens et  al. (52) demon-
strated that inter- and intra-observer variation is considerable. 
Lu et al. (53) investigated the interobserver variations in GTV 
contouring of H&N patients and reported a DSC value of only 
75%. Caravatta et  al. (54) evaluated the overlap accuracy of 
CTV delineation among different radiation oncologists and 
got a DSC of 68%. Automatic segmentation has the potential 
to reduce variability of contours among physicians and improve 
efficiency. The gains in efficiency and consistency are valuable 
only if accuracy is not compromised. Assessment of accuracy of 
a segmentation method is complex, because there is no common 
database or objective volume for comparison. The evaluation of 
automatic segmentation for radiotherapy planning usually uses 
the DSC value, thus providing a reasonable basis for comparison. 
Apparently, our method showed good performance compared 
with the existing studies regarding the auto-segmentation topic. 
In addition, such auto-segmentation methods are atlas- and/or 
model based, and there is no report on segmentation of GTV 
or CTV using a deep learning method. Regarding the target, 
the comparison is difficult since N-stage (most often N0) and 
selected levels were quite different from one study to another. 
For CTV, different previous publications reported mean DSC 
values of 60% (55), 60% (8), 60% (56), 67% (14), 77% (57), 
78% (58), 79% (59), and 80.2% (60), whereas the DSC value of 
DDNN was 82.6%. There are few reports on auto-segmentation 
of GTVnx or GTVnd. For segmentation of GTVnx, DSC values 
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have been reported to be 69.0% (58) and 75.0% (61), whereas our 
proposed method demonstrated a high DSC value of 80.9%. The 
segmentation of GTVnd reported in the literature has yielded 
DSC values of 46.0% (62), and our method showed a DSC value 
of 62.3%. It is unfair to say our proposed algorithm is superior 
because the comparison with the published methods was not 
done with the same dataset; however, it is reasonable to con-
clude DDNN resulted in good results. Meanwhile, the proposed 
method learns and predicts in an end-to-end form without 
post-processing, which makes the inference time of the whole 
network within seconds.

Although the segmentation accuracy for GTVnd was better 
than previously reported, it was still too low. There are several 
reasons for this deficiency. First, this low result was due to lack 
of soft tissue contrast in CT-based delineation. Second, the 
GTVnd typically does not have constant image intensity or clear 
anatomic boundaries, and its shape and location are more vari-
able compared with CTV and GTVnx among different patients. 
Moreover, there is no GTVnd region in N0 patients, who were 
also included in our training and test sets. All of these factors will 
hinder the DDNN model from learning the robust features and 
making accurate reasoning. Thus, the segmentation accuracy 
of GTVnd remains unsatisfactory at present. Zijdenbos et  al. 
(63) suggests that a DSC value of >70% represents good over-
lap. Although the segmentation accuracy of CTV and GTVnx 
exceeded this standard, attending physician oversight remains 
critical. Imperfect definition of target volumes, which are then 
used for treatment planning, may result in under dosage of target 
volumes or an overdose delivered to normal tissues. As a result, 
the proposed method cannot be applied in an unsupervised 
fashion in the clinic. Human review and a considerable amount 
of editing might be required.

There are several limitations to our study. First, a model trained 
on N0 and N+ patients was used to assess the testing set, includ-
ing both N0 and N+ patients. This may make the model difficult 
to converge and reduce the accuracy of the prediction. Second, 
only one physician delineated the target for each patient but all 
the patients were delineated by several observers. Although the 
targets were contoured by experts according to the same guide-
line for NPC, there was still interobserver variability in all cases.  
We cannot exclude such possible bias, which challenges the 
DDNN method. Another limitation of our study is that all of the 
included patients were stage I or stage II. A target with different 
stages may have different contrast, shapes, and volumes, thus, 
influencing the performance of the automated segmentation.

This study mainly focused on NPC target segmentation 
from CT images. However, MR images in H&N have superior 
soft-tissue contrast and the GTV delineation often depends on 
MR images. In addition, functional MR may allow accurate 
location of the tumors. In the future, DDNN is expected to 
combine with the MR or other types of images to improve target 
volume delineation. The training set included only 184 patients. 
Increasing the amount of training data could make the DDNN 
model more robust, improving the segmentation accuracy. 
With the initiation of improved target visualization and further 
improvement of segmentation algorithms in the future, accuracy 
of auto-segmentation is likely to improve.

cOnclUsiOn

Accurate and consistent delineation of tumor target and OARs 
is particularly important in radiotherapy. Several studies have 
focused on the segmentation of OARs using deep learning 
methods. This study shows a method using DDNN architecture 
to auto-segment nasopharyngeal cancer stage I or stage II in 
planning CT images. The results suggest that DDNN can be used 
to segment GTVnx and CTV with high accuracy. The accuracy 
for GTVnd segmentation was relatively low due to the consider-
able differences in shape, volume, and location among patients. 
The performance is expected to improve with multimodality 
medical images and more training data. In conclusion, DDNN 
has the potential to improve the consistency of contouring and 
streamline radiotherapy workflows, but careful human review 
and a considerable amount of editing will be required.
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aPPenDiX

architecture of Deep Deconvolutional 
neural network (DDnn)

As is shown in Figure  2, the architecture of the proposed 
DDNN consisted of two parts, each of which had its own role. 
The encoder networks consisted of 13 convolutional layers for 
feature extraction. All the kernels of convolutional layers had a 
window size of 3  ×  3, a stride of 1, and a padding of 1 pixel. 
In addition, there was a batch normalized option following each 
convolution layer and then an element-wise rectified linear 
non-linearity max (0, x) was applied. The pooling options were 
added after the layers of conv1_2, conv2_2, conv3_3, conv4_3, 
conv5_3, de_conv5_1, and de_conv4_1 in order to get the robust 
feature. Specifically, the input size of the medical images in this 
work was cropped to 417 × 417 with 3 channels. Conv1_1 and 
conv1_2 convolved the input to 417 × 417 × 64, and then reduced 
to 209 × 209 × 64 feature maps using pooling option with kernel 
size of 3 × 3, a stride of 2, and a padding of 1 pixel. Similarly, the 
layers of conv2_1 and conv2_2 took pool1 as input. After using 

3 × 3 convolution with a stride of 1 and a padding of 1 pixel, it 
produced 105 × 105 × 256 feature maps and then was pooled 
by pool2 and convolved by conv3, conv4, and conv5. The max 
pooling options of pool4 and pool5 with 3 ×  3 filter size, pad 
1 and stride 1, resulted in a 53 × 53 × 512 output. The pooling 
options reduced the spatial size of feature map, so the feature map 
needed to be recovered to the original spatial size for segmenta-
tion task. Most previous methods used bilinear interpolation to 
get high-resolution image; however, a coarse segmentation was 
not enough to produce good performance for nasopharyngeal 
cancer. Therefore, the decoder part deployed a deep deconvolu-
tion neural network which took pool5 as input and a serial of 
deconvolution layers for upsampling. All the deconvolutional 
layers used 3  ×  3 convolution with the padding size of 1. At 
de_conv5_3, de_conv4_3, and de_conv3_3, the stride was set 
to 2. For others, the stride was set to 1. After 8× enlarging, the 
feature maps recovered the high resolution as same as input. At 
fc6 and fc7 layers, we replaced fully connected layer with 1 × 1 
convolution. Thus, we can carry on the pixel-level classification 
for the segmentation task. The final outputs generated predicted 
label for each pixel.
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Purpose: The purpose of this study is to investigate whether machine learning with
dosiomic, radiomic, and demographic features allows for xerostomia risk assessment
more precise than normal tissue complication probability (NTCP) models based on the
mean radiation dose to parotid glands.

Material and methods: A cohort of 153 head-and-neck cancer patients was used to
model xerostomia at 0–6months (early), 6–15months (late), 15–24months (long-term),
and at any time (a longitudinal model) after radiotherapy. Predictive power of the features
was evaluated by the area under the receiver operating characteristic curve (AUC) of
univariate logistic regression models. The multivariate NTCP models were tuned and
tested with single and nested cross-validation, respectively. We compared predictive
performance of seven classification algorithms, six feature selection methods, and ten
data cleaning/class balancing techniques using the Friedman test and the Nemenyi
post hoc analysis.

Results: NTCP models based on the parotid mean dose failed to predict xerostomia
(AUCs<0.60). The most informative predictors were found for late and long-term
xerostomia. Late xerostomia correlated with the contralateral dose gradient in the ante-
rior–posterior (AUC=0.72) and the right–left (AUC=0.68) direction, whereas long-term
xerostomia was associated with parotid volumes (AUCs>0.85), dose gradients in the
right–left (AUCs>0.78), and the anterior–posterior (AUCs>0.72) direction. Multivariate
models of long-term xerostomia were typically based on the parotid volume, the parotid
eccentricity, and the dose–volume histogram (DVH) spread with the generalization AUCs
ranging from 0.74 to 0.88. On average, support vector machines and extra-trees were
the top performing classifiers, whereas the algorithms based on logistic regression were
the best choice for feature selection. We found no advantage in using data cleaning or
class balancing methods.
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Conclusion:We demonstrated that incorporation of organ- and dose-shape descriptors
is beneficial for xerostomia prediction in highly conformal radiotherapy treatments. Due
to strong reliance on patient-specific, dose-independent factors, our results underscore
the need for development of personalized data-driven risk profiles for NTCP models of
xerostomia. The facilitated machine learning pipeline is described in detail and can serve
as a valuable reference for future work in radiomic and dosiomic NTCP modeling.

Keywords: radiotherapy, IMRT, NTCP, xerostomia, head and neck, machine learning, radiomics, dosiomics

1. INTRODUCTION

Radiotherapy is the main treatment for head-and-neck tumors.
Incidental irradiation of salivary glands often impairs their func-
tion, causing dryness in the mouth (xerostomia). Xerostomia
significantly reduces patients’ quality of life, leading to dental
health deterioration, oral infections, and difficulties in speaking,
chewing, and swallowing.

The Quantitative Analyses of Normal Tissue Effects in the
Clinic (QUANTEC) group recommended sparing at least one
parotid gland to a mean dose <20Gy or both parotid glands to
a mean dose<25Gy (1). Large-cohort studies confirmed that the
mean dose is a good predictor of xerostomia (2, 3). However, it
has also been observed that the mean dose failed to recognize
patients at risk in cohorts where the majority of patients had met
the QUANTEC guidelines, although the prevalence of xerostomia
was reduced (4–6).

In recent years, a number of studies have investigated various
patient- and therapy-related factors in hope ofmore precise xeros-
tomia predictions. These included the mean dose to submandibu-
lar glands and the oral cavity (5, 7–9), sparing of the parotid stem
cells region (10), three-dimensional dose moments (4), CT image
features (11, 12), patients’ T stage, age, financial status, education,
smoking, etc. (4, 5, 8).

Moreover, there has been growing interest in the adoption of
machine learning classifiers in NTCPmodeling (13–15). Buettner
et al. used Bayesian logistic regression together with dose-shape
features to predict xerostomia in head-and-neck cancer patients
(4). Support vector machines were employed to model radiation-
induced pneumonitis (16). Ospina et al. predicted rectal toxicity
following prostate cancer radiotherapy using random forests (17).

Nevertheless, despite the growing interest in data-driven meth-
ods, there have been no published studies so far systematically
evaluating how different machine learning techniques can be
used to address the challenges specific to NTCP modeling. These
include class imbalance due to low prevalence rates, heteroge-
neous and noisy data, large feature spaces, irregular follow-up
times, etc. A comparable work has already been presented in the
fields of bioinformatics (18, 19) and radiomics (20). Such anal-
ysis is missing for NTCP modeling, although it seems especially
relevant.

In this context, we examined associations between xerosto-
mia and various features describing parotid shape (radiomics),
dose shape (dosiomics), and demographic characteristics. Besides
investigating the individual predictive power of the features,
we comprehensively evaluated the suitability of seven machine

learning classifiers, six feature selection methods, and ten data
cleaning/class balancing algorithms for multivariate NTCP mod-
eling. The obtained results were compared to mean-dose models
and the morphological model proposed by Buettner et al. (4).
Furthermore, we proposed a longitudinal approach for NTCP
modeling that includes the time after treatment as a model covari-
ate. Doing so, rather than binning the data around a certain time
point, better reflects the underlying data due to often irregular
follow-up times.

2. MATERIALS AND METHODS

2.1. Patients
The retrospective patient cohort collected for this study comprised
head-and-neck cancer patients treated with radiotherapy at Hei-
delberg University Hospital in years 2010–2015. After excluding
patients with nonzero baseline xerostomia, replanning during the
treatment, tumor in the parotid gland, second irradiation, second
chemotherapy, or ion beam boost, the cohort consisted of 153
patients. Patient and tumor characteristics are listed in Table 1.
The study was approved by the Ethics Committee of Heidelberg
University.

2.2. End Points
For this study, we analyzed 693 xerostomia toxicity follow-
up reports. We aimed to model moderate-to-severe xerostomia
defined as grade 2 or higher according to Common Terminol-
ogy Criteria for Adverse Effects (CTCAE) v4.03 (21). In 74% of
cases, either CTCAE v3.0 or v4.03 grading scale was used. Dry
mouth (xerostomia) definitions were the same in both versions
so no inconsistency in grading was introduced. In case no score
was provided but descriptive toxicity information was available,
appropriate scores were assigned together with Heidelberg Uni-
versity Hospital clinicians. To minimize intra- and interobserver
variability in this process, a set of rules in the form of a dictionary
was introduced.

The follow-up reports were collected, on average, at 3-month
intervals (Figure 1). The number of toxicity evaluations and
the length of the follow-up varied from patient to patient.
Due to the time-characteristic and the irregularity of the
follow-up, two approaches were taken to model xerostomia:
a time-specific approach and a longitudinal approach. In the
time-specific approach, three time intervals were defined: 0–6,
6–15, and 15–24months, to investigate early, late, and long-term
xerostomia, respectively. In case there were multiple follow-up
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TABLE 1 | Patients and tumor characteristics.

All 0–6months 6–15months 15–24months

Grade 0 Grade 1 Grade 2 Grade 0 Grade 1 Grade 2 Grade 0 Grade 1 Grade 2

Total patients 153 17 87 30 19 99 13 15 53 9
Age
Median 61 60 60 62 60 61 61 61 61 61
Q1–Q3 55–66 54–66 54–64 53–69 57–63 53–66 54–68 55–68 52–66 54–68
Range 29–82 44–78 29–82 43–80 49–75 29–82 43–74 47–80 39–78 41–80

Sex
Female 37 5 19 7 6 24 2 2 9 4
Male 116 12 68 23 13 75 11 13 44 5

Tumor site
Hypopharynx/larynx 37 7 20 7 7 20 2 3 15 0
Nasopharynx 12 0 8 2 2 8 1 0 5 0
Oropharynx 99 9 57 20 10 69 9 11 32 9
Other 5 1 2 1 0 2 1 1 1 0

Radiation modality
IMRT 37 2 25 5 1 29 2 2 18 1
Tomotherapy 116 15 62 25 18 70 11 13 35 8

Ipsi parotid dose (Gy)
Median 24.3 22.9 25.0 23.0 19.5 24.8 25.9 22.9 23.8 24.5
Q1–Q3 20.6–27.6 18.5–24.6 21.4–29.0 21.4–25.4 16.8–24.3 21.8–28.7 21.8–27.2 18.5–31.5 20.8–26.4 21.6–26.2
Range 0.4–63.4 0.4–36.0 7.4–61.4 4.6–59.0 0.4–32.9 4.6–61.4 17.3–63.4 0.4–51.4 4.6–46.0 17.3–63.4

Contra parotid dose (Gy)
Median 19.9 19.4 20.3 19.6 15.6 20.5 20.4 12.7 19.7 20.1
Q1–Q3 15.4–23.1 13.1–21.8 15.2–23.8 16.5–22.0 10.3–20.7 16.3–23.8 19.8–23.1 5.2–17.9 16.3–23.7 16.4–22.3
Range 0.3–30.9 0.3–24.9 4.1–28.6 4.2–26.2 0.3–27.9 4.1–30.9 15.1–26.2 0.3–27.9 4.1–27.2 15.1–26.0

The total number of patients differs among the groups due to the follow-up availability.

FIGURE 1 | Frequency of the follow-up reports collection.

reports available for individual patients, the final toxicity score
was calculated as the arithmetic mean rounded to the nearest
integer number with x.5 being rounded up. In the longitudinal
approach, no time-intervals were defined and no toxicity grades
were averaged. Instead, each patient evaluation served as a
separate observation and the time after treatment was included
as a covariate in the model.

2.3. Features
The candidate xerostomia predictors comprised demographic,
radiomic, and dosiomic features (Table 2). The radiomic and the

TABLE 2 | Feature sets before and after the removal of highly correlated pairs
(Kendall’s |τ |>0.5).

Feature group Initial feature set Final feature set

Demographics Age, sex Age, sex

Parotid shape Volume, area, sphericity, eccentricity,
compactness, λ1, λ2, λ3

Volume, sphericity,
eccentricity

Dose–volume
histogram

Mean, spread, skewness, D2, D98,
D10, D20, D30, D40, D50, D60, D70,
D80, D90, V10, V15, V20, V25, V30,
V35, V40, V45, entropy, uniformity

Mean, spread,
skewness

Subvolume
mean dose

s1x , s
2
x , s

3
x , s

1
y , s

2
y , s

3
y , s

1
z , s

2
z , s

3
z

Spatial dose
gradient

Gradientx, gradienty, gradientz Gradientx,
gradienty, gradientz

Spatial dose
spread

η200, η020, η002 η200, η020, η002

Spatial dose
correlation
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Spatial dose
coskewness

η012, η021, η120, η102, η210, η201 η012, η021, η120,
η102, η210, η201

Feature definitions are provided in Appendix A.

dosiomic features were extracted from theCT- and the dose-cubes
read from treatment planning DICOM files. In a preprocessing
step, all the cubes were linearly interpolated to an isotropic 1mm
resolution. Moreover, we wanted to analyze the features in terms
of ipsi- and contralateral rather than left and right parotid glands.
This would, however, mean that certain spatial features would

Frontiers in Oncology | www.frontiersin.org March 2018 | Volume 8 | Article 3518

http://www.frontiersin.org/Oncology/
http://www.frontiersin.org
http://www.frontiersin.org/Oncology/archive
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have either positive or negative value, depending on the tumor
location (left or right). In order to solve that issue, the cubes
were flipped through the sagittal plane for cases with the mean
dose to the right parotid gland higher than the mean dose to
the left parotid gland. All feature definitions were based on the
LPS coordinate system, that is (right to left, anterior to posterior,
inferior to superior). The detailed definitions of the features are
provided in Appendix A.

To reduce feature redundancy, the Kendall rank correlation
coefficient was calculated for all feature pairs. Kendall’s τ allows
tomeasure ordinal association between two features, that is agree-
ment in ranks assigned to the observations. It can be interpreted
as a difference between the probability that both features rank a
random pair of observations in the same way and the probability
that they rank these observations in a different way (22). We
considered feature pairs with |τ |> 0.5 in both glands as highly
correlated and suitable for rejection from the feature set. This
arbitrarily chosen threshold corresponds to a 75% probability that
the two features rank a random pair of observations in the same
way. Whenever a pair of features was found highly correlated, we
decided to keep the feature that was conceptually and computa-
tionally simpler, e.g., mean dose over Dx, parotid volume over
parotid compactness, etc.

2.4. Previously Proposed NTCP Models
Logit and probit NTCPmodels based on themean dose to parotid
glands have been extensively used in modeling xerostomia (2, 3,
23, 24). We have tested four different mean-dose models to evalu-
ate predictive power of themean dose in our cohort: three univari-
ate logistic regression models based on the ipsilateral mean dose,
the contralateral mean dose, and the mean dose to both parotid
glands, as well as one bivariate logistic regression model based on
the mean dose to contralateral and to ipsilateral parotid glands.

As an alternative to the mean-dose models, Buettner et al.
(4) proposed a multivariate logistic regression model based on
three-dimensional dose moments to predict xerostomia. The
model was retrained and tested on our data set.

2.5. Univariate Analysis
The univariate analysis was performed to investigate associations
of single features with the outcome at different time intervals.
First, all features were normalized via Z-score normalization
to zero mean and unit variance. Next, for each feature, the
Mann–Whitney U statistic was calculated. The area under the
receiver operating characteristic curve (AUC) is directly related
to the U statistic and follows from the formula AUC = U

n−n+ ,
where n− and n+ are the size of the negative and the size of
the positive class, respectively (25). For all AUCs, 95% confi-
dence intervals were estimated by bias-corrected and accelerated
(BCa) bootstrap (26). The number of type I errors, that is falsely
rejected null hypotheses, was controlled with the false discovery
rate (FDR). The FDR is defined as the expected proportion of true
null hypotheses in the set of all the rejected hypotheses (27). We
applied the Gavrilov-Benjamini-Sarkar procedure to bound the
FDR≤ 0.05 (28). Additionally, for each feature, univariate logistic
regression models were fitted and tolerance values correspond-
ing to 20% (TV20), 10% (TV10), and 5% (TV5) complication
probability were calculated.

2.6. Multivariate Analysis
Themultivariate analysis allowed to examine interactions between
the features and their relative relevancy and redundancy. It was
a multi-step process comprising feature-group selection, feature
scaling, sampling (data cleaning and/or class balancing), fea-
ture selection, and classification. The workflow is presented in
Figure 2.

2.6.1. Workflow
The first step of the workflow was a random selection of the
feature-groups (Table 2) used for model training. It allowed for
an initial, unsupervised dimensionality reduction of the feature
space, which typically translates into an improved predictive
performance and a more straightforward interpretation of the
models. The selection was realized by performing a Bernoulli
trial for every feature group with a 50% chance of success. If

FIGURE 2 | The workflow of a multivariate five-step model building comprising, in this order, feature-group selection, feature scaling, sampling, feature selection, and
classification.
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TABLE 3 | Predictive performance of the mean-dose models and the morphological
model proposed by Buettner et al. (4), that is logistic regression with ηi111, η

c
002, η

c
300,

and ηi110η
c
110.

End point Model AUC

Early Meani 0.58 (0.56–0.60)
Meanc 0.42 (0.41–0.44)
Meanb 0.50 (0.48–0.53)

Meani, meanc 0.49 (0.48–0.51)
Morphological 0.42 (0.40–0.44)

Late Meani 0.48 (0.44–0.51)
Meanc 0.58 (0.55–0.61)
Meanb 0.55 (0.52–0.58)

Meani, meanc 0.54 (0.51–0.57)
Morphological 0.59 (0.56–0.62)

Long-term Meani 0.40 (0.37–0.44)
Meanc 0.58 (0.55–0.61)
Meanb 0.56 (0.52–0.60)

Meani, meanc 0.47 (0.44–0.50)
Morphological 0.64 (0.60–0.67)

Longitudinal Meani 0.51 (0.45–0.56)
Meanc 0.57 (0.51–0.62)
Meanb 0.50 (0.44–0.55)

Meani, meanc 0.52 (0.46–0.58)
Morphological 0.55 (0.49–0.60)

i, ipsilateral gland; c, contralateral gland; b, both glands.

a given group was selected, all features belonging to this group
were accepted for further analysis. If no group was selected after
performing all Bernoulli trials, the procedure was repeated for all
feature groups.

In the second step, all features were scaled via Z-score normal-
ization. Normalization of the features often improves stability and
speed of optimization algorithms.

The third step served the purpose of class balancing and
data cleaning. A class imbalance, noise, and a small size of
the minority class can negatively affect the performance of a
predictive model (29, 30). We investigated whether sampling
methods designed to reduce noise and improve definitions of
class clusters could enhance model performance. Ten algorithms
were examined: random oversampling (ROS), synthetic minority
oversampling (SMOTE), adaptive synthetic sampling (ADASYN),
one-sided selection (OSS), Tomek links (TL), the Wilson’s edited
nearest neighbor rule (ENN), the neighborhood cleaning rule
(NCL), synthetic minority oversampling followed by the Wilson’s
edited nearest neighbor rule (SMOTE+ENN), and synthetic
minority oversampling followed by Tomek links (SMOTE+TL).
The detailed description of the sampling algorithms is given in
Appendix B.

The fourth step of the analysis was feature selection. The
rationale for feature selection is a reduction of model complex-
ity, which facilitates understanding of the relations between the
predictors and the modeled outcome (here: xerostomia) (31). In
this study, we tested six feature selection algorithms: univariate
feature selection by F-score (UFS-F), univariate feature selection
by mutual information (UFS-MI), recursive feature elimination
by logistic regression (RFE-LR), recursive feature elimination by
extra-trees (RFE-ET), model-based feature selection by logistic

regression (MB-LR), and model-based feature selection by extra-
trees (MB-ET). The details on the feature selection algorithms are
provided in Appendix C.

The last step of the workflow was classification. We compared
seven classification algorithms: logistic regression with L1 penalty
(LR-L1), logistic regression with L2 penalty (LR-L2), logistic
regression with elastic net penalty (LR-EN), k-nearest neighbors
(kNN), support vector machines (SVM), extra-trees (ET), and
gradient tree boosting (GTB). A more detailed description of the
classification algorithms is given in Appendix D.

The models were build for every combination of the classifi-
cation, feature selection, and sampling algorithms. This resulted
in 490 models per end point or 1,960 models in total. A given
classifier or a feature selection algorithmwas involved in 210 time-
specific and 70 longitudinal models. Every sampling method was
part of 147 time-specific and 49 longitudinal models.

2.6.2. Model Tuning
In the process of model building every model was tuned, that is
its hyperparameters were optimized to maximize the prediction
performance. The type and the range of the hyperparameters were
based on previously reported values that worked well in various
machine learning tasks (Appendices B, C, and D).

For each model, the hyperparameter optimization was real-
ized by a random search (32). First, 300 random samples were
selected from the hyperparameter space. Secondly, for each hyper-
parameter sample, the model performance was evaluated using
cross-validation. Lastly, the model was retrained using all data
with the hyperparameter configuration that maximized the cross-
validated AUC.

In the time-specific models, the cross-validation was done by
the stratifiedMonte Carlo cross-validation (MCCV) (33) with 300
splits and 10% of observations held out for testing at each split. For
the longitudinal models, we used modified leave-pair-out cross-
validation (LPOCV) (34, 35). In our LPOCV implementation,
all the training observations sharing patient ID with the test
fold observations were removed at each split. This decision was
motivated by the fact that the observations sharing patient ID
differ only in the time of the follow-up evaluation; not remov-
ing them from the training fold would lead to overoptimistic
performance scores. Additionally, instead of all possible posi-
tive–negative pairs, as in typical LPOCV, only a random subset of
300 positive–negative pairs was used. This allowed for a reduction
of the computation time. Confidence intervals for the model
tuning AUC estimates were calculated with BCa bootstrap.

2.6.3. Comparison of Machine Learning Algorithms
In order to compare the algorithms in terms of their influence
on the average predictive performance of the model, we looked at
the classifiers, the feature selection algorithms, and the sampling
methods separately. Additionally, the analysis was performed
independently for the time-specific and the longitudinal models.

The statistical significance of the differences between the
algorithms was evaluated by the Friedman test followed by the
Nemenyi post hoc analysis. The Friedman test computes average
performance ranks of the algorithms and tests whether they have
the same influence on the AUC score of the model. If the null
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FIGURE 3 | Predictive power of individual features in the time-specific models measured with the area under the receiver operating characteristic curve (AUC). The
left-hand side vertical axis lists the features, the right-hand side vertical axis lists the feature groups. The AUCs were calculated from the corresponding
Mann–Whitney U statistic. Bars marked with * are significant at the false discovery rate (FDR)≤0.05.
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hypothesis was rejected, we proceeded with the post hoc analysis.
With the Nemenyi post hoc test, we calculated the critical differ-
ence at a significance level of 0.05.When the average performance
ranks of two algorithms differed by at least the critical difference,
they were significantly different.

Asmentioned before, this analysis was repeated six times to test
the classifiers, the feature selection algorithms, and the sampling
methods separately in the time-specific and the longitudinalmod-
els. Therefore, the Holm–Bonferroni method was used to control
the family-wise error rate (FWER) of the Friedman tests, that is
the probability of making at least one incorrect rejection of a true
null hypothesis in any of the comparisons (36). The significance
level for the FWER was set to 0.05.

2.6.4. Generalization Performance
Hyperparameter optimization comes at a cost. On the one hand,
it allows to tune the model so it fits well the underlying data.
On the other hand, the performance of the tuned model may be
overoptimistic due to a favorable selection of hyperparameters. In
order to estimate the generalization performance of a model, that
is its performance on new, unseen data, the data used for model
tuningmust be separate from the data used formodel testing. Due
to the modest size of our data set, instead of dividing the data to
training, validation, and test folds, we decided to test the models
using nested-cross validation (37).

Nested cross-validation is essentially cross validation within
cross validation. Part of the data is set aside for testing and the rest
is used for model tuning (as described in the previous section).
Next, the tuned model is tested on the part of data previously set
aside for testing. Then, the procedure is repeated, that is another
randomly selected part of the data is set aside for testing and the
rest is used for model tuning. This is repeated until the desired
number of iterations is achieved.

Unfortunately, due to high computation cost, it was not fea-
sible to calculate the expected generalization performance of
all 1,960 models. Therefore, the models were first stratified by
end point and classifier, and then nested cross-validation was
conducted for the best performing models. The inner loops of

the nested cross-validation, which were responsible for model
tuning, were the same as described in Section 2.6.2. The outer
loops were realized by the MCCV with 100 splits and a 10% test
fold (time-specific models) or the modified LPOCV (longitudinal
models). Confidence intervals for the generalization AUCs were
calculated with BCa bootstrap.

2.7. Software
The MATLAB code used for DICOM import, processing, and
feature extraction wasmade publicly available on GitHub (https://
github.com/hubertgabrys/DicomToolboxMatlab). For visualiza-
tion, statistical analysis, model building, and model testing, the
following open-source Python packages were used: imbalanced-
learn (38), Matplotlib (39), NumPy & SciPy (40), Orange (41),
Pandas (42), scikit-learn (43), scikits-bootstrap, and XGBoost
(44).

3. RESULTS

3.1. Feature Correlations
After removing the features correlated with the mean dose, the
skewness of the dose–volume histogram, and the parotid volume,
there were no highly correlated feature pairs left. The remaining
features are listed in Table 2.

3.2. Mean-Dose and Morphological Models
The predictive performance scores of the mean-dose models and
the morphological model are presented in Table 3. The mean-
dosemodels failed to predict xerostomia (AUC< 0.60) at all time-
intervals as well as in the longitudinal approach. The morpho-
logical model achieved fair performance (AUC= 0.64) only in
predicting long-term xerostomia.

3.3. Univariate Analysis
The results of the univariate analysis are presented in Figure 3.
There was little association between single predictors and xeros-
tomia within the first six months after treatment. Late xerostomia

FIGURE 4 | The mean dose and the absolute right–left dose gradient distribution in our patient cohort.
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FIGURE 5 | A comparison of classification, feature selection, and sampling algorithms in terms of their predictive performance in model tuning. All heat maps in a
given column belong to a single end point, whereas all heat maps in a given row correspond to a single classifier. In each heat map, rows represent feature selection
algorithms and columns correspond to sampling methods. The color maps are normalized per end point. The color bar ticks correspond to the worst, average, and
the best model performance.
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FIGURE 6 | Heat maps showing a proportion of times a given algorithm on the vertical axis outperformed another algorithm on the horizontal axis in terms of the best
AUC in model tuning. For example, support vector machines (SVM) performed better than extra-trees (ET) in 73% of the time-specific models.
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FIGURE 7 | A comparison of classification, feature selection, and sampling methods against one another with the Nemenyi test. Lower ranks correspond to better
performance of the algorithm, that is rank 1 is the best. Algorithms which ranks differ by less than the critical difference (CD) are not significantly different at 0.05
significance level and are connected by the black bars.

correlated with individual features slightly better. The most
informative were contralateral dose gradients in the right–left
direction (AUC= 0.68 (0.53–0.82)) and the anterior–posterior
direction (AUC= 0.72 (0.58–0.84)). Nevertheless, the AUCs
were too low to be statistically significant at the FDR≤ 0.05.
Long-term xerostomia was predicted well by parotid volumes,
right–left dose gradients, and anterior–posterior dose gradients.
Three models were statistically significant at the FDR≤ 0.05:
the ipsilateral parotid volume (AUC= 0.87 (0.75–0.95),
TV20= 9,894mm3, TV10= 15,681mm3, TV5= 21,014mm3),
the contralateral parotid volume (AUC= 0.85 (0.66–0.98),
TV20= 9,169mm3, TV10= 14,533mm3, TV5= 19,475mm3),
and the contralateral gradient in the right–left direction
(AUC= 0.84 (0.71–0.93), TV20= 1.49Gy/mm, TV10=
1.29Gy/mm, TV5= 1.10Gy/mm). Statistical significance
of three tests at the FDR≤ 0.05 translates into a 85.7% and

a 99.3% lower bound on the probability that all three tests
are truly positive or that at most one test is falsely positive,
respectively.

Neither themean dose to the contralateral nor themean dose to
the ipsilateral parotid gland discriminated well between patients
with and without xerostomia in the time-specific and the longi-
tudinal approach. Figure 4 shows the comparison between the
mean dose and the absolute right–left dose gradient values for the
patients with long-term xerostomia.

3.4. Comparison of Classification, Feature
Selection, and Sampling Algorithms
There was a clear difference in the average performance
between early (AUC≈ 0.60), late (AUC≈ 0.70), and long-term
(AUC≈ 0.90) xerostomia models (Figure 5). After applying the
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TABLE 4 | Expected generalization performance of selected models evaluated by nested cross-validation.

End point Classifier Feature selection Sampling AUC tuning AUC testing

Early LR-L1 RFE-ET NCL 0.62 (0.60–0.64) 0.56 (0.53–0.60)
LR-L2 RFE-LR NCL 0.62 (0.60–0.64) 0.46 (0.42–0.49)
LR-EN MB-ET NCL 0.62 (0.60–0.64) 0.54 (0.50–0.57)
kNN UFS-F SMOTE+ENN 0.68 (0.66–0.70) 0.65 (0.62–0.68)a

SVM UFS-F None 0.70 (0.68–0.72) 0.57 (0.53–0.61)
ET MB-LR NCL 0.63 (0.61–0.65) 0.44 (0.41–0.47)
GTB UFS-F None 0.66 (0.64–0.68) 0.55 (0.51–0.59)

Late LR-L1 RFE-LR NCL 0.78 (0.75–0.80) 0.63 (0.56–0.69)
LR-L2 RFE-LR NCL 0.76 (0.73–0.78) 0.60 (0.53–0.66)
LR-EN MB-LR SMOTE+ TL 0.73 (0.70–0.76) 0.56 (0.51–0.62)
kNN MB-LR NCL 0.78 (0.76–0.80) 0.62 (0.57–0.67)
SVM UFS-F TL 0.80 (0.77–0.82) 0.52 (0.46–0.58)
ET RFE-ET NCL 0.78 (0.75–0.80) 0.55 (0.50–0.61)
GTB MB-LR OSS 0.77 (0.75–0.79) 0.65 (0.59–0.70)a

Long-term LR-L1 MB-LR ROS 0.95 (0.94–0.96) 0.86 (0.80–0.90)
LR-L2 MB-LR None 0.96 (0.95–0.97) 0.86 (0.81–0.90)
LR-EN MB-LR SMOTE+ENN 0.92 (0.90–0.93) 0.83 (0.76–0.88)
kNN UFS-MI TL 0.88 (0.86–0.90) 0.74 (0.68–0.80)
SVM RFE-LR ENN 0.94 (0.92–0.96) 0.79 (0.73–0.85)
ET MB-LR ENN 0.93 (0.92–0.94) 0.88 (0.84–0.91)a

GTB UFS-F ROS 0.89 (0.86–0.91) 0.77 (0.71–0.83)

Longitudinal LR-L1 UFS-MI None 0.63 (0.57–0.68) 0.52 (0.41–0.61)
LR-L2 RFE-LR NCL 0.60 (0.55–0.66) 0.39 (0.29–0.48)
LR-EN UFS-MI TL 0.62 (0.57–0.68) 0.52 (0.42–0.60)
kNN UFS-MI NCL 0.65 (0.61–0.69) 0.58 (0.49–0.66)
SVM UFS-MI OSS 0.66 (0.60–0.71) 0.57 (0.46–0.66)
ET UFS-MI TL 0.66 (0.61–0.71) 0.51 (0.40–0.60)
GTB RFE-LR ROS 0.68 (0.62–0.72) 0.63 (0.52–0.71)a

aBest performing models at a given end point.

Holm-Bonferroni correction, all the Friedman tests were signifi-
cant at the FWER≤ 0.05. Therefore, classification, feature selec-
tion, and sampling algorithms were compared for both the time-
specific and the longitudinal models.

In the time-specific models, the support vector machine was by
far the best scoring classifier, outperforming the other classifiers in
over 70% of cases (Figure 6), whereas gradient tree boosting was
on average the worst performing classifier (Figure 7). Conversely,
gradient tree boosting together with support vector machines and
extra-trees predicted xerostomia significantly better than all the
other classifiers in the longitudinal approach.

The logistic regression-based algorithms performed signifi-
cantly better than the feature selection methods based on extra-
trees, in both the time-specific and the longitudinal models.
Interestingly, while univariate feature selection by mutual infor-
mation was the worst performing feature selection method in the
time-specific models, it was one of the best in the longitudinal
approach. Not performing feature selection was not disadvanta-
geous in terms of predictive performance.

In both the time-specific and the longitudinal approach, no
sampling algorithm gave a significant advantage over no sam-
pling at all. In the time-specific models, Tomek links and the
neighborhood cleaning rule performed significantly better than
any oversampling algorithm. In the longitudinal models, Tomek
links performed significantly better than random oversampling or
ADASYN.

3.5. Generalization Performance
The best performing models stratified by end point and classifier
are listed in Table 4. These models were retested by nested cross-
validation to estimate their generalization performance. Early
xerostomia (0–6months after treatment) was predicted fairly well
only by the k-nearest neighbors classifier (AUC= 0.65). Themod-
els of late xerostomia (6–15months after treatment) generalized
slightly better with logistic regression, k-nearest neighbors, and
gradient tree boosting scoring AUC> 0.60. For long-term xeros-
tomia (15–24months after treatment), the models generalized
best with theAUC ranging from0.74 (k-nearest neighbors) to 0.88
(extra-trees). The longitudinal models failed to generalize except
the gradient tree boosting classifier, which achieved AUC= 0.63.
Generalization AUCs were on average 0.10 lower than tuning
AUCs for all the analyzed end points.

3.6. Model Interpretation
Only the models predicting long-term xerostomia achieved high
generalization scores, that is AUC> 0.70. For that reason, model
interpretation was performed only for this end point. The mul-
tivariate models of long-term xerostomia relied mostly on the
parotid gland volume, the spread of the contralateral dose–volume
histogram, and the parotid gland eccentricity (Figure 8). The con-
tralateral dose gradient in the right–left direction, despite good
univariate predictive power, was included in only one model.
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FIGURE 8 | Features underlying the multivariate models of long-term xerostomia. i, ipsilateral gland; c, contralateral gland.
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4. DISCUSSION

The univariate analysis showed that parotid- and dose-shape fea-
tures can be highly predictive of xerostomia. Patients with small
parotid glands (median parotid volume in the positive group 9,557
vs. 14,374mm3 in the negative group) and steep dose gradients in
the patient’s right–left direction (median gradient in the positive
group 1.7 vs. 1.2Gy/mm in the negative group) were significantly
more likely to develop long-term xerostomia. A possible explana-
tion of this finding could be the fact that parotid glands typically
shrink and move toward the medial direction during the course
of radiotherapy. As a result, for patients with small parotid glands,
the gradient is a proxy for the change of any dose-related metric
subject to motion. As such, this might be an indicator of neglected
motion and deformation effects during the modeling process.

Nevertheless, good discriminative power of the dose gradients
and poor performance of the mean dose should be put into
perspective of the previous studies validating mean-dose mod-
els. In cohorts where patients received a high radiation dose to
parotid glands, the mean dose allowed achieving AUC above 0.80
(2, 3). It seems that inclusion of patients with less conformal
treatment plans and a higher dosage to parotids would result in
a cluster of patients with complications in the high-dose region
of Figure 4. Therefore, for relatively high doses, the mean dose
alone is a good xerostomia predictor irrespective of the dose
gradient, whereas in the low-dose regime of modern radiotherapy
treatments dose gradients are more informative and the mean
dose is less predictive.

In the multivariate analysis, we did not find a model that would
achieve generalization AUC above 0.65 for early or late-effects,
even though a few univariate models of late xerostomia exceeded
that value. Similarly, the multivariate models of long-term xeros-
tomia, despite their good generalization scores (AUCmax = 0.88),
performed on a par with the univariate models based on the
parotid volume or the contralateral dose gradient in the patient’s
right–left direction. Comparable performance of the univariate
and the multivariate models could be caused by the small sam-
ple size, especially the small minority class. In such setting, the
distribution of model covariates can nonnegligibly differ between
training and testing folds, hindering model training and reducing
performance of the model.

The analysis of the multivariate models highlighted the
importance of personalized treatment planning in radiotherapy.
The models were strongly based on patient-specific and dose-
independent features, such as parotid volume, parotid eccentric-
ity, and the patient’s sex. Females with small, elongated parotid
glands were at higher risk of long-term xerostomia than males
with large and rather round parotids. Interestingly, the dose gradi-
ent, despite relatively high predictive power, was included in only
one model. Instead, the most common dosiomic feature was the
spread of the contralateral dose–volume histogram quantifying
the SD of the dose within a parotid gland. Nevertheless, due to
the geometry of the problem, the DVH spread and spatial dose
gradients measured a similar characteristic of the dose distribu-
tion. That is, a large spread of the DVH was present when part of
the parotid gland received high dose, whereas another part was
spared.

In the time-specific models, the support vector machine was
most commonly the best classifier. The other classifiers performed
similarly to one another. The unexceptional performance of the
ensemble methods (extra-trees and gradient tree boosting) could
stem from the fact that complex models need more training
samples to correctly learn the decision boundary. Among the
longitudinal models, we saw amore commonly observed classifier
“ranking,” that is GTB>ET> SVM> LR> kNN (19). Feature
selection did not give a clear advantage over no feature selection
in terms of the predictive performance. Nonetheless, feature selec-
tion allowed for a reduction ofmodel complexity andmademodel
interpretation easier. The best results were achievedwith the logis-
tic regression-based algorithms and feature selection by mutual
information (only in the longitudinal models). We have not found
evidence that sampling methods improve accuracy of predictions.
Moreover, we observed that certain kinds of sampling, especially
random oversampling, can significantly decrease predictive per-
formance of the models.

Nested cross-validation proved to be an important step in the
analysis. On average, the generalization AUCs were significantly
lower than the AUCs achieved in model tuning. Our findings
confirm the notion that single cross-validation can lead to overop-
timistic performance estimates when hyperparameter tuning is
involved in model building.

5. CONCLUSION

We demonstrated that in a highly conformal regime of mod-
ern radiotherapy, use of organ- and dose-shape features can be
advantageous for modeling of treatment outcomes. Moreover,
due to strong dependence on patient-specific factors, such as the
parotid shape or the patient’s sex, our results highlight the need
for development of personalized data-driven risk profiles in future
NTCP models of xerostomia.

Our results show that the choice of a classifier and a feature
selection algorithm can significantly influence predictive perfor-
mance of the NTCP model. Moreover, in relatively small clin-
ical data sets, simple logistic regression can perform as well as
top-ranking machine learning algorithms, such as extra-trees or
support vector machines. We saw no significant advantage in
using data cleaning or reducing the class imbalance. Our study
confirms the need for significantly larger patient cohorts to benefit
fromadvanced classificationmethods, such as gradient tree boost-
ing. We showed that single cross-validation can lead to overopti-
mistic performance estimates when hyperparameter optimization
is involved; either nested cross-validation or an independent test
set should be used to estimate the generalization performance of
a model.

LIST OF NON-STANDARD
ABBREVIATIONS

Classification
LR-L1 Logistic regression with L1 penalty
LR-L2 Logistic regression with L2 penalty
LR-EN Logistic regression with elastic net penalty

(Continued)
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kNN k-Nearest neighbors
SVM Support vector machine
ET Extra-trees
GTB Gradient tree boosting
Feature selection
UFS-F Univariate feature selection by F-score
UFS-MI Univariate feature selection by mutual

information
RFE-LR Recursive feature elimination by logistic

regression
RFE-ET Recursive feature elimination by extra-trees
MB-LR Model-based feature selection by logistic

regression
MB-ET Model-based feature selection by extra-trees
Sampling
ROS Random oversampling
SMOTE Synthetic minority

oversampling
ADASYN Adaptive synthetic sampling
OSS One-sided selection
TL Tomek links
ENN Wilson’s edited nearest

neighbor rule
NCL Neighborhood cleaning rule
SMOTE+ENN SMOTE followed by the ENN
SMOTE+ TL SMOTE followed by TL
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Gabryś et al. Machine Learning for NTCP Modeling of Xerostomia

APPENDIX A

The MATLAB code used for feature extraction is available on
GitHub https://github.com/hubertgabrys/DicomToolboxMatlab.

A. Parotid Shape
A.1. Volume
Volume V of the parotid gland.

A.2. Surface area
Surface area A of the parotid gland.

A.3. Sphericity
Parotid gland sphericity was defined as the ratio of the surface area
of a sphere of the same volume as the parotid gland to the actual
surface area of the parotid

Ψ =
π

1
3 (6V)

2
3

A .

A.4. Compactness
Parotid gland compactness was defined as a ratio of the parotid
gland surface area to the parotid gland volume.

κ =
A
V .

A.5. Eccentricity
Eccentricity ε measured how elongated the parotid gland was.
Larger asymmetry of the gland corresponded to larger values of ε.

ε = 1−
√
λmin

λmax
,

where eigenvalues λi of the parotid shape covariance matrix
correspond to the dimensions of the parotid gland along the
principal axes defined by the eigenvectors. The covariance matrix
is defined as:

Cov[I(x, y, z)] =

µ200 µ110 µ101
µ110 µ020 µ011
µ101 µ011 µ002


µpqr =

∑
x,y,z

(x− x̄)p(y− ȳ)q(z− z̄)rI(x, y, z),

x̄ =

∑
x,y,z xI(x, y, z)∑
x,y,z I(x, y, z)

where x, y, and z are the coordinates of the voxel, I(x,y,z) the indi-
cator function indicating whether a voxel belongs to the parotid,
and µpqr central moments of the parotid. ȳ and z̄ were defined
analogously to x̄.

B. Dose–Volume Histogram
B.1. Mean
The mean dose to the parotid gland.

B.2. Spread
The spread of the differential dose–volume histogram was quan-
tified by the SD of the dose within the parotid gland.

B.3. Skewness
The skewness of the differential dose–volume histogram was
measured by the third standardized moment. Negative skew-
ness corresponds to the dose–volume histogram skewed toward
lower dose, whereas positive skewness means the dose–volume
histogram is skewed toward higher dose.

B.4. Dx
The minimum dose to x% “hottest” volume of the parotid gland.

B.5. Vx
Percentage volume of the parotid gland receiving at least x Gy.

B.6. Entropy
Entropy H measures smoothness of the dose within the parotid
gland (45):

H = −
256∑
i=1

m(di) logm(di),

where di is the dose delivered to the ith voxel and m(di) is the
corresponding histogram.H= 0 for a uniform dose andH> 0 for
a nonuniform dose.

B.7. Uniformity
Uniformity U of the dose within the parotid gland (45):

U =
256∑
i=1

m2(di),

U= 1 for a uniform dose and U< 1 for a nonuniform dose.

C. Subvolume Mean Dose
Parotid gland subvolumes were defined by axial, coronal, and
sagittal slices that cut parotid glands in thirds along the patient’s
axes. The cuts were positioned in such a way that each subvolume
comprised approximately the same number of voxels. As a result,
nine, not exclusive, subvolumes were defined: three in x, three in y,
and three in z direction. For each subvolume the mean radiation
dose was calculated, e.g., the mean dose to the anterior third of
the parotid gland (s1y) or the mean dose to the superior third of
the parotid gland (s3z).

D. Dose Gradients
Average dose gradientsmeasured average change of the dose along
one of patient axes and were defined as:

Gradientx =

∑
x,y,z D(x + 1, y, z)I(x + 1, y, z)
−D(x− 1, y, z)I(x− 1, y, z)

2
∑

x,y,z I(x, y, z)
,

where x, y, and z are the coordinates of the voxel, D(x,y,z) the
dose delivered to the voxel, and I(x,y,z) the indicator function
indicating whether a voxel belongs to the parotid. Gradienty and
gradientz were defined analogously to gradientx.
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E. Three-Dimensional Dose Moments
The scale invariant dose moments allowed to quantify three-
dimensional shape of the dose distribution within the parotid
gland. Visualization of themoments can be found in Buettner et al.
Supplementary Figure 1–3 (4). The moments were defined as:

ηpqr =

∑
x,y,z (x− x̄)p(y− ȳ)q(z− z̄)rD(x, y, z)I(x, y, z)(∑

x,y,z D(x, y, z)I(x, y, z)
) p+q+r

3 +1

x̄ =

∑
x,y,z xI(x, y, z)D(x, y, z)∑
x,y,z I(x, y, z)D(x, y, z) ,

ȳ and z̄ were defined analogously. In particular, we considered
moments quantifying dose variance, covariance, skewness, and
coskewness.

E.1. Dose Variance (η200, η020, η002)
Dose variance corresponds to the spread of the dose along a given
direction.

E.2. Dose Covariance (η110, η101, η011)
Dose covariance measures how the dose covaries along two axes.
For example, positive values of η110 correspond to dose deposition
along xy direction, whereas negative values correspond to dose
deposition along the direction perpendicular to xy.

E.3. Dose Skewness (η300, η030, η003)
Dose skewness measures asymmetry of the dose distribution
along a given axis.

E.4. Dose Coskewness (η210, η201, η120, η021, η012, η102)
Dose coskewnessmeasures how dose variance along one direction
covaries with another dimension, e.g., negative value of η210 would
mean that variance of the dose along x axis increases whenmoving
up the y axis.

APPENDIX B

It has been reported that class imbalance together with low size
of the minority class can hinder the performance of predictive
models. There are two approaches commonly taken to alleviate
this problem: oversampling and undersampling. In oversampling,
one reduces the imbalance between classes by random replication
or synthetic creation of minority class observations. Conversely,
in undersampling the majority class size is reduced by elimination
of its observations. Additionally, there are data cleaning methods
which, through undersampling, aim to remove the observations
that are considered noise or the observations close to the decision
boundary, irrespective of their class membership. As a result,
data cleaning methods do not reduce class imbalance but rather
improve definitions of class clusters. Hyperparameters used to
tune the sampling and the data cleaning algorithms are listed in
Table A1.

A. Random Oversampling
The data set imbalance is reduced by randomly duplicating obser-
vations from the minority class.

TABLE A1 | Hyperparameters used to tune the sampling algorithms.

Algorithm Hyperparameters Values

ROS – –

SMOTE k_neighbors: Number of nearest
neighbors used to construct synthetic
samples.

{3,4,5}

m_neighbors: Number of nearest
neighbors used to determine if a
minority sample is in danger.

{7,8,9}

kind: Type of SMOTE algorithm. {“regular,” “borderline1,”
“borderline2”}

ADASYN n_neighbors: Number of nearest
neighbors to use to construct
synthetic samples.

{3,5,8}

OSS – –
TL – –

ENN n_neighbors: Number of nearest
neighbors.

{2,3,5}

kind_sel: Type of ENN algorithm. {“all,” “mode”}

NCL n_neighbors: Number of nearest
neighbors.

{2,3,5}

SMOTE+ TL – –

SMOTE+ENN – –

Hyperparameters not listed in this table assumed the default values of imbalanced-learn
package (38).

B. Synthetic Minority Oversampling
Synthetic minority oversampling (SMOTE) was proposed by
Chawla et al. (46). The algorithm generates new synthetic minor-
ity observations by considering k nearest neighbors of a randomly
selected minority observation. Next, the difference between the
observation feature vector and one of the nearest neighbors feature
vector is taken. This difference is then multiplied by a random
weight between 0 and 1, and added to the observation feature vec-
tor to generate a new synthetic observation. In SMOTE, approxi-
mately equal number of synthetic observations is created for each
minority class observation.

C. Adaptive Synthetic Sampling
Adaptive synthetic sampling (ADASYN) (47), similarly to
SMOTE, generates synthetic minority class observations by inter-
polating feature vectors between a minority class observation
and a randomly selected nearest neighbor. The key difference
to SMOTE is that ADASYN aims to create more synthetic data
for minority class observations that are hard to learn. For that
reason, a learning difficulty weight is calculated for each minor-
ity class observation, based on the number of majority class
observations in its neighborhood. Based on these weights, more
synthetic observations are created for “difficult” minority class
observations.

D. Tomek Links
A pair of observations (Ei,Ej) stemming from different classes and
with distance d(Ei, Ej) form a Tomek link if there is no observation
El, such that d(Ei, El)< d(Ei, Ej) or d(Ej, El)< d(Ei, Ej) (48). As
an undersampling method, all the observations in the majority
class forming Tomek links are removed; when used as a data
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cleaning method, both the observation from the majority and the
observation from the minority class are eliminated.

E. Condensed Nearest Neighbor Rule
The condensed nearest neighbor rule (CNN) proposed by Hart
(49) undersamples the data set to find a consistent subset Ê of all
observations E. First, all minority class observations and one ran-
domly selected majority class observation are moved to Ê. Next,
the rest of the majority class observations are classified using 1-
nearest neighbor rule and during this process every misclassified
observation is moved to subset Ê. The procedure continues until
all misclassified observations are in the subset Ê (50). Intuitively,
CNN reduces the number of redundant observations in majority
class that are far from the decision border and therefore less
informative in learning.

F. One-Sided Selection
One-sided selection (OSS) (50) is an undersampling method real-
ized by Tomek links algorithm followed by CNN. Tomek links
undersample the majority class and remove noisy and borderline
class observations. CNN, on the other hand, removes observations
from the majority class that are distant from the decision border
and likely are not informative.

G. Wilson’s Edited Nearest Neighbor Rule
The Wilson’s edited nearest neighbor rule (ENN) (51) removes all
observations which class label differ from the class of its k nearest
neighbors.

H. Neighborhood Cleaning Rule
The neighborhood cleaning rule (NCL) (52) is a modification of
the ENN algorithm. As in the ENN, the class of each observation
is compared with the classes of its k nearest neighbors. If the
analyzed observation belongs to the majority class, the procedure
is the same as in the ENN. However, if the observation belongs
to the minority class and its k nearest neighbors to the majority
class, the minority class observation is kept in the data set and the
k nearest neighbors are removed.

