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Foreword

The way we manage our waterbodies determines the extent to which 
 cyanobacteria proliferate. While for some waterbodies the past decades 
have seen some progress in controlling the excessive nutrient loads that 
result in eutrophication and cyanobacterial blooms, pressures on many oth-
ers are increasing, through population growth, urbanisation, changes in 
agricultural land use and climate. In this context, the 2030 Agenda for 
Sustainable Development includes Sustainable Development Goal 6, which 
recognises the importance of protecting and restoring water-related eco-
systems (target 6.6), improving ambient water quality (target 6.3) and safe 
(and affordable) drinking-water for all (target 6.1).

Cyanobacterial blooms have been recognised as an environmental 
 concern since they began to occur widely in many countries in the 1960s. 
An awareness of their public health significance grew during the 1980s as 
their toxicity became increasingly understood, including as cause of the 
deaths of exposed livestock, pets and wild animals, and cases of human 
illness were attributed to exposure to cyanotoxins following recreational 
activities or drinking-water consumption.

In 1999, the World Health Organization (WHO) developed its first drink-
ing-water guideline value for a widely occurring cyanobacterial toxin, micro-
cystin-LR. The WHO also published the first edition of Toxic Cyanobacteria 
in Water, largely written by the pioneers of cyanotoxin science. Since then, 
this document has been widely used by regulators for the development of 
national policies for managing cyanotoxin risks, by local public health ser-
vices in implementing measures to protect public health and by academia for 
teaching and planning research. Since 1999, cyanotoxin research has grown 
exponentially, and the new knowledge generated in these two decades has 
improved our basis for assessing the health risks caused by toxic cyanobacte-
ria. We now know more about the range of cyanotoxins – from their occur-
rence to potential health effects – and thus can set priorities more effectively. 
This enabled the WHO to develop guideline values for further cyanotoxins, 
including for short-term and for recreational exposure. The approach of 
developing site-specific Water Safety Plans, initially promoted by WHO in 
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2003 in the Guidelines for Safe Recreational Environments and 2004 in the 
Guidelines for Drinking-water Quality, now provides a platform for bring-
ing together the wide range of expertise and stakeholder interests needed 
to understand the causes of blooms and to develop the most effective and 
sustainable context-specific strategy for  controlling them.

Such a joint effort requires communication between managers, stakehold-
ers and experts from a range of fields and with diverse backgrounds. This 
second edition of Toxic Cyanobacteria in Water brought together a cor-
respondingly wide range of expertise of authors from many countries, with 
experience from very different types of waterbodies harbouring toxic cya-
nobacterial blooms. This book resulting from this collective effort strives 
to facilitate communication between those developing strategies to prevent 
blooms and human exposure through water by providing the necessary 
tools, background and guidance. This book includes an introduction to the 
basics about cyanobacteria and their toxins, an overview of human expo-
sure routes, guidance for assessing risks to human health and preparing for 
short-term responses to prevent human exposure, as well as guidance on 
effective management and monitoring from catchment to the end user.

It is hoped that readers find this second edition of Toxic Cyanobacteria in 
Water useful for developing longer-term, sustainable approaches bridging 
environmental management and public health, as countries strive towards 
the realisation of their commitments under the 2030 Agenda for Sustainable 
Development.
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Chapter 1

Introduction

Ingrid Chorus and Martin Welker

CONTENTS

1.1 Document purpose and scope 4
1.2 Target audience 7
1.3 Document structure and overview 7
References 10

Safe drinking-water is of paramount importance for human health. 
Throughout history, access to drinking-water has been a prerequisite for the 
development of civilisations – and the loss of access often a key factor for 
their decline. Recognising the vital role of drinking-water for public health, 
the World Health Organization (WHO) dedicates a significant share of its 
efforts to promote the safety of water for today and for the future (Onda 
et al., 2012). With a human population reaching 10 billion by the mid of 
this century, the pressure on global drinking-water resources will not cease, 
and ongoing efforts in research, management and governance are needed to 
recognise, understand and mitigate health risks associated with water use. 
This includes further uses of water involving human exposure, particularly 
for recreation, and, depending on specific local or regional circumstances, 
also for irrigating crops, cooling water or dust suppression, for example.

Health hazards recognised in water today comprise infectious microor-
ganisms (e.g., bacteria, viruses and protozoa causing gastrointestinal dis-
eases), geogenic substances (e.g., arsenic, fluoride, uranium), industrial and 
agricultural chemicals (e.g., perfluorinated chemicals [PFCs], pesticides) 
and toxins produced by cyanobacteria – the subject of the first edition of 
“Toxic Cyanobacteria in Water” (Chorus & Bartram, 1999) and of the 
present volume.

Among the hazards considered in the Guidelines for Drinking Water 
Quality (GDWQ; WHO, 2017), infectious microorganisms are the most 
significant causes of mortality on a global scale, causing a substantial bur-
den of disease via diarrhoeal illnesses such as cholera, cryptosporidiosis or 
retroviral enteritis (James et al., 2018; Roth et al., 2018; Prüss-Ustün et al., 
2019). In contrast, the contribution of toxic chemicals in water to morbidity 
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and mortality is rarely acute, and aside from a few geogenic chemicals, the 
impacts on health are less visible and less clearly attributable to chemicals. 
This applies particularly for carcinogenic compounds, the impacts of which 
accumulate over time. Thus, considering global causes of mortality and 
morbidity, data to estimate the disease burden through exposure to chemi-
cals in water are typically lacking.

This is also true for cyanobacterial toxins: only a relatively low number 
of recorded cases of acute human intoxication are clearly attributable to 
these toxins (Wood, 2016). Nonetheless, like with other toxins poten-
tially found in drinking-water, exposure to low, subacute concentrations 
is possible because drinking-water is an indispensable part of the human 
diet, and hence, exposure is difficult to avoid – abstinence or replacement 
from alternative sources for longer periods is not a feasible option in most 
settings.

Compared to other agents that may occur in water and that are covered 
in the GDWQ, the occurrence and behaviour of cyanotoxins is fundamen-
tally different and consequently requires different management approaches. 
On the one hand, the producing cyanobacteria need to be addressed as 
microorganisms that can proliferate in surface waters – but which are not in 
themselves infectious – requiring measures to reduce their occurrence that 
shift management from microbiology to ecology. On the other hand, their 
toxins are chemicals and need to be addressed as such, including the deriva-
tion of values for maximally tolerable concentrations and the development 
of technical methods to reduce their concentration through drinking-water 
treatment.

Other unique characteristics include:

• Cyanotoxins are among the most toxic naturally occurring com-
pounds: lethal doses are in the same range as some toxins from 
mushrooms (amanitin, phaloidin) or plants (aconitine, strychnine, 
atropine).

• Cyanotoxins occur worldwide in many lakes, reservoirs and rivers 
used as sources of drinking-water or for recreational activity.

• Contact with toxic cyanobacteria is difficult to avoid without imple-
menting severe restrictions: most people who enjoy swimming in nat-
ural waters most likely have been in contact with toxic cyanobacteria.

• The occurrence of toxic cyanobacterial blooms is often not perceived 
as a danger by the public in the same way as a spill of an industrial 
toxin or chemical with the same hazard potential would be, because it 
may be regarded as “natural” and hence innocuous.

• Cyanotoxins are produced naturally within surface waters and are 
not, like most chemicals for which guideline values have been set or 
proposed, directly introduced by human activity. For many of the 
anthropogenic contaminants, legislation regulating their use and 
release into the environment has successfully reduced concentrations 
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in ground or surface waters an approach that is not practicable for 
cyanobacterial toxins.

• The control of toxigenic cyanobacteria is complex and typically 
requires efforts on scales beyond the water supply and waterbody with 
its immediate environment, potentially including the management of 
entire catchments and requiring longer-term investments (e.g., in sew-
age management) as well as political decisions with wider impact (e.g., 
on fertiliser use).

Thus, cyanobacteria and their toxins pose specific challenges, and guidance 
with respect to their management warrants a dedicated WHO publication.

Cyanobacteria have been present in natural ecosystems since the Precambrian 
Era, some 2 billion years ago (Wilmotte, 1994), and the production of 
cyanotoxins is probably an equally ancient characteristic (Rantala et al., 
2004). The first scientific report on toxic cyanobacteria dates from the late 
19th century (Francis, 1878), but earlier historical records have been inter-
preted as similar poisoning events (Codd et al., 2015). Studies on cyano-
bacterial toxins in lake sediments found microcystins (Zastepa et al., 2017) 
and cylindrospermopsin (Waters, 2016) in layers deposited well before the 
20th century. In comparison with more recent sediments, in most cases, 
the assumed historic concentrations were, however, much lower than those 
found in today’s eutrophic lakes.

In large parts of the world, waterbody eutrophication started acceler-
ating in the middle of the 20th century, in the wake of urbanisation and 
industrialisation. Since that time, massive cyanobacterial blooms have 
occurred in many lakes and reservoirs in which this phenomenon was not 
known before. Therefore, it is not the biosynthesis of toxins itself that cre-
ated a new health hazard, but the more recent significant proliferation of 
toxic  cyanobacteria in waterbodies as a result of human activities. This 
health hazard most probably will gain growing importance as cyanobacte-
rial blooms are expected to increase at the scale at which eutrophication 
is expected to increasingly occur in many regions of the world (Huisman 
et al., 2018).

Whether or not global warming is likely to increase cyanobacterial pro-
liferation depends on specific conditions in a particular waterbody. In order 
to support the inclusion of climate change scenarios in risk assessment and 
management (e.g., water safety planning), this book includes information 
on how these conditions may influence cyanobacterial growth and bloom 
formation.

Cyanobacteria can produce a huge diversity of secondary metabolites, 
the biosynthetic pathways of which are known for a number of individual 
compounds or compound classes, respectively. Only a small share of the 
known metabolites shows toxic effects, but these cyanotoxins have caused 
numerous cases of poisoning of farm or wild animals, which demonstrate 
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their toxic potential (Wood, 2016; Svirčev et al., 2019) and which suggests 
that animal illnesses and deaths are sentinel events for human health risks 
(Hilborn & Beasley, 2015). A large body of evidence from experimental 
studies with laboratory animals has elucidated their mode of action: some 
cyanotoxins are highly neurotoxic and others can damage the liver, kidney 
or other organs when ingested.

Epidemiological studies have looked for chronic effects in human popu-
lations exposed to toxic cyanobacteria, and indeed, a number of studies 
since the mid-19th century associate symptoms with cyanotoxin exposure. 
The key caveat of several of these anterior studies is the lack of data on 
the dose to which the population might have been exposed and a lack of 
analytical tools for detecting other hazards at that time, such as molecu-
lar techniques for the detection of pathogenic viruses. However, although 
our current knowledge may question some of the epidemiological evidence 
frequently quoted to highlight the cyanotoxin hazard, the evidence from 
animal experiments is clear and sufficient to derive guideline values for a 
range of cyanotoxins.

In this respect, cyanotoxins are in line with most other substances for which 
World Health Organization (WHO) has set guideline values: this is not typi-
cally done because a substance has been widely shown to cause human illness 
or result in fatalities through water consumption, but rather because a sub-
stance has significant toxic properties and water is recognised as a relevant 
pathway for exposure. Given the widespread occurrence of cyanobacteria – as 
compared to the occurrence of many purely anthropogenic contaminants in 
water – cyanotoxins are likely to occur more widely and more often in con-
centrations of potential concern than many of the other chemicals considered 
in the Guidelines for Drinking Water Quality (WHO, 2017).

1.1  DOCUMENT PURPOSE AND SCOPE

The second edition of “Toxic Cyanobacteria in Water” presents the state of 
knowledge regarding the impact of cyanobacterial toxins on health through 
the use of water and provides guidance on assessing and managing the risks 
of cyanobacteria and their toxins in order to protect drinking-water sources 
and recreational waterbodies. It further provides an overview of exposure 
through other important sources, including food, use of dietary supple-
ments and through dialysis.

This edition is an update of the first edition of this publication, which was 
published 20 years ago (Chorus & Bartram, 1999). In addition to updating 
the state of knowledge specifically related to cyanobacteria and their toxins, 
this updated edition accounts for developments in and best practices for 
water supply management, namely, water safety planning, as well as the 
broader state of knowledge on climate change, eutrophication and others.
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Water safety planning (see Box 1.1) is a comprehensive  preventive risk 
assessment and risk management approach, and is a critical component of 
WHO’s Framework for Safe Drinking-Water, to most effectively ensure 
drinking-water safety. Most importantly, the Water Safety Plan (WSP) 
approach systematically addresses all steps in a water supply from catch-
ment to  consumer (Bartram et al., 2009).

While the concept of WSP development is tailored to drinking-water sup-
plies, many of its elements can be applied to the assessment and manage-
ment of other potential exposure routes. For food safety – fish and shellfish 
in the context of this volume – the related concept of HACCP (Hazard 
Analysis Critical Control Points; from which WSPs were developed) applies 
and can readily be linked to WSP elements. The WSP approach is currently 
being developed for application to other areas of water management, that 
is, as Sanitation Safety Plans and Recreational Water Safety Plans. Among 
the hazards relevant to water, cyanobacteria are often likely to expose peo-
ple through multiple pathways, and adopting a WSP approach will provide 
the most effective approach to protecting their health.

BOX 1.1: DEVELOPING A WATER SAFETY PLAN (WSP)

Drinking-water safety often relies heavily on the verification of compliance to 

water quality standards. However, by the time laboratory results show non-

compliance, the population served will already have consumed the water and 

become exposed – and in the case of pathogens, many people may thus become 

ill. Therefore, “end-of-pipe” monitoring alone is insufficient to guide manage-

ment decisions. The WSP approach shifts the emphasis of drinking-water qual-

ity management to a holistic risk-based approach that covers all processes from 

catchment to consumer which are crucial for maintaining drinking-water quality. 

A WSP is specifically developed for the individual water supply. The pro-

cess of developing it means

 1. describing the system to identify and analyse the hazards and the 

hazardous events that are likely to cause the hazard to occur, and to 

assess the health risks they may present, as well as the system’s 

performance in controlling these hazards and hazardous events; 

 2. to identify which additional barriers – the control measures – could 

be implemented to control these risks at different levels: the catch-

ment, in the waterbody and at the offtake, in drinking-water treat-

ment, in distribution networks and in households. Further, to validate 
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that control measures are appropriate for the intended purpose and 

achieve their respective contribution to mitigate the risks; 

 3. to ensure that control measures are working as intended by imple-

menting a monitoring system that effectively indicates whether the 

system’s performance is within the operational limits set for the 

respective measure. This requires the definition of critical limits for 

monitoring results, as well as setting up corrective actions to take 

immediately if values were outside these critical limits;

 4. to document these steps and revise the whole system at regular 

intervals, that is, to assess whether the risk assessment is still adequate, 

the system’s design takes account of the control of all relevant risks, 

and performance of the whole system is satisfactory; 

 5. to verify the outcome – that is, that drinking-water quality actu-

ally meets the targets set – in respect to the topic of this book, 

by targeted analysis of cyanotoxin concentrations in finished 

drinking-water.

Going through these steps effectively requires preparation, particularly 

forming a team including the technical expertise needed for the assess-

ments and the stakeholders needed for making decisions. Preparation also 

includes describing the supply system from catchment to consumer, 

identifying who will be exposed to the water (particularly with respect 

to sensitive subpopulations) and obtaining the full endorsement and support 

from senior management for developing the WSP.

The WSP concept focuses attention on risk assessment and on pro-

cess control. It is an operational system of quality management.  This 

structured, systematic approach to process control is particularly  useful for 

managing cyanotoxin risks, as it provides a platform for including expertise 

for the management of the catchment and waterbody, as well as interests 

of stakeholders involved in source water management.

World Health Organization (WHO) describes the WSP concept in 

Chapter 4 of Guidelines for Drinking Water Quality (GDWQ):

https://www.who.int/publications/i/item/9789241549950

and provides a WSP manual with practical guidance for individual 

settings:

https://apps.who.int/iris/handle/10665/75141

More WHO resource materials on water safety planning are  available at 

https://www.who.int/teams/environment-climate-change-and-health/water- 

sanitation-and-health/water-safety-and-quality/water-safety-planning

https://www.who.int/publications/i/item/9789241549950
https://apps.who.int/iris/handle/10665/75141
https://www.who.int/teams/environment-climate-change-and-health/water-sanitation-and-health/water-safety-and-quality/water-safety-planning
https://www.who.int/teams/environment-climate-change-and-health/water-sanitation-and-health/water-safety-and-quality/water-safety-planning
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1.2  TARGET AUDIENCE

“Toxic Cyanobacteria in Water” is intended for use by all those working 
on toxic cyanobacteria, with a specific focus on public health protection. 
It intends to empower professionals from different disciplines to communi-
cate and cooperate for sustainable management of toxic cyanobacteria, for 
example:

• for public health professionals, including those in the fields of water 
supply and the management of recreational water, by providing 
detailed information on cyanobacteria and their ecology as well as on 
the management of catchments, waterbodies and water supplies;

• for ecologists and catchment and waterbody managers, by providing 
information on the public health impacts of cyanobacteria and their 
toxins.

This publication may also be useful to academia for a basic understanding of 
the current state of knowledge – and its gaps – and thus of possible research 
needs. This volume is not intended to replace textbooks on limnology, tax-
onomy, bacteriology or physiology that provide much more detail on issues 
such as eutrophication control, cyanobacterial diversity, toxin biosynthesis 
or toxicity mechanisms, and for further information, readers are referred 
to other sources quoted in the respective chapters, as well as to the WHO 
guidance on “Protecting Surface Water for Health” (Rickert et al., 2016) 
and “Guidelines for Safe Recreational Water Environments” (WHO, 2003).

1.3  DOCUMENT STRUCTURE AND OVERVIEW

This volume includes five key sections:

• introduction to cyanobacteria and their toxins (Chapters 2–4);
• understanding and assessing potential exposure routes (Chapter 5);
• guidance on control measures for cyanotoxin hazards (Chapters 6–10);
• overview of methods for sampling and analysis (Chapters 11–14);
• guidance on cyanotoxin-specific aspects of public surveillance, inci-

dent management and communicating cyanotoxin risks to the public 
(Chapter 15).

Chapter 2 includes detailed descriptions of the cyanotoxin groups that 
are relevant to human health. Although the chemically diverse cyanotox-
ins share the feature of being toxic to mammals, their respective modes 
of action are quite diverse. Each of the sections on a group of cyanotoxins 
in Chapter 2 summarises the state of knowledge on chemical structure, 
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toxicity and mode of action, producing cyanobacteria and biosynthesis, 
occurrence and environmental fate. For those cyanotoxins for which WHO 
proposes Guideline Values or “Health-Based Reference Values” (i.e., for 
microcystins, cylindrospermopsin, anatoxin-A and saxitoxin), the respec-
tive section summarises the considerations for the derivation of these values, 
referring to the respective WHO background documents for more detailed 
information.

Chapter 3 introduces cyanobacteria as organisms which occur naturally 
in a large variety of habitats, from ultraoligotrophic oceans to deserts – and 
in a broad diversity of freshwaters. It further briefly describes the limited 
number of taxa known to contain metabolites of relevance to human health.

Chapter 4 describes the main environmental conditions that may lead to 
blooms of cyanobacteria, among which elevated nutrients concentrations 
are a key precondition which is important to understand when developing 
management strategies to control blooms. It includes further environmental 
conditions that determine the dominance of specific cyanobacterial taxa, 
their temporal dynamics and their spatial heterogeneity.

Chapter 5 reviews the available scientific and epidemiological evidence 
for each relevant route for human exposure to hazardous concentrations 
of cyanotoxins: drinking-water (section 5.1), recreational and occupational 
activity (section 5.2), food (section 5.3), renal dialysis (section 5.4) and 
cyanobacteria as food supplements (section 5.5). For exposure through 
 drinking-water or recreation, it proposes Alert Level Frameworks to guide 
timely management responses to elevated concentrations of either cyano-
bacteria or their toxins. These frameworks help focus operational monitor-
ing for two purposes – to minimise the risk of unnoticed exposure, but also 
to avoid inefficient monitoring efforts where risks are likely to be low.

A prerequisite to choosing the locally most effective approach is to under-
stand and characterise the individual water-use system. Cyanotoxin occur-
rence and exposure can be reduced and managed by measures that act at 
different levels. Chapter 6 therefore describes the steps to take for assessing 
the given conditions and developing the locally most effective management 
approach, aligned with the water safety planning framework. Cyanotoxins 
are most effectively and sustainably controlled by avoiding conditions 
which lead to cyanobacterial proliferation. Figure 1.1 illustrates the condi-
tions that lead to elevated concentrations of cyanotoxins, and the subse-
quent chapters describe control measures that can be taken to minimise the 
cyanotoxin hazard at different levels: nutrient loads from the catchment 
(Chapter 7), nutrient concentrations and other conditions in the waterbody 
(Chapter 8), the selection of sites for drinking-water offtake or of recre-
ational areas (Chapter 9) and the treatment of raw water to produce drink-
ing-water (Chapter 10).

The guidance given in Chapters 6–10 intends to support developing a 
locally specific approach to controlling cyanotoxin occurrence. This  is 
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Figure 1.1 O verview of the structure of “Toxic Cyanobacteria in Water” 2nd edition.
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supported by monitoring cyanobacteria and cyanotoxin occurrence. 
Chapter 11 outlines the planning of monitoring programmes. This includes 
a section on remote sensing, a technology that is becoming increasingly 
accessible, and, although it will likely not replace field work, offers oppor-
tunities to optimise targeted monitoring. Chapter 12 gives guidance for 
on-site field work. Laboratory analytical methods for cyanobacteria and 
associated water chemistry are presented in Chapter 13, from microscopic 
determination of cyanobacterial biomass to nutrient analyses and recently 
developed molecular methods. The analysis of cyanotoxins themselves is 
discussed in Chapter 14, from chemical and biochemical methods to a criti-
cal assessment of bioassays that have been applied in cyanotoxin research 
and their role in future cyanotoxin research. These chapters are not intended 
to replace specialised textbooks and standards by giving details on how to 
perform specific analytical methods; rather, in order to support the devel-
opment of efficient monitoring programmes, they provide an overview of 
widely used methods and techniques, together with their respective labora-
tory requirements, specific advantages and shortcomings.

Chapter 15 discusses public health surveillance, incident planning and 
response, as well as public communication and participation to develop 
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awareness and support appropriate personal decisions on water use. As 
the public becomes increasingly aware of the cyanotoxin risk through the 
media and their own experience, a well-planned communication strategy 
can prevent undue unsettledness of the public and help sustain public confi-
dence in health institutions, water authorities and drinking-water supplies.

Due to space limitations, only a relatively small share of the many valuable 
studies on various aspects of cyanobacteria and their toxins can be cited in 
this volume. We hope our colleagues accept our apologies for the selection 
we had to make.

Despite several decades of intensive study of cyanotoxins, questions 
remain open: the current understanding of health risks is still sketchy – as is 
in part reflected by uncertainty factors in the derivation of guideline values 
for some cyanotoxins and a lack of such values for many of their structural 
variants. Also, our understanding of the ecological and evolutionary value 
of toxic and bioactive cyanobacterial metabolites is still very limited – there 
is still no satisfactory answer to the obvious question: why do cyanobacteria 
produce toxins? Hence, toxic cyanobacteria in water will remain an impor-
tant subject for future research.
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INTRODUCTION AND GENERAL CONSIDERATIONS

The following sections provide an overview of the individual types of 
cyanobacterial toxins, focusing on toxins that have been confirmed 
to, or suggested to have implications for human health, namely, 
 microcystins, cylindrospermopsins, anatoxins, saxitoxins, anatoxin-a(S) 
and  dermatotoxins, the latter primarily produced by marine  cyanobacteria. 
Two further cyanobacterial metabolites, lipopolysaccharides (LPS) and 
β- methylamino-alanine (BMAA), are discussed in respective sections with 
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the conclusion that the available evidence does not show their proposed 
toxic effects to occur in dose ranges relevant to the concentrations found 
in cyanobacterial blooms. A further section includes information on taste 
and odour compounds produced by cyanobacteria because, while actually 
not toxic, they sometimes indicate the presence of cyanobacteria. Finally, 
recognising that there are many cyanobacterial metabolites and further 
toxic effects of cyanobacterial cells that have been observed which cannot 
be attributed to any of the known cyanotoxins, a section covers “additional 
toxicity” and bioactive cyanobacterial metabolites.

The sections on the major toxin types review the chemistry, toxicology 
and mode of action, producing cyanobacteria and biosynthesis, occurrence 
and environmental fate. Given the document’s scope, the individual sec-
tions discuss ecotoxicological data only briefly. This, however, does not 
imply that cyanotoxins do not play an important role in aquatic ecosystems. 
Further, possible benefits of toxin biosynthesis for the producing cyanobac-
teria are currently discussed but not yet understood, and this remains an 
important field of research but is discussed in this volume only briefly.

For microcystins, cylindrospermopsins and saxitoxins guideline values 
(GVs) have been derived based on the toxicological data available and con-
sidering there is credible evidence of their occurrence in water to which 
people may be exposed. For anatoxin-a, although GVs cannot be derived 
due to inadequate data, a “bounding value”, or health-based reference 
value, has been derived. For anatoxin-a(S) and the dermatotoxins, the tox-
icological data for deriving such values are not sufficient, and hence, no 
such values are proposed.

BOX 2.1: HOW ARE GUIDELINE VALUES DERIVED?

For most chemicals that may occur in water, including for the known cya-

notoxins, it is assumed that no adverse effect will occur below a threshold 

dose. For these chemicals, a tolerable daily intake (TDI) can be derived. TDIs 

represent an estimate of an amount of a substance, expressed on a body 

weight basis, that can be ingested daily over a lifetime without appreciable 

health risk. TDIs are usually based on animal studies because, for most chem-

icals, the available epidemiological data are not sufficiently robust, mainly 

because the dose to which people were exposed is poorly quantified and 

because it is scarcely possible to exclude all confounding factors (including 

simultaneous exposure to other substances) that may have influenced differ-

ences between those exposed and the control group. TDIs based on  animal 

studies are based on long-term exposure, preferably spanning a whole life 

cycle or at least a major part of it, exposing groups of animals (frequently 

mice or rats) to a series of defined doses applied orally via drinking-water or 
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gavage. The highest dose for which no adverse effects in the exposed animals 

were detected is the no observed adverse effect level (NOAEL), generally 

expressed in dose per body weight and per day (e.g., 40 μg/kg bw per day).  

Sometimes no NOAEL is available, while the lowest observed adverse effect 

level (LOAEL) can be considered in establishing the TDI. The LOAEL is 

defined as the lowest dose in a series of doses causing adverse effects. An 

alternative approach for the derivation of a TDI is the determination of 

a benchmark dose (BMD), in particular, the lower confidence limit of the 

benchmark dose (BMDL; WHO, 2009a). A BMDL can be higher or lower 

than NOAEL for individual studies (Davis et al., 2011).

A NOAEL (or LOAEL or BMDL) obtained from animal studies cannot 

be directly applied to determine “safe” levels in humans for several rea-

sons such as differences in susceptibility between species (i.e., humans vs. 

mice or rats), variability between individuals, limited exposure times in the 

 experiments or specific uncertainties in the toxicological data. For example, 

for the cyanotoxins for which WHO has established GVs, exposure times 

did not span a whole life cycle because the amount of pure toxin needed 

for such a long study – a few hundred grams – was simply not available or 

would be extremely costly to purchase. To account for these uncertainties, 

a NOAEL is divided by uncertainty factors (UFs). The total UF generally 

comprises two 10-fold factors, one for interspecies differences and one 

for interindividual variability in humans. Further uncertainty factors may 

be incorporated to allow for database deficiencies (e.g., less than lifetime 

exposure of the animals in the assay, use of a LOAEL rather than a NOAEL, 

or for incomplete assessment of particular endpoints such as lack of data 

on reproduction) and for the severity or irreversibility of effects (e.g., for 

uncertainty regarding carcinogenicity or tumour promotion). Where ade-

quate data is available, chemical specific adjustment factors (CSAFs) can be 

used for interspecies and intraspecies extrapolations, rather than the use 

of the default UFs.

The TDI is calculated using the following formula:

 TDI  
NOAEL or LOAEL or BMDL

UF UF UF or CSAFs1 2 N 
=

× ×
 

The unit of TDI generally is the amount of toxin per bodyweight (bw) per day, 

for example, 0.1 μg/kg bw per day.

To translate the TDI to a GV, the following formula is generally used:

TDI  × ×bw  P
 GV  =

C
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For drinking-water GVs, WHO uses a daily water consumption (C) of 2 L 

and a bodyweight of an adult person of 60 kg as default values, while emphasis-

ing that this may be adapted to regional or local circumstances. The fraction 

of exposure assumed to occur through drinking-water (P; sometimes termed 

allocation factor) is applied to account for the share of the TDI allocated to a 

specific exposure route. The default P for drinking-water is 0.2 (20%). Where 

there is clear evidence that drinking-water is the main source of exposure, 

like in the case of cyanotoxins, P has been adjusted to 0.8, which still allows 

for some exposure from other sources, including food. Again, this can and 

should be adapted if local circumstances propose a different factor to be 

more appropriate. The unit of a GV is a concentration, for example, 0.8 μg/L.

GVs for drinking-water (using a TDI) are generally derived to be safe for 

lifetime exposure. This means that briefly exceeding a lifetime GV doesn’t 

pose an immediate risk or imply that the water is unsafe. This should be com-

municated accordingly and is particularly relevant where elevated cyanotoxin 

concentrations occur only during brief seasonal blooms. To clarify this, WHO 

has derived GVs for short-term exposure for microcystins and cylindrosper-

mopsins. To differentiate these two GVs for cyanotoxins, these have been 

designated GVchronic and GVshort-term. In consequence, a  concentration in 

drinking-water that exceeds the GVchronic up to a concentration of GVshort-term 

does not require the immediate provision of alternative drinking-water – but 

it does require immediate action to prevent cyanotoxins from further enter-

ing the drinking-water supply system and/or to ensure their efficient removal 

through improving the drinking-water production process. The GVshort-term 

provides an indication on how much the GVchronic can be exceeded for short 

periods of about 2 weeks until measures have been implemented to reduce 

the cyanotoxin concentration. Derivation of GVshort-term follows a similar 

approach to development of the traditional GVs. The short-term applicability 

of these values, however, may result in a different study selected for the iden-

tification of the NOAEL or LOAEL (particularly if the GVchronic was based on 

long-term exposure) and the uncertainty factors (UFs) applied, particularly 

the UF for related database deficiencies. 

For recreational exposure, the corresponding GV proposed 

(GVrecreation) takes into account the higher total exposure of children due 

to their increased likelihood of longer playtime in recreational water envi-

ronments and accidental ingestion. The default bodyweight of a child and 

the volume of water unintentionally swallowed are 15 kg and 250 mL, respec-

tively (WHO, 2003), and these are used to calculate the GVrecreation. The same 

NOAEL or LOAEL and UFs applied for the GVshort-term are used to calculate 

the GVrecreation.
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All GVs proposed by WHO may be subject to change when new toxicologi-

cal data become available. By default, GVs with high uncertainty (UF ≥ 1000) 

are designated as provisional by WHO. GVs with high uncertainty are more 

likely to be modified as new information becomes available. Also, a high 

uncertainty factor indicates that new toxicological data are likely to lead to a 

higher rather than a lower GV, and thus, the provisional GV is likely a conser-

vative one; that is, it presumably errs on the safe side. 

Several national and regional GVs or standards deviate from the values 

proposed by WHO, due to different assumptions on body weight, estimated 

water intakes or allocation factors in consequence of specific exposure pat-

terns in certain areas or for specific population groups (and sometimes also 

due to divergent interpretations of toxicological data). WHO gives guidance 

on adapting WHO GVs to country contexts in the document, “Developing 

Drinking-water Quality Regulations and Standards” (WHO, 2018). For more 

information on GV derivation, see the GDWQ (WHO, 2017) and the Policies 

and Procedures for Updating the WHO GDWQ (WHO, 2009b).

These values describe concentrations in drinking-water and water used 
for recreation that are not a significant risk to human health. For some of 
these toxin groups, it was possible to derive values for lifetime exposure 
and for others only for short-term or acute exposure (see Table 5.1 for a 
summary of the values established). The corresponding sections in Chapter 
2 present the derivation of these values and a short summary of the consid-
erations leading to them; for an extensive discussion, readers are referred to 
the cyanotoxin background documents on the WHO Water, Sanitation and 
Health website (WHO, 2020). For a summary on how guideline values are 
derived, see Box 2.1, and for further information, see also the “Guidelines 
for Drinking Water Quality” (WHO, 2017).
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2.1  HEPATOTOXIC CYCLIC PEPTIDES – 

MICROCYSTINS AND NODULARINS

Jutta Fastner and Andrew Humpage

The cyclic peptides microcystins and nodularins are frequently found in 
fresh and brackish waters, and the acute and chronic toxicity of some of 
them is pronounced. WHO has established provisional guideline values for 
microcystin-LR in drinking-water and water for recreational use (see below) 
but recommends that these values may be used for the sum of all microcys-
tins in a sample (see WHO, 2020). Microcystin-LR occurs widely and is 
presumably one of the most toxic variants of this toxin family, though for 
most of the other congeners no, or only incomplete, toxicological data exist 
(WHO, 2003a; Buratti et al., 2017).

2.1.1  Chemical structures

The cyclic heptapeptide microcystins were first characterised in the early 
1980s and named after the cyanobacterium Microcystis aeruginosa from 
which they were initially isolated (Botes et al., 1984; Botes et al., 1985; 
Carmichael et al., 1988). Microcystins share a common structure of 
 cyclo-(D-Ala1-X2-D-MeAsp3-Z4-Adda5-D-Glu6-Mdha7) in which X and 
Z are variable L-amino acids, D-MeAsp is D-erythro-β-methylaspartic 
acid, and Mdha is N-methyldehydroalanine (Figure 2.1). The amino acid 
Adda, abbreviated for (2S,3S,4E,6E,8S,9S)-3-amino-9-methoxy-2,6,8-
trimethyl-10-phenyldeca-4,6-dienoic acid, is the most characteristic 
 moiety of  microcystins and nodularins (including the structurally related 
 motuporins from sponges) as it appears to occur exclusively in these cya-
nobacterial peptides. Further characteristics are the presence of D-amino 
acids, which are usually not found in ribosomally synthesised peptides 
and thus gave an early indication of a nonribosomal synthesis of these 
peptides (see below).

To date more than 250 different variants of microcystins are fully char-
acterised, with molecular weights in the range of 800–1100 Da. While a 
comprehensive list of variants is given in Spoof and Catherine (2017) and a 
detailed review on structural variants can be found in Bouaïcha et al. (2019), 
this volume lists only the apparently most abundant congeners in Table 
2.1. Structural modifications exist in all seven amino acids, but the most 
frequent variations are substitution of L-amino acids at positions 2 and 4, 
substitution of Mdha by Dhb (dehydrobutyrine) or serine in position 7, and a 
lack of methylation of amino acids at positions 3 and/or 7 (Figure 2.1). The 



22 Toxic Cyanobacteria in Water

principle nomenclature of microcystins is based on the variable amino acids 
in  positions 2 and 4; for example, using the standard one-letter codes for 
amino acids, microcystin-LR possesses leucine (L) in position 2 and arginine 
(R) in position 4, respectively (Carmichael et al., 1988). All other modifica-
tions vin the molecule are suffixed to the respective variant; for example, 
[Asp3] MC-LR lacks the methyl group in position 3.
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Figure 2.1 G eneric structure of microcystins (a, MCs) and nodularins (b, NODs). In MCs, 
amino acids in positions 2 and 4 given as X and Z for variable amino acids 
that are generally given by the one-letter code for proteinogenic L-amino 
acids. For example, L=L-leucine. R=L-arginine. A=L-alanine. General struc-
ture of MCs is cyclo-(DAla1-X2-D-MeAsp3-Z4-Adda5-D-Glu6-Mdha7). R1 and 
R2 is either H (desmethyl-variants) or CH3. The general structure of NOD 
is cyclo-(D-MeAsp1-Arg2-Adda3-D-Glu4-Mdhb5). Nodularin: R1. R2=CH3; 
D-Asp1Nodularin: R1=H. R2=CH3; demethyl-Adda3 Nodularin: R1=CH3. 
R2=H. In motuporin, the L-arginine in position 2 of nodularin is exchanged 
by an L-valine. For more variants and details on amino acid building blocks, 
see text. Note that the numbering does not correspond to the biosynthesis 
pathway that starts with Adda in both MC and NOD, but has been assigned 
arbitrarily in the first descriptions of the molecule.
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Nodularins, named after the cyanobacterium Nodularia spumigena, are 
cyclic pentapeptides structurally very similar to microcystins (Rinehart 
et al., 1988). The chemical structure of nodularin is cyclo-(D-MeAsp1-
L-arginine2-Adda3-D-glutamate4-Mdhb5), in which the amino acids in 
positions 1–4 are identical to microcystins and Mdhb is 2-(methylamino)-
2-dehydrobutyric acid (Figure 2.1). Structural variability of nodularins is 
low compared to microcystins: in addition to the unmodified nodularin 
with the arginine residue, only a few more variants with (de)methylation 

Table 2.1  Selection of microcystin structural variants reported in relatively high 
abundance

Monoisotopic Molecular 
molecular weight LD50

Microcystin variant mass (Da) (g/mol) i.p. (oral) Reference

MC-LA 909.485 910.08 50 Botes et al. (1984)
Stoner et al. (1989) 

[Asp3,Dha7] MC-LR 966.517 967.14 + Harada et al. (1991a)
Namikoshi et al. (1992c)

[Asp3] MC-LR 980.533 981.16 160–300 Krishnamurthy et al. 
(1989)

Harada et al. (1990) 

[Dha7] MC-LR 980.533 981.16 250 Namikoshi et al. (1992a)
Harada et al. (1991b)

MC-LF 985.516 986.18 + Azevedo et al. (1994)
Diehnelt et al. (2006)

MC-LR 994.549 995.19 50 Botes et al. (1985) 
(5000) Krishnamurthy et al. 

(1986)
Krishnamurthy et al. 
(1989)

Fawell et al. (1994)

MC-LY 1001.511 1002.18 90 del Campo & 
Ouahid (2010)

Stoner et al. (1989)

[Asp3,Dha7] MC-RR 1009.535 1010.16 + Krishnamurthy et al. 
(1989)

Sivonen et al. (1992a)

[Asp3] MC-RR 1023.550 1024.19 250 Meriluoto et al. (1989) 
Namikoshi et al. (1992d)

[Dha7] MC-RR 1023.550 1024.19 180 Kiviranta et al. (1992)

[Asp3,(E)-Dhb7] MC-RR 1023.550 1024.19 250 Sano & Kaya (1995)
Sano & Kaya (1998) 

MC-LW 1024.527 1025.21 n.r. Bateman et al. (1995)

[Asp3,Dha7] MC-HtyR 1030.512 1031.18 + Namikoshi et al. (1992b)

[Asp3] MC-YR 1030.512 1031.18 + Namikoshi et al. (1992d)

[Dha7] MC-YR 1030.512 1031.18 + Sivonen et al. (1992b)

(Continued )
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Table 2.1 (Continued )  Selection of microcystin structural variants reported in relatively 
high abundance

Microcystin variant

Monoisotopic 
molecular 
mass (Da)

Molecular 
weight 
(g/mol)

LD50

i.p. (oral) Reference

MC-RR 1037.566 1038.22 600 Namikoshi et al. (1992a)
Kusumi et al. (1987)

[Asp3] MC-HtyR 1044.528 1045.21 160–300 Harada et al. (1991a)

[Dha7] MC-HtyR 1044.528 1045.21 + Namikoshi et al. (1992b)

[Asp3,(E)-Dhb7] MC-HtyR 1044.528 1045.21 70 Sano & Kaya (1998)

MC-YR 1044.528 1045.21 70 Botes et al. (1985) 
Namikoshi et al. (1992a)

MC-WR 1067.544 1068.24 150–200 Namikoshi et al. (1992a)

Molecular weight (MW) is given as monoisotopic mass; LD50 in μg/kg body weight intraperitoneal (i.p.) 
injection in mouse bioassays or by oral dosing (values in parentheses) where data are available.

+: positive toxicity in mouse bioassay; n.r.: not reported.

at the Adda, MeAsp, Mdhb and D-Glu moieties, as well as the non-toxic 
6Z-Adda3 stereoisomer equivalent to microcystins, have been identified 
(Namikoshi et al., 1994; Mazur-Marzec et al., 2006b). Ten nodularins in 
total have been reported (Spoof & Catherine, 2017).

All microcystins and nodularins are water soluble despite the  relatively 
wide range of hydrophobicity observed especially for microcystins. 
They are extremely stable and remain potent even after boiling (Harada, 
1996).

2.1.2  Toxicity: mode of action

The toxic effects of microcystin, summarised in the following, are described 
in detail in the WHO Background Document on Microcystins (WHO, 2020; 
see there for further information and references). In summary, microcystins 
need a membrane transporter to enter cells – that is, the organic acid trans-
porter polypeptides (OATP) which are expressed particularly in the liver 
but also in the intestinal tract and in some other tissues. Experiments have 
shown that when OATP is inhibited or lacking, liver damage is reduced. The 
essential role of OATP explains why most of the MCs ingested are taken up 
by the liver. While detoxification occurs in the liver, clearance of MCs seems 
to take a long time, up to weeks. Once in cells, MCs cause protein phospha-
tase (PP1, PP2A and PP5) inhibition, resulting in destabilisation of the cyto-
skeleton followed by cellular apoptosis and necrosis. High acute doses thus 
cause haemorrhage in the liver due to the damage of sinusoidal capillaries. 
At low doses (below 20 μg/kg bw) and with repeated long-term exposure, 
phosphatase inhibition induces cellular proliferation, hepatic hypertrophy 
and tumour promoting activity.
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There is a growing body of evidence indicating harmful microcystin-related 
neurological and reproductive effects, but the data are not yet robust enough 
to use as a basis for guideline development.

While some cyanobacterial extracts show genotoxicity, pure microcys-
tins do not, and cellular DNA damage observed after in vitro treatments 
with pure MC may be due to the induction of apoptosis and cytotoxicity 
rather than direct effects on the DNA. On this basis, IARC has classified 
microcystins as Group 2B, possibly carcinogenic to humans (IARC, 2010), 
based on their tumour promoting activity mediated via protein phosphatase 
inhibition (a threshold effect) rather than genotoxicity.

2.1.3  Derivation of provisional guideline values

The following section is taken directly from the WHO chemicals back-
ground document on microcystins which discusses the considerations for 
the derivation of provisional guideline values for exposure to microcystins 
in more detail (WHO, 2020). Insufficient data are available to derive a GV 
for MC variants except MC-LR. The two key oral toxicity studies of the 
effects of MC-LR on liver toxicity on which human health-based guideline 
values can be calculated are the following:

• Fawell et al. (1999): Mice of both sexes given MC-LR by gavage at 
40  μg/kg bw per day for 13 weeks did not show treatment-related 
effects in the parameters measured. Only slight hepatic damage was 
observed at the lowest observed effect level (LOAEL) of 200 μg/kg bw 
per day in a limited number of treated animals, whereas at the high-
est dose tested (1 mg/kg bw per day), all the animals showed hepatic 
lesions, consistent with the known action of MC-LR.

• Heinze (1999): Exposure of male rats (females were not included) to 
MC-LR in drinking-water for 28 days at doses as low as 50 μg/kg bw 
per day (identified as the LOAEL) resulted in increased liver weight, 
liver lesions (with haemorrhages) and increased ALP (alkaline phos-
phatase) and LDH (lactate dehydrogenase), but no changes were mea-
sured in the mean levels of AST (aspartate aminotransferase) and ALT 
(alanine aminotransferase) which are early markers for hepatotoxic-
ity. Some of the histological effects, including Kupffer cell activation 
and PAS staining, showed no dose response since all 10 animals at the 
low and high doses displayed a similar degree of damage.

Although the duration of the Heinze (1999) study was shorter and more 
applicable to the exposure duration envisaged for application of the short-
term guideline value, the advantage of the Fawell et al. (1999) study is 
that an additional uncertainty factor is not needed for extrapolation from 
a LOAEL to a NOAEL, which would increase the total uncertainty and 
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reduce the confidence in the derivation of the short-term guideline value. 
For this reason, the NOAEL derived by Fawell et al. (1999) was selected as 
the basis for the short-term and recreational guideline values as well as the 
lifetime guideline value.

The GVs for MC-LR are considered provisional due to inadequacies in 
the database as reflected in section 6.2 of the background document (WHO, 
2020) and the database uncertainty factor (UF) of 1000 for the lifetime GV.

Calculation of provisional tolerable 
daily intake for microcystin-LR

NOAEL 40 μ μg g
TDIchronic = =      / d = 0.04  / d

UF 1000 kg kg  

where

TDIMC,chronic = tolerable daily intake for chronic exposure
NOAEL = no-observed-adverse-effect level (40 μg/kg bw per day, based 

on Fawell et al., 1999)
UF = uncertainty factor (1000 = 10 for interspecies variation × 10 for 

intraspecies variation × 10 for database deficiencies, including use of 
a subchronic study)

For comparison, if the LOAEL from Heinze (1999) is used as the point of 
departure and incorporating uncertainty factors of 10 for inter- and intra-
species variability and 10 for database uncertainties including the use of a 
LOAEL (as per WHO policy), then the TDI would be 0.05 μg/kg per day.

Calculation of provisional lifetime  
drinking-water guideline value for microcystin-LR

NOAEL*bw*P 40*60*0.8
GVchronic = =    μ μg / L = 0.96  g / L  ≈ 1 μg / L

UF*C 1000*2

where

GVchronic = guideline value for chronic (lifetime) exposure
NOAEL = no-observed-adverse-effect level (40 μg/kg bw per day, based 

on Fawell et al., 1999)
bw = body weight (default = 60 kg for an adult)
P = fraction of exposure allocated to drinking-water (80%, as other 

sources of exposure such as air, food and soil are considered minor for 
lifetime exposure)



2 The cyanotoxins 27

UF = uncertainty factor (1000 = 10 for interspecies variation × 10 for 
intraspecies variation × 10 for database deficiencies, including use of 
a subchronic study)

C = daily drinking-water consumption (default = 2 L for an adult).

Calculation of provisional short-term  
drinking-water guideline value for microcystin-LR

NOAEL*bw*P 40*60*1.0
GVshort−term = =    μ μg / L = 12 g / L

 UF*C 100*2

where

GVshort-term = guideline value for short-term exposure
NOAEL = no-observed-adverse-effect level (40 μg/kg bw per day, based 

on Fawell et al., 1999)
bw = body weight (default = 60 kg for an adult)
P = fraction of exposure allocated to drinking-water (default for short-

term exposure = 100%, as drinking-water is expected to be the most 
significant source of exposure)

UF = uncertainty factor (100 = 10 for interspecies variation × 10 for 
intraspecies variation)

C = daily drinking-water consumption (default = 2 L for an adult).

Calculation of provisional recreational water 
guideline value for microcystin-LR

NOAEL*bw 40*15
GVrecreation = =    μ μg / L = 24 g / L

 UF*C 100*0.25

where

GVrecreation = guideline value for recreational exposure
NOAEL = no-observed-adverse-effect level (40 μg/kg bw per day, based 

on Fawell et al., 1999)
bw = body weight (default = 15 kg for a child)
UF = uncertainty factor (100 = 10 for interspecies variation × 10 for 

intraspecies variation)
C = daily incidental water consumption (default = 250 mL for a child).

The provisional recreational guideline value, aimed to protect from systemic 
effects, is based on exposure of a child because the lower body weight and 
higher likely water intake (as a function of body weight) were considered 
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worst case, and on a conservative scenario of a 15 kg child swallowing 
250 mL of water (WHO, 2003b).

Considerations in applying the 
provisional guideline values

The provisional guideline values are based on toxicological data for MC-LR. 
However, MCs usually occur as mixtures. In the absence of oral toxicity 
data for other congeners, it is recommended that these values be applied to 
total MCs as gravimetric or molar equivalents based on the assumption that 
all MCs have similar toxicity to MC-LR. The kinetic differences among 
variants mean that further investigation of the oral toxicity of MC variants 
other than MC-LR is warranted reduce this relevant source of uncertainty.

In some regions, other sources of exposure besides drinking-water can 
be significant (see section  2.4). This includes food from locations where 
blooms have a long duration and there is high consumption of locally 
affected food items (e.g. fish eaten with viscera, or shellfish). In such situ-
ations, it may be appropriate to consider reducing the allocation factor for 
the lifetime and short-term drinking-water GVs based on relative exposure 
data for the population. 

The short-term drinking-water GV is intended to provide guidance on 
how much the lifetime GV can be exceeded for short periods of about 
2 weeks until enhanced water treatment or other measures can be imple-
mented. It is not intended to allow for repeated seasonal exceedances of 
the lifetime GV.

The short-term drinking-water guideline value is based on exposure of 
adults. Since infants and children can ingest a significantly larger volume of 
water per body weight (e.g., up to 5 times more drinking-water/kg bw for 
bottle-fed infants compared to adults), it is recommended that alternative 
water sources such as bottled water are provided for bottle-fed infants and 
small children when MC concentrations are greater than 3 μg/L for short 
periods, as a precautionary measure.

2.1.4  Production

2.1.4.1  Producing cyanobacteria

Qualitative and quantitative information on microcystin production in 
particular cyanobacterial species has been gathered through analyses of quasi-
monospecific bloom material and, more importantly, large numbers of indi-
vidual strains isolated from freshwater samples. More recent studies employ 
sensitive molecular and chemical tools such as PCR, mass spectrometry or 
ELISA to determine toxins or genes related to their production directly in 
colonies or filaments picked from water samples. This helps to avoid bias due 
to eventually selective isolation procedures and allows more detailed studies 
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on the ecology of toxin-producing cyanobacteria. Furthermore, molecular 
tools are applied to clarify the taxonomic status of toxin-producing cyano-
bacteria and to complement the identification of toxin producers by verifying 
the presence of genes encoding toxin biosynthesis (see section 13.6).

Microcystin-producing strains can be found in all higher-level taxa of 
cyanobacteria, that is, in species belonging to the orders Chroococcales, 
Oscillatoriales, Nostocales, and Stigonematales; data for the order Pleuro-
capsales, however, are scarce. Within the orders, the distribution of micro-
cystin occurrence at the level of genera or species is patchy and does not 
show consistency. Firstly, not all genera of an order produce microcystins; 
for example in the order Nostocales, microcystins are produced by mem-
bers of the genera Dolichospermum (Anabaena) and Nostoc, but have never 
been confirmed for the closely related genus Aphanizomenon. Secondly, 
any particular genus or species may contain both producing (toxigenic) and 
nonproducing strains. At the time of the publication of this book, microcys-
tin-producing (and nonproducing) strains are known primarily from fresh-
water species of Microcystis, Planktothrix, Dolichospermum, and Nostoc 
(Sivonen & Jones, 1999; Oksanen et al., 2004; Mowe et al., 2015; Harke 
et al., 2016; Bernard et al., 2017; Buratti et al., 2017; Table 2.2). Very rarely, 
microcystins have been reported in single strains from other genera, includ-
ing Anabaenopsis, Arthrospira, Fischerella, Pseudanabaena, Phormidium, 
Synechococcus and Radiocystis (Ballot et al., 2005; Carmichael & Li, 2006; 
Lombardo et al., 2006; Izaguirre et al., 2007; Nguyen et al., 2007; Mohamed 
& Al Shehri, 2009; Cirés et al., 2014; Table 2.2).

Most of these cyanobacteria are of planktonic nature and some of them, 
like Microcystis, are known for their ability to form surface blooms under 
favourable conditions (see Chapter 4). Microcystins have also been detected 
in halophilic Synechococcus and Dolichospermum (Anabaena) from the 
Baltic Sea (Carmichael & Li, 2006; Halinen et al., 2007).

Microcystin-producing strains of the genera listed above are distrib-
uted globally and can be found in tropical, temperate and polar habitats 
(Hitzfeld et al., 2000; Mowe et al., 2015; Harke et al., 2016) as well as in 
extreme habitats such as hot springs and hypersaline lakes (Carmichael & 
Li, 2006; Kotut et al., 2006). Microcystins have also been detected in a 
symbiotic strain of Nostoc in a lichen (Oksanen et al., 2004) and in a soil 
isolate of Haphalosiphon hibernicus (Prinsep et al., 1992).

Nodularins have so far been found largely in strains of the genus Nodularia, 
primarily in Nodularia spumigena. Toxigenic strains of Nodularia spumi-
gena have been reported from the Baltic Sea, brackish water estuaries and 
coastal freshwater lakes of Australia, South Africa, New Zealand and Turkey 
(Bolch et al., 1999; Akçaalan et al., 2009). As with microcystins, both nod-
ularin-producing and nonproducing strains exist in this species (Lehtimäki 
et al., 1994; Bolch et al., 1999). In addition, single findings of nodularin 
in Nodularia sphaerocarpa from a hot spring, in a symbiotic Nostoc, and 
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Table 2.2  Cyanobacterial taxa potentially producing microcystins and nodularins

Toxin Taxon Habitat

Microcystin Microcystis sp. Planktonic

Dolichospermum (Anabaena) sp. Planktonic

Planktothrix agardhii Planktonic

Planktothrix rubescens Planktonic

Radiocystis sp. Planktonic

Arthrospira sp. Planktonic

Anabaenopsis sp. Planktonic

Calothrix sp. Planktonic

Oscillatoria sp. Planktonic

Fischerella sp. Planktonic, benthic

Annamia toxica Planktonic

Synechococcus sp. Planktonic

Pseudanabaena sp. Planktonic

Phormidium sp. Planktonic

Anabaena sp. Benthic

Nostoc sp. Planktonic, benthic, 
symbiotic (lichen)

Aphanocapsa sp. Planktonic

Plectonema sp. Benthic

Leptolyngbya sp. Symbiotic (coral), periphytic

Merismopedia sp. Periphytic

Haphalosiphon hibernicus Terrestrial

Nodularin Nodularia spumigena Planktonic

Nodularia sp. Benthic

Nostoc sp. Symbiotic (lichen)

Iningainema pulvinus Benthic

Only cyanobacteria are listed for which toxin production was verified in cultured strains by NMR, mass 
spectrometry or by combinations of HPLC-PDA, ELISA, toxicity testing and/or molecular 
detection of mcy genes. References earlier than 1999 are summarised in Sivonen & Jones (1999). 
In bold are taxa that are known to frequently produce microcystins and that can form blooms.

in the benthic Iningainema pulvinus (Nostocales) from Australia have 
been reported (Beattie et al., 2000; Gehringer et al., 2012; McGregor & 
Sendall, 2017). Occasionally, nodularin has been detected in pelagic and 
benthic freshwater ecosystems in which none of the known nodularin pro-
ducers could be identified, indicating that further species may be identified 
as nodularin producers in future (Graham et al., 2010; Wood et al., 2012; 
Beversdorf et al., 2017).



