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Preface

Through our eyes, the universe is perceiving itself. Through
our ears, the universe is listening to its harmonies. We are
the witnesses through which the universe becomes conscious
of its glory, of its magnificence.

Alan Watts, quoted in The Best Alan Watts Quotes, David
Crombie and Catriona Jardine, Crombie Jardine, 2016.

We are a way for the cosmos to know itself.
Carl Sagan, quote taken from Cosmos: A Personal
Voyage—Episode 1, Carl Sagan, Ann Druyan,
and Steven Soter, PBS, 1990.

The manuscript, which would eventually evolve into this book, has been accom-
panying me for many years. And even before I officially embarked on this creative
journey in 2013, the ideas spanning the book’s narrative arc started to form years
prior. I cannot pinpoint the exact moment this started. As a child, I was often curious
about the workings of the world, eager to catch a glimpse of the cosmic order. This
desire to understand would later lead me to study theoretical physics. After gradu-
ating, I was, however, left with more questions than answers. Then, sometime while
backpacking around the world in 2000 and 2001, my mind started to wonder about a
bigger contextual picture of the world and myself in it. One of the earliest structuring
influences came in the form of John L. Casti’s book, titled Alternate Realities:
Mathematical Models of Nature and Man, in late 2001. Perhaps, the first conscious
thoughts, ultimately leading to this current writing effort, formed while I was lying in
a hammock, on Havelock Island in 2006, reading Robert M. Pirsig’s Zen and the Art
of Motorcycle Maintenance. Then, in 2008, another pivotal moment occurred. At the
time, I found myself back at university, in the middle of a dissertation on complex
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viii Preface

systems, years after my master’s graduation. Each semester, Ph.D. students were
required to attend a lecture, some of which needed to be on a topic outside their field
of research. I chose an introductory course on the philosophy of science.
Consolidating these inputs and subsequent ideas led to the first rough draft of this
book,' appearing as an appendix in the thesis in 2010. Further condensation of
ideas resulted in an Ignite Talk in Zurich in 2011.% Then, in 2014 I could present an
outline of this book at TEDxSalford.? Finally, in 2016 I was fortunate enough to be
able to contribute my story, as a two-page science essay, to Lucy and Stephen
Hawking’s children’s book series, in the cosmic adventure called George and the
Blue Moon.

Long before I had a clear vision of the structure of this book, the slowly
emerging categorization of ideas endowed me with a contextual field, acting as a
fine mesh able to capture and order many conceptual fragments ever since. Having
said this, most of the information presented here is not original—compiled form
close to 1800 sources, of which nearly 600 are books. Overall, more than 920
original quotes enter the book. My contributions can be found in the concepts
related to the history of science, offered in Chap. 5; the insights stemming from my
academic and professional work which can be found in Sects. 6.4.3.4, 7.3.2.1, and
7.4.3; and the synthesis of ideas presented in Chap. 15, specifically the entelechy of
existence and the rhizome of reality.

This book is an amalgamation of existing thought—my best effort at connecting
the dots. It is an attempt to grapple with existence, highlighting the existential
challenges that keep mocking us. For instance, our continued collective failure to
answer three age-old questions: What am 1? What is reality? What can I know? In
essence, the dissonance between our subjective streams of perception and the
supposed objective reality they describe. This yearning to know and experience is
echoed in the quotes found at the beginning of this preface. Compounding the
enigma, and contrasting this ignorance, is humanity’s unimaginable success in
decoding reality and engineering it at will.

At a superficial level, it appears that we can indeed offer answers to these
questions. However, under closer inspection the answers become vacuous, and the
dilemmas only deepen. Here this book provides a remedy. We are invited to rethink
our most basic assumptions and cherished beliefs about existence. It is an appeal to
consider that there may be something we don’t yet know about ourselves and the
universe we inhabit, the knowledge of which could change everything.*

"Next to various blog posts, summarized in http://j-node.blogspot.ch/2015/07/the-consciousness-
of-reality-illusion.html.

2See https://www.youtube.com/watch?v=1XKAedypn_k.

3See https://www.youtube.com/watch?v=zMckd Y XOfTU.

* Adapted from Neale D. Walsch.


http://j-node.blogspot.ch/2015/07/the-consciousness-of-reality-illusion.html
http://j-node.blogspot.ch/2015/07/the-consciousness-of-reality-illusion.html
https://www.youtube.com/watch?v=1XKAe4ypn_k
https://www.youtube.com/watch?v=zMckdYX0fTU

Preface ix

Once upon a time, I, Zhuang Zhu, dreamt I was a butterfly, fluttering hither and thither, to
all intents and purposes a butterfly. I was conscious only of my happiness as a butterfly,
unaware that I was Zhu. Soon I awaked, and there I was, veritably myself again. Now I do
not know whether I was then a man dreaming 1 was a butterfly, or whether I am now a
butterfly, dreaming I am a man.

Zhuang Zhu, 3rd Century B.C.E.

Ziurich, Switzerland James B. Glattfelder
September 2018
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User Manual

In order to make the content of this book more accessible, seven different ways of
reading are recommended. Lacking the time to engage in the 650-page-plus journey
from cover to cover, the hurried reader is offered the following options:

1.

The introductory parts of the first and last chapter (i.e., Chap. 15) are written in a
different tone compared to the rest of the monograph’s more technical appeal.
They are conceived to be more accessible and should set the stage and capture
the essence of the journey.

The most condensed and high-level version of the voyage is found in Sect. 1.1.
Extending the scope, each chapter—except the first and the last, i.e., from
Chaps. 2 to 14—begins with an Abstract section and ends with a Conclusion
section. By only reading these, the reader can fast-forward through the narrative.
Uncovering more detail, Sect. 1.2 recounts the entire story in a nutshell.
Section 1.3 provides a “content map,” summarizing each chapter, section by
section.

. The main thesis is presented in:

e Chapter 13: the information-theoretic ontology.
e Chapter 14: the participatory ontology.

The most efficient mode of reading is to directly move to Chap. 15. As much
of the book is cross-referenced, the interested reader can then backtrack from
there and reconstruct the narrative. However, without having been introduced
into the context of the new information-theoretic and participatory ontology, it is
rather information dense and perhaps somewhat hard to grasp at first.

The book is comprised of three distinct parts:

1.
2.
3.

Part I: The island of knowledge.
Part II: Its boundaries of ignorance.
Part III: New frontiers on the horizon.

XV
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In essence, it tries to grapple with the age-old questions: What am I? What is
reality? What can I know? To be more precise, this book is about:

Science and philosophy.

A historical perspective.

Our first-person subjective perspective and objective physical reality.
Knowledge and the nature of reality and consciousness.

Our place in the cosmos and possible meaning.

The book is idiosyncratic in the sense that it encompasses different levels of
formalism. Chapters 3 and 4 in Part I are very technical, as is witnessed by the
appearance of 197 equations (out of 243 in total). This is in stark contrast to Parts II
and III which do not rely too much on mathematical formalism. In summary, Part IT
is more philosophy and general science oriented while Part III entertains more
speculative notions, related to the human mind and the nature of reality. However, to
makes all parts as accessible as possible, some precautions have been taken. First of
all, many quotes are woven into the story line to give the reader a flavor of the
original context in which the ideas appeared. Then, the narration, especially in Part I,
is infused with historical and biographical anecdotes in an attempt to add vibrancy to
the story. Accompanying this effort is the decision to clearly demarcate and
encapsulate all the heavy mathematical machinery. To this aim, special attributed
tags are utilized, denoted by {¢p.. .4}, which signal that the following formal part
can be safely skipped, without losing track of the story line. As an example, the text
is interrupted here to include an encapsulated equation.

{# | 1-example >

Contained within the tags, the following example equation is presented

< I-example| #}

In any case, Part I can be fully omitted without jeopardizing the understanding
of the content of Part II and the conclusions presented in Part III. However,
although all three parts are designed to be independent and self-sufficient, it is
perhaps worthwhile to embark on as much of the journey as possible to fully
appreciate the depth, subtlety, and evolution of the thoughts leading to the con-
cluding concepts. Without proper context and framing, the final ideas could appear
uncompelling, ad hoc, and even alien.

C=WwD(1-W) v
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A schematic overview of the contents of this book is found in the following
figure:
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In a nutshell, Chaps. 2 and 5 introduce an overview and classification of
formal knowledge generation. As mentioned, Chaps. 3 and 4 discuss theo-
retical physics. Then, Chap. 6 introduces the nascent understanding of com-
plexity and Chap. 7 relates this to finance and economics. Both of these
chapters of Part I are stand-alone. Chapter 8 outlines the age-old questions of
existence and introduces Part II. In addition, Chap. 9 details the philosophical
aspects and challenges of science. Then, Chap. 10, necessarily scientific
again, outlines the crisis of the modern scientific edifice and its inability to
grasp the fundamental nature of reality, while Chap. 11 grapples with the
enigma of consciousness. Moving to Part III, Chap. 12 looks at the current
state of the world. Chapters 13 and 14 present the main thesis: namely, the
emerging information-theoretic paradigm in physics and computer science,
next to the information-theoretic nature of consciousness appearing in the
philosophy of mind and neuroscience. Finally, Chap. 15 offers a synthesis of
this novel information-based ontology and its implications for existence.

Hopefully, these attempts at making the narrative easier to access help more
content to be extracted and allow for a more enjoyable experience, while mini-
mizing the risks of getting lost in a conceptual jungle. Without further ado, the
reader is invited to jump into Chap. 1.



Contents

Introduction . .. ..... ... ... ... ... ... .. ...
1.1 AtaGlance ........................
1.1.1 A Very Short Outline of the Journey
1.1.2 Chapter Overview .............
1.2 The Story in a Nutshell . . . .............
1.2.1  Part I: Climbing to the Summit . . . .
1.2.2 Part II: The Downfall . ... .......
1.2.3  Part Il: A New Horizon.........
1.3 Chapter/Section Content Map ...........
References . . . ... . .

Part I Climbing to the Summit

2

In Search of the Book of Nature. . .. .......................
2.1 A Modern Edition of the Book of Nature. .. ..............
2.1.1  Classical Mechanics . .. .......................
2.1.2  Classical Electrodynamics. . ....................
2.1.3  Mathematical Physics . . .......................
2.1.4  Mathematics from Physics .. ........... ... ... ..
2.2 Seeking Meaning . .................... . . o L.
2.2.1  Shut Up and Calculate!. .. .....................
ConcClusion . . . ...
References ... ... ... .. . . ...
The Semantics of Symmetry, Invariance, and Structure . . . . ... ..
3.1  Symmetry in Action: Conservation Laws . ... .............
3.1.1  From Geometry ... .......... ...,
312 ... ToSymmetry ............ . ... .........
313 ...AndBack......... ... .. o o il
3.1.4  Noether’s Theorem: Digging Deeper . . ... .........

~N =

10
18
21
23
39

43
45
46
47
48
50
52
58
61
61

65
67
68
73
75
76

XixX



XX

Contents

3.2 Symmetry Manifested . . .. .......... ... . L. 81
3.2.1  Causality and the Relation of Space and Time . . . . . .. 81
3.2.2 Elementary Particles . . . ............. ... ... ... 84
Conclusion . .. ... ... 90
References ... ... .. . . L 90
The Unification Power of Symmetry . . ...................... 93
4.1  Back to Geometry: The Principle of Covariance . . .......... 94
4.2 The History of Gauge Theory . ........................ 97
4.2.1 The Higgs Mechanism . ....................... 105
422 Tying Up Some Loose Ends . . . ................. 108
4.3 The Road to Unification . ............................ 109
4.3.1 Jumping to Higher Dimensions . . ... ............. 110
4.3.2 The Advent of String Theory . .................. 115
4.3.3  Einstein’s Unified Field Theory.................. 124
4.3.4 A Brief History of Quantum Mechanics. . . ......... 126
4.3.5 FEinstein’s Final Years. . ... .................... 129
4.4  Unification—The Holy Grail of Physics.................. 130
Conclusion . . . ... 132
References . . ... ... . . . 132
The Two Volumes of the Book of Nature . . ............... ... 139
5.1  Volume I: Analytical Tools and Physical Science . . . ... ... .. 141
S.I.1  The Success. . ... 141
5.1.2  The Paradigms of Fundamental Processes . ......... 142
5.1.3  The Limitations . . ............... ... . 143
5.2 Volume II: Algorithmic Tools and Complex Systems . . ... ... 146
5.2.1  The Paradigms of Complex Systems . ............. 147
5.2.2  The Science of Simple Rules ................... 149
5.2.3  The New Science of Networks . ................. 154
524 The Success. ............iiiiiiiii.. 156
5.3 The Profound Unifying Powers of Mathematics . ........... 159
5.3.1 The Continuous—A History . ................... 160

5.3.2  Discrete Mathematics: From Algorithms to Graphs
and Complexity . ............ it 166
533 Unity. ... 169
5.4  The Book of Nature Reopened . ....................... 171
54.1 Beyond Volumes Iand IT . ....... ... ... ... .. 173
ConClusion . . . ... 176
References . .. ... ... . . . 176
Volume II: The Simplicity of Complexity . ................ ... 181
6.1  Reviewing the Book of Nature ........................ 182

6.2 A Brief History of Complexity Thinking . ................ 183



Contents

6.2.1  Complex Systems Theory . ............... ... ...

6.2.2  The Philosophy of Complexity: From Structural
Realism to Poststructuralism . .. .................
6.3  Complex Network Theory . ...........................
6.3.1  The Ubiquity of Complex Networks . .............
6.3.2  Three Levels of Network Analysis ...............
6.4  Laws of Nature in Complex Systems . .. .................
6.4.1  Universal Scaling Laws .. .....................
6.4.2  Historical Background: Pareto, Zipf, and Benford . . ..
6.4.3  The Types of Universal Scaling .................
ConcluSion . . . . ..ot
References . .. ... ... ... ...

7  Applied Complexity: Finance and Economics in a New Light. . . . .
7.1 TerraCognita.......... ... ... ... ... ... . ...
7.1.1  Some Historical Background. ... ................
7.1.2  The Global Financial Crisis. . .. .................
7.2  ACallto ATMS. . . oottt
7.2.1 Embracing Complexity . . ......................
7.2.2  Reforming Finance and Economics ... ............
7.3 Complexity Finance and Economics. . ...................
7.3.1 Multi-Agent Systems . .. ... o oL
7.3.2  Network Thinking ...........................
7.4  The Past, Present, and Future of Economic Interactions . .. ...
7.4.1  The Imperial Power of Profit. . . .................
7.4.2  The Dark Side: The Economics of Greed

and Fraud . ........ ... ... . ... .. .. ... ... . ...

7.4.3  The Blockchain: A Decentralized Architecture
for the Economy ................. ... .. ... ...
ConcClusion . . . ...
References . .. ... ... . .. ..

Part I The Downfall

8 A Brief Story of Success: The Manifestation of Knowledge
and the Hydra of Ignorance . . .. ....................... ...
8.1  Clouds on the Horizon . ........... ... ... . ... ... ....
8.1.1  Uncertainty ................................
8.1.2  Why Anything? .. ............ ... ... L.
8.1.3 A Short Narrative of Cosmic Coincidences .........
8.2  The Core Enigmas of Existence. .......................
Conclusion . . . ...
References .. ... ... . . .. ...

XXi



xxii

10

Contents

Philosophy and Science: What Can I Know? ... ... ... ........ 299
9.1  The Philosophy of Science ........................... 300
9.1.1 Logical Empiricism . ......................... 300

9.1.2  Critical Rationalism . ......................... 302

9.1.3 The Kuhnian View. ... ... ... ... ... ... ... ... 303

9.14 Postmodernism. ............................. 305

9.1.5 Constructivism . . . .. ............... ... 309

9.1.6 Relativism .. ......... ... ... ... .. 311

9.2  The Evolution of Science . ........................... 315
9.2.1 The Comprehensible Universe. . ................. 317

9.2.2 The End of Science? ............. ... ......... 319

9.2.3  The Fractal Nature of Knowledge . ............... 324

9.3  The Practitioners of Science .......................... 325
9.3.1 On Philosophy . ............ . ... ... ......... 326

9.3.2  On Objectivity, Truth, Knowledge, and Certainty . . . . . 327

9.3.3  On Laws of Nature, Reality, and Science. . ......... 328

9.3.4  On Ignorance and Irrationality. . . . ............... 330

935 OntheMind ......... .. ... ... ... ... ... ... .. 331

93.6 AndMore ........... 332

9.4  The Limits of Mathematics .. ......................... 333
9.4.1 Inherent Randomness ......................... 333

942 LosingMeaning . ...............iiii... 335
ConcClusion . . . ... 338
References . .. ... ... . . . ... 339
Ontological Enigmas: What is the True Nature of Reality? ... ... 345
10.1 The Worst Prediction in Physics .. ....... ... ... ... ... 349
10.1.1 The Quantum Field .......................... 350

10.1.2 Einstein’s Biggest Blunder ... .................. 353

10.2  Quantum Gravity: The Cutting-Edge of Theoretical Physics ... 357
10.2.1 Simple Quantum Gravity ...................... 357

10.2.2 String/M-Theory. . .. ... ... ... ... ... .. ... 358

10.2.3 Loop Quantum Gravity. ....................... 362

10.3 The Large and the Small . . .. ......... ... ... ... ...... 364
10.3.1 Cosmological Conundrums . .. .................. 364

10.3.2 The Weird Quantum Realm of Reality. ... ....... .. 367

10.4 The Nature of Reality . .. .............. . ... .. ....... 376
10.4.1 Does Matter Exist?. ... ....... ... ... ......... 378

1042 Is Time an Illusion? . .. ........ ... .. ... ... .... 380
Conclusion . . ......... .. 384
References . .. ... .. . . . 385



Contents XXiii

11 Subjective Consciousness: What am I? . .. .............. ... .. 395

11.1 The History and Philosophy of Our Minds. . ... ........... 398

11.2 Modern Neuroscience . .. ............................ 404

11.2.1 Perceiving the Outer World. . .. ................. 406

11.2.2 Perceiving the Inner World . . .. ................. 411

11.3 Impressionable Consciousness . ... ..................... 416

11.3.1 The Gullible Mind .. ......................... 418

11.3.2 The Irrational Mind ... ........ ... ... ... ...... 422

1133 The Broken Mind. .. ....... ... ... ... ... .... 427

11.4 The Mind-Body Problem. ... ... ... ... ... ... ... ... 434

1141 Free Will . .. ... .. ... ... ... ... ... ..... 436

ConClusion . . . ... 439

References ... ... ... . . . ... 441
Part III A New Horizon

12 The Age of Post-Truth . ................................. 453

12.1 The Cult of Ignorance. . .. ............. . ............. 454

12.2 The Age of Conspiracy . . ... ......ovuuiiinnennnn. .. 455

12.2.1 The Spectrum. . . ........ ... ... ... ... ... .... 455

1222 CreationiSm . . . ...ttt 459

12.3  What About This Book? . .. ............ .. ... ... ... ... 460

12.4 The Dawning of a New Age . .. ....................... 462

12.4.1 Collective Intelligence . ....................... 462

12.42  Self-organization ........... ... ... ... ... ... .. 463

12.4.3 Scientific Utilitarianism. . . .. ................... 464

12.4.4 Radical Open-Mindedness. . ... ................. 467

ConcClusion . . . ... 470

References . .. ... ... .. ... 471

13 A Universe Built of Information . . ... ...................... 473

13.1 The Many Faces of Information. . ... ................... 475

13.1.1 The Philosophy of Information . ................. 475

13.1.2 The Computability of Information................ 476

13.1.3 Information is Physical . . . ..................... 477

132 Ttfrom Bit ............ ... . ... 479

13.2.1 Ttfrom Qubit . .......... .. ... .. ... ... .. ... 482

13.2.2 The Ur-Alternatives ... ....................... 485

13.3 Digital Physics . . ........... .. .. .. 487

13.3.1 The Hllusion of the Infinite ..................... 488

13.4 An Information Ontology . ............ ... ... .. ...... 491

13.4.1 The Cosmic Hologram . ....................... 491

13.42 A Simulated Reality . . . ........... ... ... ... ... 500

13.4.3 Alternatives and Opposition . ................... 504



XX1V Contents
ConClusion . . . ... 507
References ... ... ... . . . ... 508

14 The Consciousness of Reality .. ........................... 515
14.1 Formalizing Consciousness: Integrated Information Theory . ... 520

14.1.1 The Taboo of Subjectivity ..................... 520
14.1.2 The Mathematical Engine . . .. .................. 522
14.1.3 Putting Ittothe Test ......................... 526
14.1.4 The Opposition . ............ ... ... .. 528
14.2 The Cosmic Nature of Consciousness ................... 530
14.2.1 Panpsychism: The Universality of Consciousness. . . . . 531
14.2.2 The Primacy of Consciousness . ................. 535
14.2.3 The Taboo of Spirituality . ..................... 537
14.2.4 Non-Human Intelligence . . ... .................. 541
14.3  Enhanced Consciousness: The Psychedelic Renaissance . . . . .. 552
143.1 Healingthe Mind ... ....... ... ... ... .. ... ... 555
14.3.2 DMT: Down the Rabbit Hole . ... ............... 558
1433 Cultural Roots . ......... .. ... ... ... ... ... ... 564
14.3.4 Plant Consciousness . . . ....................... 565
14.3.5 The Noumenon . ............................ 567
14.4 A Participatory Ontology. . .. ........ ... ... ... ... ... 570
14.4.1 The Quantum Observer. . ... ................... 574
14.4.2 Psi: Measuring the Transcendental. . . .. ........... 576
Conclusion . . . ... ... 584
References . .. ... ... . . . 585

15 Consilience . ... ... ... .. .. 597
15.1 The Inner and Outer Aspects of Information. . ............. 599
15.2 The Rhizome of Reality and the Entelechy of Existence . . . . . . 600

15.2.1 Setting the Stage . ........................... 601

1522 ARehearsal . ...... ... ... .. ... L. 603

153 A New Horizon ....... . ... . ... .. . 605
15.3.1 Transcending Religion . ....................... 605

1532 InClosing . ............. . .. 608

References . .. ... .. . . 609
Epilogue. . . ... ... 611
Author Index. . . ... ... ... . 623

Subject Index. . . . ... .. . . . 631



Chapter 1 ®)
Introduction Check for

This is a story about you.

IN this very moment, you are consciously reading this sentence in your mind. You are
aware of your body and the world surrounding you. Your breath is flowing through
your body.

Every day you wake up. Instantly, the memories of who you are enter your mind.
You start to sense yourself and the external world you woke up to. Then you open
your eyes. Everything appears familiar and unspectacular.

But how can you trust this emergence of a world? Can you be certain of the accu-
racy of the perceptions you are experiencing and the faithfulness of the memories in
your mind? Are you perhaps just a brain kept alive in a vat in a dark room, receiving
fabricated electrical impulses, stimulating it into perceive a fictitious world? Or did
you never actually wake up? Are you experiencing an episode of false awakening,
the phenomenon of dreaming that you woke up, where the vividness and crispness
of the conscious experience trick you into believing its authenticity? Or could you
be inhabiting a simulated reality, designed to emulate “true” reality? Or are you
currently incarcerated in a psychiatric institution and your mind is hallucinating an
entire world of fiction in order to not have to face its own pathology? The array of
conceivable alternative explanations for your experience of a reality can be frighten-

ing.

IMAGINE, for a moment, that you are a member of an isolated society. You were
never exposed to the collection of human ideas shaping the world today. As a child,
your inquisitive mind, exploring your inner and outer reality, was never influenced
by human thought traditions, spanning several millennia. You were never told any
tale sourced from the competing brands of theology we today find distributed around
the globe. You never felt the existential angst that can be triggered by contemplating
philosophical problems related to existence, knowledge, reality, and the human mind.
You never felt exalted and overwhelmed by the vastness of understanding contained
within the edifice of science.

© The Author(s) 2019 1
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How would you then explain your existence? How would you go about answering
the questions “What is reality?”, “What can [ know?”, and “Who am I?”” Assuming a
robust skeptical demeanor, you would probably arrive at a fundamental philosophical
insight (Descartes 1637):

I think, therefore I am.

The only thing you can truly be sure of is the reality of your own subjective expe-
riences at this very moment. Everything else is questionable. Moreover, musings
about the meaning of life would perhaps, in the final analysis, gravitate towards
another fundamental philosophical observation, encapsulating the mystery of exis-
tence (Leibnitz 1714):

Why is there something rather than nothing? For nothing is simpler and easier than something.
Furthermore, assuming that things must exist, we must be able to give a reason for why they
must exist in this way, and not otherwise.

How can you ever be certain about anything? Gazing at the night sky, you would be
filled with a deep longing for knowledge.

For centuries, people hoped that science, the abstract mathematical understand-
ing of the physical world, would shed light on the true nature of reality. Indeed,
the explanatory power of science has exploded and with it humanity’s capacity to
manipulate reality. The emergence of science is a story of how the human mind
gained intimate knowledge of the workings of the universe and how this expertise
gave us one of the greatest gifts: the fruits of technology.

However, in an act of cosmic irony, this expanding continent of knowledge found
itself surrounded by ever longer shores of ignorance. We have been able to probe the
unseen subatomic world, only to discover quantum weirdness at its heart. Subatomic
particles that display two contradictory properties, depending on if and how they are
observed (wave-particle duality). We encountered an insurmountable fundamental
physical limit on how much we can ever know about a particle (uncertainty principle).
At the quantum level of reality, any certainty is lost and measurements can only be
expressed as probabilities (wave function). For instance, the location of an elementary
particle is probabilistic, meaning that it could be observed anywhere in the universe
with a sufficiently low probability. As a result, a subatomic particle can appear at
places which should be impossible (quantum tunneling). The discovery of a zoo of
elementary particles and the mirror-world of antimatter revealed a far greater structure
to reality anyone had dared to dream of. Empty space (the quantum vacuum) was
found to be permeated with energy and nothingness became something (zero-point
energy, Casimir effect). Dramatically, the very act of measuring a quantum system
changes its properties, appearing to give the observer a special status (measurement
problem). Indeed, some experiments suggest that the choice of an observer in this
moment can alter the past (delayed choice experiments). To this day, we are baffled
by the marriage of quantum entities that allows them to stay connected and be both
instantaneously influenced (non-locality, violation of local realism), regardless of
the spatial separation between them (entanglement).
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Indeed, we are truly surrounded by perplexing enigmas. There exists an upper
limit to how fast information can travel in the universe (the constant speed of light)
which results in the surprising malleability of space and time (special relativity),
where the passage of time can vary for each observer. Even time itself emerged as a
problem child—a notion so central to our experience of reality but also so far from
our intellectual grasp, as it appears to be an emergent property. At the core of reality
we find no foundation. Even matter itself eludes the grasp of our minds—neither the
notions of fields nor particles suffice to capture its essence. Exasperatingly, causality
cannot be upheld in time alone. The question whether A caused B to happen, or vice
versa, is futile. However, causality reemerges in the mystifying weaving of space and
time into the fabric called space-time, an inconceivable four-dimensional atemporal
reality where the borders of space and time are blurred. Now the force of gravity turns
out to be an illusion, created solely by the unseen curvature of space-time (general
relativity). The discovery that our universe is forever expanding at an accelerated rate
(dark energy) may mark one of humanity’s greatest cosmological achievements, but
it is a profoundly unsettling fact. Furthermore, 95% of the contents of the universe
is, embarrassingly, not accounted for in our theories of the cosmos (dark matter
and energy). Then, modern theoretical (high-energy) physics has reached a dead-
end, after string theory was hailed as the light-bringing savior decades ago. The
list of paradoxes we are faced with goes on and on. It appears as though every
explanation creates more new problems—the closer you look, the more you see.
Most humblingly, the success of science rests on two miraculous circumstances.
One is “the unreasonable effectiveness of mathematics in the natural sciences” and
the other is the fact that simplicity lies at the heart of complexity. These are the two
pillars our whole human knowledge generation rests upon. To this day, we can only
shrug in the face of this cosmic design and be grateful that we do not find ourselves
inhabiting a universe that is fundamentally incomprehensible to our minds.

Of all the failings of science, perhaps the most pressing is its inability to compre-
hend life and consciousness, going to the very core of our being. The most complex
structure we ever encountered in the universe is our brain. Through it, we experience
and perceive the physical world and ourselves. We are minds incarnated in flesh, able
to discover and create science, enabling us to manipulate and engineer reality at will.
How can that which is closest to us be so elusive? Why don’t we understand the nature
of consciousness? How does life encode such breathtaking complexity in a zygote
which triggers self-organizing biological structure formation (embryogenesis)?

Even more troubling, there have been a multitude of cosmic coincidences hap-
pening, in order for the universe to have reached this exact point in its 13.8 billion
year history, where you now happen to be reading this sentence. For instance, the
perfect fine-tuning of physical constants allowing a complexly structured universe
to emerge from the primordial cosmic energy soup (Big Bang); the unseen universal
force driving the cosmos to ever greater structure and complexity (self-organization
and emergence); the forging of heavy elements in exploding suns (supernovae),
like carbon and oxygen; the special properties of water and carbon—a necessary
prerequisite for life; the exact positioning of Earth in our solar system; the accumu-
lation of (liquid!) water on Earth; the emergence of the first biological replicators on
Earth; the appearance of cyanobacteria, the first organisms able to harness the energy
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emanating from the Sun by unlocking the secret of photosynthesis, an event marking
the beginning of the terraforming of an oxygen-filled atmosphere; the self-organized
engineering of complex life forms from (Eukaryotic) cells; the Cambrian explosion,
an evolutionary burst 540 million years ago, filling the seas with an unprecedented
diversity of organisms; the emergence of insects displaying social behaviors; at least
a dozen extinction events, some resulting in the eradication of nearly all of the biodi-
versity on Earth, rendering the evolutionary process chaotic, highly path-dependent,
and extremely unique; the extinction of dinosaurs allowing mammals to exit their
niche and start world domination; and the demise of all other human species leaving
one lineage as the sole conqueror of the solar system, due to the emergence of con-
sciousness and the capacity for abstract thought—igniting language and culture—in
the brain of Homo sapiens. This stunning tale of cosmic evolution, fraught with
chance, has attracted very different explanations:

El Ttis all just one big coincidence and happened by pure chance. We know the
fundamental laws of nature and that is all there is to say. [Materialism, scientific
realism]

E2 A God created the universe in this fashion. Perhaps 13.8 billion years ago or
perhaps 6,000 years ago with fictitious properties making the universe appear
older (or even 5 seconds ago, with false memories implanted in all human
minds). [Creationism in Abrahamic religion]

E3 Reality is a vast and impermanent illusion (anicca) comprised of endless dis-
tractions and suffering. The quest of the mind is to cultivate a state of awareness,
allowing the illusion to be seen for what it is. Then the enlightened mind can
withdraw from the physical realm and enter a state of pure bliss. [Buddhism]

E4  Only the Self exists. Life is the endless play of the Self (/ila) losing itself only
to find itself again in a constant game of hide-and-seek. [Hinduism]

E5  Only pure consciousness exists. In endless cycles, it manifests itself as separate
physical embodiments, allowing for an experiential context, only to merge in
unity again and start afresh. [Spirituality, panpsychism]

E6  We are dreaming this life and will some day “wake up” to a richer reality which
is unimaginably more lucid and coherent. Physical death marks the transition
of consciousness from the dreaming state to a higher-dimensional reality or
maybe a reality entirely outside the realm of space and time. [Esotericism
variation|

E7  We live in the multiverse, the infinite set of all possible universes. As a con-
sequence, we naturally find ourselves in that corner of it which allows for
intelligent and sentient life. [String/M-theory, cosmology, many-worlds inter-
pretation of quantum mechanics]

E8  Our physical three-dimensional universe is a hologram that is isomorphic to
the quantum information encoded on the surface of its boundary. [Holographic
principle, AdS/CFT duality]

E9 We inhabit a simulation that has these features programmed. [Simulation
hypothesis]

Every justification has its proponents, be they spiritual, religious, philosophical, or
scientific. Especially explanations E7 to E9 are espoused by people who have been



1 Introduction 5

greatly exposed to the mathematical underbelly of reality in the form of theoretical
physics or quantum computation. Of course, every angel of attack has its drawbacks.
For instance:

E1 This reasoning is simply an assertion without any explanatory power.

E2  Which God (or gods)? What is the nature of God (or gods)? What causes God
(or gods)?

E3  How does one experience this and how does one reach enlightenment?

E4  Who or what is choreographing this grand play?

E5  Where does this pure essence of consciousness reside and how does it invoke
the physical?

E6  Who is dreaming and what is the nature of the waking reality?

E7  An unimaginably rich and transcendental structure is invoked to explain our
reality.

E8  Is M-theory correct?

E9 What is the nature of the simulation and in what computational entity is it
running?

As ever, certainty appears like a futile quest.

To add insult to injury, the understanding we have managed to gain about the
mechanisms and processes in our brains paints a gloomy picture. Neuroscience has
uncovered that our normal perception of reality is a hallucination guided only by a lit-
tle external input. The conscious mind’s role is to narrate and justify, in hindsight, the
decisions reached by the many subconscious subroutines in the brain. Tweaking the
neurochemical balance in the brain can lead to the firsthand, immersive experience
of realities, radically different to the default mode of sober consciousness. These are
realities that defy and transcend any conceptualization attempts and which can only
be subjectively experienced—through altered states of consciousness. Many exper-
iments have shown that the simple expectation of a particular experience changes
how we perceive it, from pleasure to pain. We now also know that memories are
distorted and can be false, as they are actively constructed in the very moment of
remembering, rather than being retrieved from a storage archive in the brain, cata-
loging all past events. Other experiments have uncovered how we continuously, and
embarrassingly, behave in irrational manners, while at the same time taking pride in
the belief of our rational capabilities. Perhaps most troubling, and explaining a lot
about the state of the post-truth world we live in today, is the following observation:
Grossly incompetent people lack the skill to identify their own lack of skill, leading
to an inflated and distorted self-perception, while highly competent people are trou-
bled by doubt and indecision, resulting in a self-conscious and distorted perception
of themselves (Dunning-Kruger effect).

This story is also a tale of our possible role in the universe, offering a novel approach
to all the enigmas we are faced with—all the existential challenges that keep mocking
us. It hinges on the question “Could there be something we don’t yet know about
ourselves and the universe, the knowledge of which could change everything?” Are
we harboring erroneous concepts in the contemporary scientific worldview? Can
we rectify this by exploring new ideas? For instance, the notion that the foundation
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of reality is based on information. Or the radical possibility that consciousness also
plays a fundamental role in the universe. Can information, consciousness, and reality
be braided into a unified fabric of existence?

PLaTO was the most famous student of Socrates, the Greek philosopher who is
considered to be the father of Western philosophy. He proposed the following thought
experiment, captured in an analogy called the Allegory of the Cave. It appeared in
his Socratic dialogue called The Republic, around 380 B.C.E. In a nutshell':

The story is a description of a group of people who have lived chained to the wall of a cave
all of their lives, facing a blank wall. The people watch shadows projected on the wall from
objects passing in front of a fire behind them, and give names to these shadows. The shadows
are the prisoners’ reality. It is explained how the philosopher is like a prisoner who is freed
from the cave and comes to understand that the shadows on the wall are not reality at all,
for he can perceive the true form of reality rather than the manufactured reality that is the
shadows seen by the prisoners. The inmates of this place do not even desire to leave their
prison, for they know no better life.

Like the fire that cast light on the walls of the cave, the human condition is forever bound
to the impressions that are received through the senses. We cannot free ourselves from
the phenomenal state just as the prisoners could not free themselves from their chains. If,
however, we were to miraculously escape our bondage, we would find a different world.
In other words, we would encounter another “realm,” a place that is the source of a higher
reality than the one we have always known.

What if you were the fortunate convict able to escape your prison of perception and
discover a higher reality behind the mundane one? What if your mind could suddenly
merge with a universal cosmic consciousness? What if you unexpectedly started to
understand the unknowable, the ineffable, the thing-in-itself, the noumenon? Or,
what if you started to receive knowledge directly from sources outside of space and
time? What if God (or the gods) began to engage you in a dialogue? Even more
dramatic, what if you discovered the spark of God (or the gods) within yourself?
Being absolutely certain, with every single fiber of your being, of the authenticity
of such truths, how would you communicate this transcendent knowledge to your
ignorant fellow human beings? How would you handle the crippling solitude of being
the only person bestowed with such divine insights? How then, would you continue
to lead your life? Would you commit yourself to a psychiatric institution with a
self-diagnosed manic psychotic break? Or, would you start to source the knowledge
through yourself and try to inspire others? Perhaps some inspiration can be found in
the spoken words of Alan Watts, a philosopher, psychonaut, mystic, and interpreter
of Eastern philosophy?:

Some people get a glimpse that we are no longer this poor little stranger and afraid in a world
it never made—but that you are this universe. And you are creating it at every moment.

And you see, if you know that the I—in the sense of the person, the front, the ego—it really
doesn’t exist, then it won’t go to your head too badly if you wake up and discover that you’re
god.

! Adapted from https://en.wikipedia.org/wiki/Allegory_of_the_Cave, retrieved December 2, 2017.

2See  http://www.alanwatts.com/ or https://soundcloud.com/gutzeit-945453634/elias-dore_
gutzeit_1#t=12s, retrieved December 6, 2017.
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1.1 At a Glance

There are various options of how one can proceed with reading this book. The User
Manual, beginning on page xv, summarizes them. In the following, Sect. 1.1.1 gives
a very brief outline of the entire content and Sect. 1.1.2 a compact chapter overview.
Then, Sect. 1.2 provides a more detailed summary of each chapter. Finally, Sect. 1.3
offers a content map, giving an even more detailed overview of the covered terrain,
by chapter and section.

1.1.1 A Very Short Outline of the Journey

The voyage you are about to embark upon is broken down into three separate legs:

1. Part I: Climbing to the summit of the island of knowledge.
2. Part II: The downfall and the boundaries of ignorance.
3. Part III: New frontiers on the horizon.

The story evolves around human knowledge generation and ignorance, the struggle to
find an island of certainty in a fierce sea of uncertainty. In a nutshell, it is the adventure
of the human mind’s search to understand itself and the world it is inhabiting. In other
words, the age-old questions “What is reality?”, “What can  know?”, and “Who am
1?7 are tackled once again. It is a long journey building on all the achievements and
failures of the human mind. In essence, it is an adventure of science and philosophy.

After reading Part I, one should be greatly awed and humbled by our mind’s
profound ability to make sense of a world it woke up to one day. The relentless
dedication, decisiveness, and perseverance of the humans pursuing the quest for
knowledge should be a source of true inspiration to us. However, after finishing Part
II this exhilaration should have turned into despair. The world has stopped making
sense, and cracks appeared in the foundations of reality. The very notion of certainty
is in jeopardy. In the words of Albert Einstein (Einstein 1949, p. 45):

It was as if the ground had been pulled out from under one, with no firm foundation to be
seen anywhere upon which one could have built.

Reality, and its material source, fractures. Time and causality lose their meaning.
Our own identity is demystified. The self is a hallucination and free will an illusion.
The inner world we experience is precariously detached from the outer world. The
darkness of existential angst momentarily settles upon the human psyche.

Here is where Part III provides comfort and shines a novel light onto the world.
A new horizon emerges, offering a new kind of knowledge—a novel understanding
of ourselves and the world, that potentially can disentangle some of the mystery
of being. However, in order to accept this new chapter in the history of human
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knowledge, a lot of conceptual baggage needs to be thrown overboard. The reader is
invited to entertain notions which might feel alien and heretical—invited to rethink
the most basic assumptions and most cherished beliefs about existence. The new
gospel is simple: Information is the essence of reality—the substrate of existence. It
has an inner aspect giving rise to subjective experience (consciousness) and an outer
aspect from which the tapestry of reality is woven. The implications and conclusions
of this new paradigm are truly outlandish. Here the inquisitive reader can directly
proceed to the last chapter, summarizing the journey and the new insights.

1.1.2 Chapter Overview

The adventure begins with the understanding that the Book of Nature is written in the
language of mathematics. It is uncovered, how an act of translation enables the human
mind to generate knowledge of the world (Chap. 2). This mechanism is elucidated by
the notion of symmetry, allowing a large chunk of theoretical physics to be discovered
(Chaps.3 and 4). Analyzing the structure of knowledge uncovers a classification
scheme, which orders human knowledge generation—from the understanding of
fundamental processes of the universe to the complexity surrounding us (Chap. 5).
A detailed description of the study of complex systems is given (Chap.6) and its
applications to finance and economics (Chap. 7).

Up to now, Part I has chronicled the success story of the human mind scaling
the mountain of knowledge. Despite coming close to the summit, the apparently
inevitable downfall is encountered in Part II. All the challenges vexing the human
mind are outlined in Chap. 8, setting the stage for a detailed analysis in the following
chapters. Chapter 9 asks, “What can [ know?”” Any attempts at answering this question
touch upon the philosophy of science, the crisis of modern science, and the limitations
of mathematics. “What is reality?” uncovers our vast ignorance of the nature our
universe. Our theories fall apart, revealing a fragmented and incoherent landscape of
knowledge. We are unaware of a majority of the content of reality. Moreover, under
close inspection, time and matter loose their tangibility (Chap. 10). Finally, “What
am [?7” exposes the greatest enigma. How can a brain create subjective experiences
and why? Our brains are forever locked in a dark and silent skull, constructing virtual
reality simulations. The conscious mind is only a tiny island in the large archipelago
of subconscious processes. Memories are also unreliable fabrications of the mind.
Even the notion of an identity and free will is an illusion (Chap. 11). Part I exposes
the futility and incomprehensibility of existence—the universe appears pointless,
callous, cruel, and cynical. This has ramifications for society as a whole (Chap. 12).

Finally, Part III offers a novel understanding of the nature of consciousness
and reality. A new paradigm emerges, built upon an information-theoretic ontology
(Chap. 13). Moreover, this knowledge uncovers an even deeper reality: a participatory
universe, where there exists a kinship between the mind and the cosmos (Chap. 14). In
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effect, the prevailing materialistic and reductionistic scientific worldview has been
replaced by a novel understanding of existence, incorporating the human mind at
its very core. In conclusion, Chap. 15 summarizes the entire journey and catches a

glimpse of the new horizon.

A schematic overview of the content of this book is provided in the following

illustration:
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New foundation

e Part I: The gift of knowledge. A story of how the human mind was able to unlock
the workings of the universe in order to manipulate physical reality, creating tech-

nology.

— Chapter 2: Mathematics is the language of the universe. Human knowledge

generation hinges on an act of translation.

— Chapter 3: How the notion of symmetry is one of the most powerful concepts

in physics.

— Chapter 4: Symmetry allows physics to be unified.

— Chapter 5: A classification of knowledge. Understanding the universe with equa-
tions is only the beginning. Complexity can be tamed with algorithms running

in computers.

— Chapter 6: The new science of complexity.
— Chapter 7: Applied complexity. Finance and economics in a new light.

e Part II: Ignorance and the limits to knowledge. The self-critique of the modern
mind. The growing cracks in the edifice of the current materialistic and reduction-

istic scientific worldview.

— Chapter 8: The problem of certainty. Age-old questions of existence.
— Chapter 9: The crisis of modern science, or “What can I Know?”

— Chapter 10: The true and uncanny nature of reality.
— Chapter 11: The reality of subjective consciousness, or “What am 17



10 1 Introduction

e Part III: New horizons. “Could there be something we don’t yet know about our-
selves and the universe, the knowledge of which could change everything?”

— Chapter 12: We live in the age of post truth, where “my ignorance is as good as
your knowledge.” A glimmer appears on the horizon.

— Chapter 13: An information ontology is discovered, where information is phys-
ical and the foundation of reality.

— Chapter 14: A participatory ontology is outlined, where the human mind and
the cosmos share a kinship.

— Chapter 15: The final summary and conclusion, glimpsing a new horizon.

e Epilogue.

1.2 The Story in a Nutshell

1.2.1 Part I: Climbing to the Summit

Chapter 2: In Search of the Book of Nature

The history and hallmarks of human knowledge generation are discussed. An old
metaphor describing the intelligibility of the world was found in the idea of the
Book of Nature, where the universe can be read for knowledge and understanding.
It was realized a long time ago that the Book of Nature is written in the language of
mathematics.

Philosophers and scientists have argued that this metaphor encapsulates the inter-
play of three distinct worlds: the abstract Platonic realm of mathematics, external
physical reality, and the human mind harboring mental states. This is shownin Fig. 2.2
on Page 58:

Mental

O—O
Abstract Physical

In effect, the Book of Nature can now be rephrased with modern concepts. Quintes-
sentially, knowledge generation is an act of translation in the human mind. Aspects
of the physical world are encoded as formal representations, like mathematical equa-
tions. These abstractions inhabit an abstract world of their own and follow their own
rules of consistency. The human mind can access and manipulate the formal represen-
tations in the abstract world and decode them. This happens by predicting behaviors
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of the physical world, from abstract insights, which then can be empirically tested.
This knowledge generation process is illustrated in Fig. 2.1 on Page 45:
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Modern examples of this mechanism are discussed, starting with Isaac Newton’s
prototypical physical theory of classical mechanics. The interplay between mathe-
matics and physics is examined and some aspects of mathematics analyzed. Several
biographies are presented.

Philosophers and insightful scientists realized that this intimate interplay of the
human mind with the workings of the universe poses mystifying challenges. In
essence, three worlds are interacting: the physical, the mental, and the abstract.
More sober scientists have declared “Shut up and calculate!” and circumvent such
philosophical artifacts by focusing on the formalism.

On a technical note, the contents of this and the two following chapters are neces-
sarily laden with mathematical symbolism. In order for the non-mathematical reader
to still be able to follow the narrative, a precaution is taken. All of the more involved
equations are clearly delimited, allowing the reader to avoid these abstract pitfalls.
To this aim, special attributed tags are introduced, denoted by {¢p ... ¢p}, which
encapsulate the mathematical formalism. See also the User Manual on Page xv.

Chapter 3: The Semantics of Symmetry, Invariance, and Structure

A case study of how the notion of symmetry underpins modern physics. The intuitive
idea of symmetry is formalized as a mathematical concept (group theory). Now it
becomes an ideal vessel for encoding aspects of the physical world in abstract terms,
illustrating the act of knowledge generation via translation.

Symmetry can be intuitive and elusive at the same time. Obvious and straightfor-
ward notions related to it can result in deep mathematical structures being uncovered,
which mirror the workings of the universe. Namely, invariance, the concept that the
manipulations of a system leave it unchanged. For instance, rotating an unmarked
cube by 90° along any of its three axes leaves it indistinguishable from its original
orientation. The cube is invariant under such transformations. Requiring that the
outcome of a physical experiment should not depend on the time and location it is
performed at can be expressed mathematically as invariance. In detail, the invariance
of physical theories under changes in space and time result in conservation laws,
specifically the conservation of momentum and energy in the universe. This theme
goes to the heart of theoretical physics (Emmy Noether’s theorem). The fundamen-
tal symmetries of space-time are encoded as a mathematical group and give rise to
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fundamental laws of nature. Moreover, physical particles, so elusive to our senses
and intuition, transform according to yet another symmetry group, giving us an ana-
Iytical lever to manipulate them. Finally, the very relation of space and time, encoded
in a transformation, results in a maximum speed of causality, which is confined to
be the speed of light by invariance.

In order to understand the importance of group theory in physics, the mathematics
of geometry are introduced. Classical mechanics is rediscovered in the generalized
formalism of the Euler—Lagrange equation. Also, elements from quantum theory,
quantum field theory, philosophy, and history are discussed throughout the chapter.

The notion of conserved quantities has an ancient history in Greek philosophy
(Parmenides, Heraclitus, Anaximander, Leucippus, and Democritus). It is related
to the concept that nothing can come from nothing and that reality is composed of
indivisible, indestructible, and eternal atoms. A similar concept of atoms is found in
the Indian religion of Jainism, a radically non-violent tradition which shares in its
cosmology many of the elements of pre-Socratic Greek philosophies.

Chapter 4: The Unification Power of Symmetry

Inspired by the success of Albert Einstein’s general relativity, Hermann Weyl intro-
duced a new kind of symmetry in 1918. It was called gauge symmetry and the corre-
sponding notion of gauge invariance lead to the discovery of gauge theory, a pivotal
achievement in theoretical physics. This would then revolutionize the understanding
of all three non-gravitational forces in the universe. In essence, the discovery of a
novel local type of symmetry would allow the standard model of particle physics to
be formulated, decades later. Going beyond this edifice, modern unification efforts
in physics extend those notions of symmetry in what is know as superstring theory.

The principle of covariance was one of Einstein’s main ingredients for the theory
of general relativity. It rests on a benign assumption of symmetry: the contents of a
physical theory should not depend on the choice of coordinates required to express
and compute the theory. In other words, physical laws are invariant under coordinate
transformations. This commonsensical requirement is one of the two cornerstones of
general relativity. The second one being the principle of equivalence: it is impossible
to distinguish the force of gravity from the effects of acceleration.

The history of gauge theory was a meandering story that led to the uncovering of
a new layer of reality below the phenomena of electromagnetism (electromagnetic
potential, Aharonov—-Bohm effect). Theories were formulated, which lay dormant
for years, and nearly forgotten, before they came to prominence and paved the way
to a new understanding of the universe (Yang-Mills theory). Indeed, many theoretical
hurdles had to be overcome before a successful marriage of gauge theory and quantum
field theory culminated in the standard model of particle physics. For instance, the
Higgs mechanism, a mathematical machinery designed to generate mass terms in
the theory via spontaneous symmetry breaking.
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However, the standard model marks only the beginning of a unified theory. The
Holy Grail of physics is seen as the unification of the standard model with gravity,
in a overarching theory of quantum gravity. Physicists attempts to reconcile their
fragmented theories has led to many esoteric postulations about the nature of reality.
For instance, the existence of unseen extra spatial dimensions, rendering our universe
a higher-dimensional behemoth. An idea first introduced by Theodor Kaluza and
Oskar Klein, it saw its coming of age in ten-dimensional and 26-dimensional variants
of superstring theory. Moreover, the adjective “super” in superstring theory refers to
yet another novel symmetry attached to nature, relating bosons (the force-carrying
particles) to fermions (the matter particles: quarks and leptons).

Whole new branches of mathematics (algebra, topology, geometry, and group
theory) were forged in order to reconcile the splintered landscape of theoretical
physicsin aunified theory. The resulting attempts culminated in M-theory, the eleven-
dimensional unification of the five existing ten-dimensional superstring theories,
approximated by the theory of supergravity at low energies.

Despite the enormous experimental success of the standard model, string/M-
theory has to this day produced no (falsifiable) predictions. Indeed, Einstein already
failed at formulating a unified field theory in his final years. Being arguably the most
influential physicist (the Nobel Prize-winning photoelectric effect, special and gen-
eral relativity), he struggled with the reality and implications of quantum mechanics
and spent the years from 1928 to his death in 1955 grappling with his unified field
theory.

A brief detour through the history of quantum mechanics and quantum information
is included.

Chapter 5: The Two Volumes of the Book of Nature

The age-old dream that mathematics represents the blueprint for reality has become
fulfilled: the Book of Nature is intelligible to the human mind. Consider the notion of
symmetry. Expressed mathematically, it is foundational to physics and runs through
its fabric as a common thread. This is an example of how knowledge generation is the
result of an act of translation: the human mind encodes reality domains into formal
representations and is able to make predictions about the workings of the universe
(decoding).

As it happens, this way of categorizing knowledge is only the beginning. In other
words, what has been called the Book of Nature is in fact only Volume I in a greater
series. Chapter 5 attempts to outline this Weltanschauung. The resulting picture is
captured in Fig. 5.8 on Page 171:
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The Book of Nature

It rests on three classifications which are introduced and elucidated in detail:

1. The distinct reality domains: fundamental/complex.
2. The nature of the formal representation: analytical/algorithmic.
3. The structure of mathematics: continuous/discrete.

From this, two dichotomies of understanding emerge:

1. The fundamental-analytical, found in Volume I of the Book of Nature.
2. The complex-algorithmic, describing the recently discovered second volume.

In a nutshell:

VOLUME I The fundamental reality domains (mostly pertaining to the quantum
and cosmological levels of reality) are made accessible to the mind via analytical
formal representations (equations). This relates to physical science.

VOLUME II Real-world complexity (from inanimate self-organizing structure
formation to emergent phenomena like life and consciousness) is encoded via algo-
rithmic formalizations (algorithms and simulations running in computers, they them-
selves being a gift found in Volume I). This relates to complexity science.

Following this categorization of human knowledge, the success, paradigms, and
limitations of fundamental processes and complex systems are outlined. Most cru-
cially, both volumes of the Book of Nature rely on two specific miraculous circum-
stance for their success:

VOLUME I The power of human formal thought systems: “The unreason-
able effectiveness of mathematics in the natural sciences” (Eugene Wigner). See
Sect.9.2.1.
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VOLUME II Complexity arises from simplicity: “Some of the very simplest pro-
grams that I looked at had behavior that was as complex as anything I had ever seen.
It took me more than a decade to come to terms with this result, and to realize just
how fundamental and far-reaching its consequences are” (Stephen Wolfram). See
Sect.5.2.2.

In this context, chaos theory, fractals, agent-based simulations, and complex net-
works are discussed.

Relating to historical circumstances, this part of the journey takes the reader to
the new science of networks, starting with sociological experiments (“the strength of
weak ties”, “six degrees of separation”) and culminating in the discovery of small-
world and scale-free networks, appearing everywhere in nature and human affairs,
at the turn of the millennium.

Contemplating the two dichotomies of fundamental-analytical and complex-
algorithmic knowledge generation, the following question arises. What about the
two other possible modes of understanding? Namely, the fundamental-algorithmic
and complex-analytical categorizations. It is discussed how these two play a minor
role in the Book of Nature.

Finally, the deepest layer in Fig.5.8 is discussed, relating to the structure of the
mathematics underlying the two dichotomies (i.e., Volume I and II). In this sense,
mathematics is the ultimate unifying theme of all human knowledge of the universe.
Specifically, mathematics can be delimited into two subject matters: the continuous
and the discrete. This schism has its philosophical roots in ancient Greece and is
also related to the conflicting notions of the finite and infinite. The history of con-
tinuous mathematics is recalled, starting in Greece, moving through the Protestant
Reformation and the Middle Ages, and ending today. In essence, the multifaceted
mathematical tool of the derivative, a cornerstone of continuous mathematics, appears
in all of physics.

Discrete mathematics, the antipode of the continuous, also has an ancient history.
However, the concept only really came to prominence in the context of information
theory and computation. One specific area of discrete mathematics emerged as the
cornerstone for the description of complex systems: graph theory (developed by
Leonard Euler, one of the most prolific mathematicians of all times). Similar to the
derivative playing a prominent role in Volume I of the Book of Nature, the graph is
an essential formal concept, encoding complex systems in Volume II.

Chapter 6: Volume II: The Simplicity of Complexity

So, what is written in Volume II of the Book of Nature? What exactly is complexity
science? And how does the science of simple rules work?

Complexity theory is not a single discipline, but an amalgamation of different
fields of study. It has a long history, starting in the 1960s with cybernetics. Other influ-
ences came from systems theory, artificial intelligence research, non-linear dynamics,
fractal geometry, and chaos theory. Today, a major discipline of complexity science
is complex systems theory. A complex system is comprised of many interacting ele-
ments. Here the relevance of simple rules of interactions becomes visible. Moreover,
a complex system can be formally represented as a complex network.
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From a philosophical perspective, structural realism argues that, in fact, only
relations are relevant. In other words, the network of interactions is key. This has,
however, been contested by some philosophers of complexity, who favor poststruc-
turalism, a variant of postmodernism. In a nutshell, complexity science invites a
systemic and holistic paradigm, abandoning the prevalent, and thus far success-
ful, reductionist thinking. It is characterized by decentralization and a bottom-up
approach to the understanding of reality.

Complex networks are ubiquitous and found in many different domains, from
the living to the non-living. The research on complex networks has exploded in
the last decades. This development happened hand in hand with the emergence of
data science, providing the empirical foundations. Complex network analysis can be
applied at different levels of resolution and detail.