I. SMOTE+TL
First, the original data set is oversampled with SMOTE, and then
Tomek links are identified and removed. The method aims to
produce a balanced data set with well-defined class clusters (53).

J. SMOTE+ENN
This method is similar to SMOTE+TL but with stronger data
cleaning component realized by the ENN (53).

APPENDIX C

Feature selection is a crucial part of model building. It not only
allows to improve accuracy of model predictions but also reduces
the dimensionality of the input space. A reduced dimensionality
of the input space decreases the risk of model overfitting and
improves model interpretability. Hyperparameters used to tune
the feature selection algorithms are listed in Table A2.

TABLE A2 | Hyperparameters used to tune the feature selection algorithms.

Algorithm Hyperparameters Values

UFS-F k: Number of features to select. {2,3,4,5,6}

UFS-MI k: Number of features to select. {2,3,4,5,6}

RFE-LR k: Number of features to select. {2,3,4,5,6}
step: Number of features to 1
remove at each iteration.
class_weight: Whether class weights {None, “balanced”}
are equal or inversely proportional
to class frequencies.
C: Inverse of regularization strength. {2−5, 2−4.985,

2−4.97, . . ., 210}
penalty: Type of regularization. “l2”

RFE-ET k: Number of features to select. {2,3,4,5,6}
step: Fraction of features to remove 0.5
at each iteration.
class_weight: Whether class weights {None, “balanced,”
are equal or inversely proportional to “balanced_subsample”}
class frequencies.
n_estimators: Number of [90,140]
decision trees.

MB-LR k: Number of features to select. {2,3,4,5,6}
class_weight: Whether class weights {None, “balanced”}
are equal or inversely proportional to
class frequencies.
C: Inverse of regularization strength. {2−5, 2−4.985,

2−4.97, . . ., 210}
penalty: Type of regularization. {“l1,” “l2”}

MB-ET k: Number of features to select. {2,3,4,5,6}
class_weight: Whether class weights {None, “balanced,”
are equal or inversely proportional “balanced_subsample”}
to class frequencies.
n_estimators: Number of [90,140]
decision trees.

Hyperparameters not listed in this table assumed the default values of scikit-learn
package (43).

A. Univariate Feature Selection
Univariate feature selection methods evaluate each feature sepa-
rately relying solely on the relation between one feature character-
istic and the modeled variable. After all the features were graded,
the features with the highest rankings are selected. A disadvantage
of univariate feature selection is that the algorithm fails to select
features which have relatively low individual scores but a high
score when combined together. Also, due to the fact that univari-
ate feature selection methods evaluate features individually, they
are unable to handle feature redundancy (54, 55).

A.1. Fisher Score
Intuitively, Fisher score is a ratio of the between-class scatter to
the within-class scatter. As a result, high Fisher scores correspond
to features with well defined class clusters (low within-class
scatter) that are distant from each other (large between-class
scatter) (56). Fisher score is commonly used in supervised
classification tasks due to its low computational cost and general
good performance (54).

Fisher score of feature X was calculated using the following
formula (57):

F(X) =
1

C−1
∑C

c=1 Nc(x̄c − x̄)2
1

N−C
∑C

c=1
∑

i:yi=c (xi − x̄c)2

Frontiers in Oncology | www.frontiersin.org March 2018 | Volume 8 | Article 3533

http://www.frontiersin.org/Oncology/
http://www.frontiersin.org
http://www.frontiersin.org/Oncology/archive
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x̄ =
1
N

N∑
i=1

xi

x̄c =
1
Nc

∑
i:yi=c

xi,

where C is the number of classes,N total number of observations,
Nc number of observations in class c, x̄ mean value of feature X,
and x̄c mean value of feature X in class c.

A.2. Mutual Information
This univariate feature selection method measures mutual infor-
mation between each feature and themodeled variable. Intuitively,
mutual information measures how much knowing the feature X
value reduces uncertainty about the class label Y, and vice versa
(58). This can be expressed by the formula:

MI(X;Y) = H(X)− H(X|Y) = H(Y)− H(Y|X),

whereH(X) is the entropy ofX andH(X|Y) is the entropy ofX after
observing class Y.

H(X) = −
N∑
i=1

p(xi) log p(xi)

H(X|Y) = −
N∑
i=1

p(yi)
N∑

k=1

p(xk|yi) log p(xk|yi).

Featureswith highmutual information are considered informa-
tive and are selected.

B. Recursive Feature Elimination
In the first step of recursive feature elimination (RFE), an induc-
tion algorithm is trained using the full set of features. Next,
the features are ranked according to a given criterion, such as
feature weight in logistic regression or feature importance in
ensemble models. Then, the feature or the features with the
smallest ranks are removed from the feature set. This procedure
is repeated iteratively until the desired number of features is
achieved (59, 60).

In contrast to univariate feature selection, recursive feature
elimination methods can capture feature interactions. For that
reason it can select not only good univariate predictors but also
featureswhich have lowpredictive power alone but high predictive
power when pooled together.

The ability to handle feature redundancy depends on the induc-
tion algorithm used with RFE. For instance, L1-penalized logistic
regression tends to select one of highly correlated features, hence
reducing feature redundancy (61). On the contrary, L2-penalized
logistic regression tends to give similar weights to correlated
features, distributing the total feature importance among them.
For the recursive feature elimination, we used two induction
algorithms: logistic regression and extra-trees.

C. Model-Based Feature Selection
Model-based feature selection can be considered a special case
of recursive feature elimination with only one iteration step.
The induction algorithm is trained using the full set of features
and the desired number of lowest scoring features is removed.

TABLE A3 | Hyperparameters used to tune the classification algorithms.

Algorithm Hyperparameters Values

LR-L1 class_weight: Whether class weights are equal or inversely proportional to class frequencies. {None, “balanced”}
C: Inverse of regularization strength. {2−5, 2−4.985, 2−4.97, . . ., 210}

LR-L2 class_weight: Whether class weights are equal or inversely proportional to class frequencies. {None, “balanced”}
C: Inverse of regularization strength. {2−5, 2−4.985, 2−4.97, . . ., 210}

LR-EN class_weight: Whether class weights are equal or inversely proportional to class frequencies. {None, “balanced”}
alpha: Regularization strength. {2−10, 2−9.985, 2−9.97, . . ., 25}
l1_ratio: Ratio between L1 and L2 penalty. [0,1]

kNN n_neighbors: Number of nearest neighbors. {1,2,3,. . .,9}
p: Power parameter of the Minkowski distance. {1,2,∞}

SVM class_weight: Whether class weights are equal or inversely proportional to class frequencies. {None, “balanced”}
C: Inverse of regularization strength. {2−5, 2−4.985, 2−4.97, . . ., 210}
gamma: Parameter of the RBF kernel. {2−15, 2−14.982, 2−14.964, . . ., 23}

ET n_estimators: Number of decision trees. [90, 230]
class_weight: Whether class weights are equal of inversely proportional to class frequencies. {None, “balanced”}
criterion: The function to measure the quality of a split. {“gini,” “entropy”}
max_features: Number of features to consider when calculating the best split. {0.05, 0.10, 0.15,. . .,1}
min_samples_split: The minimum number of samples required to split a node. {2,3,4,. . .,20}
min_samples_leaf: The minimum number of samples required to be at a leaf node. {1,2,3,. . .,20}

GTB n_estimators: Number of decision trees. [200, 2000]
learning_rate: Boosting learning rate. {2−7, 2−6.994, 2−6.988, . . ., 2−1}
max_depth: Maximum tree depth. {1,2,3,. . .,6}
gamma: Minimum loss reduction required to make a further partition on a leaf node of the tree. {0.05,0.1,0.3,0.5,0.7,0.9,1}
min_child_weight: Minimum sum of instance weight(hessian) needed in a child. {1,3,5,7}
subsample: Ratio of the training samples used to grow trees. {0.6,0.65,0.70,. . .,1}
reg_lambda: L1 regularization term on weights. [0,1]
reg_alpha: L2 regularization term on weights. [0,1]

Hyperparameters not listed in this table assumed the default values of scikit-learn (43) and xgboost (44) packages.
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Similarly to RFE, we employed logistic regression and extra-trees
as the induction algorithms.

APPENDIX D

The selection of the classifier is a critical part of model building,
which directly determines the flexibility of the decision boundary.
On the one hand, a too flexible model can result in overfitting
and low generalizability. On the other hand, a too simple model
can fail to capture the complexity of the true decision boundary
and result in underfitting. Furthermore, the interpretability of the
model depends strongly on the type of the chosen algorithm.
Hyperparameters used to tune the classification algorithms are
listed in Table A3.

A. Logistic Regression
Logistic regression is a simple linear model allowing to estimate
probability of a binary response based on a number of risk fac-
tors. In order to avoid overfitting, logistic regression is usually
regularized via L1, L2, or elastic net penalty. L1 penalty outper-
forms L2 penalty in terms of handling irrelevant and redundant
features (62). Its ability to bring feature weights to zero results
in sparse models and improves model interpretability (63). On
the other hand, L1 tends to randomly select one of highly cor-
related features which can result in model variability (64). The
elastic net method brings in a way the two worlds together and
applies a penalty that is a convex combination of L1 and L2
regularization (64).

The advantages of logistic regression are its simplicity, inter-
pretability, and easy tuning (only one hyperparameter with L1 or
L2 regularization or two hyperparameters with elastic net regular-
ization). The biggest disadvantage is a linear hypersurface decision
boundary that may not be flexible enough to describe the real
decision boundary.

B. k-Nearest Neighbors
The k-nearest neighbor (kNN) classifier looks at the k points in
the training set that are nearest to the test input. The object is
classified based on a majority vote of its neighbors (58). kNN
has a much more flexible decision boundary compared to logistic
regression. It will likely outperform logistic regression when the
true decision boundary is highly irregular. Nevertheless, the curse
of dimensionality has a considerable impact on the performance of

the k-nearest neighbors classifier making feature selection crucial
when working with high-dimensional data sets.

C. Support Vector Machine
Similarly to the k-nearest neighbors algorithm, the support vector
machine does not learn a fixed set of parameters corresponding
to the features of the input. It rather remembers the training
examples and classifies new observations based on some simi-
larity function. The two main concepts behind support vector
machines are the kernel trick and the large margin principle. The
kernel trick guarantees high flexibility of the decision boundary
by allowing to operate in feature spaces of very high, even infinite,
dimensionality. The largemargin principle ensuresmodel sparsity
by discarding all observations not laying on maximum margin
hypersurfaces. Support vector machines proved to be very suc-
cessful in various classification tasks, including NTCP modeling.
Unfortunately, interpretation of support vector machines with
nonlinear kernels is a challenge (65).

D. Extra-Trees
The extra-trees classifier is an ensemble of decision trees. Each
tree is built either on the full learning sample or on a bootstrap
replica. At each node, a random subset of features is selected and
for each feature a random cut-point is drawn. The best feature-
cutpoint pair is selected to split the node. The tree is grown
until the minimum sample size for splitting a node is reached.
The ensemble predictions are the results of the majority vote
of predictions of individual trees (66). A big advantage of the
extra-trees algorithm is that it works “out-of-the-box” with no or
minimal hyperparameter tuning.

E. Gradient Tree Boosting
Similarly to extra-trees, gradient tree boosting uses an ensem-
ble of decision trees. Gradient tree boosting iteratively fits small
decision trees to the data set in an adaptive fashion. After each
iteration, training samples are reweighted to focus on the instances
misclassified by the previous trees. When all trees are grown, the
prediction is obtained by the weighted majority vote of the trees
(61, 67).

Gradient tree boosting proved to be a very successful algorithm
often outperforming neural networks, support vector machines,
and other ensemble models. However, tuning the hyperparame-
ters may be challenging.
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Knowledge-based planning (KBP) utilizes experienced planners’ knowledge embedded 
in prior plans to estimate optimal achievable dose volume histogram (DVH) of new 
cases. In the regression-based KBP framework, previously planned patients’ anatomi-
cal features and DVHs are extracted, and prior knowledge is summarized as the regres-
sion coefficients that transform features to organ-at-risk DVH predictions. In our study, 
we find that in different settings, different regression methods work better. To improve 
the robustness of KBP models, we propose an ensemble method that combines the 
strengths of various linear regression models, including stepwise, lasso, elastic net, and 
ridge regression. In the ensemble approach, we first obtain individual model prediction 
metadata using in-training-set leave-one-out cross validation. A constrained optimi-
zation is subsequently performed to decide individual model weights. The metadata 
is also used to filter out impactful training set outliers. We evaluate our method on a 
fresh set of retrospectively retrieved anonymized prostate intensity-modulated radiation 
therapy (IMRT) cases and head and neck IMRT cases. The proposed approach is more 
robust against small training set size, wrongly labeled cases, and dosimetric inferior 
plans, compared with other individual models. In summary, we believe the improved 
robustness makes the proposed method more suitable for clinical settings than indi-
vidual models.

Keywords: treatment planning, dose volume histogram prediction, regression model, machine learning, ensemble 
model, statistical modeling

inTrODUcTiOn

In radiation therapy, high quality treatment plans are crucial for reducing the possibility of normal 
tissue complications while maintaining good dose coverage of planning target volume (PTV). For 
intensity-modulated radiation therapy (IMRT), it is especially important to fully utilize the healthy 
tissue sparing potential enabled by the advanced treatment delivering system. However, the optimal 
achievable organ-at-risk (OAR) sparing is not known pre-planning, and planners need to rely on 
their previous experience, which makes the planning process subjective, iterative, and susceptible to 
intra- and inter-planner variation.

Knowledge-based planning (KBP) (1–5) has been shown to be a powerful tool for guiding plan-
ners and physicians to optimal achievable OAR dose volume histograms (DVHs) based on previous 
cases planned by experienced planners. In a previously proposed regression-based KBP framework 
(2), the workflow is as follows: (i) principle component analysis (PCA) is conducted for OAR DVHs 
in the training set, and the first three principle component scores (PCS) and corresponding basis 
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vectors are stored; (ii) pre-determined geometry information 
related to treatment planning goals, also referred to as features, 
are calculated for each patient; (iii) PCS of OAR DVH are fit-
ted to features to generate a prediction model; (iv) features are 
calculated for new patients; and (v) best achievable OAR DVHs 
are calculated for new patients using the fitted model and the 
previously calculated PCA basis vectors.

In step (iii) of the previous framework, stepwise regression is 
used to select features and estimate the linear model. The method 
automatically picks several most important features step by step 
based on the significance of features. This approach is easy to 
implement and the output is interpretable. With careful training 
data preprocessing and feature selection, stepwise has achieved 
good results in OAR DVH prediction in research settings (6–12). 
However, there are some theoretical issues about this procedure, 
which could potentially result in some instabilities of the overall 
model training process. While stepwise regression has been very 
successful in the context of KBP, potential disadvantages of step-
wise regression are well documented. First, it potentially suffers 
from overfitting if the size of the training set is relatively small 
compared to the number of features. This is because the proce-
dure attempts to fit many models and the p-values, which are used 
as feature selection criteria, are not corrected for the number of 
hypothesis tested. In addition, stepwise regression does not cope 
with collinear features well. If two features are highly collinear, 
stepwise usually selects just one and discard the other. Ideally, 
if several collinear features are predictive of the outcome, all of 
these features should be selected to prevent overfitting and reduce 
model variance.

The purpose of this study is to improve the regression mod-
eling aspect of KBP. Empirically, different regression methods 
perform well in different scenarios, such as different number 
of training cases, presence of collinear features, and presence 
of outlier cases. In this work, we develop an ensemble learning 
method to combine the strengths of these individual models and 
improve KBP model robustness.

MaTerials anD MeThODs

individual Models
As a comparison to our proposed ensemble model, we study four 
individual regression models, including ridge regression (13, 14), 
lasso (15), elastic net (16), and stepwise regression with forward 
feature selection. These models also serve as base learners for the 
final ensemble model. The latter three models share the same 
objective function

 β β ϕ β= − + ( ){ }argmin Y X
2

2 ,  
(1)

where X N P∈ ×  denotes P feature value from N training cases, 
Y N∈  denotes OAR DVH PCS of cases in the training set, 
and β∈P  denotes regression coefficients corresponding to P 
anatomical features, such as PCS of distance-to-target histogram. 
Detailed descriptions of feature extraction and dimension reduc-
tion for KBP can be found in Ref. (1, 2). The last term, known as 
the penalty term, balances the bias and variance of the trained 
model. The goal of KBP is to obtain regression coefficients β 

based on cases previously planned by experienced planners, and 
when a new case needs to be planned, the optimal OAR DVH 
can be calculated simply using the model predicted PCS of Xβ. In 
ridge regression, the penalty term φ(β) is the square of 2-norm 
of the regression coefficients β; in lasso, the penalty term is the  
1-norm of β; and in elastic net, the penalty term is simply a linear 
combination of 1-norm and 2-norm squared:

 ϕ β λ β λ β( ) = +1 1 2 2

2 .  (2)

The penalty weights λ1 and λ1 are selected based on internal 
cross validation.

Forward selection, a type of stepwise regression, is the last 
individual model. It finds the most significant features to add 
based on the data step by step, hence the name. When adding 
features no longer improves the model by a certain preset p-value 
threshold, the feature selection step terminates. The selected 
features are fitted to the data with ordinary least square, while the 
rest of the features are discarded.

The ensemble Model
Many ensemble models have been proposed over the years in the 
field of machine learning, such as random forest (17), boosting 
(18), bagging (19), and stacking (20). The basic idea behind these 
ensemble models is to develop an array of simple models, often 
referred to as base learners, and combine these models to form 
a better (e.g., lower variance, higher accuracy, or both) model 
for prediction (21). These models essentially seek to combine 
knowledge learned by different models via data resampling and/
or adding another layer of optimization.

The primary motivation of our ensemble model is to make 
KBP more robust and adaptive. In different settings, different 
regression models perform well, and none of these individual 
models consistently performs better than other models. For 
instance, stepwise regression is widely known to be unstable (22), 
but as shown in Section “Results,” it can significantly outperform 
other more stable models such as ridge regression in certain 
settings. However, it is not feasible to test out individual models 
every time a new model is fit. Therefore, we propose an ensemble 
model, which performs well in all settings.

Model Stacking
In our proposed model, we combine the aforementioned 
individual models using model stacking method. A previous 
study demonstrated that even stacking ridge regression alone 
with different penalty weight λ improved model generalization 
performance, and stacking models with different characteristics 
generated further improvement (20). The proposed ensemble 
approach is shown in Eqs 3–5

 z x k Kkn k n= =β , , ,1  (3)
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FigUre 1 | Individual models trained on the same dataset. Vertical lines 
represent regression coefficients of individual models. Models 1–9 (from left 
to right) refer to stepwise regression, ridge regression, six elastic net 
regression models with various parameters, and lasso. The vertical bar on the 
right indicates color mapping. Note that stepwise regression uses the least 
(four) features and ridge regression uses all features but assigns small 
weights to the features.
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First, individual models βk, where k ∈  [1, K] denotes indi-
vidual model index, are trained separately on the training 
dataset repetitively with all the training data except for case n.  
Prediction of the in-training-set but out-of-model case zkn 
is then generated (Eq. 3). The process is repeated until all the 
models have covered all cases in the training set. Subsequently, 
the model weights αk

*  are optimized to minimize internal cross 
validation error, as shown in Eq. 4. A non-negative constraint is 
applied to prevent overfitting and increase the model interpret-
ability. This step of optimization is done on the metadata, and 
the prediction results of each model for each case are used to 
optimize the model weights. The individual models that perform 
well in the prediction task tend to get larger weightings. The K 
individual models βk are combined and used for prediction of 
DVH PCS Y (Eq. 5). Note that the sum of optimal model weights 
αk

*  is not constrained to 1, as one would intuitively expect. This 
is due to the distinct properties of the individual models in the 
ensemble. The regression coefficients by stepwise regression are 
usually too large due to lack of constraint and thus need shrink-
age. On the contrary, the other three regression methods tend 
to under-fit, especially for noisy training data, i.e., data with 
high variance that cannot be explained by any features in X.  
In other words, even if we have just one model in the “ensemble,” 
the model weight is still highly unlikely to be 1 (usually smaller 
than 1 for stepwise and greater than 1 for penalized linear regres-
sion methods). In practice, we observe the sum of αk

* is usually 
between 0.5 and 1.5.

The ensemble in this study consists of nine models, including 
stepwise, ridge, lasso, and elastic net with six different λ2-to-λ1 
ratios. Figure 1 shows one example of the model weights from 
the individual models. This model is built using 50 prostate 

sequential boost cases. Y is the bladder DVH PCS1, and X con-
sists of bladder anatomical features. All features are standardized 
before training, thus the weights of different features are in the 
same scale. It is apparent that regression coefficients differ from 
model to model, even though these are all variants of linear 
regression models. Note that model 1, stepwise regression, uses 
the least number of features, and model 2, ridge regression, 
evidently underfits.

Model-Based case Filtering
In previous studies, it has been pointed out that automatic out-
lier removal requires further investigation (12, 23). We propose 
to incorporate a model-based automatic outlier removal routine 
in the ensemble model to ensure model robustness and address 
the volatile nature of clinical data. We utilize the cross validation 
metadata native to the proposed ensemble method to identify 
and remove impactful dosimetric and anatomical outliers. The 
two scenarios of outliers have different impact on the training 
of regression models, as we illustrate in this section. Note that 
by our definition outliers only exist in training sets, all cases 
in testing sets are predicted. Cases that would be defined as 
outlier cases if they are in a training set can still be predicted 
by a trained model, but with less accuracy. These special cases 
can be identified with the same approach as we identify outlier 
cases (see Model-Based Case Filtering Method), and case-based 
reasoning can be used to improve the outcome of treatment 
planning, but that is out of the scope of this study. We aim to 
improve prediction accuracy of the KBP framework with a dif-
ferent modeling technique, without significant changes to the 
overall workflow.

Outliers
Clinical treatment planning varies from case to case, with different 
sparing and coverage considerations. With the aforementioned 
KBP framework, we assume a linear model can successfully rep-
resent a majority of training cases. For some cases in the database, 
this assumption does not hold. We refer to these cases in the 
training dataset as outlier cases. In this section, we shall present 
our insight on outlier cases and provide an intuitive explanation 
of effects of outliers on knowledge-based modeling.

Anatomical Outliers and Dosimetric Outliers
The first type of outliers is anatomical outliers. In this study, 
we define anatomical outliers as cases with anatomical features 
that are distant from normal cases, and possibly come from 
a different distribution. In KBP, anatomical outliers refer to 
cases with uncommon anatomical features relevant to DVH 
prediction, such as abnormal OAR sizes, unusual OAR volume 
distributions relative to PTV surface. Generally, anatomical 
outliers are more likely to deviate from the linear model, as 
illustrated in Figure  2, and when they do, the effect of these 
cases are generally larger than normal cases due to the quad-
ratic data fidelity term (first term in Eq.  1) of the regression 
model. Therefore, it is necessary to identify anatomical outlier 
cases that are detrimental to model building and remove those  
from the model before training.
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FigUre 2 | Effects of (a) anatomical outliers and (B) dosimetric outliers on the regression model.
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Other than anatomical outliers, there are cases that are det-
rimental to model building due to limited OAR sparing efforts 
and/or capabilities. These are considered to be dosimetric 
outliers in this work. Dosimetric outliers include, but are not 
limited to (1) treatment plans with inferior OAR sparing and 
(2) wrongly labeled data, such as 3D plans mixed in IMRT 
plans.

Outliers’ Effect on Regression Models
In this section, we illustrate the effect of outliers on the overall 
regression model with one-dimensional simulated data. Figure 2A  
shows that anatomical outliers follow the same underlying X-to-Y 
mapping. However, the true underlying relation may not be well 
approximated by linear regression outside the normal X range. 
Attempting to fit linear regression with anatomical outliers mixed 
in the training set will potentially deteriorate the model. Therefore, 
the actual effect of anatomical outlier in different feature direc-
tions in the context of KBP needs careful assessment. Figure 2B 
illustrates the effect of dosimetric outliers. Dosimetric outliers 
in the training set are expected to increase model variance and 
deviate the model.

Note that this numerical demonstration isolates the effect of 
outliers on regression on a single feature, and it simplifies the 
influence of outliers on the overall modeling process. In our 
clinical knowledge-based modeling, we extract nine features 
from each case to construct the feature vector X. However, not 
every feature contributes to the final model equally. In stepwise 
regression, relevant features are picked based on correlation with 
the outcomes variable (i.e., DVH PCS). In penalized regression 
methods, features are implicitly selected with less relevant features 
given very small regression coefficients as a result of the penalty 
term. The feature selection step, while not considered here, is also 
affected by outliers. When anatomical outliers are involved in the 
training process, the features selected are potentially different 
from the set of features selected, if the model is trained without 
outliers.

Prediction Performance Measure
Weighted root mean squared error (wRMSE) is defined to evalu-
ate model prediction accuracy:

 
wRMSE DVH DVH= −( )

=
∑
i

N

i iw
1

2
′  i

 .
 

(6)

Weighted root mean squared error measures the overall 
deviation of predicted DVHs from ground truth DVHs, which 
are clinically planned. Weightings are introduced to emphasize 
higher dose regions of DVHs, which are generally considered to 
be of more clinical significance in OAR dose predictions. Here 
w Nw wi j

N
j′i = ∑ =/ 1  denotes the normalized weighting factor 

for bin i of DVH curves. For evaluation of dose to bladder and 
rectum, we use the linear relative weighting wj of 50–100 linearly 
increases from 0 Gy to prescription dose. For evaluation of dose 
to parotids in head and neck cases, wi is set to Gaussian centered 
at median dose, with SD of 2 Gy. If wi is set to a constant number, 
then wRMSE reduces to standard RMSE.

Model-Based Case Filtering Method
To further improve the robustness of the ensemble model, cases 
with the highest s% median (of all individual models) internal 
cross validation wRMSE error are dropped from the training 
set. The percentage threshold s is selected to balance the tradeoff 
between model robustness and accuracy. Empirically, we find that 
10% is generally a good choice, even though the number of actual 
outlier cases is unknown and may differ from 10% of the total 
case number. All the experiments in the following section are 
conducted with the pre-determined 10% threshold. The workflow 
of the ensemble model with model-based case filtering is shown 
in Figure 3. Note that the whole process is done automatically 
without manual intervention.

experimental Design
This retrospective study uses anonymized clinical plan data and 
has received permission from Duke University Medical Center’s 

39

https://www.frontiersin.org/Oncology/
https://www.frontiersin.org
https://www.frontiersin.org/oncology/archive


TaBle 1 | Summary of data used in the experiments.

experiments Training data Validation data

Limited training 
set size

20 prostate intensity-modulated 
radiation therapy (IMRT) cases

146 prostate IMRT 
cases

Anatomical outliers 10 prostate cases treated with 
lymph nodes and 40 prostate cases 
treated without lymph node

111 prostate cases 
treated without lymph 
node

Dosimetric outliers 
(inferior plans)

40 prostate IMRT cases and 10 
prostate conformal arc plans

110 prostate IMRT 
plans

Dosimetric outliers 
(mis-classified 
sparing decisions)

80 bilateral parotid-sparing head 
and neck plans and 10 single-side 
sparing plans

148 bilateral parotid-
sparing head and 
neck plans

FigUre 3 | The proposed ensemble learning workflow.

Zhang et al. An Ensemble Approach to Knowledge-Based IMRT Planning

Frontiers in Oncology | www.frontiersin.org March 2018 | Volume 8 | Article 57

institutional IRB. All clinical plans were planned using Varian 
Eclipse™ Treatment Planning System (Varian Medical Systems, 
Inc., Palo Alto, CA, USA). All experiments were performed on a 
PC with Intel Xeon E5-2623 CPU and 32 GB of RAM running 
Windows 10 Enterprise 64-bit operating system.

In order to quantitatively evaluate the robustness of these 
regression methods in various challenging clinical environment, 
we test the aforementioned models with limited training set size, 
training sets contaminated with anatomical outliers, and training 
sets contaminated with dosimetric outliers. In our outlier robust-
ness tests, we purposefully mix pre-defined outlier cases into the 
training set and validate the final model with normal cases. The 
reason for adding outlier cases is to add controlled variation to 
the dataset and evaluate the robustness of the proposed model. 
Details regarding types of data used in the experiments are sum-
marized in Table 1.

Robustness to Limited Training Set Size
In clinical practice, planners do not necessarily have many cases 
for every treatment site. This is particularly true when a new treat-
ment technique, such as simultaneous intensity boost, is recently 
utilized in the clinic and the existing model built for existing 
treatment techniques may not predict the achievable DVH accu-
rately due to the OAR sparing capability difference. Sometimes 

models need to be built when only a small number of cases (~20) 
are available. It is critical that the regression model is capable of 
resisting overfitting the random variation of training cases. In this 
experiment, 166 prostate PTV cases are retrospectively retrieved 
from the clinical database. Twenty prostate cases are used as the 
training set, and the remaining 146 cases are used as validation set 
to quantitatively evaluate the prediction accuracy of each model.

Robustness to Anatomical Outliers
In clinical databases, not every previously treated case is helpful 
for predicting future cases even when the treatment plans are of 
high quality. If the anatomical features are very different from 
the majority of all cases than the linear assumption may not 
hold, as demonstrated in Figure 2, and the anatomical features 
are potentially detrimental to the model. To simulate the effect 
of anatomical outliers on the plans, we train a model with 10 
prostate cases treated with lymph nodes and 40 prostate cases 
treated without lymph node. The trained models are subsequently 
validated with 111 cases that do not involve lymph nodes.

Robustness to Dosimetric Outliers
Dosimetric outliers do not follow the same conditional distribu-
tion as normal cases and are expected to be easier to be identified 
with cross validation. Increase of dosimetric outliers in training 
data tends to shift the overall model toward inferior plan DVHs 
and gradually make the plan less optimal (23). In this section, we 
evaluate the robustness of individual models and the ensemble 
model with training set contaminated by two types of dosimetric 
outlier plans: (i) inferior dose sparing and (ii) mis-labeled sparing 
decisions.

For KBP, it is crucial to get reliable predictions even in the 
presence of sub-optimal plans. Here, we simulate the sub-optimal 
plans with dynamic conformal arc plans. Compared with IMRT 
plans, conformal arc plans have evidently inferior OAR sparing 
capability. Our training data consists of 40 prostate IMRT cases 
and 10 prostate conformal arc plans, and the validation set 
includes 110 prostate IMRT plans. The experiment is designed to 
test the model robustness in the extreme settings to evaluate the 
model robustness in challenging situations.

In clinical practice, it is not always feasible to spare both 
parotids due to geometric factors. A previous study has shown 
that parotid-sparing decisions affect KBP predictions, and sepa-
rate models should be built for single-side parotid sparing and 
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FigUre 5 | Prediction errors [Weighted root mean squared error (wRMSE)] of individual regression models and the proposed ensemble model for (a) bladder  
(B) rectum, in the presence of simulated anatomical outliers (see text). Forty prostate with seminal vesicle cases and 10 prostate cases with lymph node cases are 
used as the training set; 111 cases prostate with seminal vesicle cases are used as the validation set. For bladder prediction, the proposed ensemble method 
predicts significantly better than stepwise (p = 0.013), ridge (p < 0.001), lasso (p = 0.002), and elastic net (p < 0.001); for rectum prediction, the proposed ensemble 
method predicts significantly better than ridge (p < 0.001), lasso (p < 0.001), elastic net (p < 0.001), and performs similarly well as stepwise (p = 0.210).

FigUre 4 | Prediction errors [weighted root mean squared error (wRMSE)] of individual regression models and the proposed ensemble model for (a) bladder (B) rectum.  
The training set and validation set for all the models tested are identical. Twenty prostate 1PTV cases are included in training set, and the validation set includes 146 cases. 
For bladder prediction, the proposed ensemble method predicts significantly better than stepwise (p < 0.001), ridge (p < 0.001), lasso (p < 0.001), and elastic net (p < 0.001); 
for rectum prediction, the proposed ensemble method predicts significantly better than ridge (p < 0.001), lasso (p < 0.001), elastic net (p < 0.001), and stepwise (p < 0.001).
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bilateral parotid sparing to get better prediction accuracy (24). 
We retrieve 228 bilateral parotid-sparing head and neck cases and 
10 single-side parotid-sparing cases from our institutional clini-
cal database. The sparing decisions are first obtained from clinical 
prescription documentations and subsequently checked in dose 
statistics to correct for decision changes. We randomly select 
80 bilateral cases as the training set and then add 10 single-side 
sparing cases as mis-classified cases. The remaining 148 bilateral 
cases are used as the validation set.

resUlTs

robustness to limited Training set size
The ensemble method outperforms all individual methods signi-
ficantly, as shown in Figure 4. Note that ridge regression performs 
particularly poorly in bladder prediction, indicating that there is 
some intrinsic sparsity in the feature space, and ridge regression, 

which does not utilize that sparsity, underfits significantly due 
to over-shrinking of regression coefficients. Stepwise performs 
poorly in rectum predictions, due to overfitting.

robustness to anatomical Outliers
Figure 5 shows prediction errors, measured by wRMSE, of indi-
vidual models and the ensemble model. For bladder predictions, 
the ensemble model outperforms all individual models, while 
stepwise, lasso, and elastic net perform similarly. In the case of 
rectum predictions, the ensemble method again outperforms 
ridge, lasso, and elastic net, and performs similarly well as step-
wise. Ridge regression fails to predict accurately for either task.

robustness to Dosimetric Outliers
Inferior Plans
Figure 6 shows, for both bladder and rectum prediction, lasso, 
elastic net, and the proposed ensemble regression method predict 
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FigUre 6 | Prediction errors [Weighted root mean squared error (wRMSE)] of individual regression models and the proposed ensemble model for (a) bladder  
(B) rectum, in the presence of simulated dosimetric outliers (see text). For bladder prediction, the proposed ensemble method predicts significantly better than 
stepwise (p < 0.001), ridge (p < 0.001), and performs similarly well as lasso (p = 0.753) and elastic net (p = 0.841). For rectum prediction, the proposed 
ensemble method predicts significantly better than stepwise (p < 0.001) and ridge (p < 0.001), and performs similarly well as lasso (p = 0.365) and elastic net 
(p = 0.373).

FigUre 7 | Prediction errors [Weighted root mean squared error (wRMSE)] 
of individual regression models and the proposed ensemble models for 
parotid dose volume histogram (DVH) prediction of bilateral parotid-sparing 
cases. Training set includes 80 bilateral sparing cases and 10 single-side 
sparing cases. Validation set includes 148 bilateral sparing cases. The 
proposed ensemble model yields significantly reduced prediction error than 
stepwise (p = 0.026) and ridge (p < 0.001), but does not outperform elastic 
net (p = 0.090) or lasso (p = 0.115).

Zhang et al. An Ensemble Approach to Knowledge-Based IMRT Planning

Frontiers in Oncology | www.frontiersin.org March 2018 | Volume 8 | Article 57

equally well, while stepwise and ridge are no longer usable due to 
significant amount of error.

Mis-Classified Sparing Decisions
The validation set prediction errors of each model are shown in 
Figure  7. The proposed ensemble model significantly reduces 
prediction error, compared with stepwise (p = 0.026) and ridge 
(p < 0.001), and performs equally well as elastic net (p = 0.091) 
and lasso (p = 0.115).

DiscUssiOn

In summary, we propose an ensemble regression model to 
address two problems that we are facing in KBP. First, different 
individual regression models perform well in different settings, 
such as different number of relevant features, number of cases, 
and existence of outliers. It would be very labor intensive 
to manually select the optimal model every time a model is 
fitted. Second, to ensure the most accurate model training, 
data-preprocessing, including anatomical and dosimetric 
outlier removal, is also necessary for individual models, and 
it can be subjective to decide which subset of cases should be 
removed from the training set if done manually. The proposed 
ensemble model utilizes multiple individual models on the 
same set of data and uses constrained linear optimization on 
the metadata to obtain the optimal weight for each individual 
model. In addition, the model automatically filters out cases in 
the training set that are not predicative of future cases based 
on metadata.

We observe that the ensemble method consistently predicts 
better than or similar to the best performing individual model 
in every challenging situation. With improved robustness, the 
proposed regression method potentially enables end users to 
build site-specific, physician-specific, or even planner specific 
models, without manually screening the training cases. This 
eventually will allow each practice to build models that accurately 
reflect their own optimal OAR sparing preference and capability, 
thereby eliminating the need for a universal model.

Figure 8 shows an example of improved prediction accuracy 
of the proposed method, compared with other individual models. 
In this case, stepwise and ridge perform poorly while lasso and 
elastic net perform reasonably well, and the ensemble model out-
performs all individual models. Note that in different situations, 
different models perform well, and the proposed model performs 
most consistently. Improved DVH prediction accuracy usually 
results in better plan optimization guidance (i.e., optimization 
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FigUre 8 | An example of improved accuracy of the ensemble model (green 
solid line) in predicting a bladder dose volume histogram (DVH) for a prostate 
plan over individual models (dashed lines in other colors). All models were 
trained with data that include dosimetric outliers (see Robustness to 
Dosimetric Outliers). The clinical plan DVH (gray solid line) is the “ground 
truth.” Note that the green line follows the gray line most closely.
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constraint generation), since it provides the treatment planning 
system correct information of the best achievable OAR sparing 
without compromising PTV coverage.

Building models for different treatment sites may face different 
challenges. For example, the number of cases required to train a 
model may be different. The more complex head and neck cases 
require more training cases to well represent the case population, 
while prostate cases have fewer OARs and are generally easier 
to train. Second, different treatment strategies are often used 
to treat different sites. For example, some sites require multiple 
PTVs while other sites require hard constraints. Last but not 
least, the amount of intrinsic variance in head and neck cases are 
more than that of prostate cases due to potential trade-off consid-
erations. As a result, dataset characteristics vary from treatment 
site to treatment site and individual model performances vary 
correspondingly. The ensemble model ensures the best perform-
ing model gets the highest weighting. All in all, each treatment 
site should be treated differently in KBP to get the best possible 
prediction accuracy, and the ensemble model helps to reduce the 
amount of effort required in terms of model selection. Ideally, the 
ensemble method should be trained for each treatment site, since 
data characteristics change from dataset to dataset. However, if 

there are two datasets from two treatment sites with very similar 
characteristics, such as DVH variability, number of cases, then it 
is possible to re-use the model weight αk

* directly.
The main limitation of the proposed approach is the training 

time. Two major components of knowledge-based modeling are 
feature extraction and model training. The feature extraction 
part of the proposed model takes on average 5 s for each case, 
and feature extraction is done only once. Model training takes 
less than 10 s for each individual model. In the proposed model, 
individual model training is repeated by the number of com-
ponent models times the number of in-model cross validation.  
As a result, in our hardware setup, it takes less than 10 min to run 
a single regression model, and it takes 30 min to run a 20-fold 
cross-validated ensemble model. The prediction procedure is 
very simple and takes less than 1 s to calculate Therefore, once a 
model is calculated, it can be easily stored and applied to DVH 
predictions.

Possible future research topics include the optimal selection of 
models as well as the optimal number of models in the ensemble. 
In this study, we limit the number of models included in the 
training set to avoid overfitting. While too many models in the 
ensemble warrant overfitting the data, the current number of 
models (9) is very conservative. With the regulation of the non-
negative constraint, the proposed approach could potentially see 
further performance improvements if more models are included 
in the ensemble. We expect the optimal number of models in the 
ensemble to be dependent of the size of the dataset. In addition, 
the proposed methodology can be easily expanded to more 
complicated non-linear models. We use linear models in the 
ensemble due to the limitations of training dataset size. As more 
cases become available, more complicated models become viable.

aUThOr cOnTriBUTiOns

JZ proposed the model, conducted experiments, and wrote the 
first draft of the manuscript. QW oversaw the workflow of the 
study and contributed in the clinical aspect of the study. TX 
extracted and pre-processed data for the experiments in the 
paper. YS provided suggestions regarding the study design. F-FY 
provided critics in the experimental design. YG contributed 
advice in the statistical methods and revised the manuscript.

FUnDing

This work is partially supported by NIH under grant #R01CA-
201212 and a master research grant by Varian Medical Systems.

reFerences

1. Zhu X, Ge Y, Li T, Thongphiew D, Yin FF, Wu QJ. A planning quality evalu-
ation tool for prostate adaptive IMRT based on machine learning. Med Phys 
(2011) 38(2):719–26. doi:10.1118/1.3539749 

2. Yuan L, Ge Y, Lee WR, Yin FF, Kirkpatrick JP, Wu QJ. Quantitative analysis of 
the factors which affect the interpatient organ-at-risk dose sparing variation in 
IMRT plans. Med Phys (2012) 39(11):6868–78. doi:10.1118/1.4757927 

3. Appenzoller LM, Michalski JM, Thorstad WL, Mutic S, Moore KL. Predicting 
dose-volume histograms for organs-at-risk in IMRT planning. Med Phys 
(2012) 39(12):7446–61. doi:10.1118/1.4761864 

4. Moore KL, Brame RS, Low DA, Mutic S. Experience-based quality control 
of clinical intensity-modulated radiotherapy planning. Int J Radiat Oncol Biol 
Phys (2011) 81(2):545–51. doi:10.1016/j.ijrobp.2010.11.030 

5. Wu B, Ricchetti F, Sanguineti G, Kazhdan M, Simari P, Jacques R, et al. Data-
driven approach to generating achievable dose-volume histogram objectives 
in intensity-modulated radiotherapy planning. Int J Radiat Oncol Biol Phys 
(2011) 79(4):1241–7. doi:10.1016/j.ijrobp.2010.05.026 

6. Hussein M, South CP, Barry MA, Adams EJ, Jordan TJ, Stewart AJ, et  al. 
Clinical validation and benchmarking of knowledge-based IMRT and VMAT 
treatment planning in pelvic anatomy. Radiother Oncol (2016) 120(3):473–9. 
doi:10.1016/j.radonc.2016.06.022 

43

https://www.frontiersin.org/Oncology/
https://www.frontiersin.org
https://www.frontiersin.org/oncology/archive
https://doi.org/10.1118/1.3539749
https://doi.org/10.1118/1.4757927
https://doi.org/10.1118/1.4761864
https://doi.org/10.1016/j.ijrobp.2010.11.030
https://doi.org/10.1016/j.ijrobp.2010.05.026
https://doi.org/10.1016/j.radonc.2016.06.022


Zhang et al. An Ensemble Approach to Knowledge-Based IMRT Planning

Frontiers in Oncology | www.frontiersin.org March 2018 | Volume 8 | Article 57

7. Wu H, Jiang F, Yue H, Zhang H, Wang K, Zhang Y. Applying a RapidPlan model 
trained on a technique and orientation to another: a feasibility and dosimetric 
evaluation. Radiat Oncol (2016) 11(1):108. doi:10.1186/s13014-016-0684-9 

8. Fogliata A, Belosi F, Clivio A, Navarria P, Nicolini G, Scorsetti M, et al. On 
the pre-clinical validation of a commercial model-based optimisation engine: 
application to volumetric modulated arc therapy for patients with lung or 
prostate cancer. Radiother Oncol (2014) 113(3):385–91. doi:10.1016/j.radonc. 
2014.11.009 

9. Tol JP, Dahele M, Delaney AR, Slotman BJ, Verbakel WF. Can knowledge-based 
DVH predictions be used for automated, individualized quality assurance 
of radiotherapy treatment plans? Radiat Oncol (2015) 10:234. doi:10.1186/
s13014-015-0542-1 

10. Berry SL, Ma R, Boczkowski A, Jackson A, Zhang P, Hunt M. Evaluating 
inter-campus plan consistency using a knowledge based planning model. 
Radiother Oncol (2016) 120(2):349–55. doi:10.1016/j.radonc.2016.06.010 

11. Chang AT, Hung AW, Cheung FW, Lee MC, Chan OS, Philips H, et  al. 
Comparison of planning quality and efficiency between conventional and 
knowledge-based algorithms in nasopharyngeal cancer patients using 
intensity modulated radiation therapy. Int J Radiat Oncol Biol Phys (2016) 
95(3):981–90. doi:10.1016/j.ijrobp.2016.02.017 

12. Tol JP, Delaney AR, Dahele M, Slotman BJ, Verbakel WFAR. Evaluation of 
a knowledge-based planning solution for head and neck cancer. Int J Radiat 
Oncol Biol Phys (2015) 91(3):612–20. doi:10.1016/j.ijrobp.2014.11.014 

13. Tikhonov AN. On the stability of inverse problems. Cr Acad Sci Urss (1943) 
39:176–9. 

14. Hoerl AE, Kennard RW. Ridge regression: biased estimation for nonorthogo-
nal problems. Technometrics (2000) 42(1):80–6. doi:10.2307/1271436 

15. Tibshirani R. Regression shrinkage and selection via the Lasso. J R Stat Soc B 
(1996) 58(1):267–88. 

16. Zou H, Hastie T. Regularization and variable selection via the elastic net.  
J R Stat Soc B (2005) 67:301–20. doi:10.1111/j.1467-9868.2005.00503.x 

17. Breiman L. Random forests. Mach Learn (2001) 45(1):5–32. doi:10.1023/ 
a:1010933404324 

18. Schapire RE. The strength of weak learnability. Mach Learn (1990) 5(2): 
197–227. doi:10.1023/a:1022648800760 

19. Breiman L. Bagging predictors. Mach Learn (1996) 24(2):123–40. doi:10.1007/
bf00058655 

20. Wolpert DH. Stacked generalization. Neural Netw (1992) 5(2):241–59. 
doi:10.1016/S0893-6080(05)80023-1 

21. Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning. 2nd 
ed. New York: Springer-Verlag (2009).

22. Breiman L. Heuristics of instability and stabilization in model selection. Ann 
Stat (1996) 24(6):2350–83. doi:10.1214/aos/1032181158 

23. Delaney AR, Tol JP, Dahele M, Cuijpers J, Slotman BJ, Verbakel WFAR. Effect 
of dosimetric outliers on the performance of a commercial knowledge-based 
planning solution. Int J Radiat Oncol Biol Phys (2016) 94(3):469–77. 
doi:10.1016/j.ijrobp.2015.11.011 

24. Yuan L, Wu QJ, Yin F-F, Jiang Y, Yoo D, Ge Y. Incorporating single-side sparing 
in models for predicting parotid dose sparing in head and neck IMRT. Med 
Phys (2014) 41(2):021728. doi:10.1118/1.4862075 

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be 
construed as a potential conflict of interest.

Copyright © 2018 Zhang, Wu, Xie, Sheng, Yin and Ge. This is an open-access 
article distributed under the terms of the Creative Commons Attribution License 
(CC BY). The use, distribution or reproduction in other forums is permitted, 
provided the original author(s) and the copyright owner are credited and that the 
original publication in this journal is cited, in accordance with accepted academic 
practice. No use, distribution or reproduction is permitted which does not comply 
with these terms.

44

https://www.frontiersin.org/Oncology/
https://www.frontiersin.org
https://www.frontiersin.org/oncology/archive
https://doi.org/10.1186/s13014-016-0684-9
https://doi.org/10.1016/j.radonc.
2014.11.009
https://doi.org/10.1016/j.radonc.
2014.11.009
https://doi.org/10.1186/s13014-015-0542-1
https://doi.org/10.1186/s13014-015-0542-1
https://doi.org/10.1016/j.radonc.2016.06.010
https://doi.org/10.1016/j.ijrobp.2016.02.017
https://doi.org/10.1016/j.ijrobp.2014.11.014
https://doi.org/10.2307/1271436
https://doi.org/10.1111/j.1467-9868.2005.00503.x
https://doi.org/10.1023/a:1010933404324
https://doi.org/10.1023/a:1010933404324
https://doi.org/10.1023/a:1022648800760
https://doi.org/10.1007/bf00058655
https://doi.org/10.1007/bf00058655
https://doi.org/10.1016/S0893-6080(05)80023-1
https://doi.org/10.1214/aos/1032181158
https://doi.org/10.1016/j.ijrobp.2015.11.011
https://doi.org/10.1118/1.4862075
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


April 2018 | Volume 8 | Article 108

Original research
published: 16 April 2018

doi: 10.3389/fonc.2018.00108

Frontiers in Oncology | www.frontiersin.org

Edited by: 
Radka Stoyanova,  

University of Miami, United States

Reviewed by: 
Patrik Brodin,  

Albert Einstein College of Medicine, 
United States  

Bilgin Kadri Aribas,  
Bülent Ecevit University School of 

Medicine, Turkey

*Correspondence:
Jun Deng 

jun.deng@yale.edu

Specialty section: 
This article was submitted to 

Radiation Oncology,  
a section of the journal  

Frontiers in Oncology

Received: 29 January 2018
Accepted: 28 March 2018

Published: 16 April 2018

Citation: 
Ali I, Hart GR, Gunabushanam G, 

Liang Y, Muhammad W, Nartowt B, 
Kane M, Ma X and Deng J (2018) 
Lung Nodule Detection via Deep 

Reinforcement Learning. 
Front. Oncol. 8:108. 

doi: 10.3389/fonc.2018.00108

lung nodule Detection via Deep 
reinforcement learning
Issa Ali1,2, Gregory R. Hart1, Gowthaman Gunabushanam3, Ying Liang1, Wazir Muhammad1, 
Bradley Nartowt1, Michael Kane4, Xiaomei Ma2 and Jun Deng1*
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Lung cancer is the most common cause of cancer-related death globally. As a preventive 
measure, the United States Preventive Services Task Force (USPSTF) recommends 
annual screening of high risk individuals with low-dose computed tomography (CT). The 
resulting volume of CT scans from millions of people will pose a significant challenge 
for radiologists to interpret. To fill this gap, computer-aided detection (CAD) algorithms 
may prove to be the most promising solution. A crucial first step in the analysis of lung 
cancer screening results using CAD is the detection of pulmonary nodules, which may 
represent early-stage lung cancer. The objective of this work is to develop and validate 
a reinforcement learning model based on deep artificial neural networks for early detec-
tion of lung nodules in thoracic CT images. Inspired by the AlphaGo system, our deep 
learning algorithm takes a raw CT image as input and views it as a collection of states, 
and output a classification of whether a nodule is present or not. The dataset used to 
train our model is the LIDC/IDRI database hosted by the lung nodule analysis (LUNA) 
challenge. In total, there are 888 CT scans with annotations based on agreement from 
at least three out of four radiologists. As a result, there are 590 individuals having one or 
more nodules, and 298 having none. Our training results yielded an overall accuracy of 
99.1% [sensitivity 99.2%, specificity 99.1%, positive predictive value (PPV) 99.1%, neg-
ative predictive value (NPV) 99.2%]. In our test, the results yielded an overall accuracy of 
64.4% (sensitivity 58.9%, specificity 55.3%, PPV 54.2%, and NPV 60.0%). These early 
results show promise in solving the major issue of false positives in CT screening of lung 
nodules, and may help to save unnecessary follow-up tests and expenditures.

Keywords: lung cancer, computed tomography, lung nodules, computer-aided detection, reinforcement learning

inTrODUcTiOn

Computed tomography (CT) is an imaging procedure that utilizes X-rays to create detailed images 
of internal body structures. Presently, CT imaging is the most preferred method to screen the early-
stage lung cancers in at-risk groups (1). Globally, lung cancer is the leading cause of cancer-related 
death (2). In the United States, lung cancer strikes 225,000 people every year and accounts for $12 
billion in healthcare costs (3). Early detection is critical to give patients the best chance of survival 
and recovery.
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Screening high risk individuals with low-dose CT scans has 
been shown to reduce mortality (4). However, there is significant 
inter-observer variability in interpreting screenings as well as 
a large number of false positives which increase the cost and 
reduce the effectiveness of screening programs. Given the high 
incidence of lung cancer, optimizing screening by reducing false 
positives and false negatives has significant public health impact 
by limiting unnecessary biopsies, radiation exposure, and other 
secondary costs of screening (5).

Several studies have shown that imaging can predict lung 
nodule presence to a high degree (6). Clinically, detecting 
lung nodules is a vital first step in the analysis of lung cancer 
screening results—the nodules may or may not represent 
early-stage lung cancer. Numerous computer-aided detection 
(CAD) methods have been proposed for this task. The majority, 
if not all, utilize classical machine learning approaches such as 
supervised/unsupervised methods (7). The goal of this work 
is to adopt for the first time a reinforcement learning (RL) 
algorithm for lung nodule detection. Developed by Google 
DeepMind, RL is a cutting-edge machine learning approach 
which has improved upon numerous CAD systems and helped 
to beat the best human players in the game of Go, one of the 
most complex games humans ever invented (8). Here, we apply 
RL to the lung nodule analysis (LUNA) dataset and analyze the 
performance of the RL model in detecting lung nodules from 
thoracic CT images.

MaTerials anD MeThODs

lung nodule Data
For the training of our algorithm, we utilize the LUNA dataset, 
which curates CT images from publicly available LIDC/IDRI 
database. In total, there are 888 CT scans included. The database 
also contains annotations collected in two phases with four 
experienced radiologists. Each radiologist marked lesions they 
identified as non-nodule (<3 mm) and nodule (≥3 mm) and the 
annotation process has been described previously (9). The refer-
ence standard consists of all nodule ≥3 mm accepted by at least 
three out of four radiologists. Annotations that are not included 
in the reference standard (non-nodules, nodules <3  mm, and 
nodules annotated by only one or two radiologists) are referred 
to as irrelevant findings (9). A key benefit of this dataset is the 
inclusion of voxel coordinates in the annotation of nodules, which 
proves immensely useful when using a RL approach, described 
in the next section. Figure 1 illustrates examples of nodule and 
non-nodules from a single CT scan.

Data normalization
To balance the intensity values and reduce the effects of artifacts 
and different contrast values between CT images, we normalize 
our dataset. The Z score for each image is calculated by subtracting 
the mean pixel intensity of all our CT images, μ, from each image, 
X, and dividing it by σ, the SD of all images’ pixel intensities. This 
step is helpful when inputting information into a neural network 
because it fine-tunes the input information fed into a convolution 
algorithm (10).

 
Z X

=
− µ
σ  

(1)

reinforcement learning
Reinforcement learning is the science of mapping situations to 
actions (11). It is a type of machine learning that bridges the 
well-established classical approaches of supervised and unsu-
pervised learning, where target values are known and unknown, 
respectively. RL differs in that it seeks to model data without any 
labels, but rather with incremental feedback. Its recent popularity 
stems from its ability to develop novel solution schemas, even 
outperforming humans in certain domains, because it learns to 
solve a task by itself (12). Essentially, it is a way of programming 
agents by either a reward or a punishment without the need to 
specify how a task is to be achieved. A simple RL model is shown 
in Figure 2 illustrating how an agent’s actions in a given environ-
ment affect its resulting reward and state. In its infancy, RL was 
inspired by behavioral psychology, where agents (i.e., rodent) 
learned tasks by being given a reward for a correct action taken in 
a given state. This mechanism ultimately creates a feedback loop. 
Whether the agent, in our case a neural network model, navigates 
a maze, plays a game of ping pong, or detects lung nodules, the 
approach is the same.