2 The cyanotoxins 31

2.1.4.2  Microcystin/nodularin profiles

Although many toxigenic strains simultaneously produce several microcys-
tin variants (Puddick et al., 2014), usually only one to three of them are 
dominant in any particular strain. It appears that some microcystin vari-
ants are more abundant within a certain genus than within others, though 
this may be biased in some cases by the limited availability of standards as 
well as the analytical methods used.

Globally, Microcystis strains and field samples dominated by Microcystis 
spp. are reported to contain chiefly microcystin-LR, -RR and -YR in varying 
proportions (Sivonen & Jones, 1999; Vasconcelos, 2001; Gkelis et al., 2005; 
Kemp & John, 2006; Faassen & Lürling, 2013; Mowe et al., 2015; Beversdorf 
et al., 2017). Demethylated variants of, for example, [Dha7]MC-LR and -RR 
are also observed in Microcystis strains, but are less frequently dominant 
compared to their methylated forms (Vasconcelos, 2001; Gkelis et al., 2005). 
More hydrophobic microcystins (e.g., MC-LA, MC-LW, MC-LF) can also 
be found regularly in Microcystis strains and field samples; however, high 
proportions are reported only infrequently (Cuvin-Aralar et al., 2002; Wood 
et al., 2006; Graham et al., 2010; Faassen & Lürling, 2013; Beversdorf 
et al., 2017). This picture of a high diversity combined with an abundance of 
genotypes with a certain microcystin profile has been confirmed in situ for 
some natural Microcystis populations from central Europe. Typing of single 
Microcystis colonies from nine European countries by mass spectrometry 
revealed a high abundance of genotypes producing microcystin-LR, -RR 
and -YR, while clones with demethylated variants or other microcystins 
were less abundant (Via-Ordorika et al., 2004). However, exceptions from 
this overall pattern occur; for example, in Microcystis strains and colonies 
from Finland, demethylated MC-LR and -RR have been seen frequently as 
dominant variants (Luukkainen et al., 1994; Via-Ordorika et al., 2004), 
and in one Australian bloom of Microcystis, 23 microcystins were detected, 
none of which was microcystin-LR (Jones et al., 1995).

Planktothrix and some strains of Dolichospermum seem to  produce only 
demethylated microcystins (Puddick et al., 2014). In European Planktothrix 
agardhii and P. rubescens isolates, cultured strains and field samples primar-
ily produce demethylated variants of microcystin-RR like [D-Asp3] MC-RR 
and [D-Asp3, Dhb7] MC-RR that have been found as major microcystins 
(Sivonen et al., 1995; Fastner et al., 1999; Briand et al., 2005; Kurmayer 
et al., 2005; Cerasino et al., 2016). Various other demethylated microcys-
tins such as [D-Asp3] MC-LR or [D-Asp3] MC-HtyR are also found in 
Planktothrix isolates but are rarely the dominant variants (Kosol et al., 
2009). As with Microcystis, multiple clones with different microcystin 
profiles exist in natural populations of Planktothrix (Welker et al., 2004; 
Haruštiaková & Welker, 2017).

Only few data exist on microcystin congeners produced by benthic 
species, and detected variants comprise MC-LR, MC-RR, MC-YR, MC-LA, 
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[Asp3] MC-LR as well as unidentified microcystins (Aboal & Puig, 2005; 
Jungblut et al., 2006; Izaguirre et al., 2007; Fetscher et al., 2015).

Nodularin-R seems the major nodularin present in samples from the Baltic 
Sea, Turkey and Australia, while other nodularin variants usually seem less 
abundant (Sivonen et al., 1989; Jones et al., 1994a; Lehtimaki et al., 1997; 
Mazur-Marzec et al., 2006b; Akçaalan et al., 2009).

2.1.4.3  Biosynthesis

Knowledge of the biosynthesis of microcystins and nodularins has increased 
since the turn of the millennium. Complete sequences of biosynthesis gene 
clusters are available for several species, and biochemical pathways are 
largely understood (Pearson et al., 2016).

Microcystins and nodularins are synthesised by a combined nonribo-
somal peptide synthetase (NRPS) and polyketide synthase (PKS) pathway, 
which is well known for the synthesis of peptide antibiotics in bacteria 
and fungi, including penicillins (Kleinkauf & Döhren, 1996; Dittmann & 
Börner, 2005). Microcystins are produced by large multienzyme com-
plexes consisting of peptide synthetases, polyketide synthases and tailoring 
enzymes. These enzymes activate specific amino acids and condense them 
to peptides. The genes encoding for microcystin synthetases (mcyA-mcyJ) 
have been characterised for Microcystis, Dolichospermum, Fischerella, 
Nostoc and Planktothrix (Tillett et al., 2000; Christiansen et al., 2003; 
Rouhiainen et al., 2004; Fewer et al., 2013; Shih et al., 2013). The bio-
synthesis of nodularins is encoded by homologous genes (ndaA-ndaI) that 
have been characterised from Nodularia (Moffitt & Neilan, 2004). Both 
the microcystin and nodularin gene clusters comprise around 50 kb pairs 
in all investigated species, but differences in the gene order as well as DNA 
sequence variation in the same modules have been observed. Based on cod-
ing nucleotide sequences, Rantala et al. (2004) concluded that microcystin 
synthetase genes have already been present in an early stage of cyanobacte-
rial evolutionary history.

Microcystin and nodularin production appears to be constitutive in geno-
types which have the complete microcystin gene clusters, while it is absent in 
genotypes lacking the whole or relevant parts of the gene cluster (Christiansen 
et al., 2008; Tooming-Klunderud et al., 2008). Smaller mutations in single 
mcy genes can lead to genotypes unable to synthesise microcystin (Kurmayer 
et al., 2004; Christiansen et al., 2006; Fewer et al., 2008).

2.1.4.4  Regulation of biosynthesis

Microcystin contents or cell quota can vary greatly between individual clones 
within a natural population (e.g., Rohrlack et al., 2001; Akçaalan et al., 
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2006). Reported microcystin contents in isolates (cultures) of Microcystis 
and Planktothrix range over more than two orders of magnitude, from 
below 100 μg up to more than 10 mg/g dry weight, from traces up to 20 μg/
mm3 biovolume and from a few to around 1000 fg/cell (Table 2.3).

While qualitative microcystin production is regarded as constitutive, numer-
ous studies on Microcystis, Planktothrix, Dolichospermum and Nodularia 
have investigated to which extent the cell quota may be altered by environ-
mental factors. The environmental factors investigated included temperature, 
light, pH, macronutrients, trace elements and salinity (reviewed in Sivonen & 
Jones, 1999; Kardinaal & Visser, 2005; Pearson et al., 2016). Though all the 
studies showed an effect on microcystin content or cell quota, respectively, 
they show no consistent pattern in the regulation of the microcystin cell quota. 
These inconsistencies can partly be explained by large differences between 
the studies with respect to culture conditions (i.e., batch, semi- and continu-
ous; see Box 4.11), toxin measurement (i.e., ELISA, HPLC), as well as by the 
biomass proxy to which the toxin content was related (i.e., dry weight, bio-
volume, cell number, protein or chlorophyll-a). Another explanation for the 
differences in cell quota changes may be a clone-specific binding rate of syn-
thesised microcystins to proteins, which is then not available to conventional 
analysis, thus leading to underestimation of microcystin contents (Meissner 
et al., 2013). To add to this complexity, individual clones of the same species 
can respond differently, even conversely, in microcystin contents to the same 
cultivation condition (Hesse & Kohl, 2001).

One pattern of changes in the microcystin content which unifies many of 
the earlier disparate results is the positive correlation between growth and 
microcystin content under growth conditions limited by nitrogen, phospho-
rus or light (Kardinaal & Visser, 2005). However, some studies observed this 
relationship only during exponential growth, while no or a negative relation-
ship existed during the stationary phase (Wiedner et al., 2003; Yepremian 
et al., 2007), and others could not find any relationship (Jähnichen et al., 
2011). Most importantly, however, the results demonstrated that the cell 
quota varied only within a rather narrow range, that is, by a factor of 2–4 
(Table 2.3). In addition to changes in total microcystin cell quota, cultiva-
tion factors such as light and nitrogen have also been shown to alter the 
relative abundance of individual microcystins (Rapala et al., 1997; Tonk 
et al., 2005; Van de Waal et al., 2009).

More recent work has addressed changes in the microcystin  biosynthesis 
also at the molecular level, but so far without conclusive, comprehen-
sive outcomes. For example, light, iron and nitrogen have been found to 
either increase or decrease mcy transcription in individual strains, though 
microcystin cell quota do not necessarily reflect change in transcrip-
tional activity (e.g., Kaebernick et al., 2002; Sevilla et al., 2010; Harke & 
Gobler, 2015).



34 Toxic Cyanobacteria in Water

Table 2.3  Examples of microcystin contents given as mass per dry weight, per 
biovolume and per cell found in cultured strains

Taxon Cond. Origin N Range Reference

mg/g DW

Microcystis S TW 6 0.3–10 Lee et al. (1998)

Microcystis S GER 10 <0.1–4 Rohrlack et al. (2001)

Microcystis S JPN 17 0.6–13 Watanabe et al. (1991)

Planktothrix S FRA 36 0.02–1.86 Yepremian et al. (2007)
agardhii

P. agardhii S Eur, JPN 18 1.2–4.5 Kosol et al. (2009)

P. rubescens S Eur, JPN 31 2.9–5.4 Kosol et al. (2009)
aAnabaena S FRA 2 0.35–1.86 Vezie et al. (1998)
aAnabaena S FIN 5 1.3–3.9 Halinen et al. (2007)
aAnabaena S EGY 2 3–3.66 Mohamed et al. (2006)
aAnabaena T.L.N.P FIN 2 <0.3–7 Rapala et al. (1997)

μg/mm3 BV

Microcystis S KEN 12 0.4–13.8 Sitoki et al. (2012)

P. agardhii S Eur, JPN 18 2.3–16.7 Kosol et al. (2009)

P. rubescens S Eur, JPN 31 1.1–20.6 Kosol et al. (2009)

Microcystis L NLD 1 1.2–2.5 Wiedner et al. (2003) 

Microcystis L.N.P DEU 3 0.6–5.0 Hesse & Kohl (2001)

P. agardhii L FIN 1 ~2–3 Tonk et al. (2005)

fg/cell

Microcystis S KEN 12 17–553 Sitoki et al. (2012)

Microcystis P NLD 1 5–20 Ríos et al. (2014) 

Microcystis P GBR 1 17–97 Ríos et al. (2014)

Microcystis N USA 1 70–220 Harke & Gobler (2013)

Microcystis L USA 1 47–106 Deblois & Juneau (2010)

Microcystis N AUS 1 56–165 Orr & Jones (1998)

P. agardhii S GBR 2 75–91 Akçaalan et al. (2006)

P. rubescens S GBR 3 104–235 Akçaalan et al. (2006)

P. agardhii S Eur, JPN 18 44–343 Kosol et al. (2009)

P. rubescens S Eur, JPN 31 27–854 Kosol et al. (2009)

fg/cell

Nodularia L.N.P SWE 1 ~100–700 Pattanaik et al. (2010)
spumigena 

Cultivation conditions (Cond.) were either one standard (S) or with varying light (L), temperature (T), 
nitrogen concentration (N) and phosphorus concentration (P). The origin of the analysed 
strains (N) is given by ISO 3166 country code. Data from some studies have been transformed 
to units as given here. Note that content in field samples is generally much lower as these 
consist of a mixture of clones with individual toxin contents ranging from 0 (nonproducers) to 
9 (values as reported as maxima in this table; see also section 4.6).

a Reported as Anabaena but possibly Dolichospermum (see Chapter 3).
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2.1.5  Occurrence in water environments

Numerous screening programmes conducted during the past 30 years in vari-
ous parts of the world detected microcystins in 20% to 100% of the samples, 
with frequencies generally correlated with the trophic state of the sampled 
water bodies (Bigham et al., 2009). In waterbodies containing potentially 
toxigenic genera such as Microcystis and Planktothrix, microcystins were 
detected in 80–100% of the samples (Fastner et al., 2001; Graham et al., 
2010; Gkelis & Zaoutsos, 2014). Thus, any waterbody with these taxa should 
be assumed to contain microcystins unless analytical results show that this is 
not the case. In samples dominated by Dolichospermum, microcystins were 
detected less frequently (Chorus, 2001).

Microcystin-producing genotypes can persist in cyanobacterial popula-
tions, and thus may be found during the whole growing season, even year-
round. This includes not only tropical waterbodies, but also temperate shallow 
lakes dominated by Planktothrix agardhii and stratified, deep lakes harbour-
ing Planktothrix rubescens (Pawlik-Skowronska et al., 2008; Mankiewicz‐
Boczek et al., 2011; Akçaalan et al., 2014; Cerasino et al., 2016).

Early reports on microcystin found in field samples often expressed val-
ues as mg or μg per gram dry weight, that is, toxin contents (see box 4.6), 
most likely due to comparably insensitive methods used at the time and the 
requirement of large amounts of cell material for toxin analyses. Reported 
microcystin contents range from a few ng up to – rarely – around 13–15 
mg/g dry weight (Sivonen & Jones, 1999). Since the late 1990s, microcystin 
occurrence has increasingly been reported as concentrations, that is, per vol-
ume of water, which is the more relevant unit for cyanotoxin risk assessment.

Average microcystin concentrations in the pelagic water outside scums 
do not frequently exceed several tens of μg/L (Fastner et al., 2001; Bláha & 
Maršálek, 2003; Carrasco et al., 2006; Nasri et al., 2007; Graham et al., 
2010; Sakai et al., 2013; Gkelis & Zaoutsos, 2014; Chia & Kwaghe, 2015; 
Mowe et al., 2015; Su et al., 2015; Beversdorf et al., 2017). However, in sur-
face blooms and scums of Microcystis, microcystin concentrations can be 
up to several orders of magnitude higher than in the pelagic water, with the 
reported maximum values up to 20 and 124 mg/L (Kemp & John, 2006; 
Wood et al., 2006; Masango et al., 2010; Waajen et al., 2014).

Planktothrix rubescens forms population maxima in the metalimnetic layer 
with microcystin concentrations usually of only < 1 to 10 μg/L (Jacquet et al., 
2005; Akçaalan et al., 2014; Cerasino et al., 2016). Following turnover of the 
waterbody, the formation of surface blooms has been observed with microcys-
tin concentrations attaining up to 34 mg/L (Naselli-Flores et al., 2007).

Although microcystin concentrations can also reach more than 100 μg/L 
in blooms of Planktothrix agardhii, this species rarely forms surface bloom 
or scums (Fastner et al., 2001; Wiedner et al., 2002; Catherine et al., 2008; 
Pawlik-Skowronska et al., 2008; Mankiewicz‐Boczek et al., 2011), and 
hence, microcystin concentrations > 1 mg/L have only rarely been observed.
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Nodularins occur frequently in Nodularia spumigena populations from 
both temperate and subtropical environments with recurrent annual toxic 
blooms, for example, in the Baltic Sea. As with microcystins, concentrations 
may be several orders of magnitude higher in surface blooms compared to 
populations entrained homogeneously in the water column. The nodularin 
content of such blooms ranged from 3.5 to 18 mg/g dw, and concentrations 
from a few μg in the open water up to 18 mg/L in surface blooms have been 
reported (Kononen et al., 1993; Heresztyn & Nicholson, 1997; Mazur & 
Plinski, 2003; McGregor et al., 2012; Sahindokuyucu-Kocasari et al., 2015).

Although the variability of microcystin content within individual clones is 
limited to a factor of 2–4, the microcystin content of field populations of toxi-
genic taxa may vary by a few orders of magnitude. This suggests that much, 
if not most, of the variation in toxin content of monospecific natural blooms 
is attributable to the waxing and waning of clones of the same species, with 
clones varying in their toxin contents (see Chapter 4; Briand et al., 2008).

2.1.5.1  Bioaccumulation

Microcystins and nodularins have been detected in common aquatic ver-
tebrates and invertebrates, including fish, mussels, shrimps and zooplank-
ton (Kotak et al., 1996; Freitas de Magalhães et al., 2001; Sipiä et al., 
2002; Chen & Xie, 2005; Xie et al., 2005; Ibelings & Havens, 2008). 
Because of the relevance of these findings for food from aquatic envi-
ronments, bioaccumulation of microcystins/nodularins in biota and its 
role in health risk assessment are discussed in the section on food (5.3). 
The effects and possible bioaccumulation of microcystins on plants are 
reviewed in Machado et al. (2017).

2.1.6  Environmental fate

2.1.6.1  Partitioning between cells and water

Microcystins and nodularins are primarily found in viable cyanobacterial 
cells. Experiments with radiolabelled microcystin did not show a substan-
tial export of intracellular toxins from cells under high as well as under low 
light conditions (Rohrlack & Hyenstrand, 2007). Release to the surround-
ing water as extracellular (dissolved) toxin is considered to occur mainly 
during cell senescence, death and lysis.

In laboratory studies, where both intracellular and extracellular microcys-
tins/nodularins have been measured, the general finding was that in healthy 
cultures, less than 10% of the total toxin pool is extracellular (Lehtimaki 
et al., 1997; Rapala et al., 1997; Sivonen & Jones, 1999; Wiedner et al., 
2003; Jähnichen et al., 2007). Even during log-phase cell growth in culture, 
a small percentage of cells in the population may be lysing and hence release 
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intracellular microcystins. As cells enter the stationary phase, the increased 
rate of cell death may lead to an increase in the extracellular fraction.

Accordingly, in growing field populations, no or only little extracellular 
microcystin has been found. Concentrations of extracellular microcystins 
measured in such cases mostly range from not detectable to a few μg/L and 
amount to only a small fraction of the cell-bound toxins in the same samples 
(Pietsch et al., 2002; Wiedner et al., 2002; Welker et al., 2003; Bláhová et al., 
2007; Pawlik-Skowronska et al., 2008). While in ageing or declining blooms 
large amounts of microcystins are liberated from the cells, the actual con-
centrations in water depend primarily on dilution and other factors such as 
adsorption and degradation, rarely reach values exceeding 100 μg/L (Welker 
et al., 2001). The only report of very high extracellular microcystin concen-
trations, reaching 1800 μg/L, was following an algicide treatment of a cya-
nobacterial bloom leading to sudden and complete lysis and thus a massive 
release of toxins (Kenefick et al., 1993; Jones & Orr, 1994).

For the production of drinking-water, special attention to procedures that 
potentially could release microcystins from cells is important: oxidation 
with ozone and chlorine, as well as flocculation and filtration, can lead to a 
leakage of microcystins from the cells (see Chapter 10; Pietsch et al., 2002; 
Schmidt et al., 2002; Daly et al., 2007).

2.1.6.2  Chemical breakdown

Microcystins are chemically very stable. They remain potent even after boil-
ing for several hours (Harada, 1996) and may persist for many years when 
stored dry at room temperature (Metcalf et al., 2012). At near-neutral pH, 
microcystins are resistant to chemical hydrolysis or oxidation. At 40 °C and 
at elevated or low pH, slow hydrolysis has been observed, with the times 
to achieve greater than 90% breakdown being approximately 10 weeks at 
pH 1 and greater than 12 weeks at pH 9 (Harada, 1996). Rapid chemical 
hydrolysis occurs only under conditions that are unlikely to be attained 
outside the laboratory, for example, 6M HCl at high temperature.

Microcystins can be oxidised by ozone and other strong oxidising agents 
(Rositano et al., 2001; Rodríguez et al., 2007), and degraded by intense 
ultraviolet (UV) light (Kaya & Sano, 1998). Several studies have investigated 
the degradation by, for example, photocatalysis, H2O2/UV light and the 
photo-Fenton process (He et al., 2012; de Freitas et al., 2013; Pestana et al., 
2015). These processes have relevance for water treatment and are discussed 
in Chapter 10, but are unlikely to contribute to degradation occurring in the 
natural environment.

In full sunlight, microcystins undergo only slow photochemical break-
down and isomerisation, with the reaction rate being enhanced by the pres-
ence of water-soluble cell pigments, presumably phycobiliproteins (Tsuji 
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et al., 1994). In the presence of such pigments, the photochemical breakdown 
of microcystin in full sunlight can take as little as 2 weeks for greater than 
90% breakdown, or longer than 6 weeks, depending on the concentration of 
pigment (and presumably toxin, although this has not been tested). A more 
rapid breakdown under sunlight has been reported in the presence of natu-
rally occurring humic substances which can act as photosensitisers. In an 
experimental study, approximately 40% of the microcystins was degraded 
per day under summer conditions of insolation (Welker & Steinberg, 1999). 
However, since the penetration of active UV radiation is limited in deeper 
or turbid waters, the breakdown in situ is likely to be considerably slower 
(Welker & Steinberg, 2000). Photosensitised transformation of microcystins 
has been studied in detail by Song et al. (2007).

The chemical decomposition of nodularin has been studied less inten-
sively; however, their structural similarity suggests similar characteristics 
as microcystin. Nodularin degradation has also been observed under UV 
radiation (Mazur-Marzec et al., 2006a).

2.1.6.3  Biodegradation

Microcystins are resistant to eukaryotic and many bacterial peptidases (Botes 
et al., 1982; Falconer et al., 1986; Harada, 1996); however, some human pro-
biotic bacteria have microcystin-decomposing capability (Nybom et al., 2012).

In contrast, microcystins are susceptible to breakdown by a number of 
aquatic bacteria. These bacteria appear widespread and have been found 
in sewage effluent, lake water, lake sediment and river water worldwide 
(Holst et al., 2003; Edwards et al., 2008). MC-degrading bacteria have also 
been detected in the mucilage of Microcystis colonies (Maruyama et al., 
2003). The majority of the microcystin-degrading bacteria isolated to date 
have been identified as Sphingomonas spp. and Sphingopyxis spp. belong-
ing to the α-proteobacteria; further microcystin-degrading bacteria are 
also found among the ß-proteobacteria (e.g., Pseudomonas aeruginosa), 
γ-proteobacteria (e.g., Paucibacter toxinivorans), actinobacteria and bacilli 
(Edwards et al., 2008; Dziga et al., 2013; Li et al., 2017).

Most of these bacteria perform aerobic degradation of microcystins. The 
degradation pathway and mir genes encoding for the involved enzymes have 
been studied in detail in an isolate of Sphingomonas sp. (Bourne et al., 2001). 
The products of complete bacterial degradation were nontoxic to mice at 
i.p. doses 10 times higher than the LD50 of microcystin-LR. However, other 
intermediate breakdown products as well as the lack of mir genes in some 
MC-degrading bacteria suggest that multiple aerobic degradation pathways 
may exist (Amé et al., 2006; Edwards et al., 2008; Dziga et al., 2013). This 
also applies for possible anaerobic biodegradation, which, however, is far 
less intensively studied, as only a few bacteria showing anaerobic degrada-
tion have been isolated to date (Li et al., 2017).
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Degradation of microcystins is often, though not always, characterised by 
an initial lag phase with little loss of microcystin. This phase was observed in 
laboratory and field experiments and can last from as little as 2 days to more 
than several weeks. The duration seems to depend on the previous bloom his-
tory of a lake and also on climatic conditions as well as on the concentration 
of dissolved microcystin (Christoffersen et al., 2002; Hyenstrand et al., 2003; 
Bourne et al., 2006; Edwards et al., 2008).

Once the biodegradation process commences, the removal of microcys-
tin can be very fast with half-lives of 0.2–5 days for different microcystins, 
including MC-RR, MC-YR, MC-LR, MC-LW and MC-LF (Lam et al., 
1995; Cousins et al., 1996; Park et al., 2001; Christoffersen et al., 2002; 
Hyenstrand et al., 2003; Ishii et al., 2004; Babica et al., 2005; Amé et al., 
2006; Tsuji et al., 2006; Chen et al., 2008; Edwards et al., 2008). Degradation 
strongly depends on temperature, but is also influenced by the size of the 
microbial population and initial microcystin concentration (Park et al., 2001; 
Bourne et al., 2006). Though a more than 90% reduction of microcystin has 
been observed within a few days, low residual microcystin concentration can 
occasionally still be observed for weeks especially when initial concentrations 
were high (Jones et al., 1994b; Bourne et al., 2006).

For nodularin, the degradation by microbial activity was demonstrated 
in marine and freshwater environments (Heresztyn & Nicholson, 1997; 
Edwards et al., 2008; Toruńska et al., 2008). The linearisation of nodularin 
by a Sphingomonas strain was demonstrated suggesting a similar degrada-
tion pathway as for microcystins (Imanishi et al., 2005; Kato et al., 2007), 
and Paucibacter toxinivorans has also been shown to degrade nodularin 
(Rapala et al., 1997). Other Sphingomonas strains, however, could not 
degrade nodularin or nodularin-Har, or only in the presence of microcystin-
RR (Jones et al., 1994a; Ishii et al., 2004).
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2.2  CYLINDROSPERMOPSINS

Andrew Humpage and Jutta Fastner

The cyanobacterium Raphidiopsis raciborskii (the renaming from 
Cylindrospermopsis has been widely accepted; see Chapter 3) first came 
to notice after the poisoning of 138 children and 10 adults on Palm Island, 
a tropical island off Townsville in central Queensland, Australia (Byth, 
1980). Cultures of the organism were found to produce effects in mice 
similar to those seen in the human victims (Hawkins et al., 1985). The 
pure toxin – named cylindrospermopsin – was identified in 1992 (Ohtani 
et al., 1992).

2.2.1  Chemical structures

Cylindrospermopsins (CYNs, Figure 2.2) are alkaloids comprising a tricyclic 
guanidino moiety linked via a hydroxylated bridging carbon (C7) to uracil 
(Ohtani et al., 1992). Four structural variants have been identified (Table 2.4): 
7-epi-cylindrospermopsin (7-epi-CYN), 7-deoxy-cylindrospermopsin (7- 
deoxy-CYN), 7-deoxy-desulpho-cylindrospermopsin and 7-deoxy- 
desulpho-12-acetylcylindrospermopsin (Norris et al., 1999; Banker et al., 
2000; Wimmer et al., 2014). The assignments of the absolute configurations 
of CYN and 7-epi-CYN have been exchanged, but this has little practical 
bearing as they are both equally toxic (Banker et al., 2000; White & Hansen, 
2005). Pure CYN is a white powder and is very water soluble. It is stable to 
boiling and a wide range of pH (Chiswell et al., 1999).

2.2.2  Toxicity: mode of action

The toxic effects of cylindrospermopsin, summarised in the follow-
ing, are described in detail in the WHO Background Document on 
Cylindrospermopsins (WHO, 2020); see there for further information and 
references). Based on available studies, the liver, kidneys and erythrocytes may 
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Figure 2.2  Molecular structure of common cylindrospermopsins.
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be important targets of CYN toxicity although studies using radiolabelled 
CYN suggest that it is  distributed to all major organs. Skin patch testing 
 produced only mild skin   irritation. Since CYNs are hydrophilic molecules, 
facilitated transport  systems mediate their intestinal absorption and uptake 
into other cell types, including hepatocytes. However, due to the small size of 
these molecules, a limited  passive diffusion through biological membranes is 
expected. Although not clearly understood, the specific mechanism for toxic-
ity may involve more than one mode of action, depend on the magnitude and 
frequency of dose, exposure duration, life stage, age or sex of the organism and 
the duration that an animal is observed post-dosing. At low  concentrations, 
inhibition of protein synthesis (Terao et al., 1994; Froscio et al., 2003) appears 
to be the primary effect, which is mediated by the parent compound, whereas 
at higher exposures, CYN toxicity appears to involve metabolites and other 
mechanisms that are cytochrome P450-dependent. Reactive oxygen species 
and induction of stress responses may also be involved in the mode of action.

Cylindrospermopsins have been shown to be genotoxic in various mam-
malian cells and tissues using both in vitro and in vivo models. The extent 
and quality of toxicological data on CYN is quite limited, particularly 
because many studies have used cell extracts rather than pure toxin.

2.2.3  Derivation of provisional guideline values

The following section is taken directly from the WHO chemicals  background 
document on cylindrospermopsins (WHO, 2020) which discusses the 
 considerations for the derivation of provisional guideline values for  exposure 
to  cylindrospermopsins in more detail. The Point of Departure has been iden-
tified as the no observed adverse effect level (NOAEL) of 30 μg/kg bw per day 
from the Humpage and Falconer (2003) study. By applying an  uncertainty 
factor (UF) of 1000 (100 for inter- and intraspecies variability and 10 for 
the lack of chronic toxicity studies and deficiencies in the overall toxico-
logical database), a provisional tolerable daily intake TDI (NOAEL/UF) 
of 0.03 μg/kg bw per day can be derived. The value is provisional because 
of deficiencies in the CYN toxicological database, essentially related to the  

Table 2.4  Congeners of cylindrospermopsin and their molecular masses

Congeners Formula
Monoisotopic 

molecular mass (Da)
Average molecular 

weight (g/mol)

Cylindrospermopsin C15H21N5O7S 415.116 415.428

7-Epi-cylindrospermopsin C15H21N5O7S 415.116 415.428

7-Deoxy-cylindrospermopsin C15H21N5O6S 399.121 399.429

7-Deoxy-desulpho-
cylindrospermopsin

C15H21N5O3 319.164 319.366

7-Deoxy-desulpho-12-
acetylcylindrospermopsin

C17H23N5O4 361.175 361.404
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limited  availability of studies with purified toxins, lack of in vivo data on 
reproductive end-points and the unclear role of metabolites, especially related 
to potential genotoxicity. The Sukenik et al. (2006) 42-week drinking-water 
study provides supporting qualitative evidence for CYN toxicity, but the 
experimental design does not allow derivation of a robust reference value 
(Funari & Testai, 2008). The study by Chernoff et al. (2018) observed many 
of the same effects as seen previously and demonstrates that the NOAEL is 
below 75 μg/kg bw per day.

The toxicological database is more limited for CYNs than for microcys-
tin-LR – for example, data on on reproductive effects following oral dosing 
are lacking. Critically, there is evidence for potential in vivo genotoxicity of 
CYN. However, the lack of chronic dosing studies does not affect deriva-
tion of the short-term GV. Therefore, an uncertainty factor of 3 was used to 
allow for these uncertainties in the derivation of the provisional short-term 
drinking-water GV and recreational water GV.

For deriving the provisional lifetime drinking-water GV, the fraction of 
exposure allocated to drinking-water was 80% because drinking-water is 
expected to be the most likely long-term source of exposure. For deriving 
the provisional short-term drinking-water GV, the default allocation  factor 
for short-term values of 100% was selected, considering that drinking-water 
is usually the most likely exposure source. 

The provisional recreational water GV, which aims to protect from sys-
temic effects, is based on a conservative scenario of a 15-kg child swallow-
ing 250 mL of water (WHO, 2003).

Calculation of provisional lifetime 
drinking-water GV for CYN:

NOAEL*bw*P 30*60*0.8
GVchronic = =    μ μg / L = 0.72  g / L  ≈ 0.7 μg / L

UF*C 1000*2

where

GVchronic = GV for chronic (lifetime) exposure
NOAEL = no-observed-adverse-effect level (30 μg/kg bw per day, based 

on Humpage & Falconer, 2003)
bw = body weight (default = 60 kg for an adult)
P = fraction of exposure allocated to drinking-water (80%, because other 

sources of exposure, such as air, food and soil, are considered minor)
UF = uncertainty factor (1000 = 10 for interspecies variation × 10 for 

intraspecies variation × 10 for database deficiencies, including use of 
a subchronic study)

C = daily drinking-water consumption (default = 2 L for an adult). 
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Calculation of provisional short-term 
drinking-water GV for CYN:

To develop a short-term GV, the same logic was applied except that a UF of 
3 was used for database limitations:

NOAELsubchronic*bw*P 30*60*1.0
GVshort-term = =    μ μg / L = 3  g / L 

 UF*C 300*2

where

GVshort-term = GV for short-term exposure
NOAEL = no-observed-adverse-effect level (30 μg/kg bw per day, based 

on Humpage & Falconer, 2003)
bw = body weight (default = 60 kg for an adult)
P = fraction of exposure allocated to drinking-water (default for short-

term exposure = 100%, as drinking-water is expected to be the most 
likely source of exposure)

UF = uncertainty factor (300 = 10 for interspecies variation × 10 for 
intraspecies variation × 3 for database deficiencies)

C = daily drinking-water consumption (default = 2 L for an adult).

Calculation of provisional recreational 
water GV for CYN:

NOAEL *bw 30*15
GV  recreation = =  μ μg / L = 6 g / L

 UF*C 300*0.25  

where

GVrecreation = GV for recreational water exposure
NOAEL = no-observed-adverse-effect level (30 μg/kg bw per day, based 

on Humpage & Falconer, 2003)
bw = body weight (default = 15 kg for a child)
UF = uncertainty factor (300 = 10 for interspecies variation × 10 for 

intraspecies variation × 3 for database deficiencies)
C = daily incidental water consumption (default = 250 mL for a child).

Considerations in applying the 
provisional guideline values

The provisional GVs are based on toxicological data for CYN. The limited 
evidence on the relative potency of other CYN congeners suggests they are 
probably similar in potency to CYN. Therefore, for assessing risk, as a 
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conservative approach, it is suggested that the sum of of CYNs (on a molar 
basis), be evaluated against the GV.

In some regions, others sources of exposure besides drinking-water can be 
significant (see chapter 5). This includes food from locations where blooms 
have a long duration and there is high consumption of locally affected food 
items. In such situations, it may be appropriate to consider reducing the 
allocation factor for the lifetime and short-term drinking-water GVs based 
on relative exposure data for the population.

The short-term drinking-water GV is based on exposure of adults. Since 
infants and children can ingest a significantly larger volume of water per 
body weight (e.g., up to 5 times more drinking-water/kg bw for bottle-fed 
infants than for adults), it is recommended that alternative water sources 
such as bottled water are provided for bottle-fed infants and small children 
when CYN concentrations are greater than 0.7 μg/L even for short periods, 
as a precautionary measure.

2.2.4  Production

2.2.4.1  Producing cyanobacteria

Cylindrospermopsins (CYNs) have been found in species of Nostocales and 
Oscillatoriales. Among the Nostocales, Raphidiopsis (Cylindrospermopsis) 
raciborskii, R. curvata, R. mediterranea, Chrysosporum (Aphanizomenon) 
ovalisporum, Chrysosporum (Anabaena) bergii, Aphanizomenon flosaquae, 
Aphanizomenon gracile and Anabaena lapponica, have been identified as 
producers (Hawkins et al., 1985; Banker et al., 1997; Li et al., 2001a; 
Schembri et al., 2001; Preussel et al., 2006; Spoof et al., 2006; McGregor 
et al., 2011; Kokociński et al., 2013). Umezakia natans, a CYN producer 
from Japan, was originally assigned to the order Stigonematales (Harada 
et al., 1994), but later genetic analysis suggests that this species belongs 
to the Nostocales (Niiyama et al., 2011). Cylindrospermopsin producers 
belonging to the Oscillatoriales are the benthic Microseira (Lyngbya) wollei, 
benthic Oscillatoria (Seifert et al., 2007; Mazmouz et al., 2010), as well as 
Hormoscilla pringsheimii (Bohunická et al., 2015). Producing and nonpro-
ducing strains exist within these species.

The CYN-producing species have different regional distribution (de la 
Cruz et al., 2013). So far only Raphidiopsis raciborskii from Australia, New 
Zealand and Asia have been found to produce CYNs (Saker & Griffiths, 
2000; Li et al., 2001b; Wood & Stirling, 2003; Chonudomkul et al., 2004; 
Nguyen et al., 2017), while none of the R. raciborskii strains from North and 
South America, Africa as well as from Europe have been found to synthesise 
CYNs (Bernard et al., 2003; Fastner et al., 2003; Saker et al., 2003; Berger 
et al., 2006; Yilmaz et al., 2008; Fathalli et al., 2011; Hoff-Risseti et al., 2013). 
CYN-producing C. ovalisporum have been reported from strains and/or field 
samples of Australia, Florida, Turkey, Israel and Spain (Banker et al., 1997; 
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Quesada et al., 2006; Yilmaz et al., 2008; Akçaalan et al., 2014). In middle 
and northern Europe, CYN occurrence is largely attributed to the presence of 
Aphanizomenon sp. and Dolichospermum spp. (Preussel et al., 2006; Rücker 
et al., 2007; Bláhová et al., 2009; Brient et al., 2009; Kokociński et al., 2013).

2.2.4.2  Cylindrospermopsin profiles

While earlier studies focused primarily on CYN, data on the presence of 
7-deoxy-CYN and 7-epi-CYN are increasingly reported. It appears that 
strains may contain varying shares of CYN, 7-deoxy-CYN and 7-epi-CYN. 
In strains and blooms of R. raciborskii, as well as strains of Aphanizomenon 
and Ana. lapponica, ratios of CYN to 7-deoxy-CYN vary between 0.2 and 
5 (Spoof et al., 2006; Orr et al., 2010; Preussel et al., 2014; Willis et al., 
2015). In Microseira (Lyngbya) wollei and Raphidiopsis curvata, 7-deoxy-
CYN has been predominately found (Li et al., 2001a; Seifert et al., 2007). 
However, growth conditions may alter the ratio of 7-deoxy-CYN to CYN, 
most probably due to the fact that 7-deoxy-CYN is a precursor of CYN 
(Mazmouz et al., 2010). 7-Epi-CYN has been detected in C. ovalisporum 
as a minor compound, whereas it was up to threefold more abundant 
than CYN in some Oscillatoria strains (Banker et al., 2000; Mazmouz 
et al., 2010). No information is available on the distribution and concen-
tration of 7-deoxy-desulpho-cylindrospermopsin and 7-deoxy-desulpho-
12-acetylcylindrospermopsin recently found (in addition to CYN) in a 
Thai strain of R. raciborskii (Wimmer et al., 2014).

2.2.4.3  Biosynthesis

The complete gene cluster (cyr) for the synthesis of CYN was first sequenced 
from R. raciborskii (Mihali et al., 2008). It spans 43 kb and encodes 15 open 
reading frames (ORF). The biosynthesis starts with an amidinotransferase 
and is completed by nonribosomal peptide/polyketide synthetases and tai-
loring enzymes. Furthermore, the cluster encodes for a putative transporter 
(cyrK) for the export of CYN from the cells (Mihali et al., 2008). A putative 
NtcA (global nitrogen regulator) binding site has been identified within the 
cyr cluster, suggesting that CYN synthesis is influenced by N metabolism 
(Mazmouz et al., 2011; Stucken et al., 2014).

Since then, homologous clusters or parts of them have been sequenced from 
further R. raciborskii strains (Stucken et al., 2010; Sinha et al., 2014), C. 
ovalisporum (aoa, gene cluster; Shalev-Alon et al. (2002), Aphanizomenon 
sp. (Stüken & Jakobsen, 2010), Oscillatoria sp. (Mazmouz et al., 2010) 
and Raphidiopsis sp. (Jiang et al., 2014; Pearson et al., 2016). Differences 
within the gene cluster between strains comprise the order of the cyr genes, 
flanking genes as well as a sporadic lack of cyrN and cyrO (Jiang et al., 
2014; Pearson et al., 2016).
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2.2.4.4  Regulation of biosynthesis

Similar to microcystins, strains differ in the amount of cylindrospermop-
sins (CYN, 7-epi-CYN and 7-deoxy-CYN) produced, and contents per bio-
mass are in the same range as those of microcystins (Table 2.5). Contents 
of cylindrospermopsins (CYNs) of some 10 μg up to 9.3 mg/g DW were 
reported across all producing species (see above) and geographical regions 
(Saker & Griffiths, 2000; Preussel et al., 2006; Seifert et al., 2007; Yilmaz 
et al., 2008; Akçaalan et al., 2014; Cirés et al., 2014; McGregor & Sendall, 
2015). Cell quota of CYNs for R. raciborskii strains range from ~3 to 279 
fg/cell (Hawkins et al., 2001; Davis et al., 2014; Willis et al., 2016; Yang 
et al., 2018), and from ~49 to 190 fg/cell in C. ovalisporum (Cirés et al., 
2014). Values per unit biovolume are between 0.6 and 3.5 μg CYN/mm3 in 

Table 2.5  Examples of cylindrospermopsin contents (not differentiated by congeners, 
i.e., CYN, 7-epi-CYN and 7-deoxy-CYN) given as mass per dry weight, per 
biovolume and per cell found in cultured strains

Taxon a Cond. Origin N Range Reference

mg/g DW

Aphanizomenion sp. S DEU 3 2.3–6.6 Preussel et al. (2006)

Chrysosporum 
ovalisporum

S USA 1 7.4–9.3 Yilmaz et al. (2008) b

C. ovalisporum S ESP 6 5.7–9.1 Cirés et al. (2014)

Raphidiopsis raciborskii T AUS 4 n.d. –9 Saker & Griffiths (2000) b

μg/mm3 BV

C. ovalisporum S ESP 6 0.9–2.4 Cirés et al. (2014)

R. raciborskii S AUS 2 ~1–3.5 Saker & Griffiths (2000) b

Aphanizomenion sp. L, T, N DEU 3 0.3–1.6 Preussel et al. (2009)

fg/cell

C. ovalisporum S ESP 6 49–190 Cirés et al. (2014)

R. raciborskii S AUS 24 91–279 Willis et al. (2016) b

R. raciborskii S AUS 2 ~10–25 Davis et al. (2014) b

R. raciborskii N CHN 1 45 – 64 Yang et al. (2018)
cOscillatoria sp. L 1 ~3 – 18 Bormans et al. (2014)

Cultivation conditions (Cond.) were either one standard (S), or with varying light (L), temperature (T), 
nitrogen concentration (N) and phosphorus concentration (P). The origin of the analysed 
strains (N) is given by ISO 3166 country code. Data from some studies have been transformed 
to units as given here. Note that content in field samples is generally much lower, as these 
consist of a mixture of clones with individual toxin contents ranging from 0 (nonproducers) to 
values as reported as maxima in this table; see also section 4.6.

a The taxon given here may deviate from that given in the publication. For changes in taxonomy, see 
Chapter 3. 

b Intracellular CYNs only.
c Benthic form.
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R. raciborskii (Saker & Griffiths, 2000; Hawkins et al., 2001), 0.3 and 1.6 
μg CYNs/mm3 in Aphanizomenon sp. (Preussel et al., 2009; Preussel et al., 
2014) and 0.9 and 2.4 μg CYN/mm3 in C. ovalisporum (Cirés et al., 2014).

Several studies have investigated the influence of environmental factors on 
CYN production. Though all of the studies showed an effect on CYN con-
tent, no consistent pattern in the regulation of the CYN content emerged. 
The inconsistencies can partly be explained by differences with respect to 
culture conditions (i.e., batch and semicontinuous), the biomass proxy to 
which the toxin content was related (i.e., dry weight, biovolume, cell num-
ber, or chlorophyll-a) as well as by different reactions of individual strains 
to the same parameter. A direct linear relationship between total cell quota 
and growth has been observed in several R. raciborskii strains during log 
phase growth under different light, nutrients and CO2 conditions with cell 
quota changing maximally by a factor 2–4 (Hawkins et al., 2001; Davis 
et al., 2014; Pierangelini et al., 2015; Willis et al., 2015; Yang et al., 2018). 
This observation in combination with a constant expression of cyr genes led 
to the conclusion that CYN production is constitutive (Davis et al., 2014; 
Pierangelini et al., 2015; Willis et al., 2015; Yang et al., 2018). However, 
CYN cell quota decreased substantially (>25-fold) down to nondetectable 
levels in R. raciborskii and to trace levels in C. ovalisporum at 35 °C (Saker 
& Griffiths, 2000; Cirés et al., 2011). This suggests that CYN production 
may not be constitutive, though this requires further confirmation by fol-
lowing cyr transcript levels. Up to 25–30 °C, the influence of temperature 
on CYN cell quota was moderate (~1.5–2.5-fold) in Aphanizomenon sp. 
and C. ovalisporum (Preussel et al., 2009; Cirés et al., 2011). Changes in 
cell quota between three- and eightfold were found in relation to light in 
Oscillatoria PCC 6506 and Chr. ovalisporum and in relation to nutrients 
in Aphanizomenon sp. and C. ovalisporum (Bar-Yosef et al., 2010; Cirés 
et al., 2011; Bormans et al., 2014; Preussel et al., 2014).

Environmental conditions also influence the ratio of 7-deoxy-CYN to 
CYN. For both R. raciborskii and Aphanizomenon spp., 7-deoxy-CYN 
content increased with increasing cell densities under normal growth con-
ditions, while it did not increase or decrease under N-deprived conditions 
(Davis et al., 2014; Preussel et al., 2014; Stucken et al., 2014).

In contrast to microcystins, a substantial share of cylindrospermopsins is 
usually and constantly extracellular. In R. raciborskii and Aphanizomenon 
sp., up to 20% and in C. ovalisporum up to 40% of the total CYNs were 
extracellular during log-phase growth (Hawkins et al., 2001; Cirés et al., 
2014; Davis et al., 2014; Preussel et al., 2014), while in Oscillatoria PCC 
6505 the extracellular CYNs constantly amounted to more than 50% 
(Bormans et al., 2014). Furthermore, the extracellular CYNs increased 
by up to more than twofold in all species during the stationary phase 
under different treatments (Saker & Griffiths, 2000; Hawkins et al., 2001; 
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Bormans  et al., 2014; Davis et al., 2014). Preussel et al. (2014) found 
indication of an active release of CYNs under normal growth conditions 
and showed that the extracellular CYNs did not increase in N-deprived 
cultures of Aphanizomenon.

For water management, it is important that environmental conditions 
may not only change the cell quota of CYNs, but also change the share of 
extracellular CYNs (see Box 5.1) as well as the ratio of 7-deoxy-CYN to 
CYN. Furthermore, it appears that alterations in nutrient concentrations 
can change strain composition and thus CYN concentrations in the field 
(Burford et al., 2014).

2.2.5  Occurrence in water environments

Cylindrospermopsins are found globally as a result of the worldwide dis-
tribution of producing cyanobacteria, including Raphidiopsis raciborskii, 
Chrysosporum ovalisporum and Aphanizomenon sp. (Kinnear, 2010; de la 
Cruz et al., 2013). In Australia, R. raciborskii and C. ovalisporum are the 
most abundant CYN producers with a high bloom frequency, though the 
correlation between CYNs concentration and biovolume is generally weak. 
Concentrations reported often range between < 1 and 10 μg/L, occasional up 
to maximally 800 μg/L (Chiswell et al., 1999; Shaw et al., 1999; McGregor 
& Fabbro, 2000; Shaw et al., 2002). Also in the Mediterranean region and 
in Florida, CYN occurrence has been often, though not always, associated 
with C. ovalisporum. Concentrations in these regions were from below 
10 μg/L up to maximally 202 μg/L (Quesada et al., 2006; Messineo et al., 
2010; de la Cruz et al., 2013; Fadel et al., 2014; Moreira et al., 2017). CYN 
concentrations reported from more temperate regions of Northern America 
and Europe are often well below 10 μg/L with a maximal concentration of 
9–18 μg/L (Rücker et al., 2007; Bláhová et al., 2009; Brient et al., 2009; 
Graham et al., 2010; Kokociński et al., 2013). The highest CYN concentra-
tions (up to almost 3 mg/L) were reported from Brazil, although these ELISA 
data need to be confirmed by LC-MS/MS (Bittencourt-Oliveira et al., 2014; 
Metcalf et al., 2017).

High concentrations in the range of 10–100 mg/L, as observed for micro-
cystins, have not yet been observed for CYNs, most probably due to the fact 
that CYN-producing species do not accumulate to very high cell densities, 
in contrast to scums of the abundant microcystin producer Microcystis sp., 
for example. Furthermore, up to 90% of CYN can occur extracellularly in 
natural waters; outside of scum areas this is then readily diluted by the sur-
rounding water (Rücker et al., 2007).

For water management, it is also important to note that both CYN and 
7-deoxy-CYN can be distributed throughout the entire water column with 
high concentrations also in the hypolimnion (Everson et al., 2011).
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2.2.5.1  Bioaccumulation

Bioaccumulation of CYN in (in)vertebrates and plants has been addressed in 
several studies. The freshwater mussel Anodonta cygnea has been shown to 
accumulate, but partially also depurate, CYN (Saker et al., 2004). Both CYN 
and deoxy-CYN have been found to bioconcentrate and bioaccumulate up 
to a factor of 124 in whole aquatic snails; however, the alimentary tract was 
not separated prior to analysis (White et al., 2006). Saker and Eaglesham 
(1999) found 4.3 μg/g DW of CYN in the hepatopancreas of crayfish and 1.2 
μg/g DW in fish, suggesting a bioaccumulation factor of 2. In contrast, several 
studies detected no free CYN, probably due to binding of CYN to proteins 
(Esterhuizen-Londt & Pflugmacher, 2016). As reviewed by Kinnear (2010), 
biodilution of CYN is likely to occur at higher trophic levels.

Cylindrospermopsin uptake in plants has been found for several crops at 
environmentally relevant concentrations of ~10–50 μg/L (Kittler et al., 2012; 
Cordeiro-Araújo et al., 2017; Díez-Quijada et al., 2018; Prieto et al., 2018). 
While these studies do not indicate substantial bioaccumulation, however, 
long exposure time with high concentrations of CYN resulted in elevated 
CYN contents in crops, suggesting their consumption may lead to exceed-
ance of the TDI for CYN (Díez-Quijada et al., 2018). If plants are irrigated 
with CYN-containing water, assessing potential human exposure through 
food may require analysing concentrations in crops (see also section 5.3).

More detailed information on bioaccumulation is given in the reviews of 
Kinnear (2010), de la Cruz et al. (2013) and Machado et al. (2017).

2.2.6  Environmental fate

2.2.6.1  Partitioning between cells and water

The results described above show that cylindrospermopsins may readily 
leach or be released from intact, viable cells under normal growth condi-
tions and that leakage/release increases greatly when the cells enter the sta-
tionary growth phase (Dyble et al., 2006; Bormans et al., 2014; Preussel 
et al., 2014). CYN leakage/release has also been observed in persistent water 
blooms of both R. raciborskii and Aph. ovalisporum, with up to 100% of 
the total toxin in the water found in the extracellular (dissolved) fraction 
(Chiswell et al., 1999; Shaw et al., 1999). This is also observed in temper-
ate lakes with Aphanizomenon sp. as most probable toxin producer. Where 
extracellular CYN was detectable, it amounted between 24% and 99% of 
total CYN (Rücker et al., 2007).

2.2.6.2  Chemical breakdown

Cylindrospermopsin appears to be stable over a wide range of temperatures 
and pH, whereas only higher temperatures (>50 °C) in combination with 
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alkaline conditions lead to slow degradation (Chiswell et al., 1999; Adamski 
et al., 2016). It is also relatively stable in the dark and in sunlight, though in 
sunlight in the presence of cell pigments, breakdown occurs relatively rap-
idly, being more than 90% complete within 23 days (Chiswell et al., 1999; 
Wörmer et al., 2010). No data on the stability of 7-epi-CYN and 7-deoxy-
CYN apparently exist.

2.2.6.3  Biodegradation

Biodegradation of CYN has been observed for some natural waters 
(Chiswell et al., 1999; Smith et al., 2008), while for others no biodegrada-
tion of CYN was found (Wörmer et al., 2008; Klitzke et al., 2010). This can 
lead to substantial concentrations of dissolved CYN even weeks or months 
after the producing organisms have declined (Chiswell et al., 1999; Wiedner 
et al., 2008). Wörmer et al. (2008) also showed that the previous presence 
of CYN-producing cyanobacteria may not necessarily lead to CYN biodeg-
radation in a waterbody.

Cylindrospermopsin biodegradation studied with natural bacterial con-
sortia either from lakes or from sediments usually showed a lag phase of 
1–3 weeks before biodegradation started (Smith et al., 2008; Klitzke et al., 
2010). Repeated dosing of CYN eliminated or substantially shortened the 
lag phase. Once biodegradation had started, the half-lives reported for mixed 
consortia from water and sediment were 2–4 days (Smith et al., 2008; Klitzke 
et al., 2010). Similar half-lives were found for a CYN-degrading Bacillus strain 
which also degraded microcystins (Mohamed & Alamri, 2012), while CYN 
half-lives in the presence of an Aeromonas sp. strain were 6–8 days (Dziga 
et al., 2016). For both natural bacterial consortia and isolated strains, it has 
been found that biodegradation is strongest between 20 °C and 35 °C and at 
pH between 7 and 8 (Smith et al., 2008; Klitzke & Fastner, 2012; Mohamed 
& Alamri, 2012; Dziga et al., 2016). The biodegradation rate is also strongly 
influenced by the initial CYN concentration with hardly any CYN biodeg-
radation at concentrations below 1 μg/L (Smith et al., 2008; Mohamed & 
Alamri, 2012; Dziga et al., 2016). Removal of dissolved CYN from water 
samples was also observed with probiotic bacteria (Bifidobacterium longum 
46) with an efficiency of 31% CYN removal within 24 h at 37 °C (Nybom 
et al., 2008). Degradation of CYN through the activity of manganese-
oxidising bacteria – a polyphyletic type of bacteria common in freshwater, 
for example, Pseudomonas sp., Ideonella sp. – has been observed (Martínez-
Ruiz et al., 2020b). The transformation products showed reduced toxicity to 
hepatocytes (Martínez-Ruiz et al., 2020a). No studies on the biodegradation 
of 7-deoxy-CYN and 7-epi-CYN appear to exist.

