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Preface

The Internet-of-Things (IoT) is gradually being established as the new com-
puting paradigm, which is bound to change the ways of our everyday working
and living. IoT emphasizes the interconnection of virtually all types of physical
objects (e.g., cell phones, wearables, smart meters, sensors, coffee machines
and more) towards enabling them to exchange data and services among
themselves, while also interacting with humans as well. Few years following
the introduction of the IoT concept, significant hype was generated as a result
of the proliferating number of IoT-enabled devices, which (according to many
projections) are expected to amount to several billions in the next years. During
recent years, this hype has been turning to reality, as a wave of IoT applications
with significant social and economic has been emerging. This wave includes
for example applications that deploy IoT devices and optimize operations
associated with smart buildings, energy efficient neighborhoods, intelligent
and sustainable urban transport systems, lifestyle management for disease
prevention, management of water resources and more. In most cases, these
applications rely on the processing of IoT data in order to optimize operations
and facilitate decision making. Even in cases of IoT applications that deal with
actuation and control (e.g., manufacturing robots), IoT data analysis plays a
major role, as the foundation for driving the control process.

Overall, IoT data analysis is an integral element of any non-trivial IoT
system. Nevertheless, IoT analytics are still in their infancy, as IoT data still
remain largely unexploited. According to recent research reports and surveys,
only 1% of IoT data are currently used, which is a serious set-back against IoT’s
business potential. The realization of IoT’s expected (multi-trillion dollar)
value requires the widespread deployment of IoT analytics applications, i.e.
applications that collect and process data from multiple heterogeneous data
sources. IoT analytics applications will ensure the proper exploitation of the
proliferating volumes of IoT data for a variety of non-trivial business purposes,
involving not only production of simple data-driven insights on operations, but
also prediction of future trends and events. In this context, IoT stakeholders,
including researchers, architects, application developers, solution integrators
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xiv Preface

and service providers must be able to understand the challenges associated
with the design, development, deployment and operation of advanced IoT
analytics systems. Moreover, they are also expected to be able to identify
and apply effective solutions to these challenges. The present book aims
at contributing to this direction. In particular, it illustrates the challenges of
developing, deploying and operationalizing IoT analytics applications, along
with relevant solutions based on emerging future internet infrastructures and
technologies, such as cloud computing and BigData. The authoring of the
book is motivated by the need to provide IoT stakeholders with knowledge
on how to confront the challenges of IoT analytics systems and applications,
based on combinations of existing and emerging infrastructures and solutions,
such as cloud and edge computing infrastructures, data streaming engines and
databases, as well as BigData analytics infrastructures. In order to illustrate
concrete solutions that successfully address the IoT analytics challenges, best
practices stemming from successful application deployments are presented.
On the whole, the book is structured in two complementary parts: one outlining
technology enablers that empower non-trivial IoT analytics deployments and
another one illustrating examples of IoT analytics deployments.

The “IoT analytics enablers” part of the book is structured around the main
challenges of IoT analytics. These challenges include the great heterogeneity
of the IoT data sources (including their diverse semantics), the typically high
velocity of IoT data streams, the noisy and error-prone nature of IoT data,
as well as the time and location dependent nature of IoT data resources.
As a result of these characteristics, IoT analytics deployments require new
solutions, notably solutions for handling streams with high ingestion rates,
solutions for ensuring the semantic unification of IoT streams, novel tech-
niques for reasoning over IoT data, as well as new tools for developing
data-intensive applications. These solutions include elements from cloud
computing and BigData technologies, given that IoT data streams feature
several of the Vs of BigData (e.g., volume, variety, velocity, veracity) and
can greatly benefit from the capacity, scalability, performance and pay-as-
you-go nature of the cloud. However, in addition to the cloud and BigData
elements, the presented IoT solutions include IoT technologies (e.g., for IoT
data collection, preparation and semantic interoperability), which enable the
adaptation of BigData analytics techniques to the IoT domain.

Overall, the first part of the book presents a wide range of popular tools
that are used for the scalable collection and real-time processing of dis-
tributed IoT data streams such as: (a) The Apache Storm (storm.apache.org/),
Spark (spark.apache.org/) and Flink (https://flink.apache.org/) open source
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projects and associated stream processing engines; (b) The OpenIoT
(https://github.com/OpenIotOrg/openiot) open source toolkit for the seman-
tic interoperability of heterogeneous IoT streams; (c) The Node-RED tool
(nodered.org) for developing IoT applications based on the composition of
IoT data flows; (d)Awide range of tools for semantic modeling and reasoning,
which are discussed in a dedicated chapter of the “IoT analytics enablers” part
of the book. Therefore, the first part of the book provides a comprehensive
overview of some of the most popular tools for IoT data analytics, along with
their use in practical projects and applications.

As far as IoT analytics applications and related best practices are concerned
the book includes a set of representative applications. The latter are bundled in
the second part of the book and include applications relating to smart buildings
and crowd analysis in smart cities. Note that the smart city concept can serve
as an umbrella for the presentation and discussion of different IoT analytics
applications, as the latter can be deployed in the urban environment. It should
be noted that the presented applications are by no means exhaustive or even
representative of the broad scope of IoT analytics applications. Rather, they
strive to provide concrete examples of application deployment, in order to
facilitate the reader to understand practical issues in realistic environments.
In addition to these applications, the ethical implications of IoT analytics in
different application domains are discussed. The ethical implication chapter
of the book, although not pure technological, complements the technology-
related topics in terms of the prerequisites needed for IoT deployment.

It should be noted that this book represents a compilation of independent,
yet interrelated chapters about different technologies and applications of IoT
analytics. Several chapters of the book however cross-reference others, when
pointers to technological topics (that are already discussed in the book) are
required. All of the chapters’ co-authors possess deep knowledge of IoT
analytics issues, both at an academic and at a practical level, thus being
excellent contributors to the present book. Most of the contributors have
been speakers during the “IoT Analytics” session of the 5th IoT Week, which
was held in Lisbon, back in June, 2015. The possibility of authoring an IoT
analytics book was initially discussed following this session and led to the
present book. Note also that several of the contributions are based on results
of past and on-going research projects, which have been co-funded by the
European Commission, as part of its FP7 and H2020 programmes. These
projects are also acknowledged as important sources of the present book’s
contributions.



xvi Preface

As already outlined the book is structured in two parts. The first one on
“IoT Analytics Enablers” includes six contributions, in particular:

• An introductory chapter titled: “Introducing IoT Analytics”, which is a
natural extension of this preface and presents an overview of the main
challenges of IoT analytics systems development and deployment.

• A second chapter titled “IoT, Cloud and BigData Integration for IoT
Analytics”, which is co-authored by Abdur Rahim Biswas, Corentin
Dupont and Congduc Pham. This chapter illustrates the close affiliation
between IoT, cloud computing and BigData technologies, including con-
crete system architectures for integrating them in real-life applications.
Some of the presented results have been produced in the scope of EU
projects WAZIUP and iKaaS.

• The third chapter of the book is titled “Searching the Internet-of-Things”
and emphasizes on indexing and retrieval of data that stem from IoT
devices. The chapter pays special emphasis in the presentation of tech-
niques for high-performance in-memory indexing of IoT data, which
is essential for data analysis (nearly) in real-time. It also illustrates the
processing of social media streams as virtual IoT streams. Several of the
discussed results have been produced in the scope of the FP7 SMART
project.

• The presentation of development tools for IoTanalytics is the main goal of
the fourth chapter, which is titled “Development Tools for IoT Analytics
Applications” and co-authored by Aikaterini Roukounaki and myself.
It illustrates the limitations of state-of-the-art tools for IoT application
development when it comes to implementing analytics applications
and how they can be remedied based on existing frameworks for data
analysis.

• The delivery of IoT analytics services is illustrated in the firth chapter
of the book, which is co-authored by Nikos Kefalakis, Martin Serrano
and myself. The title of the chapter is “An Open Source Framework for
IoT Analytics-as-a-Service” and its content devoted to the presentation
of a paradigm for on-demand IoT analytics based on the open source
OpenIoT project.

• The importance of semantic modeling and semantic reasoning for IoT
analytics is discussed in chapter six. This chapter is co-authored by Martin
Serrano and Amelie Gyrard. It provides a comprehensive overview of
tools and techniques for IoT semantic modeling and interoperability
(including data linking), along with tools for semantic reasoning with
particular emphasis on the tools that are applicable to IoT data streams.
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At the same time the second part of the book, emphasizes on applications
examples and case studies as follows:

• The seventh chapter of the book (and first of the book’s second part)
is devoted to presenting a system for analyzing data in smart buildings,
including data stemming from sensors and IoT devices. The chapter is
titled “DataAnalytics in Smart Buildings” and co-authored by M. Victoria
Moreno, Fernando Terroso-Sáenz, Aurora González-Vidal, and Antonio
F. Skarmeta.

• The eighth chapter of the book is titled “IoT analytics for Smart Cities”
and presents a case study concerning IoT analytics deployments in urban
environments, with particular emphasis on cloud analytics applications.
It is co-authored by Martin Bauer, Bin Cheng, Flavio Cirillo, Salvatore
Longo and Fang-Jing Wu.

• The process of deploying advanced machine learning techniques in the
scope of an IoT analytics application is presented in the ninth chapter
of the book, which is co-authored by Ioannis Christou and myself. The
chapter is titled “IoT Analytics: From Data Collection to Deployment
and Operationalization” and illustrates the lifecycle of an IoT analytics
applications across all the required stages, including data collection,
data interoperability and deployment of appropriate data mining and/or
machine learning schemes for the analytics problem at hand. The chapter
is linked to Chapter 4, given that both refer to the IoT-based smart
city platform which has been developed in the scope of the VITAL
project.

• The tenth and last chapter of the book is co-authored by Maarten
Botterman and titled “Ethical IoT: a sustainable way forward”. It
underlines the ethical challenges that are associated with IoT analytics
applications, along with best practices for successfully confronting them.

Overall this is one of the first and few books to discuss advanced IoT analytics
topics, including relevant technologies and case studies. I therefore believe it
could provide insights on IoT analytics to interested parties for the coming
years, while I also expect that additional books on IoT analytics will also
emerge. I sincerely hope that readers will find the book interesting and worth
reading.

John Soldatos
July, 2016
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1
Introducing IoT Analytics

John Soldatos

Athens Information Technology, Greece

1.1 Introduction

The internet-of-things (IoT) paradigm represents one of the next evolutionary
steps in internet-based computing, which is already having a positive impact
in a large number of application domains including smart cities, sustainable
living, healthcare, manufacturing and more. IoT analytics refers to the analysis
of data from multiple IoT data sources, including sensors, actuators, smart
devices and other internet connected objects. The collection and analysis
of data streams from IoT sources is nowadays considered a key element
of the IoT’s disruptive power, as well as a prerequisite to realizing IoT’s
hyped market potential. Indeed, according to a recent report by McKinsey
[1], less than 1% of IoT data is currently used, which is a serious set-
back to maximizing IoT’s business value. For example, most IoT analytics
applications are nowadays used for anomaly detection and control rather than
for optimization and prediction, which are the applications that will provide
the greatest business value in the coming years.

1.2 IoT Data and BigData

The rise of future internet technologies, including cloud computing and
BigData analytics, enables the wider deployment and use of sophisticated
IoT analytics applications, beyond simple sensor processing applications.
It is therefore no accident that IoT technologies are converging with cloud
computing and BigData analytics technologies towards creating and deploying
advanced applications that process IoT streams.

The integration of IoT data streams within cloud computing infrastructures
enables IoT analytics applications to benefit from the capacity, performance

3
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Figure 1.1 The Vs of BigData and IoT (Big)Data.

and scalability of cloud computing infrastructures. In several cases, IoT
analytics applications are also integrated with edge computing infrastructures,
which decentralize processing of IoT data streams at the very edge of the
network, while transferring only selected IoT data from the edge devices to
the cloud. Therefore, it is very common to deploy IoT analytics applications
within edge and/or cloud computing infrastructures.

In addition to the affiliation between IoT analytics and cloud computing
infrastructures, there is a close relation between IoT analytics with BigData
analytics. Indeed, IoT data are essentially BigData since they feature several
of the Vs of BigData, including (Figure 1.1):
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• Volume: IoT data sources (such as sensors) produce in most cases very
large volumes of data, which typically exceed the storage and processing
capabilities of conventional database systems.

• Velocity: IoT data streams have commonly very high ingestion rates, as
they are produced continually, in very high frequencies and in several
times in very short timescales.

• Variety: Due to the large diversity of IoT devices, IoT data sources can
be very heterogeneous both in terms of semantics and data formats.

• Veracity: IoT data are a classical example of noise data, which are
characterized by uncertainty.

Therefore, systems, tools and techniques for developing and deploying
BigData applications (including databases, data warehouses, streaming mid-
dleware and engines, data mining techniques and BigData developments
tools), provide a good starting point for dealing with IoT analytics. However,
IoT data and IoT analytics applications have in most cases to deal with their
own peculiar challenges, which are not always common to the challenges
of high volume, high velocity transactional applications. The tools and
techniques that are discussed in this book are focused on the challenges of
IoT data and IoT analytics applications, which are outlined in the following
paragraph.

1.3 Challenges of IoT Analytics Applications

The main challenges associated with the development and deployment of IoT
analytics applications are (Figure 1.2):

• The heterogeneity of IoT data streams: IoT data streams tend to be
multi-modal and heterogeneous in terms of their formats, semantics and
velocities. Hence, IoT analytics applications expose typically variety
and veracity. BigData technologies provide the means for dealing with
this heterogeneity in the scope of operationalized applications. However,
accessing IoT data sources (including sensors and other types of internet
connected devices) requires drivers and connectors, beyond what is
typically deployed in transactional BigData applications (e.g., database
drivers). Furthermore, dealing with semantic interoperability of diverse
data streams requires techniques beyond the (syntactic) homogenization
of data formats.

• The varying data quality: Several IoT streams are noisy and incomplete,
which creates uncertainty in the scope of IoT analytics applications.
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Statistical and probabilistic approaches must be therefore employed in
order to take into account the noisy nature of IoT data streams, especially
in cases where they stem from unreliable sensors. Also, different IoT
data streams can be typically associated with different reliability, which
should be considered in the scope of their integration in IoT analytics
applications.

• The real-time nature of IoT datasets: IoT streams feature high veloc-
ities and for several application must be processed nearly in real-time.
Hence, IoT analytics can greatly benefit from data streaming platforms,
which are part of the BigData ecosystem. IoT devices (e.g., sensors)
provide typically high-velocity data, which however can be in several
cases controlled by focusing only on changes in data patterns and reports,
rather than dealing with all the observations that stem from a given sensor.

• The time and location dependencies of IoT streams: IoT data come
with temporal and spatial information, which is directly associated with
their business value in a given application context. Hence, IoT analytics
applications must in several cases process data in a timely fashion and
from proper locations. Cloud computing techniques (including edge
computing architectures) can greatly facilitate timely processing of
information from given locations in the scope of large scale deployments.
Note also that the spatial and temporal dimensions of IoT data can serve as
a basis for dynamically selecting and filtering streams towards analytics
applications for certain timelines and locations.

• Privacy and security sensitivity: IoT data are typically associated with
stringent security requirements and privacy sensitivities, especially in
the case of IoT applications that involve the collection and processing
of personal data. Hence, IoT analytics need to be supported by privacy
preservation techniques, such as the anonymization of personal data, as
well as techniques for encrypted and secure data storage.

• Data bias: As in the majority of data mining problems, IoT datasets
can lead to biased processing and hence a thorough understanding and
scrutiny of both training and test datasets is required prior to their
operationalized deployment. To this end, classical data mining techniques
can also be applied in the IoT case. Note that the specification and
deployment of IoT analytics systems entails techniques similar to those
deployed in classical data mining problems, including the understanding
of the data, the preparation of the data, the testing of data mining
techniques and ultimately the development and deployment of a system
that yields the desired performance and efficiency.
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Figure 1.2 Main challenges and lifecycle phases of IoT analytics.

These challenges are evident in the IoT analytics lifecycle, which comprises a
series of steps from data acquisition to analysis and visualization.This lifecycle
is supported by cloud computing and BigData technologies, including data
mining, statistical computing and scalable databases technology.

1.4 IoT Analytics Lifecycle and Techniques

The IoT analytics lifecycle comprises the phases of data collection, analysis
and reuse. In particular:

• 1st Phase – IoT Data Collection: As part of this phase IoT data are
collected and enriched with the proper contextual metadata, such as
location information and timestamps. Moreover, the data are validated
in terms of their format and source of origin. Also, they are validated
in terms of their integrity, accuracy and consistency. Hence, this phase
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addresses several IoT analytics challenges, such as the need to ensure
consistency and quality. Note that IoT data collection presents several
peculiarities, when compared to traditional data consolidation of dis-
tributed data sources, such as the need to deal with heterogeneous IoT
streams.

• 2nd Phase – IoT Data Analysis: This phase deals with the structuring,
storage and ultimate analysis of IoT data streams. The latter analysis
involves the employment of data mining and machine learning techniques
such as classification, clustering and rules mining. These techniques are
typically used to transform IoT data to actionable knowledge.

• 3rd Phase – IoT Data Deployment, Operationalization and Reuse:
As part of this phase, the IoT analytics techniques identified in the
previous steps are actually deployed, thus becoming operational. This
phase ensures also the visualization of the IoT data/knowledge according
to the needs of the application. Moreover, it enables the reuse of IoT
knowledge and datasets across different applications.

These lifecycle phases are used in order to organize the development and
deployment of IoT analytics systems. They can also serve as a basis for
characterizing the maturity of IoT analytics deployments. As a prominent
example, they can be used to analyze the level of “smartness” of a city,
given that the maturity of a city is directly related to the sophistication of
its analytics, but also to its ability to repurpose and reuse datasets and data
analytics functions.

The tasks outlined in the above listed phases are supported by a range of
data management and analysis disciplines, including:

• IoT middleware and interoperability technologies, which provide the
means for collecting, structuring and unifying IoT data streams, thus
addressing the variety and veracity challenges of IoT data.

• Statistics, which provide the theory for testing hypotheses about various
insights stemming from IoT data.

• Machine learning, which enables the implementation of learning agents
based on IoT data mining. Machine learning includes several heuristic
techniques. The practical cases studies at the second part of the book
make use of various machine learning schemes.

• Data mining and Knowledge Discovery, which combines theory and
heuristics towards extracting knowledge. To this end, data cleaning,
learning and visualization might be also employed.

• Database management systems, including Relational Database Man-
agement Systems (RDMS), NoSQL databases, BigData databases (such
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as the HDFS (Hadoop Distributed File System), which provide the means
for data persistence and management. Most of the practical examples and
case studies presented in the book make use of some sort of database
management systems in order to persist and manage the data.

• Data streams management systems, which handle transient streams,
including continuous queries, while being able to handle data with very
high ingestion rates, including streams featuring unpredictable arrival
times and characteristics. IoT streaming systems are also supported by
scalable, distributed data management systems.

The techniques that are outlined as part of subsequent chapters of this book
use and in several cases enhance the above-listed techniques and systems
for data collection, management and analysis. For example, the following
chapters make direct references to distributed real-time streaming and event
processing systems like Apache Spark1 and Apache Storm2. Apache Storm is
a free and open source distributed real-time computation system. It facilitates
reliable processing of unbounded streams of data and deals with Real-time
processing much in the same wayApache Hadoop deals with batch processing.
Similarly, Apache Storm is an open source software that defines a broader
set of operations when comparing to Hadoop, including transformation and
actions which can be arbitrarily combined in any order. Spark supports several
programming Languages including Java, Scala and Python. Note that the
choice between Spark or Storm for IoT streaming and analytics can be based
on a number of different factors. Spark is usually a good choice for projects
using existing Hadoop or Mesos clusters, as well as for projects involving
considerable graph processing, SQL access, or batch processing. Moreover,
Spark provides a shell for interactive processing (something missing from
Storm). On the other hand, Storm is a good choice for projects primarily
focused on stream processing and Complex Event Processing that have struc-
tures matching Storm’s capabilities. Storm provides boader language support,
including support for the R language which is extremely popular among data
scientists. BeyondApache Spark and Storm projects,Apache Flink3 is another
open source stream processing framework, which can support low latency,
high throughput, stateful and distributed processing for IoT data. It provides
low-latency streaming ETL (Extract-Transform-Load) operations, offering
much higher performance than traditional ETL for batch datasets. Moreover,

1spark.apache.org
2storm.apache.org
3flink.apache.org
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Flink is event-time aware: Events stemming from the same real-world activity
could arrive out of order in a Flink streaming system, but even in such cases
Flink can maintain the order. Flink is a more recent project comparing to Spark,
but it constantly gaining momentum in the industry due to its innovative and
high-performance functionalities. Likewise the applications that are illustrated
in the second part of the book take also advantage of these techniques. For
example, several of the presented applications exploit NoSQL databases (such
as MongoDB4 and CouchDB5 for data storage and management, while most
of the applications deploy also some data mining method like classification,
prediction and mining of association rules.

1.5 Conclusions

This introductory chapter has defined the scope of IoT analytics and pre-
sented related technologies. It has also outlined the close affiliation of IoT
analytics with the cloud computing and BigData techniques. Furthermore, it
has presented the main challenges of IoT analytics applications, which stem
primarily from the unique characteristics and nature of IoT data. The rest
of the book is destined to present technology solutions to these challenges,
along with practical applications and case studies, which make use of such
solutions. The presented solutions build in several cases over state-of-the-art
IoT, cloud computing and BigData solutions, given that the integration of these
technologies tends to become a norm for the variety of IoT analytics appli-
cations. The integration of IoT, cloud computing and BigData infrastructures
and technologies is therefore the topic discussed in the next chapter.

4https://www.mongodb.com/
5http://couchdb.apache.org/
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2.1 Introduction

Over the last years, the Internet of Things (IoT) has moved from being a
futuristic vision to market reality. It is not a question any more whether IoT will
be surpassing the hype, it is already there and the race between IoT industry
stakeholders has already begun. The IoT revolution comes with trillions of
connected devices; however the real value of IoT is in the advanced processing
of the collected data. By nature, IoT data is more dynamic, heterogeneous and
unstructured than typical business data. It demands more sophisticated, IoT-
specific analytics to make it meaningful. The exploitation in the Cloud of data
obtained in real time from sensors is therefore very much a necessity. This
data processing leads to advanced proactive and intelligent applications and
services. The connection of IoT and BigData can offer: i) deep understanding
of the context and situation; ii) real-time actionable insight; iii) performance
optimization; and iv) proactive and predictive knowledge. Cloud technologies
offer decentralized and scalable information processing and analytics, and
data management capabilities. This chapter describes a Cloud based IoT and
BigData platform, together with their requirements. This includes multiple
sensors and devices, BigData analytics, cloud data management, edge-heavy
computing, machine learning and virtualization.

In this chapter, Section 2.2 introduces the characteristics of an online Cloud
IoT platform. Section 2.3 shows the challenge posed by the huge amount of
data to be processed, from the point of view of the quality and quantity of
data. It gives an overview of the technologies able to address those challenges.

11
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Section 2.4 presents LoRa, a key enabler for the collection of the data. The
chapter includes also initial results of two EU-funded projects on IoT BigData:
WAZIUP in Section 2.5; and iKaaS in Section 2.6.

2.2 Cloud-based IoT Platform

According to the NIST definition, Cloud computing is a model for enabling
convenient, on-demand network access to a shared pool of configurable
computing resources that can be rapidly provisioned and released with mini-
mal management effort or service provider interaction. The Cloud paradigm
can be delivered using essentially three different service models. These are
Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software
as a Service (SaaS).

ACloud-based IoTplatform is then a dynamic and flexible resource sharing
platform delivering IoT services. It offers scalable resources and services
management. The exploitation of IoT data depends on massive resources,
which should be available when needed and scaled back when not needed.

2.2.1 IaaS, PaaS and SaaS Paradigms

A Cloud based IoT platform needs usually to select one from the three
different service models: IaaS, PaaS or SaaS. IaaS allows delivering computer
infrastructure on an outsourced basis in order to support enterprise operations.
This service model is based on the paradigm of virtualization of resources.
The initial success of the Cloud is due to the possibility to embed practically
any legacy applications within Virtual Machines (VMs), which are managed
by an external stakeholder. This permits to relieve the application owner
from managing physical infrastructures. PaaS, on the other hand, provides
a platform allowing customers to develop, run, and manage applications.
It removes the complexity of building and maintaining the infrastructure
typically associated with developing and deploying an application. Typically,
a PaaS framework will compile an application from its source code, and
then deploy it inside lightweight VMs, or containers. Furthermore, PaaS
environments offer an interface to scale up or down applications, or to
schedule various tasks within the applications. Finally, SaaS is a software
licensing and delivery model in which software is licensed on a subscription
basis and is centrally hosted. It is sometimes referred to as “on-demand
software”. SaaS is typically accessed by users using a thin client via a web
browser.
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Cloud-based IoT platforms are usually based on the SaaS paradigm. They
provide IoT-related services using a web interface on a pay-per-use basis. For
example, a service such as Xively1 provides a web service with a database
able to store sensors data points. This data is then processed and displayed in
various graphics.

However, SaaS IoT platforms are limited to the possibility of their web
interface. They will not permit the developers to create complex and cus-
tom applications. Extensibility mechanisms are sometime offered, allowing
extending the web services offered with user-provided callbacks. However the
resulting application will not be homogeneous and will be difficult to maintain.
Instead, we present in Section 2.5 a concept of IoT Cloud platform based on the
PaaS paradigm. Developing an IoT BigData application is a complex task. A
lot of services need to be installed and configured, such as databases, message
broker and big data processing engines. With the PaaS paradigm, we abstract
some of this work. The idea is to let the developer specify the requirements of
his application in a specification file called the “manifest”. This specification
will be read by the PaaS framework and the application will be compiled and
instantiated in the Cloud environment, together with its required services.

2.2.2 Requirements of IoT BigData Analytics Platform

An IoT BigData analytic platform should be able to dynamically manage IoT
data and provide connectivity with the diverse heterogeneous objects, con-
sidering the interoperability issues. It is able to derive useful information and
knowledge from large volume of IoT data. The platform shall offer ubiquitous
accessibility and connectivity of the diverse objects, services and users, in
a mobile context. It shall allow dynamic management and orchestration of
users, a huge amount of connected devices as well as massive amount of
data produced by those devices. Finally it shall allow personalization of users
and services, providing services based on users preference and requirements
including real-world context.

Intelligent and Dynamic
The platform should include intelligent and autonomic features in order to
dynamically manage the platform functions, components and applications.
The platform should also be capable to make proactive decisions, dynamic
deployment, and intelligent decisions based on the understanding of the

1https://xively.com
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context of the environments, users and applications requirements. The
platform provides dynamic resources management for IoT, considering per-
formance targets and constraints. This includes offloading workload from
clients/hosts to the Cloud and dynamic resources and service migration, as
presented in Section 2.6.

Distributed
The platform includes distributed information processing and computing
capabilities, distributed storage, distributed intelligence, and distributed data
management capabilities. These capabilities should be distributed across smart
devices, gateway/server and multiple cloud environments. The processing
capability needs to be migrated closer to users, to save bandwidth.

Scalable
The platform needs to be scalable in order to address the needs of a variable
number of the devices, services and users. The data management, storage and
processing services need to be dimensioned dynamically.

Real-Time
The platform need to be able to process data in real-time, i.e. providing a
fast analysis and responses for situations of urgency. A real-time data analysis
platform needs to be able to prioritize urgent traffic and processing from non-
urgent ones.

Programmable
The platform shall support programmable capabilities of IoT business and
service logics, data warehouse scheme, template of data and service model.

Interoperable
The platform provides interoperability between the different IoT services and
infrastructure. TheAPIs need to follow the existing standards. The components
are published and maintained as Open Source software. The target is to deliver
a common data model able to exploit both structured and unstructured data. In
order to create multimodal and cross-domain smart applications, it is necessary
to move from raw data to linked data and adopt unambiguous description of
relevant information.

Secure
The platform shall include security and privacy by design. This includes
different features like data integrity, localization, confidentiality, SLA. Holistic
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approaches are required to address privacy & security issues across value
chains.

2.2.3 Functional Architecture

Our IoT platform solves key problems in IoT analytics, data management and
visualization that have traditionally been developed within each application.
Developers can easily embed the platform components into their applications
saving the time, expertise and expense of building the components themselves.
This enables application that would have been too costly and time-consuming
to develop. The platform integrates easily with existing sensors, network
infrastructure and end-user applications.

Figure 2.1 displays the functional overview of the BigData IoT platform.
The topmost block represents the Cloud platform, the middle one is the
network connectivity while the bottom one is the local deployment, including
gateway and sensors. The following functional domains have been identified:

• The “Smart Applications” domain is the IoT application itself.
• The “Users Management” allows the management of the identification,

roles and connections of users.
• The “Interoperable Service and Dynamic Workflow” domain allows

application writing, deploying, hosting and execution.
• The “Processing and Analytic Engine”, provides services of stream

processing and data analytics.
• The “Network communication” domain provides the IoT connectivity.
• The “Embedded software” and Hardware domains represent the IoT

gateway and sensors themselves.

2.3 Data Analytics for the IoT

The amount of IoT data coming from real-world smart objects with sensing,
actuating, computing and communication capabilities is exploding. The sen-
sors and devices are more and more deployed, within more applications and
across industries. This section first explores the characteristics of this data. It
then presents several data analytics techniques able process this data.

2.3.1 Characteristics of IoT Generated Data

The volume and quality of the data generated by IoT devices is very dif-
ferent from the traditional transaction-oriented business data. Coming from
millions of sensors and sensor-enabled devices, IoT data is more dynamic,
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Figure 2.1 Functional Architecture of IoT and Bigdata platform.

heterogeneous, imperfect, unprocessed, unstructured and real-time than typ-
ical business data. It demands more sophisticated, IoT-specific analytics to
make it meaningful.

As illustrated in Figure 2.2, the BigData is defined by 4 “Vs”, which
are Volume, Velocity, Variety and Veracity. The first V is for a large volume
of data, not gigabytes but rather thousands of terabytes. The second V is
referencing data streams and real-time processing. The third V is referencing
the heterogeneity of the data: structure and unstructured, diverse data models,
query language, and data sources. The fourth V is defining the data uncertainty,
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Figure 2.2 BigData properties [4].

which can be due to data inconsistency, incompleteness, ambiguities, latency
and lack of precise model.

The IoT faces all 4 Vs of the BigData challenges. However the velocity
is the main challenge: we need to process in real-time the data coming from
IoT devices. For example, medical wearable such as Electro Cardio Graphic
sensors produce up to 1000 events per second, which is a challenge for
real-time processing. The volume of data is another important challenge.
For example General Electric gathers each day 50 million pieces of data
from 10 million sensors. A wearable sensor produces about 55 million data
points per day. In addition, IoT also faces verity and veracity BigData
challenges.

2.3.2 Data Analytic Techniques and Technologies

A cloud-based IoT analytics platform provides IoT-specific analytics that
reduce the time, cost and required expertise to develop analytics-rich, vertical
IoT applications. Platform’s IoT-specific analytics uncover insights, create
new information, monitor complex environments, make accurate predic-
tions, and optimize business processes and operations. The applications
of the IoT BigData Platform can be classified into four main categories
i) deep understanding and insight knowledge ii) Real time actionable insight
iii) Performance optimization and iv) proactive and predictive applications.
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Figure 2.3 IoT BigData applications.

In the following we provide various technologies allowing building such
an IoT analytics platform.

Batch Processing
Batch processing supposes that the data to be treated is present in a database.
The most widely used tool for the case is Hadoop MapReduce. MapReduce
is a programming model and Hadoop an implementation, allowing processing
large data sets with a parallel, distributed algorithm on a cluster. It can run
on inexpensive hardware, lowering the cost of a computing cluster. The latest
version of MapReduce is YARN, called also MapReduce 2.0. Pig provides a
higher level of programming, on top of MapReduce. It has its own language,
PigLatin, similar to SQL. Pig Engine parses, optimizes and automatically
executes PigLatin scripts as a series of MapReduce jobs on a Hadoop cluster.
Apache Spark is a fast and general-purpose cluster computing system. It
provides high-levelAPIs in Java, Scala, Python and R, and an optimized engine
that supports general execution graphs. It can be up to a hundred times faster
than MapReduce with its capacity to work in-memory, allowing keeping large
working datasets in memory between jobs, reducing considerably the latency.
It supports batch and stream processing.

Stream Processing
Stream processing is a computer programming paradigm, equivalent to
dataflow programming and reactive programming, which allows some appli-
cations to more easily exploit a limited form of parallel processing. Flink is a
streaming dataflow engine that provides data distribution, communication and
fault tolerance. It has almost no latency as the data are streamed in real-time
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(row by row). It runs on YARN and works with its own extended version of
MapReduce.

Machine Learning
Machine learning is the field of study that gives computers the ability to learn
without being explicitly programmed. It is especially useful in the context
of IoT when some properties of the data collected need to be discovered
automatically. Apache Spark comes with its own machine learning library,
called MLib. It consists of common learning algorithms and utilities, including
classification, regression, clustering, collaborative filtering, dimensionality
reduction. Algorithms can be grouped in 3 domains of actions: Classification,
association and clustering. To choose an algorithm, different parameters
must be considered: scalability, robustness, transparency and proportionality.
KNIME is an analytic platform that allows the user to process the data in a
user-friendly graphical interface. It allows training of models and evaluation
of different machine learning algorithms rapidly. If the workflow is already
deployed on Hadoop, Mahout, a machine learning library can be used. Spark
also has his own machine learning library called MLib.

H20 is a software dedicated to machine-learning, which can be deployed
on Hadoop and Spark. It has an easy to use Web interface, which makes
possible to combine BigData analytics easily with machine learning algorithm
to train models.

Data Visualisation
Freeboard offers simple dashboards, which are readily useable sets of widgets
able to display data. There is a direct Orion Fiware connector. Freeboard
offers a REST API allowing controlling of the displays. Tableau Public is
a free service that lets anyone publish interactive data to the web. Once on
the web, anyone can interact with the data, download it, or create their own
visualizations of it. No programming skills are required. Tableau allows the
upload of analysed data from .csv format, for instance. The visualisation
tool is very powerful and allows a deep exploration the data. Kibana is
an open source analytics and visualization platform designed to work with
Elasticsearch. Kibana allows searching, viewing, and interacting with data
stored in Elasticsearch indices. It can perform advanced data analysis and
visualize data in a variety of charts, tables, and maps. Elasticsearch is a
highly scalable open-source full-text search and analytics engine. It allows to
store, search, and analyze big volumes of data quickly and in near real time.
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It is generally used as the underlying engine/technology that powers appli-
cations that have complex search features and requirements. It provides a
distributed, multitenant-capable full-text search engine with an HTTP web
interface and schema-free JSON documents. It is really designed for real-time
analytics, most commonly used with Flink or Spark streaming.

2.4 Data Collection Using Low-power, Long-range Radios

Regarding the deployment of IoT devices in a large scale, it is still held back
by technical challenges such as short communication distances. Using the
traditional mobile telecommunications infrastructure is still very expensive
(e.g., GSM/GPRS, 3G/4G) and not energy efficient for autonomous devices
that must run on battery for months. During the last decade, low-power but
short-range radio such as IEEE 802.15.4 radio have been considered by the
WSN community with multi-hop routing to overcome the limited transmission
range. While such short-range communications can eventually be realized on
smart cities infrastructures where high node density with powering facility can
be achieved, it can hardly be generalized for the large majority of surveillance
applications that need to be deployed in isolated or rural environments. Future
5G/LTE standards do have the IoT orientation but these technologies and
standards are not ready yet while the demand is already high.

Recent so-called Low-PowerWideArea Networks (LPWAN) such as those
based on SigfoxTM or Semtech’s LoRaTM [1] technology definitely provide
a better connectivity answer for IoT as several kilometers can be achieved
without relay nodes to reach a central gateway or base station. Most of long-
range technologies can achieve 20 km or higher range in LOS condition
and about 2 km in urban NLOS [2]. With cost and network availability
constraints, LoRa technology, which can be privately deployed in a given
area without any operator, has a clear advantage over Sigfox which coverage
is entirely operator-managed. These low-power, long-range radio technologies
will definitely allow a huge amount of sensors to be installed in remote area,
thus augmenting the amount of data to be treated in the IoT Cloud platform.

2.4.1 Architecture and Deployment

The deployment of LPWAN (both operator-based and privately-owned sce-
narios) is centred on gateways that usually have Internet connectivity as shown
in Figure 2.4. Although direct communications between devices are possible,
most of IoT applications follow the gateway-centric approach with mainly
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Figure 2.4 Gateway-centric deployment.

uplink traffic patterns. In this typical architecture data captured by end-devices
are sent to a gateway which will push data to well identified network servers.
Then application servers managed by end-users could retrieve data from the
network server. If encryption is used for confidentiality, the application server
can be the place where data could be decrypted and presented to end-users.

The LoRa Alliance has issued the LoRaWAN specification [3] in a tenta-
tive for standardization of public, large-scale LoRa LPWAN infrastructures
featuring multi-gateways and full network/application servers’ architecture as
previously depicted in Figure 2.4. This specification also defines the set of
common channels for communications, the packet format, Medium Access
Control (MAC) commands that must be provided and 3 end-devices classes
depending on communication requirements. This architecture can however be
greatly simplified for small, ad-hoc deployment scenarios where the gateway
can directly push data to some servers or IoT-specific cloud platforms if
properly configured.

2.4.2 Low-cost LoRa Implementation

The implementation of the full LoRaWAN specification requires gateways
to be able to listen on several channels and LoRa settings simultaneously.
Commercial gateways therefore use advanced concentrators chips capable of
scanning up to 8 different channels: the SX1301 concentrator is typically used
instead of the SX127x chip which is designed for end-devices. Commercial
gateways cost several hundredth euros with the cost of the SX1301-capable
board alone to be more than a hundred euro.
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Figure 2.5 Low cost gateway from off-the-sheves components.

For many adhoc applications, it is however more important to keep the cost
of the gateway low and to target small to medium size deployment scenario for
various specific use cases instead of the large-scale, multi-purpose deployment
scenarios defined by LoRaWAN. Note that even though several gateways
can be deployed to serve several channel settings if needed. In many cases,
this solution presents the advantage of being more optimal in terms of cost
as incremental deployment can be realized and also offer a higher level of
redundancy that can be an important requirement in developing countries for
instance.

Our LoRa gateway could be qualified as “single connection” as it is built
around an SX1272/76, much like an end-device would be. The cost argument,
along with the statement that too integrated components are difficult to repair
and/or replace in the context of developing countries, also made the ”off-the-
shelves” design orientation an obvious choice. Our low-cost gateway is based
on a Raspberry PI (1B/1B+/2B/3B) which is both a low-cost (less than 30 euro)
and a reliable embedded Linux platform. Our long-range communication
library supports a large number of LoRa radio modules (most of SPI-based
radio modules). The total cost of the gateway can be as low as 45 euro.

Together with the “off-the-shelves” component approach, the software
stack is completely open-source: (a) the Raspberry runs a regular Raspian
distribution; (b) our long range communication library is based on the SX1272
library written initially by Libelium and (c) the lora gateway program is kept as
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simple as possible. We improved the original SX1272 library in various ways
to provide enhanced radio channel access (CSMA-like with SIFS/DIFS) and
support for both SX1272 and SX1276 chips. We believe the whole architecture
and software stack are both robust and simple for either “out-of-the-box”
utilization or quick customization by third parties.

We tested the gateway in various conditions for several months with
a DHT22 sensor to monitor the temperature and humidity level inside the
case. Our tests show that the low-cost gateway can be deployed in outdoor
conditions with the appropriate casing. Although the gateway should be
powered, its consumption is about 350 mA for an RPIv3B with both WiFi
and Bluetooth activated.

2.5 WAZIUP Software Platform

The WAZIUP project, namely the Open Innovation Platform for IoT-BigData
in Sub-Saharan Africa is a collaborative research project using cutting edge
technology applying IoT and BigData to improve the working conditions
in the rural ecosystem of Sub-Saharan Africa. First, WAZIUP operates
by involving farmers and breeders in order to define the platform specifications
in focused validation cases. Second, while tackling challenges which are
specific to the rural ecosystem, it also engages the flourishing ICT ecosystem
in those countries by fostering new tools and good practices, entrepreneurship
and start-ups. Aimed at boosting the ICT sector, WAZIUP proposes solutions
aiming at long term sustainability.

The consortium of WAZIUP involves 7 partners from 4 African countries
and partners from 5 EU countries combining business developers, technology
experts and local Africa companies operating in agriculture and ICT. The
project involves also regional hubs with the aim to promote the results to the
widest base in the region.

2.5.1 Main Challenges

The WAZIUP Cloud platform needs to face a number of challenges. Those
challenges are related to the specific environment in which the platform
will be deployed, and the need of its end users. First of all, we identified
that farmers in Sub-Saharan Africa are lacking data on culture status. For
instance, parameters such as potassium and nitrogen levels are very useful
for precision farming. Secondly, farmers are lacking actionable information
on the condition of the farm. This actionable information can be displayed
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in the form of alerts, forecasts and recommendations. An example of such
a service is a recommendation on the water levels needed for irrigation,
taking into accounts the weather forecasts. On a larger scale, governments
and institutions are lacking information and statistics on their territory.
An example is geographical statistics on the spreading of a disease in a
country.