A basic reinforcement algorithm is modeled after a Markov 
decision process. For a set number of states, there are a given 
number of possible actions, and a range of possible rewards (13). 
To help optimize an agent’s actions a Q-learning algorithm is 
used (14).

 
Q s a Q s a l r Q s a Q s at t t t t t t t t, , * , ,( ) = ( ) + + ( ) − ( ) + +1 1max

 
(2)

How a model knows the potential rewards from taking a 
certain action comes from experience play. That is, it stores 
numerous combinations of state to state transitions (s→s+1), 
with the corresponding action, a, taken by the model and the 
resultant reward, r: denoted as (s, a, r, s+1). For instance, in a 
game environment, the best action to take would be the action 
that leads to the greatest future rewards (i.e., winning the game), 
even though the most immediate action may not be reward-
ing in the short term. As shown in Eq. 2, the expected future 
rewards are approximated by multiplying the discount rate, λ, 
by the value of the action that would return the largest future 
reward based on all possible actions, maxQ(st+1, at). For a given 
action, what is learned is the reward for that action, rt+1, plus the 
largest future reward expected less current action value, Q(st, 
at). This is learned at a rate, r, the extent to which the algorithm 
overrides old information, and it is valued between 0 and 1. 
To learn which series of actions result in the greatest number 
of future rewards, RL algorithms depend on both greedy and 
exploratory search. The two methods allow a model to explore 
all possible ways to accomplish a task, and select the most 
efficient rewarding (12).

Using the RL approach to tackle the lung nodule task 
requires one main adaptation, which is how we define a state. In 
a typical RL task, a state would refer to a snapshot of everything 
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FigUre 2 | A diagram of a reinforcement model. An agent in a given state (s) and reward (r) completes an action in environment. This results in change of 
environment and either an increase/decrease in reward as a result of that action.

FigUre 1 | Visual illustration of a sample nodule and non-nodule structure in the lung nodule analysis dataset. Frame (a) is a nodule. Frames (B–D) are non-
nodules.
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in an environment at a certain time. However, with lung CT 
images, which are a collection of axial lung scans, we define a 
state as every 10 stacked axial images. Hence, our environment 
is very deterministic. That is, any action taken in a lung CT 
image state would lead to the succeeding 10 scans, from top to 
bottom. Whereas in a conventional task, such as playing a game, 
depending on the action there is more than one succeeding 
state possible. This key difference adapts our reward function to 
act solely as a reward function and evaluate a state on whether 
it immediately has a reward or not, instead of incorporating 

a value function which factors the total reward our agent can 
expect from a given state in the distant future. This makes 
logical sense given that there is only one possible distant future 
in our radiographic image environment, whereas in a game 
environment there is more than one possible distant future. As 
such, rewards are 1 and 0, depending on whether a classification 
is correct or incorrect, respectively, for the immediate state at 
hand only. Thus, the memory replay used to train our model, 
excludes the succeeding state, and only captures current state, 
action, and reward.
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FigUre 3 | A flowchart of the convolutional neural network architecture. Blue box is the input image. Red boxes are convolutional layers with rectified linear unit 
activation. Purple box is the max pooling layer. Cyan box is the dropout layer. Green box is the fully connected layer and softmax binary classifier. Yellow is the 
output of the network.
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convolutional neural networks (cnns)
Learning to control agents directly from high dimensional sen-
sory inputs (i.e., vision and speech) is a significant challenge in 
RL (11). A key component of our RL model is a CNN. It helps 
our model make sense of the very high dimensional CT images 
that we insert into our model. A standard slice has a width and 
length of 512 × 512. With our input of 10 slices for every state, 
this amounts to approximately 2,621,440 pixels. A CNN is able to 
contend with this because it creates a hierarchical representation 
of high dimensional data such as an image (10).

Unlike a regular neural network, the layers of a CNN have 
neurons arranged in three dimensions (width, height, and 
depth) and respond to a receptive field, a small region of the 
input image, as opposed to a fully connected layer which 
responds to all the neurons. For a given neuron, it learns to 
detect features from a local region, which facilitates the cap-
turing of local structures while preserving the topology of the 
image. The final output layer reduces the image into a vector of 
class scores. A CNN deep learning system is composed of five 
layers: an input layer, a convolutional layer, an activation layer, 
a pooling layer, and a fully connected layer. With most CNN 
architectures having more than one of each layer, they are thus 
referred to as “deep” learning (10). The function of each layer 
is described further below.

Input Layer
This layer holds the raw pixels values of the input image (colored 
blue in Figure 3).

Convolutional Layer
This layer visualized by the red boxes in Figure 3 is composed 
of several feature maps along the depth dimension, each cor-
responding to a different convolution filter. All neurons with 
the same spatial dimension are connected to the same recep-
tive field of the input image. This facilitates capturing a wide 
variety of imaging features. The depth of the layer, meaning 

the number of convolution filters, represents the number of 
features that can be extracted from each input receptive field. 
Each neuron in a feature map shares exactly the same weights, 
which define the convolution filter. This allows reducing the 
number of weights, and thus increasing the generalizability of 
the architecture (10).

Activation Layer
Often seen as one with the convolutional layer, as in Figure 3, 
the activation layer applies a threshold function to the output 
of each neuron in the previous layer. In our network, we use a 
rectified linear unit (RELU) activation, where RELU(x) = max(0, 
x), meaning it fires the real value of the output and thresholds at 
zero. It simply replaces the negative values with “0.”

Pooling Layer
Typically placed after an activation layer, this layer down-samples 
along spatial dimensions. Shown by the purple box in Figure 3, 
it selects the invariant imaging features by reducing the spatial 
dimension of the convolution layer. The most commonly used 
is max pooling, which selects the maximum value of four of its 
inputs as the output, thus preserving the most prominent filter 
responses.

Fully Connected Layer
Shown as green in Figure 3, this layer connects all neurons in the 
previous layer with a weight for each connection. As the output 
layer, each output nodes represents the “score” for each class.

To facilitate the learning of complex relationships, multiple 
convolutional-pooling layers are combined to form a deep 
architecture of nonlinear transformations, helping to create a 
hierarchical representation of an image. This allows learning 
complex features with predictive power for image classification 
tasks (10). As illustrated in Figure 3, we use 3D CNN given that 
nodules are spherical in shape, and can best be captured with 3D 
convolutions.

48

https://www.frontiersin.org/Oncology/
https://www.frontiersin.org
https://www.frontiersin.org/oncology/archive


TaBle 1 | The number of patients and nodules they carry for nodule versus 
non-nodule groups.

# of patients # of states # of nodules

Nodules 590 15,616 1,148
Non-nodules 298 7,107 0

FigUre 4 | Training and validation loss is shown on the training data for 120 
epochs. Blue line corresponds to training loss and orange line corresponds 
to validation loss.
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Data augmentation
Overfitting is a result of network parameters greatly outnumber-
ing the number of features in the input images. Given the network 
size and the number of features available from the CT images, our 
model tended to overfit, hence the need to increase the number 
of CT images. To counter this overfitting, we used standard deep 
neural network methods, such as artificially augmenting the 
dataset using label-preserving transformations (15). The data 
augmentation consists of applying various image translations, 
such as rotations, horizontal and vertical flipping, and inversions. 
We apply a random combination of these transformations on each 
image, thus creating nominally “new” images. This multiplies the 
dataset by many folds and helps in reducing overfitting (10).

iMPleMenTaTiOn anD eXPeriMenTs

implementation
Our python code uses the Keras package (16) and makes use of 
the Theano Library. Keras can leverage graphical processing units 
to accelerate the deep learning algorithms. We trained our CNN 
architecture on an NVIDIA Quadro M6000 GPU card. Training 
time was approximately 2 h.

experimentation
We utilize the entire LUNA dataset (n = 888 patients), with 70% 
in training our model and 30% in test. In the training set, we 
balance our dataset for nodule states and non-nodule states. As 
shown in Table 1, for any sampling of states selected, approxi-
mately 5% are nodule states. Early on, the imbalance caused our 
model to bias significantly toward detecting non-nodule states 
given that those are the majority of states. The balanced dataset 
contains a total of 2,296 states, with 1,148 nodule states and 1,148 
non-nodule states. It was created by retrieving nodule states from 
every patient with a nodule and random non-nodule states from 
all patients. For every epoch during the training, 20% of the train-
ing set is separated for cross-validation.

For our model, the sensitivity, specificity, accuracy, positive 
predictive value (PPV), and negative predictive value (NPV) were 
computed as follows:

Sensitivity or true positive rate:
  

Specificity or true negative rate:
  

TPR= TP
TP+FN

TNR= TN
TN+FP

Accuracy:
  

PPV:
  

NPV:

  

where TP, FP, TN, and FN stand for true positive, false positive, 
true negative, and false negative, respectively.

resUlTs

As shown in Figures  4 and 5, for both loss and accuracy we 
observed a steady improvement. In Figure 4, showing the loss 
value over time, or epochs, there is a steady decline to approxi-
mately zero. A similar pattern holds with accuracy, in Figure 5, 
but with the steady increase to a value of one, meaning perfect 
score. Both graphs were generated from training on 70% of the 
dataset (1,607 states) and cross-validating on 20% of that (321 
states). As observed in both graphs, the model is “learning”, 
however there still remains considerable volatility as shown by 
the validation curves.

The conclusive results from the training and testing for our 
model is detailed in Table 2 The test sample size was 30% of the 
dataset (668 states).

The testing results listed in Table 2 are based on a cutoff value 
of 0.5. Given our model is a binary classifier, this means that for 
any state that it predicts, the likelihood of nodule is at least 0.5. 
Figure  6 illustrates how the sensitivity and specificity vary as 
functions of cutoff values for both training and testing results.

TP+TN
TP+FN+TN+FP

PPV= TP
TP+FP

NPV= TN
TN+FN
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FigUre 6 | Sensitivity and specificity as a function of cutoff, the likelihood a 
state has a nodule.

TaBle 2 | The sensitivity, specificity, accuracy, positive predictive value (PPV), 
and negative predictive value (NPV) PPV results are listed for our reinforcement 
model from training and from testing.

accuracy sensitivity specificity PPV nPV

Training 99.1% 99.2% 99.1% 99.1% 99.2%
Test 64.4% 58.9% 55.3% 54.2.6% 60.0%

FigUre 5 | Training and validation accuracy is shown for the training data for 
120 epochs. Blue line corresponds to training accuracy and orange line 
corresponds to validation accuracy.
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DiscUssiOn

In this study, we present a robust non-invasive method to predict 
the presence of lung nodules, a common precursor to lung cancer, 
from lung CT scans using a RL method. A major advantage of this 
approach is that it allows to develop novel and unpredictable solu-
tions to complex problems. From the results of our training using 

the LUNA dataset, we were able to achieve superb sensitivity, 
specificity, accuracy, PPV, and NPV (all greater than 99%). While 
the metrics for the testing dataset were lower, they were consist-
ent. In both data size and number of trials, we achieved similar 
results. This consistency suggests that our research approach of 
using RL with non-pre-processed data is reproducible. Moreover, 
given the nature of RL, the model will only continue to improve 
with time and more data.

The way in which RL algorithms continue to improve depends 
not only on the quality of the dataset, but also more importantly its 
size. In the training of the AlphaGo, it was trained on master-level 
human players, instead of picking up the best strategies to win 
from scratch (8). In addition, the RL algorithm learned through 
more than 30 million human-on-human games. Factoring in 
hardware, AlphaGo required $25 million in computer hardware 
(17), it was trained on master-level human players (8).

Although the tasks of playing a game of Go is very different 
from detecting lung nodules, an inference we can draw is that 
reinforcement learning algorithms, such as AlphaGo, require 
substantial data to train. Given the original dataset’s small size, 
there is an inherent difficulty in capturing the huge variability and 
structural differences in the lung volumes of human beings. With 
only 888 CT scans and approximately 1,148 nodule states in our 
dataset, with 70% of that being used for training, the lesson we have 
learned is that our model needs a significant amount of more data. 
This is evidenced by the tremendous amount of data and hardware 
needed to train AlphaGo to reach super human performance.

It is worth noting that AlphaGo’s performance is based on how 
well it performed against human players. Similarly, our model 
performance is based on how well it performed against at least 
three radiologists in detecting lung nodules. As described by 
Armato et al. (9) how a given lesion was classified as a nodule 
was determined by a consensus of at least three of the four radi-
ologists. A significant variability is observed when comparing 
the number of lesions classified as a nodule by one radiologist 
versus at least three radiologists. For the lesions identified in all 
the scans, 928 lesions were classified as nodules ≥3 mm by all four 
radiologists and 2,669 lesions were classified as a nodule ≥3 mm 
by at least one radiologist. This means for nodules ≥3 mm, the 
false discovery rate for a given individual radiologist is 65.2% (9). 
In contrast, despite the overfitting, our model classification yields 
a false discovery rate of 44.7% on the validation dataset, which is 
an improvement compared to an individual radiologist.

Given the very high training results, the question of overfitting 
arises. With a small dataset, the underlying probability distribu-
tion of lung nodules is not sufficient to create a fully generalizable 
model, especially given it is based on RL. As with most parametric 
tests, a fundamental assumption of samples is that they adequately 
capture the variance of the population they represent. With small 
datasets, depending on the variable, a random subset of the data 
may not adequately capture the variance of the overall dataset. 
With the LUNA dataset, this is particularly an issue given the fact 
that it is very high dimensional and our model requires signifi-
cantly more data to capture the true variance of its countless vari-
ables. Most CT image datasets comprise of thousands of images, 
as compared to the millions of games in AlphaGo, and thus the 
comparison is not quite the same. We employed dropout and 
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data augmentation to increase the generalizability of our model 
in response to the overfitting. Together these two approaches have 
minimally dampened the effect. An alternate approach we also 
experimented with was to reduce the network size, however, this 
approach resulted in significant volatility in the training and vali-
dation results. Regardless of the overfitting, the performance on 
the validation data set indicates that our model achieves enough 
generalization to compete with a human radiologist and could 
serve as a second reader.

A strength of our research approach is the lack of pre-
processing. It is known that medical imaging, including CT 
images, can be very heterogeneous. From the number of image 
slices, scanning machine used, and scanning parameters used, the 
image data for each patient is very disparate. A significant nega-
tive byproduct of this heterogeneity is the astronomical number 
of insignificant features generated that are unrelated to one’s 
outcome of interest, such as the presence of lung nodules. For a 
machine learning algorithm to contend with this either the data 
size has to exponentially increase or many of the insignificant 
features have to be pre-processed out by filtering for only the 
relevant features. The former option of increasing the dataset 
is impractical, as the LUNA dataset is already one of the largest 
and most comprehensive image datasets. Hence, most, if not all, 
approaches in the current literature on CAD systems for lung 
nodule detection take the second option of pre-processing. From 
using various filters, masks, and general pre-processing tools, 
these methods heavily curate and alter the raw medical image 
data. As a result, this can create an infinite number of variations of 
the original dataset, and such a subjective practice makes it very 
difficult to reproduce any of the experimental results. We choose 

to use data without pre-processing to ensure that our results are 
reproducible.

Our work highlights the promise of using RL for lung nodule 
detection. There are several practical applications of this model, 
one of which is to serve as a second opinion or learning system 
for radiologists and trainees in identifying lung nodules. A strong 
appeal of using a RL approach is that the model is always in a 
learning state. With every new patient, the model expands its 
learning by factoring in the new information and building upon 
its probabilistic memory of historical information from previous 
patients. This phenomenon is what allowed the artificial intel-
ligence model AlphaGo to keep improving after each match, 
eventually beating each player after several matches, including 
the reigning world champion. Likewise, we expect that our model 
will continue to improve as it observes more and more cases.
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Oncology: Opportunities, 
requirements, and Needs
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Machine learning (ML) has the potential to revolutionize the field of radiation oncology, 
but there is much work to be done. In this article, we approach the radiotherapy process 
from a workflow perspective, identifying specific areas where a data-centric approach 
using ML could improve the quality and efficiency of patient care. We highlight areas 
where ML has already been used, and identify areas where we should invest additional 
resources. We believe that this article can serve as a guide for both clinicians and 
researchers to start discussing issues that must be addressed in a timely manner.

Keywords: machine learning, radiation oncology, big data, predictive models, process improvement

iNtrODUctiON

The expanding collection and sharing of data, increases in computational power, and perhaps most 
significantly, advances in machine learning (ML) and artificial intelligence, are rapidly transforming 
society, and offer the potential for similar transformation within health care. Ongoing advances in 
ML and big data analytics have spurred numerous efforts in precision oncology (1, 2), and the field 
of radiation oncology is uniquely poised to benefit from prudent application of such techniques. 
Radiation oncology has many specific challenges, however, ranging from unique datasets [e.g., 4DCT, 
CBCT, dose, structures, setup, and quality assurance (QA) information], limited clinical outcomes 
data, variation in dose and fraction schedules comprising standard of care, interaction of radiation 
and chemotherapy, limited access to genomics data, and other complexities. The historical reliance 
on empirical approaches such as the linear-quadratic model further influences clinical practice (3). 
Furthermore, the current ML hype is largely a result of success in a few, very specific tasks, such as 
image classifications, games, and autonomous driving systems (4–6). It is critical that we understand 
this success depends as much on the nature of the task as on the nature of the algorithm and the 
availability and quality of data, and thus meaningful gains in our field may prove more challenging.

In this article, we review the radiotherapy process from a workflow perspective, identifying 
specific areas where ML could improve the quality and efficiency of the current caregiving process 
for patients treated with radiation therapy. We have divided radiotherapy into six serial stages that 
encompass the entirety of treatment: patient assessment, simulation, planning, QA, treatment deliv-
ery, and follow-up, Figure 1. In each of these areas, we have identified open questions, emerging 
techniques, and possible directions concerning all stakeholders: patients, oncologists, physicists, 
dosimetrists, therapists, and nurses. Each stage is accompanied by a systematic assessment of oppor-
tunities, expectations, applicability, and limitations of various ML algorithms. While the impact a 
data-centric approach can have on improving the quality of treatment for cancer patients is clear, 
utilizing such a method will require a cultural shift at both the professional and institutional levels. 
We believe that this article will serve as a guide for both clinicians and researchers on those problems 
that must be addressed in a timely manner.
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FigUre 1 | Radiotherapy workflow, from consult to follow-up.
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PAtieNt AssessMeNt

The radiation oncology process begins at the first consultation. 
During this time, the radiation oncologist and patient meet to 
discuss the clinical situation, including the risks and benefits of 
treatment and the patient’s goals of care, to determine a treatment 
strategy. Useful information to assess the potential benefit of treat-
ment includes tumor stage, mutational status or gene signatures 
(e.g., MGMT, Oncotype score), viral status (e.g., HPV), prior 
and current therapies, margin status if post-resection, ability to 
tolerate multimodality therapy, and overall performance status. 
Balanced with this are parameters that impact potential risk and 
tolerability of treatment including age, comorbidities, functional 
status, functioning of important organs, proximity between tumor 
and critical normal tissues, supportive care network, and ability 
to cooperate with motion management. All of these are features 
can be used to build predictive models of treatment outcome and 
toxicity. These models, then, can be used to inform physicians and 
patients to manage expectations and guide trade-offs between 
risks and benefit.

Having an ontology to identify and categorize the informa-
tion available at this stage is important for any successful appli- 
cation of any predictive model (7). By contrast, current predictive 
models utilizing tumor control or normal tissue complication 
probability are neither subdivided nor categorized according to 
current state of a patient within the treatment timeline (8–12). 
Rather, they make use of a predetermined set of features, col-
lected by individual investigators, that may have previously 
shown correlation to a particular clinical outcome (8–12).  
As a result, physicians are limited by scare and siloed data, 
making it often necessary to make informed guesses rather than 
data-driven decisions.

Many opportunities can be found for predictive models at the 
stage of initial consult. Here are a few practical examples in which 

a data-centric approach could improve decision making at the 
time of consultation:

 (1) You are asked to see an inpatient who has a painful cervical 
spine metastasis. She will be discharged to hospice. What 
information may be helpful to determine whether to recom-
mend RT? On one hand, radiotherapy can palliate her pain. 
However, she may not live long enough to benefit from treat-
ment, but will have the discomfort associated with transfers 
and positioning for simulation/treatment, acute esophagitis, 
and pain flare. Narcotic management may be best for her, 
but how would we know? Models which predict time to 
pain relief, risk of toxicity, and overall survival would help 
optimize decision making at end-of-life, maximizing quality 
of life for the patient, and delivering high-value care (13).

 (2) A patient with intermediate-risk prostate cancer is referred 
to discuss therapy. Treatment options for could include 
fractionated external beam radiotherapy, stereotactic body 
radiotherapy, brachytherapy, surgery, and other non-radia-
tion approaches, without or without androgen-deprivation 
therapies. Shared decision making is crucial in this situation, 
since each type of therapy has inherent trade-offs with dif-
ferent side-effect profiles, which drives choice of therapy.  
A clinical support tool showing the balance between efficacy 
and side effects based on pre-treatment function and choice 
of therapy would be helpful for physicians and patients in 
shared decision making.

 (3) A patient with hepatitis C cirrhosis and a single hepatocel-
lular carcinoma is referred to consider treatment options. 
To determine whether to recommend SBRT over other 
treatments such as radiofrequency ablation or transarterial 
chemoembolization, information on liver function, suit-
ability for anesthesia, and proximity to bowel, heart, gall 
bladder, central biliary tree is needed. Comprehensive ways 
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to integrate tumor control and toxicity predictions from all 
treatment modalities would help the physician and patient 
to manage expectations and decide on a course of therapy. 
Within radiation oncology, there has been some work done 
to model individual radiation sensitivity to individualize and 
adapt therapy, though there is still much opportunity for 
richer predictive modeling using ML (14).

 (4) A patient with early stage left-sided breast cancer had a 
lumpectomy with negative margins and comes to discuss 
adjuvant radiotherapy. How would you decide whether she 
would benefit from deep inspiration breath-hold or inten-
sity-modulated radiotherapy rather than 3D conformal 
RT? Would proton therapy be beneficial for this patient? 
Since the complexity and cost is higher with more advanced 
technology, models to predict who would benefit would be 
helpful for technology selection and resource allocation 
(11, 15–18).

The delivery of models that could help with these scenarios 
will require a cultural shift in our profession toward standardiza-
tion and collaboration. In this regard, new collaborative projects 
have begun in recent years, though participation is not yet 
widespread (12, 19, 20). In addition, while recently published task 
reports have aimed to standardize nomenclature in radiotherapy 
(21), it is equally important to develop standards for data col-
lection. Due in part to the small datasets typically encountered 
in radiotherapy, the choice of algorithm in a specific application 
can produce differences of up to 32% in predicted outcome (22). 
It is also important to understand the goal of any modeling effort.  
If the goal is to assist physicians and patients reach the best 
decision, then a balance between interpretability of the results 
and accurate predictions is needed (23, 24). In this case, logistic 
regressions or decision trees are equally effective (23, 24). If 
accuracy is favored over interpretability, then tree base methods 
such as random forests or gradient boosting, and Support Vector 
Machines with kernel methods, consistently win most modeling 
competitions when structured data are analyzed (such as the type 
of data described above) (25, 26).

siMULAtiON

Once a physician and patient have decided to proceed with 
radiation therapy, the physician will place robust instructions for 
a Simulation, which is then scheduled. The order for simulation 
includes details about immobilization, scan range, treatment site, 
and other specifics necessary to complete the procedure appro-
priately. Patient preparation for simulation could include fiducial 
placement, fasting or bladder/rectal filling instructions, or kidney 
function testing for IV contrast. Special instructions are given for 
patients with a cardiac device or who are pregnant, and lift help 
or a translator is requested if necessary.

In most cases, a Simulation is scheduled after appropriate 
CT orders have been placed in the electronic medical record. 
Following completion and review of the CT simulation, the scan 
is exported to a planning system for the physician to contour 
tumor volumes and organs at risk (OARs). Sometimes a MR, 
PET and/or pre-operative scan is registered. With the OARs and 

tumor volumes contoured, the dosimetrists then begin designing 
a treatment plan based on specific physician instructions.

A good CT simulation is critical to the success of all subsequent 
processes, to achieve an accurate, high quality, robust, and deliver-
able plan for a patient. It is not uncommon that deficiencies at the 
time of CT simulation result in a need for a patient to return for a 
repeat CT, including insufficient scan range, incorrect IV contrast 
protocols, suboptimal immobilization, incorrect bladder/rectal 
filling, artifacts from internal hardware or those caused by the 
4DCT process, lack of breath-hold reproducibility, and so on. 
Thus, focusing on the simulation, in particular, there are many 
questions that could be answered through ML algorithms to aid 
in decision making and overall workflow efficiency:

 1. Will this patient benefit from IV contrast?
 2. Will this patient be compliant with immobilization and 

motion management technique (e.g., compression or breath 
hold)?

 3. Considering breathing patterns and other issues, will a  
4DCT be beneficial for this patient?

 4. Will this patient be able to tolerate the duration of the intended 
treatment (AP/PA vs. SBRT) and IGRT method (CBCT vs. 
kV-kV Orthogonal)?

 5. Will this patient’s anatomy allow for standard immobilization 
for simulation and treatment?

Simulation is an area where the community has focused lit-
tle effort on ML, with early work confined to predicting tumor 
motion (27–30). Additional emphasis, from both academic 
institutions and industry, can be expected in the future.

treAtMeNt PLANNiNg

The planning process starts by delineating both the target(s) and 
the OARs. While a number of commercial auto-segmentation 
algorithms exist, the underlying technology relies on an atlas-
based strategy rather than utilizing ML. The performance of 
atlas-based segmentation tools depend highly on the type 
of structure, showing better results for high-contrast organs  
(e.g., lung) while struggling with soft tissue organs (e.g., pancreas) 
(31). By contrast, recent advances in computer vision, specifically 
around deep learning (6, 32), are particularly well suited for 
auto-segmentation (33–35). In deep learning, the algorithm is 
tasked to design the best features (higher order features) from 
the raw data as well to produce the classifiers (6). This is par-
ticularly important when human experts are unable to design 
proper features or quantify a given process, as in computer 
vision problems. An important limitation of the application of 
deep learning to segmentation is the limited size of the datasets 
available in radiation oncology. Because the algorithm is tasked 
to find the features as well as the classifier, deep learning models 
contain millions of parameters, and thus require more data than 
traditional ML algorithms. In applications in which deep learn-
ing has been successfully applied, the models have been trained 
with tens of thousands observations (4, 36). Although there are 
techniques to prevent overfitting when the number of parameters 
is larger than the number of observation points (transfer learning, 
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dropout, early stopping), it remains to be demonstrated whether 
these algorithms can generalize to datasets on the order of a few 
hundred in size, even when the techniques mentioned above are 
used. In our opinion, the effective application of deep learning to 
segmentation requires training and validation on datasets across 
multiple institutions and multiple scanners.

Once the target volumes and OARs have been delineated, 
the planning process continues by (1) setting dosimetric goals 
for targets and normal tissues; (2) selecting an appropriate treat-
ment technique (e.g., 3D, fixed beam IMRT, VMAT, protons); (3) 
iteratively modifying the beams/weights/etc., until the planning 
goals have been achieved; (4) evaluating and approving the plan. 
It is in this last step where most ML applications have been 
focused (37–43). While there techniques are typically referred to 
as knowledge-based planning (KBP), it is important to highlight 
that both current academic research and available commercial 
products are limited to predicting dose–volume histograms 
(DVHs) within accepted ranges. Several authors have shown the 
value that DVH prediction has in improving population based 
treatment plan quality and in the detection of outliers (44–47).

Similar gains in steps 1–3 highlighted above would be equally 
important. For example, while KBP can predict DVHs, the intrin-
sic trade-offs between dosimetric indices that must be considered 
in step 1 are not currently predicted. A more recent commercial 
product, Quick Match (Siris Medical, Redwood City, CA, USA), 
uses gradient boosting (the most accurate algorithm on expecta-
tion when structured data are available) to explore predictions in 
dosimetric trade-offs (17). This application, which is similar to a 
treatment planning Pareto solution but obtained before the treat-
ment planning process, can facilitate communication between 
dosimetrist and physicians, establish individualized and achiev-
able goals, and help physicians and patients decide the course 
of plan before embarking on the treatment planning process. 
In addition, by allowing the exploration of intrinsic trade-offs, 
it can also help to choose an optimal technique (e.g., photon vs. 
protons).

Once the dosimetric goals have been established and the 
technique chosen, automatic plan generation is also possible. 
Attempts have been made to solve various aspects of this prob-
lem, for instance, predicting the best beam orientations (48, 49). 
The larger task of automated treatment planning, however, is well 
suited for reinforcement learning. In this technique, widely used 
in games, self-driving cars, and other popular-culture applica-
tions, an algorithm learns to navigate a set of rules, given some 
constraints, by self-correcting its decisions. For example, one 
could use fundamental laws of radiation interaction to achieve 
certain dosimetric constraints. Essentially, the algorithm will take 
a decision (for instance, increase the weight of a given constraint) 
and learn from the simulator (the treatment planning system) 
whether the decision resulted in the right direction. Common 
to successful applications of reinforcement learning is the ability 
to generate synthetic data using a simulator (e.g., games). This 
technique, successfully used by Google Brain to develop an algo-
rithm capable of beating a Go world champion (5), could provide 
performance at the level of our best dosimetrists if properly 
implemented. One challenge of achieving automatic planning 
using reinforcement learning lies in the close integration that 

this research endeavor will need with robust treatment planning 
systems. Therefore, it seems likely that an industry/academic 
partnership is best suited to achieve this goal. Summarizing then, 
in the future, we envision the planning process to happen fully 
automatically, from contouring to plan creation, with the human 
experts (dosimetrists, physicists, and physicians) evaluating, 
supervising, and providing QA to the given results.

QA AND treAtMeNt DeLiverY

A number of aspects of a radiotherapy QA program, specifically 
in error detection and prevention, treatment machine QA, and 
time series analyses, are well suited to the application of ML 
(50–53). Li and Chan developed an application to predict the 
performance of linear accelerators over time (51). Valdes et  al. 
developed ML applications to predict IMRT QA passing rates  
(52, 53) and to automatically detect problems with the Linac 
imaging system (50). Carlson et  al. developed a ML approach 
to predict multi-leaf collimator positional errors (54). El Naqa 
developed system to detect anomalies in QA data (55). Finally, 
Ford et al. have developed a tool to quantify the value of quality 
control checks in radiation oncology (56). The ability of these 
algorithms to automatically detect outliers allows physicists to 
focus attention on those aspects of a process most likely to impact 
our patient care, as recommended in Task Group 100 (57).

Other important applications of ML include predicting plan-
ning deviations from the initial intentions and predicting the 
need for re-planning. Guidi et al. developed a ML-based tool to 
predict when head and neck patients treated with photons need 
re-planning (58). In a similar fashion, Tseng et al. used three deep 
neural networks to predict the need for treatment adaptation for 
lung patients (59, 60). Varfalvy et al. used relative gamma analysis 
and hidden Markov models to categorize patients based on dev-
iations from the initial treatment plan to identify patients in need 
of re-planning. The need to predict proton patients who would 
benefit from a re-plan is even more relevant, though no publica-
tions exist in this setting to date. Deciding on the best algorithm 
for QA applications is critical for accurately predicting outcomes. 
While it is clear that each of the applications described above are 
important and useful, all remain within the domain of research 
and have not been made available commercially.

FOLLOW-UP

Machine learning also has the potential to change the way radia-
tion oncologists follow patients treated with definitive therapy. 
Following surgery, the tumor may disappear on imaging, and 
tumor markers may quickly normalize. By contrast, the evolu-
tion of imaging changes (loss of enhancement, PET avidity, or 
diffusion restriction; stability or decrease in size) and response of 
tumor markers is gradual following radiotherapy. These features 
are monitored regularly over time, with qualitative changes 
complemented with clinical experience providing indication of 
therapeutic efficacy. Clearly, better models based on early assess-
ment are needed to predict outcome, in time for treatment inten-
sification with additional RT, early addition of systemic therapy, 
or application of a different treatment modality. In this regard, 
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early work in the area of radiomics seems promising. In radiom-
ics, quantitative features, including those based on size and shape, 
image intensity, texture, relationships between voxels, and fractal 
characteristics, are extracted to characterize an image. ML algo-
rithms can then be deployed to correlate the image-based features 
with biological observations or clinical outcomes (59–64). The 
limited reproducibility of imaging systems both within and across 
institutions remains a significant challenge for radiomics (65, 66). 
And while the application of deep learning to image quantifica-
tion has produced stellar results in other areas (67), it is important 
to understand that these techniques required thousands of data 
points even when transfer learning was used, which can prove 
challenging in radiation oncology, where datasets are limited.

cONcLUsiON

Machine learning is poised to impact the profession of radiation 
oncology, from patient consult to follow-up. While the excitement 
around ML and big data is well justified, many challenges remain, 
a number of which we have tried to describe above. There are also 
several broad challenges we will have to address as a field. The 
first is the creation and curation of large datasets. Although it is 
highly unlikely that robust models can be built with data from a 
single institution alone, the need to develop data sharing agree-
ments can be a significant barrier to the development of these 
models. One potential solution to the challenges associated with 
multi-institutional data sharing is the use of distributed learning; 
the group at Maastricht University led by Philippe Lambin has 

been pioneering this approach (68, 69). Standardization of the 
data collection process is also essential for training models using 
datasets from multiple institutions. In addition, it is important to 
highlight that distributed learning and transfer learning are part  
of the larger discipline of ML and to maximize learning from all 
centers while customizing the solution to each, mathematical guar-
antees and constraints are necessary to ensure algorithms do not 
“forget” previous seen datasets (70). Tailoring these algorithms to 
radiation oncology needs will also be an active research area in the 
future. Quality of data is also of paramount importance as no ML 
algorithm today can fix problems contained within the training 
data. In this regard, interpretability of algorithms used (e.g., ability 
for humans experts to understand reasons behind a prediction) 
will play an important role to avoid preventable errors (23).

Finally, training of our workforce and updating our educa-
tional curriculums will be increasingly important. As with any 
algorithm that we use in radiation oncology today (e.g., dose 
calculation, deformable registration), ML algorithms will need 
commissioning and QA. Clinicians will need to learn to inter-
pret and understand the limitations of any results. The field of 
radiation oncology is highly algorithmic and data-centric, and 
while the road ahead is filled with potholes, the destination holds 
tremendous promise.
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systems can transform Patient  
care in radiation Oncology
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Big data and comparative effectiveness research methodologies can be applied within 
the framework of a rapid-learning health-care system (RLHCS) to accelerate discovery 
and to help turn the dream of fully personalized medicine into a reality. We synthesize 
recent advances in genomics with trends in big data to provide a forward-looking per-
spective on the potential of new advances to usher in an era of personalized radiation 
therapy, with emphases on the power of RLHCS to accelerate discovery and the future 
of individualized radiation treatment planning.

Keywords: big data, radiation oncology, comparative effectiveness research, rapid-learning health care system, 
personalized radiation therapy

cOMPArAtive eFFectiveNess reseArcH (cer)  
AND BiG DAtA

The Committee on CER Prioritization was created by the Institute of Medicine in 2009. They defined 
CER as “a strategy that focuses on the practical comparison of two or more health intervention to 
discern what works best for which patients and populations” (1). In essence, the goal of CER is to 
help answer the question “which treatment will work best, in which patient, under what circum-
stances?” (2). Big Data refers to data sets that are so large that they cannot be analyzed directly by 
individuals or traditional processing software. Big Data Analytics (BDA) is a growing field with a 
multitude of methods that is being utilized in various sectors from business to medicine (3). The 
advent of the Electronic Medical Record (EMR) has resulted in the digitalization of massive data 
sets of medical information including: clinic encounters, laboratory values, imaging data sets and 
reports, pathology reports, patient outcomes, family history, genomic, and biological data, etc.

To help with the analysis of Big Data, the NIH has created the Big Data to Knowledge (BD2K) 
program which has invested over $200 million in grant awards to foster the development of methods 
and tools to analyze Big Data in biomedical research (4). Additionally, the BD2K program will move 
to make sure that biomedical Big Data is “Findable, Accessible, Interoperable, and Reusable” (4). 
Over the past decade, CER methodologies have become increasingly prevalent in radiation oncology 
research and there is much enthusiasm surrounding BDA.

rAPiD-LeArNiNG HeALtH cAre sYsteM (rLHcs)  
AND PersONALiZeD MeDiciNe

The number of articles on Big Data in health care has increased exponentially from under 500 
articles in 2005 to over 2500 articles in 2015 (5). As the amount of biomedical Big Data and our 
ability to analyze these data continues to advance, so will the implications and utilizations of the 
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information we are able to extract. One of the most important 
steps toward advancing our ability to analyze these Big Data 
for biomedical discovery is the creation of RLHCS, which will 
allow for the sharing of patient data between EMRs, ideally in 
real-time (6). An ideal RLHCS would take patient data that was 
routinely generated as part of standard patient care and compile 
that data into a large data system (6–8). This aggregate data 
would then be available for both BDA to accelerate identifica-
tion of new hypotheses and CER to rapidly generate evidence 
through hypothesis-testing studies. Clinical data from patient 
records can be used readily to identify novel relationships among 
clinical factors and patient outcomes, or to evaluate treatment 
effectiveness in specific subgroups, that cannot be studied 
adequately in randomized, controlled trials. The extreme power 
of RLCHS, though, is even more exciting when one considers 
the possibility of adding biospecimens to accelerate discovery in 
genomics and proteomics. As RLHCS are created and their data 
sets are expanded, we will continue to identify specific genomic 
and proteomic data to help define cohorts and stratify patients 
into risk groups, treatment response groups, and potentially to 
help design highly tailored therapy regimens (9). In this sense, 
RLCHS would usher in a more fertile era for improving bio-
medical research than ever before. BDA and CER provide the 
research methodologies needed to rapidly generate evidence 
using RLHCS. It should be noted, however, that there are sub-
stantial practical obstacles that must be addressed to achieve 
the vision of RLHSC. These include patient concerns regarding 
privacy and security of sensitive information, interconnectivity 
among different health records, and regulatory barriers to the 
exchange of health information.

iNteGrAtiNG A rLHcs WitH 
ONcOLOGY

The integration of CER, Big Data, and BDA is especially impor-
tant in the field of Oncology where multiple groups are investing 
significant time and resources in efforts to expand the availability 
of data and advance the methods used to extract meaningful 
information from that data (4, 10–14). The American Society 
of Clinical Oncology started their own RLHCS, CancerLinQ, 
to overcome the lack of interoperability between EMRs and 
accomplish their goal of being able to “analyze and share data on 
every patient with cancer” (15). While the vision of RLCHS has 
not yet been fully achieved, the potential impact on society has 
stimulated enthusiasm toward this effort.

iMPLicAtiONs FOr rADiAtiON 
ONcOLOGY

Patient reported Outcomes (PrOs)
Patient reported outcomes and quality-of-life (QoL) have become 
a major area of focus in health care overall, particularly in  
oncology. The availability of PROs within EMRs provides the 
foundation for a RLHCS that can be leveraged to expand insights 
into how cancer treatments impact patient QoL. By incorporat-
ing the PROs for massive numbers of patients, RLHCS will be 

able to identify small variations and subgroups of patients that 
might be missed in the smaller number of patients included in 
traditional randomized controlled trials. These PROs and QoL 
domains can then be incorporated into clinical decision-making 
to help guide both providers and patients (16). In doing this, 
PROs can act as a link between the objective clinical data and 
the subjective patient outcomes and experiences to help improve 
the overall care of the patient (17). One may also conceive of 
potential genomics-based determinants of QoL that could be 
identified using BDA if RLHCS include biospecimens linked to 
clinical data and PROs. Finally, surveillance of a RLHCS may also 
be performed to identify temporal trends in PROs to estimate 
outcomes after implementation of new technologies.

Dose selection and radiosensitivity
The use of tumor-specific genes and radiosensitivity to guided 
treatment decisions has already been established in human 
papilloma virus-associated squamous-cell carcinoma of the 
oropharynx (18). Numerous studies have looked at identifying 
genes that may have implications on tumor radiosensitivity or 
patient toxicity (19–22). The identification of these genes and 
their potential implications has led to the creation of the fields of 
radiogenetics and radiogenomics. Efforts are currently under-
way to generate meaningful gene assays that will help predict 
tumor response to radiation. Eschrich et al. created a 10-gene 
model to calculate a radiosensitivity index and applied this to 
patients with head-and-neck, rectal, and esophageal cancer to 
help stratify patients into either responders or non-responders 
with 80% sensitivity and 82% specificity (22). Similarly, Zhao 
et  al. retrospectively created a 24-gene assay and applied this 
to risk matched patients who either received postoperative 
radiation or no radiation following prostatectomy. Patients 
with a high score on the gene index who received postoperative 
radiation were less likely to have distant metastasis at 10 years 
(23). As efforts to identify genes and gene assays that may be 
predictors of radiosensitivity continue to be validated, we will 
potentially be able to integrate these findings in dose selection 
and toxicity prediction for individual patients based on their 
native and tumor genetics. Scott and colleagues have recently 
described a genomics-based strategy for personalizing radia-
tion therapy dose, which would support dose de-escalation for 
radiosensitive tumors (24). While the clinical implication of 
radiosensitivity assays are still developing, big data will be key 
to developing future assays rapidly, as well as incorporating 
the genomics tools into clinical decision-making. Big data 
provides opportunity to refine molecular signatures based 
upon real-world data and to merge genomic assay results with 
other clinical data elements to optimize predictive analytics.  
A RLHCS would provide the ideal substrate for levering big 
data and CER to accelerate genomics-based discovery to make 
precision radiation oncology a reality.

Personalized treatment 
recommendations
Radiation oncology is unique in that treatment plans for patients 
are often already technically and physically personalized due 
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to patient-specific variations in anatomy, tumor characteristics, 
and stage. Since a patient’s treatment plan is usually based upon 
a CT scan in treatment position, radiation can be considered an 
inherently personalized form of medicine. However, treatment 
planning approaches and radiation doses are generally selected 
based upon class solution, with technical details such as beam 
arrangements and dose–volume constraints adherent to genera-
lized rules. Multiple studies have already begun to look at how 
BDA methods such as machine learning and neural networks 
can be used to aid in dose optimization and toxicity predic-
tion modeling in radiation oncology (17, 25–27), which could 
provide more optimal treatment plan alternatives for individual 
patients. As the data and technology behind RLHCS continues 
to progress, we will likely be able to utilize a full spectrum of 
patient-specific clinical factors, PROs, genomics, patient prefer-
ence, and priorities, and a menu of treatment plan alternatives 
in order to optimize an individual patient’s radiation therapy. 
In order to deliver high-quality, high impact insights into 
radiation oncology, it is important that large datasets include 
detailed technical.

cONcLUsiON

Much of the excitement regarding big data has centered on poten-
tial for genomic discovery, high-level radiation treatment plan-
ning, and leveraging EMRs to identify associations among factors 
that may provide new insights into potential causal relationships 
that can be further studied to accelerate progress in cancer care. 
Although these are certainly promising areas for discovery, we 
most eagerly anticipate the power of big data to connect a broad 
range of characteristics to accelerate evidence generation and 
inform personalized decision-making. We envision the use of 
big data and CER methods to inform the individual decisions of 
patients and providers by synthesizing clinical and genomic data 
and querying a RLHCS for the latest data on effectiveness of treat-
ment options in relevant subgroups of patients.
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Background: Radiomics has been widely investigated for non-invasive acquisition of 
quantitative textural information from anatomic structures. While the vast majority of 
radiomic analysis is performed on images obtained from computed tomography, mag-
netic resonance imaging (MRI)-based radiomics has generated increased attention. In 
head and neck cancer (HNC), however, attempts to perform consistent investigations 
are sparse, and it is unclear whether the resulting textural features can be reproduced. 
To address this unmet need, we systematically reviewed the quality of existing MRI 
radiomics research in HNC.

methods: Literature search was conducted in accordance with guidelines established 
by Preferred Reporting Items for Systematic Reviews and Meta-Analyses. Electronic 
databases were examined from January 1990 through November 2017 for common 
radiomic keywords. Eligible completed studies were then scored using a standardized 
checklist that we developed from Enhancing the Quality and Transparency of Health 
Research guidelines for reporting machine-learning predictive model specifications and 
results in biomedical research, defined by Luo et al. (1). Descriptive statistics of checklist 
scores were populated, and a subgroup analysis of methodology items alone was con-
ducted in comparison to overall scores.

Results: Sixteen completed studies and four ongoing trials were selected for inclu-
sion. Of the completed studies, the nasopharynx was the most common site of study 
(37.5%). MRI modalities varied with only four of the completed studies (25%) extracting 
radiomic features from a single sequence. Study sample sizes ranged between 13 and 
118 patients (median of 40), and final radiomic signatures ranged from 2 to 279 features. 
Analyzed endpoints included either segmentation or histopathological classification 
parameters (44%) or prognostic and predictive biomarkers (56%). Liu et al. (2) addressed 
the highest number of our checklist items (total score: 48), and a subgroup analysis of 
methodology checklist items alone did not demonstrate any difference in scoring trends 
between studies [Spearman’s ρ = 0.94 (p < 0.0001)].
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conclusion: Although MRI radiomic applications demonstrate predictive potential in 
analyzing diverse HNC outcomes, methodological variances preclude accurate and 
collective interpretation of data.

Keywords: radiomics, magnetic resonance imaging, mRi, texture analysis, head and neck, radiation oncology

iNtRODUctiON

Rationale
Tumor characterization remains a major obstacle in the treatment 
of HNC patients (3, 4). Structural heterogeneity may represent 
underlying differences in tumor biology, which often cannot be 
explained by clinical data alone (5–8). Radiomics, the quantita-
tive evaluation of anatomic structures from diagnostic imaging 
modalities, could possibly mitigate this variance (5, 6, 9). By 
describing morphological parameters and textural features from 
voxel elements, radiomics has the potential to examine tumors 
entirely (10–13).

Although multiple studies have applied radiomic analyses in 
HNC patients, computed tomography (CT) is the imaging modal-
ity most frequently investigated (14–26). This preference is due, 
in part, to the relative ease of data extraction and interpretation: 
Textural features can be derived from CT signal intensities (SIs) 
because their units of measurement, Hounsfield units (HUs), 
directly represent tissue radiodensity. Thus, SI gradients contain 
information about structural properties, which could then be 
translated into clinically meaningful data (9).

Computed tomography affords yet another advantage in that 
its imaging performance tends to be standardized across scanners 
and vendors (9). However, CT acquisition parameters can still 
influence the appearance of radiomic features (27). In non-small 

Abbreviations: ADC, absolute diffusion coefficient; ARM, auto-regressive 
model; CCC, concordance correlation coefficient; ChiCTR, Chinese Clinical Trial 
Registry; CI, confidence interval; CT, computed tomography; DCE, dynamic con-
trast-enhanced; DICOM, digital imaging and communications in medicine; DWI, 
diffusion-weighted imaging; EQUATOR, Enhancing the Quality and Transparency 
of Health Research; FDG/PET, fludeoxyglucose-positron emission tomography; 
fMRI, functional magnetic resonance imaging; GBM, glioblastoma; GLAG, 
gray-level absolute gradient; GLCM, gray-level co-occurrence matrix; GLGCM, 
gray-level gradient co-occurrence matrix; GLH, gray-level histogram; GLRLM, 
gray-level run-length matrix; HNC, head and neck cancer; HU, Hounsfield 
unit; IBSI, image biomarker standardisation initiative; ICC, intraclass coefficient 
constant; IP, inverted papilloma; LAMBDA-[RAD]2-HN initiative, a Large-scale 
Image Aggregation for Machine-Learning/Big Data Applications in Radiomics/
Radiotherapy for Head and Neck Cancer; LDA, linear discriminant analysis; 
MDACC, MD Anderson Cancer Center; MRE, magnetic resonance elastography; 
MRI, magnetic resonance imaging; MS, methodology score; NCBI, National 
Center for Biotechnology Information; NIH RePORTER, National Institute of 
Health Research Portfolio Online Reporting Tool; NPC, nasopharyngeal cancer; 
NSCLC, non-small cell lung cancer; OPC, oropharyngeal cancer; PCA, principal 
component analysis; PFS, progression-free survival; PRISMA, Preferred Reporting 
Items for Systematic Reviews and Meta-Analyses; QA, quality analysis; QIBA, 
Quantitative Imaging Biomarkers Alliance; QoL, quality of life; RECIST, Response 
Evaluation Criteria in Solid Tumors; ROI, region of interest; RT, radiotherapy; 
SCC, squamous cell carcinoma; SI, signal intensity; SNR, signal-to-noise ratio; 
STIR, short tau inversion recovery; SVM, support vector machine; TCIA, The 
Cancer Imaging Archive; TS, total score; WT, wavelet transform.

cell lung cancer (NSCLC), Mackin et al. (27) designed a radiom-
ics-specific CT phantom to test inter-scanner variability. Mean 
CT number, reflected in HU, approximated the same variability 
between extracted tumor features from the scans themselves 
(27). Although extraction of features with discriminative ability 
from multiple scanners is promising, research is lacking in their 
application and robustness. Likewise, variances in reconstruction 
algorithms and image noise represent barriers to the accuracy of 
extracted features (9).

Similarly, radiomic studies based on magnetic resonance 
imaging (MRI) also face derivational challenges intrinsic to the 
technology. Not only are scanner parameters obstacles to repro-
ducibility of features, but images themselves may reflect multiple 
tissue properties with specific acquisition characteristics (28). For 
instance, MRI SIs depends on pulse sequences, relaxation times, 
as well as a host of other acquisition-related processes; thus, 
seamless integration of radiomic analyses requires substantive 
effort (28).

When conducted appropriately, however, such studies can 
potentially provide a breadth of information superior to extrapo-
lated values from CT radiomic features, as multiple physical 
properties of a voxel can be extracted via distinct sequence 
acquisition processes (e.g., spin–spin, proton density) and could 
be leveraged even further using novel techniques for simultane-
ous voxel characterization (e.g., MR fingerprinting) (29).

For example, MRI radiomics could potentially describe 
distinct patterns in tumor physiology: phenotypic categories 
from diffusion-weighted imaging (DWI) and dynamic contrast-
enhanced (DCE) MRI have successfully predicted prognostic  
status in breast cancer patients (30). In addition, radiomic features 
derived from T1-weighted MRI reliably categorized molecular 
subtypes of breast tumors (31). For cases of glioblastoma (GBM), 
MRI radiomic profiles outperformed clinical and radiologic 
risk models in stratification of survival (32). Radiomic features  
have also successfully classified prostate tumors by Gleason 
scores (33, 34).

Objectives and Research Question
To the best of our knowledge, MRI radiomic applications in HNC 
have yet to be systematically summarized and reviewed in the 
clinical literature. In this effort, we assessed the quality of existing 
research: We comprehensively described MRI radiomic studies 
specific to the head and neck sub-site, with an intentional focus on 
study design. We compare and contrast the studies with a checklist 
based on Luo et al. (1) Enhancing the Quality and Transparency of 
Health Research (EQUATOR) methodology reporting guidelines. 
Subsequently, we discuss ongoing clinical trials and suggest future 
directions for MRI radiomic applications in HNC. The purpose of 
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FigURe 1 | Study methodology and search strategy via Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines (35).
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this systematic review is to assess the level of evidence and gauge 
the applicability of MRI radiomics in HNC.

metHODS

Study Design and Systematic Review 
Protocol
Study methodology followed outlines established by Preferred 
Reporting Items for Systematic Reviews and Meta-Analyses 
(Figure 1).

Eligibility Criteria
Full-text, original manuscripts, published in English, accepted for 
publication, and available online or in-print were evaluated. For 
inclusion, study populations consisted of patients diagnosed with 

HNC. All other cancer populations were excluded. Interventions 
included investigations of MRI radiomic features, where MRI was 
the primary imaging modality implemented. Studies exclusively 
researching first-order MRI features were excluded as they did 
not accurately represent the scope of typical MRI radiomic appli-
cations in HNC. Regarding outcomes, studies were included if 
they investigated segmentation accuracy, histopathological clas-
sification parameters, or prognostic and predictive biomarkers. 
Study design could be observational (e.g., prospective cohort, 
retrospective cohort, and case–control) or a clinical trial (e.g., 
randomized controlled trial).

Study Search Strategy and Process
Electronic databases (National Center for Biotechnology 
Information PubMed, Elsevier EMBASE, National Institute of 
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Health Research Portfolio Online Reporting Tool, ClinicalTrials.
gov, and the Chinese Clinical Trial Registry) were searched from 
January 1990 through November 2017. Keywords and search 
strategy are described in our supplementary material (Table S5). 
For each included manuscript, reference lists were searched for 
additional eligible studies. Study search was completed by three 
authors independently (Amit Jethanandani, Timothy A. Lin, and 
Stefania Volpe), reviewing manuscripts in a stepwise method: 
By title alone, followed by abstract, then full-text. Search results 
were  imported into individual spreadsheets using JMP Pro 
software version 12.1.0 (SAS Institute Inc., Cary, NC, USA). 
Discrepancies between results were discussed at team meetings, 
moderated by a fourth author (Hesham Elhalawani). Study search 
and selection were completed on November 13, 2017.

Data Sources, Study Sections, and Data 
extraction
Selected studies consisted of completed research and ongoing 
trials. Once a final list was established, data extraction was 
completed independently by two authors (Amit Jethanandani 
and Timothy A. Lin) then assessed for quality by a third author 
(Hesham Elhalawani). Information was extracted into JMP Pro 
spreadsheets and included the following data: Manuscript title; 
authors; publication date; number of patients; head and neck 
sub-site; MRI modality and/or sequence used for radiomics 
analysis; region of interest (ROI) segmentation method; image 
pre-processing; feature extraction software; analyzed endpoint; 
statistical findings: radiomic model performance; conclusions; 
search terms and databases used to identify selected studies. 
Completed studies were stratified based on endpoints evaluated: 
Segmentation or histopathological classification vs. prognostic 
or predictive measures. Synthesis of data into a final spreadsheet 
was accomplished at team meetings among three authors (Amit 
Jethanandani, Timothy A. Lin, and Hesham Elhalawani).

Checklist Construction
A qualitative scoring method was developed for independent 
evaluation of completed studies. This system was adapted from 
Luo et  al. (1) EQUATOR methodology reporting guidelines, 
which represent criteria outlined by a multidisciplinary panel of 
11 clinicians, machine-learning specialists, and expert statisti-
cians. The guidelines aimed to achieve two main objectives: (1) 
establish a list of key reporting items and (2) design a standard-
ized, stepwise approach for generation of predictive models. 
The Delphi method was leveraged to iteratively narrow a list of 
included topics, discussed over e-mail between the panel mem-
bers, to the final guidelines.