For water management, it is important to keep in mind that due to the occa-
sionally poor degradation of CYN in surface water, considerable amounts of 
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CYN may still be present when populations of the producing cyanobacteria 
have already declined or practically disappeared (see Box 5.1 for an example).
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2.3  ANATOXIN-A AND ANALOGUES

Emanuela Testai

Anatoxin-a (ATX) was isolated from strains of Dolichospermum (Anabaena) 
flosaquae originating from Canada (Carmichael et al., 1975). At the time, sev-
eral types of toxins (anatoxins a-d) were suspected (Carmichael & Gorham, 
1978), of which, however, only one eventually led to the elucidation of the 
absolute structure (Devlin et al., 1977) for which the suffix “-a” was kept.

Besides ATX, the following also includes information on its variant 
homoanatoxin-a (HTX), where available. The genetics and biosynthesis of 
ATX and other neurotoxic substances with a high structural variability pro-
duced by some marine cyanobacteria (Aráoz et al., 2010) have been reviewed 
by Pearson et al. (2016) and Bruno et al. (2017).

2.3.1  Chemical structures

Anatoxins are secondary amine alkaloids (Devlin et al., 1977; Figure 2.3a). 
The first synthesis of ATX yielded a racemic mixture of stereoisomers 
with optically positive and negative activity (Campbell et al., 1979). 
Homoanatoxin-a is a structural variant (differing from ATX by an 
 ethyl-group at the carbonyl-C; Figure 2.3b). It was first synthesised by 
Wonnacott et al. (1992) just before Skulberg et al. (1992) isolated it from 
a sample of Kamptonema (Oscillatoria) formosum. Due to its structural 
similarity to ATX, HTX is most probably produced by the same biosyn-
thetic pathway, with the additional carbon deriving from L-methionine via 
S-adenosyl-methionine (Namikoshi et al., 2004).

Further natural analogues of ATX are dihydroATX (dhATX; Figure 2.3c) 
and dihydroHTX reduced on C7 and C8, respectively (Smith & Lewis, 1987; 
Wonnacott et al., 1991).
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Figure 2.3 Che mical structure of anatoxin-a (a), homoanatoxin (b) and dihydroana-
toxin-a (c). Anatoxin-a: molecular mass (monoisotopic): 165.115 Da; molec-
ular weight (average): 165.237 g/mol. Homoanatoxin-a: molecular mass 
(monoisotopic) 179.131 Da; molecular weight (average): 179.264 g/mol. 
Dihydroanatoxin-a: molecular mass (monoisotopic) 167.131 Da; molecular 
weight (average): 167.252 g/mol.
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2.3.2  Toxicity: mode of action

The toxic effects of anatoxin-a, summarised in the following, are described 
in detail in the WHO Background Document on Anatoxin-a (WHO, 
2020); see there for further information and references). In summary, ATX 
is rapidly and passively absorbed after ingestion and widely distributed to 
different tissues, including the brain. No information about its biotrans-
formation is available but, overall, a low bioaccumulating potential can be 
anticipated. Anatoxin-a acts as a potent pre- and postsynaptic depolarising 
agent; it efficiently competes with acetylcholine for nicotinic receptors in 
neuromuscular junctions and the central nervous system, triggering neu-
rotransmitter release with an increased stimulation of postsynaptic recep-
tors. The cardiovascular system has also been indicated as a target organ. 
Death through the administration of a lethal ATX dose is due to muscu-
lar paralysis and respiratory failure (i.v. LD50 = 85 μg/kg bw; i.p. LD50 = 
260–315 μg/kg bw; oral LD50 > 5000 μg/kg bw). Acute studies in animals 
led to deaths within minutes of gavage administration. After the adminis-
tration of a sublethal single dose, mice readily recovered. Additional effects 
attributed to ATX in cell cultures include cytotoxic effects, caspase activa-
tion, apoptosis, induction of oxidative stress and formation of reactive oxy-
gen species. Diagnosis of ATX and HTX poisoning in dogs and livestock 
has been reported due to neurotoxic effects after drinking and bathing in 
waters with ATX-producing cyanobacteria, such as species of the genera 
Phormidium, Oscillatoria and Tychonema.

On a weight of evidence basis, it can be concluded that ATX has no 
developmental or teratogenicity potential and is not mutagenic in bacte-
ria. No in vivo carcinogenicity studies have been carried out. Regarding 
effects in humans, neurological symptoms (e.g., headache and confusion/
visual disturbance) were reported in 3 of 11 outbreaks associated with 
cyanobacteria in the USA in 2009–2010 (Hilborn et al., 2014), in which 
ATX was found in a concentration range of 0.05–15 μg/L, while none of 
these symptoms were reported in the other 8 outbreaks, where ATX was 
not detected.

Homoanatoxin-a shows a mode of action and toxicological properties 
almost identical to its analogue ATX. Dihydro-anatoxin has been suggested 
as the congener most likely responsible for some dog deaths (Wood et al., 
2017). Furthermore, a study indicates that dhATX is about fourfold more 
toxic than ATX when administered by gavage (Puddick et al., 2021).

2.3.3  Derivation of health- based reference values 

The following section is taken directly from the WHO chemicals back-
ground document on anatoxins (WHO, 2020) which gives the consider-
ations for the derivation of provisional guideline values for exposure to 
anatoxin in more detail. 
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Acute exposure to ATX in animals led to deaths within minutes of gavage 
administration (Astrachan, Archer & Hilbelink, 1980; Fawell et al., 1999). 
Since neither of the available repeated toxicity studies identified a nonlethal 
dose that caused lasting adverse effects, formal guideline values (GVs) (pro-
visional or otherwise) cannot be derived based on the available informa-
tion. In the 28-day study of Fawell et al. (1999), one of 20 animals in each 
of two dose groups died without signs that could be attributed to nontreat-
ment effects. If it is conservatively assumed that these animals died from the 
effects of the toxin, the no observed adverse effect level (NOAEL) would be 
98 μg/kg bw per day, but it could be as high as 2.46 mg/kg bw per day if 
these two animals were excluded (Fawell et al., 1999). Although GVs can-
not be derived due to inadequate data, a “bounding value”, or provisional 
health-based reference value, can be derived for short-term exposure using 
a highly conservative assumption to define the NOAEL at 98 μg/kg. This 
value is lower than the estimated NOAEL for exposure via drinking-water 
calculated from data in Astrachan, Archer & Hilbelink (1980) and the i.p. 
NOAEL for maternal toxicity identified by Rogers et al. (2005).

There is insufficient information to develop a long-term health-based ref-
erence value for ATX.

Default assumptions were applied as described in WHO (2009) for deriv-
ing the short-term drinking-water value and WHO (2003) for deriving the 
recreational water value. 

Calculation of provisional short-term  
drinking-water health-based reference value for ATX

NOAEL*bw*P 98 *60*1.0
HBRVshort-term = =  μ μg / L = 29.4  g / L  ≈ 30 μg / L

UF*C 100 *2

where

HBRVshort-term = short-term drinking-water health-based reference value
NOAEL = no-observed-adverse-effect level (98 μg/kg bw per day, based 

on Fawell et al., 1999)
bw = body weight (default = 60 kg for an adult)
P = fraction of exposure allocated to drinking-water (default for short-

term exposure = 100%, considering that drinking-water is expected 
to be the most likely source of exposure)

UF = uncertainty factor (10 for interspecies variation × 10 for intraspe-
cies variation); an uncertainty factor for database deficiencies was not 
applied since the NOAEL is lower than the i.p. NOAEL for maternal 
toxicity

C = daily drinking-water consumption (default = 2 L for an adult).
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Calculation of provisional recreational water 
health-based reference value for anatoxin-a

	
HBRV

NOAEL*bw
UF *C

98 *15
100*0.25

g/L 58.8 g/L 60 g/Lrecreation µ µ µ= = = ≈

where

HBRVrecreation = recreational water health-based reference value
NOAEL = no-observed-adverse-effect level (98 μg/kg bw per day, based 

on Fawell et al., 1999)
bw = body weight (default = 15 kg for a child)
UF = uncertainty factor (10 for intraspecies variation × 10 for interspecies 

variation)
C = daily incidental water consumption (default = 250 mL for a child).

Considerations in applying the provisional 
health-based reference values

Derivation of the provisional health-based reference values for ATX follows 
a highly conservative approach. As a result of inadequate data, the provi-
sional health-based reference values derived above do not represent WHO 
GVs and therefore are not intended for use as scientific points of departure 
for developing regulations or standards. Nevertheless, a “bounding value” 
may be useful to guide actions and responses by water suppliers and health 
authorities. Based on the limited currently available studies of acute and 
subchronic ATX toxicity, exposure up to the values provided is expected to 
be safe for adults. Since infants and children can ingest a significantly larger 
volume of water per body weight (e.g., up to 5 times more drinking-water/
kg  bw for bottle-fed infants than for an adult), it is recommended that 
alternative water sources, such as bottled water, are provided for bottle-
fed infants and small children when ATX concentrations are greater than 
6 µg/L for short periods, as a precautionary measure.

The provisional drinking-water health-based reference value is based on 
a 28-day repeated dose study and so is applicable for short-term exposure. 
However, because ATX is acutely toxic, it is recommended that any expo-
sure above this value be avoided.

The provisional health-based reference values are based on toxicologi-
cal data for ATX. It is recommended that for assessing risk, total ATXs 
as gravimetric or molar equivalent are evaluated against the health-based 
reference values, based on a reasonable assumption that HTX has similar 
toxicity to ATX. There is evidence that dihydro-analogues of ATX and 
HTX are similarly toxic by the oral route of exposure; hence it would be 
prudent to include these in determinations of total ATXs, when present.
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2.3.4  Production

2.3.4.1  Producing cyanobacteria

Anatoxin was first found in Dolichospermum (Anabaena) flosaquae 
strains originating from Canada (Carmichael et al., 1975; Devlin et al., 
1977) and later in Finland in Anabaena mendotae (Rapala et al., 1993), 
and D. circinale and Anabaena sp. in Finland and Japan (Sivonen et al., 
1989; Park et al., 1993). Since then, many papers have been published 
reporting its production by several cyanobacteria species in many geo-
graphic areas by a variety of cyanobacteria taxa belonging to Nostocales 
– that is, Chrysosporum (Aphanizomenon) ovalisporum, Cuspidothrix, 
Raphid iopsis (Cylindrospermopsis), Cylindrospermum, Dolichospermum 
(Anabaena) circinale, D. flosaquae and D. lemmermannii – and to Oscil-
latoriales, that is, Blennothrix, Kamptonema, Microcoleus, Oscillatoria, 
Planktothrix, Phormidium and Tychonema (for species names and taxo-
nomic changes, see Chapter 3). Tables 2.6 and 2.7 give examples of ATX 
contents in strains and concentrations in environmental samples, respec-
tively. For further details, see reviews by Funari and Testai (2008), Pearson 
et al. (2016), Testai et al. (2016) and Cirés and Ballot (2016).

The production of ATX is species- and strain-specific. It is of interest 
that the American and European isolates of D. circinale investigated so 
far produce only ATX, while the Australian isolates exclusively produce 
saxitoxins, even if the two strains are reported to form a phylogenetically 
coherent group (Beltran & Neilan, 2000).

Homoanatoxin-a was first isolated from a Kamptonema (Oscillatoria) 
formosum strain in Ireland (Skulberg et al., 1992). Subsequently, it was 
found to be produced by Raphidiopsis mediterranea in Japan and Oscil-
latoria in Norway, isolated from Microcoleus (Phormidium) autumnalis in 
New Zealand and from species of Dolichospermum/Anabaena in Ireland 
(see Testai et al., 2016).

2.3.4.2  Toxin profiles

Anatoxin has been found to be produced alone by Microcoleus (Phormidium) 
cf. autumnalis (James et al., 1997) as well as coproduced with HTX in 
Raphidiopsis mediterranea (Watanabe et al., 2003), Oscillatoria (Araóz 
et al., 2005), and with microcystins in Arthrospira fusiformis (Ballot et al., 
2005), Microcystis sp. (Park et al., 1993) and Dolichospermum/Anabaena 
spp. (Fristachi & Sinclair, 2008). M. autumnalis can contain high contents 
of HTX (together with ATX), showing large differences in toxin contents 
from week to week, and in some cases also in the same day (Wood et al., 
2012). Non–axenic M. autumnalis strain CAWBG557 produces ATX, 
HTX and their dihydrogen derivatives dihydroanatoxin-a (dhATX) and 
dihydrohomoanatoxin-a (dhHTX; Heath et al., 2014). Dihydro-anatoxin-a 
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Table 2.6  Neurotoxin contents reported from laboratory cultures of cyanobacteria

Toxin Taxon a Content in μg/g dw b Origin Reference

ATX Oscillatoria sp. 13 000 FIN Sivonen et al. (1989)

Oscillatoria sp. 2713 FIN Harada et al. (1993) 

Oscillatoria sp. 4000 FIN Araóz et al. (2005)

Aphanizomenon sp. 6700 FIN Sivonen et al. (1989)

Aphanizomenon sp. 1562 FIN Harada et al. (1993)

Cuspidothrix 
issatschenkoi

(400 fg/cell) NZL Wood et al. (2007a)

C. issatschenkoi 2354 (100 fg/cell) DEU Ballot et al. (2010) 

C. issatschenkoi 1683 NZL Gagnon & Pick (2012)

Aph. flosaquae ≈6500 d FIN Rapala et al. (1993)

Dolichospermum 
(Anabaena) 
mendotae

≈9800 d Rapala et al. (1993)

D. flosaquae ≈8800 d Rapala et al. (1993)

C. issatschenkoi (9.4 fg/cell) NZL Selwood et al. (2007)

D. flosaquae (4) 1017 – 13 000 FIN Sivonen et al. (1989)

D. flosaquae 13 013 CAN Harada et al. (1993)

D circinale 8200 FIN Gallon et al. (1994)

D. circinale 4400 FIN Harada et al. (1993)

D. circinale (2) 1396 – 3500 FIN Sivonen et al. (1989)

Arthrospira fusiformis 0.3 KEN Ballot et al. (2005)

Arthrospira fusiformis 10.4 KEN Kotut et al. (2006)

Nostoc carneum 156 IRN Ghassempour et al. 
(2005)

HTX Kamptonema 
(Oscillatoria) 
formosum

n.q. NOR Skulberg et al. (1992) 

Microcoleus 
(Phormidium) 
autumnalis

(437 fg/cell; ATXeq) NZL Heath et al. (2014)

Raphidiopsis 
mediterranea

n.q. JPN Watanabe et al. 
(2003)

Oscillatoria sp. (2) n.q. Araóz et al. (2005)

ATX-S D. lemmermannii 29–743 DNK Henriksen et al. 
(1997)

D. flosaquae n.q. CAN Carmichael & 
Gorham (1978)

Sphaerospermopsis 
torques-reginae

n.q. BRA Dörr et al. (2010)

(Continued )
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Table 2.6 (Continued )  Neurotoxin contents reported from laboratory cultures of 
cyanobacteria

Toxin Taxon a Content in μg/g dw b Origin Reference

STXs dAph. c.f. flosaquae GTX4: ≈ 7
dcGTX2: ≈ 5
neoSTX: ≈ 1

CHN Liu et al. (2006b)
Liu et al. (2006a)

dcSTX: ≈ 0.8
dcGTX3: ≈ 0.5

cAph. c.f. flosaquae n.q. USA Mahmood & 
Carmichael (1986)

Aph. gracile n.q. (ca. 910 STXeq/L) Pereira et al. (2004)

Aph. gracile neoSTX: 500–1600
STX: 550–780

TUR Yilmaz et al. (2018)

dcSTX: 2.6–5.0
dcNEO: 3.6–6.5

Aphanizomenon sp. GTX5+neoSTX: 34.6 fg/
cell

PRT Dias et al. (2002)

C. issatschenkoi 
(LMECYA31)

GTX5: 0.80
neoSTX: 0.24
dcSTX: 0.05

Pereira et al. (2000)
Li et al. (2003)

STX: 0.05 

D. circinale 1580 AUS Negri & Jones (1995)

D. circinale (28) 0.77 fg/cell
(STX+deSTX+GTX2/3+d
eGTX2/3+GTX5+C1/2) 

AUS Pereyra et al. (2017)

D. circinale GTX3: 1008 AUS Velzeboer et al. 
C2: 1545
STXeq: 2553 

(2000)

D. perturbatum / 
spiroides

GTX3: 14 AUS Velzeboer et al. 
(2000)

Raphidiopsis 
raciborskii (2)

STXeq: 0.010 BRA Lagos et al. (1999)

R. raciborskii STX: 0.3 BRA Castro et al. (2004)

Planktothrix sp. n.q. STX ITA Pomati et al. (2000)

Numbers following taxa indicate the number of tested strains if more than a single strain was analysed. 
The taxonomic classification is listed according to the current nomenclature with earlier syn-
onyms given in parentheses (for an overview on recent changes in taxonomy, see Chapter 3).

n.q.: not quantified, only qualitative detection reported.

a The taxon given here may deviate from that given in the publication. For changes in taxonomy, see 
Chapter 3. 

b If not specified otherwise.
c Several strains of Aph. flosaquae have been reclassified as Aphanizomenon sp. or Aph. gracile, 

respectively.
d  ≈ Estimated from figure in publication.
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Table 2.7  Neurotoxin contents of biomass and concentrations in water reported from 
environmental samples

Toxin Dominant taxa a
Concentrations/

contents/cell quota Type Origin Reference

ATX Phormidium 
favosum

8000 μg/g dw R FRA Gugger et al. (2005)

Microcoleus. cf. 
autumnalis

444 μg/L
16 μg/g dw

L IRL James et al. (1997)

Dolichospermum 
sp.

390 μg/L 
100 μg/g dw

L IRL James et al. (1997)

Dolichospermum 
sp.

Aphanizomenon 

13 μg/L intra+extra L/Res. DEU Bumke-Vogt et al. 
(1999)

sp.

Aphanizomenon 35 μg/g dw L RUS Chernova et al. (2017)
sp.

Cuspidothrix 
issatschenkoi

1430 μg/L L NZL Wood et al. (2007a)

Dolichospermum 4400 μg/g dw L FIN Sivonen et al. (1989)
sp.

Aphanizomenon 
sp.

Cylindrospermum 
sp.

Arthrospira 
fusiformis

2 μg/g dw L KEN Ballot et al. (2005)

Anabaena sp.
Art. fusiformis

223 μg/g dw L KEN Kotut et al. (2006)

Microcoleus cf. 
autumnalis

0.027 μg/g ww R NZL Wood et al. (2007a)

HTX M. cf. autumnalis 0.44 μg/g ww R NZL Wood et al. (2007b)

Anabaena spp. 34 μg/L L IRL Furey et al. (2003)

dhATX M. cf. autumnalis 2118 μg/L P Wood et al. (2017)

ATX(S) D. lemmermannii 3300 μg/g dw L DNK Henriksen et al. (1997)

STXs D. lemmermannii 224 μg /g dw 
STXeq

L DNK Kaas & Henriksen 
(2000)

D. lemmermannii 930 μg /g dw 
STXeq

1000 μg /L STXeq

L FIN Rapala et al. (2005)

D. lemmermannii 600 μg/L STX R RUS Grachev et al. (2018)

D. circinale 4466 μg /g dw 
STXeq

L/R AUS Velzeboer et al. (2000)

D. circinale 2040 μg STXeq/g 
dw

L/R AUS Humpage et al. (1994)

(Continued )
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Table 2.7 (Continued )  Neurotoxin contents of biomass and concentrations in water 
reported from environmental samples

Toxin Dominant taxa a
Concentrations/

contents/cell quota Type Origin Reference

Planktothrix sp. 181 μg/L STX 
(intra)

L ITA Pomati et al. (2000)

Aph. flosaquae 4.7 μg/g dw STXeq Res PRT Ferreira et al. (2001) 

Aph. favaloroi STX: 42 μg/g dw
0.17 fg/cell
neoSTX: 

L GRE Moustaka-Gouni et al. 
(2017)

17 μg/g dw
0.07 fg/cell

Aphanizomenon 
sp.

neoSTX: 2.3 μg/g 
dw

dcSTX: 2.3 μg/g dw
dcGTX3: 

L CHI Liu et al. (2006b)

0.5 μg/g dw

R. raciborskii 3.14 μg/L STXeq 
(intra+extra)

Res BRA Costa et al. (2006)

Microseira 
(Lyngbya) wollei

19–73 μg 
STXeq/g dw

R USA Foss et al. (2012)

M. wollei 58 μg STXeq/g dw L/Res USA Carmichael et al. (1997)

Contents are given in μg toxin per gram dry weight (dw) or wet weight (ww). For individual studies, 
maximum values are given. Samples were collected in different types of waterbodies (L: lakes, 
R: rivers, P: pond, Res: reservoirs) in countries as indicated. For saxitoxins, contents are 
reported as saxitoxin equivalents (STXeq) in some reports or as individual variants (see 
text). The taxonomic classification is listed according to the current nomenclature with 
earlier synonyms given in parentheses (for an overview on recent changes in taxonomy, see 
Chapter 3).

a The taxon given here may deviate from that given in the publication. For changes in taxonomy, see 
Chapter 3.

has been reported to be produced in amounts much higher than those of 
ATX by strains of M. autumnalis (Wood et al., 2017; Puddick et al., 2021) 

The few data available on ATX cell quota range from 90 fg/cell in 
Cuspidothrix issatschenkoi (Selwood et al., 2007) to 500 fg/cell in M. 
autumnalis (Heath et al., 2014). Cell quota detected in Tychonema bour-
rellyi were in a similarly wide range, 10–350 fg/cell (Shams et al., 2015).

The highest contents within the wide variability of ATX contents 
reported from strains grown as laboratory cultures, in the order of a few 
mg/g dw, were found in strains of the genera Oscillatoria, Phormidium, 
Aphanizomenon, Cuspidothrix and Dolichospermum. The maximum 
value (13 mg/g dw) was found in D. flosaquae and Oscillatoria sp., while 
much lower contents – generally by 1–2 orders of magnitude – of ATX are 
reported for cyanobacteria of other genera (Testai et al., 2016).



2 The cyanotoxins 81

2.3.4.3  Biosynthesis and regulation

Cyanobacteria produce (+)ATX, but no specific studies have addressed the 
stereoselectivity of the biochemical reaction towards the positive enantiomer.

Anatoxin biosynthesis and regulation have been reviewed in Pearson et al. 
(2016). Méjean et al. (2009) reported the identification of the first gene clus-
ter coding for the biosynthesis of ATXs (ana) within the sequenced genome 
of Oscillatoria sp. PCC 6506, producing mainly HTX. In the following 
years, five other ana clusters were identified within Dolichospermum/
Anabaena sp. 37, Oscillatoria sp. PCC 6407, Cylindrospermum stagnale 
sp. PCC 7417, Cuspidothrix issatschenkoi RM-6, C. issatschenkoi LBRI48 
and C. issatschenkoi CHABD3 (Rantala-Ylinen et al., 2011; Shih et al., 
2013; Méjean et al., 2014; Jiang et al., 2015).

Each cluster showed general similarities in the protein functions, with 
a high percentage of identity in nucleotide sequence (with the core genes 
anaB-G being conserved within all strains), but differences in the organ-
isation of genes (Pearson et al., 2016), leading to different toxin profiles 
between the producing organisms.

The biosynthesis of the ATXs involves a polyketide synthase (PKS) fam-
ily of multifunctional enzymes with a modular structural organisation as 
described in Méjean et al. (2014). A detailed biochemical description of 
the adenylation domain protein AnaC revealed the activation of proline as 
starter, and not glutamate as previously proposed (Dittmann et al., 2013). 
The biosynthetic pathway describes AnaB, AnaC and AnaD as acting in 
the first steps (which have been fully reproduced in vitro; Méjean et al., 
2009; Méjean et al., 2010; Mann et al., 2011), and AnaE, AnaF, Ana J and 
AnaG catalysing the following steps, with the latter adding two carbons 
and methylating the substrate to produce HTX. The release of ATXs may 
be catalysed by the thioesterase AnaA, although this has not been experi-
mentally verified (Pearson et al., 2016) or a spontaneous decarboxylation 
step may occur to yield the amine alkaloid ATX (Dittmann et al., 2013).

The molecular regulation of ATX has not been sufficiently studied so 
far. Under conditions where anaA, anaJ, anaF and anaG transcripts were 
present in C. issatschenkoi CHABD3, no ATX was detected (Jiang et al., 
2015). This result may indicate that the regulation of ATX occurs at the 
post-transcriptional level, but interpretation is limited by the lack of inves-
tigation of ATX dihydroderivatives production (Pearson et al., 2016).

An influence of light, temperature, phosphorous and nitrogen on cel-
lular ATX content is reported, and it seems that the influence of envi-
ronmental factors is strain-specific (Harland et al., 2013; Neilan et al., 
2013; Boopathi & Ki, 2014; Heath et al., 2014). Overall, the influence of 
factors, such as light and temperature, reported for the ATX content in 
Dolichospermum/Anabaena and Aphanizomenon cultures varies around 
2–4-fold, not exceeding a factor of 7 (Rapala & Sivonen, 1998), and a 
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similar range is reported for HTX in relation to phosphorus (Heath et al., 
2014). HTX production also seems to be linked to the culture growth phase 
in Raph. mediterranea strain LBRI 48 (Namikoshi et al., 2004). However, 
the results of most studies were not strongly supported by statistical anal-
yses; furthermore, determining the effect of nutrient limitation requires 
continuous culture systems or evaluating batch culture data in relation to 
growth rates, yet in few studies this was done.

2.3.5  Occurrence in water environments

Anatoxin-a has a worldwide distribution that includes temperate,  tropical 
and cold climatic regions (Fristachi & Sinclair, 2008). Although the occur-
rence of ATX has been less frequently surveyed than that of  microcystins, 
based on the available data, it is evident that a wide variability in ATX 
contents is reported from environmental freshwater samples (Testai et al., 
2016).

In the USA, surveys conducted in Florida in 1999 and 2000 did not detect 
ATX in most of the samples tested, but the maximum concentration found 
amounted to 156 μg/L (Fristachi & Sinclair, 2008); in Nebraska, variable 
ATX concentrations up to 35 μg/L were measured in water samples collected 
from eight reservoirs between 2009 and 2010 (Al-Sammak et al., 2014), and 
the highest ATX levels (1170 μg/L) were found in Washington State, where 
three waterbodies had long-term recurring blooms (Trainer & Hardy, 2015).

In Europe, a monitoring programme on 80 German lakes and reservoirs 
found ATX in 25% of the surveyed waterbodies and in 22% of water sam-
ples with a maximum total concentration of 13.1 μg/L (Bumke-Vogt et al., 
1999). In Finland, in a survey of 72 lakes with variable trophic state, nearly 
half of the blooms dominated by Dolichospermum did not contain detect-
able ATX (Rapala & Sivonen, 1998). Furthermore, in Finland, hepatotoxic 
blooms have been found to be twice as common as neurotoxic ones (Rapala 
& Sivonen, 1998). Among 20 Irish lakes investigated, homoanatoxin-a was 
found in four inland waters dominated by blooms of Dolichospermum spp. 
at concentrations of up to 34 μg/L (Furey et al., 2003).

In Kenya, seven lakes (two freshwater and five alkaline saline waters) 
and the hot spring mats of Lake Bogoria were investigated for cyanotoxins, 
and ATX was recorded in almost all of them, at up to 1260 μg/g dw but 
not as dissolved toxin (Kotut et al., 2006). ATX concentrations up to 2.0 
μg/g dw were detected in two alkaline Kenyan crater lakes, dominated by 
Arthrospira fusiformis (Ballot et al., 2005).

A number of publications have addressed the production of ATX by benthic 
cyanobacteria: the highest toxin concentrations being reported in a river mat 
sample (8 mg/g dw) in France, formed by benthic Kamptonema (Phormidium) 
formosum (Gugger et al., 2005). Levels ranging from 1.8 to 15.3 μg ATX/g 
of lyophilised weight were detected in Phormidium biofilms in the Tarn River 
(France) with high spatiotemporal variability and the highest concentrations 
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being recorded at the end of the summer period (Echenique-Subiabre et al., 
2018). The maximum ATX concentration in surface waters reported to date 
was found in a lake in Ireland (444 μg/L), where no surface blooms were 
previously observed, and as in the French case, the causative agent was a 
benthic cyanobacterium (James et al., 1997). Benthic, mat-forming cyano-
bacteria are common also in New Zealand rivers, frequently populated by 
Phormidium, known to produce ATX and HTX, the latter at contents up 
to 4400 μg/g dw (Wood et al., 2007b; Wood et al., 2012). In a study moti-
vated by dog deaths, Wood et al. (2017) reported moderate concentrations 
of ATX (25 μg/L) and high levels of dhATX (2,118 μg/L), indicating that the 
latter may be present in higher concentrations than estimated so far. These 
concentrations, however, are associated with benthic grab samples and do 
not represent concentrations in larger water volumes (see also section 12.8 
on benthic sampling). For an example of animal poisoning at a recreational 
lake and possible implications for human health see also Box 5.6.

Benthic cyanobacterial mats dominated by Phormidium terebriformis, 
Microseira (Lyngbya) wollei, Spirulina subsalsa and Synechococcus big-
ranulatus in the hot springs at the shore of Lake Bogoria (Kenya) contained 
MC and ATX (Krienitz et al., 2003). Recently, periphytic and tychoplank-
tic Tychonema have been identified as a producer of ATX and HTX in 
Italian alpine lakes (Salmaso et al., 2016) and in a German lowland lake 
(Fastner et al., 2018). However, identification at species level has not always 
been undertaken for benthic cyanobacteria (Puschner et al., 2008; Faassen 
et al., 2012), and it seems likely that more HTX-producing Oscillatoria or 
Phormidium/Microcoleus populations – and species – will be identified as 
research continues.

Anatoxin-a occurrence is not limited to freshwater; indeed, it has been 
found in brackish waters in samples collected off the coast of Poland in the 
Baltic Sea at the beginning of September (Mazur & Plinski, 2003) and in 
Chesapeake Bay (USA) at concentrations ranging from 3 × 10−3 to 3 mg/L 
(Tango & Butler, 2008). Although different planktonic and benthic genera 
occur and possibly dominate in brackish water (Nodularia, Aphanizomenon, 
Microcystis, Dolichospermum, Anabaena and Phormidium/Microcoleus), 
in these environments ATX seems to be produced exclusively by species 
formerly assigned to Phormidium (Lopes et al., 2014). Moreover, ATX pro-
duction was found in a benthic marine cyanobacterium (Hydrocoleum lyn-
gbyaceum) in New Caledonia (Méjean et al., 2010).

Biocrust-forming cyanobacteria inhabiting the Kaffiøyra Plain (in the 
Arctic region) are able to synthesise ATX from 0.322 to 0.633 mg/g dw 
(Chrapusta et al., 2015).

The available data and information have not linked ATX to human poi-
soning via drinking-water (Humpage, 2008). Surveys of cyanotoxins in  
drinking-water supplies in 1999/2000 across Florida found ATX only in 
three finished waters with concentrations up to 8.5 μg/L (Burns, 2008). 
Nevertheless, ATX should not be excluded as a potential human health 
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hazard because some Oscillatoria sp. potentially producing ATX can prolif-
erate in facilities and tanks for water storage (Osswald et al., 2007).

2.3.5.1  Bioaccumulation

The issue has been extensively reviewed in Testai et al. (2016). Anatoxin-a 
has been detected at low concentrations (0.51–43.3 μg/g) in Blue Tilapia 
fish in Florida (Burns, 2008). However, in Nebraska, this toxin could not 
be detected in fish from a reservoir although it was present in samples of 
the water and aquatic plants at the location (Al-Sammak et al., 2014). 
Concentrations similar to those in Tilapia were found in carp and juvenile 
trout exposed to high concentrations of ATX in an experimental setting 
(Osswald et al., 2007; Osswald et al., 2011); when mussels were experi-
mentally exposed to live cells of an Anabaena strain (ANA 37), much lower 
levels were detected in the tissues (Osswald et al., 2008).

A special case of food items potentially containing ATX are “blue-green 
algal food supplements” (BGAS) that are usually produced from Spirulina 
maxima or Arthrospira (Spirulina) platensis and Aph. flosaquae. In Spirulina/
Arthrospira-based BGAS, no direct evidence of the presence of ATX has 
been reported, but two nontoxic metabolites of this toxin have been found 
at contents of up to 19 μg/g dw (Draisci et al., 2001). When 39 samples 
containing the genera Arthrospira, Spirulina and Aphanizomenon were 
analysed, three (7.7%) contained ATX at concentrations ranging from 2.5 
to 33 μg/g dw (Rellán et al., 2009). See also section 5.4.

2.3.6  Environmental fate

2.3.6.1  Partitioning between cells and water

Anatoxins can be released from producing cells into the surrounding water, 
but very different results were reported in the ratio between the intra- and 
extracellular fractions, likely depending on the species and environmental 
conditions (Testai et al., 2016) as well as on the sensitivity of the analytical 
method used especially in earlier studies (Wood et al., 2011; Testai et al., 
2016). There is currently no evidence that ATXs are released from viable, 
intact cells to a substantial degree. It may be hence concluded that ATXs are 
largely confined to viable cyanobacterial cells in the environment and that 
extracellular release occurs mainly through cell senescence and lysis.

Once released from cells into the surrounding water, ATX can undergo 
chemical and biological degradation (Rapala & Sivonen, 1998) (see below). 
This is a challenge for its detection in environmental samples: the presence 
of ATX degradation products reported in some Finnish lakes at concentra-
tions of 100–710 μg/L for epo-ATX and at 5–150 μg/L for dihydro-ATX 
(Rapala et al., 2005) indicates that ATX derivatives may serve as indicator 
of the previous presence of dissolved ATX.
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2.3.6.2  Chemical breakdown

In laboratory studies, ATX has been reported to undergo a rapid pho-
tochemical degradation in sunlight, under conditions of the light inten-
sity and pH ranges expected to be associated with blooms: Stevens and 
Krieger (1991) observed the reaction rate to be positively related to both 
pH and light intensity, with half-lives for photochemical breakdown at 
pH ≥ 6 of 1.6–11.5 h, whereas at pH of 2, ATX was very stable. Kaminski 
et al. (2013) showed that ATX was resistant to photosynthetic active radi-
ation with degradation dependent on pH: at low pH (<3), ATX proved 
stable when stored at room temperature, with minimal (≤3%) losses over 
a period of 9 weeks, but gradual degradation (≥37% losses) occurred at 
neutral (pH 7) and high pH (9.5). Anatoxin-a is relatively stable in the dark 
(Matsunaga et al., 1989), with a half-life of 4–10 days (Stevens & Krieger, 
1991), at a pH of 9.

The mouse bioassay results show that regardless of process, photolytic 
or nonphotolytic, the breakdown products are of reduced toxicity and not 
antagonistic towards the effects of ATX (Stevens & Krieger, 1991).

In conclusion, once released from cyanobacterial cells and dissolved in 
water, ATX may degrade faster in water with high pH and further mitigat-
ing factors (e.g., microbial activity, elevated temperature), but may generally 
be more stable than previously assumed.

2.3.6.3  Biodegradation

Biodegradation by bacteria also has an important role: under natural con-
ditions, ATX and HTX are partially or totally degraded and converted to 
dihydro- and epoxy-derivatives (James et al., 2005). Isolated Pseudomonas 
spp. degraded ATX at a rate of 2–10 μg/mL × day (Kiviranta et al., 1991), 
organisms in sediments reduced ATX concentrations by 25–48% in 22 days 
(Rapala et al., 1994), and a laboratory experiment with lake sediments and 
natural bacteria resulted in a half-life of 5 days (Kormas & Lymperopoulou, 
2013).

Dihydroanatoxin-a has been considered the major ATX degradation 
product, representing from 17% to 90% of the total ATX concentra-
tion in the environment (Mann et al., 2011). Its concentrations gradually 
increased over time, paralleled by a decrease in ATX concentrations (Wood 
et al., 2011), although the involved enzymatic steps are not fully clarified. 
However, Heath et al. (2014) found that dhATX can account for 64% of 
the total intracellular ATX quota, suggesting that it is internally formed 
and is not only the product of cell lysis and environmental degradation, but 
is synthesised de novo in the cells.

In conclusion, due to the (photo)chemical and biological degradation of 
ATX and HTX, environmental samples invariably contain large amounts of 
these derivatives. Similar reactions can be expected to occur within biota, 
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including mammals, although these have so far not been reported. Therefore, 
both environmental and forensic (e.g., in case of animal poisoning) analyses 
should also include an investigation of these degradation products.
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2.4  SAXITOXINS OR PARALYTIC 

SHELLFISH POISONS

Emanuela Testai

Saxitoxins (STXs) are natural alkaloids also known as paralytic shellfish 
poisons (PSP) because they were originally found in molluscs, the con-
sumption of which led to poisonings of humans. The organisms producing 
this group of toxins are marine microalgae – dinoflagellates of the gen-
era Alexandrium, Gymnodinium and Pyrodinium – as well as freshwater 
cyanobacteria.

2.4.1  Chemical structures

Saxitoxins, also known as paralytic shellfish poisoning toxins, are a  family 
of 57 analogues (Wiese et al., 2010), consisting of a tetrahydropurine group 
and two guanidine subunits, representing the tricyclic perhydropurine 
backbone. Depending on the substitutions in the variable positions, R1-R4, 
the family can be subdivided into four groups:

 1. nonsulphated molecules whose structure is similar to carbamates, 
including saxitoxins and neosaxitoxin (STX, dcSTX, neoSTX);

 2. monosulphated gonyautoxins (GTX 1 to 6 and dcGTX 2 and 3);
 3. doubly-sulphated C-toxins (C1-2);
 4. variants identified exclusively in strains of Lyngbya (Microseira) wol-

lei (LWTX 1-6) from the USA (Lajeunesse et al., 2012), characterised 
by the presence of a hydrophobic side chain with an acetate at C13 
(LWTX 1-3, 5, 6) and a carbinol at C12 (LWTX 2, 3, 5) instead of a 
hydrated ketone.

Alternatively, they are grouped on the basis of the R4 substituent into car-
bamate toxins (STX, neoSTX and GTX1-4), sulphamate toxins (GTX 5-6, 
C1-4) and decarbamoyl toxins (dcSTX, dcneoSTX and dcGTX1-4) (Figure 
2.4, Table 2.8).

Most known STXs are hydrophilic, with the exception of those produced 
by L. wollei in a freshwater environment.

Interconversions among the different STX congeners have been reported, 
both chemically and enzymatically mediated, and in some cases, this is 
expected to increase toxicity. Some of the transformations include desulpha-
tion (Ben-Gigirey & Villar-González, 2008), oxidation (García et al., 2010), 
reduction (Oshima, 1995a; Fast et al., 2006), decarbamoylation (Oshima, 
1995a; Fast et al., 2006), deacetylation (Foss et al., 2012) and epimerisation 
(Ben-Gigirey & Villar-González, 2008).
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Figure 2.4 S tructure of saxitoxin (a) and general structure of saxitoxins (STX) and gony-
autoxins (GTX) (b). R4-1: carbamate toxins, including STX and neo-saxitoxin; 
R4-2: N-sulphocarbamoyl (or sulphamate) toxins, including GTX5 and GTX6; 
R4-3 decarbamoyl toxins, including dcSTX; R4-4: deoxydecarbamoyl toxins, 
including deoxydecarbamoyl-STX. For R1, R2 and R3 in particular variants, 
see Table 2.8.

2.4.2  Toxicity: mode of action

The toxic effects of saxitoxin (STX), summarised in the following, are 
described in detail in the WHO Background Document on Saxitoxins (WHO, 
2020; see there for further information and references). The great major-
ity of reported clinical, epidemiological and toxicological data about STXs 
have been obtained from cases of poisoning following the consumption of 
shellfish which accumulate STXs produced by marine dinoflagellates; how-
ever, since the chemical structure is the same as that of the STXs produced 
by cyanobacteria, the toxicological profile is identical. Saxitoxins are read-
ily absorbed by the gastrointestinal tract, rapidly distributed to a range of 
tissues, including the central nervous system, and undergo rapid excretion 
mainly in the urine as glucuronides, thus suggesting glucuronidation as a 
possible detoxication metabolic pathway in animals and humans.

The mechanism of action of STXs is based on Na-channel blocking in 
neuronal cells and on Ca++ and K+ channel blocking in cardiac cells. This 
action prevents the propagation of electrical transmission within the periph-
eral nerves and skeletal or cardiac muscles. It leads to typical neurologic 
symptoms such as nervousness, twitching, ataxia, convulsions and muscle 
and respiratory paralysis, and at a lethal dose, death in animal experiments 
has been observed within a few minutes; for humans, death through respi-
ratory paralysis has been reported after 2–24 h (FAO, 2004). Depending 
on the variants, STX toxicity in mice can differ considerably. Carbamate 
toxins are by far the more toxic and the lack of the carbamoyl group side 
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Table 2.8  Different saxitoxin-like congeners and their relative toxicity compared to 
STX (relative toxicity = 1)

Relative 
R1 R2 R3 toxicity Reference

Carbamate toxins

STX H H H 1 Oshima (1995b)

neo STX OH H H 0.93 Oshima (1995b)

GTX1 OH H −OSO3 0.99 Oshima (1995b)

GTX2 H H −OSO3 0.41 Wichmann et al. (1981)

GTX3 H −OSO3 H 0.90 Genenah & Shimizu (1981)

GTX4 OH −OSO3 H 0.73 Oshima (1995b)

Sulphamate toxins

GTX5 H H H 0.15 Genenah & Shimizu (1981)

GTX6 OH H H 0.07 Oshima et al. (1989)

C1 H H −OSO3 0.01 Wichmann et al. (1981)

C2 H −OSO3 H 0.17 Oshima et al. (1989)

C3 OH H −OSO3 0.01 Oshima (1995b)

C4 OH −OSO3 H 0.06 Oshima (1995b)

Decarbamoyl toxins

dcSTX H H H 0.51 Oshima (1995b)

dcneoSTX OH H H n.a.

dcGTX1 OH H −OSO3 n.a.

dcGTX2 H H −OSO3 0.65 Oshima (1995b)

dcGTX3 H −OSO3 H 0.75 Oshima (1995b)

dcGTX4 OH −OSO3 H 0.49 Oshima (1995b)

Where more than one value for i.p. acute toxicity was available for an individual toxin, highest acute 
toxicity was considered to calculate the relative toxicity. Toxicity of saxitoxins is generally 
expressed in mouse units (MU), that is, the amount injected toxin which would kill a 20 g 
mouse in 15 min and is equivalent to 0.18 μg of STX.

n.a.: not available. R1, R2 and R3 refer to the substituent groups as depicted in Figure 2.4.

chain gives rise to a molecule with about 60% of the original toxic activity, 
whereas C-toxins and LWTXs are characterised by a much lower toxicity.

No robust information on repeated toxicity, genotoxicity, carcinogenicity 
and reproductive or developmental toxicity is available.

Doses in the range 140–300 μg STXeq/person were reported to induce 
no or mild symptoms, but variability is pronounced; a case report indicated 
that ≈300 μg PSP toxin per person may be fatal (FAO, 2004). Mild clinical 
symptoms (tingling sensation or numbness around lips, gradually spreading 
to the face and neck) have a quick onset (hours), but may last for days. These 
symptoms precede prickly sensation in the fingertips and toes, headaches, 
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dizziness, nausea, vomiting and diarrhoea, and distinct muscular weakness. 
A broad spectrum of effects, from mild to moderate symptoms up to paraly-
sis and death, have been described following ingestions of 460–12 400 μg 
STXeq/person (FAO, 2004; McLaughlin et al., 2011). This high variability 
has been attributed to uncertainties in the detection of the actual level of 
exposure to different STX variants, differences in critical access to rapid 
health care and differences in individual susceptibility.

2.4.3  Derivation of guideline values 

The following section is taken directly from the WHO chemicals  background 
document on saxitoxins (WHO, 2020) which discusses the  considerations 
for the derivation of provisional guideline values for exposure to saxitoxin in 
more detail. The GV for acute exposure through  drinking-water is derived 
for bottle-fed infants, as the most sensitive subgroup in a  population. This 
is considered appropriate for this cyanotoxin group because the GV is for 
acute exposure, and there is a relatively small margin of safety, as described 
below. All other default assumptions were applied as described in WHO 
(2009, 2017) for deriving the acute drinking-water GV, and in WHO (2003) 
for deriving the recreational GV.

FAO (2004) identified a LOAEL for mild symptoms of 2.0  μg/kg bw, 
based on a review of human cases of paralytic shellfish poisoning (PSP). 
More recently, EFSA (2009) reviewed about 500  cases of human PSP 
described in case reports that had estimated the consumption of STXs 
associated with a range of symptoms. This analysis identified a LOAEL for 
STXeq of 1.5 μg/kg bw by assuming an adult body weight of 60 kg. Because 
many individuals did not show symptoms at much higher estimated intakes, 
EFSA (2009) reasoned that the LOAEL must be very near the threshold for 
effects in sensitive individuals. Therefore an uncertainty factor of 3 was 
applied to the LOAEL "to estimate a NOAEL", establishing an acute refer-
ence dose (ARfD) for STXeq of 0.5 μg/kg bw. An uncertainty factor for 
intraspecies variation was not applied because documented human cases 
included a wide spectrum of people (occupation, age, and sex). 

The GVs are derived from data from poisoning events caused by mix-
tures of STXs, with total STXs expressed as STX concentration equiva-
lents (STXeq). The GVs therefore apply to total STXs in a sample, not just 
the parent compound, STX.

These values are supported by data from animal studies: the use of the 
lowest acute no observed adverse effect level (NOAEL) for neoSTX of 
87 μg/kg bw after gavage administration as a point of departure leads to the 
derivation of an ARfD for neoSTX of 0.87 μg/kg bw (applying an uncer-
tainty factor of 100). This value is of the same order of magnitude as the 
reference values obtained with human data (Testai et al., 2016).



98 Toxic Cyanobacteria in Water

Calculation of acute drinking-water 
guideline value for saxitoxins

LOAEL*bw*P 1.5*5*1.0
GVacute = = μ μg/L = 3.3 g/L ≈ 3 μg/L

UF*C 3*0.75  

where

GVacute = guideline value for acute exposure
LOAEL = lowest-observed-adverse-effect level (1.5 μg STXeq/kg, based 

on the human data on PSP reports) 
bw = body weight (default = 5 kg for an infant)
P = fraction of exposure allocated to drinking-water (default for short-

term exposure = 100%, considering that drinking-water is expected 
to be the most likely source of exposure where surface water is used as 
the source of drinking-water)

UF = uncertainty factor (3, for use of a LOAEL rather than a NOAEL)
C = daily drinking-water consumption (default = 750 mL for an infant). 

Calculation of recreational water 
guideline value for saxitoxin

The calculation is based on a scenario of a child playing in bloom-infested 
water:

LOAEL*bw 1.5*15
GVrecreation = = μ μg/L = 30 g/L

 UF*C 3*0.25

where

GVrecreation = guideline value for recreational exposure
LOAEL = lowest observed-adverse-effect level (1.5 μg STXeq/kg, based 

on human poisoning data)
bw = body weight (default = 15 kg for a child)
UF = uncertainty factor (3, for use of a LOAEL rather than a NOAEL)
C = daily incidental water consumption (default = 250 mL for a child).

Considerations in applying the 
provisional guideline values

As indicated above, for assessing risk, the cumulative detection of both 
STX and its structural analogues should be evaluated against the GVs. 
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This is generally expressed as STXeq. STXeq can indicate concentration 
equivalents – calculated by simple addition of the concentrations of all 
analogues present, each being quantified against an analytical standard 
for that analogue. This represents a conservative approach to protect 
human health in most cases, assuming that all analogues have compa-
rable characteristics and toxicity to STX. An exception is when the more 
potent neoSTX is the dominant congener present (see below). A more 
precise, usually less conservative approach is to determine STX toxic-
ity equivalents by multiplying the concentration of each analogue by the 
respective toxicity equivalence factor (TEF) before addition. Where avail-
able, oral toxicities should be used in preference to relative i.p. toxicities. 
Munday et al. (2013) provides the acute oral toxicities of some analogues 
while a table of TEFs based on i.p. toxicity in mice has been published 
by EFSA (2009).

The acute GVs for STXs are based on acute exposure data. A time limit 
for tolerating concentrations up to 3 μg/L cannot be given because of the 
lack of data on effects at low doses. Thus, in contrast to other cyano-
toxins, short-term and lifetime exposure GVs were not developed, and 
short-term exceedances of the acute GV should not be permitted. Although 
there is currently no evidence of health impairments from chronic exposure 
to low doses of STXs, it is always prudent to implement control measures 
to reduce the presence of toxic cyanobacterial blooms or their impact on 
drinking-water supplies as soon as possible (see Chapters 6–10). Limited 
data show that STX concentrations in drinking-water have almost always 
been at trace levels (see section 2.4.5), indicating that conventional water 
treatment is generally effective, provided that cell lysis is avoided (see 
Chapter 10).

The drinking-water GV for STXs uses an allocation factor of 100% for 
drinking-water; however, it may be appropriate to consider reducing the allo-
cation factor for drinking-water in locations with increased risk of coinci-
dent water and shellfish exposure (marine or freshwater). However, it should 
be noted that GVs for STX in marine shellfish are comparatively high and, 
in locations where contamination of shellfish is a concern, drinking-water 
containing STX would contribute a relatively small additional exposure. 
Nevertheless, it is recommended that health authorities jointly consider and 
manage such a scenario, particularly given the relatively steep dose–response 
relationship for these toxins.

For the drinking-water acute GV, the lower body weight and higher 
likely water intake of an infant (as a function of body weight) were used 
because a GV based on adults could allow exposure of infants to a concen-
tration of STXs close to the LOAEL. For a 60 kg adult consuming 2 L of 
drinking-water per day, a 5-fold higher concentration than the acute GV 
would be tolerable. 
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2.4.4  Production

2.4.4.1  Producing cyanobacteria

Saxitoxins are produced by species of marine eukaryotic dinoflagellates within 
the genera Alexandrium, Gymnodinium and Pyrodinium as well as by cya-
nobacteria within a range of species and strains belonging to the Nostocales, 
that is, Dolichospermum (Anabaena). (Humpage et al., 1994; Velzeboer 
et al., 2000), Aphanizomenon (Ikawa et al., 1982; Sasner et al., 1984; Pereira 
et al., 2000; Dias et al., 2002) and Raphidiopsis (Cylindrospermopsis) 
raciborskii mainly in Brazil (Lagos et al., 1999; Molica et al., 2002) and 
Scytonema (Smith et al., 2011) and Oscillatoriales such as Planktothrix and 
Microseira (Lyngbya) wollei (Carmichael et al., 1997; Onodera et al., 1997). 
From lakes and reservoirs of the southern USA, Microseira wollei is known 
to overwinter in the form of benthic mats and rises to form surface mats 
 during the warmer months (Carmichael et al., 1997).

Cyanobium sp. CENA 142 and Oxynema sp. CENA 135 were among 
135 strains isolated from cyanobacteria collected from Cardoso Island and 
Bertioga mangroves for which both molecular analyses and ELISA showed 
STXs production (Silva et al., 2014). For further details, see the review by 
Testai et al. (2016) and Cirés and Ballot (2016).

2.4.4.2  Toxin profiles

The production of different STX congeners seems to be strain-specific. 
Indeed, C1, C2, GTX2 and GTX3 were found as predominant congeners in 
environmental samples and isolated strains of Dolichospermum circinale in 
Australia, although a hitherto unique toxin composition (exclusively STX 
and GTX5) was found in a geographically isolated strain from the south-
west coast of Australia (Velzeboer et al., 2000). Ferreira et al. (2001) found 
that two Aphanizomenon flosaquae strains and samples of a bloom from 
a reservoir in Portugal contained a specific STX mixture: GTX4 was the 
dominant analogue, followed by GTX1 and GTX3. A. flosaquae strains in 
a Chinese lake produced neoSTX, dcSTX and dcGTX3, showing a differ-
ent toxin profile (Liu et al., 2006a; Liu et al., 2006b), whereas A. gracile 
strains detected in two German lakes produced GTX5, STX, dcSTX and 
neoSTX (Ballot et al., 2010).

In Brazilian freshwaters, STXs are attributed to R. raciborskii. In strains 
isolated from two reservoirs, the contents of total STXs were similar to 
those reported in D. circinale in Australia (Humpage et al., 1994; Lagos 
et al., 1999). One of the Brazilian strains showed a toxin profile very similar 
to that of A. flosaquae, while the other produced only STX and GTX2/3. 
Other toxin profiles were described for the Tabocas Reservoir in Caruaru 
(NE Brazil) affected by a R. raciborskii bloom; several STX analogues 
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(STX, GTX6, dcSTX, neoSTX and dcneoSTX) were identified but no 
cylindrospermopsin was detected (Molica et al., 2002). Again in Brazil, 
Castro et al. (2004) reported a R. raciborskii strain isolated from a bloom 
which contained STX concentrations around 0.3 mg/g DW, which is 4- to 
8-fold higher than those of GTX2 and GTX3.

In Lyn. wollei strains isolated from a reservoir in southern USA, GTX2 
and GTX3 represented the major STX congeners, whereas STX and 
neoSTX were not detected (Carmichael et al., 1997).