On a more technical level, we noticed that most rural African users have
mobile phones, but not always smart phones. Furthermore, 3G is not always
present in rural areas. Internet and grid connection can also be intermittent.
Lastly, a huge challenge that the WAZIUP platform should address is the cost
of IoT devices, application development and application hosting.

2.5.2 PaaS for IoT

As introduced before, PaaS framework will compile an application from
its source code, and then deploy it inside lightweight virtual machines, or
containers. This compilation and deployment is done with the help of a file
called the manifest, which allows the developer to describe the configuration
and resource needs for his application. The manifest file will also describe
the services that the application requires and that the platform will need to
provision.

The idea of WAZIUP is to extend the paradigm of the PaaS to IoT. Indeed,
developing an IoT BigData application is a complex task. A lot of services
need to be installed and configured, such as databases and complex event
processing engines. Furthermore, it requires an advanced knowledge and skills
in programing of embedded devices, of data stream processors, of advanced
data analytics, and finally of GUIs and user interactions. We propose to abstract
those skills using the PaaS paradigm.

Figure 2.6 shows the PaaS deployment in WAZIUP. Traditional PaaS
environment are usually installed on top of IaaS (in blue in the picture). The
blue boxes are physical servers, respectively the Cloud Controller and one
Compute node. The PaaS environment is then installed inside the IaaS V Ms,
in green in the picture. We use Cloud Foundry as a PaaS framework. It comes
with a certain number of build packs, which and programming languages
compilers and run time environments. It also provides a certain number of
preinstalled services such as MongoBD or Apache Tomcat. The manifest file,
showed on the right hand side, provide a high-level language that allows
describing which services to instantiate. We propose to extend this language
to IoT and BigData services:
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Figure 2.6 PaaS deployment extended for IoT in WAZIUP.

• Data stream and message broker
• CEP engines
• Batch processing engines
• Data visualization engines

Furthermore, we propose to include in the manifest a description of the IoT
sensors that are required by the application.This query includes data such as the
sensor type, location and owner. The manifest also includes the configuration
of the sensors. The application will then be deployed both in the global Cloud
and in the local Cloud.

2.5.3 Architecture

Figure 2.7 presents the full WAZIUParchitecture. There are 4 silos (from left to
right):Application development, BigData platform, IoT platform, Sensors and
data sources. The first silo involves the development of the application itself.
A rapid application development (RAD) tool can be used, such as Node-
Red. The user provides the code source of the application, together with
the manifest. As a reminder, the manifest describes the requirements of the
application in terms of:

• Computation needs (i.e. RAM, CPU, disk).
• Reference to data sources (i.e. sensors, internet – sources . . .).
• BigData engines needed (i.e. Flink, Hadoop . . .).
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Figure 2.7 WAZIUP architecture.

• Configuration of sensors (i.e. sampling rate).
• Local and global application deployment.

The application source code, together with the manifest, is pushed to the
WAZIUP Cloud platform by the user. The orchestrator component will read
the manifest and trigger the compilation of the application. It will then deploy
the application in the Cloud execution environment. It will also instantiate the
services needed by the application, as described in the manifest. The last task
of the orchestrator is to request the sensor and data sources connections from
the IoT components of the architecture. The sensor discovery module will be
in charge of retrieving a list of sensors that matches the manifest description.

On the left side of the diagram, the sensor owners can register their
sensors with the platform. External data sources such as Internet APIs can
also be connected directly to the data broker. The sensors selected for each
application will deliver their data to the data broker, through the IoT bridge and
preprocessor. This last component is in charge of managing the connection and
configuration of the sensors. Furthermore, it will contain the routines for pre-
processing the data transmitted, such as cleaning, extrapolating, aggregating
and averaging data points.

2.5.4 Deployment

WAZIUP will be deployed and accessed in an African context, where internet
access is sometime scarce. WAZIUP therefore has a very strong constraint
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regarding low internet connectivity. To fulfil this requirement, we propose
a Cloud structure in two parts: the global Cloud and the local Cloud. The
global Cloud corresponds to the Cloud in the traditional sense. The local
Cloud corresponds to the gateway and an optional connected computer. The
idea of WAZIUP is to extend the PaaS concept to the local Cloud.

Atypical WAZIUP deployment is illustrated in Figure 2.8. On the left hand
side of the picture, the application is designed by the developer, together with
the manifest file. It is pushed on the WAZIUP Cloud platform. The orchestrator
then takes care of compiling and deploying the application in the various Cloud
execution environments. Furthermore, the orchestrator drives the instantiation
of the services in the Cloud, according to the manifest. The manifest is also
describing which part of the application need to be installed locally, together
with corresponding services. The local application can then connect to the
gateway and collect data from the sensors.

2.6 iKaaS Software Platform

The iKaaS platform combines ubiquitous and heterogeneous sensing, BigData
and cloud computing technologies in a platform enabling the Internet of Things
process consisting of continuous iterations on data ingestion, data storage,
analytics, knowledge generation and knowledge sharing phases, as foundation
service provision.

Figure 2.8 WAZIUP local and global deployment.
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The iKaaS platform consists of two distinct Cloud ecosystems: the Local
Cloud and the Global Cloud. More specifically:

• A Local Cloud provides requested services to users in a limited geo-
graphical area. It offers additional processing and storage capability to
services. It is created on-demand, and comprises appropriate computing,
storage and networking capabilities.

• The Global Cloud is seen in the “traditional” sense, as a construct with
on-demand and elastic processing power and storage capability. It is a
“backbone infrastructure”, which increases the business opportunities
for service providers, the ubiquity, reliability and scalability of service
provision.

Local Clouds can involve an arbitrarily large number of nodes (sensors, actu-
ators, smartphones, etc.). The aggregation of resources comprises sufficient
processing power and storage space. The goal is to serve users of a certain
area. In this respect, a Local Cloud is a virtualised processing, storage and
networking environment, which comprises IoT devices in the vicinity of the
users. Users will exploit the various services composed of the Local Cloud’s
devices’ capabilities. For example, a sensor and its gateway equipped with the
iKaaS platform.

The Global Cloud allows IoT service providers to exploit larger scale
services without owning actual IoT infrastructure.

The iKaaS Cloud ecosystem will encompass the following essential
functionality:

• Consolidated service-logic, resource descriptions and registries will be
parts of the Global Cloud. These will enable the reuse of services.
Practically, a set of registries will be developed and pooling of service
logic and resources will be enabled.

• Autonomic service management will be part, firstly, of the Global
Cloud, and, then, in the Local Clouds. This functionality will be in
charge of (i) dynamically understanding the requirements, decomposing
the service (finding the components that are needed); (ii) finding the
best service configuration and migration (service component deploy-
ment) pattern; (iii) during the service execution, reconfiguring the
service, i.e., conducting dynamic additions, cessations, substitutions of
components.

• Distributed data storage and processing is anticipated for the struc-
ture of global and local clouds. This means capabilities for efficiently
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communicating, processing and storing massive amounts of, quickly-
emerging, versatile data (i.e., “BigData”), produced by a huge number of
diverse IoTdevices.Another important capability will be the derivation of
information and knowledge (e.g., on device behaviour, service provision,
user aspects, etc.), while ensuring security and privacy, which are top
concerns.

• Knowledge as a service (KaaS) will be primarily part of the Global Cloud.
This area will cover: (i) device behaviour aspects; (ii) the way services
have been provided (e.g., through which IoT resources) and the respective
quality levels; (iii) user preferences.

As can be seen the iKaaS functionality will determine the optimal way to offer
a service. For instance service components may need to be migrated as close
as possible to the required (IoT) data sources. IoT services may need generic
service support functionality that is offered within the Cloud, and, at the same
time, they do rely on local information (e.g., streams of data collected by
sensors in a given geographic area), therefore, the migration of components
close to the data sources will help in the reduction of the data traffic.

Figure 2.9 iKaaS platform.
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2.6.1 Service Orchestration and Resources Provisioning

The platform offers mechanisms that autonomously analyse application
requirements, user preferences and Cloud resources and accordingly decide
upon the most appropriate deployment of services. The most appropriate
deployment must achieve the best balance between system performance,
quality of service and cost. In this context, services may be decomposed
into smaller components, based on the current situation and information on
data sources, in order to be migrated and executed in a “Local Cloud”, near
the data sources, following the Hadoop maxim that “Moving Computation
is Cheaper than Moving Data”. Alternatively, services may be deployed and
executed in the Global Cloud. Furthermore, this mechanism will facilitate the
notion of “Everything as a Service”, and attached gateway to host and process
services on-demand, by means of service migration instead of being limited to
predefined services. The local IoT Gateway may act as part of a “Local Cloud”
on an on-demand basis in coordination with the Global Cloud, provided that
the Local Cloud has sufficient resources to process and execute the service.

The platform uses a model that allows the service to be analysed and
decomposed into a certain number of sub-components according to application
requirements, user preferences including privacy constraints, policies, system
state and data sources location. The service sub-components are then migrated
to either Local Clouds, to be computed near the data sources (e.g., sensors) or
into the Global Cloud, to take advantage of the extensive computing power
and storage available. The optimal distribution is decided with the aim of
achieving the best balance between overall system performance (network
traffic, computing load), quality of services (prompt and accurate delivery
of service result) and service costs.

2.6.2 Advanced Data Processing and Analytics

Information stream processing algorithms and mechanisms offer on-the-fly
analysis of volatile data coming from the distributed sensing infrastructure.
In addition, the platform includes off-line BigData analytics over persistent
data capable of uncovering hidden patterns and unknown correlations. This
will allow feeding with contents the envisaged knowledge service platform.

The iKaaS platform includes the analysis of the requirements and
challenges posed by those information stream processing and knowledge
acquisition scenarios to the provision of a set of IoT and BigData services
over cloud and network infrastructures.
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The provision of those services comprises processing capabilities, cov-
ering the knowledge acquisition lifecycle. This lifecycle goes from the
aggregation of heterogeneous data, through information stream processing
services and visualization services, to the derivation of knowledge and
experience. Special attention will be paid to the consolidation of existing
approaches and to the design of complementary solutions able to address the
technological challenges:

• Information Stream Processing, information extraction and visualization,
mechanisms enabling the usage of smart virtual objects as a multi-cloud
cloud based resource.

• Distributed and scalable storage mechanisms for smart virtual objects that
supports service decomposition, migration and corresponding resource
allocation aspects within the iKaaS local and Global Cloud environments.

• Analytics engines and mechanism for assessment and processing of data
over a large number of smart objects. The objective is to derive reliable
information and to provide knowledge that can be provided as a service
to facilitate situation aware applications.

Given that processing and storage may take place in either the Global or the
Local Cloud or both, in support of real-time autonomic and flexible service
execution, the mechanisms defined in this task shall support flexible and fast
discovery of smart virtual objects and allocation of data sources so that efficient
and cost-effective service and resource migration can be realized.

Hence, the platform offers the mechanisms and techniques for handling
smart objects and processing of their data to satisfy real-time service execution
requirements in Cloud environments and also to derive useful “contextual”
information and knowledge to serve cost-effective, low latency resources
migration and allocation needs.

The scalable and distributed storage mechanism for smart virtual objects
and aggregated and anonymised data will also need to be managed dynamically
in order to deal with the large number of data sources.

2.6.3 Service Composition and Decomposition

Principle of Service Composition and Decomposition
IoT and BigData applications are complex large-scale applications, including
a combination of multiple sources, functionalities and composed by many
small functional services across multiple sectors/domains. For example, an
active and healthy living of ageing people application includes many small
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services like monitoring the blood pressure, monitoring the heart rate, weight
monitoring, location awareness, smart lighting, utility metering, notification
and reminders, etc., across health, well-being, security and home automation
domains. Additionally, for IoT and BigData in a given application as the
service is evolving, more and more services added to the applications/systems.
Therefore, it is important to design the iKaaS services as small and autonomous
as possible, with well-defined APIs to operate them individually.

iKaaS functional decomposition of an application/complex service (as
defined in the previous sub-section) allows to achieve loose coupling and
high cohesion of multiple services. Alternatively multiple simple services can
be composed into complex services for the purposes of various applications.
In Figure 2.10, the basic logic of service decomposition and composition are
shown.

Functional decomposition of services gives the agility, flexibility, scal-
ability of individual services to operate autonomously. Each of the simple
services is running in its own process and communicating with lightweight
mechanisms. The overall high-level service logics (e.g. software module) are
decomposed to multiple service logics or software modules which can be
delivered as independent runtime services. These services are built around
business capabilities and are independently deployable by fully automated
deployment machinery. There is a bare minimum of centralized management

Figure 2.10 Service composition and decomposition.
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of these services, which may be written in different programming languages
and use different data storage technologies.

Pattern of Service Composition
The iKaaS service design pattern significantly impacts how the services will be
composed and decomposed. One of the main concepts is to design the services
as independent as possible. In the design pattern the service replication and
reliability should also be considered. One individual complex service can
be composed by multiple isolated end-users or system level services. The
relationship between the services and datasets, whether each of the services is
using its own dataset or sharing a single dataset with other services can vary.
However each iKaaS simple service is associated with a relevant dataset in
order to make the service fully independently designed and deployable.

At runtime, one iKaaS service may consist of multiple service instances.
Each service instance is a runtime (e.g., Docker container). In order to be
highly available, the containers are running on multiple Cloud VMs. In this
case, the Service Manager acts as a load balancer that distributes requests
across the service instances.

2.6.4 Migration and Portability in Multi-cloud Environment

Service migration is a concept used in cloud computing implementation
models that ensures that an individual or organization can easily shift services

Figure 2.11 Patten for composition and decomposition.
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Figure 2.12 iKaaS distributed local and global cloud with service migration.

between different cloud vendors without encountering implementation, inte-
gration, and compatibility and interoperability issues. The concept is defined
the process and framework by which these applications can be deployed on
another cloud vendor or supported private cloud architecture.

iKaaS runtime puts services and all of its dependencies into a container
which is portable among different platforms, desktop distributions and clouds.
One can build, move and run distributed services with containers. By automat-
ing deployment inside containers, developers and system administrators can
run the same application on laptops, virtual machines, bare-metal servers, and
the cloud.

The concept of service migration is applicable in multi-cloud and dis-
tributed computing environment, where the processing capabilities are moved
to near the data sources or a simple service is run near data sources. iKaaS is
a fully distributed architecture, in which the overall platform functionalities
and capabilities are distributed between local and global could. The concept
of local could can be seen as an edge or fog computing, where pre-processing
are done at the origin level.

Fog computing and computing near the data source provide a promising
new approach to significantly reduce network operation cost by moving the
computation or early pre-processing close to the data sources. A key challenge
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in such systems is to decide where and when services should be migrated with
respect to users mobility, overall situation and environment context.

Edge/local computing can provide elastic resources to large scale data
process system without suffering from the drawback of cloud, high latency.
In cloud computing paradigm, event or data will be transmitted to the data
centre inside core network and result will be sent back to end user after a
series of processing. A federation of fog and cloud can handle the BigData
acquisition, aggregation and pre-processing, reducing the data transportation
and storage, balancing computation power on data processing. For example,
in a large-scale environment monitoring system, local and regional data can be
aggregated and mined at fog nodes providing timely feedback especially for
emergency case such as toxic pollution alert. Detailed and thorough analysis
as computational-intensive tasks can be scheduled in the cloud side.

2.6.5 Cost Function of Service Migration

One of the main challenges for the services migration is to define the strategy
for the service migration. There is a tradeoff between the service migration
cost and the transmission cost (such as communication delay and network
overhead) between the user and the cloud. It is challenging to find the
optimal decision also because of the uncertainty in user mobility as well as
possible non-linearity of the migration and transmission costs. The service
migration offers the benefits of reduction in networks overhead and latency
over changing the location of the users. It is often challenging to make the
optimal decision in an optimal manager, which can optimize the cost functions
based on the situation and user’s preferences.

iKaaS will propose a framework for dynamic, cost-minimizing migration
of distribution services into a hybrid cloud infrastructure that spans geograph-
ically distributed data centers. We will propose an algorithm which optimally
places services in different clouds to minimize overall operational cost over
time, subject to service response time constraints. The framework will be
designed based on the Markov-Decision-Process (MDP), to study service
migration in iKaaS Cloud environment.

2.6.6 Dynamic Selection of Devices in Multi-cloud Environment

The end-devices are expected to play a key role in iKaaS not only for they
data they can provide for the optimization of the iKaaS provided services, but
also for the data they can provide with respect to end-device suitability and
social relationships.
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That is because in the case of end-device suitability, end-devices can be
viewed as the end-points of an end-to-end service chain over a multi-cloud
infrastructure. As such, this device suitability identification can be seen as
“fixing” the end-points of the service provisioning chains, allowing as such
(once the end-points are fixed) to then “fix” the location/placement of service
provisioning functions in a way that optimizes both the service and the overall
cloud performance. For example, if a device is identified as suitable, which is
attached at a certain local cloud, then it would make sense for the other service
functionalities needed to be instantiated at that local cloud so as to be close to
the data source.

Some of the key factors that can be taken under consideration when
defining device suitability are:

• Location/mobility pattern of a device; so as to define where the owner of
the device is or is predicted to be so as to appropriately instantiate service
functions close to the corresponding locations.

• Battery levels and evolution of battery levels; so as to be able to
deduce whether a device can be relied upon for providing/receiving data,
therefore corresponding service functions will need to be appropriately
instantiated.

• Availability of sensors; how often a user has its device sensors exposed
and is ready to be a potential match for inclusion in a service delivery
chain.

• User away and reaction times; to make sure the user carries the device
with them and is able to see an alert on time and react to it.

• Data quality: The quality of users inputs, without false-positives or
misleading measurements.

All these factors will be further and better thought of and appropriate knowl-
edge building mechanisms based on the nature and granularity of data will be
considered. The scope is to eventually produce and store the knowledge about
device suitability so that functionalities that decide on the placement of service
functionalities in an end-to-end delivery chain, can take this into account when
performing their joint service and cloud platform optimization processes.
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3.1 Introduction

Despite the huge success of Web search engines, searching the Web is far
from being a solved problem (e.g. see [64] by Yahoo! Search). However,
the information needs of the searchers are increasingly ‘time-sensitive’ –
about events happening now – and/or ‘local’ – where the user’s location has
some geographical bearing on the content that is relevant to their information
need(s). For instance, events that are happening now or recently may have
an impact upon the searching behaviour of users. Indeed, a search engine
can detect a power cut in New York within seconds, based on the querying
behaviour of mobile and nearby users [30]. However, while a Web search
engine can retrieve many forms of online information, it can only sense real-
world events through their impact on the online world (e.g. news stories,
tweets, increased query volume).

In this chapter, we describe how real-world information needs can be
better addressed by search engines through harnessing sensing infrastructures,
including those from the Internet of Things (IoT). Indeed, the introduction
of IoT sensors within the search engine provides more responsive/timely
information than existing evidence sources, such as Web or social streams,
as illustrated in Figure 3.1. For instance, by considering IoT sensor outputs
such as real-time rain levels, a search engine can produce a more customised
answer to queries such as “what is the current weather at JFK airport?”.
Furthermore, information needs such as “what is happenning near me?” (local
event retrieval) can be better answered by fusing social media trend data (also
known as social sensing) with physical sensor observations. For example, a

39
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Figure 3.1 Data sources available to an IoT-connected search engine.

party in the town square might be detected through a combination of people
posting about it on Twitter, with crowd density analysis over CCTV camera
feeds from the square. It is also possible to provide recommendations (e.g.
for tourists) about points-of-interest to visit, that are appropriate to particular
personalised interests of the users and their current contextual situation (time,
location, travelling with friends, etc.). In doing so, search engines can help
users satisfy new forms of information needs needs centred on real-world
events.

In the following sections, we first provide details of search infrastructure
technologies suitable for obtaining and indexing observations from a plethora
of diverse IoT-connected sensors (Section 3.2); Later, we show how physical
sensor information and socially-sensed information – combined with such
technologies – can be adapted for tasks such as local event retrieval
(Section 3.3), event topic identification (Section 3.4) and venue recommen-
dations (Section 3.5). We conclude this chapter by discussing the outlook
for the field and some interesting future directions and applications for IoT
technologies in the search domain (Section 3.6).

3.2 A Search Architecture for Social and Physical Sensors

To achieve effective and efficient search over sensor data streams, it is
important to have a suitable search architecture. Early exploration into the
sensor space focused on the development of tools and techniques for searching
sensor data using classical information retrieval techniques and architectures
[17, 28]. These approaches exploit sensor ontologies [46] in order to decouple
user queries from the low-level details of the underlying sensors. For instance,
they might map a rain gauging data stream to particular weather-related
queries, such that current rain data can be displayed when a user enters one
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of those queries. However, these ontologies are quite brittle in the face of
changes in the user’s query semantics and need to be hand-crafted for each
domain/sensor stream. Hence, they cannot provide effective search over the
arbitrary large and diverse sources of multimedia data derived from both
physical and social sensors. Furthermore, sensor integration is only one of
the components that are needed when building an IoT-enabled search engine.
It is also critical to have effective and efficient indexing and retrieval processes
over the sensor data, as well as have the ability to leverage the new search
capabilities to build applications beyond the classic ‘search bar’.

More recently, the SMART (Search engine for MultimediA enviRonment
generated contenT) project1 developed a framework [4] that aims to solve
these issues, by providing an infrastructure where multimedia sensing devices
in the social and physical world can be easily integrated into a central
search system. By doing so, each sensor can provide information about their
environment (physical or social) and make it available in real-time for search.
As one of the most modern IoT search platforms in use today, we summarise
the components that comprise SMART in Section 3.2.1. We then discuss some
of the key challenges when building and deploying an effective IoT search
engine like SMART in Section 3.2.2

3.2.1 Search engine for MultimediA enviRonment generated
contenT (SMART)

SMART [4] is a framework designed to enable multimedia IoT sensing
devices, both social and physical, to be integrated into a real-time search
system. The architecture of the SMART framework is comprised of three
distinct layers, as illustrated in Figure 3.2. At the lowest level we have the
sensing devices that provide the physical world data. The edge node represents
the software layer that processes the raw sensor data to produce metadata about
the environment, which is streamed in real-time to the search engine using an
appropriate representation. Examples of processing algorithms can include
crowd data analysis for video streams or speech recognition in audio streams.
The search layer collects the metadata streams from the various edge nodes
and indexes them in real-time using an efficient distributed index structure. It
also employs an event detection and ranking retrieval model that uses features
extracted over the metadata streams to satisfy the user’s information need. For
instance, as will be described later in our discussion on search applications in

1http://www.smartfp7.eu/
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Figure 3.2 Architecture of the SMART framework.

Sections 3.3, and 3.4, the search service can be used to rank real-world events
detected from the sensor streams that a user might be interested in attending.
Queries can be either directly specified, or anticipated by the search layer using
contextual information about the user, e.g. the user’s location or their social
profile. Finally the application/visualisation layer at the top offers reusable
APIs to develop applications that can issue queries to the SMART engine and
process or visualise the results. We further describe these three layers in more
detail below.

Edge Node Layer
The edge node is the interface of SMART with the physical world. Each edge
node can cover sensors from a single geographic area, e.g. a building block
or a public square in the city centre. At each edge node, signal streams are
processed to extract events/patterns that might be of value for answering one
or more information needs. The signal streams can either be derived from
physical sensors (e.g. audio/visual streams or environmental measurements),
or from real-time Web crawling/social network streams. To achieve this, the
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Figure 3.3 Edge node components.

design of the edge node is influenced by state-of-the-art IoT platforms and
Linked Data techniques. The edge node architecture is shown in Figure 3.3.
As we can see from Figure 3.3, at the lowest level of the edge node lies
the sensors themselves. These sensors are interfaced with via sensor drivers,
that allow for the connection to the sensor and the streaming ingestion of the
raw sensor data into the edge node. The raw sensor data is then subject to
processing by one or more perceptual components, which convert that data
into a form that is more actionable. For instance, a perceptual component for
an air quality sensor might take a CO2 reading and convert it to a label such
as ‘Normal’ or ‘High’ based on external knowledge about what CO2 levels
are acceptable. Next, the processed sensor outputs are sent to the Intelligent
Fusion Manager of the edge node. This manager enables the reasoning over the
outputs of different sensors within that edge node concurrently. For instance,
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for an edge node responsible for tracking a shopping street, with physical
CCTV camera streams spaced along that street and a social sensor looking for
posts geo-located within that street, the manager might merge crowd signals
from the CCTV cameras with the volume of social media activity to predict the
number of people currently shopping there. Finally, the output of the intelligent
fusion manager and the perceptual components feed an edge node knowledge
base, which stores the observations made over the sensors across time. For
instance, continuing the shopping street example above, the knowledge base
would store the population estimates for the street at different times of the
day. The edge node knowledge base content is stored as series of collection
files that can be indexed by the search layer.

Search Engine Layer
The SMART search layer indexes in real-time streams of collection files from
edge nodes, along with other conventional streams (such as social network
posts or Web documents). It is built using the Terrier2 open source search
engine [48] with enhanced real-time indexing and a scalable distributed
architecture to handle the large amount of streams. The SMART search layer
is comprised of 7 core components as illustrated in Figure 3.4. The Indexing
Component is responsible for the representation, storage and organisation
of the information streams provided, such that they are available for later
retrieval. It ingests the streams of collection files from edge nodes and
social/Web documents (via data feed connectors), and performs a real-time
indexing of those streams into appropriate data structures that allow for
efficient retrieval. Real-time indexing ensures that as soon as an item (such
as a social media post or street density summary) arrives on one of the input
streams, that item will be searchable immediately. The index is distributed
across multiple index shards (machines) so as to cope with a potentially high
number and volume of social sensor streams, ensuring the scalability of the
overall system architecture. This is achieved through the use of the distributed
stream processing platform Storm.3 Storm is one of the new generation of
distributed real-time computation platforms, which provides an easy means
to distribute complex software topologies across multiple machines, while
maintaining fault tolerance and low management overheads. In this case, the
content indexing pipeline is represented as a series of processing nodes (known
as ‘bolts’), where each node/bolt can be replicated and distributed across a local

2http://terrier.org
3http://storm.apache.org/
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Figure 3.4 Components overview of the SMART search layer.

or cloud service machine cluster to achieve scalability. Next, the query process-
ing component identifies the user information needs as specified explicitly by
the user. Queries can be anticipated or expanded by observing past occurring
patterns. The Matching, Retrieval and Ranking Component is responsible
for matching explicit or implicit user queries against the index to identify,
rank and recommend events/locations according to how they satisfy the users’
information needs. This component relies on newly developed retrieval and
recommendation models that can identify interesting “unusual” events across
sensor (inc. social) metadata streams. The Filtering Component identifies
in real-time events (or social network posts) as they happen that match a
user’s running query. This permits a user to be notified of new events that
they will find interesting. This component handles queries after they have
been submitted to the SMART search layer (as running queries) so that
updates are streamed back to the higher level applications in real-time. The
Search Logs Component maintains a recording of the search behaviour of
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the user population. The search behaviour includes the user interactions with
the application such as the queries that have been issued in a user search
session, which search results have been displayed and any documents clicked
by the user. This implicit feedback obtained by monitoring the users’ search
behaviour can be fed back into the SMART search layer, for example, to
improve the effectiveness of the search results or the recommendations. The
Search Engine API Component provides an interface to the SMART search
layer where the main functionalities (search and running queries) are defined
and are made available to higher level applications or services. Finally, the
Configuration Component offers a series of administrative functionalities,
such as the setup of the data streams to use as input and the choice of the
matching algorithms to deploy.

Application Layer
The top layer of the SMART platform contains the software applications that
can deliver the real benefits of the framework to the end-user. The application
layer mainly supports developers who want to create Web 2.0 services or
smart phone applications that exploit the framework capabilities. For example,
the application layer includes open source end-user web applications that
offer user interfaces to issue queries explicitly, or implicitly using the user
context, to the search engine API and receive in real-time up-to-date results
(events). In addition, it includes open source mashups that use the search layer
visualisation APIs to display newly-breaking events, such as real-time balloon
pop-ups on a map.

3.2.2 Challenges in Building an IoT Search Engine

Importantly, there are a variety of challenges when implementing an IoT
search architecture like SMART. First, data stream collection and processing
algorithms are needed to provide a uniform means to interface with a wide
array of sensor types and to perform processing on those sensors’ output to
make that output interpretable/useful to the search engine. For instance, a
raw video feed cannot be directly used to answer a user’s information need.
However, processing that feed through crowd analysis software to get crowd
density for a street might be useful to predict the number of people visiting
the area. Furthermore, some types of sensor streams require pre-filtering to
make them useful. For example, it might be advantageous to define a social
sensor, by filtering down a wider stream of posts to only those from a particular
geographical region [2]. Within SMART, functionality like this is performed
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by the perceptual components within each edge node. However, to incorporate
the ever-growing range of IoT devices, new processing algorithms tailored to
these devices will be needed.

Second, a common metadata model is needed to enable the processed
sensor outputs to be mapped into a standardised metadata stream [12]. This is
important, since often individual sensors only act as weak indicators of some
higher level activity that the user might want to search for. For instance, if we
want to detect live music in a city square, we might want to combine evidence
from social sensors like discussions on Twitter, with physical evidence such
as a locally captured audio or crowd density analysis from the square (c.f.
Section 3.4). The use of a common metadata model can facilitate concurrent
reasoning across multiple sensor streams by mapping lots of weak metadata
signals from different sensors into the same format. For instance, SMART uses
a model based on the OGC’s Sensor Web Enablement standards [13] within
the Intelligent Fusion Manager to achieve this.

Next, within the search engine itself, the efficient real-time indexing of the
underlying metadata streams is critical. In particular, in an IoT environment,
thousands of sensors can be feeding the search engine concurrently, and users
expect the most up-to-date results. Hence, the search engine needs to be
able to ingest high volume sensor streams in real-time while concurrently
serving search requests over the most recent data. To achieve this, distributed
stream processing platforms such as Storm4 or Apache Spark5 are used, as
they allow for the low-latency processing of content in a distributed scale-out
manner.

Finally, the types of queries and underlying information needs within the
IoT search space are markedly different to those observed within a classical
Web search domain.As a consequence, new retrieval models designed for these
novel information needs are required. For instance, for an event search engine,
a model that can effectively rank current (and possibly predict future) events
based on criteria such as relevance, interestingness to the user or timeliness,
are needed. Furthermore, in some applications, such as venue suggestions
(that we will cover in detail later in Section 3.5), additional criteria needs to be
considered, such as the user location (and hence distance to the event) and other
contextual features such as the time of the day or the current weather. Current
systems rely on state-of-the-art learning-to-rank techniques [39] to learn an
effective combination of these diverse types of evidence when ranking.

4https://github.com/nathanmarz/storm/
5http://spark.apache.org/



48 Searching the Internet of Things

In the remainder of this chapter we discuss three recent applications of
the SMART framework that examined how to satisfy new user information
needs using social and IoTsensing. In particular, we discuss social sensing with
SMART for event retrieval in Section 3.3. Section 3.4 describes an application
where IoT sensor streams were fused with social evidence for event topic
identification. Finally, we discuss context sensitive venues-recommendation
based on social sensing in Section 3.5.

3.3 Local Event Retrieval

It has been suggested that a large proportion of queries submitted to web search
engines has a “local intent” and that these queries compose the majority of
searches submitted from mobile phones [58]. Examples of information needs
expressed by such queries include “what is happening near me?” or “finding
restaurants in the Covent Garden district”. The prevalence of such queries
highlights the importance of building effective local search tools that serve
this type of information need. In this section, we present an approach for local
event retrieval, where we rely solely on social media as a social sensor to
detect events in real-time.

3.3.1 Social Sensors for Local Event Retrieval

Our motivation stems from the fact that the communities of users in Twitter
often share messages about local events as they progress [66]. To give the
reader a concrete example of how local events are reflected in social media,
we plot in Figure 3.5 the volume of tweets that are posted within London and
contain the phrase “beach boys” over a period of 12 days, where “beach boys”

Figure 3.5 A plot of the volume of tweets in London that contain the phrase “beach boys”
over time.
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is the name of a rock band who held a concert in London’s Royal Albert Hall
during the considered time period. We observe that just before and during the
concert, tweets mentioning the “beach boys” within London have spiked. This
is an indication that the concert as a real-world event has been reflected in the
tweeting activities within the city.

Recently, there have been some attempts to harness social media for
event-based information retrieval (IR). This includes (i) identifying social
media content relevant to known events [10, 54] and (ii) detecting unknown
events using user-generated content in social media [11, 45, 55]. In the
first case, social media content is identified to provide users with more
information about a planned event (e.g. a festival or a football match).
Users would be able, for example, to access tweets about ticket prices
before the event, or Flickr photos posted by attendees after the event. The
second case is more challenging as there is no prior knowledge about the
events. While some approaches have focused on detecting news-related
events [55], or simply clustering social media content based on a database of
targeted events [11], a recent work has devised methods for retrieving global
events from Twitter archives that correspond to an arbitrary query (event
type); a problem which the authors called “structured event retrieval” over
Twitter [45].

Unlike [45], which focused on non-local events, we make use of the
opportunities that social media can bring to local search services. In particular,
we define a new localised IR task that extends the aforementioned structured
event retrieval task introduced in [45]. The task we propose aims at identifying
and ranking local events based on social media activities in the area where the
events occur. In other words, we use social media as a social sensor to detect
local events in real-time.6

The work presented here advances the state-of-the-art in detecting and
locating unknown events in social media and proposes a new IR task of local
event retrieval, which is described next.

3.3.2 Problem Formulation

Our overall goal is to identify and rank local events happening in the real-world
as a response to a user query. For a formal definition of a local event, we adopt
a definition that has been previously used in the new event detection broadcast
news task of the TDT (Topic Detection and Tracking) evaluation forum.

6Treating social media as a social sensor has also been suggested in previous work, for
example [54] and the EU FP7 social sensors project http://www.socialsensor.eu



50 Searching the Internet of Things

This definition states that an event is something that occurs in a certain place
at a certain time. Formally, we consider a set of locations L = {l1, l2, . . .}
that are of interest to the user. The granularity of locations can vary from
buildings and streets to entire cities. For example, we might consider each
location to represent an area in a city in which the user is located. The city
in this case is considered to be divided into equally sized areas specified by
polygons of geographical coordinates, or we can use the divisions defined by
the local authority such as postcodes or boroughs. Each location li at a certain
time tj is denoted by the tuple 〈li, tj〉. We define the problem of local event
retrieval as follows. For a user interested in local events within locations L
(explicitly defined or implicitly inferred from the current user’s location), the
event retrieval framework aims to score tuples 〈li, tj〉 according to how likely
tj represents a starting time of an event within the location li that matches the
user query.An event is considered relevant if it matches the explicit query of the
user and/or the implicit context of the user (the time of the query, the location
of the user and or her profile). In other words, the event retrieval framework
defines a ranking function that gives a score R(q, 〈li, tj〉) for each tuple 〈li, tj〉
with regards to the user’s query q. Examples of events to retrieve include
festivals, football matches or security incidents. When expressed explicitly
by a user, a query is assumed to be in the form of a bag of words (e.g. “live
music”, “conference”).

When using Twitter as a social sensor, a location li at a certain time tj
is characterised by the tweeting activities observed at that location within a
given timeframe (tj − tj−1). The tweeting activities are represented with a
set of tweets originating from that location shared publicly within the given
timeframe (tj − tj−1). This set of tweets is denoted by Ti,j . Note that the fixed
timeframe is defined using an arbitrary sampling rate θ; ∀j : tj − tj−1 = θ. An
event happening in the real-world is represented by a tuple 〈l, ts, tf 〉; where l
is the location where the event is taking place, ts is the starting time and tf is
the finishing time. Our aim is to use the tweeting activities as the main source
of evidence to define the ranking function R(q, 〈li, tj〉). More specifically and
to define the ranking function, we use the set of tweets Ti,j , and a time series
of tweets Ti,j = 〈. ., Ti,j−2, Ti,j−1, Ti,j〉 in the location li before the current
time tj . This allows us to identify sudden changes in the tweeting activities,
which may have been triggered by an occurrence of an event. Moreover,
the event retrieval framework can identify a subset of the tweet set Ti,j that
matches the query, which may help the user in the event information seeking
process.
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3.3.3 A Framework for Event Retrieval

The framework aims to define an effective ranking function that scores tuples
of time and location according to how likely they represent the starting time
and the location of a relevant event for a given query. Note that with regards
to the previous definition of the local event retrieval problem in Section 3.3.2,
as a first step, we are not aiming to determine the finishing time of an event.
As discussed in Section 3.3.2, here we aim to use tweets as the main source
of evidence to score the tuples. In particular, we define two components built
on this evidence:

1. The first component is based on the intuition that social media may reflect
real-world events, hence when an event occurs somewhere we expect to
find topically related social posts about it originating from the location
where it occurs. To instantiate this component, for each location at a
given time, i.e. for each tuple 〈li, tj〉, we measure how much the tweets
Ti,j corresponding to the tuple are topically related to the query q.

2. The second component is based on the intuition that events trigger
an increasing tweeting activity [66] causing peaks of tweeting rates
during the event (bursts). For this component, we aim to quantify the
change in the tweeting rate, the volume of tweets over time, observed
at 〈li, tj〉 when compared to previous observations over time at the
same location. In other words, we aim to measure the unusual tweeting
behaviour that may indicate an occurrence of an event. To compute the
tweeting rate, we can either consider all the tweets posted within the
given timeframe at the given location or only a subset of those which
are relevant to the user query, e.g. tweets which contain terms of the
query.

Following this, the ranking function can be defined as a linear combination of
the previous two components as follows:

R(q, 〈li, tj〉) ∝ (1 − λ) · S(q, Ti,j) + λ · E(q, 〈li, tj〉) (3.1)

where S(q, Ti,j) is the score of the tweet set Ti,j that quantifies how much
they are topically related to the query q; E(q, 〈li, tj〉) is a score proportionate
to the change in the tweeting rate with regards to the query q at the given
time tj within the location li, and 0 ≤ λ ≤ 1 is a parameter to control
the contribution for each component in the linear combination in
Equation (3.1). Next, we show how we approach the problem of quantifying
each component.
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Aggregating Tweets
To estimate S(q, Ti,j) in Equation (3.1), we propose to borrow ideas and
techniques originally designed for the IR problem of expert search. In expert
search, a profile of an expert candidate is typically represented by the
documents associated to the candidate [8, 41]. Similarly, the tuple 〈li, tj〉
is associated with a set of tweets. Inspired by [41], the score of each tuple
(candidate) can be estimated by aggregating the retrieval scores (votes) for
each tweet (document) associated to it. In [41], several voting techniques were
used to aggregate the scores. We use the intuitive, yet effective, CombSUM
voting technique, which estimates the final score of the tweet set representing
a tuple (candidate) as follows:

S(q, Ti,j) =
∑

t∈Rel(q)∩Ti,j

(Score(q, t)) (3.2)

where Rel(q) is the subset of tweets that match the query q and Score(q, t)
is the individual retrieval score obtained by a traditional bag-of-words ranking
function, e.g. BM25 [53]. Higher scores represent more topically related
tweets for the considered tuple.

Change Point Analysis
The problem of quantifying the score E(q, 〈li, tj〉) in Equation (3.1) maps
well to change point analysis, a previously studied problem in the statistics
literature, e.g. [34, 35]. Change point analysis aims at identifying points in
time series data where the statistical properties change. It has been previously
applied to detect events in continuous streams of data. For example, Guralnik
et al. developed change point detection techniques that can accurately detect
events in traffic sensor data [29]. In our case, the change point analysis can be
applied on the tweeting rate in a location li to quantify the probability that the
tweeting rate at a certain time tj represents a change point when compared
retrospectively to previous points in time tj−1, tj−2, . ., tj−k. We apply the
Grubb’s test [27] as a change point detection technique as it is computationally
inexpensive and it has been successfully applied in a similar context, namely
first story detection from Twitter and Wikipedia [47]. Given a location li and
at each point of time, e.g. on minute intervals, we maintain a moving window
of size k points, e.g. k minutes, over the previous observations. We apply the
Grubb’s test to each moving window to determine if the tweeting rate of the last
point is an outlier that stands out with respect to the tweeting rates of previous
observations. With Grubb’s test, rj is an outlier if v = (rj − xj,k)/σ2 > z,
where xj,k is the mean tweeting rate in the window (tj−k, tj), σ is the
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standard deviation of the tweeting rates in the window (tj−k, tj), and z is
a fixed threshold. Note that this test gives a binary decision for each point in
time. We smooth this binary decision into a normalised score and use it for
the second component of Equation (3.1) as follows:

E(q, 〈li, tj〉) = Ec(tj) = 1 − e(−ln 2
z

·v) (3.3)

where 0 ≤ Ec(tj) ≤ 1 represents a score of a change point using the Grubb’s
test. Note that when v = z, the resulting score in Equation (3.3) is equal to
0.5. As previously discussed, the tweeting rate rj can be estimated in two
different ways: (i) By simply using the volume of tweets posted in the given
location within the timeframe corresponding to tj , i.e. rj = |Ti,j |. We call this
a query independent (QI) tweeting rate; and (ii) By using the score of the
voting technique described above, i.e. rj = S(q, Ti,j). We call this a query
dependent (QD) tweeting rate.