The guidelines were categorized by manuscript section for 
each reporting item: Title and abstract, introduction, methods, 
results, and discussion. Within these categories, reporting items 
were grouped by subsection. For example, the methods section 
contained the following groups: “Describe the setting,” “define the 
prediction problem,” “prepare data for model building,” “build the 
predictive model,” and “report the final model and performance.” 
Our checklist mirrored this organization, with a few exceptions: 
Within the “build the predictive model” subsection, we further 
defined “data (feature) pre-processing” and “basic statistics of 

the dataset.” Data pre-processing refers to data cleaning, data 
transformation, outlier removal, criteria for outlier removal, 
and handling of missing values. Basic statistics included items 
clarifying whether the model reflected the chosen classification 
or regression problem, the validation strategy, validation metrics, 
and the starting time for validation data collection. For organiza-
tion of reporting items, a blank checklist is provided in our sup-
plementary data section (Table S1 in Supplementary Material).

Each mandatory checklist item was categorized into a yes/no 
binary variable, which indicated whether the study appropriately 
addressed the corresponding criteria. The checklist was designed 
by one author (Timothy A. Lin) and subsequently revised by 
two authors (Amit Jethanandani and Hesham Elhalawani). Each 
completed study was scored individually by two authors (Amit 
Jethanandani and Timothy A. Lin). After all completed stud-
ies were scored, a group of three authors (Amit Jethanandani, 
Timothy A. Lin, and Hesham Elhalawani) met together to resolve 
discrepancies. There were 55 total checklist items, with two items 
containing sub-scores, representing a maximum overall score 
of 58 points. Once total checklist scores [total score (TS)] were 
finalized, methodology scores (MS) alone were generated for 
each completed study.

Data analysis
Descriptive statistics for all included studies were populated and 
reviewed. For completed studies, TS and MS were tabulated in 
JMP Pro software. In addition, a subgroup analysis compar-
ing collinearity of MS to TS was conducted using Spearman’s 
ρ.  Subgroup analysis was completed using the same JMP Pro 
software mentioned earlier.

ReSULtS

Study Selection and characteristics
Sixteen completed (2, 36–50) and four ongoing studies (51–54) 
were selected for inclusion. For completed studies, online or print 
publication dates ranged between May 2013 and October 2017. 
The selected studies could be retrieved from PubMed, and the 
most successful search term was “MRI texture analysis” (50% 
discovered with this keyword alone).

Synthesized Findings of completed 
Studies
Patient sample sizes ranged between 13 and 118 patients with a 
median of 40 patients (Table 1). Head and neck sub-sites were 
diverse, including tumor volumes as well as normal anatomic 
structures. Of studies extracting radiomic features from tumor 
volumes, nasopharyngeal cancer (NPC) studies (37.5%) were 
the most common. Investigations of radiotherapy (RT)-related 
toxicities in normal tissue composed a small sample of the cohort 
(12.5%). Specific sub-sites were unknown for two studies (12.5%).

Magnetic resonance imaging sequences also varied, with 
T1-weighted, T2-weighted, and contrast-enhanced T1-weighted 
scans representing the most commonly used sequences. Only 
four studies (25%) derived texture features from a single MRI 
sequence. Thor et  al. (45) extracted 24 textures, containing 
first- and second-order features, from T1-weighted post-contrast 
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images to quantify radiation-induced trismus. Brown et  al. 
(36) investigated whether 21 texture features from a set of 300 
DWI MRI parameters could reliably predict histopathological 
classification of thyroid tumors. Jansen et  al. (40) generated 
pharmokinetic maps from DCE MRI images, applying texture 
measures of energy and homogeneity to determine associations 
with treatment response in oropharyngeal cancer patients.

Region of interest segmentation methods were less variable: 
Manual segmentation by trained experts alone (62.5%) composed 
the majority of studies. This was followed by combined manual 
and autosegmentation (31.25%), with one segmentation method 
unspecified (6.25%). One study investigated the classification per-
formance of an autosegmentation method. Fruehwald-Pallamar 
et  al. (38) leveraged a three-step strategy: Atlas-based registra-
tion, support vector machine (SVM) feature training, and parotid 
volume segmentation using trained feature SVM. For validation, 
reliability of the autosegmentation method was compared with 
trained physician contours using a Dice overlap ratio.

Most studies (62.5%) clarified image pre-processing steps 
before feature extraction. Preferred software for feature extrac-
tion included Matlab (37.5%) (MathWorks, Natick, MA, USA) 
and MaZda (25%) (Institute of Electronics, Technical University 
of Lodz, Poland). Feature pre-processing and model selection 
methods are discussed in the “Checklist scores” section of this 
manuscript.

Final radiomic signatures ranged from inclusion of 2 to 279 
features. The upper limit reflects the choice of one study to 
maintain their initially derived feature set, which was not reduced 
in dimensionality. Meyer et al. (41) generated 279 features from 
T1-weighted and T2-weighted images corresponding to the 
following categories: gray-level co-occurrence matrix (GLCM), 
gray-level histogram, gray-level run-length matrix, gray-level 
absolute gradient, auto-regressive model, and wavelet transform. 
They then compared the derived T1- or T2-weighted features to 
cellular density, presence of Ki-67 antigen, or p53 index histopa-
thology in 12 thyroid cancer patients.

Reports of radiomic model performance were typically posi-
tive (93.75%). However, Fruehwald-Pallamar et al. (39) concluded 
texture analysis was not practical across multiple MRI protocols, 
scanners, and vendors. Table  1 lists the statistical findings 
specific to radiomic model performance of each study. Linear 
discriminant analysis (LDA) was the most commonly identified 
classification method, with four studies (25%) leveraging LDA to 
combine or reduce feature subsets. Likewise, four studies (25%) 
investigating progression outcomes in NPC patients utilized least 
absolute shrinking and Lasso methods to select significantly asso-
ciated features for inclusion in final models. Only seven studies 
(44%) completely reported the predictive performance of their 
final model, in terms of their validation strategies, parameter 
estimates, and confidence intervals (CIs).

Analyzed endpoints ranged from segmentation and histopatho-
logical classification categories (44%) to prognostic or predictive 
biomarkers (56%). Among studies evaluating segmentation or 
classification, analyzed endpoints included: Histopathological 
classification (85.7%) and segmentation accuracy (14.3%). For 
studies assessing prognostic and predictive biomarkers, endpoints 
included: treatment response (33.3%), progression-free survival 

(PFS) (22.2%), progression dichotomized (22.2%), prognostic 
performance of predicting local or distant treatment failure 
(11.1%), and presence of radiation-induced trismus (11.1%).

All six NPC studies investigated prognostic or predictive 
biomarkers. Although they contained varying sample sizes (100–
118), four studies (42, 47–49) selected from the same number 
of extracted radiomic features (970), subsequently constructing 
radiomic signatures from contrast-enhanced T1-weighted or 
T2-weighted feature categories. Among these studies, three inves-
tigated progression (either dichotomized yes/no or analyzed con-
tinuously) or a construct of prognostic performance. Liu et al. (2), 
alternatively investigated treatment response, defined using the 
Response Evaluation Criteria in Solid Tumors (RECIST). Patients 
with partial or complete response were considered responders, 
whereas patients with stable or progressive disease were clas-
sified as non-responders. One hundred and twenty six texture 
parameters were selected from contrast-enhanced T1-weighted, 
T1-weighted alone, and T2-weighted feature categories, then 
reduced to 15 features: GLCM, intensity size-zone matrix, and 
gray-level-gradient co-occurrence matrix. Using two separate 
selection methods, the remaining NPC study, Farhidzadeh et al. 
(50), examined the prognostic predictive power of intratumoral 
features—from either highly or weakly enhancing sub-regions—
to classify patients by PFS category.

Checklist Scores
Finalized checklist scores are available in our supplementary 
dataset (Table S2 in Supplementary Material). Liu et  al. (2) 
addressed the highest number of checklist items (TS: 48), followed 
by Brown et al. (36) and Ramkumar et al. (43) (TS: 45). Of note, 
all studies scored points for identifying their clinical goals, stating 
their predictive modeling, defining their target(s) of prediction, 
describing their sample size, defining the observational units of 
their response variable(s), interpreting their final model(s), and 
reporting the clinical implications of their data. By subsection, 
most study titles (93.75%) identified their reports as introduc-
ing a predictive model. Abstracts typically addressed objectives 
(87.5%), performance metrics in point estimates (87.5%), and 
practical relevance of study conclusions (87.5%); however, only 
three abstracts contained information on data sources (18.75%) 
or framed their performance metrics in terms of CIs (18.75%). 
Although only six study introductions addressed prediction 
accuracy of existing models (37.5%), this section contained the 
highest number of unanimously addressed items (50% of check-
list items were unanimously addressed).

Methodology criteria contained the most checklist items 
[n  =  32 (58.1%)]. Of the subsections in this category, studies 
missed the most points for failing to clarify their data (feature) 
pre-processing: Only seven studies (44%) discussed their data 
transformation, four (25%) removed outliers, three (18.75%) 
stated criteria for outlier removal, and one study (6.25%) 
discussed how missing values were handled. However, missing 
information in the abstract section, such as data sources, was 
eventually addressed in study methods (75%). Other common 
omissions included failures to specify model selection strategies 
(50% addressed); to define performance metrics in selecting the 
best model (37.5%); to explain the practical cost of prediction 
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taBLe 1 | Magnetic resonance imaging (MRI) radiomics in HNC: completed studies

article  
title

article  
authors

Publication 
date

Number of 
patients

Head and neck  
sub-site

mRi modality 
and/or 
sequence used 
for radiomics 
analysis

Region of 
interest (ROi) 
segmentation 
method

image pre-
processing: 
yes/no

Feature 
extraction 
software

analyzed  
endpoint

Statistical findings: 
radiomic model 
performance

conclusions Successful search 
terms used 

[1 = Radiomic(s), 
2 = mRi texture 

analysis, 
3 = texture 

analysis, 4 = head 
and neck, 

5 = magnetic 
resonance imaging 

texture analysis]

Databases 
[1 = Pubmed, 
2 = emBaSe, 

3 =NiH, 
4 = clinicaltrials.
gov, 5 = chinese 

clinical trial 
Registry 

(chictR)]

Studies on radiomics for segmentation and histopathological classification

MRI texture 
analysis reflects 
histopathology 
parameters in 
thyroid cancer—a 
first preliminary 
study

Meyer HJ, 
Schob S, 
Hohn AK, 
Surov A

10/6/2017 
(electronic 
publication, 
ePub); 
12/2017 
(Print)

13 Thyroid T1-weighted 
turbo spin 
echo (TSE); 
T2-weighted TSE

Not specified Yes MaZda Histopathological 
classification

279 texture features were 
analyzed for univariate 
association with 
histological parameters 
using a Spearman’s 
correlation coefficient

Several significant 
correlations were 
identified between 
texture features and 
histopathology

2 1

Multi-institutional 
validation of a 
novel textural 
analysis tool for 
preoperative 
stratification 
of suspected 
thyroid tumors on 
diffusion-weighted 
MRI

Brown AM, 
Nagala S, 
McLean 
Ma, Lu Y, 
Scoffings 
D, Apte A, 
Gonen M, 
Stambuk 
HE, Shaha 
AR, Tuttle 
RM, Deasy 
JO, Priest 
AN, Jani P, 
Shukla-Dave 
A, Griffiths J

5/20/2015 
(ePub); 
4/2016 
(Print)

42 (training=24, 
validation=18)

Thyroid Diffusion-
weighted imaging 
(DWI)

Manual Yes MaZda Histopathological 
classification

A linear discriminant 
analysis (LDA) model 
of the top 21-ranking 
MaZda textural features 
classified 89/94 ROIs 
with 92% sensitivity and 
96% specificity [AUC: 
0.97, 95% confidence 
interval (CI): 0.92–1.0]. 
In a test set of 18 cases, 
the model’s sensitivity 
was 89% (95% CI: 
65–99%) and its 
specificity was 97% (95% 
CI: 74–100%)

Texture analysis 
is sensitive and 
specific for 
stratification of 
thyroid nodules

2 1

MRI texture 
analysis predicts 
p53 status in 
head and neck 
squamous cell 
carcinoma

Dang M, 
Lysack 
JT, Wu T, 
Matthews 
TW, 
Chandarana 
SP, Brockton 
NT, Bose P, 
Bansal G, 
Cheng H, 
Mitchell JR, 
Dort JC

9/25/2014 
(ePub); 
1/2015 
(Print) 

16 Oropharynx Contrast-
enhanced 
T1-weighted FSE; 
T2-weighted 
fast spin echo 
(FSE) with fat 
saturation; DWI

Manual Yes 2D Fast Time-
Frequency 
Transform Tool

Histopathological 
classification

A model of seven 
significant variables 
(determined using a 
subset-size forward 
selection algorithm 
and isolation of high-
classification percentage 
variables) correctly 
classified 81.3% of 
tumors (κ: 0.625, 
p < 0.05)

A radiomic 
model containing 
variables with 
high classification 
performance could 
predict p53 status 
in oropharyngeal 
cancer patients

2 1

(Continued)
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interest (ROi) 
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method

image pre-
processing: 
yes/no

Feature 
extraction 
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Statistical findings: 
radiomic model 
performance

conclusions Successful search 
terms used 

[1 = Radiomic(s), 
2 = mRi texture 

analysis, 
3 = texture 

analysis, 4 = head 
and neck, 

5 = magnetic 
resonance imaging 

texture analysis]

Databases 
[1 = Pubmed, 
2 = emBaSe, 

3 =NiH, 
4 = clinicaltrials.
gov, 5 = chinese 

clinical trial 
Registry 

(chictR)]

Texture-based 
analysis of 100 
MR examinations 
of head and 
neck tumors—is 
it possible to 
discriminate 
between benign 
and malignant 
masses in a 
multicenter trial?

Fruehwald-
Pallamar J, 
Hesselink 
JR, Mafee 
MF, Holzer-
Fruehwald 
L, Czerny C, 
Mayerhoefer 
ME

9/30/2015 
(ePub); 
2/2016 
(Print)

100 Head and neck 
benign (cysts = 8, 
inflammatory 
masses = 5, 
parotid = 9, 
glomus = 9, 
vascular 
malformation = 5, 
schwannoma = 4, 
other = 6) 
and malignant 
(squamous cell 
carcinoma = 31, 
lymphoma = 8, 
adenoid 
cystic = 5, 
adeno = 4, 
other = 6) tumors

Various Manual and 
autosegmentation

No MaZda Histopathological 
classification

LDA models based off 
subsets of previously-
identified, significant 
texture features 
demonstrated differences 
on STIR (61.29–80.65%) 
and T2-weighted 
images (T2-TSE: 
81.82–100%, T2-TSE 
with fat suppresion: 
71.74–78.26%) 
for 2D evaluation 
and on contrast-
enhanced T1-TSE 
with fat saturation 
(58.54–85.37%) for 3D 
evaluation. Secondary 
analysis of subgroups by 
Tesla strength was also 
conducted

Texture analysis 
is not practical 
for differentiation 
of tumors using 
different magnetic 
resonance (MR) 
protocols on 
different MR 
scanners

2 1

taBLe 1 | Continued
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4 = clinicaltrials.
gov, 5 = chinese 

clinical trial 
Registry 

(chictR)]

Automated 
segmentation of 
the parotid gland 
based on atlas 
registration and 
machine learning: 
a longitudinal MRI 
study in head-
and-neck radiation 
therapy

Yang X, Wu 
N, Cheng G, 
Zhou Z, Yu 
DS, Beitler 
JJ, Curran 
WJ, Liu T 

10/13/2014 
(ePub); 
12/2014 
(Print) 

15 Head and neck 
(oropharynx and 
larynx but other 
sites not specified)

Contrast-
enhanced 
T1-weighted; 
Contrast-
enhanced 
T2-weighted

Manual and 
autosegmentation

Yes Not specified Segmentation 
accuracy

A three-step 
autosegmentation 
method leveraging, as 
a component, a trained 
kernel-based support 
vector machine (SVM) 
model successfully 
differentiated 100% 
of parotid volumes 
where the average 
percentage of volume 
differences between 
the proposed method 
and manual physician 
contours were 7.98% 
(left parotid) and 8.12% 
( right parotid). Average 
Dice volume overlap: 
91.1 ± 1.6% (left) and 
90.5 ± 2.4% (right). 
Significant differences in 
volume reductions were 
found between 3-month 
and 1-year follow-up 
examinations (p = 0.19) 
and between 6-month 
and 1-year follow-up 
examinations (p = 0.14)

An 
autosegmentation 
method leveraging 
SVM models could 
accurately segment 
parotid glands when 
compared with 
manual review by 
trained experts

2 1
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and neck, 

5 = magnetic 
resonance imaging 

texture analysis]

Databases 
[1 = Pubmed, 
2 = emBaSe, 

3 =NiH, 
4 = clinicaltrials.
gov, 5 = chinese 

clinical trial 
Registry 

(chictR)]

Texture-based and 
diffusion-weighted 
discrimination 
of parotid gland 
lesions on MR 
images at 3.0 Tesla

Fruehwald-
Pallamar J, 
Czerny C, 
Holzer-
Fruehwald L, 
Nemec SF, 
Mueller-Mang 
C, Weber M, 
Mayerhoefer 
ME

5/23/2013 
(ePub); 
11/2013 
(Print)

38 Parotid masses Contrast-
enhanced 
T1-weighted TSE; 
T1-weighted TSE; 
T1-weighted with 
fat suppression; 
Short Tau 
Inversion 
Recovery (STIR)

Manual and 
autosegmentation

Yes MaZda Histopathological 
classification

LDA models based off 
subsets of previously-
identified, significant 
texture features was 
leveraged to determine 
differences between 
benign and malignant 
parotid masses or 
pleomorphic adenomas 
and Warthin tumors 
on multiple imaging 
modalities. Contrast-
enhanced T1-weighted 
features correctly 
classified 81.8–84.5% 
of benign-malignant 
masses. Whereas, the 
same models applied to 
STIR imaging was poorer 
in distinguishing benign-
malignant masses  
(73.5–78.4%) and 
pleomorphic adenomas-
Warthin tumors (50–59%)

Contrast-enhanced 
T1-weighted 
features contained 
the most predictive 
textural information 
for distinguishing 
benign and 
malignant parotid 
masses. STIR 
images contained 
the least relevant 
textural information

2 1

MRI-based 
texture analysis 
to differentiate 
sinonasal 
squamous cell 
carcinoma from 
inverted papilloma

Ramkumar 
S, Ranjbar S, 
Ning S, Lal 
D, Zwart CM, 
Wood CP, 
Weindling 
SM, Wu 
T, Mitchell 
JR, Li J, 
Hoxworth 
JM

3/2/2017 
(ePub); 
5/2017 
(Print)

46 (training=33, 
validation=13)

Sinonasal Contrast-
enhanced 
T1-weighted with 
fat suppression; 
T1-weighted; 
T2-weighted with 
fat suppression

Manual and 
autosegmentation

Yes Python Histopathological 
classification

The classification model, 
developed using five 
texture algorithms, 
demonstrated 90.9% 
accuracy in the training 
set and 84.6% accuracy 
in the validation set 
(p = 0.537). With 
both sets included, 
model accuracy 
(89.1%) outperformed 
neuroradiologists’ 
ROI review (56.5%, 
p = 0.0004). This was 
not significantly different 
from neuroradiologist 
review of tumors (73.9%, 
p = 0.060) or entire 
images (87%, p = 0.748)

Machine-learning 
accuracy of texture 
analysis algorithms 
outperformed 
neuroradiologists’ 
region of interest 
(ROI) review in 
classification 
of sinonasal 
carcinomas vs. 
inverted papillomas; 
however, its 
accuracy was 
not significantly 
different from 
neuroradiologists’ 
review of tumors or 
entire images

2 1
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analysis, 
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resonance imaging 

texture analysis]

Databases 
[1 = Pubmed, 
2 = emBaSe, 

3 =NiH, 
4 = clinicaltrials.
gov, 5 = chinese 

clinical trial 
Registry 

(chictR)]

Studies on radiomics for prognostic and predictive biomarkers

Exploration and 
validation of 
radiomics signature 
as an independent 
prognostic 
biomarker in 
stage III-IVb 
nasopharyngeal 
carcinoma

Ouyang 
FS, Guo 
B, Zhang 
B, Dong Y, 
Zhang L, Mo 
X, Huang 
W, Zhang S, 
Hu Q

9/26/2017 
(ePub); 
8/24/2017 
(Print)

100 
(training=70, 

validation=30)

Nasopharynx Contrast-
enhanced 
T1-weighted; 
T2-weighted

Manual Yes Matlab PFS (Progression 
free survival)

In both the discovery and 
validation sets, a radiomic 
signature—using features 
selected via least 
absolute shrinkage and 
selection operator (Lasso) 
regression—successfully 
stratified patients by 
PFS risk category (HR: 
5.14, p < 0.001; HR: 
7.28, p = 0.015) while 
other identified clinical-
pathologic risk factors for 
PFS were not significant 
(all p for HR > 0.05).

A radiomic signature 
based off pre-
treatment MRI scans 
could predict PFS 
risk category and 
improve clinical 
decision-making

1 1

Advanced 
nasopharyngeal 
carcinoma: 
pre-treatment 
prediction of 
progression based 
on multi-parametric 
MRI radiomics

Zhang B, 
Ouyang FS, 
Gu D, Dong 
Y, Zhang L, 
Mo X, Huang 
W, Zhang S

9/22/2017 
(ePub); 
8/2/2017 
(Print)

113 
(training=80, 

validation=33)

Nasopharynx Contrast-
enhanced 
T1-weighted; 
T2-weighted

Manual No Matlab Progression 
(Dichotomized 
to Yes and No 
categories)

Similar to the above 
strategy, radiomic 
features were selected 
using least absolute 
shrinkage and a Lasso 
method for significant 
association with 
progression. In both the 
training and validation 
cohort, the resulting 
radiomic-based model 
optimally performed 
when derived from 
combined contrast-
enhanced T1-weighted 
and T2-weighted imaging 
(training: AUC: 0.896, 
95% CI: 0.815–0.956; 
validation: 0.823, 95% 
CI: 0.645–1.00)

A radiomic model 
based on contrast-
enhanced T1 
and T2 features 
outperformed a 
model based on 
either MRI modality 
alone in its ability to 
predict progression 
in advanced 
nasopharyngeal 
cancer (NPC)

1 1

(Continued)
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4 = clinicaltrials.
gov, 5 = chinese 

clinical trial 
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(chictR)]

Radiomic machine-
learning classifiers 
for prognostic 
biomarkers 
of advanced 
nasopharyngeal 
carcinoma

Zhang B, He 
X, Ouyang 
FS, Gu D, 
Dong Y, 
Zhang L, Mo 
X, Huang 
W, Tian J, 
Zhang S

6/10/2017 
(ePub); 
9/10/2017 
(Print)

110 
(training=70, 

validation=40)

Nasopharynx Contrast-
enhanced 
T1-weighted; 
T2-weighted

Manual Yes Matlab Prognostic 
performance of 
predicting local or 
distant treatment 
failure

Of the six feature 
selection and nine 
classification methods 
examined, the best 
predictive model utilized 
a combination Random 
Forest method (AUC: 
0.8464 ± 0.0069; test 
error, 0.3135 ± 0.0088)

Radiomics models 
utilizing random 
forest methods 
demonstrated the 
highest prognostic 
performance 
compared with other 
machine-learning 
classification 
schemes, 
suggesting its 
utility in enhancing 
applications of 
radiomics in 
precision oncology

1 1

Radiomics features 
of multi-parametric 
MRI as novel 
prognostic factors 
in advanced 
nasopharyngeal 
carcinoma

Zhang B, 
Tian J, Dong 
D, Gu D, 
Dong Y, 
Zhang L, 
Lian Z, Liu 
J, Luo X, 
Pei S, Mo X, 
Huang W, 
Ouyang FS, 
Guo B, Liang 
L, Chen W, 
Liang C, 
Zhang S

3/9/2017 
(ePub); 
8/1/2017 
(Print)

118 
(training=88, 

validation=30)

Nasopharynx Contrast-
enhanced 
T1-weighted; 
T2-weighted

Manual No Matlab PFS Radiomic features were 
selected using least 
absolute shrinkage 
and a Lasso method 
for PFS nomograms. 
Radiomic signatures 
were significantly 
associated with PFS, 
with signatures derived 
from joint contrast-
enhanced T1-weighted 
and T2-weighted images 
(Training C-index: 0.758, 
95% CI: 0.661–0.856; 
Validation C-index: 0.737, 
95% CI: 0.549–0.924). 
Outperforming 
signatures from either 
modality alone. When 
combined with clinical 
characteristics, the 
radiomics signature 
outperformed clinical 
characteristics alone 
in predicting PFS in 
advanced NPC (C-index, 
0.776 vs. 0.649; 
p < 1.60 × 10−7)

Multiparametric 
MRI-based radiomic 
nomograms 
demonstrate 
prognostic ability 
in predicting 
progression in NPC 
patients

1 1
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gov, 5 = chinese 

clinical trial 
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(chictR)]

Texture analysis 
on parametric 
maps derived from 
dynamic contrast-
enhanced magnetic 
resonance imaging 
in head and neck 
cancer

Jansen JF, 
Lu Y, Gupta 
G, Lee NY, 
Stambuk HE, 
Mazaheri Y, 
Deasy JO, 
Shukla-
Dave A

1/28/2016 
(Print)

19 Oropharynx Dynamic 
contrast-
enhanced (DCE)

Manual No Matlab Treatment 
response

Texture analysis on 
parametric DCE-MRI 
maps revealed energy 
of ve was higher in 
intra-treatment vs. 
pre-treatment scans 
(p < 0.04)

Pharmokinetic 
models performed 
on DCE images, 
producing ktrans 
and ve maps, were 
unable to predict 
treatment response. 
However, imaging 
biomarker E of ve 
was significantly 
higher in intra-
treatment scans, 
vs. pre-treatment 
scans, suggesting 
a possible change 
in heterogeneity. 
The study ultimately 
conlcudes 
chemoradiation 
treatment reduces 
tumor heterogeneity 
in this patient cohort
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Use of texture 
analysis based 
on contrast-
enhanced MRI to 
predict treatment 
response to 
chemoradiotherapy 
in nasopharyngeal 
carcinoma

Liu J, Mao Y, 
Li Z, Zhang 
D, Zhang Z, 
Hao S, Li B

1/18/2016 
(ePub); 
8/2016 
(Print)

53 (training=42, 
validation=11)

Nasopharynx Contrast-
enhanced 
T1-weighted; 
T2-weighted; 
DWI; STIR TSE

Manual Yes Matlab Treatment 
response

Three parameter sets of 
texture features derived 
from their respective 
imaging modalities were 
iteratively curated using 
multiple selection (e.g., 
the dynamic range 
metric) and classification 
methods (e.g., LDA). All 
three (T1: 0.952/0.939, 
T2: 0.904/0.905, 
DWI: 0.881/0.929) 
demonstrated an ability 
to predict treatment 
response, with 
supervised learning 
models using features 
from T1-weighted 
models exhibiting the 
highest classification 
performance vs. 
T2-weighted [artificial 
neural network (ANN): 
p = 0.043, k-nearest 
neighbors (k-NN): 
p = 0.033] or DWI 
(ANN: p = 0.032, k-NN: 
p = 0.014)

Radiomic models 
exhibit an ability to 
predict treatment 
response in NPC 
patients

2 1
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[1 = Pubmed, 
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gov, 5 = chinese 

clinical trial 
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(chictR)]

Characterization 
of cervical lymph-
nodes using a 
multi-parametric 
and multi-modal 
approach for an 
early prediction of 
tumor response to 
chemo-radiotherapy

Scalco E, 
Marzi S, 
Sanguineti 
G, Vidiri A, 
Rizzo G

9/14/2016 
(ePub); 
12/2016 
(Print)

30 Head and 
neck (sites not 
specified)

T2-weighted; 
DWI; computed 
tomography (CT)

Manual Yes Python Treatment 
response

Pre-treatment features 
outperformed mid-
chemoradiation features 
in prediction of treatment 
response. Absolute 
diffusion coefficient 
(ADC) had the highest 
accuracy but, when 
combined with texture 
analysis, classification 
performance increased 
(accuracy = 82.8%). 
When T2-weighted 
texture features were 
evaluated independently, 
their best combination 
of pre-chemoradiation 
indices was equivalent in 
accuracy (81.8%)

An accurate 
assessment 
of response to 
chemoradiation 
in head and neck 
cancer patients 
could potentially 
be predicted from 
ADC parameters 
combined with 
texture analysis 
of T2-weighted 
imaging

2 1

Classification 
of progression 
free survival with 
nasopharyngeal 
carcinoma tumors

Farhidzadeh 
H, Kim JY, 
Scott JG, 
Goldgof DB, 
Hall LO, 
Harrison LB

3/24/2016 
(ePub)

25 Nasopharynx Contrast-
enhanced 
T1-weighted

Manual and 
autosegmentation

No Not specified PFS 
(dichotomized)

Texture features derived 
from highly-enhancing 
signal intensity 
subregions classified PFS 
with 80% accuracy (AUC: 
0.60). Texture features 
derived from weakly-
enhancing subregions 
classified PFS with 76% 
accuracy (AUC: 0.76)

Intratumoral textural 
variations obtained 
through radiomics 
analyses can provide 
a "novel metric" to 
predict prognosis 
and assist clinicians 
in the design of 
individualized 
treatment regimens

1 1

A Magnetic 
Resonance 
Imaging-based 
approach to 
quantify radiation-
induced normal 
tissue injuries 
applied to trismus 
in head and neck 
cancer

Thor M, Tyagi 
N, Hatzoglou 
V, Apte A, 
Saleh Z, Riaz 
N, Lee NY, 
Deasy JO

3/25/2017 
(ePub); 
1/2017 
(Print)

20 Head and 
neck (sites not 
specified)

Contrast-
enhanced 
T1-weighted

Manual No A 
Computational 
Environment 
for 
Radiotherapy 
Research

Radiation- 
induced trismus

Univariate statistical 
associations were 
derived. Mean dose to 
masseter (M), mean dose 
to medial pterygoid (MP), 
and Haralick correlation 
[gray-level co-occurrence 
matrix (GLCM)] of MP 
demonstrated the best 
discriminative ability in 
characterizing radiation-
induced trismus (AUC: 
0.85, 0.77, and 0.78, 
respectively)

An interplay between 
dose to M and MP 
as well as GLCM 
of MP suggests a 
possible relationship 
relevant to the 
etiology of radiation-
induced trismus

1 1
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errors (18.75%); and to identify which independent variables pri-
marily take a single value (6.25%). Subgroup analysis of MS to TS 
demonstrated collinearity between both scoring sets [Spearman’s 
ρ = 0.94 (p < 0.0001)].

Studies were strong in reporting their predictive performance, 
but only seven (44%) completely addressed their metrics in terms 
of validation strategies, parameter estimates, and CIs. A list of 
measured outcomes reported in each study is available in our 
supplementary material (Table S4). In addition, just one study 
(6.25%), Fruehwald-Pallamar et al. (38), compared their strategy 
with existing models in the literature using CIs. As for their 
conclusions, studies consistently failed to demonstrate whether 
sufficient data were available to fit their respective models (25%). 
However, most addressed potential bias (62.5%) as well as gener-
alizability (68.75%) of their data.

Synthesized Findings of Ongoing trials
Ongoing trials (51–54) (Table  2) estimate completion dates 
between June 2018 and December 2019 with one end-date 
unknown (25%). Three studies did not indicate a specific MRI 
sequence for feature extraction (75%). In addition, three studies 
will evaluate multiple head and neck sub-sites (75%). Two studies 
will prospectively evaluate data (50%), one study will be a case 
series (25%), and one study did not specify its design (25%). All 
studies will evaluate prognostic or predictive endpoints and, in 
addition, one study will evaluate a decision support system as its 
primary endpoint (25%). No preliminary data are available for 
any of the ongoing studies.

DiScUSSiON

Summary of main Findings
Our review represents the first attempt to summarize MRI 
radiomics research in HNC patients. Each completed study was 
evaluated using checklists generated from Luo et al. (1) EQUATOR 
methodology reporting guidelines: Individually scored, then 
collectively assessed for quality. Overall, our results indicate sig-
nificant heterogeneity in study design, with limited consensus on 
a preferred radiomic signature. Thus, despite addressing reporting 
guidelines, included studies still demonstrate poor standardiza-
tion. Such deficits may limit their generalizability and eventual use 
as clinical-decision support systems. However, this comprehensive 
review may improve comparison of data across study methodolo-
gies and structure similar analyses in other cancer sites.

Addressing Study Design
Several factors contribute to the lack of standardization across 
MRI radiomic studies in HNC patients. Variations follow the 
typical radiomics workflow: Patient populations (or head and 
neck sub-sites), image acquisition and pre-processing (MRI 
modalities), ROI segmentation methods, image pre-processing 
and feature extraction, feature selection, statistical modeling, and 
analyzed endpoints.

Head and Neck Sub-Sites
In our analysis, there was not a single head and neck sub-site 
representing a majority of all studies. However, the nasopharynx 

(37.5%) was the most commonly researched site. Diversity in head 
and neck sub-sites is not a unique characteristic of MRI radiomic 
studies, as research using CT radiomics has demonstrated a 
similar range of investigated patient populations (14). However, 
the high percentage of NPC studies may reflect the frequent use 
of MRI in their standard of care (55, 56).

In all six NPC studies, radiomic signatures demonstrated pre-
dictive potential. Of the feature categories included in their final 
radiomic signatures, GLCM was the only shared feature category 
between studies. This is consistent with NPC radiomic studies 
using other imaging modalities: Lu et al. (57) analyzed 88 texture 
features from FDG/PET-CT scans of 40 NPC patients, calculat-
ing the robustness of selected parameters in segmentation and 
discretization. Five GLCM properties (SumEntropy, Entropy, 
DifEntropy, Homogeneity1, and Homogeneity2) significantly 
demonstrated robustness at an intraclass coefficient constant 
≥0.8 for seven segmentation methods and five discretization 
bin sizes.

Magnetic resonance imaging radiomics is not limited to stud-
ies of tumors alone. Radiomic signatures can predict RT-related 
toxicities in normal tissues, such as radiation-induced trismus 
(45), or they can be designed to autosegment parotid glands 
post-RT (46). Future studies should investigate whether radiomic 
features could predict the effects of RT-related toxicities on qual-
ity of life or if changes in corresponding critical organ volumes, 
such as structures involved in the swallowing mechanism, can be 
estimated.

MRI Modalities
Magnetic resonance imaging sequence preferences varied 
among studies, which is not uncommon to radiomics research in 
other cancer sites (58). Multiparametric approaches may reduce 
the risk of bias from features extracted from one sequence alone 
(49). However, since Brown et  al. (36) and Jansen et  al. (40) 
evaluated physiologic parameters, it is reasonable that additional 
MRI sequences would not adequately address their respective 
hypotheses. For example, Jansen et al. (40) selected DCE MRI 
for its ability to incorporate pharmacokinetic modeling. Before 
their study, DCE MRI parametric maps exhibited high image 
coherence among a tumor response group of limb sarcoma 
patients (59). Brown et al. (36) chose DWI MRI to improve its 
accuracy in stratification of thyroid nodules, a utility proven in 
feasibility studies (60, 61).

Other than sequence selection, MRI modalities may differ in 
their scanner properties, which would affect the reproducibility 
of images and, in turn, the texture features derived from them. 
To investigate whether texture-based signatures could appropri-
ately classify head and neck masses across centers, Fruehwald-
Pallamar et al. (39) recruited five MRI scanners from multiple 
manufacturers—each with varying field strengths, sequences, 
and acquisition parameters. The objective was to test whether 
texture analysis could be reliably reproduced in a “real world” 
clinical scenario. Although the authors ultimately could not 
recommend texture analysis for routine practice, certain texture 
features maintained discriminatory significance—particularly 
those derived from short tau inversion recovery and T2-weighted 
sequences. However, a review of study methodology revealed 
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taBLe 2 | Magnetic resonance imaging (MRI) radiomics in HNC: ongoing trials

article title article 
authors

Publication 
date

Number of 
patients

Head and neck 
sub-site

mRi modality 
and/or 
sequence used 
for radiomics 
analysis

ROi 
segmentation 
method

image pre-
processing: 
yes/no

Feature 
extraction 
software

analyzed endpoint Statistical 
findings: 

radiomic model 
performance or 

conclusions

Successful search terms 
used [1 = Radiomic(s), 

2 = mRi texture analysis, 
3 = texture analysis, 
4 = head and neck, 

5 = magnetic resonance 
imaging texture analysis]

Databases 
(1 = Pubmed, 
2 = emBaSe, 

3 = NiH, 
4 = clinicaltrials.
gov, 5 = chictR)

Big data and models for 
personalized head and 
neck cancer decision 
support (BD2DECIDE)

Poli T, 
Schcekenback 
K, Schipper 
J, Colter L, 
Licitra L, Gatta 
G, Favales F, 
Trama A, De 
Cecco L, Silini 
EM, Maglietta 
G, Caminiti 
C, Iambin P, 
Hoebers F, 
Berlanga A

Estimated 
study 
completion 
date: 4/2019

Prospective arm: 
450, Retrospective: 
1000

Head and neck 
(Oral cavity, 
oropharynx, 
larynx, 
hypopharynx)

T1-weighted; 
T2-weighted; 
Computed 
Tomography (CT) 

Not specified Not specified Not specified Validation of decision 
support system; 
secondary outcomes 
include improved 
quality of life and 
assessment of 
survival time

N/A 1 4

Predictors of normal 
tissue response from 
the microenvironment in 
radiotherapy for prostate 
and head-and-neck 
cancer (MICROLEARNER)

Valdagni R, 
Orlandi E, 
Bedini N, 
Cecco LD, 
Zaffaroni N, 
Rancati T

Estimated 
study 
completion 
date: 
12/31/2019

Prospective clinical 
trial population: 
130 prostate, 130 
HNC; prospective 
validation population: 
70 prostate, 70 HNC

Prostate; Head 
and neck (oral 
cavity, pharynx, 
larynx, paranasal 
sinuses and 
nasal cavity, 
salivary glands)

MRI (not specified) Not specified Not specified Not specified Acute toxicity 
<90 days after Rt; 
secondary outcomes 
include late toxicity

N/A 1 4

Radiomics features 
for prediction of effect 
of local advanced 
nasopharyngeal carcinoma 
based on CT or MRI pre-
chemoradiotherapy—a 
prospective cohort study

Su T-S Estimated 
study 
completion 
date: TBD

Case series of 200 Nasopharynx CT or MRI (not 
specified)

Not specified Not specified Not specified Overall survival 
(OS), secondary 
outcomes include 
local-control rate 
and progression-free 
survival (PFS)

N/A 1 5

Personalized postoperative 
radiochemotherapy in 
patients with head and 
neck cancer

Zips DA Estimated 
study 
completion 
date: 6/2018

Not specified Head and neck 
(oropharynx and 
hypopharynx)

Positron Emission 
Tomography (PET), 
MRI (not specified)

Not specified Not specified Not specified PFS; secondary 
outcomes—disease 
free survival, OS, 
development of a 
multi-parametric 
decision support 
system

N/A 1 4
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omissions in model selection strategy, and their overall checklist 
score was below the median (TS: 37). Another issue was their 
intentionally diverse study population. Even though the sample 
consisted of 100 patients, the sub-sites were heterogeneous, with 
an unequal distribution of tumors among seven categories of 
benign masses and five categories of malignant masses. Thus, it 
is difficult to draw conclusions on radiomic signatures off this 
study alone.

Although the Quantitative Imaging Biomarkers Alliance 
(QIBA) continues to develop protocols for optimizing acquisition 
parameters, a technically confirmed profile for MRI radiomics 
does not exist. Yet, functional magnetic resonance imaging, DWI 
MRI, DCE MRI, and magnetic resonance elastography imaging 
biomarker profiles are currently in progress. The QIBA profile 
on DWI MRI (62), for example, specifies quality analysis (QA) 
of image acquisition and review of acquired data in brain, liver, 
and prostate studies. QIBA designed DWI MRI phantoms to 
streamline calculations of absolute diffusion coefficient (ADC) 
parametric maps and bias estimates, signal-to-noise ratios, as 
well as ADC spatial and b-value dependences. Extension of this 
protocol to DWI MRI radiomic studies in thyroid cancer could 
thus standardize ADC ROI assessment.

ROI Segmentation Methods
Once useable images are generated, ROIs must be segmented 
to assign volumes for feature derivation. Similar to other 
processes in the radiomics workflow, segmentation methods 
vary in their approach and design. Volumes are typically 
delineated either by manual contours, which can be laborious 
and time-consuming, or through autosegmenting machine-
learning algorithms (63). Although the latter may present a 
new opportunity for standardized segmentation methods, 
challenges persist related to the complex anatomy of the head 
and neck sub-site, optimization of patient-based atlases, and 
SVM training characteristics (46). Further still, such methods 
may pale in comparison to recent advances in deep learning, 
where autosegmentation of myocardial volumes has already 
been accomplished on cardiac MRI (64). For studies leveraging 
one segmentation method alone, QA must be specified to limit 
ROI variation error. Example QA strategies include utilizing 
multiple experts to review volumes or statistically validating 
segmentation methods, as Fruehwald-Pallamar et  al. (38) 
optimally demonstrated.

Image Pre-Processing and Feature Extraction
Before feature extraction, image quality should be ensured 
through pre-processing steps. To mitigate noise, which may 
confound raw imaging data, filters can be applied. Filter choice 
is dependent on acquisition parameters of imaging modalities, 
which necessitates standardization of preceding steps. Other 
obstacles to image pre-processing include diverse resampling 
schemes, varying computational definitions, motion artifacts, 
tumor size, and intratumoral heterogeneity, all of which need to 
be accounted for in study methodology (65, 66). As an example, 
Liu et  al. (37) not only specified the standardization of their 
image acquisition parameters but also detailed their protocol for 
normalizing variations in image gray-level ranges.

Feature extraction ultimately depends on choice in software 
as well as characteristics of the features themselves. Radiomics 
features can be categorized by statistical output, where each 
subsequent ordinal group represents a higher complexity of 
voxel-based analysis. For example, first-order characteristics 
(e.g., ADC) are spatially independent descriptors of voxel distri-
bution. Second-order characteristics, often equated with textural 
features, describe spatial relationships between two neighboring 
voxels (12). Often, however, studies do not explicitly character-
ize their extracted feature set, a major limitation to research 
reproducibility. At the minimum, the included studies in this 
review extracted spatially dependent features to investigate their 
endpoints.

Feature Selection
Each study developed a unique radiomic signature, which 
demonstrates both the strengths and weaknesses of “big data” 
research. Strengths include the volume of potentially useful 
quantitative information and flexibility of radiomic applications, 
but reproducibility and reliability of measured outcomes remain 
a concern (65). Thus, comparison of all selected features between 
studies is not entirely feasible. Although radiomic signatures 
contained similar categories of features, diverse parent feature 
samples derived from diverse MRI sequences with their own 
diverse scanner properties, signify the level of input and output 
variation inherent to these studies.

While most included studies detailed selection of extracted 
radiomic features, Meyer et al. (41) did not reduce their initially 
derived feature set. Direct and inverse correlations between speci-
fied features and classification parameters were discovered, but this 
presents a challenge to rationalize statistically. Potentially spuri-
ous associations (e.g., false positives) are inadequately addressed, 
which reflects the issues (e.g., approaches to data cleaning and 
transformation) identified collectively in our checklist. Future 
studies should clearly justify handling of missing values as well 
as terms and conditions for outlier removal. As checklist scores 
indicate, this remains an unaddressed issue.

Investigating the stability of MRI radiomic signatures could 
also identify necessary tweaks to the system. For instance, a 
feature selection method based on established stability criteria 
may help guide standardization of radiomic signatures (65). In 
soft tissue sarcomas, DWI MRI radiomic features derived from 
ADC maps were shown to maintain relevance across geometric 
transformations of ROIs (67). In recurrent GBM, test-retest 
reproducibility of 158 second-order radiomic features revealed 
74% stability (68). Similarly, Liu et  al. (2) only incorporated 
reproducible textural parameters in their final radiomic signa-
ture. They used a concordance correlation coefficient ≥0.9 to 
initially select features that maintained stability across different 
multi-observer ROI iterations of the same NPC patient. Outside 
of validation datasets, however, similar approaches are lacking 
in HNC studies.

Statistical Modeling
Discussed in previous reviews, a final radiomic signature is con-
strained by statistical analysis (9, 69, 70). When building predictive 
models, a set of candidate models should be reduced to the most 
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appropriate classifier, defined by performance metrics of a spe-
cific selection strategy (e.g., k-fold validation) (1, 66). Otherwise, 
a concern may be the adoption of dimensionality-reduction 
techniques solely to limit over-fitting of data. A combined feature 
extraction and statistical learning platform, built for radiomic 
challenges, would quell concerns about optimization of radiomic 
models. Until then, the aforementioned barriers persist across 
imaging modalities, with limited research focused exclusively on 
MRI radiomic applications (65).

Analyzed Endpoints
Choice of analyzed endpoint guides investigators through their 
specific radiomics pipeline. Thus, this adds another layer of 
complexity to selection, extraction, and modeling of features. To 
objectively predict outcomes, then, automating the above steps 
may preclude confounded associations. In their prospective MRI 
radiomic analysis of head and neck tumor p53 classification, 
for example, Dang et al. (37) used separate software for feature 
quantification and selection to identify best candidate predictors. 
Textural features can be biased by imbalances in events or classi-
fication parameters, particularly for prediction of rare outcomes. 
Statistical sampling techniques to enhance prediction accuracy 
should be implemented for unbalanced datasets.

In their 2016 review of HNC radiomics, Wong et  al. (14) 
identified four of the included studies in our cohort, with three 
(75%) investigating classification schemes and just one (25%) 
analyzing prognostic or predictive biomarkers. At the time, CT 
radiomics research in HNC concentrated on the latter category 
(14). Discovered through our search strategy, abstracts from 
conference proceedings (Table S3 in Supplementary Material) all 
focused on prognostic endpoints in NPC patients (71–73). Thus, 
perhaps, MRI radiomic studies in HNC are trending toward these 
outcome measures.

Checklist Scores
Studies with the highest overall scores [e.g., Liu et al. (37) (TS: 
48)] addressed more of the methodology reporting guidelines 
than studies with lower scores (Spearman’s ρ  =  0.94), which 
reflects areas of improvement for subsequent work. For example, 
Liu et al. (2) (MS: 30), were awarded points across the category 
except for one item (stating how missing values were handled). In 
addition to an internal 10-fold cross-validation strategy, the study 
externally validated their findings in an independent sample of 
11 patients. They were also the only study to address each item in 
the “Build the predictive model” subsection. Their manuscript’s 
discussion received points for every item in the “limitations” 
subsection; in particular, the authors demonstrated sufficient data 
available for fitting of their models (neglected in 75% of studies).

Likewise, Ramkumar et al. (43) addressed methodology items 
commonly missing in other studies. For instance, the authors 
explained possible prediction errors of texture analysis in dis-
tinguishing sinonasal squamous cell carcinoma from inverted 
papilloma. Similarly, they addressed multiple items in the data 
pre-processing subsection including data cleaning (e.g., feature 
reduction) and data transformation. The study meticulously 
described organization and selection of features, via a principal 
component analysis, as well as the metrics in building their final 

model. Although not technically an external validation set, the 
addition of a neuroradiologist review to an internal leave-one-out 
cross-validation assess buffered the strength of their classification 
accuracy.

Limitations
The review does present some notable limitations. A literature 
search with a known end-date may miss studies published in the 
interim; this is a limitation of any systematic review. Since MRI 
radiomics is a field still in its infancy, with a nomenclature not 
fully standardized, search keywords based on existing literature 
may not detect all eligible works inclusively. Specifically, keywords 
containing “texture analysis” may not encompass the breadth of 
radiomic investigations. To address this, we combed references 
of each included manuscript. Yet, we are aware of the challenges 
and risk of bias in selecting potential studies for inclusion and 
presenting a complete summary of a burgeoning research topic.

Although our checklist was constructed from established 
guidelines (1), the scoring system required multiple revisions 
to fairly assess the included studies. As the guidelines were not 
intended to be quantitative measurements, our group met fre-
quently to weight each item. In addition, we removed guidelines 
which were difficult to interpret among all authors. Finally, we 
cannot predict whether the original authors of the guidelines 
would have constructed the same checklist. We can, however, 
attest to its quality, given its review by multiple expert radiation 
oncologists trained in radiomic analyses.

conclusion
Magnetic resonance imaging radiomic studies in HNC lack 
standardization of study design, which practically limits their 
clinical relevance. Nonetheless, radiomic applications have 
demonstrated predictive potential in classification schemes and 
prognostic biomarker identification. Our quantitative scoring 
system may encourage routine study assessment, perhaps ensur-
ing better data moving forward.

As our collation of the available HNC evidence indicates, MRI 
radiomics is an evolving field of study. Thus, we suggest several 
steps for streamlining future investigations. At our institution, 
novel radiomic-specific MRI phantoms are currently in develop-
ment and may quantify the effects of inter-scanner variability on 
radiomic feature generation (70). Understanding the interplay 
between these processes will hopefully enhance data output. 
Regarding extraction and selection of features, the imaging 
biomarker standardisation initiative continues to derive testable 
categories (74). However, feature stability assessments in MRI are 
still pending. Analysis should be conducted using readily avail-
able software with sufficient flexibility across statistical platforms. 
Reports of finalized results should follow Luo et al. (1) EQUATOR 
methodology reporting guidelines.

To cross-validate radiomic signatures externally, tests should 
be performed on public patient datasets (e.g., The Cancer Imaging 
Archive). To this end, an upcoming multi-site collaboration 
between MDACC and other academic cancer centers will generate a 
repository of patient data in Digital Imaging and Communications 
in Medicine format, as part of our LAMBDA-[RAD]2-HN initiative: 
a Large-scale Image Aggregation for Machine-Learning/Big Data 
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Applications in Radiomics/Radiotherapy for Head and Neck 
Cancer. This working group aims to provide an open-access library 
of curated “big data,” rigorously maintained and routinely assessed 
for quality (75). Therefore, subsequent efforts to standardize MRI 
radiomics in HNC would share a reliable data pool.
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Background: Convolutional neural networks (CNNs) have been shown to be powerful 
tools to assist with object detection and—like a human observer—may be trained based 
on a relatively small cohort of reference subjects. Rapid, accurate organ recognition in 
medical imaging permits a variety of new quantitative diagnostic techniques. In the case 
of therapy with targeted radionuclides, it may permit comprehensive radiation dose ana
lysis in a manner that would often be prohibitively timeconsuming using conventional 
methods.

Methods: An automated image segmentation tool was developed based on three 
dimensional CNNs to detect right and left kidney contours on noncontrast CT images. 
Model was trained based on 89 manually contoured cases and tested on a cohort of 
patients receiving therapy with 177Luprostatespecific membrane antigen617 for met
astatic prostate cancer. Automatically generated contours were compared with those 
drawn by an expert and assessed for similarity based on dice score, mean distance 
toagreement, and total segmented volume. Further, the contours were applied to voxel 
dose maps computed from posttreatment quantitative SPECT imaging to estimate 
renal radiation dose from therapy.

results: Neural network segmentation was able to identify right and left kidneys in all 
patients with a high degree of accuracy. The system was integrated into the hospital 
image database, returning contours for a selected study in approximately 90 s. Mean 
dice score was 0.91 and 0.86 for right and left kidneys, respectively. Poor performance 
was observed in three patients with cystic kidneys of which only few were included in the 
training data. No significant difference in mean radiation absorbed dose was observed 
between the manual and automated algorithms.

conclusion: Automated contouring using CNNs shows promise in providing quantita
tive assessment of functional SPECT and possibly PET images; in this case demonstrat
ing comparable accuracy for radiation dose interpretation in unsealed source therapy 
relative to a human observer.

Keywords: automated segmentation, radionuclide therapy, kidney, nuclear medicine dosimetry, deep learning
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In comparison to other radiation oncology modalities, personal-
ized dosimetry assessment in unsealed source therapies is relatively 
uncommon. The process involves the measurement of regional 
uptake and pharmacokinetics followed by some calculation of 
radiation transport (1). In the first stage, the concentration of radi-
opharmaceutical is assessed on imaging and—by collecting a time 
series or applying known uptake and clearance parameters—an 
estimate of the number of disintegrations in each tissue is obtained. 
Finally, decays are converted into radiation absorbed dose through 
published self- and cross-dose factors or Monte Carlo simulation. 
Time-activity curve fitting by either least squares or analytical 
methods is a mechanical process. Similarly, integration of pharma-
cokinetic data and multiplication of organ or voxel dose factors are 
trivial mathematical operations. Unfortunately, employing these 
techniques often requires manual input with a degree of time and 
expertise that precludes their widespread use. In a previous work, 
we have demonstrated the feasibility of performing image-based 
dosimetry to create three-dimensional voxel dose maps (2). This 
is an automated process that may be applied to any radionuclide 
treatment where sequential follow-up imaging is available.

The use of neural networks for organ recognition has rapidly 
surpassed the capabilities of existing automated contouring 
techniques that rely on either rule-based methods (3) or atlas 
segmentation (4). Within just a few years the road map for 
performing pixel-by-pixel segmentation from a practical amount 
of ground truth data has demonstrated applications across most 
medical imaging modalities (5–7). These convolutional neural 
networks (CNNs) are demonstrating utility for image segmenta-
tion in CT, MRI, and ultrasound (8, 9). They may be designed to 
operate based on two-, three-, or even four-dimensional (either 
time series or multiparametric) images (10, 11). They have 
shown applications in rapid contouring to offer more efficient 
radiation therapy treatment planning (12) as well as in the field of 
computer-aided detection of specific pathologies (13). Moreover, 
these computational techniques—both inference and model 
training—are feasible on standard personal computers.

Segmentation of kidney on CT imaging presents challenges 
because the appearance, particularly at the inferior- and superior-
most slices, may closely resemble other abdominal structures in 
terms of shape and physical density. As such, it is logical to employ 
a CNN that utilizes 3D kernels across the input volume as a whole 
(14). The predicted shape on one slice is then informed by features 
present on subsequent image slices. In this work we employ an auto-
mated CNN-based software tool to perform quantitative analysis 
of SPECT images based on the anatomical outline in a fused CT 
volume. More specifically, we demonstrate the feasibility of fully 
automated radiation dose estimation in unsealed source therapy 
as applied to patients with metastatic prostate cancer treated with 
radioactive prostate-specific membrane antigen (PSMA).

MaTerials anD MeThODs

Training image Data
Training cohort was based on a population of manually con-
toured left and right kidneys from varied group of clinical cases. 