A scaling law describes a simple functional relationship. A change in input results
in a proportional change in output. Albeit being an elementary mathematical expres-
sion, scaling laws describe a vast amount of natural phenomena. In effect, scaling
laws can be understood as laws of nature describing complex systems. There exist
four types of scaling laws. Allometric scaling laws describe how the properties of
living organisms change with size. For instance, heavier animals live longer and have
slower heart-rates than lighter ones. However, the actual number of heart-beats per
lifetime is constant across mammals. Then, scaling-law distributions characterize
many phenomena, in contrast to a normal distribution. In essence, most members
of a population are irrelevant in scaling-law distributions, whereas a select few are
disproportionately important. There is no preferred scale, resulting in scale-invariant
behavior. A myriad of phenomena obey such a distribution. Furthermore, scale-free
networks incorporate scaling laws in their topology. Again, many such networks can
be found in nature. Finally, cuamulative scaling-law relations describe how properties
appearing in time-series are related. Especially, in financial data. Historically, scaling
laws are associated with the Pareto principle, Zipf’s law, and Benford’s law.

Chapter 7: Applied Complexity: Finance and Economics in a New Light

In the past 500 years, humanity has created a single world order based on the interplay
of science and technology, industry and economics, and military interests. In essence,
our species has merged into one global network of human activity. The understanding
of the structure and functioning of this super-system is perhaps the single most
important goal to ensure equitable future prosperity, in economic and ecological
terms.

The mathematization of finance began in the year 1900 and involved some eminent
physicists. It was centered around the concept of a stochastic process. 97 years—and
many equations—Ilater, the Nobel Memorial Prize in economic sciences was awarded
for the Black-Scholes model, leading to a financial crisis and bank bailouts. At the
center of this mathematical evolution stood (and stands) the quantitative analyst,
often recruited from physics.

Perhaps the single most influential ideological influence came from the Chicago
School, promoting the neoclassical brand of economic thought, giving birth to the
doctrine of neoliberalism around 1980. Today, neoliberalism is the world’s dominant
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economic paradigm, favoring decentralization and privatization. Many economists
have criticized this concoction of mathematical opacity, laissez-faire economics,
belief in efficient markets and human rationality, lack of empirical foundation, and
missing governmental oversight as the root cause of the housing bubble, which turned
into a global financial crisis, and eventually a sovereign debt crisis.

In contrast, complexity science offers a new paradigm to understand financial and
economic systems. Yet again, networks of interaction are the the heart of the solution.
Complex dynamic systems, based on empirical observations, including feedback
loops and non-linear behavior, replace idealized and arcane mathematical wizardry,
based on very stringent assumptions. One specific approach employs agent-based
models to decode financial markets. Another one utilizes centrality measures in the
global ownership network to estimate corporate power.

The history of finance and economics is closely tied to the rise of European
imperialism. Capitalism is based on the trust in the future, allowing for progress.
One vision of this, advocated by neoliberalism, sees unapologetic and unrestrained
human self-interest at the core of the engine generating collective wealth. However,
greed and fraud are very seductive. They promise short-term enrichment but threaten
the long-term formation of an equitable and sustainable society, living in ecological
balance with the biosphere supporting life on Earth. Indeed, the banking sector has
a notoriously bad reputation when it comes to financial scandals. Greed and fraud
appear to be a systemic affliction of the profession. Buddhism, at its core, identifies
insatiable greed as one of the main causes of human suffering. Happiness economics
appears to agree. Moreover, confronted with one’s own death, a life spent with
meaning and social interactions appears to outmatch a life solely filled with material
wealth.? In stark contrast, evolutionary (and mathematical) biologists see cooperation
and altruism as the successful templates and driving forces of sustainable collective
well-being, outperforming selfishness and egoism.

Today, eminent economists identify the accelerated increase in global inequality
as one of the greatest threats to future prosperity—economic and ecological. Even
some billionaires agree that they profit from a system which is not sustainable.
Looking into the future, a paradigm change could be underway, with the potential
to disrupt all financial and economic interactions. It is initiated by a change in the
architecture of our man-made systems. A new blueprint, favoring decentralization,
is beginning to replace the predominant design pattern: the tribal pyramid of power.
Motivated by insights from complexity science, these new systems have the potential
to exhibit self-correcting, sustainable, and resilient behavior. In detail, the emergence
of a distributed, fail-proof, and tamper-proof public ledger, enforcing transparency,
security, and auditability by design, is driving the revolution. Distributed ledger
technology is the great innovation at the heart of the nascent rise of Bitcoin.

3Based on statements of US citizens requiring palliative care.



18 1 Introduction

1.2.2 Part II: The Downfall

Chapter 8: A Brief Story of Success: The Manifestation of Knowledge and the
Hydra of Ignorance

The quest to comprehend the world we live in has taken the human mind on a true
odyssey—it is a spectacularly successful story of knowledge generation. Ignorance is
dispelled and the unveiling of knowledge is driving the acceleration of modern tech-
nological advances. All seems comprehended and we are tempted to close the Book
of Nature with satisfaction. However, in an astonishing, unexpected, and momentous
plot twist, the anticipated ending of this narrative opens up Pandora’s box of exis-
tential dilemmas, ontological paradoxes, and epistemic uncertainty. Ominous clouds
appear on the horizon.

First of all, uncertainty viciously raises its head—again. Throughout the history
of thought, uncertainty could never be banished. The most developed theory of igno-
rance in modern philosophy is that of Immanuel Kant. His epochal classic Critique
of Pure Reason argues that we can only ever know things as they appear to us and
never the things as they are in themselves. Furthermore, the question of “Why is there
something rather than nothing?” truly represent one of the hardest enigmas of exis-
tence. Finally, all the cosmic coincidences which had to occur in the evolution of the
universe for this exact moment in time to transpire raises more mind-numbing chal-
lenges. We are confronted with issues relating to teleology, entelechy, creationism,
and the notion of a simulated reality.

In summary, the core enigmas of existence can be phrased as three questions:

1. What can I know? (Chap.9)
2. What is reality? (Chap. 10)
3. What is consciousness? (Chap. 11)

And so the grand narrative of the world continues to unfold, albeit in a very unex-
pected direction.

Chapter 9: Philosophy and Science: What Can I Know?

The spectacular display of human technological prowess seen today is a testimony to
the success of the human mind in deciphering the workings of the universe. Science
works! But how exactly and why? The philosophy of science outlines the failure of the
attempts to explain, structure, and justify science. Beginning with logical empiricism
and critical rationalism, the efforts to systematize the scientific method based on
common sense failed. Inductive and deductive reasoning suffer from conceptual
problems. Thomas Kuhn influentially argued that science progresses by virtue of
sudden, unforeseeable disruptions, called paradigm shifts. Science is not a linear
accumulation of knowledge and it is greatly influenced by socio-cultural aspects
and the idiosyncratic preferences of scientists. Abandoning the hope for a single
universal truth, postmodernism focuses on ambiguity and diversity. Indeed, modern
theoretical physics appears to have reached a threshold, where meaning, clarity, and
understanding are in jeopardy. Then, constructivism argues, once more, that social
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and cultural conditions shape knowledge. Finally, relativism appears to undermine
any structured knowledge of the world. The influential and controversial philosopher
of science, Paul Feyerabend, continually challenged the scientific establishment. He
was dubbed “the worst enemy of science.” Perhaps Feyerabend was profoundly
misunderstood, as he wholeheartedly embraced science but rejected the claims of its
rational and structured nature.

Looking at the evolution of science, the emergence of modern science marks the
begin of a deep crisis, beginning in 1901. Nearly every postulate of classical science
was overthrown by the new physics and replaced with bizarre new concepts, from
the elusive quantum fluctuations to the fabric of space-time. The aftershocks of this
fundamental transformation still echo to this day. Quantum theory represents one of
the greatest conceptual enigmas ever to have challenged the human mind. Perhaps
even more pressing is then the question relating to the comprehensibility of the
universe. Why can the mind unlock the secrets of reality? This question continues to
baffle many great scientists and philosophers. Finally, is the end of science in sight?
Is science being undermined by the all-too-human nature of scientists? Is scientific
progress grinding to a halt? Paradoxically, as each question about the workings
of the universe gets answered, new and harder questions emerges. An observation
many scientists agree upon. In effect, ever more knowledge is uncovered, but it only
represent an infinitesimal progress in understanding. If asked, some scientists will
admit to these shortcomings: uncertainty and ignorance are inherent and ubiquitous.

Finally, even mathematics, allegedly the pristine body of knowledge containing
aesthetic and timeless truths, turns out to be severely limited. Not only is mathe-
matics incomplete (Kurt Godel’s famous theorems) but it is fundamentally plagued
by randomness. The mathematician proving this statement, thus continuing Godel’s
haunting legacy, radically compared mathematics to zoology. Indeed, hyper-abstract
modern mathematics also suffers from the loss of meaning, clarity, and understand-
ing. Such insights do not bolster the confidence in any enterprise relying on mathe-
matics.

In the final analysis, it seems as though the edifice of human knowledge is a shift-
ing, ad hoc, and fragmented structure, lacking any clear foundation and overarching
and unifying context. Mathematics and science appear to be true by accident.

Chapter 10: Ontological Enigmas: What is the True Nature of Reality?

Physics has reached a dead end. All the successful theories describing the intimate
workings of reality turn out to be incomplete and incompatible fragments of knowl-
edge floating in the void of the unknown. Under closer inspection, the impressive
theories of the universe unravel. The whole monumental structure of knowledge
falls apart like a house of cards. We are left with a frustratingly long list of unsolved
mysteries—from the bizarre quantum level of reality to the vast cosmos, of which
95% of its content is still unknown to the human observer. Moreover, the most accu-
rate theories fail miserably at the borders of their domain of comfort. Even worse, it
turns out that the human mind has cultivated the wrong intuitions about reality. But
perhaps the hardest blow comes from quantum physics. The realm of the very small
displays behaviors which transcend our conceptions of reality—even after over a
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century of grappling with its interpretation. So too does the cosmic fabric. Space,
time, and matter are found to be ineffable qualities of a formerly comprehensible uni-
verse. Determinism, causality, materialism, the past and the future, definiteness, and
an objective and a mind-independent world seem like the dreams of an unattainable
paradise. Ironically, the mind is allowed to transform the knowledge fragments it is
given into powerful technology, but it is not permitted to peak behind the curtains
of reality. The ontology of reality is not comprehensible to the human mind. Our
best efforts at extending our knowledge—in the guise of a theory of quantum grav-
ity—have all been unsuccessful. The Book of Nature turns out to be an incomplete
translation. The original appears to be written in an alien language, unintelligible to
us, hiding vastly greater knowledge from the our mind. It is then perhaps no wonder
that some great physicists became enticed by mysticism and spirituality at the end
of their lives.

Chapter 11: Subjective Consciousness: What am 1?

Philosophers have been debating consciousness since the birth of philosophy. Until
recently, the very notion of consciousness was excluded from any scientific investiga-
tion. Today, philosophers of the mind, neuroscientists, and cognitive scientist agree
that consciousness is one of the biggest enigmas. On the one hand it is so intimately
familiar to us. Indeed, we all appear to be self-determined consciousness—a self with
free will. On the other hand, linking the ethereal mind to tangible physical processes
in the brain is a hard problem. Solutions come form an outright denial of the reality of
consciousness to viewing reality as goal-driven and caused by a transcendent agent.
Something has to give. The inner world we experience is precariously detached from
the outer world.

Insights from neuroscience speak of the limited capabilities of the conscious
mind. Consciousness appears to be a narrator reacting in hindsight to decisions
made in the vast subconscious mind. The perception of the outer world is based on
a constructed simulation, rather than reflecting objective truths. The sense of self
is also an intricate construct of the mind which can be damaged. Memories are not
archived but are constructed on the fly. Beliefs, morals, and ethics have a biochemical
component and also depend on the biologically evolved “hardwiring” in the brain.
Human behavior is demonstrably irrational and we are blind to a huge number of
cognitive biases. We can be easily be manipulated without ever knowing. Then, our
brains and minds can fall apart. A dramatic number of psychopathological disorders
have been documented. Sometimes a brain trauma unlocks genius traits. Split-brain
patients experience their unified self divide into two separate streams of independent
consciousnesses.

The notion of free will appears highly problematic. From quantum mechanics
we get two radically opposing options: either there is no free will in the universe or
everything, including elementary particles, has free will. Neuroscientific experiments
demonstrate the lag between the time a subconscious decision is made and the time
the conscious narrator is informed about the decision.

These are today’s challenges arising at the borders of knowledge, enigmas that are
mostly swept under the carpet in a pragmatic attempt to conduct business as usual.
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We face a gloomy dichotomy: the emergence of an astonishing body of knowledge—
accurately decoding the workings of the physical world and fostering technological
progress at breathtaking speed—is eclipsed by paradoxes, ambiguity, and incoher-
ence. The true nature of reality is as elusive and mysterious as ever, we are missing
the foundations and cohesion of science, and the problem of subjective experience
dramatically exposes our profound ignorance. Is this a world doomed by uncertainty?
Do we really live in a cynical universe, which reveals itself to the human mind just
as far as to awaken the false hope in its comprehensibility and then leaves us forever
in a state of epistemic and ontic nihilism? Was the Book of Nature simply a grand
and elaborate farce?

Perhaps things are not what they appear to be. Maybe there is something we don’t
yet know about ourselves and the universe, the knowledge of which could change
everything.

1.2.3 Part II1: A New Horizon

Chapter 12: The Age of Post-Truth

The human mind lost all guidance form science and philosophy. An existential
threat emerged, relating to the fundamentally incomprehensible nature of reality
and consciousness. We are left with amazing technology, which we unfortunately
and astonishingly keep utilizing to destroy the entire biosphere sustaining all life
on Earth. Untethered, ignorance and anti-intellectualism abounds. Conspiracy theo-
ries are popular across a wide demographic. Conflicting beliefs result in a gridlock
that is paralyzing our world on at every level. Sociopolitical, cultural, theological,
philosophical, and scientific wars are waged.

But perhaps things are not as bad as they appear. We are slowly seeing the emer-
gence of a new age. We have the first blueprints for decentralized economic inter-
actions with the potential for collective intelligence—adaptability, resilience, and
sustainability. Overall, the universe appears to be guided by an invisible force driv-
ing it to ever higher levels of self-organized complexity.

The voices presented in this book are intended to help this malaise. Motivated by
scientific utilitarianism and radical open-mindedness, we are invited to rethink all
our assumptions about reality and consciousness. A new horizon emerges, offering a
firm foundation for existence. In the following chapters, the notions of information,
consciousness, and reality will be braided into a novel unified fabric of existence.
This is the final quest of the human mind: facing its own existence.

Chapter 13: A Universe Built of Information

We are currently witnessing a paradigm shift—perhaps the profoundest one to ever
occur. The human mind is invited to sacrifice one of the most successful conceptions
of understanding: the materialistic and reductionistic scientific worldview. This com-
monsensical idea, that at the core of reality lies a tangible essence from which the
universe is constructed, no longer seems adequate. Guided by a small anomaly that
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was discovered in the 1970s, many branches of theoretical physics—including quan-
tum gravity variants—and theoretical computer science are converging to uncover a
novel unified picture. Information is physical. In other words, the seemingly intangi-
ble notion of information has clear physical consequences. For instance, information
cannot be erased without the universe taking note (by registering an increase in
entropy). Information theory, giving birth to the bit and our current digital compu-
tational revolution, is the first theory quantizing information.

Two great physicists and pioneers of modern theoretical physics—John Wheeler
and Carl Friedrich von Weizsidcker—suspected that information was the ultimate
nature of reality. “It from bit” popularizes this view. Indeed, the intractable concep-
tual issues related to the interpretations of quantum mechanics reemerge in a new
light, once framed in a quantum-computational framework. Digital physics is a con-
temporary movement advocating this information-centric worldview. In essence, it
argues that reality is inherently finite. Only in our formal mathematical theories do
we encounter infinity. There is a fundamental limit—one bit per Planck area—to
how much information can be stored anywhere in the universe.

Perhaps the most persuading hints come from the study of black holes. In 1974,
Stephen Hawking discovered a property which challenged the laws of quantum
mechanics. The crux was related to information loss. Today, this topic is still relevant
and passionately debated. A key insight from string/M-theory entered the picture.
As aresult, all the cutting-edge theories speak of a holographic universe. Our famil-
iar three-dimensional reality appears to be fictitious, emerging from the information
encoded on a two-dimensional area. Moreover, space and time seem to be emergent
properties arising from pure quantum entanglement. The final faction joining the
struggle is theoretical computer science. Now it is as though computational complex-
ity is driving the evolution of this information-theoretic reality. Given the potential
of such an outlandish information-theoretic ontology, it comes as no surprise that
some scholars have taken the next bold step. They suspect reality itself being a vast
simulation.

The metaphor of the Book of Nature was a misguided thought. It seems that
at the core of reality we find a computational engine which needs to be fed with
information. The “Book of Nature” should be closer to a computational device in
which the algorithms of reality are encoded. The static physical “pages” are replaced
with a dynamic and fluid “display.”

Chapter 14: The Consciousness of Reality

Information lies not only at the heart of objective reality, it is also intimately con-
nected to subjective consciousness. In a final radical step, the information-theoretic
paradigm shift unearths a participatory ontology. Consciousness is seen as primal
and universal—a fundamental building block of the cosmos. A series of taboos
is being broken and blind spots exposed, all inherently contained within the cur-
rent materialistic and reductionistic scientific worldview. The question “Could there
be something we don’t yet know about ourselves and the universe, the knowledge
of which could change everything?” is beginning to be answered. From subjectiv-
ity, spirituality, Eastern contemplative wisdom, shamanic traditions, psychedelics,
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and paranormal and psychic phenomena, the human mind is invited to reframe and
reassess such notions. Such disruptive thinking within the Western mind goes back
to Immanuel Kant. Contemporary scholars, like John Wheeler and Richard Tarnas,
agree: we inhabit a participatory universe.

Hints are found in the emergence of non-localized and non-sentient intelligence,
peer-reviewed studies in physics journals, and reports from psychonauts. In essence,
many pioneers of quantum mechanics had always argued for such a participatory
ontology. However, blinded by the current paradigm, which—confidently and with
great certainty—deems what is heresy and not, certain elusive phenomena could
have escaped our collective attention. While, for instance, infinite parallel universes,
higher-dimensional space-time, and the denial of the existence of consciousness lie
within the orthodoxy, the notion of a mind-matter link is off-limits—seemingly only
espoused by the deluded, the fraudulent, or the incompetent. However, guided by the
first formal approach to consciousness, based on information, new terrain is being
charted. By welcoming the participatory ontology, reality and consciousness appear
in a new light, offering novel understanding to help answer age-old questions of
existence.

Chapter 15: Consilience

This is the last chapter in the human mind’s quest for understanding. As it is itself a
summary of the entire journey, the reader is invited to directly continue there. Final
thoughts and outlooks are provided.

1.3 Chapter/Section Content Map

Part I: Climbing to the Summit

Chapter 2: In Search of the Book of Nature

The Book of Nature is an ancient metaphor describing humanities quest to understand
the universe it inhabits. The philosophical notion is that nature is a book to be read for
knowledge and understanding. Beginning with the scientific revolution over 300 years
ago, it became apparent that the language of the Book of Nature is mathematics. Thus
science can be understood as the challenge to capture the processes of nature within
formal mathematical representations. This “unreasonable effectiveness of mathematics in
the natural sciences” raises philosophical questions.

At the heart of this knowledge generation process lies an act of translation. Aspects of
the physical world are encoded as formal representations. Once such abstract renderings
are found, they can be manipulated by the human mind. Finally, new insights are decoded
back into the physical world and their predictions can be experimentally tested.
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— Section 2.1: A Modern Edition of the Book of Nature

Examples in the Book of Nature are presented: Newton’s classical mechanics and
electrodynamics, next to mathematical physics and new mathematics from physics.

— Section 2.2: Seeking Meaning

Philosophical implications are discussed. For instance, the existence of a Platonic
realm of abstractions. This is placed within the context of the philosophy of mathe-
matics. Bertrand Russel’s paradox and Kurt Godel’s two incompleteness theorems,
disrupting the foundations of mathematics, are encountered, next to some biographical
elements from the lives of Srinivasa Ramanujan and Paul Erdés.

In essence, there exist three worlds : the physical world, accommodating the mental
world of the human mind, which discovers or creates the abstract world of formal
thought systems. The success of human knowledge generation rests on the peculiar
fact that the abstract world mirrors the structures of the physical world. The questions
of scientific realism and structural realism are touched.

Many scientists are, at best, uncomfortable when confronted with philosophical chal-
lenges. This sentiment finds its expression in the physicists rallying cry “Shut up and
calculate!”

Chapter 3: The Semantics of Symmetry, Invariance, and Structure

The notion of symmetry , formally encoded as a principle of invariance, is singly one of the
most powerful mathematical tools in unearthing novel and deep insights into the structure
of the universe. Symmetry, expressed as invariance, essentially means that certain manip-
ulations of a system leave it unchanged. This property can be encoded mathematically in
the language of group theory. The tragic story of Evariste Galois is told, the founder of
the theory.

— Section 3.1: Symmetry in Action: Conservation Laws

Another example in the Book of Nature is presented: conservation laws. Theses have
an ancient history and a deep meaning in physics. In a nutshell, if a system possesses
symmetry properties, then there exist quantities that are conserved in time. This pro-
found theorem was proved by Emmy Noether. For instance, the invariance in time of
a theory’s symmetry (in plain words, the outcome of a physical experiment should
not depend on the time it is performed at) results in the conservation of energy in the
system it describes.

In order for this property to emerge, more mathematical abstractions are needed, in the
guise of geometry. It is seen that classical mechanics can be rephrased in a geometric
language introduced by Leonard Euler and Joseph-Louis Lagrange. A new quantity
emerges in physics: the Lagrangian. It appears in many branches of theoretical physics
(electromagnetism, the standard model of particle physics, and general relativity).
Returning to the notion of symmetry, Sophus Lie revolutionized its understanding, by
introducing Lie groups and algebras. This allowed the purely mathematical concept
of symmetry to enter physics, as groups can be represented by matrices that act as
operators on quantum systems. Finally, some elements of quantum mechanics and
quantum field theory are discussed and linked to representation theory.
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— Section 3.2: Symmetry Manifested

Some concrete examples of the successful application of symmetry are described.
By expecting the universe to be consistent and make sense to all observers, space
and time have to be mixed. The resulting transformation, introduced by Hendrik
Lorentz, encodes this peculiar behavior. Invariance under this symmetry results in
the constant speed of light being the maximal speed for causality to propagate in
the universe. Lorentz set the foundation for Albert Einstein to develop the theory
of special relativity. This lead to the introduction of four-dimensional space-time,
formally described by a Minkowski space.

The Lorentz transformation can be further formalized, yielding the Lorentz group.
It encodes the fundamental symmetries of space and time. As a result, the behaviors
of electromagnetism, special relativity, and all quantum fields are encoded via this
formal representation. Finally, the Poincaré group extends the Lorentz group. All
known physical particle states are described by this abstract mathematical framework,
built from the notion of symmetry.

Chapter 4: The Unification Power of Symmetry

All the previously encountered instances of symmetry are expressions of global symmetry
principles. In other words, these types of symmetry do not change at different locations
in space-time. In 1918, a new local symmetry was introduced, leading to the development
of gauge theory, a pivotal achievement in theoretical physics. This new type of symmetry
would allow the standard model of particle physics to be formulated, decades later.

— Section 4.1: Back to Geometry: The Principle of Covariance

Einstein’s theory of general relativity , describing gravity, rests on two assumptions.
The principle of equivalence states that it is impossible to distinguish the force of
gravity from the effects of acceleration. Einstein called this the “happiest thought of
his life.” The principle of covariance is the second ingredient. At first sight, it appears
rather dull. The choice of the coordinates, required to make the elements of the theory
computable, should not influence the content of the theory. In other words, physical
laws are invariant under coordinate transformations. Unexpectedly, this leads to a deep
mathematical formalism known as covariance. Specifically, the covariant derivative
and Christoffel symbols.

— Section 4.2: The History of Gauge Theory

Inspired by the success of Einstein’s general relativity, Hermann Weyl introduced
a new kind of local symmetry in 1918. It was called gauge symmetry and the cor-
responding notion of invariance was introduced via the gauge-invariant derivative.
Originally, Weyl applied his theory to electromagnetism. This attempt failed. How-
ever, with the developments of quantum mechanics, he successfully re-applied the
ideas, leading to the formulation of gauge theory. Later on, this would lead to the
development of Yang-Mills gauge theory.

Initially, quantum field theory and gauge theory were plagued by major problems.
This “Dark Age” of theoretical physics was ended by the development of novel math-
ematical tools, collectively called renormalization.

A final hurdle in the formulation of the standard model of particle physics, a Yang-
Mills gauge (quantum field) theory, was the problem of mass. The symmetries of the
theory are only upheld if it describes massless particles. The final ingredient solving
this issue is the Higgs mechanism of spontaneous symmetry breaking.
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1 Introduction

— Section 4.3: The Road to Unification

Unification is the Holy Grail of physics. It is the attempt to consolidate all physi-
cal theories in one single overarching framework. The “theory of everything” is the
immodest name given to the postulated unified quantum field theory describing all
known forces in the universe (the three non-gravitational ones unified in the standard
model plus gravity). To this day, it is still an elusive dream.

An early successful attempt at unifying electromagnetism with gravity was found in
Kaluza-Klein theory. This was achieved by moving to a five-dimensional space-time.
A mechanism called compactification describes how our four-dimensional reality
reemerges from the higher-dimensional theory.

A next attempt was string theory, an accidental discovery. It was originally formu-
lated in a very different context unrelated to unification. At its core, the theory pos-
tulates that elementary particles and force carrying particles are not point-like (i.e.,
1-dimensional) but extended 2-dimensional entities, akin to strings. For string the-
ory to be mathematically consistent, it requires esoteric postulations about the nature
of reality. For instance, the existence of unseen extra spatial dimensions, rendering
our universe an eleven-dimensional structure. Moreover, a totally novel symmetry is
proclaimed: supersymmetry. Now bosons (the force carrying particles) and fermions
(the matter particles: quarks and leptons) are the two sides of the same coin. “String
theory” is an abbreviation of superstring theory.

Historically, around 1980, string theory lay dormant. The candidate for a theory
of everything was a higher-dimensional (quantum field) theory called supergravity.
Physicists then believed that by the end of the century this would reveal the sought-for
unified theory. After it was realized that supergravity could not fulfill its claims, string
theory came to prominence in 1984. After this “first superstring revolution,” five con-
sistent string theories had been formulated in ten-dimensional space-time. The goal of
unification appeared to move closer. Then, in 1995, Edward Witten showed that behind
the five string theories lurked a unified eleven-dimensional theory, called M-theory,
igniting the “second superstring revolution.” Specifically, he showed that by moving
to eleven dimensions, the physics described by this new theory corresponded to the
five ten-dimensional string theories in limiting cases. Moreover, eleven-dimensional
supergravity emerged as the low-energy limit of M-Theory.

Finally, the narrative returns to Einstein. After the spectacular success of his early
years, he spent the last thirty years of his life chasing chimera. One futile endeavor
he pursued to his deathbed was the failed development of a unified field theory.
Einstein was also skeptical of the validity of quantum theory, despite his vital role in
initiating the theory (his Nobel Prize-winning discovery of the photoelectric effect).
He famously quipped that “the old one” (God) does not play dice, expressing his doubt
of the probabilistic and indeterministic nature of quantum theory. A brief history of
quantum mechanics and quantum information is presented: Max Planck’s introduction
of quanta in an act of despair and entanglement. To this day quantum theory remains
undisputed.

— Section 4.4: Unification—The Holy Grail of Physics

This section concludes the current and previous chapters, which described the long
journey from symmetry principles to the standard model of particle physics. Although
a theory of everything—the unified theory of quantum gravity—appears as unattain-
able as ever, the standard model and general relativity, both based on symmetry prin-
ciples, mark perhaps the greatest achievements of theoretical physics. Both theories
have been tested to an extraordinary precision.
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Chapter 5: The Two Volumes of the Book of Nature

It appears as though the Book of Nature has been found and deciphered. The universe
has become intelligible to the human mind—from he subatomic world to vast cosmic
scales. In essence, this understanding comes from translating reality domains into formal
representations (encoding) and deriving predictions about the workings of the universe
from them (decoding). However, this should only mark the beginning.

What has been called the Book of Nature up to now was a very specific translation: The
fundamental reality domain (encapsulating the quantum and cosmological levels of real-
ity) was encoded as an analytical formal representation (equations). A few decades ago,
another translational process was discovered: Complex phenomena (from inanimate self-
organizing structure formation to emergent phenomena like life and consciousness) are
encoded via algorithmic formalizations (algorithms and simulations running in comput-
ers). In essence, the human mind has uncovered two volumes in a larger Book of Nature
Series. For each volume a dichotomy has been unearthed, allowing the human mind to
probe reality: the fundamental-analytical and the complex-algorithmic.

— Section 5.1: Volume I: Analytical Tools and Physical Science

Volume I of the Book of Nature is discussed. The success (seen in Chaps.2—
4), paradigms (symmetry and invariance), and limitations (from condensed matter
physics to n-body problems and systems of interacting agents) of this approach are
outlined. First hints of non-linearity and chaos theory emerge.

— Section 5.2: Volume II: Algorithmic Tools and Complex Systems

Volume II of the Book of Nature is introduced, allowing the human mind to tame
complexity. This feat hinges on two novel paradigms. Complex systems are formal-
ized as a set of agents and a set of interactions between the agents (Pf). Moreover,
complexity is the result of simple rules of interaction (PE).

(Pg) sets the stage for the new science of simple rules. This fact is as wondersome as
Eugene Wigner’s comments on the “reasonable effectiveness of mathematics in the
natural sciences.” One of the first scientists to glimpse the simplicity at the heart of
complexity was Stephen Wolfram, a physicist, computer scientist, and entrepreneur.
He set out to redefine all of science in A New Kind of Science. Chaos theory and
fractals are discussed.

(Pi) spawned a new science of networks. Having its roots in sociology (“the strength
of weak ties” and “six degrees of separation”), this research field exploded around the
turn of the millennium. Driving the success was the discovery of two types of com-
plex networks, found to be ubiquitous in nature (small-world and scale-free). This
unlocked the understanding of complex systems found in socio-economical, biolog-
ical, and physio-chemical domains. A new awareness of nature emerged, moving
beyond reductionistic problem-solving and embracing a systems-based and holistic
outlook.

— Section 5.3: The Profound Unifying Powers of Mathematics

The two classification schemes (reality domain vs. formal representation type) are
extended by another level, relating to the structure of mathematics itself. From a
bird’s-eye perspective, mathematics splits into two subject matters: the continuous
and the discrete.
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The history of continuous mathematics is recounted. It begins in ancient Greece
(Pythagoreans, Zeno, and Archimedes) and touches on the Protestant Reformation and
the Jesuits, the persecution of Galileo Galilei, and the independent discovery of calculus
by Isaac Newton and Gottfried Wilhelm Leibniz. Some of the philosophically relevant
concepts include: the finite vs. the infinite, synechism, atomism, and monadism. A
cornerstone of continuous mathematics is the derivative. This formal tool lies at the
heart of the analytical machinery that is employed to represent fundamental aspects of
the physical world. In essence, it drives all physical theories.

Although discrete mathematics is as old as humankind, it plays a minor role in today’s
mathematics curriculum. However, discrete mathematics is relevant for information
theory and computation. Boolean algebra was a landmark development in logic. Claude
Shannon implemented this for the first time using electronic components. He also
introduced the notion of a bit—a binary digit—to represent digital information as 0 or
1. This is the basis of information theory, ultimately leading to the computer.

One specific area of discrete mathematics emerged as the cornerstone for the description
of complex systems: graph theory. This was developed by Leonard Euler, one of the
most prolific mathematicians, while he was thinking of how a walk through the city of
Konigsberg could be devised, that would cross each of the seven bridges only once.
Just as the derivative of continuous mathematics plays a crucial role in the fundamental-
complex dichotomy (Volume I), graph theory from discrete mathematics allows com-
plex systems, represented by networks, to be formalized as graphs, a cornerstone of the
complex-algorithmic dichotomy (Volume II). In this sense, mathematics is the ultimate
unifying theme of all human knowledge generation.

— Section 5.4: The Book of Nature Reopened

The dichotomies of fundamental-analytical and complex-algorithmic knowledge gen-
eration are only two possibilities out of four. Itis discussed how the two other options—
the fundamental-algorithmic and complex-analytical categorizations—play a minor
role in the Book of Nature Series.

Chapter 6: Volume II: The Simplicity of Complexity

Finally, Volume II of the Book of Nature gives the mind insights into the workings of
complexity. After decoding many aspects of the universe using equations, we now have
the tools to tackle the complexity surrounding us and contained within us.

— Section 6.1: Reviewing the Book of Nature

A short reiteration of the concepts and ideas relating to the two volumes of the Book
of Nature is given. Now, the simplicity of complexity is at the center of attention.

— Section 6.2: A Brief History of Complexity Thinking

The historical roots include cybernetics (1940s and 1950s), systems theory (1950s
and 1960s), early artificial intelligence research (1950s and 1960s), and non-linear
dynamics, fractal geometry and chaos theory (1960s to 1980s). One specific domain
of complexity science is complex systems theory. A complex system is comprised
of many interacting elements where a natural formal representation is found in a
network. From a philosophical point of view, structural realism is pitted against post-
structuralism.
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— Section 6.3: Complex Network Theory

The core formal concept related to complex systems is discussed. Complex networks
are ubiquitous in nature. Complex network analysis can be performed at different
levels of resolution.

— Section 6.4: Laws of Nature in Complex Systems

Scaling laws can be understood as laws of nature describing complex systems. A
scaling law is a basic polynomial functional relationship, where a relative change in
input results in a proportional relative change in output, independent of the initial size
of input. Scaling laws are scale-invariant and scaling-law relations characterize an
immense number of natural processes. There exist four types: (1) allometric scaling
laws (in biology), (2) scaling-law distributions (in contrast to a normal distribution),
(3) scale-free networks (a scaling law found in the topology), and (4) cumulative
relations of stochastic processes (relating to time series, especially financial ones).
Historically, scaling laws go back to Galileo Galilei. The economist and sociologist
Vilfredo Pareto found a scaling laws in the distribution of wealth in 1896, coining
the Pareto principle (or 80-20 rule). Modern measures capturing inequality are the
Lorenz curve and the Gini coefficient. Analyzing language, the linguist and philologist
George Kingsley Zipf discovered a scaling law in the frequency of words. Finally,
Benford’s law describes a peculiar pattern found in random data.

Chapter 7: Applied Complexity: Finance and Economics in a New Light

Finance and economics are arguably the most important academic disciplines, as they
have the greatest impact on all of life on Earth. Moreover, they are the fuel of progress,
financing science and technology. Ironically, financial and economic systems are still
badly understood and are affected by ideological entrenchment and dogma.

— Section 7.1: Terra Cognita

Adam Smith is the founder of modern economic thought. In 1776, he presented
An Inquiry into the Nature and Causes of the Wealth of Nations. The mathematiza-
tion of finance began in the year 1900, when Louis Bachelier introduced the notion
of a stochastic process. This formalization of randomness was intertwined with the
physics of the time and Max Planck and Albert Einstein played an important role.
More mathematization included the Langevin and Fokker-Planck equations, next to
1td stochastic calculus and Benoit Mandelbrot’s discovery of the fractal geometry of
nature. In 1973, the Black-Scholes equation represented the pinnacle of this evolu-
tion and was rewarded with the Nobel Memorial Prize in economic sciences. The
academics went on to found a hedge fund, which, after initial success, collapsed and
resulted in bank bailouts. When physicists were faced with a dire academic job market
in the early 1990s, they migrated to Wall Street. The quant, or quantitative analyst,
came of age.
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The global financial crisis was interpreted by many as exposing the failures of the
predominant brand of economic thinking. Exponents from the “Chicago School” (going
back to Milton Friedman and the Chilean free-market experiment), and neoclassical
economics per se, were seen as accountable. However, the accused refused to accept
the blame and saw others as responsible. One criticism addressed the mathematics,
namely, the heavy, opaque, and archaic mathematical formalism utilized by neoclassical
economics—not only due to its lack of empirical foundation, but also due to very
stringent and unrealistic assumptions about human behavior and market dynamics.
One example is the Gaussian copula, making the pricing of, formerly too complex,
investments possible. For instance, the collateralized debt obligation (CDO) which,
with credit default swaps (CDSs), fueled the subprime housing bubble which would
ultimately trigger the financial crisis and in its wake, the sovereign debt crisis.

— Section 7.2: A Call to Arms

Many pundits blaming neoclassical economic theory see complexity theory as a poten-
tial savior. Pioneers of econophysics, like Jean-Philippe Bouchaud and Didier Sor-
nette, have shown, with empirical evidence, that the complex dynamic behavior of
markets defies the neoclassical paradigm. Moreover, complexity researchers have
urged that the structure and dynamics of economic networks should be better under-
stood and analyzed in-depth. Indeed, the global financial and economic networks are
characterized by extreme interdependencies, where feedback loops and non-linear
behavior are very relevant. Financial supervisors, regulators, and policymakers felt
betrayed by the prevailing orthodoxy during the finical crisis and are looking for
inputs from complexity science. Proposed reforms center around data-driven, interdis-
ciplinary research, embracing complex networks, allowing for heterodox economics.

— Section 7.3: Complexity Finance and Economics

In detail, approaching economics and finance from a complexity perspective entails an
empirical focus and the deployment of computer simulations. One specific algorithm-
driven methodology is that of agent-based models. Agent-based simulations have
revealed structures and mechanisms underlying the dynamics of real-world markets.
In this paradigm, heterogeneous agents interact with each other, giving rise to emergent
complexity. This is the polar opposite of the framework of representative agents in
neoclassical economics, maximizing some utility. By employing network theory, the
global ownership network can be analyzed in order to uncover the architecture of
power. A network centrality measure is reinterpreted as corporate influence, linking
the formal network to its domain of application.

— Section 7.4: The Past, Present, and Future of Economic Interactions

The cross-pollination of science and technology , industry and economics, and mili-
tary interests led to the rise of European imperialism. The quest for profit and knowl-
edge allowed Europe to establish a new global hegemony. When the Italian maritime
explorer and navigator Christopher Columbus set sail, the Chinese, Muslims, and
Indian domination soon faltered. Limited liability joint-stock companies, traded on
stock exchanges, generated the profits for conquering the world.




1.3 Chapter/Section Content Map

31

However, there is a dark side associated with all this progress. Capitalism takes a heavy
toll on the individual human psyche and the global ecosystem. Since the days of Adam
Smith, it has been argued that, in fact, egoism is altruism. Self-interest is seen as a virtue.
In contrast, evolutionary and mathematical biologists have long suspected cooperation
and altruism to be the recipe for sustainable collective well-being. In Buddhism, greed is
seen as one of the root causes of suffering—an insatiable hunger leaving one perpetually
unsatisfied. Indeed, when humans are facing death, the accumulation of material wealth
appears fruitless and hollow. Moreover, many people in Europe and the US experience
their work life as a treadmill, devoid of meaning and gratification. Happiness economics
analyzes how and when humans can gain spiritual satisfaction from material wealth.
Fraud, next to greed, is another detrimental temptation. The banking industry has a
long history of financial scandals, where markets were systematically manipulated for
personal gain.

Keynesian economics, characterized by government spending during economic crisis,
was a dominant economic ideology at the beginning of the 20th Century. In 1947, a
small group of thinkers founded what later became to be knows as neoliberalism. Today,
neoliberalism is the world’s dominant economic paradigm, favoring deregulation and
privatization. It is associated with unrestrained self-interest and laissez-faire economics
and has influenced many different political movements. Neoliberalism has been spec-
tacularly successful for a select few. Despite the spoils, insiders have reported on the
unsavory culture which often prevails in places having the easiest access to wealth-
accumulation. On a systemic level, the accelerating increase of global inequality is
seen by many—economists and billionaires—as the key challenge facing humanity
and threatening economic and ecological sustainability.

The design of most human systems is governed by a very specific architecture: the pyra-
mid of power. This is a simple tribal hierarchy of concentrated influence. In contrast, the
design patterns of nature, and hence complexity, are characterized by decentralization.
The nascent rise of the crypto-currency Bitcoin has initiated a paradigm change in finance
and economics by introducing the first decentralized blueprint of interaction. The inno-
vation fueling crypto-currencies is the underlying data structure, called the blockchain. A
blockchain is a decentralized, fail-proof, and tamper-proof public ledger, enforcing trans-
parency, security, and auditability by design. The future of distributed ledger technology
lies in its potential as a global “decentralized public compute utility,” executing code
representing any conceivable financial and economic interaction. Many expect a global
disruption, similar to the introduction of the Internet.

Part II: The Downfall

Chapter 8: A Brief Story of Success: The Manifestation of Knowledge and
the Hydra of Ignorance

The human mind’s quest to comprehend the world is compared to the journey of the
archetypal hero who ventures from the common world into a region of supernatural wonder
and returns, bestowed with new powers. The discovery of the two volumes of the Book
of Nature is reiterated. This manifestation of knowledge is driving the acceleration of
technological advances and is having an unprecedented impact on how human societies
organize themselves and interact with their environment. Indeed, we appear increasingly
accustomed to this ongoing success.
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— Section 8.1: Clouds on the Horizon

Regrettably, age-old questions, relating to existential dilemmas, ontological para-
doxes, and epistemic uncertainty, continue to vex the human mind. Why does any-
thing exist at all? Let alone life and consciousness? What can I learn, know, and
understand about reality? Why can’t uncertainty and ignorance be banished from the
edifice of knowledge? In retrospect, looking at the 13.772-billion-year history of the
universe, a plethora of cosmic coincidences conspired, bringing the universe’s chaotic
path-dependent evolution to this very moment in time.

— Section 8.2: The Core Enigmas of Existence

What can I know about the world (Chap.9)? What is reality’s fundamental nature
(Chap. 10)? What is the true nature of consciousness (Chap. 11)?

Chapter 9: Philosophy and Science: What Can I Know?

Despite the spectacular success of the human mind in decoding reality and crafting tech-
nology, questions relating to the nature and structure of knowledge and science remain
elusive.

— Section 9.1: The Philosophy of Science

This journey begins with history’s first scientist in Greece. Two millennia later, the
modern scientific method began to emerge, establishing experiments as the corner-
stone of physical sciences. Logical empiricists and critical rationalists failed to found
science on common sense notions—inductive and deductive reasoning suffer from
conceptual problems.

Later, science was understood to undergo abrupt and unforeseeable paradigm changes in
its evolution. The philosophies of postmodernism, constructivism, and relativism tried to
come to terms with a reality which is ambiguous and tainted by every observer’s belief
system and socio-cultural context. Two examples are discussed, where postmodernism
and theoretical physics have lost their meaning.

— Section 9.2: The Evolution of Science

At the same time as the human mind was extending its knowledge, the constricting
limits of this knowledge became apparent. The discovery of quantum mechanics, spe-
cial, and general relativity rocked the foundations of science. The classical notion of
a comprehensible clockwork universe, independent of observers, was uprooted. The
unsettling effects of this fundamental transformation are still felt today. The ques-
tion of why the universe is comprehensible at all, emerges. Finally, some observers
diagnosed the end of science. For every question science answers, new and harder
questions emerge. In effect, while science produces ever more increments of knowl-
edge, the understanding of the universe does not progress. Moreover, like every social
human endeavor, academia can be plagued by blind obedience to authority, group-
think, corruption, and fraud. Scientists are put under relentless pressure to “publish
or perish.”




1.3 Chapter/Section Content Map

— Section 9.3: The Practitioners of Science

Usually, scientists aren’t very vocal about their personal experiences of practicing sci-
ence. The problem with knowing what beliefs scientists hold dear is that, by definition,
this information is non-scientific. However, if asked, some sympathetic scientists will
admit to the shortcomings discussed in this chapter—specifically, challenging notions
of objectivity, truth, knowledge, and certainty relating to laws of nature, reality, and
science. Uncertainty and ignorance are understood as being inherent and ubiquitous
in the human condition.

— Section 9.4: The Limits of Mathematics

In a final blow, the limits of mathematics were exposed by Kurt Godel and Gregory
Chaitin. Building on the theorems of incompleteness, mathematicians discovered fun-
damental randomness at the heart of mathematics. All hopes of a consistent edifice of
mathematics, built on a clear foundation, are lost. Mathematics is demoted from its
status of absolute and timeless beauty and becomes a “quasi-empirical” endeavor. For-
mal axiomatic systems fail and meaning is lost in the mist of formal hyper-abstraction,
only penetrable by a handful of minds. Bad news for the epistemic status of science.

Chapter 10: Ontological Enigmas: What is the True Nature of Reality?

The discovery of the Higgs boson closes a successful chapter of physics—and leaves us
in the dark. The list of unsolved problems in physics is extensive and no empirical tether
can guide the mind anymore. Moreover, the nature of reality is very puzzling. Why do
three spatial dimensions exists? Why does our universe appear fine-tuned?

— Section 10.1: The Worst Prediction in Physics

Quantum filed theory is spectacularly accurate in describing the interactions of par-
ticles. However, it makes a fantastically absurd prediction when confronted with the
zero-point energy of particles and the observable energy density of the vacuum.

The discovery of the accelerated expansion of the universe reopens an old chapter
of cosmology. Einstein had tweaked the equations of general relativity to prevent an
expanding universe. Ironically, this trick also can account for the energy density of
the vacuum, driving the expansion of the universe.

— Section 10.2: Quantum Gravity: The Cutting-Edge of Theoretical
Physics

The theory of quantum gravity, merging quantum mechanics with general relativity,
is the holy grail of theoretical physics. Decades of work have resulted in an elabo-
rate mathematical framework, called string/M-theory. Indeed, the development of this
physical theory has resulted in the discovery of new fields of mathematics. Unfor-
tunately, there is no empirical prediction anywhere in sight. Moreover, M-theory
speaks of an eleven-dimensional space-time, containing supersymmetric particles. It
was long hailed as the “only game in town.” While string theory starts with quan-
tum field theory and adds gravity, loop quantum gravity—the underdog of quantum
gravity—takes general relativity and adds quantum properties. In this framework,
space itself is quantized. The theory also allows older attempts at quantum gravity to
reemerge. Overall, quantum gravity has been a hot battleground for physicists.
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— Section 10.3: The Large and the Small

Analyzing the nature of reality at the largest and smallest scales reveals many enigmas.
For one, both the positioning of the Earth in the entire universe, and the current time
we are living in, appear special. Then, 95.14% of all that exists is unknown to us. We
are surrounded by ghostly dark matter and energy.

At the quantum level of the universe, reality seems outlandish. The interpretation of
quantum mechanics is—after over a century—as elusive and controversial as ever.
Waves behave like particles and vice versa. Quantum sates are strange superpositions
of clearly defined states: The 0/1 dichotomy of binary logic is transcended, as there
exists a superposition of zero and one. Measuring quantum phenomena seemingly
influences their properties. Reality is reduced to clouds of probability. Perhaps the
strangest of all quantum qualities is entanglement. This acts like a structural glue
connecting particles independently of their spatial distance—instantaneously. It is a
feature at the core of quantum encryption. The story of its discovery opens a colorful
chapter in the history of physics, involving hippies, psychedelics, and superstition.
Countless quantum experiments verify that local realism cannot be true. Indeed, the
“now” appears to alter the past. Explanations have invoked the existence of infinitely
many parallel universes or the quantized nature of space itself. Other thinkers believe
we should move to a wholly new informational foundation of reality, in order to make
sense of our world. The materialistic and reductionistic scientific worldview is fading.

— Section 10.4: The Nature of Reality

The ontology of reality seems unknowable to the human mind. The true nature of
things appears to transcend any and all human conceptions. Many physicists and
philosophers answer the question “Does matter exist?” with a clear “No!” Perhaps
even more troubling, they answer the question “Is time an illusion?”” with a definitive
“Yes!” Some see the problems related to consciousness itself.

Chapter 11: Subjective Consciousness: What am 1?

What is consciousness? Remarkably, this innocuous question is one of the hardest the
human mind has ever asked itself. It represents the last enigma in the journey of the mind
to understand the universe and itself within it.

— Section 11.1: The History and Philosophy of Our Minds

In 1994, the hard problem of consciousness was stated. The “easy problem” of con-
sciousness relates to explaining the brain’s dynamics in terms of the functional or
computational organization of the brain. The hard problem of consciousness is the
challenge of explaining how and why we have phenomenal experiences? Why do we
perceive colors, tastes, and pain? Why are we not “zombies?” How do the laws of
nature give rise to first-person conscious experience?
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— Section 11.2: Modern Neuroscience

Neuroscience has progressed remarkably in the last decades. Brain imaging tech-
nology allows researchers to track thoughts in the brain and read them. The brain
is understood as a vast decentralized network of processes and modules interacting
with each other. However, neuroscience also tells us that our perception of reality is
a hallucination. Our brains construct a virtual reality simulation of the outer world
based on best guesses. We can never know what the true nature of reality is. This
view is similar to Kant’s noumenon. As a result, we are blind to much of the activity
going on in the world. Indeed, expectations and context can alter the way we perceive
the world—from pleasure to pain. Flase awakenings and out-of-body experiences can
shatter many intuitions about reality.

— Section 11.3: Impressionable Consciousness

Perhaps the most humiliating discovery relating to the human mind is its innate irra-
tionality. We constantly fall prey to faulty reasoning and self-deceit, while proudly
claiming rationality. The list of cognitive biases is frighteningly long. Our minds
can be influenced by microorganisms, parasites, and genes. Or it can be purpose-
fully manipulated. Even false memories can be implanted. By magnetic stimulation
of the brain supernatural belief can be momentarily suspended while empathy for
immigrants increased. Indeed, political affiliation is correlated with fear mechanisms.
Behavioral economists have uncovered a trove of embarrassing findings exposing
innate and ubiquitous human irrationality. Sometimes, even animals can outperform
humans. It turns out that pigeons have a better intuition of probability than physics
Nobel laureates.

Finally, the mind can break. This is documented by the many psychopathological
disorders, from compulsive swearing to the firm belief that one doesn’t exists. Split-
brain patients can experience alien hand syndrome, where one hand becomes an
adversary. Acquired savants display genius traits after brain trauma. Some case studies
document normally functioning humans lacking vast parts of their brains. Neurolaw
questions the culpability of certain criminals. Are we really free to choose if we have
a brain tumor affecting vital emotional processing areas of the brain?

— Section 11.4: The Mind-Body Problem

The placebo and nocebo effects hint at an intriguing connection between the mind and
the body. The mind can will the body into healing or harming itself. Then, free will
is a thorny issue in physics as well as neuroscience. This may sound astounding, then
how can free will be contestable? I choose to be reading this sentence in this moment.
If there is no free will, then who or what is deciding and why? Quantum mechanics
first discovered the problem of an observer in physics. Apparently, consciousness
is able to manipulate physical reality. The status of free will in quantum mechanics
is still far from being understood. It appears that we have to choose. Either there
is no free will or everything in the universe is imbued with it. In neuroscience the
situation is clearer. Many experiments have demonstrated how a decision is made in
the subconscious mind which is then, seconds later, relayed to the conscious narrator.
Of course, the conscious mind insists that it was the cause of the decision. Overall,
consciousness seems to be an ironic anomaly which cannot be integrated into the
scientific worldview it created itself.
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Chapter 12: The Age of Post-Truth

The situation is dire. We have lost the guidance from science and philosophy and ignorance
is rampant. Trench wars are fought along social, political, and religious delimitations.
Hostility and misanthropy permeate the very fabric of society. We are lost in an existential
vacuum, where we ultimately use the gift of technology to destroy the biosphere which
provides the bases of all life.

— Section 12.1: The Cult of Ignorance

Today, anti-intellectualism is socially acceptable. “My ignorance is just as good as
your knowledge.” Experts and scientists are perceived as villains who are deceiving
the people—either for self-enrichment or by adhering to a sinister hidden agenda.

— Section 12.2: The Age of Conspiracy

Conspiracy theories are surprisingly popular. From creationism, motivated by reli-
gious beliefs, to denying climate change, motivated by political beliefs, to the aston-
ishing claim that the Earth is flat. Some conspiracies have been peddled for self-
enrichment, like the false claims that vaccines cause autism. The most popular and
widespread conspiracy is creationism, disseminated by Evangelical Christians mostly
in the United States.

— Section 12.3: What About This Book?

A superficial understanding of this book up to now could lead to the false belief that it
can be instrumentalized for anti-intellectualism. The failure of science and philosophy
to explain the world can be seen as an invitation for arbitrary beliefs about existence.
Indeed, nothing is as it seems. Once this truth is admitted, the human mind can recon-
solidate and search for new horizons. We are invited to reassess all our assumptions
and be open-minded towards even seemingly “crazy” ideas. We should not be blinded
by the illusion of knowledge. In being skeptical and honest, false ideas about existence
can be eradicated, regardless of their origin. A new foundation is now possible.

— Section 12.4: The Dawning of a New Age

Perhaps things are not as bad as they seem. We are seeing signs of an emerging new age.
Perhaps we will soon be able to translate our amazing powers of individual intelligence
into collective intelligent behavior. Maybe soon we can construct an economy that is
adaptive, resilient, and sustainable. After all, the universe has an intrinsic propensity to
forge complexity. Self-organization appears like a fundamental force guiding cosmic
evolution.

Pragmatically, we can assess human thought systems and check their level of scientific
utilitarianism. Conspiracy theories, for instance, require many arbitrary and ad hoc
explanations to account for simple facts. Most importantly, radical and empathetic
open-mindedness can help us reevaluate all our beliefs. There is no idea which should
be excluded based on our current materialistic and reductionistic scientific worldview.
“The universe is queerer than we can suppose” and perhaps also our own minds.
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Chapter 13: A Universe Built of Information

Paradigm shifts are hard to discern from within. However, slowly the evidence is mount-
ing that humanity is currently witnessing a profound recontextualization of its belief
systems. Specifically, the materialistic and reductionistic scientific worldview appears to
have reached its limit—not only in terms of knowledge generation but also in its capacity
to probe the ultimate nature of reality.

— Section 13.1: The Many Faces of Information

Information is hard to grasp. It appears ethereal and intangible, somehow detached
from the physical. Its definition is a challenge in the philosophy of information.
However, information is remarkably physical. Claude Shannon’s information theory
introduces the notion of quantized information: the bit. This unit is the building
block for our modern digital computational world, established by Alan Turing. It was
discovered that irreversible computational steps, for instance, erasing information,
increases the entropy of the universe. Information cannot be destroyed—it is physical.

— Section 13.2: It from Bit

In a more radical assertion, two pioneers of modern theoretical physics believed
that information is fundamental. “It from bit” popularizes the view that from an
information-theoretic bedrock our reality emerges. Such views are shared by contem-
porary scholars of quantum information and computing. Indeed, the bizarre nature of
quantum mechanics can be overcome by framing it in an informational context. At
the core is the qubit, a quantum representation of a classical bit utilizing the multi-
layered nature of the quantum realm. Humanity is, however, only at the threshold of
unleashing the powers of quantum computers. Historically, Charles Babbage and Ada
Lovelace were the first to implement a mechanical computer.

— Section 13.3: Digital Physics

A group of contemporary scientists is advocating the idea of digital physics as an
overarching concept. One postulate is that reality is inherently finite. Infinities are
only encountered in the formal mathematical systems the human mind accesses.

— Section 13.4: An Information Ontology

Albeit tantalizing, up to now the human mind only caught a glimpse of this novel
information ontology. However, there should exist more evidence to substantiate the
claim. Indeed, by studying black holes many different theories converge and point in
the same information-theoretic direction. General relativity uncovered the existence of
black holes. Applying information theory and thermodynamics in their study resulted
in more understanding. However, including quantum mechanics unearthed a paradox.
In detail, it appeared as if information is lost in black holes violating the principles
of quantum physics. Further research uncovered that there is a fundamental limit to
how much information—how many bits—can be stored in any region of space.
Perhaps the most powerful tool coming from string/M-theory is the so-called
AdS/CFT duality. In the context of black holes, it can be re-expressed as the holo-
graphic principle. Our three-dimensional world is in fact the manifestation of infor-
mation encoded on a two-dimensional area. Moreover, space and time appear to be
emergent properties arising from pure quantum entanglement. Finally, theoretical
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computer science is currently aiding the understanding of this new line of research.
Specifically, computational complexity seems to be a likely candidate fueling the com-
putational engine of the universe. In a last step, some scholars have expressed their
suspicion that the entire universe is a simulation.

Chapter 14: The Consciousness of Reality

The connection between subjective consciousness and objective reality has been debated
for ages. René Descartes and John Locke introduced primary and secondary qualities
for objects appearing in the mind. Bishop Berkeley argued that all qualities reside in the
mind. David Hume and Immanuel Kant rejected the empirical nature of knowledge. More
recently, Hilary Putnam pondered the idea of brains in a vat.