It should be noted that this framework can operate in a real-time fashion
on top of the SMART architecture (Section 3.2) where social feeds are
incrementally indexed such that the retrieval components are able to provide
the freshest results.

3.3.4 Summary

We have devised an event retrieval framework that is capable of identifying
and ranking local events in a response to a user query. In [5], we have
conducted an experiment on a large collection of geo-located tweets (over
1 million) collected during a period of 12 days within London. Aligned
with the tweets, we have collected, through the use of crowdsourcing, local
events that took place in London from local news sources. We have evaluated
the effectiveness of our framework in identifying and ranking these events
through its application on the geo-located tweets. Our empirical results suggest
that detecting local events from Twitter using our framework is feasible but
challenging. In particular, the results show that our event retrieval framework
is capable of identifying and ranking “popular” events (those found by crowd-
workers and reported in the web) within a city. However, when applied on
more localised events, the retrieval effectiveness of the framework degrades,
possibly because of their low coverage on Twitter. To deal with this caveat,
in the next section, we fuse the metadata extracted from physical IoT sensors
along with the social media activity to identify topics of events happening in
the real-world.
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3.4 Using Sensor Metadata Streams to Identify Topics
of Local Events in the City

In Section 3.3, we addressed local event retrieval by using social media activity
as a sensor to detect and rank events. However, social media may only cover
very popular events as users may not necessarily comment on all events taking
place in the city. Therefore, physical sensors that record observations about the
status of the environment can provide additional evidence about the events
taking place in the city. These sensors can take the form of visual sensors
such as CCTV cameras, acoustic sensors such as microphones or possibly
environmental sensors.

There is a wealth of research on identifying low-level human activities
from acoustic and visual sensors. Often, this involves sensor signal processing
to extract sensor features for modelling human activities. For example, Atrey
et al. [7] developed a Gaussian Mixture Model using a variety of fea-
tures derived from audio signal processing to classify human activities
into vocal classes, such as talking and shouting, and non-vocal classes,
such as walking and running. Similar approaches also used audio signal
features to identify low-level human activities that are related to secu-
rity incidents, such as breaking glass or explosions [25]. In addition to
using acoustic sensors, several studies have been conducted to identify
low-level human activities from videos. Since its introduction in 2002,
the TRECVID evaluation campaign [49] has tackled a variety of content-
based retrieval tasks from video recordings to support video search and
navigation. This includes the semantic indexing of video segments, whereby
videos are mapped to concepts, which can be certain objects or human
activities [49]. Another related task is multimedia event detection, where
the aim is to identify predefined classes of events in the videos. In this
task, the existing effective approaches employ classifiers trained with motion
features from the videos [50]. Moreover, classifying human interactions
identified in video recordings has been studied to detect surveillance-related
incidents [18].

Although the aforementioned approaches derive useful semantics about
the multimedia content, they only consider low-level human activities. In other
words, they provide sensor metadata describing low-level human activities
in the physical environment. However, to the best of our knowledge, no
previous work has investigated combining these sensor metadata to detect
and retrieve higher level complex events taking place in the city, such as
music concerts or entertainment shows, which may involve several lower
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level human actions. Here, we propose an approach for combining sensor
metadata streams to support local event retrieval. We devise a supervised
machine learning approach that combines sensor metadata to identify the topic
of a potential event happening at a particular time in a certain location of the
city. The topic corresponds to a set of terms representing a type of events, such
as a concert or a protest. Our approach uses features from acoustic, visual and
social sensor metadata. We also incorporate background features from past
observations to model events that exhibit cyclic patterns such as traffic jams
at peak times.

In Section 3.4.1, we define the problem of event topic identification that
we tackle. This work makes use of sensor observations that are described in
Section 3.4.2 – i.e. analysed video and audio recordings from two vibrant
locations in the centre of a major Spanish city over a period of two weeks.
Then to address the event topic identification problem, we discuss a supervised
approach with two steps. In the first step, as described in Section 3.4.3, we
obtain event annotations on the video and audio recordings dataset. In the
second step (Section 3.4.4), we use the obtained annotations to map typical
events taking place in those locations into coherent topics using a topic
modelling technique.

3.4.1 Definition of Event Topic Identification Problem

The aim here is to combine the sensor metadata observations captured at
different locations in a city to identify topics of potential high-level events
taking place within certain locations. Formally, for a location li in a city, we
denote the sensor metadata observations captured at time tj in that location

li by the vector
−→
N 〈li,tj〉. The sensor metadata observations may include the

crowd density identified from captured videos in the location, low-level audio
events identified from the acoustic sensors installed in the location or social
media activities, such as tweets posted by people at the location. The problem
of event topic identification is to use the vector

−→
N 〈li,tj〉 to map the tuple of

time and location 〈li, tj〉 to a certain topic px ∈ P described by a set of terms
Tx; where P is a set of predefined topics.

In the previous section, the textual content of public tweets has been used
as the only source of sensor metadata observation to identify topics of local
events. Although this has worked well on popular events that attract social
media activities, it does not work as well on more localised events that may
not attract coverage on social media [5]. To alleviate this shortcoming, we
introduce physical sensor metadata streams that can provide an additional
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evidence for the topic of an event, namely video and audio metadata obser-
vations. However, this requires understanding the semantics of visual scenes
or audio recordings, which remains an open challenge. Indeed, there is no
known taxonomy that maps sensor metadata to topics of high level events. To
address this challenge, we propose to learn the topic associated with a tuple
〈li, tj〉 from labelled training data using features extracted from the sensor

observations
−→
N 〈li,tj〉.

For this purpose, and to collect labelled training data, we obtain event
annotations on a pool of videos that are identified as potential candidates
to contain events. Furthermore, to extract a predefined set of coherent event
topics, we apply topic modelling on the descriptions of the annotated events.
We detail the event annotation and the topic extraction in Section 3.4.3. Next,
we describe the sensor data collection.

3.4.2 Sensor Data Collection

Our study considers two locations in the city centre of Santander in Spain. The
first location is the geographical and business heart of the city; it is a major
square opposite to the municipality building. The second location is a popular
open market in the city, where hundreds of people go every day for shopping,
located behind the municipality building. Both locations represent vibrant and
busy areas, where we expect to observe high-level events of interest such as
music concerts, entertainment shows or even protests. The data collection
occurred during October 2013 in both locations using an edge node deployed
in Santander (see Section 3.2.1).

Table 3.1 provides a summary of the sensor data collection and the
metadata produced by processing the output from the microphones and the
camera in each location. For producing the audio metadata, a supervised
classifier using feed forward multilayer perceptron network and low-level
audio features, such as those described in [20], was developed for each
of the following 6 audio classes described in Table 3.1: “crowd”, “traffic,
“music”, “applause”, “speaker”, and “siren”. For video metadata, the video
was processed for crowd analysis where we calculate the crowd density,
in desired areas, by estimating the foreground components of the video.
In addition to the acoustic and visual sensors, we collected parallel social
media activity in the city. In particular, using the Twitter Public Streaming
API7, we obtained tweets related to each location (as identified by their
geo-locations).

7https://dev.twitter.com/streaming/public
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Table 3.1 Summary of sensor data collection
Locations 2 (square & market)
Physical sensors A camera and microphones

(in each location)
Raw output 1600 × 1200 video @ 20 fps

16 Khz audio @ 64 kbits/s
(audio is multiplexed with the video)

Audio metadata classification scores for 6 audio classes
(i) “crowd”: noise from a crowd of people
(ii) “traffic”: car and road noises
(iii) “music”: music played outdoors
(iv) “applause”: applause, yelling or cheering
(v) “speaker”: speech over loud speakers
(vi) “siren”: noise of police cars & ambulances

Video metadata crowd density in the scene
Twitter geo-tagged tweets within each location

3.4.3 Event Pooling and Annotation

In this section, we describe our approach for obtaining event annotations on
the recordings collected from the two used locations. Recall that our ranking
units (the documents) are tuples of time and location. Each tuple represents a
segment of recordings at a location. The length of the segment, the sampling
rate to obtain the tuples, can be predfined and we follow [5] in setting the
sampling rate to 15 minutes. Coarser- or finer-grained sampling rate can be
investigated in future work for different types of events e.g. emergency events
may require a finer-grained sampling.

For annotation, we consider a period of 2 weeks starting from 19 October
2013, around a week after the start of the data collection (11 October 2013) to
allow the estimation of background features. Since it is expensive to examine
all recordings and annotate them with events, we employ a pooling approach
[16], as commonly used in IR (Information Retrieval) evaluation forums,
such as TREC. For pooling, we identify candidate segments of videos where
high-level events may have occurred by applying the change component of the
event retrieval framework described previously (c.f. Section 3.3). In particular,
the change component of this framework identifies segments where sensor
metadata observations change unusually in a location, e.g. unusual change
in crowd density. We use 4 different types of sensor metadata observations
to generate the pool (a subset of those listed in Table 3.1): (i) the median
values of the video crowd density, (ii) the median values of the crowd audio
classification score, (iii) the median values of the music audio classification
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score, and (iv) the total number of tweets posted. As a result, we obtain a total
of 155 candidate segments. The video recording software produced videos
with lengths of either 30 minutes or 1 hour, and the total number of video
recordings that correspond to the 155 segments are 69 videos.

The generated candidate segments of videos were then annotated by two
groups of human annotators, English and Spanish annotators, who were asked
to examine the videos, describe events that they observe by typing in terms, and
rate their intensity on a 3-point scale (Low, Medium, and High) according to
how likely they are to generate public interest. The intensity is akin to graded
relevance used in traditional IR evaluation approaches [59]. We provided
the annotators with a web-based interface, of which we show a snapshot in
Figure 3.6.

Statistics of the obtained annotations are summarised in Table 3.2. From
the last row it can be observed that we obtain a total of 55 annotated videos, of
which 21 were annotated by more than one annotator. The agreement between
annotators is estimated by converting the intensity levels to binary decisions,

Figure 3.6 Components a snapshot from the annotation interface.

Table 3.2 Statistics from annotated videos
Annotators Unique Videos Annot. Ratio Mutliple Annotations Agreement
4 English 29 29/69 = 42% 1 video 100%
5 Spanish 47 47/69 = 68% 13 videos 77%
Both 55 55/69 = 79% 21 videos 71%
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using “Medium” as a threshold. We observe that a reasonable agreement
is achieved in all cases (lowest is 71%), which gives us confidence in the
annotations obtained.

For the set of annotated pooled segments, we obtain terms describing
events that were identified in these segments. For each annotated segment,
we construct a virtual document that consists of all of the terms provided by
the annotators. Since the pooled videos were annotated by both Spanish and
English annotators, these virtual documents are bilingual and contain English
and/or Spanish terms. Figure 3.7 presents word clouds for frequent terms
occurring in the English (a) and Spanish (b) annotations, respectively, where
word size is indicative of frequency in the annotations.

To cluster events into various topics, we propose to use topic modelling
on the document collection of all constructed virtual documents of terms. We
use the Latent Dirichlet Allocation (LDA) topic modelling implemented in
the Mallet toolkit [43]. In Table 3.3, we list the top terms of 7 identified topics
from the English annotations only. From the table, we can observe that the
identified topics are reasonable where we see some interesting associations
of terms that describe typical high-level events taking place in the square
and the market, e.g. ‘demonstration’ and ‘show’ in topic 4, and ‘children’ and
‘entertainment’ in topic 6.

3.4.4 Learning Event Topics

In this section, we discuss our supervised approach for event topic identifica-
tion, where the aim is to identify the topic of a segment 〈li, tj〉 using the sensor

metadata observations
−→
N 〈li,tj〉. To train our supervised approach, we construct

a labelled dataset of event topics from the annotated video pool collected. The
labelled data consists of segments (tuples of time and location) labelled with

Figure 3.7 Word clouds for frequent terms occurring in the English (a) and Spanish (b)
annotations, respectively, where word size is indicative of frequency in the annotations.
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Table 3.3 Topics identifed with topic modelling using the english annotations
Topic Top Terms of the Topic
Topic 1 loudspeaker people fanfare police drums procession
Topic 2 microphone rings speech public claps
Topic 3 gathering plaza people booth theatre music
Topic 4 demonstration sitting event sound speak show
Topic 5 market protest cars ongoing children fair
Topic 6 children people shopping middle entertainment
Topic 7 music singing playing guy bells whistles

either an event topic or with the label ‘no event’ indicating that no event of
interest has occurred in the corresponding time and location. We labelled each
annotated segment in the pool to the most probable topic according to the LDA
topic modelling configured by setting the number of topics to 7.8 Unlabelled
segments or where the annotators did not identify any event are associated to
the ‘no event’ label. To illustrate the volume of the data and the distribution
of labels, we detail in Table 3.4 the number of segments for each label when
using topic modelling on all Spanish and English annotations and setting the
number of topics to 7.

We consider the problem of identifying the topic of a pooled segment as
a classification task. Using the constructed labelled data, we train a binary
classifier for each of the labels with features derived from various sensor
metadata streams. Our intuition is that such labelled data would allow us
to learn the semantics of a combination of sensor metadata. In other words
we aim to match sensor metadata to topics defined using the annotations. For
training the classifier, we investigate two main sets of features for the segment,
observation features and background features. Table 3.5 summarises those
features. The observation features are extracted from the sensor metadata
observed in the location and time corresponding to the segment. The back-
ground features aim to model past observations and cyclic patterns of activities
that take place over time in the same location. The intuition is that some events

Table 3.4 Distribution of labels
Lab. # Lab. # Lab. # Lab. #
top.1 12 top.3 2 top.5 0 top.7 11
top.2 8 top.4 32 top.6 24 no event 66

8We use 7 topics since we have observed that with this setting we obtain the most coherent
topics after experimenting with other alternatives (varying the number of topics between 5
and 10).
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Table 3.5 Features devised for topics identification
8 Observation Features
Audio features 6 median of the classification score for each audio class

(crowd, traffic, music, applause, speaker, siren)
Video features 1 median of the crowd density score
Twitter features 1 number of tweets geotagged within the location in the

past one hour
16 Background Features
Daily aggregates 8 for each of our 8 observation features its daily median

from all available past observations at the same time
from previous days

Weekly aggregates 8 for each of our 8 observation features its median from
all available past observations at the same time on the
same day of previous weeks

Total 24

are periodic and exhibit a long-term pattern, e.g. traffic jams at peak times
resulting in a high traffic audio classification score, or entertainment shows
taking place in the square at the same time on the weekends. Modelling cyclic
patterns, i.e. daily and weekly cycles, from the sensor metadata observations
would enable the supervised classifier to identify recurring background events
or noise which are not of interest such as traffic jams. Similarly, it would help
to identify recurring events of interest such as entertainment shows.

Using the labelled dataset of segments along with the features described
in Table 3.5, we apply supervised machine learning to learn a binary classifier
for each label. In particular, we experiment with Random Forests [15] as a
learning algorithm.9 Next we conduct a number of experiments to evaluate the
accuracy of our classifier and the effectiveness of the various devised features.

3.4.5 Experiments

To evaluate our approach for identifying the topic of a candidate segment, we
use the dataset of labelled segments described in Section 3.4.4. We perform
a 10-fold cross validation and report the average accuracy across all labels (a
label for each topic and the label ‘no event’). In addition to using different
instantiations of our classifier, we also compare our classifier to an alternative
baseline. The “majority” baseline assigns the most common label in the

9We also experimented with other supervised machine learning algorithms, such as naive
Bayes and SVM, however we only report results with Random Forests since they achieve the
best performances and the conclusions with other algorithms are similar.
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training data to the segments in the testing data. Table 3.6 summarises the
results.

We observe from the table that all instantiations of our approach are
markedly better than the majority baseline. In particular, when using only
the observation features our approach achieves an F1 accuracy of 0.686.
We also observe that this performance further increases when using the
background features. Indeed the best performance is achieved when using
all background features along with the observation features (F1 = 0.766). This
illustrates that modelling cyclic patterns by aggregating sensor metadata from
previous observations helps in better identifying whether a candidate segment
represents an event and in identifying the topic of an event.

Furthermore, we conduct an ablation study to identify which features are
more effective for topic identification. We remove one of our 8 observation
features when learning the classifier. We report the results in Table 3.7.
For example, the row headed “– (Audio crowd)” means that we use all
the observation features apart from the audio crowd score. We observe that
removing any of the features results in a degradation of performance for
accuracy and precision. This is an interesting observation and highlights the
importance of having rich metadata describing the environment for identifying
the topics of high-level events. However, we also observe that the performance

Table 3.6 Performance of topic identification
Approach F 1 Accuracy Precision Recall
Majority baseline 0.254 0.181 0.426
Obs. Feat. 0.686 0.705 0.697
Obs. & Daily 0.740 0.759 0.761
Obs. & Weekly 0.715 0.715 0.729
Obs. & All background 0.766 0.781 0.762

Table 3.7 Results of the ablation study
Model F 1 Accuracy Precision Recall
All observation features 0.686 0.705 0.697
– (Audio crowd) 0.635 0.624 0.635
– (Audio traffic) 0.681 0.678 0.691
– (Audio applause) 0.680 0.678 0.697
– (Audio music) 0.685 0.682 0.697
– (Audio speaker) 0.657 0.656 0.665
– (Audio siren) 0.656 0.655 0.665
– (Video crowd) 0.652 0.651 0.665
– Twitter 0.682 0.677 0.697
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degrades most when removing the audio crowd score and the crowd density
features. This suggests that the crowd level, as detected by the acoustic or
visual sensors, is important to identify events and to distinguish their topic.

3.4.6 Summary

In summary, we described an approach for fusing sensor metadata streams to
identify the topics of events, happening within a city, building on the SMART
framework (described previously in Section 3.2). In particular, this approach
trains a classifier to identify event topics from candidate segments of audio and
video recordings. Experimental results demonstrate that the best accuracy for
event topic identification can be achieved by combining features from a variety
of diverse sensors (acoustic, visual and social). This shows the advantages
“that the social and other IoT stream fusion brings to event topic identification.
Moreover, it paves the way towards more effective local event retrieval that
harness both physical and social sensor streams in cities with significant IoT-
connected sensing infrastructures, by combining the visions from Section 3.2
(an infrastructure for searching IoT), Section 3.3 (location event retrieval from
social streams) and event topic identification from physical and social sensor
streams.

3.5 Venue Recommendation

The advances of smartphone devices and wireless communication technolo-
gies have enabled people to search for information in almost every situation,
and no longer simply when at a desk. However, as the information on the
internet has dramatically grown every day, searching for relevant information
seems to be a difficult and time-consuming task for instance, due to the cogni-
tive complexities of expressing information needs by typing on a smartphone
screen. For this reason, recommendation systems have become ubiquitous
tools to obtain information, by predicting what the user wants without the
need for an explicit query.

In recent years, Location-based Social Networks (LBSNs) have emerged,
such as Foursquare10 and Yelp11, which enable users to search for Points-of-
Interest (POI) or venues12, share their physical location (check-ins13) as well

10https://foursquare.com/
11http://www.yelp.co.uk
12We use the term venue or POI interchangably.
13A term used by Foursquare to denote users sharing their current location with the LBSN.
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as rate and comment after visiting a POI. Moreover, other users may consider
those ratings and comments to select the POIs to visit at a later time. The
recommendation of appropriate POIs to users, e.g. a restaurant they are likely
to visit, has become an important feature for LBSNs, which assists people to
explore new places and helps business owners to be discovered by potential
customers.

Venue recommendation is an example of a recommendation task: given
no explicit ‘query’ by the user, but knowledge about the user’s preferences
and about the venues, can a system predict which venues the user may wish to
visit? The types of information that are available for this task are summarised
in Table 3.8. For instance, if the user has checked-in or rated other venues
before, then this provides user preference information, which can be used by
collaborative filtering approaches to suggest venues of interest (discussed in
details in Section 3.5.1 below).

Nevertheless, information about each venue itself can help to predict its
likely suitability. For instance, the Foursquare website lists a city park as
a top nearby venue, regardless of the time of day, when (say) late in the
evening that park may be both closed and unsuitable to visit. Therefore IoT
and social sensing technology have a role to play in predicting the occupancy of
venues. Predicted occupancy and similar measures of popularity are examples
of venue-dependent features (i.e. which are the same for all users) – and are
discussed further in Section 3.5.2.

Finally, the contextual situation of the users when requesting venue
recommendations can also have an impact on the appropriate choice of venues:
clearly, context can encapsulate the location of the user – as nearby venues
are more likely to be useful to the user; however, the people they are with
(alone, with colleagues, family or friends) may also significantly impact upon
the most appropriate choice of venues. In Section 3.5.3 we highlight recent
work in context-aware venue recommendation.

In the remainder of this section, we discuss recent research in venue
recommendation, particularly highlighting our own work, which builds upon

Table 3.8 Sources of data for venue recommendation
Example Sensors

Information Type Physical Social
Venue # cell phones nearby # recent check-ins

# subway exists nearby # comments
User Preference User’s distance to the venue The user likes similar venues

The user has commented positively
about a similar venue
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the SMART architecture (described in Section 3.2). The three different
sources of evidence, and how they are modelled, are described in turn: user
preferences (e.g. through collaborative filtering approaches) (Section 3.5.1),
venue dependent evidence (Section 3.5.2), and contextual preferences
(Section 3.5.3).

3.5.1 Modelling User Preferences

In terms of modelling the preferences of users, collaborative filtering (CF)
is a widely used technique to generate personalised recommendations. CF
typically exploits a matrix of user-venue preferences in order to generate
venue recommendations for individual users. There are two major categories
of traditional CF approaches namely memory-based CF and model-based CF
[1, 26]. The memory-based CF approaches are categorised as user-based or
venue-based. A typical user-based CF approach predicts a user’s rating on a
target venue by aggregating the ratings of K similar users who have previously
rated the target venue. The similarity between two users is usually identified
using the Pearson correlation or the cosine similarity upon their rating vectors
[57]. Intuitively, the user-based CF approaches assume that users who share
similar preferences will like the same venue e.g. I like what my friends like.The
extension of user-based CF approaches has been shown to improve the quality
of recommended venues such as through the introduction of fine-grained
neighbour-weighting factors [32] or by exploiting a recursive neighbour-
seeking scheme [65]. In contrast, venue-based CF approaches suggest venues
on the basis of information about other venues that a user has previously rated
[21]. The suggestion of venues for a given user are ranked by aggregating
the similarities between each candidate venue and the venues that the user
has rated. Although typical memory-based CF approaches have been shown
to be effective in suggesting venues to users, the main drawback of such
approaches is that the computation of similarities between all pairs of users
or venues is expensive due to its quadratic time complexity. Moreover, as
memory-based CF approaches are dependent on the availability of human
ratings, the effectiveness of these approaches significantly decreases when
they are faced with sparse ratings.

On the other hand, model-based CF approaches were introduced to address
the shortcomings of memory-based CF approaches [14, 9]. Such approaches
are based on supervised models which are trained on the user-venue matrix
[1, 26]. The trained prediction models can then be used to generate suggestions
for individual users. Recently, the most well-known technique of model-
based CF approaches is matrix factorization (MF) [36]. The advantages of
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MF techniques are their scalability and accuracy. Generally, MF models learn
latent features of users and venues from the information in the user-venue
matrix, which are further used to predict new ratings between users and venues.

Various recent works on venue recommendation have exploited user-
generated information (e.g. check-in and venue information) from LBSNs.
Such approaches typically apply widely-used CF techniques to suggest per-
sonalised venues to users. For example, friend-based CF approaches can
recommends POIs to visit based on collaborative ratings of venues made by
the user’s friends [40, 62]. Yang et al. [61] proposed a model that estimates
a venue’s quality based on a sentiment score calculated based on the tips
(comments) made by users in the LBSN, and then recommended venues based
on this sentiment score.

Even if there is no information available about which venues a user has
previously visited, other proxy information can still be obtained with which to
personalise the suggestion of venues. For instance, one venue recommendation
approach that we have proposed in [23] used the users’ Facebook profiles to
permit personalisation, even when the venues being suggested were from
the separate Foursquare LBSN. In general, we use a probabilistic model to
describe the preferences of a user determined from Facebook – as well as the
likely interests of users – in terms of a coarse-grained ontology from the Open
Directory Project (DMOZ.org): e.g. Arts, Games, Health, Technology etc.
In particular, we examine the entities liked by users on Facebook to build
up a preference distribution over the DMOZ categories. However, as the
Foursquare entities may only have a single name to describe them, this may be
insufficient information to accurately predict which DMOZ categor(ies) these
entities should belong to. To alleviate this problem, we issue each Facebook
entity’s name as a query to a web search engine, and analyse the contents of
the returned pages to determine which categories they belong to. This allows
a model of the users’ preferences to be determined based on their Facebook’
Likes.

Similarly, when considering a venue, we determine which categories that it
should belong to by also issuing the name of the venue to a web search engine.
Figures 3.8 (a) and (b) pictorially depict the aforementioned processes for
the Facebook’ Likes and the venues, respectively. Then, the personalisation
of venues suggested to a user can be achieved by suggesting venues with
more similar category distributions to that of the users. Through a user study
involving 100 users and three different cities (Amsterdam, London, San
Francisco), we evaluated our complete probabilistic model [23]. Our findings
suggested that while our personalised model was effective, it was residents
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Figure 3.8 Obtaining DMOZ category distributions from Facebook’ likes and venues.

rather than visitors to a city who were found to most prefer personalised venue
suggestions.

Overall, we have shown how personalised venue suggestions can be
achieved, but there are other factors that may cause a venue to be selected
by a user or not – indeed, our own user study in [23] found that tourists were
more attracted by popular venues, particularly during the evening. In the next
section, we describe how measures of the venue’s popularity can be sensed,
both physically or socially.

3.5.2 Venue-dependent Evidence

The act of checking-in on a LBSN such as Foursquare provides a number of
signals about a venue – the short-term popularity of a venue, as well as an
aggregate signal about its popularity at this time, as well as at the current day of
the week and season of the year. IoT-connected sensors that can detect a busy
venue, such as through CCTV analysis and/or audio analysis (see Table 3.8)
can also similarly be used.

To predict the attendance of a venue, we constructed a time series of atten-
dance for each individual venue [23]. Time series are numerical information
that are observed sequentially over time. By obtaining the number of people
currently visiting the venue from Foursquare every hour for each venue, we
are able to build a comprehensive time series of venue attendance. Figure 3.9
shows how a state-of-the-art neural network-based approach can predict the
attendance of the famous Harrods department store in Knightsbridge, London.
Using such predicted occupancy figures for venues improves the effectiveness
of a venue suggestion approach [23] – as illustrated in Table 3.9.
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Figure 3.9 Predicting occupancy from Foursquare check-in time-series.

Table 3.9 Examples of venue recommendations produced by our model for user in a central
location in London at two different times

Friday 03 April 14:00 Sunday 5 April 00:00
Debenhams Novikov Restaurant & Bar
Natural History Museum Boujis (nightclub)
Selfridges & Co
National Gallery
Apple Store
London Victoria Railway Station
Victoria and Albert Museum (V&A)
Millbank Tower
Science Museum
Piccadilly Circus

Of course, there are other sources of evidence in a LBSN that are indicative
of a venue’s popularity and hence a priori its suitability for recommendation
to any user. In a separate work, we examined a number of venue-dependent
features for making effective venue suggestions, such as the number of check-
ins, number of photos, average ratings etc. [22] (summarised in Table 3.10).
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To create an effective venue suggestion model, these features were combined
with user-venue features (which model the user’s venue preferences, in order to
make personalised suggestions) within a learning-to-rank approach. In doing
so, the application of the learning-to-rank approach [22] aims to find a combi-
nation of the features that can best satisfy users, determined by a set of training
observations (users with known venue preferences). The experiment made
use of the state-of-the-art LambdaMART learning-to-rank approach [60],
which is an adaptation of gradient boosted regression trees to make effective
rankings.

Figure 3.10 shows how performance can increase or decrease when venue-
dependent features are removed from the model. This takes the form of an
ablation experiment to explore the individual effectiveness of these venue-
dependent features, in order to determine which single features are the most
effective when suggesting venues to users. In this experiment, we consider the
LambdaMART ranking model – learned using all features – as a baseline, and
we compare its performances to other LambdaMART models that have been
learned after removing each of the venue-dependent features individually – a
decrease in performance implies that the feature is deemed useful.

Figure 3.10 Percentage of improvement obtained when independently removing single
venue-dependent features, with respect to a LambdaMART baseline that uses a total of
64 features. Improvements are expressed in terms of P@5, P@10, and MRR. Statistical
significance is stated according to a paired t-test (*: p < 0.05, **: p < 0.01, ***: p < 0.001).

Source: [22].
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Table 3.10 Venue-dependent Foursquare features used by Deveaud et al. [22]
Feature Name Description
NbCheckins Total number of check-ins in the venue.
NbLikes Total number of “likes” for the venue.
NbTips Total number of “tips” (comments) for the venue.
NbPhotos Total number of photos for the venue.
Rating Average of all the ratings given by the users for the venue.
CheckinRatio NbCheckins

NbCheckinsInCity
LikeRatio NbLikes

NbLikesInCity

TipRatio NbTips
NbTipsInCity

PhotoRatio NbPhotos
NbPhotosInCity

Distance Distance of the venue from the center of the city.

On analysis of Figure 3.10, the first observation we make is that PhotoRatio
appears to be harmful. When Foursquare venues do not have any photo, the
value of this feature is equal to zero, which seems to confuse the learner.

Likes and tips, which are more abundant and hence do not suffer from
this problem, appear to be very strong indicators of relevance. It is important
to note that the raw numbers (i.e. NbLikes and NbTips) are not enough, and
that using the city context greatly improves the importance of these features
(see LikeRatio and TipRatio). The rating of the venue (which is an average
of all the ratings provided by Foursquare users) is also a good indicator of
relevance, but to a lesser extent than LikeRatio and TipRatio. Finally, the
distance between the venue and the center of the city also seem to play an
important role. Since city centres usually are the most vibrant parts, using this
distance as a feature allows the learned model to implicitly separate potentially
relevant and attractive venues from unpopular ones.

Overall, our experiment in [22] – and highlighted above – shows the
importance of venue-dependent features for effective venue suggestions.

3.5.3 Context-Aware Venue Recommendations

In addition to making recommendations based on user preferences and the
popularity of the venue, another area that has emerged recently is context-
aware venue recommendation (CAVR, also known as contextual suggestions).
CAVR acknowledges that the appropriate venues to be recommended to a user
may depend on the contextual environment of the user. Context as a notion
is wide-reaching, but for venue recommendation, it can encompass factors
detectable about the user, such as the location of the user, the time of day, the
weather, as well as human factors, such as who the user is with (colleagues,
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friends, partner family, etc), that they may explicitly provide to the venue
recommendation system.

Various existing works have shown that considering such context and
leveraging the use of user-generated data in LBSNs can significantly enhance
the effectiveness of CAVR applications [37, 38, 63]. Yuan et al. [63] developed
a collaborative time-aware venue recommendation approach that suggests
venues to users at a specific time of the day. In particular, they leveraged the use
of historical check-ins of users in LBSNs to model the temporal behaviour of
the users and extend the user-based CF technique to incorporate both temporal
and geographical effects using linear combination. Recently, Li et al. [37],
proposed factorization methods for making venue recommendations, which
can exploit different types of context information (e.g. the user’s location and
the time of the day). Previous works on CAVR (e.g. [37, 63]) used check-
in data from LBSNs to evaluate the accuracy of their recommendations, by
assuming that users implicitly like the venues they visited.

Since 2012, the US National Institute of Standards and Technology (NIST)
have been developing reliable and reusable test collections and evaluation
methodologies to measure the effectiveness of CAVR systems through the
Contextual Suggestion track [19] of the Text REtrieval Conference (TREC)
evaluation campaign. In particular, the task addressed by the TREC Contextual
Suggestion track is as follows: given the user’s preferences (ratings of
venues) and context (e.g. user’s location, city), produce a ranked list of venue
suggestions for each user-context pair. A description of the contexts addressed
in the 2015 TREC Contextual Suggestions track are presented in Table 3.11.

Table 3.11 The 12 dimensions of the contextual aspects proposed by the TREC 2015
contextual suggestion track

Aspect Dimension Description
Day Time Is a venue suitable to visit between 6:00 AM – 6:00 PM?

Duration Night Time Is a venue suitable to visit between 6:00 PM – 6:00 AM?
Weekend Is a venue suitable to visit on weekend?
Spring Is a venue suitable to visit between March and May?

Season Summer Is a venue suitable to visit between June and August?
Autumn Is a venue suitable to visit between September and November?
Winter Is a venue suitable to visit between December and February?
Alone Is a venue suitable to visit alone?

Group Friends Is a venue suitable to visit with friends?
Family Is a venue suitable to visit with family?

Type Business Is a venue suitable to visit for a business trip?
Holiday Is a venue suitable to visit for a holiday trip?
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The availability and popularity of the TREC Contextual Suggestion track
test collections has accelerated research into this challenging task. A few
research groups participating in the TREC Contextual Suggestion track have
attempted to explicitly model the contextual appropriateness of the venues.
Hashemi et al. [31] applied parsimonious language models [33] to rank
suggestion candidates based on the given contextual information such as trip
duration and type, and information from the user’s profile, such as their age
and gender. Textual language models of each contextual aspect were built
offline, and then the relevance of a given venue to the various contextual
aspects of the user were estimated by calculating the KL-divergence of the
standard language models of suggestion candidates and the language model
of different contexts that was built in advance. The contextual relevance
of different contextual aspects to the given suggestion candidate is trained
using a pairwise SVM rank learning-to-rank model. In [44], we proposed
two approaches for CAVR. First, a Factorization Machines-based approach
proposed by [52] to rank the candidate venue suggestions. The factorisation
machines receive as input instances that enclose the information related to a
user, a venue he/she visited and the context of the visit in the form of numerical
vectors. In particular, we trained the factorisation machines to reduce the error
in the ranking of the user profiles by adapting the list-wise error function of
ListRank [56] for their factorisation machine model. The second approach is a
learning-to-rank based approach where contextual features are extracted from
the user-generated data from LBSN (e.g. timestamp of comments and photo).

Recently, we proposed a supervised approach that predicts the appropriate-
ness of venues to particular contextual aspects, by leveraging user-generated
data in LBSNs such as Foursquare [42]. This approach learns a binary classifier
for each dimension of three considered contextual aspects proposed by the
TREC Contextual Suggestion track (see Table 3.11). A set of discriminative
features are extracted from the comments, photos and website of venues.
For instance, when travelling with children, the website of an appropriate
restaurant may mention a children’s menu; similarly, users may reminisce
about pleasant times they had with their family using the LBSN comment func-
tionality. By analysing these sources of evidence, we showed in Section 4.2
that both the websites of venues and comments left by users on the LBSN could
accurately predict if a venue was suitable for the various contextual aspects.

3.5.4 Summary

Venue recommendation is an important task, for instance exploring a new
city, as evidenced by the popularity of LBSNs and other websites such as
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Figure 3.11 Screenshots of the EntertainMe! mobile venue recommendation application.

TripAdvisor. There is a significant body of research on venue recommendation,
with new models making increasing use of social sensing. As highlighted
in Table 3.8, physical sensors may assist in making recommendations, for
instance, by recognising that some venues are not appropriate for poor weather
conditions.

In [24], we developed a mobile application called EntertainMe!, based
on the SMART architecture and employing some of the techniques described
in Sections 3.5.1, 3.5.2 and 3.5.3. A screenshot of the mobile application is
shown in Figure 3.11.

3.6 Conclusions

In this chapter, we described the SMART architecture, allowing to develop
real-time search applications on the so-called Internet of Things (IoT)
infrastructure. We illustrated the use of the SMART architecture through
three applications, addressing local search, event topic identification and
venue recommendation, respectively. In general, these applications show how
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real-time information needs by users can be better served through the inte-
gration and fusion of IoT sensing streams with social content within a unified
platform.

Over the next few years, as small IoT-enabled devices become ever more
ubiquitous, search platforms like SMART will become increasingly more
important as a means to convert the data collected by these sensors into useful
actionable information. Indeed, we expect that the continuing adoption of
IoT sensors will enable a wide variety of new user information needs to be
satisfied, both in the short and long term. For instance, large shopping malls
are installing IoT sensing infrastructures, creating ‘SMART buildings’, with
the aim of enhancing the user’s shopping experience [51]. This allows users’
positions to be tracked as they move around the mall, which could enable
better personalised search results, e.g. if a user enters a query such as ‘sports
shirts’ into their mobile then the shopping results could be augmented with the
location of those products nearby in the mall. Furthermore, in the smart utility
space, devices such as smart fridges can make use of platforms like SMART
to suggest contextual queries/reminders to the user. For example, if the fridge
detects that the user is about to run out of milk, the fridge could push search
results for milk to the user on their smart phone.

The SMART (http://www.smartfp7.eu/) platform is an open source project,
intended to facilitate harnessing the power of the Internet of Things infras-
tructure in search applications. Source code and example applications can be
downloaded from https://github.com/SmartSearch.

Acknowledgements

The authors acknowledge the support of the EC co-funded project SMART
(FP7-287583).

References

[1] G. Adomavicius and A. Tuzhilin. Toward the next generation of rec-
ommender systems: A survey of the state-of-the-art and possible exten-
sions. Knowledge and Data Engineering, IEEE Transactions on, 17(6):
734–749, 2005.

[2] A.Agarwal, B. Xie, I. Vovsha, O. Rambow, and R. Passonneau. Sentiment
analysis of twitter data. In Proceedings of LSM ’11, pages 30–38,
Portland, Oregon, USA, 2011.



References 75

[3] D. Albakour, C. Macdonald, and I. Ounis. Query scoring and anticipation
subsystem. Technical Report D5.3b, SMART-FP7.eu, 2015.

[4] M. Albakour, C. Macdonald, I. Ounis, A. Pnevmatikakis, and J. Soldatos.
Smart: An open source framework for searching the physical world. In
Proceedings of the SIGIR’12 workshop on Open Source Information
Retrieval, pages 48–51, 2012.

[5] M.-D. Albakour, C. Macdonald, and I. Ounis. Identifying local events by
using microblogs as social sensors. In Proc. of OAIR’13.

[6] J. Allan, J. Carbonell, G. Doddington, J. Yamron, and Y. Yang. Topic
detection and tracking. pilot study final report. In Proceedings of the
DARPA Broadcast News Transcription and Understanding Workshop,
1998, pp. 194–218.

[7] P. K. Atrey, M. Maddage, and M. S. Kankanhalli. Audio based event
detection for multimedia surveillance. In Proc. of ICASSP’06.

[8] K. Balog, L. Azzopardi, and M. de Rijke. A language modelling frame-
work for expert Information Processing & Management, 45(1):1–19,
2009.

[9] C. Basu, H. Hirsh, W. Cohen, et al. Recommendation as classification:
Using social and content-based information in recommendation. In
AAAI/IAAI, pages 714–720, 1998.

[10] H. Becker, D. Iter, M. Naaman, and L. Gravano. Identifying content for
planned events across social media sites. In Proceedings of WSDM ’12,
pages 533–542, New York, NY, USA, 2012. ACM.

[11] H. Becker, M. Naaman, and L. Gravano. Learning similarity metrics for
event identification in social media. In Proceedings of WSDM’10, pages
291–300, 2010.

[12] E. Borden. Pachube internet of things “bill of rights”. http://blog.cosm.
com/2011/03/pachube-internet-of-things-bill-of.html, 2011.

[13] M. Botts, G. Percivall, C. Reed, and J. Davidson. Ogc sensor web enable-
ment: Overview and high level architecture. In GeoSensor Networks,
pages 175–190, 2008.

[14] J. S. Breese, D. Heckerman, and C. Kadie. Empirical analysis of
predictive algorithms for collaborative filtering. In Proceedings of the
Fourteenth conference on Uncertainty in artificial intelligence, pages
43–52. Morgan Kaufmann Publishers Inc., 1998.

[15] L. Breiman. Random forests. Machine learning, 45(1):5–32, 2001.
[16] C. Buckley and E. M. Voorhees. Retrieval evaluation with incomplete

information. In Proc. of SIGIR’04.



76 Searching the Internet of Things

[17] J. Camp, J. Robinson, C. Steger, and E. Knightly. Measurement driven
deployment of a two-tier urban mesh access network. In Proceedings of
MobiSys ’06, pages 96–109, 2006.

[18] F. Chen and W. Wang. Activity recognition through multi-scale dynamic
bayesian network. In Proc. of VSMM’10.

[19] A. Dean-Hall, C. L. Clarke, J. Kamps, P. Thomas, N. Simone, and
E. Voorhees. Overview of the trec 2013 contextual suggestion track.
Technical report, DTIC Document, 2013.

[20] J. Dennis, Q. Yu, H. Tang, H. D. Tran, and H. Li. Temporal coding
of local spectrogram features for robust sound recognition. In Proc. of
ICASSP’13.

[21] M. Deshpande and G. Karypis. Item-based top-n recommendation
algorithms. ACM Transactions on Information Systems (TOIS), 22(1):
143–177, 2004.