The largest of these was a set of post-treatment 177Lu-octreotate 
therapy of neuroendocrine cancer acquired on a hybrid SPECT 
system with low-dose CT acquisition and 5 mm slice thickness 
(Siemens Symbia T6 & Intevo 16, Siemens Healthineers, Erlangen, 
Germany). A subset of patients scanned on dedicated diagnostic 
CT (Siemens Force, 0.8–5.0 mm slice thickness) and radiotherapy 
simulation CT systems (Philips Brilliance Big Bore, 3 mm slice 
thickness, Philips Medical Systems, Cleveland, OH, USA) were 
included to better adapt the model for detection across differ-
ent populations and equipment types. A total of 89 manually 
contoured patients were included for training. Each patient was 
augmented seven times with a random degree of added noise, 
edge enhancement, Gaussian smoothing, change in global HU 
values, translation, and in-plane rotation to avoid CNN overfit-
ting due to non-anatomical image feature (6). This provided 712 
subjects available for model training. A detailed description of the 
image augmentation techniques used is given in the Appendix S1 
in Supplementary Material.

Testing image Data
Independent test images were taken from a cohort of 24 patients 
involved in a Phase II prospective trial of 177Lu-PSMA-617 for treat-
ment of metastatic prostate cancer (ANZCTR12615000912583) 
(15). Each patient received serial post-treatment quantitative 
SPECT/CT imaging (16) at timepoints of 4, 24, and 96  h. 
Three-dimensional radiation dose maps were processed using 
a previously described technique involving non-rigid image 
registration, voxel-wise pharmacokinetics analysis, and dose 
kernel convolution (2). Low-dose, fused CT images were des-
ignated as input to the CNN segmentation model. Each kidney 
in the testing cohort was manually contoured and reviewed by a 
nuclear medicine physician. Structures were compared to those 
automatically detected based on dice score, mean distance-to-
agreement (per voxel the shortest distance from the surface of one 
structure to another), volume, and estimated radiation absorbed 
dose from 177Lu therapy according to three-dimensional voxel 
dose map (17). Mean right and left kidney doses were evaluated 
for null hypothesis of difference between contour techniques by 
paired t-test.

convolutional neural network
Three-dimensional convolutional neural network was modi-
fied from the structure published by Pazhitnykh et al. using 21 
convolutional layers (18). CNN architecture was employed with 
Keras (v2.08) in Python with Tensorflow backend (v1.3) (19). 
A dice coefficient loss function—the ratio of the intersection of 
predicted and true labels over their average volume—was used to 
improve sensitivity to structure margins and normalize the weight 
of each classification region: left kidney, right kidney, and back-
ground. Each convolution layer utilizes filters with dimensions of 
3 × 3 × 3 followed by batch normalization (20) and rectified linear 
unit activation layers (21). Following convolution at each resolu-
tion a 2 × 2 × 2 max pooling layer was used to downsample deeper 
network layers. After four convolution, normalization, activation, 
and max pooling stages, the network employs a similar process to 
upsample the native image resolution. The output of the activa-
tion layers prior to max pooling are concatenated with the output 
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FigUre 2 | Pre and postprocessing workflow developed for automated renal dosimetry. Input image (a) is automatically cropped to a smaller search area based 
on alignment to a reference image volume. The cropped and downsampled image (B), 128 × 128 × 64 voxels, is used as input to the convolutional neural networks 
segmentation model. Labeled left and right kidneys (c) are then upsampled, smoothed, and fused with the original, uncropped image (D). Label map is exported in 
dicomRT structure file, where voxel dose images may be analyzed on a hospital workstation (e).

FigUre 1 | Layer structure and dimensions for the semantic convolutional neural network used in this study. Fully threedimensional convolutional network structure 
is adapted from a work by Pazhitnykh et al. (18).
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of the upsampled activation values of the same resolution using 
the U-Net methodology described by Ronneberger et al. (6). The 
overall network framework is given in Figure 1.

Convolutional neural network input volume is a matrix with 
dimensions 128 × 128 × 64 voxels. The workflow involved several 
pre-processing steps. First, bony anatomy was aligned with a 
reference patient by rigid registration (22). Images were cropped 
to a smaller search volume of 334 × mm x 334 × mm x 320 mm; 
a volume that could consistently capture the variation in kidney 
location between patients, while limiting the degree of down-
sampling required for input into the CNN algorithm. The native 
hybrid CT voxel resolution of 0.98 mm ×  0.98 mm ×  5.0 mm 
was subsequently resampled at 2.61 mm × 2.61 mm × 5.0 mm to 
achieve the required matrix dimensions. The complete workflow 
is illustrated in Figure 2. All training patients were pre-processed 
by the same methodology. Network training was allowed to 
run for 300 epochs using 640 teaching subjects. Another 72 
augmented samples were used as a semi-independent scoring 
set to test training progress. Processing required 2.5  days on a 
cuda-enabled GPU (Nvidia GeForce GTX 1080 Ti) achieving 
dice accuracy of 0.98 with training data and 0.93 with a subset of 
augmented training patients as shown in Figure 3.

The software tool was integrated with the hospital PACS 
image database allowing selected CT studies to be transferred to 

a processing dicom node—a local computer—which returned the 
label map as a corresponding dicom-RT structure set. Structures 
could be viewed and modified on a standard imaging workstation 
and accessible hospital-wide. The process typically completed in 
less than 90 s; most of which was required for registration to the 
reference volume and post-processing to upsample the detected 
kidney labels at the original CT image resolution. CNNs contour 
detection required 10–15 s in most cases.

resUlTs

A deep learning segmentation model was trained for detection 
and accurate delineation of kidneys on non-contrast, low-dose CT 
scans. A typical result overlaid on fused CT and voxel dose map 
is given in Figure 4. In more than 80% of cases, margins were in 
close visual agreement for both kidneys. Visual results of manual 
and automated contours overlaid with a coronal maximum inten-
sity projection of the voxel dose map for each patient are shown in 
Figure 5. Even in poorly performing cases, some region of each 
kidney was detected with the developed registration and CNN 
method; a volume that was often representative of radionuclide 
uptake across the organ’s functional structure. When compared 
to manual segmentation as ground truth, automated contours 
achieved mean dice scores of 0.91 ± 0.05 and 0.86 ± 0.18 for right 
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FigUre 4 | Typical case illustrating accuracy of the deep learning 
segmentation algorithm (red) in comparison to manual contours (blue). 
Contours are shown on (a) maximum intensity projection of voxel dose  
map, as well as (B) sagittal and (c) axial fused image sets.

FigUre 3 | Evolution of model accuracy with over the 300 epochs for the training cohort (blue) and an augmented testing cohort (orange). Training required 
approximately 2.5 days for completion.
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and left kidneys, respectively. The mean distance-to-agreement 
was estimated at 2.0 ± 1.0 and 4.0 ± 7.5 mm; a finer accuracy than 
the system resolution of typical SPECT imaging device.

Ignoring the one poorly performing left kidney with dice score 
of 0.11 and mean distance-to-agreement of 38.3 mm, left kidney 
accuracy is compared to the right side with a mean dice value of 

0.89 ± 0.08 and MDA of 2.5 ± 1.7 mm. It should also be noted that 
the CNN-defined contours were consistently larger than those 
drawn manually by a factor of approximately 7%. This systematic 
effect likely attributed to the upsampling and smoothing of the 
predicted contours when returning to the native CT resolution 
and may be corrected by adjusting the prediction threshold to a 
value slightly above 0.5.

Comparing radiation dose estimates from automated and 
manually drawn contours, there is no apparent bias using either 
technique (Figure 6). Across the cohort there was an average dif-
ference in dose estimate of 3.0% in the right kidney and −3.6% in 
the left. SD of the error was ±4.5 and ±5.7%, respectively. If omit-
ting the results for patients with cystic kidneys which would be 
reviewed and corrected in a clinical workflow—patients #2, 3, and 
5 in Figure 5—the discrepancy in dose estimates between manual 
and automated methods is less than 2% for both kidneys. Based 
on t-test of null hypothesis, no difference between dose estimates 
between groups was detected (p = 0.03 and p = 0.01, right and 
left). Results of contour accuracy and renal radiation dose for each 
patient are reported in Table S1 in Supplementary Material.

Three of the patients in the 177Lu-PSMA therapy cohort dis-
played highly cystic kidneys; to a degree that was not observed in 
the training patients (Figure 7). In these cases, the mean dice score 
was dramatically lower at 0.66. No systematic increase or decrease 
in estimated dose was shown (−2.70%) indicating that often the 
CNN-contoured region was representative of the mean uptake in 
the manually delineated kidney. In another three patients, a small, 
detached section (<10 cc) of bowel was included one of the contours. 
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FigUre 6 | Estimated radiation absorbed dose applying either manual (black) or automated convolutional neural network segmentation (grey) to determine mean 
radiation absorbed to right and left kidneys from 3D voxel dose maps. Results for right (a) and left (B) kidneys are presented independently.

FigUre 5 | Results of automated (red) and manual (blue) segmentation overlaid with maximum intensity projections of voxel dose volumes. Patients 2 and 5 show 
some disagreement in cystic regions of kidney. In patients 6, 23, and 24 a small volume of bowel is captured by the automated algorithm.
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In none of the cases did error manifest in an appreciable effect on 
estimated renal dose. If frequently noted, small non-contiguous 
labels could be detected and removed as a post-processing step. 
Only one patient with structurally normal kidneys showed poor 
performance with the segmentation algorithm omitting approxi-
mately one-third of the left kidney volume (dice = 0.67); an error 
which coincided with a region of CT streak artifact.

DiscUssiOn

The advent or rapid, accurate tissue contouring through deep 
learning segmentation demonstrates the potential for quantitative 

diagnosis in molecular imaging. In this study, the results of a CNN 
trained to detect kidneys on CT images have been used to assess 
regional radiation exposure in unsealed source therapy. In prin-
ciple, contouring of tumors and at-risk tissues is the last remain-
ing step in nuclear medicine dosimetry that required manual 
oversight. We have combined automated kidney segmentation 
with a previous work that computed voxel dose maps from serial 
post-treatment SPECT images to demonstrate the feasibility of a 
fully automated system. The time required to process a case with 
manual methods may require several hours and may be subjected 
to systematic variability due to the method of curve fitting and 
drawn contour margins.
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FigUre 7 | Most challenging case encountered in testing the renal 
convolutional neural networks. Due to multiple large cysts in originating within 
the central renal structure, the segmentation tool detected only 20 cc of the 
manually contoured 167 cc left kidney volume (dice = 0.11).
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While the automated system performs well in most cases—
achieving dice scores which are comparable to inter-observer 
variability between manual scores in CT (23)—it is advisable 
to review all contours before being relied upon for quantitative 
assessment. In this instance, the training cohort was not neces-
sarily representative of the patients used for testing. Those used to 
train the model were generally younger, from both genders, and 
did not include cases with cystic kidneys which were observed in 
3 of the 24 testing cases. In the preparation of this framework, con-
siderable improvement was noted over multiple iterations of the 
renal CNN as challenging cases were flagged, manually contoured, 
and incorporated into subsequent training files. It is worth noting 
that the addition of these irregular patients did not hinder the 
accuracy of the CNN when detecting otherwise normal anatomy. 
From the experience in developing this tool, the authors speculate 
that features which would accommodate detection of functional 
regions in polycystic kidneys would develop as the model which 
was retrained with additional poorly performing cases.

Previous methods such as the one described by Hasegawa 
do appear sound for segmentation of two-dimensional images 
(24). The majority of recent publications involving semantic seg-
mentation employ variations on the U-Net structure described 
by Ronneberger et al. (6). These have been adapted to 3D image 
volumes and have proven sufficiently accurate to avoid the need 
for shape-based post-processing. The depth of these networks 
may be considered overkill when comparing the complexity 
of the segmentation task relative to the number of parameters 
that define the model weights. However, the computational 
requirements to train and apply such a model are feasible on a 
standard PC and they (or slight variations) have been shown to be 
extremely adaptable to a multitude of image segmentation tasks 
(13, 14, 25, 26). In the present work, we have, therefore, chosen 
to adopt the CNN approach given that a more complex algorithm 
may also prove more adaptable with issues concerning some of 
the more complex structural abnormalities, such as renal cysts.

By employing a dice score loss function based on the accuracy 
of trained kidney margins rather than the total number of correctly 
categorized voxels, a dramatic improvement in the detection of 
kidney margins was observed. In the former version, as employed 
by Pazhitnykh et al. to contour lungs (18), the model was heavily 
weighted to correctly designate background (non-label) voxels 

which typically comprised more than 90% of the search volume. 
In this initial iteration, the CNN could be trained to routinely 
identify some or the majority of kidney tissue, but was not sensi-
tive to small boundary errors because these only manifest in subtle 
changes to the overall accuracy calculation. The combination of 
dice score and training data augmentation greatly improved the 
algorithm utility; correctly identifying organ margins in approxi-
mately 80% of cases. The model reported in this work was further 
improved by the addition of challenging cases that were flagged 
as poorly delineated by the existing CNN. This method could 
be applied to other challenging soft tissue regions and hope to 
implement a more comprehensive set of organs in future nuclear 
medicine dosimetry tools. For smaller organs or tumors, it may 
be advisable to utilize a tighter search volume or sliding window 
technique to perform classification at or near the native CT image 
resolution. There is also the potential to feed the fused SPECT/CT 
or PET/CT dataset into the CNN, capitalizing on complimentary 
features in both image domains to improve specificity.

cOnclUsiOn

Medical image segmentation by CNNs shows merit in the 
analysis of post-treatment scans in order to practically estimate 
radiation dose from unsealed source therapies. Deep learning 
methods have been applied to consistently detect right and left 
kidneys with no significant difference between radiation dose 
determined from CNN contours compared with manual meth-
ods. The tool has been combined with a previously developed 
voxel dose processing technique demonstrating the potential for 
fully automated radiation dose estimation for nuclear medicine 
therapies in the near future.

aVailaBiliTY OF DaTa anD MaTerials

The patient datasets used in this study are not available to the pub-
lic. The neural network model as well as pre- and post-processing 
computer software may be distributed on request to the corre-
sponding author.
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Trials Registry (ANZCTR12615000912583). The study protocol 
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and Good Clinical Practice and all patients gave written informed 
consent prior to entry on the study.
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PJ developed the image processing techniques described in this 
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Due to the rapid increase in the availability of patient data, there is significant interest 
in precision medicine that could facilitate the development of a personalized treatment 
plan for each patient on an individual basis. Radiation oncology is particularly suited for 
predictive machine learning (ML) models due to the enormous amount of diagnostic data 
used as input and therapeutic data generated as output. An emerging field in precision 
radiation oncology that can take advantage of ML approaches is radiogenomics, which is 
the study of the impact of genomic variations on the sensitivity of normal and tumor tissue 
to radiation. Currently, patients undergoing radiotherapy are treated using uniform dose 
constraints specific to the tumor and surrounding normal tissues. This is suboptimal in 
many ways. First, the dose that can be delivered to the target volume may be insufficient 
for control but is constrained by the surrounding normal tissue, as dose escalation can 
lead to significant morbidity and rare. Second, two patients with nearly identical dose 
distributions can have substantially different acute and late toxicities, resulting in lengthy 
treatment breaks and suboptimal control, or chronic morbidities leading to poor quality 
of life. Despite significant advances in radiogenomics, the magnitude of the genetic con-
tribution to radiation response far exceeds our current understanding of individual risk 
variants. In the field of genomics, ML methods are being used to extract harder-to-detect 
knowledge, but these methods have yet to fully penetrate radiogenomics. Hence, the 
goal of this publication is to provide an overview of ML as it applies to radiogenomics. 
We begin with a brief history of radiogenomics and its relationship to precision medicine. 
We then introduce ML and compare it to statistical hypothesis testing to reflect on 
shared lessons and to avoid common pitfalls. Current ML approaches to genome-wide 
association studies are examined. The application of ML specifically to radiogenomics 
is next presented. We end with important lessons for the proper integration of ML into 
radiogenomics.

Keywords: statistical genetics and genomics, radiation oncology, computational genomics, precision oncology, 
machine learning in radiation oncology, big data, predictive modeling
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1. iNTRODUCTiON TO RADiOGeNOMiCS

1.1. Normal Tissue Toxicity Directly Limits 
Tumor Control
Over 50 years before the discovery of the DNA double helix, radia-
tion therapy and normal tissue radiobiology became irrevocably 
linked after Antoine Henri Becquerel left a container of radium 
in his vest pocket, causing a burn-like reaction of erythema 
followed by ulceration and necrosis (1, 2). Ever since, the goal 
of therapeutic radiation has been to deliver a maximal effective 
dose while minimizing toxicity to normal tissues. The importance 
of this goal has increased as cancers that were previously fatal 
became curable and patients have had to live with long-lasting 
late effects and secondary malignancies (3, 4).

For several tumors, an argument can be made that survival 
is so poor that one should not be as concerned for late effects. 
However, acute toxicity may also constrain dose escalation, 
which directly limits tumor control, since a therapeutically 
efficacious dose may not be achievable due to toxicity. This 
is because dose tolerances are typically set for 5–10% toxicity 
in clinical trials, so the patients with the most radiosensitive 
normal tissue ultimately determine the limit for the maximum 
dosage for all patients (5, 6). As Becquerel noted, tumor control 
and normal tissue toxicity have been, and remain, irrevocably 
linked. Advances in the last decades from the fields of radiation 
physics and radiation biology have focused on finding ways to 
separate these two effects with varying success, as discussed 
below.

1.2. Technology Has improved Normal 
Tissue Toxicity
To improve therapeutic ratio (i.e., the cost–benefit of tumor 
control vs. normal tissue side effects) in recent decades, medical 
physics has made significant advances in the technology and 
techniques of radiation delivery to spare normal tissue (7). 
This includes moving from 2D treatment planning using X-ray 
films to 3D planning using CT-simulation, and now to inverse 
planning and fluence modulation to create conformal dose 
distributions employing intensity-modulated radiation therapy 
(IMRT) (8). IMRT not only utilizes more sophisticated hardware 
but also advanced treatment planning software and optimization 
algorithms. Multiple prospective and retrospective studies have 
demonstrated the superiority of IMRT in reducing toxicity for 
most solid cancer types, including those of the head and neck (9), 
lung (10), prostate (11), anus (8), and soft tissue sarcoma (12). 
Utilizing protons for cancer treatment provides another way 
to increase dose conformality and decrease normal tissue dose 
through the Bragg peak. Complementary technologies include 
improvements in image guidance (13), motion management (14), 
and patient positioning (15). Radiosurgery for central nervous 
system tumors is an attractive alternative to lengthier and more 
toxic treatments. Brachytherapy also offers dosimetric advan-
tages to decrease toxicity and improve tumor control. Due to 
the successes of the technological advancements, there has been 
relatively fast adoption of emerging physics technologies in the 
clinic as standard of care in many places.

1.3. Radiobiology and Normal Tissue 
Toxicity
While radiation physics was using increasingly complex methods 
and data to perform more individualized treatments, advance-
ments in radiation biology were also developing, but have yet to 
achieve the same level of clinical impact. Early efforts in the 1980s 
and 1990s to employ radiation biology approaches in the clinic 
focused on altered fractionation schedules to improve control of 
head and neck tumors and small cell lung cancer while sparing 
normal tissue toxicity. These trials demonstrated benefits to 
both hyperfractionation (16, 17) and accelerated fractionation 
(18, 19), but these protocols have not translated into changes in 
the standard of care at many centers or into similar studies in 
most cancers (20). Therapies for modulating tissue oxygenation 
and the use of hypoxic cell radiosensitizers and bioreductive 
drugs have been moderately successful in animal studies and 
randomized clinical trials (21) but also have not yet reached wide 
penetration in the United States despite level I evidence, often due 
to side effects. More recently, hypofractionation (i.e., larger doses 
of radiation per fraction) has become widely adopted; however, 
there is significant controversy as to how this can best be modeled 
(22–26). Whereas advances in radiation physics brought about 
measurable improvements in both tumor control and normal 
tissue protection as demonstrated through multiple clinical  
trials—largely due to IMRT—this could not be said for advances 
in radiobiology. It became clear that a different approach other 
than modeling of fractionation would be necessary to keep pace 
with the increasing torrent of clinical data. Such an opportunity 
would arise at the turn of the twenty-first century with substantial 
advances in molecular biology and the first draft of the human 
genome (27, 28) as discussed below.

1.4. Genomic Basis for Radiotherapy 
Response
Through studies of patients following radiotherapy (29, 30), it has 
become apparent that patient-related characteristics, including 
genomic factors, could influence susceptibility for the develop-
ment of radiation-related toxicities (31). To identify the genomic 
factors that may be associated with normal tissue toxicities, a 
series of candidate gene studies was performed that resulted in 
more than 100 publications from 1997 to 2015 (32). However, 
with a few exceptions, the findings were largely inconclusive, 
and independent validations were rare (33). The risk of spurious 
single-nucleotide polymorphism (SNP) associations has been a 
concern for candidate gene association studies even before the 
advent of genome-wide association studies (GWAS) (34).

With improved understanding of the genetic architecture 
of complex traits, we now know that a few variants in limited  
pathways—such as DNA damage response—cannot alone explain 
most of variation in radiotherapy response. While this work was 
in progress, results of the Human Genome Project and related 
efforts demonstrated the magnitude of genetic variation between 
individuals. Over 90% of this variation comes from common 
SNPs (frequency >1%) and rare variants. There are about 10 mil-
lion common SNPs in the human genome and any locus can be 
affected. These variants can be in coding regions (exons), introns, 
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or intergenic regulatory regions. Early efforts to understand how 
SNPs were linked to phenotypic traits were marred by poor statis-
tical understanding of correction for multiple hypothesis testing, 
which led to multiple small and underpowered studies (35).

To improve power to detect new SNP biomarkers for radiation 
toxicity, the International Radiogenomics Consortium (RGC) was 
formed in 2009 to pool individual cohorts and research groups. 
One of the main goals is to determine germline predisposition to 
radiation toxicity and there have been several studies from RGC 
investigators that have identified novel risk SNPs.

REQUITE is a project led by RGC members to prospectively 
collect clinical and biological data, and genetic information for 
5,300 lung, prostate, and breast cancer patients (36). The RGC 
also collaborates with the GAME-ON oncoarray initiative (32).

1.4.1. Fundamental Hypothesis of Radiogenomics
Andreassen et  al. reported three basic hypotheses of radiog-
enomics (32):

 (a) Normal tissue radiosensitivity is as a complex trait dependent 
on the combined influence of sequence alteration of several 
genes.

 (b) SNPs may make up a proportion of the genetics underlying 
differences in clinical normal tissue radiosensitivity.

 (c) Some genetic alterations are expressed selectively through 
certain types of normal tissue reactions, whereas others 
exhibit a “global” impact on radiosensitivity.

Regarding these hypotheses, it is prudent to add that we are 
now aware that there are also epigenetic components of normal 
tissue radiosensitivity that are—by definition—not captured by 
genetic sequences but are heritable nonetheless.

1.4.2. The Importance of Fishing
Genome-wide association studies could certainly be categorized 
as a “fishing expedition,” which has pejorative connotations given 
the history of improper correction for multiple hypothesis testing 
(see Multiple Hypothesis Correction). However, fishing expedi-
tions in genomics are a necessity to generate new hypotheses. 
Recent GWAS performed by members of the RGC have been 
able to identify novel associations of SNPs in genes that were 
previously not linked with radiation toxicity (37). For example, 
TANC1 is a gene that encodes a repair protein for muscle damage 
and is one such example of a novel radiosensitivity association 
discovered in 2014 (38). A meta-analysis of four GWAS also 
identified two SNPs, rs17599026 in KDM3B and rs27720298 in 
DNAH5, which are associated with increased urinary frequency 
and decreased urinary stream, respectively (39).

1.5. Precision Medicine and Single  
Drug Targets
Compared to biomarker panels for normal tissue toxicity to 
radiation therapy, the realm of biomarker panels for prediction 
of tumor response is a much wider field, as it also encompasses 
the domains of medical and surgical oncology. Early successes 
in predictive biomarkers focused on single mutations, such as 
the BCR-ABL translocation observed in chronic lymphocytic 

leukemia or oncogene amplification, such as Her2-neu or EGFR. 
In the last half decade, therapies targeting tyrosine kinase muta-
tions in lung cancer or high expressing immune markers in many 
tissue types have become standard of care. In March 2017, the US 
Food and Drug Administration (FDA) granted a tissue-agnostic 
“blanket approval” for the PD-1 inhibitor pembrolizumab for any 
metastatic or unresectable solid tumor with specific mismatch 
repair mutations (40); this was the first time FDA approval had 
been granted for a specific mutation regardless of tumor type.

Given the various targeted agents, there are many who herald 
this as the age of “precision medicine.” In late 2016, the American 
Society for Clinical Oncology (ASCO) launched Journal of 
Clinical Oncology (JCO) subjournals “JCO Clinical Cancer 
Informatics” and “JCO Precision Oncology.” In accordance with 
the single target–single drug approach, contemporary precision 
medicine drug trials are based on amassing targetable single 
mutations (NCI-MATCH) or pathway mutations (NCI-MPACT) 
(41). While the initial tumor response can be quite impressive, 
durable response is an issue as single-target drugs are prone to 
develop resistance (42, 43).

1.6. Precision Medicine and Multigene 
Panels
Since the discovery of the Philadelphia chromosome and 
imantinib, most drugs remain focused on single biomarkers, 
such as a single mutation or a gene expression alteration with 
a large penetrance. However, we are rapidly depleting the pool 
of undiscovered, highly penetrant genes. Soon, targeting the low 
hanging fruit through a one gene–one phenotype approach will 
no longer be sufficient for effective “precision medicine.” This is 
where multiple biomarker panels are making an impact. While 
these do not necessarily provide “multiple targets” for drugs 
to act on, they do provide a prognostic picture of the effects of 
tumor mutational burden. The earliest and most well known of 
these laboratory-developed biomarker panels are the 21-gene 
recurrence score Oncotype DX (Genomic Health, Inc., Redwood 
City, CA, USA) (44) and 70-gene MammaPrint (Agendia BV, The 
Netherlands) (45). These panels are used to make critical clinical 
decisions regarding whether select breast cancer patients are 
predicted to benefit from chemotherapy.

Current efforts are aimed at understanding the genomic sig-
nature of metastatic cancer. Memorial Sloan Kettering has used 
their MSK-IMPACT gene expression panel to sequence tumors 
from over 10,000 patients with metastatic disease to be able to 
prognosticate whether a future patient will develop metastases 
(46). While the development of these laboratory tests requires 
significant investment, they may ultimately save substantial sums 
by decreasing unnecessary therapies and toxicities while improv-
ing quality of life for cancer patients.

Recent discussions about the state of precision medicine 
and genomically guided radiation therapy include a review by 
Baumann et al. (7) and a joint report by the American Society 
for Radiation Oncology (ASTRO), American Association of 
Physicists in Medicine (AAPM), and National Cancer Institute 
(NCI) summarizing a 2016 precision medicine symposium (6) 
(see Promoting Research).
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A complicating factor in tumor genomics is a result of tumor 
heterogeneity, which results in different subtypes within the same 
tumor, as shown in glioblastoma (47), colorectal cancer (48), and 
pancreatic cancer (49). Given the limited ability of single-target 
drugs, therapies may select certain subclones of higher fitness 
to predominate and create mechanisms of resistance. Selection 
occurs not only from therapy but also from local and microen-
vironment constraints (50), leading to an increasingly robust 
evolutionary model of tumor heterogeneity obeying Darwinian 
selection. Distant metastases display this evolutionary behavior 
as well as they seed further distant metastases (51). To better 
target a tumor’s genomic landscape, we may need to sample 
multiple spatially separated sites and incorporate evolutionary 
analysis (52).

1.7. Tumor Control and Radiogenomics
Although a substantial emphasis of radiogenomics has been to 
identify biomarkers predictive of normal tissue toxicities, there 
are efforts being made to develop tests for tumor response to 
radiation (53). In the largest preclinical study, Yard et al. showed 
that there is a rich diversity of resultant mutations after exposing 
533 cell lines across 26 tumor types to radiation (54). Within 
these tumor cell lines, radiation sensitivity was enriched in gene 
sets associated with DNA damage response, cell cycle, chromatin 
organization, and RNA metabolism. By contrast, radiation resist-
ance was associated with cellular signaling, lipid metabolism and 
transport, stem-cell fate, cellular stress, and inflammation.

PORTOS is a 24-gene biomarker predictive assay that can 
determine which post-prostatectomy patients would benefit 
from post-operative radiation therapy to decrease their 10-year 
distant metastasis-free survival (55). PORTOS is the first of future 
clinical radiogenomics assays to help determine which patients 
will benefit from radiation.

The radiosensitivity index (RSI) was developed at Moffitt 
Cancer Center to predict radiation sensitivity in multiple tumor 
types (56, 57). Its signature is based on linear regression on the 
expression of 10 specific genes (AR, cJun, STAT1, PKC, RelA, 
cABL, SUOMO1, CDK1, HDAC1, and IRF1) that were chosen 
from a pool of over >7,000 genes using a pruning method derived 
from systems biology principles. These genes are implicated in 
pathways involved in DNA damage response, histone deacetyla-
tion, cell cycle, apoptosis, and proliferation. More recently, the 
RSI has been combined with the linear quadratic model of cell kill 
to create a unified model of both radiobiologic and genomic vari-
ables to predict for radiation response and provide a quantitative 
link from genomics to clinical dosing (58).

2. iNTRODUCTiON TO MACHiNe 
LeARNiNG (ML)

Machine learning is a field evolved from computer science, arti-
ficial intelligence, and statistical inference that seeks to uncover 
patterns in data to make future predictions. Unlike handcrafted 
heuristic models often seen in clinical medicine, ML methods 
have a foundation in statistical theory and are generalizable to 
a type of problem as opposed to specific problems (59). There 

are many ML methods, and each has unique advantages and 
disadvantages that merit consideration by the user prior to 
attempting to model their results (60, 61). Similarly, there are 
several ML-friendly programming languages and specialized 
libraries to choose from, including Python’s Scikit-learn package 
(62), MATLAB’s Statistics and Machine Learning Toolbox (63), 
and R (64).

2.1. Statistical inference vs. ML
Machine learning has considerable overlap with classical statistics 
and many key principles and methods were developed by stat-
isticians. There continues to be considerable crossover between 
computer science and statistics. Breiman wrote about the differ-
ences between the two fields, calling ML the field of black box 
“algorithmic models” and statistics the field of inferential “data 
models” (65).

In ML, models are commonly validated by various measures 
of raw predictive performance, whereas in statistics, models are 
evaluated by goodness of fit to a presumptive model. These models 
can be used for either explaining or predicting phenomena (66). 
One key difference that readers of clinical papers will immediately 
notice is that formal hypothesis testing is a rarity in ML. This stems 
from the fact that ML is concerned with using prior information 
to improve models, rather than inferring a “belief ” between two 
hypotheses. Classical hypothesis testing—used in most clinical 
studies—relies on the frequentist approach to probability. In this 
interpretation, one selects a level of belief α and—assuming a 
certain probability distribution—then determines whether the 
obtained result is extreme enough such that if the experiment was 
repeated many times, one would see this result at a rate of ≤α. This 
rate is called the p-value, and the significance level α is typically 
set at 0.05. ML papers rarely discuss significance levels, instead 
seeking to identify maximum likelihood models or sample over 
spaces of possible models, as in Bayesian statistics. To determine 
significance levels requires some assumptions regarding the 
distribution implied by a null hypothesis for the data, which is 
more difficult for complex problems such as speech recognition, 
image recognition, and recommender systems.

2.2. An Update of Breiman’s Lessons  
From ML
In 2001, Breiman noted three important lessons from ML over 
the prior 5 years: the Rashomon effect, the Occam dilemma, and 
the curse of dimensionality. Here, we will re-visit these to discuss 
relevance to contemporary issues of ML usage in medicine.

2.2.1. Rashomon Effect
The Rashomon effect describes a multiplicity of models where 
there are many “crowded” models that have very similar per-
formance (i.e., accuracies within 0.01) but which may have very 
different compositions (i.e., different input variables). Within 
oncology, this effect is well demonstrated in breast cancer where 
Fan et al. showed that four of five different gene expression mod-
els (including MammaPrint and Oncotype DX Recurrence Score) 
showed significant agreement in patient prognosis despite having 
very different inputs (67). This model crowding is magnified by 
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variable pruning (i.e., feature selection) as the remaining variables 
must then implicitly carry the effect of the removed variables. The 
Rashomon effect is popularly seen in nutritional epidemiology 
where observational studies routinely seem to show conflicting 
data about the risk or benefits of certain supplements (68). This 
phenomenon was studied in Vitamin E, where depending on 
which combinations of 13 covariates were selected, one could 
find a range in increase or decrease of Vitamin E-associated 
mortality—a so-called “vibration of effects” (69).

The Rashomon effect can manifest as model instability when 
multiple Monte Carlo repetitions of cross-validated model 
selection are performed (see CV Methodology) that result in 
different models selected in each repetition. This occurs due to 
minor perturbations in the data resulting from different splits 
and is particularly magnified for smaller datasets. Ensemble 
models (70) and regularization methods (see Embedding Feature 
Selection With the Prediction Model) (71) seem to work well for 
addressing this problem.

2.2.2. Occam Dilemma
William of Occam (c. 1285–1349) described the Principle of 
Parsimony as: “one should not increase, beyond what is necessary, 
the number of entities required to explain anything.” Breiman 
describes the Occam dilemma as the choice between simplicity— 
and interpretability—and accuracy. He noted that simple  
classifiers—such as decision trees and logistic regression (LR)—
were interpretable but were easily outclassed in classification 
performance by more complex and less-interpretable classifiers 
like random forests (RFs). However, increasing model complexity 
also tends to overfit. This dilemma has been partially mitigated 
by a better understanding of cross validation (CV) (see Cross 
Validation) as well as better strategies for automated control for 
model complexity.

In contemporary usage, where the boundary between inter-
pretable statistical models and “black box” ML models has 
become blurred, interpretability and accuracy discussions have 
resurfaced in the form of generative and discriminative models. 
Generative approaches resemble statistical models where the full 
joint distribution of features is modeled (see Bayesian Networks). 
Discriminative approaches focus on optimizing classification 

accuracy using conditional distributions to separating classes 
(see Support Vector Machines). Both of these approaches have 
been described in ML applications to genomics (72). Generative 
models are more interpretable and handle missing data better, 
whereas discriminative classifiers perform better asymptotically 
with larger datasets (73). Thus, we can update Breiman’s interpre-
tation with a contemporary interpretation of modeling genetic 
information (Figure 1).

Breiman had postulated that physicians would reject less-
interpretable models, but this has not been the case. As discussed 
in Section “Precision Medicine and Multigene Panels,” oncology 
is moving toward validating and using high-dimensional multi-
gene models in the clinic to guide treatment decisions.

As a future where a multigene panel for all cancers is still a 
long way off, creating intuitive models is still relevant. Patients 
can rarely be placed into neat boxes, and physicians must often 
incorporate clinical experience, which becomes more difficult 
for less-interpretable models. A method that was developed 
to overcome this limitation is MediBoost, which attempts to 
emulate the performance of RF while maintaining the intuition 
of classic decision trees (74). In Section “Current ML Approaches 
to Radiogenomics,” we discuss the interpretability of three ML 
methods.

2.2.3. The Curse of Dimensionality
The curse of dimensionality refers to the phenomenon where 
potential data space increases exponentially with the number 
of dimensions (75). For example, a cluster of points on a line 
of length 3  au appears much more desolate when clustered in 
a cube of volume 27  au3. Two things happen with increasing 
dimensions: (1) available data becomes increasingly sparse and 
(2) the number of possible solutions increases exponentially 
while each can become statistically insignificant by overfitting 
to noise (76). Traditional thinking has always been to try to 
reduce feature number; however, some ML methods benefit from 
higher dimensions. For example, when data are nearly linearly 
separable, LR and linear support vector machine (SVM) perform 
similarly. However, when data are not linearly separable, SVM 
can use the kernel trick that increases the dimensionality of data 
to allow separation in higher dimension (see Support Vector 
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Machines). While SVM has built-in protections for this “curse” 
by defining kernel functions around the data points themselves 
and selecting only the most important support vectors, it remains 
vulnerable when too many support vectors are selected with high- 
dimensional kernels.

Within genomics, the curse of dimensionality is reflected in 
the difficulty of finding epistatic interactions (77). In standard 
search for additive genetic variance, one needs to only search n 
SNPs in a single dimension. However, if pairwise or higher-order 
interactions are considered, then the search space increases expo-
nentially; for example, the search space for pairwise interactions 
is n(n − 1)/2. Traversing the large but sparse search space while 
maintaining reasonable performance can be a challenge (see 
Combining ML and Hypothesis Testing).

2.2.4. ML Workflow
In an ideal world, there would exist a perfect protocol to follow 
that will guarantee a great ML model every time. Unfortunately, 
there is no consensus on the “optimal” way to create a model. 
Libbrecht and Noble described general guidelines for applying 
ML to genomics (72). Within radiation oncology, Lambin et al. 
provide a high-level overview of clinical decision support systems 
(78). Kang et al. discussed general ML design principles with case 

examples of radiotherapy toxicity prediction (60). El Naqa et al. 
provide a comprehensive textbook of ML in radiation oncology 
and medical physics (79). Figure 2 provides a sample workflow 
for a general radiation oncology project that incorporates both 
genomics and clinical/dosimetric data. Two critical components 
of model selection include “Cross validation” and “Feature selec-
tion,” which are further discussed below.

2.3. Cross validation
The greater the number of parameters in a model, the better it will 
fit a given set of data. As datasets have become more and more 
complex, there has become an inherent bias toward increasing the 
number of parameters. Overfitting describes the phenomenon of 
creating an overly complex model which may fit a given data set, 
but will fail to generalize (i.e., fit another data set sampled from 
a similar population). CV is a method used in model selection 
aimed to prevent overfitting by estimating how well a model will 
generalize to unseen data.

2.3.1. CV Methodology
Conceptually, CV is used to prevent overfitting by training 
with data separate from validation data. As an example, in 
k-fold CV (KF-CV) for k  =  10, the data are initially divided 
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into 10 equal parts. Next, 9 parts are used to train a model 
while the 10th part is used to assess for how well the model 
was trained in the validation step. This training–validation 
procedure is run 9 more times, with each of the 10 parts taking 
turns as the validation set. The performance averaged over 10 
runs is the cross-validated estimate of how well the model will 
perform on truly unseen data. The optimal number of initial 
splits for the data has not been established, but 10-fold CV is 
commonly used. An alternative to KF-CV that is often used for 
smaller datasets is “leave one out” cross-validation (LOO-CV), 
whereby a dataset of size n is split into n parts. This form of CV 
maximizes the relative amount of information used for training 
the model while minimizing the information used for testing. 
As a result, LOO-CV is prone to higher variance (i.e., a higher 
propensity to overfit) and decreased bias (i.e., a lower propen-
sity to underfit) compared with KF-CV. Similar to balancing 
type I and type II error in statistical genetics, variance and bias 
must be carefully considered to avoid “false positive” and “false 
negative” results.

2.3.2. CV Relationship With Statistical Inference
Cross validation took some time to catch on in statistics literature, 
but has long been a fundamental part of the algorithmic ML 
models (65). Due to the lack of interpretability in the “black box,” 
ML has relied on CV and related methods like bootstrapping to 
demonstrate robust performance without relying formally on 
statistical significance. Small sample sizes can be a problem for 
creating prediction models. In this case, learning curve analysis 
can be used to create empirical scaling models, whereby one varies 
the size of the training set to assess for learning rate (80). Learning 
curve analysis can be used to help determine at what point a 
model is overfitting (81). When learning curve analysis predicts 
large error rates that are unlikely to be significant, permutation 
testing can predict the significance of a classifier by comparing its 
performance with that of random classifiers trained on randomly 
permuted data (80).

2.4. Common errors in Cv
When performed correctly, CV is a powerful tool for selecting 
models that will generalize to new data. However, this seemingly 
simple technique is infamous for being used incorrectly. This 
creates an especially egregious problem as using CV gives results 
an appearance of rigorous methodology when the exact opposite 
may be occurring.

2.4.1. Violating the Independence Assumption
A common mistake is to pre-maturely “show” the test data 
while still training the model and thus violate the independence 
assumption between the training and test data. For example, a 
typical workflow is to set aside test data and train a model using 
only the training data. Once the training results are acceptable, 
the model is tested on the independent testing data. If the testing 
results are unacceptable, one might then use these results to refine 
the model. However, using performance on the test set to guide 
decisions for training, the model creates bias and violates the 
independence assumption between the model design and testing 
(82). The more repetitions of model pruning are performed, the 

higher the chance of the model overfitting to truly independent 
data. See Section “Reusable Hold-Out Set” for a solution to this 
problem.

Sometimes, re-using training samples in testing is intentional. 
This was the case in the MammaPrint assay, where the authors 
used a large proportion of the tumor samples from the initial 
discovery study in their validation study (83, 84). The authors 
claimed this was necessary due to an imbalance of tumor cases 
and controls (see Section “Unbalanced Datasets” below for 
solutions).

In part due to the lack of independence between the testing 
and training sets in biomedical research, which culminated in the 
pre-mature use of omics-based tests used in cancer clinical trials 
at Duke University (85, 86), the Institute of Medicine released 
a report in 2012 (84). Several cautionary steps were advised, 
including validating with a blinded dataset from another institu-
tion (see Replication and Regulatory Concerns).

2.4.2. Freedman’s Paradox
Freedman showed that in high-dimensional data, some variables 
will be randomly associated with an outcome variable by chance 
alone and if these are selected out in model selection, they will 
appear to be strongly significant in an effect called Freedman’s 
paradox (87). This can occur even with no relationship between 
the input variables and outcome variables because with enough 
input variables, by chance one will have a high correlation. Even 
if model selection is performed and low performing variables 
are removed, the same randomly associated features will remain 
correlated and appear to be highly significant. Freedman’s 
paradox manifests when CV is repeated to perform both model 
selection and performance estimation. One solution is to use 
cross model validation, also known as nested CV: the outer loop 
is used for performance estimation and the inner loop for model 
selection (88–90).

2.5. Feature Selection
Often, one is interested in not only fitting an optimal model but 
rather in determining which of the variables—also known as 
features—are the most “important” through the process of feature 
selection. With respect to ML in genomics, Libbrecht and Noble 
described three ways to define “importance” in feature selection 
(72). The first is to identify a very small subset of features that 
still has excellent performance (i.e., to create a cheaper SNP array 
to test association with a phenotype rather than whole genome 
sequencing). The second is to attempt to understand underly-
ing biology by determining which genes are the most relevant. 
The third is to improve predictive performance by removing 
redundant or noisy genes that only serve to overfit the model. 
The authors note, unfortunately, that it is usually very difficult to 
perform all three simultaneously.

There are two general methods for feature selection (and can 
be used together). One is using domain knowledge via feature 
engineering and one is utilizing automated approaches. In feature 
engineering, a domain expert may pick and choose variables from 
a larger pool that he or she thinks are important prior to more for-
mal model selection. As discussed in Section “Rashomon Effect,” 
this bias can often lead to spurious conclusions when different 
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research groups pre-select their variables (69). In many genomics 
applications, often precurated gene ontology data are referenced 
at some point through a hypothesis-driven approach, either as 
an initial screen or as part inferring functional relationships after 
significant genes have been selected. This does introduce a bias 
toward highly studied gene functions or pathways and a bias 
against undiscovered gene function, which reinforces the impor-
tance of hypothesis-generating studies (see The Importance of 
Fishing).

Below, we discuss automated approaches for feature selection. 
The first two are general approaches that are either pre-processing 
features through a method independent or dependent of the final 
predictive model. A third approach is to transform the existing 
features to create new synthetic features (91).

2.5.1. Pre-Processing Variables Independent  
of the Prediction Model
Filtering (or ranking) variables is the least computationally 
intensive method for feature selection. This method involves 
selecting features prior to training a model and is thus inde-
pendent of the model choice. A common method is to perform 
univariate correlation testing (for continuous variables) or 
receiver operating curve analysis (for categorical variables) and 
then only choosing the top-ranking variables. While efficient in 
that the processing time scales linearly with the number of vari-
ables, filtering does not screen out highly correlated features—in 
fact, these will be more likely to be selected together. However, 
Guyon and Elisseeff did show that presumably redundant vari-
ables can decrease noise and consequently improve classification 
(91). Statistically, filtering variables is robust against overfitting 
as it aims to reduce variance by introducing bias (92). Univariate 
filtering methods do not consider interactions between features, 
and thus is unable to assist in determining what variable com-
bination is optimal. In GWAS, statistical tests for univariate sig-
nificance are an example of variable filtering and thus are unable 
to account for multi-locus interactions (93). This weakness is 
magnified when a variable that is uninformative by itself gains 
value when combined with another variable, as is proposed in 
epistasis; in this case, filtering would remove the univariately 
useless variable before it can be tested in combination with 
another variable. To address this weakness, filter methods such 
as the ReliefF family take a multivariate and ensemble approach 
to yield variable rankings (94–96).

2.5.2. Embedding Feature Selection With  
the Prediction Model
Combining feature selection with the model establishes a 
dependence that can be used to address issues with multicol-
linearity and feature interactions. Wrappers combine feature 
selection with model building but are computationally expen-
sive (97). Various search strategies can be utilized, but often used 
are greedy search strategies where predictors are either added 
or removed one-by-one via forward selection or backward 
elimination, respectively. In regularization, feature selection is 
built into a method’s objective function (i.e., the optimization 
goal) through penalty parameters. These penalty parameters 
ensure that feature importance (weight) and/or number is 

incorporated during model training. Common regularization 
methods include L1-norm or lasso regression (98), L2-norm or 
ridge regression (99), and combined L1–L2 or elastic networks 
(100). Regularization methods are of significant interest in 
applications of ML to genomics due to their ability to decrease 
the complexity of a polygenic problem and improve probability 
of replication (90). A relatively novel method developed for 
feature selection in very high dimensions is stability selection, 
which uses subsampling along with a selection algorithm to 
select out important features (101).

2.5.3. Feature Construction and Transformation
Instead of working directly with the given features, features can 
be manipulated to reconstruct the data in a better way or to 
improve predictive performance. There are many methods that 
can perform feature construction with different levels of com-
plexity. Clustering is a classic and simple method for feature 
construction that replaces observed features by fewer features 
called cluster centroids (102). Principal component analysis 
(PCA) provides a method related to eigenvector analysis to 
create synthetic features which can explain the majority of 
the information in the data; for example, PCA can decrease 
type I error by uncovering linkage disequilibrium (LD) pat-
terns in genome-wide analyses due to ancestry (103, 104). 
Kernel-based methods such as SVMs also make use of feature 
transformation into higher dimensions and will be discussed in 
a later Section “Support Vector Machines.” Neural networks are 
another popular ML method that specializes in constructing 
features within the hidden layers after being initialized with 
observed features. In the last few years, neural networks have 
become extremely popular in the form of deep learning, which 
is discussed below.

2.6. Deep Learning
“Deep learning” describes a class of neural networks that has 
exploded in popularity in the recent years—particularly in the 
fields of computer vision (105) and natural language processing 
(106)—as larger training data sets have become available and 
computational processing resources have become more accessible 
and affordable (107). Deep learning is distinguished from earlier 
neural network methods by its complexity: whereas a “shallow” 
neural network may have only a few hidden layers, deep learning 
networks may have dozens (108) to hundreds of layers (109) where 
unsupervised, hierarchical feature transformation can occur. 
In popular science, deep learning is the artificial intelligence 
powering IBM Watson (110) and autonomous driving vehicles. 
Within medical research, there have been several high-profile 
deep learning publications claiming expert-level diagnostic 
performance (111–114). A related domain is radiomics, which 
seeks to use ML and statistical methods to extract informative 
imaging features or “phenotypes” in medical imaging (115–117) 
with a significant focus in oncology imaging (118–121). Deep 
learning is in an early stage within genomics, but has been used 
for discovery of sites for regulation or splicing (122, 123), vari-
ant calling (124), and prediction of variant functions (125). For 
further reading on deep learning, we recommend Lecun et al.’s 
excellent review (107).
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3. ML iN GeNOMiCS

Genomics presents a challenging problem for ML as most meth-
ods were not originally developed for GWAS, and thus improving 
implementations remain a topic of ongoing research (126). The 
quantity of genomics data recommended for finding significant 
SNPs is more akin to that seen in image processing, where there 
could be tens of millions of voxels in a typical computed tomogra-
phy scan. Given the imbalance of features compared with samples 
(the “p ≫ n” problem), there is a challenge in creating predictive 
models that do not overfit. As discussed in Section “Current 
ML Approaches to Radiogenomics,” different ML methods 
have been used to address different concerns in genomics and 
radiogenomics.

In this section, we will review some of the intuition and 
principles behind genomics methods to better understand how 
to improve and apply them to future problems.

3.1. Multiple Hypothesis Correction
Hypothesis testing is a principle based on statistical inference. In 
GWAS, however, one is not just testing a single hypothesis, but 
millions. As such, by random chance, it is a virtual guarantee that 
some of the associations will appear to be statistically significant 
if there is no correction to the pre-specified significance level 
α (127). How to correct for multiple hypothesis comparisons 
is an area of significant interest in GWAS and there are many 
techniques to do so (128). These methods generally aim to con-
trol the number of type I errors and include family-wise error 
rate (FWER)—the probability of at least one type I error—and 
false discovery rate—the expected proportion of false discover-
ies (129). Controlling FDR has greater power than FWER at 
the risk of increased type II error (130). One common FWER 
correction method is Bonferroni correction, which would work 
reasonably well for independent tests, but is an overly strict (i.e., 
conservative) bound for GWAS due to the prevalence of LD 
across the genome. LD causes adjacent regions of the genome to 
be inherited together, and thus Bonferroni will overcorrect due 
to non-independence among SNPs within LD blocks. For rare 
variants which are not thought to be in LD, Bonferroni correction 
would be an appropriate correction.

In ML, poor correction for multiple testing is related to 
p-hacking or data dredging, which is to continuously run 
iterations of this method until it fits a pre-conceived notion or 
hypothesis (131) (see Lessons From Statistics).

3.2. The Case of Missing Heritability
As sample sizes have increased since the first GWAS in 2005, 
more and more robust associations with loci have been discov-
ered in genomics (132). This has also been reflected in radiog-
enomics as larger sample sizes have been possible through the 
RGC (see Genomic Basis for Radiotherapy Response). However, 
the discovered associations are still relatively few and insuf-
ficient to explain the range of observed phenotypes, creating 
the so-called “case of missing heritability” (133). Response of 
both normal and tumor tissue has certainly shown itself to be a 
complex, polygenic trait (29, 30, 54). The cause of this missing 
heritability is thought to arise from several sources, including 

common variants of low effect size, rare variants, epistasis, and 
environmental factors. One clear solution already underway is 
to genotype more samples and to use meta-analysis methods to 
combine results across studies (134). However, there are limits 
to this approach. For one, rare variants [minor allele frequency 
(MAF) < 0.0005] with smaller effect sizes (odds ratios ~1.2) will 
require between 1 and 10 million samples for detection using 
standard GWAS techniques (132). Another issue is that epistatic 
interactions among common variants have not been able to be 
reliably replicated (77). ML provides a complementary approach 
for finding patterns in noisy, complex data and detecting non-
linear interactions.

3.3. Combining ML and Hypothesis Testing
Originally, two-stage GWAS was developed from standard one-
stage GWAS to decrease genotyping costs in an era where SNP 
chips were costlier (135). In this method, all SNP markers are 
genotyped in a proportion of the samples in stage 1, and a subset 
of the SNPs would then be selected for follow-up in stage 2 on 
the remaining samples. This method does not decrease type I or 
II error, however (136). Performing a joint analysis where the 
test statistics in stage 2 were conditional on stage 1 had superior 
results than assuming independence between the two stages 
(i.e., a replication study), but power is unable to exceed that of 
one-stage GWAS (137). Instead of two-stage GWAS, a promis-
ing alternative is to use two-stage models combining ML and 
statistical hypothesis testing, aiming to combine the strengths of 
separate methodologies (see Statistical Inference vs. ML). These 
combined models can increase power and uncover epistatic 
interactions (138).

3.3.1. Learning Curves and Power
In principle, combining ML and hypothesis testing works 
because, by design with setting a pre-determined alpha level 
and power, statistical inference does not benefit from larger 
datasets once a result has met statistical significance. Indeed, 
larger datasets can result in detection of statistically significant 
associations of decreasing effect size and potentially decreasing 
clinical relevance. This limitation does not apply to ML, which can 
asymptotically use more data to improve predictive performance. 
Many ML methods are characterized by a learning rate obeying 
an inverse power law with respect to sample size (80, 139, 140). 
This behavior suggests that ML offers a complementary approach 
to statistical methods by continuing to learn for each additional 
sample. With increasing sample sizes and meta-analyses, one can 
imagine a scenario where one is well in the “plateau” portion of 
the power curve and can afford samples to be used in the ML 
method (Figure 3).

3.3.2. Using ML to Detect Epistasis
Epistasis, which includes interactions between SNPs, is not well 
accounted for in standard GWAS. Epistatic interactions are rec-
ognized as a cause of non-linear effects and may help elucidate 
functional mechanisms as well (141). Biological interpretations 
of epistasis have been difficult with little correlation between 
statistical interaction and physical interaction (i.e., protein– 
protein binding) or other biologic interactions (142). Regardless 
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of whether protein products are physically interacting with other 
proteins or environment, the statistical interaction suggests that 
there is dependence at some level for a specific disease (141).

Given the exponentially increased search space for SNP inter-
actions, there is a high concern for false positives (see The Curse 
of Dimensionality). This concern is magnified when SNPs are in 
LD. A filtering method is often used to decrease the search space 
for only the most promising interactions (see Pre-Processing 
Variables Independent of the Prediction Model). Exhaustive 
searches for pairwise interactions are also now becoming possible, 
aided by the massive advances in parallel processing throughout 
offered by graphical processing units (143, 144).

Due to technical limitations in accounting for non-linear 
effects and multiple hypothesis correction in an exhaustive 
search, interaction studies have typically focused on SNPs with 
weak marginal effects (77). Unfortunately, many of the studies 
in non-cancer diseases have not been successful (145, 146). One 
postulate is that pairwise SNPs are unlikely to have large interac-
tion effects. However, as sample sizes and SNP density improve 
(to better tag causal variants while avoiding spurious interactions 
due to LD), then ML methods that incorporate SNP interactions 
with low or no marginal/main effects may begin to uncover 
replicable interaction effects (138, 147–149).

Two-stage methods are a promising approach that combines 
the strength of fast, approximate interaction tests with a subse-
quent thorough model (77). Such methods take advantage of 
the strength of statistical tests for detecting polygenic low signal, 
linear interactions with the ability of ML to train cross-validated 
models of non-linear interactions (150, 151). Regularization 
within two-stage methods is an area of interest (90). Wu et  al. 
adapted lasso to LR for use in dichotomous traits in GWAS (152). 
Wasserman and Roeder developed a similar procedure called 
“screen and clean” that also controls for type I error by combin-
ing lasso linear regression, cross-validated model selection, and 
hypothesis testing (153). Like traditional two-stage GWAS, the 

data are split between the stages. Wu et al. adopted this model to 
model interaction effects in addition to main effects (154).