— Section 14.1: Formalizing Consciousness: Integrated Information
Theory

Integrated information theory (IIT) is the first formal attempt at grappling with con-
sciousness. Next to information’s observational and extrinsic nature, described by
Claude Shannon, IIT deals with its compositional and qualitative nature. An inner
view of information is presented, giving rise to subjective experience.

— Section 14.2: The Cosmic Nature of Consciousness

The recalcitrant nature of consciousness , stubbornly refusing to yield to a materi-
alistic and reductionistic scientific worldview, has led scholars to debate seemingly
outlandish ideas. A consequence of IIT is that consciousness is a universal—perhaps
also fundamental—property of reality. Such concepts are dangerously close to notions
of spirituality. Subjectivity was a taboo not too long ago, as is spirituality now. The
emergence of intelligence in animals and plants, next to primitive organisms and even
innate matter and pure software, appears to challenge the human mind’s dominance—
and intelligence’s tangibility. Indeed, collective intelligence is a decentralized emer-
gent property untethered from any individual localized cognitive capability.

— Section 14.3: Enhanced Consciousness: The Psychedelic Renais-
sance

For a long time, the scientific and societal verdict was clear: psychedelic substances
have no potential benefits and lead the mind astray. In the current psychedelic renais-
sance, the remarkable therapeutic potential of these substances has been uncovered.
Intriguingly, the human brain synthesizes the strongest psychedelic substance known:
DMT. Influenced by this chemical compound, human consciousness appears to be
“teleported” into realms of existence transcending space, time, and matter. These uni-
verses, experienced as being just as real—or even more real—as the reality perceived
by sober waking consciousness, are populated with other alien conscious entities.
Especially in shamanic traditions, the “plant spirits” give insights into healing. It is
tempting to disregard such experiences as hallucinations, but how to discern, with
certainty, what is true and what is false about our perception is very challenging.
Particularly, as sober waking consciousness is also a hallucination induced by the
brain utilizing some sensory input—rendering a tiny subspace within a much richer
“reality topology” available to the brain.




1.3 Chapter/Section Content Map 39

— Section 14.4: A Participatory Ontology

John Wheeler was one of the pioneers to introduce the notion of an information-
theoretic ontology into physics. Thinking this idea to its radical conclusion, he intro-
duced the concept of a participatory ontology. This insight had also not escaped
Immanuel Kant and Richard Tarnas. In the long and colorful history of quantum
physics, many scholars believed the encountered enigmas and paradoxes originated
from a fundamental misconception: the separation of mind and matter.

In a final act of heresy, the prevailing materialistic and reductionistic scientific world-
view is denounced. All the associated taboos and blind spots are exposed. In the
peer-reviewed scientific literature one finds hints of paranormal and psychic—or
psi—phenomena. Reproduced double-slit quantum experiments demonstrating the
human mind’s role as quantum observer and manipulator. Indeed, other outlandish
psi phenomena have been reproduced by skeptics, however, only to be dismissed.

Chapter 15: Consilience

This is the last chapter in the human mind’s quest for understanding. As it is itself a sum-
mary of the entire journey, the reader is invited to directly continue there. Final thoughts
and outlooks are provided.

— Section 15.1: The Inner and Outer Aspects of Information
— Section 15.2: The Rhizome of Reality and the Entelechy of Existence
— Section 15.3: A New Horizon
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Part I
Climbing to the Summit

Wherein the edifice of science is constructed.



Chapter 2 ®)
In Search of the Book of Nature Geda

Abstract The Book of Nature is an ancient metaphor for knowledge, where the
universe can be read like a book for understanding. It is written in the language of
mathematics, giving birth to science. A modern interpretation is that human knowl-
edge generation rests on an act of translation. Aspects of the physical world are
translated into abstract, formal notions. These can be manipulated by the mind to
gain insights into the workings of the world. This raises many philosophical ques-
tions, as it posits the existence and interaction of three worlds: the physical (space,
time, and energy), the mental (consciousness), and the abstract (Platonism).

Level of mathematical formality: medium.

One of the main wellsprings of modern thought can be traced back to an obscure and
secretive religious cult flourishing around 500 B.C.E. The Pythagoreans were a very
unlikely origin of ideas that would influence the progress of human understanding of
the world. They can be seen to have initiated a transformation in knowledge seeking,
away from myth and superstition towards abstract truths which can be uncovered
and grasped by the human mind.

Pythagoras, of whom very little is known, founded a religion of which the main
principles were the transmigration of souls and the sinfulness of eating beans (see
Russell 2004, for a list of other bizarre rules of the Pythagorean order). Nonetheless,
a crucial element in their thinking was the realization that a mathematical reality
underpins the physical. This is reflected in their motto “All is number” (Boyer 1968,
p. 49). Thought to have coined the term “mathematics” (Heath 1981, p. 11), the
Pythagoreans begin with the study of the subject for its own sake. Indeed, Aristotle
would later credit the Pythagoreans for being the first to take up and advance mathe-
matics, next to understanding the principles of mathematics “as being the principles
of all things” (Kirk and Raven 1957, p. 236f.). Furthermore, they were associated
with the analysis of the four sciences, which will later be known as the quadrivium:
arithmetic, geometry, music, and astronomy. Although Pythagoras himself is often
seen as a founder of mathematics and physics still today, it is unclear if such accom-
plishments should actually be credited only to him personally (Huffman 2011).
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Moreover, the Pythagoreans also had a great influence on philosophy, as their
ideas molded Plato’s thinking, and through him, reached out to all of Western phi-
losophy: “[...] what appears as Platonism is, when analyzed, found to be in essence
Pythagoreanism” (Russell 2004, p. 45). The conception of an abstract, eternal world,
revealed to the intellect but not to the senses, finds a new expression in Plato’s
notion of a perfect realm of ideas and forms. His vision of these abstract entities
yields both an ontology and an epistemology: Platonic Ideas are not constructs of
the human mind and the belief in their objective nature implies the existence of a
domain of reality harboring them, a third realm next to the physical world perceived
by the senses, and the inner thought world of consciousness. True knowledge is only
attainable because of the mind’s ability to access this otherworldly sphere, and thus
any empirical evidence must always be prone to fallibility.

The emergence of this worldview, where the regularities in the physical world
are explicable through the structures in the abstract world, finds its metaphorical
incarnation as the Book of Nature. The mind of God, the master-mathematician, is
revealed to humans in this way. This conviction, that the coherence of the universe is
explained by equations and can hence be comprehended by the human mind, echoes
over the ages: “Mathematics is the door and key to the sciences” (Roger Bacon
in 1267); “This book [the universe] is written in the mathematical language [...]”
(Galileo Galilei in 1623); “Mathematical and mechanical principles are the alphabet
in which God wrote the world” (Robert Boyle in 1744); “In every specific natural
science there can be found only so much science proper as there is mathematics
present in it” (Immanuel Kant in 1900); “Mathematics is the foundation of all exact
knowledge of natural phenomena” (David Hilbert in 1900). (All quotes are taken
from Hanson 2010, p. 193, except the first and last ones, which are found in Wolfram
2002, p. 859.)

Nonetheless, the rigorous and systematic description of physical processes aided
by the use of analytical tools—the true mathematization of nature—can be seen
to have started to emerge roughly four centuries ago. By introducing the idea of
elliptical orbits into celestial motion, Johannes Kepler was able to solved the ancient
mystery of planetary behavior. He thus demonstrated “mathematics’ genuine physical
relevance to the heavens—its capacity to disclose the actual nature of the physical
motions. Mathematics was now established not just as an instrument for astronomical
prediction, but as an intrinsic element of astronomical reality” (Tarnas 1991, p. 257).
Synthesizing Kepler’s laws of planetary motion, Galileo Galilei’s laws of dynamics,
and René Descartes’s laws of motion and mechanistic philosophy, Isaac Newton was
able to construct a single comprehensive mathematical framework, describing the
general motion of matter under the action of forces. It is seamlessly able to describe
terrestrial and celestial phenomena, explaining everything known about motion with
a handful of mathematical equations. This body of work, which is seen by some as the
beginning of modern physics (Russell 2004; Tarnas 1991), laid the foundations for
what has come to be know in physics today as classical mechanics. Since this turning
point in history, the understanding of the world has forever been transformed. Science
is now seen as the effort to capture the processes of nature in formal mathematical
representations.
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But what is it exactly that bestows mathematics with such power? Why is it the
blueprint for reality? And how topical are the musings about a Platonic world of
mathematical forms?

2.1 A Modern Edition of the Book of Nature

The cornerstone of the scientific knowledge-generating process called science can be
understood as an act of translation: quantifiable aspects of reality are transformed into
formal, abstract representations which are hosted in the mind. Thus parts of reality
become intelligible and the formal encodings foster novel insights. This enterprise
can be understood as the quest of the natural sciences. In Fig.2.1 a rough sketch of
this idea is presented. Guided by observation, measurement, and reflection, a natural
system of a given reality domain is encoded into a formal representation. Aided by
the rules pertaining to the chosen abstract model, for instance, logical consistency or
symmetrical regularities, novel insights about the behavior or characteristics of the
natural system can be found, allowing predictions to be made. This newly decoded
information can then be compared with experimental outcomes, lending validity to
the formal representation as a model of the natural system. These ideas are reflected
in the words of Paul A. M. Dirac (quoted in Goenner 2004, p. 6):

The successful development of science requires a proper balance between the method of
building up from observations and the method of deducing by pure reasoning from specula-
tive assumptions |[...].

Still today, this interplay of the physical with the abstract is emphasized by scientists,
for instance, as observed in Davies (2014, p. 83):

The history of physics is one of successive abstractions from daily experience and common
sense, into a counterintuitive realm of mathematical forms and relationships, with a link to
the stark sense data of human observation that is long and often tortuous.

Nonetheless, for many scientists this cycle of translation is implicit and the focus
is placed heavily on the details of the abstract realm. Albert Einstein remarked (as
quoted in Schweber 2008, p. 97):

I am convinced that we can discover by means of pure mathematical constructions the con-
cepts and the laws connecting them with each other, which furnish the key to the understand-
ing of natural phenomena. Experience may suggest the appropriate mathematical concepts,
but they most certainly cannot be deduced from it. Experience remains, of course, the sole
criterion of the physical utility of a mathematical construction. But the creative principle
resides in mathematics. In a certain sense, therefore I hold it true that pure thought can grasp
reality, as the ancients dreamed.

To illustrate how effective this act of translation has become, in the following,
some examples of physical theories are presented. The mathematical formalism is
kept brief for the moment. Only later on will examples of full-blown analytical
machineries be unveiled.
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Fig. 2.1 Schematic illustration of the interplay between the physical and the abstract realms, each
adhering to their own sets of rules, where knowledge can be generated by mapping aspects of the
real world into formal representations and back again (encoding/decoding). Adapted from Casti
(1989)

2.1.1 Classical Mechanics

A simple example of this recipe, described in Fig. 2.1, can be found when applied to
Newtonian mechanics. The reality domain is restricted to be comprised of a system
of n (unit) point masses in three-dimensional Euclidean space R3, described by their
locations and velocities. These observables can exist in physically distinct states
and are represented by two sets of N = 3n numbers. Conceptually, the encoding of
the observables is accomplished by mapping the abstract states into the points of
the space R?M = RV x RV, also referred to as state- or phase-space. In detail, each
particle’s location is formally captured by a differentiable mapping, called a motion,
x;: I —> R i=1,...,n where I C R is a time interval. Thus any configuration
of the positions of a mechanical system of n points is captured by the motion X :
R — RY, where X is the vector constructed from all x;. Taking the derivative of X
with respect to time yields the velocity vector X. The derivative’s abstract capacity
to measure how a function changes as a result of changes in its input, encodes the
physical notion of displacement with respect to time. Newton’s equation is a function
F:RY x RY x R — RY such that

X =FX, X, 1), 2.1)

and it is the basis for his mechanics. Once the initial conditions are specified, i.e.,
X () and X(19), a theorem relating to ordinary differential equations guarantees the
existence and uniqueness of the solution of (2.1), see, for instance Blanchard et al.
(2011). Decoding this equation reveals that the initial positions and velocities alone
determine the acceleration forces emerging in the system. This is the predictive power
of the formal representation, captured by a system of ordinary differential equations:
the specification of the evolution of the physical system in time. The abstract rules
relating to the mathematics of the infinitesimal are a concrete example of what the
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arrow on the far right-hand side in Fig.2.1 is alluding to. What is today known as
calculus, was first formally spelled out by Newton and, independently, Gottfried
Wilhelm Leibniz.! A general reference introducing classical mechanics is Arnold
(1989).

2.1.2 Classical Electrodynamics

The formal rules relating to derivatives also have the capacity to breathe life into
another fundamental set of equations. Taking the reality domain to encompass inter-
actions between electric charges and currents, an extension of the classical New-
tonian model results in a unified theory describing all electromagnetic phenomena
with great precision. On the side of the abstract formulation, the notion of deriva-
tives is extended to apply to vectors fields, which is the subject of vector calculus.
Both the electric and magnetic fields, E and B, respectively, find a formal encoding
as functions f : R? x R — R>. The main mathematical actor is a vector differential
operator, referred to as nabla.

3
9
V= Zeiﬁ' (2.2)
i=1 !

The & are a standard basis in R? and the partial derivative, d/dx;, denotes differen-
tiation with respect to the variable x;. The symbol “:=" identifies the expression on
the left-hand side as a novel term defined by the quantities on the right-hand side.

What are today known as Maxwell’s equations, a particular set of partial differen-
tial equations, is perhaps one of the most important aggregations of empirical facts in
the history of physics. James Clerk Maxwell built on the experimental observations
and insights gained, among others, by André-Marie Ampere, Jean-Baptiste Biot,
Charles-Augustin de Coulomb, Michael Faraday, Carl Friedrich Gauss, Hermann
von Helmholtz, Hans Christian @rsted, Siméon Denis Poisson, and Félix Savart,
next to contributing his own (Panat 2003). An early form of Maxwell’s equations
was published between 1861 and 1862, but only two decades later Oliver Heaviside
provided the mathematical tools to elegantly group the four equations together into
the distinct set still used today.> The modern form of the four equations are based on
the following expressions, building variations on the theme of the derivative

E, B, V-E, V-B, VxE, and V x B. (2.3)

UHistorically, the question of who discovered calculus first caused a major intellectual controversy
at the time.

2Heaviside was not the only scientist grappling with these problems. Heinrich Hertz was doing
similar work, and the reformulated Maxwell equations became known for some years as the “Hertz-
Heaviside equations.” The young Einstein referred to them as “Maxwell-Hertz equations,” and,
today, the legacy of Heaviside and Hertz has been lost to history (Nahin 2002, p. 111f.). In addition,
Heaviside and Josiah Willard Gibbs both developed vector calculus independently of each other
during the same period.
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The resulting equations are an explicit example of an encoding scheme illustrated in
Fig.2.1. All observable electromagnetic phenomena find their formal representation
in four simple equations?

V-E=p (2.4a)
V-B=0 (2.4b)
VxE=-B (2.4¢)
VxB=J+E (2.4d)

Decoding these abstract expressions enables the physical manipulation of all elec-
tromagnetic manifestations and fosters technological innovation. Indeed, simply by
the power of mathematical consistency, a new feature of reality is uncovered: decod-
ing Maxwell’s equations also reveals that the electric and magnetic forces are in
fact expressions of a single overarching electromagnetic force. Moreover, a further
application of the operator V x, called curl, on (2.4c) and (2.4d), yields novel wave
equations describing the propagation of electromagnetic waves traveling at the speed
of light in a vacuum. Maxwell, understanding the connection between electromag-
netic waves and light, thus unified the theories of electromagnetism and optics. For
a general reference see Jackson (1998).

2.1.3 Mathematical Physics

Today, it is hardly possible for a layperson to distinguish modern physics from pure
mathematics. The merger of mathematics and physics has reached an unprecedented
level. Even if by looking back at history this development seems natural, indeed
inevitable, there were times when people disagreed. Johann Wolfgang von Goethe
saw the necessity of keeping physics and mathematics independent. Physics should
strive to understand the divine forces of nature, unaffected by the characteristics of
mathematics. In reverse, mathematics should not be restricted or tainted by the outer
world, as it is an immaculate tune of the spirit (Schottenloher 1995). An influential
proponent of the idea that physics is not in need of mathematics to be a successful
endeavor was Faraday. He developed a field theory describing electrical and magnetic
forces without the aid of mathematics (Schottenloher 1995). Notwithstanding, the
mathematization of physics marched on, culminating in today’s level of integration.
This can be witnessed, for example, in mathematical textbooks aimed at introducing
physicists to the mathematical methods. For instance, seen in the 1200 pages of
Arfken et al. (2012). Or in a book written by the mathematical physicists Roger
Penrose. It is an ambitious and comprehensive account of the physics describing the
universe—a thousand page tour de force—focusing essentially on the underlying
mathematical theories, giving a good impression of how far this enterprise has come,

3The charge and current densities are captured by p and J, respectively. Constants relating to the
choice of electromagnetic units are ignored and set to one.
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and how complete the Book of Nature has become (Penrose 2004). The following is

a selection from the table of contents, highlighting the mathematical context®:

The Pythagorean theorem; Euclid’s postulates; Hyperbolic geometry: confor-
mal picture; Solving equations with complex numbers; Convergence of power
series; Caspar Wessel’s complex plane; How to construct the Mandelbrot set;
Geometry of complex algebra; The idea of the complex logarithm; Multiple val-
uedness, natural logarithms; Complex powers; Higher derivatives, C1-smooth
functions; The rules of differentiation; Integration; Complex smoothness, holo-
morphic functions; Contour integration; Power series from complex smooth-
ness; Analytic continuation; Conformal mappings; The Riemann sphere; The
genus of a compact Riemann surface; The Riemann mapping theorem; Fourier
series; Functions on a circle; Frequency splitting on the Riemann sphere; The
Fourier transform; Frequency splitting from the Fourier transform; Hyperfunc-
tions; Complex dimensions and real dimensions; Smoothness, partial deriva-
tives; Vector Fields and 1-forms; The Cauchy-Riemann equations; The alge-
bra of quaternions; Geometry of quaternions; Clifford algebras; Grassmann
algebras; Manifolds and coordinate patches; Scalars, vectors, and covectors;
Grassmann products; Integrals of forms; Exterior derivative; Tensors; Complex
manifolds; Groups of transformations; Subgroups and simple groups; Linear
transformations and matrices; Determinants and traces; Eigenvalues and eigen-
vectors; Representation theory and Lie algebras; Tensor representation spaces,
reducibility; Orthogonal groups; Unitary groups; Symplectic groups; Parallel
transport; Covariant derivative; Curvature and torsion; Geodesics, parallelo-
grams, and curvature; Lie derivative; Symplectic manifolds; Some physical
motivations for fibre bundles; The mathematical idea of a bundle; Cross-sections
of bundles; The Clifford bundle; Complex vector bundles, (co)tangent bun-
dles; Projective spaces; Non-triviality in a bundle connection; Bundle curvature;
Finite fields; Different sizes of infinity; Cantor’s diagonal slash; Puzzles in the
foundations of mathematics; Turing machines and Godel’s theorem; Euclidean
and Minkowskian 4-space; The symmetry groups of Minkowski space; Hyper-
bolic geometry in Minkowski space; Non-commuting variables; Unitary struc-
ture, Hilbert space, Dirac notation; Spin and spinors; Higher spin: Majorana
picture; Infinite-dimensional algebras; The Weyl curvature hypothesis; Killing
vectors, energy flow—and time travel!; The algebra and geometry of super-
symmetry; Higher-dimensional space-time; The magical Calabi-Yau spaces,
M-theory; The chiral input to Ashtekar’s variables; Loop variables; The mathe-
matics of knots and links; Spin networks; Theories where geometry has discrete
elements; Conformal group, compactified Minkowski space; Twistors as higher-
dimensional spinors; Twistor sheaf cohomology.

4Indeed, Penrose has contributed to many of these topics, as can be see, for instance, in the book

summarizing his work (Huggett et al. 1998).
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Penrose also acknowledges an intimate relationship of the two realms seen in Fig. 2.1
(Penrose 2004, p. 1014):

The interplay between mathematical ideas and physical behavior has been a constant theme
in this book [“The Road to Reality”’]. Throughout the history of physical science, progress
has been made through finding the correct balance between, on the one hand, the strictures,
temptations, and revelations of mathematical theory and, on the other, precise observation
of the actions of the physical world, usually through carefully controlled experiments.

It is an interesting observation, that the most fruitful branch of mathematics
appears to be geometry (Schottenloher 1995; Huggett et al. 1998; Barndorff-Nielsen
and Jensen 1999; Frankel 1999; Gray 1999; Nakahara 2003; Atiyah et al. 2010).
Indeed, the mathematician Marcel Grossmann introduced Einstein into the field of
differential geometry, which would turn out to be the mathematical foundation of
general relativity (Goenner 2005). Moreover, “[o]ne of the remarkable developments
of the last decade is the penetration of topological concepts into theoretical physics”
(Tom W.B. Kibble quoted in Nash and Sen 1983, back cover).

2.1.4 Mathematics from Physics

In the last decades, the pursuit of new physical theories has also spawned and nur-
tured new results in mathematics, namely topology, a field of study developed from
geometry analyzing concepts of space and transformation. This is a remarkable cross-
fertilization. Not only does the formal encoding of aspects of the natural world neces-
sitate structures in the abstract realm which lead to the discovery of novel (decoded)
features back in the physical world, now, crucially, these encoded remnants act as a
guiding principle by which new structures in the abstract world are uncovered.

In 1994, the physicists Nathan Seiberg and Edward Witten introduced an equation
within the context of quantum field theory> (in detail, supersymmetric® Yang-Mills
theory,” Seiberg and Witten 1994a,b), that had a great impact on the mathematical
field of topology, namely the research of four-dimensional manifolds. This prompted
the mathematician and Fields Medalist Simon Kirwan Donaldson to remark (Don-
aldson 1996):

In the last three months of 1994 a remarkable thing happened: this research [in 4-manifold
topology] was turned on its head by the introduction of a new kind of differential-geometric
equation by Seiberg and Witten: the space of a few weeks long-standing problems were
solved, new and unexpected results were found, along with simpler new proofs of existing
ones, and new vistas for research opened up.

A few years earlier, Witten’s work on topological quantum field theory provided
new insights for the mathematical field of knot theory (Witten 1989). He showed

3See Sects.3.1.4,3.2.2.1,4.2, and 10.1.1.
Discussed in Sect.4.3.2.
"The topic of Sect.4.2.
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how the invariant of an oriented knot, the Jones polynomial, can be obtained by
considering geometric insights of Chern—Simons theory.® Indeed, Witten, who had
graduated with a degree in history, was the first physicist to be awarded the Fields
Medal in 1994, a prestigious award for outstanding discoveries in mathematics. The
mathematician Michael Atiyah commented on Witten’s dual impact on physics and
mathematics (Atiyah 1991, p. 31):

Although he is definitely a physicist (as his list of publications clearly shows) his command
of mathematics is rivaled by few mathematicians, and his ability to interpret physical ideas in
mathematical form is quite unique. Time and again he has surprised the mathematical com-
munity by his brilliant application of physical insight leading to new and deep mathematical
theorems.

More on the history and details of the entwinement of physics and topology can be
found in Nash (1999).

Another example of theoretical physics pollinating mathematics is monstrous
moonshine. Next to being a rather peculiar name for a mathematical theory, it ties
up some very exotic mathematical concepts with the help of string theory.” The
mathematical structure called monster group'® was independently postulated in 1973
by the two mathematicians Bernd Fischer and Robert L. Griess. It is a structure with

M; =808017424794512875
886459904961710757 (2.5)
005754368000000000,

elements in it. However, only in 1982 its existence was proved (Griess 1982). Bare-
handed, without the aid of a computer, Griess constructed the monster group by
associating it with a 196,883-dimensional vector space. It was known, that if the
group should exist, it would only become manifest at certain specific numbers of
dimensions My, (see, for instance Conway and Norton 1979): M, = 196, 883,
My, = 21,296,876, M,, = 8,426,093,265,... A true oddity at the fringes of
mathematics.

Unrelated, in another corner of mathematics, number theorists were analyzing a
mysterious object, also inspired by string theory, called the modular function. Variants
of this function would later turn out to be the unexpected key to solving Fermat’s Last

8 A quantum field theory theory built around the concept of the Chern—Simons form, an integrable
geometric object on a manifold (Chern and Simons 1974). James Simons left academia in 1978 to
set up Renaissance Technologies, a multi-billion quantitative hedge fund management company,
heavily staffed with employees with non-financial backgrounds but with detailed scientific knowl-
edge. They recruited researchers from the fields of cryptoanalysis and computerized speech recog-
nition. For decades, Renaissance Technologies operated one of the most successful, albeit highly
secretive, funds in the business, and the wealth that Simons has amassed also finances his many
philanthropic pursuits. See Patterson (2010).

9String theory will be introduced in Sect.4.3.2.
10Groups are discussed in detail at the beginning of Chap. 3 and in Sect. 3.1.2.
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Theorem,'' a famous conjecture which had remained unproven since 1637 (Wiles
1995). Back in the late 1970s, a strange coincidence was noticed. The modular func-
tion introduced by Felix Klein, called the j-function, was known to be expressible
as a Fouries series (Rankin 1977). John H. Conway and Simon Norton discovered an
unexpected connection between the monster group and the j-function: the Fourier
coefficients could be expressed as linear combinations of the dimension numbers
M,,. This conjectured relationship was called monstrous moonshine (Conway and
Norton 1979), at a time the existence of the monster group was still unproven.

As if this intimate connection between two very separate fields in mathematics
was not puzzling enough, the techniques used to prove this kinship would come from
an even more unexpected source: modern theoretical physics. Richard Borcherds
proved the conjecture (Borcherds 1992), an achievement that would later also win
him a Fields Medal. Using a theorem from the mathematical framework of string
theory, he catapulted exotic topics from mathematics into the limelight, intriguing
mathematicians and physicists alike. Indeed, before his discovery he would lament
about the “new and esoteric algebraic structure” he introduced in 1986, called a
vertex operator algebra (Du Sautoy 2008, p. 347):

I was pretty pleased with it at the time but after a few years I got a bit disillusioned, because

it was obvious that nobody else was really interested in it. There is no point in having an

idea that is so complicated that nobody can understand it. I remember I used to give talks

on vertex algebras, and usually nobody turned up. Then there was this one time when I got

areally big audience. But there had been a misprint, and the title read “vortex algebras,” not

“vertex algebras.” The audience was made up of fluid physicists, and when they realized it
was a misprint, they weren’t interested either in what I had to say.

This quote'? can be found along with a gripping account of the history and the events
that conspired, leading to Borcherds’ proof in Du Sautoy (2008). Fascinatingly, the
cross-pollination of mathematics and physics continued. Indeed, the initial notion of
vertex operators originated in string theory, inspiring a proper mathematical formal-
ization yielding the concept of Borcherds’ vertex algebra, which, in turn, could help
to underpin some major ideas in modern physics and string theory (Gebert 1993).

But next to the success of mathematics in the sciences, and the mysterious con-
nections between mathematic and physics, what does this all really mean? What is
revealed about the nature of reality and the nature of mathematics?

2.2 Seeking Meaning

Albeit simple, clear-cut, and seemingly straightforward, the conceptual categoriza-
tion sketched in Fig. 2.1 already suffices to open Pandora’s Box of epistemic and ontic
puzzles. The power of mathematics can be understood in its capacity to mirror the

1INo three positive integers a, b, and ¢ can satisfy the equation a” + b" = ¢" for any integer value
of n greater than two.

12Seen on p. 347.
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structure of reality. As a consequence, two main themes emerge. First, questions about
the reality status of the abstract Platonic world of ideas re-emerge. Then, crucially, an
intermediary between the physical and the abstract worlds is required: a translating
entity, responsible for the encoding and decoding. Such a vessel for abstract thought
conjures up a third world, bringing consciousness to the center stage. Now, nested in
the physical reality, a mental world, containing the mind’s reality content, appears. A
schism, making it necessary to delimit between inner and outer worlds, an objective
and subjective reality. In summary, the implicit assumptions underlying Fig.2.1 are:

e The existence of a physical reality governed by regularities.

e The emergence of living structures inside this concrete world.

e The formation of a mind within these beings, i.e., a set of cognitive faculties,
harboring an inner, mental world.

e The existence of a Platonic realm of abstractions.

This all culminates in knowledge about physical reality spontaneously becoming
manifest in the mind: the workings of the natural world are wondrously uncovered
when quantifiable subsets thereof are mapped into formal descriptions and are sub-
jected to the constraints governing the abstract reality. The mind’s ability to access
the Platonic world, meaning the emergence of abstract ideas within the mind’s reality,
is in effect a conduit for the Platonic realm to enter the physical world.'?

This discussion can be framed in the broader context given by the philosophy of
mathematics, as one of the main tenets deals with mathematical realism. Regarding
the ontological status of mathematics, mathematical anti-realists would deny that
mathematical entities exist independently of the human mind. In other words, they
posit that humans do not discover mathematical truths, but invent them. The three
main schools of thought in the philosophy of mathematics, existing around the end
of the nineteenth and the beginning of the 20th Century, were all anti-realist, and thus
anti-Platonist, reflecting the general philosophical and scientific outlook of the time
which tended toward the empirical. Logicism (Frege 1884) is the program aimed
at reducing mathematics to logic, an idea dating back to Leibniz. Formalism under-
stands mathematics as a formal game in which symbols are manipulated according to
fixed rules and axioms (associated with David Hilbert). Finally, intuitionism assumes
that mathematics is a creation of the human mind—it is essentially an activity of men-
tal construction—with implications for logic, set theory and elementary arithmetic
(the first piece of intuitionistic mathematics in a widely read international journal is
Brouwer 1919, but the idea originates from his 1907 dissertation). Brouwer’s math-
ematical philosophy of intuitionism can be seen as a challenge to the then-prevailing
formalism of Hilbert. Indeed, the intuitionistic critique of classical mathematics
required a revisionist stance toward the existing body of mathematical knowledge
(Horsten 2012). In contrast, Hilbert’s program was aimed at a formalization of all
of mathematics in axiomatic form, together with a proof that this axiomatization of
mathematics is consistent (Hilbert 1922, although the ideas can be traced back at
least to Hilbert 1899). A, at times bitter, foundational controversy ensued between

3More on the interaction of these three worlds can be found in Chapter 1 of Penrose (2004).
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Brouwer and Hilbert, and in 1921, Hilbert’s favorite student, the mathematician and
physicist Hermann Weyl, would side with Brouwer (Weyl 1921).

However, in the years before the Second World War serious objections had been
raised against each of the three anti-Platonist programs in the philosophy of mathe-
matics. Regarding logicism, Bertrand Russell, a mathematician and philosopher like
Frege, had discovered a contradiction in one of Frege’s basic laws, demonstrating
that the axioms he was employing to formalize his logic were inconsistent. This
challenged the foundations of set theory and is known as Russell’s paradox (Russell
1902). Let R be the set of all sets which are not members of themselves. If R is a
member of itself, then by definition it must not be a member of itself. Similarly, if R is
not a member of itself, then by definition it must be a member of itself. Symbolically

R={x;x¢x},thenReR < R¢R. (2.6)

Frege abandoned his logicist program, but Russell continued with Alfred North
Whitehead. Together they wrote the monumental three-volume Principia Mathe-
matica (Whitehead and Russell 1910, 1912, 1913), hoping to achieve what Frege
had been unable to do. By devising new abstractions (a hierarchy of “types” of sets),
they tried to banish the paradoxes of naive set theory. Although the Principia was,
and still is, a hugely influential book, the questions of whether mathematics can
be reduced to logic, or whether it can only be reduced to set theory, remain open
(Irvine 2010). In any case, Russell and Whitehead’s program would soon receive
the final blow, shattering their dreams of a paradox-free foundation of mathematics.
This same fate would also befall Hilbert’s program. With the failure of formalism
and logicism, the face of mathematics would forever be changed. This upheaval was
achieved single-handedly by Kurt Godel, yet another mathematician and philosopher
(a colorful account of his momentous work can be found in Hofstadter 1999, 2007).

Both the logicists and formalists, like most mathematicians, placed their faith
in the precept that the edifice of mathematics is built on a rock-solid foundation.
Mathematics must posses two qualities:

e Consistency: a statement is true because there is a proof of the statement.
e Completeness: if a statement is true there is a proof of the statement.

Godel’s shocking revelations were centered around an act of translation. He devised
amechanism which assigns natural numbers to terms and formulas of a formal theory
(Godel 1931). Relying on the unique representation of natural numbers as products
of powers of primes, Godel was able to encode the whole Principia Mathematica
into numbers. In essence, any pattern of symbols representing abstract formulas in
a formal theory can be assigned a unique integer number. Vice versa, any number
can be decoded to reveal the sequence of symbols it corresponds to. These Godel
numbers—*“arithmetizations” of strings of symbols—translate elaborate manipula-
tions of abstract symbols, as found in the Principia, into simple number-crunching.
Now, starting from a set of axioms of a theory, the undertaking of finding a series of
formulas leading to a proof has a number-theoretic counterpart. The trouble comes
in the guise of self-referentiality. Consider a formula expressed within the Prin-
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cipia, stating: “The integer g does not correspond to a formula provable within the
Principia.” This statement, denoted as S, is innocuous and unsurprising, as there is
no reason to believe that every integer can be decoded into a meaningful, let alone
provable, formula. However, the consequences are disastrous when g is taken to
correspond to S. This self-references amounts to the statement G: “This statement is
unprovable.” Godel’s first incompleteness theorem (Godel 1931) spelled doom for
the logicist program, showing that the Principia could not be both consistent and
complete. If G is provable, then it is false, and if G is not provable, then it is true. The
act of translation has, again, the capacity to teleport a given domain into a new realm
where powerful novel possibilities can be unlocked, both desirable and undesirable.

The first incompleteness theorem can be restated as follows: all consistent
axiomatic formulations of number theory include undecidable propositions. This
did not bode well for Hilbert, who set out to prove the consistency of, for instance,
the set of axioms of mathematical analysis in classical arithmetic, going back to
Giuseppe Peano. A possible loophole of regaining consistency by the use of higher
mathematics was also closed by Godel’s second incompleteness theorem (Godel
1931): no formal system extending basic arithmetic can be used to prove its own
consistency. In other words, if number theory is consistent, then a proof of this fact
does not exist using the methods of first-order logic, as axiomatized by Peano arith-
metic. Hilbert’s program fails: higher mathematics cannot be interpreted in a purely
instrumental way.

Finally, the last anti-Platonist program, intuitionism, simply faded out of fashion.
The initial enthusiasm for the intuitionistic critique of classical mathematics and
the alternative that it propose was dampened, as it became clear what this approach
entailed for higher mathematics. Namely, a drastically unfamiliar and complicated
theory. Thus room was created for a renewed interest in the prospects of Platonistic
views about the nature of mathematics. Notably, Frege, Godel, and Russell were
advocates of this idea. In the words of Godel (quoted in Kennedy 2012):

I am under the impression that after sufficient clarification of the concepts in question it will
be possible to conduct these discussions with mathematical rigor and that the result will then
be [...] that the Platonistic view is the only one tenable.

The influential mathematician Godfrey H. Hardy expressed a similar conviction
(Hardy 1967, p. 123):

I believe that mathematical reality lies outside us, that our function is to discover or observe
it, and that the theorems which we prove, and which we describe grandiloquently as our
“creations,” are simply the notes of our observations.

Other notable and prolific mathematicians have espoused similar views. On the
16th of January 1913, Hardy received a letter (Selin 2008, p. 1868) from “an unknown
Hindu clerk” (Hardy 1937, p. 144). Srinivasa Ramanujan, twenty-six at the time, had
sent him a list of mathematical theorems out of the blue. One equation read (Hardy
1937, p. 143):
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Hardy was taken by surprise (Hardy 1937, p. 144):

I had never seen anything in the least like them [the three formulas in the form of (2.7)]
before. A single look at them is enough to show that they could only be written down by a
mathematician of the highest class. They must be true because, if they were not true, no one
would have had the imagination to invent them.

The quote also echoes his Platonist conviction, namely that true mathematics is
discovered by the human mind. Hardy became Ramanujan’s mentor and brought
him to England the next year. After having achieved word-wide fame, Ramanujan
would die six years later due to an array of ailments, like tuberculosis and vitamin
deficiency (Selin 2008, p. 1868). Ramanujan was a unique mathematician. He was an
autodidact with no formal tuition, unaware of most of existing Western mathematics.
These circumstances resulted in him unwittingly discovering, i.e., rediscovering, a
wealth of known mathematics. In Hardy’s words (Hardy 1937, p. 145):

It was inevitable that a very large part of Ramanujan’s work should prove on examination
to have been anticipated. He had been carrying an impossible handicap, a poor and solitary
Hindu pitting his brains against the accumulated wisdom of Europe. [...] I should estimate
that about two-thirds of Ramanujan’s best Indian work was rediscovery [...]

Ramanujan was also an idiosyncratic mathematician. For one, he had an intimate
relationship with numbers. A famous anecdote is given by Hardy (1937, p. 147):

I remember going to see him once when he was lying ill in Putney. I had ridden in taxi-cab
No. 1729, and remarked that the number seemed to me rather a dull one, and that I hoped
that it was not an unfavorable omen. “No,” he replied, “it is a very interesting number; it is
the smallest number expressible as a sum of two cubes in two different ways.”!*

Moreover, only in his later years was he introduced to the idea of proof in mathe-
matics. He mostly mixed reasoning with intuition to reach his insights (Hardy 1937,
p. 147). Ramanujan was also a Platonist and believed in the divine nature and reality
of mathematics (Hardy 1937, p. 139):

Ramanujan used to say that the goddess of Namakkal inspired him with the formulae in
dreams.

The goddess, also known as Namagiri of Namakkal, is just one divine manifestation
in the vast and rich Hindu pantheon of deities. Another quote attributed to Ramanujan
reads (Pickover 2005, p. 1):

An equation means nothing to me unless it expresses a thought of God.

141729 = 123 + 13 = 103 + 93,
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Hardy would compare Ramanujan to mathematical geniuses like Leonhard Euler
and Carl Gustav Jacob Jacobi (Hardy 1937, p. 149). Indeed, he saw his own role as
mathematician only in the context given by Ramanujan (Kanigel 1992, p. 358):

Paul Erd6s has recorded that when Hardy was asked about his greatest contribution to
mathematics, he unhesitatingly replied, “The discovery of Ramanujan.”

Hardy was very fond of Ramanujan. He described his collaboration with him as
“the one romantic incident in [his] life” (Hardy 1937, p. 138). It is hard to imag-
ine what mathematical knowledge could have been discovered by Ramanujan, had
he been formally educated in mathematics and spared from the redundant task of
rediscovering known theorems.

Paul Erd6s was another influential and idiosyncratic mathematician holding Pla-
tonist views (Aigner and Ziegler 2010, preface):

Paul Erdds liked to talk about The Book, in which God maintains the perfect proofs for
mathematical theorems, following the dictum of G. H. Hardy that there is no permanent place
for ugly mathematics. Erdds said that you need not believe in God but, as a mathematician,
you should believe in The Book.

He led a peculiar life (Dunham 1994, p. 9f.):

[Erd6s was] the 20th Century’s most prolific, and perhaps most eccentric, mathematician.
Even in a profession in which unusual behavior is accepted as something of the norm, Erdés
is legendary. For instance, so sheltered was this young scholar that only at the age of 21
[...] did he first butter his own bread. [...] Equally unusual is that Erd6s has no permanent
residence. Instead, he travels around the globe from one mathematical research center to
another, living out of a suitcase and trusting that at each stop someone will put him up for the
night. As aresult of his incessant wanderings, this vagabond mathematician has collaborated
with more colleagues, and published more joint papers, than anyone in history.

Due to his prolific output, friends created the Erdés number as a humorous tribute to
him (Goffman 1969). Defined as zero for Erd6s himself, every collaborator with a
joint paper gets assigned the Erd6s number 1. Likewise, an Erd6s number 2 denotes
an author who published a mathematical paper with a person having Erd6s number
1. Due to the occasional blurring of clear boundaries between scientific fields, some
researchers in physics, chemistry, and medicine also have low Erd6s numbers. For
instance, Einstein has Erdés number 2. In general, this number is a reflection of
the tight-kit nature of the collaboration network in academia, an example of the
small world phenomenon, summed up as “six degrees of separation” (discussed in
Sect.5.2.3). Another small-world network is that of movie actors, where the Bacon
number is an application of the Erdés number concept to actors, centered around
Kevin Bacon. Finally, the Bacon—-Erd8s number is the sum of a person’s Erdés and
Bacon numbers. As an example, the mathematician Steven Strogatz, co-author of
a seminal paper on small-world networks, has a Bacon—-Erdds number of 4, as he
appeared as himself in a documentary about “six degrees of separation” featuring
Bacon.

To conclude this section, all proposed mathematical anti-realist programs faced
serious problems, leaving Platonism as a sound, albeit philosophically challeng-
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ing, option. As discussed, many of the greatest mathematical minds subscribed to
Platonism.

2.2.1 Shut Up and Calculate!

At this point the discussion threatens to be come intractable. For one, there are
many conceptions of what Platonism is really supposed to mean. Perhaps the most
extreme view comes in the guise of mathematical monism. A view espoused by
Max Tegmark, a cosmologist, in his mathematical universe hypothesis. This radical
Platonist view states (Tegmark 2008, 2014): Our external physical reality'> is in
actual fact a mathematical structure. In effect, not only mathematical anti-realists
would disagree with ideas espoused as Platonism, but also the various Platonists
factions among themselves. Furthermore, one key criticism is the following. Platonic
realism posits the existence of mathematical objects that are independent of the mind
and language, which bear no spatiotemporal relations to anything. In contrast, flesh
and blood mathematicians are physically localized in space and time. The so-called
epistemological argument against Platonism is the question how human beings can
attain knowledge of abstract objects. Is the human mind capable of penetrating the
border between the physical and an eternal realm of existence? This puzzle is captured
in the directed link labeled M, in the schematic illustration seen in Fig.2.2, where
the interplay between these various modes of reality is summarized. There have been
many responses by Platonists to this challenge, followed by more arguments against
Platonism. The problem now is manifold. Why should anyone be convinced by either
view, if not based on pure belief or intuition? Is an argument outlining a problem
sufficient to prove an idea false? And, what then, is a tenable alternative? A general
reference relating to Platonism and the philosophy of mathematics is Linnebo (2013).

Even if one chooses to ignore discussions relating to the ontological status of
mathematics and epistemological inquiries about how the human mind can access
mathematical structures, another problem emerges. The urgent question is why math-
ematics plays such a crucial and essential role for science? Perhaps since Galileo our
best theories from the natural sciences are expressed with true mathematical rigor.
This enigma obviously blurs the clear demarcation line between philosophy and sci-
ence, making it difficult to retreat to the safety of objective inquiry. What is the ontic
and epistemic status of the connection between mathematics and the workings of
nature, captured by the relationship M, in Fig.2.2? One possible interpretation is in
terms of the concept of entelechy,'® where the physical world is an actualization or

15¢T yse the word [reality] to mean the ultimate nature of the outside physical world that we’re part
of [...]” (Tegmark 2014, p. 14).
16The term was coined by Aristotle to describe the dichotomy between potentiality and actuality.

Leibniz adapted the concept in a way that gave rise to the notion of energy used today in physics.
See also Sect. 15.2.



2.2 Seeking Meaning 59

Mental

M,

—>
O

Abstract Physical

Fig. 2.2 The three worlds: the abstract Platonic realm of mathematics, external physical reality,
and the human mind harboring mental states. The arrows allude to the mysteries M1 and M relating
to the connections of the worlds. See also Penrose (2004)

manifestation of the potential abstractions residing in the Platonic realm. The mental
agent acts as a bridge from the physical back into the abstract, denoted as M.

In a nutshell, the assumptions underlying Fig.2.1, detailed in the list given on
p. 53, can be restated as follows, given a structured external reality and ignoring the
lack of knowledge related to the emergence and nature of the human mind:

1. There exists an abstract realm of objects transcending physical reality (ontology).

2. The human mind possesses a quality that allows it to access this world and acquire
information (epistemology).

3. The structures in the abstract world map the structures in the physical (structural
realism, see Sect.6.2.2).

The idea of structural realism holds that the physical domain of a true theory corre-
sponds to a mathematical structure. Or stated more cautiously, it is a “belief in the
existence of structures in the world to which the laws of mathematical physics may
approximately correspond” (Falkenburg 2007, p. 2). The term universal structural
realism has been used for the hypothesis that the physical universe is isomorphic to
a mathematical structure (Tegmark 2008), leading to Tegmark’s mathematical uni-
verse hypothesis. This would be one explanation for the puzzle in Fig. 2.2, referred to
by M,: the abstract and the physical worlds are the two sides of the same coin. How-
ever, such lofty radical ideas can be hard to stomach, making other, more modest and
benign mysteries appear more tempting. For instance, why is there a correspondence
or kinship between the realms to being with?

Many scientist abhor the idea of a reality existing beyond space and time. Being
pragmatic, such ideas are viewed as ultimately futile and unnecessary baggage in
any theory of the world. Specifically, the claim is “that purely philosophical consid-
erations on ontology are fruitlessly speculative and ill-founded and have no value in
the light of ‘real scientific findings”” (Kuhlmann 2010, p. 186). The power then, of
mathematics in the natural sciences lies in the simple fact that it works. “Shut up
and calculate!” is the rallying cry.!” Such an inclination reflects an instrumentalist

17Originally this maxim goes back to the physicist Nathaniel David Mermin (Mermin 1990, p. 199),
as a response to the persistent philosophical challenges posed by quantum theory.
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outlook. Theories are seen as mere conceptual tools for predicting, categorizing,
and classifying observable phenomena. Assigning a reality to unobservables has no
merit. Moreover, the genuine content of science is not to be found at the level of
theories (Duhem 1991).

Essentially, these are debates relating to the old question of scientific realism, a
belief in the content of theories and models, regarding both observable and unob-
servable aspects of the world as described by science. In detail, it is a commitment
metaphysically “to the mind-independent existence of the world investigated by
the sciences,” semantically to “a literal interpretation of scientific claims about the
world,” and epistemologically “to the idea that theoretical claims [...] constitute
knowledge of the world” (Chakravartty 2013). In this sense, instrumentalist episte-
mologies of science can also be understood as being anti-realist. Historically, in the
first half of the 20th Century, empiricism came predominantly in the form of varia-
tions of instrumentalism. Vocal advocates of this idea were the logical empiricists (or
logical positivists), philosophers often associated with the notorious Vienna Circle.
However, facing opposition from influential scholars, some even from within the
Circle—the likes of Norwood Hanson, Thomas Kuhn, Karl Popper, Hilary Putnam,
and Willard Van Orman Quine—the demise of logical empiricism was inevitable.'®
In 1967 the philosopher John Passmore reported that: “Logical positivism, then, is
dead, or as dead as a philosophical movement ever becomes” (as quoted in Creath
2013). This was followed by the resurrection of realism. However, as always, the
demarcation lines are anything but clear. Instrumentalists can be non-realist, i.e.,
taking an agnostic stance as to whether parts of a physical theory have a correlate in
reality. Moreover, structural realism is a very specific and restrictive type of realism:
the real nature of things can never be known, only the way things are related to one
another has true meaning. Indeed, in the ontic version of structural realism, relations
are all that exist, without assuming the existence of individual things (French and
Ladyman 2003). So the world is made up solely of structures, a network of relations
without relata. See Sects.6.2.2 and 10.4.1.

Be that as it may, “Shut up and calculate!” can help one avoid becoming stuck
in philosophical mires. In the case at hand, it can be understood as encouraging the
inquiry into the specifics of mathematics that makes this formalism such a powerful
tool for science—abandoning musings about meaning and implications. And indeed,
there is one primary mathematical ingredient that distinguishes itself among others:

The notion of symmetry, formally encoded as a principle of invariance, is
singly one of the most powerful tools in unearthing novel and deep insights into
the structure of the universe.

18See Sect.9.1.1 for more details.
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Conclusion

The Book of Nature has been found: The human mind can access the world of
abstractions, which mirror the structures of the physical world. Consciousness is
the translator. One archetypical example of these conceptualizations—representing
a narrative arc in the Book of Nature—is found in the notion of symmetry, a fun-
damental cornerstone of physics. Symmetry will be the accompanying theme of the
next two chapters. “Shut Up and Calculate!” allows the philosophical analysis to be
postponed—for the moment.

The reader not wishing to dive into the particularities of the mathematics relating
to symmetry and the corresponding physical concepts describing, for instance,

conservation laws (Sect.3.1),

the speed of causality (Sect.3.2.1),

the classification of elementary particles (Sect. 3.2.2),

unification schemes, ranging from the standard model of particle physics to
string/M-theory (Chap.4),

next to the historical embedding of some core ideas (Sects. 4.2 and 4.3), can jump to
one of the following locations:

e Chapter5: Unearthing the second volume in the Book of Nature Series, related to
the algorithmic understanding of complexity, allowing for a further classification
of human knowledge generation.

e Chapter 6: The new understanding of complexity, i.e., the science of simple rules.

e Chapter 7: Applying complexity thinking to finance and economics, concluding
Part I and representing the highest point on the mountain of knowledge—reached
before the downfall.

e Chapter 8: The beginning of Part II, glimpsing the first signs of uncertainty and
confusion.

e Chapter 12: The start of Part III, transitioning to new horizons.

e Chapter 15: The final analysis.
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Chapter 3 ®)
The Semantics of Symmetry, Invariance, oo
and Structure

Abstract Symmetry carries the connotation of beauty. Mathematized, it is a deep
and reoccurring theme in the Book of Nature. Many unexpected properties of reality
are uncovered by it. A key concept related to symmetry is invariance, the simple
property of a system to remaining unchanged under manipulations. Invariance has
the power to unlock fundamental knowledge.

Level of mathematical formality: high (however, the mathematically involved parts
are encapsulated and demarcated by the tags {¢p ... ¢}, hence easily bypassed).

The notion of symmetry carries with it the connotation of beauty, harmony and unity.
In the words of Hermann Weyl (1952, p. 5):

Symmetry, as wide or narrow as you may define its meaning, is one idea by which man
through the ages has tried to comprehend and create order, beauty, and perfection.

The history of symmetry begins with the Greeks, coining the term summetria, derived
from the words sun (meaning “with,” “together” or “by association”) and metron
(“measure”). In a modern, scientific context, symmetry is recast in terms of invari-
ance: under certain manipulations, namely transformations, specific features of a
physical system remain unchanged. Symmetry is thus mathematized as an operator
acting on an object, where the defining feature is that the object remains unaltered.
Expressed in other words, the object is invariant under the symmetry transformation.

The mathematical structure that underlies the study of symmetry and invariance
is known as group theory. Here now is a concrete example of Fig. 2.1: the real-world
notion of symmetry is encoded as the mathematical concept of invariance. In order
to gain new insights into the workings of the physical world, one needs to burrow
deeper into the abstract world. The first gem that can be discovered is group theory,
which, as will be discussed, is intimately related to geometry. From the formal rules
pertaining to these areas of mathematics encapsulated in the abstract world, three
applications can be derived: a universal law of conserved quantities, a tangible grip
on elementary particles, and a merger of fragmented forces in nature.
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{# |3-groups >

A group G is defined as a set together with an operation that combines any
two group elements, satisfying the axioms of closure, associativity, the existence
of inverse elements, and containing an identity element. A group action on a set
X is defined as a function @ : G x X — X, obeying the axioms of compatibility'
and the existence of an identity function. This defines a bijective map @, : X — X,
where @, (x) := @(g, x). G is a symmetry group if its group action @ preserves the
structure on X . In other words, if @, leaves X invariant. The set X can be equipped
with algebraic, topological, geometric, or analytical structures. See, for instance

Schottenloher (1995).
< 3-groups| #}

Although the history of group theory has many sources and its evolution unfolded
in various parallel threads, listing many famous contributors—the likes of Joseph-
Louis Lagrange, Carl Friedrich Gauss, and Augustin-Louis Cauchy—Evariste Galois
formalized the abstract notion of a group and is generally considered to have been
the first to develop group theory (Kleiner 1986). Galois’ life was tragic. His budding
mathematical influence started at the age of seventeen, only to be stifled by his early
death three years later. He died in a duel in 1832. The manuscripts he had submitted
to Cauchy, and later, Jean-Baptiste Fourier, would both be lost, never to reappear.
Galois was incarcerated for nine months for political reasons and was shunned by the
French mathematical establishment, which he fought against with vitriol and anger.
Only posthumously he was awarded the recognition for his important contributions
to mathematics. See, for instance Du Sautoy (2008).

This simple idea, that the symmetry transformations of an object with a predefined
structure constitute a group, allowing the concept of symmetry to be formalized in
terms of group theory, has proven to be very powerful. Indeed, the more symmetries
an object has, the larger its symmetry group. As an example, the monster group
was constructed by Robert L. Griess as a group of rotations in 196,883-dimensional
space. It is a symmetry group that belongs to a structure with the mind-bogglingly
large number of symmetries given by Mj, as specified in (2.5).

Although the groups studied by group theory are algebraic structures, it was
recognized that they also play a fundamental role in geometry. Felix Klein initiated a
research program in 1872 which aimed at classifying and characterizing geometries,
utilizing group theory. It was a manifesto for a new kind of mathematics which
thought to capture the essence of geometry not in terms of points and lines, but in
the group of symmetries that permuted those objects. This effort became known as
the Erlanger Program (Hawkins 1984). The notions of geometry and symmetry, and
crucially their deep relationship, are perhaps one of the most fruitful and far reaching

Yo (g, @(h, x)) = ®(gh, x).
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themes in physics. If the Book of Nature is written in the alphabet of geometric
symbols, then symmetry furnishes its syntax.

3.1 Symmetry in Action: Conservation Laws

In classical physics, a conservation law states that some aspect of a dynamical system
remains constant throughout the system’s evolution. In a first mathematical formal-
ization this means that some quantity X exists, a dynamical variable capturing the
system’s evolution over time. In other words, X obeys some equation of motion
encoded in (2.1) or (3.1). As X is conserved, i.e., X = 0, it remains constant along
its flow in phase space—it is an invariant. Conserved quantities are often called con-
stants of motion. In effect, this imposes a constraint on the physical system under
investigation. Albeit a constraint originating in the abstract world: a natural conse-
quence of the equations of motions, driven by the mechanics of derivatives, rather
than a physical restriction which would be a manifestation of some force.

The notion of conserved quantities and the general idea of persistence, with the
antonyms related to perpetual flux, form the basis of very dissimilar philosophies. The
pre-Socratic Greek philosopher Parmenides in the early 5th Century B.C.E. resisted
the teachings of Heraclitus, who maintained that everything is change. Parmenides
initiated the search “for something not subject to the empire of Time” (Russell 2004,
p. 54). He asserted the principle that “nothing comes from nothing,” ex nihilo, nihil fit.
In the social network of Greek philosophers, Parmenides was influenced by Pythago-
ras and, in turn, would leave an impression on Plato’s thinking. His principle, which
can also be traced back to the Milesian philosophers (Roecklein 2010), argues that
existence is eternal and not the result of a divine act of creation. A related idea, which
can be seen to prevail throughout time, is called principle of sufficient reason. From
Anaximander, Baruch Spinoza, notably Gottfried Wilhelm Leibniz, and to Arthur
Schopenhauer, the tenet, that nothing happens without reason, is echoed. Formally,
for every fact F, there must be an explanation why F is the case. It is a power-
ful and controversial philosophical principle and entails bold assertions regarding
metaphysics and epistemology. See Melamed and Lin (2013).

The notion, that nothing can come from nothing, is also entailed in the natural phi-
losophy of atomism proposed by Leucippus and his pupil Democritus. They believed
that everything is composed of indivisible, indestructible, and eternal atoms. Around
the same time, in India, a similar concept of atoms, called anu or paramanu, appeared
perhaps for the first time in Jain scriptures. Jainism, a radically non-violent Indian
religion, shares in its cosmology many of the elements of pre-Socratic Greek philoso-
phies, stating that the universe and its constituents are without beginning or end, and
nothing can be destroyed or created. The Jain philosophy contains categories that
have a distinct scientific flavor, even today. The part of reality that is “non-spirit,”
i.e., not related to consciousness is divided into time, space, the principles of motion
and stability, and matter (Nakamura 1998). Also in Buddhism, although originally
harboring a qualitative, Aristotelian-style atomic theory, would later in the 7th Cen-
tury develop notions, reminiscent of today’s Weltanschauung, considering atoms as
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point-sized, eternal units of energy (Singh 2010). A general reference discussing
naturalism in Indian philosophy is Chatterjee (2012).