[22] R. Deveaud, M. Albakour, C. Macdonald, I. Ounis, et al. On the
importance of venue-dependent features for learning to rank contextual
suggestions. In Proceedings of the 23rd ACM International Conference
on Conference on Information and Knowledge Management, pages
1827–1830. ACM, 2014.

[23] R. Deveaud, M.-D. Albakour, C. Macdonald, and I. Ounis. Experiments
with a venue-centric model for personalised and time-aware venue
suggestion. In CIKM 2015: 24th ACM International Conference on
Information and Knowledge Management, 2015.

[24] R. Deveaud, M.-D. Albakour, J. Manotumruksa, C. Macdonald, I.
Ounis, et al. Smartvenues: Recommending popular and personalised
venues in a city. In Proceedings of the 23rd ACM International Con-
ference on Conference on Information and Knowledge Management,
pages 2078–2080. ACM, 2014.

[25] A. Dufaux, L. Besacier, M. Ansorge, and F. Pellandini. Automatic
sound detection and recognition for noisy environment. In Proc. of
EUSIPCO’00.

[26] M. D. Ekstrand, J. T. Riedl, and J. A. Konstan. Collaborative filtering
recommender systems. Foundations and Trends in Human-Computer
Interaction, 4(2):81–173, 2011.

[27] F. Grubb. Procedures for detecting outlying observations in samples.
technometrics. 11, 1969.

[28] D. Guinard and V. Trifa. Towards the web of things: Web mashups for
embedded devices. In Proceedings of WWW ’09, 2009.



References 77

[29] V. Guralnik and J. Srivastava. Event detection from time series data. In
Proceedings of SIGKDD’99, pages 33–42, 1999.

[30] S. Hansell. Google keeps tweaking its search engine. New York Times,
June 2007. http://www.nytimes.com/2007/06/03/business/yourmoney/03
google.html

[31] S. H. Hashemi, M. Dehghani, and J. Kamps. Univ ofAmsterdam at TREC
2015: Contextual suggestion track. In Proceedings of TREC, 2015.

[32] J. L. Herlocker, J. A. Konstan, A. Borchers, and J. Riedl. An algorithmic
framework for performing collaborative filtering. In Proceedings of the
22nd annual international ACM SIGIR conference on Research and
development in information retrieval, pages 230–237. ACM, 1999.

[33] D. Hiemstra, S. Robertson, and H. Zaragoza. Parsimonious language
models for information retrieval. In Proc. of SIGIR, pages 178–185.
ACM, 2004.
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4.1 Introduction

The proliferation of IoT analytics applications has recently created a need for
tools and techniques that could support developers in the task of producing
and deploying IoT analytics services. In principle, IoT analytics development
tasks can be supported by readily available tools for IoT applications and
their combination with tools and techniques for data mining and analytics.
In particular, IoT development tools undertake to collect and appropriately
pre-process data streams stemming from IoT systems (including “live” high-
velocity data streams), while conventional data analytics tools can be used to
analyze the information contained in these data streams towards extracting
knowledge. Hence this combination brings together the IoT and BigData
worlds, thus facilitating developers in the task of implementing and deploying
IoT analytics applications.

This chapter is destined to present this blending of IoT development tools
and data analytics tools. In particular, the chapter is devoted to the presentation
of sample tools for the development of IoT analytics applications and more
specifically the development tools of an IoT platform which has been recently
developed as part of the FP7 VITAL project. These tools support IoT devel-
opment functionalities such as discovery of data streams from IoT systems,
filtering of data streams in order to economize on bandwidth and storage
resources, as well as semantic unification of heterogeneous streams in order to
facilitate the unified processing of diverse data sources.The importance of such
functionalities for IoT analytics applications is adequately described in the
scope of other chapters of this book, along with specific technology solutions
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for their implementation. The present chapter considers these functionalities
as part of the presented development tools infrastructure, which leverages
middleware services (e.g., data streams discovery and filtering) of the VITAL
platform. Therefore, the chapter introduces these middleware services as well,
along with their positioning in the overall architecture of the VITAL platform.

The VITAL development tools are based on the popular Node-RED tool
for IoT applications, which has been customized to the needs of the VITAL
platform. The customization of the Node-RED tool included also the enhance-
ment of data mining and data analytics functionalities, which are illustrated
in the scope of this chapter. Along with the VITAL development tools, the
VITAL platform provides also a tool for managing IoT resources (including
IoT data sources and data streams), including configuration, security and SLA
(Service Level Agreement) management functionalities. The latter can greatly
facilitate the monitoring of IoT analytics applications and can be used in
conjunction with the VITAL development tools. Therefore, we also present
the VITAL development tools as an integral element of the wider suite of tools
that support developers in the production of IoT analytics applications. The
development and management tools are bundled in an integrated development
environment, which is accessible over the web and from a single entry
point.

Overall, the chapter is structured as follows: The next paragraph discusses
relevant work on development tools for IoT analytics. Following chapters
illustrate the VITAL architecture and the middleware services that are used
in order to support the functionalities of the tools in the scope of the VITAL
platform. Along with these functionalities, the chapter discusses the VITAL
development tools with particular emphasis on their add-on features which
enhance Node-RED. The discussion includes also insights on the limitations
of the development tools, which could be remedied as part of future work.
Moreover a dedicated section is devoted to the description of the VITAL
management environment. Indicative applications are finally presented in
order to illustrate the added-value of the tools and the productivity boost that
they can offer to large number of developers of IoT analytics applications.

4.2 Related Work

The provision of development environments for IoT analytics has its roots
on tools and techniques for the development for IoT applications and
data analytics. IoT development tools provide the means for interfacing
to IoT systems towards collecting, filtering and fusing IoT data streams.
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At the same time, data analytics environments provide the means for
developing and executing data analytics algorithms.

Early IoT development tools have been introduced as part of WSN
(Wireless Sensor Network) platforms (e.g. [1, 2]) and RFID (Radio-frequency
Identification) platforms (e.g. [3]). Recently we have witnessed the emer-
gence of integrated development environments and tools for wider classes of
IoT applications, including visual modelling tools following Model Driven
Architectures (MDA) (e.g. [4, 5]).

There have also been IoT development environments associated with
mainstream IDE projects, such as Eclipse Kura, which is an Eclipse IoT
project that provides a framework for M2M service gateways (i.e., devices
that act as mediators in the machine-to-machine and the machine-to-Cloud
communication). Kura facilitates the development, deployment and remote
management of M2M applications and its use requires only the installation of
an Eclipse plugin on the developer’s machine. It is based on Java and OSGi,
the dynamic module system for Java, and it can be used to turn a Raspberry
Pi or a BeagleBone Black into an IoT gateway.

Node-RED is another open-source project that is focused on IoT. This
project is reused and extended as part of the prototype implementation
presented in this chapter. It is described in the following paragraph in order to
facilitate the understanding of the approach and the related implementation.

Integrated Cloud Environments (ICEs) have come to change this work-
flow, by turning development environments from products into services.
ICEs are essentially IDEs that are usually web accessible, and that leverage
the Cloud into the software development lifecycle. In order to use an ICE,
developers do not need to install any more tools on their machines; all they
need to do is log into a web site (that acts as the entry point to the ICE), and
start using it. In this case, most of the tasks take place in the Cloud; some ICEs
use the Cloud even to store the developers’ code.

While IoT tools provide the means for interfacing to data sources towards
accessing, processing and combining data streams, they do not typically offer
capabilities for analyzing IoT data. Therefore, their use for IoT analytics
requires their integration with data analytics libraries and tools such as:

• TheTechnicalAnalysis library (http://ta-lib.org/), which is an open source
library that enables technical analysis of financial markets data.

• The Java Universal Network Graph (http://jung.sourceforge.net/), which
enables the analysis and visualization of graph or network based data
(e.g., social networks data).
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• The GeoTools (http://www.geotools.org/) toolkit, which enables the
manipulation of GIS data, including the analysis of their spatial and
non-spatial attributes or GIS data.

• The R project (https://www.r-project.org/), a highly extensible environ-
ment, which enables the execution of a wide variety of statistical (e.g.,
linear and nonlinear modelling, classical statistical tests, time-series
analysis, classification, clustering) and graphical techniques.

The scope of the work that is presented in following paragraphs, involves the
integration of the R project within an enhanced version of the Node-RED tool,
as part of an integrated development environment offer by the VITAL smart
cities platform (developed in the scope of the FP7 VITAL project). Note that
the integration of IoT tools with data analytics tools is also evident in the
scope of popular public cloud environment (such as the Amazon EC2 and
the Microsoft Azure cloud services), which provide functionalities for IoT
applications development along with data analytics toolkits.

4.3 The VITAL Architecture for IoT Analytics Applications

The VITAL IoT development environment is an integral part of the VITAL
smart cities platform. This platform provide a range of tools and techniques
for developing, deploying, managing and operating IoT applications in smart
cities, including applications that leverage data and services from multiple IoT
systems and data sources. The latter applications are based on the semantic
interoperability features of the VITAL platform, which enable the repurposing
and reuse of services and datasets from multiple IoT systems. An overview of
the VITAL platform is provided in Figure 4.1.

The main components of the platform are:

• Platform Provider Interface (PPI): The PPI is an abstract interface to
underlying IoT systems and data sources, including the large number
of legacy IoT systems that are nowadays available in the scope of
digitally mature cities. PPI provides access to both metadata and data
of the underlying systems, In particular, the information that is speci-
fied in the PPI covers system-level information, information about the
internet-connected objects of the system, sensors-based observations’
information (data), as well as metadata for managing SLAs (Service
Level Agreements) between the operator of the VITAL platform (e.g.,
city authorities, telecom services providers) and the operators of the
individual IoT systems.
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Figure 4.1 VITAL platform architecture.

• Data Management Service (DMS): This is a data service (empowered
by scalable operational databases), which persists and manages data from
all of the underlying IoT systems. Data within the DMS are semantically
unified, since they comply with the same data model (schema, ontology).
Note that the DMS provides interoperable cached data from the various
IoT systems, thus providing a foundation for the provision of a range of
Data-as-a-Service (DaaS) services.
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• IoT Data Adapter (PADA): This component manages the subscriptions
of the VITAL platform to IoT systems and data sources, through the
management of PPIs. It therefore provides functionalities for registering
and deregistering PPIs as data contributors to the DMS, while at the
same time managing data acquisition from the IoT systems to the DMS
(according to a publish-subscribe paradigm).

• IoT Service Discovery (SD): This component enables the discovery of
services, sensors, internet-connected devices and other IoT resources.
In the SD context, the term “services” refers to services provided by
the VITAL platform (possibly assembled based on the orchestrator
component) rather than to low-level services provided by the IoT systems.
The latter are typically accessible through PPIs.

• Filtering and Complex Event Processing (CEP): These components
offer data filtering and event generation functionalities based on data
streams residing with the DMS. The filtering components support static
data processing, with emphasis on threshold-based filtering and resam-
pling.At the same time, CEP supports both static and dynamic processing
of IoT streams.

• Orchestration: This component provides functionalities for composing
workflows, thus enabling the orchestration of (composite) IoT services
based on more elementary ones. As already outlined, composite IoT
services produced by the orchestrator are registered to the SD component.

• VUAIs (Virtualized Unified Access Interfaces): These are interfaces
enabling IoT system agnostic access to data and services of the VITAL
platform.

On top of the VITALplatform, three distinct environments are offered, namely:

• A management environment providing FCAPS (Fault Configuration
Accounting Performance and Security) management functionalities for
the VITALmodules, but also for the data and services from the underlying
IoT systems.

• A governance environment enabling the configuration of the VITAL
platform (including configuration of its individual modules) according
to the needs and characteristics of a given urban environment. The
governance environment takes into account information and parameters
such as the geography and the demographics of the city in order to
appropriately customize the operation of the VITAL platform.

• A development environment for producing smart city applications based
on the VITAL platform. It extends the popular Node-RED tool on the
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basis of functionalities for the VITAL modules, thus enabling developers
to combine VITAL functionalities (e.g., orchestration, filtering, semantic
interoperability) with the rich set of Node-RED functionalities. It also
integrates the R project in order to boost the development of IoTAnalytics
applications.

Following paragraphs illustrate the VITAL development environment, as a
concrete example of a tool that facilitates the development of IoT Analytics
applications.

4.4 VITAL Development Environment

4.4.1 Overview

The primary goal of the VITAL development environment is to integrate
all functionalities provided by the VITAL platform and make them acces-
sible to smart city application developers through a single tool, the VITAL
development tool. To this end, the various functionalities of the VITAL
platform are integrated into the tool based on VUAIs, which are currently
implemented as RESTful web services. This renders Node-RED ideal as the
basis for the implementation of the VITAL development tool. Furthermore, the
growing number of nodes (i.e. development functionalities) that are available
for Node-RED, as well as its simplicity, user-friendliness, extensibility and
popularity led to the selection of Node-RED as a basis for developing the
VITAL tool. As shown in Figure 4.2, the VITAL development tool is based
on the enhancement of Node-RED with a number of VITAL-related nodes,
as well as with functionalities provided by the R project (and associated
programming language for statistical computing and graphics). The result
of this enhancement process is an easy-to-use tool that also enables its users
to perform a number of VITAL-related (e.g. retrieval of IoT system metadata)
and data analysis (e.g. data value prediction or data clustering) tasks, based
on the exploitation of the VITAL platform.

A short overview of the extra nodes that have been added to the core node
palette of Node-RED for the purpose of supporting and exposing the VITAL
functionalities follows.

4.4.2 VITAL Nodes

In order to expose the functionalities provided by the VITAL platform
through the VITAL development tool, a number of new Node-RED nodes
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Figure 4.2 Elements of the VITAL development tool.

were created and added to the tool. More specifically, the node palette was
complemented with the following node categories: (1) ppi that contains nodes
to use in order to communicate directly with PPI-compliant IoT systems and
data sources, (2) data that contains nodes that expose the functionalities
provided by the DMS, (3) discovery that contains nodes that enable the
discovery of different types of IoT resources, and (4) filtering that con-
tains nodes that expose the filtering functionalities provided by the VITAL
platform.

4.4.2.1 PPI nodes
Each node in the ppi category corresponds to a primitive specified as part of
the Platform Provider Interface.

4.4.2.2 System nodes
System nodes are used to retrieve metadata about a PPI-compliant IoT system.
When a system node receives a message, the node accesses the relevant
primitive of the PPI implementation exposed by that system, and puts the
result (i.e., the system metadata) into the message it finally sends out.
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4.4.2.3 Services nodes
Services nodes retrieve metadata about the IoT services that a PPI-compliant
IoT system provides. The message that a services node receives may contain
information, which is used to filter the services to retrieve metadata for (based
on their ID and type), whereas the message that a services node sends contains
the retrieved service metadata.

4.4.2.4 Sensors nodes
Sensors nodes are function nodes that retrieve metadata about sensors that an
IoT system manages. The messages sent to these nodes can be used to filter
the sensors to retrieve metadata for (based on their ID and type), whereas the
messages sent by these nodes contain the retrieved sensor metadata.

4.4.2.5 Observations nodes
Observations nodes are function nodes that pull observations made by
sensors managed by a PPI-compliant IoT system. Input messages may contain
information, which can be used to filter the observations to fetch (based on
the sensor that made them, the observed property and the time when they
were made), whereas output messages contain the retrieved observations.

4.4.2.6 DMS nodes
Nodes that expose functionalities provided by the DMS component of the
VITAL platform fall into the data category.

4.4.2.7 Query systems
Query systems nodes query DMS for systems that meet specific criteria. The
message that a query systems node receives contains a query, whereas the
message that it sends out contains the metadata about all IoT systems that are
registered with the VITAL platform and match the query.

4.4.2.8 Query services
Query services nodes are used to retrieve information about IoT services
based on specific criteria. Input messages contain queries, whereas output
messages contain metadata about IoT services that match those queries.

4.4.2.9 Query sensors
Query sensors nodes query DMS for internet-connected objects that meet
specific criteria. The messages sent to these nodes contain a query, whereas
the messages that these nodes send as a response contain metadata about all
internet-connected objects that match the given query.



90 Development Tools for IoT Analytics Applications

4.4.2.10 Query observations
Query observations nodes query DMS for observations. The message that
a query observations node receives contains a query, whereas the message
that a query observations node sends contains observations based on the given
query.

4.4.2.11 Discovery nodes
The discovery node category groups together all Node-RED nodes that enable
the discovery of different types of IoT resources by leveraging the discovery
functionalities provided by the VITAL platform.

4.4.2.12 Discover systems nodes
Discover systems nodes are used to discover systems based on their type
and/or spatial context. The messages sent to discover systems nodes contain
the criteria, whereas the messages sent by these nodes contain the metadata
about the systems that meet these criteria.

4.4.2.13 Discover services nodes
Discover services nodes enable the discovery of services based on specific
criteria. Input messages may contain a type and a system URI, and output
messages contain the available metadata about all services of that type that
are provided by that system.

4.4.2.14 Discover sensors nodes
Discover sensors nodes are used to discover sensors based on their position
(current or within a specified time window), type, movement pattern,
connection stability, and whether they provide a localizer service. Input
messages contain the criteria that sensors must meet, whereas output messages
contain metadata about the sensors that meet them.

4.4.2.15 Filtering nodes
Filtering nodes are used to access the VITAL filtering functionalities.

4.4.2.16 Threshold nodes
Threshold nodes perform threshold-based filtering to the values collected
from a specific internet-connected object, for a specific property, in a specific
area, and within a specific time interval. Messages sent to threshold nodes
contain criteria, based on which to retrieve observations, a threshold value,
and a relation, and messages sent by these nodes contain all values that
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meet the specified criteria and have the specified relation with the specified
threshold.

4.4.2.17 Resample nodes
Resample nodes are used to resample (down-sample or up-sample) data
streams using a different time interval than the one they were initially sampled
with. Input messages specify the data stream (i.e., the sensor and the observed
property), the new time interval, and the time period, over which to perform
the resampling, whereas output messages contain the resampled observations.

4.5 Development Examples

4.5.1 Example #1: Predict the Footfall!

The purpose is to implement a web page that shows a map of Camden town.
When the user clicks anywhere on that map, a pop-up appears that informs the
user about the people that are expected to be walking around that area during
the next hour. The expected result is shown in Figure 4.3.

In order to provide the required functionality, two flows were created using
the VITAL development tool. The first flow is a web service that responds
with the static HTML page that contains the Camden map. The second flow
is a web service that given a location responds with a prediction for the
number of people in that area within the next hour. Both flows are depicted in
Figure 4.4.

The second flow receives a location, uses a query sensors node to find
the footfall sensor that is closer to that location, uses an observations node
to retrieve observations collected from that sensor in the last ten days, and
finally leverages the rstats package to predict the value of that sensor in the
next hour.

4.5.2 Example #2: Find a Bike!

The purpose is to build a web page that people that move in London can use
in order to find out whether there are any bikes available near them. The user
specifies their location on the map, and as a result a marker appears on the map
for each docking station within a 500 m radius that has at least one available
bike. Figure 4.6 shows the implemented web page.

Figure 4.7 depicts the two flows that were implemented for the purposes
of this example. The first flow implements the web service that returns the
static HTML page. The second flow receives the current location of the
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user (that they have specified by clicking on the map), discovers all docking
stations in that area (using a discover sensors node, since docking stations
are essentially sensors), finds out how many available bikes each one of these
stations has (using an observations node, since this implies the retrieval of the
last observation made by each one of the corresponding sensors), and finally
responds with the locations of the stations that have at least one available bike.

4.6 Conclusions

As IoT analytics applications, proliferate developers are starving for tools that
can boost their development productivity. The wide array of emerging tools for
IoT and data analytics applications are not enough to maximize developers’
productivity, when used in isolation. Their combination and integration is
therefore needed in order to achieve multiplicative benefits, i.e. leverage
productivity benefits from both analytics and IoT tools. Moreover, in several
cases the integration of data streaming concepts is also important, given the
high velocity of IoT data streams. Integration of data streaming tools was not
extensively presented in the scope of the Chapter, as VITALstores IoT data into
a scalable datastore in a semantically unified manner. However, the presented
approach demonstrates also the merits of semantic interoperability for the
development of added-value IoT analytics applications in smart cities, notably
applications that leverage and process data from multiple IoT systems and data
sources, which have typically been developed and deployed independently.
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5.1 Introduction

Earlier chapters have illustrated the importance of IoT and cloud computing
convergence, as a means of achieving scalability and meeting QoS (Quality
of Service) constraints. IoT deployments in the cloud are motivated by two
main business drivers:

• Business Agility: Cloud computing alleviates tedious IT procurement
processes, since it facilitates flexible, timely and on-demand access to
computing resources (i.e. compute cycles, storage) as needed to meet
business targets. In the case of IoT analytics applications, IoT developers
and deployments can flexibly gain access to the storage and processing
resources that they need in order to support their applications.

• Reduced Capital Expenses: Cloud computing leads to reduced capital
expenses (CAPEX) (i.e. IT capital investments), through converting
CAPEX to operational expenses (OPEX) (i.e. paying per month, per user
for each service). This is due to the fact that cloud computing enables
flexible planning and elastic provisioning of resources instead of upfront
overprovisioning. Among the benefits of such flexibility is that it enables
small and medium size enterprises (SMEs) to adopt a pay-as-you-go and
pay-as-you-grow model to infrastructure acquisition and use, through
paying for the computing resources and capacity that they need. This can
be particularly important for the proliferating number of SMEs (including

99



100 An Open Source Framework for IoT Analytics as a Service

high-tech startups), which exploit IoT analytics as part of their products
or services.

Similarly to cloud computing infrastructures [1], integrated IoT/cloud infras-
tructures and related services can be classified to the following models:

• Infrastructure-as-a-Service (IaaS) IoT/Clouds: These services pro-
vide the means for accessing sensors and actuator in the cloud. The
associated business model involves the IoT/Cloud provide to act either
as data or sensor provider. IaaS services for IoT provide access control
to resources as a prerequisite for the offering of related pay-as-you-go
services.

• Platform-as-a-Service (PaaS) IoT/Clouds: This is the most widespread
model for IoT/cloud services, given that it is the model provided by
all public IoT/cloud infrastructures outlined above. As already illus-
trate most public IoT clouds come with a range of tools and related
environments for applications development and deployment in a cloud
environment. A main characteristic of PaaS IoT services is that they
provide access to data, not to hardware. This is a clear differentiator
comparing to IaaS IoT clouds.

• Software-as-a-Service (SaaS) IoT/Clouds: SaaS IoT services are the
ones enabling their uses to access complete IoT-based software applica-
tions through the cloud, on-demand and in a pay-as-you-go fashion. As
soon as sensors and IoT devices are not visible, SaaS IoT applications
resemble very much conventional cloud-based SaaS applications. There
are however cases where the IoT dimension is strong and evident, such
as applications involving selection of sensors and combination of data
from the selected sensors in an integrated applications. Several of these
applications are commonly called Sensing-as-a-Service, given that they
provide on-demand access to the services of multiple sensors. Note that
SaaS IoT applications are typically built over a PaaS infrastructure and
enable utility based business models involving IoT software and services.

Although the Sensing-as-a-Service paradigm is a special case of an SaaS
deployment, it is in practice applicable to IoT applications only. Indeed,
Sensing-as-a-Service applications involve on-demand collection, processing
and analysis of information from sensors (i.e. IoT devices) [2]. The on-demand
and dynamic nature of Sensing-as-a-Service applications in reinforced by the
location dependent and time dependent nature of such IoT applications, which
permit the dynamic selection of the IoT resources (sensors) that will provide
the data streams to be processed. As such Sensing-as-Service can be seen as
a case of an “IoT Analytics as a service” paradigm, where the IoT application
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users is allowed to dynamically specified data processing and analytics
functionalities, along with the IoT devices on which they will be executed.

In this chapter we present a framework for implementing Sensing-as-
a-Service applications based on the open source OpenIoT project [3]. The
OpenIoT framework enables the dynamic selection of sensors and resources,
as well as the subsequent specification of processing functionalities over the
data of the selected sensors. In essence it enables the specification of dynamic
sensor queries, which can be considered the first step towards IoT analytics as
a service [4]. In addition to facilitating the dynamic definition and deployment
of such Sensing-as-Service (or IoT analytics as a service) services, OpenIoT
provides:

• Semantic interoperability and unification of data from diverse IoT sensors
and other data sources, through ensuring their conversion and com-
pliance to a common ontology, namely the OpenIoT ontology, which
is an extended version of the W3C SSN (Semantic Sensor Networks)
ontology [5].

• A range of easy-to-use tools for the visual specification of the Sensing-
as-a-Service services. The tools enable the definition and deployment
of SPARQL based sensor queries, through exploiting sensors registered
within the OpenIoT framework.

Note that OpenIoT does not provide sophisticated data analytics functionali-
ties, but it can well be extended on the basis of frameworks for data mining and
machine learning, in order to support more advanced analytics functionalities.
Such extensions are worked out in the scope of the H2020 FIESTA-IoT
project, which provide functionalities for semantically interoperable IoT
experimentation i.e. the execution of data-centric IoT experiments based on
data streams from multiple IoT experimental facilities. Following sections of
the chapter focus on the description of the OpenIoT framework and capabilities
for Sensing-as-a-Service, along with a practical example of constructing and
deploying a relevant sensor query based on the OpenIoT tools. Moreover, the
enhancement of the Sensing-as-a-Service paradigm with more sophisticated
analytics functionalities, towards an IoT Analytics as a Service paradigm is
also discussed.

5.2 Architecture for IoT Analytics-as-a-Service

5.2.1 Properties of Sensing-as-a-Service Infrastructure

Service formulation and delivery in the scope of OpenIoT is characterized by
the following properties:
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• On-demand: Service formulation and delivery in OpenIoT should be
performed on-demand. This implies the need for on-demand express-
ing requests for IoT services formulation, which shall be fulfilled by
the OpenIoT middleware infrastructure. Therefore, service formulation
should provide the means to dynamically selecting sensors and ICOs
needed in order to satisfy the demanded service requests.

• Cloud-based: OpenIoT services are provided in a cloud environment. At
the heart of this environment lies a scalable sensor cloud infrastructure,
which shall provide sensor data access services. Thus, the OpenIoT
service formulation strategies must take into account the need to access,
use and combine services residing within the sensor/ICO cloud.

• Utility-based: Service delivery in OpenIoT is utility-based, which is
in-line with the on-demand and cloud-based properties. As a result,
OpenIoT should provide the means for calculating utility, through making
provisions for storing a range of utility parameters (e.g., usage parameters
for the employed ICOs) during the process of service formulation.

• Service-Oriented: OpenIoT requests will result in the deployment of
services. The latter may be the composition of other services, such as
services for accessing data streams in the cloud. Overall, OpenIoT has a
service-oriented nature.

• Optimized: OpenIoT incorporates a wide range of self-management
and self-optimization algorithms. The service formulation process
ensures that information about resources reservation and usage is
recorded in order to enable the implementation of utility-based optimiza-
tion algorithms.

5.2.2 Service Delivery Architecture

The architecture of the OpenIoT platform is illustrated in Figure 5.1, while
a more detailed overview of the interactions between the various modules is
depicted in Figure 5.2. As already outlined, OpenIoT enables the cloud-based
delivery of IoT data processing services, through enabling the creation of
dynamic on-demand services. These services select and process data from a
multitude of different data sources.

Overall, the architecture makes provisions for the creation and fulfillment
of requests for services to the OpenIoT system. It is empowered by the
following components:

• Service Request Definition Component (“Request Definition”):
Service Request Definition is the component where requests for IoT
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Figure 5.1 OpenIoT architecture.

services are formulated (by end-users) and accordingly submitted to
the OpenIoT system. This component comes with an appropriate
graphical user interface (GUI), which facilitates the service request
customization.

• (Global) Scheduler: The Global Scheduler is in charge of accepting and
prioritizing the various service requests (by one or more end-users) and
accordingly generates the list of sensors (and other Internet Connected
Objects (ICO)) that participate in the delivery of the service. Furthermore,
the global Scheduler performs the required reservations of resources,
which facilitate utility calculation and resource optimizations.

• Service Discovery: Service discovery refers to the OpenIoT directory
services. It maintains the semantically annotated descriptions of the
sensors that are known to the OpenIoT system. Service discovery
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Figure 5.2 Functional blocks of openIoT’s project analytics as a service architecture.

relies on the registration of sensors in the directory service repository.
The structure of the service directory is based on the OpenIoT ontology
(an enhanced version of the W3C SSN ontology).

• Cloud Infrastructure: This refers to the cloud computing environment
(functional and operational), which ensures sensor cloud integration
and streaming of sensors and ICO data to cloud storage, the operations
performed in the cloud infrastructure are independent of the infrastructure
management and the infrastructure modifications.

• Global Sensor Networks (GSN) Nodes: GSN nodes refer to deployment
instances of the GSN middleware [6]. They play a significant role in
the data provisioning for the IoT service delivery, since they enable the
interfacing of physical-world devices to the OpenIoT system (via the
cloud infrastructure). At the same time, GSN nodes perform a range of
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local-level optimizations, on the basis of the ICOs that they comprise
of and on how these participate and contribute to the various services,
prioritizing and transforming the data acquired form the physical sensors
into normalized data.

• Service Delivery and Utility Manager (SD&UM): The service delivery
manager ensures the proper assembly and delivery of the services subject
to the various constraints imposed either for physical infrastructure
restrictions or service customization definitions. To this end, it uses
the selected sensors and ICOs and combines them as specified in the
service request sent to the system. The combination depends also on the
optimizations performed by the OpenIoT infrastructure, given that these
optimizations may, for example, regulate the frequency of accesses to
the various underlying data services.

• Service Presentation (“Request Presentation”): This component facil-
itates the implementation of the presentation layer of the service, on the
basis of mashups and other visualization libraries. It can be considered as
an optional component aiming at easing the presentation of the services
according to the preferences and needs of the end-user.

5.2.3 Service Delivery Concept

In-line with the main components of the OpenIoT architecture outlined above,
service delivery is based on the selection and orchestration of multiple
services (including cloud services) that provide data and/or instigate tasking or
actuation functionalities. The orchestration and combination of those services
is based on the following factors:

• Type of (requested) service: The service request specifies different
possible operations on ICOs, such as selection, retrieval and processing
of their data, or execution of actuation commands. The OpenIoT sensor
cloud infrastructure can be seen as a large-scale distributed sensors
and ICO database. Service requests can be thought of as queries and
operations over this database (i.e. SQL (Structured Query Language)
can be thought as a representative metaphor). Depending on the query
and operation, the OpenIoT infrastructure will instigate alternative paths
within the service delivery strategies. For example, query operations
(i.e. «SELECT» in SQL terms) will lead to the combination of sensor
data access services, while actuating operations (i.e. «UPDATE» or
«EXECUTE» operations) will lead to the invocation of the actuating
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services. Furthermore, requests combining both actuation and selection
functions should trigger alternative paths within the OpenIoT service
formulation strategies.

• Optimizations: The OpenIoT sensor cloud is a self-managing infrastruc-
ture, which provides opportunities for optimal delivery of the services.
Therefore, the resource management and optimization capabilities of the
OpenIoT infrastructure affect service formulation and delivery. Alterna-
tive service delivery and execution paths are likely to be considered in
the scope of the optimization of the OpenIoT services.

• Sensor and ICO selection: The selected sensors and ICOs influence
the formulation and delivery of services. Different ICOs may provide
different capabilities in terms of data selection and actuating services
execution. Therefore, the OpenIoT service delivery environment deals
with the heterogeneity of data being collected from the various ICOs. In
particular, the OpenIoT cloud and the underlying GSN nodes provide a
virtualized interface for accessing the low-level capabilities of the ICOs
acting as data collectors for the OpenIoT system.

Finally, the service formulation and delivery mechanisms consider the need
to support both service deployment and service un-deployment. Service un-
deployment should be implementing as an integral element of the service
management and governance functions in OpenIoT. The un-deployment
process is therefore addressed in later paragraphs as well.

5.3 Sensing-as-a-Service Infrastructure Anatomy

5.3.1 Lifecycle of a Sensing-as-a-Service Instance

As part of the OpenIoT system, the management and requests operations
for dynamically creating and deploying IoT services (i.e. Sensing-as-a-
Service and IoT-Analytics-as-a-Service services) perform the following
main tasks:

• Formulation of the request: As part of this task the request is formed
on the basis of the specification criteria for particular sensor selection, as
well as of the processing of the resulting collected data.

• Parsing and validation of the request: This task processes the request
and ensures its validity. The validation of the requests ensures that they
refer to existing sensors and ICOs or that the criteria set lead to the
selection of a group of sensors and ICOs.
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• Discovery of resources: In the scope of this task the criteria for
selecting sensors are applied against the OpenIoT directory services
i.e. the sensor directory is used to select a set of sensors that fulfill the
relevant criteria and when need it update the OpenIoT directory sensor
services.

• Instantiation of a new OpenIoT service: With the selected sensors/ICOs
at hand, a new OpenIoT service instance is created as a cloud service.
This results in the establishment of the service that is associated with the
Sensing-as-a-Service request.

• Population of information and structures associated with utility
metering and resource management: Along with the creation of the
OpenIoT service, the appropriate resources are reserved. This is denoted
in the various structures that comprise information about the resources
of the OpenIoT system. Furthermore, structures/records for the utility
metrics are used.

• Deployment/Delivery of the service: As part of this task, the OpenIoT
service is deployed and becomes available on the OpenIoT system.
Consequently, it becomes ready to be invoked by end-users.

Figure 5.3 illustrates the main system actions entailed in the course/process
of deploying an OpenIoT service (i.e. service request, sensor(s) selection,
scheduling and resources reservation and ultimately service deployment).
Following the successful deployment of an OpenIoT service, end-users can
invoke and use it. As part of the service lifecycle, it is also likely that the
service will be uninstalled and deactivated from the system, in which case all
resources associated with the service will be released.

Figure 5.3 IoT data analysis services request lifecycle.
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5.3.2 Interactions between OpenIoT Modules

OpenIoT is a sensor cloud environment. Along with the data of the various
sensors and ICO streams, this cloud stores a wide range of meta-data enabling
the deployment, delivery and optimization of IoT services within the sensor
cloud. This meta-data is updated during the operation of the sensor cloud
system, as new services are requested and deployed, while others go out of
scope. The sensor cloud system will be responsible to frequently check if data
are required from the system’s deployed services from the provided mecha-
nisms. Furthermore, this meta-data will regulate the interactions between the
various components of the OpenIoT architecture. Figure 5.4 [10] illustrates
the various modules of the OpenIoT architecture, along with their interactions
(indicated based on uni-directional and bi-direction arrows). Furthermore, the
figure illustrates the various entities/classes, whose values/data are used in
the scope of the interactions of the modules. In particular, given the entities
illustrated in Figure 5.4, each of the OpenIoT modules interacts with the others
as follows:

• Request Definition: The request definition module is the user interface
that enables the user to formulate the requests in the OpenIoT system. This
module interacts directly with the Scheduler’s API which is described in
detail in following sections.

• (Global) Scheduler: The Scheduler formulates the request based on the
user inputs (request definition). It interacts with the rest of the OpenIoT
platform through the Cloud Database (DB). In particular, the Scheduler
performs the following functions:

◦ Retrieving the available sensors from the GSN nodes through the
“availableSensors” entity,

◦ Informing the GSN nodes abut which of their virtual sensors are used
by the service being scheduled. Relevant information is includes in
the “sensorServiceRelation” entity,

◦ Informing the Service Delivery & Utility Manager (SD&UM) about
what services to deliver based on the “serviceDeliveryDescription”
entity,

◦ Notifying the user, via itself and the SD&UM module, about the
status of a defined service through the “serviceStatus” entity, and

◦ Implementing access control mechanisms with the help of the “user”
entity.
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• Service Delivery & Utility Manager: The SD&UM module provides
results to the request presentation module by retrieving SPARQL
scripts [7], that the Scheduler has provided to the “serviceDescription”
entity. Furthermore, this module retrieves data from the GSN nodes
by executing the retrieved scripts to the “virtualSensorsDataStorage”.
Moreover it is able to store resource-usage history for accounting,
metering and billing purposes.

• Request Presentation: the Request Presentation module is the User
Interface that enables the user to retrieve data from the Cloud Database
(DB). The Request Definition has described the request and the data is
delivered using the SD&UM API described below.

• Configuration Console: The Configuration/Monitoring console is the
system administrators’ tool, which enables administrators to deploy, con-
figure and manage the OpenIoT platform. It interacts directly with several
other modules (Scheduler, SD&UM and GSN nodes) for monitoring
purposes. Finally, it is also capable to set up RDF schemata for new
virtual sensors. The schemata are stored within the “virtualSensorsRdf-
Schemata” entity and enable GSN nodes to access this information during
their configuration.

• GSN Nodes: The GSN nodes (or virtual sensors) are:

◦ Providing the available sensors to the Scheduler module through the
“availableSensors” entity,

◦ Informed about the sensors in use from the Scheduler based on the
“sensorServiceRelation” entity,

◦ Retrieving new virtual Sensors RDF schemata from the Config/
Monitor Console through the “virtualSensorsRdfSchemata” entity,
and

◦ Providing sensor data to the SD&UM through the “virtualSensors-
DataStorage” entity.

As part of these interactions the above modules create and consume data
associated with the entities listed in the following table [10]. Note that the table
differentiates between semantic and non-semantic data entities. Semantic data
entities are implemented on the basis of ontologies (i.e. RDF), while non-
semantic data structures are represented on the basis of relational database
tables. Note that all the structures that hold sensor information follow semantic
descriptions, given that all sensor descriptions in OpenIoT will be semantically
annotated and represented.
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Figure 5.5 Relationships between the main OpenIoT data entities.

The relationship between the main OpenIoT data entities is depicted in
Figure 5.5 [10].

5.4 Scheduling, Metering and Service Delivery

The modules that are responsible for the services formulation within the
OpenIoT platform are the “Scheduler” and the “Service Delivery & Utility
Manager”. Following paragraphs provide a detailed description of these
modules, including the functionalities that they offer to end-users. Note that
the term end-user can either denote the final user of the IoT services or the
solution provider exploiting the OpenIoT capabilities in order to integrate and
deploy a Sensing-as-a-Service solution.

5.4.1 Scheduler

The Scheduler is the main and first entry point for service requests submitted to
the OpenIoT cloud environment. This component receives the service requests
from the service definition components as part of the process of creating a
new cloud service based on the Sensing-as-a-Service paradigm. It parses each
service request and accordingly performs two main functions towards the
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delivery of the service, the sensor/ICO selection and the scheduling/resource
reservations.

The API of the scheduler supports the lifecycle of the OpenIoT service,
which has been presented in earlier paragraph. In particular, it provides the
means for:

• Constructing an OpenIoT service on the basis of existing sensors and
ICOs.

• Registering an OpenIoT service within the OpenIoT sensor cloud. In this
case the OpenIoT system assigns a service identifier (serviceID) to the
service, which uniquely identifies the service within the OpenIoT service
delivery system.

• Unregistering a (previous registered) OpenIoT service. This is a coun-
terpart function to the one registering the service. The unregistration/
deregistration function moves the service out of the scope of the OpenIoT
system.

• Enabling an already registered service, thereby commencing its operation
within the OpenIoT sensor cloud.

• Disabling an OpenIoT service, thereby leading to its deactivation within
the sensor cloud. Disabling a service does not however imply that the
service goes out of the scope of the sensor cloud i.e. it still remains
available for activation.

• Querying the status of a given service, as a means of accessing the state
of the service within the sensor cloud.

The above functions change the state of the OpenIoT services according to
rules and dependencies specified within the various states. For example, only
registered services can be enabled, and only enabled services can be disabled.
At the same time, only registered services can be unregistered.

Figure 5.6 [8] illustrates the lifecycle of the IoT services within the
OpenIoT system. The transitions between the different states occur on the
basis of invocations to the Scheduler API.

On the basis of the Scheduler API, the following functionalities are
supported:

• Resource Discovery: This service will discover virtual sensor availabil-
ity based on the “availableSensors” entity. It will provide the resources
that match the requirements for a given service request.

• Service User Management: This Scheduler service will enable the
management of the lifecycle of an OpenIoT service. This lifecycle
management is performed based on the following Scheduler comments:
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◦ Register: The “Register” service is responsible to identify all the
required resources from the request and update the “sensorService-
Relation” entity at the cloud database. The “Register” service shall
formulate a SPARQL script, based on the user request, and shall
store it to the “ServiceDescription” entity along with a Service ID
and user’s specific execution properties (the execution properties
could include execution intervals, life of the service, etch). A new
service instance shall get recorded at the “serviceStatus” entity in
the cloud. Note that: (a) In case the request is satisfied the unsatisfied
Boolean of the “serviceStatus” entity is set to false, whereas (b) If the
request is unsatisfied the unsatisfied Boolean of the “serviceStatus”
entity is set to true. Optionally more detailed information regarding
the problem could be stored.

◦ Unregister: In the scope of the unregister functionality the user
will have the ability to unregister a registered service. When a
service gets unregistered the allocated resources shall get released.
Therefore, the service-virtual sensor relation at the “SensorService-
Relation” entity in the cloud shall get deleted. Furthermore, the
service gets deactivated (set enabled as false) at the “serviceStatus”
entity in the cloud.