As further discussed in Section “Random Forest,” ensemble 
tree-based methods are very popular for detection of epistatic 
interactions (148, 155, 156). While it is difficult to assess statisti-
cal significance in ensemble black box techniques, permutation 
re-sampling methods can be used to determine a null distribution 
and associated p-values (80, 138, 141) (see CV Relationship With 
Statistical Inference). Other popular methods for interaction 
that have continued to receive updates include a cross-validated 
dimensionality reduction method called multifactor dimension-
ality reduction (157) and a Markov Chain Monte Carlo sampling 
method to maximize posterior probability called Bayesian 
Epistasis Association Mapping (158).

3.3.3. Using ML to Increase Power
Overfitting and false discoveries (type I errors) represent similar 
concepts in ML and statistical inference, respectively, in that both 
falsely ascribe importance. Like the bias-variance tradeoff, statis-
tical inference seeks to balance type I and type II errors. As each 
hypothesis test represents an additional penalty to genome-wide 
significance, one way to decrease type II error is to decrease the 
number of hypothesis tests. While decreasing testable hypotheses 
may appear to decrease power, Skol et al. demonstrate that being 
more stringent in selecting SNPs in stage 1 may paradoxically 
increase power as the multiple testing penalty is subsequently 
reduced in stage 2 (137).

Combination of ML and statistical methods can simultane-
ously be designed to detect epistasis and increase power (138). In 
“screen and clean” (see Using ML to Detect Epistasis), Wasserman 
and Roeder perform L1-regularization in the “clean” phases to 
improve power in the “screen” phases. Meinshausen et al. extend 
the method by Wasserman and Roeder by performing multiple 
random splits (instead of one static split) to decrease false positives 
and increase power (159). Mieth et al. similarly combined SVM 
with hypothesis testing (160), but instead of splitting, they re-
sample data using an FWER correction (161). While re-sampling 
for feature selection and parameter tuning may bias toward more 
optimistic results (see Freedman’s Paradox), Mieth et al. report 
higher power compared with Meinshausen and Wasserman and 
Roeder, with 80% of the discovered SNPs validated by prior stud-
ies. Nguyen et al. took a similar approach except with RF instead 
of SVM (162).

Combined ML and statistical methods can either have the ML 
stage first or second. When ML is used first, it usually acts as a 
feature selection filter to reduce the multiple hypothesis penalty 
and increase power for hypothesis testing in the second stage. 
When the ML step is second, it acts to validate candidate SNPs 
that passed the first stage filter. The order of ML and hypothesis 
testing may not affect power. Mieth et al. report similar results 
compared with Roshan et al. (163), who performed chi-square 
testing followed by RF or SVM [supplement in Ref. (160)]. 
Similarly, Shi et  al. proposed single SNP hypothesis testing 
followed by lasso regression, which was the reverse order of 
Wasserman and Roeder (164).

Oh et al. used a multi-stage approach to uncover novel SNPs 
and improve prostate radiotherapy toxicity prediction (165, 166). 
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TABLe 1 | Three representative machine learning methods with select pre-processing tips and tuning methods for complexity control.

Method Pre-process Complexity control Reference

Support vector machine 
(SVM)

 – Encode features as binary
 – Normalize to uniform distribution
 – Imputation for balancing data

 – Recursive feature elimination for linear SVM
 – Soft margin width (C-parameter)
 – Kernel hyperparameters

(76, 160)

Bayesian networks  – Feature discretization
 – Variable selection to reduce graph search space
 – Imputation not necessary when using expectation 

maximization

 – Constraints to a graph search space based on prior knowledge
 – Graph scoring functions that penalize complexity

(167–171)

Random forest  – No discretization or normalization necessary
 – Imputation required

 – Number of features to sample at each node split (mtry)
 – Minimum number of samples in a terminal node

(172, 173)
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The first step is to create latent (indirectly observed) variables 
through PCA. These “pre-conditioned” variables are fit using LR 
to the original outcomes. This serves to create “pre-conditioned” 
outcomes that are continuous in nature and provides estimate of 
radiotoxicity probability. These pre-conditioned outcomes are 
then modeled using RF regression and validated on holdouts of 
the original samples.

4. CURReNT ML APPROACHeS TO 
RADiOGeNOMiCS

Machine learning models are particularly attractive when dealing 
with genetic information, as they can consider SNP–SNP interac-
tions, which are suspected to be important, but are often missed 
by classical association tests because their marginal effects are too 
small to pass stringent genome-wide significance thresholds.

However, ML models also come with constitutional pitfalls, 
namely, increased computational complexity and risk for over-
fitting, which must be acknowledged and understood to avoid 
reporting impractical models or over-optimistic results.

Current use of ML techniques in radiogenomics usually fol-
lows the top-down approach, where radiotherapy outcomes are 
modeled through complex statistical analysis, without consider-
ing a  priori knowledge of interactions of radiation with tissue 
and biological systems. In this field, supervised learning is widely 
preferred, i.e., models aim at constructing a genotype–phenotype 
relationship by learning such genetic patterns from a labeled set 
of training examples. Supervised learning can provide pheno-
typic predictions in new cases with similar genetic background. 
Nevertheless, an unsupervised approach (e.g., PCA or clustering)  
is sometimes used to reduce the dimensionality of datasets, 
extract a subset of relevant features, or construct features to be 
later included in the chosen learning method. Feature selection 
is of extreme importance (see Feature Selection), as it leads to 
the reduction of the dimensionality of the genetic search space, 
excluding correlated variants without independent contribution 
to the classification, and helping the translation of the model to 
the clinical setting.

Even if most ML techniques can act both as regression and 
classification methods, the classification or discriminative aspect 
has been most investigated in recent years, with main inter-
est in separation between patients with/without the selected 
study outcome (e.g., presence/absence of radiotherapy-induced 

toxicity, tumor control/failure, and presence/absence of distant 
metastasis).

There is also increasing interest in overcoming the “black box” 
characteristics of some ML methods, favoring use of techniques 
that allow ready interpretation of their output (see Occam 
Dilemma), making apparent to the final user the relationships 
between variables and the size and directionality of their effect, 
i.e., if the variables are increasing or decreasing the probability of 
the outcome and the magnitude of their impact.

In this frame, RF, SVMs, and Bayesian networks (BNs) received 
great attention and they constitute the main topic of this section 
(Table  1). The presented ML algorithms can accommodate 
GWAS-level data. When considering the emerging sequencing 
domain (e.g., whole-exome and genome profiling), new technical 
challenges are posed that might be addressed by new algorithmic 
advances or by parallelization and cloud technologies for distrib-
uted memory and high-performance computing.

4.1. Random Forest
Random forest is a regression and classification method based 
on an ensemble of decision trees (172). The ensemble approach 
averages the predicted values from individual trees to make a 
final prediction, thus sacrificing the interpretability of standard 
decision trees for increased prediction accuracy (74). Each tree 
is trained on bootstrapped training samples (i.e., sampling with 
replacement), while a random subset of features is used at each 
node split. When applied to a problem of predicting a disease 
state using SNPs, for example, each tree in the forest grows with a 
set of rules to divide the training samples based on discrete values 
of the genotypes (e.g., homozygous vs. heterozygous). Here, we 
list the characteristics of RF that make it an attractive choice for 
GWAS, both for outcome prediction and hypothesis generation.

4.1.1. Robustness at High-Dimensional Data
Given high-dimensional data, training predictive models likely 
faces risk of overfitting. The ensemble approach utilized by RF 
mitigates this risk by reducing model variance due to aggregation 
of trees with low correlation. Examples of studies emphasizing 
predictive performance of RF include work by Cosgun et al. (174), 
Nguyen et al. (162), Oh et al. (165) (SNP based), Wu et al. (175), 
Díaz-Uriarte and Alvarez de Andrés (176), and Boulesteix et al. 
(177) (microarray based). While RF was initially thought not to 
overfit based on datasets from the UCI ML repository (65), this 
was ultimately found to be incorrect when noisier datasets were 
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introduced (178). When training RF models, some parameters 
need to be optimized, which can affect predictive power. Among 
those, the number of variables that are randomly selected from 
the original set of variables at each node split (mtry) governs 
model complexity. Many studies opt for default configurations 
as originally recommended by Breiman (172) (classification:  

p, regression: p/3 where p: number of predictors), and predic-
tive performance was shown to be stable around these values  
(176, 179). However, a larger mtry is recommended when there 
are many weak predictors (172), which might be the case for 
GWAS of complex diseases. Goldstein et al. (173) conducted a 
search for optimal parameters in GWAS of multiple sclerosis, 
comprising about 300K SNPs, and recommended mtry = 0.1 after 
initial pruning of the SNPs under high LD.

4.1.2. Biomarker Prioritization
Random forest can provide a variable importance measure (VIM), 
which quantifies the influence of an individual predictor on the 
purity of the node split (purity based) or prediction accuracy in 
unseen samples (permutation based). VIM can be used for select-
ing a smaller subset of genes or SNPs from GWAS, which can 
be further used for achieving higher predictive performance or 
biological validation. Lunetta et al. (180) proposed to use RF VIM 
for SNP prioritization as an alternative to Fisher’s p-value under 
the presence of SNP–SNP interactions. Nguyen et al. (162) used 
VIM as a feature selection process for a subsequent RF training 
to enhance predictive performance. However, reliability of VIM, 
especially under LD, has been questioned and investigated by 
simulation studies: Tolosi and Lengauer (181) and Nicodemus 
et al. (182) suggested that VIM may not correctly measure the 
importance of a large group of correlated SNPs due to dilution 
of VIM. Also, Strobl et al. (183) showed potential bias in VIM 
toward the predictors with more categories; they proposed the 
conditional inference tree as an alternative where each node split 
is performed based on a conditional independence test instead of  
the conventional Gini index (184).

4.1.3. Ability to Account for SNP–SNP Interactions
Epistasis describes the non-linear combination of SNPs (or SNP 
and environment) that may correlate with a phenotype. Epistasis 
is thus important for understanding complex diseases (77). By 
construction, RF can indirectly account for epistasis through 
successive node splits in a tree where one node split is condi-
tional upon the split from the previous node. Lunetta et al. (180) 
claimed that RF VIM has a higher power of detecting interacting 
SNPs than univariate tests. Thus, RF has been used as a screening 
step to identify much smaller number of SNPs that are more likely 
to demonstrate epistasis, which can be further tested in a pairwise 
fashion (150, 151). However, Winham et  al. (156) warned that 
ability of RF VIM to detect interactions might decrease with an 
increasing number of SNPs and large MAF of SNPs.

4.1.4. Hybrid Methods
Random forest is occasionally used in conjunction with other 
ML methods. Boulesteix et al. (177) used partial least squares to 
reduce dimensionality of gene microarray data prior to training 
a RF classifier. Stephan et al. (185) used RF as a fixed component 

of a mixed-effect model to handle population structure. Oh et al. 
(165) introduced a pre-conditioning step prior to RF training 
where a binary outcome of radiotherapy toxicity was converted to 
a continuous pre-conditioned target, which helps reduce the noise 
level that may be present in the outcome measurements (186).

4.2. Support vector Machines
Support vector machines are usually used to solve the problem 
of supervised binary classification. In the field of oncologic mod-
eling, SVMs are used to classify new patients into two separate 
classes (with/without the outcome of interest) based on their 
characteristics (76). The first step is to find an efficient bound-
ary between patients with/without the outcome in the training 
set. This boundary is called a “soft margin” and is a function of 
the known d features of the patients included in the training set. 
To determine this boundary, non-linear SVMs use a technique 
called the kernel trick to transform data into a higher dimension, 
whereby they can then be separated by a d-dimensional surface 
in a non-linear fashion. Based on these transformations, SVM 
finds an optimal boundary between the possible outcomes. In 
technical terms, a linear SVM models the feature space (the space 
of possible support vectors, which is a finite-dimensional vector 
space where each dimension represents a feature) and creates a 
linear partition of the feature space by establishing a hyperplane 
separating the two possible outcomes. Of note, the created parti-
tion is linear in the vector space, but it can use the kernel trick to 
solve non-linear partition problems in the original space. Based 
on the characteristics of a new patient, the SVM model places the 
new subject above or below the separation hyperplane, leading 
to his/her categorization (with/without the clinical outcome). 
SVMs maximize the distance between the two outcome classes 
and allow for a defined number of cases to be on the “wrong 
side” of the boundary (i.e., a soft margin). Due to this, despite the 
complexity of the problem, the SVM boundary is only minimally 
influenced by outliers that are difficult to separate.

Support vector machines are a non-probabilistic classifier: the 
characteristics of the new patients fully control their location in 
the feature space, without involvement of stochastic elements. If a 
probabilistic interpretation for group classification is needed, the 
measure of the distance between the new patient and the decision 
boundary can be suggested as a potential metric to measure the 
effectiveness of the classification (187).

4.2.1. Robustness in High-Dimensional Data and 
Possibility to Handle for Variable Interaction
Support vector machines are particularly suited to model datasets 
including genomic information, as they are tailored to predict 
the target outcome (the phenotype) from high-dimensional data 
(the genotype) with a possible complex and unknown correlation 
structure by means of adaptable non-linear classification bounda-
ries. The framework of SVMs implicitly includes higher-order 
interactions between variables without having to predefine what 
they are. Examples of studies highlighting good performance of 
SVMs in this area are (188–190).

The main pitfall presents when the number of variables for 
each patient exceeds the number of patients in the training 
dataset. For this reason, in such case, the combination of SVMs 
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with techniques aimed at reduction of the number of features is 
suggested.

Support vector machines can be used to approach analysis of 
GWAS data even in combination steps. Mieth et al. (160) proposed 
a two-step SVM procedure with SVMs first adopted for testing 
SNPs by taking their correlation structure into account and for 
determining a subset of relevant candidate SNPs (see Combining 
ML and Hypothesis Testing). Subsequently, statistical hypothesis 
testing is performed with an adequate threshold correction. As 
complexity reduction is performed prior to hypothesis testing, 
the strict multiple correction threshold can thus be relaxed.

4.2.2. Tuning Parameters
Considering practical challenges in SVM modeling, a key issue 
is tuning the parameters identifying the separation hyperplane 
and determining how many support vectors must be used for 
classification. There are also kernel-specific parameters to tune. 
Grid search is traditionally used to find the best set, with choice 
of initial conditions and search strategy highly influencing the 
quality of the result (191, 192).

4.2.3. Unbalanced Datasets
Attention must also be paid when SVMs are applied to unbal-
anced data, i.e., one outcome class contains considerably more 
cases than the other. This scenario is common in radiotherapy 
modeling where toxicity and local failure rates can be low. 
Unbalanced datasets present a challenge when training every type 
of classifier, but particularly is true for maximum-margin classifi-
ers such as SVM. A satisfactory choice for having a high-accuracy 
classifier on a very imbalanced dataset could be to classify every 
patient as belonging to the majority class. Nevertheless, such a 
classifier is not very useful. The central issue is that, in such a 
case, the standard notion of accuracy is a bad measure of the 
success of a classifier, and a balanced success rate should be used 
in training the model, which assigns different costs for misclas-
sification in each class (170, 193, 194). These methods can include 
showing a full confusion matrix; reporting F1-score and positive/
negative predictive values, which incorporate relative imbalances 
(195–197); or synthetic balancing through undersampling and/
or oversampling (198).

4.2.4. Interpretation of SVMs
Interpreting SVM models is far from obvious. Consequently, 
work is being done in providing methods to visualize SMV results 
as nomograms to support interpretability (199, 200).

The absence of a direct probabilistic interpretation also makes 
SVM inference difficult, with the aforementioned work by Platt 
being one solution (187).

4.3. Bayesian Networks
Bayesian network is a graphical method to model joint probabil-
istic relationships among a set of random variables, meaning that 
the variables vary in some random or unexplained manner (201). 
Based on the analysis of input data or from expert opinion, the 
BN assigns probability factors to the various results. Once trained 
on a suitable dataset, the BN can be used to make predictions on 
new data not included in the training dataset.

A key feature of BN is graphical representation of the relation-
ships via a directed acyclic graph (DAG). Although visualizing 
the structure of a BN is optional, it is a helpful way to understand 
the model. A DAG is made up of nodes (representing variables) 
and directed links between them, i.e., links originate from a par-
ent variable and are pointed to child variables without backwards 
looping or two-way interactions. Parent variables influence 
the probability of child variables and the probability of each 
random variable is established to be conditional upon its parent 
variable(s). In this way, the DAG encodes the presence and direc-
tion of influence between variables, which makes BN attractive 
for users needing intuitive interpretation of results (169) (see 
Occam Dilemma). This directionality of links is important as it 
defines a unique representation for the multiplicative partitioning 
of the joint probability: the absence of an edge between two nodes 
indicates conditional independence of involved variables.

4.3.1. Interpretation of BNs
Bayesian networks can integrate different data types into 
analysis. Despite accounting for high-order variable interactions  
(e.g., genetic environment), BNs maintain high interpretability via 
graphical outputs. As an example, Figure 4 demonstrates a possible 
BN for prediction of radiotherapy-induced rectal bleeding follow-
ing different clinical, genetic, and treatment-related variables.

4.3.2. Using Knowledge and Data in a  
Synergistic Way
A DAG can be built starting from previous knowledge, or com-
pletely trained on available data. For example, BN was used to 
incorporate expert knowledge along with experimental assay data 
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to assign functional labels to yeast genes (202). The optimized 
DAG is the one which maximizes a predefined scoring function 
over all possible DAG configurations. When multiple DAGs score 
at the same level, an approach embracing an ensemble of models 
can be followed (169).

4.3.3. Robustness at High-Dimensional Data
Since the number of possible DAGs grows super-exponentially 
with the number of available features, it is unrealistic to compre-
hensively search for the highest-scoring DAG over all graph 
possibilities. This is especially true when considering high-
dimensionality problems encountered in GWAS. Various appro-
aches could be suggested to confront the burden (169, 170):

 (a) Use a causality prior that considers the already available 
knowledge to impose restrictions on the presence/direction 
of links between nodes to reduce the search space.

 (b) Structure features into systems of different hierarchical levels 
with connections established by combining data and prior 
knowledge.

 (c) Reduce input dimension by appropriate variable selection 
techniques with the aim of removing highly correlated features.

 (d) Use of graph scoring functions that penalize complex graph 
structures, such as Bayesian information criteria (167).

An interesting approach is also the use of a forest of hierar-
chical latent class models (171) to reduce the dimension of the 
data to be further submitted to BN to discover genetic factors 
potentially involved in oncologic outcomes. Latent variables are 
thought to capture the information coming from a combination 
of SNP, genetic, and molecular markers. Latent variables can 
also be clustered into groups and, if relevant, such groups can 
be subsequently incorporated into additional latent variables. 
This process can be repeated to produce a hierarchical structure  
(a forest of latent variables) and BN analyses can be primarily 
completed on latent variables coupled to a largely reduced num-
ber of clinical and dosimetric features.

4.3.4. Handling Missing Values
The probabilistic approach of BNs makes them suitable to effi-
ciently handle missing values, without removal of cases or impu-
tation. A BN can be trained even using non-complete cases and it 
can be queried even if a full observation of relevant features is not 
available. This is an advantage in clinical oncology where missing 
data are the norm and not the exception.

Bayesian networks were successfully applied in many onco-
logic/radiotherapy studies, including modeling of radiation-
induced toxicity, tumor control after radiotherapy, and cancer 
diagnosis (169, 170, 203–207).

5. iMPROviNG ML iNTeGRATiON iN 
RADiOGeNOMiCS

Machine learning holds significant promise for advancing 
radiogenomics knowledge through uncovering epistatic interac-
tions and increasing power. In this section, we will discuss general 
lessons learned and potential barriers.

5.1. Lessons From Statistics
For ML models to focus on predictive performance alone while 
not taking lessons from statistical theory would be a mistake. 
Statistical genetics learned through many iterations that it is nec-
essary to take into account multiple hypothesis testing to decrease 
type I error (127). While ML models are often framed to be 
hypothesis-free, they can fall into a trap of cherry picking results 
that show good performance, which may end up being spurious. 
This practice of trawling for results that appear statistically sig-
nificant has been called data dredging or p-hacking and has been 
cautioned against by the American Statistical Association (131). 
However, this practice can occur surreptitiously, such as when a 
pharmaceutical drug is tested in many highly correlated trials (i.e., 
asking similar questions) over many years, but without correcting 
for multiple testing. This phenomenon is particularly common 
in oncology where there is vested interest to find an application 
for a “blockbuster” therapeutic (208, 209). One solution for this 
is to create drug development portfolios to apply meta-analysis 
principles to drug trials instead of considering them as individu-
als (210). A similar approach could be used in radiogenomics to 
avoid publication bias and report negative results.

Notably, in their same report, the American Statistical Society 
emphasizes a distinction between statistical significance and 
clinical significance. Whether a p-value does or does not meet an 
α cutoff does not preclude it from being validated. ML provides 
an excellent tool for validation when used in the two-step models.

5.2. Reusable Hold-Out Set
Due to the nature of model building, it is often desirable to repeat-
edly refine one’s model due to suboptimal performance on the 
independent “holdout” set. Unfortunately, as discussed earlier 
(see Common Errors in CV), re-testing presents a significant 
problem as the refined model is now biased by newly obtained 
knowledge. For example, one might manually curate variables 
or alter hyperparameters to try to improve test set performance 
repeatedly, leading to overfitting on a true external dataset. 
However, reserving multiple test sets is not practical in most pro-
jects. One intriguing solution arose from university–industry col-
laborations with technology companies such as IBM, Microsoft, 
Google, and Samsung (211). These companies are interested 
in differential privacy, which is the concept of preserving the 
privacy of an individual while still collecting aggregate group 
statistics (212). This is not a trivial problem as knowledge about 
an aggregate sample over time can precisely identify supposedly 
“anonymous” individuals. For example, measuring the mean of 
a sample before and after removing one data point would allow 
one to precisely determine the value of that one data point if one 
knew the sample size. A prominent example in 2008 involved 
de-anonymizing publicly released Netflix data using another 
website (the Internet Movie Database) to ascertain apparent 
political affiliations and other potentially sensitive details (213). 
Differential privacy concepts are directly related to the necessity 
of maintaining independence—in essence, the “anonymity”—of 
the holdout set. These concepts have been adapted to a reusable 
holdout, whereby the holdout can be resampled many times 
through a separate algorithm (211, 214, 215). The number of 

104

https://www.frontiersin.org/Oncology/
https://www.frontiersin.org
https://www.frontiersin.org/oncology/archive


Kang et al. ML and Radiogenomics

Frontiers in Oncology | www.frontiersin.org June 2018 | Volume 8 | Article 228

times that the holdout can be reused grows roughly with the 
square of its size, thus potentially providing near-unrestricted 
access for large datasets such as GWAS.

5.3. incorporate Clinical variables
Many complex disease phenotypes are likely confounded by 
environmental effects. When genetic and environmental deter-
minants are combined, there is increased accuracy in heritability 
prediction (216). This contribution from an environmental, non-
genetic source suggests that multi-domain models incorporating 
both genetic and clinical factors should create a superior predictor 
compared with genetic predictors alone. Current radiotherapy 
prediction models focus on clinical and dosimetric variables but 
do not incorporate genetic factors (217). Both the ASTRO and 
the European Society of Radiation Oncology recognize a need 
for improved radiation toxicity models—including through ML 
(218)—and have pushed for utilization of big data toward “preci-
sion” radiation oncology (219, 220).

5.4. Replication and Regulatory Concerns
When applying ML to radiogenomics for eventual human 
applications, one must also consider practical concerns about the 
current regulatory environment. In the mid-late 2000s, a wave of 
multi-biomarker laboratory-developed tests (LDTs) in oncology 
emerged that made several bold, highly publicized promises. 
Some were met (see Precision Medicine and Multigene Panels) 
but many ultimately went unfulfilled. These included two prot-
eomics-based diagnostic tests for ovarian cancer. OvaCheck (221, 
222) was debunked due to data artifacts (223) and batch effects 
(224). OvaSure (225, 226) was pulled from market in 4 months 
after FDA intervention due to concerns for inadequate validation 
(227). Both tests reported overly optimistic positive predictive 
values due to being trained on unrealistic data of approximately 
50% cancer positivity, whereas true ovarian cancer incidence is 
closer to 1 per 2,500 post-menopausal women (195–197, 227) 
(see Unbalanced Datasets). Certainly, the most high-profile 
and drawn-out case (85) involved lung cancer genomics-based 
chemotherapy response prediction that was pre-maturely rushed 
to clinical trial (228–230). Investigations into these and other 
controversies surrounding poor understanding of statistics and 
independent validation in biomarker studies (see Rashomon 
Effect) led to an extensive report by the Institute of Medicine 
which suggested corrective measures (84). Controversy continues 
regarding whether and how the FDA should regulate LDTs while 
still promoting innovation (231). One potential direction is pre-
certifying laboratories instead of individual LDTs. Regardless, 
understanding modeling principles in a scientific environment 
increasingly reliant on big data analysis is necessary to avoid 
repeating the same mistakes of a decade ago.

5.5. Promoting Research
An executive summary from the ASTRO Cancer Biology/
Radiation Biology Task Force (232) and a report from the 
ASTRO/AAPM/NCI 2016 precision medicine symposium 
(6) both recognized the large relative disparity between the 
utilization of therapeutic radiation (between 50 and 66% of 
cancers) and its investigative research effort. In the US, there 

are approximately 5,000 radiation oncologists and 15,000 medi-
cal oncologists, but a 2013 review of US National Institutes of 
Health (NIH) funding in radiation oncology found that <50% of 
all accredited departments had an active research program with 
at least 1 NIH grant, which is at odds with radiation oncology 
attracting the highest percentage of MD/PhD residents for a 
number of years (233). Only 3% of successfully awarded grants 
by the NIH Radiation Therapeutics and Biology study section are 
for biomarkers or radiogenomics (232). These numbers suggest 
that radiogenomics research continues to be underfunded. While 
the field moves toward improved support of young investigators 
through opportunities like the Holman Pathway (234, 235) and 
more is discovered in radiobiology and radiogenomics, there will 
also be a need to support methods development to ensure that 
radiation oncology does not lag behind in the era of precision 
medicine.

6. CONCLUSiON

Oncology is a field enriched by multidisciplinary study. Like 
cancer, genetics has eluded a complete understanding due to its 
surprising level of complexity. The focus on ML in the technol-
ogy industry is quickly moving into medicine, with a prime 
example being IBM Watson’s ability to understand game show 
questions becoming adapted for tumor board recommenda-
tions (114). These translational research efforts are not easy and 
require teamwork from stakeholders of varying backgrounds to 
avoid repeating mistakes made in one field in another field. In 
a radiogenomics era, radiation oncology will require multidis-
ciplinary integration of not just radiation biologists, physicists, 
and oncologists but also insight from computational biologists, 
statistical geneticists, and ML researchers to best treat patients 
using precision oncology.
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With the continuous increase in radiotherapy patient-specific data from multimodality
imaging and biotechnology molecular sources, knowledge-based response-adapted
radiotherapy (KBR-ART) is emerging as a vital area for radiation oncology personalized
treatment. In KBR-ART, planned dose distributions can be modified based on observed
cues in patients’ clinical, geometric, and physiological parameters. In this paper, we
present current developments in the field of adaptive radiotherapy (ART), the progression
toward KBR-ART, and examine several applications of static and dynamic machine
learning approaches for realizing the KBR-ART framework potentials in maximizing tumor
control and minimizing side effects with respect to individual radiotherapy patients.
Specifically, three questions required for the realization of KBR-ART are addressed: (1)
what knowledge is needed; (2) how to estimate RT outcomes accurately; and (3) how
to adapt optimally. Different machine learning algorithms for KBR-ART application shall
be discussed and contrasted. Representative examples of different KBR-ART stages are
also visited.

Keywords: adaptive radiotherapy, personalized treatment, deep learning, statistical learning, big data

1. INTRODUCTION

Recent advances in cancer multimodality imaging (CT/PET/MRI/US) and biotechnology
(genomics, transcriptomics, proteomics, etc.) have resulted in tremendous growth in patient-specific
information in radiation oncology, ushering in the new era of Big Data in radiotherapy. With the
availability of the individual-specific data, such as clinical, dosimetric, imaging, molecular markers,
before and/or during radiotherapy (RT) courses, new opportunities are becoming available for
personalized radiotherapy treatment (1, 2).

The synthesis of this information into actionable knowledge to improve patient outcomes is
currently a major goal of modern radiotherapy (RT). Subsequently, knowledge-based response-
adapted radiotherapy (KBR-ART) has emerged as an important framework that aims to develop
personalized treatments by adjusting dose distributions according to clinical, geometrical changes,
and physiological parameters observed during a radiotherapy treatment course. The notion of KBR-
ART extends the traditional concept of adapted RT (ART) (3, 4), primarily based on imaging
information for guidance, into a more general ART framework that can receive and process all
relevant patient-specific signals that can be useful for adaptive decision-making. Our goal is to
explore in more details the processes involved in the KBR-ART framework that would allow
aggregating and analyzing relevant patient information in a systematic manner to achieve more
accurate decision making and optimize long-term outcomes.
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A

B

C

FIGURE 1 | Comparison of workflow of (A) non-adaptive RT, (B) current image-based ART, and (C) the proposed KBR-ART approach. The current ART (B) mostly
relies on image guidance such as computed tomography (CT), positron emission tomography (PET), and magnetic resonance imaging (MRI). In KBR-ART, the
planning patients stage can utilize general knowledge about patient status (imaging+biological markers) as information for adapting treatment instead of using
imaging only. Two major differences between previous/current RT and KBR-ART are that (1) knowledge is no longer restricted to imaging only and can include
biological markers such as tumor genetics or blood-based inflammatory proteins (cytokines) to inform predictive modeling and decision-making; and (2) application
process of machine learning for adapting a treatment plan π in KBR-ART.

The proposed KBR-ART framework can be thought of as being
comprised of four stages, as depicted in Figure 1. These stages
include: (1) planning patients using available knowledge, or pre-
treatmentmodeling, (2) updating the predictionmodels with evolv-
ing knowledge through the course of therapy, or during-treatment
modeling, (3) personalizing initial patient’s treatments, and (4)
adapting the initial treatment to individual’s responses, where the
two middle steps can be repeated at each radiation dose fraction
(or few fractions) so that optimal treatment objectives aremet and
potentially long-term goals are optimized, i.e., long-term tumor
control with limited side effects to surrounding normal tissues.

The first step in the implementation of a KBR-ART frame-
work starts at the planning stage of patients by extending the
current “image-only patients” into a more general preparation
stage that can incorporate all relevant informatics signals for
evaluating available treatment options, c.f. Figures 1A,B. Thus,
the “K” in our KBR-ART refers to any useful knowledge (e.g.,
imaging (CT/PET/MRI) and biological markers (genomics, tran-
scriptomics, proteomics, etc.) that can potentially aid the process
of personalizing treatment to an individual patient’s molecular
characteristics and is not limited to imaging only as currently is
the case. In Section 2, we shall introduce four major categories of
data that are relevant to improved knowledge synthesis in RT. As
the era of Big data (BD) is upon us, many useful tools applied for
BDanalytics are being actively developed in the context ofmodern

machine learning algorithms, where KBR-ART is expected to
be a prime beneficiary of this progress toward the development
of dynamically personalized radiotherapy treatment leading to
better outcomes and improved patients’ quality of life. However,
there are three essential questions pertaining to the successful
development of a KBR-ART framework in radiotherapy that need
to be addressed:

Q1: What knowledge should be synthesized for radiotherapy
planning?
Q2: How can we develop powerful predictive outcome model-
ing techniques based on such knowledge?
Q3: How can we use these models in a strategically optimal
manner to adapt a patient’s treatment plan?

The answers to these three questions are at the core of success-
ful development of the proposed KBR-ART framework and we
shall attempt to address them in more depth in Sections 2–4 of
this paper. During the process of exploring the answers to these
questions, we shed more light on the pivotal role that machine
learning algorithms play in the design and development of a
modern KBR-ART system in subsequent sections as outlined in
Figure 2.

A major inherent merit of the KBR-ART framework is that the
treatment planning would be designed to dynamically adapt to
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FIGURE 2 | The graph outlines the sectional relationships and the organization of this paper, where the main thread is through Sections 2–4 can address the three
pertained questions involved in KBR-ART design and development, Figure 1C.

ongoing changes during the course of therapy to optimize radio-
therapy goals of eradicating the tumor while minimizing harm
to uninvolved normal tissue based on the individual patient’s
characteristics. As shown in Figure 1, adaptation of a treatment
plan can be more formally accomplished in accordance to a deci-
sion making function π. This is represented in Figure 1A for the
previous/current framework, where π is a non-varying function
but in the case of KBR-ART, Figure 1B, π is a time-varying
function that depends on the information (knowledge updates)
available during the course of therapy. The following scenariomay
be used as an example on how KBR-ART can be implemented in
practice: a given planned radiation course was considered optimal
according to an initial population-basedmodel such as traditional
dose-based tumor control probability (TCP) and normal tissue
complication probability (NTCP) and the goal is to optimize
the uncomplicated tumor control [p+ =TCP · (1–NTCP)], for
instance. Then, through the course of fractionated radiotherapy
treatment, the patient did not achieve the predicted TCP value
as expected, or worse suffered from unexpected toxicities due to
treatment, i.e., NTCP exceeded the designed risk limit. This is
where KBR-ART comes into action; to learn from current obser-
vations with its previous decisions taking into account available
information during therapy and to adjust the course of action [e.g.,
increase dose to improve TCP or decrease it to specific organ-at-
risk (OAR) to limit its NTCP] and develop a better personalized
treatment plan based on the updated knowledge (from imaging
and biomarkers) of the specific patient under treatment as shown
in Figure 1B.

Much effort of this study will be devoted to tackling questions
(ii and iii), which requires consideration of some advanced data-
driven models that can also incorporate temporal information
(i.e., knowledge updates). The steps involved in the development

of a knowledge-adapted plan using the KBR-ART framework
will be the main subject of this paper. For this purpose, we
will first review pertained modern machine learning algorithms
that feature modeling of sequential data. These include effi-
cient deep-learning approaches such as convolutional neural net-
works (CNNs), recurrent neural networks (RNNs), and the more
recently developed deep reinforcement learning (DRL). The sub-
ject of sequential datamodeling have been applied inmany diverse
fields, such as handwriting recognition (5), speech recognition
(6), bioinformatics (7), medical care (8, 9), and also high energy
physics (10).

The introduced algorithms based on deep learning would
require some basic background of neural networks (NNs) which
are briefly reviewed in Section 3.2.2. Most of the notations in this
paper are self-contained and self-consistent. In addition to the
presented advanced data-driven models, we also provide proba-
bilistic and statistical perspectives as a theoretical foundation for
sequential machine learning models. In particular, via “filtration”
we are to describe notions related to “knowledge accumulation” or
“growing of knowledge” in more concrete manner. A main part
of KBR-ART development relies on constructing a new RT plan
prescription based on historical information; thus we would like
to address issues related to representing knowledge accumulation
in sequential learning models.

Moreover, we recognize that KBR-ART has a close analogy to
stock pricing or autonomous car driving, in that it shares the same
goal of analyzing acquired information a long a period of time
to maximize final rewards (e.g., better radiotherapy treatment
outcome in our case). Therefore, techniques derived from time
series analysis will be helpful to analyze such sequential data from
an analytical perspective, such as the trends and the stationarity
of such stochastic (random) processes. In particular, it suffices for
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FIGURE 3 | The inter-relations between the different presented algorithms for designing KBR-ART a framework.

our purpose to revisitmain linear processes, such as the autoregres-
sive moving average (ARMA) model and its natural descendant
the autoregressive (AR) models, which can be linked to Bayesian
networks (BNs), another useful approach for dynamical learning
as summarized in Figure 3. Together, our goal is to provide a com-
prehensive overview and a frontier survey that covers the major
facets for the application of KBR-ART and layout the foundation
for this emerging field.

It worth noticing that we organized the sections of this paper
so that it follows the necessary building steps for the development
of a successful KBR-ART framework as pertained to address-
ing the three aforementioned questions involved in KBR-ART
implementation and review the related literature accordingly. Two
implementations using non-small lung cancer (NSCLC) datasets
will be presented for illustration.

2. Q1: WHAT KNOWLEDGE TO BE USED
FOR KBR-ART PLANNING?

There are four major types of RT data that are potentially useful as
part of the knowledge synthesis for KBR-ART: clinical, dosimetric,
imaging radiomics, and biological data. To understand why and
how they can be informative for assessing treatment outcomes, we
provide a brief description about these four categories of data.

2.1. Clinical Data
Clinical data refers to cancer diagnostic characteristics (e.g.,
grade, stage, histology, site, etc.), physiological metrics (e.g.,
blood cell counts, heart/pulse rates, pulmonary measurements,
etc.), and patient-related information (e.g., comorbidities, gender,
age, etc.). Due to their nature, clinical data can usually be found in
unstructured format such that can be challenging for extracting
information directly. Therefore, machine learning techniques
for natural language processing could be useful for transforming
such data into structured format (e.g., tabulated) before further
processing (11).

2.2. Dosimetric Data
Dosimetric data are informatic to the treatment planning pro-
cess in RT, which includes simulated calculation of radiation
dose using computed tomography (CT) imaging. In particu-
lar, dose–volume metrics obtained out of dose–volume his-
tograms (DVHs) are extensively investigated for outcome mod-
eling (12–16). Useful metrics are typically the volume receiving
greater than or equal to a certain dose (Vx), the minimum dose
to the hottest x% of the volume (Dx), mean, maximum, minimum
dose, etc. (17). Notably, a dedicated software based onMATLAB™
called “DREES” can derive theses metrics automatically and apply
them in outcome prediction models of RT response (18).
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2.3. Radiomics Data
Radiomics is a field of medical imaging study that aims to extract
meaningful quantitative features from medical images and relate
this information to clinical and biological endpoints. The most
common imaging modality is CT, which has been considered the
standard for treatment planning in RT. Other imaging modal-
ities used for improving treatment monitoring and prognosis
in various cancer types are also used, such as positron emis-
sion tomography (PET), and magnetic imaging resonance (MRI).
These modalities can be used individually or combined (19, 20).

2.4. Biological Data
According to (21) a biomarker is defined as “a characteristic
that is objectively measured and evaluated as an indicator of
normal biological processes, pathological processes, or pharmaco-
logical responses to a therapeutic intervention.” Measurements
of biomarkers are typically based on tissue or fluid specimens,
which are analyzed usingmolecular biology laboratory techniques
(22) and have the following two categories according to their
biochemical sources:

(a) Exogenous biomarkers: by injecting foreign substance into
patients such as that used in molecular imaging and are used
in radiomics applications.

(b) Endogenous biomarkers: there exists two subclasseswithin this
category:

(i) Expression biomarkers: changes measured in protein lev-
els or gene expression.

(ii) Genetic biomarkers: measuring variations between the
underlying DNA genetic code and tumors or normal
tissues.

2.5. Example: Aggregating Relevant
Knowledge From a Lung Cancer Dataset
In this paper, we shall apply an institutional non-small cell lung
cancer (NSCLC) dataset (23) as an example for implementation of
KBR-ART. The first step is to collect relevant knowledge from such
dataset that is suitable for the purposes of adapting radiotherapy
treatment planning during a fractionated course. These data will
be used subsequently for outcome modeling (TCP/NTCP) and
plan adaptation as discussed later.

2.5.1. Data Description
The NSCLC dataset was recorded from NSCLC patients, where
they have been treated on prospective protocols with standard
and dose escalated fractionation under IRB approval (24). Collec-
tively, 125 patients with relatively complete characteristics were
selected for predicting TCP (local control) and NTCP (radiation
pneumonitis of grade 2 or above (RP2)).

The dataset had over 250 features containing positron emis-
sion tomography (PET) imaging radiomics features, circulat-
ing inflammatory cytokines, single-nucleotide polymorphisms
(SNPs), circulating microRNAs, clinical factors, and dosimet-
ric variables before and during radiotherapy. All features were
recorded at three time periods (at baseline, at 2 weeks of treatment,
and at 4weeks). However, certain features were collected only at

baseline such as microRNAs and SNPs. Thus, the data for the
purpose of KBR-ART can be represented as forming 3 time blocks:

N samples


x(0)11 x(0)12 . . . x(0)1n x(1)11 x(1)12 . . . x(1)1n x(2)11 x(2)12 . . . x(2)1n

x(0)21 x(0)22 . . . x(0)2n x(1)21 x(1)22 . . . x(1)2n x(2)21 x(2)22 . . . x(2)2n

...
...

...
...

...
...

...
...

...
...

...
...

x(0)N1 x(0)N2 . . . x(0)Nn x(1)N1 x(1)N2 . . . x(1)Nn x(2)N1 x(2)N2 . . . x(2)Nn

 ,
(1)

where x(k)ij denotes the value of the jth feature of patient i at time
period k.

Values of mean tumor and lung doses were computed in
their 2Gy equivalents (EQD2) by using the linear-quadratic (LQ)
model (Section 3.1.1) with α/β= 10Gy, 4Gy for the tumor
and the lung, respectively. Generalized equivalent uniform doses
(gEUDs) with various a parameters were also calculated for gross
tumor volumes (GTVs) and uninvolved lungs (lung volumes
exclusive of GTVs).

3. Q2: HOW TO ESTIMATE
RADIOTHERAPY OUTCOME MODELS
FROM AGGREGATED KNOWLEDGE?

Radiotherapy outcome models are typically expressed in terms of
tumor control probability (TCP) and normal tissue complication
probability (NTCP) (25, 26). In principle, both TCP and NTCP
may be evaluated using analytical and/or data-driven models.
Though the former provides structural formulation, it can be
incomplete and less accurate due to the complexity of radiobi-
ological processes. On the other hand, data-driven models tend
to learn empirically from the data observed, and thus they are
capable of considering higher complexities and interactions of
irradiation with the biological system. The trade-offs between
analytical models and data-driven models can vary in terms of
radiobiological understanding and prediction accuracy. In the fol-
lowing, we list examples, more detailed description on treatment
outcome models can be found in (27).

3.1. Analytical Models
These models are generally based on simplified understanding of
radiobiological processes and can provide a mechanistic formal-
ism of radiation interactions with live tissue.

3.1.1. TCP
The most prevalent TCP models are based on the linear quadratic
(LQ) model (28) parametrized by the radiosensitivity ratio α/β
derived from clonogenic cell survival curves. The LQ model
expresses the survival fraction (SF) after irradiation as follows:

SF = e−αD−βD2
, (2)

where D≥ 0 is the total delivered dose. For n fractions of dose d
in uniformly delivered fractions is represented by:

SF = e−n(αd+βd2). (3)
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Many types of TCP models were proposed (28) in the literature
such as the birth-death (29) and the Poisson-based (30) models,
which are expressed as:

TCP = e−N·e−n(αd+βd2)−t ln 2/Tpot
, (4)

where N is the initial number of colonogenic cells, and Tpot
denotes the potential cell doubling time, with t as the time dif-
ference within the total treatment elapse T, the lag period before
accelerated clonogenic repopulation begins.

3.1.2. NTCP
The most frequently used analytical model is the
Lyman–Kutcher–Burman (LKB) model, which is a
phenomenological approach (31). In the uniform dose case,
NTCP is expressed by a gaussian integral (probit function):

NTCPm,D50(x) =
1√
2π

x∫
−∞

e−u2/2 du,
(
x =

D− D50

mD50

)
,

(5)

where D50 is defined as the dose that corresponds to NTCP
probability (curve in Figure 4) of 50% andm is a parameter tuning
the shape of the NTCP curve. Typical trade-off between TCP and
NTCP to achieve a therapeutic ratio is shown in Figure 4.

To account for dose inhomogeneities in developing TCP/NTCP
models, the Equivalent Uniform Dose (EUD) (32) or Generalized
EUD (gEUD) (33) are used. Mimicking a weighted sum of doses,
gEUD is given by:

gEUD = a

√√√√ n∑
i=1

vi Da
i , (6)

where vi is the fractional organ volume receiving dose Di and
a is a volume parameter that depends on the tissue type. An
a< 0 value will correspond to minimum dose effect, which is
typically associated with tumor response. An a> 0 value will

FIGURE 4 | An illustration of a therapeutic ratio showing that the trade-off
between TCP and NTCP as delivered dose increases. The blue-shaded area
between two curves TCP (blue) and NTCP (orange-dashed) is a best window
for dose delivery.

correspond to maximum dose effect, which is typically associated
with serial normal tissue architecture response, while an a= 1 will
correspond to mean dose effect, which is associated with parallel
normal tissue architecture response.

More complex analytical models for toxicity can be developed
by incorporating variables other than dose in the LKB model, for
instance (34, 35):

NTCPm,D50,DMFs(x) =
1√
2π

x∫
−∞

e−u2/2 du (7)

with
x =

Deff · DMF1 · DMF2 · · ·DMFk − D50

mD50
,

where the DMFs are dose modifying factors and represent the
impact of covariates other than dose (e.g., single-nucleotide poly-
morphism (SNPs) genotype, copy number variations (CNVs),
smoking status, etc.). Although analytical models are useful,
in many circumstances, they are simply approximations of the
complex physical and biological processes that are currently
beyond such simple formalisms. Therefore, more data-driven
approaches are being sought to achieve more accurate predictions
of TCP/NTCP.

3.2. Data-Driven Models
By definition, data-driven models are approximations built based
on observation of data. However, one drawback is that such mod-
eling is likely not unique even from the same dataset and, there-
fore, one needs to choose a suitable technique that fits one’s dataset
best, which is an open question in the data science world. The
purpose main of this section is to present several advanced data-
driven techniques that can suite the implementation of predic-
tive outcome modeling component of the KBR-ART framework.
Below, we summarize some frequently used data-driven tech-
niques for outcome modeling ranging from classical regression
models to more advanced machine learning techniques.

3.2.1. Classical Models
Regression models such as Ridge, LASSO, and Logistic are com-
monly used foe building outcomemodels and follow conventional
statistical approaches (36). They are essentially constructed by
minimizing the following objective:

L(w) =
N∑
i=1

[
yi − (⟨w, xi⟩+ b)

]2 + λ · h(w), (8)

where xi ∈ Rn and yi ∈ R, i= 1, . . . ,N, are the data input and
outputs, respectively. Here, the weights w ∈ Rn and bias b ∈ R
are unknown parameters to be fitted by minimizing regression
error, Equation (8). The second term in Equation (8) represents
penalty, usually used to suppress possible model’s overfitting.
There are several types of penalty corresponding to different
model characteristics, such as h(w)= ∥w∥ is called the LASSO
by Tibshirani (37), h(w)= ∥w∥2 is called the Rigid (Tikhonov)
regularization (37), and h(w)=λ1∥w∥+λ2∥w∥2 is called the
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Elastic Net regularization (38). The regularization parameter λ
controls the magnitude of the penalty.

Due to the characteristic of L1-norm, ||·||, the LASSO regular-
ization tends to suppress many parameters to equal zero, so that
the parameter vector is sparse, which makes it a natural candidate
for relevant feature selection (39).

Another benefit of regression models other than their sim-
plicity is the convex optimization property of their loss func-
tion, which guarantees optimal fitting parameters w=w∗. In
fact, it can be explicitly solved using simple matrix inversion
w∗ = (XTX+λI)−1·XT y, for Ridge regression, for instance,
where X is known from the given data:

X def
=


− x1 −
− x2 −

...
− xN −

 =


1 x11 · · · x1n
1 x21 · · · x2n
...

...
. . .

...
1 xN1 · · · xNn

 . (9)

3.2.2. Neural Networks
One notable model in machine learning is called Neural Net-
works (NN), which are inspired by the neurobiology of the brain,
and hence the name. Mathematically, NNs utilize (repeated) com-
position of nonlinear transformations in developing their archi-
tecture. The definition is fairly simple (40); given a set of data
inputs xi ∈ Rn and labels yi ∈ R, i= 1, . . . ,N as defined above, a
NN is aimed to approximate a function of the form:

fw,b(x) = σL
(
w(L) · σ(L−1)

(
w(L−1) · · · ·σ1

(
w(0) · x + b(0)

)
+ b(L−2)

)
+ b(L)

)
, (10)

via adjusting unknown coefficients {w(ℓ) ∈ Rnℓ×nℓ+1}Lℓ=0 and
{b(ℓ) ∈ Rnℓ}Lℓ=0 such that the loss function is minimal between
the data and the NN model:

L
({

w(ℓ)
}
,
{
b(ℓ)

})
=

N∑
i=1

g
(
yi, fw,b (xi)

)
, (11)

where in Equation (10), the given functions σℓ: Rnℓ→Rnℓ are
called activation functions, which are fixed for a particular archi-
tecture. The integer L of max composition is interpreted as layers
with index ℓ= 0, . . . , L denoting the layer number as shown in
Figure 5A and nℓ is an integer denotes the number of nodes
(neurons) in layer ℓ. The function g in Equation (11) should
also be fixed depending on data query type. For continuous
labels yi, such NN is called a regression prediction function with
g(y, h(x))= ||y − h(x)||2 typically adopted for an arbitrary loss
function h : Rn→Rm. For discretized labels of multidimen-
sions y= (y1, . . . , ym), such NN is called a classification pre-
diction function with cross entropy loss function g(y, h(x)) =∑m

k=1 [yk log(hk(x)) + (1− yk) log(1− hk(x))] typically chosen
with h= (h1, . . . , hm).

In practice, there are several choices for activation functions
σi, such as sigmoid, ReLu, eLu, Leaky ReLU function, etc., whose
effectiveness usually depends on the nature of the dataset and
the problem in question. The terms relating forward dynam-
ics, error backward propagation, and weights gradient descent are

technical procedures for estimating the unknown coefficients
{w(ℓ) ∈Rnℓ×nℓ+1}Lℓ=0 and {b(ℓ) ∈Rnℓ}Lℓ=0 from Equation (11).
Although the design construction of an NN is relatively sim-
ple, the proper optimization of its parameters could be tedious
numerically (40, 41).

In general, it is conventionally dubbed a deep neural network
(DNN) when the number of hidden layers exceed 2, or L≥ 3.
These neural networks are widely applied and are the foundations
for the emerging field of deep learning, which is currently overper-
forming many of the classical machine learning techniques.

3.2.3. Deep learning Models
In KBR-ART, one expects that the processes involved in outcome
modeling and adaptation procedures can be quite complex in
nature for individualizing patient’s treatment according to her/his
predicted response over the course of fractionated therapy. There
are few advanced data-drivenmodels, mostly deep learning based,
which can effectively into consideration such temporal informa-
tion for updating knowledge and interactions between physical
and biological variables for adapting therapy. In the following, we
will briefly describe some of the main deep learning technologies
in the literature.

3.2.3.1. Convolutional Neural Networks (CNNs)
CNNs are best known for image recognition and image-related
prediction. The idea of CNN stemmed from the successful appli-
cation of the signal processing operation of convolution in imaging
processing, which was then been applied into neural networks for
handling image related tasks. A CNN typically consists of several
convolutional layers, pooling layers, with activation functions (42),
where the convolution layer is the core component that applies
an efficient convolutional filter (kernel) to the data in contrast
to the tedious matrix operations described earlier with standard
NN. In the case of a 2D image of size L1× L2 with multi color
channels (C1), the data are represented by a 3d-tensor I =
{Ii,j,α}L1,L2,C1

i=1,j=1,α=1 ∈ R2+1, a convolutional layer with stride s
renders an output image (also called feature maps) Ĩ (of size
L̃1 × L̃2 with C2 channels) by applying the following convolution
process (42).

Ĩk,ℓ,β =
L1,L2,C1∑
m,n,α

wm,n,α,β · Is(k−1)+m,s(ℓ−1)+n,α(
image convolution. k = 1, . . . , L̃1,ℓ = 1, . . . , L̃2,β = 1, . . .C2

) ,

(12)
here, w= {wm,n,α,β}L1,L2,C1,C2

m=1,n=1,α=1,β=1 ∈R2+1+1 is a 4-tensor
convolutional kernel. Such convolution process with stride is then
equivalent to a regular convolution with image downsampling
procedure. In fact, one can recognize that CNNs use these ker-
nels in a neural network to “capture” local information within a
neighborhood while “blocking” distant information or less related
ones, as depicted in Figure 5B. Activation functions in CNNs
have similar choices as a standard NN, Equation (10), mentioned
above. CNNs has been successfully applied for image segmenta-
tion (43–46) in radiotherapy and for modeling of rectal toxicity in
cervical cancer using transfer learning (47, 48). Thiswill be further
discussed in Section 3.3.1.
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FIGURE 5 | Three main architectures of deep learning. (A) A neural network is a composition function interpreted to have several layers from 0, . . . , L with neural
nodes (n0, . . . , nℓ, . . . , nL). Variables x(ℓ) =(x(ℓ)

1 , . . . , x(ℓ)
nℓ

) are called neurons of layer ℓ. (B) A typical architecture of a CNN consists of several layers including
linear convolutional layers, pooling layers, and a final fully connected layer for classification (or regression). A kernel (filter) acts as a mask operating only on
neighboring information (pixels) yet blocking distant information. [Figure created by Aphex34 distributed under a CC BY-SA 4.0 license (from Wikimedia Commons)].
(C) An LSTM unit consists of 1 cellstate h(t) and 3 gates: forget gate F (t), input gate I (t), and output gate O(t), with x(t) as input and y(t) as final (prediction) output.

3.2.3.2. Recurrent Neural Networks (RNNs)
RNNs are another variant of neural networks especially useful for
learning sequential data, such as voice, text data, and handwriting.
Therefore, it is also considered ideal for sequential adaptive radio-
therapy with changing dose fractionations. In this case, suppose
that we have sequential data {x(t) ∈ Rn| t ∈ T} as an input and
{ỹ(t) ∈ Rm| t ∈ T} as the corresponding labels where T denotes
an index set (continuous or discrete) labeling separation across
time steps. An important property of a RNN is that it introduces
hidden units {h(t) ∈ Rk| t ∈ T} for making neural network
deeper in increasing sequential prediction. A RNN is then aimed
to learn the relationships between data {x(t) ∈ Rn} and labels
{ỹ(t)} via hidden units {h(t) ∈ Rk} dynamically.

An RNN is designed to model the hidden variables via the
recursive function fθ : Rk × Rn → Rk.

h(t) = fθ
(
h(t−1), x(t)

)
∈ Rk, (13)

where θ usually serves as unknown neural weights to be solved, as
{w(ℓ), b(ℓ)}Lℓ=0 in Equation (10).

One of the most successful RNN is the Long Short-Term Mem-
ory (LSTM).AnLSTM is a state-of-the-art RNNmodel effective in
sequential learning utilizing the so-called gated units, who learns
by itself to store and forget internal memories when needed such
that it is capable of creating long-term dependencies and paths

through time, Figure 5C. A LSTM is constructed by 3 gates and 1
cell (hidden) state built up by the following equations.