Planktothrix sp. FP1 has been associated with the production of STXs 
in a lake in Italy, confirmed in the isolated culture; the toxin profile of this 
strain included STX, GTX2 and GTX3 (Pomati et al., 2000).

Few data have been published on the cellular contents of STXs in different 
cyanobacteria. Llewellyn et al. (2001) have reported STX cell quota up to 
slightly more than 450 ng /106 cells (i.e., 0.45 pg/cell) in a D. circinale strain 
isolated from an Australian waterbody. Hoeger et al. (2005) estimated the 
cell quota to be 0.12 pg STXs/cell in D. circinale. Higher cell quotas (up to 
1300 fg/cell) are reported for a strain of Scytonema sp. which, however, has 
very large cells, and in relation to its biomass, with 119 μg/g dry weight the 
toxin content of this strain was not exceptionally high (Smith et al., 2011). 
Cell quota up to 0.034 pg/cell of STXeq. were reported in an Aphanizomenon 
sp. (strain LMECYA 31); in the same culture, very high levels of dissolved 
STXs were observed in the culture media, especially in the late growth phase, 
very likely as a consequence of cell lysis and leakage (Dias et al., 2002).

Tables 2.6 and 2.7 give examples of the STX contents of strains and envi-
ronmental samples, respectively. For further details, see reviews by Funari 
and Testai (2008), Pearson et al. (2016) and Testai et al. (2016).

2.4.4.3  Biosynthesis and regulation

The saxitoxin biosynthesis gene cluster (sxt) was first characterised in 
Cyl. raciborskii T3 by Kellmann et al. (2008); other characterisations fol-
lowed from other strains, namely, Dolichospermum circinale AWQC131C, 
Aphanizomenon sp. NH-5 (Mihali et al., 2009), Raphidiopisis brookii D9 
(Stüken et al., 2011) and Lyngbya wollei (Mihali et al., 2011). All five sxt 
clusters encoded biosynthetic enzymes (sxtA, sxtG, sxtB, sxtD, sxtS, sxtU, 
sxtH/T and sxtI which appear to have diverse catalytic functions) plus regu-
latory genes (sxtL, sxtN and sxtX) and transporters (Kellmann et al., 2008; 
Pearson et al., 2010).

Different biosynthetic pathways have been proposed, the most recent by 
D’Agostino et al. (2014) and reviewed by Pearson et al. (2016), starting with 
the methylation of acetyl-CoA catalysed by SxtA, followed by a conden-
sation reaction with arginine. Further, the aminotransferase SxtG cataly-
ses the addition of the amidino group from a second arginine residue. The 
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following reactions are cyclisation and desaturation leading to the tricyclic 
core structure, resulting in decarbamoyl STX (dcSTX). Finally, a carbam-
oyl group is added to dcSTX by the carbamoyltransferase SxtI, resulting in 
the finalised STX molecule.

The N-sulfotransferase (SxtSUL) can modify STX, GTX2 and GTX3, 
into GTX5-6, C-1 and C-2, by transferring a sulphate residue from 
PAPS (3′-phosphoadenosine 5′-phosphosulphate) to the carbamoyl group. 
SxtDIOX is proposed to catalyse the C11 hydroxylation of STX followed 
by subsequent O-sulphation by SxtSUL for biosynthesis of GTX1-4. A 
combination of sulphation by SxtSUL and SxtN then leads to biosynthesis 
of the disulphated C-toxins.

STX congeners are mainly produced during late exponential growth 
phase in laboratory culture (Neilan et al., 2008). The characterisation of the 
sxt cluster in several genera has enabled the study of molecular mechanisms 
underlying regulation, based on the identification of the genes sxtY, sxtZ 
and ompR putatively involved in regulating the sxt cluster, adjacent to the 
Raphidiopsis raciborskii T3 sxt cluster (Kellmann et al., 2008). However, 
so far the direct involvement of the regulatory cluster on STX biosynthesis 
has not been experimentally demonstrated (Pearson et al., 2016).

Regarding the impact of environmental factors, the analysis of data from 
Australian field samples suggests that STX production is influenced by envi-
ronmental factors, particularly alkalinity (pH > 8.5), very high ammonia 
concentration (>1 mg/L) and high conductivity (Neilan et al., 2008). Data 
from laboratory culture studies further indicate that temperature, culture 
age, light, pH, salinity and nutrient concentrations affect STX production, 
although causing a variation of only a 2–4-fold (Sivonen & Jones, 1999; 
Pearson et al., 2016). However, the impact of a particular environmental 
modulator strictly depends on strains. As an example, toxin production 
doubled at higher-than-optimal temperatures with Aphanizomenon sp. 
LMECYA 31 (Dias et al., 2002), but in contrast to this, an increase in toxin 
content was observed in Aphanizomenon gracile UAM 529 (Casero et al., 
2014) and R. raciborskii C10 (Castro et al., 2004) in response to lower-
than-optimal temperature.

2.4.5  Occurrence in water environments

The presence of STX-producing cyanobacterial species has increasingly 
been published, and they have been found for the first time in many loca-
tions, including the Arctic (Kleinteich et al., 2013), New Zealand (Smith 
et al., 2011), Canada (Lajeunesse et al., 2012) and Europe (Wörmer et al., 
2011; Jančula et al., 2014).

Dolichospermum circinale may produce STXs at very high contents 
(up to 4423 μg STXs/g dw). This species caused one of the world’s largest 
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cyanobacterial blooms, involving more than 1000 km of the Murray–
Darling River, one of Australia’s major river systems, with densities of 
almost 106 cells/mL (Bowling & Baker, 1996). Llewellyn et al. (2001) 
found that 13 out of 14 D. circinale strains isolated from Australian fresh-
waters (rivers, lakes and dams) produced STXs. R. raciborskii is reported 
to produce similar STX levels in Brazil (Lagos et al., 1999). In Europe, 
a German survey found STX in 34% of 29 waterbodies tested (Chorus, 
2001), while in Danish and Finnish freshwater bodies dominated by D. 
lemmermannii, STX was found in less than 10% of samples (Kaas & 
Henriksen, 2000; Rapala et al., 2005). Similarly, in 140 lakes in New 
York State, STXs were detected only in two samples out of nearly 1100 
tested, with a maximum concentration of 0.09 μg/L, despite the com-
mon occurrence of high biomass blooms of A. flosaquae (Boyer, 2008). 
In Washington State (USA), STXs have been detected in 10 lakes and one 
pond since 2009, with STX concentrations up to 193 μg/L (Trainer & 
Hardy, 2015).

Very little has been published about STX in finished drinking-water. 
Hoeger et al., (2005) found only traces of STX (<0.5 μg/L) in two out of 52 
water samples from two water treatment plants in Queensland, Australia, 
fed with raw waters affected by cyanobacterial blooms of D. circinale, 
 containing up to 17.0 μg/L STX.

2.4.5.1  Bioaccumulation

Marine seafood contaminated with STXs is well known to cause foodborne 
diseases in humans, highlighting that STXs are passed from phytoplankton 
to higher trophic levels in the aquatic food web. Marine shellfish bioac-
cumulate STXs by filter-feeding on STX-producing organisms, and many 
of them exhibit low sensitivity towards these toxins. STXs also accumu-
late in fish, predatory mammals such as whales and crabs (Negri & Jones, 
1995) and other non-filter-feeding seafood such as cephalopods, including 
the common octopus (Octopus vulgaris), the Humboldt squid (Dosidicus 
gigas) and the Australian octopus (Octopus abdopus) (Lopes et al., 2013). 
Accumulation generally occurs in the viscera, but in the common octopus 
and squid, STX accumulated to the greatest extent (390–2680 mg STXeq/
kg) in the digestive gland (Lopes et al., 2014), whereas the arms are the pref-
erential site for bioaccumulation in the Australian octopus (up to 246 mg 
STXeq/100 g tissue; Robertson et al. (2004)).

In spite of the importance of this issue for possible human health conse-
quences, information on STX occurrence in freshwater organisms is scarce. 
Daphnia magna, a relevant organism for STX transfer along the freshwa-
ter food web, is able to accumulate STXs when exposed to Cuspidothrix 
issatschenkoi cells or to lyophilised cyanobacterial material (Nogueira 
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et al., 2004). In the laboratory, the Australian freshwater mussel Alathyria 
condola fed with high densities of neurotoxic D. circinale accumulated 
STX up to 620 μg/100 g of fresh biomass (Negri & Jones, 1995). Another 
freshwater mussel, Anodonta cygnea, exposed to high densities of neuro-
toxic C. issatschenkoi in laboratory experiments accumulated STX to a 
maximum concentration of 26 μg/100 g fresh biomass (Pereira et al., 2004). 
Accumulation of STXs has also seen in the freshwater bivalves Elliptio 
camoplanatus and Corbicula fluminea after exposure to A. flosaquae 
(Sasner et al., 1984).

It has been reported that due to a slow elimination, the surf clam Spisula 
solidissima can bioaccumulate extremely high quantities of STX (Bricelj 
et al., 2014). In the clam’s marine habitat, the STXs are, however, presum-
ably produced by dinoflagellates rather than by cyanobacteria.

2.4.6  Environmental fate

Data on the release of STXs from viable or senescent cyanobacterial cells 
are lacking. Only a few studies have investigated the chemical breakdown 
and biodegradation of dissolved STXs. In the dark at room tempera-
ture, STXs undergo a series of slow chemical hydrolysis reactions. The 
C-toxins lose the N-sulphocarbamoyl group to form dc-GTXs, while the 
dcGTXs, GTXs and STXs slowly degrade to, as yet unidentified, nontoxic 
products. The half-lives for the breakdown reactions are in the order of 
1–10 weeks, with more than 3 months often being required for greater 
than 90% breakdown. A persistence of 1–2 months has been reported for 
saxitoxin in surface water (Batoreu et al., 2005). In a laboratory study, 
several STX toxins in the culture medium were stable for long periods 
also at around pH 9–10 (Castro et al., 2004).
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2.5  ANATOXIN-A(S)

Emanuela Testai

Anatoxin-a(S) (ATX(S)) is, despite the similarity of the names, not struc-
turally related to anatoxin-a: while the latter is an alkaloid, ATX(S) is an 
organophosphate (see below). It received its name during initial studies which 
isolated multiple toxic fractions from a strain of Anabaena sp. to which let-
ters or suffixes were assigned. The “S” in the name denotes a characteristic 
symptom of exposure in mammals: “salivation”. Because of its totally differ-
ent chemical structure and mechanism of action, Fiore et al. (2020) proposed 
renaming it to guanitoxin, advocating that the new name should reflect its 
chemical composition.

2.5.1  Chemical structure

Anatoxin-a(S) is an N-hydroxyguanidine methyl phosphate ester with a 
molecular weight of 252 Da. It is the only known natural organophosphonate 
besides biomolecules such as DNA, RNA and ATP (Figure 2.5; Mahmood & 
Carmi chael, 1987). No structural variants of ATX(S) have been detected 
so far.

Anatoxin-a(S) decomposes rapidly in basic solutions but is relatively sta-
ble in neutral and acidic conditions (Matsunaga et al., 1989). It is inacti-
vated at temperatures higher than 40 °C (Carmichael, 2001).

2.5.2  Toxicity: mode of action

Anatoxin-a(S) irreversibly inhibits acetylcholinesterase (AChE) in the neuro-
muscular junctions (but not in the central nervous system) blocking hydrolysis 
of the neurotransmitter. This results in acetylcholine accumulation, leading to 
nerve hyperexcitability. The acute neurological effects in mammals are muscle 
weakness, respiratory distress (dyspnoea) and convulsions preceding death, 
which occurs due to respiratory arrest (i.p. LD50 in mice = 40–228 μg/kg bw, 
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Figure 2.5 C hemical structure of anatoxins-a(S). Molecular mass (monoisotopic): 
252.099 Da; molecular weight (average): 252.212 g/mol.
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lower in rats i.p. LD50 = 5.3 mg/kg bw). Viscous mucoid hypersalivation is a 
typical symptom induced by ATX(S).

Data on oral administration as well as on subchronic and/or chronic tox-
icity are not available.

2.5.3  Derivation of guideline values 
for anatoxin-a(S) in water

No toxicological data are available for deriving an acute dose NOAEL or 
LOAEL as point of departure, and data on subchronic and chronic expo-
sure are also lacking. Therefore, no TDI or guideline value can yet be 
derived for ATX(S).

New Zealand has established a limit as provisional maximum acceptable 
value of 1 μg/L for total ATX(S) content in drinking-water (Chorus, 2012).

2.5.4  Production, occurrence and 
environmental fate

Anatoxin-a(S) has been reported from strains of Dolichospermum (Anabaena) 
flosaquae from Canada (Carmichael & Gorham, 1978), in both field sam-
ples and strains of D. lemmermannii from Denmark (Henriksen et al., 
1997) and from Portugal (Fristachi & Sinclair, 2008), in D. flosaquae from 
the USA and Scotland (Matsunaga et al., 1989; Codd, 1995), in D. spiroides 
from Brazil (Monserrat et al., 2001), and in D. crassa from southern Brazil 
(Becker et al., 2010).

The available literature on ATX(S) biosynthesis is scant, and the gene 
cluster responsible for the biosynthesis of ATX(S) has not yet been identified 
(Pearson et al., 2016). Only the synthesis of the cyclic moiety of ATX(S) has 
been reported (Matsunaga et al., 1989; Moura & Pinto, 2010).

The precursor for the guanidine group has been proposed to be L-arginine, 
which is hydroxylated at C4, as demonstrated by feeding studies (Moore 
et al., 1992) with radiolabelled arginine and (4S)-4-hydroxy-arginine, but 
none of the further steps have been described to date.

The presence of ATX(S) in waterbodies is sparsely documented (Table 2.7); 
one of the reasons could be related to analytical difficulties such as the 
absence of analytical standards, and the possible co-occurrence of organo-
phosphate pesticides in the environment, limiting the use of biological 
tests, including biosensors, based on AChE inhibition (Devic et al., 2002). 
Indeed, mouse bioassays and acetylcholine esterase inhibition assays may 
be used to infer ATX(S) levels in environmental samples; however, these 
tests are not specific (Patocka et al., 2011). This sometimes leads only to a 
qualitative description of detection, without quantification (Molica et al., 
2005). The only chance to use analytical methodologies, overcoming the 



2 The cyanotoxins 111

lack of standards to identify the presence of the toxin, is the LC–MS/MS 
 fragmentation pattern for ATX(S) in cyanobacterial cultures.

Highly variable ATX(S) contents were detected in three Danish lakes 
dominated by D. lemmermannii, reaching maximum contents of 3300 μg/g 
dw (Henriksen et al., 1997).

The presence of ATX(S) was also suggested by results from acetylcho-
line esterase inhibition assay in cyanobacterial crusts in Qatar (Metcalf 
et al., 2012).

Data on chemical breakdown in the natural water environment and bio-
degradation of this cyanotoxin are not available.
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2.6  MARINE DERMATOTOXINS

Nicholas J. Osborne

The dermatotoxic reaction to the marine cyanobacterium “Lyngbya majus-
cula” has been associated with cases of dermatitis in humans, reported 
since the 1950s (Grauer & Arnold, 1961). This spurred intensive research 
on natural products revealing hundreds of secondary metabolites suppos-
edly produced by this species (Gerwick et al., 2008). This enormous meta-
bolic diversity was questioned by Engene et al. (2011) who suggest that 
what has been viewed as a single species or species complex based on mor-
phological criteria in fact represents a multitude of genera and species on 
the basis of molecular analyses (Engene et al., 2010).

The traditional genus Lyngbya consists of several hundred described 
species (see Chapter 3) of marine and freshwater cyanobacteria with 
global distribution. It is now proposed that tropical Lyngbya-like 
 cyanobacteria are separated from other members of the genus Lyngbya, 
as they have been found to be genetically distinct. The new genus 
Moorea, in  particular M. producens, largely appears to be synonymous 
to “L. majuscula” (Engene et al., 2012) but other names have been used 
as synonyms, for example, Microcoleus lyngbyaceus (Sims & Zandee van 
Rilland, 1981). Further genera amended from Lyngbya are Dapis (Engene 
et al., 2018) and Okeania (Engene et al., 2013b) – and more may  follow. 
However, since it is not possible to retrospectively evaluate the taxo-
nomic assignment of samples in original publications, this chapter gives 
“L. majuscula” in  quotation marks whenever the possibility exists that 
the taxonomic assignment would be different today. Temperate species of 
“L. majuscula” have been recorded, but essentially nothing is known of 
their  toxicity (Hällfors, 2004).

“L. majuscula” is a benthic cyanobacterium appearing as clumps of a 
matted mass of filaments 10–30 cm long, sometimes referred to as “mer-
maids’ hair”, that grows to depths of up to 30 m, predominantly in the 
tropics and subtropics (Izumi & Moore, 1987). Elevated concentrations of 
iron, nitrogen and phosphorus have been proposed to be drivers of mass 
development or blooming of this cyanobacterium (Albert et al., 2005).

Among some 200 natural products that have been linked to tropical 
“L. majuscula” (Liu & Rein, 2010; Engene et al., 2013a), some have been 
found to induce irritant contact dermatitis, that is, to be dermatotoxins: 
aplysiatoxin (AT; Kato & Scheuer, 1974), (Mitchell et al., 2000), debro-
moaplysiatoxin (DAT; Mynderse et al., 1977) and lyngbyatoxin A (LTA; 
Cardellina et al., 1979). Other natural products produced by this cyano-
bacterium include malyngamides, apratoxins and dolostatins (Todd & 
Gerwick, 1995; Mitchell et al., 2000; Luesch et al., 2001).
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2.6.1  Chemical structures

Lyngbyatoxin A’s structure (Figure 2.6) was initially determined in 1979 
using samples collected at Kahala Beach, Oahu, Hawaii (Cardellina et al., 
1979). An isomer of teleocidin A, first extracted from the actinomycete 
Streptomyces medicocidcus, was found to have an identical structure to 
LTA (Fujiki et al., 1981), with this organism producing both the 19R and 
19S epimers (i.e., the same chemical formula but different three-dimen-
sional orientations), while in “L. majuscula” only the 19R epimer was 
found. Lyngbyatoxin B and lyngbyatoxin C, compounds with similar chem-
ical structure, were extracted from Hawaiian specimens of “L. majuscula” 
(Aimi et al., 1990), as was 12-epi-lyngbyatoxin A and further congeners 
(Jiang et al., 2014a; Jiang et al., 2014b). Lyngbyatoxin A is more lipophilic 
than the other lyngbyatoxin, with a mean log n-octanol/water partition 
coefficient of 1.53 (Stafford et al., 1992).

Debromoaplysiatoxin was first isolated in 1977 and the structure derived 
from extracts of both Lyngbya gracilis (reclassified to Leibleinia gracilis; see 
also below) and an inseparable consortium of Phormidium (Oscillatoria) 
nigroviridis and Schizothrix calcicola (Mynderse et al., 1977). The pheno-
lic bis-lactones AT and DAT have similar structures apart from the bromine 
molecule on the benzene ring (Figure 2.6).
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Figure 2.6 S tructures of (a) lyngbyatoxin A (molecular mass (monoisotopic): 437.304 Da; 
molecular weight (average): 437.631 g/mol), (b) debromoaplysiatoxin (R=H; 
MM(mono): 592.325 Da; MW(ave): 592.73 g/mol) and aplysiatoxin (R=Br; 
MM(mono): 672.235 Da; MW (ave): 671.63 g/mol). 
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2.6.2  Toxicity

Although toxicity was first observed in Hawaii in 1912 (Banner, 1959; 
Osborne et al., 2008), the first confirmed activity by “L. majuscula” that 
caused acute dermatitis was not determined until 1958, via patch testing in 
humans (Grauer & Arnold, 1961). Banner revealed that the dermatitis was 
irritant rather than allergenic, and this has been replicated in a later study 
(Banner, 1959; Osborne et al., 2008): histology of mouse and human skin 
exposed to either crude extracts of “L. majuscula” or its purified toxins 
showed acute vesicular dermatitis consistent with irritant contact derma-
titis after topical application. Microscopic examination described peeling 
skin and oedema of the epidermis. The dermis was infiltrated with a range 
of inflammatory cells, including mononuclear cells, neutrophils and eosino-
phils (Grauer & Arnold, 1961; Osborne et al., 2008). Vesicles contained 
polymorphonuclear leukocytes and red blood cells, with deep infiltration 
of the epidermis with polymorphonuclear leukocytes (Grauer & Arnold, 
1961). Ito et al. (2002) found LTA to have a minimum lethal dose (LD100) of 
0.30 mg/kg (intraperitoneal) in mice.

Applied cutaneously, LTA had an median effective dose ED50 (dose caus-
ing a biological response in 50% of the sample) with a lower index (redden-
ing) of ~4.8 ng/kg in mice tested via topical application, with DAT and AT 
showing slightly lower activity (Fujiki et al., 1983). LTA has shown skin 
penetration rates of 23% and 6.2% for guinea pig and human skin, respec-
tively, within 1 h (Stafford et al., 1992). However, not all of the toxicity in 
“L. majuscula” specimens producing LTA is explained by the concentra-
tions of LTA present, and other factors present thus must be affecting toxic-
ity (Osborne et al., 2008).

Furthermore, animals that feed on toxic “Lyngbya” or Moorea appear to 
bioaccumulate toxin: the first report dates back to classical times by Pliny 
(Plinius, 23–79 AD) who reported toxicity of marine gastropods – the sea 
hare. Kato and Scheuer (1974) first isolated AT and DAT from their diges-
tive tract. Sea hare (e.g., Aplysia californica; Gribble, 1999; Stylocheilus 
striatus; Capper et al., 2006) appear to preferentially feed on cyanobacte-
ria, including “L. majuscula” (and possibly other marine cyanobacteria) 
and to sequester their toxins (Pennings et al., 1996). This bioaccumulation 
potentially also occurs in other grazers (Capper et al., 2005). Accidental 
skin contact with chemicals extracted from sea hares led to dermal irrita-
tion. While some invertebrate grazers appear to be indifferent to extracts 
of the cyanobacteria “L. majuscula”, reef fish are more likely to be deterred 
(Capper et al., 2006).

For AT, Ito and Nagai (1998) report that dosing of mice at 500, 1000 
or 3000 μg/kg intraperitoneally resulted in bleeding in the small intestine, 
blood loss and pale liver, loss of cells from the stomach, exposure of the 
lamina propria lumen with small intestine capillaries congested and all 
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villi showing erosion and bleeding. Dosing orally at 0.8 μg/kg, AT induced 
increased permeability of gastrointestinal vascularisation as well as local 
inflammation and necrosis. The consequences of the latter were intraperito-
neal haemorrhage, hypovolemic liver, small intestinal sloughing and haem-
orrhage. The activity of AT was proposed to be due to its effect on protein 
kinase C, not peritonitis (Ito & Nagai, 1998). At an oral or intraperitoneal 
dose of AT at which 50% of animals were affected, symptoms resembled 
those of LTA poisoning (Ito et al., 2002).

For DAT, dermal toxicity has also been shown (Solomon & Stoughton, 
1978; Osborne et al., 2008). For ear reddening, DAT and AT show highly 
lower activity than LTA (see above and Fujiki et al., 1983). DAT was origi-
nally reported as isolated from Leibleinia (Lyngbya) gracilis, a species 
classified today in the order Synechococcales. However, a footnote in the 
publication notes that one taxonomist identified the organism as “L. majus-
cula” (Mynderse et al., 1977). Other authors have suggested that these 
toxins are also present in seaweed species: in papers reporting chemicals 
extracted from the red alga Gracilaria coronopifolia, the authors suggested 
the toxicity of the seaweed may be due to epiphytically growing cyanobac-
teria (Nagai et al., 1996; Nagai et al., 1997). It is still unclear if this is the 
case, but it is entirely possible as the epiphytic growth of “L. majuscula” 
and other cyanobacteria on seaweeds has been reported worldwide (Moore, 
1982; Fletcher, 1995).

Both LTA and DAT have been shown to have tumour-promoting activi-
ties via the protein kinase C activation pathway (Nakamura et al., 1989).

In spite of EC50 or LD50 values given for some of the marine dermatotox-
ins, no guideline values for their concentration in water used for recreation 
can be given because, in contrast to the cyanotoxins discussed in sections 
2.1–2.5, their exposure pathway is not through ingestion, but through 
dermal contact, and this is not accessible to quantification for filamentous 
macroalgae forming mats and rafts.

2.6.3  Incidents of human injury through 
marine cyanobacterial dermatotoxins

Hawaii 1950–1983
In late 1950s, “L. majuscula” was first purported as the agent responsible 
for an epidemic of acute dermatitis in Hawaii. 125 people were reported 
suffering dermatitis after swimming at beaches in north-east Oahu, Hawaii, 
in July and August 1958. After exposure to “L. majuscula”, swimmers 
described symptoms similar to a burn, usually appearing underneath swim-
ming costumes in the genital, perianal and perineum areas. Debate continues 
if the cause of symptoms chiefly at these locations is the thinner epidermis in 
these areas or extended exposure with cyanobacterium filaments trapped in 
clothing. Symptoms within a few hours of exposures included erythema and 
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burning followed by deep skin peeling and blistering, which continued for 
24–48 h (Grauer & Arnold, 1961).

In 1976, samples of blooming “L. majuscula” were found to contain DAT. 
In 1980 in Oahu, 35 people were affected and developed dermatitis 2–20 h 
after exposure and with symptoms lasting from 2 to 12 days (Serdula et al., 
1982). Both AT and DT were found in samples of “L. majuscula” recovered 
from the ocean (Moore et al., 1984).

In 1983, eye and breathing symptoms were noted in Maui (Anderson 
et al., 1988). Aerosolised Lyngbya fragments were discovered on sampling 
with high-volume air filters and from waterfront area windows.

Okinawa 1968 and 1973
At Gushikawa Beach, Okinawa, in 1968, 242 of 274 bathers developed a 
rapid-onset dermatitis. Reported symptoms included rash, itching, burn-
ing, blisters and deep peeling of the skin. Sensitive outer areas such the gen-
itals, lips and eyes were usually affected. A later bloom of “L. majuscula” 
was sampled in the same area in September 1973: it caused rashes and 
blistering in humans and mice (Hashimoto et al., 1976). The compounds 
extracted and partially characterised had chemical properties similar to 
those of the uncharacterised toxin found by Moikeha and Chu (1971), and 
samples collected in the same later were shown to contain DAT and AT 
(Fujiki et al., 1985).

Queensland, Australia, 1999–2003
A cross-sectional epidemiological survey of residents of Bribie Island, 
Australia, was undertaken after some evidence of blooms of “L. majuscula” 
in the area. Residents exposed to seawater exhibited symptoms associated 
with exposure to “L. majuscula” (0.6% of the sample population), includ-
ing redness in the inguinal region, severe itching and blistering (Osborne 
et al., 2007). The greater surface area of female swimming costumes may 
explain their increased prevalence of symptoms as compared to men, with 
an increased entrapment of cyanobacterial strands. Similar epidemiological 
observations have been reported from nearby Fraser Island (Osborne & 
Shaw, 2008).

Mortality in humans after the consumption of Lyngbya has been reported 
three times (Sims & Zandee van Rilland, 1981; Marshall & Vogt, 1998; 
Yasumoto, 1998). “L. majuscula” growing epiphytically on the edible 
endemic Hawaiian alga Gracilaria coronopifolia have also been implicated 
in poisoning from ingestion of the red alga in 1994 (Nagai et al., 1996; Ito 
& Nagai, 2000). Consumption of “L. majuscula” (associated with consum-
ing seaweed) has been associated with an excruciating burning sensation on 
the patient’s lips, anterior part of the oral cavity and the anterior portion 
of the tongue. Twenty-four hours after consumption, the mucous mem-
branes appeared scalded, swollen and exhibited hyperaemia with several 
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erosive lesions. The patient became free of discomfort after 3 days (Sims & 
Zandee van Rilland, 1981). It has been postulated that the high incidence 
of cancers of the digestive system among indigenous Hawaiians may be 
due to the consumption of seaweed tainted with “L. majuscula” (Moore, 
1984). Furthermore, an outbreak of respiratory, eye and skin irritations in 
Mayotte, an island in the Indian Ocean, in 2010 was linked to exposure to 
cyanobacteria washed on the beach (Lernout et al., 2011).

2.6.4  Biosynthesis and occurrence 
in the environment

Elements of the biosynthesis of LTA, as well as the genes involved, are 
reported by Tønder et al. (2004), Read and Walsh (2007), and Edwards and 
Gerwick (2004). The core of the molecule is synthesised by a nonribosomal 
peptide synthetase followed by reduction and prenylation steps (Read & 
Walsh, 2007). Total synthesis of AT and DAT was achieved by Park et al. 
(1987). Videau et al. (2016) achieved a heterologous expression of LTA in a 
strain of Anabaena sp. (PCC 7120).

“L. majuscula” is mainly seen in the tropics and subtropics but has 
a worldwide distribution (Table 2.9). Different toxicities of samples of 
this species from around the Hawaii (Grauer & Arnold, 1961) and the 
Marshall Islands have been noted, where samples taken on the seaward 
side of the lagoon were more toxic (Mynderse et al., 1977). Similarly, spa-
tial differences in toxins in Moreton Bay, Australia, have been recorded, 
with DT being produced on the Western side exclusively, and LTA mainly 

Table 2.9  Dermatotoxin contents reported for “L. majuscula” in μg/g dry weight, 
collected on various locations around world

Location LTA DAT AT Reference

Ryukyus Islands, Okinawa 240 Hashimoto et al. (1976) a

Enewetak Atoll, Marshall 133 Mynderse et al. (1977) b

Islands

Kahala Beach, Hawaii 200 Cardellina et al. (1979)

Oahu, Hawaii 324 81 Serdula et al. (1982)

Moreton Bay, Australia n.d.–131 n.d. –43 Osborne (2004)

Maui, Hawaii 10–276 n.d. –0.8 Osborne (2004)

King’s Bay, Florida, USA n.d. –6.31 Harr et al. (2008)

Moreton Bay, Australia n.d. –39 n.d. –0.3 Arthur et al. (2008)

Big Island, Hawaii n.d. –168 n.d. –540 Arthur et al. (2008)

n.d.: not detectable. LTA: lyngbyatoxin A; DTA: debromoaplysiatoxin; AT: aplysiatoxin.

a probably LTA, not confirmed.
b producing organism reported as Lyngbya (Leibleinia) gracilis, but probably was “L. majuscula”.
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being produced on the Eastern ocean side, only 30 km away (Osborne 
et al., 2002; Osborne, 2004).

Treating DAT and AT with even very mild acid readily leads to dehy-
dration, and the degradation products (anhydrotoxins) do not show the 
toxicity seen with DAT and AT (Moore, 1984). Hashimoto (1979) reported 
half of the toxicity of “L. majuscula” was lost after 3 h of exposure to 
ultraviolet radiation, as did Moikeha and Chu (1971). The absence of toxins 
was noted in seawater surrounding a large bloom of toxic L. majuscula in 
Australia (Osborne, 2004). It appears that the toxins are biodegradable in 
the environment, but further work is required to explore this.

REFERENCES

Aimi N, Odaka H, Sakai S, Fujiki H, Suganuma M, Moore RE et al. (1990). 
Lyngbyatoxins B and C, two new irritants from Lyngbya majuscula. J Nat 
Prod. 53:1593–1596.

Albert S, O‘Neil JM, Udy JW, Ahern KS, O‘Sullivan CM, Dennison WC (2005). 
Blooms of the cyanobacterium Lyngbya majuscula in coastal Queensland, 
Australia: disparate sites, common factors. Mar Pollut Bull. 51:428–437.

Anderson B, Sims J, Liang A, Minette H (1988). Outbreak of eye and respiratory 
irritation in Lahaina, Maui, possibly associated with Microcoleus lyngbyaceus. 
J Environ Health. 50:205–209.

Arthur K, Limpus C, Balazs G, Capper A, Udy J, Shaw G et al. (2008). The exposure 
of green turtles (Chelonia mydas) to tumour promoting compounds produced 
by the cyanobacterium Lyngbya majuscula and their potential role in the aeti-
ology of fibropapillomatosis. Harmful Algae. 7:114–125.

Banner AH (1959). A dermatitis-producing algae in Hawaii. Hawaii Med J. 19:35–36.
Capper A, Tibbetts IR, O‘Neil JM, Shaw GR (2006). Feeding preference and 

deterrence in rabbitfish Siganus fuscescens for the cyanobacterium Lyngbya 
majuscula in Moreton Bay, south-east Queensland, Australia. J Fish Biol. 
68:1589–1609.

Capper A, Tibbetts IR, O‘Neil YM, Shaw GR (2005). The fate of Lyngbya majuscula 
toxins in three potential consumers. J Chem Ecol. 31:1595–1606.

Cardellina JHd, Marner FJ, Moore RE (1979). Seaweed dermatitis: structure of lyn-
gbyatoxin A. Science. 204:193–195.

Edwards DJ, Gerwick WH (2004). Lyngbyatoxin biosynthesis: sequence of biosyn-
thetic gene cluster and identification of a novel aromatic prenyltransferase. J 
Am Chem Soc. 126:11432–11433.

Engene N, Choi H, Esquenazi E, Rottacker EC, Ellisman MH, Dorrestein PC et al. 
(2011). Underestimated biodiversity as a major explanation for the perceived 
rich secondary metabolite capacity of the cyanobacterial genus Lyngbya. Environ 
Microbiol. 13:1601–1610.

Engene N, Coates RC, Gerwick WH (2010). 16S rRNA Gene heterogeneity in the 
filamentous marine cyanobacterial genus Lyngbya. J Phycol. 46:591–601.



120 Toxic Cyanobacteria in Water

Engene N, Gunasekera SP, Gerwick WH, Paul VJ (2013a). Phylogenetic Inferences 
reveal a large extent of novel biodiversity in chemically rich tropical marine 
cyanobacteria. Appl Environ Microbiol. 79:1882–1888.

Engene N, Paul VJ, Byrum T, Gerwick WH, Thor A, Ellisman MH (2013b). Five 
chemically rich species of tropical marine cyanobacteria of the genus Okeania 
gen. nov.(Oscillatoriales, Cyanoprokaryota). J Phycol. 49:1095–1106.

Engene N, Rottacker EC, Kaštovský J, Byrum T, Choi H, Ellisman MH et al. (2012). 
Moorea producens gen. nov., sp. nov. and Moorea bouillonii comb. nov., tropi-
cal marine cyanobacteria rich in bioactive secondary metabolites. Int J Syst 
Evol Microbiol. 62:1171–1178.

Engene N, Tronholm A, Paul VJ (2018). Uncovering cryptic diversity of Lyngbya: 
the new tropical marine cyanobacterial genus Dapis (Oscillatoriales). J Phycol. 
54:435–446.

Fletcher R (1995). Epiphytism and fouling in Gracilaria cultivation: an overview. J 
Appl Phycol. 7:325–333.

Fujiki H, Ikegami K, Hakii H, Suganuma M, Yamaizumi Z, Yamazato K et al. (1985). 
A blue-green alga from Okinawa contains aplysiatoxins, the third class of 
tumor promoters. Jpn J Cancer Res. 76:257–259.

Fujiki H, Mori M, Nakayasu M, Terada M, Sugimura T, Moore RE (1981). Indole 
alkaloids: dihydroteleocidin B, teleocidin, and lyngbyatoxin A as members of a 
new class of tumor promoters. Proc Natl Acad Sci USA. 78:3872–3876.

Fujiki H, Suganuma M, Tahira T, Yoshioka A, Nakayasu M, Endo Y et al. (1983). 
Nakahara memorial lecture. New classes of tumor promoters: teleocidin, aplys-
iatoxin, and palytoxin. Princess Takamatsu Symp. 14:37–45.

Gerwick WH, Coates RC, Engene N, Gerwick L, Grindberg RV, Jones AC et al. 
(2008). Giant marine cyanobacteria produce exciting potential pharmaceuti-
cals. Microbe. 3:277.

Grauer FH, Arnold HL (1961). Seaweed dermatitis: first report of dermatitis-producing 
marine algae. Arch Dermatol. 84:720–732.

Gribble GW (1999). The diversity of naturally occurring organobromine compounds. 
Chem Soc Rev. 28:335–346.

Hällfors G (2004). Checklist of Baltic Sea phytoplankton species. Helsinki: Helsinki 
Commission Baltic Marine Environment Protection Commission.

Harr KE, Szabo NJ, Cichra M, Phlips EJ (2008). Debromoaplysiatoxin in Lyngbya-
dominated mats on manatees (Trichechus manatus latirostris) in the Florida 
King’s Bay ecosystem. Toxicon. 52:385–388.

Hashimoto Y (1979). Marine toxins and other bioactive marine metabolites. Tokyo: 
Japan Scientific Societies Press:369 pp.

Hashimoto Y, Kamiya H, Yamazato K, Nozawa K (1976). Occurrence of a toxic blue-
green alga inducing skin dermatitis in Okinawa. In: Ohsaka A, Hayashi K, Sawai 
Y, editors: Animal, plant, and microbial toxins. New York: Plenum:333–338.

Ito E, Nagai H (1998). Morphological observations of diarrhea in mice caused by 
aplysiatoxin, the causative agent of the red alga Gracilaria coronopifolia poi-
soning in Hawaii. Toxicon. 36:1913–1920.

Ito E, Nagai H (2000). Bleeding from the small intestine caused by aplysiatoxin, the 
causative agent of the red algae Gracilaria coronopifolia poisoning in Hawaii. 
Toxicon. 38:123–132.

Ito E, Satake M, Yasumoto T (2002). Pathological effects of lyngbyatoxin A upon 
mice. Toxicon. 40:551–556.



2 The cyanotoxins 121

Izumi AK, Moore RE (1987). Seaweed (Lyngbya majuscula) dermatitis. Clin Dermatol. 
5:92–100.

Jiang W, Tan S, Hanaki Y, Irie K, Uchida H, Watanabe R et al. (2014a). Two new 
lyngbyatoxin derivatives from the cyanobacterium, Moorea producens. Mar 
Drugs. 12:5788–5800.

Jiang WN, Zhou W, Uchida H, Kikumori M, Irie K, Watanabe R et al. (2014b). 
A new lyngbyatoxin from the Hawaiian cyanobacterium Moorea producens. 
Mar Drugs. 12:2748–2759.

Kato Y, Scheuer PJ (1974). Aplysiatoxin and debromoaplysiatoxin, constituents of 
the marine mollusk Stylocheilus longicauda (Quoy and Gaimard, 1824). J Am 
Chem Soc. 96:2245–2246.

Lernout T, Thiria J, Maltaverne E, Salim M, Turquet J, Lajoindre G et al. (2011). 
Alerte aux cynanobactéries sur la plage de N’Gouja, Mayotte, avril 2010. 
Bulletin de veille sanitaire. 9:12–14.

Liu L, Rein KS (2010). New peptides isolated from Lyngbya species: a review. Marine 
Drugs. 8:1817–1837.

Luesch H, Yoshida WY, Moore RE, Paul VJ, Corbett TH (2001). Total structure 
determination of apratoxin A, a potent novel cytotoxin from the marine cyano-
bacterium Lyngbya majuscula. J Am Chem Soc. 123:5418–5423.

Marshall KL, Vogt RL (1998). Illness associated with eating seaweed, Hawaii, 1994. 
Western J Med. 169:293–295.

Mitchell SS, Faulkner DJ, Rubins K, Bushman F (2000). Dolostatin 3 and two novel 
cyclic peptides from a Palauan collection of Lyngbya majuscula. J Nat Prod. 
63:279–282.

Moikeha S, Chu G (1971). Dermatitis-producing alga Lyngbya majuscula Gomont in 
Hawaii. II. Biological properties of the toxic factor. J Phycol. 7:8–13.

Moore RE (1982). Toxins, anticancer agents, and tumor promoters from marine 
prokaryotes. Pure Appl Chem. 54:1919–1934.

Moore RE (1984). Public health and toxins from marine Blue- Green Algae. In: 
Ragelis E, editors: Seafood toxins. Washington (DC): American Chemical Society.

Moore RE, Blackman A, Cheuk C (1984). Absolute stereochemistries of the aplys-
iatoxins and oscillatoxin A. J Org Chem. 49:2484–2489.

Mynderse JS, Moore RE, Kashiwagi M, Norton TR (1977). Antileukemia activity in 
the Osillatoriaceae: isolation of Debromoaplysiatoxin from Lyngbya. Science. 
196:538–540.

Nagai H, Yasumoto T, Hokama Y (1996). Aplysiatoxin and debromoaplysiatoxin as 
the causative agents of a red alga Gracilaria coronopifolia poisoning in Hawaii. 
Toxicon. 34:753–761.

Nagai H, Yasumoto T, Hokama Y (1997). Manauealides, some of the causative agents of 
a red alga Gracilaria coronopifolia poisoning in Hawaii. J Nat Prod. 60:925–928.

Nakamura H, Kishi Y, Pajares MA, Rando RR (1989). Structural basis of protein 
kinase C activation by tumor promoters. Proc Nat Acad Sci USA. 86:9672–9676.

Osborne N (2004). Investigation of the toxicology and public health aspects of the 
marine cyanobacterium, Lyngbya majuscula. Brisbane: Institution. 246 pp.

Osborne N, Webb P, Shaw G (2002). The toxicology and public health aspects of 
Lyngbya majuscula in Queensland, Australia. 10th International conference on 
harmful algae. WHO: St. Pete Beach (FL), USA: 221.

Osborne NJ, Seawright A, Shaw G (2008). Dermal Toxicology of Lyngbya majus-
cula, from Moreton Bay, Queensland, Australia. Harmful Algae. 7:584–589.



122 Toxic Cyanobacteria in Water

Osborne NJ, Shaw GR (2008). Dermatitis associated with exposure to a marine 
cyanobacterium during recreational water exposure. BMC Dermatol. 8:5.

Osborne NJT, Shaw GR, Webb PM (2007). Health effects of recreational exposure 
to Moreton Bay, Australia waters during a Lyngbya majuscula bloom. Environ 
Int. 27:309–314.

Park PU, Broka CA, Johnson BF, Kishi Y (1987). Total synthesis of debromoaplys-
iatoxin and aplysiatoxin. J Am Chem Soc. 109:6205–6207.

Pennings SC, Weiss AM, Paul VJ (1996). Secondary metabolites of the cyanobac-
terium Microcoleus lyngbyaceus and the sea hare Stylocheilus longicauda: 
Palatability and toxicity. Mar Biol. 126:735–743.

Read JA, Walsh CT (2007) The lyngbyatoxin biosynthetic assembly line: chain 
release by four-electron reduction of a dipeptidyl thioester to the correspond-
ing alcohol. J Am Chem Soc. 129:15762–15763.

Serdula M, Bartilini G, Moore RE, Gooch J, Wiebenga N (1982). Seaweed itch on 
windward Oahu. Hawaii Med J. 41:200–201.

Sims JK, Zandee van Rilland RD (1981). Escharotic stomatitis caused by the “sting-
ing seaweed” Microcoleus lyngbyaceus (formerly Lyngbya majuscula). Case 
report and literature review. Hawaii Med J. 40:243–248.

Solomon AE, Stoughton RB (1978). Dermatitis from purified sea algae toxin (debro-
moaplysiatoxin). Arch Dermatol. 114:1333–1335.

Stafford RG, Mehta M, Kemppainen BW (1992). Comparison of the partition coef-
ficient and skin penetration of a marine algal toxin (lyngbyatoxin A). Food 
Chem Toxicol. 30:795–801.

Todd JS, Gerwick WH (1995). Malyngamide I from the tropical marine cyano-
bacterium Lyngbya majuscula and the probable structure revision of stylochei-
lamide. Tetrahedron Lett. 36:7837–7840.

Tønder J, Hosseini M, Ahrenst A, Tanner D (2004). Studies of the formation of all-
carbon quaternary centres, en route to lyngbyatoxin A. A comparison of phe-
nyl and 7-substituted indole systems. Org Biomol Chem. 2:1447–1455.

Videau P, Wells KN, Singh AJ, Gerwick WH, Philmus B (2016). Assessment of 
Anabaena sp. strain PCC 7120 as a heterologous expression host for cyano-
bacterial natural products: production of lyngbyatoxin A. ACS Synth Biol. 
5:978–988.

Yasumoto T (1998). Fish poisoning due to toxins of microalgal origins in the Pacific. 
Toxicon. 36:1515–1518.



2 The cyanotoxins 123

2.7  𝛃-METHYLAMINO-L-ALANINE (BMAA)

Neil Chernoff, Elisabeth J. Faassen and Donna J. Hill

The nonproteinogenic amino acid, β-methylamino-L-alanine (BMAA; 
Figure 2.7), has been postulated to be a cause of neurodegenerative diseases 
that affect large numbers of people. However, at the time of publication of this 
document, this hypothesis is still highly controversial and a number of incon-
sistencies must be clarified before its role in human disease can be assessed 
with more certainty. The following section introduces and discusses these.

Interest in BMAA began as a result of a neurological disease known as 
amyotrophic lateral sclerosis/Parkinsonism dementia complex (ALS/PDC) 
present in the island of Guam in the Pacific (Arnold et al., 1953; Kurland 
et al., 1961). ALS/PDC has also been identified in small populations in Irian 
Jaya (western New Guinea) and Kii Peninsula of Japan. ALS/PDC has a spec-
trum of symptoms that resemble ALS, Parkinsonism and dementia. Different 
types of neurological dysfunctions were commonly present in the same indi-
vidual, and multiple cases were often seen within families. The disease ren-
dered patients incapable of normal movement, produced memory decline, 
cognitive deficits, and often led to premature death. In Guam, the peak inci-
dence of the disease occurred during the 1950s and has been declining since 
then (Plato et al., 2002; Plato et al., 2003). The disease seemed limited to 
the indigenous population or others who had lived in Guam and adopted 
local customs and diet. ALS/PDC is characterised by hyperphosphorylated 
tau proteins that may assemble into masses ranging from a few molecules 
to large amyloid masses that may propagate like prions (Buée et al., 2000; 
Jucker & Walker, 2013). The altered proteins form neurofibrillary tangles 
(NFTs), disrupting cell structure associated with loss of function and/or cell 
death (Walker & LeVine, 2000; Chiti & Dobson, 2006).

2.7.1  Discrepancies introduced by 
incorrect BMAA analysis

In order to evaluate the possible health risk of β-methylamino-L-alanine 
(BMAA), one of the crucial elements is an accurate estimation of BMAA 
levels in environmental and food samples, as well as in tissue of possibly 
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Figure 2.7  Structure of β-methylamino-L-alanine (BMAA). Molecular mass (monoiso-
topic): 118.074 Da; molecular weight (average): 118.13 g/mol.
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exposed humans. However, one of the major issues impacting the BMAA 
hypothesis is the use of nonspecific analytical techniques such as liquid 
chromatography fluorescence detection (LC-FLD) for quantification of 
BMAA in environmental and human tissue samples. The role of analyti-
cal chemistry in the BMAA-human neurodegenerative disease hypothesis is 
therefore explained first.

As experimentally shown (Faassen et al., 2012), LC-FLD analysis risks 
misidentification of BMAA. Some cyanobacterial samples tested positive 
for BMAA when analysed by LC-FLD, while the same samples tested nega-
tive when analysed by more reliable mass-specific analytical methods (e.g., 
liquid chromatography-tandem mass spectrometry, LC-MS/MS). This is in 
line with the differences found in the literature, in which studies that have 
used nonspecific analytical techniques for BMAA detection typically report 
higher percentages of positive samples and/or higher BMAA concentrations 
than mass spectrometry-based studies. There is now considerable data 
that indicates shortcomings with many of the analytical approaches used 
(Cohen, 2012; Faassen et al., 2012; Faassen, 2014; Faassen et al., 2016; 
Lage et al., 2016; Rosén et al., 2016).

Analytical issues seem to have resulted in a lack of replication in many 
of the key findings in the BMAA-neurodegenerative disease hypothesis, 
which will be discussed below. For instance, studies indicating the presence 
of BMAA in the brains of people who suffered from Alzheimer’s disease or 
ALS (Murch et al., 2004a; Murch et al., 2004b; Pablo et al., 2009) used 
LC-FLD for quantification, and their results have not been replicated by 
more recent work using more reliable techniques. Similarly, the suggested 
universal occurrence of high concentrations of BMAA in cyanobacteria (Cox 
et al., 2005; Esterhuizen & Downing, 2008; Metcalf et al., 2008) could not 
be replicated by studies using selective mass spectrometry techniques: these 
techniques either do not detect BMAA in cyanobacteria or find very low 
levels (Faassen, 2014; Lance et al., 2018). A key conclusion derived from this 
body of research is that LC-FLD, along with other optical detection meth-
ods that were used in early studies on BMAA in brain tissue, flying fox skin 
samples (Banack & Cox, 2003a; Banack et al., 2006) and fish (Brand et al., 
2010), is not sufficiently selective for BMAA identification and quantifica-
tion, and should therefore not be used unless positive samples are verified 
and quantified with a more selective method like LC-MS/MS. An illustrative 
case in this respect is a study on BMAA concentrations in stranded dolphins 
(Davis et al., 2019). In this study, BMAA was reported from the brains of 13 
of the 14 tested animals, in concentrations ranging from 20 up to 748 μg/g, 
as quantified by LC-FLD. However, parallel LC-MS/MS analyses were only 
performed on 4 of the 14 samples, and the highest concentration found was 
0.6 μg/g. So although the abstract implies that two orthogonal methods were 
used throughout the study, for only 4 samples complementary results by 
LC-MS/MS were available. Moreover, the concentrations found by LC-MS/
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MS, which can be found in the supplementary information, are a few orders 
of magnitude lower than the LC-FLD results reported in the main text, and 
the only sample that tested negative by LC-FLD tested positive by LC-MS/
MS. These discrepancies are not discussed in this chapter, which may leave 
the reader under the false impression that the high concentrations detected 
by LC-FLD are valid because they are supposedly confirmed by LC-MS/MS.

2.7.2  The BMAA-human neurodegenerative 
disease hypothesis

An epidemiological study related the incidence of ALS/PDC to the diets of 
the Guam population (Reed et al., 1987). Cycad seeds played a large role 
in the diet of the inhabitants of Guam, the seeds being ground up into flour 
that was a dietary staple. It was known that ingestion of seeds induced 
toxicity and they were carefully prepared with repeated washings before 
use as food but potent toxins like cycasin could be detected in cycad flour 
(Spencer, 2019). Vega et al. (1968) isolated a nonproteinogenic amino acid, 
BMAA, from seeds of cycad species utilised as food on Guam and found 
that it induced neurotoxicity when injected intraperitoneally at high dose 
levels into chickens or rats. Spencer et al. (1987b) exposed macaque mon-
keys (Macaca fascicularis) to 100–350 mg BMAA∙HCl/kg bw × d orally, 
and observed stooped posture, tremors and weakness in extremities after a 
month at doses exceeding 200 mg/kg. The amounts of BMAA administered 
to the monkeys were orders of magnitude greater than the amounts that 
would have been consumed by people in cycad flour, and a role of BMAA in 
ALS/PDC was dismissed (Duncan et al., 1990). Other chemicals associated 
with cycads have been suggested as possible causes of ALS/PDC, including 
cycasin (methoxymethanol; Spencer et al., 2012) and sterol glucosides (Ly 
et al., 2007). There was no evidence of cycad consumption in either Irian 
Jaya or Japan, but it was noted that both areas used cycads for medicinal 
purposes (Spencer et al., 1987a; Spencer et al., 2005).

Cox and Sacks (2002) postulated that ALS/PDC could be related to 
the consumption of cycasin and BMAA, produced by cycads, the seeds of 
which were then eaten by flying foxes (Pteropus mariannus) which were 
subsequently consumed by people (Banack et al., 2006). Cox et al. (2003) 
reported that symbiotic cyanobacteria (Nostoc spp.) in the coralloid roots 
of cycads produced BMAA and that this was subsequently transported and 
biomagnified to the outer layer of the seeds, a food item in the diet of flying 
foxes (Banack & Cox, 2003a). High BMAA contents (mean 3.6 mg/g) were 
reported from three desiccated skin samples of preserved flying foxes by 
LC-FLD (Banack & Cox, 2003b), and the authors concluded that people in 
Guam consumed sufficient numbers of flying foxes to have been exposed to 
BMAA levels of a similar magnitude as those to which the monkeys in the 
experiments of Spencer et al. (1987b) were exposed. It was further suggested 
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that the decline in the incidence of ALS/PDC was related to a decline in 
flying fox populations (Cox & Sacks, 2002). However, the amount of flying 
foxes consumed by natives is in question since it was a food that appears to 
have been reserved for special occasions (Lemke, 1992). Borenstein et al. 
(2007) did not find any positive associations between cycad or flying fox 
consumption and ALS/PDC in Guam.

Another fundamental issue with this hypothesis is the findings of Foss 
et al. (2018) who tested skin samples from the identical three preserved fly-
ing foxes referred to in the study by Banack and Cox (2003a). LC-MS/MS 
was used for analysis and failed to identify BMAA in these samples although 
BMAA was successfully detected in positive controls and spiked samples. 
These findings support the point raised in section 2.7.1 that BMAA expo-
sure should only be estimated from studies that used selective analytical 
techniques for identification and quantification.

BMAA in cyanobacteria: The reports of BMAA in the symbiotic cyano-
bacteria Nostoc spp. in the coralloid roots of cycads raised the question of 
the source of BMAA. Using LC-FLD for quantification, Cox et al. (2005) 
examined cyanobacteria from different genera and found BMAA in 29 out 
of 30 the strains. They then postulated that, since BMAA was produced 
by most cyanobacteria, it should be considered to be a ubiquitous cyano-
toxin. Subsequent studies have evaluated the ability of various genera and 
species of cyanobacteria to produce BMAA and reached different conclu-
sions. Taking only studies into account that use selective, well-documented 
analytical techniques, reports of the presence of BMAA in cyanobacteria 
are scarce, and only incidentally, low concentrations are found in cyano-
bacterial samples (Faassen, 2014; Lance et al., 2018). It was found that 
BMAA can be produced by diatoms (Réveillon et al., 2016), but more stud-
ies are needed to estimate the range of BMAA concentrations in this type 
of phytoplankton.