◦ Suspend : As part of suspend functionality, the service shall get
updated (set suspended as true) at the “serviceStatus” entity in the
cloud.

◦ Enable from Suspension: As part of the suspension functionality the
service is defined as enabled (enabled is true) at the “serviceStatus”
entity.

◦ Enable: The enable functionality gives to the user will be given
the ability to enable an unregistered service. When a service gets
enabled the user request gets initialized and the related virtual
sensors are identified and stored to the “SensorServiceRelation”
entity. The service is set as enabled at the “serviceStatus” entity.

◦ Update: The update services permits changes to service. When a reg-
istered service gets updated the “Update” identifies all the required
resources from the updated request and updates the “Sensor-
ServiceRelation” entity at the cloud database. The “Update” ser-
vice shall formulate a SPARQL script, based on the updated
user request, and shall update it to the existing one along with
the updated user’s specific execution properties (the execution
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properties could include execution intervals, life of the service,
etch) at the “ServiceDescription” entity. The service status shall
get updated as enabled at the “serviceStatus” entity in the cloud.
Note that: (a) In case the request is satisfied the unsatisfied Boolean
of the “serviceStatus” entity is set to false, (b) In case the request
is unsatisfied the unsatisfied Boolean of the “serviceStatus” entity
is set to true. Optionally more detailed information regarding the
problem could be stored.

• Registered Service Status: This functionality enables the user to retrieve
the status of a specific service by providing the ServiceID. The Registered
Service Status service shall check the “serviceStatus” entity and send all
the available information back to the user.

• Service Update Resources: Based on a service provider (i.e. adminis-
trator controlled) specified time interval this service/functionality shall
check the enabled services from the “serviceDescription” entity and as
a first step identify the ones that are using mobile sensors. As a second
step it shall check if the mobile sensors fulfil the User’s request (e.g. in
respect of a specific location). Note that: (a) in case the sensor fulfills the
user’s request no further action is taken and (b) in case the sensor does
not fulfil the user’s request this sensor is unrelated/removed from the
specific service at the “sensorServiceRelation” entity and (c) as a third
step a new sensor is searched that fulfils the user’s request (e.g. in respect
of a specific location), (d) in case a new sensor is found it gets recorded at
the “ServiceDescription” entity and the “serviceDescription” entity gets
updated, (e) in case is no sensor available that fulfils the specific request
the unsatisfied field shall get updated with “true” at the “serviceStatus”
entity in the cloud.

• Get Service: This service is used to get the description of a regis-
tered service. Accessing the “serviceDescription” entity retrieves this
information.

• Get the Available Services: This service provides the ability to a user
to collect a list of registered services related with a specific user. These
service IDs are available from the “serviceDescription” entity.

• Get User: This service is used by the OpenIoT platform’s access controls
mechanisms so as to retrieve user’s information, access rights and
restrictions to implement data filtering and access rights.

Note that for the user to be able to invoke the “Resource Discovery”,
“Service User Management”, “Registered Service Status”, “Service Update
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Resources”, “Get Service”, “Get User” and “Get the available Services”
services, the user must first get logged-in to the system by authenticating
with his/her ID. Moreover, the results provided to the user are prior filtered
based on his/her account restrictions and the resources that are accessible
based on his/her profile. The “user” and the “accessControl” entities provide
the account restrictions data.

In line with the Scheduler functionalities presented above, Figure 5.7
[8] illustrates the main workflow associated with the service registration
process. In the scope of this process the Scheduler attempts to discover the
resources (sensors, ICO) that will be used for the service delivery. In case no
sensors/ICOs can fulfill the request, the service is suspended. In case a set of
proper sensors/IOCs is defined the relevant data entities are updated (e.g.,
relationship of sensors to services) and a SPARQL script associated with
the service is formulated and stored for later use. Following the successful

Figure 5.7 “Register Service” process flowchart.
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conclusion of this process, the servicer enters the «Registered» state and is
available for invocation.

Likewise Figure 5.8 [8] illustrates the process of updating the resources
associated with a given service. As already outlined, such an update process
is particularly important when it comes to dealing with IoT services that
entail mobile sensors and ICOs i.e. sensors and ICOs whose location is likely
to change within very short timescales (such as mobile phones and UAV
(UnmannedAerial Vehicles)). In such cases the update resources process could
regularly check the availability of mobile sensors and their suitability for the
registered service whose resources are updated. The workflow in Figure 5.7
assumes that the list of mobile sensors is known to the service (i.e. the sensors’
semantic annotations indicate whether a sensor is mobile or not).

Even though the process/functionality of updating resources is associated
with the need to identify the availability and suitability of mobile sensors, in
principle the update process could be used to update the whole list of resources
that contribute to the given service. Such functionality could help OpenIoT
in dealing with the volatility of IoT environments, where sensors and ICOs
may dynamically join or leave. In the scope of an IoT application, one cannot
rule out the possibility of the emergence of new sensors that can be associated
with an already established service.

Finally, Figure 5.9 [8] illustrates the process of unregistering a service,
in which case the resource associated with the service is released. The
data structures of the OpenIoT service infrastructures are also modified to
reflect the fact that the specified service no longer using its resources. As
already explained, this update is important for the later implementation of the
OpenIoT self-management and optimization functionalities.

5.4.2 Service Delivery & Utility Manager

The Service Delivery & Utility Manager has (as its name indicates) a dual
functionality. On the one hand (as a service manager) it is the module enabling
data retrieval from the selected sensors comprising the OpenIoT service. On
the other hand, the utility manager maintains and retrieves information struc-
tures regarding service usage and supports metering, charging and resource
management processes. The following paragraphs elaborate on the main
functionalities/services of the Service Delivery & Utility Manager.

The API of the Service Delivery & Utility Manager (SD&UM) serves as
the point where the OpenIoT platform provides its outcome. In particular, the
module provides the means for:
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Figure 5.8 “Update Resources” service flowchart.
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Figure 5.9 “Unregister” service flowchart.

• Executing and delivering the requested services.
• Accessing and processing data streams from the cloud.
• Taking into account processing instructions specified during the request

formulation.
• Keeping track of utility parameters associated with the service, for

example: the time the service is used, the volume of data transmitted,
as well as the number and type of sensors used.

• Managing and maintaining utility data records.

On the basis of the Service Delivery & Utility Manager API, the following
functionalities are supported:
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• Subscribe for a report: This service enables the user to invoke an
already defined service from the “ServiceDescription” entity. By pro-
viding an application’s destination address (URI) this service will collect
the results from the predefined query (sparqlScript), which is stored at
the “ServiceDescription” entity, and deliver it to the application via the
Callback Service.

• Callback Service: this service is instantiated by the “Subscribe for a
report” service and invoked based on the schedule defined by the user
at the service registration time. If the query is executed normally, the
callback service invokes the callback results service.

• Callback results: By invoking the callback results the SD&UM will
attempt to deliver results to the subscriber application.

• Unsubscribe for a report: This service is invoked by the user and
deactivates the “Subscribe for a report” one. The previously registered
subscription removal is identified by the user by providing a unique
subscription ID.

• Poll for a report: This service enables the user to invoke an already
defined service from the “serviceDescription” entity. The difference with
the “subscribe for a report” service is that it enables the user to execute
the predefined query with modified parameters (i.e. give me the results
of the last 30 min) and that this call will produce a single Result Set (it
will be executed only once and then it will be dropped). In case the query
executes normally, the “Poll for a report” service invokes the callback
results service.

• Get the utility usage of a user: This service enables the user to retrieve
the utility usage involved for a specific user. By providing the user’s ID the
“Get the utility usage of a user” service retrieves the related services with
the specific user from the “serviceDescription” entity. It then collects the
usage history from the “utilityUsageHistory” entity and by using special
utility usage algorithms and in relation with the policies applied for the
provided services, it returns the overall usage/cost of the platform for the
selected user.

• Get the utility usage of a registered service: This service enables
the user to retrieve the utility usage related with a specific registered
service. By providing the “serviceID” it collects the usage history
from the “utilityUsageHistory” entity and by employing special utility
usage algorithms combined with the charging policies specified for the
provided services it returns the usage/cost of the platform for the selected
service.
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• Record utility usage of a service: This service is invoked from the “Poll
for a report” and the “Callback service” services. On its invocation the
volume of the requested data and the type of resources used, are stored
to the “utilityUsageHistory” entity for later use from the “Get the utility
usage of a registered service” and the “Get the utility usage of a user”
services.

• Get service status: This service enables the user to retrieve the status
of a specific service by providing the service ID. The registered service
status service shall check the “serviceStatus” entity and send to the user
all the available information.

• Get service: This service is used to get the description of a registered ser-
vice. This information is retrieved by accessing the “serviceDescription”
entity.

• Get the available services: This service provides the ability to a user
to collect a list of registered services related with a specific user. These
service IDs are available from the “serviceDescription” entity.

• Get User: This service is used by the OpenIoT platform’s access controls
mechanisms so as to retrieve a user’s information, access rights and
restrictions in order to implement data filtering and access rights.

Note that to be able to invoke the “Subscribe for a report”, “Unsubscribe
for a report”, “Poll for a report”, “Get the Utility Usage of a User”, “Get
Service”, “Get User” and “Get the available Services” services the user must
first get logged-in to the system by authenticating with his/her ID. Moreover
the results provided to the user are prior filtered based on his/her account
restrictions and the resources which are accessible based on his/her profile. The
account restrictions data are provided by the “user” and the “accessControl”
entities.

5.5 Sensing-as-a-Service Example

Following paragraphs illustrate the process of establishing a fully deployable
service (from data Capturing to Visualization) using the OpenIoT reference
framework and its Sensing-as-a-Service capabilities.

5.5.1 Data Capturing and Flow Description

In this example, weather sensors are deployed in the central area of Brussels
producing data (wind chill temperature, atmospheric pressure, air temperature,
atmosphere humidity and wind speed).
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The data are captured using the GSN middleware1 through a special
wrapper (i.e. residing at the physical plane of the architecture depicted in
Figure 5.1) which collects the Weather Station’s data every 4 hours. This
is where the first level of data filtering occurs, whereas the weather station
produces data in a higher rate, in this scenario we are interested in a four
hour sampling rate. The captured data are following a sensor type created for
this occasion (named after “Weather”). The “Weather” sensor type is used to
semantically annotate the captured data at the GSN level. One GSN instance
is running for every weather station so after X-GSN announces the existence
of each sensor (bound with a specific sensor id) it starts to push the captured
data to Linked Sensor Middleware (LSM) components, which comprises an
RDF Store and is deployed in a private cloud environment (the virtualized
plane of the architecture Figure 5.1).

Then it is time to set up the service by using the Request Definition (the
utility/application plane of Figure 5.1) tool with the help of which we will
discover these sensors (by using the Scheduler), describe the request and
send it to the Scheduler (the virtualized plane of Figure 5.1) to handle it. The
Scheduler decomposes the request and registers it to LSM. The information
that should be accessed and processes in this scenario is the wind chill
temperature versus the actual air temperature in the area of Brussels for the
dates between 01/07/2014 and 01/28/2014.

The SD&UM (the virtualized plane in Figure 5.1) retrieves on demand
the formulated request executes the involved queries and feeds the Request
Presentation (i.e. the utility/application plane of the OpenIoT architecture)
with presentation data. The last step would be for the Request Presentation to
presents the received data in the predefined widgets.

The presented high level description of the data flow at the virtualized and
utility/application planes is in following paragraphs built and presented as an
OpenIoT Sensing-as-a-Service application.

5.5.2 Semantic Annotation of Sensor Data

The association of metadata with a virtual sensor is performed through an
appropriate metadata file. For example, a virtual sensor named Brussels
weather.xml will have an associated metadata file named Brussels weather.

1Also called X-GSN (extended GSN) in the context of OpenIoT, where an enhanced version
of the original GSN middleware that supports semantic annotation of virtual sensors has been
deployed.
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metadata. The metadata file contains information such as the location (in coor-
dinates), as well as the fields exposed by the virtual sensor. This also includes
the mapping between a sensor field (e.g. airtemperature) and the correspond-
ing high-level concept of the ontology (e.g., http://openiot.eu/ontology/ns/
AirTemperature).

5.5.3 Registering Sensors to LSM

Sensors can be registered to the LSM middleware (and its cloud datastore) by
executing an appropriate script (i.e. lsm-register.sh (on Linux/Mac) or lsm-
register.bat (on Windows)). This script takes as argument the metadata file
name. After this, the corresponding metadata in RDF will have been stored in
LSM. An example is illustrated in the following table:



5.5 Sensing-as-a-Service Example 125

5.5.4 Pushing Data to LSM

In order to push data to LSM, the LSMExporter processing class is
internally used by GSN/X-GSN. This is specified in the virtual sensor
configuration file:

Then, when X-GSN starts, it begins to acquire the data through the wrapper
and automatically generating the RDF data for each observation, storing
it in LSM.

Each observation will be assigned a unique URI, e.g.
<http://lsm.deri.ie/resource/29925179667811>
Then, you can query the Virtuoso server, to see the updated data, with the

SPARQL query shown in the following table:

and get the results shown in the following table:
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Once the data is in LSM, it can be accessed by the other OpenIoT components.

5.5.5 Service Definition and Deployment Using OpenIoT Tools

The first step, towards building a request for Sensing-as-a-Service, would be
to log in to the Request Definition by using our credentials (Figure 5.10).

By logging in our profile is loaded and all our previously defined services
are available to view or edit (Figure 5.11). A new Application can be created
through the “File” menu (Figure 5.12).

As a first step, the available sensors should be discovered, using the
magnifying glass at the data sources toolbox. In the map that appears we
look up for the Brussels area and we add a pinpoint to the map. Then we set
the radius of interest and we hit the “Find sensors” button (Figure 5.13 [9]).

Figure 5.10 Request definition log in.
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Figure 5.11 Request definition loaded profile.

Figure 5.12 New application creation.

This request is send to the Scheduler that in its turn queries LSM for
available sensors in this area. The reported, from LSM, sensor types are sent
to the Scheduler that in its turn sends to the Request Definition so as to fill
the available “Data sources” toolbox (Figure 5.14). As we can see two sensor
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Figure 5.13 Sensor discovery in Brussels area.

types are deployed in that area (weather sensors and Integra Traceability Kiosk
sensors).2 By dragging and dropping the blocks from our toolbox we start to
build our request. We drag and drop the “weather” sensor type and as we can
see all the sensor type observations (outputs) are available to interact with
(wind chill temperature, atmospheric pressure, air temperature, atmosphere
humidity and wind speed).

A “Selection filter” from the “Filters & Groupers” toolbox is required.
The one side of it is connected with the node and the other one with a
“Between” comparator that has already been dropped to the workspace from
the “Comparators” toolbox. We set up the “Between” comparator between
“01/07/2014” and “01/28/2014” (three weeks) which are the dates of interest

2ITK is a multi-sensor device for track & trace applications in manufacturing and used in
the scope of other OpenIoT applications.
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Figure 5.14 Comparator (between) properties.

to us to collect our data (Figure 5.14). The next step is to add a “Group” node
from the “Filters & Groupers” toolbox which we are going to use so as to
group the Wind Chill and Air Temperature by Year/Month/Day (see Figure
5.15 [9]) which is selected through the node’s options. The Wind chill and
Air temperature outputs of the “weather” node are connected to the “Group”
node attributes and automatically. As shown in Figure 5.16, these outputs are
generated also to the “Group” node.

Since we need the average values for every day, we drag and drop two
“Average” nodes from the “Aggregators” toolbox to the workspace and we
connect the Wind Chill and Air Temperature outputs to them respectively (see
Figure 5.16). The next step required in order to visualise the output (i.e. two
average values for every day) to a line chart, is to drag and drop a “Line
Chart” from the “Sinks” toolbox. The X axis presents the time and the Y axis
presents/compares the temperature values. At the line chart properties, two
series count are presented (in order to visualize two inputs) and for the X axis
we select date observation as type. Hence, all the day/month/year outputs of
the “Group” node are connected to “x1” and “x2” inputs of the “Line Chart”
node respectively and the Wind Chill and Air Temperature outputs to “y1”
and “y2” inputs respectively (Figure 5.16 [9]).
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Figure 5.15 Grouping options.

Figure 5.16 Line chart properties.

Following the visual definition of the service, the overall design can be
validated using the “Validate design” option of the “Current application”
menu (see Figure 5.17). This generates automatically the SPARQL scripts
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Figure 5.17 Validation of the service design.

that describe the graphical representation in our workspace. For every group
of data that provides its output to a widget a different script is generated. In this
specific example there is a need to visualize two different outputs (Wind Chill
and Air Temperature) in one line chart and hence two scripts are generated
(Figure 5.18 [9]).

For testing purposes these scripts could be taken and executed directly
against the SPARQL interface of LSM (e.g., Figure 5.19).

The Request Definition UI can also be used to save (register) the newly
described Sensing-as-a-Service application to the Scheduler (Figure 5.20).

5.5.6 Visualizing the Request

In order to visualize the captured data, one has to log-in to the Request
Presentation UI. Following this log-in the user profile is loaded and the user
is able to view all the services registered under his account. The registered
services are fetched from the SD&UM, which also builds the appropriate
scripts to query this information from LSM (Figure 5.21).

Then we choose the application of interest to us (i.e. “WeatherInBrussels”)
(Figure 5.22).

Accordingly, an empty widget associated with the selected application
is presented. By using the “force dashboard refresh” option from the
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Figure 5.18 SPARQL script generation.

Figure 5.19 LSM SPARQL endpoint (2 weeks wind chill in Brussels).



5.5 Sensing-as-a-Service Example 133

Figure 5.20 Save application button.

Figure 5.21 Request presentation loaded profile.
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Figure 5.22 Load “WeatherInBrussels” scenario.

“Current application” menu, the Request Presentation exploits the “poll-
ForReport (serviceID: String): SdumServiceResultSet” rest service of the
SD&UM. This SD&UM service retrieves the previously registered application
from the LSM module, retrieves the involved SPARQL scripts, executes them
against the LSM SPARQL interface, analyses the results, builds a list of the
results and how to present them to the widget and finally sends these data to
the Request Presentation module where the result is visualized (Figure 5.23
[9]). The result is a filtered result set from the initially raw data stored to the
database every 4 hours of the average Wind Chill temperature versus average
Air temperature in Brussels for the specified time interval.

5.6 From Sensing-as-a-Service to IoT-Analytics-
as-a-Service

Earlier paragraphs have illustrated the Sensing-as-a-Service paradigm, along
with its practical implementation based on the OpenIoT open source project
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Figure 5.23 Wind chill vs. air temperature in Brussels line chart.

and the tools that it provides. The Sensing-as-a-Service paradigm as imple-
mented by OpenIoT involves:

• Dynamic selection of (virtual) sensors from the set of sensors that are
registered with the (RDF-based) directory services. This selection of
sensors is empowered by the semantic unification of diverse data streams,
which is supported by OpenIoT on the basis of the semantic annotation
of virtual sensors and their observations.

• Definition of IoT data processing functions over the selected IoT data
sources based on functionalities that can be expressed as SPARQL
queries. Note that SPARQL does not enable the definition and execution
of sophisticated data analytics functions. Rather, it is limited to supporting
simple statistical processing functionalities such as the calculation of
sums, averages and variances over observations provided by the selected
virtual sensors and/or groups of virtual sensors.

Hence, the introduced Sensing-as-a-Service functionalities do not provide
the means for non-trivial data analytics based on data mining and machine
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learning schemes. Nevertheless, the extension of infrastructures like OpenIoT
with analytics functionalities is straightforward. In particular, such an exten-
sion entails the following steps:

• Integrating an analytics framework (such as the R project) in order to
support the execution of machine learning functionalities.

• Implementing a data pre-processing (i.e. data preparation) layer, aiming
at transforming the IoT data streams from the OpenIoT cloud to a format
compatible with the analytics framework (e.g., R).

• Enhancing the concepts of the ontology in order to support additional
devices, data streams and data analytics properties in a way that ensures
the semantic unification of the various data streams to be produced prior
to their integration to the analytics framework.

These steps provide a sound basis for advancing a Sensing-as-a-Service
infrastructure to the IoT Analytics as a Service one. However, additional
enhancements can be also implemented in order to ensure more scalable and
high performance processing, through for example considering data storage,
network latency and processing performance factors.

5.7 Conclusions

This chapter has focused on a special case of IoT/cloud integration, which
entails the dynamic selection of sensors and the processing of their data
towards a Sensing-as-a-Service paradigm. In addition to introducing the main
principles of Sensing-as-a-Service, the chapter has also presented the practical
aspects of this paradigm, based on a award-winning OpenIoT open source
project. The latter provides technology and ease-to-use (visual) tools that
enable the dynamic selection of virtual sensors from a cloud infrastructure
and the subsequent processing of their data on the basis of functionalities that
are provided by the SPARQL query language. The use of SPARQL as a data
processing utility is enabled due to the semantic unification of the various IoT
data streams, regardless of the (virtual) sensor that provides them. To this end,
all IoT data streams are semantically annotated in order to comply with the
same ontology. Overall, the OpenIoT project can be seen as a blueprint for
implementing similar Sensing-as-a-Service systems.

The Sensing-as-a-Service paradigm can be also seen as a foundation for
the implementation of IoT-Analytics-as-a-Service, through integrating more
sophisticated data analytics capabilities over baseline Sensing-as-a-Service
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infrastructures. The latter provide a sound basis for IoT-Analytics-as-a-
Service, since they offer the ever important data collection and semantic
unification parts. We can expect a rise of IoT-Analytics-as-a-Service infras-
tructures in the near future, as enterprises are likely to seek opportunities for
outsourcing complex the IoT analytics tasks to a cloud provider.
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6.1 Introduction

The Internet of Things is having a fast adoption in the industry and with
no doubt, in today’s increasingly competitive innovation-driven market-
place, individuals need skills to transform the growing amount of industry,
product, and customer (behavior) data into actionable information to support
strategic and tactical decisions at the organisations. The Internet of Things
(Devices) and the web are every day more and more crucial elements in this
data generation, consolidating the need for interpreting data produced by those
devices or “things”, physical or virtual, connected to the Internet. In the other
hand analytics is a time-consuming process and constantly redesigned in every
application domain. The identification of methods and tools to avoid that data
analytics over IoT Data is every time re-designed is a constant need. In this
chapter, a review of tools for IoT data analytics is reviewed. We provide an
overall vision on best practices and trends to perform analytics, we address
innovative approaches using semantics to facilitate the integration of different
sources of information [1].

The Semantic Web community plays a relevant role when interoperability
of data and integration of results are required. The semantic analytics is
an emerging initiative talking about Linked Open Data (LOD) reasoning,
provides a vision on how to deduce meaningful information from IoT data,
aiming to share the way to interpret data in a interoperable way to produce new
knowledge [2]. Semantic analytics unifies different semantics technologies
and analytic tools such as logic-based reasoning, machine learning, Linked
Open Data (LOD), the main objective is to convert data into actionable
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knowledge, reasoning combines both semantic web technologies and reason-
ing approaches.

Collecting, transforming, interpreting data produced by devices “things”
connected to the Internet/Web is a time-consuming process and constantly
requires a redesign process for all applications that uses different data
sources [3].

In this chapter, we analyse complementary research fields covering rea-
soning and semantic web approaches towards the common goal of enriching
data within IoT. The involvement of semantics offers new opportunities
and methods for production and discovery of information and also trans-
forms information into actionable knowledge. The most common used
methods are: 1) Linking Data, 2) Real-time and Linked Stream Process-
ing, 3) Logic-based approaches, 4) Machine Learning based approaches,
5) Semantics-based distributed reasoning, and 6) Cross-domain recommender
systems.

Ozpinar in 2014 [4] explained that resolving the meaning of data is a
challenging problem and without processing it the data is invaluable. Pereira
in 2014 [5] highlighted the necessity to interpret, analyse and understand
sensor data to perform machine-to-machine communications. They classify
six techniques such as supervised learning, unsupervised learning, rules,
fuzzy logic, ontological reasoning and probabilistic reasoning in their survey
dedicated to context-awareness for IoT. Further, they clearly explain pros
and cons and sum up them in a table. According to their table, rule and
ontology-based techniques contain few cons. Their shortcomings are to define
manually rules which can be error prone and that there is no validation or
quality checking. With such approaches, rules are only defined once in an
interoperable manner. Pros concerning rule-based system are that rules are
simple to define, easy to extend and require less computational resources.
In semantic analytics and particularly ‘Sensor-based Linked Open Rules’ [6]
will overcome these limitations, rules can be shared and reused and validated
by domain experts. To deduce meaningful information from sensor data,
the following main challenges to address are analysed: a) Real-time data,
b) Scalability, c) Which machine learning algorithm should be apply for
specific sensor datasets because there is a need to assist users in choosing the
algorithm fitting their need, e) How to unify exiting systems and tools (e.g,
S-LOR, LD4Sensors, KAT and LSM) since they are providing complementing
approaches towards the same goal of enriching data, and f) How to extend KAT
to assist experimenters to deal with machine learning and with real-time and
to be compatible with the Stream Annotation Ontology (SAO).
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Currently what is missing, are the methods to design innovative approaches
for linked open data analytics. Recent approaches like Linked Open Reasoning
(LOR), introduced in [2], inspired from the recent work in the context of
European research projects. Linked Open Reasoning provides a solution to
deduce meaningful information from IoT data and aims to share the way
to interpret data in an interoperable way. This approach unifies different
reasoning approaches such as logic-based reasoning and machine learning.
Linked Open Reasoning combines both semantic web technologies and rea-
soning approaches. There is a vision that machine-learning approaches might
not be necessary to interpret data produced by simple sensors. It will avoid the
learning curve to deal with machine learning algorithms. The idea of “Linked
Open Reasoning” (LOR) is an extension of our preliminary idea, Sensor-based
Linked Open Rules (S-LOR) [6]. S-LOR is a dataset of interoperable IF THEN
ELSE rules to deduce meaningful information from simple sensors such as
thermometer.

6.2 Related Work

In this article, a complementary research covering reasoning and semantic web
approaches towards the common goal of enriching data within IoT is presented
and studied following the different approaches: 1) Linking Data, 2) Real-
time and Linked Stream Processing, 3) Logic-based approaches, 4) Machine
Learning based approaches, 5) Semantics-based distributed reasoning, and
6) Cross-domain recommender systems. We conclude by comparing different
approaches and tools and highlighting the main limitations.

6.2.1 Linking Data

Karma is a data integration tool dealing with heterogeneous data such as XML,
CSV, JSON, Web APIs, etc. based on ontologies and eases the publication of
data semantically annotated with RDF [7]. This tool has been used to aggregate
smart city data and semantically annotate data according to the KM4City
ontology [8].

The LD4Sensors/inContext-Sensing is a tool that has been designed within
the SPITFIRE EU project. This tool enriches sensor data with the Linked
Data by using the Pachube API, the SPITFIRE ontology and the Silk tool to
align datasets such as DBPedia, WordNet, Musicbrainz, DBLP, flickr wrappr
and Geonames [9]. LD4Sensors provides JSON Web services, API and GUI
to automate the annotation and linking process of sensor data. The semantic
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annotation is done with the Jena library and semantic data are stored using Jena
TDB. LD4Sensors integrates a SPARQL endpoint to ease access to semantic
sensor data. The semantic dataset and SPARQL endpoint are referenced on
the dataset catalogue called DataHub. LD4Sensors provide linking but do not
deal with real-time aspect nor interpret sensor data produced by devices by
reusing domain-specific knowledge expertise.

6.2.2 Real-time & Linked Stream Processing

In recent years, a significant number of technologies that facilitate real-
time and linked stream processing have also emerged. Linked Stream Data
is an extension of the SPARQL query language and engine to deal with
stream sensor data and enrich them with the Linked Open Data cloud [10].
SPARQL is an RDF query language and protocol produced by the W3C
RDF Data Access Working Group (DAWG). SPARQL is extensively used
in Semantic communities and was released as a W3C Recommendation in
2008. C-SPARQL was an earlier proposal of streaming SPARQL system
[11]. Furthermore, the Continuous Query Evaluation over Linked Streams
(CQELS) combines streaming capabilities and Linked Data [12, 13]. On top
of this Le-Phuoc et al. [14] developed the SensorMasher and Linked Sensor
Middleware (LSM) platforms in order to facilitate publishing of ‘Linked
Stream Data’ and their use within other applications. In particular, they
developed a user friendly interface to manage environmental semantic sen-
sor networks. SPARQLStream is another novel approach for accessing and
querying existing streaming data sources [15]. Specifically, SPARQLstream
has been designed as an extension to the SPARQL 1.1 query language to deal
with real-time sensor data [16].

6.2.3 Logic

Several mechanism and tools have also been developed in order to apply
processing logic over streams. For example, Sensor-based Linked Open Rules
(S-LOR) is an approach to share and reuse the rules to interpret IoT data, as
explained in Section 6.3.3. It provides interoperable datasets of rules compliant
with the Jena framework and inference engine. The rules have been written
manually but are extracted from the Linked Open Vocabularies for Internet
of Things (LOV4IoT) dataset [62, 63], an ontology/dataset/rule catalogue
designed by domain experts in various applicative domains relevant for IoT
such as healthcare, agriculture, smart home, smart city, etc.

Linked Edit Rules (LER) [17] is another recent approach similar to
the Sensor-based Linked Open Rules (S-LOR) to share and reuse the rules
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associated to the data. This work has been not applied to the context of IoT.
LER is more focused on checking consistency of data (e.g., a person’s age
cannot be negative, a man cannot be pregnant and an underage person cannot
process a driving license). LER extends the RDF Data Cube data model by
introducing the concept of EditRule. The implementation of LER is based on
Stardogs rule reasoning to check obvious consistency.

Another relevant approach is provided by the BASIL framework (Build-
ingAPIs SImpLy), which combines REST principles and SPARQL endpoints
in order to benefit from Web APIs and Linked Data [18]. BASIL reduces the
learning curve of data consumers since they query web services exploiting
SPARQL endpoints. The main benefit is that data consumers do not need to
learn the SPARQL language and semantic web technologies.

6.2.4 Machine Learning

Machine learning is one of the most extended techniques in information
systems, [19] and [20] are the earlier work to propose the idea to reason on
semantic sensor data (e.g., to deduce potentially icy, blizzard, freezing con-
cepts). The work described in [21] explains the idea of ‘semantic perception’
[22, 23] to interpret and reason on sensor data. This work developed an ontol-
ogy of perception called IntellegO. A semantic-based approach to integrate
abductive logic framework and Parsimonious Covering Theory (PCT) to inte-
grate semantics in resource-constrained devices was also proposed. It explains
that the development of background knowledge is a difficult task and out of
the scope of this work. For this reason, recently, the LOV4IoT dataset has been
designed to encourage the reuse of the domain knowledge expertise relevant
for IoT. LOVIoT shows numerous challenges to automatically combine the
background knowledge. IntellegO also illustrates that perception does not
enable a straightforward formalization using logic-based reasoning. e.g., for
simple sensors such as temperature or precipitation, logic-based reasoning
is faster, flexible and easier for sharing. For more complex sensors such as
accelerometers or ECG, logic-based reasoning is insufficient, and the uses of
data mining approaches are unavoidable.

Beyond learning about the data, there are work (i.e. [24, 25]) introducing
a Knowledge Acquisition Toolkit (KAT) to infer high-level abstractions from
sensor data provided by gateways in order to reduce the traffic in network com-
munications. KAT comprises three components: 1) An extension of Symbolic
Aggregate Approximation (SAX) algorithm, called SensorSAX, 2) Abductive
reasoning based on the Parsimonious CoveringTheory (PCT), and 3)Temporal
and spatial reasoning. It uses machine learning techniques (i.e. k-means
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clustering and Markov model methods) and Semantic Web Rule Language
(SWRL) rule-based systems to add labels to the abstractions. KAT proposes
the use of domain-specific background knowledge, which is not sufficient for
Internet of Things, unless some another approach (e.g., the LOV4IoT dataset)
is also integrated.

The work described in [26] employs the abductive model rather than
inductive or deductive approaches to solve the incompleteness limitation due
to missing observation information. The work is tested on real sensor data (i.e.
temperature, light, sound, presence and power consumption). Their gateways
support TinyOS, Contiki enabled devices and Oracle SunSpot nodes.

There are also approaches that emphasize the use of machine learning
on sensor data [27]. This includes for example the use of decision trees and
Bayesian network to analyze datasets comprising 16,578 measurements. The
focus of the approach is on four kinds of sensor measurements: temperature,
humidity, light and pressure. Furthermore, the dataset used has additional
information such as weekday, hour interval, position of the window, number
of computers working and number of people in the lab. An enrichment of
sensor data with semantics has been also taken place [28, 29]. This enrichment
provides context for sensor measurements, based on well-known ontologies
such as Geonames for location, Geo WGS84 for coordinates, the W3C SSN
ontology to describe sensors, the SWEET ontologies, as well as the W3C Time
ontology. However, no need for IoT-related domain ontologies is expressed,
while the need for semantic reasoners as a mean to infer new knowledge from
sensor data is outlined [28].

The SemSense architecture [30] is one more approach to collect and then
publish sensor data as Linked Data. Also, in [31], the authors collect data
on the fly and then validate and link them with Linked Open Data (LOD)
datasets. Devaraju et al. have also designed an ontology for weather events
observed by sensors such as wind speed and visibility [32]. They are focused
on blizzard related phenomena. They deduce high-level abstractions such as
the types of snow (e.g., soft hail, snow, snow pellet, blizzard, winter storm,
avalanche, flood, drought, and tornado). Such abstractions are deduced with
rule-based reasoning, the implementation is based on Semantic Web Rule
Language (SWRL)1 and the Jess reasoning engine. The DUL ontology and the
W3C SSN ontology are used. The approach is evaluated based on the Canadian
Climate Archives database. In another work, Wang et al. explain that the SSN
ontology “does not include modeling aspects for features of interest, units
of measurement and domain knowledge that need to be associated with the

1https://www.w3.org/Submission/SWRL/



6.2 Related Work 145

sensor data to support autonomous data communication, efficient reasoning
and decision making” [33].

In recent years, there have also been efforts to interpret data produced
by accelerometer, gyroscope, microphone, temperature and light sensors
embedded in mobile phones [34]. These efforts use Hidden Markov Models
(HMMs) and semantic web technologies to deduce activities. The rules are
implemented as SPARQL queries. Moreover, Ramparany et al. introduced
the need of a domain-specific automated reasoning system [35]. This work
envisages that such a system could be based on Description Logic or Complex
Event Processing (CEP) for interpreting IoT data. However, it does not propose
a dataset with predefined rules that could be easily shared and reused by
developers.

6.2.5 Semantic-based Distributed Reasoning

One of the early work on semantic-based distributed reasoning has been
DRAGO, the Distributed Reasoning Architecture for a Galaxy of Ontologies,
implemented as a peer-to-peer architecture [36]. The goal of DRAGO was
to reason on distributed ontologies. Likewise, Kaonp2p has been designed to
query over distributed ontologies [35]. Moreover, LarKC (Large Knowledge
Collider) is another scalable platform for distributed reasoning [37]. Similarly,
the Marvin framework is a scalable platform for parallel and distributing rea-
soning on RDF data [38].Also, Schlicht et al. propose a peer-to-peer reasoning
for interlinking ontologies [36]. These works outline the need to provide
interoperable heterogeneous sensor-based rules and combine cross-domain
ontologies and datasets in the context of IoT applications.

Abiteboul et al. have also approached the Web as a distributed knowledge
base and proposed an automated reasoning over it [40]. This work demon-
strated the importance of reusing sensor-based domain ontologies and rules.
Also, WebPIE (Web-scale Parallel Inference Engine) is an inference engine
for semantic web reasoning (OWL and RDFS) based on the Hadoop BigData
platform [41]. WebPIE is scalable over 100 billion triples [42]. Another
scalable system has been introduced by Coppens et al. [43] as an extension to
the SPARQL query language to support distributed and remote reasoning. The
relevant implementation of the system has been based on the Jena ARQ query
engine. One more semantic reasoning framework for BigData has been intro-
duced by Park et al. based on XOntology and SPARQL[44]. It uses the Hadoop
platform, HDFS and MapReduce to deal with thousands of sensor data nodes.

Overall, it is noteworthy that none of the discussed distributed reasoning
frameworks proposes and implements interoperable rules as a means of
interpreting sensor data.
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6.2.6 Cross-Domain Recommender Systems

Recently, cross-domain semantic and rule-based recommender systems have
also been designed [45] or [46]. Such systems underline the importance
of providing interoperable reasoning. Some works (e.g., [47, 48]) propose
a domain-independent recommendation system to provide personalization
services of different domains (tourism, movies, books). They incorporate
semantics into a content-based system to improve the flexibility and the qual-
ity, a domain-based inference (side-ward propagation, upward propagation)
for user’s interests and a semantic similarity method is used to refine item-user
matching algorithm. Such cross-domain recommender systems highlight the
importance to provide a domain-independent reasoning.

At the same time, Hoxha et al. provide a cross-domain recommender
system based on semantics and machine learning techniques (Markov logic)
[45], while Tobias et al. provide a context-aware cross-domain recommender
system. They exploit semantic web technologies and related tools such as
DBpedia and the spreading activation algorithm [46]. These works under-
line the importance of a cross-domain reasoning that could also applied to
sensor data.

6.2.7 Limitations of Existing Work

Most of the presented works have limitations when it comes to adding semantic
capabilities for analytics in an IoT context. For example:

• LD4Sensors does not deal with real-time data and does not provide
inference reasoning to deduce new information. However, datasets have
been linked to get additional information.

• LSM does not integrate inference-reasoning engine to deduce new
information.

• KAT has some usability limitations. Non-experts in machine learning
have some difficulties to use this tool since they have to choose the
algorithm without any assistance.

• S-LOR provides interoperable Jena rules. However, the same rules could
be designed with SPARQL CONSTRUCT. Since SPARQL is a recom-
mendation it would be better to share and reusing the rules according to
SPARQL CONSTRUCT.

In Figure 6.1, we indicate the pros and cons of different approaches to enrich
IoT data on the basis of: (A) Logic or rule-based reasoning, (B) Machine
learning, (C) Linked Stream processing, (D) Reusing domain knowledge with
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Figure 6.1 Summary of existing approaches for IoT data enrichment.

Linked Open Data (LOD), Linked Open Vocabularies (LOV) and Linked Open
Rules (LOR); (E) Distributed reasoning, and (F) Recommender systems.

Figure 6.2 depicts a classification of different tools according to the
different approaches. Some of the existing works are based on machine
learning algorithms. Usually, machine learning is employed when rule-based
algorithms are infeasible. None of the existing works deals with the extraction,
reuse and linking of rules already implemented in domain-specific projects. To
deal with such limitations, there is a need to build a dataset of interoperable
rules to reason on sensor data. To achieve this task, sensor data should be
interoperable. This approach should be easy to be shared and reused by other
projects. Since, SWRL rules are increasingly popular the approach will be
based on this language. Further, sharing, reusing and combining SWRL rules
will be typically easier than data mining algorithms.

6.3 Semantic Analytics

The semantic web community has designed open approaches for sharing and
reusing open data by means of using Linked Data, Linked Vocabularies, and
Linked Services as a first approach for enabling analytics. Inspired from
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Figure 6.2 Classification of tools according to reasoning approaches.

the Semantic Web community semantic analytics plays a relevant role when
interoperability of data and integration of results are required.

6.3.1 Architecture towards the Linked Open Reasoning

In this section, we describe and we attempt to unify reasoning approaches.
Figure 6.3 presents a summary of the studied reasoning tools divided, for an
easier understanding, in 3 layers and summarised as follow:

• The first layer (top) shown at the bottom provides API and web services
to access to reasoning approaches. This layer provides access to simple
reasoning services or complex services which are a composition of
existing services.

• The second layer (middle) shows the generic reasoning approaches. We
referenced, classified and analyzed the following different reasoning
methods, including: (A) Machine Learning, which is a quite popular
approach, yet it needs data to be integrated, which are not always
available; (B) Real-time techniques, which are important when dealing
with real-time data; (C) Linking techniques, which enable the enrichment
of IoT data with background knowledge; (D) Complex Event Processing
(CEP) approaches, which apply inference based reasoning in order to
extract or deduce new information from IoT data; (E) Sharing and
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Figure 6.3 Reasoning main operations.

reusing approaches, which enable deduction of new information from
data produced by Internet Connected Objects (ICOs) in a way similar to
Linked Open Data.

• The third layer (bottom) indicates the concrete tools that we could
reuse and unify to interpret data. Such tools are: (A) the Knowledge
Acquisition Toolkit (KAT) which is a machine-learning approach deal-
ing with real-time data; (B) The Linked Sensor Middleware (LSM),
which deals with real-time data and enables linking between hetero-
geneous datasets; (C) IntelligO, which is a machine-learning approach
using the Parsimonious Covering Theory (PCT); (D) Linked Data for
Sensors (LD4Sensors), which enables linking of sensor datasets and
(E) Sensor-based Linked Open Rules (S-LOR) which is a rule-based rea-
soning engine and innovative approach to share and reuse interoperable
deductive rules in order to infer new knowledge from IoT data.