However, a lot of time would pass, before the philosophical notions of immutable,
eternal entities could be put on a firm footing and recast in the language of conserved
quantities in nature. In 1644, René Descartes published an influential book, called
Principles of Philosophy. Not only did he describe laws of physics, which would
later be incorporated into Newton’s first law of motion (Whiteside 1991), he also
introduced a conserved quantity, which he indiscriminately referred to as “motion”
or “quantity of motion.” For the first time, an attempt was made to identify an invariant
or unchanging feature of mechanical interactions. Moreover, Descartes envisioned
the conservation of motion as one of the fundamental governing principles of the
cosmos. Indeed, his law falls just short of the modern law for the conservation of
momentum. See Slowik (2013).

While it took many scientists over time to tediously formulate and prove the con-
servation laws for mass and energy, the insights of one person lead to the uncovering
of an overarching framework and the deep understanding of the specifics relating
to conservation laws. In her 1918 publication, the mathematician Emmy Noether
spelled this out in a theorem, wrapping up a deep physical truth with the mathemat-
ics of symmetry (Noether 1918). In plain words (Thompson 2004, p. 5):

If a system has a continuous symmetry property, then there are corresponding
quantities whose values are conserved in time.

To understand what this really means, expressed in the language of mathematics, one
needs to embark on a journey starting with some notions from geometry.

3.1.1 From Geometry ...

In the centuries following the introduction of Newton’s dynamical laws of classical
mechanics, a restatement and further development of the formalism yielded powerful
new tools to investigate mechanical systems. The key concepts were unsurprisingly
related to geometry. The encoding of the observables leading to (2.1) can be cast
in a new light, uncovering the powerful formalisms of Lagrangian and Hamiltonian
mechanics.

Each spatial arrangement of a system of particles, or a rigid body, is captured by
a single point in a multidimensional space M € R", called the configuration space.
Each point in M is described by a generalized coordinate ¢ = (¢', ..., ¢"), where
n reflects the degrees of freedom of the classical system. In effect, a curve in the
configuration space represents the evolution of the physical system in time. Tech-
nically, M has the structure of a (differentiable) manifold, a generalization of the
notions of curves, surfaces, and volumes to arbitrary dimensional objects. From the
coordinates, the generalized velocities can be derived as §' = dq'/dt, defining the
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phase-space P = M x R" with elements (¢, §').
{# |3.1.1-euler—lagrange—hamilton >

Because the velocities are tangential vectors by construction, the set of these
vectors at any point x € M form a vector space TM,, called the tangent space to
M at x. The union of the tangent spaces to M at all points is the so-called tangent
bundle, TM = U,y TM,. Hence P can be understood as the tangent bundle TM
of the configuration space M. In Lagrange mechanics, a function on the tangent
bundle L : TM — R encodes the structure of the physical system it represents. The
equations of motion are given by the Euler-Lagrange equation

OL(q', ¢, t d (0L(q, g t
Ma.g.0 _ 4 (Ma-4.0), G.1)
aq' dr g
equivalent to Newton’s laws of motion.
By introducing the concept of generalized momentum

;  OL
P = 3 (3.2)

q

Hamiltonian mechanics can be formulated, where the elements (qi, pi) define the
(momentum) phase-space. The equations of motion in this point of view are given
by

g1 (3.3)

ap! aq'

where the function H is obtained via a special transformation of L. Although
Lagrangian mechanics is contained in Hamiltonian mechanics as a special case,
“the Hamiltonian point of view allows us to solve completely a series of mechanical
problems which do not yield solutions by other means” (Arnold 1989, p. 161). In
geometric terms, the momentum phase-space has the structure of a cotangent bundle
T*M . Technically, it is the dual vector space of TM , defined for each x € M as

T"M, .= (TM,)" := {n : TM, — R; n linear}. (3.4)
Hence the 7 are linear functionals or 1-forms. This recasts Hamiltonian mechanics

as geometry in phase-space, H : T*M — R. General references are Arnold (1989),
Frankel (1999), Nakahara (2003).

< 3.1.1-euler—lagrange—hamilton| ﬂ}
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The geometric language of the Lagrangian or Hamiltonian approach finds its
successful application in various domains of physics, fueled by the key concept of
what is known as the Lagrangian density. In the following detour, these ideas will
be explored.

Both Lagrangian and Hamiltonian mechanics have played highly influential roles
in modern physics, as the formalisms can be naturally extended to fields. Especially
Lagrangian field theory has become a cornerstone in many physical theories. Here
the Lagrangian functionals L are replaced by their field-theoretic counterparts, called
Lagrangian densities? £. In general, the following discrete point-particle expressions
are extended to fields with an infinite degree of freedom:

q — P,
g — 397 ("), (3.5)
Ld',q,t) — L', 0,97, 1),

where x” := (¢, X) is a point in four-dimensional space-time and the components
Y/, j=1,2,..., describe a quantum field. The corresponding derivative is 9, :=
d/0x*, or, alternatively, 9, = (0,0, ..., dy3) = (9, Oy, dy, 3;). Now the Euler—
Lagrange equations also take on a field-theoretic form

oL oL
ayi = <a<wf>> ' oo

As an example, Maxwell’s theory of electromagnetism, encoded as (2.4), can be
concisely recast as a field theory in four-dimensional space-time® building on the
field-strength tensor F,,. The components of F,, are derived from the components
of the electric and magnetic field vectors E and B, respectively. The Lagrangian of
electromagnetism takes on the form

Lem ~ Fu F*, (3.7)

where the Einstein summation convention is assumed and the expression “~” implies
equality up to a constant factor. The Euler-Lagrange equations can elegantly” retrieve
Maxwell’s equations, seen in (2.4), by substituting (3.7) in (3.6). See Jackson (1998),
Collins et al. (1989) for more details.

Another, more abstract, example is the Lagrangian of the standard model of parti-
cle physics. It is a very accurate theory describing the interactions of matter particles

2When there is no danger of ambiguity, the Lagrangian densities are also simply referred to as
Lagrangians.

3This means that the equations are now compatible with the theory of special relativity, yielding a
variation called the covariant formulation of electromagnetism.

4Two details are ignored here. F wv is constructed from the 4-vector potential A* described below
and the true Lagrangian, given in (4.15), has an additional term J,A*, with the 4-vector current
density J,, = (p, J), recalling the note related to (2.4).
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via the electromagnetic, weak, and strong forces. In other words, it covers all know
forces excluding gravity. The force carrying particles are called gauge bosons (seen
in Sect.4.2). In detail, there exist four boson fields associated with the electroweak
force, a unification of electromagnetism and the weak force (discussed in Sect. 4.2.1),
and the gluon boson field which propagates the strong force. Gauge bosons repre-
sent one of two categories classifying particles according to the value of the spin
they carry. The notion of spin can be understood as an intrinsic form of angular
momentum of elementary particles (described in Sect.3.2.2.2), and gauge bosons
carry an integer spin value. Particles with half-integer spins are called fermions, the
second category of existing particles. All matter is composed of fermions, with a
sub-categorization distinguishing leptons and quarks. See Fig.4.1 on p. 109 for an
overview of bosons and fermions. Gauge bosons are formally represented as vector
potential A*, discussed in (4.12), with corresponding field tensors F*¥, constructed in
(4.14) or (4.41a). Fermions find their formalization as spinor fields ¥, entities which,
unlike vectors, require 720° to complete a full rotation (as explained in Sect. 3.2.2.1).
The last ingredient is a scalar Higgs boson ¢, required for the generation of mass
terms for the bosons and fermions, which are missing in the Lagrangian. The math-
ematical trick necessary for this feat is called the Higgs mechanism (introduced in
Sect.4.2.1). Returning to the standard model Lagrangian, in a nutshell, one finds

ACSM = Eforce + Ematter + EHiggs + Ecouplingv (38)

where
Lforce ~ A;wAlwa (39)

describes the vector bosons,

Lunater ~ 1YY, (3.10)

encodes the fermionic matter fields, where D, is a special derivative operator,
expressed using Feynman’s slash notation, encoding the interactions with the bosons.
The bar denotes the Hermitian conjugate which is associated with antiparticles. The
next term is related to the Higgs field

Litiges = |Duo|” = V@), (3.11)

with V describing the potential energy of the scalar field. Finally, the fermions couple
to the Higgs scalars as specified by what is known as the Yukawa coupling

»Ccoupling ~ (&‘ﬁ) I// (3 12)

These quantities are responsible for generating the mass terms in the Higgs mech-
anism. This shorthand notation of the standard model Lagrangian goes back to the
physicist John Ellis and has been featured on T-shirts and mugs. However, accounting
for every detail, the full-blown standard model Lagrangian is comprised of a myriad
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of terms, filling a whole page. See, for instance, Appendix E in Veltman (1994).
General information on the standard model can be found in textbooks on quantum
field theory (Kaku 1993; Peskin and Schroeder 1995; Ryder 1996), general theoret-
ical physics (Collins et al. 1989; Lawrie 2013), and particle physics and symmetry
(Cheng and Li 1996; Mohapatra 2003).

A final example of an important Lagrangian is related to Einstein’s theory of gen-
eral relativity, the only successful theory to accurately describe gravitational forces.
Here matter, radiation, and non-gravitational force fields are expressed through
the four-dimensional stress-energy tensor 7/V, which becomes the source of the
gravitational field. The physical effect of gravitational pull is translated into the
abstract notion of the curvature of space-time.> The tools for quantifying such per-
turbations are found in the mathematics of differential geometry, rendering gen-
eral relativity a geometric theory. The metric tensor g,,, formally a bilinear form
defined on a manifold, captures the geometric structure of space-time. Note that
g"vgvp = gpv8"" = 8%, where the Kronecker delta represents the identity matrix,
and A, = g,,8v-A”°. The curvature of space-time can be measured in a series of
higher degrees of abstractions, starting with the metric tensor. In detail

guv = Iy = R0 — Ry, R — G . (3.13)

Labeling the terms form right to left: the Einstein tensor is constructed from the
curvature scalar and the Ricci tensor, which are contracted from the Riemann tensor,
which depends on the Christoffel symbols, defined via the metric. Encoding all this
information uncovers Einstein’s elegant field equations

G;w ~ pr- (314)

An in-depth account can be found in Sects. 4.1, 4.3.1, and 10.1.2. Again, this short-
hand notation does not convey the level of detail and technicality going on behind
the scenes. Even simple gravitational problems can be very arduous to solve. Inter-
estingly, it was not Einstein who derived the corresponding Lagrangian which yields
the gravitational field equations by virtue of the Euler—Lagrange equations. On the
25th of November 1915, after a series of false starts and detours, Einstein presented
the final version of his geometrodynamic law, in the form in which it is still used
today (Einstein 1915). Five days earlier, David Hilbert had independently discovered
the Lagrangian, respectively the Hamiltonian approach from which Einstein’s theory
can be derived (Hilbert 1915). The Lagrangian reads

Lor ~ /—det(g,)R. (3.15)

As amathematician, Hilbert believed in the axiomatic foundations of physics. Indeed,
he stated this as the sixth problem in his famous list of 23 mathematical problems

SRegarding the reality status of space-time genuinely being curved, see the discussion in Chapter
11 of Thorne (1995).
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(Hilbert 1900). This intuition allowed him to find such an elegant path to the field
equations of gravity, in contrast to Einstein’s struggles. Hilbert tersely remarked
(Sauer and Majer 2009, p. 403, translation mine):

If Einstein ends up with the same result [equation of motion] after his colossal detour [...],
this can be viewed as a nice consistency check.

According to Kip Thorne, an expert on general relativity, the reason for Einstein’s
priority over the geometrodynamic field equations, detailing how matter warps space-
time, is the following (Thorne 1995, p. 117f.):

Quite naturally, and in accord with Hilbert’s view of things, the resulting law of warpage
was quickly given the name the Einstein field equation rather than being named after Hilbert.
Hilbert had carried out the last few mathematical steps to its discovery independently and
almost simultaneously with Einstein, but Einstein was responsible for essentially everything
that preceded those steps.

Thus ends the excursion sketching the prominence of the Lagrangian formalism
in various fields of physics. General references for general relativity are Misner
et al. (1973), Collins et al. (1989), Lawrie (2013) next to the specific challenges of
formulating quantum field theories in curved space (Birrell and Davies 1994).
Returning to the geometric reformulations of Lagrangian and Hamiltonian
mechanics, perhaps the most important aspect of this approach is that it allows
the ideas of symmetry to be naturally incorporated. By extending the formal repre-
sentation of an existing theory to incorporate new abstractions, novel and powerful
insights into the fundamental workings of the physical world can be uncovered.

3.1.2 ... To Symmetry

The mathematician Sophus Lie revolutionized the understanding of symmetry and
greatly extend its scope of influence with his work on continuous symmetries, with
the idea that such transformations should be understood as motions. In contrast, dis-
crete symmetries are always associated with non-continuous changes in the system.
For instance, permutations, reflections, or a square’s discreet rotational symmetry,
always being multiples of 90°. Lie’s notable achievement was the realization that
continuous transformation groups, today known as Lie groups, could be best under-
stood by “linearizing” them. In detail, he realized that it suffices to study the group
elements in the local neighborhood of the identity element to understand the group’s
global structure. In effect, Lie repeated for symmetries what Galois had achieved
for algebraic structures: to classify them in terms of group theory. Indeed, initially
Lie worked with Klein on the Erlanger Program. Years later, after Lie had suffered
from a mental breakdown and became increasingly paranoid, fearing people would
steal his ideas, the friendship between him and Klein would turn sour. See Du Sautoy
(2008).
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{ﬂ 13.1.2-lie-group >

Technically, a Lie group G is a differentiable manifold endowed with a group
structure such that multiplication and the inverse transformation are differentiable
maps. The tangential space T G, of a Lie group at the identity element e € G is a very
special and useful mathematical structure called a Lie algebra. In the terminology
of abstract algebra, a vector space over a field® [ is a set V together with a bilinear
operation for adding the elements of V (called vectors, u,v € V = u+v € V), and
one linking the scalars, or the elements of |, with vectors, referred to as scalar
multiplication (@ € F,v € V = a - v € V). Eight axioms specify the properties of a
vector space. Generalizing this notion, an algebra a over a field [ is a vector space
over [ equipped with an additional bilinear operation for multiplying elements in
a. For many Lie algebras g, this operation, denoted by Lie brackets, is given by a
skew-symmetric product. An example is given by the commutator

X, Y)egxg—[X,Y]:=XY —YX €g. (3.16)

Although, generically, the Lie brackets must obey an equation known as the Jacobi
identity.
The relationship between Lie algebras and Lie groups is captured by a map

exp:g— G. (3.17)

It is a homomorphism, or a structure preserving map, taking addition to multiplica-
tion. For the many Lie groups that are comprised of matrices, the exponential map
takes its usual form for any matrix A: exp(A) := ), %Ai . The existence of this map
is one of the primary justifications for the study of Lie groups at the level of Lie alge-
bras. In the general case, a continuous symmetry S(¢) € G, parametrized by t € R,
can now be described as

S(t) = exp(tX %), (3.18)

where the vector X¢ € g is called a generator. The set of such generators, equipped
with a Lie bracket, defines the Lie algebra. Given a basis X“ € g, (3.16) generalizes
to

(X Xb] =f%xe, (3.19)

where all the information is coded into the f abe the structure constants. Note the
usage of Einstein’s summation convention.

SA field is defined as a commutative ring with an identity element and contains a multiplicative
inverse for every nonzero element. Such algebraic structures contain the notions of addition, sub-
traction, multiplication, and division. Examples of fields are rational numbers Q, real numbers R,
and complex numbers C.
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< 3.1.2-lie-group| #}

To summarize, the knowledge of the structure constants, defining the Lie brackets
of a Lie algebra, is sufficient to determine the local nature of the Lie group near the
identity element. In effect, the Lie brackets can be understood as a linearized version
of the group law, a powerful insight provided by Lie.

3.1.3 ... And Back

The formal mathematical framework detailed above can be linked to the dynamics
of physical systems. Again, the continued encoding of natural systems into formal
representations yields novel insights into the structure of the physical world. Specifi-
cally, it is the richness of the abstract world, allowing formal structures to be viewed
from seemingly unrelated points of view, that allows for the discovery of similarities
between concepts not obvious from the outset.

{ﬁ |3.1.3-one-parameter-subgroup >

As mentioned, every Lie group can also be understood as a manifold. It is special
in the sense that it always has a family of diffeomorphismes, i.e., invertible functions
between differentiable manifolds, such that: L, : G — G, where L,(h) = gh, with
g, h € G. This means that L, acts as a translation.” For any (differentiable) map on a
manifold, f : G — G, the naturally corresponding differential map f, can be defined
as

f* . TGp — TGf(p), (320)

meaning that a tangent vector X to G at the pointp € G is transformed into a tangent
vector f,X at f (p). The notion is that of a directional derivative along a curve c(t),
with ¢(0) = p. In the case of Lie groups, given a tangent vector X, at the identity,
the translation L, of group elements has the derivative L,, which maps the vector
to any point in G, as X, := L., X,. Finally, a vector field X on G is said to be (left)
invariant if it is invariant under all (left) translations, that is Ly, Xj, = Xy, In this new
terminology, a Lie algebra g of G is the space of all (left) invariant vector fields on
G. Moreover, the Lie bracket of two left-invariant vector fields is also left invariant.

There is still one piece of the puzzle missing, in order for the formal machin-
ery to spit out novel insight into the workings of physical systems. This missing
element is called a one-parameter subgroup of G. In general, it is a differentiable

TTechnically, it is a left translation, and a second family of diffeomorphisms defines the right
translation R, (h) = hg.
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homomorphism® ¢ : R — G. It describes a path ¢(¢) in G and satisfies the condi-
tion ¢ (¢t 4+ 5) = ¢ ()¢ (s). For any Lie group G the one-parameter subgroup, whose
generator at the identity e is the tangent vector X, is given by

(1) = exp(tX). (3.21)
< 3.1.3-one-parameter-subgroup| # }

In other words, any continuous symmetry S(¢) is equivalent to a one-parameter
subgroup ¢(#), and there exists an associated left invariant vector field X € g. This
links the formal framework of one-parameter subgroups to the notion of symmetry,
namely Lie groups and algebras. In a next step, the abstract ideas relating to such
one-parameter subgroups can be re-expressed in terms of tangible physical concepts.
If M is the phase-space of a physical process, then x € M describes the state of the
system at some initial time #y. A mapping g, : M — M takes this state to the state at
the later instant ¢, g,x. These transformations g, are also called the phase flow, as the
phase space can be thought of as filled with a fluid, where a particle located at x flows
to the point g,x during the time ¢. It is required that the particular order in which states
are transformed is irrelevant. Sox +— g,y .x and x — g,x — g,g;x are identical. This
condition, that g,y = g,8;, reveals the phase flow to be a one-parameter subgroup
of M, g; = exp(tX).

Inanutshell, each flow g;, or curve in phase space, can be associated with a velocity
vector field in the tangent space. The converse result is “perhaps the most important
theorem relating calculus to science” (Frankel 1999, p. 31): roughly speaking, to
each vector field corresponds a flow which has this particular vector field as velocity
field. Moreover, the exact form of the flow can be found by solving a system of
ordinary differential equations associated with the dynamics of the system, similar
to (2.1).

At this point it is not yet obvious what the gained benefit of this lengthy formal
derivation is. Indeed, it could appear that one is going round in circles. General
references to the above discussed topics are Frankel (1999), Nakahara (2003), Arnold
(1989).

3.1.4 Noether’s Theorem: Digging Deeper

In more formal detail, Noether’s theorem states that whenever a system (described
by a Lagrangians L or £ and obeying the Euler-Lagrange equations (3.1) and (3.6))
admits a one-parameter subgroup of diffeomorphisms (the Lagrangian is invariant
under a the action of a continuous symmetry group) there is a conserved quantity. For
instance, if the Lagrangian is invariant under time translations, spacial translations

8 A structure preserving map.
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or the angular rotation about some axis, then the energy, momentum or angular
momentum, respectively, is conserved in the system.

Crucially, continuous symmetries are the cornerstone in Noether’s theorem,
unveiling the deep connection between the conservation of physical quantities and
the formal language of symmetries. However, the truly universal importance of these
symmetries in understanding natural phenomena only really started to become appar-
ent with the further developments of quantum theory. Weyl, influenced by the work
of Lie, was instrumental in helping foster the understanding of the symmetry struc-
ture of quantum mechanics, namely its group-theoretic basis (Weyl 1928, translated
into English as Weyl 1950).

In a nutshell, the formal machinery related to symmetries is applied to Lagrangian
densities describing quantum fields.” Digging deeper, by adding more analytical
formalism to the mix, the insights gained in the abstract realm can be decoded
back into the physical world, allowing for novel conserved quantities to emerge.
Starting with a Lagrangian £ describing an arbitrary vector field ¥ (i = 1, ..., N),
the invariance under a symmetry group G is expressed as

LY =L, (3.22)

where 1" is the transformed field under the group action. The missing link required
to specify how, in detail, a group element g € G acts as an operator on ¥, is called
representation theory, a sub-field of group theory.

{ # |3.1.4-representation-theory >

In this framework, the abstract mathematical operators of a group are represented
as linear transformations of a vector space V (over a field [). This implies that a
group element g € G is transformed as g — U(g), where now U(g) : V — V is
a linear mapping. In other words, U is an element of GL(V'), the set of all linear
transformations on V, called the general linear group. The advantage of this formal
translation is gained from an important result of linear algebra. The structure of the
transformation U can be encoded in a matrix'? as

U@l =UW), (3.23)

forv € V. Asaresult, GL(V) is isomorphic to GL(n, [), the set of all n x n matrices
U over the field F. In effect, by mapping g via U to U, representation theory allows
one to manipulate ever more concrete and tangible objects. The abstract quantity g
reemerges as a matrix representation U with concrete physical connotation. Formally,

9See Sect. 10.1.1.

10In the scheme of things, a scalars s denotes a single real or complex number, a vector V' is
comprised of a row or column of scalars, a matrix M ¥ contains a rectangular array of scalars, and
a tensor 771/ represents the most complex arrangement of scalars in a multidimensional array.
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u
g —— gl(v)

expl l exp
p

¢ —Y— GLV) —2— GL(n,F)
g U(g) plU()]=U

Fig. 3.1 A commutative diagram showing the Lie algebra g, the exponential mapping to its corre-
sponding Lie group G—described in (3.17) and (3.21)—the representation of g € G as an element
of U(g) € GL(V), the Lie algebra of GL(V), called gl(V), with the representational mapping (
from g, and, finally, the matrix representation given by the mapping p yielding the matrix U

U can be expanded via the basis vectors of V as U¥ € [. Recalling that the group
G is associated with a corresponding Lie algebra g, Fig.3.1 shows a diagrammatic
representation of how all these concepts fit together.

< 3.1.4-representation-theory| # }

Before it is possible to explain how representation theory transitions from pure
mathematics to physics, a detour into a special aspect of the framework of quantum
mechanics is required. To specify the effect of the group action g on the vector field
¥, i.e., to uncover the form of v, a powerful procedure from quantum field theory
is invoked, called second quantization. In quantum mechanics, the properties of a
physical system are encoded into a state vector |1/), employing a notation introduced
by Paul A. M. Dirac (1939), referred to as bra-ket notation (see, for instance also
Sakurai 1994). |¢) is a vector in an infinitely dimensional complex Hilbert space,
an abstract vector space, generalizing the notion of Euclidean space, equipped with
specific structures. Physical measurements are associated with linear operators on
this space of quantum state vectors, called observables. From |¢) the wave function
¥ (t, x) can be derived, which is interpreted as a probability amplitude, assigning
| (t, x)|? the role of a probability density for locating the particle at x at time z.
This interpretation goes back to Max Born (Born 1926), winning him a Nobel Prize
in 1954. The time evolution of the wave function is described by the Schrodinger
equation (Schrodinger 1926a,b,c,d)

ihd (t, x) = H (1, X), (3.24)

where H is the Hamiltonian operator, characterizing the energy of the system,
awarding Erwin Schrodinger a Nobel Prize in 1933. General textbooks on quan-
tum mechanics are, for instance Feynman et al. (1965), Sakurai (1994), Messiah
(2000), Schwabl (2007). In essence, a particle located at (¢, x) is described by the
wave function v (¢, X). This idea is referred to as first quantization. To extend this
notion of quantization from objects with three degrees of (spatial) freedom to quan-
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tum fields with infinite degrees of freedom, a procedure called second quantization is
called for. Essentially, the wave function is promoted from a vector to an operator in a
Hilbert space, see, for instance Schwabl (2008). There exist, however, various types
quantization schemes that have been proposed over the decades, each coming with
their own merits and drawbacks (Kaku 1993). A prominent example is Feynman’s
path integral formulation (Feynman 1942, 1948), see Sect. 9.1.

After this detour, in the context of second quantization, ¥ is now understood
as being on par with the transformation operator U(g), and the effect of the group
action g can be stated as

Y =U@Vv'U (9. (3.25)

By virtue of this equation, it has become possible to link quantum fields with group
theory. So not only is quantum field theory quantum mechanics extended to infinite
degrees of freedom, it is, roughly speaking, also the merger of quantum theory with
group theory. Namely in the sense that abstract group transformations are represented
and thus realized as linear transformations on the vector spaces of quantum physics.

{ ﬂ |3.1.4-representation-theory-continued >

It should be noted that (3.25) can be understood in the terms of linear algebra as a
similarity transformation of matrices, where v/ and v represent the same operator
under two different bases. Using the power of representation theory (Tung 1993;
Cornwell 1997), the effect of the transformation can be explicitly formulated'' as

Uy'U™"(g) = Uy, (3.26)

employing Einstein’s summation convention. In a final step, the effect of the group
action on the vector field can now be solely derived from the knowledge of the Lie
algebra. As the Lie group G is a continuous transformation group, its elements can
be naturally parametrized, for instance, by the set of scalars 6y, as g = g(01, ..., 6,),
with n = dim(G). These variables carry over into the matrix U = U6, ..., 6,).

By virtue of (3.21), U can be associated with a one-parameter subgroup of G.
Alternatively, via (3.18), U is understood as a continuous symmetry. In the end, the
generators X € g encode the information for the group action

U@, ...,0,) = exp6;X-), (3.27)
where the matrices X* are a matrix representation of the Lie algebra generators X ¥,

implying that they satisfy the commutation relations (3.19). In other words, the Lie
brackets of the matrix representations must obey the Jacobi identity. As the structure

"Two technicalities are glossed over here. For one, ¥’ = y/(x*) and x* is also affected by the
transformation. In addition, there is the issue of passive and active transformations, see, for instance
Schwabl (2008).
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constants ¥ satisfy a similar relation, the elements of the matrix representations
can be defined as
(XK = R, (3.28)

By construction, this simple definition of the matrices X* captures all the features
of the Lie algebra, satisfying (3.19), and is called the adjoint representation.'? All
these manipulations culminate in the following equation, reducing the effect of the
symmetry group action on the vector filed to the structure constants of the Lie algebra.
Expanding (3.25)—(3.27) in a Taylor series yields

v = exp (61X ) /= exp (6 ) v/
=¥’ + 01y + 06,

(3.29)

for generators close to the identity element. The symbol O, also known as big-O
notation, generally describes the asymptotic behavior of a function, or, in this case,
encapsulates higher order terms. In a more compact notation, the Lagrangian of a
vector field is invariant under a symmetry group G, transforming v’ — ", if (3.22)
holds. Then, for infinitesimal transformations

Y=Y 4 O = g+ sy (3.30)

Building on this procedure, Noether’s theorem can now easily be proved. The
change in the quantum field v/, induced by the symmetry transformation and encoded
as 8y, causes a corresponding perturbation in the Lagrangian

SL = 8L syt + oL 80, ¥ (3.31)
YTt 8@ T '
Utilizing the Euler—Lagrange equations for Lagrange densities, the field-theoretic
version of (3.1), yields

8L = 6,9, [ fkil//ji| =: 6,0, T". (3.32)

8
80y

The invariance requirement § £ = 0 leads to a conserved quantity 7. See, for instance
Cheng and Li (1996).

< 3.1.4-representation-theory-continued| # }

12 Adding a symbol for this element to the empty top right-hand corner of Fig. 3.1 would complete
the diagram.
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3.2 Symmetry Manifested

Symmetry is perhaps the profoundest concept ever to be discovered in theoretical
physics, uncovering deep truths about the workings of reality. It lies at the heart
of special relativity and quantum theory, as will be demonstrated in the following
sections.

3.2.1 Causality and the Relation of Space and Time

The experimental discovery that light propagates at a constant speed c, regardless of
the speed of any observer, posed a great challenge to physicists. The resolution would
transform physics as it was known and reveal deep connections between different
laws of physics.

In April and July of the year 1887, Albert A. Michelson and Edward Morley set
up an experiment to verify the existence of the aether, a postulated substance that
permeated all of space and acted as the medium for light to propagate in. The result
was negative. Not only was there no aether to be detected, but more puzzlingly,
velocities could not be simply added up linearly, as Galileo Galilei had envisioned
in his theory of relativity.

One year after the Michelson—-Morley experiment, George FitzGerald proposed
the revolutionary idea that the Galilean transformation should be replaced with a
transformation that mixes space and time coordinates in inertial frames (Faraoni
2013). This was the first postulation hinting at the malleability of space and time.
Hendrik Lorentz, soon after, introduced a fully-fledged transformation rule, today
named after him. Consider an inertial frame described by the space and time coor-
dinates {¢, x, y, z}. An additional inertial frame {#’, x’, y’, 7'} is moving with relative
velocity v in direction of the x-axis. The following transformation rule describes the
mathematics behind moving from {¢, x, y, z} to {¢', x, y/, Z'}, called a Lorentz boost

, x—vt
t—> 1t = ——,
I-&
x—x =y,

3.33
Yoy =1, (3.33)

7—>7 =

Historically, Lorentz derived his transformation rule employing the newly discovered
invariance of the speed of light, the fact that all observers measure the same value for
c in their reference frames. Consider a spherical pulse of electromagnetic radiation
emitted at the origin of each inertial system at r = 0. It propagates along the x and
x'-axis as follows
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(3.34)

From this consistency requirement, the Lorentz transformation in (3.33) can be
derived (Faraoni 2013).

However, the Lorentz transformation reveals a far deeper truth. The constant ¢
appearing in (3.33) denotes a fundamental velocity, which is a priori unrelated to
the speed of light in a vacuum. Let us call it ¢y, representing a space-time structure
constant. If one postulates that reality should make sense, then the Lorentz transfor-
mation is the only possible solution. In other words, in a comprehensible universe, the
laws of physics are unchanged in reference frames and are independent of position,
orientation, and velocity. This consistency assumption translates into the following
commonsensical requirements that:

(1) There exist no preferred reference frames.
(2) Itis possible to transform between observers in reference frames.

Only by adhering to these postulates, the Lorentz transformation can be derived, with-
out any reference to c, the invariant speed of light (von Ignatowsky 1911; Pelissetto
and Testa 2015). Now, the constant velocity cs. appearing in (3.33) is interpreted as
the speed of causality, the theoretical maximal velocity of information transmission
in the universe (Landau and Lifshitz 1951). To understand this, the theory of special
relativity, building on Lorentz’ insights, had to be formulated.

Einstein interpreted the meaning of the Lorentz transformation in his theory of
special relativity, yielding the theory’s prominent predictions: time dilation, length
contraction, and the equivalence of mass and energy E = mc?. He original introduced
special relativity in 1905 based on two postulates of symmetry (Einstein 1905):

(1) The laws of physics are invariant in all inertial systems (i.e., non-accelerating
frames of reference)

(2) The speed of light in a vacuum is the same for all observers (regardless of the
motion of the light source).

Enforcing Lorentz invariance for Postulate (2) results in the mixing of space and
time. As a result, observers disagree on the chronological order of events—some-
one’s past is in someone else’s future. This dramatic turn of events threatened to
render time and causality meaningless. Luckily, the universe conspires in a way to
uphold a more general notion of causality than the temporal one we naively assumed
to exist. If causality is expressed as a space-time interval, then it becomes a universal
property all observers agree on. In mathematical terms

(As)? := (cAr)? — (Ax)? — (Ay)? — (Az)°. (3.35)
The space-time interval (As)? encodes the separation of events in space-time and it

holds that
(As)? = (As)?, (3.36)
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for all reference frames. Due to the minus sign, (As)? can be positive, zero, or
negative. This means that the space-time interval between two distinct events can
result in the events being separated by more time than space, or vice versa. In other
words, the space-time interval between events A and B says something about if
and how A can influence B. This is a description of causality, which is invariant and
universally agreed upon by all observers. Having lost causality in time, we rediscover
it in space-time. Mathematically, this is described by a Minkowski space, a four-
dimensional reality that contains all past, present, and future events (see Sect.3.2.2.1
below for a more formal definition). The notion of space-time invokes the analogy of
ablock universe, where the passage of time is an illusion. All observers in space-time
move through the block and experience slices of it as their present. In this sense, the
entire unchanging time-line of an observer represents their reality. So, why do our
brains make us perceive space-time so vividly as a distinctly spatial entity evolving
in time? No one knows, but this apparent atemporal reality underlying our illusion
of the passage of time can be consoling. During Einstein’s early years, he worked in
obscurity in the patent office in Bern with Michele Besso. When Besso died in 1955,
Einstein wrote to the widow (Wuppuluri and Ghirardi 2017, p. 469):

Now he has departed from this strange world a little ahead of me. That signifies nothing. For
those of us who believe in physics, the distinction between past, present and future is only
a stubbornly persistent illusion.

Two weeks later, Einstein would also die.

The question remains how the speed of causality ¢, in the Lorentz transformation,
derived solely from the relation between space and time, is related to the speed of
light. Yet again, invariance gives the answer. Maxwell’s equations (2.4), encoding
everything there is to know about electromagnetism, are only invariant under Lorentz
transformations for a very specific value of cg.. The fundamental speed limit of
causality and the contents of Maxwell’s equations have to interrelate, in order for
invariance to be upheld.

It was known that a wave equation, describing the propagation of electromagnetic
radiation, can be easily derived from Maxwell’s equations (Jackson 1998). The speed
of these waves is derived from the two fundamental constants appearing in the equa-
tions: the permittivity (¢o) and the permeability (1) of the vacuum. They combine
to yield a theoretical definition of the velocity of electromagnetic radiation—in other
words, the speed of light. It is found that

c:= L (3.37)
EoMo

This is the only speed massless particles can travel at and particles with mass can
never reach this speed. Equipped with this knowledge, the final piece of the puzzle
is found, where c¢,. = c.
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The Lorentz transformation is a manifestation of a deep symmetry in nature.
Requiring physical theories to be Lorentz invariant results in the speed of causal-
ity being the constant speed of light. Moreover, the Lorentz transformation
reveals the intimate interplay of space and time, setting the stage for special
relativity.

3.2.2 Elementary Particles

Continuing with the story, another surprising and deep link between symmetry and
the nature of elementary particles becomes apparent. This insight would also be
awarded with a Nobel Prize.

3.2.2.1 The Lorentz Group

A prominent example of a Lie group G is the Lorentz group .Z. As a group of
transformations it encodes fundamental symmetries of space-time. In detail, . is
the group of the isometries of space-time, i.e., distance-preserving maps between
spaces endowed with a metric, which leave the origin fixed.

Formally, the merger of space and time is accomplished by the means of Min-
kowski space, a four-dimensional manifold. A vector in this space is comprised of
x* = (t, x), where natural units'? are assumed. This is the abstract setting in which
Einstein’s theory of special relativity is formulated. The metric tensor associated with
flat Minkowski space-time is simply a diagonal matrix g"" = diag(—1,1,1,1) =
—g&uv. Hence x, = g,,x" = (¢, —x). Sometimes the notation n*” is used for flat
space-time, reserving g"*” for the curved case. The Lorentz group can be represented
as the generalized orthogonal group O(1, 3), the matrix Lie group which preserves the
quadratic form ds* = g,,dx"dx" = dt* — dx* — dy* — dz*. Recall (3.35) defining
the space-time interval.

As Maxwell’s field equations in the theory of electrodynamics, seen in (2.4),
the Dirac equation,'* and the kinematic laws of special relativity, given in (4.56),
are all invariant under Lorentz transformations, the corresponding Lorentz group is
understood as encoding the symmetries of fundamental laws of nature.

{ # |3.2.2.1-lorentz-transformation >

In detail, a general group element A € . induces the transformation

131n the context of physics this means, for instance, ¢ = h = 1.
14 A relativistic wave equation describing electrons and quarks, described below in (3.41) and (3.42).
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Xt = = AR (3.38)

A concrete example of A is the Lorentz boost seen in (3.33). In analogy to (3.26), the
effect of . on a generic quantum field ¥* is captured by the following expression

UMY U AT = [UAH]12 97 (AxM), (3.39)

where U is the operator representing A on the Hilbert space where v* is defined,
with the corresponding matrix representation on the right-hand side.

< 3.2.2.1-lorentz-transformation| ﬂ }

Fields transforming as (3.39) are called spinors. These objects, requiring 720° to
complete a full rotation, reflect the true rotational symmetry of space. As mentioned
earlier, spinors represent mass particles, i.e., leptons and quarks, and are generally
categorized as fermions, particles carrying half-integer spin. It is an interesting piece
of history, that it took a long time for physicists to understand these strange quantities
existing in Minkowski space. Paul Ehrenfest, coining the term spinor, remarked in
1932 (adapted from a translated quote seen in Tomonaga 1997, p. 130):

By all measures, it is truly strange that absolutely no one, until the work of Pauli [...] and
Dirac, which is twenty years after special relativity [...], suggested this eerie proposition, that
a mysterious tribe by the name of the spinor family inhabits isotropic [three-dimensional]
space or the Einstein-Minkowski world.

Until the full connection between the transformation properties of spinors and the
Lorentz group were uncovered, spinors had raised their heads at various points in
time. In their most general mathematical form they were discovery by Eli Cartan
in 1913 (Cartan 1913, 1938, 1966), a mathematician who was involved in fun-
damental work on the theory of Lie groups and also their geometric applications.
Then, due to efforts aiming at incorporating the notion of spin into the framework of
quantum mechanics, in other words, by constructing a quantum theory of the elec-
tron, Wolfgang Pauli and Dirac found equations describing the behavior of spinors
(Pauli 1927; Dirac 1928). As these entities were comprised of two respectively four
elements, they were simply referred to as two-component or four-component quan-
tities. In 1928, Dirac started to investigate how the Schrodinger equation (3.24),
could be made consistent with the principles of special relativity, in effect marrying
quantum mechanics and relativity. Formally, he was searching for a Lorentz invariant
quantum wave equation, incorporating spinor fields ¥ (x") with mass, describing elec-
trons and quarks. This straightforward task would lead him deeper into the abstract
world, as this feat could only be accomplished by introducing novel mathematical
quantities. In order to sculpture yet another variation of the theme of derivatives,
Dirac introduced a set of specific matrices y*, u = 0, ..., 3. Today, they are known
as Dirac matrices and the new derivative takes the from
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Ji=y"0,, (3.40)

introducing Feynman'’s slash notation. The Dirac equation for a free spin-1/2 particle
with mass m reads

(i — m)y = 0. (3.41)

In the presence of an electromagnetic field, encoded in the 4-vector potential A,, of
(4.12), the equation takes on the form

(if — e —m)y =0, (3.42)
where e is the elementary charge. The Dirac Lagrangian reads
Loise = Yy —m)y, (3.43)

with the Hermitian conjugate . As usual, the equations of motion, in this case
the Dirac equation (3.41), can be derived from the Lagrangian utilizing the Euler—
Lagrange equations (3.6). Dirac’s insights opened up a whole new section in the Book
of Nature, see Collins et al. (1989), Kaku (1993), Peskin and Schroeder (1995), Ryder
(1996). More on the history of spin can be found in the book of the Nobel laureate
Sin-itiro Tomonaga (Tomonaga 1997).

{ # |3.2.2.1-lorentz-group-representation >

The generators M *" of the Lie algebra o(1, 3) of the Lorentz group satisfy the
specific commutation relations

[M* MP7] =i(g"M" — g""M" — g"" M" + g"" M™), (3.44)
encoding the properties of U(A) € O(1, 3). An explicit matrix representation is
found to be

[MFP = i(gh*8" — g"°8"%), (3.45)

employing Kronecker’s delta. Parameterizing A = A(w), the operators, following
(3.27), can be defined via these generators in the Lie algebra

U(A) = explio,,M*). (3.46)

A Lorentz transformation is now explicitly implemented on a 4-vector field V*,
similarly to the generic case seen in, as (3.39)

VP () = VP(AXM) + iw, [MFVT V7 (AxP). (3.47)



3.2 Symmetry Manifested 87

Compare with (3.29). In summary, the representation of the Lorentz group given
by M*¥ yields the transformation rules for Lorentz vectors V*. There is, however,
another important representation to be uncovered, which is related to spinor fields
Y% (x"). The representation matrices are

i
T = Z[y“, y'], (3.48)

defined via the Dirac matrices. By replacing V* — ¢ and [M*']", — [E’”]“ﬂ in
(3.47), the transformation property of 4-component spinors under Lorentz transfor-
mations is discovered. The matrices X" are the generators of the spinor representa-
tion of the Lorentz group, derived solely from the Dirac matrices. For more details,
see, for instance, Peskin and Schroeder (1995). In Sect.4.3.2, starting from (4.61),
more layers of abstraction will be uncovered.

< 3.2.2.1-lorentz-group-representation| ﬁ{ }

In summary, quantum fields'> can be understood by virtue of their transforma-
tion properties specified by representations of the Lorentz group. This feat does not
only apply to spinors but can generally be extended to bosons: scalar spin-0 fields,
vector spin-1 fields, and tensor spin-2 fields can all be characterized by specific
representations of .. General references are Tung (1993), Schwabl (2008).

The Lorentz group encodes the symmetries of fundamental laws of nature:
electromagnetism, special relativity, and the quantum behavior of the electron
(via the Dirac equation), as all quantum fields transform as representations of
the Lorentz group.

3.2.2.2 The Poincaré Group
The Poincaré group & extends the Lorentz group by an additional transformation
= = x4 at. (3.49)

This is simply a translation in space-time along the vector a*.

{# |3.2.2.2-poincare-group >

158ee also Sect. 10.1.1.
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Inessence, & represents all isometries of Minkowski space by combining Lorentz
transformations with translations:

= = AR XY+ at, (3.50)

The Poincaré group is generated by the Lorentz group generators M *", recalling
(3.46), and the additional generators P*, obeying specific commutation relations. It
can be shown that P* = i9* (Ryder 1996). This is in analogy with ordinary quantum
mechanics, where classical quantities are replaced by operators. For instance, energy
and momentum:

E—id, p— V/i, (3.51)

see, for instance Schwabl (2007). In effect, a state in the Hilbert space representing a
massive particle with 4-momentum p* = (m, p), written in bra-ket notation (Sakurai
1994) as |p*), satisfies the eigenvalue equation P*|p*) = p#*|p*).

The full commutation relations defining the Poincaré algebra are

[P, P"] =0,
[P M) =i(g" P’ —g""P"), (3.52)
[M;w’Mp(r] — l-(gvau_(r _ g/tvarr _ gvrrMup +guanp) ,

where gV = diag(1, —1, —1, —1) represents the flat space-time metric as in the case
of the Lorentz group.

Lie algebras contain special elements called Casimir operators. By definition,
they commute with all generators in the Lie algebra. The representations of the
group can always be labeled by the eigenvalues of the Casimir operators (Tung 1993;
O’Raifeartaigh 1988). The Poincaré group has two Casimir operators, C; = P, P*
and C, = W, W#, where W*, called the Pauli-Lubanski tensor, is a function of P”
and M.

< 3.2.2.2-poincare-group| #}

Using this mathematical machinery, Eugene Wigner could demonstrate the following
remarkable fact (Wigner 1939):

All known physical particle states transform as representations of the
Poincaré group.

These insights would win him the Nobel Prize in 1963.

# |13.2.2.2-casimir-operator >
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In detail, the eigenvalues'® of the Casimir operators are
Ci=m? C,=m’s(s+1), (3.53)

where m represents the particle’s mass and s its spin. The resulting representations
are associated with the following particle states

3
lm,s); s==,1,-,...
2

(3.54)
|h);  h = s,

where £ is the generalization of spin to mass-less states called helicity and |m, s)
labels particle state distinguished by their mass and spin.

< 3.2.2.2-casimir-operator| #}

Wigner’s work also sheds light on the question why particles have quantized spin
and establishes that spin is indeed associated with the group of rotations, justifying
and formalizing the vague notion of understanding spin as an intrinsic quantum form
of angular momentum. General references are Tung (1993), Kaku (1993), Ryder
(1996).

It should, however, also be noted, that other states associated with further possible
representations have not been observed in nature. As an example, Wigner’s classi-
fication also yields tachyons. These are particles with m?> < 0, implying imaginary
mass. Using the equation for the total relativistic energy of a particle with rest mass
m (Einstein 1956), and switching to the SI system of units

E=—u, (3.55)

the condition v > ¢, implying a speed faster than light, results in E = m’c?/ib, for
some real number b. As E is a real number by definition, this requires m’' = im,
establishing tachyons, defined by imaginary mass, as being superluminal particles.

{ # |3.2.2.1-quantum-fields-and-particle-states >

Finally, the groups .Z and &2, with their representations describing the transfor-
mation properties of quantum fields and physical particle states, respectively, are
related as follows. Recalling that in bra-ket notation, an arbitrary state is described

16For an operator A acting on a vector v, the eigenvalue equation reads Av = Av, with the eigenvalue
A.
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by |1), the wave function associated with this state is found to be v (x*) = (x*|).
In momentum-space, this wave function can be re-expressed as ¥ (p*) = (p*|¥),
where the relationship between i and ¥ is established by a Fourier transformation
(Sakurai 1994). Both fields transform identically under Lorentz transformations.
A wave equation for ¥, for instance the Schrodinger or Dirac equation, allows the
quantity to be expanded in terms of coefficients which transform as representations of
the Poincaré group, i.e., identically to the particle states (Tung 1993, Section 10.5.3).

< 3.2.2.1-quantum-fields-and-particle-states| # }

Conclusion

Symmetry, unexpectedly, emerged as an abstract notion running like a golden thread
through the Book of Nature, intimately mirroring the structure of the tapestry of
reality. This chapter only disclosed the beginning of the power of symmetry. In the
next chapter, the concept of symmetry allows dramatically different physical theories
to be unified in a single unified description of the universe. In other words, symmetry
is a Rosetta Stone able to decipher the different hieroglyphic scripts of physics into
a unified language.
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Chapter 4 ®)
The Unification Power of Symmetry oo

Abstract The introduction of a new kind of symmetry ushered in a golden era for
theoretical physics. The marriage of this novel gauge theory with quantum field theory
culminated in the standard model of particle physics. This is the unified description of
all three non-gravitational forces in the universe, a momentous milestone in human
knowledge generation. Inspired by this success, physicists hoped for a “theory of
everything,” uniting the standard model with general relativity, the theory of gravity.
These attempts uncovered five ten-dimensional superstring theories, unified within
an overarching eleven-dimensional framework called M-Theory. To this day, the
theory of everything remains an elusive dream. Albert Einstein, arguably the most
insightful physicists, played a rather tragic role in the history of unification and
quantum theory.

Level of mathematical formality: high (however, the mathematically involved parts
are encapsulated and demarcated by the tags {¢p ... ¢}, hence easily bypassed).

All the previous accounts of symmetry have one thing in common: they are all
instances of global symmetry principles. This means that these symmetries are
unchanged for all points in space-time. The introduction of a new kind of twist
on the idea of symmetry in 1918 unlocked even greater powers of this abstract for-
malism in its propensity to probe reality, paving the way for a novel type of field
theory to flourish. Today, the tremendous success of the mathematical framework
underlying the standard model, providing a unified and overarching theory of all
non-gravitational forces, can be understood to rest on the insights gained from what
is known as gauge theory. The idea fueling this novel approach is related to a new kind
of symmetry, called gauge symmetry. It is a local symmetry, meaning that its proper-
ties are now a function of the space-time coordinates x*. This principle was first fully
formulated, independently, by Hermann Weyl and Emmy Noether in the same year
(Brading 2002). However, the course of the history of gauge theory, and in parallel
the road to unification, would take meandering paths.
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4.1 Back to Geometry: The Principle of Covariance

Einstein’s theory of general relativity, sketched in (3.14), is an extremely elegant and
aesthetic physical theory. It is based on two very subtle principles, a physical and a
mathematical requirement.

The physical principle is known as the equivalence principle. Sometimes, seem-
ingly innocuous observations have the power to help uncover deep truths about the
workings of nature. Say, a ball rolling in a toy wagon or a spinning bucket. To quote
from Matthews (1994):

As a child, the Nobel Prize-winning physicist Richard Feynman asked his father why a ball
in his toy wagon moved backward whenever he pulled the wagon forward. His father said
that the answer lay in the tendency of moving things to keep moving, and of stationary things
to stay put. “This tendency is called inertia,” said Feynman senior. Then, with uncommon
wisdom, he added: “But nobody knows why it is true.”

Inertia, the measure of a body’s resistance to acceleration, is encoded in Newton’s
second law describing the resulting force F' due to the acceleration a = X reads
F = mja. The mass term m; appearing in this equation is called inertial mass. This
is to distinguish it from the mass term appearing in Newton’s law of universal gravi-
tation,' called gravitational mass m,. A simple experiment, going back to Newton, is
the following. A bucket partly filled with water is hung from a long cord and rotated
so many times until the cord becomes strongly twisted. By releasing the bucket,
after ensuring the water is at rest, it will rotate in the other direction due to the cord
untwisting. Slowly the water begins to rotate with the bucket and as it does so the
water moves to the sides of the bucket. In effect, the surface of the water becomes
concave. This effect is not due to the water spinning relative to the bucket, as, at
some point, the bucket and the water are spinning at the same rate while the surface
stays concave. Again, the question of inertia emerges. Why should the surface of
the water bulge? What is the origin of this effect? One explanation was proposed by
the philosopher and physicist Ernst Mach. He attributed the source of inertia to the
whole matter content of the universe, an idea today referred to as Mach’s principle
(Misner et al. 1973). This principle guided Einstein in his formulation of general
relativity (Penrose 2004, p. 753). In his equivalence principle, Einstein asserted that
the gravitational mass m, is equivalent to the inertial mass m;. In other words, the
acceleration a body experiences due to its mass being exposed to the pull of the
gravitational force, is independent of the nature of the body. The insight leading to
the postulation of this principle, Einstein would later call “the happiest thought of
my life” (Thorne 1995, p. 97). This thought was the following, quoting Einstein in
Thorne (1995, p. 96f.):

I was sitting in a chair in the patent office at Bern, when all of a sudden a thought occurred
to me: “If a person falls freely, he will not feel his own weight.”

In effect, the principle of equivalence states that there is no local way of knowing if
one is feeling the effect of gravitational pull or the force due to acceleration. So a

ISeen in (4.55).
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free falling observer will not detect any traces of gravity in her local reference frame,
and only the laws of special relativity apply. Einstein soon derived two testable
consequences of the equivalence principle, namely that gravity bends light, and that
the frequency of radiation varies with the strength of gravity (Torretti 1999, p. 290).
Unfortunately, it was later shown that Mach’s principle is not actually incorporated
in general relativity (Penrose 2004, p. 753), and still today the origins of inertia are
puzzling (Matthews 1994). Thus, seemingly obvious and uncontroversial aspects of
reality can have very deep and mysterious connotations.

Leaving the physical world and returning to the realm of mathematical abstrac-
tions, Einstein required another principle to base general relativity on. This math-
ematical requirement is intimately interwoven with the ideas of invariance, related
to symmetry and is called the principle of (general) covariance. In a nutshell, it
states that the contents of physical theories should be independent of the choice of
coordinates needed to make explicit calculations. In accordance with the insights
gained from analyzing symmetry transformation, the equations of general relativ-
ity are invariant under general (differentiable) coordinate transformations: they are
covariant. Lorentz transformations, seen in (3.38), can also be understood as coor-
dinate transformations. This means that they do not infer a change in the physical
system anymore, but now relate to the choice of the coordinate system used for label-
ing and measuring abstract vectors and tensors. As an example, some manipulations
on the vector @ € R? only become possible once a coordinate system is chosen, rel-
ative to which the vector components a;, a,, and a3 can be assigned numbers. For
instance, if @ = (1, 1, 1) is one manifestation then a 45° rotation around the x3-axis
of the coordinate system reveals @’ = (ﬁ, 0, 1). As this is still the same abstract
entity, its properties, such as the length,”> must stay unchanged: |a| = +/3 = |a/|.
Covariance may not appear like a particularly profound insight into the workings of
nature, as one could argue that theses are common sense requirements for a physical
theory. However, the ramifications are far-reaching and profound.

{# |4.1-covariant-derivative >

Formally, general coordinate transformations in four-dimensional space-time are
defined as follows
xt— X = xH* F Er (M), 4.1)

where £/ is some smooth function of the coordinates. This can be rephrased infinites-
imally? in general terms for a vector dx* as

2This is also called the norm of a vector: |X| := , /xl2 + x% + x32.

3Infinitesimal quantities are the cornerstone of the notion of derivatives in calculus. The idea being,
that, for instance, a small displacement along the x-axis, Ax, is infinitesimally set to the approach
zero, yielding dx, an abstract non-zero quantity.
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8 I
At — dx'™* = x_dxv, “4.2)

oxV

where the new set of general coordinates are denoted by the prime symbol, and
x" = x"™"(x") describe the same point in space-time as x". These transformations
are represented by elements of GL(4, R), i.e., real 4 x 4 matrices:

S xm
A= 4.3)
axV
It should be noted that
AR AV, =81 = 54 = A", A7, (4.4)

employing Kronecker’s delta. These transformation matrices can be used to define
vectors and tensors. In other words, the details of how an object transforms covari-
antly under general coordinate transformations renders it a vector or a tensor. As an
example, for a second-rank tensor transforms as

T" = A% A°, T, (4.5)

Although the placement of the indices in the subscript or superscript is related to the
details of the transformation properties,* these technicalities are irrelevant for this
discussion. It suffices to recall that the metric tensor can be utilized to lower or raise
indices, e.g., A, = g,,A". The metric also transforms as a second-rank tensor:

g =A% 4" 8. (4.6)

Looking at the transformation properties of a derivative of a vector 9, A*, with 9, :=
d/0x", one finds

§LA" = (A°%,0,) (A"pAp)
/ , @.7)
= A%, (8,4%) A + A7, 4%, (3, 47),

using the product rule. The first term in the second line of the equation breaks the
transformation law for a second-rank tensor. In order to restore covariance, a new
kind of derivative is introduced, called the covariant derivative

VuAY =0, A" =TV, A", (4.8)

where I'" ; are the Christoffel symbols seen in (3.13), which have the following
special transformation properties

4Called covariant and contravariant behavior.
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I, = A%, A5 A% 17+ 4%, A% (3,47%). 4.9)

Now the covariant derivative can be seen to transform correctly under general coor-
dinate transformations

(VA" =V, AV = A%, A", (Vo A”) (4.10)

where the second term in the transformed Christoffel symbols is responsible for the
cancellation of the undesired expression in (4.7). Note that (4.4) was employed for
the calculation. See Misner et al. (1973), Peebles (1993), Lawrie (2013).

<4.1-covariant-derivative| # }

In summary, the innocent requirement that geometric entities, like vectors and ten-
sors, should be independent of their coordinate representation conjures up a novel
mathematical machinery. Yet again, the basic operation of taking the derivative is
recast in a more general form, bringing with it powerful new properties and relation-
ships. Indeed, it is interesting to note that the Christoffel symbols are associated not
only with the curvature of space-time, see (3.13), and the covariant derivatives of
(4.8), but also the differential geometric notions of parallel transport and geodesics, a
generalization of the idea of a straight line to curved space-time. Additional equations
relating to general relativity are (4.47) and (4.56).