Toxicological studies on monkeys and rats: Animal studies of BMAA 
exposures include primate studies carried out by Spencer et al. (1987b), 
as discussed above, and Cox et al. (2016) who reported on 32 adult vervet 
monkeys (Chlorocebus sabaeus) exposed orally to 21 mg/kg × d or 210 mg/
kg × d of β-methylamino-alanine (BMAA) for 140 days. Although effects 
are found in the 210 mg/kg × d group, this dose level is unrealistic in terms 
of any known source of BMAA or suggested route of human exposure.

BMAA concentrations reported from water samples analysed with 
accurate methods have demonstrated only very low levels when BMAA is 
detected at all (Lance et al., 2018), and ingestion of cyanobacterial infested 
waters therefore does not seem to be the most relevant human exposure 
pathway to BMAA. Considering the reported concentrations in fish and 
shellfish (Lance et al., 2018), consumption of these foodstuffs seems at pres-
ent the most likely route of BMAA exposure. Using the data which were 
selected by Lance et al. (2018) based on their selectivity and well-described 
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quantitation methods, a theoretical weekly human diet consisting of meals 
of 200 g fish for 6 days and 200 g shellfish for 1 day can be used to estimate 
the amount of BMAA that would be consumed. Assuming a weekly diet 
resulting in 6-day exposure of 58 μg BMAA from fish and 540 μg BMAA 
from a single exposure of shellfish for a total of 598 μg yields an average 
daily intake of 85.4 μg. For a 60-kg individual, this would be equivalent 
to 1.42 μg/kg × d. The dose of 21 mg/kg × d (21,000 μg/kg × d) in vervet 
monkeys after 140 consecutive daily exposures, at which no adverse effects 
were observed (Cox et al., 2016), was ≈15,000-fold higher. Other issues 
with the Cox et al.’s (2016) study are that at necropsy, brain homogenates 
of the vervets were analysed for the presence of BMAA and 14 regions of 
the brain were analysed for the presence of neurofibrillary tangles (NFT) 
and β-amyloid deposits. It was concluded that more NFTs were found in 
high-dose BMAA groups than in the low dose or controls (the data sup-
plied in the paper and supplementary information do not allow estimates of 
individual variability within groups). In spite of the high dose, the behav-
iour of animals remained normal and they did not exhibit Parkinsonism 
or the muscular symptomology observed in the earlier macaque study by 
Spencer et al. (1987b), although the vervets studied by Cox et al. (2016) 
were exposed for 140 days, while the macaques studied by Spencer et al. 
(1987b) exhibited overt toxicity after being exposed to a similar dose only 
for approximately 45–75 days.

A few rodent studies have been conducted on BMAA. BMAA adminis-
tered to rats by oral route did not show effects at 500 mg/kg×d for approxi-
mately 32 days, or at 1000 mg/kg for approximately 15 days over the course 
of two months (Perry et al., 1989). BMAA administered to prepubertal 
rodents by either intraperitoneal ≥500 mg/kg (Seawright et al., 1990; de 
Munck et al., 2013) or subcutaneous route ≥460 mg/kg (Karlsson et al., 
2009) is neurotoxic, but the inappropriate routes of administration and 
magnitude of the administered levels render these findings difficult to 
extrapolate to human exposures.

2.7.2.1  ALS/PDC attributed to BMAA versus other 

manifestations of neurodegenerative disease

An underlying assumption in the BMAA hypothesis of human ALS/PDC 
effects is that this syndrome encountered in Guam is closely related to other 
neurodegenerative diseases found globally, but there is evidence contradict-
ing this assumption. Differences between ALS/PDC on Guam and ALS, 
Parkinsonism and Alzheimer’s diseases include the strong familial occur-
rence (Zhang et al., 1996; Morris et al., 2001) and the common mixed 
disease syndrome seen in ALS/PDC on Guam (Murakami, 1999), both situ-
ations being extremely rare in the other neurological diseases. Additional 
characteristics indicating that ALS/PDC is distinct from sporadic ALS, 



128 Toxic Cyanobacteria in Water

Parkinsonism and Alzheimer’s disease include the absence of beta-amyloid 
plaques that are characteristic of Alzheimer’s disease, the absence of ubiq-
uitinated Lewy bodies characteristic of Parkinsonism (Hirano et al., 1961), 
as well as the absence of the typical ALS/PDC tauopathy in sporadic ALS 
(Ikemoto, 2000). The individual symptomologies exhibited in ALS/PDC 
cases have been related to differences in the areas of the central nervous 
system where the highest densities of the aberrant tau proteins occurred 
(Hof et al., 1994; Umahara et al., 1994). One other significant difference 
between ALS/PDC and other neurodegenerative diseases is the presence of 
a retinal pigment epitheliopathy (RPE) that has only been reported in Guam 
and Kii Peninsula ALS/PDC cases (Kokubo et al., 2003). The condition 
manifests itself as linear tracks of retinal depigmentation with intermit-
tent pigment clumping, and the incidence of RPE is significantly higher in 
ALS/PDC cases than in controls. RPE has not been associated with other 
diseases elsewhere in the world and is therefore considered part of the ALS/
PDC disease postulated to be caused by β-methylamino-alanine (BMAA) 
(Cox et al., 1989; Steele et al., 2015).

2.7.3  Postulated human exposure and 
BMAA mechanism of action

BMAA in brain tissue of humans: Reports of BMAA in brain tissue of 
humans who suffered neurodegenerative diseases are contradictory: three 
studies of postmortem human brain tissues from people on Guam who 
had suffered from ALS/PDC, or people in the United States of America 
and Canada who had either ALS or Alzheimer’s disease, reported the pres-
ence of BMAA in disease sufferers (39 out of 40) irrespectively of where 
they had lived, whereas the studies rarely identified BMAA in people (four 
out of 36) who had not suffered from these neurodegenerative diseases 
(Murch et al., 2004a; Murch et al., 2004b; Pablo et al., 2009). These 
studies all utilised LC-FLD to quantify BMAA. In contrast, however, 
four studies that used mass spectrometry for identification and quantifi-
cation of BMAA have not found similar incidences and/or levels in brains 
(Snyder et al., 2009; Combes et al., 2014; Meneely et al., 2016) or cere-
brospinal fluids (Berntzon et al., 2015) of people who had suffered from 
Alzheimer’s disease or ALS in the United States of America and Europe. 
Taking these last four studies together, BMAA was not found in any of 13 
ALS/PDC brains/cerebrospinal fluids, and was found in one of 39 brains/
cerebrospinal fluids from people who had either ALS or Alzheimer’s dis-
ease, as well as in three of 20 without disease. When only considering 
data on BMAA levels in brains or cerebrospinal fluids that have been 
generated by appropriate analytical techniques, there is little evidence for 
the hypothesis that BMAA is present in the brains of those suffering from 
ALS and Alzheimer’s disease.
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Evidence of human exposure to BMAA has not been well documented. 
It has been suggested that a cluster of ALS cases in the United States of 
America was due to proximity to a lake and therefore exposure to BMAA, 
but this was not based on substantive evidence (Caller et al., 2009). A sub-
sequent study did not show a general linkage between proximity to water-
bodies and neurological disease (Caller et al., 2012). Suggestions have been 
made linking ALS to BMAA inhaled by soldiers in Qatar (Cox et al., 2009), 
the consumption of blue crabs (Field et al., 2013) and exposure to aerosols 
from cooling towers (Stommel et al., 2013), but clear evidence supporting 
these suggestions is not provided.

One of the central questions concerning the BMAA-neurodegenerative 
disease hypothesis concerns the mechanism by which BMAA would induce 
these diseases. Protein tangles and deposits are hallmarks of the neurode-
generative diseases discussed in this chapter (Ellisdon & Bottomley, 2004; 
Jellinger, 2012; Bolshette et al., 2014). These tangles of misfolded proteins 
include tau proteins in Alzheimer’s disease, ubiquinated proteins in ALS 
and Lewy bodies in Parkinsonism. Dunlop et al. (2013) stated that BMAA 
is misincorporated into human proteins in place of L-serine, but no direct 
evidence for this is presented. The reported association of BMAA with pro-
teins is not necessarily indicative of incorporation and may simply be due to 
chemical binding. Glover et al. (2014) examined protein synthesis after co-
incubation of BMAA in a cell-free system (PURExpress) in studies where 
BMAA was substituted for individual essential amino acids. Although 
the interaction of BMAA and serine is highlighted, the data indicate that 
BMAA substitution for alanine occurred to a greater extent. BMAA was 
found to be significantly incorporated into proteins in place of four of the 
nine additional amino acids for which data are presented. These results 
may primarily be a reflection of the relaxed fidelity of translation of the 
PURExpress in vitro system, which has been used to facilitate misincorpo-
ration of amino acids (Hong et al., 2014; Singh-Blom et al., 2014).

In in vitro assays, Beri et al. (2017) and Han et al. (2020) observed that 
BMAA was not a substrate of human seryl-tRNA synthetase, and therefore, 
a misincorporation of BMAA instead of serine in proteins as postulated 
earlier is highly unlikely. Instead, Han et al. (2020) report that BMAA is a 
substrate for human alanyl-tRNA synthetase, however, with only low rates 
of product formation despite a 500-fold higher concentration of BMAA 
compared to alanine. In an in vivo assay with Saccharomyces cerevisiae, an 
incorporation of BMAA instead of alanine could not be detected. Notably, 
the observed rates of mischarging of tRNA with BMAA are within the 
ranges generally observed for mischarging of aminoacyl-tRNA synthetases 
with noncognate amino acid – some 10−4 errors per codon or tRNA mol-
ecule, respectively (Mohler & Ibba, 2017).

Other studies have failed to find indications of misincorporation of 
BMAA into proteins. van Onselen et al. (2015) compared BMAA and 
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canavanine, a nonproteinogenic amino acid known for its tendency to be 
misincorporated in proteins. Protein incorporation was evaluated with 
an E. coli expression system using a fragment of a recombinant human 
protein. In contrast to canavanine, β-methylamino-alanine (BMAA) did 
not affect cell growth and was not detected in the protein fragment. The 
authors also showed that the removal of BMAA from bacterial proteins 
was not accomplished by washing with detergent-containing acid hydroly-
sis and TCA precipitation, indicating the probability of a strong association 
with protein surfaces. Similar findings were reported by Okle et al. (2012) 
who used a human neuroblastoma cell culture and demonstrated BMAA 
association with proteins after TCA protein precipitation, but not after pro-
tein-denaturing SDS gel electrophoresis. Spencer et al. (2016) did not find 
evidence to support the incorporation of BMAA into proteins in the brains 
of macaques. Cerebral protein lysates of BMAA-treated animals were ana-
lysed after extraction to remove BMAA from denatured proteins, detection 
was performed with LC–MS/MS, and no incorporation was found.

Rauk (2018) modelled protein folding changes that would have occurred 
if serine was substituted by BMAA. He concluded that BMAA incorpora-
tion instead of serine in proteins would not change conformational charac-
teristics of the β-amyloid peptide and that BMAA was therefore not related 
to Alzheimer’s disease.

2.7.4  Conclusions

The cause(s) of the ALS/PDC in Guam remains a mystery. The existence 
of the disease in Guam and Rota, but not in other areas where both flying 
foxes and cycad products are eaten, has not been satisfactorily explained. 
The possible relationship(s) between the presence of ALS/PDC in Guam, 
Irian Jaya and the Kii Peninsula remains unknown. Over the course of a 
decade, the BMAA hypothesis was transformed from one of many concern-
ing the cause of a neurodegenerative disease that occurred on Guam and 
two other localities, to a global threat purportedly linked not only to ALS/
PDC, but also to ALS, Alzheimer’s disease and Parkinsonism.

The BMAA-neurodegenerative disease hypothesis is built on four major 
contentions:

 1. BMAA was the primary cause of ALS/PDC due to high levels in food 
in Guam.

 2. The disease is sufficiently similar to ALS, Parkinsonism and Alzheimer’s 
disease to enable BMAA to cause all of these diseases.

 3. The environmental/dietary exposure levels outside of Guam are suf-
ficient to cause this disease in humans.

 4. BMAA acts through its incorporation into proteins displacing serine.
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While this hypothesis may be appealing for its simplicity and universality, 
these contentions are either disputed by many other studies, or the nec-
essary data to support the hypothesis are not presented. The hypothesis 
that BMAA caused ALS/PDC was largely based on a primate study that 
used extremely high dose levels which were postulated to be possible for 
humans to obtain by the consumption of food with extremely high lev-
els of BMAA. ALS/PDC is a separate neurodegenerative disease that has 
occurred in several geographically distant and distinct areas. While the sum 
of its symptoms are similar to other neurodegenerative diseases, the pat-
terns of occurrence are different, the type of aberrant proteins and regions 
of the brain that are affected are different, and there is no reason for assum-
ing that the same agent acts to induce all of these diseases. Moreover, it 
seems that human BMAA exposure through food and environment outside 
Guam is orders of magnitude lower than effective doses administered in 
animal studies, or postulated to have been consumed by people on Guam. 
Finally, several well-designed studies have failed to find evidence of BMAA 
incorporation into proteins.

Research into the cause(s) of ALS/PDC has largely been focused on single 
factors, but there is little evidence that any of the single factor hypotheses 
are completely responsible for the disease. There is, however, a possibility 
that all or most of the different postulated causes, along with the consider-
able stress on the population of Guam during the World War II occupa-
tion, played additive or synergistic roles in the occurrence of ALS/PDC, 
and a more complex causation should be considered. Mineral imbalance, 
genetic background, stress-induced physiological alterations and any of sev-
eral toxins present in cycads may have all played significant roles in the 
causation of the disease (Chernoff et al., 2017). To solve a problem of this 
nature is extremely difficult under any circumstances, and this difficulty 
may increase as the incidence of ALS/PDC lessens in Guam. The evidence 
for BMAA being the single cause of ALS/PDC in Guam as well as for other 
unrelated neurodegenerative diseases globally is not convincing.

One can never realistically prove the absence of an effect, but the total-
ity of the evidence for the BMAA-neurodegenerative disease hypothesis at 
the present time, or better the lack thereof, gives no reasons for immediate 
concern. The question of mechanisms explaining how one compound can 
cause four distinctive neurological diseases affecting different regions of the 
brain and having different proteins associated with the central nervous sys-
tem changes in different people is a major issue that has yet to be addressed 
experimentally. BMAA remains an interesting compound, but given the 
evidence of increasing cyanobacterial and marine algal blooms and various 
associated toxins in numerous waterbodies globally, there are many other 
more apparent potential algal toxin health effect issues. Research efforts on 
BMAA should be balanced with regard to those on the other cyanotoxins. 
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Although solid exposure data are required for risk assessment, the key 
question that needs to be answered first is whether the proposed toxic 
effects of BMAA can be confirmed in health-relevant dose ranges.
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2.8  CYANOBACTERIAL 

LIPOPOLYSACCHARIDES (LPS)

Martin Welker

2.8.1  General characteristics of bacterial LPS

Lipopolysaccharides (LPS) are part of the outer membrane of most Gram-
negative prokaryotes, including enteric bacteria (Erridge et al., 2002; 
Raetz & Whitfield, 2002) and also cyanobacteria (Weckesser et al., 1979; 
Martin et al., 1989). Furthermore, there is evidence that LPS-like compounds 
can be found in green algae (Armstrong et al., 2002) and chloroplasts of 
vascular plants (Armstrong et al., 2006). A large body of literature is avail-
able on the structure, composition of LPS and their association with adverse 
health effects, generally focusing on heterotrophic bacteria of clinical rele-
vance (Dauphinee & Karsan, 2006; Bryant et al., 2010; Vatanen et al., 2016).

The structure of all LPS generally follows the scheme given in Figure 2.8. 
The core structure is highly complex with individual regions showing vary-
ing degrees of conservation. In particular, the O-polysaccharide chain is 
highly variable and is the main characteristic for distinguishing dozens or 
hundreds of serotypes in some bacterial species, for example, Escherichia 
coli or Salmonella sp. (Stenutz et al., 2006). The moiety primarily respon-
sible for the toxicity is lipid A, which is composed of phosphorylated sugar 
units to which acyl chains of variable length and degree of saturation are 
linked. Cyanobacterial LPS is different to LPS from Gram-negative hetero-
trophs as it often lacks heptose and 3-deoxy-D-manno-octulosonic acid (or 
keto-deoxyoctulosonate; KDO), which are commonly present in the core 
region of the LPS of heterotrophic bacteria. However, since the number of 

O-polysaccharide chain

n

outer
core

inner
core

lipid A

Figure 2.8  Schematic structure of lipopolysaccharides. Lipid A is composed of a highly 
conserved D-glucosamine backbone with variable acyl chains bound to it, the 
particular structure of which largely determines endotoxicity. The inner core 
is also highly conserved containing KDO and heptoses, that are, however, less 
frequent or absent in cyanobacterial LPS. The outer core is moderately vari-
able and contains mostly common sugars such as hexoses or hexaminoses. 
The O-polysaccharide chain is composed of repetitive units of sugar com-
plexes and is highly variable and responsible for the serological specificity of 
LPS and is a primary antigen of infective bacteria. (Modified from Erridge et 
al., 2002.)
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well-characterised LPS from cyanobacteria is very limited, species-specific 
characteristics cannot yet be derived (Durai et al., 2015).

The first cyanobacterial LPS were characterised from two strains of 
marine Synechococcus sp. (Snyder et al., 2009). Structural elucidation of 
LPS is also available from “Oscillatoria planktothrix”, confirming the 
lack of KDO (Carillo et al., 2014). The monosaccharide composition of 
the O-chain of Microcystis sp. LPS was found to be relatively simple (Fujii 
et al., 2012). Further reports characterise cyanobacterial LPS rather by its 
bioactivity and less by analyses of chemical structures.

In the literature, the terms “LPS” and “endotoxin” are often used as syn-
onyms, but not always. Occasionally, endotoxin refers to the lipid A part of 
LPS or refers to an entirely different molecule that is released from cells only 
upon lysis. The lipid A of different heterotrophic bacterial species is highly 
variable and expectedly exhibits varying activity in various test systems 
(Erridge et al., 2002) – as it is presumably the case with cyanobacterial lipid 
A (Gemma et al., 2016).

The principal clinical relevance of LPS from heterotrophic bacteria is due 
to its role in sepsis and septic shock, which are potentially life-threatening 
conditions leading to high numbers of casualties every year worldwide 
(Hotchkiss et al., 2016). Most cases of endotoxin intoxication occur after 
systemic infection with Gram-negative bacteria that can lead to sepsis and 
septic shock when endotoxin is released from cells and enters the blood cir-
cuit. There, LPS triggers a signalling cascade in macrophage/endothelial 
cells that eventually secrete proinflammatory compounds such as cytokines 
and nitric oxide (Trent et al., 2006).

In particular, LPS is known to bind to one type of so-called toll-like 
receptors, namely, TLR4 (Bryant et al., 2010), triggering a cascade of cellu-
lar reactions that involve the regulation of the expression of a large number 
of genes (Akira & Takeda, 2004). In healthy individuals, the recognition 
of LPS by TLR4 triggers innate and adaptive immune responses as part of 
the normal defence against invasive microbes (Takeda et al., 2003), and 
only a massive reaction in response to LPS in the bloodstream leads to a 
critical health status. The strength of the binding of LPS to TLR4 is depen-
dent on the structure of lipid A, explaining varying strength of reactions in 
patients but also in bioassays. The cascading host response to LPS rather 
than the toxic properties of LPS itself therefore accounts for the potentially 
lethal consequences (Opal, 2010). For this reason, LPS (or endotoxin) has 
been discussed to be classified rather as an (exogenous) hormone than as a 
toxin in a strict sense (Marshall, 2005). Arguably, LPS is not a secondary 
metabolite like the known cyanotoxins but a highly variable fraction of a 
cellular constituent rather than a defined structure.

One precondition of LPS-mediated sepsis is the microbial infection of a 
body part causing an immune response and, when not controlled, inflam-
mation. The presence of bacteria producing LPS in or on the body is no 
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health risk in itself (Mowat & Agace, 2014). The LPS contained in a healthy 
gut microbiome is generally no threat and exceeds by far the amount of LPS 
that triggers a septic shock when circulating in the bloodstream.

Besides their role in acute and life-threatening conditions, LPS play an 
important role in triggering various signalling pathways in epithelial cells, 
for example, in the intestine (Cario et al., 2000) or the lung (Guillot et al., 
2004). However, the role of LPS (from heterotrophic bacteria) in the regu-
lation of the gut microbiome (d’Hennezel et al., 2017) – the complexity of 
which has only recently been fully recognised – is beyond the scope of this 
chapter and the following will focus on cyanobacterial LPS.

2.8.2  What is known about bioactivity 
of cyanobacterial LPS?

A number of studies on cyanobacterial lipopolysaccharides (LPS) have dem-
onstrated effects in bioassays, for example:

• Mayer et al. (2011) reported several metabolic reactions of rat microglia 
upon exposure to LPS from Microcystis. However, the reactions were 
considerably less pronounced compared to the reactions observed upon 
exposure to equimolar concentrations of LPS from Escherichia coli.

• Klemm et al. (2018) reported similar reactions of rat microglia in vitro 
after exposure to LPS from Scytonema.

• Best et al. (2002) quantified the activities of microsomal and soluble 
glutathione S-transferases (GST) from zebra fish embryos exposed to 
LPS from an axenic Microcystis strain, cyanobacterial blooms and 
enteric bacteria. They found a reduction in activity for all types of 
LPS and concluded that this may reduce the detoxication capacity for 
microcystins.

• Jaja-Chimedza et al. (2012) also exposed zebra fish embryos to 
extracts of Microcystis strains assumed to contain LPS and found an 
increase in activity of glutathione-based detoxication enzymes.

• Ohkouchi et al. (2012) exposed a human monocytic cell line to LPS 
from various heterotrophic and cyanobacteria as well as from micro-
bial consortia to test the inflammatory potential of LPS. The LPSs 
from an Acinetobacter lwoffii culture and from bacterial consortia 
induced stronger reactions than other LPSs tested, including that of 
cyanobacteria.

• Macagno et al. (2006) isolated “an LPS like compound” from “Oscilla-
toria planktothrix” that acts as a selective inhibitor of activity induced 
in dendritic cells through exposure to LPS from E. coli. This antagonis-
tic behaviour was found to inhibit LPS-induced toxic shock in mice. In 
Limulus amoebocyte lysate (LAL) assays, activity of the cyanobacterial 
LPS-like compound was very low at 4 EU/μg compared to 8000 EU/μg 
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of Salmonella enterica serotype abortus equi LPS or 15 000 EU/μg of 
Escherichia coli serotype 055:B5 LPS.

• This cyanobacterial LPS-like compound is a potential inhibitor of 
Escherichia coli LPS-induced inflammatory response in porcine whole 
blood (Thorgersen et al., 2008).

• Moosova et al. (2019) report a number of proinfammatory effects of 
LPS extracted from Microcystis strains and bloom samples observed 
in whole-blood in vitro assays, such as induction inflammatory medi-
ators like tumor necrosis factor and interleukins.

These in vitro studies demonstrate a wide variety of bioactivities in a num-
ber of test systems; yet it is difficult to infer potential in vivo bioactiv-
ity from these results, especially as to date no study has unambiguously 
related cyanobacterial LPS to adverse health effects in mammals, including 
humans, in vivo, like this has been demonstrated for microcystin toxicity, 
for example. Gastrointestinal disorders upon ingestion of cyanobacteria, 
generally consisting of heterogeneous bloom material, cannot be causally 
attributed to cyanobacterial LPS as is discussed below.

In most studies that imply an association between observed adverse 
human health effects and cyanobacterial LPS, this is based more on associa-
tive argumentation than on conclusive evidence. Mainly two reports have 
been influential in advancing the hypothesis that cyanobacterial LPS is a 
health risk.

Lippy and Erb (1976) reported on an outbreak of gastrointestinal ill-
ness that occurred in Sewickley, PA (USA). The epidemiological survey con-
ducted at the time concluded that the outbreak was a water-borne illness 
and a putative contaminant was thought to have entered the water supply 
system through an uncovered finished-water reservoir in which cyanobac-
teria (mainly Schizothrix) were present around the time of the outbreak. 
Although the term “endotoxin” is used only once and only in the context 
of a general recommendation without making an explicit link to cyano-
bacteria, in subsequent studies the outbreak is retrospectively linked more 
or less explicitly to cyanobacterial lipopolysaccharides (Keleti et al., 1979; 
Sykora et al., 1980). At the time of the outbreak, many aetiological agents 
were not yet known or were not yet detectable, and hence, the conclusions 
drawn were possibly influenced by the visible prominence of cyanobacterial 
blooms compared to, for example, viruses. Also, none of the cyanobacterial 
toxins with unambiguous adverse health effects treated in this volume were 
known at the time of this outbreak.

Hindman et al. (1975) reported on an outbreak of pyrogenic reactions in 
patients being treated at a haemodialysis clinic in Washington, DC. They 
circumstantially attributed this to cyanobacterial LPS as a cyanobacterial 
bloom was present in the Potomac River from which the raw water was 
abstracted. The apparent reason for this connection is that the authors were 
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unable to demonstrate bacterial infections and bacterial contamination of 
tap water and dialysate was seen only at trace levels. The authors concluded 
that raw water from the Potomac, affected by a concurrent “algae bloom”, 
was the likely source of LPS or endotoxin. However, no samples were taken 
to obtain counts of heterotrophs in the raw water (or in the treatment sys-
tem). In this case also, the connection of cyanobacterial LPS to the adverse 
health effect is possibly largely based on the prominent visibility of an “algal 
bloom” – rather than on unequivocal evidence.

Since these early reports, no further studies have unequivocally sup-
ported the hypothesis that cyanobacterial LPS poses a risk to human 
health. Nonetheless, these studies were cited as evidence for this hypoth-
esis until recently. In most of the reports that attribute signs and symp-
toms to contact with cyanobacterial lipopolysaccharides, as summarised 
in Stewart et al. (2006), this connection is not well evidenced or given 
only in general terms such as that “cyanobacterial toxins or LPS can cause 
adverse health effects”.

A study by Lévesque et al. (2016), entitled “Exposure to cyanobacteria: 
acute health effects associated with endotoxins”, suggests a causal rela-
tionship between exposure to cyanobacterial LPS (endotoxin) and human 
illness. The observed health effects consisted of generally mild gastroin-
testinal symptoms not requiring medical examination. Yet, the statement 
made in the title is not well supported by the presented data. For example, 
no information is provided on the taxonomic composition of the cyanobac-
terial blooms, nor have well-known cyanobacterial toxins been quantified. 
Further, no attempt was made to analyse water samples for possible hetero-
trophic pathogens associated with the cyanobacteria – while the authors 
clearly state that “the hypothesis of a preponderant role of Gram-negative 
bacteria is attractive” (see also next section) and conclude that “it is pos-
sible that the concentration of endotoxins is a proxy of another exposure”. 
In summary, the reported correlation between exposure to cyanobacterial 
blooms and mild disease does not allow to conclude that specifically cyano-
bacterial LPS actually played a significant role in this.

2.8.3  Methodological problems of studies 
on cyanobacterial LPS

Due to their structural complexity, the quantification of LPS in a (cyano)
bacterial sample is difficult, and instead of a true molar or gravimetric quan-
tification, a bioassay has been employed. Most studies used the Limulus amoe-
bocyte lysate (LAL) assay (Young et al., 1972), with intrinsic uncertainty due 
to varying activity of LPS from individual strains. The validity of the LAL 
assay for clinical diagnosis has long been debated due to a supposed lack of 
specificity but it is still considered the gold standard. Alternatively, pyrogen 
tests based on human monocytoid cells have been proposed (Hoffmann et al., 
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2005). Modern biosensor-based assays are increasingly available (Das et al., 
2014; Lim et al., 2015), while modifications of the LAL assay are still in use 
to detect LPS in clinical samples (e.g., Wong et al., 2016).

The characterisation of LPS from cyanobacteria can only be meaning-
ful if these are extracted from axenic cyanobacterial cultures, that is, cul-
tures free of any contamination with heterotrophic bacteria. Effects of LPS 
extracted from samples of cyanobacterial blooms cannot be attributed 
exclusively to cyanobacterial LPS because in field samples, a high diver-
sity of heterotrophic bacteria in high numbers is tightly associated with 
cyanobacterial cells (Kolmonen et al., 2004; Xie et al., 2016; Yang et al., 
2017). Even if the biomass of cyanobacteria in such environmental bloom 
samples is higher than that of the heterotrophic bacteria, their relative share 
of LPS is lower because LPS content correlates with cell surface rather than 
with cell volume. A large number of small heterotrophic bacteria has a 
higher cell surface than the corresponding biomass of cyanobacteria, so 
that heterotrophic bacteria are likely to contain more LPS per biomass than 
cyanobacteria. In consequence, a relevant fraction of the activity in LAL 
bioassays of field samples is likely partly due to LPS from heterotrophic 
bacteria (Bláhová et al., 2013).

Considering the highly variable activity of lipopolysaccharides (LPS) of 
different microbiological origin, a mixture of LPS from an unquantified 
consortium of (cyano)bacteria does not allow a meaningful toxicological 
evaluation of one particular and unquantified LPS in this mixture. Bláhová 
et al. (2013) analysed LPS extracted from cultured Microcystis strains and 
from blooms dominated by Microcystis. In the latter, the authors reported 
higher activity (in LAL assays) and concluded that this is due to the contri-
bution of noncyanobacterial LPS. Rapala et al. (2006) also reported LPS 
fractions from axenic strains to show a much lower endotoxic activity than 
LPS fractions from bloom samples dominated by the same species. The 
same reservation may, although to a lesser extent, also apply to clonal but 
nonaxenic cultures of cyanobacteria in which the diversity of heterotrophs 
may be low but their cell numbers can be high and hence also the share 
of noncyanobacterial LPS in extracts. Interestingly, Moosova et al. (2019) 
report the opposite, that is, higher activity of LPS extracted from axenic 
strains compared to LPS from bloom samples. Therefore, unless respec-
tive studies explicitly state that cyanobacterial LPS was extracted from an 
axenic strain, a contamination with heterotrophic LPS needs to be consid-
ered when interpreting results.

Heterotrophic bacteria associated with cyanobacterial blooms may not only 
contribute to the combined amount of LPS but prove to be more important as 
a direct cause for adverse health effects than the cyanobacteria biomass itself 
(Berg et al., 2011). For example, Vibrio cholerae (Chaturvedi et al., 2015) or 
Legionella spp. (Taylor et al., 2009), the very presence of which may consti-
tute a health risk, have been found associated with cyanobacterial blooms.
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LPS in samples is generally reported in endotoxin units per volume (e.g., 
EU/mL) or per mass of LPS (e.g., EU/mg) with endotoxin units not directly 
correlated with the gravimetric amount of LPS due to the high variability of 
less conserved parts of the molecule. Some LPS may consist of a high share 
of Lipid A, while for others this share may be lower due to a higher share 
of polysaccharide moieties. Hence, it is very important to understand what 
the terms “endotoxin”, “LPS” or “endotoxic activity” refer to in particular 
publications. “LPS” is generally reported in gravimetric units, while “endo-
toxin” is reported either as activity, for example, in Limulus amoebocyte 
lysate (LAL) assays, or in gravimetric units when used synonymous to “LPS”.

In most bioassay studies, cyanobacterial LPS has been extracted from 
cells or samples with organic solvents, generally phenol, and the residue is 
considered to consist of LPS but often without a further characterisation in 
terms of purity testing or (partial) structure elucidation. This means that in 
most studies a fraction of not fully characterised composition is used rather 
than a defined compound. This is further complicated by the fact that LPS 
from an individual strain may be a mixture of structural variants. Among 
Gram-negative bacteria, variations of the polysaccharide chain (Michael 
et al., 2005) as well as of lipid A (Darveau et al., 2004) have been reported 
for individual strains.

The extraction procedure to obtain purified LPS needs to be optimised 
for the particular species under study and may even vary in efficiency when 
comparing multiple strains of a single species, as Papageorgiou et al. (2004) 
showed for multiple Microcystis strains. For toxigenic cyanobacterial 
strains, the extraction of LPS is further complicated by the possibility of 
coextraction of toxins such as microcystins that may bias bioassays when 
not properly quantified (Lindsay et al., 2009).

2.8.4  Possible exposure routes to 
cyanobacterial LPS

As discussed above, lipopolysaccharides (LPS) from bacterial heterotrophs 
becomes a critical health issue when it is released from tissue infections or 
inflammations and enters the bloodstream. Routes for exposure to cyano-
bacterial LPS are quite different from such clinical cases: systemic infec-
tions with cyanobacteria are very unlikely and have never been reported (in 
contrast to infections with green algae such as nonautotroph Prototheca 
spp.); thus, an increase of LPS from multiplication of cyanobacteria in the 
human body can be excluded.

Exposure to cyanobacterial LPS only appears to be possible via the intes-
tinal tract after oral uptake (cells and free LPS), during dialysis (free LPS) 
or via the respiratory mucosa after inhalation (cells and free LPS). In a 
review on possible exposure of humans to LPS through drinking-water, 
Anderson et al. (2002) concluded that two major exposure routes to LPS 
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through drinking-water exist, namely, haemodialysis and inhalation, while 
other exposure routes such as oral ingestion or skin contact are considered 
as not being relevant: “occurrences linked to ingestion or through dermal 
abrasions could not be located” – for LPS neither from heterotrophic bac-
teria nor from cyanobacterial LPS. Also, the uptake of cyanobacterial LPS 
through the consumption of cyanobacteria contained in blue green algal 
dietary supplements or food items (Aphanizomenon, Arthrospira, Nostoc; 
see section 5.5) so far has not been considered as a health risk. Therefore, 
possible exposure routes to cyanobacterial LPS can be restricted to haemo-
dialysis and inhalation.

For haemodialysis, it is evident that any exposure to cyanobacterial metab-
olites and other compounds must be avoided (see section 5.4) and the ques-
tion whether cyanobacterial LPS pose a threat or not is likely outweighed by 
the proven direct adverse effect of cyanobacterial toxins such as microcystins. 
Compared to cyanobacterial toxins, cyanobacterial LPS is presumably of 
lesser relevance for dialysis-associated health risks, and any measure to avoid 
exposure to cyanotoxins will inherently also address cyanobacterial LPS.

Inhalation of cyanobacterial LPS remains as a possible exposure route to 
be considered. The exposure to LPS through inhalation is generally consid-
ered to act through free LPS (Anderson et al., 2002). For drinking-water, 
Gram-negative heterotrophs are generally considered the main source 
of LPS as these bacteria can proliferate within the treatment system, for 
example, as biofilms on filters or in distribution pipes from which LPS 
can be released after cell death. In contrast, cyanobacterial cells are gener-
ally removed from raw water at the initial stages of water treatment (see 
Chapter 10) and cannot or only extremely rarely proliferate in the distri-
bution system. Therefore, respiratory contact to cyanobacteria occurs pri-
marily through intact cells or cell fragments inhaled accidentally during 
recreational or occupational activity. Inhalation of intact cyanobacterial 
cells or cell debris may have various effects such as mechanical irritation, 
tissue damage due to toxins or secondary infections with associated micro-
organisms (see also section 5.2). Clear evidence of a contribution of cyano-
bacterial LPS to adverse health effects upon inhalation of cyanobacteria has 
not been published so far.

2.8.5  Conclusions

There is no doubt that LPS from cyanobacteria affects cell lines or subcel-
lular systems such as the Limulus amoebocyte lysate assay in a similar way 
to LPS from heterotrophic bacteria. However, from this bioactivity in vitro, 
it cannot be concluded that LPS in waterbodies is a human health risk per 
se. LPS contained in aquatic ecosystems, with or without cyanobacteria, are 
a source of the natural and constant exposure to LPS – as it is the case with 
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LPS contained in the human gut and skin microbiomes, neither of which 
pose a direct health risk.

During effective drinking-water treatment, cyanobacterial LPS concen-
tration is very unlikely to increase in the process. Therefore, the exposure to 
cyanobacterial LPS via consumption of drinking-water as potential health 
risk can be negated with a fair amount of certainty. Exposure to cyanobac-
terial LPS via inhalation may equally be irrelevant when considering spray 
formation, for example, while showering.

Inhalation of spray of water containing cyanobacteria in substantial 
amounts could be an exposure scenario but most adverse health effects such 
as inflammation or tissue lesions likely are a consequence of other constitu-
ents rather than an effect of cyanobacterial LPS itself. For haemodialysis, 
water needs to be free not only of any LPS but also of any cyanobacterial 
toxins to avoid critical exposure and health risks, as described in section 
5.4, and ensuring that will inherently include LPS.

In summary, based on the current knowledge, cumulated in several 
decades of research, cyanobacterial LPS are not likely to pose health risks 
to an extent known from toxins like microcystins or cylindrospermopsins, 
in particluar, when considering plausible exposure pathways.
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2.9  CYANOBACTERIAL TASTE AND 

ODOUR COMPOUNDS IN WATER

Triantafyllos Kaloudis

Cyanobacteria can produce a large number of odorous compounds in water 
that are usually referred to as water “taste and odour” (T&O)  compounds, 
some of which are specific to cyanobacteria, while others, however, are 
also produced by other organisms. Odorous metabolites have negative 
effects especially for drinking-water systems, as they make water unaccept-
able for consumers but also for tourism, recreational uses and aquaculture 
enterprises.

Cyanobacterial T&O compounds belong to various chemical groups, 
including terpenoids, ionones, aldehydes, ketones, sulphurous compounds, 
amines and others (Watson, 2004). Among these, the most frequently 
occurring compounds that are associated with seriously unpleasant epi-
sodes of off-odours in source waters and water supplies are geosmin and 
2-methylisoborneol (MIB).

Geosmin (from the Greek “geo”: earth and “osme”: odour) is a bicyclic 
sesquiterpenic compound with an extremely intense muddy/earthy smell that 
has an odour threshold concentration (OTC, i.e., minimum concentration 
detected by human nose) of about 4 ng/L in water, while MIB is a bicyclic 
terpenoid with a strong musty odour and an OTC of 6 ng/L (Young et al., 
1996). Geosmin and MIB are responsible for many T&O incidents affecting 
water supplies, recreational waters and tourism, and they can also accumu-
late in the lipid tissue of aquatic organisms, for example, of fish, resulting in 
economic losses to fishery and aquaculture enterprises (Smith et al., 2008).

Many other odorous compounds can be produced by cyanobacteria, such 
as β-cyclocitral, α- and β-ionones and alkyl sulphides (Jüttner, 1984). This 
section focuses on the most commonly occurring, that is, geosmin and MIB.

2.9.1  Chemistry and toxicity

Figure 2.9 shows the chemical structures of common cyanobacterial T&O 
compounds and their characteristic odour. Geosmin and MIB are both ter-
tiary alcohols belonging to the class of terpenoids. Only the (−) enantiomers 
occur in natural systems, and these are more odorous than the (+) enantio-
mers (Jüttner & Watson, 2007).

Geosmin and MIB are not considered as health hazards for humans, as it 
has been shown that environmentally relevant concentrations of both com-
pounds (e.g., ng-μg/L) present no cytotoxicity or genotoxicity (Dionigi et al., 
1993; Bláha et al., 2004; Burgos et al., 2014). Furthermore, as these com-
pounds can be sensed by the human nose at extremely low concentrations 
(low ng/L, see above; Table 2.10), their presence even in low concentrations 
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makes water unacceptable for consumption, which is the main problem 
they cause for water supplies. Indirectly, the presence of T&O may affect 
health if it leads consumers to turn to another, possibly less safe water sup-
ply. Other compounds such as β-cyclocitral and α, β-ionones, which are 
carotenoid breakdown products, also do not pose health safety concerns; in 
fact, they are used as additives in food or in cosmetic products.

2.9.2  Analysis

Sensory evaluation followed by chemical analysis is generally used for the 
assessment of T&O compounds produced by cyanobacteria in water (Suffet 
et al., 2004). Flavour profile analysis (FPA) is a useful sensory evaluation 
technique, in which a panel of trained assessors describes the character and 
intensity of the unusual odour (Rice et al., 2017). Panellists can use the water 
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Figure 2.9 C hemical structures of geosmin (a), methyl-isoborneol (b), β-cyclocitral 
(c), β-ionone (d), α-ionone (e), and dimethyl-disulphide (f). For molecular 
weights and smell characteristics, see Table 2.10.

Table 2.10  Smell characteristics and molecular weights of common cyanobacterial 
taste and odour substances

Smell 
characteristics

Monoisotopic mass 
(Da)

Molecular weight 
(g/mol)

Geosmin Earthy-muddy 182.17 182.31

2-Methylisoborneol Musty-mouldy 168.15 168.28

β-Cyclocitral Tobacco/wood 152.12 152.24

β-Ionone Violets 192.15 192.30

α-Ionone Violets 192.15 192.30

Dimethyl disulphide Septic 93.99 94.20
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“Taste and Odour Wheel” (TOW) to associate odour descriptions with groups 
of chemical compounds that are included in sectors of the TOW. Several sec-
tors contain compounds that are possibly produced by cyanobacteria; for 
example, earthy/mouldy/musty odours are associated with the sector that 
contains geosmin and 2-methylisoborneol (MIB) as possible causative agents. 
The results of FPA-TOW provide guidance for the chemical analysis labora-
tory regarding which groups of compounds should be specifically targeted.

Detection, identification and quantitation of geosmin, MIB and other 
T&O compounds is carried out by gas chromatography combined with 
mass spectrometry (GC-MS). GC-MS techniques, after sample extraction 
and preconcentration, allow detection and quantitation of T&O at very 
low concentrations (low ng/L). Confirmation of the identity of odorous 
compounds is based on mass spectral analysis, retention indices and com-
parisons with commercially available standards. GC-olfactometry (GC-O) 
is a supplementary technique, especially for nontargeted analysis, that can 
provide additional information to identify the compound(s) responsible for 
the unusual odour (Hochereau & Bruchet, 2004). Efficient extraction of 
geosmin, MIB and other T&O compounds from water prior to GC-MS 
can be achieved by techniques such as purge and trap (P&T), solid-phase 
extraction (SPE), head-space solid-phase microextraction (HS-SPME), stir-
bar sorptive extraction (SBSE) and closed-loop stripping analysis (CLSA). 
These techniques can be optimised so that detection at concentrations 
below or equal to OTCs can be achieved (Kaloudis et al., 2017).

Molecular methods targeting geosmin and MIB biosynthetic genes of 
cyanobacteria have been developed and can be applied as additional moni-
toring tools for the early detection of geosmin and MIB producers in aquatic 
environments (Giglio et al., 2010; Su et al., 2013; Suurnäkki et al., 2015).

2.9.3  Producing organisms

In aquatic environments, cyanobacteria are considered as the major sources 
of geosmin and MIB, although these compounds are also produced by acti-
nomycetes that are nonphotosynthetic and largely terrestrial organisms 
associated with soils (Watson, 2004). Odour compounds from actinomy-
cetes can be washed into surface waterbodies but this process seems to be 
less relevant in water T&O episodes (Zaitlin & Watson, 2006).

Compilations of cyanobacterial species that produce geosmin and MIB 
show a variety of primarily filamentous planktonic and benthic produc-
ers (Jüttner & Watson, 2007; Krishnani et al., 2008; Smith et al., 2008; 
Graham et al., 2010). Geosmin- and MIB-producing species belong to the 
genera Dolichospermum (Anabaena), Oscillatoria, Phormidium, Lyngbya, 
Leptolyngbya, Microcoleus, Nostoc, Planktothrix, Pseudanabaena, Hyella 
and Synechococcus. Most of the cyanobacterial species of these gen-
era produce either geosmin or MIB, but there are also species capable of 
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producing both compounds. Similarly to cyanotoxins, production of T&O 
compounds by cyanobacteria is strain-dependent; therefore, strain isolation 
and culture or detection of specific gene clusters are required to conclusively 
identify the T&O producers.

2.9.4  Biosynthesis

Geosmin and MIB are synthesised by terpene synthases. Geosmin is syn-
thesised through cyclisation of farnesyl diphosphate by geosmin synthase 
(Jiang et al., 2008). MIB is synthesised through methylation of geranyl 
diphosphate by a methyltransferase, followed by cyclisation to MIB by MIB 
synthase (Komatsu et al., 2008). The genes associated with biosynthesis 
of geosmin and MIB from cyanobacteria have been discovered, and this 
has led to the development of PCR and qPCR methods for the detection 
of cyanobacteria producers (Suurnäkki et al., 2015). The functions of cya-
nobacterial T&O compounds for the cells are still largely unknown. It is 
hypothesised that they may have a role as signalling compounds, in allelo-
pathic interactions or as defensive agents (Zuo, 2019).

2.9.5  Geosmin and MIB concentrations 
in aquatic environments

The concentrations of geosmin and MIB found in aquatic environments can 
vary widely, but they are usually below 1 μg/L in surface waters and consid-
erably lower in treated drinking-water. Similarly to cyanotoxins, geosmin, 
MIB and other cyanobacterial T&O compounds can be cell-bound or dis-
solved in water, and there is no general consensus in the literature regarding 
the methods used to discriminate between these fractions or regarding the 
expression of results (Jüttner & Watson, 2007).

The production and occurrence of cyanobacterial T&O compounds 
are known to be influenced by various environmental factors, including 
phytoplankton composition, light intensity, nutrient concentrations, water 
temperature, pH and dissolved oxygen. Study of these factors is useful for 
the development of predictive models for T&O incidents (Qi et al., 2012). 
Geosmin and MIB persist in water and are both only slowly degraded by 
chemicals or microorganisms, which largely explains their persistence in 
conventional water treatment processes.

2.9.6  Removal of geosmin and MIB by 
water treatment processes

Removal of geosmin, MIB and other T&O compounds from water is a 
great challenge for water utilities, due to the extremely low odour thresh-
old concentrations (OTCs) of some compounds. Conventional water treat-
ment methods (coagulation, flocculation, sedimentation and filtration) are 
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generally ineffective in removing geosmin and MIB from drinking-water. 
Adsorption with activated carbon (AC), in granular (GAC) or powdered 
(PAC) forms, is widely used to remove T&O compounds. PAC especially 
provides the flexibility of application for seasonal, short-term or unexpected 
T&O episodes. Several factors, including the adsorbent properties such as 
pore size distribution and surface characteristics and the presence of natu-
ral organic matter (NOM) in water, can reduce the effectiveness of removal 
due to competitive adsorption (Newcombe et al., 2002). Furthermore, bio-
degradability of geosmin and MIB by several microorganisms has been 
studied and has been used for biological filtration on sand filters or GAC 
(Ho et al., 2007).

Common disinfectants and oxidants (e.g., Cl2, ClO2, KMnO4) may not 
completely remove T&O compounds or they may form other odorous by-
products, while ozone and a combination of ozone/hydrogen peroxide are 
shown to be more efficient (Bruchet et al., 2004; Peter & Von Gunten, 
2007). A number of studies have focused on the degradation of geosmin 
and MIB using advanced oxidation processes such as UV/H2O2, O3/H2O2, 
heterogeneous photocatalysis and sonolysis (Antonopoulou et al., 2014; 
Fotiou et al., 2015). Degradation mechanisms in advanced oxidation pro-
cesses commonly proceed via the oxidation of T&O compounds by highly 
reactive oxygen species such as the hydroxyl radical; thus, they are gener-
ally more effective than conventional oxidation. However, their application 
is rather limited mainly due to operational costs.

Such special treatment requires additional investment and operational 
costs. As cyanobacterial T&O episodes are often seasonal or occasional, 
modelling the temporal and spatial dynamics of cyanobacteria in water res-
ervoirs in order to prevent and control the growth of producer organisms is 
therefore considered the most efficient practice for water supplies.

2.9.7  Co-occurrence of T&O compounds 
and cyanotoxins

Not all cyanobacteria produce toxins and T&O compounds, but, as shown 
in section 2.9.4, several genera contain one or more cyanotoxin and/or T&O 
strain producers. Some strains of Microcystis also produce microcystins 
together with β-cyclocitral and alkyl sulphides (Jüttner, 1984). However, 
cyanobacterial T&O compounds do not inevitably indicate the occurrence 
of cyanotoxins, since attempts to use T&O parameters as potential indica-
tors of the presence of the toxins have been inconclusive (Khiari, 2017). 
Nevertheless, when T&O incidents occur in water supplies that use surface 
water reservoirs, both operators and authorities should be aware that cya-
nobacteria are a possible cause. As T&O compounds can be sensed at very 
low concentrations, they can serve as an early warning for further investi-
gations regarding the presence of cyanobacteria and among them, possible 
cyanotoxin producers.



154 Toxic Cyanobacteria in Water

REFERENCES

Antonopoulou M, Evgenidou E, Lambropoulou D, Konstantinou I (2014). A review 
on advanced oxidation processes for the removal of taste and odor compounds 
from aqueous media. Water Res. 53:215–234.

Bláha L, Sabater S, Babica P, Vilalta E, Maršálek B (2004). Geosmin occurrence in 
riverine cyanobacetrial mats: is it causing a significant health hazard. Wat Sci 
Technol. 49:307–312.

Bruchet A, Duguet J, Suffe IM (2004). Role of oxidants and disinfectants on the 
removal, masking and generation of tastes and odours. Rev Environ Sci 
Biotechnol. 3:33–41.

Burgos L, Lehmann M, Simon D, de Andrade HHR, de Abreu BRR, Nabinger DD 
et al. (2014). Agents of earthy-musty taste and odor in water: evaluation of 
cytotoxicity, genotoxicity and toxicogenomics. Sci Tot Environ. 490:679–685.

Dionigi CP, Lawlor TE, McFarland JE, Johnsen PB (1993). Evaluation of geosmin 
and 2-methylisoborneol on the histidine dependence of TA98 and TA100 
Salmonella Typhimurium tester strains. Water Res. 27:1615–1618.

Fotiou T, Triantis T, Kaloudis T, Hiskia A (2015). Evaluation of the photocatalytic 
activity of TiO 2 based catalysts for the degradation and mineralization of 
cyanobacterial toxins and water off-odor compounds under UV-A, solar and 
visible light. Chem Eng J. 261:17–26.

Giglio S, Chou W, Ikeda H, Cane D, Monis P (2010). Biosynthesis of 2-methylisobor-
neol in cyanobacteria. Environ Sci Technol. 45:992–998.

Graham JL, Loftin KA, Meyer MT, Ziegler AC (2010). Cyanotoxin mixtures and 
taste-and-odor compounds in cyanobacterial blooms from the midwestern 
United States. Environ Sci Technol. 44:7361–7368.

Ho L, Hoefel D, Bock F, Saint CP, Newcombe G (2007). Biodegradation rates of 
2-methylisoborneol (MIB) and geosmin through sand filters and in bioreactors. 
Chemosphere. 66:2210–2218.

Hochereau C, Bruchet A (2004). Design and application of a GC-SNIFF/MS sys-
tem for solving taste and odour episodes in drinking water. Wat Sci Technol. 
49:81–87.

Jiang J, Saint CP, Cane DE, Monis PT (2008) Isolation and characterization of the 
gene associated with geosmin production in cyanobacteria. Environ Sci Technol. 
42:8027–8032.

Jüttner F (1984). Characterization of Microcystis strains by alkyl sulfides and 
β-cyclocitral. Zeitschrift für Naturforschung C 39:867–871.

Jüttner F, Watson SB (2007). Biochemical and ecological control of geosmin and 
2-methylisoborneol in source waters. Appl Environ Microbiol. 73:4395–4406.

Kaloudis T, Triantis TM, Hiskia A (2017). Taste and odour compounds produced by 
cyanobacteria. In: Meriluoto J, Spoof L, Codd GA et al., editors: Handbook of 
Cyanobacterial Monitoring and Cyanotoxin Analysis. Chichester: John Wiley 
& Sons:196–201.

Khiari D (2017). Managing cyanotoxins. Denver (CO): Water Research Foundation. 
8 pp.

Komatsu M, Tsuda M, Ōmura S, Oikawa H, Ikeda H (2008). Identification and func-
tional analysis of genes controlling biosynthesis of 2-methylisoborneol. Proc 
Natl Acad Sci USA. 105:7422–7427.



2 The cyanotoxins 155

Krishnani KK, Ravichandran P, Ayyappan S (2008). Microbially derived off-flavor 
from geosmin and 2-methylisoborneol: sources and remediation. Rev Environ 
Contam Toxicol. 194:1–27.

Newcombe G, Morrison J, Hepplewhite C, Knappe D (2002). Simultaneous adsorp-
tion of MIB and NOM onto activated carbon: II. Competitive effects. Carbon. 
40:2147–2156.

Peter A, Von Gunten U (2007). Oxidation kinetics of selected taste and odor com-
pounds during ozonation of drinking water. Environ Sci Technol. 41:626–631.

Qi M, Chen J, Sun X, Deng X, Niu Y, Xie P (2012). Development of models for 
predicting the predominant taste and odor compounds in Taihu Lake, China. 
PLoS One. 7:e51976.

Rice EW, Baird RB, Eaton AD, editors (2017). Standard methods for the examina-
tion of water and wastewater. Washington (DC): 23nd. American Public Health 
Association.

Smith JL, Boyer GL, Zimba PV (2008). A review of cyanobacterial odorous and 
bioactive metabolites: impacts and management alternatives in aquaculture. 
Aquaculture. 280:5–20.

Su M, Gaget V, Giglio S, Burch M, An W, Yang M (2013). Establishment of quantita-
tive PCR methods for the quantification of geosmin-producing potential and 
Anabaena sp. in freshwater systems. Water Res. 47:3444–3454.

Suffet IM, Schweitze L, Khiari D (2004). Olfactory and chemical analysis of taste and 
odor episodes in drinking water supplies. Rev Environ Sci Biotechnol. 3:3–13.