6.3.2 The Workflow to Process IoT Data

Figure 6.4 illustrates different processes and steps required to combine data
from heterogeneous sources and to build innovative and interoperable applica-
tions. The figure illustrates the SEG 3.0 methodology [2] that is extended and
used for interoperability but also for semantic analytics. In this book chapter,
we are mainly focused on the reasoning layer. It comprises the following steps:
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Figure 6.4 IoT process defined by SEG 3.0 methodology.

• Composition of IoT data, enabling the unification of heterogeneous data
coming from different IoT sources and particularly re-using different data
formats (e.g., CSV, Excel) or different terms (e.g., temp or temperature).
This activity requires a common dictionary to unify terms employed to
describe data. For example, the composing layer could return the SenML
format to describe sensor data [49].

• IoT Data Modeling, which enables the annotation of data with semantic
web technologies (e.g., RDF, RDFS and OWL). This step employs
models, vocabularies and ontologies to unify data, which is prerequisite
for the next steps. The M3 ontology is used to unify semantic sensor
data [50].

• Linking IoT data domains, enabling the enrichment of data with meta-
data from other RDF datasets to get additional information. It exploits
the idea of Linked Data and Linked Vocabularies for IoT applications.



6.3 Semantic Analytics 151

• Reasoning over IoT Streaming Data, which enables the updating of
the database/triple store with additional triples for instance by using a
reasoning engine (e.g., Jena rule-based inference engine) to infer high
level abstraction from data. It exploits the idea of Linked Rules.

• Querying IoT Data, which enables the querying of RDF datasets through
the SPARQL language based on ontologies used in the previous steps. It
is an essential step to get data and build end-users services/applications.

• IoT Services activation and control, which enables end-users to access
smarter data. The data is available through interoperable APIs or web
services (e.g., RESTful web services). Such web services returns the
result provided by the SPARQL query engine.

• Composition of IoT services, which enables the development of com-
plex applications based on the composition of several services. It can be
achieved through the use of web services or semantic web services.

The SEG 3.0 methodology supports the vision of semantic interoperability
from data to end-users applications, which is inspired from the ‘sharing and
reusing’ based approach as depicted in Figure 6.4. The realization of the
vision is based on a combination of several of the concepts that have been
already presented including: 1) Linked Open Data (LOD); 2) Linked Open
Vocabularies (LOV); 3) Linked Open Rules/Reasoning (LOR); and 4) Linked
Open Services (LOS).

In the following paragraphs, we extend and apply these approaches to IoT
and smart cities. Note that Linked Open Data (LOD) is an approach to share
and reuse the data [51, 52]. However, previous works on ‘Linked Sensor Data’
[53, 54] do not provide any tools for visualizing or navigating through IoT
datasets. For this reason, a Linked Open Data Cloud for Internet of Things
(CLOuDIoT) infrastructure to share and reuse data produced by sensors is
being implemented.

Linked Open Vocabularies (LOV) is an approach to share and reuse
the models/vocabularies/ontologies [55]. LOV did not reference any IoT
ontologies. For this reason, we have also designed the Linked Open Vocab-
ularies for Internet of Things (LOV4IoT) [62, 63], a dataset of almost 300
ontology-based IoT projects referencing and classifying: 1) IoT applicative
domains, 2) Sensors used, 3) Ontology status (e.g., shared online, best
practices followed), 4) Reasoning used to infer high level abstraction, and
5) Research articles related to the project. This dataset contains the background
knowledge required to add value to the data produced by Internet Connected
Objects (ICOs).
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6.3.3 Sensor-based Linked Open Rules (S-LOR)

Linked Open Reasoning (LOR) is an approach for sharing and reusing the ways
to interpret the data and to deduce new information (e.g., machine learning
algorithm used, reusing rules already designed by domain experts). To this
end, LOR can be extended towards using semantics Sensor-based Linked
Open Rules (S-LOR), a dataset of interoperable rules (e.g., if-then-else rules)
used to interpret data produced by sensors [56]. Such rules are executed with
an inference engine (e.g., Jena) that updates the triple store with additional
triples. For example, the rule can be if the body temperature is greater than
38 degree Celsius than fever. In this example, the triple store will be updated
with this high level abstraction ‘fever’. The approach is inspired from the idea
of ‘Linked Rules’ [57] that provides a language to interchange semantic rules
but not the idea of reusing existing rules.

6.4 Tools & Platforms

Data analytics is a complex activity that requires examining raw data with
the purpose of drawing conclusions. In IoT, the combination of different
data types, in nature and in format, makes this practice more complex. Data
analytics is extensively used in science to verify or eliminate existing models
or theories, analytics is also used in many domains to allow companies and
organization to make better business decisions. Data analytics focuses on
inference, the process of generate conclusion(s) based solely on what is already
known by the researcher.

On the other hand, semantic analytics is an advanced technique that
uses the normalisation of data to a one particular format with the advantage
of data alignment and interoperability. This allows the generation of more
information. Necessary steps for semantic analytics, along with related tools
are presented in the following paragraphs.

6.4.1 Semantic Modeling and Validation Tools

A variety of semantic modeling tools have recently emerged and are already
used in the scope of IoT applications. For example:

• HyperThing2 is a semantic web URI validator, which determines
whether a URI identies a Real World Object or a Web document resource.
It checks whether the URIs publishing method follows the W3C hash
URIs and 303 URI practices. It can also be used to check the validity of the

2http://www.hyperthing.org
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chains of the redirection between the Real World Object URIs and Doc-
ument URIs, in order to prevent the data publisher mistakenly redirect.

• NeON3 is a methodology for Ontology Engineering in a networked
world.

• OWL Validator is another semantic validation project that accepts
ontologies written in RDF/XML, OWL/XML, OWL Functional Syntax,
Manchester OWL Syntax, OBO Syntax, and KRSS Syntax.

• OQuaRE4 is a square-based approach for evaluating the quality of
ontologies. OQuaRE covers two main processes: software quality
requirement specifications and software quality evaluation.

• OntoClean5 provides a definition of metaproperties that help with the
construction of ontology language descriptions of problem domains.

• OnToology6 is a system to automate part of the collaborative ontology
development process. OnToology works surveying a repository with
an OWL file, produce diagrams, a complete documentation and do
validation based on common pitfalls.

• Oops7 helps ontology designers detect some of the most common pitfalls
appearing within ontology developments in particular when: (a) the
domain or range of a relationship is defined as the intersection of two
or more classes; (b) no naming convention is used within the identifiers
of the ontology elements; and (c) a cycle between two classes in the
hierarchy is included in the ontology.

• Ontocheck8 is a tool for verifying ontology naming conventions and
metadata completeness following cardinality checks on mandatory and
obligatory annotation properties and reviewing naming conventions via
lexical analysis and labeling enforcement.

• OntoAPI9 is a consumerAPI that can process the response of an ontology
evaluation web service provider.

• OntoMetric10 is a method to choose the appropriate ontology.
• Prefix11 simplifies the tedious task of any RDF developer, by remember-

ing and looking up URI prefixes.

3http://neon-toolkit.org/wiki/Main Page
4http://miuras.inf.um.es/oquarewiki/index.php5/MainPage
5http://www.ontoclean.org/
6http://ontoology.linkeddata.es
7http://oops.linkeddata.es
8http://www2.imbi.uni-freiburg.de/ontology/OntoCheck/
9https://sourceforge.net/projects/drontoapi/

10http://oa.upm.es/6467/
11http://prefix.cc/
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• Vapour12 is a linked Data Validator in the form of a scripting approach to
debug content. Vapour facilitates the task of testing the results of content
negotiation on a vocabulary.

• Vocab13 is an open source project that allows RDF developers to look up
and search for Linked Data vocabularies. Developers can search URIs
with arbitrary queries or look up specific URIs.

• The W3C RDF Validator14 is an online service for checking and
visualizing your RDF documents, W3C RDF validator is based on
Another RDF Parser.

6.4.2 Data Reasoning

There are also numerous data reasoners that enable knowledge generation and
activation. However not all of them are in a mature stage nor serve the same
purpose. By means of its level of complexity to configure actionable data in
the IoT, reasoners can be catalogued not only by their linkage and discovery
mechanisms, but also on the basis of their usability in the area. The following
selection is a comprehensive list of reasoners that can be used in the scope of
IoT streaming and IoT analytics applications:

• CEL DL (Description Logic)15 is a reasoner which implements a
polynomial-time algorithm. The supported description logic (EL+) offers
a selected set of expressive means that are tailored towards the formu-
lation of domain-specific ontologies. CEL’s main reasoning task is the
computation of the subsumption hierarchy induced by EL+ ontologies.

• Euler16 is an inference engine supporting logic-based proofs. It is
a backward-chaining reasoner enhanced with Euler path detection. It
has implementations in Java, C#, Python, JavaScript and Prolog. In
conjunction with N3 it is interoperable with W3C Cwm.

• FaCT++17 is the new generation of the well-known FaCT OWL-DL
reasoner. FaCT++ uses the established FaCT algorithms, but with a
different internal architecture.

• HermiT18 is a highly efficient OWL reasoner. HermiT is a reasoner for
ontologies written using the Web Ontology Language (OWL). HermiT

12http://linkeddata.uriburner.com:8000/vapour
13http://vocab.cc
14http://www.w3.org/RDF/Validator/
15https://lat.inf.tu-dresden.de/systems/cel/
16https://www.w3.org/2001/sw/wiki/Euler
17http://owl.man.ac.uk/factplusplus/
18http://www.hermit-reasoner.com
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is based on a novel “hypertableau” calculus which provides much more
efficient reasoning than any previously-known algorithm.

• JESS (Java Expert System Shell)19 is in the form of a Jena inference
implementation with rule engine and scripting environment written
entirely in JavaTM.

• Jena Eyeball20 is a command-line semantics validator for checking
RDF/OWL common problems. Eyeball is a Jena-based tool for checking
RDF models (including OWL) for common problems. It is user-
extensible using plugins.

• Kaon221 is an OntoBroker designed for managing ontologies. KAON2 is
a successor to the KAON project often referred to as KAON1. The main
difference to KAON1 is the supported ontology language: KAON1 used
a proprietary extension of RDFS, whereas KAON2 is based on OWL-DL
and F-Logic.

• Nools22 is a RETE based rule engine written entirely in javascript. When
using nools tool, a flow which acts as a container for rules that can later
be used to get a session.

• OWLlink API23 is designed to access remote reasoners. OWLlink API
has a Java interface for the OWLlink protocol on top of the Java-based
OWL API. The OWLlink API enables OWL API-based applications to
access remote reasoners (so-called OWLlink servers), and it turns any
OWL API aware reasoner into an OWLlink server.

• Pellet24 is an open-source Java based OWL 2 reasoner, It can be used in
conjunction with both Jena and OWL API libraries.

• Racer Pro25 is an OWL reasoner tool that can perform reasoning tasks.
Racer pro has an inference server for the Semantic Web.

• RIF4j26 is a reasoning engine for RIF-BLD that provides a Java object
model for RIF-BLD and supports the parsing and serialization of RIF-
BLD formulas. Furthermore, it provides a prototype implementation of
a RIF-BLD consumer based on the Datalog engine IRIS.

19http://www.jessrules.com
20http://jena.apache.org/documentation/tools/eyeballgetting-started.html
21http://kaon2.semanticweb.org
22http://c2fo.io/nools
23http://owllink-owlapi.sourceforge.net
24https://www.w3.org/2001/sw/wiki/Pellet
25https://www.w3.org/2001/sw/wiki/RacerPro
26http://rif4j.sourceforge.net
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Figure 6.5 IoT reasoning data framework within FIESTA-IoT.

6.5 A Practical Use Case

Federated Interoperable Semantic IoT/cloud Testbeds and Applications
(FIESTA-IoT)27 is an EU project (funded in the context of the H2020
framework), which focuses on integrating IoT platforms, testbeds, data
and associated silo applications. FIESTA-IoT opens up new opportunities
in the development and deployment of experiments that exploit data and
capabilities from multiple geographically and administratively dispersed IT
testbeds. The project employs semantic (ontology) modeling as a mechanism
to associate different domains and beyond that discover relationships amongst
the information.

Figure 6.5 shows the designed FIESTA-IoT reasoning engine approach
that by design will be used by experimenters/users of the platform. Based
on our analysis of the literature, a logic-based/rule-based reasoning is used.
Experimenters can interact with the reasoning engine as follows:

• Increasing the actionable knowledge by contributing to the Semantic
Rule Repository, a dataset of interoperable rules. Such rules are IF THEN
ELSE rules.

27http://fiesta-iot.eu/
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• Executing the reasoning engine to infer additional information. Once
executed, the reasoning engine updates the triple-store with additional
triples (e.g., high level information).

• Querying inferred data, by executing a query engine that interacts with
the triple store, called Semantic Data Repository.

• Implementing the rules as Jena rules since we used the Jena framework to
build semantic web applications. Moreover, Jena provides an inference
engine to easily execute the Jena rules and deduce additional information.
To enhance interoperability, Jena rules can be designed as SPARQL
CONSTUCT rules.

An overview of the FIESTA-IoT system is provided in Figure 6.5.

6.6 Conclusions

In this chapter, a summary of complementary research fields covering reason-
ing and semantic web approaches towards the common goal of enriching data
within the IoT domain has been presented. The different aspects around seman-
tic analytics like Linking Data, Real-time and Linked Stream Processing,
Logic-based approaches, Machine Learning based approaches, semantics-
based distributed reasoning, and cross-domain recommender systems, have
been summarized and discussed.

The presented approaches and tools are able to deduce meaningful infor-
mation from IoT data, based on the combination and integration of best
practices from the literature. This approach is currently applied in the context
of the H2020 FIESTA-IoT project. It leverages a combination of concepts and
tools associated with Linked Open Data, Linked Open Vocabularies, Linked
Open Services and Linked Open Reasoning.
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7.1 Introduction

Cities are becoming more and more of a focal point for our economies
and societies at large, particularly because of on-going urbanisation, and the
trend towards increasingly knowledge-intensive economies as well as their
growing share of resource consumption and emissions. To meet public policy
objectives under these circumstances, cities need to change and develop, but
in times of tight budgets this change needs to be achieved in a smart way:
our cities need to become “smart cities”. In order to follow the policy of the
decarbonisation of Europe’s economy in line with the EU 20/20/20 energy and
climate goals, today’s ICT, energy (use), transport systems and infrastructures
have to drastically change. The EU needs to shift to sustainable production and
use of energy, to sustainable mobility, and sustainable ICT infrastructures and
services. Cities and urban communities play a crucial role in this process. Three
quarters of our citizens live in urban areas, consuming 70%1 of the EU’s overall
energy consumption and emitting roughly the same share of Green House
Gas (GHG). Of that, buildings and transport represent the lion’s share. Within
the worldwide perspective of energy efficiency, it is important to highlight
that buildings are responsible for 40% of total EU energy consumption and
generate 36% of GHG [1]. This indicates the need to achieve energy-efficient
buildings to reduce their CO2 emissions and their energy consumption.

Moreover, the building environment affects the quality of life and work of
all citizens. Thus, buildings must be capable of not only providing mechanisms

1Source: European Commission 2013.
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to minimize their energy consumption (even integrating their own energy
sources to ensure their energy sustainability), but also of improving occupant
experience and productivity. In this chapter, we analyse the important role
that buildings represent in terms of their energy performance at city level
and, even, at world level, where they represent an important factor for
the energy sustainability of the planet. Analysis of the energy efficiency
of the built environment has received growing attention in the last decade
[2–4]. Various approaches have addressed energy efficiency of buildings
using predictive modelling of energy consumption based on usage profiles,
climate data and building characteristics. On the other hand, studies have
demonstrated the impact of displaying public information to occupants and
its effect in modifying individual behaviour in order to obtain energy savings
[5, 6]. Nevertheless, most of the approaches proposed to date only provide
partial solutions to the overall problem of energy efficiency in buildings,
where different factors are involved in a holistic way, but which, until now,
have been addressed separately or even neglected by previous proposals.
This division is frequently due to the uncertainty and lack of data and
inputs included in the management processes, so that analysis of how energy
in buildings is consumed is incomplete. In other words, a more integral
vision is required to provide accurate models of the energy consumed in
buildings [7].

The need for the robust characterization of energy use in buildings has
gained attention in light of the growing number of projects and developments
addressing this topic. Although much interest has been put into smart building
technologies, the research area of using real-time information has not been
fully exploited. In order to obtain an accurate simulation model, a detailed
representation of the building structure and its subsystems is required, although
it is the integration of all these pieces that requires the most significant
effort.

The integration and development of systems based on ICT and, more
specifically, the IoT [8], are important enablers of a broad range of applications,
both for industries and the general population, helping make smart buildings
a reality. IoT permits the interaction between smart things and the effective
integration of real world information and knowledge in the digital world.
Smart (mobile) things endowed with sensing and interaction capabilities
or identification technologies (such as RFID) provide the means to capture
information about the real world in much more detail than ever before.

Regarding this real-world data extraction, the great adoption of personal
handheld devices, like smartphones, has enabled the crowdsensing paradigm
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as a prominent mechanism to capture a wide range of (mobile) data [9]. Unlike
other sensing approaches, in this case the collected data is directly generated
by the users’ personal contrivances, so it can be a useful solution for soliciting
feedback from a sheer number of people in an explicit or implicit manner.
From a smart building perspective, such feedback provides information about
its occupants’preferences and habits that could be considered in order to come
up with customized energy-efficiency solutions.

Nevertheless, challenges related to: (1) the management of the huge
amount of data provided in real-time by a large number of IoT and crowd
based devices deployed, (2) the interoperability among different ICT, and
(3) the integration of many proprietary protocols and communication standards
that coexist in the ICT market applicable to buildings (such as heating, cooling
and air conditioning machines), need to be faced before flexible and scalable
solutions based on the IoT paradigm can be offered.

The structure of the present chapter is as follows: Section 7.2 describes
the key issues involved in energy efficiency in buildings. Among these issues,
relevant parameters affecting energy consumed in buildings are described and
proposed to be included as input data of building management for energy
efficiency. Then, Section 7.3 reviews the main related works which propose
partial solutions to the problem addressed in this chapter. Section 7.4 presents
a general architecture proposal for management systems of smart buildings,
which is modeled in three layers with different functionalities. Section 7.5
describes our proposal for an energy efficiency building management system.
This proposal tackles three different subproblems, each one of these is intro-
duced here. Section 7.6 summarizes the experiments carried out to evaluate
and validate the different proposals and mechanisms developed in this work.
Finally, Section 7.7 gives some conclusions and an outlook of future work.

7.2 Addressing Energy Efficiency in Smart Buildings

Optimizing energy efficiency in buildings is an integrated task that comprises
the whole lifecycle of the building. For buildings to have an impact at city
level in terms of energy efficiency, different challenges have been identified
in the building value chain (from design to end-of-life of buildings)2, which
can be summarized as follows:

1. Design. The design of buildings should be integrated, holistic and multi
target.

2http://www.ectp.org/
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2. Structure. The structure of buildings should provide features such as
safety, sustainability, adaptability and affordability.

3. Building envelope. This should ensure efficient energy and environmen-
tal performance. Prefabrication is a crucial step to guarantee energy
performance. Multifunctional and adaptive components, surfaces and
finishes to create added energy functionality, and durability should all be
built in.

4. Energy equipment and systems. Advanced heating/cooling and domestic
hot water solutions, including renewable energy sources, should focus
on sustainable generation as well as on heat recovery. Among these
systems, thermal storage (both heat and cold) is recognized as a major
breakthrough in building design. Distributed/decentralised energy gen-
eration should address the key requirement of finding smart solutions for
grid-system interactions on a large scale. ICT smart networks will form
a key component in such solutions. In [10], for instance, the authors
study the communication requirements for smart grids and describe the
most suitable communication protocols, wired and wireless, with special
attention to the latest proposals in this field.

5. Construction processes. These should consider ICT-aided construction,
improving the energy performance delivered, and automated construction
tools.

6. Performance monitoring and management. This should ensure inter-
operability among the different subsystems of the building, including
smart energy management systems that provide flexible actions to reduce
the gap between predicted and actual energy building performance,
occupancy modeling, the fast and reproducible assessment of designed
or actual performance, and continuous monitoring and control during
service life. Finally, knowledge sharing must be considered by means
of open data standards that allow collaboration among stakeholders and
interoperability among systems.

7. End of life. This should include decision-support concerning possible
renovation or the construction of a new building and associated systems.

During these phases it is necessary to continuously re-engineer the indexes
that measure energy efficiency to adapt the energy management system to
the building’s conditions. Hereinafter, we refer only to electrical energy
consumption since other kinds of energy such as fuel, gas or water are beyond
the scope of this work. Taking as reference the energy performance model
for buildings proposed by the CEN Standard EN15251 [11], it proposes
criteria for dimensioning the energy management of buildings, while indoor
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environmental requirements are maintained. According to this standard, there
are static and dynamic conditions that affect the energy consumption of
buildings. Given that each building has a different static model according
to its design, we try to provide a solution for energy efficiency focusing on
analyzing how dynamic conditions affect the energy consumed in buildings.
Thus, we propose an initiative for the challenges involved in the living
stage buildings: Performance monitoring and management mentioned in the
above list. In this stage, we need to identify the main drivers of energy use
in buildings. After monitoring these parameters and analysing the associ-
ated energy consumed, we can model their impact on energy consumption,
and then, propose control strategies to save energy. The main idea of this
approach is to provide anticipated responses to ensure energy efficiency in
buildings.

Bearing in mind all these concerns, we enumerate below the stages [12]
that must be carried out to achieve efficiency building energy management:

1. Monitoring. During the monitoring phase, information from heterogeneous
sources is collected and analysed before concrete actions are proposed to
minimize energy consumption, bearing in mind the specific context of a
given building. Since buildings with different functionalities have different
energy use profiles, it is necessary to carry out an initial characterization
of the main contributors to their energy use. For instance, in residential
buildings the energy consumed is mainly due to the indoor services provided
to their occupants (associated to comfort), whereas in industrial buildings
energy consumption is associated mostly with the operation of industrial
machinery and infrastructures dedicated to production processes. Considering
this, and taking into account the models for predicting the comfort response of
buildings occupants given by the ASHRAE [13], we describe below the
main parameters that must be monitored and analysed before implementing
optimum building energy management systems. In this way, from this set
of parameters affecting energy consumption in buildings, we can extract the
input data to be taken into account.

(a) Electrical devices always connected to the electrical network. In build-
ings, it is necessary to characterize the minimum value of energy consumption
due to electrical devices that are always connected to the electrical network,
since they represent a constant contribution to the total energy consumption
of the building. For this, it is necessary to monitor over a period of time the
energy consumed in the building when there is no other contributor to the total
energy being consumed. This value will be included as an input to the final
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system responsible for estimating the daily electrical consumption of the
building.

(b) Electrical devices occasionally connected. Depending on the kind of
building under analysis, different electrical devices may be used with different
purposes, such as increase of productivity and comfort. On the other hand,
the operation of such devices could be independent of the participation and
behaviour of the occupants; for example, in the context of a factory or an
office where there are timetables and rules. Whatever the case, recognition
of the operation pattern of devices must be included in the final system
responsible for estimating the daily electrical consumption of the building.
To obtain these patterns it is necessary to monitor previously the associated
energy consumption of every device or appliance. To monitor each component
separately in the total power consumption in a household or an industrial site
over time, cost effective and readily available solutions include Non-Intrusive
Load Monitoring (NILM) techniques [14].

(c) Occupants’ behaviour. Energy consumption of buildings due to the
behaviour of their occupants is one of the most critical points in every building
energy management system. This is mainly because occupant behaviour is
difficult to characterize and control due to its uncertain dynamic. First of
all, it is necessary to have solved the occupants’ localization before behaviour
models associated to them can be provided. Depending on the building context,
the impact of occupants behaviour on total energy consumption is different.
For example, in residential buildings the impact of the behaviour in the
energy consumed is one of the biggest, followed by environmental conditions.
However, in buildings with productive goals, the electricity consumed by the
appliances and devices working for such goals is usually the main contributor
to the total energy consumed in the building. Therefore, it is necessary to
monitor and analyse this issue to be able to provide behaviour patterns that
will be included in the final estimation of the daily energy consumption of the
building. To do so, different techniques, like crowd sensing, can be used to
extract a palette of underlying behavioural patterns. In that sense, occupants’
behaviour can be characterized for features such as:

• Occupants localization data.
• Activity level of occupants.
• Comfort preferences of occupants.

(d) Environmental conditions. Parameters like temperature, humidity, pres-
sure, natural lighting, etc. have a direct impact on the energy consumption of
buildings. Nevertheless, depending on the specific context of the building and
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its requirements, this impact will differ and be greatest in the case of indoor
comfort services (like thermal and visual comfort). Therefore, forecasts of
the environmental condition should be also considered as input for the final
energy consumption estimation of the building.

(e) Information about the energy generated in the building. Sometimes,
alternative energy sources can be used to balance the energy consumption
of the building. Information about the amount of daily energy generated and
its associated contextual features can be used to estimate the total energy
generated in the future. This information allows us to design optimal energy
distribution or/and strategies of consumption to ensure the energy-efficient
performance of the building.

(f) Information about total energy consumption. Knowing the real value
of the energy consumed hourly or even daily permits the performance and
accuracy of the building energy management program to be evaluated, and
make it possible to identify and adjust the system in case of any deviation
between the consumption predicted and the real value. In addition, providing
occupants with this information is crucial to make them aware of the energy
that they are using at any time, and encourage them to make their behaviour
more responsible.

In this work we focus on residential buildings, where both comfort and
energy efficiency is required. As regards the comfort provided in buildings,
we focus on thermal and visual comfort.

2. Information Management. An intelligent management system must pro-
vide proper adaptation countermeasures for both automated devices and
users with the aim of providing the most important services in buildings
(comfort) and satisfying energy efficiency requirements. Therefore, energy
savings needs to be addressed by establishing a trade-off between the quality
of services provided in buildings and the energy resources required for the
same, as well as the associated cost.

3. Automation. Automation systems in buildings take inputs from the sensors
installed in corridors and rooms (light, temperature, humidity, etc.), and
use these data to control certain subsystems such as HVAC, lighting or
security. These and more extended services can be offered intelligently to
save energy, taking into account environmental parameters and the location
of occupants. Therefore, automation systems are essential to answer the needs
for monitoring and controlling energy efficiency requirements [15]. At this
respect, the 1888–2011 IEEE Standard for Ubiquitous Green Community
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Control Network Protocol [16] describes remote control architecture of digital
community, intelligent building groups, and digital metropolitan networks;
specifies interactive data format between devices and systems; and gives a
standardized generalization of equipment, data communication interface, and
interactive message in this digital community network.

4. Feedback and User Involvement. Feedback on consumption is neces-
sary for energy savings and should be used as a learning tool. Analysis
of smart metering, which provides real-time feedback on domestic energy
consumption, shows that energy monitoring technologies can help reduce
energy consumption by 5% to 15% [5]. As can be deduced, a set of subsystems
should be able to provide consumption information in an effective way. These
subsystems are:

• Electric lighting.
• Boilers.
• Heating/cooling systems.
• Electrical panels.

On the other hand, to date, information in real-time about building energy
consumption has been largely invisible to millions of users, who had to settle
with traditional energy bills. In this, there is a huge opportunity to improve the
offer of cost-effective, user-friendly, healthy and safe products for smart build-
ings, which increase the awareness of users (mainly concerning the energy
they consume), and permit them to bean input of the underlying processes
of the system. This would allow the collection of an unprecedented amount
of data related to users’ interactions and their associated contextual details
(e.g. identity, location and activity) by considering the active involvement of
users along with opportunistic sensing. Then, an appropriated processing of
that user-related data will enable the development of even more customized
services.

Taking into account all the aspects identified as relevant for their impact
in energy consumption of buildings, we review how related works from the
literature tackle them. In this way, we can extract the main limitations and
constraints of these works, and suggest proposals to address them.

7.3 Related Work

A complete review of previous solutions from the literature was carried
out during the development period of the present chapter. We tried to find
ways that would enable us to propose holistic solutions to building energy
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management problems, which should address there relevant aspects men-
tioned previously, i.e. a complete monitoring phase, the efficient management
of information, using automation systems and involving occupants during the
system operation. Nevertheless, different proposals were found for different
goals, but none was integrated all the aspects. This was the first constraint
identified among previous solutions. Consequently, we decided to review the
main related work tackling each one of these aspects separately.

As regards the monitoring aspect, initial solutions to energy efficiency in
buildings were mainly focused on non-deterministic models based on simu-
lations. A number of simulation tools are available with varying capabilities.
In [17] and [18] a comprehensive comparison of existing simulation tools is
provided. Among these tools are ESP-r [19] and Energy Plus [20]. However,
this type of approach relies on very complex predictive models based on
static perceptions of the environment. For example, a multi-criteria decision
model to evaluate the whole lifecycle of a building is presented in [21]. The
authors tackle the problem from a multi-objective optimization viewpoint,
and conclude that finding an optimal solution is unrealistic, and that only an
approximation is feasible.

With the incessant progress made in the field of ICT and sensor networks,
new applications to improving energy efficiency are constantly emerging.
For instance, in office spaces, timers and motion sensors provide a useful
tool to detect and respond to occupants, while providing them with feedback
information to encourage behavioural changes. The solutions based on these
approaches are aimed at providing models based on real sensor data and
contextual information. Intelligent monitoring systems, such as automated
lighting systems, have limitations such as those identified in [22], in which
the time delay between the response of these automated systems and the actions
performed can reduce any energy saving, whilst an excessively fast response
can produce inefficient actions. These monitoring systems, while contributing
towards energy efficiency, require significant investment in an intelligent
infrastructure that combines sensors and actuators to control and modify the
overall energy consumption. The cost and difficulty involved in deploying
such networks often constrain their viability. Clearly, an infrastructure-less
system that uses existing technologies would provide a cheaper alternative
to building energy management systems. On the other hand, building energy
management must bare with the inaccuracy of sensors, the lack of adequate
models for many processes and the non-deterministic aspects of human
behaviour.

In this sense, there is an important research area that proposes techniques
of artificial intelligence as a way of providing intelligent building management
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systems. Rather than solving the above drawbacks. This approach involves
models based on a combination of real data and predictive patterns that
represent the evolution of the parameters affecting the energy consumption
of buildings. An example of such an approach is [23], in which the authors
propose an intelligent system able to manage the main comfort services
provided in the context of a smart building, i.e. HVAC and lighting, while
user preferences concerning comfort conditions are established according to
the occupants’ locations. Nevertheless, the authors only propose the inputs of
temperature and lighting in order to make decisions, while many more factors
are really involved in energy consumption and should be included to provide
an optimal and more complete solution to the problem of energy efficiency
in buildings. Furthermore, no automation platform is proposed as part of the
solution.

Regarding building automation systems, many works extend the domotics
field which was originally used only for residential buildings. A relevant
example is the proposal given in [24], where the authors describe an automa-
tion system for smart homes based on a sensor network. However, the system
proposed lacks automation flexibility, since each node of the network offers
limited I/O capabilities through digital lines, i.e. there is no friendly local
interface for users, and most importantly, integration with energy efficiency
capabilities is weak. The work presented in [25] is based on a sensor network
to cope with the building automation problem for control and monitoring
purposes. It provides the means for open standard manufacturer-independent
communication between different sensors and actuators, and appliances can
interact with each other with defined messages and functions. Nevertheless,
the authors do not propose a control application to improve energy efficiency,
security or living conditions in buildings.

The number of works concerning energy efficiency management in build-
ings using automation platforms is more limited. In [26], for instance, a
reference implementation of an energy consumption framework is provided,
but it only analyses the efficiency of ventilation system. In [27] the deployment
of a common client/server architecture focused on monitoring energy con-
sumption is described, but without performing any control action. A similar
proposal is given in [28], with the main difference that it is less focused
on efficiency indexes, and more on cheap practical devices to cope with a
broad pilot deployment to collect the feedback from users and address future
improvements for the system.

Regarding commercial solutions for the efficient management of building
infrastructures, there are proposals such as those given by the manufacturer
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Johnson Controls3, a company that provides products, services and solutions
that help increase energy efficiency and reduce the operation costs of its
clients’ buildings. Another well-known manufacturer is Siemens4, who offer
a technical infrastructure for building automation and energy efficiency in
the form of market-specific solutions in buildings and public places. The
main differences between these commercial solutions and our proposal for
automation and energy efficiency management in smart buildings are those
related with the open and transparent character of our proposal, as well as its
capability to gather data from a large number of heterogeneous sources.

As regards user involvement, this can be done by means of their implicit
or explicit feedback. When implicit feedback is considered, an important
line of research focuses on the crowdsensing paradigm [9]. In brief, this
paradigm intends to uncover meaningful behavioural patterns by automati-
cally collecting the digital breadcrumbs of the different sensors that users’
personal devices are equipped with. At the same time, a novel course of
action has paid attention to social networks as a novel datasource to extend
the collection implicit user feedback [29]. Despite its inherent uncertainty,
several works are already able to extract meaningful behavioural patterns by
mainly using social-network feeds [30, 31].As for explicit user’s feedback, the
crowdsourcing paradigm centers on providing tools to allow the management
of the information explicitly requested to sets of target users [32, 33]. In a
smart building context, crowdsensing or crowdsourcing paradigms have been
mainly used to flow management in indoor areas [34]. Last but not least, in
the building energy management field, some proposals have involved uses in
saving energy in buildings [5, 6]. However, few works have been addressed
this aspect. It is important to note that energy usage feedback in building
energy management systems needs to be provided to users frequently and
over a long time, offering an appliance-specific breakdown, while presented
in a clear and appealing way using computerized and interactive tools.

Concerning the fact that users have little awareness of the energy wastage
associated with their energy consumption behaviours is due partly to the
fact that most people do not know what the optimum comfort conditions are
according to environmental features and their needs. It is clear that, while each
person has his/her own comfort preferences and these preferences are strongly
conditioned by subjective concerns, there are a minimal and a maximum set of

3http://www.johnsoncontrols.co.uk/content/gb/en/products/building efficiency.html
4http://www.buildingtechnologies.siemens.com/bt/global/en/energy-

efficiency/Pages/Energy-efficiency.aspx
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comfort conditions recognized as common to everyone to ensure the quality of
life [35]. Therefore, the confidence and respect that users give to the intelligent
services that are offered to them in terms of comfort and energy efficiency
concerns in smart buildings, are crucial constraints in this type of system.
Nevertheless, thanks to pervasive computing practices, the integration and
development of systems based on IoT support and encourage the cooperation
between humans and devices in terms of:

• Facilitating communication between things and people, and between
things, by means of a collective network intelligence context.

• People’s ability to exploit the benefits of this communication through
their increasing familiarity with ICT.

• A vision where, in certain respects, people and things are homogeneous
agents endowed with fixed computational tools.

Smart buildings should prevent users from having to perform routine and
tedious tasks to achieve comfort, security, and effective energy management.
Sensors and actuators distributed in buildings can make user life more
comfortable; for example: i) room heating can be adapted to user preferences
and to the weather; ii) room lighting can change according to the daylight;
iii) domestic incidents can be avoided with appropriate monitoring and alarm
systems; and, iv) energy can be saved by automatically switching off electrical
equipment when not needed, or regulating their operating power according to
user needs, thus avoiding any energy overuse. In this sense, IoT is a key
enabler of smart services to satisfy the needs of individual users, who apart
from being users of the system, can also be seen as sensors in the same way as
temperature, thermal, humidity and presence sensors deployed in the building.

As can be noted, most of the approaches proposed to date only provide
partial solutions to the overall problem of energy efficiency in buildings,
where, although different factors are involved holistically, until now they
have been addressed separately or even neglected by previous proposals. This
division is frequently due to the uncertainty and lack of data and inputs in
the management processes, so that analysis of how energy in buildings is
consumed is incomplete. In other words, a more integral vision is required to
provide accurate models of the energy consumed in buildings [7]. In this sense,
no solutions have been proposed tackling the full integration of information
related with all relevant aspects directly involved in the energy consumption
of buildings (which are described in Section 7.2). For example, there are
not previous solutions that fully integrate information about the occupants of
buildings, despite of the fact that human behaviour has been recognized as
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one of the most important aspects affecting energy consumption in buildings.
Information about the identities of occupants, their locations and activities,
their comfort preferences, their levels of awareness with the problem of
the high energy consumption of buildings, their participation to get energy
saving, etc. must be included, jointly to other relevant information, in any
building energy management system. In this chapter, we present our own smart
system proposal, which is a holistic and flexible solution based on collecting
and analysing information of both the building context and its occupants,
and propose concrete actions which could be applied in the management of
any controllable infrastructure of buildings to ensure their energy efficient
performance. Our proposal of solution considers occupants as a key piece of
our management system, and we demonstrate the benefits of following this
approach in term of the energy saving achieved in various buildings used as
reference.

7.4 A Proposal of General Architecture for Management
Systems of Smart Buildings

The architecture of our proposal for smart building is modelled in layers which
are generic enough to cover the requirements of different smart environments
of cities, such as intelligent transport systems, security, health assistance or, as
is the case analysed in this chapter, smart buildings. This architecture promotes
high-level interoperability at the communication, information and services
layers. The layers of such architecture are depicted in Figure 7.1, and are
detailed below.

7.4.1 Data Collection Layer

Looking at the lower part of Figure 7.1, input data are acquired from a
plethora of sensor and network technologies such as the Web, local and
remote databases, wireless sensor networks, mobile devices, etc., all of them
forming an IoT ecosystem. In this sense, and considering the instance of this
architecture for the building management system proposed in this chapter, it
gathers information from sensors and actuators deployed in the building. As
for static sensors and actuators can be self-configured and controlled remotely
through the Internet, enabling a variety of monitoring and control applications.
Concerning mobile sensors, mechanisms to pro-actively or passively collect
their reported data is also included in this layer. Given the heterogeneity of
data sources and the necessity of seamless integration of devices and networks,
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Figure 7.1 Layers of the base architecture for smart buildings ecosystem.

a common language structure to represent data is needed to deal with this
issue. Therefore, the transformation of the collected data from the different
data sources into a common language representation is performed in this
stage.

7.4.2 Data Processing Layer

The data processing layer is responsible for processing the information
collected and making decisions according to the final application context. A
set of information processing techniques is applied to extract, contextualize,
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fuse and represent information for the transformation of massive input data
into useful knowledge, which can be distributed later towards the services
layer. Different algorithms can be applied for the intelligent data processing
and decision making processes, depending on the final desired operation of the
system (i.e. the services addressed). Considering the target application of smart
buildings, data processing techniques for covering, among others, security,
tele-assistance, energy efficiency, comfort and remote control services should
be implemented in this layer. And following a user-centric perspective for
services provided, intelligent decisions are made through behaviour-based
techniques to determine appropriate control actions, such as appliances and
lights, power energy management, air conditioning adjustment, etc.

7.4.3 Services Layer

Finally, the specific features for providing services, which are abstracted
from the final service implementation, can be found in the upper layer of
the proposed architecture (see Figure 7.1). Our approach offers a framework
with transparent access to the underlying functionalities to facilitate the
development of different types of final application. This generic proposal of
architecture for smart buildings has been instantiated in the system known
as City explorer. City explorer, which was developed at the University of
Murcia, integrates an automation platform which is divided into an indoor part,
and all the connections with external elements for remote access, technical
tele-assistance, security and energy efficiency/comfort providing services in
buildings. Figure 7.2 shows a schema of City explorer offering ubiquitous
services in the smart buildings field. The main components of City explorer
were presented in details in [36, 37]. The work developed in this chapter is
based on using City explorer as platform of experimentation and validation
of our proposal of building management to achieve energy efficiency. For
this, we have instantiated each generic layer of the architecture shown in
Figure 7.1, with the goal of offering a solution to energy efficiency in smart
buildings.

7.5 IoT-based Information Management System for Energy
Efficiency in Smart Buildings

As mentioned before, our proposal of IBMS uses the City explorer platform
applied to achieve energy efficiency in buildings. Our proposed system has
the capability, among others, to adapt the behaviour of automated devices
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deployed in the building in order to meet energy consumption restrictions,
while maintaining comfort conditions at the occupants’ desired levels.

More specifically, the goals of our intelligent management system are the
following:

• High comfort level: learn the comfort zone from users’ preferences,
guarantee a high comfort level (thermal, air quality and illumination)
and a good dynamic performance.

• Energy savings: combine the control of comfort conditions with an energy
saving strategy.

• Air quality control: provide CO2-based demand-controlled ventilation
systems.

Satisfying the above control requirements implies controlling the following
actuators:

• Shading systems to control incoming solar radiation and natural light as
well as to reduce glare.

• Window opening for natural ventilation or mechanical ventilation sys-
tems to regulate natural airflow and indoor air changes, thus affecting
thermal comfort and indoor air quality.

• Heating/cooling (HVAC) systems.

As a starting point, we focus only on the management of lights and HVAC
subsystems, since they represent the highest energy consumption at building
level. User interactions have a direct effect on the whole system perfor-
mance, because the occupants can take control of their own environment at
any time.