Guided by the principles of equivalence and covariance, Einstein was able to for-
mulate the famous geometrodynamic field equations, one of the most aesthetic and
accurate physical theories. One experiment confirmed the effect of gravity, as pre-
dicted by general relativity, on clocks up to an accuracy of 10~'® hertz (Chou et al.
2010). Another experiment measured the “twisting” of space-time, called frame-
dragging, due to the rotation of Earth to be 37.2 & 7.2 milliarcseconds. The theo-
retical value was calculated to be 39.2 milliarcseconds (Everitt et al. 2011). This
amazing accuracy between experiment and theory is only rivaled by the relativis-
tic quantum field theory of electrodynamics, know as quantum electrodynamics,
winning Tomonaga, Julian Schwinger, and Feynman a Nobel Prize in 1965. In this
theory, the magnetic moment of the electron can be computed. The experimental
measurement can be performed with an impressive precision of fourteen digits, in
exact correspondence with the theoretical value (Hanneke et al. 2008). For more
details on the field equations of general relativity, see Sect. 10.1.2.

4.2 The History of Gauge Theory

A key feature of general relativity is that it is a local theory. Only local coordinate
systems are meaningful. Christoffel symbols describe the effects of transporting
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geometrical information along curves in a manifold, allowing coordinate systems to
be related to each other. In detail, the value of I'" pe defined via the metric tensor at
each point in space-time, depends on the properties of the gravitational field, allowing
the relative “orientation” of local coordinate systems to be compared. Weyl took this
idea to the next level (Moriyasu 1983). He wondered if the effects of other forces
of nature could be associated with a corresponding mathematical quantity similar to
'Y ;- Weyl was specifically thinking about electromagnetism.

He embarked on a quest that would eventually reveal “one of the most significant
and far-reaching developments of physics in this [20th] century” (Moriyasu 1983,
p- 1) in 1918, when he was attempting to derive a unified theory of electromagnetism
and gravitation (Weyl 1918). The same year Noether published her famous theorems
relating symmetry to conserved quantities, Weyl was independently attempting to
explain the conservation of the electric charge with a novel local symmetry. He called
the invariance related to this new symmetry Eichinvarianz. Although the notion was
originally related to invariances due to changes in scale, the English translations of
Weyl’s work referred to gauge invariance and gauge symmetry. It would, however,
require nearly 50 years for gauge invariance to be rediscovered and reformulated
as the powerful theory known today. Indeed, the idea of local gauge symmetry was
premature in 1918, where the only known elementary particles were electrons and
protons.

In more detail, Weyl proposed that the norm of a physical vector should not be
a constant, but depend on the location in space-time. Associated with this, a new
quantity, similar to the Christoffel symbols is required, in order to relate the lengths
of vectors at different positions.

{# |4.2-gauge-invariance >

Formally, invariance is restored again, if, in analogy to (4.8), the derivative is
replaced with a new kind of derivative, resulting in the cancellation the unwanted
terms

D, =09, —ciA,. 4.11)

D,, is called the gauge-invariant derivative and c¢; > 0 is some constant. Note that
A, (xV) 1s anew vector field, referred to as the gauge field. Weyl’s great insight was
his idea to decode these abstract notions and connect them with electromagnetism.

The equations of electromagnetism can be recast in Minkowski space by intro-
ducing the so-called 4-vector potential, defined as

A, = (D, A). (4.12)
The scalar potential ® and the vector potential A can be derived from the charge

density p and the current density J, respectively. Recall that p and J appear in (2.4).
Similarly to A, they can be understood as the components of the 4-vector current
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density, or 4-current J,, = (p, J). Moreover, both the electric and magnetic fields
can be derived from the scalar and vector potentials as

B=VxA, E=-3A-Vd, (4.13)

where V is defined in (2.2). From the new quantity of (4.12), the Maxwell field-
strength tensor, hinted at in (3.7), can be explicitly constructed as

Fu=0,A, — ,A,. (4.14)

Now Maxwell’s equations can be recovered in two different ways. Either by inserting
the true electromagnetic Lagrangian

1
Lem = _A_LF’”FW — J, A", (4.15)
into the Euler-Lagrange equations (3.6). Alternatively, Maxwell’s equations can be
computed directly from F),,. The inhomogeneous Maxwell equations (2.4a) and
(2.4d) are retrieved by virtue of
9, F"" =0A" — 98" (9,A") = J". (4.16)
The new type of derivative, called the d’ Alembertian operator, is defined as
0 :=9,0" = 8%/31* — V% (4.17)
The homogeneous equations (2.4b) and (2.4c) can be derived from
3, F* =0, (4.18)
where F™ is obtained from F*’ by substituting E — B and B — —E. For more
details, see Jackson (1998), Collins et al. (1989).
It turns out that the formulation of electrodynamics in this guise leads to a large
redundancy associated with the theory. All the equations related to A,,, importantly
Maxwell’s equations, are invariant under the following transformation

Al = Ay +2dux. (4.19)

where x is an unspecified scalar function of x” and ¢; is a constant.

< 4.2-gauge-invariance| #}

Weyl realized, that (4.19) could be understood as a local gauge transformation,
associated with the covariant derivative D,,. In effect, he identified the potential A,
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to be the gauge field or gauge boson A, appearing in (4.11). Technically, for the
equations to work, the constants are required to be ¢y = ie and ¢, = 1, where e
denotes the elementary charge. See, for instance de Wit and Smith (2014), Peskin
and Schroeder (1995). Unfortunately, it was shown by Einstein and others that Weyl’s
gauge theory based on changes in scale had failed—it lead to conflicts with known
physical facts (Vizgin 1994; Moriyasu 1983 and Penrose 2004, Section 19.4). The
mathematical observation that Maxwell’s equations are gauge invariant was simply
seen as an accident, as there was no deeper interpretation of the phenomena able to
shed some light on the issue. The potential A,, was just a ghost in the theory.

However, with the development of quantum mechanics, Weyl could re-apply the
idea of gauge invariance in a new context. This gave his gauge theory a new meaning.
Note that the wave function, as any plane wave, can be expressed as

Y, x)=Cexp(i(k-x —wt)), (4.20)

where C is the amplitude, k the wave vector, and w represents the wave’s angular
frequency. For details, see, for instance Schwabl (2007). A change of the phase of a
wave by the amount A is related to the transformation exp(i A). In quantum mechanics,
for the wave function of an electron, this is realized by the transformation

¥ =exp(ied) ¥, (4.21)

where e is the elementary charge. Weyl’s essential idea was to interpret the phase of
the wave function as the new local variable. In other words, the value A is promoted
to A(x") in (4.21). Instead of changes in scale, this new local gauge transformations is
now interpreted as changes in the phase of ¥ (¢, x), encoded via A at various points in
space-time (Weyl 1929). From the explicit form of the gauge transformation (4.21),
the covariant derivative and the transformation properties of the gauge fields can
easily be derived.

{# |4.2-quantum-mechanics-and-gauge-theory >

The transformation of the derivative of the field is given by
(9,9) = 8,9 = exp (ier) (0% + iedurvy), (4.22)
utilizing the chain rule for the derivative of the exponential function. The term ied, A

due to the local parameter breaks the covariance. Introducing the gauge fields in the
covariant derivative as D,, = d,, — ieA,,, similarly to (4.11), one finds

(Du) = (9u%) —ie(Auy) . (4.23)
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By inserting (4.22) into this equation, and noting that (A, ¥)" = A} ¢/, it can be
shown that the additional term in the covariant derivative cancels the quantity destroy-
ing the covariance. However, this is only true if the gauge field transforms as follows

Al = Ay + 3,0 (4.24)

< 4.2-quantum-mechanics-and-gauge-theory| #}

These calculations finally offered new insights for the interpretation of (4.19).
The Schrodinger equation, seen in (3.24), is left unchanged after the two gauge
transformations (4.21) and (4.24), with A = A(x"). Despite offering a clear meaning
for the new local variables A, it was still believed that the potential A, had no
physically measurable effects. It took nearly thirty years before a simple but ingenious
idea uncovered a possible observable effect due to the potential (Aharonov and
Bohm 1959), promoting A,, to a physical field in its own right. In a sense, it is
more fundamental than the electric or magnetic fields. A year later an experimental
verification of the Aharonov-Bohm effect was carried out (Chambers 1960). Looking
back at these developments, Feynman would remark (quoted in Moriyasu 1983,
p. 21):

It is interesting that something like this can be around for thirty years but, because of certain
prejudices of what is and is not significant, continues to be ignored.

To summarize, the electromagnetic interactions of charged particles can be under-
stood as alocal gauge theory, embedded in the deeper framework of quantum mechan-
ics. Just as the IV, describe how coordinate systems are related to each other in
general relativity, the connection between phase values of the wave function at dif-
ferent points is given by A,, just as Weyl had originally envisioned. The link to
the global symmetry transformations discussed previously is given by the follow-
ing. Recalling that (3.29) describes the transformation properties of a quantum field
under a group action, the formula given in (4.21) can be understood as a special case
thereof. If the variable A, parameterizing the symmetry transformations, would be
a constant, (4.21) reveals the transformation property of the field i under a global
U (1) symmetry.’ The simple mathematical trick of letting the parameter A become
space-time dependent is responsible for the transition between the global and the
local symmetry. In other words, and in the general case where the parameters of the
symmetry group are not restricted do being scalars as seen in (3.27), the notion of
“gauging the symmetry” is the straightforward substitution

Or — O (x"). (4.25)

Adding this small degree of freedom to the mathematical machinery has profound
consequences.

5U(1) is also called the unitary group.
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{# |4.2-gauge-theory >

Re-expressing (3.29) as the transformation properties related to a local symmetry
yields
¥ = exp (B (x)X) ¥ = UK, 69, (4.26)

In plain words, the matrix U is an element of a local symmetry group G, with the
group generators represented as matrices X* which satisfy commutation relations
(3.19), and the parameters 6, are now gauged. Note that (4.21) is a special case of
(4.26).

Again, this subtle change of letting the parameter 6; be a function of x" results in
an additional term in the transformation rules, as now 9,0¢ # 0. This new term
is responsible for breaking the covariance. As discussed above, and in the case
of general relativity, in order to restore gauge invariance, a gauge field Aﬁ (x") is
required.® The covariant derivative is constructed from these fields. Similarly to
(4.11) and (4.8)

Dy, =0, — A} X, =: 0, — By, (4.27)

where B* is a matrix constructed from the gauge fields. By replacing 9,, with D,
gauge invariance is restored. The transformation properties of B, can be calculated
as follows. The requirement of covariance also applies to the transformed covariant
derivative. So, utilizing the gauge transformation laws specified in (4.26)

(D) =D,y =U(Duy). (4.28)
Inserting (4.27) yields
(3, — B,) Uy =U (8, — By) ¥ (4.29)

Noting the product rule for derivatives, and rearranging some terms, the following
expression can be found, describing the transformation property associated with the
gauge fields

B, =UB, U + (3,U) U". (4.30)

Infinitesimally, i.e., for small parameter values 6; (x") < 1, the gauge transformation
can be expressed as
U=1+6X"+06%,

4.31)
U =1-6X+01%.

From this, an expression for the components of the wave function can be derived,
similar to (3.29)

Y= Oy (4.32)

Note that for every matrix generator X* there is now an associated vector A'L.
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Recall that the adjoint representation (3.28) employs the structure constants f/%,
which encode the generator matrices X*. Switching to the gauge fields, one finds
that
e _ ak k piAj k
Ay =A,+ [00A + 0,0 (4.33)

The details of how the commutation relations for the generators X* and the associated
structure constants enter the picture can, for instance, be seen in Cheng and Li (1996,
p. 232), de Wit and Smith (2014, p. 408f). Again, the expression (4.24) is found as
a special case of (4.33).

< 4.2.1-gauge-theory| #}

In order to link the abstract equations of gauge theory with concrete physically
relevant quantities, one introduces a free parameter g into the theory’. The local
parameter and the gauge fields are rescaled with this value

O — g0k, Al — gAL. (4.34)

The resulting effect of this trivial exercise is that the values g appear in the Lagrangian
and can be interpreted as the physical coupling strength (de Wit and Smith 2014).
This is a number that determines the strength of the interaction associated with the
gauge fields. As was seen for the case of electromagnetism, g = e. Essentially, the
abstract concepts of the formal representation are enriched by encoding additional
measurable aspects of the physical reality domain.

After a long journey through symmetry and geometry, all that remains, due to the
requirement of gauge invariance, are transformation properties of the wave function
and the gauge field determined solely by the structure constants and the parameter
of the local symmetry. Today, such theories are called Yang-Mills gauge theories.
Originally proposed by Chen Ning Yang and Robert Mills in 1954, as a gauge theory
describing the strong nuclear interaction (Yang and Mills 1954). They postulated that
the local gauge group was SU (2). However, this specific theory for the strong force
failed. It was known from experiments, that the nuclear force only acted on short
ranges. Yang and Mills’ theory, however, predicted that the carrier of the force,
the gauge field, would be, like the photon in electromagnetism, long-range. This is
because there is no way to incorporate gauge invariant mass terms for the gauge field
into the Lagrangian (Moriyasu 1983). Nevertheless, this specific kind of gauge theory
laid the foundation for modern gauge theory, culminating in the standard model of
particle physics. Unfortunately, the potential power inherent in the formal machinery
of gauge theories was not anticipated at the time. Indeed, Freeman Dyson would,
eleven years after the introduction of Yang-Mills theory, gloomily remark (quoted
in Moriyasu 1983, p. 73):

7Some authors choose —ig, which changes some technical aspects of the equations, for instance,
c=-1/g.
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It is easy to imagine that in a few years the concepts of field theory will drop totally out of
the vocabulary of day-to-day work in high energy physics.

Quantum field theory (Sect. 10.1.1) and gauge theory were each plagued, individu-
ally, by major problems. While the issue of quantum field theory was related to a
mathematical nightmare, the gauge theory problem was related to symmetry. It was
found that any gauge invariant Lagrangian cannot contain mass terms, as they nec-
essarily break covariance. So how can a physical system with mass be described by
a gauge theory and still have properties which violate gauge invariance? The math-
ematical problem was, in detail, related to infinities appearing in the framework.
Quantum field theory is based on perturbation theory, the idea of taking the solution
to an easier problem and then adding corrections to approximate the real problem.
Unfortunately, the perturbation series are divergent, assigning infinite values to mea-
surable quantities.

It is obvious that, in order for a field theory to be at all sensible or believable, the problems
raised by the divergences must be satisfactorily resolved.

Quote from Ryder (1996, p. 308). It is ironic, that at a time when experimental physics
had entered a golden era, theoretical efforts, after so many promising findings, would
dwindle and “the practice of quantum field theory entered a kind of ‘Dark Age™
(Moriyasu 1983, p. 85). However, due to new technological advances—epitomized
by the high-energy particle accelerator—more and more particles were discovered.
Simply organizing these was a challenge. As an example, Murray Gell-Mann and
others introduced new fermions, they called quarks (Gell-Mann and Ne’eman 1964).
Now it was possible to categorize many of the observed particles as being composed
of quarks. The quarks themselves are representations of the global symmetry group
SU(3). Gell-Mann called this classification scheme the Eightfold Way. Although
alluding to the Noble Eightfold Path of Buddhism, the reference is “clearly intended
to be ironic or humorous” (Kaiser 2011, p. 161).

Bearing witness to the tremendous success of deciphering the workings of real-
ity in mathematical terms, the mathematical obstacles were overcome. The theory
of renormalization, first developed for quantum electrodynamics, is a collection of
techniques for dealing with the infinities of perturbative quantum field theory. The
divergent parts of the theory can be tamed: the infinities are viewed as rescaling fac-
tors which can be ignored. In more detail, the mathematical manipulations related to
these scale transformations can be understood in terms of what is called the renor-
malization group. Wrapping it all up (Peskin and Schroeder 1995, p. 466):

The qualitative behavior of a quantum field theory is determined not by the fundamental
Lagrangian, but rather by the nature of the renormalization group flow and its fixed points.
These, in turn, depend only on the basic symmetries that are imposed on the family of
Lagrangians that flow into one another. This conclusion signals, at the deepest level, the
importance of symmetry principles in determining the fundamental laws of physics.

General references are Peskin and Schroeder (1995), Ryder (1996), Cheng and Li
(1996).
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The solution to the problem of incorporating mass terms into a gauge-invariant
theory is discussed in the following section. The details require a journey deep into
the undergrowth of the abstract world.

4.2.1 The Higgs Mechanism

The Higgs mechanism is the mathematical machinery that allows massless gauge
invariant Lagrangians to collect mass terms for their quantum fields via the notion
of spontaneous symmetry breaking. It is an elaborate mathematical trick used in the
standard model to regain the physical mass terms in the most “natural” way possible.

{ﬂ |4.2.1-higgs-mechanism >

It is a formalism related to a scalar field ¢ described by Lyjgs, seenin (3.11). The
mass parameter m y implicit in the scalar potential V), which, taking the most general
SU (2) invariant form, is derived to be

V(p) = mypd + An ()7, (4.35)

with a dimensionless coupling Az and ¢ denoting the Hermitian conjugate. In per-
turbation theory, ¢ is expanded around the minimum of V, i.e.,

9
A4 . (4.36)
3 [ ()

where the vacuum expectation value of the field is defined as (¢) := (0|¢|0). This
specifies the vacuum state of the theory. The mass parameter m?, in (4.35) is related
to spontaneous symmetry breaking. If m%, > 0, 1i.e., the parameter is real, this simply
would describe the mass of a scalar spin-0 field. Moreover, the shape of the potential
is such, that there is a single global minimum at ¢ = 0. However, by taking m%{ to
be negative,8 the minimum of V is shifted. Now there is a local maxima at ¢ =0
and an infinite number of minima appear at

_ m2 Mz
¢ = |¢|* = —ﬁ = = V2, (4.37)

where m gy = i is the imaginary mass. In summary, the infinite minima are located at
|¢| = v and the original symmetry is spontaneously broken. This is also associated
with a non-zero vacuum expectation value of (¢) =v. Now a new field can be

8Recall that this corresponds to superluminal tachyons, as seen in (3.55).
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introduced, called the Higgs field. Technically, there exists a non-zero component’
of the scalar field ¢, such that (¢;) = v. The new Higgs fields, associated with a
Higgs boson, is defined as

h(x") = ¢:i(x") —v. (4.38)

This can be interpreted as follows. In perturbative field theory, a scalar field ¢ is
expanded about some minimum of the associated potential V(¢). If the minimum of
the non-zero vacuum expectation value is chosen, the physical Higgs particle is now
interpreted as quantum fluctuations of ¢; about the value v. In essence, the Higgs field
“plays the role of a new type of vacuum in gauge theory” (Moriyasu 1983, p. 120).
Formally, replacing ¢; in the appropriate places in the Lagrangian with & + v, yields
the much awaited mass terms appearing due to the value v entering the mathematical
machinery.

The Higgs scalar ¢ appears the standard model Lagrangian via the (Yukawa)
coupling to the fermions, seen in (3.13). The covariant derivative D,,, seenin (3.11),
defines the kinetic quantities and takes the following form

Dy =8, +igWit +ig'B.Y. (4.39)

Here g and g’ are the coupling constants introduced in (4.34). The terms t/ and Y are
the generators of the symmetry groups SU(2) and U(1), respectively. Finally, W/i
and B, are the gauge fields associated with the corresponding symmetry groups, and
i =1, 2, 3. The gauge-invariant Lagrangian, containing the field-strength tensors,

reads 1 1
L=—7BuB" = W, W, (4.40)

It can be constructed from the gauge bosons as follows

B,, =9,B, —0,B,, (4.41a)
W;iw =9,W, —0, W,i — 8&ijk W,{ wk, (4.41b)

where ¢;j; is the Levi-Civita symbol in three dimensions.'? Note that (4.41a) and
(4.14) are identical expressions. In the next step, the physical boson fields are con-
structed from the quantities W;, W/f, Wﬁ, B,,. This yields the W* bosons (W/j[), the
Z boson (Z,,), and the photon field (A,,). These gauge bosons are the carriers of the
electroweak force. As anticipated, these quantum fields receive mass terms, if ¢ is
substituted with & + v from (4.38) in the Lagrangian Ly;ees, described in (3.11) and
(4.35). This is the process of spontaneous symmetry breaking and results in

91t should be noted, that although ¢ is a scalar and hence has only one component by definition,
gauge invariance requires it to transform as a complex doublet representation of SU(2), in effect
assigning it four components.
101¢ has the value 1 if (i, j, k) is an even permutation of (1, 2, 3), or —1 if it is an odd permutation,
and 0 if any index is repeated.
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1 1
My = SV8, Mz =Sy g>+g?% my, =0, (4.42)
without violating the gauge-invariance of the theory. Similarly, the fermions get their
mass terms using the same substitution, i.e., also via spontaneous symmetry breaking.
But now the part of the Lagrangian describing the coupling of fermions to the Higgs
field is employed, seen in (3.13). The result is

VA Vg

Mieptons = »  Mgquarks = >
V2 V2

where A; and A, are arbitrary coupling constants. For more details see Collins et al.
(1989).

(4.43)

< 4.2.1-higgs-mechanism)| #}

Although the theoretical contraptions, described in (4.35)—(4.43), are today asso-
ciated with Peter Higgs, there were many contributors. The first discovery of the
ideas of symmetry breaking was made in condensed matter physics, namely in the
theory of superconductivity, formalized by John Bardeen, Leon Cooper, and Robert
Schrieffer. Using quantum field theory techniques (Bardeen et al. 1957), symmetry
breaking properties of superconductors were uncovered. This theory of superconduc-
tivity would win the authors a Nobel Prize in 1972. Important mathematical details
were also gleaned from an earlier phenomenological theory of superconductivity
(Ginzburg and Landau 1950). Here, the explicit shape of the scalar potential, seen
in (4.35), was introduced, and its critical dependence on the sign of the mass term
noted. In 1962, Schwinger discussed gauge invariance and mass (Schwinger 1963).
He suggested the following (quoted in Anderson 1963, p. 439):

[...] associating a gauge transformation with a local conservation law does not necessarily
require the existence of a zero-mass vector boson.

Building on the works of Schwinger, Philip Warren Anderson spelled out the first
accounts of what would later become known as the Higgs mechanism (Anderson
1963). He also incorporated the insights gained from superconductivity. There, in
the theory of Bardeen et al. (1957), it was realized that the mechanism of breaking
the symmetry was associated with the appearance of a new boson (Nambu 1960).
These ideas could be systematically generalized within the context of quantum field
theory (Goldstone et al. 1962). Anderson grappled with the technicalities related to
the Goldstone theorem, which was a final hurdle in the mass generating mechanism.
The term “spontaneous symmetry breaking” was introduced in Baker and Glashow
(1962), to account for the fact that the mechanism does not require any explicit mass
terms in the Lagrangian to violate gauge invariance. The full model was developed
in the same year by three independent groups:'' Englert and Brout (1964), Higgs

"Ordered by publication date.
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(1964), Guralnik et al. (1964). However, the names Higgs mechanism and Higgs
boson stuck. Indeed, the Nobel Committee, allowed to nominate a maximum of
three people, only awarded Frangois Englert and Higgs, with a Nobel Prize in 2013,
after the 2012 discovery at CERN’s LHC (CERN 2013):

[...] today, the ATLAS and CMS collaborations at the Large Hadron Collider (LHC) pre-
sented preliminary new results that further elucidate the particle discovered last year. Having
analyzed two and a half times more data than was available for the discovery announcement
in July [2012], they find that the new particle is looking more and more like a Higgs boson,
the particle linked to the mechanism that gives mass to elementary particles. It remains an
open question, however, whether this is the Higgs boson of the Standard Model of particle
physics, or possibly the lightest of several bosons predicted in some theories that go beyond
the Standard Model. Finding the answer to this question will take time.

A general reference is Gunion et al. (2000). Here the parenthesis closes.

4.2.2 Tying Up Some Loose Ends

Incidentally, Yang-Mills theory also uncovered a new type geometry for physics. This
understanding only became apparent in the 1970s, and helped in popularizing gauge
theories. Interestingly, this new concept in physics of uniting space-time with an
“internal” symmetry space had been proposed by mathematicians at nearly the same
time. See, for instance Moriyasu (1983, p. 32), Schottenloher (1995, p. 8). In detail,
gauge theories have the topology of a fiber bundle. This means, that at every point in
space-time a Lie group G is attached; there is an internal symmetry space existing
at every space-time coordinate. The group G associated with a point x” is called
a fiber. As a particle moves through space-time, it also follows a path through the
internal spaces at each point. The gauge transformations describe how the internal
spaces at different points can be transformed into each other. The tangent bundle
T M, described in Sect.3.1.1, is a specific example of a fiber bundle. More details
can be found in Drechsler and Mayer (1977), Nash and Sen (1983), Coquereaux and
Jadczyk (1988).

Finally, there is one peculiar historical confusion related to Noether and Weyl.
It is a good reminder that the devil, as always, is in the details. Many textbooks and
review articles on quantum field theory gloss over the fact, that Noether actually
published two theorems in 1918. The first one, famously deals with global symme-
tries and conserved quantities. However, she also proved a second theorem relating
to local symmetry, which, prima facie, has nothing to do with conservation laws.
Brading (2002) observes that there is either no, or no detailed, discussion of the
second theorem in the literature, for instance O’Raifeartaigh (1997), Vizgin (1994),
Kastrup (1984), Moriyasu (1982). Notable exception are Utiyama (1959), Byers
(1999), Rowe (1999). As mentioned, Weyl, working on his unified field theory of
electromagnetism and gravity in 1918, independently was trying to explain the con-
servation of the electric charge with the notion of a local symmetry. His results,
in effect, can be understood as an application of Noether’s second theorem. The
confusion arises, because “the standard textbook presentation of the connection
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between conservation of electric charge and gauge symmetry in relativistic field
theory involves Noether’s first theorem” (Brading 2002, p. 9). Although these books
discuss both local and global symmetries, they do not mention her second theo-
rem. Despite the fact that both ways of deriving the conservation of electric charge,
employing local or global symmetries, are correct, the text book approach via global
symmetry is somewhat misleading. There it is implied that the conservation of charge
depends on the Euler-Lagrange equations of motion being fulfilled. Noether’s second
theorem, and Weyl’s derivation, yields the conservation law based on local symmetry
only, without the necessity of the additional constraint due the equations of motion.
See Brading (2002).

The mathematical methods of renormalizing quantum field theories and the spon-
taneous symmetry breaking mechanism for gauge theories would help pave the
way to unification, ultimately unearthing a powerful formalism describing all non-
gravitational forces and matter: the standard model of particle physics.

4.3 The Road to Unification

The road to unification has been a rocky one. Unification is the epitome of human
understanding of reality. What appear as independent phenomena, described by frag-
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Fig. 4.1 The contents of the physical universe. Matter particles, called fermions due to their half-
integer spin, are classified either as quarks or leptons and come in three generations. The six types
of quarks are labeled according to their flavor, up (), down (d), charm (c), strange (s), top (¢),
and bottom () and are the constituents of composite particles (such as protons and neutrons). The
muon (x) and tau (7) can be understood as heavier versions of the electron (e), each coming with an
associated neutrino (v). The three non-gravitational forces are associated with spin-1 gauge bosons,
where the photon (y) mediates the electromagnetic force, gluons (g) the strong nuclear force, and
the Z and W¥ bosons the weak force. The Higgs particle (h), a scalar spin-0 boson, is associated
with the phenomena of mass. The graviton (G) is the hypothetical quantum particle associated with
gravity which, up-to-date, has not been detected. The elementary particlues represented by gray
circles are massless, and each particle comes with an electric charge, given by the number associated
with it on the upper right side. Next to these particles there also exists an elusive mirror world of
antiparticles, or antimatter, with identical properties but opposite charge
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mented theories, suddenly become united in a unified framework. It is the ultimate
act of translation seen in Fig.2.1: superficially separate properties of the natural
world are encoded and merged into a single formal description. In essence, from
the multifarious complexity of nature the formal essence is distilled, a unified the-
ory of phenomena. Such an over-aching structure of knowledge has the power to
unlock new and unexpected understanding of the workings of nature. This is why,
in physics, the ultimate unified field theory describing all fundamental forces and
elementary particles is, grandiosely, known as “the theory of everything.” It should
be noted, however, that here the context of “everything” excludes emergent complex-
ity, discussed in Chap. 6, and the fact that a conscious entity, the physicist, is doing
the inquiring, covered in Chaps. 11 and 14. Nevertheless, this version of the theory
of everything tries to explain all observable phenomena related to the fundamental
workings of reality. In detail, it should explain all four known forces and describe
the behavior of all elementary particles and antiparticles. What this all amounts to
can be seen in Fig.4.1.

In the history of physics there were a few instances where different abstract for-
malisms representing unrelated aspects of the world could be fused into a single
conceptual formalism. For instance, Maxwell’s insight that light was an electro-
magnetic wave, unifying the fields of optics and electromagnetism. Or the fusion of
thermodynamics with statistical mechanics (Gibbs 1884, 1902). In a sense, special
relativity can be understood as the merger of electromagnetism with the laws of clas-
sical mechanics (Einstein 1905b), and general relativity as the synthesis of inertial
and gravitational forces (Einstein 1915).

4.3.1 Jumping to Higher Dimensions

However, the first unification success regarding the forces of nature goes back to
Maxwell. The theory of electromagnetism is a classical unified field theory. As is
inherent in its name, the two separate phenomena of electricity and magnetism can be
understood as a new single force. Formally, the introduction of the 4-vector potential
A, of (4.12) is enough to derive the following quantities:

1. The electric and magnetic fields: (4.13).
2. The corresponding field-strength tensor: (4.14) and (4.41a).
3. Maxwell’s equations: (2.4).

Although Weyl, as discussed, was successful in spawning the idea of gauge theory,
his unification scheme marrying electromagnetism with gravity ultimately failed
(Weyl 1918, 1929). However, this approach would eventually lead to the unification
of all known forces. Moreover, gauge theory also naturally incorporates matter par-
ticles next to particles mediating the interaction. In detail, matter is represented as
operator-valued spin one-half fermion quantum fields (spinors) in the Lagrangian,
as seen in (3.8), and the force carrying bosonic quantum fields appear by virtue of
the gauge-invariant derivative, described in (4.39). This dichotomy between matter
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and forces was a major problem at the time, as the attempts to unify gravity and the
electromagnetic force focused on incorporating matter as classical fields obeying the
Schrodinger equation (3.24) or the Dirac equation (3.41) or (3.42). An additional
problem was that up to “the 1940s the only known fundamental interactions were the
electromagnetic and the gravitational, plus, tentatively, something like the ‘mesonic’
or ‘nuclear’ interaction” (Goenner 2005, p. 303). In effect, lacking the correct quan-
tum field formalism and missing crucial experimental observations, people embarked
on the futile quest of unification. To make matters worse, general relativity substi-
tutes the notion of a gravitational field with an elaborate geometry of space-time. To
summarize, general relativity is formulated in a (pseudo) Riemannian space-time,
with zero torsion and non-vanishing curvature. Torsion and curvature are two nat-
ural defining properties of differentiable manifolds, where torsion is related to the
twisting of space-time.

{# |4.3.1-torsion-curvature >

Formally, torsion is defined as a tensor
T(X,Y)=VyxyY —VyX —[X,7Y], (4.44)

where X, Y are two vector fields on the manifold and Vy, related to (4.8), computes
the covariant derivative of a vector field in the direction of X. The Lie brackets,
introduced in (3.19), are now also functions of vector fields. For a basis e; one finds

Veej =T" e, (4.45)

with the Christoffel symbols seen in (4.9). Thus the components of the torsion tensor
are
k k k k
T, =T% =T% = [ (4.46)
for non-vanishing structure constants f "l i For more details, see Nomizu and Sasaki
(1994). Similarly, the Riemann curvature tensor is found to be

R(X,Y) =[Vx, Vy]l = Vix r;. (4.47)
This can also be expressed componentwise as R’ ,,,, the quantity appearing in (3.13),

by utilizing the F"U u and their derivatives. See, for instance Misner et al. (1973,
p. 224).

< 4.3.1-torsion-curvature)| #}
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The equations defining torsion and curvature nicely illustrate how the concepts
of group theory, namely the Lie brackets, enter into the language of geometry. In
a general sense, general relativity is only one manifestation of possible space-time
structures, with T = 0, R # 0. Varying these parameters categorizes different space-
times and gravitational theories. The case T # 0, R # 0 yields the Riemann-Cartan
space-time, which can be associated with a gauge theory of gravity a la Yang-Mills
theory, for instance, the gauging of the Lorentz group (Utiyama 1956). This was later
extended to a gauged version of the Poincaré group'? (Kibble 1961; Sciama 1962,
1964). Setting the curvature to zero in the Riemann-Cartan space-time, uncovers
Weitzenbock space-time with T # 0, R = 0, a variant Einstein would later work
on, as detailed in Sect.4.3.3. More details are found in Gronwald and Hehl (1996).
Generalizing the idea of geometrization was the main avenue for unification at the
time. A wealth of details on the history of unified field theories, including an extensive
bibliography, can be found in Goenner (2004). A shorter version is Goenner (2005).

Until 1928, Einstein only reacted to the new ideas advanced by others. One notable
and bold idea was proposed by the mathematician Theodor Kaluza. He picked up
on an obscure theory aimed at unifying gravity with electromagnetism (Nordstrém
1914). The concept is simple as it is mysterious: space-time is assumed to be five-
dimensional, i.e., comprised of four spacial and one temporal dimension. Kaluza
communicated these new ideas to Einstein in 1919, who was initially very supportive.
“At first glance I like your idea enormously;” and “The formal unity of your theory is
startling” (Goenner 2004, p. 44). Kaluza had achieved to show that electromagnetism
is a consequence of general relativity in five dimensions. The metric tensor g,,,,, from
which the curvature of space-time is derived by virtue of (3.13) and (4.47), is extended
by one dimension as follows

y I CA
quy = (gw ,,,,, o ) , (4.48)

where the indices M and N run from 1 to 5, and A, is the vector potential of
(4.12), incorporated with a proportionality factor c. The component gss = ¢ is a
new scalar gravitational potential. While promising, this extra-dimensional frame-
work was plagued by inconsistencies. Moreover, could there really be any physical
reality at the heart of this idea transcending human perception? Although Kaluza
published his work in 1921 (Kaluza 1921), Einstein would remain silent on these
matters until 1926. In that year, the physicist Oskar Klein'®> reawakened the inter-
est in Kaluza’s ideas (Klein 1926). He not only linked quantum mechanics to the
machinery of general relativity in five dimensions, crucially, he was able to give a
physical interpretation of the extra dimension. This idea is today known as compacti-
fication, or dimensional reduction. If the extra dimension is “curled up” tight enough
it becomes undetectable from our familiar slice of reality. Only at sufficiently large

12This theory is sometimes called Einstein-Cartan gravity, due to Cartan’s early work on the subject
(Cartan 1922).

13Not to be confused with Felix Klein of the Erlanger Program.



4.3 The Road to Unification 113

energies, the three-dimensional world unveils its richer structure due to the additional
compactified dimensions. Today, modern versions of Kaluza-Klein theories can go
up to 26 dimensions.'*

Back in 1926, Klein had only to grapple with one additional compactified dimen-
sion. He imposed a simple topology on the higher-dimensional space-time structure.
Instead of simply using a five-dimensional Minkowski space M, he assumed a prod-
uct space M* x S', i.e., the product of a four-dimensional Minkowski space and a
circle. If the radius of the circle is small enough, our reality appears four dimensional.
A lucid discussion of how this idea might be possible can be found in Einstein and
Bergmann (1938). The special topology Kaluza chose means that Kaluza-Klein
theories have a similar geometric structure to gauge theories. Recalling that in gauge
theory an internal symmetry space is attached at each point in space-time giving it the
structure of a fiber bundle, now, in Kaluza and Klein’s version, a multi-dimensional
compactified space, consisting of the “curled up” dimensions, resides at each point
of physical reality.

{# |4.3.1-compactification >

To illustrate, a quantum field ¥ (x™), with x™ := (x*, y), where x* is the usual
space-time coordinate, is constrained as follows

vt y) =y y +27r), (4.49)

where the scale parameter r gives the “radius” of the fifth dimension. Expanding v
in a Fourier series yields

YY) = Y Yae)e™ (4.50)

In the context of quantum mechanics, one can now identify the y-component of a
state with given n as being associated with the momentum p = |n|/r. Thus, for a
sufficiently small 7, only the n = O state will appear in the low-energy world we live
in. As a result, all observed states will be independent of y

—Z ~0. 4.51)
< 4.3.1-compactification| # }

If the radius of compactification r is of the order of the Planck length [, ~ 1.6 x
1073 m, the masses associated with the higher modes (n # 0) would be of the order

14Disguised as bosonic string theory, see Sect.4.3.2.



114 4 The Unification Power of Symmetry

of the Planck mass m, ~ 2.2 x 10-8 kg (Collins et al. 1989, p. 295), removing the
effects of the higher-dimensional space-time structure from current technological
possibilities. What is today known as Kaluza-Klein theory is in fact an amalgamation
of different contributions by both scientists. A detailed account of their various
contributions can be found in Goenner and Wiinsch (2003).

{# |4.3.1-kaluza-klein >

A modern version of Kaluza-Klein theory can, for instance, be found in Kaku
(1993), Collins et al. (1989). Now

gun(x,y) =Y gl (xM)e™ 7, (4.52)
with
v+ PALA, QA
© _ -1z [ Srr TP wivi @2
gun =9 ( GA, é ) . (4.53)

< 4.3.1-kaluza-klein| ﬂ}

The scalar field ¢ appearing in the theory is known as a dilaton or a radion. So
the five-dimensional metric g,y can be decomposed in four space-time dimensions
as the metric tensor of gravity g,,, a massless spin-1 photon A, and a predicted
massless scalar ¢. However, interpreting ¢ as a physical particle was very radical
at the time and most researchers tried to eliminate it. “[...] this prediction seems
to have embarrassed the early writers; predicting a new particle [...] was not so
accepted in those days” (Green et al. 2012a, p. 15). Finally, inserting (4.53) into
the five-dimensional version of (3.13), yields the five-dimensional Lagrangian Eg})z,
which can be simplified as

Lxk ~ /—det(guy) (R + %fﬁFqu’” + F(d))) . (4.54)

In essence, the Kaluza-Klein Lagrangian unifies general relativity, expressed as Lgg
in (3.13) and Maxwell’s theory of electromagnetism encoded as Lgy in (3.7). The
equation for the scalar field is encapsulated in the function F.

Some authors did, however, take the prediction of Kaluza-Klein theory seriously
and accepted the reality of the scalar field ¢. In their eyes, five-dimensional general
relativity is reduced to a scalar-tensor theory of gravity. Such an extension of general
relativity was proposed in Brans and Dicke (1961). In the version of Brans-Dicke, the
metric tensor g,,, is paired with a scalar dilaton field ¢. The physical justification for
such a theory came from the desire to make Einstein gravity more Machian. This was
achieved by promoting the gravitational constant G to become a dynamical variable.



4.3 The Road to Unification 115

This constant appears in Newton’s law of universal gravitation

mymsy
F=G—5—, (4.55)
r
describing the force F between two masses, m and m,, separated at a distance r.
It is also featured in Einstein’s field equations of general relativity, sketched at in

(3.14)

8t G
G =—3~

Ty, (4.56)

where ¢ denotes the speed of light in a vacuum. Hence, in Brans-Dicke gravity, the
following substitution is made
G — ¢p(x"), (4.57)

where the dynamical field ¢ is dependent on the position in space-time (Peacock
1999), yielding a theory closer to the ideas of Mach.

4.3.2 The Advent of String Theory

The study of string theory has become one of the main focuses within theoretical
physics. Its proponents hail it the only viable candidate for a “theory of everything.”
While Einstein and others had hoped to achieve such a feat by staying faithful to the
paradigm of geometrodynamics, modern attempts at unification propose that gravity
should also undergo the treatment of quantization, forging a theory of quantum
gravity. However,

Quantum gravity has always been a theorist’s puzzle par excellence.

Experiment offers little guidance except for the bare fact that both quantum mechanics and
gravity do play a role in natural law.

The real hope for testing quantum gravity has always been that in the course of learning how
to make a consistent theory of quantum gravity one might learn how gravity must be unified
with other forces.

All three quotes from Green et al. (2012a, p. 14). In this respect, string theory has
a lot to offer and, indeed, ties together some of the ideas emerging from the early
attempts in constructing a unified field theory (Green et al. 2012a, p. 14):

The earliest idea and one of the best ideas ever advanced about unifying general relativity with
matter was Kaluza’s suggestion in 1921 that gravity could be unified with electromagnetism
by formulating general relativity not in four dimensions but in five dimensions.

Nonetheless, string theory was in fact discovered by accident. Edward Witten,
arguably the most important contributor to the enterprise, once remarked (quoted
in Penrose 2004, p. 888):



116 4 The Unification Power of Symmetry

It is said that string theory is part of twenty-first-century physics that fell by chance into the
twentieth century.

The evolution of this theory also had many twists and turns. Originally, string theory
models were proposed to describe the strong nuclear force in the late 1960s, known
as dual resonance models. These developments started with (Veneziano 1968). In
1970, it was independently realized by Yoichiro Nambu, Leonard Susskind, and
Holger Bech Nielsen, that the equations of this theory should, in fact, be under-
stood as describing one-dimensional extended objects, or strings (Schwarz 2000).
The first manifestation of these ideas is known as bosonic string theory, living in
26-dimensional space-time. See, for instance Polchinski (2005a). One year later, a
string theory model for fermions was proposed (Ramond 1971; Neveu and Schwarz
1971). However, these theories, aimed at describing hadrons, i.e., composite parti-
cles comprised of quarks held together by the strong force, were competing with
another theory which was rapidly gaining popularity. By 1973, quantum chromody-
namics had become an established and successful theory describing hadrons. It was
formulated as a Yang-Mills gauge theory with a SU (3) symmetry group, capturing
the interaction between quarks and gluons, the gauge bosons in the theory. A special
property, called asymptotic freedom (Politzer 1973; Gross and Wilczek 1973), was
instrumental in developing the theory, winning a Nobel prize in 2004. Unsurpris-
ingly, in the wake of quantum chromodynamics, the string model became an oddity
within theoretical physics.

Strings and Gravity

In 1974, things changed for string theory. It was known that the theory contained
a massless spin-2 particle. “This had been an embarrassment with the original
‘hadronic’ version of string theory, since there is no hadronic particle of this nature”
(Penrose 2004, p. 891). Instead of trying to eliminate this unwanted particle, a sim-
ple acceptance lead to profound consequences: it was identified as the graviton, the
elusive quantum particle of gravity (Yoneya 1974). Although general relativity does
not admit a force carrying particle for the propagation of gravitational interactions—
missing a quantum gauge boson of gravity—due to the fact that the space-time
curvature per se encodes the gravitational dynamics, a straightforward quantization
scheme of gravity is the following. The metric can be expanded as

8uv = M + My, (4.58)

where 7, is the metric of flat Minkowski space and %, represents the excitation of
the gravitational quanta. By inserting this new quantity into Einstein’s field equations,
a wave equation can be derived that corresponds to the propagation of a massless
spin-2 particle, identifying %, as the graviton (Collins et al. 1989). This made the
next step in the evolution of string theory obvious and its original purpose, as theory of
hadrons, was abandoned. “The possibility of describing particles other than hadrons
(leptons, photons, gauge bosons, gravitons, etc.) by a dual model is explored” (Scherk
and Schwarz 1974, abstract).
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Unexpectedly, string theory had suddenly become an exciting candidate for a
“theory of everything,” as it had “[...] the remarkable property of predicting gravity”
(Witten 2001, p. 130). Indeed, as up to then the merger of gravity with quantum
physics proved to be such an intractable and elusive puzzle, this was big news:

[...] the fact that gravity is a consequence of string theory is one of the greatest theoretical
insights ever.

Again, Witten quoted in Penrose (2004, p. 896). Unfortunately, at the time not many
physicists took the idea seriously. It would take another ten years before string theory
would experience the next advancement in its evolution: an event that would propel
it into the limelight of theoretical physics. After 1984, string theory was transformed
into one of the most active areas of theoretical physics. See, for instance Bradlyn
(2009), for a chart of the number of string theory papers published per year from
1973 onward, as cataloged by the ISI Web of Science. Or Google’s Ngram Viewer, 3
which “charts the yearly count of selected n-grams (letter combinations) or words
and phrases, as found in over 5.2 million books digitized by Google Inc (up to
2008)”.'° It is also interesting to graph comma-separated phrases in comparison:
“string theory, loop quantum gravity.” This clearly illustrates the predominance of
string theory over other proposed “theories of everything,” like loop quantum gravity.
While string theory is a theory of quantum gravity originating in the paradigm of
quantum field theory, loop quantum gravity has its foundation in general relativity.
See, for instance, Smolin (2001) for a popular account of the various paths to quantum
gravity, and (Giulini et al. 2003) for a technical one. For a general discussion of loop
quantum gravity, consult Sect. 10.2.3.

Supersymmetry

In the early 1980s it was realized, that by introducing a crucial novel element into
the string theory formalism, some pressing problems could be solved. Inadvertently,
a powerful new level of descriptive power would emerge. This missing element
was associated with a novel symmetry property, called supersymmetry. Historically,
it was originally developed as a symmetry between hadrons, namely a symmetry
relating mesons (a composition of a quark and an anti-quark) to baryons (made
up of three quarks, like the neutron and proton) (Miyazawa 1966). “Unfortunately,
this important work was largely ignored by the physics community” (Kaku 1993,
p. 663). Only in 1971, a refined version of supersymmetry was independently dis-
covered from two distinct approaches. In the early version of fermionic string theory
(Ramond 1971; Neveu and Schwarz 1971) a new gauge symmetry was discovered,
from which supersymmetry was derived (Gervais and Sakita 1971). The second
approach was based on the idea of extending the Poincaré algebra described in
(3.52), resulting in the super-Poincaré algebra (Gol’fand and Likhtman 1971). Then,
in 1974, the first four-dimensional supersymmetric quantum field theory was devel-
oped (Wess and Zumino 1974). Even ten years before it would have a fertilizing

I5Found at https://books.google.com/ngrams.
16See http:/en.wikipedia.org/wiki/Google_Ngram_Viewer.
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effect on string theory, supersymmetry was understood as a remarkable symmetry
structure in and of itself, fueling advancements in theoretical physics. In essence, it
is a symmetry eliminating the distinction between bosons and fermions. Now matter
particles—fermions described by spinors with 720° rotational-invariance—and force
mediating particles—the gauge bosons emerging from the covariant derivatives in the
Lagrangian, with 360° rotational-invariance—Ilose their independent existence in the
light of supersymmetry. It also turns out that supersymmetry is the only known way
to unify internal gauge symmetries with external space-time symmetries, a marriage
otherwise complicated by the Coleman-Mandula theorem (Coleman and Mandula
1967). There is, however, a heavy phenomenological price to pay for the mathemati-
cal elegance of supersymmetry. The number of existing particles has to be doubled, as
each matter fermion and gauge boson must have a supersymmetric partner, conjuring
up a mirror world of Fig.4.1.

Formally, there exists an operator Q, which converts bosonic states into fermionic
ones, and vice versa. Symbolically, Q|B) = |F).

{# |4.3.2-supersymmetry-algebra >

Infinitesimally, supersymmetric transformations Q can be expressed in group
theoretic terms described in (3.30), similarly to the example given for the Lorentz
group in (3.30)

8SUSYp =i 0, (4.59)

where the super-multiplet @ contains all the matter and gauge fields and spans a
representation of the supersymmetric algebra associated with Q and ¢ is the usual
parametrization parameter. From the Poincaré algebra the super-Poincaré algebra
can be constructed by adding Q to the old (bosonic) commutation relations seen in
(3.52). The new (fermionic) sector of the algebra is now given by anticommutation
relations for the Q, similar to (3.16), which are defined as

(X,Y)= XY +YX. (4.60)

In mathematical terms, the basic tools to construct supersymmetric extensions of the
Poincaré algebra are called Clifford algebras (Varadarajan 2004). These are algebras
defined via specific anticommutation relations. The operator Q transform them-
selves as a 2-component Weyl spinor under Lorentz transformations. This means
that the usual four-dimensional theory is broken down to two dimensions via the
Pauli matrices o/, i = 1,2, 3. Mathematically, the Pauli matrices are related to the
Dirac matrices y*, introduced in Sect. 3.2.2.1, (given in the Weyl representation) as

follows
0 ot
Y= <5,M 0 ) , (4.61)
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with 0” := (1,,0) and 6" := (1,, —0), where 1, is the two dimensional identity
matrix. Note that the bar is just a notational convention and does not denote the
Hermitian conjugate of a matrix, as the previous usage of the symbol could imply.
Dirac and Pauli matrices are defined by the virtue of anticommutators

o', 0/} =281y i,j=1,2,3,
) ) (4.62)

hy"1=2¢""1s p,v=0,...,3,
with the flat Minkowski metric g"" and the Kronecker delta. For more details, see,
for instance Peskin and Schroeder (1995). Just as the y* are associated with a 4-
component spinor representation of the Lorentz group generators via (3.48), the
Pauli matrices give a 2-component (Weyl) spinor representation. Now each point x*
in space-time is associated with a matrix X by virtue of the Pauli matrices

o X =o0,xM. (4.63)
The action of the Lorentz group on a Weyl spinors is captured by the following
=AY o X = MXMF, (4.64)

where M* denotes the Hermitian conjugate.!” It should be noted that M € SL(2, C),
establishing a relationship between the Lorentz group and SL(2,C). See, for instance
Sternberg (1999). A Weyl spinors transforms under this representation as

Vo = U, = MPUs, Vo — V) = MLy (4.65)

In other words, there are two Weyl spinors associated with the two possible repre-
sentations of the Lorentz group, M and M*. They are either labeled with the indices
a, B, ..., or the dotted indices ¢, ,3, ..., which run from one to two. Again, the bar
is simply a notational convention associated with quantities carrying dotted indices
and does not denote the Hermitian conjugate of a 2-component spinor v,. These
computations imply that for supersymmetry there also exist two operators: Q, and
Q. Now the novel fermionic sector of the super-Poincaré algebra can be defined via
the following anticommutators which are added to the set of equations seen in (3.52)

{Qu. 04} =2[0" 1,3 Py (4.66)
Note that [o"], g = (15, —0i), j All other combinations of Q, and Qd are trivial.

Finally, the combination of the fermionic and bosonic sector needs to be specified.
The only non-zero relations are

17For a complex matrix A;;, Al = Al j» Where the operator 7 transposes the matrix and Ajj is the
complex conjugate of the complex matrix element A;;.
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[M", Qo] = il0""],F Qp,
. o (4.67)
(M"Y, 0] = il6""]*; 0"
See Wess and Bagger (1992) for more details. The matrices o*" and "V are the
generators of the Lorentz transformations for Weyl spinors. They can be expressed
using the Pauli matrices o*. It holds that

[0"1,F = £ ((0"e3[3"17 = [0 Ly [6"177),

(4.68)

(161101, 5 — 61 [0"1,)

Bl— A=

(6", =

where [64]%# = (1,, +0;)%#. The spinor representation, whose matrices are derived
from the Dirac matrices in (3.48), is related to the Pauli matrices as follows

; L=V _ V=
2*”:’-("" 7 0 ) (4.69)

4 0 octoV —oVot

More details can be found in Bilal (2001). Finally, extended supersymmetry algebras
are possible, with Qo’f and Qg, where A, B =2, ..., N,see Wess and Bagger (1992).

< 4.3.2-supersymmetry-algebral #}

Supersymmetry can exist in various space-time dimensions. However, eleven is
the maximal number of dimensions in which a consistent supersymmetric theory can
be formulated in Nahm (1978).

Supergravity

From the mid-1970s to the mid-1980s string theory lay dormant amongst the exciting
developments related to supersymmetry, and only a handful of dedicated people kept
it alive. Gell-Mann, shortly before his 80th birthday, reflected on this as follows in
an interview (Siegfried 2009):

I didn’t work on string theory itself, although I did play a role in the prehistory of string
theory. I was a sort of patron of string theory—as a conservationist I set up a nature reserve
for endangered superstring theorists at Caltech, and from 1972 to 1984 a lot of the work in
string theory was done there. John Schwarz and Pierre Ramond, both of them contributed
to the original idea of superstrings, and many other brilliant physicists like Joel Sherk and
Michael Green, they all worked with John Schwarz and produced all sorts of very important
ideas.

However, at the same time, the idea of supersymmetry was uncovering important
novel insights. “Perhaps one of the most remarkable aspects of supersymmetry is
that it yields field theories that are finite to all orders in perturbation theory” (Kaku
1993, p. 664). This makes the heavy machinery of renormalization redundant. And,
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as many times before in the history of physics, tinkering with the mathematical for-
malism would uncovered new ideas and powerful tools that had the power to unlock
new and unexpected knowledge. In the early years, supersymmetry was understood
as a global symmetry. Taking the promising step of gauging supersymmetry, that is,
by reconstructing it as a local gauge symmetry, a new type of gauge theory emerged.
This new theory, called supergravity, is a supersymmetric theory inevitably accom-
modating gravity (Freedman et al. 1976). Only two years after string theory was given
a new twist as “theory of everything,” another viable candidate for quantum gravity
had been discovered, fascinating the community of theoretical physicists. Not long
after the discovery of the elven-dimensional limit to supersymmetry (Nahm 1978), it
was realized in Cremmer et al. (1978) “that supergravity not only permits up to seven
extra dimensions but in fact takes its simplest and most elegant form when written in
its full eleven-dimensional glory” (Duff 1999, p. 1). Supergravity would provide the
impetus for a revival of Kaluza-Klein theory. This allowed D = 11, N = 1 super-
gravity to be compactified to a D =4, N = 8 theory (Cremmer and Julia 1979),
where N > 1 describes the extended supersymmetry algebra and D denotes the
dimensions of space-time. In an influential paper, Witten proved that the structure
of the associated four-dimensional gauge-group is actually determined by the struc-
ture of the isometry group—the set of all distance-preserving maps—of the compact
seven-dimensional manifold /C (Witten 1981). He showed, “what to this day seems
to be merely a gigantic coincidence, that seven is not only the maximum dimension
of IC permitted by supersymmetry but the minimum needed for the isometry group
to coincide with the standard model gauge group SU(3) x SU(2) x U(1)” (Duff
1999, p. 2). The next steps were the development of N = 8 supergravity with SO (8)

gauge symmetry in D = 4 anti-de Sitter space'® or AdS; (De Wit and Nicolai 1982),
and its extension to eleven dimensions, compactified on a seven dimensional sphere
S7 which admits an SO(8) isometry (Duff and Pope 1983). Indeed, the compact-
ification from eleven-dimensional space-time to AdS4 X S7 could be shown to be
the result of spontaneous compactification (Cremmer and Scherk 1977). These were
certainly very promising developments. Indeed, so much so, that a then 38-year-old
Stephen Hawking was tempted in 1980, in his inaugural lecture as Lucasian pro-
fessor of mathematics at the University of Cambridge, England (Hawking 1980), to
divine that N = 8 supergravity was the definite “theory of everything” (Ferguson
2011). Indeed (as quoted in Ferguson 2011, p. 5):

He [Hawking] said he thought there was a good chance the so-called Theory of Every-
thing would be found before the close of the twentieth century, leaving little for theoretical
physicists like himself to do.

The First Superstring Revolution

Alas, things turned out quite differently and supergravity did not fulfill its promising
claims. “We therefore conclude that, despite the initial optimism, N = 8 supergravity
theory is not theoretically or phenomenologically satisfactory” (Collins et al. 1989).
Perhaps the most damning problem was the reappearance of non-renormalizability.

18 A specific symmetric manifold with a curvature.
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The infinities meticulously removed from quantum field theory returned to render
the theory of supergravity useless. Indeed, all known quantum theories of spin-2
particles, meaning the elusive gravitons, are now known to be non-renormalizable.
Yet again, gravity and quantum physics refuse to cooperate. That is, as quantum
theories of point particles. This opened up a loophole for string theory, as its the-
oretical machinery never touched the notion of particles and rested on extended
one-dimensional, vibrating strings. Some general references are Wess and Bagger
(1992), Buchbinder and Kuzenko (1998), Duff (1999).