Suurnäkki S, Gomez-Saez GV, Rantala-Ylinen A, Jokela J, Fewer DP, Sivonen K 
(2015). Identification of geosmin and 2-methylisoborneol in cyanobacteria and 
molecular detection methods for the producers of these compounds. Water Res. 
68:56–66.

Watson SB (2004). Aquatic taste and odor: a primary signal of drinking-water integrity. 
J Toxicol Environ Health Part A. 67:1779–1795.

Young W, Horth H, Crane R, Ogden T, Arnott M (1996). Taste and odour threshold 
concentrations of potential potable water contaminants. Water Res. 30:331–340.

Zaitlin B, Watson SB (2006). Actinomycetes in relation to taste and odour in drink-
ing water: Myths, tenets and truths. Water Res. 40:1741–1753.

Zuo Z (2019). Why algae release volatile organic compounds – the emission and 
roles. Front Microbiol. 10:491.



156 Toxic Cyanobacteria in Water

2.10  UNSPECIFIED TOXICITY AND OTHER 

CYANOBACTERIAL METABOLITES

Andrew Humpage and Martin Welker

Early studies on toxic cyanobacteria largely reported effects of extracts of 
cyanobacteria, isolated strains or bloom material collected in the field on 
test systems such as animals and plants. With the purification of individual 
compounds that cause toxic effects and the elucidation of their structure, 
whole organisms were often replaced as test systems with cell lines, tissues 
or enzyme/substrate systems. The mode of action of a number of toxins 
could be revealed by these tests and eventually lead to a good understand-
ing of the human health risks associated with these toxins.

However, in a number of studies, toxic effects on whole animals or in 
vitro test systems were found that could not be explained by the activity 
of known and quantifiable cyanobacterial toxins. It is therefore likely that 
cyanobacteria produce metabolites toxic to humans – as well as animals 
and plants in general – other than the ones described in sections 2.1–2.6.

This section therefore addresses two aspects of cyanobacterial toxicity 
beyond the known toxins: compounds produced by cyanobacteria that have 
shown bioactivity in various test systems and toxic effects of cyanobacte-
rial extracts that cannot be attributed to the well-known compounds. Both 
aspects are tightly linked and may lead to the identification of further cya-
notoxins in future.

2.10.1  Bioactive metabolites produced 
by cyanobacteria

The cyanotoxins described in sections 2.1–2.6 are only a tiny part of the 
total diversity of secondary metabolites produced by cyanobacteria. Many 
of these compounds show bioactivity in organismic or in vitro test systems, 
making cyanobacteria a potentially interesting source of pharmacologi-
cally active substances (Burja et al., 2001; Chlipala et al., 2011; Welker 
et al., 2012; Vijayakumar & Menakha, 2015). It is beyond the scope of 
this book to review the diversity of cyanobacterial metabolites and their 
biosynthesis (as far as it is known) and the reader is referred to available 
reviews (Welker & von Döhren, 2006; Dittmann et al., 2015; Huang & 
Zimba, 2019). In this context, it is worth to mention that heterologous 
expression of peptide or polyketide metabolites in cyanobacterial strains 
has become feasible (Videau et al., 2019; Vijay et al., 2019), potentially 
offering new opportunities for pharmacological research (Cassier-Chauvat 
et al., 2017; Stensjö et al., 2018).
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Most known metabolites, including the known cyanotoxins, are synthe-
sised by three biosynthetic pathways or hybrids thereof: nonribosomal pep-
tide synthetases (NRPS), polyketide synthases (PKS) or ribosomal synthesis 
of peptides that are modified post-translationally (Ziemert et al., 2008; 
Dittmann et al., 2015). These pathways allow the synthesis of virtually 
hundreds of structural variants of a single basic structure by variations in 
amino acid composition, modifications such as methylation or dehydration, 
and others, as has been well documented for microcystins (Catherine et al., 
2017). Similar variability is known for several classes of nonribosomally 
synthesised peptides – for example, cyanopeptolins, aeruginosins and ana-
baenopeptins (Rounge et al., 2007; Ishida et al., 2009) – and ribosomally 
synthesised peptides such as microviridins (Philmus et al., 2008). The 
chemistry and biosynthesis of these peptides and that of the well-known 
cyanotoxins are very similar, suggesting that their role in contributing to 
the fitness of the producer organisms is also similar and the high toxicity of 
some molecules to humans (or mammals in general) is a mere coincidence. 
The latter point is also supported by the evidence that nonribosomal pep-
tide synthesis by cyanobacteria and in particular, microcystin biosynthesis, 
is a very ancient trait, dating back to times long before mammals thrived on 
earth (Christiansen et al., 2001; Rantala et al., 2004). The comparison of 
gene clusters for biosynthetic pathways for peptide or polyketide synthesis, 
respectively, revealed a pattern of alternating regions with high conserva-
tion of variability between species (Cadel-Six et al., 2008; Ishida et al., 
2009; Dittmann et al., 2015). This may indicate that some of the metabolite 
variability arises from horizontal gene transfer and recombination events 
(Sogge et al., 2013).

The production of particular metabolites is highly clone-specific, and 
clones within a population can be described as chemotypes. A  high 
 chemotype diversity has been reported for species of Microcystis, 
Planktothrix, Dolichospermum (Anabaena) and Lyngbya, for example 
(Welker et al., 2007; Rohrlack et al., 2008; Leikoski et al., 2010; Engene 
et al., 2011; Haruštiaková & Welker, 2017; Le Manach et al., 2019; Tiam 
et al., 2019). Since individual cyanobacterial clones can produce multiple 
variants of multiple classes of metabolites, a multiclonal bloom of cya-
nobacteria can contain hundreds of bioactive metabolites (Welker et al., 
2006; Rounge et al., 2010; Agha & Quesada, 2014). This diversity makes 
it difficult to relate an observed toxic effect that cannot be explained by 
the activity of known (and quantifiable) cyanotoxins to a particular com-
pound in a specific sample. Hence, the key challenges for a comprehensive 
risk assessment of cyanopeptides are their structural diversity, the lack of 
analytical standards and complex requirements for their identification and 
quantification (Janssen, 2019).
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For a number of individual cyanobacterial metabolites or groups of 
metabolites, bioactivity data are available. Toxicity to zooplankton (Daphnia) 
has, for example, been observed for microviridin J (Rohrlack et al., 2004), but 
no data are available for other organisms or other structural variants. Other 
frequently occurring peptides, such as cyanopeptolins or anabaenopeptins, 
have been shown to inhibit proteases of herbivorous zooplankton (Agrawal 
et al., 2005; Rohrlack et al., 2005; Czarnecki et al., 2006; Schwarzenberger 
et al., 2010). This indicates that synthesis of these peptides by cyanobacteria 
may confer a grazing protection for cyanobacterial populations (Savic et al., 
2020). However, other compounds isolated from cyanobacteria have been 
variously described as cytotoxic, immune suppressant or cardioactive, or 
been shown to inhibit key mammalian enzymes such as acetylcholine ester-
ase, chymotrypsin and trypsin (Humpage, 2008; Nagarajan et al., 2013). 
Thus, “offtarget” effects also appear to be quite common.

Another hypothesis links the production of diverse (peptide) metabolites 
to the defence of cyanobacteria against bacteria, phages and parasitic fungi 
(Gerphagnon et al., 2015). In particular for the latter, evidence has been pre-
sented that particular peptides can protect strains of Planktothrix from being 
infected by Chytridomycota (Sønstebø & Rohrlack, 2011). The protection is 
apparently specific for the Planktothrix chemotype as well as for the infec-
tious fungal strains (Rohrlack et al., 2013). This could explain the chemotype 
diversity and their wax and wane in populations of planktonic cyanobacteria 
with peptide diversity protecting populations from massive parasitic preva-
lence in a “Red Queen race” (Kyle et al., 2015). Protection from parasite 
infection may not be the only selective pressure triggering the high meta-
bolic diversity of cyanobacteria, but surely is an interesting field, last but 
not the least, for the potential discovery of compounds of pharmacological 
interest, such as antifungal agents (Chlipala et al., 2011; Welker et al., 2012; 
Vijayakumar & Menakha, 2015).

Although the structure of hundreds of cyanobacterial metabolites is 
known, the number of compounds not yet known may be equally high or 
even higher. This could explain the toxic effects of cyanobacterial extracts 
that are discussed in the following section.

2.10.2  Toxicity of cyanobacteria beyond 
known cyanotoxins

A number of researchers have reported toxic effects of cyanobacterial 
extracts that could not be explained by the compounds verifiably present 
in the extract. In addition, it has been noted that toxic effects of cyanobac-
teria that have been attributed to known cyanotoxins may actually have 
been caused by other toxic compounds (reviewed in Humpage (2008), with 
later examples included in Humpage (2008), Bernard et al. (2011), Froscio 
et al. (2011), and Humpage et al. (2012). Such unexplained effects include 
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higher-than-expected acute toxicity in animal bioassays, effects on particular 
tissues or cell lines that are not observed using known cyanotoxins, and 
toxic effects which are not in agreement with established mechanisms attrib-
uted to known cyanotoxins (Falconer, 2007). For details of toxicity testing 
and possible pitfalls, see section 14.3.

To further complicate matters, many harmful effects described in human 
exposure events such as pneumonia and gastrointestinal symptoms, are not 
easily or solely explainable based on the described effects of cyanotoxins 
(Stewart et al., 2006). A cyanobacterial bloom provides an ideal habitat for 
concomitant growth of dependant bacteria, some of which may be patho-
genic to humans (Chaturvedi et al., 2015).

From the observations on animals exposed to blooms in waterbodies or 
cyanobacterial culture material in laboratories, at the time of the publi-
cation of this book it appears likely that with the microcystins, cylindro-
spermopsins, neuro- and dermatotoxins described in sections 2.1–2.6, the 
most potent and most frequently occurring cyanotoxins have been identi-
fied and their principle modes of action characterised. If these are absent or 
their concentrations are below their respective guideline values, major risks 
to human health from exposure to cyanobacteria therefore seem unlikely. 
However, the evidence discussed above also implies that any cyanobacterial 
bloom may contain further, yet unknown substances or microorganisms 
that may be hazardous to exposed water users. This is a further reason to 
avoid exposure to high concentrations of cyanobacterial biomass, regard-
less of its content of known cyanotoxins.

REFERENCES

Agha R, Quesada A (2014). Oligopeptides as biomarkers of cyanobacterial subpopu-
lations. Toward an understanding of their biological role. Toxins. 6:1929–1950.

Agrawal MK, Zitt A, Bagchi D, Weckesser J, Bagchi SN, Von Elert E (2005). 
Characterization of proteases in guts of Daphnia magna and their inhibition 
by Microcystis aeruginosa PCC 7806. Environ Toxicol. 20:314–322.

Bernard C, Froscio S, Campbell R, Monis P, Humpage A, Fabbro L (2011). Novel 
toxic effects associated with a tropical Limnothrix/Geitlerinema‐like cyano-
bacterium. Environ Toxicol. 26:260–270.

Burja AM, Banaigs B, Abou-Mansour E, Burgess JG, Wright PC (2001). Marine cya-
nobacteria-a prolific source of natural products. Tetrahedron. 57:9347–9377.

Cadel-Six S, Dauga C, Castets AM, Rippka R, Tandeau de Marsac N, Welker M 
(2008) Halogenase genes in two non-ribosomal peptide synthetase gene clus-
ters of Microcystis (Cyanobacteria): sporadic distribution and evolution. Mol 
Biol Evol. 25:2031–2041.

Cassier-Chauvat C, Dive V, Chauvat F (2017). Cyanobacteria: photosynthetic facto-
ries combining biodiversity, radiation resistance, and genetics to facilitate drug 
discovery. Appl Microbiol Biotechnol. 101:1359–1364.



160 Toxic Cyanobacteria in Water

Catherine A, Bernard C, Spoof L, Bruno M (2017). Microcystins and Nodularins. 
In: Meriluoto J, Spoof L, Codd GA et al., editors: Handbook of cyanobacterial 
monitoring and cyanotoxin analysis. Chichester: John Wiley & Sons:109–126.

Chaturvedi P, Agrawal MK, Bagchi SN (2015). Microcystin-producing and non-
producing cyanobacterial blooms collected from the Central India harbor 
potentially pathogenic Vibrio cholerae. Ecotoxicol Environ Saf. 115:67–74.

Chlipala GE, Mo S, Orjala J (2011). Chemodiversity in freshwater and terrestrial 
cyanobacteria - a source for drug discovery. Curr Drug Targets. 12:1654–1673.

Christiansen G, Dittmann E, Ordorika LV, Rippka R, Herdman M, Börner T (2001). 
Nonribosomal peptide synthetase genes occur in most cyanobacterial genera as 
evidenced by their distribution in axenic strains of the PCC. Arch Microbiol. 
178:452–458.

Czarnecki O, Lippert I, Henning M, Welker M (2006). Identification of peptide 
metabolites of Microcystis (Cyanobacteria) that inhibit trypsin-like activity in 
planktonic herbivorous Daphnia (Cladocera). Environ Microbiol. 8:77–87.

Dittmann E, Gugger M, Sivonen K, Fewer DP (2015). Natural product biosynthetic 
diversity and comparative genomics of the cyanobacteria. Trends Microbiol. 
23:642–652.

Engene N, Choi H, Esquenazi E, Rottacker EC, Ellisman MH, Dorrestein PC et al. 
(2011). Underestimated biodiversity as a major explanation for the perceived 
rich secondary metabolite capacity of the cyanobacterial genus Lyngbya. Environ 
Microbiol. 13:1601–1610.

Falconer IR (2007). Cyanobacterial toxins present in Microcystis aeruginosa - More 
than microcystins! Toxicon. 50:585–588.

Froscio S, Sieburn K, Lau HM, Humpage A (2011). Novel cytotoxicity associated 
with Anabaena circinalis 131C. Toxicon. 58:689–692.

Gerphagnon M, Macarthur DJ, Latour D, Gachon CM, Van Ogtrop F, Gleason FH et al. 
(2015). Microbial players involved in the decline of filamentous and colonial 
cyanobacterial blooms with a focus on fungal parasitism. Environ Microbiol. 
17:2573–2587.

Haruštiaková D, Welker M (2017). Chemotype diversity in Planktothrix rubescens 
(cyanobacteria) populations is correlated to lake depth. Environ Microbiol 
Rep. 9:158–168.

Huang I-S, Zimba PV (2019). Cyanobacterial bioactive metabolites – a review of 
their chemistry and biology. Harmful Algae. 68:139–209.

Humpage A, Falconer I, Bernard C, Froscio S, Fabbro L (2012). Toxicity of the cyano-
bacterium Limnothrix AC0243 to male Balb/c mice. Water Res. 46:1576–1583.

Humpage AR (2008). Toxin types, toxicokinetics and toxicodynamics. In: H.K. H, edi-
tors: Proceedings of the Interagency, International Symposium on Cyanobacterial 
Harmful Algal Blooms (ISOC_HAB): Cyanobacterial harmful algal blooms: 
State of the science and research needs. New York, USA: Springer:383–415.

Ishida K, Welker M, Christiansen G, Cadel-Six S, Bouchier C, Dittmann E et al. 
(2009). Plasticity and evolution of aeruginosin biosynthesis in cyanobacteria. 
Appl Environ Microbiol. 75:2017–2026.

Janssen EML (2019) Cyanobacterial peptides beyond microcystins–A review on co-
occurrence, toxicity, and challenges for risk assessment. Water Res 151:488–499.

Kyle M, Haande S, Ostermaier V, Rohrlack T (2015). The red queen race between 
parasitic chytrids and their host, Planktothrix: A test using a time series recon-
structed from sediment DNA. PLoS One. 10:e0118738.



2 The cyanotoxins 161

Le Manach S, Duval C, Marie A, Djediat C, Catherine A, Edery M et al. (2019). 
Global metabolomic characterizations of Microcystis spp. highlights clonal 
diversity in natural bloom-forming populations and expands metabolite struc-
tural diversity. Front Microbiol. 10:791.

Leikoski N, Fewer DP, Jokela J, Wahlsten M, Rouhiainen L, Sivonen K (2010). Highly 
diverse cyanobactins in strains of the genus Anabaena. Appl Environ Microbiol. 
76:701–709.

Nagarajan M, Maruthanayagam V, Sundararaman M (2013). SAR analysis and bio-
active potentials of freshwater and terrestrial cyanobacterial compounds: a 
review. J Appl Toxicol. 33:313–349.

Philmus B, Christiansen G, Yoshida WY, Hemscheidt TK (2008). Post-translational 
modification in microviridin biosynthesis. Chembiochem. 9:3066–3073.

Rantala A, Fewer D, Hisbergues M, Rouhiainen L, Vaitomaa J, Börner T et al. (2004). 
Phylogenetic evidence for the early evolution of microcystin synthesis. Proc 
Natl Acad Sci USA. 101:568–573.

Rohrlack T, Christiansen G, Kurmayer R (2013). Putative antiparasite defensive sys-
tem involving ribosomal and nonribosomal oligopeptides in cyanobacteria of 
the genus Planktothrix. Appl Environ Microbiol. 79:2642–2647.

Rohrlack T, Christoffersen K, Friberg-Jensen U (2005). Frequency of inhibitors of 
daphnid trypsin in the widely distributed cyanobacterial genus Planktothrix. 
Environ Microbiol. 7:1667–1669.

Rohrlack T, Christoffersen K, Kaebernick M, Neilan BA (2004). Cyanobacterial pro-
tease inhibitor microviridin J causes a lethal molting disruption in Daphnia 
pulicaria. Appl Environ Microbiol. 70:5047–5050.

Rohrlack T, Edvardsen B, Skulberg R, Halstvedt CB, Utkilen HC, Ptacnik R et al. 
(2008). Oligopeptide chemotypes of the toxic freshwater cyanobacterium 
Planktothrix can form subpopulations with dissimilar ecological traits. Limnol 
Oceanogr. 53:1279–1293.

Rounge TB, Rohrlack T, Decenciere B, Edvardsen B, Kristensen T, Jakobsen KS (2010). 
Subpopulation differentiation associated with nonribosomal peptide synthe-
tase gene cluster dynamics in the cyanobacterium Planktothrix spp. J Phycol. 
46:645–652.

Rounge TB, Rohrlack T, Tooming-Klunderud A, Kristensen T, Jakobsen KS (2007). 
Comparison of cyanopeptolin genes in Planktothrix, Microcystis, and Anabaena 
strains: evidence for independent evolution within each genus. Appl Environ 
Microbiol. 73:7322–7330.

Savic GB, Bormans M, Edwards C, Lawton L, Briand E, Wiegand C (2020). Cross 
talk: two way allelopathic interactions between toxic Microcystis and Daphnia. 
Harmful Algae. 94:101803.

Schwarzenberger A, Zitt A, Kroth P, Mueller S, Von EE (2010). Gene expression and 
activity of digestive proteases in Daphnia: effects of cyanobacterial protease 
inhibitors. BMC Physiol. 10:6.

Sogge H, Rohrlack T, Rounge TB, Sonstebo JH, Tooming-Klunderud A, Kristensen T 
et al. (2013). Gene flow, recombination, and selection in cyanobacteria: popu-
lation structure of geographically related Planktothrix freshwater strains. Appl 
Environ Microbiol. 79:508–515.

Sønstebø JH, Rohrlack T (2011). Possible implications of chytrid parasitism for 
population subdivision in freshwater cyanobacteria of the genus Planktothrix. 
Appl Environ Microbiol. 77:1344–1351.



162 Toxic Cyanobacteria in Water

Stensjö K, Vavitsas K, Tyystjärvi T (2018). Harnessing transcription for bioproduction 
in cyanobacteria. Physiol Plant. 162:148–155.

Stewart I, Webb PM, Schluter PJ, Shaw GR (2006). Recreational and occupational 
field exposure to freshwater cyanobacteria–a review of anecdotal and case 
reports, epidemiological studies and the challenges for epidemiologic assess-
ment. Environ Health. 5:6.

Tiam SK, Gugger M, Demay J, Le Manach S, Duval C, Bernard C et al. (2019). Insights 
into the diversity of secondary metabolites of Planktothrix using a biphasic 
approach combining global genomics and metabolomics. Toxins. 11:498.

Videau P, Wells KN, Singh AJ, Eiting J, Proteau PJ, Philmus B (2019). Expanding the 
natural products heterologous expression repertoire in the model cyanobacte-
rium Anabaena sp. strain PCC 7120: production of pendolmycin and teleoci-
din B-4. ACS Synth Biol.

Vijay D, Akhtar MK, Hess WR (2019). Genetic and metabolic advances in the engi-
neering of cyanobacteria. Curr Opin Biotechnol. 59:150–156.

Vijayakumar S, Menakha M (2015). Pharmaceutical applications of cyanobacteria – 
A review. J Acute Med. 5:15–23.

Welker M, Dittmann E, von Döhren H (2012). Cyanobacteria as a source of natural 
products. In: Hopwood DA, editor: Natural product biosynthesis by micro-
organisms and plants, Part C. Methods in Enzymology. Amsterdam: Elsevier 
517:23–46.

Welker M, Maršálek B, Šejnohová L, von Döhren H (2006). Detection and identi-
fication of oligopeptides in Microcystis (cyanobacteria) colonies: toward an 
understanding of metabolic diversity. Peptides. 27:2090–2103.

Welker M, Šejnohová L, von Döhren H, Nemethova D, Jarkovsky J, Maršálek B 
(2007) Seasonal shifts in chemotype composition of Microcystis sp. communi-
ties in the pelagial and the sediment of a shallow reservoir. Limnol Oceanogr. 
52:609–619.

Welker M, von Döhren H (2006). Cyanobacterial peptides - Nature’s own combina-
torial biosynthesis. FEMS Microbiol Rev. 30:530–563.

Ziemert N, Ishida K, Liaimer A, Hertweck C, Dittmann E (2008). Ribosomal syn-
thesis of tricyclic depsipeptides in bloom-forming cyanobacteria. Ang Chem Int 
Ed. 47:7756–7759.



163

Chapter 3

Introduction to cyanobacteria

Leticia Vidal, Andreas Ballot,  
Sandra M. F. O. Azevedo, Judit Padisák 
and Martin Welker

CONTENTS

Introduction 163
3.1 Cell types and cell characteristics 164
3.2 Morphology of multicellular forms 168
3.3 Cyanobacterial pigments and colours 170
3.4 Secondary metabolites and cyanotoxins 171
3.5 Taxonomy of cyanobacteria 172
3.6 Major cyanobacterial groups 178
3.7 Description of common toxigenic and bloom-forming 

cyanobacterial taxa 179
3.7.1 Filamentous forms with heterocytes 190
3.7.2 Filamentous forms without heterocytes and akinetes 195
3.7.3 Colonial forms  200

Picture credits 203
References 204

INTRODUCTION

Cyanobacteria are a very diverse group of prokaryotic organisms that thrive 
in almost every ecosystem on earth. In contrast to other prokaryotes (bacteria 
and archaea), they perform oxygenic photosynthesis and possess chlorophyll-a. 
Their closest relatives are purple bacteria (Woese et al., 1990; Cavalier-Smith, 
2002) – and chloroplasts in higher plants (Moore et al., 2019). Photosynthetic 
activity of cyanobacteria is assumed to have changed the earth’s atmosphere 
in the Proterozoic Era some 2.4 billion years ago during the so-called Great 
Oxygenation Event (Hamilton et al., 2016; Garcia-Pichel et al., 2019).

Historically, cyanobacteria were considered as plants or plant-like organ-
isms and were termed “Schizophyceae”, “Cyanophyta”, “Cyanophyceae” 
or “blue-green algae”. Since their prokaryotic nature has unambiguously 
been proven, the term “cyanobacteria” (or occasionally “cyanoprokary-
otes”) has been adopted in the scientific literature. A metagenomic study 
by Soo et al. (2017) revealed that cyanobacteria also comprise groups of 
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nonphotosynthetic bacteria and the taxon Oxyphotobacteria is proposed 
for cyanobacteria in a strict sense. However, in this volume, the term “cya-
nobacteria” will be used for photosynthetic, oxygenic bacteria.

3.1  CELL TYPES AND CELL CHARACTERISTICS

As prokaryotes, cyanobacteria lack a cell nucleus and other cell organelles, 
allowing their microscopic distinction from most other microalgae. In par-
ticular, cyanobacteria lack chloroplasts, and instead, the chlorophyll for 
the photosynthesis is contained in simple thylakoids, the site of the light-
dependent reactions of photosynthesis (exception: Gloeobacter spp. not 
possessing thylakoids). Cyanobacteria occur as unicellular, colonial or mul-
ticellular filamentous forms. Diverse forms populate all possible environ-
ments where light and at least some water and nutrients are available – even 
if only in very low quantities. Examples for extreme environments in which 
cyanobacteria can be encountered are caves or deserts (Whitton & Potts, 
2000). This volume primarily considers cyanobacteria in the aquatic envi-
ronments where they may grow suspended in water (i.e., as “plankton”), 
attached to hard surfaces (“benthos” or “benthic”, respectively), or to mac-
rophytes or any other submerged surfaces (“periphytic” or “metaphytic”).

Sexual reproduction has not been observed for cyanobacteria; there-
fore, their only means of reproduction is asexual, through division of veg-
etative cells.

The morphology of cyanobacterial cells shows a number of characteristics 
that can be used for microscopic examination and identification: primar-
ily, the shape and size of cells, subcellular structures and specialised cells 
(Figure 3.1–3.3). Cyanobacterial cells can be spherical, ellipsoid, barrel-
shaped, cylindrical, conical or disc-shaped. Some taxa include cells of dif-
ferent shapes. Cyanobacteria do not possess flagella, as are found in many 
other bacterial or phytoplankton taxa. Nevertheless, many cyanobacteria, 
in particular filamentous forms, show gliding motility, the mechanism of 
which is not yet fully understood (Hoiczyk, 2000; Read et al., 2007).

The size of cyanobacteria varies considerably between taxa: more or less 
spherical cells of unicellular cyanobacteria range in diameter from about 
0.2 μm to over 40 μm. In consequence, cell volume may vary by a factor 
of at least 300 000, making simple cell counts an unreliable parameter for 
the determination of biomass, especially when reported without differen-
tiation between individual taxa (see Chapter 13). Some filamentous forms 
have been observed to have cell diameters of up to 100 μm, but as these 
coin-shaped cells are generally very short, their cell volume is not neces-
sarily much larger than that of other species (Figure 3.2; Whitton & Potts, 
2000). The length of filaments (or trichomes; see below) can reach a few 
millimetres in certain benthic forms. Very small cells of cyanobacteria (in 
the size range 0.2–2 μm) have been recognised as a significant fraction of 
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the so-called picoplankton in various freshwater and marine environments, 
such as Prochlorococcus that is found in huge numbers in the world’s 
oceans (Flombaum et al., 2013). The occurrence of picocyanobacteria in 
freshwaters is well established (Postius & Ernst, 1999; Stomp et al., 2007) 
but possibly is underestimated, especially when biomass estimates are based 
on microscopy. With molecular tools such as metagenomics (section 13.4), 
our understanding of the role of picocyanobacteria in lake ecosystems may 
increase (Śliwińska-Wilczewska et al., 2018; Nakayama et al., 2019).

A number of cyanobacterial taxa can (facultatively) produce so-called 
aerotopes that are clearly visible in microscopy as light-refracting struc-
tures. Aerotopes (sometimes incorrectly named “gas vacuoles” – they are 
not vacuoles in the cytological sense) are bundles of cylindrical protein 
microstructures that form the gas vesicles. These vesicles are filled with 
air entering the lumen by diffusion (see Walsby (1994) for an extensive 
review). Gas vesicles have a density of about one-tenth of that of water and 
thus render the entire cells less dense than water, providing buoyancy and 
making them float or emerge to the water surface (see Section 3.2). The 
gas vesicles measure some 75 nm in diameter and up to 1.0 μm in length. 
The cylinders, capped by conical ends, are formed by a single wall layer of 
2 nm thickness. The distribution of aerotopes within the cells is character-
istic for individual taxa and can be used for identification by microscopical 
examination, but they can disintegrate after fixation with Lugol’s solution 
(see Chapter 13).

Other subcellular (ultrastructural) characteristics such as the distribu-
tion of thylakoids are used in taxonomic studies (Hoffmann et al., 2005; 
Komárek et al., 2014). As thylakoids are not visible using light microscopy 
with standard equipment, other methodologies are generally applied for 
their examination, such as transmission electron microscopy.

In some groups of cyanobacteria (see Table 3.1), specialised cells occur, 
which are morphologically different from vegetative cells and which can be 

(sub)symmetric
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Figure 3.3 A rrangement of heterocytes (a) and akinetes (b) in filamentous cyanobacteria.
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Table 3.1  Major groups of cyanobacteria in the taxonomic schemes proposed 
by Castenholz et al. (2001) and Cavalier-Smith (2002)

Group Morphological characteristics Genera (selection)

Subsection 1 • Unicellular Aphanocapsa, 
“Chroococcales” • Colonies with regular or irregular Gomphospheria, 

cell arrangement Merismopedia, Microcystis, 
• Embedded in extracellular mucilage Synechococcus, 

Synechocystis, Woronichinia

Subsection 2 • Colonial or filamentous Pleurocapsa, 
“Pleurocapsales” • Reproduction through baeocytes Chroococcidiopsis, 

Cyanocystis

Subsection 3 • Multiplication by hormogonia Leptolyngbya, Lyngbya, 
“Oscillatoriales” • Unbranched, linear filaments Microcoleus, Oscillatoria, 

• No heterocytes or akinetes Phormidium, Planktothrix, 

• Cells typically shorter than broad Pseudanabaena, Tychonema

Subsection 4 • Multiplication by hormogonia Anabaena, Aphanizomenon, 
“Nostocales” • Nonbranching or false branching Raphidiopsis 

• Heterocytes (can be absent in (Cylindrospermopsis), 

individual filaments) Cuspidothrix, Chrysosporum, 

• Akinetes Dolichospermum, Nostoc, 
Sphaerospermopsis

Subsection 5 • Multiplication by hormogonia Chlorogloeopsis, Fischerella, 
“Stigonematales” • True branching Stigonema

• Heterocytes (can be absent in 
individual filaments)

• Akinetes

The morphological characteristics are based on microscopic observation. Exemplary genera are given 
for subsections.

generally easily recognised by light microscopy (see examples below), that 
is, heterocytes and akinetes.

Heterocytes are specialised cells that allow the fixation of atmospheric 
nitrogen, a process also called diazotrophy that involves nitrogenases, 
enzymes capable to reduce nitrogen to ammonium (Berman-Frank et al., 
2003). Note that “heterocyte” is the more appropriate term than the tra-
ditionally used term “heterocyst” because a “cyst” has another, clearly 
defined meaning in cytology. Both terms may be seen as synonyms, while in 
this volume the term “heterocyte” is preferred.

Heterocytes lack the complete photosynthetic apparatus, thus avoiding 
the production of oxygen which would irreversibly damage nitrogenases 
(Bothe et al., 2010). Further, they possess a thickened cell wall, which fur-
ther supports the anoxic intracellular milieu needed for diazotrophy.

Heterocytes often differ in size and shape from vegetative cells. In 
the microscope, they are generally easily recognised due to their differ-
ent size and light refraction properties. Their number and the location 
of heterocytes in filaments can be used for taxonomic determination 
(Figure  3.3), although heterocyte formation depends on environmental 
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and physiological conditions and may hence vary. They may be completely 
absent under conditions of ample availability of inorganic nitrogen. For 
example, Aphanizomenon spp. without heterocytes may be confused with 
Planktothrix agardhii if the terminal cells of the filaments are not exam-
ined carefully. Some authors suggested that Raphidiopsis spp. could be a 
nonheterocytous stage or type of Cylindrospermopsis spp. as recent studies 
showed both taxa to be phylogenetically very close (Moustaka-Gouni et al., 
2009) and should hence be combined (Aguilera et al., 2018).

Akinetes are resting stages that can be found in the same taxa that form 
heterocytes. They are characterised by a generally (much) larger size compared 
to vegetative cells and different light refraction in microscopic view. Their cell 
wall is multilayered, and they often contain granules of glycogen and cyano-
phycin but generally no polyphosphate granules. Akinete formation and ger-
mination is triggered by environmental conditions (Adams & Duggan, 1999).

The position, number and distribution of the heterocytes and akinetes are 
important morphological characteristics of species and genera. Heterocytes 
can be in an intercalary position between vegetative cells, that is, in the mid-
dle of a trichome, or terminal or subterminal. Akinetes are in an intercalary 
or subterminal position but generally not terminal. Because the formation of 
heterocytes and akinetes is triggered by environmental conditions, individual 
species can appear variable in natural samples or strain cultures. The distribu-
tion of these specialised cells also determines the symmetry of the trichome.

3.2  MORPHOLOGY OF MULTICELLULAR FORMS

Most cyanobacterial taxa form multicellular aggregates, and the size and 
shape of which can be used for the identification of cyanobacteria in freshly 
collected field samples. In conserved samples, however, these aggregates 
may disintegrate, rendering identification more difficult (see Chapter 13).

One important characteristic for identification is the type of cell division 
and the separation of cells following division – or the lack thereof.

In unicellular forms (e.g., Synechococcus sp.), dividing cells separate 
completely and do not form (true) filaments. Some “unicellular” species, 
however, can form microbial mats or colonies by embedding single cells in 
a mucous matrix (mucilage). In cultures, species forming colonies in natu-
ral environments often grow as singular cells or form aggregates with a 
morphology that differs clearly from that of naturally occurring colonies. 
Experimental studies with Microcystis sp. indicate that the presence of het-
erotrophic bacteria triggers the production of extracellular polysaccharide 
(EPS), a prerequisite for colony formation, while axenic strains generally 
grow as single cells (Shen et al., 2011; Wang et al., 2016).

In natural populations, colony morphology may change during the sea-
sonal cycle (Reynolds et al., 1981). The arrangement of the cells in a col-
ony can be completely irregular as a result of multiple cell division panes 
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Figure 3.4 Arrangement of cells in colonies (a) and overall shapes of colonies (b).

(e.g., most Microcystis sp.) or through series of cell divisions in only two 
panes, very regular, forming two-dimensional sheets (e.g., Merismopedia, 
Figure 3.4). Colonies can be composed of hundreds or even thousands of 
cells and reach sizes of some hundred micrometres to a few millimetres, vis-
ible with the naked eye. A particular colony form is given when cell division 
occurs in a single pane, leading to so-called pseudo-filaments, linear colonies 
of singular cells in a mucilaginous sheath, for example, in Cyanodictyon spp.

In filamentous forms, cells remain adhered to each other after division, 
forming chains of connected cells termed “trichomes”. Trichomes can be 
enveloped in a mucous sheath in some taxa and are then called filaments 
(Figure 3.1). The general term hence is “trichome”, but the term “filament” is 
often used interchangeably in the literature, as in this volume. Individual cells 
forming a trichome can be cylindrical, barrel-shaped or nearly spherical, and 
the corresponding trichomes appear either like a smooth thread or like a pearl 
necklace, respectively. Trichomes can be completely smooth with cell walls not 
visible or more or less deeply constricted (Figure 3.2). The cell shape is char-
acteristic for different taxonomic groups, which can also represent different 
genera (Komárek, 2013). The length-to-width ratio of vegetative cells and the 
type of connections between them within trichomes are often characteristic for 
genera. In most filamentous taxa, cell division occurs only in a single division 
plane, resulting in filament growth by extension in only one dimension. From 
a single sheath, trichomes can protrude in multiple directions appearing as 
branched filaments. Such a “false” branching combines one-dimensional fila-
ments in a multidimensional manner (e.g., Scytonema sp.). Some filamentous 
taxa perform cell division in more than one plane leading to a true branching 
(e.g., Fischerella sp.). Terminal vegetative cells in trichomes often show a shape 
and size distinctly different from that of cells within the filament (Figure 3.2). 
This includes elongation, tapered or pointed ends, swelling, or the covering 
with a calyptra, a  mucilaginous, cap-like structure.

Multiple filaments can aggregate, forming macroscopically visible clus-
ters. For example, under field conditions, Aphanizomenon flosaquae forms 
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clusters (fascicles) with the shape and size similar to tiny conifer needles or 
blades of grass that can be easily recognised in water samples. In many Nostoc 
species, a large number of trichomes is embedded in a common mucilage 
forming large macroscopic structures of varying shapes (spheres in Nostoc 
pruniforme, sheets in N. commune or strings N. flagelliforme). Filaments of 
benthic cyanobacteria can aggregate to macroscopic clusters several decime-
tres long (“mermaids-hair” of marine Lyngbya spp.) or tufts that can com-
pletely cover hard surfaces (Phormidium spp. in streams or rivers).

Filamentous forms can form reproductive, motile units, the so-called 
hormogonia. They develop by fragmentation of trichomes and the release 
of short chains of cells from the immotile, unsheathed parental trichome. 
Hormogonial cells may or may not be different in size and shape from vege-
tative cells. They show active gliding motion when liberated from filaments 
and gradually develop into new filaments.

Baeocytes (also spelled beocytes) are small, spherical cells that arise from 
multiple fissions of a parental cell (“vegetative” cell) and are released after 
rupture of its fibrous outer wall layer. Baeocytes still contained in the paren-
tal cell wall appear as small colonies, and upon release, these reproductive 
cells develop into vegetative cells.

3.3  CYANOBACTERIAL PIGMENTS AND COLOURS

A key characteristic distinguishing cyanobacteria from other bacteria is 
that they possess chlorophyll-a like plant chloroplasts, their major photo-
synthetic pigment and a variety of carotenoids, the latter acting primarily 
as photoprotectants to reduce oxidative damage to chlorophyll-a. In addi-
tion, cyanobacteria possess specific accessory pigments, the phycobilins 
(Tandeau de Marsac, 2003). These pigments are bound to water-soluble 
proteins, the phycobiliproteins, and occur in variants with different opti-
cal properties. Phycocyanin is common for all cyanobacteria and appears 
blue, giving a blue-green colour to many cyanobacteria, hence the clas-
sic name “blue-green algae”. The blueish colour is especially prominent 
when cyanobacterial cells have lysed and dissolved phycocyanin stains the 
water blue. Phycoerythrin appears red and is responsible for the reddish or 
brownish colour of many cyanobacteria, such as Planktothrix rubescens. 
Within the cells, phycocyanins and phycoerythrins absorb certain wave-
lengths of photosynthetically active radiation (PAR) and transfer the light 
energy to chlorophyll-a in photosystem II, thus extending the wavelength 
range of light available for photosynthesis (Berman-Frank et al., 2003). In 
some species, phycobilins are also present in the antenna of photosystem 
I where they are thought to serve the energy demand of nitrogen fixation 
(Watanabe et al., 2014).

Cyanobacterial cell colours vary from chartreuse to blue-green to violet-
red, depending on the ratio between phycocyanin, phycoerythrin, carotenoids 
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and chlorophyll. By adapting this ratio, cyanobacteria may optimise their 
efficiency of exploitation of light energy (MacIntyre et al., 2002; Kehoe, 
2010). Pigment ratios are often characteristic for a particular species but can 
also vary between clones or genotypes. They also vary in response to the light 
spectrum in which the cells (filaments, colonies) are growing, for example, 
with a higher share of red pigment (phycoerythrin) under conditions of low 
light intensity (Tandeau de Marsac, 1977; Acinas et al., 2009).

Cyanobacterial water blooms can have a wide variety of colours beyond 
the typical green or blue-green colour due to varying ratios of chlorophylls, 
phycocyanin, phycoerythrin and carotenoids. The latter are orange or red in 
colour, and they can be used to quantify phytoplankton groups, for example, 
by HPLC (high performance liquid chromatography) analysis of echinenone 
or canthaxanthin, which are specific for cyanobacteria (Frigaard et al., 1996; 
Takaichi, 2011). Surface blooms can appear orange, brownish, purple, and 
light green, among other colours, and have been occasionally reported as 
suspected “contamination with paint” due to their unexpected colour.

In addition to photosynthetic pigments, cyanobacteria can produce pig-
ments that supposedly protect the cells from intense irradiation, in particu-
lar in the UV-wavelength range. These pigments can mask the colour of 
chlorophyll and phycocyanin, for example, scytonemin, a black pigment 
produced by Scytonema spp. (Dillon & Castenholz, 1999).

3.4  SECONDARY METABOLITES AND CYANOTOXINS

Cyanobacteria can produce a large diversity of secondary metabolites. 
These are compounds produced by the cells that are not required for the 
basic cell metabolism, including the compounds considered as cyanobacte-
rial toxins in this volume. These metabolites include polyketides, oligopep-
tides, lipids, alkaloids and other types of molecules. Many of them show 
bioactivity in various test systems, but their function for the cyanobacterial 
cells is not well understood (De Philippis & Vincenzini, 1998; Burja et al., 
2001; Gerwick et al., 2001; Welker & von Döhren, 2006; Pereira et al., 
2009). It is possible that among the multitude of yet poorly studied metabo-
lites (see section 2.10), further compounds with adverse effects on higher 
plants and animals – or with therapeutic potential – will be identified in 
future (Vijayakumar & Menakha, 2015).

A number of cyanobacterial metabolites are considered to serve as UV 
protection. Scytonemin, an aromatic indole alkaloid (Proteau et al., 1993), 
has been found primarily in filamentous, sheath-forming types exposed 
to high UV doses, such as the (semi)terrestrial Scytonema sp. (Dillon & 
Castenholz, 1999). Mycosporine-like amino acids are a diverse family of 
compounds produced by fungi and several groups of eukaryotic phyto-
plankton (Oren & Gunde-Cimerman, 2007) as well as by cyanobacteria, 
including Microcystis sp. (Liu et al., 2004; Pathak et al., 2019).



172 Toxic Cyanobacteria in Water

3.5  TAXONOMY OF CYANOBACTERIA

As for all organisms, the key criteria for classifying cyanobacteria in a taxo-
nomic system are phylogenetic relationships that should reflect the grouping 
of organisms in hierarchical taxa. Taxa (singular: taxon) are thus groups 
such as orders, families, genera, species, subspecies in which organisms 
are grouped so that they ideally share a common evolutionary ancestor. 
Historically, the taxonomic classification was inferred from morphological 
characteristics of cells and colonies studied by microscopy. In the last few 
decades, biochemical and molecular methods have been increasingly used 
in microbial taxonomy. Based on molecular data, a number of classical cya-
nobacterial taxa have been revised and renamed – and there will be more 
revisions in future (see Table 3.2).

Table 3.2   Cyanobacterial species names that underwent revision in recent years

New name Old name (basionym) Reference

Chrysosporum bergii Anabaena bergii Zapomělová et al. (2012)

Chrysosporum ovalisporum Aphanizomenon ovalisporum Zapomělová et al. (2012)

Cuspidothrix issatchenkoi Aphanizomenon issatchenkoi Rajaniemi et al. (2005b)

Raphidiopsis raciborskii Cylindrospermopsis raciborskii Aguilera et al. (2018)

Dolichospermum flosaquae Anabaena flos-aquae Wacklin et al. (2009)

Dolichospermum circinale Anabaena circinalis Wacklin et al. (2009)

Dolichospermum crassum Anabaena crassa Wacklin et al. (2009)

Dolichospermum lemmermannii Anabaena lemmermannii Wacklin et al. (2009)

Dolichospermum planctonicum Anabaena planctonica Wacklin et al. (2009)

Dolichospermum smithii Anabaena smithii Wacklin et al. (2009)

Dolichospermum solitarium Anabaena solitaria Wacklin et al. (2009)

Dolichospermum spiroides Anabaena spiroides Wacklin et al. (2009)

Dolichospermum viguieri Anabaena viguieri Wacklin et al. (2009)

Kamptonema formosum Oscillatoria formosum Strunecký et al. (2014)

Moorea producens Lyngbya majuscula Engene et al. (2012)

Microcoleus autumnalis Phormidium autumnale Strunecký et al. (2013)

Microseira wollei Lyngbya wollei McGregor & Sendall (2015)

Planktothricoides raciborskii Planktothrix raciborskii Suda et al. (2002)

Sphaerospermopsis Aphanizomenon Zapomělová et al. (2011)
aphanizomenoides aphanizomenoides

Sphaerospermopsis reniformis Anabaena reniformis Zapomělová et al. (2011)

Wilmottia murrayi Phormidium murrayi Strunecký et al. (2011)

The list is not complete but comprises primarily those species that are potentially toxigenic or 
are  closely related to toxigenic species. Note that a new name not necessarily comprises all 
forms previously published under the old name, and therefore, a retrospective renaming may be 
critical.



3 Introduction to cyanobacteria 173

A major challenge for cyanobacterial taxonomy is the lack of a clear 
 concept or definition of a species. Commonly accepted species definitions 
generally used in bacteriology such as genomic DNA/DNA hybridisation 
or average nucleotide identity (ANI) are not easily applied to cyanobacteria 
because these methods require axenic cultures (i.e., pure, clonal cultures 
free of any other bacteria). For cyanobacteria, taxonomy is further compli-
cated by the fact that two basically different systems of nomenclature have 
become established, the International Code of Nomenclature for algae, 
fungi, and plants (ICN) and the International Code of Nomenclature of 
Bacteria (ICNB) (see Box 3.1). As a consequence, the number of recog-
nised species in a given sample can vary greatly, depending on the scientific 
background of the person identifying the species and counting them in the 
sample (Whitton & Potts, 2000; Nabout et al., 2013).

BOX 3.1: NOMENCLATURE OF 

CYANOBACTERIA: UNSOLVED ISSUES

Historically, cyanobacteria were considered as algae. When their prokary-

otic nature was revealed in the mid-20th century (Stanier & Van Niel, 1941), 

many of the established genera had been already described following the 

International Code of Nomenclature for algae, fungi, and plants (“botani-

cal code”, ICN) – as it was historically the case with heterotrophic bacte-

ria, too. While the nomenclature of heterotrophs and Archaea follows the 

International Code of Nomenclature of Bacteria (“bacteriological code”, 

ICNB) from 1980 onwards, cyanobacterial nomenclature is treated by both 

the botanical code and the bacteriological code. Because this is a constant 

source of confusion, several solutions have been proposed but none found 

unanimous acceptance (Stanier et al., 1978). In 1985, the “Subcommittee on 

the Taxonomy of Phototrophic Bacteria” proposed to consider species val-

idly published under the botanical code as valid species in the sense of the 

bacteriological code, but this proposal was never accepted and the debate is 

ongoing (Oren & Ventura, 2017). The latest proposals take extreme positions 

for cyanobacteria, either exclusively following the botanical code (Oren & 

Garrity, 2014) or exclusively following the bacteriological code (Pinevich, 

2015). While taxonomic committees continue to search for a solution, the 

existing dual nomenclature has consequences in practice when studying toxic 

cyanobacteria (Komárek, 2006; Komárek, 2011; Gaget et al., 2015a; Gaget 

et al., 2015b; Dvořák et al., 2018). 

Numbers of species: Following the bacterial code, only a very low num-

ber of cyanobacterial species are considered as valid bacterial species, while 

the number of species described following the botanical code is continuously 
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increasing. However, the botanical code is difficult to follow because (botani-

cally) valid descriptions are published in a large variety of scientific journals 

and not recorded in a central registry. As a result, no comprehensive list of 

globally accepted species is available.

Example: For the genus Microcystis, Algaebase (http://www.algaebase.org/) 

lists 51 “taxonomically accepted” species (and additionally 62 synonyms 

and species of unclear status), Cyano database (http://www.cyanodb.cz/) 

lists 2 species (M. aeruginosa and M. minutissima), the National Center for 

Biotechnology Information (NCBI) taxonomy browser (https://www.ncbi.

nlm.nih.gov/taxonomy) lists 19 species for which sequences are deposited – 

while the “list of prokaryotic names with standing in nomenclature” (LPSN, 

http://www.bacterio.net/index.html) lists 12 species (published under the 

ICN) but considers Microcystis aeruginosa as an illegitimate species name “in 

need of a replacement” (all accessed April 2020).

Type strains: Formal type strains are not required for species described fol-

lowing the rules of ICN, and in consequence, there are no reference genomic 

sequences available. This is critical especially for molecular studies that gener-

ally rely on designated type strains. Therefore, the taxonomic classification 

of a deposited sequence depends largely on the depositor’s judgement – or 

misjudgement. 

Example: The majority of nucleotide sequences deposited for the genus 

Anabaena in the NCBI GenBank is not assigned to a species, and among those 

assigned to a species, a large share is classified “cf.” (from Latin “confer” refer-

ring to an unconfirmed classification), for example, Anabaena cf. circinalis 

(now Dolichospermum cf. circinale). Based on these database entries, a reliable 

molecular identification is not possible.

Global taxonomy: An unambiguous taxonomic scheme for ranks above 

genera is lacking. Higher ranks are variably labelled as order, sections or 

subgroups. None of the schemes is formally accepted by the International 

Committee on Systematics of Prokaryotes (ICSP). 

Example: The order Oscillatoriales sensu Cavalier-Smith (2002) corre-

sponds largely to Subsection III sensu Castenholz et al. (2001) and Section 

III sensu Rippka et al. (1979), each comprising a similar but not identical list 

of genera. It is not congruent with the order Oscillatoriales sensu (Komárek 

et al., 2014) that includes unicellular taxa like Cyanothece but excludes filamen-

tous ones such as Leptolyngbya (see also Table 3.3).

http://www.algaebase.org/
http://www.cyanodb.cz/
https://www.ncbi.nlm.nih.gov/taxonomy
https://www.ncbi.nlm.nih.gov/taxonomy
http://www.bacterio.net/index.html
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The multiple taxonomic systems are a constant source of confusion in 
 academic discussions, albeit of less relevance for practitioners. Nevertheless, 
an essential understanding of the issue may help to appraise deviating views 
on taxonomic ratings and to understand why a particular organism is 
named variably in the literature.

Molecular approaches to cyanobacterial taxonomy are most promising 
for inferring true phylogenetic relationships. The methods applied involve 
sequencing of marker genes (16S rDNA, phycocyanin operon), DNA–DNA 
hybridisation, genome sequencing and biochemical characteristics (fatty 
acid profiles) or immunological procedures (Wilmotte, 1994; Whitton & 
Potts, 2000). Preferably, molecular results are combined with other char-
acteristics as the basis for a so-called polyphasic taxonomy approach 
(Vandamme et al., 1996; Komárek, 2016a; Wilmotte et al., 2017).

On the genus level, evolutionary trees based on 16S rRNA gene 
(Tomitani et al., 2006) sequences are largely in agreement with classifica-
tions based on morphological characteristics, in particular if these were 
re-evaluated and include ultrastructural characteristics (Hoffmann et al., 
2005; Komárek, 2006), in particular, the structure and distribution of thy-
lakoids (Mareš et al., 2019).

Most of the species descriptions in the currently available manuals and 
reference books are based on morphological traits that can be recognised 
by optical microscopy. Section 13.2 lists taxonomic reviews and keys for 
the determination of cyanobacteria, focusing on potentially toxigenic taxa. 
Although some classification systems based on morphological features were 
published before biochemical and molecular characteristics became impor-
tant classification criteria, they are still being used (Table 3.2) because new 
criteria have not sufficiently been consolidated and, particularly, because 
the identification by microscopy has been the most accessible method for 
routine analyses. However, for identifying cyanobacteria, it should be con-
sidered that their morphological appearance can vary in response to actual 
growth conditions (phenotypic plasticity).

Today, most species of cyanobacteria have been described following the 
botanical code of nomenclature based on morphological criteria. Many of 
the older species descriptions are based on drawings and other pictures 
that hence cannot be used as fully objective criteria, especially since the 
botanical code does not require the deposition of a type strain. Possibly 
the description of cyanobacterial taxa by the bacteriological code would be 
biologically more appropriate (see Box 3.1) as there is no doubt that cyano-
bacteria are a monophyletic branch in the global bacterial phylogenetic tree 
(Woese, 1987; Pace, 1997).

The ambiguity of the definition of cyanobacterial species and the lack 
of accessible reference material for many species often hamper the unam-
biguous assignment of cyanobacteria in field samples to a species, espe-
cially when molecular methods are applied (section 13.4). For this reason, 
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throughout this volume, taxonomic assignment to the genus level is given 
preference (e.g., Microcystis sp.). In some cases, a more precise identifica-
tion of a dominant organism to the species level may be useful for a more 
accurate prediction of toxin occurrence. For example, Planktothrix agard-
hii and P. rubescens have both been shown to potentially contain microcys-
tins, but may contain different analogues with different toxicity, typically 
occur in different types of waterbodies and usually can readily be distin-
guished by both their colour and cell dimensions.

Practitioners in health authorities with some experience in microscopy 
can easily learn to recognise the dominant cyanobacterial genera (and in 
some cases also species), which occur in the region they are monitoring. 
For a number of taxa, recent revisions have led to a renaming of common 
taxa, and in a few cases, changes in genus names require close attention for 
a certain period while old and new names may be used in parallel. Also, 
some taxa have been reorganised beyond simple renaming of a taxonomic 
entity. For example, while the organisms described as Moorea producens 
(Engene et al., 2012) formerly were named Lyngbya majuscula, we cannot 
be sure that all organisms referred to as L. majuscula in publications prior 
to 2010 would indeed be classified as M. producens today. In this book, we 
generally refer to the most recent names of species or genera as of 2019 (see 
Table 3.3 and Salmaso et al. (2016a)), but when referring to older literature, 
for which allocation of a taxon to the new name risks being wrong, we 
quote the former name.

In field samples, most cyanobacteria can be readily distinguished from 
other phytoplankton and particles under the microscope at a magnification 
of 100× to 400×. The following section describes and depicts the most fre-
quently occurring taxa known to produce toxins.