Thus, the combined control of the system requires optimal operation of
every subsystem (lighting, HVAC, etc.), on the assumption that each operates
normally in order to avoid conflicts arising between users’ preferences and
the simultaneous operations of such subsystems. Figure 7.3 shows a schema
of the different subsystems comprising the intelligent management system
integrated in City explorer, where the outputs of the system are forwarded to
the actuators deployed in the building.

As can be seen in Figure 7.3, the first task to solve is related with user
identification and localization, and the second problem is related with the
issues of comfort and energy efficiency in the management of the building. In
the following subsections we describe the different issues involved and which
were solved during this work, and represent our proposal of building energy
management system for energy efficiency.
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7.5.1 Indoor Localization Problem

In a smart building, embedded sensors measure and record user activities,
making it possible to predict their future behaviour, prepare everything one
step ahead according to the individual user’s preferences or needs, and provide
the most convenient energy efficient services. These services need to operate
by acquiring contextual information both from users and the environment.
Therefore, to make buildings smart and to be able to offer users customized
services, it is indispensable to previously solve the implicit indoor localization
problem. Furthermore, user identities need to be taken into account so that
the intelligent system can learn and manage devices according to their
behaviour and/or preferences. We obviously need to solve user identification in
smart buildings to provide customized comfort services committed to energy
efficiency, but while user privacy must also be respected because occupants
care about their private and social activities, and want full control of how their
personal location information and history are used. Hence, there is a need to
rely on non-intrusive, ubiquitous and cheap sensors to minimise infrastructure
deployment and prevent user dissatisfaction. Indeed, some sensors cannot be
installed in buildings; for instance, in Spain video cameras cannot be legally
used in offices. Problems like this make some localization systems unsuitable
for use in smart buildings.

In the scenario addressed in this work, the whole area of a smart building
is divided into locations (rooms, open areas, corridors, etc.) with different
comfort conditions in each one; for instance, optimum lighting conditions in a
corridor are different from those required in an office; or the optimum level of
air conditioning in an individual bedroom is different from that required in a
very crowded dining room. Furthermore, in each of these areas (an individual
bedroom, a dining room, an office, etc.), it is necessary to carry out a further
division depending on the service area of each comfort appliance deployed.
Therefore, our indoor localization system must be able to locate a user in terms
of regions, which correspond to the service areas of the appliances or devices
involved in her/his comfort condition. Recent years have seen great progress
in indoor localization systems, but there are still some weaknesses in terms of
the accuracy of location data, the time required for calibration processes, poor
robustness, or high installation and equipment costs [38]. Furthermore, when
user identification is needed, most of the systems proposed present difficulties
concerning complexity, computational load and inaccurate results. Since the
indoor localization problem does not have obvious solutions, we review
relevant solutions from the literature and identify the technological options
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most suitable in light of our problem. Accuracy is usually the most important
requirement for positioning systems. In the location problem involved in
energy efficiency of buildings, we conclude that the accuracy required for
our localization system depends on the service areas of the appliances and
devices involved in the comfort and energy balance of the building.

In Figure 7.4 a rough outline of some positioning systems is presented,
with their accuracy ranges achieved until now according to the literature.
Since each localization technology has its particular advantages and disad-
vantages, we suggest that by combining several complementary technologies
and applying data fusion techniques, it is possible to improve the overall
system performance and provide a more reliable indoor localization system,
since more specific inferences can be achieved than when using a single kind of
data sensor. Therefore, after analysing Figure 7.4, we choose a hybrid solution
based on RF and non-RF technologies. Our technological solution to cover the
localization needs (i.e. those required by smart buildings to provide occupants
with customized comfort services) is based on a single active RFID system
and several Infra-Red (IR) transmitters. In Figure 7.5 we can observe the data
exchange carried out among the different technological devices that compose
our localization system.

Figure 7.4 Outline of some positioning technologies [38].
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Figure 7.5 Localization scenario.

The final mechanism implemented for indoor localization is shown in
Figure 7.6. In this figure, we can see that the first phase of our localization
mechanism is the space division through the installation of IR devices in the
walls of the building area where localization wants to be solved. Therefore,
for each space division, there is an IR identifier value (IDir) associated to this
region. For each one of these region, we implement a regression method based
on Radial Basis Functions (RBF) networks. The RBF estimates user positions
given different RFID tags situated in the roof. This RFID-based information
coming from the different building’s occupants conforms a data stream that
could be also processed by means of a crowdsensing approach so as to track
the flow of people within a building. In that sense, several proposals already
exist that intends to reconstruct the behaviour of people by using the type of
discrete locations [39].

In our localization mechanism, after the position estimation using the RBF
network, a Particle Filter (PF) is applied as a monitoring technique, which takes
into account previous user position data for estimating future states according
to the current system model. In the PF, we modify particle weights according to
the distances to the measurements during the correction stage, as the following
equation shows:

w(−→x t) = w(−→x t−1) · p(−→y t|−→x t) · p(−→x t|−→x t−1)
q(−→x t|−→x t−1,

−→y t)
(7.1)
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where w(−→x t) weights of the set of particles at instant t; p(−→y t|−→x t) and
p(−→x t|−→x t−1) gives the probabilistic behaviour of the output and the state
model of the system respectively, and q(−→x t|−→x t−1,

−→y t) is the approximation
of the expectedly function.

Algorithm 7.1 provides a summarized version of the general definition
of PF. The PF used in this work is slightly different from its generic
definition. The main difference of our filtering algorithm is in the cor-
rection stage, which applies the resample using the Sequential Importance
Sampling (SIS) algorithm [40] (step 13 of Algorithm 7.1). During this
step, information about the specific IR region at a given instant of time is
also used to benefit those particles which fall inside this area. Therefore,
before applying Equation (7.1), we filter according to the condition given by
Equation (7.2):

{If : yt ∈ Ωj ⇒ w(xi
t) = 0 ∀ xi

t /∈ Ωj}, (7.2)

where Ωj represents the coverage area of the IR transmitter with identifier j,
and yt and w(xi

t) denote, respectively, the measured parameter and the weight
of the set of particles i at the instant of time t. The main advantage of this
constraint is the faster convergence of the filter, because extra information is
available to carry out the correction stage.

Algorithm 7.1 Generic PF
Require: {xi

t−1, w
i
t−1}Ns

i=1, yt

Ensure: {xi
t, w

i
t}Ns

i=1
1: Given a particle number Ns

2: Given a threshold NT value for resampling
3: for i = 1 to Ns do
4: Draw xi

t ∼ q(xt|xi
t−1, yt)

5: Assign the particle a weight wi
t

6: end for
7: Calculate total weight: t = SUM[{wi

t}Ns
i=1]

8: for i = 1 to Ns do
9: Normalize: wi

t = t−1 · wi
t

10: end for
11: calculate ̂Ncff = 1

∑Ns
i=1(wi

t)
2

12: if ̂Ncff ≤ NT then
13: Correction stage.
14: end if
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7.5.2 Building Energy Consumption Prediction

The energy performance model of our BMS is based on the CEN Standard
N15251 [41]. This standard proposes the criteria of design for any build-
ing energy management system. It establishes and defines the main input
parameters for estimating building energy requirements and evaluating the
indoor environment conditions. The inputs considered to solve our problem
are the data coming from the RFID cards of users, the user interaction with the
system through the control panels or the web access, environmental parameters
coming from temperature, humidity and lighting sensors installed in outdoor
and indoor spaces, the consumption energy sensed by the energy meters
installed in the building, and the generated energy sensed by the energy meters
installed in the solar panels deployed in our testbed.After collecting the data, it
is mandatory to continue with their cleaning, preprocessing, visualization and
correlation study in order to find determining features, which can be used to
generate optimal energy consumption models of buildings (management layer
of the architecture presented in Section 7.4). Over the input set, we perform
the standardization and reduction of data dimensionality using Principal
Components Analysis (PCA) [42], identifying the directions in which the
observations of each parameter mostly vary.

Regarding theArtificial Intelligence (AI) techniques that have been already
applied successfully to generate energy consumption models of buildings
in different scenarios (as such we mentioned in the management layer
of the architecture presented in Section 7.4), we propose to evaluate the
performance of Multilayer Perceptron (MLP), Bayesian Regularized Neural
Network (BRNN) [43], SVM [44] and Gaussian Processes with RBF Ker-
nel [45]. They were selected because of the good performance that all of
them have already provided when they are applied to building modelling.
All these regression techniques are implemented following a model-free
approach, which is based on selecting – for a specific building – the optimal
input set and technique, i.e. such input set and technique that provides the
most accurate predictive results in a test data set. In order to implement
this free-model approach, we use the R [46] package named CARET [47] to
train the energy consumption predictive algorithms, looking for the optimal
configuration of their hyper-parameters.

The selected metric to evaluate the models generated for each technique
using test sets is the well-known RMSE (Root-Mean-Square Error), which
formulation appears in Equation (7.3).
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RMSE =

√√√√ 1
n

n∑

i=1

(yi − ŷi)2 (7.3)

This metric shows the error by means of the quantity of KWh that we deviate
when predicting, but in order to get a better understanding of the uncertainty
of the model, we also show its coefficient of variation (CVRMSE). This
coefficient is the RMSE divided by the mean of the output variable (energy
consumption) for the test set (Equation (7.4)), giving us a percentage of error
adjusted to the data, not just a number in general terms.

CV RMSE =
RMSE

y
(7.4)

7.5.3 Optimization Problem

Once the building energy consumption is modeled we focus on the optimiza-
tion of its use trying to keep comfort conditions.As starting point, we establish
the comfort extremes considering location type, user activity and date [48].
Understanding the building thermal and energetic profiles allows us to quantify
the effects of particular heating-cooling set point decisions. To derive a heating
or cooling schedule, it is necessary to formulate the target outcome. In our
buildings, it is possible to:

1. Optimize the indoor temperature during occupation, i.e. minimize the
building temperature deviations from a target temperature.

2. Minimize daily energy consumption, or
3. Optimize a weighted mixture of the criteria, a so-called multi-objective

optimization.

The definition of building temperature deviation influences the results
strongly: taking the minimum building temperature will result in higher set
point choices and higher energy use than using e.g. the average of building
temperatures. Constraints on maximum acceptable deviation from target
comfort levels or an energy budget can be taken into account to ensure required
performance. For our optimization problem, we apply a genetic optimization
implemented in R (using the “genalg” package [49]) to our predictive building
models to derive schedules for heating/cooling setpoints.

7.5.4 User Involvement in the System Operation

Following this approach to provide human-centric services in the context
of smart buildings, users can be seen as both the final deciders of actions,
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and system co-designers in terms of feedback that conditions future rules
and contributions to the software issuing these rules. In this sense, in our
energy building management system we consider the data provided directly
by users through their interactions when they change the comfort conditions
provided automatically by the system and, consequently, the system learns
and autoadjusts according to such changes and to the control comfort/energy
strategies defined by users using the graphic editor of City explorer. Further-
more, with the aim of offering users information about any unsuitable design
or setting of the system, as well as to help them easily understand the link
between their everyday actions and environmental impact, City explorer is
able to notify them about such matters (i.e. acting as a learning tool). On
the other hand, when the system detects disconnections and/or failures in the
system, it sends alerts by email/messages to notify users to check these issues.
All these features, which are included in our management system, contribute
to user behaviour changes and increase their awareness as time passes, or
detect unnecessary stand-by consumption of the controllable subsystems of the
building.

Finally, to understand the background of energy behaviour of users
involved in our experiments and to be able to form an initial context pattern
for the usability of the system under different constraints, we carried out
a follow-up study based on the feedback that users provide to City explorer
through the SCADA-web and the control panels installed in the smart building.
Another reason to carry out this study was the identified lack of research in
the building energy management area, where large-scale deployment needs
to be accompanied by a body of study on user behaviour, motivation and
preferences. The same was pointed out by [6]. In Figure 7.7 is shown the
schema of our final building energy management solution.

7.6 Evaluation and Results

7.6.1 Scenario of Experimentation

The reference building where our BMS for energy efficiency is deployed is the
Technology Transfer Centre (TTC) of the UMU5. Every room of this building
is automated through a Home Automation Module (HAM) unit of the City
explorer platform. It permits us to consider a granularity at room level to
carry out the experiments.

5www.um.es/otri/?opc=cttfuentealamo
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Figure 7.8 Tracking processes with a reference tag distribution of 1 m × 1 m.

7.6.2 Evaluation and Indoor Localization Mechanism

Different tracking processes are carried out in the environments considered
in our tests (the TTC building) applying for this the implementation of the
PF described in Algorithm 7.1. In Figure 7.8 an example of some tracking
processes are carried out considering transition between different spaces
of the TTC. For these paths, our system was configured to acquire data
every T = 10 s. (whereas for the rest of the tests a value of T = 5 min.
was considered). Taking into account the target location areas involved
(represented in different colors), and the real and estimated location data
provided by our mechanism, it can be safely said that it was able to monitor
the user locations with a high degree of accuracy and precision.

With an 1m × 1m distribution of reference RFID tags placed on the roof of
the test room, a 65% success percentage in localization is obtained having an
error lower than 1 m. 98% of cases have as much 2.5 m. of error. Therefore, it
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can be safely said that our localization system is able to track users with
a sufficient level of accuracy and precision for the location requirements
associated with the comfort and energy management problem in buildings.
More details about this indoor localization system can be found in [50].

7.6.3 Evaluation. Energy Consumption Prediction
and Optimization

In Figure 7.9(a) it is shown the correlation heatmap between the electrical
consumption of the TTC building and the outdoor environmental conditions.

It is observed that energy consumption correlates significantly (α = 0.95)
and positively with temperature, radiation, wind speed variables, vapour pres-
sure deficit and dew point, and negatively with wind direction and humidity
variables. This means that we can use safely these variables as inputs of the
energy consumption model of our reference building, because they have clear
impact in the energy consumption. Otherwise, precipitations are so unusual
that they don’t have an association with the output.

Also, a logic differentiation between situations has been considered in
order to label behaviour. Situation 1: holidays and weekends, situation 2:
regular mornings, and situation 3: regular afternoons. The non-parametric
Kruskall Wallis test shows that energy consumption differs significantly
between situations (H(2) = 547.7, p < 0.01). Also, the post hoc pairwise
comparisons corrected with Holm’s method retrieve a p-value smaller than
0.01, supporting the decision of creating 3 different models [51].

Thus, for each of the three situations identified for the TTC building, we
have evaluated not only the punctual value of RMSE, but also we have vali-
dated whether one learning algorithm out-performs statistically significantly
the others using the non-parametric Friedman test [52] with the corresponding
post-hoc tests for comparison. Let xj i be the i-th performance RMSE of the jth
algorithm, for this building, we have used 5-times10-fold cross validation, so
i ∈ {1, 2, . . ., 50} and four techniques, so j ∈ {1, 2, 3, 4}. For every situation,
we find significant differences (α = 0.99) between every pair of algorithms,
except for SVM and Gauss RBF (p > 0.01), as it is shown in Figure 7.9(b)
for the particular case of situation 2.

The three models have in common that BRNN yields a better result than
the other tested techniques, based on the RMSE metric. Thus, BRNN is able
to generate a model with a very low mean error of 25.17 KWh – which only
represents the 7.55% of the sample (this is the most accurate result) in terms
of the CVRMSE. And for the worst case, BRNN provides a mean error of



196 Data Analytics in Smart Buildings

Figure 7.9 Modeling results.
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43.76 KWh – which represents the 10.29% of the sample in the reference
TTC building – that is acceptable enough considering that the final aim is to
save energy.

To evaluate our GA-based optimization strategy, controlled experiments
were carried out in the TTC building with different occupant’s behaviours.
The results showed that we can accomplish energy savings between 15% and
31%. Trying to validate the application of our proposal we have applied it
in a different scenario with limited monitoring and automation technologies,
achieving energy saving of about 23%.

7.6.4 Evaluation. User Involvement

For the experiments described here, fifteen people took part in the focus
group studies which help us extract user-preferences and pinpoint design
concerns. Understanding user contexts, such as motivation for saving energy
and the constraints for implementing energy saving behavior, enables better
understanding of user preferences and how the energy monitoring system can
work with users to achieve the best possible behavioral changes.

During the data collection process performed in the experiment, the
subjects were asked to walk freely along the different scenarios consid-
ered, and to work or relax in the different areas designed specifically for
such goals. This experiment was repeated during 3 hours per day consid-
ering different conditions of user movements and activities, environmental
conditions, preferences, etc. At the time of writing, the system has just
completed the first 62 days of measurement, so this time is the base-
line period used to assess the impact of including users in the loop of
our system. During the first 31 days of the experiment, users lacked any
feedback about their energy consumption as well as any control capa-
bility over the setting of comfort and energy levels, but during the last
31 days of the experiment, users were empowered and were included as a
holistic component of the system. During this second phase of the system
operation, the system displayed real time energy usage in kW, cost of energy
usage, energy saving tips, energy usage history (hourly, daily, monthly),
etc. through both SCADA-web and the control panel installed in the target
scenario. Also, during this last phase, users could define their own strategies to
control any appliance or monitor any specific parameters sensed by the system.

Despite the relatively short time of evaluation (one month), a nearly
analysis shows that the system has already had a positive impact on user
behaviors, which can be translated into energy saving terms. Figure 7.10
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shows the energy savings achieved during the second month of operation of
our energy management system in contrast to the first experimental month. It
can be seen how we achieved a saving of up to 12% of the energy involved, and
the medium value of 9% for the experimental month. Furthermore, the results
reflect how the increased savings become more stable with time, specifically
from the 17th day of the system operation. The reason of this saving increasing
is because our system is able to learn and adjust itself to any feedback indicated
by users regarding their comfort associated profile, and to recognize patterns
of user behavior.

7.7 Conclusions and Future Work

The proliferation of ICT solutions (IoT among them) represents new oppor-
tunities for the development of new intelligent services, contributing to more
efficient and sustainable cities. In this sense, with the increasing urbanization
seen in recent decades, there is an urgent need to achieve energy-efficient
environments to ensure the energy sustainability of cities. But to achieve
this goal, it is first necessary to solve energy efficiency concerns at building
level, since this constitutes the cornerstone of the overall problem. For greater
energy efficiency in buildings, smart solutions are required to monitor and
control the capabilities offered by wide sensor and actuator networks deployed
as part of the system. Furthermore, occupants play an important role in this
type of system, since they are the recipients of the indoor services provided
by electrical appliances installed in buildings, most of them responsible for
providing them with comfort conditions. In this sense, it is required to propose
building management systems able to tackle energy efficiency requirements
while user comfort conditions are also taken into account. To date, however, the
solutions proposed are mainly based on determinist models with few accurate
predictions, and are not able to consider real-time data in most cases. Indeed,
they do not even come close to reflecting reality.

In this chapter, we propose a building energy management system powered
by IoT capabilities and part of a novel context and location-aware system
that covers the issues of data collection, intelligent processing to save energy
according to user comfort preferences and features that modify the operation
of relevant indoor devices. An essential part of our energy efficiency system
are the key aspects of integrating user location and identity, so that customized
services can be provided to them while any useless energy consumption in the
building is avoided. Furthermore, another relevant feature is users involvement
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with the system, through their interactions and their participation to get energy
savings in the building.

The applicability of our system has been demonstrated through its installa-
tion in a reference building. Thus, using user location data, considering target
regions of occupancy for comfort and energy management in the building,
and finally including users in the loop of the system operation, we show that
energy consumption in buildings can be reduced by a mean of about 23%.
If we translate this mean value of energy saving to city level, assuming that
buildings represent 40% of the total energy consumption at European level,
a reduction of 9% at city level could be achieved by installing this energy
management system in buildings.

The ongoing work is focused on the inclusion of people behaviour during
the operational loop of this kind of systems for smart cities. Thus, for the case
of smart building applications, users will be encouraged to participate in an
active way through their engagement to save energy. On the other hand, in the
case of the public tram service, data coming from crowd-sensing initiatives
will be integrated to improve the estimation of the urban mobility patterns.
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8.1 Introduction

The Internet-of-Things (IoT) is becoming mature. It is moving from the
research labs into production environments. In the initial phase, there are
mainly small installations focused on a specific application, but, on the hori-
zon, real and wide-scale deployments become visible, especially for realizing
the concept of smart cities. From a few sensors providing us, for example,
with weather information, we will get to large scale installations monitoring
and influencing a wide range of aspects including traffic, energy, water,
building infrastructures and public safety, all of which are highly relevant
for the smart cities of the future. The true value of such IoT deployments
can only be reached if the raw data gathered is processed and higher level
information is derived that provides true insights into the real-world situation
enabling humans or machines to take actions. The basis for deriving such
information is provided by IoT analytics. Individual measurements, e.g., if
individual cars or persons are passing a certain spot, may only provide limited
benefits, but if the overall traffic situation can be derived or the behaviour
of crowds can be determined, suitable actions can be taken. This requires a
scalable IoT infrastructure, which can scale with the number of information
sources, in particular sensors, the number of different applications and the
number of users. To achieve scalability we need to look at all elements of
the IoT infrastructure, from sensor nodes with limited resources, to local
communication networks, gateways, networks and backend systems. Current
IoT architectures typically integrate devices – using a range of different
technologies–through gateways. Gateways connect the often resource con-
straint devices to the backend infrastructure. Information from the devices
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like sensor measurements are pushed into a logically centralized backend
infrastructure. Cloud technologies are used for achieving scalability with
respect to storage and processing power. Analytics in the backend can be
provided with all the storage and processing power needed. Nevertheless,
such infrastructures have their limitations:

• If the sheer amount of data overloads the network infrastructure connect-
ing the gateways to the backend infrastructure, e.g. in the case of video
cameras providing a stream of high-resolution images.

• If very fast response times are required for local actuations and the
network introduces significant delays.

• If the raw data is not supposed to be stored, e.g. due to privacy
information, and only processed results may be provided.

• If the frontend is provided by a different stakeholder who does not want
to/is not allowed to provide the raw data.

In all these cases, IoT architectures that only support analytics in the backend
are not suitable. The processing should take place in the frontend – at
the edge of the network. This requires devices, gateways or specialized
servers that are capable of doing the required analytics. In the case of
a smart city, the IoT infrastructure needs to be able to support dynami-
cally changing IoT devices as well as changing application requirements.
In order to do so, analytic functions need to be dynamically deployed
and adapted. In the following, we look at the state of the art, first with
respect to the currently dominating cloud-based IoT architectures for ana-
lytics (Section 8.2) and show how analytics for crowd estimation can be
supported in such a setting. Then we discuss in-depth key challenges for
such architectures (Section 8.3). This is followed by a discussion of the
state of the art for edge computing and a proposal for an edge-based smart
city platform supporting analytics (Section 8.4). Crowd mobility is used
as an example to showcase how use cases can benefit from edge-based
IoT analytics. Finally, Section 8.5 provides a conclusion and an outlook on
future work.

8.2 Cloud-based IoT Analytics

As first, in this section, we will investigate the cloud-based approach for IoT
analytics which is the most commonly used by concrete smart cities and
adopted by many projects, either funded by the European Commission or
by nations, with the scope of creating smart city systems. We will describe a
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first example of cloud-based city platform for BigData analytics called City
Data and Analytics Platform (CiDAP) and a real use-case of cloud-based data
analytics such as a crowd estimation system.

8.2.1 State of the Art

Lots of efforts from both industry and academia have been made towards
smart cities, but most of them focus on infrastructure construction, data
collection, testbed deployment, or specific services/applications development.
To support IoT analytics for smart cities, one of the key enablers is to build
up a flexible and efficient big data analytics platform between connected data
sources and applications. There are only a few studies already exploring big
data platforms for smart cities, mainly in the Cloud environment. Examples
include SCOPE [4] which is a Smart-city Cloud-based Open Platform and
Ecosystem from Boston University, and FIWARE [2] which provides some
building blocks for the development of a smart city platform based on the
NGSI (Next Generation Service Interfaces) standard. Meanwhile, there are
some ongoing projects trying to explore the opportunities and challenges of
BigData for smart cities at the platform level, such as CityPulse [5], an ongoing
European project exploring real-time stream processing and large scale data
analytics for smart city applications. In addition, Singapore is building a
new smart city platform called SmartNation [6] to enable greater pervasive
connectivity, better situational awareness through data collection, and efficient
sharing of collected sensor data. Several concrete smart-city architectures
involving data analytics have been proposed. For example, in [19] describes
the achievements of building an event driven architecture of a smart city for
monitoring public area and infrastructure. All the data is seen as an event. An
event can be a new measurement or a discovery of a complex event. The data
coming from the Wireless Sensors Network or other subsystems (i.e. CCTV)
may be filtered out or aggregated and passed to a cloud-based control center
where the raw event (or almost-raw in case of aggregated data) are merged
and correlated. The outcome of this processing is the creation of more and
more abstracted data from less abstracted data. In case of event above certain
threshold the control center would send commands back to the WSN. The
analytics involved in this approach is a progressive refining of the available
events till a decision. Therefore, the analysis is limited to real-time data and
to very specific purposes (like event merging, event correlation or threshold
checks). A similar example is described in [15], where a central reasoner is in
charge of evaluating incoming aggregated data from SensorActuator Network
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(SAN).Also, in this solution the analysis is conducted only over real-time data
aggregated on the edge with the target of discovery potential critical situations.
Aside from the mentioned projects above, there are industrial companies
which are advertising their smart city data platforms, like IBM [25], AGT
[29], Microsoft [3]. Some companies are also offering ready-to-use generic
purpose IoT Platforms with embedded IoT analytics features. For example, the
AmazonAWS IoT [14] is a platform capable to automatically scale in the cloud
according to the load. The IoT data can be forwarded to other Amazon cloud-
based services (e.g. for stream processing, for machine learning applications
or for storage purposes).Another solution, more in the industrial plant context,
is offered by General Electric [20]. Predix cloud offers capability to connect
the gathered data from multiple Predix machines to data analytics service
(time series and data analytics orchestration) and several storages options.
Also, IBM offers a cloud based platform for IoT: [21]. The idea is to connect
the devices or the gateways via MQTT directly to the platform. Once the data
is managed in the cloud, the platform is offering integration to many services
like analytics (e.g. data streaming processing, predictive analytics, geospatial
analytics) and storage (e.g. SQL, NoSQL, time-series etc.).

8.3 Cloud-based City Platform

Typically, for a cloud-based smart city platform the following design issues
must be taken into account: First, how to design an efficient storage system to
manage a large amount of heterogeneous IoT data? Second, how to deal with
both historical data and real-time data in the same platform infrastructure?
Third, how to design flexible and generic application interfaces for both
internal platform applications and external smart city applications? In this
section we explain how these issues can be addressed in a live smart city
BigData platform called CiDAP. Currently, CiDAP has been in production
for several smart cities globally, such as Santander in Spain, Wellington in
New Zealand, and Tokyo in Japan. The CiDAP platform is architecturally
scalable, flexible, and extendable in order to be integrated with different
scales of smart city infrastructures. The CiDAP platform has been deployed
and integrated with a running IoT experimental testbed SmartSantander, one
of the largest smart city testbeds in the world. Within the SmartSantander
testbed, more than 15,000 sensors (attached with around 1,200 sensor nodes)
have been installed around an area of approximately 35 square kilometer in
the city. A large proportion of the sensor nodes are hidden inside white boxes
and attached to street infrastructure such as street lamps, buildings and utility



8.3 Cloud-based City Platform 211

F
ig

ur
e

8.
1

Sy
st

em
ar

ch
ite

ct
ur

e
of

th
e

C
iD

A
P

pl
at

fo
rm

.



212 Internet-of-Things Analytics for Smart Cities

poles, while others are buried into the pavement, e.g., parking sensors. Not all
of the sensors are static; some are placed on the city’s public transport network,
including buses, taxis and police cars. The deployed sensors provide real-time
information regarding different environmental parameters (light, temperature,
noise, CO2), as well as other parameters like occupancy of parking slots in
some downtown areas.

Here is how the CiDAP platform works at the high level (see Figure 8.1).
First, data with different formats are collected via the IoT-broker [1] from
multiple data sources, then forwarded to the BigData repository CouchDB,
which is a document based NoSQL database. The collected data are then
processed and aggregated by a set of pre-defined or newly launched processing
tasks. The simple processing tasks can be performed by the BigData repository
internally, such as transforming data into new formats or creating new
structured views/tables to index data. Any complex or intensive processing
tasks, such as aggregating or mining data via advanced data analytics, must be
separated from the BigData repository so they can be efficiently and externally
executed over the BigData processing module, which provides more flexible
and scalable computation resource based on a Spark [12] cluster with a large
number of compute nodes. Since the BigData repository can already handle
lightweight processing tasks in a scalable and incremental manner, the BigData
processing module can be optional if we do not need intensive data processing
or analytics. By fetching generated results from the BigData repository or
forwarding messages directly from data sources in the smart city testbed, a
CityModel server is designed to serve queries and subscriptions from external
applications based on pre-defined CityModel APIs. Meanwhile, a web-based
platform management portal is provided to the platform operator to monitor
the status of the entire BigData platform.

All external applications communicate with the CiDAP platform via
the CityModel server based on a REST based API, called CityModel API.
The CityModel API allows application to do simple query, complex query,
and subscription. A simple query requests aggregated results over the latest
status of all sensors, which represent the latest and real-time snapshot of the
entire city testbed, while a complex query can request aggregated results
over the historical data collected within a specified time range. Subscrip-
tion is the mechanism to keep applications always notified with the latest
results so that the application does not have to query the data all the time.
There are two types of subscriptions, CacheDataSub and DeviceDataSub,
as illustrated by Figure 8.2. The difference is CacheDataSub goes to the
data repository CouchDB while DeviceDataSub goes directly to physical



8.3 Cloud-based City Platform 213

Figure 8.2 Subscription mechanisms to get real-time notifications.

devices in the IoT testbed through IoT-broker and IoT-agents. Both of them
are designed to notify applications with real-time changes, but with different
expected latency. The notification latency for CacheDataSub is relatively
longer than the one for DeviceDataSub, because devices will fire notifi-
cations immediately after the requested changes happen, without waiting
for the next report period. Unfortunately, the DeviceDataSub is not fully
working in the integrated system with the SmartSantander testbed because
the sensor nodes in this testbed can only report updates in a passive and
periodic way.

CiDAP is just a concrete example to illustrate how a smart city platform
could be designed to support flexible IoT analytics in a cloud environment. On
the other hand, based on our experiments and experience with CiDAP, we have
also identified certain limitations of the cloud-based solution. For example,
with the cloud-based solution it is difficult to support time-critical use cases
such as autonomous driving and real-time emergency detection, because the
responsive time to react on real-time situation could be more than 10 seconds.
However, this limitation can be overcome by edge-based solutions, which will
be introduced in Section 8.3.

8.3.1 Use Case of Cloud-based Data Analytics

The crowd estimation system is to map a set of sensing readings into a
certain level of crowd density. Figure 8.3 shows the system overview of
cloud-based crowd estimation proposed in [23]. The system is deployed in
a shopping mall, where 23 sensors are installed. The size of the shopping
mall is roughly 90 square meters. The sensors continuously report ambient
information (such as CO2, noise level, temperature, and humidity) to the
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Figure 8.3 System overview of the cloud-based analytics.

BigData repository. In this system, all tasks of data analytics are handled by
Cloud. The task of feature selection chooses the most important information
behind the sensing data which will be the input of the task 2. For each
sensor, the task extracts the mean, standard deviation, variance, minimum
and maximum from sensing readings. In addition, the slope of temperature,
humidity, noise and CO2 readings are considered. The second task trains
a classification model based on the features selected by task 1, where this
task considers four different supervised learning algorithms including Naïve
Bayes Classifier [31], C4.5 [26], Random Forests [17], and Support Vector
Machines [18]. The ground truth is established through human observations,
where the system pre-defines 4 crowd levels from 0 to 3 which are mapped
to “occasional passer-by”, “sparse traffic”, “crowded” and “overcrowded”
respectively.

Based on the observations by the building management office, the crowd
level 0 is mapped to 0–15 people, the crowd level 1 is mapped to 16–30 people,
the crowd level is mapped to 31–45 people, and the crowd level 4 is mapped
to more than 45 people. Finally, the third task performs decision-making to
estimate levels of crowd density when real-time sensing data arrives. Given
a location and features from multiple types of sensing readings, this task can
map those information to a level of crowd density. However, IoT data contains
much useless and redundant information such as zero readings. Meanwhile,
an IoT platform may serve many IoT applications simultaneously and some
of real-time IoT applications may have critical QoS requirements. To support
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real-time applications, flexible and dynamic data analytical models across
the system will be preferred, where some processing tasks can be offloaded
onto edge.

8.4 New Challenges towards Edge-based Solutions

Different from traditional data analytics like Web analytics and log analytics,
IoT analytics must deal with the following IoT system characteristics:

1. IoT data are usually unstructured stream data and constantly generated
from geo-distributed sensors over time, ranging from time series event
streams to high data rate video streams; sending all raw data to the central-
ized Cloud for further processing will be very costly and also introduce
too much traffic to the underlying network;

2. Mobility and co-location of sensors and actuators, meaning that both
sensors and actuators are possible to move and actuators usually require
data from nearby sensors;

3. Actuators often expect low latency results to make fast actions;
4. Raw data and derived results are also expected to be shared and consumed

across different parties from anywhere, either globally from the Cloud or
locally from a nearby region, because the cost to deploy the infrastructure
of a large-scale IoT system could be very high and the platform and the
sensor data are worth to be shared for maximizing their benefits. All of
these requirements bring new technical challenges to IoT analytics since
problems like data distribution, data reliability, real-time data processing,
processing flexibility, and platform openness need to be considered and
addressed differently.

Regarding the requirements of IoT analytics, there is currently a new trend
to move processing to the edge, where IoT data are generated and analytics
results are consumed. Traditional computing models collect IoT data and then
transmit them to a data center for doing scalable data analytics, but this is no
longer a sustainable and suitable model for large-scale IoT systems.

Our previous experimental results from CiDAP also indicate that some
processing should be shifted from the Cloud down to the edge or IoT devices,
especially when applications expect to have real-time analytics results within
a few seconds or even a sub-second. Since IoT data are not only big, but also
naturally geo-distributed and increasing over time, processing all data only in
the Cloud will introduce high bandwidth cost between the network edges and
the Cloud. In many cases, it would make more sense to process or compress
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data before transmitting the data to the Cloud, or transmit only selected data
or derived results (e.g., anomalies, exceptions, averages). Therefore, for large
IoT systems there is a strong need to do analytics at the network edges.
For edge-based IoT analytics, the following challenges must be taken into
account.

1. Scalability: Edge-based IoT analytics needs to be able to scale up to
thousands of geo-distributed nodes over the wide area network. For
example, if we consider IoT gateways and even users’ mobile phones
as edge nodes, the total number of edge nodes in a large scale IoT
system can be easily over 1000. According to the recent report by Yahoo
[7], supporting over 1000 nodes with Storm within a cluster is already
problematic due to the bottleneck of its zookeeper service component.

2. Task Optimization: A sophisticated task scheduling algorithm is required
to optimize the resource usage and minimize the latency to deliver
analytics results. The underlying network topology of all IoT agents needs
to be considered by the task scheduling algorithm as well, since it can
affect the latency and the bandwidth consumption to produce analytics
results. Also, the task scheduling algorithm needs to be aware of the
geo-locations of sensors and actuators.

3. Flexible Application Interfaces: application developers should have
enough freedom to implement their own processing tasks for any type of
streams, such as event streams, text streams, and video streams. Further,
they should be able to define their application requirements and to access
real-time analytics results from their applications. Although this can be
built on top of existing solutions, none of the latter includes inherent
platform interfaces for supporting this.

4. Multi-tenancy Support: The designed edge analytics platform should
allow multiple users to share the same edge analytics infrastructure by
ensuring efficiency, fairness, and quality of service.This must be achieved
by designing sophisticated task scheduling and resource orchestration
mechanisms. Resource sharing across applications and users is highly
important, since the deployment and maintenance cost for a large-scale
IoT system is still big and its value should be maximized by enabling
more sharing across various applications and users.

5. Openness and Security: Edge-based IoT analytics platform is provided
as a PaaS for a set of IoT applications to do stream-based edge analytics.
Therefore, it will be important to consider the openness and security
issues at the design phase.
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8.5 Edge-based IoT Analytics

In this section we examine the edge-based approach for data analytics, which
is still at a very early stage in the Smart City context and in general in the
Internet-of-Things world. We will introduce our edge-based solution for IoT
analytics, describing the architecture in every components and the system
workflow. Also for this solution we provide a real-use case of IoT analytics
applied to our edge-based solution.

8.5.1 State of the Art

Fog computing is a term first advertised by Cisco, also known as Edge
Computing [30]. Basically it refers to extending cloud computing to the edge
by allowing data processing to happen at the network edges. As reported
by the survey of [16], fog computing has been introduced mainly because
of the strong needs of IoT systems for low latency results and fast decision
makings. Cisco has created a platform called IOx to support fog computing
by hosting applications in a Guest OS running in a hypervisor directly on
the network routers. Like a virtual machine, IOx enables running scripts or
even compiled code at the network edge. Although fog computing providers
like Cisco establish an environment to do distributed computation at edges, to
benefit from such environment enterprises still need a system that determines
which data needs to be processed immediately at the edge and which data
should be moved to the Cloud for further deep analysis. Currently, as compared
with cloud computing, fog computing is still in the very early stage and lacks
sophisticated data analytics platforms that allow us to efficiently utilize the
power of the edges and the Cloud together.

As a new trend, edge-based IoTanalytics aims to leverage the power of both
fog computing and cloud computing to support real time stream processing.
Only a few early stage studies have been done in this area, for example,
a recent work from Carnegie Mellon University [27] proposes a VM-based
edge computing platform for performing video analytics at the network edges,
but it only focuses on video streams and does not consider how to define
topologies to do customized stream processing on top of the edges and the
Cloud. In addition, some industrial systems have been done to explore edge
analytics, such as AGT IoT analytics platform [8], Geo-distributed analytics
from ParStream [11], and Quarks from IBM [13]. However, the details of their
system designs are not open. From what they advertise about their systems,
none of them seems to support multi-tenancy and dynamic topology execution.
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The usage of edge computing in concrete smart cities deployment is usually
meant only for data aggregation [19] or for semantic reasoning on local data
[15]. The computation procedures are statically installed on the edge node and
only pre-defined commands (like threshold settings) can be sent by the central
application.

8.5.2 Edge-based City Platform

To address the above challenges, we introduce our new edge-based city
platform called Geelytics in this section. As an edge-based platform solution
for IoT analytics, Geelytic is not supposed to be a replacement of the cloud
based solution like CiDAP, but rather an enhancement or a complementary
solution to relax the pure cloud-based solution with the capability of edge
analytics.

Geelytics is mainly designed for large scale IoT systems that consist
of a large number of geo-distributed data producers, result consumers, and
compute nodes that are located both at the network edge and in the cloud.
Data producers are typically sensors, connected cars, glasses, video cameras,
and mobile phones, being connected to the system via different types of edge
networks (e.g., Wi-Fi, ZigBee, or 4G, but maybe also fixed networks). They
are constantly reporting heterogeneous, multi-dimensional, and unstructured
data over time. On the other hand, result consumers are actuators or external
applications that expect to receive real-time analytics results from sensor
data and then take fast actions accordingly. Both data producers and result
consumers could be either stationary or mobile. In between them there are lots
of compute nodes geographically distributed at different locations. In general
compute nodes are heterogeneous in terms of resource and data processing
capability and they can be located at different layers of the network. For
example, they could be small data centers at base stations in a cellular network
or IoT gateways in factories or shops.

The Geelytics system is designed as an IoT edge analytics platform
that allows consumers to dynamically trigger certain stream data processing
either at network edges or in the Cloud to derive real-time IoT analytics
results from a set of data providers. At very high level, it works like a
distributed pub/subsystem to interact with geo-located sensors and actuators,
meanwhile having a built-in stream processing engine that can perform on-
demand IoT stream data analytics based on the underlying Cloud-Edge system
infrastructure. As shown in Figure 8.4, the Geelytics platform includes the
following components.
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Figure 8.4 Subscription mechanisms to get real-time notifications.

IoT Agent: each IoT agent represents one worker that is capable of
performing stream processing tasks. In Geelytics IoT agents are deployed on
geo-distributed physical or virtual machines, either in a cluster in the Cloud
or at the network edges. Each agent communicates with the Controller to
report its capability and available resources, accepts incoming tasks from
the topology masters, and instantiates them locally. It can also receive data
streams from nearby sensors and fetch data streams from other remote IoT
agents according to the requirements from its accepted running tasks. All IoT
agents have the same role, but they might be heterogeneous depending on the
processing capabilities and network connections of their host.

Task Container: every schedulable task is wrapped up as an application
container by developers. Based on Docker [9], it can be fast deployed and
executed anywhere by an IoT agent. By design, each running task within
an application container will communicate with its IoT agent via a pub/sub
mechanism, including subscribing input streams and publishing generated
output streams. Using Docker as the environment to run IoT analytics tasks,
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we are able to better support multi-tenancy, because Docker allows us to do
fine-grained resource allocation for each task.