Unsurprisingly, the pendulum of interest slowly swung back to string theory in
the beginning of the 1980s. A major driving force was the introduction of the newly
discovered idea of supersymmetry to the framework, unleashing superstring theory. "’
An earlier modification to the original Ramond and Neveu-Schwarz models was
conjectured to harbor supersymmetry (Gliozzi et al. 1977), which was proved by
Green and Schwarz (1981). Unfortunately, these superstring theories appeared to be
inconsistent (Alvarez-Gaume and Witten 1984), plagued by anomalies. Then, later in
1984, an avalanche was triggered by some notable developments. For one, a method
was found to cancel the anomalies by assigning the gauge group of the theory to
be SO(32) or Eg x Eg (Green and Schwarz 1984). Moreover, a new superstring
theory was introduced, called heterotic string theory (Gross et al. 1985). The “first
superstring revolution” was ignited. In the words of Witten (2001, p. 130):

Since 1984, when generalized methods of “anomaly” cancellation were discovered and the

heterotic string was introduced, one has known how to derive from string theory uncannily

simple and qualitatively correct models of the strong, weak, electromagnetic, and gravita-
tional interactions.

Also Hawking realized the potential, aligning his prophecy (Ferguson 2011,
p- 213f.):

In June 1990, ten years after his inaugural lecture as Lucasian Professor, I asked him [Hawk-
ing] how he would change his Lucasian lecture, were he to write it over again. Is the end
in sight for theoretical physics? Yes, he said. But not by the end of the century. The most
promising candidate to unify the forces and particles was no longer the N = 8 supergravity
he’d spoken of then. It was superstrings, the theory that was explaining the fundamental
objects of the universe as tiny, vibrating strings, and proposing that what we had been think-
ing of as particles are, instead, different ways a fundamental loop of string can vibrate. Give
it twenty or twenty-five years, he said.

To summarize, five consistent string theories have been developed, living in ten-
dimensional space-time. In the low-energy limit, they reduce to N = 1,2, D = 10
supergravity of point particles. String theory is a bizarre contraption. It alludes to
outlandish realms of reality, like ten-dimensional space-time and a mirror world of
supersymmetric particles laying latent in the undiscovered weaves of the fabric of
reality. It is built up of an extraordinarily vast and abstract formal machinery, blurring
the borders between mathematics and physics, as was discussed in Sect.2.1.4. Yet,
at its heart, it has a surprisingly simple and colorful intuition attached to it (Greene
2013, p. 146):

19Nowadays, when people refer to string theory they implicitly mean superstring theory.
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‘What appear to be different elementary particles are actually different “notes” on a funda-
mental string. The universe—being composed of an enormous number of these vibrating
strings—is akin to a cosmic symphony.

String theory has the potential to unify all known forces within a single framework.
The theory could support a marriage between gravity and quantum mechanics, by
offering a theory of quantum gravity which is not plagued by unwanted infinities.
Finally, it can accommodate the symmetries of the standard model. The six extra
spacial dimensions are compactified on special geometries, called Calabi-Yau man-
ifolds (Candelas et al. 1985). They are shapes, wrapping the additional dimensions
into tiny packages located at each point in four-dimensional space-time, which reside
at length scales not accessible to current experimental probes. Basically, Calabi-Yau
manifolds are similar to fiber bundles. Moreover, as the strings still vibrate in all ten
dimension after compactification, “the precise size and shape of the extra dimensions
has a profound impact on string vibrational patterns and hence on particle properties”
(Greene 2004, p. 372). As an example, if the Calabi-Yau spaces have a topology with
three holes, as aresult, there will be three families of elementary particles (fermions),
as seen in Fig.4.1. Technically, the number of particle generations is one half of the
Euler characteristic of the chosen Calabi-Yau manifold (Candelas et al. 1985).

In all string theories, also already in the early bosonic versions (Scherk and
Schwarz 1974), a scalar ¢ with a gravitational-strength coupling to matter is found.
This scalar field has a very special property in the theory. Its expectation value

exp({¢)), (4.70)

controls the string coupling constant, determining the strength of the string interac-
tion. If the coupling constant gets too large, perturbation theory breaks down. This
scalar ¢ can also be identified with the dilaton, the scalar field appearing in Kaluza-
Klein theory, linking back to the scalar-tensor theory of Brans-Dicke gravity (Brans
and Dicke 1961). Indeed, there are proposed theories of superstring cosmology, for
instance Lidsey et al. (2000).

General references for string theory are, for instance (Hatfield 1992),
(Polchinski 2005a,b), (Green et al. 2012a,b), (Rickles 2014). Examples of non-
technical references are Greene (2004, 2013), Randall (2006), Susskind (2006).

After over a decade of intense study, in 1995, the next remarkable step towards
a “theory of everything” was achieved. Initiated by a single person, the “second
superstring revolution” took place. In that year, Witten published a paper which
would changed the face of string theory for ever (Witten 1995). By moving to elven-
dimensional space-time, and allowing for membranes in the theory, i.e., the higher-
dimensional equivalents to vibrating two-dimensional strings, he realized that all five
superstring theories could be united within one overarching theory. So the previous
embarrassment of having five “theories of everything” was finally explained.

Witten put forward a convincing case that this distinction is just an artifact of perturbation the-
ory and that non-perturbatively these five theories are, in fact, just corners of a deeper theory.
[...] Moreover, this deeper theory, subsequently dubbed M-theory, has D = 11 supergravity
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as its low energy limit! Thus the five string theories and D = 11 supergravity represent six
different special points in the moduli space of M-theory.

Quote from Duff (1999, p. 326). Technical references on M-theory theory are, for
instance Duff (1999), Kaku (2000), Rickles (2014). More details on the issues plagu-
ing string theory—and quantum gravity in general-—can be found in Sect. 10.2.2. For
the notion of AdS/CFT duality, see Sect. 13.4.1.2.

4.3.3 Einstein’s Unified Field Theory

Returning back to 1926, Klein’s twist on Kaluza’s original proposal ignited new
interest in five-dimensional gravity as a unified field theory incorporating electro-
magnetism. Einstein remarked in 1927 (Goenner 2004, p. 65):

It appears that the union of gravitation and Maxwell’s theory is achieved in a completely
satisfactory way by the five-dimensional theory.

In the following years, many physicists and mathematicians started to study the
implications and finer details of Kaluza-Klein theory. See Goenner (2004, Section
7.2.4). Albeit promising, the theory ultimately failed. In 1929, the physicists Vladimir
A. Fock summarized the situation as follows (Goenner 2004, p. 105):

Up to now, quantum mechanics has not found its place in this geometric picture [of general
relativity]; attempts in this direction (Klein, [...]) were unsuccessful.

Also the reality status and the meaning of the extra dimensions was seen as prob-
lematic. Indeed, a little more than a year after his initial publication on the matter,
Klein conceded (Goenner 2004, p. 112):

Particularly, I no longer think it to be possible to do justice to the deviations from the classical
description of space and time necessitated by quantum theory through the introduction of a
fifth dimension.

In 1928, Einstein himself took a leading role in the conceptual development
of a unified field theory. A new wave of research ensued. Einstein was tinkering
with the equations of general relativity and set out to extend the formalism. On the
10th of June of that year, he introduced the idea of teleparallelism, originally called
Fernparallelismus, which allowed the comparison of the direction of a tangent vector
at various points in space-time (Einstein 1928a). Technically, the underlying space-
time is a Weitzenbock space-time? (Gronwald and Hehl 1996). Four days later,
Einstein published his first attempt of constructing a unified theory of gravitation
and electromagnetism (Einstein 1928b).

[Since the publication of the 10th of June] I discovered that this theory—at least to a first

approximation—yields the field laws for gravitation and electromagnetism easily and nat-

urally. It is thus conceivable, that this theory will supersede the original version of general
relativity.

204 space-time with zero curvature but non-vanishing torsion, see (4.44) and (4.47).
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Quote from Einstein (1928b, p. 224, translation mine). With this, Einstein would
embark on a more than two-decade long scavenger hunt, chasing this elusive goal.
At the time, he was probably quite upbeat about the project’s future. His intuition
as a physicists had been validated by two very unexpected and profound theories of
relativity. An additional motivational factor was perhaps also given by the fact that
he had disproved Weyl’s attempts at a unified field theory. On the 10th of January
1929, Einstein published an update (Einstein 1929a, p. 1, translation mine):

Indeed, it was possible to assign the same coherent interpretation to the gravitational and the
electromagnetic field. However, the derivation of the field equation from Hamilton’s principle
did not lead to a straightforward and unambiguous path. These difficulties intensified under
further reflection. Since then, I was however successful in finding a satisfactory derivation
of the field equations, which I will present in the following.

Unfortunately, there would be more clouds on the horizon. Others doubted the validity
of the field equations FEinstein presented in Einstein (1929a). To such criticism, on
the 21st of March 1929, he responded as follows (Einstein 1929b, p. 156, translation
mine):

In the meantime, I have discovered a possibility to solve this problem in a satisfactory manner,
founded on Hamilton’s principle.

Then, on the 9th of January 1930 (Einstein 1930, p. 18, translation mine):

A couple of months ago I published an article [...] summarizing the mathematical foundation
of the unified field theory. Here I want to recapitulate the essential ideas and also explain
how some remarks appearing in previous works can be improved.

Undeterred, Einstein continued with his quest. He was assisted by Walther Mayer,
a mathematician specialized in topology and differential geometry. New technical
publications followed (Einstein and Mayer 1930, 1931a,b). Einstein knew that
his attempts had opened a Pandora’s box of challenges. Indeed, the very notion of
teleparallelism, the original seeding insight, had to be abandoned. On the 21st of
March 1932, in a letter to Elie Cartan, he observed (as quoted in Goenner 2004,
p. 85):

[...]1in any case, I have now completely given up the method of distant parallelism. It seems
that this structure has nothing to do with the true character of space [...].

By 1932, Einstein had become increasingly isolated in his research. Most physicists
considered his attempts to be ultimately futile. Indeed, from 1928 to 1932 Einstein

had been faced with criticism by notable scholars, like Hans Reichenbach, a logical
positivist philosopher of science, and Weyl (Goenner 2004). But Wolfgang Pauli

was most vocal in his criticism. Already on the 29th of September 1929, in a letter
to a fellow physicists, Pauli confessed (Goenner 2004, p. 89):

By the way, I now no longer believe one syllable of teleparallelism; Einstein seems to have
been abandoned by the dear Lord.

Then, on the 19th of December 1929, Pauli wrote a direct and blunt letter to Einstein
(quoted in Goenner 2004, p. 87):



126 4 The Unification Power of Symmetry

I thank you so much for letting be sent to me your new paper [...], which gives such
a comfortable and beautiful review of the mathematical properties of a continuum with
Riemannian metric and distant parallelism [...]. Unlike what I told you in spring, from the
point of view of quantum theory, now an argument in favor of distant parallelism can no
longer be put forward [...]. It just remains [...] to congratulate you (or should I rather say
condole you?) that you have passed over to the mathematicians. Also, I am not so naive as to
believe that you would change your opinion because of whatever criticism. But I would bet
with you that, at the latest after one year, you will have given up the entire distant parallelism
in the same way as you have given up the affine theory earlier. And, I do not wish to provoke
you to contradict me by continuing this letter, because I do not want to delay the approach
of this natural end of the theory of distant parallelism.

Einstein answered on 24th of December 1929 as follows (Goenner 2004, p. 88):

Your letter is quite amusing, but your statement seems rather superficial to me. Only someone
who is certain of seeing through the unity of natural forces in the right way ought to write
in this way. Before the mathematical consequences have not been thought through properly,
it is not at all justified to make a negative judgment.

In 1931, a collaborator of Einstein published a review article on teleparallelism
(Lanczos 1931). It appeared in a journal whose name can be literally translated as
“Results in the Exact Sciences.” Pauli, when reviewing the article, sarcastically
remarked (Goenner 2004, p. 89):

It is indeed a courageous deed of the editors to accept an essay on a new field theory of
Einstein for the “Results in the Exact Sciences.”

A summary of Einstein’s work between 1914 and 1932, appearing in the PreufSischen
Akademie der Wissenschaften, can be found in Simon (2006).

4.3.4 A Brief History of Quantum Mechanics

After 1932, things became quiet around Einstein’s unified field theory. He spent
the remaining years up to his death in 1955 publishing articles on the philosophy
of science, the history of physics, and special and general relativity. He was also
concerned with quantum mechanics, a subject he continued to be displeased with.
Ironically, Einstein himself was instrumental in the creation of the theory.

Quanta

In Einstein (1905a) he proposed that the experimental data relating to the photo-
electric effect should be interpreted as the result of light being made up of discrete
quantized packets, called Lichtquanten. These light quanta, known as photons today,
each come with the energy

E =hv, 4.71)

i.e., an energy proportional to the frequency v of the light, where the proportionality
constant is given by Planck’s constant #. Max Planck had proposed this relationship
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to explain the observed frequency spectrum of black-body radiation (Planck 1901),
for which he would receive a Nobel prize in 1918. With the radical and revolutionary
assumption that radiation is not emitted continuously but in discreet amounts, Planck
was able to solve a puzzle, which had baffled physicists at the time: all previous the-
oretical calculations of black-body radiation resulted in nonsensical, infinite results.
“It is a remarkable fact that so simple a hypothesis [E = hv], even if incomprehen-
sible at first sight, leads to a perfect agreement with everything we can observe and
measure” (Omnes 1999, p. 138).

For Planck, postulating quanta was an act of despair: “I was ready to sacrifice any
of my previous convictions about physics” (quoted in Longair 2003, p. 339). Indeed,
he originally believed that the notion of quanta was “a purely formal assumption
and [he] really did not give it much though [...]” (Longair 2003, p. 339). Einstein
understood the quantum hypothesis literally to explain the photoelectric effect. This
work, and not his groundbreaking publications on special and general relativity,
would win him a Nobel prize in 1921. Planck and Einstein’s discoveries led to the
quantum revolution.

In another notable publication, Einstein proposed the possibility of stimulated
emission, the physical process making lasers possible (Einstein 1917). Despite his
vital role in the initiating developments of quantum theory, Einstein always stayed
skeptical. In a letter he wrote to Max Born in 1926, he lamented (quoted in Schweber
2008, p. 34):

Quantum mechanics is certainly imposing. But an inner voice tells me that it is not yet the
real thing. The theory says a lot, but does not bring us closer to the secret of the “old one.”
I, at any rate, am convinced that He is not playing with dice.

Einstein’s reservations explicitly dealt with the probabilistic and indeterministic
nature of quantum theory. For instance, Born’s interpretation of the wave function
as a probability amplitude (Born 1926) or, later, Heisenberg’s uncertainty principle
(Heisenberg 1927). Einstein still believed that his unified field theory would shed
light on these issues, and “that the quantum mechanical properties of particles would
follow as a fringe benefit from [the field theory]” (Goenner 2004, p. 8). In the end,
his skepticism stemmed from certain philosophical considerations relating to the
nature of reality, of which there is an abundance. For instance, the philosopher
Charles S. Peirce proposed the theory of fychism, where he argued that chance and
indeterminism are indeed ruling principles in the universe (Peirce 1892)—a direct
antithesis to Einstein’s opinion.

Entanglement

In what would end as an ironic turn of events, Einstein set out to disprove the
bizarre consequences of quantum theory with collaborators. The now infamous
EPR paradox, an acronym containing the last initials of the authors, was a clever
thought experiment designed to show that quantum mechanics must be incomplete
(Einstein et al. 1935). In a nutshell, the experiment showed that quantum mechanics
allows for non-local effects: under certain conditions, a measurement conducted on
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a particle A would instantaneously change the properties of a particle B, regard-
less of the distance of separation between the two. Einstein felt victorious, as he
did not believe such “spooky actions at a distance” (Kaiser 2011, p. 30) could
be possible. But alas, things turned out differently. John Stewart Bell was able
to furnish a theorem out of the EPR paradox. He proved that non-locality was
indeed endemic to quantum mechanics (Bell 1964). The experimental validation
was given years later in Freedman and Clauser (1972) and notably by Aspect et al.
(1981, 1982a,b). In trying to expose the outlandish nature of quantum physics, Ein-
stein helped to distill one of reality’s most mind-boggling properties: entanglement,
a term introduced by Schrodinger in (1935) to account for the “spooky action at a
distance.” Although it seems to imply that in some bizarre way reality is simulta-
neously interconnected with itself, entanglement does not allow actual information
to propagate faster than the speed of light. Hence special relativity is not violated
and there are no tenable objections form physics against entanglement. Quite to the
contrary, today entanglement plays a central role in the emerging fields of quan-
tum computation, quantum information, and quantum cryptography, the cutting-
edge of current technological advancements. Indeed (Nielsen and Chuang 2007,
pp. 11£):

Entanglement is a uniquely quantum mechanical resource that plays a key role in many
of the most interesting applications of quantum computation and quantum information;
entanglement is iron to the classical world’s bronze age. In recent years there has been a
tremendous effort trying to better understand the properties of entanglement considered as a
fundamental resource of Nature, of comparable importance to energy, information, entropy,
or any other fundamental resource.

Key to this surge in research was a theorem proved in 1982. It goes by the name
of the no-cloning theorem (Wootters and Zurek 1982). In a nutshell (Kaiser 2011,
P. XXV):

[...] the no-cloning theorem stipulates that it is impossible to produce perfect copies (or

“clones”) of an unknown arbitrary quantum state. Efforts to copy the fragile quantum state
necessarily alter it.

This property thwarts any attempts to intercept the communication of information,
allowing for a 100% secure transmission channel: quantum encrypted communi-
cations cannot, by the laws of nature, be tapped without the signal being affected.
This promise of perfect security would be the gold standard in an age of infor-
mation processing and global computer networks. Experiments have demonstrated
the proof-of-concept, for instance Poppe et al. (2004). And real-world applications
followed (Hensler et al. 2007):

On Thursday, October 11 [2007], the State of Geneva announced its intention to use quantum
cryptography to secure the network linking its ballot data entry center to the government
repository where the votes are stored. The main goal of this initiative, a world first, is to
guarantee the integrity of the data as they are processed.

For more details on entanglement and the no-cloning theorem, see Sect. 10.3.2.1.
In the ebb and flow of history one can sometimes lose track of the peculiarities
and coincidences leading to a major advancement in science. The popularization of
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entanglement and the development of the no-cloning theorem are prominent exam-
ples of how a very unlikely group of people can end up being responsible for such
revolutionary feats: a loose collaboration of physicists, dabbling in psychedelics,
Eastern mysticism, parapsychology, and other esoteric concepts. Indeed, it is often
hard to appreciate how drastically geopolitics has influence the development of sci-
ence and how crucial mindsets and culture can be for setting research agendas. See
Kaiser (2011).

Some technical aspects of quantum mechanics can be found in the paragraphs
encapsulating the following equations: (3.24) on p. 78, (3.51) on p. 88, and (4.20) on
p. 100.

4.3.5 Einstein’s Final Years

Regarding Einstein’s post-1932 research, in 1945 a publication surfaced where he
once gain engaged in the quest of formulating a unified field theory. He would call his
new conception the generalized theory of gravity (Einstein 1945). More publications
followed in 1948, 1950, 1953, 1954, and 1955. In December 1954, in a note for the
fifth edition of Einstein (1956), his passion was still burning:

For the present edition I have completely revised the “Generalization of Gravitation The-
ory” [Appendix II] under the title “Relativistic Theory of the Non-Symmetric Field.” For
I have succeeded—in part in collaboration with my assistant B. Kaufman—in simplifying
the derivations as well as the form of the field equations. The whole theory becomes thereby
more transparent, without changing its contents.

Einstein, well aware of the pressing conflicts in his approach, was confident that no
one else could claim any certainty on the matter either (Einstein 1956, p. 165f.):

Is it conceivable that a field theory permits one to understand the atomistic and quantum
structure of reality? Almost everybody will answer this question with “no.” But I believe
that at the present time nobody knows anything reliable about it. [...] One can give good
reasons why reality cannot at all be represented by a continuous field. From the quantum
phenomena it appears to follow with certainty that a finite system of finite energy can be
completely described by a finite set of numbers (quantum numbers). This does not seem
to be in accordance with a continuum theory, and must lead to an attempt to find a purely
algebraic theory for the description of reality. But nobody knows how to obtain the basis of
such a theory.

For a detailed account of all of Einstein’s works, see Schilpp (1970).

Although being isolated from most of the physics community, and not up-to-date
with modern advancements in quantum field theory, Einstein’s work still managed
to catch the attention and fascination of the media. For instance, a newspaper article,
appearing on the day of Einstein’s death, hailed (Associated Press 1955, p. 17):

In 1950, after 30 years of intensive study, Einstein expounded a new theory that, if proved,
might be the key to the universe.
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In the end, Einstein’s efforts at a unified field theory are reduced to a footnote in
history. What has stayed, is Weyl’s idea of local gauge symmetry, Kaluza’s venture
into extra dimensions, and Klein’s compactification scheme. Gauge symmetry would
reveal itself as the unifying principle behind the standard model of particle physics,
as is discussed in the next section. Additional spatial dimensions, the novel symmetry
principle called supersymmetry, and compactification are the fundamental building
blocks of string theory to this day.

4.4 Unification—The Holy Grail of Physics

Chapter 3 set out to establish the power of a simple abstract notion, called symmetry,
in decoding the workings of the universe. The notion of symmetry fulfills a dream of
physicists. The hope that nature is ultimately not only comprehensible to the human
mind, but also in a way that is pleasing and satisfying. In the words of Nobel laureate
Steven Weinberg (Weinberg 1992, p. 165):

We believe that, if we ask why the world is the way it is and then ask why that answer is
the way it is, at the end of this chain of explanations we shall find a few simple principles of
compelling beauty.

This was witnessed in the insights gained from invariance: the emergence of con-
servation laws, presented in Sect.3.1, and the fundamental physical classification
of matter states and particle fields, discussed in Sect.3.2. Perhaps the epitome of
Weinberg’s dream comes in the guise of unification, the theme with which this
chapter began. Indeed, Weinberg was himself instrumental in showing how symme-
try principles are instrumental tools for crafting a unified theory of all known forces
excluding gravity, leading to the standard model of particle physics. Weinberg in
(1992, p. 142):

Symmetry principles have moved to a new level of importance in this [twentieth] century
[...]: there are symmetry principles that dictate the very existence of all the known forces of
nature.

However, before these groundbreaking insights could be uncovered, some obstacles
still needed to be removed for quantum field theory and gauge theory to emerge from
the “Dark Age.” The single most damning problem was that the mathematics was still
plagued by infinities, the demon of non-renormalizability. Almost simultaneously,
Weinberg (1967) and Abdus Salam (Salam 1968) “boldly ignored the problem of
the ‘non-renormalizable’ infinities and instead proposed a far more ambitious unified
gauge theory of the electromagnetic and weak interactions” (Moriyasu 1983, p. 102).
They built on the work by Schwinger (1957) and Sheldon Glashow (Glashow 1961)
and developed a spontaneously broken gauge theory by incorporating the Higgs
mechanism, discussed in Sect.4.2.1. Nearly a century after Maxwell’s merger of
electricity and magnetism, the next step in unifying the forces of nature was in sight:
the electroweak interaction. It is based on the gauge group SU(2) x U (1) . Salam,
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Glashow, and Weinberg were awarded the Nobel Prize in Physics in 1979 for this
achievement.

The final piece of the puzzle was found by Gerard 't Hooft. He proved that
spontaneously broken gauge theories are renormalizable ("t Hooft 1971). This crucial
theorem was all that was holding back the inevitable step to unification (Moriyasu
1983, p. 113):

However, [renormalizability] could not be proved at the time and the general response of the
community of physicists to the Weinberg-Salam theory was best described some years later
by Sidney Coleman: “Rarely has so great an accomplishment been so widely ignored.”

The strong nuclear force, responsible for the stability of matter, confining the quarks
into hadron, was successfully described as a gauge theory of a new quantum charge,
called color (Han and Nambu 1965; Greenberg and Nelson 1977). These are new
quantum properties carried by the quarks, just like electric charge is a property of
some fermions and bosons, recall Fig. 4.1. Hence the term quantum chromodynamics
is used to describe this theory. The gauge potential fields are called gluons and mediate
the strong interaction between the color charged quarks. The gauge group is SU (3)
and some mathematical tools can be borrowed from the SU (3) classification in the old
quark model provided by Gell-Mann and Ne’eman (1964). However, “it is important
to keep in mind that neither the theoretical predictions nor the experimental tests of
chromodynamics have yet achieved the level of either quantum electrodynamics or
the Weinberg-Salam theory” (Moriyasu 1983, p. 122).

Although, basically, the standard model was created by splicing the electroweak
theory and the theory of quantum chromodynamics, it ranks as “one of the great
successes of the gauge revolution” (Kaku 1993, p. 363). Technically, the standard
model is a spontaneously broken quantum Yang-Mills theory describing all known
particles and all three non-gravitational forces.

The standard model Lagrangian, seen in (3.8), is invariant under the unified
symmetry group
Gsm = SU@3) x SUR2) x U(1). (4.72)

Fermionic matter is described by spinors which interact via gauge bosons that
enter the Lagrangian through the gauge-invariant derivative

8 3
Dy=0,+ig» Gi“+igy Wit +ig'B,Y, (4.73)

a=1 i=1

where the SU (3) generators A%, with the corresponding coupling constant g and
gluon gauge fields G%, are added to (4.39). The scalar Higgs field is responsible
for generating the mass terms without violating covariance, as described in
Sect.4.2.1.
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General references are Moriyasu (1982, 1983), Collins et al. (1989), Kaku (1993),
Peskin and Schroeder (1995), Cheng and Li (1996), Ryder (1996), O’Raifeartaigh
(1997).

Conclusion

This now closes a comprehensive chapter in the Book of Nature, representing a long
voyage through the muddy waters of theoretical physics, guided solely by the notion
of symmetry. Very distinct phenomena could be melded into a single abstract struc-
ture. Despite this momentous success of the human mind in decoding the workings
of reality, the keen reader may notice a crucial omission. Up to now, the narrative
has been preoccupied with fundamental aspects of the universe: from subatomic to
cosmic scales. However, what about all the real-world complexity surrounding us?
What about the emergence of life and consciousness? To continue with the metaphor
of the Book of Nature, a major extension is required. What has bee discussed up
to now is only Volume I in a greater series. In the next chapter, Volume II will be
introduced, a recent addition to the Book of Nature Series. While Volume I dealt
with the analytical (i.e., equation-based) understanding of fundamental processes,
Volume IT uncovers the algorithmic (i.e., computer-aided) understanding of complex
systems. Whereas the following chapter is concerned with the bird’s-eye classifica-
tion of knowledge, the actual content of Volume II is only fully disclosed in Chap. 6
and its application to finance and economics is discussed in Chap. 7.
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Chapter 5 ®)
The Two Volumes of the Book of Nature Geda

Abstract The Book of Nature has been found. The mathematical description of
the universe gives the human mind the power to manipulate reality and technol-
ogy becomes possible. However, this miraculous knowledge generation has been
very specific: fundamental aspects of reality (from the quantum realm to cosmic
scales) are encoded analytically, i.e., as equations. This appears to exclude real-
world complexity, for instance, the emergent property of consciousness appearing
in a self-organizing biological neural network. A fluke of reality allows the human
mind to also conquer this domain. What appears as complexity, turns out to be the
result of simple rules. Only very recently have the fruits of technology given humans
a new level of abstraction: the magic of computation. Now, complex systems can
be encoded algorithmically, i.e., by utilizing algorithms and simulations running in
computers. As aresult, complexity can be tamed and comprehended. This new knowl-
edge generation is understood as Volume II of the Book of Nature, whereas physical
science represents Volume 1. Underlying the analytical and algorithmic formal rep-
resentations are two fundamental structures of mathematics: the continuous and the
discrete. In this sense, all human knowledge generation is unified mathematically.
Level of mathematical formality: medium to low.

The age-old dream that mathematics represents the blueprint for reality has started
to become fulfilled: the Book of Nature is intelligible to the human mind and deep
truths about the workings of the world have been decoded. In other words, the human
mind has begun to venture into realms in the abstract world which interrelate with
the workings of the physical world—from the quantum foam comprising reality to
the awe-inspiring vastness of the cosmic fabric. This main theme is encapsulated in
Fig.2.1, which is reproduced below.

However, this translation of aspects of reality into abstract representations has
been very specific. For instance, the considered reality domains interestingly omit the
very cornerstone of the whole enterprise of knowledge seeking: the human brain. And
with it, a whole branch of reality is ignored, relating to self-organization, structure
formation, and emergent complexity in general. Curiously, the Book of Nature does
not speak much about the everyday structures and systems surrounding us humans.
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Fig. 5.1 A copy of Fig.2.1
on Page 46, illustrating the
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The complexity of life is mostly excluded. Furthermore, the focus of the abstract
representation has been on a scheme of mathematization first introduced by Isaac
Newton and Gottfried Wilhelm Leibniz (see also Sect.2.1.1). In a nutshell, this
approach can be labeled as equation-driven.

These observations allow the Book of Nature to be classified as follows. Its reality
domain, while excluding complex phenomena like life and consciousness, focuses on
Sfundamental aspects of the physical world. For instance, describing how subatomic
particles interact via a unification of three of the four fundamental forces (Sect.4.4)
and how the force of gravity, replaced by the dynamics of space-time geometry
(Sects. 4.1 and 10.1.2), sculptures the cosmos. The formal representation is equation-
based, in other words, it is analytical. This fundamental-analytical dichotomy is the
paradigm of the Book of Nature.

Only recently, with the advent of information processing,! Fig.5.1 could be
applied in a whole new context. By extending the validity domain of the formal
representation to encompass computational aspects, a novel reality domain becomes
intelligible that is much closer to human experience than, for instance, the elusive
entities comprising matter and transmitting forces. Now, the focus shifts away from
an equation-driven effort and embraces computational and simulational tools. This
formal approach can essentially be denoted as algorithmic. Slowly, the everyday
complexity surrounding us can be tackled. This reality domain, in contrast to the
fundamental, will be called complex in the following. Miraculously, the human mind

Reality Domain Formal Representation
A A
r N r N
Fundamental ~ Complex Analytical  Algorithmic

Fig. 5.2 The dichotomies of reality and understanding. (Left) partitioning the world into the two
domains labeled fundamental and complex. (Right) the two main modes of formal representation
of reality relating to analytical and algorithmic descriptions

IWhich, in itself, is a prime example of the enormous effectiveness of this scientific knowledge-
generating process.
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has suddenly stumbled upon an extension of the Book of Nature. A new dichotomy
emerges, relating to the complex-algorithmic classification, uncovering the next vol-
ume of the Book of Nature. In Fig.5.2 a conceptual demarcation of these concepts
is shown.

The Pythagoreans’ dream of the mathematization of nature (Chap.2) turns out
to be only the beginning of a profound knowledge generation process. Building
on the tools enabled by the fundamental-analytical dichotomy, new abstract worlds
become accessible by the aid of computation and the complex-algorithmic paradigm
is uncovered. In summary, the Book of Nature has been greatly expanded and is now
comprised of:

VOLUMEI The fundamental reality domain made accessible to the mind via
analytical formal representations.
VOLUME I Real-world complexity encoded via algorithmic formalizations.

In the following, essential features of Volume I and II of the Book of Nature will be
independently summarized and analyzed (Sects. 5.1 and 5.2), before a unifying theme
is unveiled (Sect.5.3). Finally, the entire landscape spanned by the fundamental-
complex and analytical-algorithmic classifications is examined (Sect. 5.4). Elements
are taken or adapted from Glattfelder et al. (2010) and Appendix A in Glattfelder
(2013). Note that the contents of Volume II, relating to complex systems, is presented
in detail in Chaps. 6 and 7.

5.1 Volume I: Analytical Tools and Physical Science

The tremendous success of the first volume of the Book of Nature is summarized
in the next section and some cornerstones of its analytical powers highlighted. Then
the limitations are exposed.

5.1.1 The Success

Staying faithful to the credo “Shut up and calculate!” (Sect.2.2.1) has allowed a
lot of ground to be covered. By not being consumed by philosophical questions
relating to the nature of the abstract world, the human mind’s capacity to host or
access it, and the correspondence between the physical and the abstract (the topics
addressed in Fig.2.2), progress can be made. Although, as mentioned, the reality
domain is restricted to exclude complex systems, it still covers most of physical
science. In effect, laws of nature can be understood as regularities and structures in a
highly complicated universe. They critically depend on only a small set of conditions
and are independent of many other conditions which could also possibly have an
effect. Science can be understood as the quest to capture fundamental processes of
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nature within formal mathematical representations, i.e., in an analytical framework.
To understand more about the nature of the physical system under investigation,
experiments are performed yielding new insights. Historically, Robert Boyle was
instrumental in establishing experiments as the cornerstone of physical sciences
around 1660 (insights later published as Boyle (1682). Approximately at the same
time, the philosopher Francis Bacon introduced modifications to Aristotle’s nearly
two thousand year old ideas, introducing what came to be known as the scientific
method, where inductive reasoning plays an important role (Bacon 2000). This paved
the way for a modern understanding of scientific inquiry. From this initial thrust our
modern knowledge of the world emerged, laying the fertile groundwork on which
technology would flourish. All our current technologicontinuouscal advances, and
the increasing speed at which progress is made, trace back to this initial spark.

A powerful example within the fundamental-analytical dichotomy, highlighting
the success of the interplay between the abstract and physical worlds, is the notion of
symmetry. This simple idea found its formal expression in the concept of invariance
(Chap. 3). This is a prime example illustrating the translation process described in
Fig.5.1: a tangible idea is encoded as a mathematical abstraction. Digging deeper in
the abstract world further unearthed group theory and its ties to geometry (Sects.3.1.1
and 4.1). Mathematical invariance was then seen to flow into various themes. For
instance, universal conservation laws (Sect. 3.1), the causal relation of space and time
(Sect.3.2.1) elementary particles being categorized by the groups describing space-
time symmetries (Sect.3.2.2), and the unification of the non-gravitational forces
(Chap.4). Weaving a tapestry out of these threads made from symmetry necessarily
integrates a wide array of topics seen in physics. From

e classical mechanics (Sects.2.1.1 and 3.1.1) to quantum mechanics (Sects.4.3.4
and 10.3.2);

e special relativity (Sect.3.2.1) to general relativity (Sects.4.1 and 10.1.2);

e quantum field theory (Sects.3.1.4,3.2.2.1, 4.2, and 10.1.1) to the standard model
of particle physics (Sects.4.2, 4.3, and 4.4);

e unified field theories (Sect.4.3.3) to higher dimensional unification schemes
(Sect.4.3.1).

And, last but not least, electromagnetism (Sect.2.1.2 and Eq. (4.18)).

5.1.2 The Paradigms of Fundamental Processes

From the fundamental and universal importance of symmetry, three paradigms appli-
cable to physics can be derived:

Mathematical models of the physical world are either:

Plf : independent of the choice of representation in a coordinate system;
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Pg : unchanged by symmetry transformations;
P§ : constrained to transform according to a symmetry group.

To illustrate P{ , imagine an arrow located in space. It has a length and an ori-
entation. In the mathematical world, this can be represented by a vector, labeled
a. By choosing a coordinate system, the abstract entity a can be given physi-
cal meaning a = (aj, az, az). For each axis direction xi, x, x3, the a; describe
the number of increments along the axis the vector is projected on. For instance
a = (3,5, 1). The problem is, however, that depending on the choice of the coor-
dinate system, which is arbitrary, the same vector is described very differently:
a=(@3,5,1)=(0,23.34, —17). The paradigm above states that the physical con-
tent of the mathematical model should be independent of the decision of how one
chooses to represents the mathematical model.

The first two requirements P{ and P; , seemingly innocuous, straightforward and
commonsensical, are conceptualized as the powerful ideas of general covariance
and invariance. The notion that vectors and tensors should be independent of the
choice of coordinates used to express and compute these quantities, leads to one
of the two main ingredients in the theory of general relativity, describing gravity
(Sect.4.1 and 10.1.2). Moreover, expecting the outcome of an experiment to be inde-
pendent of the exact time and location the experiment was conducted at, results, via
Noether’s theorem, in the conservation of energy and momentum in the universe
(Sect.3.1.4). Alternatively, imposing a theory to be invariant under gauge transfor-
mations (Sect.4.2) yields a unifying theme on the basis of which the standard model
of particle physics is constructed (Sect. 4.4). In Fig. 5.3 a schematic overview is given,
of how Py leads to the theory of general relativity and F"zf to the standard model.
While the former utilizes the external symmetry of space-time, the latter relies on
internal gauge symmetry. It is indeed amazing, how the adoption of such simple
paradigms leads to such effective and complete physical theories. P_i: is more subtle,
as it describes a link between the quantum world and the structure of the symme-
try groups of space-time: the mathematical representation of the groups encode the
transformation properties of quantum fields and particle states (Sects.3.2.2.1 and
3.2.2.2). This gives rise to a mathematical lever with which the unseen quantum
entities can be manipulated.

5.1.3 The Limitations

In the last chapters, it was unveiled how mathematics underlies physics. From classi-
cal mechanics, electromagnetism, the non-gravitational forces unified in the standard
model of particle physics to gravitational forces. In spite of this tremendous success
there is still one omission, relating to many-body problem. This is a large category
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Fig. 5.3 Conceptual overview of the structure of the two main physical theories describing all
known forces in the universe: the standard model and general relativity. Focusing on specific reality
domains (the quantum world or the arena of space-time) and guided by symmetry principles, it is
possible to translate the physical essence into an abstract structure. Once encoded, this information
is subjected to the dictum of mathematical theories, yielding the physical theories. Finally, decoding
these formal representations allows the effects of the fundamental physical forces to be calculated.
Adapted from Glattfelder (2013)

of physical problems pertaining to the properties of microscopic systems that are
comprised of a large number of interacting entities.

Condensed matter physics attempts to explain the macroscopic behavior of matter
based on microscopic properties and quantum effects (Ashcroft and Mermin 1976). It
is one of physics first ventures into many-body problems in quantum theory. Although
the employed notions of symmetry do not act at such a fundamental level as in
the above mentioned theories, they are a cornerstone of the theory. Namely, the
complexity of the problems can be reduced using symmetry in order for analytical
solutions to be found. Technically, the symmetry groups are boundary conditions
of the Schrodinger equation. This leads to the theoretical framework describing, for
example, semiconductors. In the super-conducting phase (Schilling et al. 1993), the
wave function becomes symmetric.

Another macroscopic characteristic of matter based on microscopic properties are
quasicrystals (Mackay 1982). A quasicrystalline pattern can fill an entire space, but
lacks translational symmetry. In short, quasicrystals are structures which are ordered
but not periodic. They have fractal properties (Sect.5.2.1). Until Dan Shechtman
received the 2011 Nobel Prize for the discovery of quasicrystals, the topic was con-
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troversial. Eminent chemist and two-time Nobel laureate’ Linus Pauling exclaimed
that “there are no quasi-crystals, just quasi-scientists” (quoted in The Guardian 2013).
Shechtman faced disdain from his peers and his research was rejected as erroneous.
Lesley Yellowlees, president of the Royal Society of Chemistry, summarized the
ordeal (quoted in The Guardian 2013):

Dan Shechtman’s Nobel prize celebrated not only a fascinating and beautiful discovery, but
also dogged determination against the closed-minded ridicule of his peers, including leading
scientists of the day. His prize didn’t just reward a difficult but worthy career in science; it
put the huge importance and value of funding basic scientific research in the spotlight.

Overall, many-body problems in physics represent a vast category of challenges
which are notoriously hard to tackle. Determining the precise physical behavior of
systems composed of many entities is, in general, hard, as the number of possi-
ble combinations of states increases exponentially with the number of entities to be
considered. This intricacy drains the analytical formal representation’s power, as cal-
culations become intractable. In contrast, the understanding of many-body problems
often relies on approximations specific to the problem being analyzed and result in
computationally intensive calculations. The algorithmic approach to decoding such
complexity, defining a new dichotomy, emerges.

As an example, in classical mechanics the n-body problem describes the challenge
of predicting the motions of n celestial bodies interacting with each other via New-
ton’s law of universal gravity. Already 3-body problems—for instance, describing a
Sun-Earth-Moon system given their initial positions, masses, and velocities—yield
equations with no closed form solutions. As a result, numerical methods or computer
simulations need to be invoked in order to solve such seemingly simple problems
(Valtonen and Karttunen 2006).

A further challenge related to the understanding of systems of many interacting
agents, rendering equations mute but emphasizing the power of algorithmic tools,
is the discovery of chaos theory (Mandelbrot 1982; Gleick 1987). For instance, the
behavior of water molecules in a dripping faucet becomes unpredictable, when the
system enters the chaotic state (Shaw 1984). One critical aspect of chaotic systems
in nature is their dependence on initial conditions. The Butterfly Effect describes
this sensitivity metaphorically: The flapping of the wings of a butterfly creates tiny
perturbations in the atmosphere which set the stage for the occurrence of a tornado
weeks later. More precisely, the exact values of the initial conditions determine how
the system evolves in time. However, as these initial conditions can never be set with
infinite accuracy in the real world, the system’s evolution shows a path-dependence.
In other words, two dynamical systems with nearly identical initial conditions can end
up in two vastly different end states. More on chaos theory is presented in Sect. 5.2.1.

The Butterfly Effect was coined by Edward Lorenz, a mathematician, meteorolo-
gist, and a pioneer of chaos theory. Meteorology is a prime example of how inquiries
into the workings of a complex system are stifled by chaotic behavior. In theory, if

2He was awarded the Nobel Prize in chemistry and the Nobel Peace Prize. Marie Curie was the
first person to ever be honored twice, with a Nobel Prize in physics and chemistry. To this day, the
illustrious group of people to have received two Nobel Prizes is comprised of four people.
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there existed an infinitely small grid of atmospheric measurements stations scattered
all over the world, weather predictions would be accurate. Facing such impossibil-
ity, scientists have devised simulational methods able to tackle the uncertainty. As
an example, the Monte Carlo method utilizes computational simulations which are
repeated many times over with random sampling to obtain numerical results. The key
insight is to use the statistical properties of seeming randomness to solve problems
that might be deterministic in principle. The algorithmic Monte Carlo methods are
mostly employed, and often useful, when it is difficult or even impossible to use
other approaches, like analytical tools.

Another key limiting factor for the equation-based understanding of the workings
of the world comes in the guise of non-linearity, a cornerstone of chaos theory. For
linear systems the change of the output is proportional to the change of the input.
Expressed mathematically

fx) ~x. (5.1

Already the square of a variable is non-linear, i.e., f(x) = x2. Here we see an
emerging conflict between the fundamental-analytical and the complex-algorithmic
dichotomies. Linear algebra is the branch of mathematics describing vector spaces
and, crucially, linear mappings between such spaces. The linear mappings are
expressed as matrices. This mathematical language, relying on linear systems, has
been extremely fruitful in describing quantum mechanics. However, most physi-
cal systems in nature are inherently non-linear (Mandelbrot 1982; Strogatz 1994).
Moreover, this non-linear (and chaotic) behavior is, again, analytically hard to tackle.
To conclude, a final limitation in physics comes from dissipative effects, like fric-
tion or turbulence, where the system loses energy (or matter) over time and exhibits
non-linear dynamics. Hence calculations in physics often rely on idealizations. For
instance, Newton’s classical mechanics can easily describe a game of pool, i.e., colli-
sions between billiard balls, if friction is ignored, the balls are assumed to be perfectly
spherical, and the collisions taken to be elastic (i.e., the kinetic is energy conserved).

In essence, while physics has had an amazing success in describing most of the
observable universe in the last 300 years, it appears as thought its powerful mathe-
matical formalism is ill-suited to address the real-world complexity surrounding and
including us. Namely, situations where many agents are interacting with each other.
For instance, ranging from particles, chemical compounds, cells, biological organ-
isms to celestial bodies, and systems thereof. In order to approach real-life complex
phenomena, one needs to adopt a more systems oriented focus.

5.2 Volume II: Algorithmic Tools and Complex Systems

For centuries, the fundamental-analytical dichotomy of understanding the universe
has prevailed. A vast array of knowledge has been accumulated. However, only
recently our focus has shifted to the intricate realities of systems of interacting agents
surrounding us, contained within us, and comprising us. A new dichotomy relating
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to the complex-algorithmic classification emerged. Equipped with new computa-
tional and simulational tools we started to probe a new reality domain encompassing
complex systems. A true paradigm shift occurred in our understanding, away from
a reductionist philosophy prevailing in science towards a holistic, networked, and
systems-based outlook.

Complex systems theory is the topic of Chap. 6. Here, in a nutshell, we introduce
complex systems and networks, describe the paradigms of the complex-algorithmic
dichotomy, and outline the success of this endeavor.

5.2.1 The Paradigms of Complex Systems

A complex system is usually understood as being comprised of many interacting
or interconnected parts (or agents). A characteristic feature of such systems is that
the whole often exhibits properties not obvious from the properties of the individual
parts. This is called emergence. In other words, a key issue is how the macro behavior
emerges from the interactions of the system’s elements at the micro level. Moreover,
complex systems also exhibit a high level of adaptability and self-organization. The
domains complex systems originate from are mostly socio-economical, biological,
or physio-chemical (Chaps. 6 and 7).

The study of complex systems appears complicated, as it implies an approach
very different from the reductionistic thinking of established science. Now, breaking
down, identifying, and analyzing the behavior of a single constituent of a system
does not reveal anything about the dynamics of the system as a whole. A quote
from Anderson (1972), an influential article succinctly titled “More is Different”,
illustrates this fact:

At each stage [of complexity] entirely new laws, concepts, and generalizations are necessary
[. .. ]. Psychology is not applied biology, nor is biology applied chemistry.

In the same vein, it is far from clear how to get from a description of quarks and
leptons, via DNA, to an understanding of the human brain and consciousness. It
appears as though these hierarchical levels of order defeat any reductionistic attempts
of understanding by their very design.

As discussed, complex systems are usually very reluctant to be cast into closed-
form analytical expressions. This means that it is generally hard to derive mathemat-
ical quantities describing the properties and dynamics of the system under study. If
the paradigms of fundamental processes described on Page 143 fail, what is needed
to replace them? Indeed, can we even hope to find such succinct guiding principles a
second time? Remarkably and, again, unexpectedly, the answer is yes. The paradigms
of complex systems are, once again, very concise:
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P{: Every complex systemis reduced to a set of objects and a set of functions
between the objects.

P5: Macroscopic complexity is the result of simple rules of interaction at
the micro level.

P{ is reminiscent of the natural problem solving philosophy of object-oriented
programming, where the objects are implementations of classes (code templates)
interacting via functions (public methods). A programming problem is analyzed in
terms of objects and the nature of communication between them. When a program
is executed, objects interact with each other by sending messages. The whole sys-
tem obeys specific rules (encapsulation, inheritance, polymorphism, etc.). See, for
instance Gamma et al. (1995).

Similarly, in the mathematical field of category theory a category is defined as
the most basic structure: a set of objects and a set of morphisms (maps between the
sets) (Hillman 2001). Special types of mappings, called functors, map categories
into each other. Category theory was understood as the “unification of mathematics”
in the 1940s. A natural incarnation of a category is given by a graph or a network,
where the nodes represent the objects and the links describe their relationship or
interactions. Now the structure of the network (i.e., the topology) determines the
function of the network. This new science of networks, emerging from the study
of complex systems and building on the formal representation of P{ as a graph, is
presented in the Sect.5.2.3.

Paradigm P, the topic of the following section, describes how order emerges
out of chaos, driven by a set of simple rules describing the interaction of the parts
making up a complex system. Together, these two paradigms represent a shift away
from mathematical models of reality towards algorithmic models, computing and
simulating reality. In other words, a change in modus operandi from the fundamental-
analytical to the complex-algorithmic dichotomy has occurred. Now, the analytical
description of complex systems can be abandoned in favor of the algorithms describ-
ing the interaction of the objects, i.e., agents, in a system, according to specified rules
of local interaction. This is the fundamental distinguishing characteristic outlined on
the right-hand side of Fig.5.2. Instead of encoding certain aspects of reality into
mathematical equations, now computers are programmed with step-by-step recipes
which are conjured up to tackle problems. Only by letting the algorithm run new
knowledge is generated and the design of algorithms and the existence of algorith-
mic solutions become relevant.

This prominent approach is called agent-based modeling. One key realization is
that the structure and complexity of each agent can be ignored when one focuses on
their interactional structure. Hence the neurons in a brain, the chemicals interacting
in metabolic systems, the ants foraging, the animals in swarms, the humans in a
market, etc., can all be understood as being comprised of featureless interacting
agents and modeled within this paradigm. By encapsulating the algorithms into a
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system of agents, complex behavior can be simulated. Some successful agent-based
models are Axelrod (1997), Lux and Marchesi (2000), Schweitzer (2003), Andersen
and Sornette (2005), Miller et al. (2008), Salamon (2011), Helbing (2012).

5.2.2 The Science of Simple Rules

Paradigm P% of complex systems, stating that complexity emerges from simplicity,
is unexpected and very surprising. It is perhaps as puzzling as Eugene Wigner’s
comments on the “unreasonable effectiveness of mathematics in the natural sciences”
(Sect.9.2.1). Prompted by the tremendous success of Volume I of the Book of Nature
in decoding the workings of the universe by utilizing equations, scientists expressed
their bafflement. For instance, also Albert Einstein (quoted in Isaacson 2007, p. 462):

The eternal mystery of the world is its comprehensibility. The fact that it is comprehensible
is a miracle.

Now compounding the enigma is the discovery of Volume II. What appeared as
intractable complexity from afar is uncovered to be the result of simple rules of
interaction closeup. First, the universe speaks a mathematical language the human
mind can discover or create. Then, what appeared as hopeless complicatedness is in
fact derived from pure simplicity.

A New Kind of Science

Although the simplicity of complexity (Chap.6) has attracted less philosophical
interest than the “unreasonable effectiveness of mathematics”, some scientists have
expressed their total bewilderment at the realization. For instance, Stephen Wolfram,
aphysicist, computer scientist, and entrepreneur. Wolfram started his academic career
as a child prodigy, publishing his first peer-reviewed and single-author paper in par-
ticle physics at the age of sixteen (Wolfram 1975). Three years later, a publication
appeared which is still relevant and referenced today, forty years later (Fox and Wol-
fram 1978). In 1981, he won the MacArthur Fellows Program,’ colloquially know
as the “Genius Grant”, a prize awarded annually to researchers who have shown
“extraordinary originality and dedication in their creative pursuits and a marked
capacity for self-direction”. In parallel, Wolfram led the development of the com-
puter algebra system called SMP (Symbolic Manipulation Program) in the Caltech
physics department during 1979-1981. A dispute with the administration over the
intellectual property rights regarding SMP eventually caused him to hand in his res-
ignation. Continuing on this computational journey, Wolfram began the development
of Mathematica in 1986. This was a mathematical symbolic computation program
and would become an invaluable tool used in many scientific, engineering, math-
ematical, and computing fields. In 1987, the private company Wolfram Research
Inc. was founded, releasing Mathematica Version 1.0 in 1988. By 1990, Wolfram

3See https://www.macfound.org/programs/fellows/strategy.
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Research reached $10 million in annual revenue.* Today, Mathematica (Version
11.2.0) remains highly influential and most of its code is written in the Wolfram
Language. This is a general multi-paradigm programming language developed by
Wolfram Research.

However, Wolfram’s biggest fascination lies with complexity. It started with his
work on cellular automata in 1981. These are discrete models studied in com-
putability theory, mathematics, physics, complexity science, theoretical biology, and
microstructure modeling. A cellular automaton consists of a regular grid of cells,
each in one of a finite number of states. A famous cellular automaton was devised by
the mathematician John Conway in 1970, called the Game of Life (Gardner 1970).
It is an infinite two-dimensional orthogonal grid of square cells, which can be in
two sates (dead or alive). The game evolves according to four simple rules and the
whole dynamics are solely determined by the choice of the initial state. The Game
of Life attracted a lot of attention due to the complex patterns that could emerge
from the interaction of the game’s simple rules. In essence, an early computational
implementation demonstrating emergence and self-organization. In 1987, Wolfram
founded the journal Complex Systems,’ “devoted to the science, mathematics and
engineering of systems with simple components but complex overall behavior”. This
fascination with complexity had life-changing consequences for him.

In 2002, Wolfram wrote (Wolfram 2002, p. ix):

Just over twenty years ago I made what at first seemed like a small discovery®: a computer
experiment of mine showed something I did not expect. But the more I investigated, the
more I realized that what I had seen was the beginning of a crack in the very foundations of
existing science, and a first clue towards a whole new kind of science.

Developing this new science would become his passion. In 1991, Wolfram set out to
realize this vision, resulting in the 2002 book, A New Kind of Science, a one-thousand-
two-hundred-page tour de force (Wolfram 2002). During the time of writing, Wolfram
became nocturnal and reclusive, totally devoted to his project. Indeed, when he
realized that there was no publisher who could print the book with the quality he
envisioned for the diagrams, he simply founded Wolfram Media Inc. to do the job.
See (Levy 2002) for more anecdotes. The book begins by setting the stage with the
demarcation described in Fig. 5.2 (Wolfram 2002, p. 1):

Three centuries ago science was transformed by the dramatic new idea that rules based on
mathematical equations could be used to describe the natural world. My purpose in this book
is to initiate another such transformation, and to introduce a new kind of science that is based
on the much more general types of rules that can be embodied in simple computer programs.

In other words, Wolfram describes the two opposing formal representations we
humans can access: analytical vs. algorithmic. In essence “the big idea is that the

4See http://www.stephenwolfram.com/scrapbook/timeline.
3See http://www.complex-systems.com.

OWolfram is referring to a cellular automaton rule he introduced in 1983, called Rule 30, out of 256
possible rules. Rule 30 produces complex, seemingly random patterns from the simple, well-defined
rules of interaction.
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algorithm is mightier than the equation” (Levy 2002). Wolfram claims to have
re-expressed all of science utilizing the formal language of cellular automata, in
essence, simple programs. Indeed, looking at the table of contents reveals the great
scope in the topics that are covered:

The Foundations for a New Kind of Science
The Crucial Experiment

The World of Simple Programs

Systems Based on Numbers

Two Dimensions and Beyond

Starting from Randomness

Mechanisms in Programs and Nature
Implications for Everyday Systems
Fundamental Physics

Processes of Perception and Analysis

The Notion of Computation

The Principle of Computational Equivalence

ORI AU R W =

o
N =

From mathematics and its foundation, complex systems found in nature, physics
and its foundation, to the nature of computation, a vast array of subject matter is
covered diligently in great detail. Wolfram acknowledges the tremendous success of
the mathematical approach to science, but stresses that many central issues remain
unresolved, where the simple-programs paradigm could possibly shed new light on
the challenges (Wolfram 2002, p. 21):

The typical issue was that there was some core problem that traditional methods or intuition
had never successfully been able to address—and which the field had somehow grown to
avoid. Yet over and over again, I was excited to find that with my new kind of science I could
suddenly begin to make great progress—even on problems that in some cases had remained
unanswered for centuries.

A New Kind of Science was received with skepticism and ignited controversy. How-
ever, regardless of how one views Wolfram and his claims, one epiphany remains.
Namely, the counterintuitive realization that simplicity unlocks complexity (Wolfram
2002, p. 2):

Indeed, even some of the very simplest programs that I looked at had behavior that was as
complex as anything I had ever seen.

It took me more than a decade to come to terms with this result, and to realize just how
fundamental and far-reaching its consequences are.

Furthermore (Wolfram 2002, p. 19):

And I realized, that I had seen a sign of a quite remarkable and unexpected phenomenon:
that even from very simple programs behavior of great complexity could emerge.

Until this phenomenon was reliably demonstrated and studied by Wolfram, people
expected simple rules of interactions to lead to mostly simple outcomes. Discovering
simplicity to be the spawning seed of complex behavior was truly unexpected. But



152 5 The Two Volumes of the Book of Nature

perhaps the boldest claim in the book relates to the computational nature of the
universe. Wolfram invokes a radical new level of reality, where beneath the laws of
physics there lies a computational core. This theme will reappear in Chap. 13.

Quadratic and Logistic Maps

Another archetypal theme describing how simplicity encodes complexity comes
from chaos theory. This time the notion is nested deep within mathematics itself and
comes in the guise of fractal sets. Fractals are very particular abstract mathematical
objects. The term was coined by the mathematician Benoit Mandelbrot (Mandelbrot
1975). Fractals came to prominence in the 1980s with the advent of chaos theory, as
the graphs of most chaotic processes display fractal properties (Mandelbrot 1982)—
that is, foremost, self-similarity. This is a feature of an object to contain, exactly or
approximately, similar parts of itself. For instance, a coastline is self-similar: parts
of it show the same statistical properties at many scales (Mandelbrot 1967). Such
a characteristic is also called scale invariance, a topic discussed in Sect. 6.4 in the
context of scaling laws. Indeed, many naturally occurring objects display fractal
properties. So much so, that Mandelbrot chose the title of his seminal and hugely
influential work on fractals and chaos theory to read: The Fractal Geometry of Nature
(Mandelbrot 1982).