F(t) = σg + (WF · x(t) + UF · h(t−1) + bF ) ∈ [0, 1]

I(t) = σg + (WI · x(t) + UI · h(t−1) + bI) ∈ [0, 1]

O(t) = σg + (WO · x(t) + UO · h(t−1) + bO) ∈ [0, 1]

h(t) = F(t) ◦ h(t−1) + I(t) ◦ σh
(
Wh · x(t) + Uh · h(t−1) + bh

)
y(t) = O(t) ◦ σy(h(t)),

(14)

where σg, σh, σy are 3 non-linear activation functions depending
on one’s choice, {F(t), I(t),O(t)} are called the forget gate, input
gate, and output gate at time t, respectively.

The 3 gates, with all their numerical values in [0,1], are used to
control and determine when and how much should the previous
information be kept or forgotten. The unknown parameters of an
LSTM are (Wh, Uh, bh) and {(Wα,Uα, bα) |α = F , I,O} and,
therefore, an LSTMunit generally possesses four times parameters
than a plain neural net in Equation (10) requiring a large amount
of data for training. RNNs have been evaluated in radiotherapy
for respiratorymotionmanagement (49). An interesting approach
combining RNN with CNN was used for pancreas segmentation
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on both CT and MRI datasets, which mitigated the problem of
using spatial smoothness consistency constraints (50, 51).

The previously presented machine learning methods do not
allow visualization of the system dynamics and act primarily as
a black box mapping from the input to the output data and are
referred to as discriminant models. Alternatively, system dynam-
ics ofmapping input to output data can be revealed using so-called
generativemodels. A common example of suchmodels is Bayesian
networks, which will be discussed next.

3.2.4. Bayesian Networks
Bayesian networks (BNs) are a class of probabilistic graphical
models (GM) corresponding to directed acyclic graphs (DAGs),
which are also named as belief networks. BNs combine graph
theory, probability theory, computer science, and statistics to
represent knowledge in an uncertain domain. They are popular
in the societies of statistics, machine learning, and artificial intelli-
gence. Especially, BNs are mathematically rigorous and intuitively
understandable, which enable an effective way to represent and
compute the joint probability distribution (JPD) over a set of
random variables (52).

Each BN includes the sets of nodes and directed edges. While
the former indicate random variables represented by circles, the
latter display direct dependencies among these variables illus-
trated by arrows between nodes. In a BN, an arrow from node Xi
to node Xj shows a statistical dependence between them, which
indicates that a value of variable Xj depends on that of variable Xi,
or variableXi “affects”Xj. Also, their relationship can be described
as follows: Node Xi is a parent of Xj and node Xj is the child of Xi.
In general, the set of nodes that can be reached on a direct path
from the node is named as the set of its descendants, and the set
of nodes from which the node can be reached on a direct path is
called as the set of its ancestor nodes (53).

The DAG structure guarantees that no node can be its own
ancestor or its own descendant, which is of vital importance to
the factorization of the JPD of a collection of nodes. A BN is
designed to reflect a conditional independence statement, where
each variable is independent of its nondescendants in the BNgiven
its parents. This property is used to significantly reduce the num-
ber of parameters required to characterize the JPDof the variables.
Especially, this reduction leads to an efficient way in computing
the posterior probabilities given the evidence (52, 54, 55).

Moreover, the parameters of the BN are described in a manner
following aMarkovian property, where the conditional probability
distribution (CPD) of each node only depends on its parents.
These conditional probabilities are often represented by a table
for discrete random variables to list the conditional probability
that a child node takes on each of the feasible values from each
combination of values of its parents. The joint distribution of a col-
lection of variables can be obtained uniquely by these conditional
probability tables (CPTs).

Generally, a BN B can be considered as a DAG that represents
a joint probability density function over a set of random variables
V. The BN is defined by a pair B= ⟨G, ϕ⟩, where G is the DAG
whose nodesX1,X2, . . . ,Xn denotes random variables, andwhose
edges indicate the direct dependencies between them. The graph
G includes independence assumptions, where each variable Xi is

independent of its nondescendants given its parents in G. The
second component ϕ represents the set of parameters of the
BN. This set contains the parameter θ(xi|πi)= PB(xi|πi) for each
realization xi of Xi conditioned on πi, which is the set of parents
of Xi in G. Then, B describes a unique JPD over V :

PB (X1,X2, . . . ,Xn) =
n∏

i=1
PB(Xi|πi) =

n∏
i=1

θXi|πi , (15)

where if Xi does not have parents, its probability distribution is
considered to be unconditional; otherwise it is conditional. Once
the variable indicated by a node is observed, the node is considered
as an evidence node; otherwise the node is treated as a hidden or
latent node. Because of their generative nature, BNs have been
widely applied for modeling radiotherapy errors (56, 57) and
outcomes (58–62). This will be further discussed in Section 3.3.2.

3.3. Example Application of Machine
Learning to Outcome Modeling
As examples of application of modern machine learning to out-
come modeling, in the following, we discuss application of a
discriminant modeling approach by CNN of rectal toxicity and a
generative modeling approach by BN for lung toxicity.

3.3.1. NTCP Modeling of Rectal Toxicity Using CNN
Zhen et al. (47) studied the possibility of modeling rectal toxicity
in cervical cancer using CNNs from unfolded rectum surface dose
maps (RSDMs) (63) with the help of transfer learning, as depicted
in Figure 6. A retrospective data of 42 cervical cancer patients
were studied. These patients were treated with external beam
radiotherapy (EBRT) and/or brachytherapy (BT). The EBRT was
delivered in 25 fractions (2Gy/fraction) and BT was delivered in
4–6 fractions (6–7Gy/frac).

For transfer learning, CNN of VGG-16 (64) was chosen as
optimal architecture, which consists of 16 convolutional layers of
suitable sizes including up to 138million parameters. TheVGG-16
is pretrained using a publicly annotated natural images database
(ImageNet). The finetuned VGG-16 on the cervix cancer dataset
with ADASYN method for imbalance correction, achieved an
AUC of 0.89 on leave-one-out cross validation for rectal toxicity
prediction. In addition to a successful model building of relating
RSDMs to toxicity, Zhen et al. also attempted to interpret what
and how CNNs “view” an RSDM, where the method of Grad-
CAMmap (65) was utilized to unveil the nature of the CNN learnt
features (Figure 7). From Figure 8, one finds that the Grad-CAM
interpreted maps (d, e) (from mapping CNN weights) have high
consistency of distinct image patterns with toxicity (b) and non-
toxicity (c) that were recognizable by human eyes. Therefore, by
visualizing the CNN model, one can have better understanding of
the features learned by the machine learning algorithm.

3.3.2. NTCP Modeling of Lung Toxicity Using
Bayesian Networks
Radiation pneumonitis of grade 2 or above (RP2) is a major
radiation-induced toxicity in NSCLC radiotherapy, and it may
depend on radiation dose, the patients’ clinical, biological, and
genomic characteristics. In order to find appropriate treatment
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FIGURE 6 | The workflow of the rectum toxicity study in (47) using VGG-16 receiving 2D RSDM image input with Grad-CAM map as interpretation of CNN weights.
[© Institute of Physics and Engineering in Medicine. Reproduced by permission of IOP Publishing. All rights reserved.]

FIGURE 7 | Comparison of discriminant and generative models, where the gradient coloring on generative models indicates the model transparency.

FIGURE 8 | Pixelwise p-value map were shown in (A) with small p<0.05, (B,C) are the average rectum RSDM of the toxicity and non-toxicity patients; and (D,E) are
average Grad-CAM map of the toxicity and non-toxicity groups. (F) Box plot of the mean dose in different salient regions extracted from the Grad-CAM map. Details
see (47).
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plans and improve patients’ therapeutic satisfaction, a systematic
machine learning approach needs to be developed to find the
most important features from the high dimensional dataset and
to discover the relationships between them and RP2 for clin-
ical decision-making. Thus, a BN approach was developed to
explore interpretable biophysical signaling pathways influencing
RP2 from a heterogeneous dataset including single nucleotide
polymorphisms (SNPs), micro RNAs (miRNAs), cytokines, clin-
ical data, and radiation treatment plans before and during the
course of radiotherapy of NSCLC patients.

In this BN implementation, the dataset described in Section
2.5.1 with 79 patients (21 cases of RP2) was used for model
building and 46 additional patients were reserved for independent
model testing. The BN approach mainly included a large-scale
Markov blanket (MB) method to select relevant predictors, and
a structure learning algorithm to find the optimal BN structure
based on Tabu search and the performance evaluation of out-
come prediction (24). K-fold cross-validation was used to guard
against over-fitting, and the area under the receiver-operating
characteristics (AUC) curve was utilized as a prediction metric.

The large-scale MB method intends to identify the most rele-
vant variables of RP2 before or during the course of radiotherapy.
Figure 9A shows the extended MB neighborhoods of RP2 before

radiation treatment, where the MB of RP2 based on pretreatment
training data is formed from “Mean_Lung_Dose,” “pre_MCP_1,”
“pre_TGF_alpha,” and “pre_eotaxin.” In the meantime, each of
these variables has its own MB neighborhood as shown in
Figure 9A. For example, “V20,” “nos3_Rs1799983,” “stage,” and
“RP2” form the MB of “Mean_Lung_Dose.” In this study, poten-
tial variables of the BN were identified from the extended MB
neighborhoods within two layers of RP2. Figure 9B indicates the
updated extended MB neighborhoods in an extended model after
incorporating the slopes of cytokine levels before and during-
treatment (SLP) as the patients’ responses during the radiation
treatment. Although the MB of RP2 during the radiation treat-
ment based on the whole training dataset keeps the same as that
in Figure 9A, the MB of “Mean_Lung_Dose” has been updated,
and it includes patients’ cytokine responses such as “SLP_IL_17,”
“SLP_GM_CSF.” Figures 9C,D illustrate biophysical signaling
pathways from the patients’ relevant variables to RP2 risk based
on pretreatment and during BN model building, respectively. The
results of internal cross-validation show that the performance of
the BN yielded an AUC= 0.82, and it was improved by incor-
porating during treatment cytokine changes to AUC= 0.87. In
the testing dataset, the pre- and during AUCs were 0.78 and
0.82, respectively. It turns out that the BN approach allows for

FIGURE 9 | The extended MB neighborhoods of RP2 before (A) and during (B) radiation treatment, where the upper level shows the inner family of RP2 and the
lower levels show the next-of-kin for each of its member. Pretreatment BN (C) and during-treatment BN (D) for RP2 prediction [figures reprinted with permission].
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unraveling of relevant biophysical features that lead to RP2 risk
and prediction of RP2, and this prediction improved by incorpo-
rating during treatment information (24).

4. Q3: HOW TO ADAPT PLANS IN
KBR-ART?

The precise estimation of treatment outcome is necessary step
before deciding on the right course of action, since we desire
to evaluate potential outcomes effects beforehand as we weigh
the different alternatives for the best possible strategy (i.e., set of
actions) to optimize the individual’s treatment response. This is in
a simplistic sense no different than playing board games or chess
when a player may evaluate a dozen of options before carrying out
amove. Therefore, by assuming one can attain accurate prediction
estimates of TCP and NTCP, as discussed in the previous section,
then, the final question to address in the context of KBR-ART is
how to optimally adapt the plan (e.g., increase the tumor fraction
dose) to achieve improved outcomes.

A utility function is usually required to estimate the total effect
of a treatment plan weighting on both positive outcomes and the
possible side effects caused. In RT, an example utility function
called complication-free tumor control (P+) can be used. The P+

measures the performance of a treatment at each stage based on
combined TCP and NTCP under the form P+ =U(TCP, NTCP;
θ) where P+ indicates probability of a positive treatment outcome.
One linear form is particularly simple and effective (66) where:

P+ = TCP× (1− NTCP) (16)

Notably, some other functional forms may be used as well, such
as Equation (42).

In the practice of KBR-ART, if one has already synthesized rele-
vant knowledge (clinical, dosimetric data, . . . etc.) from Section 2
with variables x1, . . . , xn as predictors and applied analytical/data-
drivenmodels in Section 3, then we can derivemodels of TCP and
NTCP in the form TCP= f TCP (x1, . . . , xn) and NTCP= f NTCP
(x1, . . . , xn) based on retrospective data such that the P+ response
estimation function reads:

P+ = U (fTCP (x1, . . . , xn) , fNTCP (x1, . . . , xn) ; θ) (17)

With the response estimation defined by the P+ utility func-
tions, next, we design a scheme for treatment adaptation.Machine
learning based on reinforcement learning (RL) is a suitable
approach for realizing plan adaptation as it can search over all
possible decisions to maximize the P+ function as rewards and
identify the best policy (e.g., dose per fraction) for the treatment
planning.

4.1. Generalized KBR-ART Framework
The KBR-ART can be described by the following general formu-
lation:

{x(t) ∈ Rn|t ∈ T}, {y(t) ∈ Rm|t ∈ T}, {u(t) ∈ Rp|t ∈ T}

L({x(t)}, {y(t)}, {u(t)}; θ), C({x(t)}, {y(t)}, {u(t)};ϕ),
(18)

where x(t) is the state of a system at time t∈T, y(t) is the obser-
vation of state x(t), u(t) is the controls for the system to influence
next states x(t+1), andL({x(t)}, {y(t)}, {u(t)}; θ) is a loss function
serving a specific purpose for the system to be minimized over
temporal information x(t), y(t), and u(t) along with some con-
straints C({x(t)}, {y(t)}, {u(t)};ϕ). Any of the vectors x(t), y(t),
and u(t) can be real-valued vectors or vectors of random variables
such that the temporal sequences can be deterministic or a ran-
domprocesses adaptation. Although dimensions of n,m, pmay be
infinite in Equation (18), almost all real-life implementations are
finite dimensions. Equation (18) may apply to many legacy ART
approaches in different manners. In the following, we provide a
brief overview for alternative ART approaches.

4.1.1. Linear Feedback ARTs
Traditionally, linear feedback (loop) control systems are consid-
ered as viable implementations of ART, wheremost of the adaptive
feedback is based on imaging information such as CT and/orMRI.
Generally, there are two types of control systems: open-loop and
closed-loop.

With notations in Equation (18), a linear loop control is gener-
ally described by two sets of linear equations:

ẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t) (19)

˙̃x(t) = Ax̃(t) + Bu(t) + Lδy(t), ỹ(t) = Cx̃(t), (20)

where in Equation (19), A, B, L, C are linear operators, y(t) is
the observation of the actual state x(t), and {u(t)|t∈T } represents
controls of the system as adaptations for the treatment of a radio-
therapy. Equation (20) as a similar copy of Equation (19) describes
the estimation x̃(t), ỹ(t) of the corresponding variables x(t), y(t) of
the system, with δy(t) def

= y(t) − ỹ(t) as the estimation error of the
observed state and in turn shall be used as the feedback in the
subsequent iterations. With L ̸= 0, the system constantly receiving
the estimation error shall adjust itself accordingly, and thus such
is called a closed-loop control system, Figure 10A.

Incidentally, in the perfect case, the three characters x(t), x̃(t),
ỹ(t) shall coincide into one with C= I, δy(t) = 0 and thus the
Equations (19) and (20) reduce to one. However, in most of cases,
they tend to split. In a system, where the matrix L vanishes, it
becomes an open-loop control system since any feedback signal
δy(t) from the system is not considered, Figure 10B. An obvious
drawback of the open-loop system is the estimation instability,
which can be easily seen from Equations (19) and (20) as the
quantity δx(t) def

= x(t) − x̃(t) describing the estimation error is
subject to the state equation d/dt(δx(t))=A · δx(t) with L≡ 0. The
solution δx(t) = eAT·δx(0) indicates that the error has exponential
growth as time elapses such that soon an open-loop system easily
becomes unreliable. On the other hand, by receiving a feedback
signal due to a close-loop system (L ̸= 0) can improve reliability,
as the evolution δx(t) = e(A− LC)t·δx(t) will converge by suitable
choice of a gain L such that the eigenvalues |λi (A− LC)|< 1. In
a linear control problem, the control is modeled by u(t) =−Kx(t)

with a constant matrix K such that Equation (20) reads:

˙̃x(t) = (A− LC)x̃(t) − BK u(t) (21)
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A B

FIGURE 10 | (A) [Left] a linear closed-loop control system, where the feedback signal of estimation error of the observed state δy(t) is received through a gain
(matrix) L. (B) [Right] a linear open-loop control system where the feedback signal δy(t) was not considered. Such system tends to suffer from estimation error
instability, limt→∞ ||δx(t) || → ∞.

In control theory, one may also consider a loop-control system
with small uncertainty. Typically, by considering stochasticity, the
system can becomemore stable and robust. The (time) discretized
linear control with a random process starts with extension of
Equation (19) as:

x(t) = A · x(t−1) + B · u(t) + w(t)

y(t) = C · x(t−1) + v(t),
(22)

where the two random processes {w(t)} and {v(t)} denote the noise
of state x(t) and observation y(t) assumed multivariate Gaussian
N (0,Q(t)) and N (0,R(t)), respectively. Kalman filters are then
a common analysis for deriving optimal estimation of δx(t). In
(67), Keller et al. established a linear stochastic closed-loop system
that utilized Kalman filters (68) to derive optimal control law.
They assumed an image-guided radiotherapy, which attempts
to provide optimal correction strategies for setup errors, which
can also take the measurement uncertainties into account. Let
x(t) = x(t)1 + x(t)2 ∈ R3 denote the difference between the actual
and planned positions of the center-of-mass of the clinical tumor
volume (CTV), i.e., the daily displacement x(t) containing (1)
the setup error x(t)1 (displacement of bony structures) and (2)
the organ motion (displacement x(t)2 with respect to the bony
structures). Decompose x(t) into two parts x(t+1) =u(t) +w(t) with
u(t) = u(t)

1 + u(t)
2 called the systematic component and w(t) =

w(t)
1 + w(t)

2 called the random component, where the subindex
“1” and “2” refer to setup errors and organ motion, respectively.
Together, they modeled the ART displacement with a stochastic
linear system:

x(t+1) = u(t) + w(t)

y(t) = x(t) + v(t)
(23)

where y(t) is the observation of x(t). By defining the estimation of
state x(t) as x̃(t) def

= P(x | y0, . . . , y(t−1)) based on previous obser-
vations y0, . . . , y(t− 1) as in Equation (20), Kalman filters are able
to provide an optimal estimation of x̃(t) such that the estimation
error x̃(t+1) def

= x(t+1)− x̃(t) is minimal. Immediately, they derived

FIGURE 11 | A simulated displacements (circles) of 30 fractions was
demonstrated in (67), where in the first 5 fractions, u=5 is used. Their results
showed that on average Kalman filters (asterisks) estimationsx̃(t) are closer to
the (unknown) displacements than the measurements y(t) (crosses).

the optimal control law u(t)
c∗ = −x̃(t), which seems to be an intu-

itive result. A comparison was made with respect to an obvious
control law that is “suboptimal” u(t)

c = −ỹ(t), which is merely the
correction of observation itself. Subsequently, they attempted to
measure the effectiveness of decisions given by Kalman filters uc∗
and the observation uc by computing

e def
=
σ2
x−x̃
σ2
x−y

(24)

where σ2
x−x̃ and σ2

x−y are two residue variances of different esti-
mation toward the state x(t). One simulated result was made to
demonstrate the performance of Kalman filters in predictions of
stochastic linear control system, as shown in Figure 11 where
a treatment of 30 fractions were simulated with the first 5 frac-
tions, a random systematic error u=+5mm and measurement
noiseσv =σw = 1mmwere imposed, whichmeans the correction
started only at the sixth fraction. Their results showed that on
average Kalman filter estimations x̃(t) are closer to the (unknown)
displacements than the measurements y(t), where in the first
fraction the estimate equals the value of the measurement.
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4.2. Nonlinear Feedback ARTs
It is natural to consider nonlinear feedback control for ARTs
due to inherent complexity. In (69), Zerda et al. developed a
nonlinear closed-loop ART for treatment planning. In particular,
they proposed two algorithms: Immediately Correcting Algorithm
and Prudent Correcting Algorithm. With the following notation
corresponding to Equation (18),

x(t) = y(t) → ψ(t) =
(
ψ

(t)
geometry, ψ

(t)
cumdose

)
,

u(t) = ξ(t)({x(t)}) → β(t) = ξ(t)
(
ψ(t)

)
,

L({x(t)}, {y(t)}, {u(t)}; θ) →
∑
v∈V

α(v)
(
Dprescribed(v) − ψ

|T|
cumdose(v)

)2
,

(25)

where v∈V is a voxel under consideration, v 7→ α(v) is the
importance factor, and the control is promoted as a nonlinear
function of states, u(t) = ξ (t)({x(t)}) rather than the linear form
u(t) = –K · x(t− 1). With ψ(t) denoting the state of the ART system,
it was assumed to consists of two parts: (1) cumulative dose
ψ

(t)
cumdose after t∈T and (2) patient’s geometric model obtained

from conebeam CT (CBCT images) {ψ(t)
geometry | t ∈ T}, where it

was further assumed the geometry information interacts with the
cumulative dose by the relation

ψ
(t)
cumdose = ψ

(t−1)
cumdose

+ D
(
v; {β(t) | t ∈ T}, {ϵ(t) |t ∈ T}, {ψ(t)

geometry | t ∈ T}
)
(26)

with the dose delivery function D
(
v; {β(t)}, {ϵ(t)}, {ψ(t)

geometry}
)

related to delivery errors {ϵ(t)}, where it is always assumed van-
ishing throughout the paper (69). In other words, from Equa-
tions (25) and (26), the objective of the Immediately Correcting

Algorithm is to minimize the following loss:

L
(
β1, . . . , β|T|

)
=
∑
v∈V

α(v)

(
Dprescribed(v)

−
∑
t∈T

D
(
v;
{
β(t)
}
,
{
ϵ(t)
}
,
{
ψ

(t)
geometry

}))2

(27)

via an optimal sequence of dose fractionation (controls)
(β1, . . . ,β |T|) to be found, and thus it is regarded as a special
realization of the general scheme Figures 12A,B.

4.3. Stochastic ARTs
In (70), Bortfeld et al. developed a static robust optimization by
treating the dose delivery problem of intensity modulated RT
(IMRT) as a probabilistic problem with uncertainties. Using the
notations in Equation (18) and letting x(t) as a breathing phase
(state) at time t, u(t) as a control probability function over all
breathing states, the observed state y(t) = x(t+1):

x(t) → x, u(t) → p(x), θ → {∆v,b,x,wb, γ, θv} , (28)

we arrive at the loss function and constraints proposed by Bortfeld
et al.

minimize L =
∑
v∈V

∑
x∈X

∑
b∈B

∆v,b,x p(x)wb

subject to C1 =
∑
v∈V

∑
x∈X

∑
b∈B

∆v,b,x p̃(x)wb ≥ θv, ∀v ∈ T , p̃ ∈ PU

C2 =
∑
v∈V

∑
x∈X

∑
b∈B

∆v,b,x p̃(x)wb ≤ γθv, ∀v ∈ T , p̃ ∈ PU.

(29)
Essentially, they considered the dose (to be delivered) as an

expectation value following a predefined probability distribu-
tion (PDF) over all breathing phases, Dv,b = Ex [∆v,b,x] =∑

x∈X ∆v,b,x p(x), where v∈V denotes a voxel, b∈B denotes

FIGURE 12 | (A) [Left] a general scheme of a non-linear closed-loop feedback control proposed by Zerda et al. (69), where a system feedback ψ(t) was received after
fraction t∈T is completed. (B) [Right] block diagram of ICA algorithm proposed in (69), where the whole dose delivery history and anatomy model from daily CBCT
images are considered. This is a special case of (A) by taking the system state ψ(t) = (ψ(t)

cumdose, ψ
(t)
geometry).
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a beamlet, ∆v,b,x is a matrix computed for the snapshots of the
anatomy in each phase, and θv, γ are some constants specific to
the problem in question. The main purpose is to learn an optimal
probability p(x) as a stochastic control overall breathing phases
x∈X via Equation (29). Themotion p.d.f. searched in the infinite-
dimensional controls was actually approximated by the discretized
set,

P = {p ∈ F (X; R) ∼= R|X| | p(x) ≥ 0,
∑
x∈X

p(x) = 1} (30)

such that this problem is tractable. They further required the
realization p̃ of p in Equation (29) during a treatment to be
constrained within certain error bounds ℓ and u:

PU := {p̃(x) ∈ P | p(x)− p(x)︸ ︷︷ ︸
ℓ(x)

≤ p̃(x)

≤ p(x) + p̃(x)︸ ︷︷ ︸
u(x)

, ∀x ∈ U ⊆ X} (31)

As a result, the experiments by Bortfeld et al. showed that
even when they allowed an unaccepted underdosage in the tumor
anywhere between 6 and 11%, their proposal Equation (29) still
offered same level of protection as the margin solution within
1% under dosage on average. Their approach proves that using
stochastic controls helps stabilize the systemwith uncertainty over
time. Later in (71), Chan andMišić further improved the previous
adaptive approach by extending the static probability distribu-
tion {p} into a temporal sequence of PDF (p(1), p(2), . . . , p(k)) by
incorporating uncertainty set updated each time for ART, which
corresponds to the sequential control {u(t)| t∈T} in Equation (18).
The proposal in (71) essentially replaces the uncertainty p.d.f.
p∈ PU of Equation (29) by p(k) ∈ P(k)

U iteratively to take care of
patient’s breathing motions.

p(k+1) ← p(k), with

p(k) ∈ P(k)
U := {p̃(x) ∈ P |ℓ(k)(x) ≤ p̃(x) ≤ u(k)(x), ∀x ∈ U ⊆ X}

(32)

Two versions of uncertainty updates are proposed,

ℓ(k+1) = (1− α) ℓ(k) +α p(k), u(k+1) = (1− α) u(k) +α p(k)
(33)

ℓ(k+1) =
1

k + 1

(
ℓ(k) +

k∑
i=1

p(i)
)
,

u(k+1) =
1

k + 1

(
u(k) +

k∑
i=1

p(i)
)

(34)

where the first version is called the exponential smoothing update
and the second is called the running average update. Together,
Equations (29) (32), (33), or (34) constituted their proposal in (71)
and suggested that their method does not require accurate infor-
mation to exist before a treatment commences. Their evaluation
further stressed its clinical value as it allows for the tumor dose

to be safely escalated without leading to additional healthy tissue
toxicity, whichmay ultimately improve the rate of patient survival.
Subsequently, Mar and Chan (72) further proposed an extension
to the adaptive robust ART mentioned above (70, 71) by adding
drift component using the Lujan model (73) of patients’ breathing
patterns.

Another related approach utilizing the formulation Equation
(18) is found in (74), where Löf et al. developed statistical models
for ART. Their design used stochastic optimization to handle two
kinds of errors: (1) errors due to internal motion and change of
organs (or tissues) and (2) errors due to the uncertainty in the
geometrical setup of a patient. They attempted to compensate for
the systematic errors by couch corrections and for the random
error by modulation of the fluence profiles. This system was
further modified by Rehbinder et al. using a linear–quadratic
regulator (LQR) (75).

4.4. Reinforcement Learning (RL) for ART
RL is a set of machine learning algorithms that can interact with
an “environment” (e.g., radiotherapy). Usually, there is a goal
set for the RL, acting as an agent, to reach. Examples could be,
winning a chess/board game or driving safely through a trip in
an autonomous driving vehicle. Such a procedure is usually done
by collecting the so-called reward designed by humans. RL serves
as an independent machine learning area besides the common
supervised or unsupervised learning mentioned earlier. RL is
based on the environment defined by a Markov decision process
(MDP).

An MPD is a 5-tuple (S,A, P, γ, R), where

• S = {(x1, . . . , xn) ∈ Rn} is the space of all possible states,
• A is a finite collection of all (discrete) actions,
• R : Ω → R is the reward function given on the product space

Ω= S×A× S,
• γ ∈ [0, 1] is the discount factor, representing the importance

(rewards) that propagates from the future back to the present,
• P : F → [0, 1] is a probability measure on Ω with F = 2Ω the

power set (σ-algebra) of Ω, whose probability mass function
(pmf) (s, a, t) 7→ P(s, a, t) denotes the transition probabil-
ity from state s∈ S to another t∈ S under an action a∈A.
Consequently, this induces the condition probability

Psa(t) ≡ Prob(t |s, a) ≡ P(s, a, t )/P(s, a), (35)

on space of next states t conditioned on previous state s and
current action a.

As an example, in chess, each si ∈ S will stand for a config-
uration of the chess board and action ai ∈A corresponds to a
move given by a player. The purpose of an agent in the RL is to
find a sequence of actions {a0, a1, . . .} (acting on an initial state
s0 ∈ S) such that a path in S collects maximum rewards (and hence
winning the goal/game):

s0
a0−→
π

s1
a1−→
π

s2
a2−→
π

s3 . . . (36)

An agent is, by itself, a policy function π: S→A who deter-
mines an action a=π(s) under a state s, as described in Equation
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(36). There are mainly two ways to construct a policy func-
tion by policy-based and value-based methods in RL: the former
parametrizes a policy function directly (76) via π(θ ) while the
latter builds one implicitly via Q-functions, and hence is also
called Q-learning. The policy-based method is usually applied in
continuous controls whereA ∼= R or large cardinality |A| →∞.
In this study, we shall focus more on the Q-learning and its
application in radiotherapy.

An optimal policy π∗: S→A is derived from maximizing the
Q-function in the Q-learning, such that Qπ∗

= maxπQπ , where
the Q-function is defined by evaluating the value at (s, a)∈ S×A
via rewards collected in all possible paths:

Qπ(s, a) = E
[ ∞∑
k=0

γk R (sk, π (sk))
∣∣∣π, s0 = s, a0 = a

]
(37)

However, this definition Equation (37) is ideal for comprehen-
sion, yet, difficult for actual computation. A practical realization of
computing theQ-function is via the following Bellman’s iteration,
whose optimal value Qπ* is computed by an iterative (functional)
sequence {Q̃i}∞i=1 instead,

Q̃i+1(s, a) = Et∼Psa

[
R(s, a) + γmax

b∈A
Q̃i(t, b)

]
. (38)

Such an iteration Equation (38) is guaranteed to converge by
the contraction mapping theorem (77) of the uniquely fixed point
as {Q̃i}∞i=1 → Qπ∗

if i→∞ (78) such that

Q̃∗(s, a) = Et∼Psa

[
R(s, a) + γmax

b∈A
Q̃∗(t, b)

]
. (39)

The calculation soon becomes intractable when either the car-
dinality |S| or |A| is large. A possible solution to this is utilizing
deep learning methods for evaluating the Q-function proposed
by Google DeepMind (79, 80), hence the name Deep Q-network
(DQN). By taking advantages of neural networks, the convergence
of the Q-function with Equation (38) becomes more efficient and
accurate. DQN proposes Q̃i = QΘi

DNN, where Θi denotes the
parametrization (weights) of theDNN at ith iteration and requires

the following loss function being optimized:

Li (Θi) = E(s,a)∼ρ

×

[(
Et∼Psa

[
R(t, a) + γmax

b∈A
QΘi−1

DNN (t, b)
]
− QΘi

DNN(s, a)
)2
]
.

(40)
In short, Equations (38) and (40), and Q̃i = QΘi

DNN together
makes the DQN.

4.5. Example: Adapting RT Plans Using
Deep Reinforcement Learning
Using the NSCLC dataset from Section 2.5.1, we attempt to apply
a DQN to provide automatic dose escalation at the 2/3 period
(about 4weeks) into a treatment as illustrated in Figure 13, where
the dose escalation is the action to be submitted by the DQN. The
main goal of the study is to compare the automatic decision made
by the DQN to that established by a clinical protocol (81). This
will be described briefly in the following, details can be consulted
in (23).

That work explicitly presented a suitable MDP. In particular, a
state space chosen to be useful for prediction of local control (LC)
and RP2 based on the BN formalism introduced in Section 3.3.2.

By defining the state space as S = {(x1, . . . , xn) ∈ Rn} with
n= 9 and

x1 = IL4 x2 = IL15, x3 = GLSZM.GLN, x4 = GLRLM.RLN,
x5 = MCP1, x6 = TGFβ1, x7 = Lung gEUD, x8 = Tumor gEUD, x9 = MTV

(41)
where x1, x2, x5, x6, x9 are cytokines, x3, x4 are of PET radiomics,
and x7, x8 are doses, and here, the allowed action set will be
A = {a1 = dose/frac} ⊆ R+. One notices that such a choice of
a MDP for dose automation is not unique; there may exist other
environments to attain the same or even better performance (82).

A tricky problem is that the transition probability in Equa-
tion (35) is intractable to the real world (radiotherapy environ-
ment); therefore, DNNs were utilizes to model the radiotherapy
environment. Thus, a DNN provided an approximate transition
probability P̃(s, a; t) := P̃sa(t) := P̃rob(t | s, a) modeled from
the observed data, where the transition takes place s a→ t under

FIGURE 13 | In the paper (23), Tseng et al. proposed to utilize reinforcement learning for making decisions at 2/3 period of a treatment (right solid-green arrow). A
first step in their framework is to learn transition functions from the historical data of two transitions recorded (RHS figure) so that the radiotherapy environment can
be reconstructed (called approximated environment). With the transitions simulated, a DQN agent can then search for optimal dose at each stage [figures reprinted
with permission].
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FIGURE 14 | This figure visualizes the dose fraction recommended by the clinicians (blue dashed line) and the autonomous DQN (black solid line). Differences and
similarities can thus be compared, with RMSE= 0.5Gy. An evaluation of good (green dots), bad (red dots), and potentially good decisions (orange dots) (23) [figures
reprinted with permission].

action a. Another problem to solve in that the sample size was
small relative to the DNNs. Hence, a Generated Adversarial Net-
work (GAN) technique was used to alleviate this problem.

After proper choice of actions,A= {1, 1.1, 1.2, . . . , 5} Gy, and a
reward function looking upon to higher LC than usual P+ baseline
function:

R(s) =
1
2
√

Prob(LC | s) · (1− 0.8 · Prob(RP2 | s))

· (1 + sgn(17.2%− Prob(RP2 | s))), (42)

The results demonstrated the feasibility to derive automated
dose levels (black solid line) that are similar to or compatible with
the clinical protocol (blue dashed line) as shown in Figure 14with
the corresponding statistics shown in Table 1.

5. DISCUSSION

5.1. Statistical and Probabilistic Aspects
Here, we attempt to provide a fundamental statistical and proba-
bilistic interpretation for sequential machine learning algorithms
to help understand their roles in KBR-ART. This will be done with
the specific focus on how knowledge can accumulates in such a
KBR-ART system when the known information in the system is
growing with time. First, we characterize the probability space
as: (Ω, F , P), where F is a σ-algebra1 of a sample space Ω and
P : F → R+ is the probabilitymeasure defined onΩ, see (83, 84).
In this setting, Ω denotes the set of all possible outcomes and F
as the space of all events. A (multi-dimensional) random variable
X is a then F-measurable function X : Ω → Rn on a probability
space (Ω, F , P). Roughly speaking, the σ-algebra corresponds to

1F as a collection of subsets of a set Ω is called a σ-algebra if the following three
is satisfied: (1) Ω∈F , (2) if A ∈ U implies (Ω \ A)∈F , and (3) arbitrary union
A = ∪∞

k=1Ak ∈ F if Ak ∈F .

TABLE 1 | Summary for the evaluation on clinicians’ and the DQN decisions
extracted from (23).

Summary Good Bad Potentially good

Clinicians 19 (55.9%) 15 (44.1%) 0
DQN 17 (50%) 4 (11.8%) 13 (38.2%)

the “information” useful (and related) to the random variable X.
Furthermore, if {X(t)| t∈T} is a sequence of randomvariables (or a
process), a natural σ-algebra induced by the process is defined by:

U(t) := U(X(s)| s ∈ [0, t])

:=
{(

X(s)
)−1

(B) ⊆ Ω| ∀ Borel set B ⊆ Rn, ∀s ∈ [0, t]
}
,

(43)

which is interpreted as the history of the process up to time
t. Therefore, under a process {X(t)| t ∈ T}, one can regard the
σ-algebra U(t) as accumulating information from the observed
variable X(s) along the times s∈ [0, t]. Thus, a one liner may be
best to represent the message we try to deliver:

a σ-algebra = information;

a “growing” σ-algebra = more information coming in.

In fact, the idea of considering growing information, such as
weather forecasting, stock pricing prediction, or daily CT changes,
can be understood by a growing σ-algebra called a filtration,
Figure 15. Such tool for analysis is commonly seen in quantita-
tive finance (85, 86), which we believe it shares the same nature
as a treatment in radiotherapy. The following concept describes
growing (accumulating) information.

A sequence of σ-algebras {F t}t≥0 on a measurable space (Ω, F)
with F t⊆F is called a filtration if Ft1 ⊆ Ft2 whenever t1≤ t2.
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FIGURE 15 | An illustration of a filtration indicating a sequence of growing
σ-algebras, Ft1 ⊆ Ft2 if t1 ≤ t2. The enlargement of σ-algebras reflects the
accumulating information as time evolves. This provides a theoretical tool to
measure the growth of knowledge in a KBR-ART design.

The labeling index t is usually referred to “time” or a similar
concept, where in the radiotherapy case it may be treatment frac-
tions, stages, or phases. If we consider a filtration generated from a
stochastic process via F t =U(t), then, intuitively, this filtration is
interpreted as containing all history available up to time t, but not
future information available about the process. Due to this nature,
a process adapted to a filtration F is also called non-anticipating,
indicating that one cannot see into the future.

Therefore, a KBR-ART system would rely on machine learning
algorithms (such as CNN, RNN, DRL, . . . etc.) to explore non-
anticipating filtrations and to learn from accumulating knowledge
or information, such as the examples givens in Sections 3.3 and 4.

To demonstrate the concept of filtrations more concretely in
our setting, the following example is provided. Suppose a sequence
of independent random variables {X(i)}i = 1,2,3. . . denotes the
growth in GTV size at stage i with E(X(i))= di for all i. If we have
measured total growth up to stage k, i.e., S(k) :=X(1) + . . .+X(k),
we like to know what is our best guess for the growth after nmore
stages S(k+n), given the information of the past S(1), . . . , S(n)?

Some computation reveals that

E(S(k+n)| S(1), . . . , S(k))

= E
(
X(1) + · · ·+ X(k+n)| S(1), . . . , S(k)

)
= S(k) +

n∑
i=k+1

di,

(44)

which indicates that the best surmise for the future value S(k+n),
given the knowledge (history) up to stage k, is S(k) plus empiri-
cal understanding (averages), reflecting the information cease to
grow after time step k. The computation Equation (44) relies on
the following fact:

1. If X is F-measurable, then E(X|F) = X almost surely.
2. If X is independent of F , then E(X|F) = E(x) almost surely

After the above discussion of how information can be accumu-
lated using σ-algebras, next, we discuss how to analyze sequential
random variables from a more theoretical perspectives using time
series.

5.1.1. Time Series
Due to the nature of sequential data, an KBR-ART is naturally
related to time series, which are applied comprehensively in
forecasting, such as econometrics, quantitative finance, seismol-
ogy, and signal processing, etc. Quoting from (87):

A time series model for the observed data {x(t)|t∈T} is a
specification of the joint distributions (or possibly only
the means and covariances) of a sequence of random
variables {X(t)|t∈T} of which {x(t)} is postulated to be
a realization.

Incidentally, a time series is a special case of stochastic pro-
cesses {X(t)|t∈T}, where the time labeling set T can be an infinite
set. In a very general case, a process {X(t)|t ∈ Z} can haveVolterra
expansion

X(t) = c +
∞∑
j=0

ϑj Z(t−j) +
∞∑
j,k

ϑjk Z(t−j)Z(t−k)

+
∞∑
j,k,ℓ

ϑjk Z(t−j)Z(t−k) Z(t−ℓ) + · · · , (45)

where high order terms can be considered. Usually, the modeling
of time series is divided by two main categories, linear and non-
linear methods.

In particular, there are three classes of linear models that carry
practical importance, namely autoregressive models AR(p), the
moving average models MA(q), and the integrated (I) models.

(TheARMA (p,q) process withmeanµ) The process {X(t)|t ∈ Z}
is called an ARMA (p,q) process if it is stationary and satisfies for
all t,(

X(t) − µ
)
− φ1

(
X(t−1) − µ

)
− · · · − φp

(
X(t−p) − µ

)
= Z(t) − ϑ1 Z(t−1) − · · · − ϑq Z(t−q), (46)

where µ, φi, ϑi ∈ R and {Z(t)} ≃ WN
(
0, σ2) are white noise

(error terms).
Here, the ARMA(p, q) process refers to the model with p

autoregressive terms and q moving-average terms. Especially, p= 0
and q= 0 in the ARMA(p, q) process corresponds to two useful
linear cases calledAR(p) andMA(q)models, respectively. The aim
of studying the behavior of a time series {X(t)} can be done via the
analysis of the depending coefficients φI, ϑi and its autocorrela-
tion function (88), which we will not go through. An interesting
fact is that one can study the causality of an ARMA(p, q) process
via the following fact:

Let {X(t)} be an ARMA(p, q) process with φ(z) := (1+
φ1z+ · · · +φ1zp), ϑ(z) := (1+ϑ1z+ · · · +ϑqzq) have no com-
mon zeros. Then {X(t)} is causal if and only if φ|D ̸= 0 with
D = {z ∈ C| ∥ z ∥≤ 1}.

Thus AR(1) process with µ= 0 is only a simple case given
by X(t) =Z(t) +X(t− 1) from Equation (46). Since φ(z)= 1−φ1z,
it follows that {X(t)} is causal if |φ1|< 1 and non-stationary
when |ϕ1|= 1. This AR(1) case demonstrates that we may
actually learn the behavior of a time series by analyzing the
dependent coefficients. In fact, the heuristic AR(1) process is
directly related to the Markov process due to a fact (see Propo-
sition 7.6 in (89)). Simply stated, for a process {X(t)|t ∈
Z} taking values in a Borel space S, Z1, Z2,. . . are inde-
pendent taking values in E and if there exist functions ft:
S×E→ S, t ∈ Z, such that X(t) is recursively defined by
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X(t) = ft
(
X(t−1),Z(t)

)
, X(0) = x0 ∈ S, (47)

then the process {X(t)|t ∈ Z} is Markov. This result Equation
(47) then justifies the claim that the AR(1) is a Markov process as
the transition functions simply indicate ft(X(t−1),Z(t)) = Z(t) +
φ1 X(t−1) from Equation (47). Moreover, it is time-homogeneous
since {Z(t)} are i.i.d. and ft is fixed across all t. As one recalls that
the Markov process is defined under the property

P
((

X(t)
)−1

(B) | U(s)
)

= P
((

X(t)
)−1

(B) |X(s)
)

(∀ Borel B ⊆ Rn, t ≥ s ≥ 0)

(48)
where U(s) is as defined in Equation (43). At the prediction level,
AR(1) or Markov process then indicates that one can estimate the
probabilities of future values X(t) just as well as if one was aware of
the entire history of the process U(s) prior to time s. The Markov
property Equation (48) serves as a simplifying assumption to
reduce complexities in variables involved. Therefore, it is one of
our reasons to introduce the Bayesian Networks modeling based
on Markov process in Section 3.2.4.

5.2. Comparison of Varying Data-Driven
Models
There are a large number of statistical models in the area of
machine learning. They can be basically divided into 3 categories:
supervised, unsupervised, and reinforcement learning, where super-
vised models are mainly used for data prediction, unsupervised
models are usually used to explore intrinsic data structure such
as probability and location distribution, and the reinforcement
learning, which we will introduce in Section 4.4 is to learn best
controls within certain circumstances. All the methods intro-
duced in Section 3.2 belong to the supervised learning category,
which is the cornerstone for KBR-ART system implementation. It
is essential for a KBR-ART to have a accurate model for future
prediction in patients’ status, e.g., organ geometry and shape
changing, whether the model is analytical or statistical. Statis-
tical modeling is typically a handy choice over analytical one
to overcome the modeling complexity involved in mechanistic
realizations of radiotherapy interactions.

Comparison of the merits of several classical methods such as
linear regression Section 3.2.1, Bayesian networks Section 3.2.4,
decision trees, and SVMs can be found in (90–92). Generally
speaking, the pros of classical data-driven models such as linear
regression and Bayesian networks is that they are interpretable,
numerically stable, computational efficient, and work even on
small sample-sized dataset, but the cons are that they lack versatil-
ity in tasking (e.g., no one uses regressions for image segmentation
or contouring) and do not possess the ability to handle complex
and high variety of data, such as images, video, sequences, lan-
guages, and mixture data. For complex data such as the RT data,
one can rely on more modern techniques such as deep learning,
particularlyDNN,CNN, andRNN-based structures. For intensive
review regarding deep learning and their merits, one may refer to
(42, 93). The trade-off between handling complex data and data
interpretability may drive one to choose between classical and

deep machine learning methods. Moreover, deep learning tech-
niques typically require larger amount of observations compared
to classical statistical learning techniques. This is a main reason
that deep learning is no yet as prominent inmedical and biological
field compared to its current dominant in computer science and
engineering. The bottom line here is that there yet no universal
recognition for which classifier can do the best job in biomedicine
or oncology. The development of KBR-ART is foreseeable to rely
more deep learning approaches for outcomemodeling and variety
tasks of (image, sequential) data processing and decision-making.

6. CONCLUSION

In this study, we presented a framework for comprehensive KBR-
ART design and implementation based on machine learning and
explored some of its main characteristics. First, in Section 2, we
analyzed the characteristics and types of features in clinical data as
effective choice of data for feeding knowledge into KBR-ART. Sec-
ond, in Section 3, we visited a few promising and powerful tech-
niques of modern machine learning development, such as DNNs,
CNNs, RNNs aswell as the classical linear regression-typemodels.
The KBR-ART framework we proposed here rely on machine
learning techniques, which are capable of accurate prediction
and sequential learning, which are the cornerstones for building
up a KBR-ART system. There are three pertained questions to
the design and realization of KBR-ART, which we addressed in
this paper and we presented illustrative examples for each case
highlighted by the application RL/BN onto a NSCLC radiother-
apy dataset. In Section 4, we provided a unifying formulation
in Section 4.1 for designing a KBR-ART system (Equation 18).
The purpose was twofold: (1) to clearly understand the essence
of previous constructed ARTs of last generation, (2) to provide a
guiding principle for designing next generation algorithms.

The application of the presented technologies here provides
great promise for the field of KBR-ART, yet there are still numer-
ous challenges ahead. First, there is highly complex nature of
radiation interaction with human biology that we are still trying
to develop a better understanding. Second, medical datasets typi-
cally suffer from small sizes and often incomplete. Several efforts
between nations and domestic institutes are being carried out to
consolidate larger datasets for oncology studies, for the purpose
of statistical model training and validations, but many are still
in the infancy. Nevertheless, this paper still serves as a blueprint
laying the foundation for the establishment and applicability of
KBR-ART using modern machine learning techniques.
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Radiomics leverages existing image datasets to provide non-visible data extraction via

image post-processing, with the aim of identifying prognostic, and predictive imaging

features at a sub-region of interest level. However, the application of radiomics is

hampered by several challenges such as lack of image acquisition/analysis method
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standardization, impeding generalizability. As of yet, radiomics remains intriguing, but not

clinically validated. We aimed to test the feasibility of a non-custom-constructed platform

for disseminating existing large, standardized databases across institutions for promoting

radiomics studies. Hence, University of Texas MD Anderson Cancer Center organized

two public radiomics challenges in head and neck radiation oncology domain. This was

done in conjunction with MICCAI 2016 satellite symposium using Kaggle-in-Class, a

machine-learning and predictive analytics platform. We drew on clinical data matched

to radiomics data derived from diagnostic contrast-enhanced computed tomography

(CECT) images in a dataset of 315 patients with oropharyngeal cancer. Contestants

were tasked to develop models for (i) classifying patients according to their human

papillomavirus status, or (ii) predicting local tumor recurrence, following radiotherapy.

Data were split into training, and test sets. Seventeen teams from various professional

domains participated in one or both of the challenges. This review paper was based

on the contestants’ feedback; provided by 8 contestants only (47%). Six contestants

(75%) incorporated extracted radiomics features into their predictive model building,

either alone (n = 5; 62.5%), as was the case with the winner of the “HPV” challenge,

or in conjunction with matched clinical attributes (n = 2; 25%). Only 23% of contestants,

notably, including the winner of the “local recurrence” challenge, built their model relying

solely on clinical data. In addition to the value of the integration of machine learning

into clinical decision-making, our experience sheds light on challenges in sharing and

directing existing datasets toward clinical applications of radiomics, including hyper-

dimensionality of the clinical/imaging data attributes. Our experience may help guide

researchers to create a framework for sharing and reuse of already published data that

we believe will ultimately accelerate the pace of clinical applications of radiomics; both in

challenge or clinical settings.

Keywords: machine learning, radiomics challenge, radiation oncology, head and neck, big data

INTRODUCTION

Radiomics, or texture analysis, is a rapidly growing field that
extracts quantitative data from imaging scans to investigate
spatial and temporal characteristics of tumors (1). To date,
radiomics feature signatures have been proposed as imaging
biomarkers with predictive and prognostic capabilities in

several types of cancer (2–6). Nevertheless, non-uniformity

in imaging acquisition parameters, volume of interest (VOI)
segmentation, and radiomics feature extraction software tools
make comparison between studies difficult, and highlight unmet
needs in radiomics (7). Specifically, reproducibility of results
is a necessary step toward validation and testing in real-world
multicenter clinical trials (8). Another commonly emphasized
bias of high-throughput classifiers such as those in radiomics
is the “curse of dimensionality,” which stems from having
relatively small datasets and a massive number of possible
descriptors (9).

Multi-institutional cooperation and data sharing in radiomics

challenges can address, in particular, the issue of dimensionality

and advance the field of quantitative imaging (10, 11). Hence,
the Quantitative Imaging Network (QIN) of the National
Cancer Institute (NCI) (12) started the “Challenges Task

Force” with singular commitment to collaborative projects
and challenges that leverage analytical assessment of imaging
technologies and quantitative imaging biomarkers (13). To
this end, and at the request of NCI and invitation from
Medical Image Computing and Computer Assisted Intervention
[MICCAI] Society, the head and neck radiation oncology
group at The University of Texas MD Anderson Cancer
Center organized two radiomics competitions. Oropharyngeal
cancer (OPC) was chosen as a clinically relevant realm
for radiomics hypothesis testing. Using manually-segmented
contrast-enhanced computed tomography (CECT) images and
matched clinical data, contestants were tasked with building one
of 2 models. These included: (i) a classification model of human
papillomavirus (HPV) status; and (ii) a predictive model of
local tumor recurrence, following intensity-modulated radiation
treatment (IMRT) (14).

We had several motivations for organizing these radiomics
challenges. First: To demonstrate that radiomics challenges
with potential clinical implementations could be undertaken
for MICCAI. Second: To identify whether Kaggle in Class,
a commercial educationally-oriented platform could be used
as an avenue to make challenges feasible in the absence of
custom-constructed websites or elaborate manpower. The main
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aim of this review is to detail the mechanics and outcomes
of our experience of using a large standardized database for
radiomics machine-learning challenges. We previously detailed
the data included in both our challenges in a recently published
data descriptor (14). Here, we will continue to outline the
“challenge within a challenge” to provide a template workflow
for initiating substantial platforms for facilitating “multi-user”
radiomics endeavors. By pinpointing these hurdles, we hope
to generate insights that could be used to improve the
design and execution of future radiomics challenges as well as
sharing of already published radiomics data in a time-effective
fashion.

MATERIALS AND METHODS FOR
CHALLENGES

At the invitation of NCI and MICCAI, the head and neck
radiation oncology group at The University of Texas
MD Anderson Cancer Center organized two public head
and neck radiomics challenges in conjunction with the
MICCAI 2016: Computational Precision Medicine satellite
symposium, held in Athens, Greece. Contestants with
machine-learning expertise were invited to construct
predictive models based on radiomics and/or clinical
data from 315 OPC patients to make clinically relevant
predictions in the head and neck radiation oncology
sphere.

Database
After an institutional review board approval, diagnostic CECT
DICOM files and matched clinical data were retrieved for
OPC patients who received curative-intent IMRT at our
institution between 2005 and 2012 with a minimum follow-up
duration of 2 years. A key inclusion criterion was pre-treatment
testing for p16 expression as a surrogate for HPV status.
315 patients with histopathologically-proven OPC were
retrospectively restored from our in-house electronic medical
record system, ClinicStation. The study was Health Insurance
Portability and Accountability Act (HIPAA) compliant,
and the pre-condition for signed informed consent was
waived (15).

We then imported contrast-enhanced CT scans of intact
tumor that were performed not only before the start of IMRT
course but also before any significant tumor volume-changing
procedures, i.e., local or systemic therapies. Although all patients
were treated at the same institute, their baseline CECT scans were
not necessarily obtained from the same scanner, i.e., different
scanners within the same institute or less commonly baseline
scans from outside institute. Hence, thorough details of images
characteristics and acquisition parameters were kept in the
DICOM header and made available as a Supplementary Table.
A publicly available anonymizer toolbox, DICOM Anonymizer
version 1.1.6.1, was employed to anonymize protected health
information (PHI) on all DICOM files in accordance with
the HIPAA, as designated by the DICOM standards from the

Attribute Confidentiality Profile (DICOM PS 3.15: Appendix E)
(16).

The selected CT scans were imported to VelocityAI 3.0.1
software (powered by VelocityGrid), which was used by two
expert radiation oncologists to segment our VOIs in a slice-
by-slice fashion. VOIs were defined as the pre-treatment gross
tumor volume (GTV) of the primary disease (GTVp), which
was also selected as the standardized nomenclature term. Gross
nodal tumor volumes also were segmented to provide a complete
imaging dataset that can benefit other radiomics studies in the
head and neck cancer domain. However, contestants were clearly
instructed to include only GTVp in regions of interest for robust
texture analysis.

Segmented structures in congruence with matched clinical
data constituted the predictor variables for both challenges.
Clinical data elements comprised patient, disease, and
treatment attributes that are of established prognostic
value for OPC (17). A matching data dictionary of concise
definitions, along with possible levels for each clinical data
attribute, was provided to contestants as a “ReadMe” CSV file
(Table 1).

We also provided contestants with a list of suggested open-
source infrastructure software that supports common radiomics
workflow tasks such as image data import and review as well as
radiomics feature computation, along with links to download the
software. After completion of the challenge, a complete digital
repository was deposited (figshare: https://doi.org/10.6084/m9.
figshare.c.3757403.v1 and https://doi.org/10.6084/m9.figshare.c.
3757385.v1) (18, 19) and registered as a public access data
descriptor (14).

Challenge Components
Challenge components were identified as a function of the
hosting platform.