3.6  MAJOR CYANOBACTERIAL GROUPS

As outlined in Box 3.1, several taxonomic systems exist to group cyanobac-
teria in a taxonomic scheme as reviewed in more detail in Komárek et al. 
(2014). Table 3.3 summarises taxonomic schemes for cyanobacteria, start-
ing from the early scheme proposed by Geitler (1932) to the most recent one 
proposed by Komárek et al. (2014). Several systems avoid the use of nomen-
clatural categories and instead use groups such as “sections” (Rippka et al., 
1979) or “subsections” (Castenholz et al., 2001) instead of orders, discern-
ible by the suffix “-ales” in order to reflect the understanding that at least 
some of these groups do not represent monophyletic units but are defined 
based on shared morphological characteristics (Ishida et al., 2001; Gugger & 
Hoffmann, 2004). Based on rapidly increasing genomic sequence informa-
tion from axenic strains, metagenomic studies and ultrastructural analy-
ses, the taxonomy of cyanobacteria will most probably converge to a truly 
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taxonomic system based on phylogenetic relationships in the near future 
(Shih et al., 2013).

The classification of taxa proposed by Komárek et al. (2014) is largely 
based on whole-genome sequences and on ultrastructural characteristics, 
such as the distribution of thylakoids in the cells. These characteristics are 
not observable with light microscopy and hence not helpful for the  routine 
analysis of field samples. Further, in this system, classical and morpho-
logical characteristics easily observed by microscopy, such as formation of 
filaments or the presence of sheaths, are less important. For example, the 
filamentous genus Pseudanabaena is grouped together with the unicellular 
Synechococcus in a new order Synechococcales.

For practical purposes, such as the examination of high numbers of samples, 
earlier taxonomic systems appear more suitable. Therefore, in the following, 
the taxonomic scheme as proposed by Castenholz et al. (2001) is considered 
because characteristics like the arrangement of thylakoids or sequences of 
housekeeping genes are generally not available for monitoring purposes. It is 
also primarily based on morphological features observed by light microscopy 
and largely corresponds to the earlier scheme by Rippka et al. (1979) while 
including more genera. This scheme does not use the nomenclatural defini-
tion of categories such as orders and families but rather replaces these with 
“subsections”, “families” and “form genera” that do not reflect monophyletic 
taxa (and thus is considered invalid in a system of nomenclature based on 
phylogenetic relationships). However, it provides a temporary system that has 
the advantage to be a practical, convenient and stable method for the micro-
scopical identification of cyanobacterial strains and samples.

Nonetheless, for molecular methods (see section 13.4), a genome-based 
taxonomic scheme reflecting phylogenetic relationships may eventu-
ally prove to be more suitable, especially once designated type strains or 
sequences, respectively, are accessible.

3.7  DESCRIPTION OF COMMON TOXIGENIC 

AND BLOOM-FORMING CYANOBACTERIAL TAXA

The following brief descriptions of common toxigenic and bloom-form-
ing cyanobacteria give an introduction which certainly cannot replace 
taxonomic keys for their identification (see Chapter 13). Also, the global 
diversity of cyanobacteria is higher by orders of magnitudes beyond 
the selection of taxa presented in this chapter. Also, the following sec-
tion does not include a number of genera and species known to produce 
toxins but not to form blooms or benthic mats, for example, Umezakia 
sp. and Fischerella sp. For the illustration of morphological characteris-
tics, see Figures 3.1–3.4. A regularly updated list of cyanobacterial taxa 
(and other algae) can be found in AlgaeBase (Guiry & Guiry, 2019) and 
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CyanoDB (Hauer & Komárek, 2019). The following descriptions consider 
only  morphological characteristics that can be observed by standard light 
microscopy. Figure 3.5A–U gives microscopic images for most of the taxa. 
For a brief description of further genera and a short summary of recent 
taxonomy of cyanobacteria, see also Dvořák et al. (2017).
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Figure 3.5A  Anabaena sensu stricto sp. h: heterocyte. Units in scale bars correspond to 5 
μm. For origin of individual photographs, see the end of this chapter.
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Figure 3.5B  Anabaenopsis sp. Short, coiled trichomes with terminal heterocytes (h) and 
symmetric to subsymmetric akinetes (a). Units in scale bars correspond to 
5 μm. For origin of individual photographs, see the end of this chapter.
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Figure 3.5C  Aphanizomenon sp. In phase contrast, heterocytes appear highly refractory (I); 
aerotopes are homogeneously distributed in vegetative cells. Akinetes are 
much larger than vegetative cells and heterocytes (II–III) and can occur as sin-
gle cells in cultures (II). Trichomes without heterocytes resemble Planktothrix 
sp. (V). Multiple trichomes of A. flosaquae aggregate to macroscopic fascicles 
(VI–VIII). Units in scale bars correspond to 5 μm if not indicated otherwise. 
For origin of individual photographs, see the end of this chapter.
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Figure 3.5D  Chrysosporum sp. Terminal cells are pointed and appear hyaline. Akinetes 
(a) with distinct granulae; h: heterocytes. Units in scale bars correspond to 5 μm. For 
origin of individual photographs, see the end of this chapter.
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Figure 3.5E  Cuspidothrix sp. Arrows point to attenuated and elongated terminal cells 
with hyaline content. Units in scale bars correspond to 5 μm. For origin of 
individual photographs, see the end of this chapter.
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Figure 3.5F  Raphidiopsis sp. with (Cylindrospermopsis; I–IV) and without (V–VI) het-
erocytes. Raphidiopsis has typical terminal heterocytes (h) when present. 
Akinetes (a) are larger than vegetative cells and often show distinct, large 
granulae. Units in scale bars correspond to 5 μm if not indicated otherwise. 
For origin of individual photographs, see the end of this chapter.
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Figure 3.5G  Dolichospermum sp. D. crassum (I), D. lemmermannii with aggregated akine-
tes (a)  and short trichomes (II), D. mucosum (III) and D. planctonicum (IV). 
Heterocytes (h) with similar size than vegetative cells. Units in scale bars 
correspond to 10 μm. For origin of individual photographs, see the end of 
this chapter.
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Figure 3.5H  Sphaerospermopsis aphanizomenoides (I, II) and S. reniformis (III). Akinetes 
(a) typically next to heterocytes (h). Units in scale bars correspond to 5 μm. 
For origin of individual photographs, see the end of this chapter.
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I II III

Figure 3.5I � Arthrospira sp. with curved (I), coiled (II) or irregularly curved trichomes 
(III). Units in scale bars correspond to 5 µm. For origin of individual photo-
graphs, see the end of this chapter.

ae
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Figure 3.5J � Limnothrix sp. Aerotopes (ae) typically at cell poles. Units in scale bars corre-
spond to 5 µm. For origin of individual photographs, see the end of this chapter.
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Figure 3.5K � Lyngbya sp. Cells are enveloped in a sheath (sh) that can be partly empty. 
Units in scale bars correspond to 5 μm if not indicated otherwise. For origin 
of individual photographs, see the end of this chapter.
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Figure 3.5L  Microcoleus/Phormidium sp. Trichomes without sheath and typically pointed 
terminal cells (I–III). In natural habitats, Microcoleus (Phormidium) autumnalis 
can form dense mats on hard substrates covering large parts of stream beds 
(IV). Units in scale bars correspond to 5 μm if not indicated otherwise. 
For origin of individual photographs, see the end of this chapter.
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Figure 3.5M  Planktolyngbya sp. Narrow trichomes in which individual cells can often not 
be distinguished, surrounded by a fine sheath (sh). Units in scale bars cor-
respond to 5 μm. For origin of individual photographs, see the end of this 
chapter.
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10I II III

Figure 3.5O  Pseudanabaena sp. Short trichomes associated with other phytoplankton 
(I). Red (II)- and green (III)-pigmented strains in culture, forming mats of 
long trichomes. Units in scale bars correspond to 5 μm if not indicated 
otherwise. For origin of individual photographs, see the end of this chapter.
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Figure 3.5N  Planktothrix sp. Green pigmented P. agardhii (I, II, IV) with straight trichomes 
and many aerotopes. Red-pigmented P. rubescens (III, V) with wider and 
generally longer, slightly bent trichomes. Units in scale bars correspond to 
5 μm if not indicated otherwise. For origin of individual photographs, see 
the end of this chapter.
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Figure 3.5P  Tychonema sp. with partly hyaline cells (I–III). Typically, granulae accumulate 
at the cell walls. IV: Fragments of trichomes in a periphytic sample. Units in 
scale bars correspond to 10 or 20 μm as indicated. For origin of individual 
photographs, see the end of this chapter.
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Figure 3.5Q  Aphanocapsa sp. with small cells without aerotopes. In (I), cells and colonies 
of Microcystis sp. are shown for comparison. Units in scale bars correspond 
to 5 μm if not indicated otherwise. For origin of individual photographs, see 
the end of this chapter.
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Figure 3.5R  Aphanocapsa sp. (I), Synechococcus sp. (II) and Synechocystis sp. (III) with small 
cells without aerotopes. Units in scale bars correspond to 5 μm. For origin 
of individual photographs, see the end of this chapter.
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Figure 3.5S  Gomphosphaeria sp. Small colonies of a few cells arranged radially. Units in 
scale bars correspond to 5 μm if not indicated otherwise. For origin of indi-
vidual photographs, see the end of this chapter.

I II III

Figure 3.5T  Merismopedia sp. with highly regular arrangement of cells in flat colonies. 
Units in scale bars correspond to 5 μm. For origin of individual  photographs, see the 
end of this chapter.
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In the following, abbreviations of genera differ occasionally from the gen-
eral convention to use the initial letter to abbreviate a genus. This is done to 
avoid confusion, in particular if species epithets are identical. For example, 
Aphanizomenon flosaquae and Anabaena flosaquae are abbreviated as 
Aph. flosaquae and Ana. flosaquae, respectively (with the latter referred to 
as Dolichospermum flosaquae in the more recent literature). Note that the 
spelling of species epithets such as ‘flos-aquae’ has been chenged to non-
hyphenated spelling ‘flosaquae’ in accordance with the International Code of 
Nomenclature for algae, fungi, and plants (Artcile 60.11; Turland et al., 2018). 
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Figure 3.5U  Microcystis sp. (I) natural sample comprising multiple Microcystis form species; 
(II) typical plankton community consisting of Aphanizomenon flosaquae fas-
cicles, Microcystis colonies and Dolichospermum sp. trichomes; (III) Microcystis 
sp. surface bloom; IV–IX colonies of form species M. wesenbergii (IV), M. 
viridis (V), M. aeruginosa (VI), M. flosaquae (VII), M. ichtyoblabe (VIII) and M. 
novacekii (IX); note that the latter five form species have been proposed to 
be unified as M. aeruginosa based on molecular data (Otsuka et al., 2001). For 
ambiguities of Microcystis taxonomy, see also Box 3.1. Units in scale bars as 
indicated. For origin of individual photographs, see the end of this chapter.
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The full taxonomic name includes names of those who described them, 
for example, ‘Anabaena Bory ex Bornet et Flahault’. The following section 
includes these for clarity.

3.7.1  Filamentous forms with heterocytes

These taxa correspond to subsection 4 in Table 3.2 or “Nostocales” and 
form filaments (trichomes) with heterocytes and akinetes.

Anabaena Bory ex Bornet et Flahault 

Morphological description
The morphology of Anabaena sensu stricto largely corresponds to that of 
Dolichospermum except for the consistent lack of aerotopes (Figure 3.5A).

Taxonomic background
The genus Anabaena underwent several revisions in recent years in the 
course of which several new genera were proposed (see Table 3.2). Anabaena 
sensu stricto now comprises a monophyletic cluster with several species.

Ecology and distribution
Species of Anabaena sensu stricto are primarily benthic or epiphytic but 
rarely planktonic.

Anabaenopsis Miller

Morphological description
Free-floating trichomes, solitary or forming small microscopic clusters. 
Trichomes straight, arcuated or coiled screw-like, usually not embedded 
in sheaths, but sometimes with a fine sheath. Vegetative cells cylindrical 
or barrel-shaped, shorter than wide or up to several times longer than 
wide, pale blue-green, with obligatory or facultative aerotopes, without 
(rarely) or with constrictions at the cross-walls. Heterocytes develop inter-
calary in pairs with certain distances from each other. As trichomes often 
disintegrate after heterocyte maturation between adjacent heterocytes, 
this typically results in short trichomes with terminal heterocytes. Oval, 
cylindrical or spherical akinetes develop intercalary, normally distant 
from heterocytes, but exceptionally adjacent to them. Akinetes generally 
develop solitary or in pairs, rarely arranged in series with up to five in a 
row (Figure 3.5B).

Taxonomic background
The genus is clearly defined phenotypically and has been confirmed by 
molecular analyses. Some species have been transferred to the genera 
(Cylindrospermopsis (now Raphidiopsis) and Cylindrospermum as they 
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share a number of characteristics. More details are found in Komárek & 
Anagnostidis (1989).

Ecology and distribution
All species are planktonic and primarily found in mesotrophic to eutrophic 
waters, either inland or coastal, with alkaline or slightly saline conditions. 
Distributed mainly in tropical and subtropical regions but also during sum-
mer in temperate zones.

Aphanizomenon Morren ex Bornet et Flahault

Morphological description
Trichomes straight or slightly bent and only slightly narrowing towards 
the end, generally without sheaths, but sometimes with a very fine sheath. 
In some species, trichomes tend to form fascicules, that is, macroscopi-
cally visible aggregates of multiple trichomes. Vegetative cells cylindrical 
or  barrel-shaped (from 2 to 5 μm in diameter) with variable length/width, 
often slightly constricted at the cross-wall. Cells contain aerotopes that 
are distributed evenly in the cells. Terminal cells larger than cells in the 
trichome, cylindrical with rounded ends or flattened, sometimes with hya-
line (transparent) content. Generally, one heterocyte is placed intercalary 
(i.e., surrounded by vegetative cells) in individual trichomes, rarely 2–4 
heterocytes per trichome. Heterocytes cylindrical, spherical or ellipsoidal. 
The akinetes develop adjacently from heterocyte (paraheterocytic, some-
times distant) forming a subsymmetric trichome. Akinetes often much 
larger than vegetative cells and are cylindrical, intercalary and solitary 
(rarely in pairs). Single trichomes of Aphanizomenon flosaquae without 
heterocytes are morphologically very similar to trichomes of Planktothrix 
agardhii (Figure 3.5C).

Taxonomic background
The traditional genus Aphanizomenon was recently restricted to a clus-
ter of nine morphospecies (A. flosaquae, A. gracile, A. klebahnii, A. 
yezoense, A. paraflexuosum, A. flexuosum, A. slovenicum, A. platense and 
A. hungaricum) based on polyphasic analyses, while other morphotypes 
formerly placed in the genus were placed in other genera (Cuspidothrix, 
Sphaerospermopsis and Chrysosporum; (Rajaniemi et al., 2005a; Rajaniemi 
et al., 2005b; Komárek, 2013)). The main feature that separates these gen-
era from Aphanizomenon sensu stricto is that Aphanizomenon spp. are 
able to form parallel fascicules that can reach macroscopic size of several 
millimetres visible as green, needle-like particles (Komárek, 2013). Further, 
the subsymmetric filaments are cylindrical, elongated with (almost) hyaline 
(i.e., transparent) terminal cells. Terminal cells rounded but without dis-
tinctly narrowed ends; that are typical for the proposed new genera. For a 
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review of Aphanizomenon and related genera and their toxigenicity, see 
Cirés & Ballot (2016).

Ecology and distribution
Aphanizomenon generally dominate eutrophic, stagnant waters, with low 
available nitrogen and thermal stratification. A. gracile is typically found 
in shallow lakes and reservoirs (Cirés et al., 2017). A. flosaquae, the most 
common species of the genus, occurs mainly in temperate zones. Other spe-
cies occur only in isolated areas, but no tropical Aphanizomenon species 
are registered.

Chrysosporum Zapomělová et al., 2012

Morphological description
Solitary, straight or slightly bent trichomes with clear constrictions at the 
cell walls. Vegetative cells vary from nearly cylindrical to barrel-shaped or 
ellipsoidal. Terminal cells rounded and slightly pointed and partially hya-
line (transparent). Solitary and cylindrical heterocytes formed intercalary 
(i.e., surrounded by vegetative cells). Akinetes characteristically oval with 
distinct granular contents, and distant from heterocytes, often situated 
nearly equidistant between two heterocytes (Figure 3.5D).

Taxonomic background
Only two species to date: Chrysosporum ovalisporum that has been 
renamed from Aphanizomenon ovalisporum and Chrysosporum bergii 
from Anabaena bergii (Zapomělová et al., 2012).

Ecology and distribution
Only limited data on the distribution of both species is available, indicating 
that these species may occur primarily in temperate to subtropical climates 
(Cirés & Ballot, 2016).

Cuspidothrix Rajaniemi et al.

Morphological description
Solitary and free-floating trichomes forming heterocytes. Trichomes 
straight or coiled and characteristically clearly narrowed towards the 
ends. Cells slightly constricted or nonconstricted at the cross-walls, up 
to 6 μm wide. Vegetative cells cylindrical with facultative aerotopes, gen-
erally much longer than wide. Typical apical (terminal) cells elongated 
up to several tens of μm, attenuated and acuminate, and mainly hyaline 
(i.e., transparent). Heterocytes appear only intercalary (i.e., surrounded 
by vegetative cells), always solitary, cylindrical or elliptical. Akinetes 
elongated, more or less cylindrical intercalary, solitary or rarely in pairs, 
close or at a short distance to heterocytes. Trichomes subsymmetric with 
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paraheterocytic akinetes situated on both sides or slightly distant from 
heterocytes (Figure 3.5E).

Taxonomic background
Cuspidothrix issatschenkoi was renamed from A. issatschenkoi based on 
polyphasic analyses (Rajaniemi et al., 2005a). Other species in the genus 
have formerly been assigned to Aphanizomenon, for example, Cuspidothrix 
capricornii and Cuspidothrix elenkinii.
Ecology and distribution
These species are planktonic in mesotrophic to eutrophic stagnant waters. 
They are rarely found in running waters. They are also present from fresh-
water to oligohaline and brackish waters.

Raphidiopsis (Fritsch et Rich) Aguilera et al., including Cylindrospermopsis 
Seenayya et Subba Raju

Morphological description
Aguilera et al. (2018) proposed to unify the genera Cylindrospermopsis 
and Raphidiopsis and to give preference to the latter respecting the prin-
ciple of priority. Because the scientific community is increasingly accept-
ing this revision, in this volume the genus Raphidiopsis refers to the 
combination of the former genera Cylindrospermopsis and Raphidiopsis. 
However, since the study of Aguilera et al. (2018) is restricted to only a 
limited number of species, the taxonomic opinion may change again in 
the future.

The genus Raphidiopsis comprises solitary, free-floating trichomes 
forming heterocytes, except for species of Rhaphidiopsis sensu Fritsch et 
Rich, for example R. mediterranea. Trichomes straight, bent or screw-like 
coiled, but in several species narrowed towards ends and without sheaths. 
The main characteristic is the terminal position of heterocytes, one or two 
at each end of the trichome (when not absent). Heterocytes ovoid, coni-
cal or drop-like. Trichomes subsymmetric, isopolar but heteropolar when 
only one heterocyte is present, generally without constrictions at cross-
walls. Vegetative cells cylindrical or barrel-shaped, usually distinctly lon-
ger than wide, pale blue-green, yellowish or olive-green, facultatively with 
aerotopes. Terminal cells conical, blunt or sharply pointed. Ellipsoidal or 
cylindrical akinetes (2–4× longer and about 2× wider than the vegetative 
cells) develop usually distant from heterocytes, rarely adjacent to apical 
heterocytes (Figure 3.5F).

Taxonomic background
At present, 18 (morpho)species have been described of which, Raphidiopsis 
(Cylindrospermopsis) raciborskii appears to be the most important one 
with respect to cyanotoxin production. 
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Ecology and distribution
In eutrophic, turbid, warm and polymictic waters. In tropics, the appear-
ance is often connected with nitrogen limitation of phytoplankton. All spe-
cies are planktonic in lakes of the pantropical region except Raphidiopsis 
raciborskii that dispersed into the temperate region during the last 100–
150 years (Padisák et al., 2016) where it can form dense, suspended water 
blooms.

Dolichospermum (Ralfs ex Bornet & Flahault) Wacklin, Hoffman et 
Komárek

Morphological description
Free-floating trichomes forming heterocytes, straight, slightly curved or 
flexuous, irregularly or more or less screw-like coiled. Solitary trichomes, 
rarely joined in irregular clusters (very rarely in fascicules). Trichomes not 
attenuated towards the ends, without sheaths, sometimes with fine difflu-
ent mucilaginous envelope. Vegetative cells usually clearly constricted at 
the cross-walls and with many aerotopes distributed throughout the cells. 
Cylindrical trichomes are isopolar, metameric with respect to heterocytes. 
Apical cells morphologically similar to other vegetative cells in the fila-
ment. Heterocytes form intercalarly, solitary or exceptionally in pairs. They 
develop from vegetative cells in metameric position. Akinetes are elongated 
and wider than vegetative cells; they develop paraheterocytically, that is, 
connected with heterocytes, rarely aside heterocytes from both sides or 
(more commonly) separated from them by several cells, solitary or up to six 
in a row (Figure 3.5G).

Taxonomic background
The species of the genus Dolichospermum have been recently separated 
from the genus Anabaena. The main criterion for separating these genera 
is the absence of aerotopes in Anabaena s. str., which is consistent with 
analyses of genomic sequences (Wacklin et al., 2009). Besides the known 
toxigenic species such as D. flosaquae or D. circinale, more than 30 spe-
cies are given in Wacklin et al. (2009), however, without an individual 
taxonomic evaluation.

Ecology and distribution
All species planktonic in vegetative state, rarely associated with macrophytes 
(metaphytic). Dolichospermum is found in mesotrophic to eutrophic, both 
stratified and shallow lakes, generally with low nitrogen concentrations, 
where it can form blooms and surface scums. Several species are considered 
to be tropical.
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Sphaerospermopsis Zapomělová et al.

Morphological description
Solitary trichomes straight, slightly bent or coiled with constrictions at cell 
walls. Vegetative cells cylindrical- to barrel-shaped with slightly elongated 
but not pointed terminal cells, often resembling cells within the trichome. 
Cylindrical to ellipsoidal heterocytes formed solitary and intercalary (i.e., 
surrounded by vegetative cells). Akinetes characteristically nearly spherical 
or ellipsoidal and often occur in groups of two or three, but also singu-
larly. Akinetes are frequently formed adjacently to heterocytes, sometimes 
on both sides. Fragmentation of trichomes at the akinetes yields trichomes 
with terminal akinetes (Figure 3.5H).

Taxonomic background
Sphaerospermopsis includes species formerly belonging to Anabaena as 
well as Aphanizomenon (Zapomělová et al., 2011; Table 3.2).

Ecology and distribution
Sphaerospermopsis occurs primarily in temperate, subtropical and tropical 
shallow lakes.

3.7.2  Filamentous forms without heterocytes 
and akinetes

These taxa correspond to subsection 3 in Table 3.1 or “Oscillatoriales” and 
form filaments (trichomes) without heterocytes and akinetes. Following more 
recent taxonomic schemes, the genera Planktolyngbya and Pseudanabaena 
are placed in the order Synechococcales (Komárek, 2016b).

Arthrospira Stitzenberger ex Gomont

Morphological description
Solitary trichomes always without heterocytes, free floating or in mats 
covering hard substrate (microscopic or macroscopic). Trichomes more or 
less regularly coiled screw-like along their entire length. Generally without 
sheaths; however, if a sheath is present, it is colourless, tube-like with open 
ends enclosing single trichomes. Trichomes isopolar, 3–10 μm wide. Cells 
cylindrical, more or less isodiametric or shorter than wide, pale or bright 
blue-green or olive-green, in planktonic forms with aerotopes and in benthic 
forms without aerotopes. Not or only slightly constricted at the visible cross-
walls. Trichomes not attenuated or only slightly attenuated towards the ends, 
with motility due to a rotational movement. Terminal cells widely rounded, 
usually with thickened outer cell walls or with calyptra (Figure 3.5I).
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Taxonomic background
Arthrospira may be confused with Spirulina; the main difference is that 
Arthrospira has clearly delimited and visible cells, while in Spirulina cross-
walls are not clearly visible. Further, Arthrospira has wider cells, and the 
trichomes are coiled in wider spirals compared to Spirulina trichomes that 
are tightly coiled. Eight species of Arthrospira are described, of which A. 
platensis seems to be the most frequently occurring one. However, in many 
reports, a species assignment is not made. Nowicka-Krawczyk et al. (2019) 
proposed to rename A. fusiformis to be renamed to Limnospira fusiformis.

Ecology and distribution
Arthrospira is generally found in shallow, turbid environments primarily in 
tropical and subtropical climates, in brackish or saline (alkaline) waters but 
occasionally also in freshwater.

Limnothrix Meffert

Morphological description
Trichomes solitary, always without heterocytes, free floating, isopolar. 
Straight or slightly curved or coiled irregularly screw-like, isopolar, without 
sheath or with an only very fine, colourless sheath. Trichomes cylindrical 
and from 1 to 6 μm wide, without or with reduced motility. Cells isodia-
metrical or longer than wide, unconstricted or slightly constricted at the 
cross-walls. Colour can range from pale blue-green to brown and orange. 
Aerotopes characteristically located close to the cross-walls. Apical cells are 
usually cylindrical, but sometimes conical (Figure 3.5J).

Taxonomic background
Most species of Limnothrix were originally placed in the genus Oscillatoria. 
The genus was amended by Meffert (1988) and confirmed by more recent 
studies (Suda et al., 2002; Komárek et al., 2014). The genus Limnothrix 
includes strains closely related to Pseudanabaena (Nishizawa et al., 2010) 
and is classified in the order Synechococcales by Komárek et al. (2014).

Ecology and distribution
Planktonic or tychoplanktonic, in fresh, mesotrophic to eutrophic, turbid 
and mixed waterbodies. Limnothrix redekei is distributed widely in the 
temperate zones but does not frequently form blooms.

Lyngbya Agardh ex Gomont, Moorea Engene et al., Microseira McGregor 
and Sendall and related taxa

Morphological description
Unbranched trichomes not constricted at cross-walls, enclosed in a firm 
sheath that is often protruding from trichomes. Cells short, cylindrical or, 
more often, coin-like (cell width ≫ cell length). Often strongly pigmented 
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with a brown-green or blue-green colour, making cell walls difficult to rec-
ognise. Lyngbya/Moorea forms benthic mats on hard substrates or occurs 
epiphytic, forming macroscopic structures sometimes described as “mer-
maid’s hair” (Figure 3.5K).

Taxonomic background
Two of the most studied species with respect to cyanotoxins are Lyngbya 
majuscula and L. wollei. Toxigenic strains of both species have been 
studied taxonomically and are proposed to be renamed: one cluster of L. 
majuscula is proposed to be renamed to Moorea producens (Engene et al., 
2012) and a cluster of L. wollei to Microseira wollei (McGregor & Sendall, 
2015). Further new genera separated from the Lyngbya species complex are 
Okeania (Engene et al., 2013) and Dapis (Engene et al., 2018). More than 
500 species of Lyngbya are listed in AlgaeBase, with descriptions of a large 
share dating from before 1950, that is, without support from molecular 
data. Expectedly, this group of mainly marine filamentous cyanobacteria 
forming macroscopic aggregates will be subject to taxonomic revision once 
molecular and polyphasic analyses are conducted systematically (Engene 
et al., 2010).

Ecology and distribution
L. majuscula (Moorea producens) occurs primarily in brackish or marine 
habitats in tropical and subtropical zones. L. (Microseira) wollei is found in 
rivers and streams in temperate to subtropical zones where it forms. Other 
species of Lyngbya sensu stricto are found mostly in freshwaters.

Phormidium Kützing ex Gomont, Microcoleus Desmazières ex Gomont 
and related taxa

Morphological description
Unbranched trichomes generally form fine or thick mats (microscopic to 
macroscopic) and are rarely solitary. Trichomes isopolar, straight, coiled or 
waved, usually <10–12 μm wide, facultatively with tube-like, firm, colour-
less sheaths with open ends. Vegetative cells cylindrical to slightly barrel-
shaped, more or less isodiametrical or slightly shorter or longer than wide, 
constricted or unconstricted at the cross-walls, generally without aerotopes 
but with refractive granules. Trichomes not attenuated at the ends, some-
times bent or twisted screw-like towards the ends, motile within and out-
side of sheaths (Figure 3.5L).

Taxonomic background
This genus comprises a large number of species (>400; e.g., P. nigrum, P. 
autumnale, P. fragile), and the taxonomic status of many has been challenged 
(Palinska et al., 2011). As a consequence, a number of Phormidium species 
have been assigned to new genera, for example, Wilmottia (Strunecký et al., 
2011), Oxynema (Chatchawan et al., 2012; Strunecký et al., 2014) or to 
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existing genera such as Microcoleus (Phormidium) autumnalis (Strunecký 
et al., 2013) based on molecular analyses. Microcoleus anatoxicus has been 
reported to produce primarily dihydroanatoxin a (Conklin et al. 2020). For 
this reason, specimens of this taxon are often reported as Phormidium sp. 
and species assignment in elder publication may be no longer valid from a 
today’s point of view. Phormidium may be confused with Geitlerinema, 
Lyngbya (Moorea, Microseira) and others.

Ecology and distribution
Epiphytic or epilithic in shallow rivers or streams but also in shallow areas 
in eutrophic standing waters. Due to the uncertain taxonomy and the result-
ing difficulties for unambiguous species determination, the knowledge on 
geographic distribution of individual Phormidium species is incomplete 
(Marquardt & Palinska, 2007). Specimens of the genus were found in a 
variety of latitudes, including extreme cold environments (Strunecký et al., 
2012).

Planktolyngbya Anagnostidis et Komárek

Morphological description
Trichomes without heterocytes, solitary, with thin, simple, colourless, but 
firm sheaths. Isopolar, cylindrical trichomes, narrow, up to 3 μm wide, 
straight, waved or coiled, generally not narrowed to the ends. Slightly con-
stricted or unconstricted at the cross-walls, and always immotile. Cylindrical 
cells usually longer than wide (rarely shorter than wide), without aerotopes, 
pale grey-blue, blue-green, yellowish or olive-green. Terminal cells rounded 
or narrowed-rounded without a calyptra (Figure 3.5M).

Taxonomic background
The genus was separated from Lyngbya by Anagnostidis and Komárek 
(1988) and confirmed by polyphasic analysis (Komárek et al., 2014) who 
placed the genus to the order Synechococcales (family Leptolyngbyaceae).

Ecology and distribution
Planktonic species are typical in large, mesotrophic reservoirs. Some spe-
cies are limited to tropical and warm areas of temperate zones, while sev-
eral species are presumably nordic.

Planktothrix Anagnostidis et Komárek

Morphological description
Trichomes always solitary, free floating, more or less straight or slightly 
irregularly waved or curved. In culture, trichomes may form irregular 
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clusters. Sheaths generally absent; if present, they are fine, colourless and 
diffluent. Trichomes isopolar, cylindrical, not constricted or slightly con-
stricted at cross-walls. Length of trichomes up to 4 mm, width 3–12 
μm. Immotile or sometimes slightly motile (trembling, gliding), slightly 
attenuated or not attenuated towards the ends, sometimes capitated or 
with terminal calyptra. Most species with prominent aerotopes take a 
large share of the cells’ volume. Vegetative cells cylindrical or (rarely) 
slightly barrel-shaped, shorter than wide, up to ±isodiametric or rarely 
little longer than wide (Figure 3.5N).

Taxonomic background
Planktothrix was originally placed in the genus Oscillatoria, from which it 
was separated due to ecological traits and the formation of large numbers 
of aerotopes (Anagnostidis & Komárek, 1988).

Several species are described, of which Planktothrix agardhii and 
P. rubescens are the most relevant with respect to cyanotoxins. Other 
species (e.g., P. mougeotii, P. pseudagardhii and P. spiroides) are mor-
phologically similar but have not been reported to form blooms. Some 
species produce only few aerotopes (P. paucivesiculata, P. serta; Gaget 
et al., 2015a).

Ecology and distribution
Generally, planktonic and evenly distributed in the water column in non-
stratified, shallow lakes (P. agardhii) or cumulated at the thermocline of 
deep, stratified lakes (P. rubescens or, more rarely, P. mougeotii), occasion-
ally forming blooms. In the case of blooms of P. rubescens, these may accu-
mulate at the metalimnion and not be visible at the surface (see Chapter 4). 
Both species tolerate low light intensities. The genus is widely distributed in 
temperate climates, but individual species may show more restricted distri-
bution patterns.

Pseudanabaena Lauterborn

Morphological description
Trichomes without branching and without firm sheaths, sometimes with 
fine, colourless, diffluent envelopes. Trichomes solitary or agglomerated in 
very fine mucilaginous mats. Individual trichomes straight, slightly waved 
or bent, usually not very long, 0.8-3 μm wide, not attenuated at the ends, 
usually with slight constrictions at the distinct cross-walls. Cells cylindri-
cal, usually longer than wide (sometimes barrel shaped or nearly spheri-
cal). The apical cell is cylindrical and rounded at the end or more or less 
conical up to bluntly or sharply pointed. Generally without aerotopes, but 
sometimes with aerotopes at the ends of cells. Trichomes may have motility 
(trembling). Pigmentation often reddish (Figure 3.5O).
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Taxonomic background
Pseudanabaena is closely related to Limnothrix (Acinas et al., 2009), 
and some authors refer to this as “Pseudanabaena/Limnothrix” group 
(e.g., Zwart et al., 2005). Both genera have been assigned to the order 
Synechococcales sensu (Komárek et al., 2014); these genera are close to 
single-cell forms such as Synechococcus sp.

Ecology and distribution
Mostly planktonic species, tychoplanktonic or benthic in oligotrophic, 
mesotrophic up to slightly eutrophic water reservoirs and turbid mixed 
waters. Short trichomes of Pseudanabaena endophytica can often be found 
attached to colonies of Microcystis.

Tychonema Anagnostidis et Komárek

Morphological description
Unbranched, cylindrical trichomes lack a visible sheath of 7–12 μm width 
not constricted at cross-walls. Cells generally slightly shorter than wide or 
isodiametrical and appear almost empty except for granulae at the cross-
walls or the cell periphery. Trichomes mostly solitarily and lacking motility 
as observed in Geitlerinema or Phormidium (Figure 3.5P).

Taxonomic background
Tychonema is a currently recognised distinct genus within Oscillatoriales 
(Anagnostidis & Komárek, 1988) and has been confirmed by polyphasic 
analyses (Suda et al., 2002). Four species are described, the distinction of 
which may be difficult (Tychonema bornetii, T. bourrellyi, T. decoloratum 
and T. tenue).

Ecology and distribution
As the name already indicates, Tychonema typically is tychoplanktonic: the 
trichomes are loosely attached to macrophytes or hard substrate but can be 
detached due to water movement and become planktonic.

Tychonema is primarily found in mesotrophic lakes of temperate zones 
where macrophyte stands exist, for example, in assemblages of water 
moss (Fastner et al., 2018). T. bourrellyi is considered as truly planktonic 
(Salmaso et al., 2016b).

3.7.3  Colonial forms

These taxa correspond to subsection 1 in Table 3.1 or “Chroococcales” and 
are unicellular with cells embedded in a common mucilage. Following more 
recent taxonomic schemes, the genera Aphanocapsa and Merismopedia are 
placed in the order Synechococcales (Komárek, 2016b).
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Aphanocapsa Nägeli

Morphological description
Cells form microscopic (sometimes macroscopic) more or less spherical 
or irregular colonies with irregularly, loosely or densely distributed cells. 
Mucilage fine and diffluent, generally colourless but macroscopically colo-
nies appear as firm sheaths. Cells spherical from 1.5 to 6 μm of diameter 
(hemispherical after division), without own mucilaginous envelopes, gen-
erally without aerotopes, sometimes with granular content. Cell division 
always in two perpendicular planes in successive generations. Some species 
are morphologically similar to Microcystis, except for the lack of aerotopes 
in Aphanocapsa (Figure 3.5Q).

Taxonomic background
It is suggested that planktonic species need revision as the relationship to 
other form genera like Microcystis is not clear.

Ecology and distribution
Periphytic, benthic or metaphytic in stagnant and running freshwater sys-
tems, usually with clear water, common in lakes. Often found in late sum-
mer in the epilimnion of oligotrophic, deep lakes. Registered worldwide, 
but several species are ecologically sharply limited and occur in geographi-
cally limited areas.

Similar small coccoid taxa are the colony-forming Aphanothece and 
 single-celled Synechococcus and Synechocystis (Figure 3.5R).

Gomphosphaeria Kützing

Morphological description
Cells embedded in a mucilage forming spherical or irregularly oval colo-
nies, sometimes composed of multiple subcolonies. Mucilage with gelati-
nous stalks that radiate from the centre of the colony to the periphery. 
The stalks are widened at the ends and envelope individual cells with a 
thin mucilage layer. Cells elongate (6–12 × 2–8 μm), radially oriented at 
the end of stalks. Pigmentation pale or bright blue-green, olive-green or 
red (Figure 3.5S).

Taxonomic background
At first sight, the genus can be confused with Snowella or Coelosphaerium; 
see taxonomic update in Komárek and Anagnostidis (1999).

Ecology and distribution
Generally, found in eutrophic to hypertrophic, small- to medium-sized 

lakes.
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Merismopedia Meyen

Morphological description
Free-floating microscopic colonies, square or rectangular with one layer of 
cells densely or loosely arranged in a single plane. Larger colonies may be 
contorted or composed of several subcolonies. Colonies of a few to several 
cells that divide in two alternating planes, forming groups of 4 or 16 cells 
that collectively form distinctive, flat colonies with hyaline (transparent), 
fine envelopes, some species with envelopes surrounding each cell. Cells 
spherical or elliptical (hemispherical after division), generally pale or bright 
blue-green content; in a few species in central parts of cells with refractive 
granulae or aerotopes (Figure 3.5T).

Taxonomic background
Some 20 morphospecies of Merismopedia are described, for example, 
M. glauca, M. punctata or M. elegans. In most ecological studies, only 
Merismopedia sp. is reported.

Ecology and distribution
Planktonic or metaphytic, usually in biotopes with submerged macrophyte 
vegetation. Temperate habitats: deep and shallow, oligotrophic to eutro-
phic, medium to large lakes. Common in the epilimnion of mesotrophic 
lakes in summer.

Cosmopolitan distribution, but several species have clearly ecologically 
and geographically limited areas of distribution.

Microcystis Kützing ex Lemmermann

Morphological description
Free-floating microscopic or macroscopic colonies, spherical, oval or elon-
gated, in several species clathrate. A large number of species have been 
described based mainly on cell size and colony morphology. The latter is, 
however, not available in cultured strains that generally grow as single cells 
or atypical colonies (Otsuka et al., 2000). The same is true for samples fixed 
with Lugol’s solution in which colonies disintegrate to small clusters or single 
cells, allowing a differentiation only by cell size. In some species, colonies are 
composed of subcolonies or multiple more or less separated clusters of cells. 
All cells densely or sparsely arranged in a common  mucilage with the density 
of cells highly variable in particular species. Mucilage fine, colourless, dif-
fluent or distinct and delimited (e.g., Microcystis wesenbergii). Gelatinous 
envelopes around individual cells are never present. Cells spherical or hemi-
spherical shortly after division, ranging from 2 to 7 μm in diameter or slightly 
elongated, with many, irregularly arranged aerotopes. Differentiation of mor-
phospecies in samples of natural populations is often uncertain as many colo-
nies show characteristics of more than one morphospecies (Figure 3.5U).
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Taxonomic background
The number of described morphospecies varies depending on the reference 
source chosen (see Box 3.1). Due to phenotypic variability, the status of 
individual morphospecies and their relationships is largely unclear. The 
genus Microcystis is one of the few cyanobacterial genera that underwent 
systematic taxonomic revision based on molecular data. As a result, based 
on genomic DNA homologies, Otsuka et al. (2001) proposed to unify the 
species M. aeruginosa, M. ichthyoblabe, M. novacekii, M. viridis and 
M. wesenbergii in a single species. This is also supported by Harke et al. 
(2016), but nonetheless, this proposal has not been validated, primarily for 
formal reasons (Oren & Ventura, 2017).

A particular morphotype occurring in tropical waters has been described 
as Radiocystis. This genus is characterised by cells more or less arranged in 
radial series protruding from the centre embedded in a mucilage also show-
ing radial structures (Komárek & Komárková-Legnerová, 1993). Genomic 
sequences such as 16S rRNA or phycocyanin operon are, however, identical 
to those of Microcystis (Vieira et al., 2003). Similarly, Sphaerocarvum sp. 
has been split from the genus Microcystis based on a particular colony mor-
phology in situ (Azevedo & Sant’Anna, 2003), but has genomic sequences 
identical to Microcystis (Rigonato et al., 2018).

Ecology and distribution
Planktonic, in mesotrophic to eutrophic standing waters that are at least 
temporally stratified, preferably in shallow or medium depth lakes. Mostly 
absent or restricted to the shallow basins or to the littoral region in deep, 
stratified lakes where they can, however, form large blooms like in the 
North American great lakes. Microcystis frequently forms blooms in eutro-
phic systems, and under conditions of stable thermal stratification, it can 
form surface blooms and massive scums. Colonies can sink to the bottom 
and overwinter in the sediment.

Many species with a cosmopolitan distribution, except in subpolar 
regions but several taxa are restricted geographically due to ecological pref-
erences (van Gremberghe et al., 2011; Harke et al., 2016).
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INTRODUCTION

Cyanobacteria are found in almost every aquatic ecosystem. Yet their pres-
ence does not automatically pose a risk to public health. Whether or not 
toxins reach health-relevant concentrations depends on the taxonomic 
(and genotypic or clonal) composition of the phytoplankton as well as on 
the cyanobacterial biomass. Clearly, the risks of elevated biomass, loosely 
named blooms, are higher under eutrophic conditions. However, certain 
cyanobacteria, for example, Planktothrix rubescens, tend to decrease under 
eutrophic conditions, while others like species of Microcystis may still reach 
hazardous levels under much reduced nutrient concentrations if a relatively 
low biomass accumulates as scums near the lake shore. Hence, to assume 
a very close link between cyanobacterial proliferation and eutrophication 
is too restrictive for a good understanding of toxin risks. Therefore, for the 
assessment and management of cyanobacterial hazards to human health, a 
basic understanding of their properties, their behaviour in natural ecosys-
tems and the environmental conditions that support their excessive growth 
is important. This chapter provides a general introduction to key traits of 
cyanobacteria that support their proliferation in aquatic ecosystems. It 
focuses on cyanobacteria thriving suspended in the water of lakes and res-
ervoirs, that is, those with a planktonic way of life. It also gives information 
on conditions potentially promoting the growth of benthic cyanobacteria, 
that is, those growing on surfaces such as rocks, sediments or submersed 
vegetation. How to use this information for controlling and managing cya-
nobacterial proliferation is discussed in Chapter 8.

4.1  WHAT MAKES MANY PLANKTONIC 

CYANOBACTERIA DOMINANT?

To proliferate, cyanobacteria must be able to satisfy their demands for light 
energy and nutrients, particularly phosphorous (P) and nitrogen (N). They 
compete for these resources with other phytoplankton and with each other. 
Cyanobacteria have a number of specific traits that favour their dominance 
over algal phytoplankton as well as bloom formation in many lakes, rivers and 
oceans. Some traits are only found in a restricted subset of cyanobacteria, such 
as the capability to fix atmospheric nitrogen or the regulation of buoyancy.

4.1.1  Nutrient storage and nitrogen fixation

Cyanobacteria can sustain growth during temporal and spatial shortage of 
dissolved nutrients by storing them – particularly phosphorous (P) and to a 
lower extent also nitrogen (N) in amounts exceeding their current demands 
for cell division and growth (Li & Dittrich, 2019). They store surplus P as 
polyphosphate in the cell, sometimes enough for several cell divisions even 
when external supplies are depleted below the analytical detection levels. 
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As a consequence, one cell can multiply into 8 or even 16 cells without any 
further phosphorus uptake (Reynolds, 2006).

In addition, cyanobacteria can acquire nitrogen in different forms, such 
as nitrate, nitrite, and ammonium or urea. While under oxidised conditions, 
N occurs as nitrate and is used as such by cyanobacteria, they can rapidly 
take up reduced forms of N (ammonium and urea), for example, from sew-
age inflows or released from sediments or by mussels (Gobler et al., 2016). 
Furthermore, some cyanobacteria, for instance, the genera Aphanizomenon 
or Dolichospermum, can utilise atmospheric N2, a capacity termed “diazot-
rophy”. This is a distinct advantage for cyanobacteria compared to eukaryotic 
microalgae at times when other sources of nitrogen are in short supply (Oliver 
& Ganf, 2000). The widely occurring genera Microcystis and Planktothrix 
cannot fix atmospheric nitrogen, but they can benefit from a smaller biomass 
of co-occurring N-fixing taxa whose degrading cells may leak N into the sur-
rounding water (Salk et al., 2018).

Nitrogen fixation (diazotrophy) in most taxa is located in specialised 
cells, the heterocytes (see Chapter 3). These cells do not perform photosyn-
thesis since the nitrogenase enzyme complex that carries out nitrogen fixa-
tion is inactivated by oxygen released through photosynthesis. Heterocytes 
are generally easily recognised microscopically due to their different shape 
and pronounced cell wall, but may appear similar to vegetative cells in some 
species (Gallon, 2004). Cyanobacterial N2 fixation can cause considerable 
N input into aquatic ecosystems and affect global geochemical cycles, as 
shown, for instance, for the marine cyanobacterium Trichodesmium in the 
Atlantic Ocean (Capone et al., 2005). Diazotrophy, however, requires high 
amounts of energy for the heterocytes to maintain anoxic conditions inside 
the cell while being in an oxygenated environment, and therefore, N2 fixa-
tion is limited in turbid water.

Cyanobacteria are able to store excess N mainly in the form of cyano-
phycin (a copolymer of aspartate and arginine; Simon, 1971; Ziegler et al., 
1998). Even species that cannot fix atmospheric N2 may thus have com-
petitive advantage against microalgae under conditions of low N concentra-
tions (Li et al., 2001a).

4.1.2  Buoyancy, vertical migration, surface 
scums and metalimnetic layers

The formation of surface blooms or scums (see Box 4.1) is one of the most 
prominent visual expressions of cyanobacterial development. The cyano-
bacteria best known for the formation of surface blooms are colony- or 
 filament-forming species of genera such as Dolichospermum, Cuspidothrix, 
Aphanizomenon, Microcystis and Nodularia, and under specific circum-
stances also species of Planktothrix and Raphidiopsis (Cylindrospermopsis). 
Surface blooms may cover an area reaching from a few square metres up to 
hundreds of square kilometres, such as blooms of Nodularia spumigena that 
can cover large areas of the brackish Baltic Sea (Bianchi et al., 2000).
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In order to grow, cyanobacteria, being photoautotrophic organisms, need 
to spend sufficient time where there is sufficient light. Many species of cya-
nobacteria can be buoyant through their gas vesicles (see Chapter 3), thus 
avoiding sedimentation into deeper layers with low or no light availability.

BOX 4.1: BLOOMS, SCUMS, MASS 

DEVELOPMENTS – SOME DEFINITIONS

In the literature on cyanobacteria, the use of terms describing high cell  density 

varies widely. This book proposes and uses the following definitions (see also 

Fig. 4.1 and 4.2): 

Bloom: high average phytoplankton (i.e., algae and/or cyanobacteria) cell 

density in a waterbody (in this book, usually referring to blooms of cyanobac-

teria), also referred to as “mass development” or “proliferation”. Blooms can 

be visually recognised by low transparency and water colour.

Surface bloom: buoyant cyanobacteria accumulating near or at the surface 

forming visible streaks, sometimes discernible in remote sensing images. 

Surface bloom formation may occur even where average cyanobacterial cell 

density is low if vertical and horizontal concentrating mechanisms lead to 

pronounced cell accumulation at the surface. Surface blooms can occur at 

large scales covering tens of square kilometres in large lakes or oceans.

Scum or surface scum: massive accumulation of buoyant cyanobacteria at the 

water surface forming a cohesive layer, often the result of secondary hori-

zontal concentration at the shore, which can reach up to several centimetres 

thickness. In very dense scums, the surface of the scum can become nearly dry, 

and this may lead to massive cell lysis, colouring the water blue through the 

release of phycocyanin. Scums can also be formed by other phytoplankton, like 

Euglenophytes, but these are generally only a few millimetres thick.

Under eutrophic conditions, water is turbid, rendering light gradients in 
the water column quite steep and photosynthesis restricted to the upper-
most water layer of a few metres or even less than 1 m. The water layer in 
which light for photosynthesis is available is termed “euphotic zone”. If 
waterbody mixing is deeper than the euphotic zone, phytoplankton cells 
spend only a limited part of the day in layers with sufficient light for pho-
tosynthesis, and light may then limit growth rates. During calm periods, 
vertical mixing ceases and thermal (micro)stratification develops in water-
bodies (Box 4.2). Under these conditions, nonbuoyant plankton sinks out of 
the euphotic zone, but buoyant cyanobacteria float up, into the near-surface 
layer, where the cells spend all or most of the daytime in the light. This 
is typical for colonial cyanobacteria, because due to their large size, they 
develop high flotation velocities, as can be observed when a water sample is 
placed in a glass cylinder (Humphries & Lyne, 1988).
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BOX 4.2: THERMAL STRATIFICATION

Many lakes develop temperature gradients over depth. Thermal stratification 

develops when two water layers of differing average temperature are stably 

separated. This happens because the specific density of water is the highest at 

4 °C and decreases at higher as well as at lower temperatures. In spring, water 

temperature increases at the surface, and above a certain temperature differ-

ence onwards, the warmer, less dense water in the upper part of the water 

column no longer mixes with colder, denser water in deeper parts. Further 

heating of the upper layer of water eventually leads to a sharp separation of 

warm and cold water. The layer where the temperature difference over depth is 

most pronounced is called the thermocline. For practical purposes, stratifica-

tion is defined as a temperature difference of more than one degree centigrade 

over one metre of water depth. The upper, warm layer is called epilimnion, 

the deeper, cooler layer the hypolimnion and the layer around the thermocline 

metalimnion. The more pronounced the temperature gradient, the more sta-

ble the stratification, and more energy, for example, wind, is needed to over-

come it by deep mixing. Thus, once stable stratification is established, cooling 

of surface water at night or periods of cold weather will cause some mixing of 

the surface layer, but not the total circulation of the waterbody. While thermal 

stratification distinctly separates these water layers, some exchange of water 

between the epilimnion and the hypolimnion may yet occur (e.g., through eddy 

diffusion), the extent of which depends on the stability of stratification. This in 

turn is affected by the ratio of the waterbody’s surface area to its depth, wind 

exposition and frequency of storms, for example.
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At the end of the summer, the epilimnion successively becomes cooler 

and once temperatures – and in consequence water densities – of the epi- 

and hypolimnion have converged, complete mixing of the water column 

occurs. This process is called mixis or overturn. Further cooling at the sur-

face can lead to an inverse stratification during winter, in particular when 

an ice-cover is present, because water density decreases at temperatures 

below 4 °C.

Stratification not only affects water temperature, but also many biological, 

chemical and physical processes. Particles such as planktonic organisms (dead 

or alive) and excreta of fish or zooplankton can settle and reach the hypo-

limnion and the sediment where they decay. This process consumes oxygen 

and releases minerals, including phosphorus and nitrogen, from the decay-

ing material settling or already deposited on the sediment surface. As there 

is little exchange between epi- and hypolimnion in a stratified waterbody, 

substances such as phosphorus and nitrogen accumulate in the hypolimnion. 

Therefore, thermal stratification also causes chemical and biological stratifi-

cation, frequently leading to an anoxic hypolimnion that is rich in dissolved 

inorganic nutrients. 

Depending on the stability of thermal stratification and frequency of mix-

ing, several types of lakes are distinguished.

In shallow polymictic waterbodies, stratification occurs irregularly but fre-

quently while lasting only for hours, days or at most for weeks, depending on 

meteorological conditions such as air temperature, wind speed and direction. 

Temperature gradients generally are not pronounced, and hence, stratifica-

tion is not stable, yet this type of microstratification has important effects on, 

for instance, buoyant phytoplankton. 

In dimictic lakes, thermal stratification is stable during summer as well as 

during winter, and mixing occurs twice a year, that is, as “spring overturn” 

and “autumn overturn”. Dimictic lakes generally are deep in relation to their 

surface area.

In monomictic waterbodies, mixing occurs only once, generally during the 

winter, in lakes and reservoirs that do not freeze. This is common for large 

reservoirs in tropical and subtropical climates, but may also occur in temper-

ate regions. Monomixis can also arise from factors such as seasonal precipita-

tion patterns, for example, monsoon seasons.

Besides the frequency of water column mixing, the completeness of the 

mixing process is classified. In holomictic waterbodies, mixing is from the 

surface to the bottom, while in meromictic ones, a bottom layer remains 

excluded and never or very infrequently gets mixed with the overlaying water 
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layer. This occurs in lakes with a particular morphometry like deep crater 

lakes that may be classified as dimictic and meromictic.

One of the ongoing and forecasted effects of climate warming is shifts 

between mixing regimes, for example, from poly- or dimictic to monomictic 

or, in some situations, less stable stratification if the frequency of storms 

increases. Given the importance of mixing regimes for lake ecosystem func-

tioning, the consequences can be far reaching.

Buoyancy regulation – that is, a variation in the buoyancy state – depends 
on the availability of resources such as carbon, nitrogen and phosphorous 
(e.g., Klemer et al., 1982; Konopka et al., 1987), but most importantly, 
buoyancy is regulated by light. Cyanobacteria produce more gas vesicles 
under low irradiance, thus increasing their buoyancy. Under high irra-
diance, gas vesicles may be diluted by growth, or – after extended light 
exposure – collapse under high turgor pressure (Kinsman et al., 1991). In 
addition, cyanobacteria exposed to light produce carbohydrates, the excess 
of which may be stored as glycogen that acts as ballast, so that buoyancy 
can decrease to a point where cells start to sink. In darker, deeper layers, 
the cells consume their glycogen storage as energy source, and thus, they 
regain buoyancy. This may result in diel changes in buoyancy and vertical 
migration, with populations being maximally buoyant during the night and 
a percentage of the cells losing buoyancy during the day (Ibelings et al., 
1991; Rabouille & Salençon, 2005; Medrano et al., 2013).