The most prototypical fractal, also entering pop culture, is the Mandelbrot set
(Douady et al. 1984). Due to the rise of computational power, graphical images
started to become more detailed around the 1980s, slowly unveiling the set’s aesthetic
appeal. But most stunning was the self-similar property of the Mandelbrot set, where
the original iconic shape would reemerge over and over again, at all resolutions
accessible within the current computational limits. See Fig.5.4 for an illustration.
The Mandelbrot set is defined as the set of values ¢ for which the iterations of the
quadratic map

Znsl =25 + €, (5.2)

remain bounded, where zo = 0. In other words, a chosen ¢ belongs to the set if the

series 71 = ¢, 20 = 27 + ¢ = ¢* + ¢, ... does not go to infinity for n — 0o. As ¢ is
a complex number, i.e., ¢ € C, it can be represented as

c=a+i-b, (5.3)
with a, b € R and i := +/—1. Hence one can display ¢ graphically as a point in the
(complex) plane with the coordinates ¢ = (a, b), explaining the two-dimensional

nature of fractals. Variants of the Mandelbrot set are easily conceived of, by altering
the nature of the map. For instance

Zo1 =2 +c, (5.4)
yields the fractal set seen in the middle and right-hand panels of Fig. 5.4. Generically

Znt1 = [(Zn) + 8(0), (5.5)
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Fig.5.4 The evolution of fractals. (Left) the first glimpse of the Mandelbrot set defined in Eq. (5.2),
reproduced from Gleick (1987), (p. 225). (Middle) a fractal variant defined by Eq. (5.4). (Right)
zooming into the middle fractal, revealing its self-similar nature. The colors indicate how quickly
¢ diverges (the lighter the slower the divergence) while black shows the converging points defining
the set. Note that these are original images produced by myself in the mid-1990s, explaining the
pixelation seen somewhat skewing the self-similar patterns

with two defining functions f and g. These iterative equations are also known as
difference equations, a hallmark of discrete mathematics, discussed in Sect.5.3.
Another simple equation describing a chaotic system is know as the logistic map

Xn+1 =rx,(1 — x,), (56)

where the value of the term following the nth one is again determined by the values
of the nth term itself, the initial value x(, and a constant . It has the same structure as
Eq. (5.2) defining the Mandelbrot set. The logistic map was introduced in a seminal
paper by the biologist Robert May (May 1976). It is another archetypal example
of how complex, chaotic behavior can arise from very simple non-linear dynamical
equations. The equation describes the evolution of populations due to reproduction
and starvation and is famous for its bifurcation diagram (Feigenbaum 1978), showing
how the system descends into chaos.

Before Mandelbrot and others’ first saw the intricate shape of the fractal set named
after him in the late-1970s, no one could have imagined that such a simple equation,
Zntl = z,zl + ¢, had the power to encode such a wealth of structure. In essence, the
simple rule of the iterative map contains an infinitude of complexity. Anywhere on
the boundary of the Mandelbrot set, one can zoom in, theoretically indefinitely, and
keep on rediscovering new delicate structures and patterns of stunning complexity.
This is another prime example of P5: A seductively simple procedure results in one
of the most complex objects in mathematics.

TThere exists a dispute about the discovery of the Mandelbrot set (Horgan (2009)).
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5.2.3 The New Science of Networks

While the second paradigm of complex systems uncovers that simple rules drive com-
plex behavior, Paradigm P7 states that complex systems should be broken down into
individual agents and their interactions. As a result, networks are an ideal abstraction
for theses systems. The agents are represented by featureless nodes and the inter-
actions are given by the links connecting the nodes. This thinking gave rise to a
new interaction-base worldview and the crucial realization that networks are able to
mirror the organizational properties of real-world complex systems. A new science
of networks was ignited (Dorogovtsev and Mendes 2003, p. 1):

In the late 1990s the study of the evolution and structure of networks became a new field in
physics.

The formal mathematical structures describing networks are graphs. The nearly
three hundred year history of graph theory is briefly discussed in Sect.5.3.2, where
the notion of a random graph takes center stage around 1960. This fruitful marriage
of probability theory and graph theory resulted in much successful scholarly work.
So what is there to add in terms of a new science of networks? Indeed (quoted in
Newman et al. 2006, p. 4):

If graph theory is such a powerful and general language and if so much beautiful and elegant
work has already been done, what room is there for a new science of networks?

The authors then offer the following answers (quoted in Newman et al. 2006, p. 4):

We argue that the science of networks that has been taking shape over the last few years is
distinguished from preceding work on networks in three important ways: (1) by focusing on
the properties of real-world networks, it is concerned with empirical as well as theoretical
questions; (2) it frequently takes the view that networks are not static, but evolve in time
according to various dynamical rules; and (3) it aims, ultimately at least, to understand
networks not just as topological objects, but also as the framework upon which distributed
dynamical systems are built.

The first glimpse of this new science of networks came from sociology in the late
1960s. A milestone being the work of Mark Granovetter on the spread of information
in social networks (Granovetter 1973). He realized that more novel information flows
to individuals through weak rather than strong social ties, coining the term “the
strength of weak ties.” Since our close friends move in similar circles to us, the
information they have access to overlaps significantly with what we already know.
Acquaintances, in contrast, know people we do not know and hence have access
to novel information sources. Another topic of interest was the interconnectivity
of individuals in social networks. Stated simply, how many other people does each
individual in a network know? Stanley Milgram devised an ingenious, albeit simple,
experiment in 1969. The unexpected results propelled a novel concept into the public
consciousness: the notion of the small world phenomenon, colloquialized as “six
degrees of separation” (Milgram 1967; Travers and Milgram 1969) In a nutshell
(Newman et al. 2006, p. 16):
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Milgram’s experiments started by selecting a target individual and a group of starting indi-
viduals. A package was mailed to each of the starters containing a small booklet or “passport”
in which participants were asked to record some information about themselves. Then the
participants were to try and get their passport to the specified target person by passing it on
to someone they knew on a first-name basis who they believed either would know the target,
or might know somebody who did. These acquaintances were then asked to do the same,
repeating the process until, with luck, the passport reached the designated target. At each
step participants were also asked to send a postcard to Travers and Milgram, allowing the
researchers to reconstruct the path taken by the passport, should it get lost before it reached
the target.

The researchers recruited 296 starting individuals from Omaha, Nebraska and
Boston, and targeted a stockbroker living in a small town outside Boston. 64 out
of the 296 chains reached the target, with the median number of acquaintances from
source to target being 5,2. In other words, a median of six steps along the chain
were required. A surprisingly short distance and an unexpected result considering
the potential size of the analyzed network. As a modern example, researchers set up
an experiment where over 60,000 e-mail users tried to reach one out of 18 target per-
sons in 13 countries by forwarding messages to acquaintances. They also found that
the average chain length was roughly six (Dodds et al. 2003). In an other experiment,
the microblogging service Twitter was analyzed in 2009. Then it was comprised of
41,7 million user profiles and 1,47 billion social relations and had an average path
length found to be 4, 12 (Kwak et al. 2010).

In 1998, Duncan Watts and Steven Strogatz introduced the small-world network
model to replicate this small-world property found in more and more real-world net-
works (Watts and Strogatz 1998). They identified two independent structural features
according to which graphs could be classified. The clustering coefficient is a mea-
sure of the degree to which nodes in a graph tend to cluster together, derived from
the number of triangles present in the network. The second classification measure is
the average shortest path length, the key parameter of small-world networks. Apply-
ing these quantities to random graphs, constructed according to the prototypical
Erdés-Rényi model,® reveal a small average path length (usually varying as the log-
arithm of the number of nodes) along with a small clustering coefficient. In contrast,
small-world networks are characterized by a high clustering coefficient and a small
average path length. The algorithm introduced in the Watts-Strogatz model consid-
ers regular ring lattices, or graphs with n nodes each connected to k neighbors, and
imposes a probability for the rewiring of links (excluding self-loops). These models
also turned out to be receptive to a variety of techniques from statistical physics,
attracting “a good deal of attention in the physics community and elsewhere” (New-
man et al. 2006, p. 286).

Finally, after the random graph and small-world network models had been intro-
duced, an additional type of real-world network was discovered by Albert-L4szl6
Barabasi and Réka Albert. This seminal finding ultimately ushered in the new field
of complex networks, indeed ignited “a revolution in network science” (Dorogovt-
sev and Mendes 2003, p. 1). In summary, the hallmark of this new network class

8See Eq.(5.11) on Page 168.
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Fig. 5.5 Examples of common network topologies. (Left) a regular two-dimensional lattice. (Mid-
dle) arandom network with an average degree of one. (Right) a scale-free network with an average
degree of one showing two hubs. Reproduced with kind permission from Geipel (2010)

is that its degree distribution follows a power law.” As power-law distributions are
discussed in detail in Sect. 6.4, it suffices to mention here that such distributions are
characterized as follows: while there are a few nodes, called hubs, which have very
high connectivity, most nodes, however, have medium to low degree. In Barabasi
and Albert (1999) the authors proposed that the power-law degree distribution they
observed in the WWW is a generic property of many real-world networks. In addi-
tion, they offered a specific model of a growing network that generates power-law
degree distributions similar to those seen in the WWW and other networks. This
growth mechanism is know as preferential attachment: with a certain probability
new nodes are added to the network and these preferentially form links with existing
nodes of high degree. The influence of Barabasi and Albert on this new budding
network science is reflected in the number of citations of their publications. Alone
Barabasi and Albert (1999) and Albert and Barabdsi (2002) jointly garnered over
18,000 citations.'?

Note that although scale-free networks are also small-world networks, the opposite
is not always true. However, many real-world complex networks show both scale-
free and small-world characteristics. In Fig.5.5 examples of networks with various
levels of structure are shown. The feature of complex networks in general to capture
and encode the organizational architecture of complex systems is what ushered in
the new science of complexity, explained in Chap. 6.

5.2.4 The Success

It is remarkable that a multitude of simple interactions can result in overall complex
behavior that exhibits properties like emergence, adaptivity, resilience, and sustain-

9See Eq.(5.17) on Page 168.

1010,641 plus 7,646, respectively, retrieved in February 2015 from the Web of Knowledge, an
academic citation indexing service provided by Thomson Reuters.
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ability. Moreover, the fact that order and structure can arise from local interactions
between parts of an initially disordered system is astonishing. Indeed, the universe
has always been governed by this structure formation mechanism, self-organizing
itself into ever more complex manifestations. From an initial singularity with no
structure the universe appears to, at least in our vicinity, be spontaneously evolving
towards ever more order. Albeit with no external agency and despite the second law
of thermodynamics forcing the entropy—the level of disorder—of the universe to
increases over time.'!! Mysterious as these processes may appear, the study of com-
plex systems gives us insights into the mechanisms governing complexity. Moreover,
should there exist an unseen fundamental force in the universe, driving it to ever more
complexity, then the emergence of first life and later consciousness is perhaps less
wondrous.

In essence, complexity does not stem from the number of participating agents in
the system but from the number of interactions among them. For instance, there are
about 20,000-25,000 genes in a human (International Human Genome Sequencing
Consortium 2004). In contrast, bread wheat has nearly 100,000 genes (Brenchley
et al. 2012). Thus the complexity of humans is evidently not a result of the size
of our genome. It is crucial how the genes express themselves, meaning how the
information encoded in a gene is used in the synthesis of functional gene products,
such as proteins. The gene regulatory network is a collection of molecular regulators
that interact with each other to govern the gene expression levels (Brazhnik et al.
2002).

This novel interaction-based outlook also highlights the departure from a top-
down to a bottom-up approach to understanding complexity. A top-down philosophy
is associated with clear centralized control or organization. In contrast, bottom-up
approaches are akin to decentralized decision-making. The control or organization
is spread out over a network. For instance, it once was thought that the brain would,
like a computer, have a CPU—a central processing unit responsible for top-down
decision-making (Whitworth 2008). Today, we know that the information processing
in our brains is massively parallel (Alexander and Crutcher 1990), decentralized into
a neural network, giving rise to highly complex, modular, and overlapping neural
activity (Berman et al. 2006).

Philosophically, the step towards bottom-up approaches can be understood as a
departure from reductionist problem-solving methods and an embracing of a systems-
based and holistic outlook. It marks the acceptance of the fact, that we should stop
looking for a master-mind behind the scenes, an elusive puppet-master orchestrating
the occurrence of events, following devilishly cunning plans.'> Mapping interactions
onto networks or simulating them in agent-based models allows the complex system

"'This is possible because the second law of thermodynamics only applies to isolated systems.
Systems far from the thermodynamic equilibrium (non-equilibrium thermodynamics) are candidates
for self-organizing behavior. Overall, the entropy always increases in the universe. See Nicolis and
Prigogine (1977).

12This philosophical realignment as potential political and societal ramifications. For instance, with
respect to the surprising popularity and pervasiveness of conspiracy theories in the 21st Century,
see Sect. 12.2.
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Fig. 5.6 The properties of
complex systems and the
paradigms leading to an
agent-based simulation
describing them.
Reproduced from Glattfelder
et al. (2010)
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they describe to be formally analyzed. In Fig. 5.6 an illustrated overview of an agent-
based simulation is given: In a computer program agents are interacting according
to simple local rules and give rise to global patterns and behaviors seen in real-world
complex systems.

By adopting a bottom-up philosophy, novel problems become tractable which
before resisted a top-down attack. For instance, modeling the flocking behavior of
birds. This swarming behavior has all the hallmarks of complexity (Bonabeau et al.
1999). It is an adaptive and self-organizing phenomenon. So how is it possible to
program a simulation of such intricate behavior? Again, adhering to the paradigm
of simple rules, a bottom-up approach turns out to offer an easy solution. In 1986
an artificial life program called Boids was developed,'® reproducing the emergent
swarming properties. The following three simple rules tell each agent how to interact
locally in the simulation:

1. Separation: steer to avoid a crowding of agents.
2. Alignment: steer towards the average heading of local agents.
3. Cohesion: steer to move toward the average position of local agents.

Many hitherto hard (or impossible) to tackle problems suddenly become acces-
sible and tractable with the application of the paradigms of complex systems. In
detail, the organizing principles and the evolution of dissipative, real-world complex
systems, which are inherently unpredictable, stochastic in nature, and plagued by
non-linear dynamics, can now be understood. This, by analyzing the architecture of
the underlying network topology or by computer simulations. Hence more patterns
and regularities in the natural world are uncovered. For instance, earthquake corre-
lations (Sornette and Sornette 1989), crowd dynamics (Helbing et al. 2000), traffic
dynamics (Treiber et al. 2000), pedestrian dynamics (Moussaid et al. 2010), pop-
ulation dynamics (Turchin 2003), urban dynamics (Bettencourt et al. 2008), social
cooperation (Helbing and Yu 2009), and market dynamics (see Sect.7.3). Recall
the mentioned selection of effective agent-based models (Axelrod 1997; Lux and
Marchesi 2000; Schweitzer 2003; Andersen and Sornette 2005; Miller et al. 2008;
Salamon 2011; Helbing 2012). Chapter6 is exclusively devoted to the successful
treatment of complex systems and Chap. 7 discusses finance and economics.

13See http://www.red3d.com/cwr/boids/.
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5.3 The Profound Unifying Powers of Mathematics

The two volumes of the Book of Nature appear to speak two different formal dialects.
While Volume I is written in an equation-based mathematical language, Volume
II utilizes an algorithmic formal representation, intelligible to computers. In this
section it will be uncovered how a mathematical idiom also underpins the algorith-
mic abstraction. In essence, the entirety of mathematics incorporates both formal
strands and hence unifies all human knowledge generation in one consolidated for-
mal representation. The journey leading to this realization begins in pre-Socratic
Greece and touches on the Protestant Reformation, the Jesuits, Newton, Galileo
Galilei, the bridges of Konigsberg, and digital information (bits). Before embarking
on this voyage, the edifice of mathematics requires a closer inspection.

There is one general demarcation line one can find in mathematics, splitting the
subject matter into continuous and discrete renderings. Most non-mathematicians
only come into contact with the continuous implementation of mathematics,'* for
instance, by being exposed to calculus, geometry, algebra, or topology. While
the branch of discrete mathematics deals with objects that can assume only dis-
tinct, separated values, continuous mathematics considers only objects that can vary
smoothly. "

Philosophically, the schism between continuity and discreteness originated in
ancient Greece with Parmenides, who asserts that the ever-changing nature of reality
is an illusion obscuring its true essence: an immutable and eternal continuum. Still
in modern times this intellectual battle between viewing the nature of reality as
fundamentally continuous or discreet is been fought. Charles Pierce proposed the
term synechism to describe the continuous nature of space, time and law (Peirce
1892). A related mystery is the question if reality is infinite or not. Immanuel Kant,
for instance, came to the startling conclusion that the world is “neither finite nor
infinite” (Bell 2014). In contrast, the triumph of “atomism,” i.e., the atomic theory
developed in physics and chemistry, only applies to matter and forces, conjuring up
the following image: the discrete entities making up the contents of the universe
act in the arena of continuous space-time. This view goes to the heart of Leibniz’
philosophical system, called monadism, in which space and time are continua, but
real objects are discreet, comprised of simple units he called monads (Furth 1967).

There are, however, also modern efforts to discretize space and time as well,
in effect bringing the quantum revolution to an even deeper level. This proposi-
tion goes to the very heart of one of theoretical physics’ most pressing problems:
the incompatibility of quantum field theory (Sects.3.2.2.1 and 3.1.4), describing all
particles and their (non-gravitational) interactions, and general relativity decoding
gravity (Sects. 4.1 and 10.1.2). Quantum theory, by its very name, deals with discrete
entities while general relativity describes a continuous phenomenon. For decades,

14Next to basic arithmetic, which is, of course, part of discrete mathematics.

15Technically, this means that between any two numbers there must lie an infinite set of numbers,
as is the case for real numbers.



160 5 The Two Volumes of the Book of Nature

string/M-theory was hailed as the savior, however to no avail (Sect.4.3.2). These
issues are discussed in Sect. 10.2.

Despite the clear top-level separation of mathematics into these two proposed
themes, there also exist overarching concepts linking the continuous and the dis-
crete. Indeed, many ideas in mathematics can be expressed in either language and
often there are discrete companions to continuous notions to be found'® and vice
versa. Specifically, the discrete counterpart of a differential equation'” is called a
recurrence relation, or difference equation. Examples of such equations were given
in Sect.5.2.1, discussing chaos theory.18 Then, what is known as time-scale calculus
is a unification of the theory of difference equations with that of differential equa-
tions. In detail, dynamic equations on time scales are a way of unifying and extending
continuous and discrete analysis (Bohner and Peterson 2003). One powerful math-
ematical theory, spanning both worlds, is group theory. It was encountered in its
continuous expression in Chap. 3, specifically the continuous symmetries described
by Lie groups (Sect. 3.1.2), arguably the most fruitful concept in theoretical physics
(Chaps. 3 and 4). In its discrete version, group theory underlies modern-day cryptog-
raphy, utilizing discrete logarithms, giving rise to the modern decentralized economy
fueled by blockchain technology (Sect. 7.4.3). But perhaps the most interesting math-
ematical chimera is the fractal. It is defined by the discrete difference equation (5.2)
but its intricate border (seen in Fig.5.4) is continuous and hence infinite in detail,
allowing one to indefinitely zoom into it and witness its mesmerizing self-similar
nature.

5.3.1 The Continuous—A History

The process of finding the derivative, i.e., the mechanism of differentiation, not only
lies at the heart of contemporary mathematics but also marks the birth of modern
physics. It builds on a hallmark abstract notion that first appeared in pre-Socratic
Greece and can be seen in the calculations performed by Democritus (Boyer 1968),
the proponent of physical atomism (see Sect.3.1), in the 5th Century B.C.E. Since
then, this novel idea entered and left the collective human consciousness at various
times in history. The concept in question is the abstract idea of infinitesimals. As
an example, a continuous line is thought to be composed of infinitely many distinct
but infinitely small parts. In general, the concept of infinitesimals is closely related
to the notion of the continuum, a unified entity with no discernible parts which is
infinitely divisible. In this sense, a global perspective yields the continuum, while an
idealized local point of view uncovers its ethereal constituents, the infinitesimals (Bell
2014). The idea of infinitesimals is a deceptively benign proposition, but nonetheless
problematic and even dangerous.

16For instance, discrete versions of calculus, geometry, algebra, and topology have been defined,
although they are less commonly used.

17Like Newton’s or Maxwell’s equations, i.e., Egs.(2.1) and (2.4), respectively.
18Recall Egs. (5.2) and (5.6).
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Ancient Greece

One account has it that the Pythagoreans expelled one of their own philosophers, Hip-
pasus, from their order and possibly even killed him, as he had discovered “incom-
mensurable magnitudes” (Boyer 1968). Hippasus understood that it was impossible
to compare, for instance, the diagonal of a square with its side, no matter how
small a unit of measure is chosen. In essence, this is a consequence of the exis-
tence of irrational numbers. These are real numbers that cannot be expressed as
a ratio of integers. In other words, irrational numbers cannot be represented with
terminating or repeating decimals. Looking at a square of unit length, its diam-
eter is given, ironically, by the Pythagorean theorem a? + b*> = ¢* which yields
c=+/2=14142... This is a number with infinitely many digits. Other famous
irrational numbers, magically appearing everywhere in mathematics and physics,
are w = 3.1415... and exp(1) = 2.7182... Currently, the record computation of
7 has revealed 1.21 x 10" digits (Yee and Kondo 2013). Irrational numbers posed
a great threat to the fundamental tenet of Pythagoreanism, which asserted that the
essence of all things is related to whole numbers, igniting the conflict with Hippasus.

This early budding of the notion of the infinitesimal would soon be stifled by
associated paradoxes uncovered by the philosopher Zeno. The notorious Zeno’s para-
doxes show how infinitesimals lead to logical contradictions. One conundrum argues
that before a moving object can travel a certain distance, it must first travel half this
distance. But before it can even cover this, the object must travel the first quarter of
the distance, and so on. This results in an infinite number of subdivisions and the
beginning of the motion is impossible because there is no finite instance at which it
can start. “The arguments of Zeno seem to have had a profound influence on the devel-
opment of Greek mathematics [...]” (Boyer 1968, p. 76). “Thereafter infinitesimals
are shunned by ancient mathematicians” (Alexander 2014, p. 303), with the excep-
tion of Archimedes. Still today there are discussions on whether Zeno’s paradoxes
have been resolved—touching issues regarding the nature of change and infinity
(Salmon 2001). It would take another two thousand years, before the dormant idea
of infinitesimals would reemerge. If only to be faced with more antagonism. This
time, the threat emanated from the Catholic Church, which saw its hegemony in
Western Europe threatened by the power-struggles initiated by the Reformation. In
the wake of these events, Galileo would be sentenced to house arrest in 1633 by the
Inquisition for the last nine years of his life.

Middle Ages: The Protestant Reformation

In 1517, the Catholic priest Martin Luther launched the Reformation by nailing a
treatise comprised of 95 theses to a church door, instigating a fundamental con-
flict between Catholics and Protestants. As a reformation movement, Protestantism
under Luther sought “to purify Christianity and return it to its pristine biblical
foundation” (Tarnas 1991, p. 234). The Catholic Church was perceived to have expe-
rienced irreparable theological decline: “the long-developing political secularism of
the Church hierarchy undermining its spiritual integrity while embroiling it in diplo-
matic and military struggles; the prevalence of both deep piety and poverty among
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the Church faithful, in contrast to an often irreligious but socially and economically
privileged clergy” (Tarnas 1991, p. 234). Moreover, Pope Leo X’s authorization of
financing the Church by selling spiritual indulgences—the practice of paying money
to have one’s sins forgiven—was seen as a perversion of the Christian essence.
Luther’s revolution aimed at bringing back the Christian faith to its roots, where
only Christ and the Bible are relevant. In this sense, Protestantism was not only a
rebellion against the existing power-structure of the Catholic Church, it was also
a conservative fundamentalist movement. The effect of this combination lead to a
paradoxical outcome: while the Reformation’s “essential character was so intensely
and unambiguously religious, its ultimate effects on Western culture were profoundly
secularizing” (Tarnas 1991, p. 240). Indeed, the Protestant’s work ethic can be seen
to lay the foundations for modern capitalism (Weber 1920 and Sect.7.4.2). Whereas
traditionally the pursuit of material prosperity was perceived as a threat to religious
life, now, the two are seen as mutually beneficial.

Against the backdrop of the increasing popularity and spread of Protestantism,
a counter-reformation in the Catholic Church was launched. It was spearheaded
by the Jesuits, a Roman Catholic order established in 1540, dedicated to restoring
Church authority. Their emphasis lay on education and they soon became “the most
celebrated teachers on the Continent” (Tarnas 1991, p. 246). In this environment the
Jesuits would confront Galileo and also the idea of infinitesimals would reemerge.

With respect to Galileo, it is quite perceivable that the Church could have reacted
in a very different manner. “As Galileo himself pointed out, the Church had long
been accustomed to sanctioning allegorical interpretations of the Bible whenever the
latter appeared to conflict with the scientific evidence” (Tarnas 1991, p. 259). Indeed,
even some Jesuit astronomers in the Vatican recognized Galileo’s genius and he
himself was a personal friend of the pope. However, the Protestant threat compounded
the perceived risks emanating from any novel and potentially heretical worldview.
And so the heliocentric model of the solar system—the Copernican revolution'”
ignited by the Renaissance mathematician, astronomer, and Catholic cleric Nicolaus
Copernicus, fostered by Tycho Brahe and Kepler, ultimately finding its full potential
expressed through Galileo—was banned by Church officials. In this conflict of
religion versus science, Galileo was forced to recant in 1633 before being put under
house arrest. Not so lucky was the mystical Neoplatonist philosopher and astronomer
Giordano Bruno. He espoused the idea that the universe is infinite and that the stars
are like our own sun, with orbiting planets, in effect extending the Copernican model
to the whole universe (Singer 1950). This idea suggested a radical new cosmology.
Bruno was burned at the stake in 1600. However, the reason for his execution
was not his support of the Copernican worldview, but because he was indeed a
heretic, holding beliefs which diverged heavily from the established dogma. Next to
his liberal view “that all religions and philosophies should coexist in tolerance and
mutual understanding” (Tarnas 1991, p. 253), he was a member of the movement
know as Hermetism, a cult following scriptures thought to have originated in Egypt

19See also Sect.9.1.3.
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at the time of Moses. These heretic beliefs of Bruno on vital theological matters
sealed his fate and resulted in a torturous death (Gribbin 2003).

With the Catholic Church’s efficient, dedicated, and callous modus operandi,
why did Luther not get banished as a heretic? First, Pope Leo X long delayed any
response to what he perceived as “merely another monk’s quarrel” (Tarnas 1991, p.
235). When Luther finally did get stigmatized as a heretic, the political climate in
Europe had shifted in a way facilitating the splitting of the cultural union maintained
by the Catholic Church as a result of this theological insurgence. A second factor
was the “printing revolution” initiated by Johannes Gutenberg’s invention of the
printing press after 1450. Perhaps marking one of the first viral phenomena, this new
technology allowed for the unprecedented dissemination of information. The rise in
literacy and the facilitated access to knowledge allowed a new mass of people to
participate in discussions which would have been beyond their means not too long
a go. Utilizing this new technology, Luther translated the tow Biblical Testaments
from Hebrew and ancient Greek into German in 1522 and 1534. This work proved
to be highly influential and would help pave the way to the emergence of other new
religious denominations, next to Protestantism, as now many people could offer their
personal interpretation, further fracturing the unity of Catholicism.

Middle Ages: The Re-emergence of Infinitesimals

Approximately 1,800 years after Archimedes’ work on the areas and volumes
enclosed by geometrical figures using infinitesimals, there was finally a revival of
interest in this idea among European mathematicians in the late 16th Century. A
Latin translation of the works of Archimedes in 1544 made his techniques widely
available to scholars for the first time. Then, in 1616, the Jesuits first clashed with
Galileo for his use of infinitesimals. Indeed, even a Jesuit mathematician was prohib-
ited by his superiors from publishing work deemed to close to this dangerous idea.
In the eyes of the Jesuits, if the notion of a continuum made up of infinitely many
infinitesimally small units were to prevail “the eternal and unchallengeable edifice
of Euclidean geometry would be replaced by a veritable tower of Babel, a place of
strife and discord built on teetering foundations, likely to topple at any moment”
(Alexander 2014, p. 120). Between the years 1625 and 1658, a cat-and-mouse game
would follow, where the Jesuits would condemn the growing interest in infinitesi-
mals, only to be faced with notable publications by mathematicians on the subject.
Consult (Alexander 2014) for the details.

Finally, in 1665, the tides turned, as a young Newton experimented with infinites-
imals and developed techniques that would become known as calculus. Ten years
later, Leibniz independently developed his own version of calculus and publishes
the first scholarly paper on the subject in 1684. When Newton published his revo-
lutionary Philosophice Naturalis Principia Mathematica in 1687 (Newton 1687), a
political controversy ensued over which mathematician, and therefore which country,
deserved credit. For Newton and Leibniz the idea of infinitesimals was more than just
a mathematical curiosity. Crucially, it was related to the reality of physical processes.
In Newton’s worldview the conception the continuum was generated by motion, and
Leibniz famously exclaimed, natura non facit saltus—“nature makes no jump” (Bell
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2014). Although infinitesimals proved themselves to be spectacularly useful tools,
their logical status remained doubtful under mathematical scrutiny. Notable scholars
viewed them as unnecessary and erroneous. Such as the likes of George Berkeley,

Georg Cantor, and Bertrand Russell (see, for instance Bell 2014). In the latter half
of the 19th Century the debatable concept of the infinitesimal was replaced by the
well-defined notion of the limit

lim f(x) = L. (5.7)

The Modern Age

The introduction of the mathematically sound definition of a limit now allowed calcu-
lus to be rigorously reformulated in clear mathematical terms, still used today. It is an
interesting observation, that the idea of infinitesimals has experienced a renaissance
in the last decades, establishing the concept on a logically solid basis. One attempt
fuses infinitesimal and infinite numbers, creating what is called nonstandard analy-
sis. A second endeavor employs category theory to meld what is known as smooth
infinitesimal analysis. These novel developments shed new light on the nature of the
continuum. More details on the history of infinitesimals and the related mathematics
are found in Bell (2014), Alexander (2014).

In the following, some technical aspects of differentiation are briefly introduced.

{ﬂ |5.3.1-derivatives >

For a smooth function f : R — R the derivative of f at the point 7 is defined as

flto+1) — f(to)
EE—

. d
fto) == Ef (to) = tlig(l) (5.8)

In other words, ¢ is taken to infinitesimally approach zero. Because zero is never
reached, the fraction is well-defined. For multivalued functions, e.g., vector fields
F: R" — R™, partial derivatives exist for all components

0
8jE(x1,...,xn)::WF,'(xl,...,xn); i=1,....m; j=1,...,n. (5.9
J

These expressions can be assembled in a matrix yielding the general notion of the
derivative, called the Jacobian matrix

nF - 0, F
Jro=| ¢ . 1 | (5.10)
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Table 5.1 Various themes of the notion of the derivative seen to permeate many physical theories
as a common thread. It can be understood as a unified mathematical underpinning, a simple but
powerful abstract framework encoding the physical world. The acronyms GR and GT refer to
general relativity and gauge theory, respectively. Gy is the standard model symmetry group, seen
in (4.72)

Domains Symbols Equations
Classical mechanics or, 8,2, Bq[, Bq[ 2.1, (3.1), (3.3)
Field theory Oy Dy (3.6)
Maxwell equations 0, V-, Vx 2.4)
Covariant Maxwell equations 0y, O (4.16), (4.18)
Quantum operators id, V/i (3.51)
Schrodinger equation 10 (3.24)
Dirac equation id (3.41), (3.42)
Coordinate transformation (GR) A”v/ = %fx 4.3)
Curvature (GR) [Vx, VY] = Vix.v (4.47)
Covariant derivative (GR) V=0, —-Ty (4.8)
Covariant derivative (GT) D, =9, — A’;Xk 4.11), (4.27)
G sM-invariant derivative Dy =0y +igGra = 4.73)
+igW, v +ig'B,Y

< 5.3.1-derivatives| #}

In the end, infinitesimals paved the way to the introduction of the derivative, an
essential tool in the first volume of the Book of Nature. Next to the specific expression
for the derivatives of functions (e.g., f , 0; Fj, and JF) the main mathematical actors
appearing in physical theories are related to partial derivatives. For instance, the
partial derivatives can be combined to form a vector, the nabla operator V, defined
in (2.2). Or the d’Alembertian operator [J introduced in (4.17). Table 5.1 shows
a summary of the various theories in which the notion of the derivative is vital,
as it enters the mathematical equations which describe the workings of multiple
fundamental processes in the universe. It is truly amazing, how one specific abstract
idea can be singled out and seen to play such an enormously successful role in
unlocking the secrets of the universe and furnishing a unifying theme for Volume I
of the Book of Nature.

In a nutshell:

The derivative, a cornerstone of continuous mathematics, lies at the heart
of the analytical machinery that is employed to represent fundamental aspects
of the physical world, as described in the formal encoding scheme outlined in
Fig.5.1 and detailed in Table 5.1.
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5.3.2 Discrete Mathematics: From Algorithms to Graphs
and Complexity

There exists one abstract concept, found in discrete mathematics, which is bestowed
with great explanatory power. It is a formal representation that can capture a whole
new domain of reality in that it underpins the algorithmic understanding of complex
systems. Metaphorically, the discrete cousin of the continuous derivative is a graph.
As a result, the tapestry of mathematics, weaved out of the continuous and discreet
strands, has the capacity to unify the two disjoint volumes of the Book of Nature.
In other words, human knowledge generation is truly and profoundly driven by
mathematics.

Discrete mathematics is as old as humankind. The idea behind counting is to
establish a one-to-one correspondence (called a bijection) between a set of discrete
objects and natural numbers. Arithmetics, the basic mathematics taught to children,
is categorized under the umbrella of discrete mathematics. Indeed, the foundations
of mathematics rests on notions springing from discrete mathematics: logic and set
theory. Higher discrete mathematical concepts include combinatorics, probability
theory, and graph theory. More information on discrete mathematics and its appli-
cations can, for instance, be found in Biggs (2003), Rosen (2011), Joshi (1989).

Although continuous mathematics generally enjoys more popularity, discrete
mathematics has witnessed a renaissance driven by computer science. The dual-
ity of digital information, which is expressed as strings of binary digits—called bits
which exist in the dual states represented by 0 or 1—Ilies at the heart of discreteness.
In this sense, the development of computers, and information processing in general,
build on insights uncovered in the arena of discrete mathematics. A landmark devel-
opment in the field of logic was the introduction of Boolean algebra in 1854, in which
the variables can only take on two values: true and false (Boole 1854). Then, in 1937,
Claude Shannon showed in his master’s thesis how this binary system can be used
to design digital circuits (Shannon 1940). In effect, Shannon implemented Boolean
algebra for the first time using electronic components. Later, he famously laid the
theoretical foundations regarding the quantification, storing, and communication of
data, in effect inventing the field of information theory (Shannon 1948). The concepts
Shannon developed are at the heart of today’s digital information theory. Shannon
and the notion of information are discussed further in Sect. 13.1.2. In summary, the
hallmark of modern computers is their digital nature: they operate on information
which adopts discrete values. This property is mirrored by the discrete character of
the formal representations used to describe these entities, see, for instance Biggs
(2003), Steger (2001a, b). Indeed, the merger of discrete mathematics with computer
science has given rise to the new field of theoretical computer science (Hromkovi¢
2010). In contrast to the technical and applied areas of computer science, theoret-
ical computer science focuses on computability and algorithms. Examples are the
methodology concerned with the design of algorithms or the theory regarding the
existence of algorithmic solutions.
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Paradigm P{ (Sect.5.2.1) emerges as the crucial guiding principle for the formal
representation of complexity. A complex system can formally either directly be
mapped onto a complex network or described as an evolving network of interacting
agents, following algorithmic instructions. Both incarnations find their abstraction
in the notion of a graph.

Graph Theory

The discrete counterpart to the derivative, a versatile and universal tool in continuous
mathematics, is the notion of a graph. In 1735 Leonard Euler was working on a paper
on the seven bridges of Konigsberg. The publication of this work (Euler 1941) in
effect established the field of graph theory (Biggs et al. 1986; Bollobas 1998). The
problem Euler was trying to tackle, was to find a walk through the city that would
cross each of the seven bridges only once. Although he could prove that the problem
had no solution, the formal tool Euler employed was revolutionary. As detailed,
graphs today play an essential role in mathematics and computer science.

In modern terms, the defining features of a graph G = G(V, E) are the set of
vertices V, or nodes, which are connected by edges, or links, in a set E, where the
edge ¢;; € E connects the nodes v;, v; € V. The adjacency matrix of a graph A =
A(G) maps the graph’s topology onto the matrix A;;, allowing further mathematical
operations to be performed on G, as now the powerful tools of linear algebra can
be utilized. Finally, the number k; of edges per vertex i is know as the degree. The
degree distribution P (k) succinctly captures the network architecture.

This simple formal structure was utilized by Euler as a representation of the
problem at hand: he ingeniously encoded the Konigsberg bridges as the links and the
connected landmasses as the nodes in a small network. Indeed, Euler anticipated the
idea of topology: the actual layout of this network, when it is illustrated, is irrelevant
and the essence of the relationships is encoded in the specifics of the abstract idea of
the graph itself.

Euler’s contribution to graph theory represents only a minuscule fraction of his
mathematical productivity and “his output far surpassed in both quantity and quality
that of scores of mathematicians working many lifetimes. It is estimated that he
published an average of 800 pages of new mathematics per year over a career that
spanned six decades” (Dunham 1994, p. 51). Indeed, even his deteriorating eyesight,
leading to blindness, “was in no way a barrier to his productivity, and to this day his
triumph in the face of adversity remains an enduring legacy” (Dunham 1994, p. 55).

At the end of the 1950s graph theory was extended by the introduction of proba-
bilistic methods. This new branch, called random graph theory, was a fruitful source
of many graph-theoretic results and was pioneered by Paul Erdés > and his collab-
orator, Alfréd Rényi (Erdds and Rényi 1959, 1960). A hallmark of these graphs is
that their degree distribution P (k) has the form of a Poisson probability distribution.
In other words, the number nodes with high connectivity decreases rapidly.

20Recall the peculiar life he chose to live recounted on Page 57 at the end of Sect.2.2.
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{ﬂ |5.3.2-graph-theory >
A random graph comprised of n nodes and [ links follows a binomial degree
distribution
n
Pki = k) = (k)pk(l - (5.11)

where k; is the degree of node i and the link probability is given by p (Erd6s and Rényi
1960). The first terms gives the number of equivalent choices of such a network. The
remaining term describes the probability of a graph with & links and n nodes existing.
The average degree (k) is now defined as

!
ci= (k)= =pn—1). (5.12)

The average degree and the degree distribution can be approximated by

te
Pk) =~ T (5.13)
Z A pn. (5.14)

Note that (5.13) describes a Poisson distribution. In the limit of large n the approxi-
mations become exact. This can be seen by noting that

a*=1m1<y+15>, (5.15)
n—00 n
. n!

The scale-free networks, introduced in Sect. 5.2.3 and establishing the new science
of networks, are defined by their degree distribution following a scaling law (see
Sect.6.4.3.3). This can simply be expressed mathematically as

Plk) ~ k™, (5.17)

where the exponent « lies typically between two and three. In detail

k—ae—k/;(

Pk) = Lo 7"

(5.18)

The exponential term in the numerator, governed by the parameter «, results in an
exponential cutoff, the term in the denominator ensures the proper normalization,
and Li, (x) is the nth polylogarithm of x (Newman et al. 2001; Albert and Barabdsi
2002). Note that for the limit x — o0
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where the Riemann ¢ -function now acts as the normalization constant.

< 5.3.2-graph-theory| #}

Whereas the (continuous) analytical machinery used for over three centuries has
the power to unlock the secrets of fundamental systems, (discrete) graphs directly
tackle complexity. In the pictorial language of Fig. 5.1, complex systems are located
on the left side. Graph theory represents their abstract counterpart. In other words,
graphs are elevated to the exalted ranks of formal representations able to capture
and encode a vast plethora of aspects of the physical world, similar to the abundant
usefulness of the derivative.

In closing:

Complex systems are represented by networks which are formalized as
graphs, a notion from of discrete mathematics that lies at the heart of the algo-
rithmic approach which is employed to represent complex aspects of the physical
world, as described in the formal encoding scheme seen in Fig.5.1.

5.3.3 Unity

To summarize, both mathematical variants—the continuous and the discrete— have
one particular property which gives them a special status in their volume of the Book
of Nature. In other words, each branch has one feature that makes it a powerful tool in
the abstract world of formal representations (i.e., the right-hand side of Fig.5.1). One
is the (continuous) operation of differentiation and the other is the (discrete) notion
of a graph. While the former unlocks knowledge about the fundamental workings of
nature, the latter gives insights into the organizational principles of complex systems.

By introducing the continuous-discrete dichotomy it is possible to give an under-
pinning to the formal representations seen on the right-hand side in Fig.5.2. The
analytical formal representation is inexorably tied to the continuous mathematical
structure while the algorithmic formal representation is intimately related to the dis-
crete mathematical structure. This is illustrated in Fig.5.7. In this sense, the abstract
human thought system called mathematics is not only a very powerful probe into
reality, it also unifies the two separate formal representations describing the two
different reality domains.

In closing, Fig.5.8 depicts a grand overview of all the discussed concepts. It
contrasts the fundamental-complex, analytical-algorithmic, and continuous-discreet
dichotomies encountered in the two volumes of the Book of Nature.
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Fig. 5.7 The mathematical Formal Representation
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Mathematical Structure

To summarize:

The cognitive act of translating specific fundamental and complex aspects
of the observable universe into formal representations—utilizing analytical
(equation-based) and algorithmic (interaction-based) tools—is the basis for gen-
erating vast knowledge about the workings of reality. Specifically, the funda-
mental and complex reality domains of the physical world are encoded into
analytical and algorithmic formal representations, respectively. Underpinning
these are the continuous and a discrete structures of mathematics.

Digging deeper, continuous mathematics, associated with the analytical for-
mal theme, provides the machinery of derivation, which plays a fundamental
role in the physical sciences. In a similar vein, discrete mathematics, the basis
of the algorithmic formal theme, offers graphs as a universal abstract tool able
to capture complexity. In this sense, mathematics, understood as the totality
of its continuous and discrete branches, is the unifying abstract framework on
which the process of translation builds upon. This overarching formal frame-
work is hosted in the human mind and mirrors the structure and functioning of
the physical world, transforming translation into knowledge generation.

This process of human knowledge generation finds its metaphor in the dis-
covery of the two volumes of the Book of Nature, written in the language of
mathematics. A graphical overview is presented in Fig.5.8. The tremendous
success of this endeavor can be seen in the dramatic acceleration of technolog-
ical advancements in recent times, bearing witness to the increasing ability of
the human mind to manipulate the physical reality it is embedded in.
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5.4 The Book of Nature Reopened

For over 300 years the Book of Nature has revealed insights into the workings of the
world. Chapter by chapter, novel understanding was disclosed, from quantum theory
to cosmology. The human mind was capable of translating a multitude of quantifiable
aspects of reality into formal, abstract representations. Then, by entering this abstract
realm, the mind was able to derive new insights, which could be decoded back into
the physical world (see Fig.5.1). This is a truly remarkable feat and the foundation
from which the technological advancements of the human species springs.

But this should only be the beginning. It is truly remarkable that what was con-
sidered to be the Book of Nature—the analytical understanding of fundamental
processes—turns out to only be the first volume in a greater series. In the last decades,
humans have witnesses yet another unearthing of an additional volume of the Book
of Nature. And just like Volume I, this newly found addition to the Book of Nature
Series offers new and deep insights into a domain of reality previously clouded by
ignorance: the organization and evolution of complex systems. In other words, the
properties of real-world complexity surrounding us become intelligible.

Figure 5.8 shows a conceptualized illustration of this truly remarkable achieve-
ment. The knowledge generated in this way is the engine driving humanities aston-
ishing technological advancements, (see also the first section of Chap. 8). In essence,
this knowledge generation boils down to acts of translation. As illustrated in Fig. 5.1,
a reality domain of the physical world is encoded as a formal representation inhab-
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Fig. 5.9 A schematic overview of the possible acts of translation encapsulated in the matrix 7:
each element represents the encoding of fundamental or complex aspects of reality into formal
representations relating to analytical or algorithmic facets of the abstract world (compare with
Figs.5.1 and 5.2). Interestingly, in the pursuit of knowledge by the human mind, mostly only two
of the four possibilities have been extensively utilized: 7z, ru and 7a1,co corresponding to Volume
I and II in the Book of Nature Series. Adapted from (Glattfelder 2013)

iting the abstract world. Constrained and guided by the rules pertaining to the rich
structure of the abstract world, new information can be harnessed, which can then
be decoded back into to physical world, yielding novel insights.

The template for this act of translation is given by 7w zp, Where the label FR
denotes the formal representation and RD the reality domain, respectively. Through-
out this book it has been argued that both the physical and abstract world should
each be split into two categories. The physical is categorizing by the fundamental-
complex dichotomy and the abstract by the analytical-algorithmic dichotomy. The
two volumes of the Book of Nature can now be understood as follows:

e Volume I corresponds to the analytical encoding of fundamental processes, Zan ry-
e Volume II corresponds to the algorithmic encoding of complex processes, Zaj co-

Now it becomes apparent that this attempt at categorizing human knowledge gener-
ation into the proposed dichotomies adds an additional mystery:

‘Why has the successful knowledge generation process, giving the human mind access to the
intimate workings of the universe, primarily been based on the translational mechanisms
Tanru and 7a]co? What about the two other translation possibilities 7a py and Zan,co?

In Fig. 5.9 all four possible translational mechanisms arising from the dichotomies
are shown. Understood as a matrix, primarily the diagonal elements of 7 are respon-
sible for lifting humanities’ veil of ignorance. What do we know about the other
two translational possibilities? Do they represent failed attempts at knowledge gen-
eration? If so, what is special about the two successful acts of translation? Or will,
in the end, the human mind unearth further volumes in the Book of Nature Series,
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guided by the two dormant translational possibilities? This will be the focus of the
next section.

From a philosophical perspective, this intricate and intimate interaction of the
human mind with the physical world raises inevitable and profound questions. For
instance, successful knowledge generation via the describes translational mecha-
nisms assumes the existence of three entities: the physical world that accommodates
the mental world of the human mind, which discovers or creates the abstract world
of formal thought systems, which in turn unlocks secrets of the physical world (a
conundrum encountered in Fig.2.2 of Sect.2.2.1). In detail:

1. There exists an abstract realm of objects transcending physical reality (ontology).

2. The human mind possesses a quality that allows it to access this world and acquire
information (epistemology).

3. The structures in the abstract world map the structures in the physical (structural
realism, see Sects.2.2.1, 6.2.2 and 10.4.1).

5.4.1 Beyond Volumes I and I1

As observed, the two translational possibilities 75 g, and 7a, co have not been promi-
nently utilized as knowledge generation mechanisms. This could mean two things.
First, complex systems are indeed immune to being treated with an equation-based
formalism, and, conversely, the same is true for fundamental systems being described
algorithmically. Or, these alternative possibilities have only been sparsely explored
to date, still leaving behind mostly uncharted terrain. In the following, some attempts
at filling in the blanks are described.

The Complex-Analytical Demarcation

Pattern formation in nature is clearly the result of self-organization in space and
time. Alan Turning proposed an analytical mechanism to describe biological pattern
formation (Turing 1952). He utilized what is known as reaction-diffusion equa-
tions. These are partial differential equations used to describe systems consisting of
many interacting components, like chemical reactions. Turning’s model success-
fully?! replicates a plethora of patterns, from sea shells to fish and other vertebrae
skin (Meinhardt 2009; Kondo and Miura 2010). In effect, he proposed an analytical
approach to complexity.

Running agent-based models can sometimes be computationally costly. However,
there exist analytical shortcuts that can be taken. Instead of simulating the complex
system, it can be studied by solving a set of differential equations describing the
time evolution of the individual agent’s degrees of freedom. Technically, this can be
achieved by utilizing Langevin stochastic equations. Each such equation describes the
time evolution of the position of a single agent (Ebeling and Schweitzer 2001). From

21See, for instance, the interactive demonstrations found at http://demonstrations.wolfram.com/
TuringPatternlnAReactionDiffusionSystem/.
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the reaction-diffusion equation, Langevin equations can be derived. See Sect.7.1.1.1
for the history of the Langevin equations, including Einstein’s early work and the
Black-Scholes formula for option pricing. Utilizing self-similar stochastic processes
for the modeling of random systems evolving in time has been relevant for their
understanding (Embrechts and Maejima 2002). See again Sect.7.1.1.1.

Langevin equations can be solved analytically or numerically. They describe the
individual agent’s behavior at the micro level. Moving up to a macroscopic descrip-
tion of the system, what is known as the Fokker-Planck partial differential equation
describes the collective evolution of the probability density function of a system
of agents as a function of time. The two formalism can be mapped into each other
(Gardiner 1985). However, as an example, computing 10,000 agents constrained by
Langevin equations approximates the macro dynamics of the system more efficiently
than an effort directly attempting to solve the equivalent Fokker-Planck differential
equation.

Some scholars have argued against the dictum that complex systems are, in gen-
eral, not susceptible to mathematical analysis and should hence be investigated by
the means of simulation analysis (Sornette 2008). Didier Sornette, a physicist,
econophysicist, and complexity scientist, offers the insight that the formal analytical
treatment of triggering processes between earthquakes can be successfully applied
to various complex systems. Examples range from the dynamics of sales of book
blockbusters to viewer activity on the YouTube video-sharing website to financial
bubbles and crashes (Sornette 2008). Furthermore, he argues that the right level of
magnification (level of granularity) in the description of a complex system can reveal
order and organization. As a result, pockets of predictability at some coarse-grained
level can be detected. This partial predictability approach is potentially relevant for
meteorological, climate, and financial systems. However, a big challenge remains in
identifying the complex systems that are susceptible to this approach and finding the
right level of coarse-graining.

Another modern example of tackling complexity with analytical tools is mathe-
matical biology (to which Turning’s pattern formation belongs). Influential work in
this field grapples with the mathematization of the theory of evolution, as detailed in
Martin Nowak’s book “Evolutionary Dynamics: Exploring the Equations of Life”
(Nowak 2006). Nowak, a biochemist and mathematician by training, is also a Roman
Catholic. His view on the tension between theology and science, especially the con-
flicts between the theory of evolution and Christianity (Powell 2007):

Science and religion are two essential components in the search for truth. Denying either is
a barren approach.

The Fundamental-Algorithmic Demarcation

Recall from Sect. 5.1.3 the troubles relating to solving gravitational n-body problems.
In essence, here it does not suffice to know the analytical encoding of the challenge
at hand. The system of differential equations describing the motion of n > 3 grav-
itationally interacting bodies cannot be solved analytically. Only for a few simple,
albeit important, problems Newton’s equation can be solved. Although the exact
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theoretical solution for the general case can be approximated (via Taylor series or
numerical integration) the dynamics are generally best understood utilizing n-body
simulations (Valtonen and Karttunen 2006).

The largest such simulation, called the Millennium Run,?” investigated how matter
evolved in the universe over time by reproducing cosmological structure formation.
The simulation was comprised of ten billion particles, each representing approx-
imately a billion solar masses of dark matter (Springel et al. 2005). In summary,
the dynamics of a fundamental (cosmological) system, comprised of a multitude of
gravitating bodies, is not understood analytically via differential equations. Rather,
computer simulations, mimicking the forces of interaction in the system, offer the-
oretical predictions.

Overall, the translational mechanism 74, is a niche, in the sense that it is only
sparsely explored and offers speculative concepts. For instance, the ideas espoused
by Wolfram in Sect.5.2.2. He is essentially proposing that cellular automata are
the universal tool to decode and understand the universe in all its facets. In effect,
“A New Kind of Science” (Wolfram 2002) would represent the knowledge generated
by Za1ru (as well as 7a) o). Although Wolfram acknowledges the tremendous success
of the mathematical approach to physics, he stresses that many central issues remain
unresolved in fundamental physics, where cellular automata could possibly shed new
light (Wolfram 2002, Chapter 9). He epitomizes these hopes in the following quote
(Wolfram 2002, p. 465):

And could it even be that underneath all the complex phenomena we see in physics there
lies some simple program which, if run long enough, would reproduce our universe in every
detail?

Contemporary support for this idea comes from Nobel laureate Gerard ’t Hooft,
where he proposes an interpretation of quantum mechanics utilizing cellular automata
(’t Hooft 2016). Finally, some theoretical physicists propose to describe space-time
as a network in some fundamental theories of quantum gravity. For instance, spin
networks in loop quantum gravity (see Sect. 10.2.3). Another idea tries to understand
emergent complexity as arising from fundamental quantum field theories (Tduber
2008).

Blurring the Lines

Computers have also helped blur the lines between the analytical and algorithmic
formal representations. In 1977, the four-color theorem was the first major mathemat-
ical theorem to be verified using a computer program (Appel and Haken 1977). “The
four-color theorem states that any map in a plane can be colored using four-colors in
such a way that regions sharing a common boundary (other than a single point) do
not share the same color.”?*> Computer-aided proofs of a mathematical theorem are
usually very large proofs-by-exhaustion, where the statement to be proved is split into
many cases and each case then checked individually. “The proof of the four colour

22See https://wwwmpa.mpa-garching.mpg.de/galform/virgo/millennium/.
23From http://mathworld.wolfram.com/Four-ColorTheorem.html.
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theorem gave rise to a debate about the question to what extent computer-assisted
proofs count as proofs in the true sense of the word” (Horsten 2012).

Conclusion

Two flukes of reality allow the universe to be comprehended by the human mind. One
is that the structures of the workings of the universe are mirrored by the abstract formal
thought systems accessible to the mind. The other is the emergence of complexity
from simplicity. The two related aspects of knowledge generation—the dichotomies
of the fundamental-analytical and the complex-algorithmic—are captured in Volume
I and II of the Book of Nature Series. Both have a mathematical underbelly, being
represented by the two sides of a metaphorical coin: the continuous and the discrete.
In the next chapter, the contents of Volume II will be disclosed. Just as Chaps. 3 and 4
gave an extract of Volume I, Chaps. 6 and 7 will contain the tale of the understanding
of complexity.
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Chapter 6 ®
Volume II: The Simplicity of Complexity | o

Abstract Whereas most of the cosmos is comprised of rather simple large-scale
structures, on Earth, we find breathtaking complexity, down to microscopic scales.
Indeed, it appears as though the universe is driven by a propensity to assemble
ever more complex structures around us, guided by self-organized and emergent
behavior. Naively one would expect complexity to be complicated to comprehend.
Luckily, in the universe we inhabit, complex systems are encoded by simple rules of
interaction. Like Volume I of the Book of Nature being written in the language of
mathematics, Volume II, addressing complexity, is composed of simple algorithms
decoding reality. Complex systems theory has a long history and raises philosophical
questions. One of its most successful formal tools are networks. In fact, complex
networks are ubiquitous in the domains of living and non-living complexity. One
particular organizational property in complex systems is akin to a “law of nature,”
giving rise to universal behavior. These patterns, known as scaling laws, are to be
found everywhere.

Level of mathematical formality: medium to low.

We inhabit a very particular place in the universe. The planet we find ourselves
residing on is unlike any other patch of cosmic space containing matter. Every day
we witness the interaction of a myriad of structures creating a vast richness of intri-
cate behavior. We are surrounded by, and embedded in, a microcosm seething with
complexity. Specifically, we are exposed to chemical, biological, and, foremost, tech-
nological and socio-economical complexity.

Until very recently in the history of human thought, the adjective “complex” was
thought to be synonymous with “complicated”—in other words, intractable. While
the universe unveiled its fundamental mysteries through the Book of Nature—the
age-old metaphor for the circumstance that the regularities in the physical world
are explained mathematically by the human mind—the complexity surrounding us
seemed incomprehensible. However, one specific cosmic coincidence allowed the
human mind to also tackle and decode the behavior of complex systems. Before
disentangling complexity itself, the next section will briefly review the notions intro-
duced throughout the narrative of Part I: the two volumes of the Book of Nature.
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Some general references on complexity are Holland (1995), Gladwell (2000),
Johnson (2001, 2009), Strogatz (2004), Fisher (2009), Green (2014), Hidalgo (2015).