Hosting Platform
In the two radiomics challenges, organized on Kaggle-in-Class,
contestants were directed to construct predictive models that (i)
most accurately classified patients as HPV positive or negative
compared with their histopathologic classification (http://
inclass.kaggle.com/c/oropharynx-radiomics-hpv), and (ii) best
predicted local tumor recurrence (https://inclass.kaggle.com/c/
opc-recurrence). Kaggle-in-Class (https://inclass.kaggle.com/) is
a cloud-based platform for predictive modeling and analytics
contests on which researchers post their data and data miners
worldwide attempt to develop the most optimal predictive
models. The overall challenge workflow is portrayed in
Figure 1.

Anonymized imaging and clinical data belonging to the cohort
of 315 OPC patients were uploaded to the Kaggle in Class server
almost evenly split between the training subset and test subset,
encompassing 150 and 165 patients, respectively, in separate
CSV files and DICOM folders. Subjects were randomly assigned
to either training or test sets via random number generation.
Caution was taken to make outcome of interest (HPV status
for the first challenge and local control for the second one)
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TABLE 1 | Supplemental information about data provided for radiomics

challenges.

Data element Description

Patient ID Numbers given randomly to the patient after

anonymization of the DICOM protected health

identifier (PHI) tag (0010,0020) that corresponds to

medical record number

HPV/p16 status HPV status, as assessed by HPV DNA in situ

hybridization (57) and/or p16 protein expression via

immunohistochemistry, with the results described as

1 (i.e., positive) or 0 (i.e., negative)

Gender Patient’s sex

Age at diagnosis Patient’s age in years at the time of diagnosis

Race American Indian/Alaska Native, Asian, Black,

Hispanic, White, or not applicable

Tumor laterality Right, left, or bilateral

Oropharynx subsite of origin Subsite of the tumor within the oropharynx, i.e.,

base of tongue (21) or tonsil/soft palate/pharyngeal

wall/glossopharyngeal sulcus/other (no single

subsite of origin could be identified)

T category Description of the original (primary) tumor with

regard to size and extent per the American Joint

Committee on Cancer (AJCC) and Union for

International Cancer Control (UICC) cancer staging

system, i.e., T1, T2, T3, or T4 (https://

cancerstaging.org/references-tools/Pages/What-is-

Cancer-Staging.aspx)

N category Description of whether the cancer has reached

nearby lymph nodes, per the AJCC and UICC

cancer staging system, i.e., N0, N1, N2a, N2b, N2c,

or N3 (https://cancerstaging.org/references-tools/

Pages/What-is-Cancer-Staging.aspx)

AJCC stage AJCC cancer stage (https://cancerstaging.org/

references-tools/Pages/What-is-Cancer-Staging.

aspx)

Pathologic grade Grade of tumor differentiation, i.e., I, II, III, IV, I-II,

II-III, or not assessable

Smoking status at diagnosis Never, current, or former smoker

Smoking pack-years An equivalent numerical value of lifetime tobacco

exposure; 1 pack-year is defined as 20 cigarettes

smoked every day for 1 year

proportionally distributed in training and test sets. For the test
set, contestants were blinded to the outcome.

Evaluation Metric
The evaluation metric for both competitions was area under
the receiver operating characteristic curve (AUC) of the binary
outcomes, i.e., “positive” vs. “negative” for the “HPV” challenge
or “recurrence” vs. “no recurrence” for the “local recurrence”
challenge.

Scoring System
Kaggle-in-Class further splits the test set randomly into two
subsets of approximately equal size again with outcome
of interest equally distributed. One subset was made
public to contestants, named the “Public Test subset.”
The other subset was held out from the contestants, with

only challenge organizers having access to it, named the
“Private Test subset.” The performance of the contestants’
models was first assessed on the public test set and
results were posted to a “Public leaderboard.” The public
leaderboards were updated continuously as contestants
made new submissions, providing real-time feedback to
contestants on the performance of their models on the
public test subset relative to that of other contestants’
models.

The private leaderboard was accessible only to the organizers
of the challenges. Toward the end of the challenge, each
contestant/team was allowed to select his/her/their own
two “optimal” final submissions of choice. Contestants were
then judged according to the performance of their chosen
model(s) on the private test subset, according to the private
leaderboard. The contestant/team that topped the “private
leaderboard” for each challenge was declared the winner of
the challenge. The distinction between training/test set and
public/private subset terminology is further illustrated in
Figure 2.

Challenges Rules
Teams were limited to a maximum of two result submissions per
team per day. There was no maximum team size, but merging
with or privately sharing code and data with other teams was
prohibited.

Challenges Organizers-Contestants Interaction
To enable contestants to communicate with the organizing
committee, the e-mail address of one of the organizers was made
available on the Kaggle in Class and MICCAI websites. Also,
the organizers created and closely followed a discussion board
where updates or topics of common interest were publicly shared.
After announcing the winners, questionnaires were distributed
to contestants to get their feedback, which greatly contributed to
this review paper.

CHALLENGE RESULTS

Seventeen teams participated in either one or both challenges,
accounting for a total of 23 enrollments. The “HPV”
challenge recorded nine enrollments comprising three
multiple-member teams and six individual contestants.
The “local recurrence” challenge, on the other hand, had
four multiple-member teams and 10 individual contestants.
The following results are derived from the questionnaires,
which were filled out by eight teams. Detailed responses
of contestants to post-challenges surveys are tabulated in
Supplementary Table 1. Contestants came from various
professional domains, e.g., biostatistics, computer science,
engineering, medical physics, mathematics, and radiation
oncology. The dedicated time per participant for each
challenge ranged from 6 to 30 h. Teams included as many
as seven members with the same or different institutional
affiliations.

The data analytical algorithms showed wide variation in
methods and implementation strategies. The programming
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FIGURE 1 | Workflow of radiomics challenges.

platforms used to extract quantitative radiomics features
included MATLAB, R, and Python. Most contestants
(63%) developed their own scripts to extract radiomics
features. The Imaging Biomarker Explorer (IBEX) software,
developed by the Department of Radiation Physics at
MD Anderson (20), was the second most commonly
used software among the other contestants (38%). The

machine-learning techniques used included random forest
with class balancing, logistic regression with gradient
descent or extreme gradient boosting trees, least absolute
shrinkage, and selection operator (Lasso) regression, and
neural networks. Interestingly, one contestant reported
applying an ensemble combination of classifiers, including
random forests, a naïve Bayes classifier, and Association
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FIGURE 2 | Diagram illustrating the splitting of datasets per the challenge’s rules.

for Computing Machinery classifiers, as well as boosting
algorithms, including AdaBoost, and oversampling techniques,
including Synthetic Minority Over-sampling Technique. The
most commonly used statistical tests included leave-one-out
cross-validation, the Wilcoxon rank-sum test, and sparse
matrices.

The key, relevant radiomics features selected by these various
machine-learning algorithms encompassed various first- and
second-order features. The chosen first-order features included
the “intensity” feature of maximum intensity and the “shape”
features of primary tumor volume, longest and shortest radii,
and Euclidean distance (in mm, with respect to centroids)
between the primary tumor and the lymph nodes (minimum,
maximum, mean, and standard deviation). The chosen second-
order features included gray-level co-occurrence matrix and local
binary pattern.

Key clinical data commonly selected and modeled by

contestants included smoking pack-years, T category, N category,

and tumor subsite of origin, e.g., tonsil or base of tongue. Most
contestants (77%) incorporated extracted radiomics features into

their model, either alone (62%), as was the case with the winning
team of the “HPV” challenge, or in conjunction with matched
clinical attributes (16%). Meanwhile, only 23% of contestants
built their models relying solely on clinical data, including the
winner of the “local recurrence” challenge.

Per contestant feedback, the obstacles to developing sound
machine-learning predictive models were largely technical in
nature. Fifty percent of questionnaire respondents reported
inability to extract radiomics features, especially global
directional features, for some images. This was the leading

cause of missing values, which were difficult to handle for
most contestants. Other barriers involved segmentation
issues where some VOIs—according to one contestant—
were not consistently named across the whole cohort. A few
contestants also reported that some GTVp contours did not
adequately represent the primary tumor lesions, i.e., some
slices within the VOI were not segmented, or GTVp contours
were totally absent. In some cases, only metastatic lymph
nodes (i.e., gross nodal tumor volume) were segmented,
per one contestant. Nonetheless, all but one team expressed
enthusiasm toward participating in future machine-learning
challenges.

For the “HPV” challenge, the winners were a team of academic
biostatisticians with a radiomics-only model that achieved an
AUC of 0.92 in the held-out, private test subset. Their feature
selection approach yielded the “shape” features of “mean breadth”
and “spherical disproportion” as most predictive of HPV status,
suggesting that HPV-associated tumors tend to be smaller
and more homogeneous. On the other hand, the winner of
the “local recurrence” challenge was a mathematics/statistics
college student who exclusively used clinical features to build a
model that achieved an AUC of 0.92 in the private test subset.
The AUCs of all contestants’ models and their corresponding
final ranking in the private leaderboard are provided in
Supplementary Tables 2, 3.

The winner of each challenge was invited to share their

approach and models via video conference at the Computational

Precision Medicine satellite workshop as part of the MICCAI
2016 program that took place in Athens, Greece. Moreover,

each winner was offered a manuscript acceptance (after editorial
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review) with fees waived to describe their approach and
algorithm in an international, open-access, peer-reviewed journal
sponsored by the European Society for Radiotherapy and
Oncology. The winners of the “HPV” challenge recently reported
their approach in designing a statistical framework to analyze CT
images to predict HPV status (21).

DISCUSSION

The process of designing and executing the radiomics challenge
was inevitably filled with difficult decisions and unexpected
issues, from which we have yielded numerous insights. We have
enumerated these challenges and derived lessons in Table 2.

“Challenge Within a Challenge” and
Derived Lessons
Before, during and even after the radiomics challenges, we
encountered situations which provided us insight into improving
future radiomics challenges. We will now detail learning points
derived from our experience.

Database Size
The usefulness of a database for radiomics analysis increases
as more and more cases are added. However, limits on time,
personnel, and available patient data place constraints on
database collection and thus the ability to yield insights from
radiomics analysis. Also relevant to imaging data collection is

TABLE 2 | Challenges and derived lessons from organizing open-source

radiomics challenges.

Challenges

• Paucity of open-source freely available radiomics datasets

• Establishing database: size vs. time

• Data anonymization

• Quality assurance: before, during, and after the challenge

• Understanding contestants’ preferences

• Clarity of challenge rules verbiage

• Hyperdimensionality of radiomics co-variates and subsequent overtraining

• Low post-challenge survey response rate

• Discrete scanners, acquisition parameters, and segmentation techniques

Derived Lessons

• Use common ontology guidelines to assign nomenclature for target volumes

and clinical data

• Use efficient, secure solution such as RSNA CTP to minimize time/resource

burden

• Test run data prior to start of radiomics challenge to identify additional issues

• Adopt “Public/Private leaderboard” challenges to mitigate overtraining/

overfitting

• Choice of data type and sources (i.e., single vs. multi-institutional) depends on

specific aims of radiomics challenge

• Provide contestants multiple ways to analyze data whenever possible, e.g.,

with/without artifacts to account for variation in contestants’ preferences

• Rules must be clear and consistent with all other aspects of challenge design

• Proper incentives built into the radiomics challenge encourage participation and

subsequent feedback

• Post-challenge permanent data repository and descriptor

the variation in imaging acquisition parameters and disease
states within a disease cohort. In our case, as in many practical
classification problems, HPV status and local control rates
following IMRT for OPC patients tend to be imbalanced.
The majority of OPC tend to be increasingly associated with
HPV infection and hence more favorable local control (22).
In our dataset, HPV-negative and locally recurrent OPC only
constituted 14.9 and 7.6% of the overall cohort, respectively.

Moreover, the enormous number of potential predictor
variables used in radiomics studies necessitates the use of large-
scale datasets in order to overcome barriers to statistical inference
(23). The dearth of such datasets hinders machine-learning
innovation in radiation oncology by restricting the pool of
innovation to the few institutions with the patient volume to
generate usable datasets (24).

Data Anonymization
The PHI anonymization software we applied was cumbersome,
requiring PHI tags to be manually entered on an individual basis.
For future radiomics challenges, we recommend the use of the
Clinical Trial Processor (CTP), developed by the Radiological
Society of North America (RSNA) (25). Safe, efficient, and
compatible with all commercially available picture archiving
and communication systems (PACS), RSNA CTP is designed
to transport images to online data repositories (25). RSNA
CTP conforms closely to image anonymization regulations per
the HIPAA Privacy Rule and the DICOM Working Group 18
Supplement 142 (16).

Data Curation and Standardization
Standardization and harmonization of data attributes provide
the foundation for developing comparable data among registries
that can then be combined for multi-institutional studies
(26). This further empowers validation studies and subsequent
generalization of the resulting models from such studies. In our
challenges, VOIs were not consistently coded across the whole
cohort, according to one contestant, a finding necessitating our
correction to facilitate subsequent analysis for contestants.

Hence, we recommend conforming to common ontology
guidelines when assigning nomenclature for target volumes and
clinical data. Good examples would be the American Association
of Physicists in America Task Group 263 (AAPM TG-263) (27)
and North American Association of Central Cancer Registries
(NAACCR) guidelines (28).

Volume of Interest Definition and Delineation
Another cumbersome aspect of data curation is the segmentation
of target volumes. Reliable semi-automated segmentation
methods for head and neck carcinomas and normal tissues
are currently still under investigation, so we relied on
manual segmentation (29, 30). The disadvantages of manual
segmentation relate not only to being time-consuming but also
to intra- and inter-observer variability (31). A collateral benefit of
making CT datasets with expert manual segmentations publicly
available is testing semi-automated segmentation tools (32).
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In our case, 2 radiation oncologists were blinded to relevant
clinical data and outcomes, and their segmentations were cross-
checked then double-checked by a single expert radiation
oncologist, to diminish inter-observer variability. Guidelines
of the International Commission on Radiation Units and
Measurements reports 50 and 62 were followed when defining
target volumes (33, 34).

Scanner and Imaging Parameters Variability
Variability in inter-scanner and imaging acquisition parameters,
like voxel size, reconstruction kernel, tube current and voltage
has been shown to influence radiomics analyses (35–39). Thus,
when sharing imaging data with contestants and uploading
to public data repositories, we recommend preserving all
DICOM headers aside from those containing protected health
information. These parameters, easily extractable from DICOM
headers, can also be provided as Supplementary Materials for
future radiomics challenges. Although we did not elicit specific
feedback in the post-challenge survey regarding how contestants
accounted for differences in image acquisition, we recognize the
importance of this question and recommend its inclusion in
future radiomics challenge contestant surveys.

Moreover, head and neck radiomics are subject to the effects of
image artifacts from intrinsic patient factors, such as metal dental
implants and bone. The effects of resulting streak artifacts and
beam-hardening artifacts on robustness of extracted radiomics
features have been reported (3, 40). Our approach within this
study was to remove slices of the GTV on computed tomography
that were affected by artifacts. However, this results in missing
information or contours that do not adequately represent the
primary tumor lesion, as was noted by some contestants.

Single-institutional radiomics databases like the one used in
our challenges minimize inter-scanner variability. However, in
some cases the increased heterogeneity of multi-institutional
databases is preferred. The choice (i.e., single vs. multi-
institutional data) should be challenge-dependent. Single-
institutional data may be preferred if uniformity in some imaging
characteristics (e.g., slice thickness, acquisition protocol) is
required for exploratory research purposes. Multi-institutional
data are preferred as the end goal of radiomics challenges and
studies is to generate clinically relevant models with maximum
generalizability to other patient populations.

Interplay Between Clinical and Radiomics Data

Variables
We sought to provide the option to include not only physical
variables but also key clinical attributes in the model building.
We aimed to test the capacity of radiomics features, alone or
in combination with clinical features, to model classification
or risk prediction scenarios. Interestingly, the winner of the
“local recurrence” challenge and the winner of the “HPV”
challenge used only clinical and only radiomics data, respectively.
Ironically, the fact that some contestants could generate more
effective non-radiomics models for risk prediction may subvert
the entire aim of the challenge. This in turn demonstrates the
difficulty of integrating radiomics into clinical data in both
challenge and clinical settings.

In the OPC setting, we recommend that HPV status be
provided for all cases, being an independent prognostic and
predictive biomarker in the OPC disease process (17, 41).
However, it is also important for future radiomics challenges to
consider whether other clinically relevant factors like smoking
history, tumor subsite, or race are pertinent to the end goal of
their challenge.

Quality Assurance
It is important for quality assurance measures used in radiomics
challenges to mirror those of traditional radiomics studies. If
the dataset has not been used in a radiomics analyses, it is
imperative for test analyses to identify errors. Although we had
quality assurance protocols in place, contestants still noted issues
with the dataset. Using Kaggle in Class, contestants were able to
report feedback in real time. In turn, the responses we posted
to the Kaggle in Class Forum could be viewed by all groups,
ensuring that all contestants had access to the same updated
information at all times, regardless of who originally asked
a question. As the challenge progressed, contestants reported
9 corrupt, inaccessible DICOM imaging files and 18 patients
with GTVps which did not adequately encompass the primary
gross tumor volume. In other cases, the GTVp contours were
absent, meaning these patients only had GTVn contours—the
use of which was prohibited by challenges rules. Although we
responded to contestant feedback in real time, we believe that
clear and explicitly stated challenge rules as well as an initial test
run of the data are essential.

Recruiting Contestants
Participation in the radiomics challenges by academic groups
with radiomics expertise was lower than anticipated. This
reticence may be due to the public nature of the challenge
combined with the uncertainty of success inherent in analyzing
new datasets in limited timeframes, as well as the lack of clear
translation to publishable output. An alternative explanation is
that machine learning challenges platforms like Kaggle in Class
are less well known to the radiomics community in comparison
to the MICCAI community.

To attract contestants with radiomics expertise, it is
necessary to ensure proper incentives are in place. Challenge
announcements should be made well in advance of the challenge
start date to provide sufficient time for contestants to include
the challenge into their work plans. Partnering with renown
organizations like NCI QIN and MICCAI on the challenge
provides institutional branding which may draw in academic
groups. Offers of co-authorship on future publications stemming
from the challenge, as well as seats on conference panels at which
challenge results will be shared, may boost participation.

Email distribution lists of professional societies such as
MICCAI, SPIE (The International Society for optics and
photonics) Medical Imaging, and The Cancer Imaging Archive
(TCIA) would be an effective way to reach academics. Platforms
like Kaggle and KDnuggets are more popular among non-
academics interested in machine learning challenges.
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Understanding Contestant Preferences
Contestants in our challenge wished to have additional data
beyond what was provided. For instance, multiple contestants
noted that some patients had missing VOIs on certain slices
of the image. We had made the choice to omit these slices
because the VOI in these regions was significantly obscured by
dental artifact. However, contestants felt that shape and spatially-
derived features might be affected by omission of these slices. To
avoid this situation in future radiomics challenges, we suggest
providing two datasets, one with artifacts included and one
with artifacts excluded. This arrangement allows contestants the
choice of which dataset to analyze.

Public and Private Leaderboards
The problem of overfitting has been observed in previous
radiomics studies (7). Blinding contestants to their model’s
performance on the private test subset ensured that contestants
were not overfitting their data to the test set. Hence, we chose
the Kaggle in Class platform to host the challenges because it
offers both public and private leaderboards based on public and
held-out subsets of the test dataset, respectively. This design
choice appeared to serve its intended purpose. In the “HPV”
challenge, the first-place team on the public leaderboard had an
AUC of 1.0 but finished in last place on the private leaderboard
with an AUC of 0.52. This discrepancy suggests that their model
suffered from overfitting issues. In contrast, the winner of the
“HPV” challenge performed well on both public and private
leaderboards, indicating that their proposed model was more
generalizable.

Clarity of Challenges Rules
One difficulty inherent in radiomics challenges is variability
in interpretation of challenge rules. This variability may be
driven by differences in contestants’ technical expertise, culture,
background, and experiences. Thus, clear and unambiguous rules
and challenge design are desirable. For example, our challenge
rules clearly stated that radiomics features should be exclusively
extracted from GTVp. However, GTVp was unavailable for some
patients, typically post-surgical patients with no available pre-
treatment imaging. When combined with the fact that we also
provided GTVn for all patients, some contestants were confused
by the conflicting messages they received. Thus, to prevent
confusion it is important that the stated rules of the challenge
be consistent with all other aspects of the contestants’ experience
during the challenge.

Furthermore, while the challenges were branded as “radiomics
challenges,” we allowed the submission of models based solely on
clinical prognostic factors, as was the case for the winner of the
“local recurrence” challenge. In some instances, a clinical-only
model may be useful as a comparison tool to determine whether
there is an incremental benefit to leveraging radiomics data
compared to clinical-only models. However, the permissibility
of clinical-only models in radiomics challenges must be stated
explicitly in contest rules to prevent confusion.

Collecting Contestants’ Feedback
Another learning point relates to increasing post-contest survey
response rates. A mere 50% of contestants responded to our

post-challenge survey. To ensure a high survey response rate, we
suggest including a pre-challenge agreement in which contestants
pledge to complete the post-challenge survey as part of the
challenge. A manuscript co-authorship contingent upon survey
participation might also incentivize more contestants to fill out
the survey.

Contestants’ Responsibilities
Participation in radiomics challenges necessitates a good-faith
commitment on the part of contestants to follow through
with the challenge, even in the face of unsatisfactory model
performance. Withdrawals are antithetical to the mission of
radiomics challenges as a learning tool for both challenge
contestants and organizers to advance the field.

Permanent Data Repositories
The decision to upload our dataset to an online data repository, in
this case figshare (https://doi.org/10.6084/m9.figshare.c.3757403.
v1 and https://doi.org/10.6084/m9.figshare.c.3757385.v1) (18,
19), was not difficult. This was done to provide a curated OPC
database for future radiomics validation studies. Furthermore, all
contestants who downloaded the database during the challenge
would already have access to the data, and it would have been
impractical to ask all contestants to delete this information once
downloaded.

We are also in the process of uploading this dataset as a part
of a larger matched clinical/imaging dataset to TCIA. Versioning,
which is a built-in feature in most data repositories including
figshare, is essential for updating datasets, e.g., following quality
assurance as well as retrieving previous versions later. To date,
we have received multiple requests to use our dataset for external
validation of pre-existing models.

We chose not to make available the “ground truth” of the
private test subset data. The decision to withhold this information
diminishes the overall value of the database to researchers using
the dataset but in return preserves these test cases for future
challenges.

Post-challenge Methodology and Results

Dissemination
One potential obstacle to disseminating radiomics challenge
results relates to participant requests for anonymity. A
participant’s right, or lack thereof, to remain anonymous in
subsequent publications of challenge results must be stated
prior to the start of the challenge. Anonymity poses issues with
reporting methodologies and subsequent model performance
results, as these results may be traceable to the original online
Kaggle in Class challenge website, where identities are not
necessarily obscured. Transparency of identities, methodologies,
and results is in the spirit of data sharing and is our preferred
arrangement in radiomics challenges.

Scientific papers analyzing the individual performances of
winning algorithms submitted to the Challenge, along with
database descriptor have been or will be published (14, 21). In
general, we also recommend publishing a post-challenge data
descriptor that details data configuration as a guide for future
dataset usage (14).
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Conclusions and Future Outlook
In summary, the MICCAI 2016 radiomics challenges yielded
valuable insights into the potential for radiomics to be used
in clinically relevant prediction and classification questions in
OPC. Furthermore, our experience designing and executing the
radiomics challenge imparted lessons which we hope can be
applied to the organization of future radiomics challenges, such
as those associated with the MICCAI 2018 Conference.

DATA AVAILABILITY STATEMENT

Datasets are in a publicly accessible repository: The datasets
generated for this study can be found in figshare; https://
doi.org/10.6084/m9.figshare.c.3757403.v1 and https://doi.org/10.
6084/m9.figshare.c.3757385.v1.

AUTHOR CONTRIBUTIONS

Substantial contributions to the conception or design of the work;
or the acquisition, analysis, or interpretation of data for the
work; Drafting the work or revising it critically for important
intellectual content; Final approval of the version to be published;
Agreement to be accountable for all aspects of the work in
ensuring that questions related to the accuracy or integrity of
any part of the work are appropriately investigated and resolved.
Specific additional individual cooperative effort contributions
to study/manuscript design/execution/interpretation, in addition
to all criteria above are listed as follows: HE manuscript
writing, direct oversight of all image segmentation, clinical data
workflows, direct oversight of trainee personnel (ALW, JZ, AJW,
JB, SA, BW, JA, and SP). TAL, SV, and PY wrote sections of the
manuscript. AM primary investigator; conceived, coordinated,
and directed all study activities, responsible for data collection,
project integrity, manuscript content and editorial oversight and
correspondence. AK, ALW, JZ, AJW, JB, SC, and SP clinical data
curation, data transfer, supervised statistical analysis, graphic
construction, supervision of DICOM-RT analytic workflows and
initial contouring. SA, BW, JA, and LC electronic medical record
screening, automated case identification, data extraction, clinical.
Participated in at least one radiomics challenge, submitted a valid
results and completed post-challenge questionnaire (KN, RG,
CC, XF, CS, GP, SM, RL, CH, KY, TL, VB, JS, AG, AP, HP, VG,
GC, GM, DV, SL, DM, LEC, JF, KF, JK, CF).

FUNDING

Multiple funders/agencies contributed to personnel salaries or
project support during the manuscript preparation interval.
Dr. HE is supported in part by the philanthropic donations
from the Family of Paul W. Beach to Dr. G. Brandon Gunn,
MD. This research was supported by the Andrew Sabin Family
Foundation; Dr. CF is a Sabin Family Foundation Fellow. Drs.
SL, AM, and CF receive funding support from the National
Institutes of Health (NIH)/National Institute for Dental and
Craniofacial Research (1R01DE025248-01/R56DE025248-01).
Drs. GM, DV, GC, and CF are supported via a National Science
Foundation (NSF), Division of Mathematical Sciences, Joint
NIH/NSF Initiative on Quantitative Approaches to Biomedical
Big Data (QuBBD) Grant (NSF 1557679). Dr. CF received
grant and/or salary support from the NIH/National Cancer
Institute (NCI) Head and Neck Specialized Programs of Research
Excellence (SPORE) Developmental Research Program Award
(P50 CA097007-10) and the Paul Calabresi Clinical Oncology
Program Award (K12 CA088084-06), the Center for Radiation
Oncology Research (CROR) at MD Anderson Cancer Center
Seed Grant; and the MD Anderson Institutional Research Grant
(IRG) Program. Dr. JK-C is supported by the National Cancer
Institute (U24 CA180927-03, U01 CA154601-06. Mr. Kanwar
was supported by a 2016–2017 Radiological Society of North
America Education and Research Foundation Research Medical
Student Grant Award (RSNA RMS1618). GM’s work is partially
supported by National Institutes of Health (NIH) awards NCI-
R01-CA214825, NCI-R01CA225190, and NLM-R01LM012527;
by National Science Foundation (NSF) award CNS-1625941
and by The Joseph and Bessie Feinberg Foundation. Dr.
CF received a General Electric Healthcare/MD Anderson
Center for Advanced Biomedical Imaging In-Kind Award
and an Elekta AB/MD Anderson Department of Radiation
Oncology Seed Grant. Dr. CF has also received speaker travel
funding from Elekta AB. None of these industrial partners’
equipment was directly used or experimented with in the
present work.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fonc.
2018.00294/full#supplementary-material

REFERENCES

1. Wong AJ, Kanwar A, Mohamed AS, Fuller CD. Radiomics in head and neck

cancer: from exploration to application. Transl Cancer Res. (2016) 5:371–82.

doi: 10.21037/tcr.2016.07.18

2. Huang Y, Liu Z, He L, Chen X, Pan D, Ma Z, et al. Radiomics signature:

a potential biomarker for the prediction of disease-free survival in early-

stage (I or II) non—small cell lung cancer. Radiology (2016) 281:947–57.

doi: 10.1148/radiol.2016152234

3. Leijenaar RT, Carvalho S, Hoebers FJ, Aerts HJ, van Elmpt WJ, Huang

SH, et al. External validation of a prognostic CT-based radiomic signature

in oropharyngeal squamous cell carcinoma. Acta Oncol. (2015) 54:1423–9.

doi: 10.3109/0284186X.2015.1061214

4. Liang C, Huang Y, He L, Chen X, Ma Z, Dong D, et al. The

development and validation of a CT-based radiomics signature for the

preoperative discrimination of stage I-II and stage III-IV colorectal

cancer. Oncotarget (2016) 7:31401–12. doi: 10.18632/oncotarget.

8919

5. Vallieres M, Freeman CR, Skamene SR, El Naqa I. A radiomics model from

joint FDG-PET andMRI texture features for the prediction of lung metastases

in soft-tissue sarcomas of the extremities. Phys Med Biol. (2015) 60:5471–96.

doi: 10.1088/0031-9155/60/14/5471

6. Elhalawani H, Kanwar A, Mohamed ASR, White A, Zafereo J, Fuller CD, et

al. Investigation of radiomic signatures for local recurrence using primary

tumor texture analysis in oropharyngeal head and neck cancer patients. Sci

Rep. (2018) 8:1524. doi: 10.1038/s41598-017-14687-0

Frontiers in Oncology | www.frontiersin.org August 2018 | Volume 8 | Article 294143

https://doi.org/10.6084/m9.figshare.c.3757403.v1
https://doi.org/10.6084/m9.figshare.c.3757403.v1
https://doi.org/10.6084/m9.figshare.c.3757385.v1
https://doi.org/10.6084/m9.figshare.c.3757385.v1
https://www.frontiersin.org/articles/10.3389/fonc.2018.00294/full#supplementary-material
https://doi.org/10.21037/tcr.2016.07.18
https://doi.org/10.1148/radiol.2016152234
https://doi.org/10.3109/0284186X.2015.1061214
https://doi.org/10.18632/oncotarget.8919
https://doi.org/10.1088/0031-9155/60/14/5471
https://doi.org/10.1038/s41598-017-14687-0
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Elhalawani et al. Radiomics Challenges in Radiation Oncology

7. Limkin EJ, Sun R, Dercle L, Zacharaki EI, Robert C, Reuze S, et al.

Promises and challenges for the implementation of computational medical

imaging (radiomics) in oncology. Annals of oncology : official journal

of the European Society for Medical Oncology. (2017) 28:1191–206.

doi: 10.1093/annonc/mdx034

8. O’Connor JPB, Aboagye EO, Adams JE, Aerts HJ, Barrington SF, Beer AJ, et

al. Imaging biomarker roadmap for cancer studies.Nat Rev Clin Oncol. (2017)

14:169–86. doi: 10.1038/nrclinonc.2016.162

9. Zimek A, Schubert E, Kriegel H-P. A survey on unsupervised outlier detection

in high-dimensional numerical data. Stat Anal Data Mining (2012) 5:363–87.

doi: 10.1002/sam.11161

10. Buckler AJ, Bresolin L, Dunnick NR, Sullivan DC. A collaborative enterprise

for multi-stakeholder participation in the advancement of quantitative

imaging. Radiology (2011) 258:906–14. doi: 10.1148/radiol.10100799

11. Lambin P, van Stiphout RG, Starmans MH, Rios-Velazquez E, Nalbantov

G, Aerts HJ, et al. Predicting outcomes in radiation oncology–multifactorial

decision support systems. Nat Rev Clin Oncol. (2013) 10:27–40.

doi: 10.1038/nrclinonc.2012.196

12. Farahani K, Kalpathy-Cramer J, Chenevert TL, Rubin DL, Sunderland JJ,

Nordstrom RJ, et al. Computational challenges and collaborative projects

in the nci quantitative imaging network. Tomography (2016) 2:242–9.

doi: 10.18383/j.tom.2016.00265

13. Armato SG, Hadjiiski LM, Tourassi GD, Drukker K, Giger ML, Li F,

et al. LUNGx challenge for computerized lung nodule classification:

reflections and lessons learned. J Med Imaging (2015) 2:020103.

doi: 10.1117/1.JMI.2.2.020103

14. Elhalawani H, White AL, Zafereo J, Wong AJ, Berends JE, AboHashem S, et

al. Fuller. Matched computed tomography segmentation and demographic

data for oropharyngeal cancer radiomics challenges. Sci Data (2017) 4:170077.

doi: 10.1038/sdata.2017.77

15. Freymann JB, Kirby JS, Perry JH, Clunie DA, Jaffe CC. Image data sharing

for biomedical research—meeting HIPAA requirements for de-identification.

J Digital Imaging (2012) 25:14–24. doi: 10.1007/s10278-011-9422-x

16. Fetzer DT, West OC. The HIPAA privacy rule and protected health

information: implications in research involving DICOM image databases.

Acad Radiol. (2008) 15:390–5. doi: 10.1016/j.acra.2007.11.008

17. Ang KK, Harris J, Wheeler R, Weber R, Rosenthal DI, Nguyen-Tân PF, et al.

Human papillomavirus and survival of patients with oropharyngeal cancer.

New Engl J Med. (2010) 363:24–35. doi: 10.1056/NEJMoa0912217

18. Clifton F, Abdallah M, Hesham E. Predict from CT data the HPV

phenotype of oropharynx tumors; compared to ground-truth results

previously obtained by p16 or HPV testing. Figshare (2017) 22:26.

doi: 10.6084/m9.figshare.c.3757403.v1

19. Fuller C, Mohamed A, Elhalawani H. Determine from CT data whether

a tumor will be controlled by definitive radiation therapy. Figshare (2017)

doi: 10.6084/m9.figshare.c.3757385.v1

20. Zhang L, Fried DV, Fave XJ, Hunter LA, Yang J, Court LE. IBEX: an open

infrastructure software platform to facilitate collaborative work in radiomics.

Med Phys. (2015) 42:1341–53. doi: 10.1118/1.4908210

21. Yu K, Zhang Y, Yu Y, Huang C, Liu R, Li T, et al. Radiomic analysis in

prediction of Human Papilloma Virus status. Clin Transl Radiat Oncol. (2017)

7:49–54. doi: 10.1016/j.ctro.2017.10.001

22. Mehanna H, Beech T, Nicholson T, El-Hariry I, McConkey C, Paleri V, et al.

Prevalence of human papillomavirus in oropharyngeal and nonoropharyngeal

head and neck cancer—systematic review and meta-analysis of trends by time

and region. Head Neck (2013) 35:747–55. doi: 10.1002/hed.22015

23. Pekalska E, Duin RPW. The Dissimilarity Representation for Pattern

Recognition: Foundations And Applications (Machine Perception and Artificial

Intelligence). Hackensack, NJ: World Scientific Publishing Co., Inc. (2005).

24. Mayo CS, Kessler ML, Eisbruch A, Weyburne G, Feng M, Hayman JA, et al.

The big data effort in radiation oncology: data mining or data farming? Adv

Radiat Oncol. (2016) 1:260–71. doi: 10.1016/j.adro.2016.10.001

25. Radiological Society of North America I. CTP-The RSNA Clinical Trial

Processor. Radiological Society of North America, Inc. Available online at:

http://mircwiki.rsna.org/index.php?title=CTP-The_RSNA_Clinical_Trial_

Processor (Accessed December 1 2017).

26. Mayo CS, Pisansky TM, Petersen IA, Yan ES, Davis BJ, Stafford SL, et al.

Establishment of practice standards in nomenclature and prescription to

enable construction of software and databases for knowledge-based practice

review. Pract Radiat Oncol. (2016) 6:e117–26. doi: 10.1016/j.prro.2015.11.001

27. Mayo CS, Moran JM, Bosch W, Xiao Y, McNutt T, Popple R, et al. American

Association of Physicists in Medicine Task Group 263: standardizing

nomenclatures in radiation oncology. Int J Radiat Oncol Biol Phys. (2018)

100:1057–66. doi: 10.1016/j.ijrobp.2017.12.013

28. Hulstrom DE. Standards for Cancer Registries Volume II: Data Standards and

Data Dictionary, Seventh Edition, Version 10. Springfield, IL: North American

Association of Central Cancer Registries (2002).

29. Ibragimov B, Korez R, Likar B, Pernuš F, Xing L, Vrtovec T. Segmentation

of pathological structures by landmark-assisted deformable models. IEEE

Transac Med Imaging (2017) 36:1457–69. doi: 10.1109/TMI.2017.2667578

30. Ibragimov B, Xing L. Segmentation of organs-at-risks in head and neck

CT images using convolutional neural networks. Med Phys. 2017;44:547–57.

doi: 10.1002/mp.12045

31. Wu J, Tha KK, Xing L, Li R. Radiomics and radiogenomics for precision

radiotherapy. J Radiat Res. (2018) 59(Suppl. 1):i25–31. doi: 10.1093/jrr/rrx102

32. Parmar C, Rios Velazquez E, Leijenaar R, Jermoumi M, Carvalho

S, Mak RH, et al. Robust radiomics feature quantification using

semiautomatic volumetric segmentation. PLoS ONE (2014) 9:e102107.

doi: 10.1371/journal.pone.0102107

33. ICRU Report 50. Prescribing, Recording, and Reporting Photon Beam Therapy

ICRU. Bethesda; Oxford: Oxford University Press (1993).

34. ICRU Report 62. Prescribing, Recording, and Reporting Photon Beam Therapy

(Supplement to ICRU Report 50)ICRU. Bethesda; Oxford: Oxford University

Press (1999).

35. Fave X, Cook M, Frederick A, Zhang L, Yang J, Fried D, et al.

Preliminary investigation into sources of uncertainty in quantitative

imaging features. Comput Med Imaging Graph. (2015) 44:54–61.

doi: 10.1016/j.compmedimag.2015.04.006

36. Mackin D, Fave X, Zhang L, Fried D, Yang J, Taylor B, et al. Measuring

CT scanner variability of radiomics features. Invest Radiol. (2015) 50:757–65.

doi: 10.1097/RLI.0000000000000180

37. Mackin D, Fave X, Zhang L, Yang J, Jones AK, Ng CS, et al. Harmonizing

the pixel size in retrospective computed tomography radiomics studies. PLoS

ONE (2017) 12:e0178524. doi: 10.1371/journal.pone.0178524

38. Shafiq-ul-Hassan M, Zhang GG, Latifi K, Ullah G, Hunt DC, Balagurunathan

Y, et al. Intrinsic dependencies of CT radiomic features on voxel size and

number of gray levels.Med Phys. (2017) 44:1050–62. doi: 10.1002/mp.12123

39. Mackin D, Ger R, Dodge C, Fave X, Chi P-C, Zhang L, et al. Effect of tube

current on computed tomography radiomic features. Sci Rep. (2018) 8:2354.

doi: 10.1038/s41598-018-20713-6

40. Block AM, Cozzi F, Patel R, Surucu M, Hurst N Jr., Emami B, et al. Radiomics

in head and neck radiation therapy: impact of metal artifact reduction.

Int J Radiat Oncol Biol Phys. (2017) 99:E640. doi: 10.1016/j.ijrobp.2017

06.2146

41. Rosenthal DI, Harari PM, Giralt J, Bell D, Raben D, Liu J, et al. Association

of human papillomavirus and p16 status with outcomes in the IMCL-

9815 phase III registration trial for patients with locoregionally advanced

oropharyngeal squamous cell carcinoma of the head and neck treated with

radiotherapy with or without cetuximab. J Clin Oncol. (2016) 34:1300–8.

doi: 10.1200/JCO.2015.62.5970

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 Elhalawani, Lin, Volpe, Mohamed, White, Zafereo, Wong,

Berends, AboHashem,Williams, Aymard, Kanwar, Perni, Rock, Cooksey, Campbell,

Yang, Nguyen, Ger, Cardenas, Fave, Sansone, Piantadosi, Marrone, Liu, Huang, Yu,

Li, Yu, Zhang, Zhu, Morris, Baladandayuthapani, Shumway, Ghosh, Pöhlmann,

Phoulady, Goyal, Canahuate, Marai, Vock, Lai, Mackin, Court, Freymann,

Farahani, Kaplathy-Cramer and Fuller. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Oncology | www.frontiersin.org August 2018 | Volume 8 | Article 294144

https://doi.org/10.1093/annonc/mdx034
https://doi.org/10.1038/nrclinonc.2016.162
https://doi.org/10.1002/sam.11161
https://doi.org/10.1148/radiol.10100799
https://doi.org/10.1038/nrclinonc.2012.196
https://doi.org/10.18383/j.tom.2016.00265
https://doi.org/10.1117/1.JMI.2.2.020103
https://doi.org/10.1038/sdata.2017.77
https://doi.org/10.1007/s10278-011-9422-x
https://doi.org/10.1016/j.acra.2007.11.008
https://doi.org/10.1056/NEJMoa0912217
https://doi.org/10.6084/m9.figshare.c.3757403.v1
https://doi.org/10.6084/m9.figshare.c.3757385.v1
https://doi.org/10.1118/1.4908210
https://doi.org/10.1016/j.ctro.2017.10.001
https://doi.org/10.1002/hed.22015
https://doi.org/10.1016/j.adro.2016.10.001
http://mircwiki.rsna.org/index.php?title=CTP-The_RSNA_Clinical_Trial_Processor
http://mircwiki.rsna.org/index.php?title=CTP-The_RSNA_Clinical_Trial_Processor
https://doi.org/10.1016/j.prro.2015.11.001
https://doi.org/10.1016/j.ijrobp.2017.12.013
https://doi.org/10.1109/TMI.2017.2667578
https://doi.org/10.1002/mp.12045
https://doi.org/10.1093/jrr/rrx102
https://doi.org/10.1371/journal.pone.0102107
https://doi.org/10.1016/j.compmedimag.2015.04.006
https://doi.org/10.1097/RLI.0000000000000180
https://doi.org/10.1371/journal.pone.0178524
https://doi.org/10.1002/mp.12123
https://doi.org/10.1038/s41598-018-20713-6
https://doi.org/10.1016/j.ijrobp.2017.06.2146
https://doi.org/10.1200/JCO.2015.62.5970
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Advantages  
of publishing  
in Frontiers

OPEN ACCESS

Articles are free to read  
for greatest visibility  

and readership 

EXTENSIVE PROMOTION

Marketing  
and promotion  

of impactful research

DIGITAL PUBLISHING

Articles designed 
for optimal readership  

across devices

LOOP RESEARCH NETWORK

Our network 
increases your 

article’s readership

Frontiers
Avenue du Tribunal-Fédéral 34  
1005 Lausanne | Switzerland  

Visit us: www.frontiersin.org
Contact us: info@frontiersin.org  |  +41 21 510 17 00 

FAST PUBLICATION

Around 90 days  
from submission  

to decision

90

IMPACT METRICS

Advanced article metrics  
track visibility across  

digital media 

FOLLOW US 

@frontiersin

TRANSPARENT PEER-REVIEW

Editors and reviewers  
acknowledged by name  

on published articles

HIGH QUALITY PEER-REVIEW

Rigorous, collaborative,  
and constructive  

peer-review

REPRODUCIBILITY OF  
RESEARCH

Support open data  
and methods to enhance  
research reproducibility

http://www.frontiersin.org/

	Cover
	Frontiers Copyright Statement
	Machine Learning With Radiation Oncology Big Data
	Table of Contents
	Editorial: Machine Learning With Radiation Oncology Big Data
	Introduction
	Topics Covered in this Research Topic
	Papers included in this Research Topic
	Conclusions and Outlook
	Author Contributions

	Deep Deconvolutional Neural Network for Target Segmentation of Nasopharyngeal Cancer in Planning Computed Tomography Images
	Introduction
	Materials and Methods
	Data Acquisition
	DDNN Model for Segmentation
	Experiments
	Quantitative Evaluation

	Results
	Discussion
	Conclusion
	Availability of Data and Materials
	Ethics Statement
	Author Contributions
	Acknowledgments
	Funding
	References
	Appendix
	Architecture of Deep Deconvolutional Neural Network (DDNN)


	Design and Selection of Machine Learning Methods Using Radiomics and Dosiomics for Normal Tissue Complication Probability Modeling of Xerostomia
	1. Introduction
	2. Materials and Methods
	2.1. Patients
	2.2. End Points
	2.3. Features
	2.4. Previously Proposed NTCP Models
	2.5. Univariate Analysis
	2.6. Multivariate Analysis
	2.6.1. Workflow
	2.6.2. Model Tuning
	2.6.3. Comparison of Machine Learning Algorithms
	2.6.4. Generalization Performance

	2.7. Software

	3. Results
	3.1. Feature Correlations
	3.2. Mean-Dose and Morphological Models
	3.3. Univariate Analysis
	3.4. Comparison of Classification, Feature Selection, and Sampling Algorithms
	3.5. Generalization Performance
	3.6. Model Interpretation

	4. Discussion
	5. Conclusion
	List of Non-Standard Abbreviations
	Ethics Statement
	Author Contributions
	Acknowledgments
	References
	Appendix A
	A. Parotid Shape
	A.1. Volume
	A.2. Surface area
	A.3. Sphericity
	A.4. Compactness
	A.5. Eccentricity

	B. Dose–Volume Histogram
	B.1. Mean
	B.2. Spread
	B.3. Skewness
	B.4. Dx
	B.5. Vx
	B.6. Entropy
	B.7. Uniformity

	C. Subvolume Mean Dose
	D. Dose Gradients
	E. Three-Dimensional Dose Moments
	E.1. Dose Variance (η200, η020, η002)
	E.2. Dose Covariance (η110, η101, η011)
	E.3. Dose Skewness (η300, η030, η003)
	E.4. Dose Coskewness (η210, η201, η120, η021, η012, η102)


	Appendix B
	A. Random Oversampling
	B. Synthetic Minority Oversampling
	C. Adaptive Synthetic Sampling
	D. Tomek Links
	E. Condensed Nearest Neighbor Rule
	F. One-Sided Selection
	G. Wilson's Edited Nearest Neighbor Rule
	H. Neighborhood Cleaning Rule
	I. SMOTE+TL
	J. SMOTE+ENN

	Appendix C
	A. Univariate Feature Selection
	A.1. Fisher Score
	A.2. Mutual Information

	B. Recursive Feature Elimination
	C. Model-Based Feature Selection

	Appendix D
	A. Logistic Regression
	B. k-Nearest Neighbors
	C. Support Vector Machine
	D. Extra-Trees
	E. Gradient Tree Boosting


	An Ensemble Approach 
to Knowledge-Based 
Intensity-Modulated Radiation Therapy Planning
	Introduction
	Materials and Methods
	Individual Models
	The Ensemble Model
	Model Stacking

	Model-Based Case Filtering
	Outliers
	Anatomical Outliers and Dosimetric Outliers
	Outliers’ Effect on Regression Models

	Prediction Performance Measure
	Model-Based Case Filtering Method

	Experimental Design
	Robustness to Limited Training Set Size
	Robustness to Anatomical Outliers
	Robustness to Dosimetric Outliers


	Results
	Robustness to Limited Training Set Size
	Robustness to Anatomical Outliers
	Robustness to Dosimetric Outliers
	Inferior Plans
	Mis-Classified Sparing Decisions


	Discussion
	Author Contributions
	Funding
	References

	Lung Nodule Detection via Deep Reinforcement Learning
	Introduction
	Materials and Methods
	Lung Nodule Data
	Data Normalization
	Reinforcement Learning
	Convolutional Neural Networks (CNNs)
	Input Layer
	Convolutional Layer
	Activation Layer
	Pooling Layer
	Fully Connected Layer

	Data Augmentation

	Implementation and Experiments
	Implementation
	Experimentation

	Results
	Discussion
	Author Contributions
	Funding
	References

	Machine Learning in Radiation Oncology: Opportunities, Requirements, and Needs
	Introduction
	Patient Assessment
	Simulation
	Treatment Planning
	QA and Treatment Delivery
	Follow-Up
	Conclusion
	Author Contributions
	References

	How Big Data, Comparative Effectiveness Research, and Rapid-Learning Health-Care Systems Can Transform Patient Care in Radiation Oncology
	Comparative Effectiveness Research (CER) and Big Data
	Rapid-Learning Health Care System (RLHCS) and Personalized Medicine
	Integrating a RLHCS with Oncology
	Implications for Radiation Oncology
	Patient Reported Outcomes (PROs)
	Dose Selection and Radiosensitivity
	Personalized Treatment Recommendations

	Conclusion
	Author Contributions
	References

	Exploring Applications of Radiomics in Magnetic Resonance Imaging 
of Head and Neck Cancer: 
A Systematic Review
	Introduction
	Rationale
	Objectives and Research Question

	Methods
	Study Design and Systematic Review Protocol
	Eligibility Criteria
	Study Search Strategy and Process

	Data Sources, Study Sections, and Data Extraction
	Checklist Construction

	Data Analysis

	Results
	Study Selection and Characteristics
	Synthesized Findings of Completed Studies
	Checklist Scores

	Synthesized Findings of Ongoing Trials

	Discussion
	Summary of Main Findings
	Addressing Study Design
	Head and Neck Sub-Sites
	MRI Modalities
	ROI Segmentation Methods
	Image Pre-Processing and Feature Extraction
	Feature Selection
	Statistical Modeling
	Analyzed Endpoints
	Checklist Scores

	Limitations
	Conclusion

	Author Contributions
	Funding
	Supplementary Material
	References

	Deep Learning Renal Segmentation for Fully Automated Radiation Dose Estimation in Unsealed Source Therapy
	Introduction
	Materials and Methods
	Training Image Data
	Testing Image Data
	Convolutional Neural Network

	Results
	Discussion
	Conclusion
	Availability of Data and Materials
	Ethics Statement
	Author Contributions
	Funding
	Supplementary Material
	References

	Machine Learning and Radiogenomics: Lessons Learned and Future Directions
	1. Introduction to Radiogenomics
	1.1. Normal Tissue Toxicity Directly Limits Tumor Control
	1.2. Technology Has Improved Normal Tissue Toxicity
	1.3. Radiobiology and Normal Tissue Toxicity
	1.4. Genomic Basis for Radiotherapy Response
	1.4.1. Fundamental Hypothesis of Radiogenomics
	1.4.2. The Importance of Fishing

	1.5. Precision Medicine and Single 
Drug Targets
	1.6. Precision Medicine and Multigene Panels
	1.7. Tumor Control and Radiogenomics

	2. Introduction to Machine Learning (ML)
	2.1. Statistical Inference vs. ML
	2.2. An Update of Breiman’s Lessons 
From ML
	2.2.1. Rashomon Effect
	2.2.2. Occam Dilemma
	2.2.3. The Curse of Dimensionality
	2.2.4. ML Workflow

	2.3. Cross Validation
	2.3.1. CV Methodology
	2.3.2. CV Relationship With Statistical Inference

	2.4. Common Errors in CV
	2.4.1. Violating the Independence Assumption
	2.4.2. Freedman’s Paradox

	2.5. Feature Selection
	2.5.1. Pre-Processing Variables Independent 
of the Prediction Model
	2.5.2. Embedding Feature Selection With 
the Prediction Model
	2.5.3. Feature Construction and Transformation

	2.6. Deep Learning

	3. ML in Genomics
	3.1. Multiple Hypothesis Correction
	3.2. The Case of Missing Heritability
	3.3. Combining ML and Hypothesis Testing
	3.3.1. Learning Curves and Power
	3.3.2. Using ML to Detect Epistasis
	3.3.3. Using ML to Increase Power


	4. Current ML Approaches to Radiogenomics
	4.1. Random Forest
	4.1.1. Robustness at High-Dimensional Data
	4.1.2. Biomarker Prioritization
	4.1.3. Ability to Account for SNP–SNP Interactions
	4.1.4. Hybrid Methods

	4.2. Support Vector Machines
	4.2.1. Robustness in High-Dimensional Data and Possibility to Handle for Variable Interaction
	4.2.2. Tuning Parameters
	4.2.3. Unbalanced Datasets
	4.2.4. Interpretation of SVMs

	4.3. Bayesian Networks
	4.3.1. Interpretation of BNs
	4.3.2. Using Knowledge and Data in a 
Synergistic Way
	4.3.3. Robustness at High-Dimensional Data
	4.3.4. Handling Missing Values


	5. Improving ML Integration in Radiogenomics
	5.1. Lessons From Statistics
	5.2. Reusable Hold-Out Set
	5.3. Incorporate Clinical Variables
	5.4. Replication and Regulatory Concerns
	5.5. Promoting Research

	6. Conclusion
	Author Contributions
	Funding
	References

	The Role of Machine Learning in Knowledge-Based Response-Adapted Radiotherapy
	1. Introduction
	2. Q1: What Knowledge to be Used for KBR-ART Planning?
	2.1. Clinical Data
	2.2. Dosimetric Data
	2.3. Radiomics Data
	2.4. Biological Data
	2.5. Example: Aggregating Relevant Knowledge From a Lung Cancer Dataset
	2.5.1. Data Description


	3. Q2: How to Estimate Radiotherapy Outcome Models from Aggregated Knowledge?
	3.1. Analytical Models
	3.1.1. TCP
	3.1.2. NTCP

	3.2. Data-Driven Models
	3.2.1. Classical Models
	3.2.2. Neural Networks
	3.2.3. Deep learning Models
	3.2.3.1. Convolutional Neural Networks (CNNs)
	3.2.3.2. Recurrent Neural Networks (RNNs)

	3.2.4. Bayesian Networks

	3.3. Example Application of Machine Learning to Outcome Modeling
	3.3.1. NTCP Modeling of Rectal Toxicity Using CNN
	3.3.2. NTCP Modeling of Lung Toxicity Using Bayesian Networks


	4. Q3: How to Adapt Plans in KBR-ART?
	4.1. Generalized KBR-ART Framework
	4.1.1. Linear Feedback ARTs

	4.2. Nonlinear Feedback ARTs
	4.3. Stochastic ARTs
	4.4. Reinforcement Learning (RL) for ART
	4.5. Example: Adapting RT Plans Using Deep Reinforcement Learning

	5. Discussion
	5.1. Statistical and Probabilistic Aspects
	5.1.1. Time Series

	5.2. Comparison of Varying Data-Driven Models

	6. Conclusion
	Author Contributions
	Acknowledgments
	References

	Machine Learning Applications in Head and Neck Radiation Oncology: Lessons From Open-Source Radiomics Challenges
	Introduction
	Materials and Methods for Challenges
	Database
	Challenge Components
	Hosting Platform
	Evaluation Metric
	Scoring System
	Challenges Rules
	Challenges Organizers-Contestants Interaction


	Challenge Results
	Discussion
	``Challenge Within a Challenge'' and Derived Lessons
	Database Size
	Data Anonymization
	Data Curation and Standardization
	Volume of Interest Definition and Delineation
	Scanner and Imaging Parameters Variability
	Interplay Between Clinical and Radiomics Data Variables
	Quality Assurance
	Recruiting Contestants
	Understanding Contestant Preferences
	Public and Private Leaderboards
	Clarity of Challenges Rules
	Collecting Contestants' Feedback
	Contestants' Responsibilities
	Permanent Data Repositories
	Post-challenge Methodology and Results Dissemination

	Conclusions and Future Outlook

	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References

	Back Cover