Topology Master: In Geelytics, an IoT analytics application consists of
a set of correlated data stream processing tasks. Each application has a
dedicated topology master to manage all involved stream processing task
instances running in the Cloud or at the network edges. Each topology master
is responsible for monitoring and allocating tasks to different IoT agents. It
requests the current state of all available resources, including all active IoT
agents and their remaining capabilities, network latency and traffic across
IoT agents, and then make decisions on at which IoT agent each task must
be instantiated, regarding the task topology specification and optimization
objectives given by the application developer and the current workload. By
separating Topology Master from the Controller, Geelytics is able to achieve
better scalability as compared with existing stream processing platforms like
Storm. In addition, several task assignment algorithms have been applied by
Topology Master to optimize task allocation between Cloud and edges during
the runtime, with regards to the objectives of reducing bandwidth consumption
and latency.

Controller: all system resources and core components are managed by
the Controller, which is a single central control point of Geelytics running in
the Cloud. It indexes all streams, agents, topologies, and users. For security
reasons, it authenticates all the other components, especially IoT agents, when
they join the system.

Front-end Server: application interfaces are supported by the front-end
server via HTTPREST, enabling that: 1) application developers can submit the
task definition, topology structure, and optimization objectives; 2) actuators
can query or subscribe the analytics results generated by the submitted
application; 3) sensors can register them to a nearby IoT agent; 4) a dashboard
service is provided to check the status of the entire Geelytics system and also
to manage users and applications.

Broker: the Broker is a distributed message exchange system to enable the
communication between different components. To be scalable and flexible, the
Broker must have high throughput and support topic-based message handling.

Global State Storage System: Geelytics is designed to support complex
stream processing tasks, such as machine learning tasks, image or video
processing tasks. For those tasks, it is important to save some of the inter-
mediate states to tolerate unexpected failures. The same concern goes for
the other components as well, such as the Controller, IoT agents, and the
topology master. Therefore a global state storage system is introduced to keep
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all intermediate states and results, using existing NoSQL database systems
such as key-value based Redis or document-based CouchBase.

8.5.3 Workflow

The system platform is initialized in the following sequence. First, the broker
and the global state storage system must be set up independently as two
external sub-systems. Then the Controller is started in the Cloud and it will
launch the front-end server. IoT agents can be started before or after the
controller, but each of them must be authenticated by the controller when
they join the system. As stream data sources, sensors can be attached to an IoT
agent manually or be forwarded to the nearby IoT agent by the controller when
they join the system. After the system is ready, developers need to register a
user account and then start to submit their customized tasks and application
topologies. Once a new application is submitted, the Controller will allocate
proper resources for the application according to its requirements and then
return a URL address to the actuators of this application for accessing the
analytics results.

8.5.4 Task and Topology

As the example in Figure 8.5 shows, in Geelytics a data analytics application
is defined by a task topology, which specifies the relationship between
different stream processing tasks within the application. Based on the task
topology, a processing topology will be created on the fly to handle the
current workload. The processing topology consists of a set of running task
instances, allocated by the topology master to the network edges or the Cloud,
up to where the involved data sources are located and where the results are
demanded by the actuators. In Storm a processing topology is constructed
when the task topology is submitted, according to the parallelism of each
task defined by the developer. In contrast, in Geelytics all data streams
generated by each task in the task topology are accessible to actuators and
the processing topology is constructed and changed as actuators join and
leave.

In Geelytics the way to implement a task is flexible. A task just needs
to follow a pub/sub communication interface to fetch the input streams and
publish the output streams and a set of parameters are configured with the
task to decide which input streams to bring in. However, how to handle the
input streams within the task is a black box for Geelytics. Developers can use
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Figure 8.5 Task topology and processing topology.

any image/video processing or machine learning library to implement their
tasks in any programming language, because they can wrap up all dependent
libraries into a single Docker container image. In addition, all tasks can
use the interface of the global state storage system to save or retrieve their
state data.

8.5.5 IoT-friendly Interfaces

Geelytics also provides friendly interfaces for both data producers and result
consumers to interact with the system. In Geelytics all data producers report
their availability, profiles, and data streams to the system, managed by a
repository based on ElasticSearch [10]. The way to fetch the data streams
generated by data producers can be push-based or pull-based. In the push-
based approach, data producers publish their stream data to the MQTT broker
on the nearby compute node; while in the pull-based approach, data producers
just announce the URLs of their streams, and later on it is up to task instances
to fetch the data directly. A data producer first has to ask the controller to
find a nearby worker and then registers its data stream via the nearby worker
with the following details: its device ID and location, the generated stream
type, and the manner to provide the stream data (push-based or pull-based).
A unique ID will be returned to the producer as the global identity of its data
stream. If the stream is pull-based (for example, a web camera), a URL must
be provided for accessing data as well; if the stream is push-based, using the
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unique ID as the topic, the producer publishes the generated data to the broker
provided by the nearby worker via MQTT.

A result consumer also needs to ask the controller to find a nearby worker
first. After that, it sends a scoped subscription to the nearby worker for
triggering some real-time data processing over the specified data sources.
A subscription ID is returned to the consumer to make a further subscription
to the broker. The consumer can receive the subscribed results as soon as they
are produced by the triggered task instances in Geelytics. Those running tasks
will be terminated once the consumer decides to unsubscribe to the result or
its leaving without notice has been detected.

8.6 Use Case of Edge-based Data Analytics

A real use-case for edge-based data analytics is the study of crowd mobility
pattern analysis and prediction. In the next subsections we are going to
examine how we can design such application and how it is fitting in the
Geelytics platform.

8.6.1 Overview of Crowd Mobility Analytics

Crowd mobility analytics investigate how many people in a certain area and
how they move from one area to the others which can provide insights for
various IoT applications. For example, stadium operators may need to know
the number of people in a big event in case of emergencies, and airport or
public transport operators may need to know passenger flows for predictable
service enhancement and maintenance scheduling.

Figure 8.6 shows the overview of the crowd mobility analytics system,
where the IoT platform consists of data sources, edge nodes, and cloud nodes.
The data sources include Wi-Fi sensing stations and ambient sensors. Each
Wi-Fi sensing station captures Wi-Fi probe requests broadcast by mobile
devices from time to time, while ambient sensors include CO2, noise,
temperature, humidity, and motion sensors which capture the influence of
human mobility on the environment. Each edge node serves as a local data
aggregator to connect to cloud nodes. Cloud nodes cooperate with edge nodes
though shared backed database. Since the architecture of edge-based data
analytics provides a more flexible task processing topology, it opens up more
opportunities for processing data streams in a pipeline way which can speed
up data analytics. Thus, the crowd mobility analytics decompose the mobility
data analytics into six processing tasks based on the dependency among tasks:
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(1) Wi-Fi sensing, (2) data filtering, (3) privacy preservation, (4) real-time
crowd statistics, (5) mobility model learning, and (6) mobility prediction.
The first three ones are lightweight sensing and data pre-processing tasks
which will be assigned to edge nodes, while the latter three tasks are
computation-intensive which will be assigned to cloud nodes.

8.6.2 Processing Tasks and Topology of Crowd
Mobility Analytics

Since edge nodes have enough capabilities to run simple routine, the pro-
cessing topology of crowd mobility analytics is designed to decouple the
computation complexity between cloud and edge nodes.

First, we introduce the three lightweight tasks allocated to edge nodes as
follows.

• Task 1: sensing. We build passive sensing stations to capture Wi-Fi
packets broadcast by mobile devices and sensing readings, where each
sensing station was build using a Raspberry Pi 2 with Arch Linux, a
Wireless LAN USB Adapter, and ambient sensors.

• Task 2: data filtering. Since the previous sensing task captures all of
Wi-Fi packets including dense beacons, this task picks up only Wi-Fi
probe requests and represents sensors readings as a common format.
Meanwhile, this task transforms the raw sensing data into a structured
format for further mobility analysis in cloud nodes. For each Wi-Fi
probe request packet, the system extracts the BSSID, the Wi-Fi channel
on which the packet has been sent, the source and destination MAC
addresses, the time when the packet has been detected, and the Wi-Fi
device vendor inferred from the first 3 bytes of the MAC address.

• Task 3: privacy preservation. To avoid exposing identities of mobile
users, edge nodes perform MAC address anonymization for the privacy
preservation purpose. Thus, each edge node sends hashed MAC addresses
to the backend database using a SHA-1 algorithm [22].

Afterwards, cloud nodes perform the following three key tasks: real-time
crowd statistics, mobility model learning, and mobility prediction.

• Task 4: real-time crowd statistics. This task performs feature extraction
and statistical analysis based on the results from many instances of Task
3 in a real-time way. The extracted features include the mean, maximum,
minimum, and standard deviation of sensing readings from ambient
sensors. The statistical analysis results include the number of mobile
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devices, distribution of device brands, and the number of mobile devices
moving from one sensing area to the others based on the Wi-Fi.

• Task 5: mobility model learning. Based on these features extracted in
Task 4, this task trains a classification model to estimate the number of
mobile users in a certain area.

• Task 6: mobility prediction. Based on captured Wi-Fi probes, the task
models human mobility as a finite Markov Chain [28] which represents
mobility behaviour of public crowds instead of focusing on each indi-
vidual’s mobility trajectories. The behavioural characteristics of crowd
mobility can be mapped to a level of crowd which explains how many
people staying in a certain area. Furthermore, we can use this model to
predict crowd levels based on the statistical analysis of mobility flows
among multiple areas.

8.7 Conclusion and Future Work

In this article we discuss the technical challenges to support flexible IoT
analytics for smart cities from a platform perspective. As the scale of IoT
devices in a smart city is fast growing and fast response time is highly
demanded by more and more smart city use cases, for IoT analytics there is a
new technology trend to move data processing from the cloud to the network
edges. With two concrete platform examples, namely CiDAP and Geelytics,
we illustrate this new technology trend and show use cases can benefit
from them.

For the time being, CiDAP focuses more on the cloud side while Geelytics
focuses more on the edge side. However, Geelytics is not supposed to replace
CiDAP as an alternative solution, but rather enhance it as a complementary
solution. For example, Geelytics is good at processing stream data both in
the cloud and at edges, but it is not a good choice for dealing with large scale
historical data in the cloud, which is the strength of CiDAP. Therefore, it makes
sense to integrate CiDAP and Geelytics to have a more advanced and unified
platform for IoT analytics, which can utilize both edge computing and cloud
computing. This is one of the future steps in the short term. In addition, we
are further working on the task assignment algorithms in Geelytics to support
mobility aware IoT analytics for moving objects, such as connected cars and
flying drones.

In the long term, we are working on the issue of semantic interoperability
to support advanced IoT analytics that can utilize the data from various data
sources across different application domains. In a smart city, relevant data
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could come from various data sources, either in the same IoT system, from
other IoT systems or even from more traditional IT systems whose content
may be entered by humans. Semantic interoperability will allow us to interact
with various data sources with ensured consistency of the data across systems
regardless of individual data format. The semantics can be explicitly defined
using a shared vocabulary as specified in an ontology.

For IoT to be successful, standardized solutions are needed – be it formal
standards or de-facto standards developed as part of industry alliances or
open source communities. In CiDAP we are making use of the OMA NGSI
Context interfaces that are at the core of FIWARE [2] Platform. We are
also actively participating in the oneM2M [24] standardization. Ultimately,
important functionalities developed and explored in our research prototypes
need to become part of standardization. Different standards have to be aligned
and gaps in standardization have to be identified and closed.

Regarding semantic interoperability, we have integrated basic semantic
functionality into oneM2M. Based on this we have done an experiment to show
how semantic information can be used for converting IoT data in oneM2M into
the NGSI data format used in FIWARE. We are now planning to generalize
the approach using the concept of mediation gateways.

For the future work, we would also like to consider the security and privacy
issues in IoT analytics for smart cities. We have done some work to ensure
the secure communication between different components in both CiDAP and
Geelytics, but this is still the basic step to ensure security. With the support
of edge analytics, the IoT analytics platform is now geographically deployed
with the extension further down to the edges, like mobile base stations, IoT
gateway, and even some endpoint devices as well. In this case, it is becoming
more challenging to secure the platform and IoT data.

For example, some intrusion detection might be needed to detect attacks
and potential threats in real time. The research on privacy in IoT is still at an
early stage, but will be an essential point for the adoption of IoT on a large
scale.
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to Deployment and Operationalization
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9.1 Operationalizing Data Analytics Using the VITAL
Platform

The VITAL smart cities platform has been introduced in an earlier chapter
(Chapter 4). It comprises a set of middleware libraries and accompanying
tools, which facilitate the development, deployment and operation of smart
cities applications, including IoT analytics applications. The platform supports
functionalities across all the phases of the IoT analytics lifecycle, which have
been presented in the introductory chapter. The rest of this chapter focuses
on illustrating the practical implementation of the IoT analytics lifecycle as
part of the VITAL internet-of-things (IoT) platform for Smart Cities, which
has been already introduced in Chapter 4. Furthermore, it presents practical
examples associated with the deployment and operationalization of advanced
IoT analytics, over footfall datasets collected from a smart city. IoT Data
Collection.

In terms of IoT data collection, VITAL enables the collection of data from
heterogeneous IoT systems, notably systems that have been developed and
deployed independently in the scope of a smart city. To this end VITAL defines
the PPI (Platform Provider Interface) abstract interface, which enables the
unification of data from diverse systems in terms of their format. In particular,
VITAL enables the collection of IoT data from different systems and data
sources as soon as the latter implement the PPI interface.

TheVITALplatform provides also the means for managing, registering and
de-registering IoT systems in its platform, based on PPIs. Furthermore, the
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PPIs enable the data collection and retrieval based on a JSON-LD format,
which facilitates the semantic unification of data streams from different
systems and data sources. This boosts the application of IoT analytics
over diverse IoT systems, through alleviating the semantic heterogeneity
of the various streams. Hence, the VITAL platform addresses the variety
of IoT data streams both in terms of their formats and in terms of their
semantics.

9.1.1 IoT Data Analysis

VITAL supports the storage and processing of the semantically unified data
within a datastore, thus facilitating IoT data analytics over data stemming
from multiple data sources and systems. The VITAL datastore is supported by
a NoSQLdatabase. The VITALplatform offers a wide range of data processing
functions over this datastore, including:

• Dynamic data discovery based on criteria such as sensor type and
location.

• Filtering on specific data attributes and on the basis of appropriate
thresholds for each attribute.

• Complex Event Processing towards producing events based on informa-
tion contained in multiple IoT streams.

Moreover, VITAL supports the data analysis phase through its integration with
libraries of the R project. The latter libraries enable the execution of machine
learning schemes, such as regression, classification and clustering.

9.1.2 IoT Data Deployment and Reuse

The VITAL platform enables the deployment of data processing algorithms
over semantically unified streams, which are stored in the DMS (Data Manage-
ment Service) of the system. It also enables the management of registrations
to the various IoT data sources (including IoT platforms and systems), which
provide the data to the DMS. In this way, VITAL supports the deployment of
IoT data and its integration within IoT analytics applications in-line with the
third phase of the already presented IoT analytics lifecycle. The integration of
IoT data within applications is supported in a way that enables the repurposing
and reuse of IoT data across multiple applications. This is made possible on
the basis of the semantic annotation of the IoT data streams according to the
VITAL JSON-LD contexts.



9.2 Knowledge Extraction and IoT Analytics Operationalization 233

9.2 Knowledge Extraction and IoT Analytics
Operationalization

Based on the functionalities outlined above, VITALcan be used for knowledge
extraction, as well as for the deployment and operationalization of IoT
analytics. Prior to deploying an IoT analytics application, the discovery
and testing of IoT data mining algorithms that are likely to extract the
desired knowledge in a credible way is required. In this respect, IoT data
mining (which is part of the second phase of the IoT Analytics lifecycle)
is very similar to conventional data mining applications i.e. applications
leveraging transactional data instead of IoT streams. Hence, mainstream
models for data mining and analytics such as the Cross Industry Standard
Process for Data Mining (CRISP-DM) Model for Knowledge Discov-
ery [1] can be applied. CRISP-DM entails the following activities and
phases:

• Business Understanding: This activity is the starting point of the process
and refers to the need of understanding the business problem at hand. A
sound understanding of the nature of the problem is a key prerequisite to
identifying proper machine learning models.

• Data Understanding: This activity follows business understanding and
aims at understanding the data. By inspecting and understanding the data
experienced data scientists can gain valuable insights on the applicability
of certain data mining schemes. Data understanding leads to identification
of data patterns in the datasets, which can serve as basis for identifying
candidate machine learning schemes.

• Data Preparation: This is tedious, yet indispensable task in the process,
given that the collected datasets need to be transformed in a format
appropriate for identifying appropriate data mining and machine learning
models. In conventional data mining applications, the data preparation
step involves multiple ETL (Extract Transform Load) processes. In the
case of IoT analytics, data engineers will have to deal with a multitude
of data sources and formats depending on IoT data streams involved.
The data preparation process is in several cases tedious, as a result of the
need to deal with heterogeneous data sources, formats and semantics.
As already outlined, semantic interoperability solutions (such as VITAL)
facilitate the data preparation process.

• Modelling: This activity leverages data sets collected from the IoT sys-
tem in order to identify a proper machine learning scheme for the problem
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at hand. This task is facilitate by data mining tools (such as RapidMiner1

and Weka2), which can be used to produce a machine learning model
(e.g., a classifier or an association) given a training dataset. The modelling
phase interacts very closely with the data preparation phase in order to
ensure that the available training datasets are appropriate for fitting the
target/identified models.

• Evaluation: As part of this phase, the produced model is evaluated in
terms of its efficiency as the latter is reflected in the speed of training, the
speed of model execution, its noise tolerance, as well as its expressiveness
and explanatory ability. The evaluation is based on metrics such as
classification accuracy, errors in numeric prediction, lift and conviction
measures and more. A validation datasets (which is different from the
training dataset) is used in the scope of the evaluation process. In case
of acceptable performance and accuracy, the data scientists and practi-
tioners can move the model to deployment. However, in case of poor
performance, the whole cycle (i.e. from business problem understanding
to model evaluation) has to be repeated in order to identify a model that
gives satisfactory results for the problem at hand.

• Deployment: Successful models (i.e. schemes providing acceptable
performance for the business problem at hand) are deployed and opera-
tionalized. The VITAL platform and more specifically its development
environment offers integration with the R project, as a means of easily
programming and deploying IoT analytics schemes. Hence, identified
data mining models and schemes (e.g., Bayesian classifiers, K-means
clustering algorithms, logical regression schemes) can be flexibly pro-
grammed and integrated within an application workflow and accordingly
deployed based on the VITAL middleware platform.

In following paragraphs we provide a concrete example of the knowledge
extraction process based on IoT data streams.

9.3 A Practical Example based on Footfall Data

As a case-study of performing some useful analysis on sensor data
using advanced data mining techniques, we analyze the Camden footfall
dataset. The Camden dataset comprises a multi-dimensional time-series in a

1https://rapidminer.com/
2http://www.cs.waikato.ac.nz/ml/weka/
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time-frame of 1 hour, for two months, of counts of people passing in front
of 5 different cameras in Camden, London. The first two weeks of this
data-set is depicted in Figure 9.1 where its periodic nature is revealed; in
the figure, each time-series label InPlusOutX refers to the total number of
people detected during the particular time-frame by camera X (in location
X); the interested reader can find more information in http://www.spring-
board.info/service/service-display/visitor-counting.

By visually inspecting the time-series it is clear that the 4-th location
(corresponding to the camera no. 4) is usually the busiest. It is also clear
that there are dependencies between all locations (that can be confirmed by
computing the R values for any pair of time-series components.) Logistic
regression (as implemented in the Weka suite of tools [2]) does not provide
much more insight into the nature of the relations between the time-series
components. In order to obtain some more insight into the relations between
the given time-series components, we have performed Quantitative Asso-
ciation Rule Mining (QARM), introduced in [3], using QARMA, a highly
parallel/distributed algorithm for mining all non-dominated “interesting”
quantitative association rules in multi-dimensional dataset [4]. Quantitative
association rules are association rules defined over quantitative attributes
which they qualify over certain intervals. We define a rule to be “interesting”
when its support and confidence exceed 8% and 85% correspondingly. The
notion of non-dominance in quantitative association rules is formally defined
in [4], but intuitively, a rule r dominates a second rule s if whenever s fires (i.e.
all its antecedents are satisfied), r also fires, the consequent part of r covers
the consequent of s, and r has equal or higher support and confidence than s.

Running QARMA on the Camden dataset produces a total of more than
25.000 non-dominated rules, which entirely cover the dataset: every data point

Figure 9.1 Camden footfall dataset.
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in the dataset is covered by the application of at least one produced rule. The
produced rules have a conviction [4] measure in the range [100.0%, 837.9%]
which on average is 437.3%, while the lift of the rules [5] is in the range [1.0,
10.8], and averages at 2.87; both these measures indicate that the produced
rules are far from being statistical flukes. Among the most interesting rules
found, we list the following:

• Rule1: Time-of-day in [16:00, 19:00] → InPlusOut1 ≥ 449 with
support = 14.2%, confidence = 85.2%, conviction = 472.7%, lift = 2.82

• Rule2: InPlusOut3 ≥ 1874.0 ∧ InPlusOut4 ≥ 423.0 ∧ InPlusOut5 ≥
262.0 → InPlusOut2 ≥ 2051.0 with support = 8.6%, confidence = 85.1%,
conviction = 579.9%, lift = 6.17

• Rule3: InPlusOut1 ≥ 265.0 ∧ InPlusOut5 in [327.0, 1791.0] ∧
Max{InPlusOut{1. . . 5}} in [2309.0, 6554.0] → InPlusOut2 ≥ 2334.0
with support = 8.9%, confidence = 85.06%, conviction = 603.7%,
lift = 8.65

• Rule4: InPlusOut2 ≥ 2298.0 → InPlusOut1 ≥ 365.0 with support =
8.811475409836065%, confidence = 85.4%, conviction = 415.85%,
lift = 2.16

The first rule for example, shows that the camera in location 1 (InPlusOut1)
whose average footfall is just under 336, in the 3-hour afternoon period
between 16:00–19:00 increases above 449 regardless of the traffic in the other
cameras or day of month.

The 2nd rule states that when locations 3, 4, and 5 are above certain footfall
thresholds, then it is the second location that becomes the most crowded. This
particular rule has among the highest conviction and lift rates, making it a
very statistically significant and interesting rule.

The 3rd rule states that when footfall in location 1 is above a certain
threshold, location 5 is within certain limits and the maximum of all locations
is within certain limits as well, then location 2 exceeds its average value by
more than 3 times (the average footfall measured by camera in location 2 is
around 706).

Finally, the 4th rule provides an association between the footfall in
location 2 and location 1, showing that when the footfall in location 2 is
above a threshold that is (very significantly) above its average value, then the
footfall in location 1 also increases above its average value. However, this
last rule has a lift value of 2.16 and is thus not as strong as the previous three
rules.
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The produced quantitative rules fully describe the dataset, and show
significant associations between the measured values of the time-series
components; they also have the extra advantage of showing associations
at “corner cases”, that is they show what happens in one component when
some other components significantly exceed their expected values, in fully
quantifiable ways.
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10.1 Introduction

The Internet of Things (IoT) is rapidly developing, primarily driven by
businesses that see opportunities for profit through new business and business
models. Other key players include public administrations and non-profit
institutions that see IoT as an opportunity to address societal challenges in
effective ways that were not reasonably available, before. Good public use
of IoT can pay off rapidly, and lead to the ability of serving citizens and
businesses better, at lower costs, in more inclusive ways. The first applications
in the public domain show promising results – and it is still early days.

Evolution from machine to machine technology to the growing IoT
networks raises challenges at every level that can become barriers to adoption
when not addressed. New masses of data are generated by our Things and then
shared between objects. Smart algorithms can combine this information with
masses of very diverse sources such as social media, Open Data, traffic data,
etc., leading to a world where BigData are more and more used to guide our
decisions.

This world with “many eyes” (all the sensors in IoT and traffic data that
register what happened where when and who/what was involved) and a wealth
of (Big) data that can be combined and analyzed using smart algorithms is a
world in which the old methods of privacy protections often fail [1]. Many
notions of privacy rely on informed consent for the disclosure and use of
an individual’s private data. Data has become a resource that can be used
and reused, often in ways that were inconceivable at the time the data was
collected.

IoT has become a real game changer in this as sensors complement the
data that were already generated, stored and shared before with new data,
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Figure 10.1 From IoT to BigData and analytics.

increasingly filling the gaps in digital representation of the (physical) world
and what is happening on its surface. Not only that: IoT offers the opportunity
to collect high value data – very focused on what the investing organisations
want to know, and relatively well structured, as real-time as needed, and in
context [2]. How do we adapt to this new reality where almost everything can
eventually be captured in digital form (Section 10.2)? And what is needed
most in order to create an environment that fosters positive evolution of the
IoT, allowing us as businesses and society to benefit fully, without having to
be afraid for the consequences (Section 10.3)? The conclusion (Section 10.4)
is very much in line with the words of Commissioner Ansip: “Trust is a must”.

10.2 From IoT to a Data Driven Economy and Society

It is clear: in terms of pervasiveness, IoT has already contributed to the
emergence of a society in which almost everything is or can be monitored. It
is not new, nor can further roll-out be stopped. What is new, is the enormous
amount of “Things” that are now connected to the Internet and that are
collecting, storing and sharing information . . . and the further rapid growth
of deployment of more “Things”[3] and the increasing ability of actors to
access and analyze data generated by IoT and many other sources.

Now: whereas the levels of monitoring are very high and well beyond the
imagination of George Orwell [4] in terms of what technically is possible, in
Europe trust in government and society has remained at a relatively high level.
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When Snowden revealed, starting in June 2013, some evidence reflecting the
pervasiveness of monitoring through numerous global surveillance programs
[5], many of them run by the NSA (National Security Agency) and the Five
Eyes1 with the cooperation of telecommunication companies and European
governments, this resulted in widely expressed concern and even outrage by
the general public, civil society and politicians.

This led to a global discussion making clear that monitoring is a necessity,
yet should be proportional, and not take place at all costs, and a balance is yet
to be found. This results in a discussion that will continue to stretch over the
decades to come.

Overall, it is noted also by the European Parliament that surveillance
and collection of data should be proportional and justified, noting that new
legislation is underway in multiple EU member states that would allow broad
collection of data and tapping of internet communications: also including
IoT [6].

Within this setting, the discussion in Europe about privacy and data
protection is finding its way, moving from a Directive on Data protection and
privacy towards European legislation that will come into full force in May
2018. The reform is to strengthen individual rights and tackle the challenges
of globalisation and new technologies, and “simplify” compliance by being
applicable law in all EU member states, whereas the Data protection Directive
originating from 1995 was applied by national governments in similar but not
always the same way.

When the original Data Protection Directive was developed and agreed in
1995, the Internet was by far not as important as today, and nobody had
even mentioned the term “Internet of Things” yet. A review of the 1995
Directive in 2009, sponsored by the UK Data Privacy Authority, already
noted that new developments like IoT, data mashups and data virtualization
are new challenges that had to be met [7]. The reform that led to the new
General Data Protection Regulation (further: GDPR) has been under way
since 2011 and culminated in a Proposal to Council and Parliament by the
European Commission on 25 January 2012. This proposal was approved by
the European Parliament in March 2014, and has now been finalized and
ratified by Parliament and Council to come into force in May 2018.

1“Five Eyes”, often abbreviated as “FVEY”, refer to an intelligence alliance comprising
Australia, Canada, New Zealand, the United Kingdom, and the United States that was formed.
These countries are bound by the multilateral Agreement, a treaty for joint cooperation in
signals intelligence.
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With this, it should be noted that the work has not been completed. When
this law was set up in outline in 2011, “BigData” was not yet an issue widely
recognized, in that year new in the Gartner Emerging Technologies Hype
Cycle.

Today, we know that BigData, and BigData analytics, fundamentally
challenge the concept of “personal data” as through BigData analytics data
that in isolation do not relate to persons often can be related to persons when
combined with other data.

The 2014 Opinion from WP292 on IoT recognises the value of IoT, as
well as the potential intrusions it can generate to privacy. In this Opinion,
statements are made that alarmed businesses around the world now asking for
guidance to the European Data Protection Supervisor, as what is suggested
may put a lock on many current developments in the field.

In 2015, a Court Ruling by the European Court of Justice in the case of
Maximillian Schrems versus the Irish data protection commissioner regarding
the right of Facebook to transfer data to servers located in the USA under the
Safe Harbour scheme further led to uncertainty about the legal situation. On
6 October 2015, the Court declared the Safe Harbour Decision invalid, as the
protections under the Safe Harbour scheme provided by the US Authorities
had proven to be inadequate, in particular because “the scheme is applicable
solely to the United States undertakings which adhere to it, and United States
public authorities are not themselves subject to it. Furthermore, national
security, public interest and law enforcement requirements of the United States
prevail over the safe harbour scheme, so that United States undertakings are
bound to disregard, without limitation, the protective rules laid down by that
scheme where they conflict with such requirements” and because for non-US
citizens there is no opportunity to redress: “legislation not providing for any
possibility for an individual to pursue legal remedies in order to have access to
personal data relating to him, or to obtain the rectification or erasure of such
data, compromises the essence of the fundamental right to effective judicial
protection”.3

2The Article 29 Data Protection Working Party was set up under the Directive 95/46/EC of
the European Parliament and of the Council of 24 October 1995 on the protection of individuals
with regard to the processing of personal data and on the free movement of such data. It has
advisory status and acts independently.

3ECJ ruling in case C-362/14 Maximillian Schrems vs Data Protection Commis-
sioner, 6 October 2015, http://curia.europa.eu/jcms/upload/docs/application/pdf/2015-10/
cp150117en.pdf
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Currently, IoT providers such as the globally popular “Nest” smart meters
and smoke detectors, owned by Google, still refer to “Safe Harbour Agree-
ment” protection of personal data.4 Whereas Nest explicitly commits to a
number of privacy measures, it should be noted that today (2015) redress
is thus not possible when a European citizen considers her or his privacy
right to be violated and their data are kept in database physically outside of
Europe.This is also true for companies such asYounqi (health bands) and many
others that collect data and store them on US servers. The measures currently
proposed by the European Commission to replace “Safe Harbour”, known
as “Privacy Shield”, have not been accepted, yet, and await an advice from
WP29. Note that the EU-U.S. “Privacy Shield” imposes stronger obligations
on U.S. companies to protect Europeans’personal data and requires the U.S. to
monitor and enforce more robustly, and cooperate more with European Data
Protection Authorities. It also includes written commitments and assurance
regarding access to data by public authorities. It should also be noted that this
new agreement has not been tested in Court, yet, and until this is done and
ruled to be a “valid agreement” uncertainty about this new protection remains.

Businesses are looking for guidance, as BigData is a subject of interest
to many, and companies around the world are looking into the opportunities
offered by BigData, data generation, collection, and analytics. IoT is a major
driver in this, as “connected Things” will generated endless streams of data
that will be captured and used. According to the European Data Protection
Supervisor Peter Hustinx [8]: “If BigData operators want to be successful,
they should . . . invest in good privacy and data protection, preferably at the
design stages of their projects”.

With this, he recognises the important of “soft law” at this point [9].
Investing in good privacy and data protection should be core in the inno-
vation, development and deployment of IoT, and probably a pre-condition
for European (co-)sponsored research. A way forward could include the
habit/obligation of a Privacy Impact Assessment in every stage of design of
new IoT products and services.

In his published Opinion on Digital Ethics [10], the European Data Protec-
tion Supervisor (EDPS) refers to Article 1 of the EU Charter of Fundamental
Rights: ‘Human dignity is inviolable. It must be respected and protected.’
From that position he further explains that: “In today’s digital environment,
adherence to the law is not enough; we have to consider the ethical dimension
of data processing.”

4https://nest.com/legal/privacy-statement-for-nest-products-and-services/
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It is in line with this that some projects funded by the European Com-
mission are looking very carefully at the issue of privacy protection and the
idea of limiting the amount of information available to each entity. In general,
the key issue to take into account while discussing privacy has to do with the
integration of information from different sources. While a single stream of
data might not contain enough information to invade the privacy of the user, it
is recognized that the correlation and concurrence of information at an entity
can lead to privacy considerations that were unthinkable only looking at the
individual sources.

While the user is ultimately responsible for the data it allows to escape in
the open, a modern individual that works and lives with current technologies
cannot keep up with the types and amount of information being “leaked” by
applications and websites. It is, therefore, for an individual virtually impossible
to design privacy policies that are permissive enough to allow for services
to work, while at the same time, restrictive enough that the privacy of the
user is not compromised. Any specific harm or adverse consequence is the
result of data, or their analytical product, passing through the control of three
distinguishable classes of actor in the value chain [11]:

1. Data collectors, who may collect data from clearly private realms, from
ambiguous situations, or data from the “public square,” where privacy –
sensitive data may be latent and initially unrecognizable;

2. Data analyzers, who may aggregate data from many sources, and they
may share data with other analyzers creating uses by bringing together
algorithms and data sets in a large – scale computational environment,
which may lead to individuals being profiled by data fusion or statistical
inference;

3. Users of analyzed data generally have a commercial relationship with
analyzers; creating desirable economic and social outcomes, potentially
producing actual adverse consequences or harms, when such occur.

As the complexity increases through technology, we will depend on technology
to deal with it. It is crucial that automated and self-configuring solutions are
offered that analyze the type and amount of information given away for a
specific user and configure the appropriate number of policies to ensure that the
level of security and privacy desired by the user is kept untouched. This goes
beyond mere regulatory actions and requires robust and flexible technology
solutions that work under very different conditions, and that are backed by
legislation to ensure that abuse of technologies or data is subject to redress
and legal action.
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10.3 Way Forward with IoT

The Internet of Things and its underlying data streams shape an important part
of that transformation by collecting and sharing data from a rapidly increasing
amount of objects that are digitally connected in our lives, ranging from our
cars to smart TVs, smart homes to smart cities, as well as natural disaster
warning systems and air quality sensors network.

Drivers for IoT introduction include the need to address societal challenges
in efficient ways, and to grab business opportunities that often come with new
business models. There is no way back: the “promises” of IoT make further
development unstoppable. Data generated and shared by objects connected
through the Internet, combinable using smart algorithms, lead to a world in
which privacy is getting a new meaning and where good security is more
important than ever. IoT, in combination with BigData and data analytics in
particular as an enabler of high quality real-time data provider, has become a
real game changer.

Governments at all levels are confronted with this, and need to find
responses, soon. Societal challenges need to be dealt with effectively, using
less money and relying more on active participation of citizens and businesses,
yet this cannot go at cost of a society we want in terms of trust.

IoT is currently mainly driven by business opportunity considerations
and technology push, yet it is clear that people are waking up and become
concerned on where this takes us. Consumers and citizens have to become
involved in developing a “future we want” in which there is “respect for
human dignity” as well as individual choice.

During meetings within the European IoT and Future Internet research
community and the recently launched public private partnership Alliance for
Internet Of Things Innovation (AIOTI), and in global forums such as the
Internet Governance Forum’s Dynamic Coalition of the Internet of Things
(IGF DC IoT) and EuroDIG, these issues have been at the center of a dialogue
between public, private, and civil sector stakeholders. There is an ongoing
need to protect the public interest as well as to create space for innovation
and experimentation using IoT products and services within the current and
developing legal frameworks. To find this balance requires the active, well
informed involvement of public authorities.

IoT can be used for many different things in many different ways, and
practical experimentation in an ecosystem in which all stakeholders are
involved will help understand the impacts of the IoT more profoundly than
its technological specifications alone. In order to be “trusted” by its users, IoT
will need to offer:
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• Meaningful transparency – what is happening;
• Clear accountability – who takes responsibility;
• Real choice – “all or nothing” is not good enough.

Dialogues at global level have led to the insight that IoT needs to “go ethical”.
What this means exactly, and how it can work is still to be determined, with
all stakeholders around the table. One thing is clear: we cannot continue to
count on “adherence to the law”. A good first step has been made with the
draft declaration by the 2015 IGF Dynamic Coalition on Internet of Things
Good Practices Policies which can be found on the website of the IGF.5

10.4 Conclusions

It is clear that IoT and BigData have changed our ability to protect data to be
related to individuals. At the same time, this doesn’t mean we should give up
on the right to privacy. To quote the EDPS: “there are deeper questions as to
the impact of trends in data driven society on dignity, individual freedom and
the functioning of democracy.” And to quote the US President’s Council of
Advisors on Science and Technology [11]: “policy focus primarily on whether
specific uses of information about people affect privacy adversely. It also rec-
ommends that policy focus on outcomes, on the “what” rather than the “how,”
to avoid becoming obsolete as technology advances. The policy framework
should accelerate the development and commercialization of technologies
that can help to contain adverse impacts on privacy, including research into
new technological options. By using technology more effectively, the Nation
[USA] can lead internationally in making the most of BigData’s benefits while
limiting the concerns it poses for privacy.”

As Commissioner Ansip stated in his speech (spoken word) during the
Net Futures conference in Brussels on 20 April 2016: “Trust is a must” for
whatever we do on our way forward.

No stakeholder can do this alone. Businesses need to invest, governments
need to protect the public interest which includes protection, ensuring redress
and choice, the technical community needs to design and develop new and
better approaches, and users need to be aware and “steer” investments and
developments through conscious use.

Time to make technology work for us in a way that people can trust
these technologies is now. Let’s make sure we reflect our awareness of and

5http://review.intgovforum.org/igf-2015/dynamic-coalitions/dynamic-coalition-on-the-
internet-of-things-dc-iot-4/
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commitment to this ethical side in every step we do when developing and
deploying new technologies and services that collect, store, share, protect and
act on data.

For those of us who have read Asimov’s book “I, Robot” [12]: remember
the Three Laws of Robotics which in fact could relate to all intelligence
developed, and apply them to whatever connected intelligence you work on –
no harm to be done to people. Indeed, Isaac Asimov, describes the three laws
that set the way forward for robots: 1st Law: A robot may not injure a human
being or, through inaction, allow a human being to come to harm; 2nd Law:
A robot must obey the orders given it by human beings except where such
orders would conflict with the First Law; 3rd Law: A robot must protect its
own existence as long as such protection does not conflict with the First or
Second Laws.
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Epilogue

IoT Analytics is without a shadow of a doubt one of the most important
elements of the IoT computing paradigm, which will probably contribute the
largest portion of IoT’s business value in the years to come. In this book we
have introduced the main challenges that are associated with IoT analytics
systems and application, along with the main technological elements that
comprise non-trivial IoT applications. IoT analytics systems are essentially
BigData systems, which usually have to collect, process and analyze het-
erogeneous high-velocity streams. Therefore data streaming infrastructures
and semantic interoperability technologies for IoT streams are among the
main pillars of IoT analytics systems and applications. Furthermore, cloud
computing infrastructures are an integral component of IoT analytics, since
they provide the capacity, scalability and elasticity required in order to deal
with large amounts of IoT data.

In the scope of the book we have presented popular middleware infras-
tructures for handling distributed streams with high ingestion rates, along with
tools and techniques for semantic modeling and interoperability of highly
heterogeneous data streams stemming from different sources and devices.
We have also illustrated the integration of IoT data streams in the cloud
and the role of cloud computing technologies in IoT analytics. The presented
infrastructures and technologies provide the reader with a sound understanding
of what engineers, researchers and practitioners can nowadays use in order
to implement, deploy and operate IoT analytics applications. Most of the
presented systems and technologies for IoT analytics are open source, thus
providing a good starting point not only for practitioners wishing to deploy
the systems, but also for students and researchers wishing to explore and learn
IoT analytics.

Along with IoT analytics technologies, the book has also presented a set
of indicative practical deployments of IoT analytics systems in areas such as
smart buildings, smart cities and crowd analytics. As part of the presentation
of these applications, the use of the earlier presented technologies has been
substantiated in the scope of practical systems. Moreover, the presentation of
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these practical systems has illustrated the importance of machine learning and
data mining technologies in the data analysis process. As part of the practical
case studies we have therefore illustrated how different machine learning
techniques can be developed, tested, evaluated and ultimately deployed in the
context of an IoT system.

The book is certainly a good starting point understanding the scope
of IoT analytics and the tools that are already available in order to build
IoT applications. Neverhteless, the presented systems and applications are
only the tip of the iceberg. In the coming years, systems with significantly
increased sophistication and complexity will emerge, far beyond the collec-
tion, homogenization and mining of IoT streams. The emergence of such
systems will drive a radical shift of IoT’s focus from the “best IoT product”
(e.g., the best smart-phone or wearable IoT device) to the “best IoT service”
(e.g., personalized context-aware recommendations for fitness, training and
a healthy lifestyle). This shift will be propelled by IoT analytics, as it will
be the collection and processing of IoT data that will enable the creation of
human centic IoT services in consumer markets, as well as the creation of
after sales programs in the market of industrial goods and services. This shift
will signal an unprecedented revolution that could completely change our
everyday living. Moreover, it will also come with a shift in IoT analytics tools
and techniques. This anticipated revolution however is not bound to change the
value of the present book as the IoT analytics building blocks that have been
presented in earlier chapers will form the foundation for the development
of the novel revolutionary solutions. We really expect this book to help its
readers not only to familiarize themselves with mainstream IoT analytics
technologies but also to remain equipped for the rising revolution of IoT and
IoT analytics.
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