6.1 Reviewing the Book of Nature

Chapter 2 opened with the search for the Book of Nature. The belief that the human
mind can read the universe like a book and extract knowledge has echoed throughout
the ages. Over 300 years ago this belief materialized by the development of Newto-
nian mechanics. After this initial spark, mathematics reigned supreme as the most
resourceful and efficient human knowledge generation system. In Chap. 3 a stunning
tale of this success is told. Namely, how the notion of symmetry underlies most of
theoretical physics. This then allows for very separate phenomena to be described
by overarching and unified theories, as discussed in Chap. 4.

Analyzing this “unreasonable effectiveness of mathematics in the natural sci-
ences” (Wigner 1960) leads to the following observation. The reality domain that
is decoded by mathematics (or more generally speaking, formal thought systems)
excludes the complexity surrounding us and contained within us. Consequentially,
exclusively fundamental aspects of nature—ranging from the quantum foam com-
prising reality to the incomprehensible vastness of the cosmic fabric—are understood
by analytical mathematical representations. This defines a paradigm of knowledge
generation, called the fundamental-analytical classification here (Sect.5.1).

It is unfortunate that the understanding of complex phenomena is not contained
within this knowledge paradigm. Complexity, characterized by self-organization,
structure formation, and emergence, giving rise to adaptive, resilient, and sustainable
behavior, defies our mathematical tools. Complex systems transcend equations.'
Unexpectedly, a few decades ago, some scientists started to see the first hints of
something unexpected. Behind the mask of intimidating complexity lurked benign
simplicity. More precisely, macroscopic complexity showed itself to be the result of
simple rules of interaction at the micro level. In the words of Stephen Wolfram, a
theoretical physicist, computer scientist, and entrepreneur (Wolfram 2002, see also
Sect.5.2.2):

And I realized, that I had seen a sign of a quite remarkable and unexpected phenomenon:
that even from very simple programs behavior of great complexity could emerge.

[...]
It took me more than a decade to come to terms with this result, and to realize just how
fundamental and far-reaching its consequences are.

By the turn of the millennium, a new paradigm was born: the complex-algorithmic
classification of knowledge generation (Sect.5.2). The simple rules of interaction
driving complex systems allow for a computational approach to understanding them.
In other words, the mathematical tools are exchanged for algorithms and simulations
running on computers.

"However, see Sect. 5.4.1 discussing Langevin and Fokker-Planck equations.
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In the context of the metaphor of the Book of Nature, the two paradigms of
knowledge—the fundamental-analytical and complex-algorithmic dichotomies—
represent two volumes. In effect, the Book of Nature is an expanded series comprised
of Volume I and Volume II (Sects.5.3.3 and 5.4). This evolution in the structure of
knowledge was saliently highlighted by the eminent theoretical physicist and cos-
mologist Stephen Hawking (quoted in Chui 2000, p. 29A):

I think the next century [the 21st Century] will be the century of complexity.

An assertion that is remarkable in the face of Hawking’s previous stance, where he
predicted the end of theoretical physics in the 1980s and 1990s (see Sects.4.3.2 and
9.2.2). He then believed that a unified theory of quantum gravityc would soon be
found, explaining everything. Even after all the excitement of string/M-theory, we
today appear no closer to this goal (see Sect. 10.2.2).

6.2 A Brief History of Complexity Thinking

The term complexity science is not rigorously defined. The study of complex phe-
nomena is not a single discipline, but represents an approach taken by various fields
to study diverse complex behavior. In its historical roots one finds a diversity of
intellectual traditions. From cybernetics (1940 and 1950s; Wiener 1948), systems
theory (1950 and 1960s; Von Bertalanffy 1969), early artificial intelligence research
(1950 and 1960s; Turing 1950) to non-linear dynamics, fractal geometry, and chaos
theory (1960-1980s; Sects.5.1.3 and 5.2.2). There exists a plethora of themes being
investigated, for instance:

cellular automata (Sect.5.2.2);

agent-based modeling (Sect.7.3.1);

algorithmic complexity theory (Chaitin 1977);
computational complexity theory (Papadimitriou 2003);
systems biology (Kitano 2002);

data science (James et al. 2013).

For an illustration visualizing the rich and intertwined history of complexity thinking,
see The Map of Complexity Sciences and the links within, first published in Castellani
and Hafferty (2009) and updated since.”

6.2.1 Complex Systems Theory

In the remainder of this chapter, the focus lies on complex systems theory
(Haken 1977, 1983; Simon 1977; Prigogine 1980; Bar-Yam 1997; Eigen 2013;

2 Accessible online at http://www.art-sciencefactory.com/complexity-map_feb09.html.
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Ladyman et al. 2013), a field emerging from cybernetics and systems theory at
the beginning of the 1970s. The theory of complex systems can be understood as an
interdisciplinary field of research utilizing a formal framework for studying intercon-
nected dynamical systems (Bar-Yam 1997). Two central themes are self-organization
(Prigogine and Nicolis 1977; Prigogine et al. 1984; Kauffman 1993) and emergence
(Darley 1994; Holland 1998). The former notion is related to the question of how
order emerges spontaneously from chaos in systems which are not in a thermody-
namic equilibrium. The latter concept is concerned with the question of how the
macro behavior of a system emerges from the interactions of the elements at a micro
level. The notion of emergence has a long and muddied history in the philoso-
phy of science (Goldstein 1999). Other themes relating to complex systems theory
include the study of complex adaptive systems (Holland 2006) and swarming behav-
ior, i.e., swarm intelligence (Bonabeau et al. 1999). The domains complex systems
originate from are mostly socio-economical, biological, or physio-chemical. Some
examples of successfully decoding complex systems include earthquake correla-
tions (Sornette and Sornette 1989), crowd dynamics (Helbing et al. 2000), traffic
dynamics (Treiber et al. 2000), pedestrian dynamics (Moussaid et al. 2010), pop-
ulation dynamics (Turchin 2003), urban dynamics (Bettencourt et al. 2008), social
cooperation (Helbing and Yu 2009), molecule formation (Simon 1977), and weather
formation (Cilliers and Spurrett 1999).

Complex systems are characterized by feedback loops (Bar-Yam 1997; Cilliers
and Spurrett 1999; Ladyman et al. 2013), where both damping and amplifying feed-
back is found. Moreover, linear and non-linear behavior can be observed in complex
systems. The term “at the edge of chaos” denotes the transition zone between the
regimes of order and disorder (Langton 1990). This is a region of bounded instability
that enables a constant dynamic interplay between order and disorder. The edge of
chaos is where complexity resides. Furthermore, complex systems can also be char-
acterized by the way they process or exchange information (Haken 2006; Quax et al.
2013; Ladyman et al. 2013). Information is the core theme of Chap. 13.

The study of complex systems represents a new way of approaching nature. Put
in the simplest terms, a major focus of science lay on things in isolation—on the
tangible, the tractable, the malleable. Through the lens of complexity this focus has
shifted to a subtler dimension of reality, where the isolation is overcome. Seemingly
single and independent entities are always components of larger units of organization
and hence influence each other. Indeed, our modern world, while still being com-
prised of many of the same “things” as in the past, has become highly networked and
interdependent—and, therefore, much more complex. From the interaction of inde-
pendent entities, the notion of a system emerges. The choice of which components
are seen as fundamental in a system is arbitrary and depends on the chosen level of
abstraction.
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A tentative definition of a complex system is the following:

A complex system is composed of an ensemble of many interacting (or inter-
connected) elements.

In other words, there exist many parts, or agents, which interact in a disordered,
manner resulting in an emergent property or structure. The whole exhibits features not
found in the structure or behavior of the individual parts comprising it. This is a literal
example of the adage, that the whole is more than the sum of its parts. The emphasis
of this definition lies on the notions of components, multiplicity, and interactions
(Ladyman et al. 2013). As mentioned, the observed macroscopic complexity of a
system is a result of simple rules of interaction of the agents comprising it at the
micro level (Sect.5.2.2). This unexpected universal modus operandi allows complex
systems to be reduced to:

e a set of objects (representing the agents);
e aset of functions between the objects (representing the interactions among agents).

A natural formal representation of this abstraction is a network (Sect.5.2.1). Now,
the agents are characterized by featureless nodes and the interactions are given by
the links connecting the nodes. The mathematical structure describing networks is a
graph (Sect. 5.3.2). In essence, complex networks (being the main theme of Sect. 6.3)
mirror the organizational properties of real-world complex systems.

This insight gives rise to a new interaction-base worldview and marks a departure
from a top-down to a bottom-up approach to the understanding of reality. Tradi-
tional problem-solving methods have been strongly influenced by the success of
the centuries-old reductionist approach taken in science (Volume I of the Book of
Nature). However, the unprecedented success of reductionism can not be replicated
in the realm of complexity. In the words of the theoretical physicists Hermann Haken,
founder of synergetics, the interdisciplinary approach describing self-organization
of non-equilibrium systems (Haken 2006, p. 6):

But the more we are dealing with complex systems, the more we realize that reductionism
has its own limitations. For example, knowing chemistry does not mean that we understand
life.

In the same vein, a quote taken from an early and much-noticed publication by
the physics Nobel laureate Philip Warren Anderson (Anderson 1972, see also
Sect.5.2.1):

At each stage [of complexity] entirely new laws, concepts, and generalizations are necessary
[. .. ]. Psychology is not applied biology, nor is biology applied chemistry.

Driven by the desire to comprehend complexity, reductionist methods are replaced
or augmented by an embracing of a systems-based and holistic outlook (Kauffman
2008). A revolution in understanding is ignited and a “new science of networks”
born (Sect.5.2.3). In other words, Volume II of the Book of Nature is unearthed.
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6.2.2 The Philosophy of Complexity: From Structural
Realism to Poststructuralism

Realism is a central philosophical theme that is closely intertwined with Volume I of
the Book of Nature. By ignoring the pragmatic advice “Shut up and calculate!” given
in Sect.2.2.1—the invitation to focus one’s mental capacities on the mathematical
machinery driving science instead of grappling with meaning and context—one can
wander into the philosophical undergrowth. Here one finds the notion of scientific
realism (Ladyman 2016):

Scientific realism is the view that we ought to believe in the unobservable entities posited
by our most successful scientific theories. It is widely held that the most powerful argument
in favor of scientific realism is the no-miracles argument, according to which the success
of science would be miraculous if scientific theories were not at least approximately true
descriptions of the world.

One specific form of scientific realism is structural realism, a commitment to the
mathematical or structural content of scientific theories. It is the “belief in the exis-
tence of structures in the world to which the laws of mathematical physics may
approximately correspond” (Falkenburg 2007, p. 2). In a general sense, structural
realism only admits a reality to the way things are related to one another, invoking
the metaphor of a network (Wittgenstein 1922, 6.35):

Laws [...] are about the net and not about what the net describes.

In a similar vein, “the universe is made of processes, not things” (Smolin 2001,
Chap.4). See also Sect.2.2 for more details.

Structural realism can take on two forms, as the epistemic or ontic versions (Lady-
man 1998). Epistemic structural realism is the view that scientific theories tell us only
about the form or structure of the unobservable world and not about its true nature. In
other words, one cannot know anything about the real nature of things but only how
they relate to one another. In contrast, and more radically, ontic structural realism
assumes that relations are all that exist, without assuming the existence of tangible
entities. In essence, the world is made up solely of structures, a network of rela-
tions without relata (Morganti 2011; Esfeld and Lam 2010). While it might seem
outlandish to suppose relations without relata, the ideas of symmetry and invariance,
discussed in Chap.2, lend support to ontic structural realism. Symmetry transfor-
mations that exchange the individual things that make up a system but leave their
relations unchanged become important. Indeed, ontic structural realism has resonated
with the intuition of some eminent physicists: “[...] only the relationship of objects to
each other can have significance.” (Roger Penrose quoted by Lee Smolin in Huggett
et al. 1998, p. 291). Furthermore, the philosophy has been proposed as an ontology
for quantum field theory (French and Ladyman 2003; Cao 2003; Kuhlmann 2015).
Explanations relating to the reality and nature of elementary particles and fields have
been found lacking (Kuhlmann 2013):
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Clearly, then, the standard picture of elementary particles and mediating force fields is not
a satisfactory ontology of the physical world. It is not at all clear what a particle or a field
even is.

Alternatively, “ontic structural realism has become the most fashionable ontological
framework for modern physics” (Kuhlmann 2015). See also Kuhlmann (2010) and
Sects.2.2.1 and 10.4.1.

Structural realism is a form of structuralism, the notion that all aspects of reality
are best understood in terms of (scientific) constructs of entities, rather than in terms
of concrete entities in themselves. Poststructuralism is defined by the rejection of
the self-sufficiency of the structures that structuralism posits (Derrida 1993, based
on a 1966 lecture). Specifically, knowledge and truths about structures are always
subjective. Poststructuralism does not simply represent the polar opposite of struc-
turalism, it has also been interpreted as anti-scientific, as it “stresses the proliferation
of meaning, the breaking down of existing hierarchies, the shortcomings of logic,
and the failures of analytical approaches” (Cilliers 1998, p. 22). It is a philosophical
stance which is difficult to define as it represents a rich tapestry of thinking (Belsey
2002). Poststructuralism is an intellectual stream closely related to postmodernism,
which is discussed in detail in Sect.9.1.4. Notably, poststructuralism and postmod-
ernism have been proposed as philosophies of complexity (Cilliers 1998; Cilliers
and Spurrett 1999; Woermann 2016). For instance, the philosopher and complexity
researcher Paul Cilliers observes (Cilliers 1998, p. ix):

The most obvious conclusion drawn from this [poststructural/postmodern] perspective is that
there is no overarching theory of complexity that allows us to ignore the contingent aspects
of complex systems. If something is really complex, it cannot be adequately described by
means of a simple theory.

This outlook implies the following (Woermann 2016, p. 3):

Along with Edgar Morin, Cilliers argues that complexity cannot be resolved through
means of a reductive strategy, which is the preferred methodology of those who understand
complexity merely as a theory of causation.

While Volume I of the Book of Nature is rooted in structural realism, Volume II
invites a philosophy that transcends the borders of clear-cut and orderly interpreta-
tions and opens up to inquisitive exploration (Woermann 2016, p. 1):

To my mind, the hallmark of a successful philosophy is thus related to the degree to which
it resonates with our views on, and experiences in, the world.

A philosophy grappling with complex systems needs to address the following
(Cilliers 1998):

complex systems consist of a large number of elements;

a large number of elements is necessary, but not sufficient;

interactions are rich, non-linear, and short-ranged;

there exist loops in the interactions;

complex systems tend to be open systems and operate under conditions far from
equilibrium;
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e complex systems have arich history in that the past is co-responsible for the present
behavior;
e cach element in the system is ignorant of the behavior of the system as a whole.

In a nutshell (Cilliers 1998, p. 5):

Complexity is the result of a rich interaction of simple elements that only respond to the
limited information each of the elements are presented with. When we look at the behavior
of a complex system as a whole, our focus shifts from the individual element in the system
to the complex structure of the system. The complexity emerges as a result of the patterns
of interaction between the elements.

Finally, in Chap.2, the notion of Platonism® was introduced. Platonic realism
posits the existence of mathematical objects that are independent of the mind and
language and it is a philosophical stance adopted by many notable mathematicians.
Although there also exists a structuralist interpretation of mathematics (Colyvan
2012), other scholars have argued that postmodern thought should be seen as the
continuation of debates on the foundations of mathematics (Tasi¢ 2001).

6.3 Complex Network Theory

The key to the success of complex network theory lies in the courage to ignore the
complexity of the components of a system while only quantifying their structure
of interactions. In other words, the individual components fade out of focus while
their network of interdependence comes into the spotlight. Technically speaking, the
analysis focuses on the structure, function, dynamics, and topology of the network.
Hence the neurons in a brain, the chemicals interacting in metabolic systems, the ants
foraging, the animals in swarms, the humans in a market, etc., can all be understood
as being represented by featureless nodes in a network of interactions. Only their
relational aspects are decoded for information content.

6.3.1 The Ubiquity of Complex Networks

Complex networks are ubiquitous in nature, resulting in an abundance of scientific
literature (Strogatz 2001; Albert and Barabési 2002; Dorogovtsev and Mendes 2002,
2003a; Newman 2003; Buchanan 2003; Newman et al. 2006; Caldarelli 2007; Costa
et al. 2007; Vega-Redondo 2007; Caldarelli and Catanzaro 2012; Barabdasi 2016).
A great variety of processes are best understood if formally described by complex
networks. For instance, the following phenomena found in

3The terms mathematical realism and Platonism have been used interchangeably.
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e the physical world, e.g.,

— computer-related systems (Albert et al. 1999; Barabasi et al. 2000; Tadi¢ 2001;
Pastor-Satorras et al. 2001; Capocci et al. 2006),

— various transportation structures (Banavar et al. 1999; Guimera et al. 2005;
Kiihnert et al. 20006),

— power grids (Albert et al. 2004),

— spontaneous synchronization of systems (Gémez-Gardenes et al. 2007),

e biological systems, e.g.,

— neural networks (Ripley 2008; Bullmore and Sporns 2009),

— epidemiology (Meyers et al. 2005),

— food chains (Garlaschelli et al. 2003; McKane and Drossel 2005),

— gene regulation (Brazhnik et al. 2002; Bennett et al. 2008),

— spontaneous synchronization in biological systems (Gonze et al. 2005),

e social* and economic realms, e.g.,

diffusion of innovation (Schilling and Phelps 2007; Konig et al. 2009),

— trust-based interactions (Walter et al. 2008),

— various collaborations (Newman 2001a,b),

— social affiliation (Brown et al. 2007),

— trade relations (Serrano and Bogufid 2003; Garlaschelli and Loffredo 2004a, c;
Reichardt and White 2007; Fagiolo et al. 2008, 2009),

— shared board directors (Strogatz 2001; Battiston and Catanzaro 2004),

— similarity of products (Hidalgo et al. 2007),

— credit relations (Boss et al. 2004; Iori et al. 2008),

— price correlation (Bonanno et al. 2003; Onnela et al. 2003),

— corporate ownership structures (Glattfelder and Battiston 2009; Vitali et al.

2011; Glattfelder 2013, 2016; Garcia-Bernardo et al. 2017; Fichtner et al. 2017,

Glattfelder and Battiston 2019).

The explosion of research in the field of complex networks has been driven by
two changes that have ushered in this new era of comprehending the complex and
interdependent world surrounding us. The firstis the mentioned departure from reduc-
tionist thinking to a systemic and holistic paradigm. The other change is related to
the increased influx of data, furnishing the raw material for this revolution. The
buzzword “big data” has been replaced by what is established data science. While
the cost of computer storage is continually falling, storage capacity is increasing at
an exponential rate. Seemingly endless streams of data—originating, for instance,
from dynamic natural processes anywhere on the globe, a vast spectrum of observed
biological interplay, or countless human endeavors—are continually flowing along
global information highways and are being stored in server farms, the cloud, and,
importantly, the researchers’ local databases.

4 A general reference is Vega-Redondo (2007).
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6.3.2 Three Levels of Network Analysis

Complex systems are characterized by complex networks and graphs are the math-
ematical entity representing the networks. An adjacency matrix is an object that
encodes the graph’s topology. As an example, imagine a graph comprised of three
nodes ny, n,, n3, ng connected by three links /;, I, I3 such that

Iy b I
ny — np, n; — nz and ny, > ns. (6.1)

A network layout is shown in Fig.6.1. The corresponding adjacency matrix is

(6.2)

S o oo
SO OO

1
1
0
0

SO O -

Imagine each row and column of the matrix corresponding to a node (ordered by the
label). The element A(1, 3) = 1 encodes the directed link from node »; to node ns,
i.e., [. Self-links would be represent by A(i, i) = 1 (fori = 1, 2, 3). In essence, the
physical notion of a network has been translated into a matrix, a mathematical object
obeying the powerful rules of linear algebra. More information on graph theory can
be found in Sect.5.3.2.

The study of real-world complex networks can be performed at three levels of
abstraction. Level 1 represents the purely topological approach, where the network
is encoded as a binary adjacency matrix and links exists (1) or do not (0). The simple
example above is already a directed network. Removing the direction of the links
yields the following Level 1 adjacency matrix

(6.3)

(=N el

1
1
0
0

S = = O
S = O =

All the links remain, but the symmetry of the matrix, e.g., A(1, 3) = A(3, 1),removes
all traces of directedness. Allowing the links to carry information, i.e., have direc-
tions and weights, defines Level 2 (Newman 2004; Barrat et al. 2004; Barthelemy

Fig. 6.1 Visualization
example of the simple
network defined in (6.1)
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Fig. 6.2 Visualization examples of the same underlying network. (Left) a directed layout. (Right)
the full-fledged 3-level layout, where the thickness of the links represents their weight and the nodes
are scaled by some non-topological state variable. The graph layouts are taken from Glattfelder
(2013)

et al. 2004; Onnela et al. 2005; Ahnert et al. 2007). In the example of Fig. 6.1, the
directedness can be augmented by weighted links. Formally, /; €]0, 1]fori =1, 2, 3
or, equivalently, A(i, j) €]0, 1] for i, j = 1,2, 3. Finally, at the highest level of
detail, the nodes themselves are assigned a degree of freedom, in the guise of non-
topological state variables that shape the topology of the network (Garlaschelli and
Loffredo 2004b; Garlaschelli et al. 2005). These variables are sometimes also called
fitness (Caldarelli et al. 2002; Servedio et al. 2004; Garlaschelli and Loffredo 2004a;
De Masi et al. 2006). See Fig.6.2 for a visualization of the 3-level approach to
complex networks.

However, the Level 3 type analysis of real-world complex networks is very spe-
cific. Simply incorporating all three levels of detail into the analysis does not nec-
essarily yield new insights. The specific domain the network originates from has to
be considered and the employed network measures require appropriate adaption and
tailoring. Only by accounting for the specific nature of the network under investiga-
tion new insights can be gained. The example of corporate ownership networks is
discussed in Sects.7.3.2.1 and 7.3.2.2.

6.4 Laws of Nature in Complex Systems

Laws of nature can be understood as regularities and structures in a highly complex
universe. They critically depend on only a small set of conditions and are independent
of many other conditions which could also possibly have an effect (Wigner 1960).
Science is the quest to capture fundamental regularities of nature within formal
analytical representations (Volume I of the Book of Nature). So then, are there laws
of nature to be found for complex systems (Volume I1)?
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The quest to discover universal laws in complex systems has taken many turns.
For instance, the macroscopic theory of thermodynamics allows arbitrary complex
systems to be described from a universal point of view. Its foundations lie in statisti-
cal physics, explaining the phenomena of irreversible thermodynamics. A different
approach, striving for universality, is synergetics (Haken 1977, 1983). In contrast to
thermodynamics, this field deals with systems far away from thermal equilibrium.
See Haken (2006) for a brief overview of the aforementioned approaches.

In the following, the focus of universality will lie on a purely empirical and
descriptive phenomenological investigation. In this context the question “What are
the laws of nature for complex systems?” has a clear answer.

6.4.1 Universal Scaling Laws

The empirical analysis of real-world complex systems has revealed an unsuspected
regularity which is robust across a great variety of domains. This regularity is cap-
tured by what is known as scaling laws, also called power laws (Miiller et al. 1990;
Mantegna and Stanley 1995; Ghashghaie et al. 1996; West et al. 1997; Gabaix et al.
2003; Guillaume et al. 1997; Galluccio et al. 1997; Amaral et al. 1998; Barabasi
and Albert 1999; Ballocchi et al. 1999; Albert et al. 1999; Sornette 2000b; Pastor-
Satorras et al. 2001; Dacorogna et al. 2001; Corsi et al. 2001; Newman et al. 2002;
Garlaschelli et al. 2003; Newman 2005; Di Matteo et al. 2005; Lux 2006; Kiihnert
et al. 2006; Di Matteo 2007; Bettencourt et al. 2008; Bettencourt and West 2010;
Glattfelder et al. 2011; West 2017). This distinct pattern of organization suggests
that universal mechanisms are at work in the structure formation and evolution of
many complex systems. Varying origins for these scaling laws have been proposed
and insights have been gained from the study of critical phenomena and phase transi-
tions, stochastic processes, rich-get-richer mechanisms and so-called self-organized
criticality (Bouchaud 2001; Barndorff-Nielsen and Prause 2001; Farmer and Lillo
2004; Newman 2005; Joulin et al. 2008; Lux and Alfarano 2016). Tools and concepts
from statistical physics have played a crucial role in discovering and describing these
laws (Dorogovtsev and Mendes 2003b; Caldarelli 2007). In essence:

Scaling laws can be understood as laws of nature describing complex systems.

Put in the simplest terms, a scaling law is a basic polynomial functional relation-
ship
y = fx)=Cx?, (6.4)

characterized by a (positive or negative) scaling parameter « and a constant C. In
other words, a relative change in the quantity x results in a proportional relative
change in the quantity y, independent of the initial size of those quantities: y always
varies as a power of x. A simple property of scaling laws can easily be shown. By
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Fig. 6.3 A scaling-law relation. (Left) Graph of the function (6.4) with « = —0.75 and C = 2.0.
(Right) Log-log scale plot of the same function, i.e., (6.6)

varying the value of the function’s argument (x), the shape of the function (y) is
preserved. As this is true for all scales, the property is called scale invariance. In
mathematical terms

flax) = Cax)* =a* f(x) ~ f(x). (6.5)

Another defining property of scaling laws is the trivial form which emerges when the
function is plotted. Specifically, a logarithmic mapping yields a linear relationship.
Taking the logarithm of (6.4) yields

Y =aX + B, (6.6)

where X = log(x) and B = log(C). See Fig. 6.3 for an illustration and, for instance,
Newman (2005), Sornette (2000a) for further details.

Scaling-law relations characterize an immense number of natural processes,
prominently in the form of

1. allometric scaling laws;

2. scaling-law distributions;

3. scale-free networks;

4. cumulative relations of stochastic processes.

Before presenting these four types of universal scaling, some historical context is
given in the following section.

6.4.2 Historical Background: Pareto, Zipf, and Benford

The first study of scaling laws and scaling effects can be traced back to Galileo
Galilei. He investigated how ships and animals cannot be naively scaled up, as dif-
ferent physical attributes obey different scaling properties, such as the weight, area,
and perimeter (Ghosh 2011). Over 250 years later, the economist and sociologist
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Vilfredo Pareto brought the concept of scaling laws to prominence (Pareto 1964,
originally published in 1896). While investigating the probability distribution of the
allocation of wealth among individuals, he discovered the first signs of universal
scaling. Put simply, a large portion of the wealth of any society is owned only by a
small percentage of the people in that society. Specifically, the Pareto principle says
that 20% of the population controls 80% of the wealth. Hence this observation has
also been called the 80-20 rule. To this day, the Pareto distribution is detected in the
distribution of income or wealth. A more detailed treatment of Pareto’s observed
inequality was given by the Lorenz curve (Lorenz 1905). This is a graph representing
the ranked cumulative income distribution. At any point on the x-axis, corresponding
to the bottom x % of households, it shows what percentage (y%) of the total income
they have. A further refinement was the introduction of the Gini coefficient G (Gini
1921). In effect, G is a statistical measure of inequality, capturing how much an
observed Lorenz curve deviates from perfect equality G = 0.0. Perfect inequality,
or G = 1.0, corresponds to a step-function representing a single household earn-
ing all the available income. For the United States, in 1979 G = 0.346 and in 2013
G = 0.41. The interplay between this rise of the Gini coefficient and the rise of
the share of total income going to the top earners, seen beginning at the end of the
1970s, is discussed in Atkinson et al. (2011). In 2011, South Africa saw a maximal
G = 0.634 and in 2014, Ukraine a minimal G = 0.241. The data is available from
the World Bank.

Another popularizer of the universal scaling patterns found in many types of data,
analyzed in the physical and social sciences, was the linguist and philologist George
Kingsley Zipf. He studied rank-frequency distributions (Zipf 1949), which order
distributions of size by rank. In other words, the x-axis shows the ordered ranks,
while the y-axis shows the frequency of observations. For instance, the frequency
of the use of words in any human language follows a Zipf distribution. For English,
unsurprisingly, the most common words are “the”, “of”’, and “and”, while all remain-
ing other ones follow Zipf’s law of diminishing frequency. This law, characterized
by a scaling-law probability distribution, is the discrete counterpart of the continuous
Pareto probability distribution. See also Newman (2005).

A final pattern emerging in seemingly random data samples was discovered by
the electrical engineer Frank Benford. He found an unexpected regularity which was
only recently shown to be related to Zipf’s law (Pietronero et al. 2001; Altamirano
and Robledo 2011). In 1881, a seemingly bizarre result was published, based on
the observation that the first pages of logarithm books, used at that time to perform
calculations, were much more worn than the other pages (Newcomb 1881) . In other
words, people where mostly computing the logarithms of numbers for which the
first digit was a one: d; = 1. The phenomenon was rediscovered in 1938 by Benford,
who confirmed the pattern for a large number of random variables drawn from geo-
graphical, biological, physical, demographical, economical, and sociological data
sets. The pattern even holds for randomly compiled numbers taken from newspaper
articles. Benford’s law is an observation about the frequency distribution of leading

3See https://data.worldbank.org/indicator/SL.POV.GINI.
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digits (Benford 1938). If d; € {1, ..., 9} denotes the first digit of a number, then the
probability of its occurrence is equal to

di+1
p(dy) = logy, <%> . (6.7)

Specifically, p(1) =30.1%, p(2) = 17.6%, p(3) = 12.5%, p(4) =9.7%, p(5) =
7.9%, p(6) = 6.7%, p(7) = 5.8%, p(8) = 5.1%, p(9) = 4.6%. In effect, seeing a
one as a leading digit in a number is over six times more likely than observing a nine.
The law also holds for the second digit d, and so on. In general terms, for a number
B>2,d e{l,...,B—1}

1

di+1
p(di)=log3( ; ) (6.8)

First explanations of this phenomena, which appears to suspend the notions of
probability, focused on the law’s logarithmic nature which implies a scale-invariant
distribution. If the first digits universally obey a specific pattern of distribution, this
property is thus independent of the measuring system. In other words, conversions
from one system of units to other ones—for instance, moving from metric to imperial
units—do not affect the pattern. This requirement, that physical quantities are inde-
pendent of a chosen representation is called covariance and is one of the cornerstones
of general relativity (Sects.4.1 and 10.1.2). In essence, the common sense require-
ment that the dimensions of arbitrary measurement systems should not affect the
measured physical quantities is encoded in Benford’s law. In addition, the fact that
many processes in nature show exponential growth is also captured by the law, which
assumes that the logarithms of numbers are uniformly distributed. In 1996, the law
was mathematically rigorously proved. It was shown that, if one repeatedly chooses
different probability distributions and then randomly chooses a number according to
that distribution, the resulting list of numbers will obey Benford’s law (Hill 1995.
Hence the law reflects the behavior of distributions of distributions. Benford’s law is
also present in very distinct phenomena, such as the statistical distribution of leading
digits in the prime number sequence (Luque and Lacasa 2009), quantum phase tran-
sitions (Sen De and Sen 2011), and earthquake detection (Diaz et al. 2014). The law
has also been utilized to detect fraud in insurance, accounting, expenses, or election
data, where people forging numbers tend to distribute their digits uniformly.

6.4.3 The Types of Universal Scaling

Notwithstanding the spectacular number of occurrences of scaling-law relations in
a vast diversity of complex systems, there are four basic types of scaling laws to be
distinguished.



196 6 Volume II: The Simplicity of Complexity

iy METABOLIC RATE OF ANIMALS

Elephant ~

1000 4 Bl

Cow and steer

100 <

Metabolic rate (watts)

T T T \
0.01 [+3] 1 0 100 1.000 10,000
Body mass (kg)

Fig.6.4 Empirical validation of Kleiber’s %—power law, relating body mass to metabolic rate. Figure
taken from West (2017). This scaling relation has been extended to span 27 orders of magnitude to
include cell structures and unicellular organisms (West and Brown 2005)

6.4.3.1 Allometric Scaling Laws

Allometric scaling describes how various properties of living organisms change with
size. This was first observed by Galileo, when he was analyzing the skeletal structures
of mammals of varying size. In 1932, the biologist Max Kleiber discovered that, for
the vast majority of animals, the animal’s metabolic rate B scales to the % power of
the animal’s mass M (Kleiber 1932). Mathematically

B~ Mi, (6.9)

Thus, a male African bush elephant, weighing an average of 6 tons, has a metabolism
roughly 13,320 times slower than a house mouse, weighing 19 grams. In Fig.6.4
an overview is shown, ranging from mice to humans to elephants. Moreover, the
metabolic rate in animals and the power consumption in computers have been found
to scale similarly with size and an energy-time minimization principle is postulated
which governs the design of many complex systems that process energy, materials,
and information (Moses et al. 2016).

Other allometric scaling laws relate the lifespan L and the number of heartbeats
H of mammals to their weight M:

1
3

M )
(6.10)
M

=

L ~
H~M"
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Consequently, heavier animals live longer and have slower heart-rates. As both of
these scaling laws have the same absolute value but varying sign for their exponent,
a fundamental invariant of life emerges: the number of heart-beats per lifetime is
constant (approximately 1.5 x 10°). The existence of these biological scaling laws,
and the fact that the exponents are always simple multiples of %, suggest the workings
of general underlying mechanisms which are independent of the specific nature
of the individual organisms. Hidden behind the mystifying diversity of life lies an
organizational process which becomes visible through self-similar scaling laws. This
implies the existence of average, idealized biological systems at various scales. More
details can be found in West et al. (1997), West and Brown (2005).

Allometric scaling also has medical implications, namely related to drug admin-
istration and weight. An example taken from a website® offering a calculator which
estimates interspecies dosage scaling between animals of different weights: “If the
dosage for a 0.25kg rat is 0.1 mg, then using an exponent of 0.75, the estimated
dosage for a 70kg human would be 6.8 mg. While the dose to weight ratio for the
rat is 0.4mg/kg, the value for the human is only about 0.1 mg/kg.” In 1962, two
psychiatrists decided to test the effects of the psychedelic substance lysergic acid
diethylamide (LSD) on an elephant. The animal weighed about 3,000kg and the
researchers estimated that a dose of about 300 mg would be appropriate. Not taking
the non-linear scaling behavior into account, this turned out to be a fatal dose. The
elephant died and the ordeal was reported in the prestigious journal Science (West
etal. 1962). Knowledge of allometric scaling would have revealed the following. For
humans, a standard amount of LSD is 100 micrograms.” Assuming a body-weight of
70kg, this dose translates into roughly 1.6 milligrams for an elephant. The adminis-
tered 300 mg correspond to about 17 mg of LSD for a human. However, there are no
verified cases of death by means of an LSD overdose in humans (Passie et al. 2008).
See also West (2017).

Allometric scaling laws are also found in the plant kingdom (Niklas 1994). Vascu-
lar plants vary in size by about twelve orders of magnitude and scaling laws explain
many features. For instance, the self-similar and fractal branching architecture fol-
lows a scaling relation. There also exist parallels in the characteristics of plants and
animals which are described by allometric scaling with respect to mass: the metabolic
rate (M %) and the radius of trunk and aorta (M %). See West et al. (1999).

A recent biological scaling law was discovered, describing a universal mathemat-
ical relation for folding mammalian brains (Mota and Herculano-Houzel 2015).

6.4.3.2 Scaling-Law Distributions

In 1809, Carl Friedrich Gauss published a monograph in which he introduced funda-
mental statistical concepts (Gauss 1809). A key insight was the description of random
data by means of what is today know as normal (or Gaussian) distributions. To this

6See http://clymer.altervista.org/minor/allometry.html.
7See https://erowid.org/chemicals/Isd/1sd_dose.shtml, retrieved February 1, 2018.
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Fig. 6.5 Comparing probability distributions. (Left) A normal distribution showing the heights of
5,647 male individuals, age 20 and over from the US, with © = 175.9 [cm] and 0 = 7.5147 [cm]
in (6.11) (Fryar et al. 2012) (Right). The scaling-law distribution of city sizes in log-log scale,
approximated from Newman (2005), with « = 2.0 and C = 800, 000 in (6.12)

day, many phenomena are approximated by this type of probability distribution. For
instance, observations related to intelligence (IQ), blood pressure, test results, and
height (see Fig.6.5). Moreover, measurement errors in a variety of physical experi-
ments, under general conditions, will follow a normal distribution. In a nutshell, any
random phenomena, related to a large number of small and independent causes, can
be approximated by a normal distribution. This statement is made mathematically
rigorous by the central limit theorem, to which the ubiquity of normal distributions
in nature is linked (Voit 2005). In detail, data which is normally distributed is charac-
terized by the mean (), around which most of the observations cluster. The standard
deviation (o) captures the amount of variation in the data. The functional form is
given by

1 x—w?
N@ oY) = ———e 27 . 6.11)
2mwo?

A precise prediction of this equation is that values less than three standard deviations
away from the mean (related to what are called 3-sigma events) account for 99.73% of
observations. In other words, it is extremely rare to observe outliers in data following
a normal distribution.

In contrast, data following scaling-law distributions represent the other extreme,
where very large occurrences are expected and observations span many orders of
magnitude. In Fig.6.5 two examples are shown, in which a normal distribution of
height is compared to a scaling-law distribution of city sizes. Scaling-law distri-
butions, quantifying the probability distributions of complex systems, are the most
ubiquitous scaling relation found in nature. Expressed in mathematical terms

p(x) = Cx, (6.12)
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for @ > 0. Note that p is a probability density function. The corresponding cumula-
tive distribution function is defined as

P(x):/ p(x")dx’. (6.13)

If p(x) follows a scaling law with (positive) exponent «, then the cumulative distri-
bution function P(x) also follows a power law, with an exponent o — 1. Pareto’s
80-20 rule can be derived using P. In detail, the question, above what point x the
fraction F of the distribution lies, can be formalized as

P(xp)z/ p(x')dx/zF/ p(x"dx’. (6.14)

XF Xmin

The solution is given by
xp = F = . (6.15)

From this, the fraction W of wealth in the hands of the richest P percent of the

population can be derived as
—a+2

W = P=et, (6.16)

As an example, for the US, the empirical wealth distribution exponent is o = 2.1
(Newman 2005). Hence, 86.38% (i.e., 8.638 = 0.27%-1/=1-1y of the wealth is held
by the richest 20% (0.2). Or, about 64.5% of the wealth is held by the richest 8%.
Statistically speaking, cumulative distribution functions perform better, because the
tail of the distribution is not affected by the diminishing number observations, as is
the case for the density function, where outliers can skew the results.

Scaling-law distributions have been observed in an extraordinary wide range of
natural phenomena: from physics, biology, earth and planetary sciences, economics
and finance, computer science, demography to the social sciences (Amaral et al.
1998; Albert et al. 1999; Sornette 2000a; Pastor-Satorras et al. 2001; Bouchaud
2001; Newman et al. 2002; Caldarelli et al. 2002; Garlaschelli et al. 2003; Gabaix
et al. 2003; Newman 2005; Lux 2005; Di Matteo 2007; Bettencourt et al. 2007;
Bettencourt and West 2010; West 2017). It is truly astounding, that such diverse
topics as

e the size of cities, earthquakes, moon craters, solar flares, computer files, sand
particle, wars and price moves in financial markets;

e the number of scientific papers written, citations received by publications, hits on

webpages and species in biological taxa;

the sales of music, books and other commodities;

the population of cities;

the income of people;
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e the frequency of words used in human languages and of occurrences of personal
names;
e the areas burnt in forest fires;

are all characterized by scaling-law distributions.

As mentioned, processes following normal distributions have a characteristic scale
given by the mean (1) of the distribution. In contrast, scaling-law distributions lack
such a preferred scale, as measurements of scaling-law processes can yield values
distributed across a vast dynamic range, spanning many orders of magnitude. Indeed,
for @ < 2 the mean of the scaling-law distribution can be shown to diverge (Newman
2005). Moreover, analyzing any section of a scaling-law distribution yields similar
proportions of small to large events. In other words, scaling-law distributions are
characterized by scale-free and self-similar behavior. Historically, Benoit Mandel-
brot observed these properties in the changes of cotton prices, which represented the
starting point for his research leading to the discovery of fractal geometry (Mandel-
brot 1963, see also Sects.5.2.2, and 5.1.3). Finally, for normal distributions, events
that deviate from the mean by, e.g., 10 standard deviations (10-sigma events) are prac-
tically impossible to observe. Scaling laws, in contrast, imply that small occurrences
are extremely common, whereas large instances become rarer. However, these large
events occur nevertheless much more frequently compared to a normal distribution:
for scaling-law distributions, extreme events have a small but very real probability
of occurring. This fact is summed up by saying that the distribution has a “fat tail”
(Anderson 2004). In the terminology of probability theory and statistics, distributions
with fat tails are said to be leptokurtic or to display positive kurtosis. The presence
of fat tails greatly impacts risk assessments: although most earthquakes, price moves
in financial markets, intensities of solar flares, etc., will be very small most of the
time, the possibility that a catastrophic event will happen cannot be neglected.

6.4.3.3 Scale-Free Networks

The turn of the millennium brought about a revolution in the fundamental under-
standing of the structure and dynamics of real-world complex networks (Barabdasi
and Albert 1999; Watts and Strogatz 1998; Albert and Barabasi 2002; Dorogovtsev
and Mendes 2002; Newman et al. 2006). The discovery of small-world (Watts and
Strogatz 1998) and scale-free (Barabasi and Albert 1999; Albert and Barabasi 2002)
networks were the initial sparks, bringing about a new science of networks (Section
6.3.1). A historical outline of events can be found in Sect.5.2.3. Figure 6.6 shows an
example of a scale-free network.

In a nutshell, scale-free networks have a degree distribution following a scaling
law. Let P(k;) describe the probability of finding a node i in the network with a
degree of k;. In other words, i has k; direct neighbors and P (k;) expresses the prob-
ability of occurrences throughout the network. In general, for scale-free networks,
the following relation holds

Pk) ~ k™. (6.17)
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The detailed expression is given in (5.18) on p. 168 of Sect.5.3.2, introducing ele-
ments of graph theory. For directed networks, one needs to distinguish between the
in-degree (k}“) and out-degree (k?™).

A prototypical example of a scale-free network is given by the World Wide Web
(WWW), the set of all online documents interlinked by hypertext links (Barabadsi et al.
2000). This should not be confused with the Internet, the global network of intercon-
nected computers that utilize the TCP/IP protocol to link devices. In essence, the vast
majority of webpages in the WWW are irrelevant and there exist only a few extremely
interconnected hubs. Ranked by page views, the most popular five webpages are
Google, YouTube, Facebook, Baidu, and Wikipedia.8 To illustrate, Google’s search
engine processes an average of 3.5 billion searches per day.’ Indeed, the success of
Google initially depended on the development of a network measure. In detail, the
founders Larry Page and Sergey Brin introduced the PageRank search algorithm,
which is based on network centrality10 (Katz 1953; Hubbell 1965; Bonacich 1987,
Borgatti 2005; Glattfelder 2019). In a nutshell, a webpage is important if important
webpages link to it. Technically, PageRank assigns a numerical weighting to each
element of a hyperlinked set of documents, with the purpose of measuring its relative
importance within the set (Brin and Page 1998).

{# 16.4.3.3-pr >

8 As ranked by www.alexa.com/topsites/, accessed February 2, 2018.
9See http://www.internetlivestats.com/google-search-statistics/, accessed February 13, 2018.
10See also Sect.7.3.2.2.
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PageRank is formally defined by an iterative equation P R; for each node i:

PR (1) l—«
PRi(t+1) = § — , 6.18
( + ) a- : kqut N ( )
Jjera) J

where I'(7) is the set of labels of the neighboring nodes of i, « is a dampening factor
usually set to 0.85, and N is a size coefficient. In matrix notation

1_
PR(t + 1) = a MPR(t) + T“l, (6.19)

where 1 is the unit column-vector and the matrix M is

G i 1 .
My = 1/k$™, if j links to i

) (6.20)
0, otherwise.

Alternatively, M = (K~'A)",if K is the diagonal matrix with the out-degrees in the
diagonal and A is the adjacency matrix of the network. The solution is given, in the
steady state, by

11—«

PR=(1- !
A =M™ —

1, 6.21)

with the identity matrix #. A solution exists and is unique for 0 < « < 1.

< 6.4.3.3-pr| #}

Conceptually, the PageRank formula reflects a model of a random surfer in the WWW
who gets bored after several clicks and switches to a random page. The PageRank
value of a page measures the chance that the random surfer will land on that page by
clicking on alink. If a page has no links to other pages, it becomes a sink and therefore
terminates the random surfing process, unless o < 1. In this case, the random surfer
arriving at a sink page, jumps to a random webpage chosen uniformly at random.
Hence (1 — «)/N in Egs. (6.18) and (6.19) is interpreted as a teleportation term.
Scale-free networks are characterized by high robustness against the random fail-
ure of nodes, but susceptible to coordinated attacks on the hubs. Theoretically, they
are thought to arise from a dynamical growth process, called preferential attach-
ment, in which new nodes favor linking to existing nodes with high degree (Barabasi
and Albert 1999). Albert-Laszl6 Barabasi was highly influential in popularizing the
study of complex networks by explaining the ubiquity of scale-free networks with
preferential attachment models of network growth. However, the statistician Udny
Yule already introduced the notion of preferential attachment in 1925, when he ana-
lyzed the power-law distribution of the number of species per genus of flowering
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plants (Udny Yule 1925). Alternative formation mechanisms for scale-free networks
have been proposed, such as fitness-based models (Caldarelli et al. 2002).

6.4.3.4 Cumulative Scaling-Law Relations

A final type of scaling-law relation appears in collections of random variables, called
stochastic processes (see Sect.7.1.1.1). Prominent empirical examples are finan-
cial time series, where one finds empirical scaling laws governing the relationship
between various observed quantities. Time series are simple series of data points
ordered by time. For instance, the price of a security or asset at time 7 is given
by x(¢). The collection of prices at different times during some time horizon, i.e.,
t € [ts, tg], constitutes a series, which can be plotted as a chart. De facto, financial
instruments are associated with a spread s (), quantifying the difference between the
ask x*K(¢) and the bid x®4(¢) prices of the security or asset, quoted to sellers and
buyers, respectively. The mid price is defined as

xask (l) + xbid ([)

x(t) = >

(6.22)
As prices are quoted discretely, the parameter ¢ can be replaced by a set of time
instances #;. Consequently, x(#;) can be denoted by x;, yielding a simpler notation.
Price moves are defined as percentages

Xi — Xi—1
Ax; = ——.

(6.23)

(6.24)

In Glattfelder et al. (2011) 18 empirical scaling-law relations were uncovered in
the foreign exchange market, 12 of them being independent of each other. The foreign
exchange market can be characterized as a complex network consisting of interacting
agents: corporations, institutional and retail traders, and brokers trading through
market makers, who themselves form an intricate web of interdependence. With an
average daily turnover of approximately USD five trillion (Bank of International
Settlement 2016) and with price changes nearly every second, the foreign exchange
market offers a unique opportunity to analyze the functioning of a highly liquid,
over-the-counter market that is not constrained by specific exchange-based rules.
This market is an order of magnitude bigger than the futures or equity markets
(ISDA 2014). An example of such an emerging scaling law in the foreign exchange
market is the following: The average time interval (A¢) for a price change of size
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log(At) [sec]

log(Az) [7]

Fig. 6.7 Financial scaling-law relation. The log-log plot shows the empirical results for the
EUR/USD currency pair over a five year data sample. The time (Af) during which a price move
of Ax € [0.045%, ..., 4.0%] happens is related to the magnitude of these moves. The exponent is
estimated at o = 1.9608 £ 0.0025. The y-axis data range is approximately from 16 min to 69 days

Ax to occur follows a scaling-law relation
(At)y ~ Ax“. (6.25)

Figure 6.7 shows an illustration of this scaling law for the Euro to US Dollar exchange
rate. Another cumulative scaling-law relation counts the average yearly number of

price moves of size Ax
N(Ax) ~ Ax®. (6.26)

In Fig. 6.8 this scaling law is plotted for 13 currency pairs and a benchmark Gaussian
random walk. Finally, a salient novel scaling-law relation unveils that after any direc-
tional change of a price move, measured by a threshold §, the price will continue, on
average, to move by a percentage w. This overshoot scaling law has a trivial form

(@) ~ 8. (6.27)

In other words, any directional change in a time series will be followed by an over-
shoot of the same size, on all scales. See Glattfelder et al. (2011) for more details
and the remaining 15 scaling laws.

These laws represent the foundation of a new generation of tools for studying
volatility, measuring risk, and creating better forecasting (Golub et al. 2016). They
also substantially extend the catalog of stylized facts found in financial time series
(Guillaume et al. 1997; Dacorogna et al. 2001) and sharply constrain the space of
possible theoretical explanations of the market mechanisms. The laws can be used
to define an event-based framework, substituting the passage of physical time with
market activity (Guillaume et al. 1997; Glattfelder et al. 2011; Aloud et al. 2011).
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Fig. 6.8 Number of yearly
price moves scaling law.
Plots based on five years of
tick-by-tick data for 13
exchange rates and a
Gaussian random walk
model. See Glattfelder et al.
(2011) for details
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Consolidating all these building blocks cumulates in a new generation of automated
trading algorithms'!' which not only generate profits, but also provide liquidity and
stability to financial markets (Golub et al. 2018). See also Miiller et al. (1990),
Mantegna and Stanley (1995), Galluccio et al. (1997) for early accounts of the scaling
properties in foreign exchange markets.

6.4.3.5 A Word of Caution

Finding laws of nature for complex systems is a challenging task. By design, there
exist many levels of organization which interact with each other in theses sys-
tems. Moreover, the laws represent idealizations lurking in the murky depths hidden
beneath layers of messy data. While the laws of nature relating to Volume I of the
Book of Nature are clear-cut and orderly, Volume II struggles with this clarity. The
importance of the four types of universal scaling laws previously discussed has been
challenged by some.

The debate boils down to the following question: How far can one deviate from
statistical rigor to detect an approximation of an organizational principle in nature? In
the early days of scaling laws, some physicists have been accused of simply plotting
their data in a log-log plot and squinting at the screen to declare a scaling law.
However, the statistical criteria for a true scaling law to be found in empirical data
are quite involved (Clauset et al. 2009). Recently, the ubiquity of scale-free networks
has been questioned (Broido and Clauset 2018).

Network scientists have adapted to such challenges. For one, the strict adherence
to a precise power law is relaxed. As an example, a broader class called “heavy-
tailed” networks is invoked. Many real-world networks show such a distribution in
their degree distribution. In other words, they share the characteristics of a scale-free
network (such as robustness and vulnerability) without actually obeying a strict power

"'The code can be found here: https://github.com/AntonVonGolub/Code.
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law. In essence, real-world networks are determined by many different mechanisms
and processes which nudge the network away from pure scale-freeness, making them
heavy-tailed. However, the biggest and simplest factor responsible for spoiling any
neat idealized scaling-law behavior in all real applications could be, in the words of
physicist-turned-network scientist Alessandro Vespignani, that (quoted in Klarreich
2018):

In the real world, there is dirt and dust, and this dirt and dust will be on your data. You will
never see the perfect power law.

Nonetheless, perhaps the real impediment that network researchers face is far deeper,
echoing the poststructural and postmodern sentiment from Sect. 6.2.2. Again Vespig-
nani (Klarreich 2018):

There is no general theory of networks.

Barabisi replied to the accusations in a blog post.'? In essence, (Broido and Clauset
2018) utilize a “fictional criterion of scale-free networks,” which “fails the most
elementary tests.”

Conclusion

Here on Earth, complexity is found everywhere. However, only recently has the
human mind deciphered the simple rules behind complex phenomena. This insight
came hand in hand with the emergence of information technology, allowing this new
domain to be algorithmically charted. The prototypical complex system is biological.
However, the vast complex systems we humans have created, especially in finance
and economics, require a detailed and in-depth discussion. Today, they affect every
aspect of life on Earth.
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Chapter 7 ®
Applied Complexity: Finance e
and Economics in a New Light

Abstract The Scientific and the Industrial Revolutions have changed the face of the
Earth forever. Today, we enjoy the unparalleled rewards of technological and eco-
nomic prosperity. The world has merged into one single global network of human
activity, creating a complex super-system. Specifically, the cross-fertilization of three
spheres of influence has created this successful world order: science and technol-
ogy, industry and economics, and military interests. The current paradigm is called
the doctrine of neoliberalism, justified by neoclassical economics and quantitative
finance. However, there is a dark side to all this progress. It takes a heavy toll on
the individual human psyche and the global ecosystem. Short-term personal self-
realization is pitted against evolutionary cooperation and collective intelligence. The
distribution of resources is heavily skewed, giving rise to a culture of inequality.
Finally, some crucial questions need to be answered. Is humanity happier today than
in the past? Can we actually control the economic and financial systems we have
created? Do we need a new paradigm coming from complexity science?

Level of mathematical formality: low.

Arguably, financial markets and economic interactions represent ideal manifesta-
tions of complex systems. The understanding of the structure and functioning of
markets and economies is perhaps the single most important goal to ensure equitable
future prosperity—economic and ecological. Complexity theory could be the key
to overcoming the ideological and dogmatic trenches plaguing these sociopolitical
endeavors which shape every aspect of human existence. While the application of the
tools and methods derived from studying complex systems brought about a wealth of
novel understanding in the last decades for computer science, biology, physics, and
sociology, finance and economics have been wary and slow to adopt the insights.
The architectures of institutionalized power play an important role in shaping the
commercial reality we humans are exposed to, with profound implications for all
of life on Earth. In this chapter, a lot of historical context is presented explaining
the current paradigm of finance and economics. This allows the systemic defects
and structural shortcomings to be better understood, thus possibly setting a new
course for the future. At the heart of all economic and financial interactions lies the
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individual human being, driven by personal, long-term self-actualization and tempted
by the short-term fruits of greed and fraud. This is thus the key question: How can we
foster collective intelligent behavior from individual preferences? Indeed, an age-old
challenge faced by evolution itself.

7.1 Terra Cognita

Before sailing off into terra incognita, some notable developments in the history
of finance and economics require a discussion. From the emergence of randomness
in science, the appearance of a new caste of mathematical wizards, the widespread
adoption of a certain brand of economic thinking, the failure of the economic operat-
ing system, to the gridlock created by conflicting ideologies, the last 100 years have
seen some very critical events unfold.

7.1.1 Some Historical Background

In 1776, Adam Smith presented An Inquiry into the Nature and Causes of the Wealth
of Nations (Smith 1776). This treatise is considered to be the first modern work
of economics. It was inspired by Isaac Newton’s revolutionary and foundational
work establishing modern physics: Philosophice Naturalis Principia Mathematica
(Newton 1687). Today, finance and economics are fundamentally equation-driven.
Mathematics is the bedrock upon which the theories are built upon, reaching ever new
heights of esoteric abstraction. At the heart of this evolution stands what is known as
a stochastic process: the mathematization of a series of random events unfolding in
time. Scholars grappled with this concept for nearly a century until a new profession
emerged: the quantitative analyst.

7.1.1.1 Stochastic Processes

The historical rise of financial mathematics is intertwined with major developments
in physics. The year 1900 marked a radical turning point in physics. Max Planck was
grappling with the problem of black-body radiation, which defied any theoretical
explanation. This issue, however, did not appear very fundamental and the general
feeling at the time was, that physics had nearly conquered all there is to know about
the physical world. In a creative act, Planck introduced an idea' that would lead to the
uncovering of the quantum realm of reality (see Sect.4.3.4). This discovery ushered
in an era of conceptual challenges about the nature of reality from which physics has
(or more precisely, physicists have) to this day not recovered from (see Sect. 10.3.2.2).

I'The quantization of energy: E = hv.
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One fundamental tenet of quantum theory is its probabilistic character. The old notion
of a deterministic clock-work universe is lost forever. Now, nature is hiding eternally
behind a veil of probability.

Also in the year 1900, the mathematician Louis Bachelier presented his Ph.D. the-
sis (Bachelier 1900). He introduced a formalization of randomness called a stochastic
process and applied this to the valuation of stock options. Unfortunately, his pioneer-
ing work on randomness and mathematical finance was essentially forgotten until
the late 1950s. Bachelier based his work on Brownian motion. This is the name
name given to the random motion of part