Since the vertical migration of Microcystis can span large ampli-
tudes, Microcystis can also proliferate in deep lakes. Typically, however, 
Microcystis becomes dominant in eutrophic lakes of intermediate depth, 
which are sufficiently stratified to allow them to control buoyancy and 
thus to position themselves vertically. In these ecosystems, Microcystis 
colonies are among the best-adapted phytoplankton to overcome mixing 
forces (provided these are relatively weak) – allowing the colonies to dis-
entrain from turbulence – and gain a competitive advantage by floating 
upwards during periods of increased stability (Reynolds, 1994; Dokulil 
& Teubner, 2000).

In waterbodies with thermal stratification, buoyancy regulation can lead to 
different accumulation patterns of cyanobacterial biomass and consequently 
of cyanotoxins, depending on the taxa involved (Figure 4.1, Figure 4.6):

• formation of surface blooms or scums, typical for blooms of Microcystis, 
Dolichospermum and Aphanizomenon. Formation of a cohesive scum 
is generally preceded by the occurrence of visible streaks at the surface. 
Once congregated at the surface, the cells can be further accumulated 
by wind-drift at leeward sites;
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• largely homogeneous distribution of cells in the water column with 
scum formation occurring only exceptionally under the conditions 
of extreme water column stability. A typical example is Planktothrix 
agardhii, which only rarely creates surface blooms or scums, but may 
lead to pronounced greenish turbidity of homogeneously distributed fil-
aments. Further examples include Limnothrix and Pseudanabaena as 
well as other taxa that have not been shown to produce known toxins;

• the accumulation of cells in a deep layer (deep chlorophyll maximum), 
either between upper warm and deeper cold water (i.e., the “ther-
mocline” or “metalimnion”; see Box 4.2) or at low light intensity. 
Typical examples include the red-coloured Planktothrix rubescens 
in deep, stratified lakes and reservoirs. However, green-pigmented 
cyanobacteria (Aphanizomenon flosaquae, Dolichospermum) have 
also been reported to form metalimnetic layers that may last for sev-
eral months (Konopka, 1989). In stratified subtropical reservoirs, 
Raphidiopsis (Cylindrospermopsis) raciborskii has been found in 
deep layers with low light intensity (see section 4.5). Occasionally, 
such cyanobacteria may leave their position in the metalimnion and 
accumulate at the surface, in the case of P. rubescens, leading to 
purple surface blooms. Seasonal or storm-induced mixing may also 
carry them into the upper layers.

surface
A B C D E F G

epi-

meta-

-li
m

ni
on

hypo-

bottom

Figure 4.1 Distributi on patterns of cyanobacteria (cyanotoxins) in the water column. A: 
homogeneous distribution, B: homogeneous distribution in the epilimnion of 
thermally stratified waterbodies, C: gradual concentration of buoyant cyano-
bacteria towards the surface in a stable water column, D: surface bloom of 
buoyant cyanobacteria, E: accumulation in a metalimnetic layer in stratified 
waterbodies, F: accumulation in bottom layers through sedimentation, G: 
benthic cyanobacteria growing on hard substrate. Transitions between all 
individual patterns are possible.



4 Conditions determining occurrence 221

At times, surface blooms can develop into scums when cyanobacteria accu-
mulated at the water surface are further concentrated by horizontal drift, 
generally at downwind sites (Figure 4.2). Scum formation is typically 
restricted to parts of a waterbody only, but strongly affects water quality in 
terms of odour, appearance and sometimes extremely high concentrations of 
cyanotoxins. When scums are not dissolved after a short time, for example, 
by wind or wave action, massive cell lysis may set in as a result of unadapted 
cells being exposed to full sunlight and additional stress factors such as high 

(a)

(b)

(c)

(d)

MC μg/L: 1

7cells/L:  10

risk level: low

chl-a μg/L: 2

max chl-a μg/L: 20
max MC μg/L: 10

8max cells/L: 10

risk level: moderate

max chl-a μg/L: 200

risk level: high
max MC μg/L: 100

9max cells/L:  10

max chl-a μg/L: 200000

risk level: very high
max MC μg/L: 100000

12max cells/L:  10

Figure 4.2  Schematic illustration of the formation of a surface bloom and scum of 
buoyant planktonic cyanobacteria like Microcystis spp. The maximum toxin 
concentrations under given conditions are estimated assuming average cell 
quota of 100 fg microcystin (MC) per cell (see Box 4.8). (a): strong winds 
lead to a mixing of the entire waterbody. (b): moderate wind speed allows 
for (temporary) thermal stratification and buoyant cyanobacteria to accu-
mulate in the epilimnion. (c): Without wind, buoyant cyanobacteria float 
up and form surface blooms. (d): low wind speed causes the displacement 
of surface blooms and formation of scums at downwind sites. Note that 
cell numbers, chlorophyll-a (chl-a) and MC concentrations are only crude 
estimates to illustrate the order of magnitude of possible spatial heteroge-
neities and must not be taken as reference values.
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temperature or depleted inorganic carbon (Ibelings & Maberly, 1998). This 
can consequently result in the massive release of cyanotoxins and phyco-
cyanin, indicated by bluish plaques, often accompanied by a strong and 
unpleasant odour.

4.1.3  Light harvesting

Cyanobacteria contain phycocyanin and phycoerythrin as photosynthetic 
pigments in addition to chlorophyll-a. These harvest light in the green, yel-
low and orange parts of the solar spectrum (500–650 nm), which is not 
commonly used by other phytoplankton species. Cyanobacteria therefore 
are efficient at light harvesting and generally have the capacity to grow at 
very low light intensities. This applies in particular to the most filamentous 
forms, especially for Planktothrix, which ranks among the best competitors 
for light (Reynolds, 1997).

In contrast, while colony formation – for example, of Microcystis – offers 
advantages such as buoyancy and grazing protection, it also has disadvan-
tages: it diminishes the capacity for light harvesting (and also for nutrient 
uptake) because in a colony, the cells’ surface-to-volume ratio is reduced, 
and as a consequence, the overall growth rate is also lower. In fact, Reynolds 
(1997) ranks Microcystis among the poorest resource competitors and slow-
est growing species in the phytoplankton – would it not have the potential 
for flotation and buoyancy regulation, it would probably not be a strong 
competitor in the phytoplankton community (Ibelings et al., 1994).

4.1.4  Carbon concentrating mechanisms

Cyanobacteria have a carbon concentrating mechanism (CCM), which 
allows the CO2-fixing enzyme RUBISCO to operate efficiently. The first 
part of the CCM consists of various inorganic carbon uptake systems, two 
for CO2 and three for bicarbonate. The carbon, assimilated carbon in the 
form of bicarbonate, is transported to specific cellular compartments con-
taining the enzyme carbonic anhydrase, known as carboxysomes. Carbonic 
anhydrase transforms bicarbonate (back) to CO2, raising it to levels where 
RUBISCO can perform optimally. Cyanobacterial taxa vary in the combi-
nation of carbon uptake systems present in the cell, and this allows them 
to adapt to environments that differ in the availability of inorganic carbon 
(Price et al., 2007; Sandrini et al., 2014).

4.1.5  Resistance to grazing and other losses

Cyanobacteria seem well equipped to minimise two loss factors that play a 
major role in general phytoplankton dynamics: sedimentation and grazing 
by zooplankton. Resistance to grazing is a widely studied and discussed 
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subject, in part because it may form an important obstacle for the success 
of biomanipulation (see section 8.7.1).

Toxicity, size of filaments or colonies, and poor nutritional quality may 
prohibit an efficient grazing on cyanobacteria by zooplankton (Kurmayer & 
Jüttner, 1999), but how well cyanobacteria are protected against grazing 
by zooplankton is still under considerable scientific debate, with grazing 
experiments and field studies showing different outcomes (Sarnelle, 1993; 
Gragnani et al., 1999). For instance, it was shown that Daphnia carinata 
fed on toxic cyanobacteria, including Microcystis colonies (Matveev et al., 
1994), while in the microcosm experiments of Mohamed (2001), daphnids 
preferred green algae and diatoms over toxic Microcystis. Some of the ini-
tial studies demonstrating cyanobacterial toxicity against grazers seem to 
have been based upon a restricted selection of zooplankton taxa and cya-
nobacterial strains (Wilson et al., 2006a), and grazers that originate from 
lakes with a history of cyanobacteria generally show stronger tolerance 
against their toxins (Ger et al., 2016). Lemaire et al. (2012) studied how 
the co-evolutionary history of grazers and cyanobacteria results in specific 
grazer genotype and cyanobacterium genotype interactions that provide a 
further explanation for the variable outcome of research on grazing of cya-
nobacteria. Furthermore, grazing by zooplankton other than cladocerans 
may lead to very different observations: some rotifers, for example, are able 
to feed on filamentous cyanobacteria and are adapted to the perceived low 
food quality of cyanobacteria (Burian et al., 2014).

Likewise, the role of mussels in decimating cyanobacterial populations is 
still under debate: (toxic) cyanobacterial blooms have reappeared in Lakes 
Erie and Huron (USA), and this is partially interpreted as a result of zebra 
mussel (Dreissena polymorpha) invasion (Vanderploeg et al., 2001) and their 
selective rejection of Microcystis colonies as food. Dionisio Pires et al. (2005) 
and Baker et al. (1998) showed a positive selection for cyanobacteria (and 
other phytoplankton), indicating that grazing effects of mussels on cyanobac-
teria are not yet well understood (Raikow et al., 2004). Phytoplanktivorous 
fish are largely absent from temperate lakes, but in (sub)tropical regions, fish 
such as silver carp and bighead carp have been shown to filter feed on cyano-
bacteria (Zhang et al., 2008), thus potentially controlling Microcystis blooms 
(reviewed in Triest et al., 2016).

Besides grazing, losses through infection by fungal parasites, phages and 
heterotrophic bacteria have been recognised as potentially important driv-
ers of cyanobacterial population dynamics (Box 4.3; Steenhauer et al., 2016; 
Yoshida-Takashima et al., 2012; Rohrlack et al., 2013; Van Wichelen et al., 
2010). Respective losses may not affect the entire populations but only selected 
genotypes, thus contributing to the clonal dynamics in cyanobacterial blooms 
(Van Wichelen et al., 2016; Agha et al., 2018). Recognition, and in particular, 
quantification of losses through microbial interactions in waterbodies, is still 
only in the beginnings.
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BOX 4.3: EMERGING INSIGHTS INTO 

THE ROLE OF CYANOPHAGES

Helena L. Pound, Steven W. Wilhelm

While viruses are well documented in marine systems and virus-induced 

cell lysis contributes to the conversion of microbial biomass into dissolved 

organic matter, less is known about their role in freshwaters, particularly 

for cyanobacteria. Yoshida et al. (2006) isolated and sequenced the first 

phage capable of lysing Microcystis aeruginosa, proposing that it might act as 

a controlling agent in seasonal blooms. While the effect of phage on growth, 

proliferation, and biomass of Microcystis populations has not been fully elu-

cidated, community-sequencing studies have provided further insight. A 

metatranscriptomic analysis of a 2014 Microcystis bloom in Lake Erie showed 

an increased frequency of Microcystis phage transcripts at the termination 

of the bloom, with approximately one virus marker transcript for every 

host marker (Steffen et al., 2017), implying a massive population-level infec-

tion. This lytic infection was associated with a spike in detected  microcystin 

 concentrations in the raw water of the city of Toledo’s drinking-water 

 supply, reaching up to >5 μg/L. The working hypothesis arising from the 

observation is that virus-infected cells lysed and released cell-associated 

toxin into the water. 

In contrast, a similar analysis of a Microcystis bloom in Taihu (Lake Tai, 

China) in 2014 showed a different effect associated with the Microcystis 

phage. That study observed the formation of lysogens with the association 

of the phage with the host genome (Stough et al., 2017). In this manner, 

Microcystis hosts may have resisted subsequent infections by other lytic 

phage, allowing for longer bloom maintenance. Indeed, Kuno et al. (2012) 

found that repeated exposure to a high diversity of phages leaves traces 

in the genomes of Microcystis strains, including molecular defence mecha-

nisms. These studies provide evidence that viral infections can be relevant 

both in the dynamics of Microcystis blooms and in the release of otherwise 

cell-bound toxins.

4.1.6  Overwintering strategies

In (sub)tropical regions, cyanobacteria can produce perennial blooms, whereas 
in temperate ones, they are often subject to pronounced seasonal changes 
in environmental conditions. Phytoplankton populations – including cyano-
bacteria – usually decline in winter because a decrease in daily insolation and 
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increased mixing depth minimise light availability for photosynthesis. In the 
next growing season, the size of the inoculum of overwintering cells can 
be decisive for the outcome of competition between phytoplankton spe-
cies for light and nutrients, and overwintering strategies are therefore an 
important trait for attaining high levels of biomass and/or dominance in 
the phytoplankton.

Microcystis typically blooms in (late) summer, and its biomass decreases in 
autumn when growth conditions become less favourable. Part of the colonies 
can sink to the lake bottom (Reynolds et al., 1981; Takamura et al., 1984). 
Verspagen et al. (2004) demonstrated that viable colonies, capable of pho-
tosynthesis, were present in large numbers in and on the sediment not only 
in winter but throughout the year. Several studies (Takamura et al., 1984; 
Boström et al., 1989) found that the total amount of Microcystis in the sedi-
ment can be much higher than in the water column, even during Microcystis 
blooms. Preston et al. (1980) observed that recruitment of Microcystis from 
the sediment to the water takes place before the establishment of the sum-
mer bloom, so that this recruitment may be a crucial factor that initiates the 
bloom (Ihle et al., 2005).

Filamentous cyanobacteria like Planktothrix agardhii seem to follow 
a different strategy. Even in temperate climates, they may prevail or even 
bloom throughout the year in eutrophic systems. In some situations, they 
prevent competing phytoplankton from growing by maintaining the system 
turbid and light availability too low for microalgae to compete efficiently 
(Scheffer et al., 1997; Ibelings et al., 2007).

The annual cycle of Planktothrix rubescens in Lake Zürich studied by 
Walsby & Schanz (2002) shows a specific time pattern for this species: 
deep winter mixing of the lake entrained the metalimnetic population of P. 
rubescens. About half of the filaments survived this winter period, whereas 
others lost their gas vesicles because of the hydrostatic pressure resulting 
from deep winter mixing. After annual stratification in spring, the surviv-
ing filaments resumed their position in the metalimnion.

A number of cyanobacteria produce specific resting cells called akine-
tes that sink to the sediment where they can survive for extended peri-
ods of time (see Chapter 3). These include, in particular, the N2-fixing 
taxa Anabaena, Dolichospermum, Aphanizomenon and Raphidiopsis. 
Recruitment and germination of akinetes from the sediment contributes 
to bloom onset, and prolonged benthic recruitment may strongly promote 
the presence of respective species (Karlsson‐Elfgren et al., 2003). Several 
factors, especially light and temperature, determine their germination 
(Karlsson-Elfgren et al., 2004; Wiedner et al., 2007). Cirés et al. (2013) 
show how blooms of Dolichospermum circinale and D. flosaquae are both 
initiated and maintained in the Murray River (Australia) by the germina-
tion of akinetes that are present in the sediment, although vegetative cells 
also overwinter in the water.
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4.2  WHERE DO WHICH CYANOBACTERIA OCCUR?

Cyanobacteria causing toxin concentrations of concern for human health are 
usually planktonic, that is, suspended in the water. However, as mentioned 
above, some forms grow on surfaces. As discussed in Chapter 3, “benthic” 
or “epiphytic” cyanobacteria do so continuously until they are physically 
detached and dislocated to the surface or beaches. “Tychoplanktonic” 
 cyanobacteria inhabit surfaces, including those of submersed aquatic plants, 
and may at times also be suspended in the water.

4.2.1  Planktonic cyanobacteria

As a taxonomic group, cyanobacteria are highly successful in colonising a 
wide variety of habitats – with numerous special adaptations to extreme 
environmental conditions, for example, resistance to high concentrations 
of copper and zinc, tolerance of low oxygen conditions and of free sul-
phide, high tolerance of UV-B and UV-C as well as of high temperature (see 
Whitton, 2012).

Due to their small size and the extremely high abundance, it is frequently 
argued that microbial species are globally ubiquitous, growing and mul-
tiplying where they find suitable conditions (“Baas Becking  hypothesis – 
everything is everywhere but the environment selects”; Finlay, 2002). 
Accordingly, geographic barriers would not restrict the global distribution 
of particular taxa, and indeed, cyanobacterial species are cosmopolitan in 
general and not restricted to geographic regions like, for example, many 
higher plants (Pridmore & Etheredge, 1987). Later observations, however, 
suggest that geographic variation in microbial diversity is apparently more 
common than originally expected (Martiny et al., 2006), which could well 
be because the environment – which clearly varies between regions – selects 
indeed, as postulated in the second part of the Baas Becking hypothesis. A 
(potentially) global distribution of a particular species does, however, not 
imply genetic homogeneity across the globe. Regional and local differences 
in genotype occurrence can cause differences in the distribution of (toxic) 
secondary metabolites. For example, as strains of Raphidiopsis raciborskii 
differ genetically between geographic regions (see below), cylindrosper-
mopsin (CYN) production was found only for Australian strains, while 
not for European or South American ones (Neilan et al., 2003; Piccini 
et al., 2011).

While it is impossible to prove that a specific taxon is absent from a 
given location, documented observations of occurrence provide some 
indication of which species to expect or not to expect under which con-
ditions. Furthermore, in analogy to plant-sociological groupings for ter-
restrial plants, phytoplankton, including cyanobacteria, can be grouped 
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in associations of species that typically occur under specific conditions 
(Reynolds et al., 2002, updated by Padisák et al., 2009). Box 4.4 shows 
how a grouping on the basis of key functional traits of cyanobacteria helps 
to reduce – taxonomic – complexity and to understand why certain cyano-
bacteria occur under certain conditions. Moreover, the close association 
between cyanobacterial traits and preferred environmental conditions can 
provide guidance in selecting the most promising measures for successful 
control of cyanobacterial blooms (Mantzouki et al., 2016).

BOX 4.4: CYANOBACTERIAL FUNCTIONAL GROUPS 

BASED ON THE CLASSIFICATION BY REYNOLDS (2006)

Evanthia Mantzouki

A functional group is defined by containing species with similar morphological 

and physiological traits, and ecological functioning (see Padisák et al., 2009 

and Salmaso et al., 2015). Reynolds (2006) clustered species on the basis of 

the typical habitats in which they occur, morphological traits such as shape 

and dimension or specialised structures such as gas vesicles and heterocytes, 

as well as functional traits that are linked to resource acquisition, optimum 

growth temperatures and toxin production. From the extensive list given 

by Reynolds (2006), the table below (modified after Mantzouki et al., 2016) 

selects the functional groups with cyanobacteria, listing typical representative 

taxa and highlighting environmental tolerances and key sensitivities. This may 

aid in finding suitable management actions to control cyanobacteria. The clas-

sification is simplified compared to Reynolds (2006) and Padisák et al. (2009) 

by combining groups that are found in similar habitats and, more importantly, 

require similar management actions, that is, the S1/S2, H1/H2 and LO/LM 

groups. Notable differences in the various preferred habitats of the combined 

groups are as follows: S2 species prefer warmer mixed and alkaline waters 

compared to those in group S1; H2 taxa are found in mesotrophic lakes with 

high light conditions, and although H1 taxa are found in more eutrophic lakes, 

their nitrogen content is relatively low; LO taxa are found in medium to large 

lakes, while LM species occur in small to medium-sized lakes. Note that the 

most frequently occurring, typical taxa are given in bold.

Adapted by permission from Springer Nature, Aquatic Ecology, Understanding 

the key ecological traits of cyanobacteria as a basis for their management and 

control in changing lakes. Mantzouki E, Visser PM, Bormans M, Ibelings BW 

(2016). Copyright Springer Nature 2016. www.springernature.com/gp.

http://www.springernature.com/gp
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Prochlorococcus is probably the most abundant cyanobacterium, 
numerically dominating the oligotrophic areas of tropical and subtropical 
oceans, followed by marine Synechococcus and Trichodesmium. Planktonic 
freshwater cyanobacteria contribute only a relatively small percentage of 
the global cyanobacterial biomass as surface freshwaters are only a small 
fraction of the global surface water (Garcia-Pichel et al., 2003).

Microcystis species have a cosmopolitan distribution and have fre-
quently been reported from lakes worldwide, from temperate to tropical 
zones of both hemispheres. They occur in a range of waterbodies, typi-
cally (though not exclusively) proliferating at temperatures above 15 °C 
and under mesotrophic to eutrophic conditions. While thermal stratifi-
cation may give them a competitive advantage, Microcystis occurs both 
in thermally stratified lakes (generally deeper than 6 m) and in relatively 
shallow, polymictic waterbodies which show recurrent periods of re-strat-
ification and mixing, allowing Microcystis to benefit from its buoyancy 
(Ibelings et al., 1991).

The widespread filamentous species Planktothrix agardhii is a typi-
cal and frequently reported species for shallow temperate lakes, particu-
larly in the Northern Hemisphere (Suda et al., 2002). It tolerates a wide 
range of temperatures, and in some regions (e.g., lowland areas of the 
Netherlands and northern Germany), it perennially dominates (or domi-
nated) shallow eutrophic and hypertrophic waterbodies for many years 
(Van Liere & Mur, 1980; Mur, 1983; Rücker et al., 1997). However, it is 
also reported from subtropical climatic regions in South America (Kruk 
et al., 2002), Australia (Baker & Humpage, 1994) and from the temperate 
climatic region of New Zealand (Pridmore & Etheredge, 1987). Because 
this species is a superior competitor under conditions of low light avail-
ability, Planktothrix agardhii  – sometimes together with Limnothrix – 
generates a positive feedback loop, creating a “shaded” environment in 
which it can hardly be outcompeted by other phytoplankton (Scheffer 
et al., 1997).

The nitrogen-fixing genera, Dolichospermum and Aphanizomenon, 
typically occur in larger mesotrophic lakes (Dokulil & Teubner, 2000; 
Reynolds et al., 2002) promoted by surface warming, high light and 
phosphorus levels together with low nitrogen concentrations (see section 
4.2.3). Species of Dolichospermum and Anabaenopsis have been reported 
from all five continents, occurring in temperate regions of the Northern 
and the Southern Hemisphere as well as in subtropical and tropical cli-
matic regions. As the chemical reduction of atmospheric nitrogen is energy 
demanding, these taxa typically proliferate in environments with high light 
availability, that is, fairly clear water, rather than in turbid, highly eutro-
phic systems. Species of Aphanizomenon have been widely reported from 
temperate regions of the Northern Hemisphere (Konopka, 1989; Barker 
et al., 2000; Porat et al., 2001) as well as from subtropical regions (Porat 
et al., 2001), from Australia (Baker & Humpage, 1994) and from South 
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America (Kruk et al., 2002). Frequently, Aphanizomenon flosaquae occurs 
codominant together with Microcystis (Teubner et al., 1999).

Raphidiopsis raciborskii has originally been considered a tropical  species, 
first described from Java (Gugger et al., 2005a). R. raciborskii was first reported 
in Europe during the 1930s (Padisák, 1997) and appeared to invade temper-
ate regions of Europe during the 1990s (e.g., Dokulil & Mayer, 1996; Briand 
et al., 2004). However, newer genetic and ecophysiological analysis demon-
strated that R. raciborskii shows positive net growth over a wide range of 
temperatures (20–35 °C) (Briand et al., 2004), and rather than spreading from 
warm refuge areas across the American and European continents, it shows 
distinct and geographically separate ecotypes (Gugger et al., 2005b; Haande 
et al., 2008), which also differ with respect to producing CYNs (Neilan et al., 
2003; Piccini et al., 2011; Antunes et al., 2015).

Other potentially toxin-producing cyanobacteria show a more restricted 
pattern of geographic occurrence. Mass developments of the red-pigmented, 
filamentous Planktothrix rubescens have been reported frequently over sev-
eral decades but largely from thermally stratified lakes and reservoirs across 
Europe (e.g., Skulberg & Skulberg, 1985; Feuillade, 1994; Barco et al., 
2004; Gallina et al., 2017), North America (e.g., Edmondson & Litt, 1982; 
Nürnberg et al., 2003) and New Zealand (Pridmore & Etheredge, 1987). In 
these waterbodies, they typically inhabit the thin layer between warm sur-
face water and the cold deep layer, called the metalimnion. Waterbody mix-
ing can distribute the filaments throughout the whole water column, thus 
causing a distinctly visible reddish discoloration (Nürnberg et al., 2003). 
Their preferred habitat in the metalimnion may be the reason why P. rube-
scens populations are sensitive to eutrophication, since having enough light 
in these depths for growth depends on water being relatively clear in the 
epilimnion. In peri-alpine lakes such as Lake Hallwil (Switzerland) or Lake 
Bourget (France), P. rubescens (re)appeared as nutrient levels declined and 
water became clearer and disappeared again only after total phosphorus 
(TP) had further declined to very low concentrations (e.g., below 10 μg/L 
in Lake Bourget; Jacquet et al., 2014). In Lake Constance, at similarly low 
phosphorous levels, metalimnetic blooms of P. rubescens have reappeared 
since 2014, and in other lakes like Lake Zurich (Switzerland), it shows little 
response to decreases in TP concentrations (Schanz, 1994; Gammeter & 
Zimmermann, 2001; Posch et al., 2012).

Nodularia spumigena has been reported from marine and brackish waters – 
typically estuaries and coastal lagoons of Southern Australia (Francis, 1878; 
Jones et al., 1994) and less frequently in alkaline, brackish lakes (Bolch 
et al., 1999). In addition, it has been reported from brackish coastal lakes 
in New Zealand (Carmichael et al., 1988), South Africa and the North 
Sea (Nehring, 1993). Nodularia spumigena regularly forms blooms in the 
Baltic Sea (Bianchi et al., 2000). Notably, a freshwater strain of Nodularia 
originally isolated from a benthic mat in a thermal source also produced the 
nodularin (Beattie et al., 2000).
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4.2.2  Benthic and tychoplanktonic cyanobacteria

Benthic cyanobacteria generally need a substrate to attach to, like sediment 
(“epipsammic”), pebbles or stones (“epilithic”) or macrophytes (“epiphytic”), 
while “tychoplanktonic” includes phases of planktonic occurrence. Benthic 
cyanobacteria occur in a variety of freshwater and marine habitats, includ-
ing wetlands, lakes, coral reefs and estuaries, hypersaline and geothermal 
ponds, streams and rivers (Scott & Marcarelli, 2012). Water transparency 
allowing light to penetrate to the bottom is a prerequisite for the growth. 
While planktonic cyanobacteria are well known to thrive in eutrophic condi-
tions, benthic cyanobacterial proliferation is common in oligotrophic envi-
ronments such as alpine lakes or headwater streams with sufficient substrate 
stability to enable cyanobacterial growth (Scott & Marcarelli, 2012). Where 
lakes and reservoirs become clearer in consequence of successful reduction of 
nutrient loads, benthic, epiphytic and/or tychoplanktonic planktonic cyano-
bacteria may replace planktonic ones, thus causing new exposure scenarios: 
while the health risk from cyanotoxins in the bulk water declines, a more 
localised risk may then arise in the vicinity of detached mats of benthic cya-
nobacteria or of macrophyte tufts containing cyanobacteria – either floating 
or beached. It is therefore important to observe the possible expansion of 
such taxa in the course of restoration efforts (Shams et al., 2015).

Some benthic species form mats which can grow on a wide range of sub-
strates such as fine sediment, rocks, artificial substrates and aquatic plants. 
These cyanobacterial-dominated mats usually range from a few millimetres 
to several centimetres in thickness, although when environmental condi-
tions are favourable, they can continue to grow and become much thicker. 
As benthic, cyanobacteria-dominated mats are increasingly being investi-
gated for cyanotoxins worldwide, these are increasingly being found, par-
ticularly in wadeable streams, littoral zones of lakes and coastal lagoons 
(Fetscher et al., 2015; Cantoral Uriza et al., 2017). For both, freshwater 
and marine benthic taxa, occurrence is often highly variable on small spa-
tial scales of metres or less. In shallow marine environments in tropical 
and subtropical zones, Moorea (formerly Lyngbya) and other benthic taxa 
potentially producing toxins can occur (see also section 2.6).

In freshwater, the dominant cyanobacterial taxa in the mats are usu-
ally filamentous Oscillatoriales, including Oscillatoria, Microcoleus, 
Phormidium, Microseira, Moorea (formerly Lyngbya), Leptolyngbya, 
Tychonema, Calothrix and Schizothrix. The Chroococcales Aphanothece 
and Synechococcus are also common components of the mats, with some 
reports of mats dominated by these genera, for example, in hot spring 
environments. Among the nitrogen-fixing Nostocales, the most frequently 
reported genera are Anabaena, Scytonema and Nostoc (Quiblier et al., 
2013, Wood et al., 2020). Although dominated by cyanobacteria, the mats 
usually contain many other organisms (e.g., heterotrophic bacteria and 
eukaryotic algae) and inorganic matter (e.g., sediment) bound together by 
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extracellular polymeric substances (McAllister et al., 2016). Over 20 spe-
cies of benthic cyanobacteria are known to produce a range of cyanotox-
ins, similarly wide as that of planktonic species, that is, MCs, nodularins, 
CYNs, saxitoxins and anatoxins. Toxicity that could not be attributed 
to any of the known cyanotoxins has also been identified (Quiblier et al., 
2013). As in planktonic cyanobacteria, both toxic and nontoxic genotypes 
of a given species usually coexist within mats (Cadel-Six et al., 2007) and 
cyanotoxin content can be highly variable spatially and temporally. Little 
is known about factors which may upregulate toxin production or promote 
the dominance of toxic over nontoxic strains. However, again as for the 
planktonic cyanobacteria, the abundance of toxic genotypes appears to be 
the key contributor to toxin content variability among benthic cyanobacte-
rial-dominated mats (Wood & Puddick, 2017).

In contrast to planktonic cyanobacteria, research exploring factors that 
regulate the growth and expansion of benthic cyanobacterial-dominated 
mats has been relatively limited, and detailed studies are restricted to a few 
taxa from specific environments. In general, the variables that have been 
identified as most important in regulating the proliferation of benthic cya-
nobacterial mats are physical disturbance (wet–dry cycles, wave action, 
shear stress, abrasion), light, temperature, nutrients and grazing. Once 
mats are established, they contain diverse microbial communities and these 
taxa appear to play a vital role in cycling nutrients within the mat (Bouma-
Gregson et al., 2019). This is in concert with internal biogeochemical condi-
tions, which have been shown to facilitate the release of phosphorus from 
sediment trapped in the mats, leading to nutrient conditions within mats 
that are very different to those of the overlying water. For example, Wood 
et al. (2015) showed that dissolved reactive phosphorus concentrations in 
water extracted from benthic cyanobacterial mats was over 300 times higher 
than in the stream water. These nutrient-rich within-mat conditions prob-
ably partly explain how cyanobacterial-dominated mats can form very high 
biomass in nutrient-replete environments.

A synthesis of research results on the anatoxin-producing mat-forming spe-
cies Microcoleus autumnalis (formerly Phormidium autumnale) in wadeable 
streams in New Zealand shows that Microcoleus proliferations are most likely 
to occur when there is slightly elevated dissolved inorganic nitrogen during 
the colonisation phase, but when water column dissolved reactive phosphorus 
is less than 0.01 mg/L. Once established, Microcoleus-dominated mats trap 
sediment, and biochemical conditions within the mats can mobilise sediment-
bound phosphorus which is then available for growth. These streams are 
highly dynamic systems and the mats are primarily removed through shear 
stress and substrate disturbance, although there is also evidence for autogenic 
(natural) detachment. As cyanobacterial-dominated mats mature and biomass 
increases, oxygen bubbles, produced through photosynthesis, become trapped 
among the cyanobacteria and the extracellular polymeric substances they pro-
duce, causing the mat to become buoyant and detach from the substrate.
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Tychonema species have repeatedly been recorded in lakes of the temper-
ate zones (Salmaso et al., 2016). Tychonema spp. can produce neurotox-
ins, primarily anatoxins. These filamentous cyanobacteria primarily grows 
in stands of macrophytes but can occasionally be found in plankton sam-
ples and has been identified as the cause of dog deaths where these ingest 
Tychonema together with decaying macrophyte material accumulated at 
the shoreline (Fastner et al., 2018).

The health risk that benthic cyanobacteria proliferations pose to humans 
is still relatively unknown. There have been numerous cases of domestic and 
wildlife poisoning following the ingestion of cyanobacterial mats (Quiblier 
et al., 2013; McAllister et al., 2016). Anecdotal reports of human illness 
after recreating in streams containing cyanobacterial proliferations are doc-
umented, but conclusive evidence is lacking. As long as the mats are attached 
to the substrate, the risks of human ingestion are probably limited. However, 
detached mats often accumulate at the banks of rivers, streams and lakes, 
where animals are much more likely to consume them (Quiblier et al., 2013; 
McAllister et al., 2016, Wood et al., 2020). Dogs may be attracted to them 
by the smell of the decaying material, and numerous cases of dog deaths 
have been documented, sometimes with cyanobacterial cells and cyanotox-
ins found in their stomachs (Wood et al., 2007; Fastner et al., 2018). For 
some species, “free” toxin, that is, dissolved in water, can be detected in lake 
and stream water, although the concentrations are usually well below drink-
ing-water guideline values (Wood et al., 2018). Assessing risks for human 
health is challenging in situations where deaths of pets and wildlife have 
been observed, while the water appears clear and toxin concentrations in the 
water are low or nondetectable. In such situations, it is best to inform users 
about the situation, to show what the mats look like and to advise avoiding 
contact with floating or beached benthic material (see Chapter 15).

4.3  WHICH ENVIRONMENTAL FACTORS FAVOUR 

CYANOBACTERIAL DOMINANCE?

Phytoplankton communities generally consist of species belonging to diverse 
taxonomic groups of photosynthetically active microorganisms. Yet the for-
mation of massive, long-lasting blooms to the extent known from cyanobacte-
ria is rarely reported for eukaryotic microalgae such as desmids, chrysophytes 
or chlorophytes, for example. Specific environmental conditions strongly 
favour the dominance of certain cyanobacterial taxa over other taxa of both 
cyanobacteria and microalgae. Understanding these conditions is important 
for management, allowing us to estimate under which conditions to expect 
cyanobacterial blooms. Key abiotic conditions determining phytoplankton 
growth rates and the outcome of competition between species are the avail-
ability of resources (nutrients and light), temperature, mixing regime, flush-
ing rate and pH. In addition, biological interactions, including resource and 
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BOX 4.5: N LIMITATION VERSUS P LIMITATION: 

SCIENTIFIC CONTROVERSY OR CONSENSUS?

Vollenweider’s (1968) keystone report on the scientific background of eutro-

phication of inland waters starts with the sentence “Nitrogen and phosphorus 

appear to be the most important among the nutrients responsible for eutro-

phication”. Since then, the debate whether N or P or both are responsible for 

eutrophication has not ceased and with it, the discussion on approaches how 

to revert eutrophication is ongoing (Schindler, 2006). During the last decades 

of the 20th century, eutrophication control of freshwaters largely focused on 

P with success in many cases. One reason is that P does not, unlike N, have an 

Table 4.1  Trophic state categories and their definition as given by Vollenweider & 
Kerekes (1982)

TP mean
Chl-a 
mean

Chl-a 
maximum

Transparency 
mean

Transparency 
maximum

Trophic state μg/L μg/L μg/L m m

Ultraoligotrophic ≤ 4 ≤ 1 ≤ 2.5 ≥ 6 ≥ 12

Oligotrophic ≤ 10 ≤ 2.5 ≤ 8 ≥ 3 ≥ 6

Mesotrophic 10 – 35 2.5 – 8 8 – 25 3 – 1.5 6 – 3

Eutrophic 35 – 100 8 – 25 25 – 75 1.5 – 0.7 3 – 1.5

Hypertrophic ≥ 100 ≥ 25 ≥ 75 ≤ 0.7 ≤ 1.5

TP: total phosphorus concentration; Chl-a: chlorophyll-a concentration; Transparency measured 
as Secchi depth readings; see Chapter 13.

competition, grazing by zooplankton, phage infection and lysis (Stough et al., 
2017; Šulčius et al., 2018; Box 4.3) as well as parasitism (Frenken et al., 
2017; Agha et al., 2018), can play a decisive role, and these are included in 
the discussion below.

4.3.1  The concept of “trophic state”

This concept integrates a classification of levels of nutrient concentra-
tions with their outcome in terms of phytoplankton biomass and turbidity. 
Initially, Vollenweider & Kerekes (1982) proposed a classification of five 
trophic states based on data from lakes in temperate climates (Table 4.1). 
This classification uses the annual mean concentration of total phosphorus 
(TP) as the chief limiting nutrient in these waterbodies (see section 4.3.2 
and Box 4.5), annual mean and maximum concentrations of chlorophyll-a 
as measure of phytoplankton biomass (see Box 4.6), as well as water trans-
parency, measured as Secchi disc reading (see Chapter 13).
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unlimited atmospheric reservoir: N can be imported into the surface water 

by N fixation; also in shallow waterbodies, it can be exported by denitrifica-

tion and thus potentially be lost more quickly than P, which may be recycled 

between the sediment and water if water exchange rates are low (Shatwell & 

Köhler, 2019). As phases of N limitation are common in many shallow water-

bodies, some authors have concluded that therefore N needs to be reduced 

together with P (Conley et al., 2009; Paerl et al., 2016).

The controversy of P versus N limitation can be exemplified with a series of 

publications on Lake 227. This small experimental lake has been fertilised for 

37 years with constant annual inputs of P and decreasing inputs of N. Even after 

ceasing N fertilisation, the phytoplankton abundance remained on an “eutro-

phic” level, leading Schindler et al. (2008) to the conclusion that attempts to 

reduce eutrophication by reducing N loads are compensated by cyanobacterial 

N fixation and hence reducing N loading as a management tool may be futile. 

This conclusion was challenged by re-analysing the same data set by Scott & 

McCarthy (2010) who found a decline of phytoplankton biomass after N fer-

tilisation stopped with a rate of some 6% per year. With four more years of 

data, this trend, however, could not be verified, thus supporting the original 

conclusion (Paterson et al., 2011). In turn, Scott & McCarthy (2011) argued that 

N limitation may nonetheless be present but will affect phytoplankton biomass 

only after a time delay. Yet a few years later, Higgins et al. (2018) suggest that 

N limitation is still not significantly affecting this phytoplankton community.

This example shows how difficult it is to reach unambiguous conclusions 

since even a small lake is a very complex ecosystem. On a larger scale, Elser 

et al. (2007) showed that both increased N and P lead to increased biomass 

in freshwater as well as in marine and terrestrial ecosystems, with most pro-

nounced responses for combined N and P fertilisation. It could therefore be 

argued that both N and P inputs need to be reduced to effectively revert 

eutrophication. Arguments held against this proposal (see review in Chorus & 

Spijkerman, 2020) are that 

 1. Experiments adding both N and P show that if all other resources, par-

ticularly light, are available in surplus, adding both nutrients can lead to 

higher biomass compared to adding of only N or only P. Such results, 

however, do not allow the inverse conclusion, that is, that both must 

be reduced to allow an efficient reduction of phytoplankton biomass. 

Reducing either P or N alone likely would likely suffice to reduce bio-

mass, and the choice may be driven by practical considerations.

 2. Even if N is currently limiting biomass, reducing P sufficiently will shift a 

waterbody to P limitation.
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 3. In many situations, P reduction is easier to achieve and results can be 

predicted with less uncertainty (Chapters 7 and 8).

 4. N limitation may shift species composition between cyanobacteria and 

algal phytoplankton (Harris et al., 2014) and between cyanobacterial 

taxa (Teubner et al., 1999; Dolman et al., 2012), and such shifts are, as 

of yet, scarcely predictable. The concern that N limitation may pro-

mote N-fixing cyanobacteria (Schindler et al., 2008) has rarely proven 

relevant in practice.

 5. So far, successful cases of lake or reservoir restoration with substan-

tially reduced cyanobacterial biomass have been achieved by reducing 

P (Fastner et al., 2016; Schindler et al., 2016); success due to reducing 

N has scarcely been demonstrated (see Shatwell & Köhler (2019) for a 

successful example).

Jeppesen et al. (2007) contributed to resolving this controversy with data 

from 56 lakes showing that “if P can be reduced to low concentrations, N is 

not likely to be of major importance”. 

Reduction of P loads to many lakes and reservoirs has been successfully 

achieved with techniques such as P elimination or P precipitation in sewage 

treatment, appropriate use of mineral fertilisers, reduction of phosphates in 

laundry detergents or a combination of any of these measures. Therefore, 

from a practical point of view, P load reduction is often considered a first 

choice for an efficient management tool to revert eutrophication of lakes and 

reservoirs and thus to control cyanobacterial blooms. 

However, ecological considerations, particularly for downstream coastal 

areas, may also necessitate controlling N, and when planning measures to 

control cyanobacteria, it may be effective to take this wider context into 

account (Chapter 7). Particularly for shallow lakes with several months of N 

limitation during summer, it is important to avoid any new N loads, and an 

option to control cyanobacteria may be to seasonally target measures that 

reduce prevalent N loads (see section 7.1).

This classification of trophic state may be adapted to local or regional 
 circumstances, and systems have been proposed with further “fine-tuning” 
of the trophic state definitions: regional re-assessments of trophic state 
boundaries are given, for example, by Nürnberg (1996) for North American 
Lakes, including the impact of conditions such as lake morphometry, water 
hardness and fulvic/humid acid concentrations, and by Salas & Martino 
(1991) for warm-water lakes in Latin America and the Caribbean. Carlson 
(1977) developed a widely used numerical trophic state index (TSI) ranging 
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from 0 to 100 and including Secchi depth, TP and chlorophyll-a concentra-
tions. In spite of controversy over details of the definition of each category 
and its boundaries, the trophic state concept is widely used in practice. It is 
valuable for cyanobacterial management, because a few general statements 
apply to most cases:

• In oligotrophic waterbodies, planktonic cyanobacteria are unlikely 
to attain cell densities that cause hazardous cyanotoxin concentra-
tions. However, benthic or epiphytic cyanobacteria may be present 
and cover littoral sediments.

• In mesotrophic waterbodies, cyanobacterial blooms occur rarely; 
exceptions include metalimnetic accumulations of Planktothrix rube-
scens (which may be at depths of drinking-water offtakes or come to 
the surface, increasing risk of exposure), detached mats of benthic 
cyanobacteria (see above) and – in large waterbodies – recruitment of 
cyanobacteria (particularly of Dolichospermum) from low cell den-
sity but very large water volumes and surface areas to visible scums 
along a downwind shoreline (section 4.5).

• In eutrophic and particularly hypertrophic waterbodies, cyanobacte-
ria occur frequently and abundantly, often constituting a major share 
of the total phytoplankton biomass for extended parts of the year.

BOX 4.6: MONITORING TOTAL PHOSPHORUS AS 

OPPOSED TO SOLUBLE PHOSPHATE FRACTIONS

Considerable confusion prevails in the use of the term “phosphate”. Historically, 

soluble reactive phosphate (SRP), also termed “dissolved inorganic 

phosphate” (DIP) or “orthophosphate”, has been measured and addressed 

when dealing with phytoplankton growth, because this is the fraction of TP 

which is directly available for uptake by cyanobacteria and algae. However, 

recycling of phosphate molecules within the plankton communities is often 

extremely rapid (within minutes), and phosphate liberated by the degradation 

of organic material will be rapidly taken up by bacteria and algae. Furthermore, 

cyanobacteria and algae can store enough phosphate for up to four cell divi-

sions, even if no SRP can be measured. If SRP is found above the detection 

limits, this means that it is available in excess to the requirements of cyanobac-

teria and other phytoplankton. The only informational value of such a finding is 

that P is being “left over” and growth is limited by some factors other than P. 

The upper limit of the biomass of cyanobacteria and/or algae that can 

develop in a given waterbody is, therefore, often largely determined by the 

amount of P bound within the cells, and total phosphate phosphorus is 

the variable that should be studied for biomass management. Strictly, this 
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“Eutrophication” is the process of nutrient enrichment with the conse-
quence of a massive increase in the biomass of phytoplankton – often in 
particular of cyanobacteria – and reduced transparency. Eutrophication has 
become a widespread problem in many regions of the world in the 1960s in 
the wake of intensified application of mineral fertilisers, intensified animal 
husbandry as well as urbanisation and increased sewage discharges causing 
intensified nutrient loading to waterbodies. “Re-oligotrophication” is the 
reverse of eutrophication, and measures to achieve this started being imple-
mented already in the late 1970s. While in some regions they are increas-
ingly showing success, with the trophic state of waterbodies decreasing, in 
many regions eutrophication is still increasing, particularly in response to 
clearing of land for settlements or for agricultural use.

4.3.2  Nutrients

Phytoplankton biomass – that is, microalgae and cyanobacteria – chiefly 
consists of carbon (C), oxygen (O), hydrogen (H), nitrogen (N) and phos-
phorus (P). Under the conditions of rapid growth not limited by shortage 
of nutrients, it contains these elements in the following relative proportions 
(known as Redfield ratio; Redfield (1934)), expressed either in molar ratios 
or in mass units: 

Higher ratios of C:P have been suggested by Anderson & Sarmiento 
(1994) and Sterner et al. (2008). There is no lack of O and H in water, 
and concentrations of C become limiting only in very acidic water – or 
sometimes in extremely dense cyanobacterial blooms (Ibelings & Maberly, 

variable is not equivalent to total phosphorus (TP), which includes the 

mineral form (like apatite) unavailable for biological uptake. However, mineral 

forms are of quantitative importance only in particular waterbodies (e.g., with 

high silt loading), and for the sake of simplification, TP has become widely 

used to represent total phosphate phosphorus. 

It is of importance to note that concentrations of TP refer to the molecular 

weight of the phosphorus atom (30.97 g/mol) and not to that of phosphate 

molecule (PO4, 94.97 g/mol). Where this is not clearly stated, it has caused 

considerable confusion in the literature.

C N P

Molar ratios 106 16 1

Mass ratios 42 7 1
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1998). Thus, nitrogen (N) and phosphorus (P) are the key nutrients that 
promote – or limit – the growth of cyanobacteria and other phytoplankton 
in freshwaters. Although in consequence of the Redfield ratio, biomass pro-
duction requires only about 1 mole of P per 16 moles of N, in many types of 
freshwater environments phosphorus is the resource which most frequently 
limits phytoplankton growth, while N limitation occurs frequently but 
often not for longer periods of time.

Nitrogen (N) may enter waterbodies leaching from soils particularly 
after spreading of manure or fertiliser, as run-off from animal feed-
lots and sewage (see Chapter 7). It is also recycled within a waterbody 
through the degradation of organic matter and excretion by animals. 
Cyanobacteria – like microalgae – can take up inorganic dissolved nitro-
gen in the form of nitrate, nitrite and ammonium. While utilisation of 
atmospheric nitrogen through diazotrophy has been considered unlikely 
to fully supply the N demands of an aquatic ecosystem because this pro-
cess requires a high amount of energy (Conley et al., 2009; Moss et al., 
2013; Shatwell & Köhler, 2019), there are, however, case examples even 
of quite turbid waterbodies like Sandusky Bay (Lake Erie, USA) in which 
N fixation periodically contributes up to 85% of total N uptake of the 
phytoplankton (Salk et al., 2018 and literature therein). Aquatic systems 
loose dissolved inorganic nitrogen through denitrification: under anoxic 
conditions, microorganisms use nitrate as source for oxidation processes, 
thus reducing nitrate to atmospheric nitrogen (N2) which diffuses out of 
the water into the atmosphere.

Phases of N limitation are common in many waterbodies (reviewed by 
Sterner, 2008 and Søndergaard et al., 2017), in some pristine mountain 
lakes (Diaz et al., 2007) and particularly in eutrophic waterbodies and dur-
ing warmer months in shallow zones with high rates of denitrification at the 
sediment surface. N limitation is more frequent in some regions than in oth-
ers (Conley et al., 2009): for example, phytoplankton biomass is N-limited 
in many lakes in South America (Soto, 2002) or in New Zealand (Abell et al., 
2010) – possibly due to lower rates of input from the atmosphere and/or less 
use of nitrogen fertilisers (Schindler, 2006).

Excessive N concentrations have detrimental effects on aquatic macro-
phytes that are important competitors of phytoplankton, including cyano-
bacteria, in shallow lakes (Moss et al., 2013).

When assessing which nutrient is limiting phytoplankton biomass 
at which time of the year, it is important to realise that N limitation is 
unlikely if concentrations of dissolved inorganic N are above 30–100 μg/L 
(Reynolds, 2006; Kolzau et al., 2014).

Phosphorus (P) enters waterbodies from sewage, animal feedlots and 
soils, particularly if these were fertilised with minerals or manure (see 
Chapter 7). As it binds to soil particles more effectively than nitrate, the 
main entry route into waterbodies from land is as surface run-off, often 
combined with erosion. Carvalho et al. (2013) evaluated a data set from 
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more than 800 lakes of medium or high alkalinity in Europe and show 
that cyanobacterial biomass generally increases in relation to the con-
centrations of total phosphorus (TP). Using large data sets from several 
hundred waterbodies or the response of individual lakes to reduced TP 
concentrations, several authors (discussed below in section 4.4) have found 
that cyanobacterial biomass scarcely reaches health-relevant levels at TP 
concentrations below 10 μg/L. In the concentration range of 20–100 μg/L, 
TP strongly determines cyanobacterial biomass levels, while at the concen-
trations of TP exceeding 100 μg/L, curves level off and a further increase 
in cyanobacterial biomass is rarely observed (in many cases because light 
then becomes limiting).

P limitation is unlikely if concentrations of soluble reactive phosphorus 
(SRP) are above 3–10 μg/L of P (Reynolds, 2006; see also discussion in 
Kolzau et al., 2014).

N-, P- or light-limiting biomass carrying capacity: At any one point in 
time, one resource will determine the maximum possible amount of phyto-
plankton biomass – a concept termed “carrying capacity” (Box 4.7), while 
other resources may be available in excess. In turbid water or during winter 
in temperate climates, light is usually the limiting resource, while the avail-
able N and P would allow a higher level of biomass. The limiting resource 
may change seasonally, for example, light availability changes – at higher 
latitudes – in relation to the angular height of the sun and day length, or – as 
often the case in tropical climates – in relation to turbidity changes caused 
by pronounced seasonality of the flow regime. Seasonal patterns of light, N 
and P are likely to be quite specific for a given waterbody. Figure 4.3 shows a 
conceptual model for a shallow lake in a temperate climate: as light intensity 
increases in spring, phytoplankton begins to grow and incorporates avail-
able N and P into new biomass, depleting P to where it becomes limiting so 
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Figure 4.3 S chematic model of the seasonal course of the carrying capacity for phytoplank-
ton biomass in the temperate zone of the Northern Hemisphere. Solid lines 
indicate carrying capacities determined by light intensity (I*), total phosphorus 
(TP) and total nitrogen (TN) as the most important limiting factors (Reynolds & 
Maberly, 2002). The green area shows the resulting composite carrying capacity 
for phytoplankton biomass. Adapted from Reynolds (1997).
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that further increase of biomass is no longer possible – that is, biomass has 
reached the carrying capacity of the system. In this model case, N is avail-
able in excess during most of the year, but by mid-summer, P availability 
increases again through release from the sediment and N briefly becomes 
the limiting resource. In autumn, it is once again light that limits carrying 
capacity. At lower latitudes, the seasonal pattern for the light-limited car-
rying capacity is less pronounced – or determined by patterns of turbidity 
caused by monsoon events.

BOX 4.7: THE ECOLOGICAL CONCEPT 

OF CARRYING CAPACITY

The concept of an ecosystem carrying capacity has a long history in theoretical 

ecology. Although intuitively easily accessible, the concept involves some com-

plexities due to differences in use in different fields, including ones that are not 

related to ecology (Sayre, 2008) or ambiguities associated with mathematical 

modelling (Gabriel et al., 2005; Mallet, 2012; Chapman & Byron, 2018).

In the definition given by Odum (1953), carrying capacity is the number of 

individuals of a given species that a given habitat can support without being 

permanently damaged. In this sense, the concept is largely applied to animals 

such as mammals, bivalves or humans, and considers a long-term equilibrium 

of the population with the entire environment (Begon et al., 1996).

In plankton ecology, the concept of carrying capacity has been adapted with 

a somewhat different meaning: for one, it rather refers to the maximal popu-

lation or biomass density that can be reached at a given point in time – for 

example, during late summer in temperate lakes – than to a persisting equilib-

rium population (Reynolds, 1984). Further, carrying capacity is differentiated 

for each major resource: resource-specific carrying capacities are estimated 

to determine which resource limits biomass in a given system at a given point 

in time (Reynolds & Maberly, 2002). 

In this volume, the term “carrying capacity” is used in this sense, as maxi-

mally attainable biomass in relation to a particular resource. This means ana-

lysing dynamics of individual carrying capacities for phosphorus and nitrogen 

concentrations and light intensity to explain occurrence and dynamics of cya-

nobacterial blooms (Figure 4.3) and to support the development of manage-

ment approaches (Chapters 6 and 7).

If this model lake had extremely high concentrations of P and N, its 
c arrying capacity for biomass would remain limited by light year-round: 
phytoplankton biomass would increase to such high turbidity that cells 
shade each to the point that no further increase is possible. In shallow 
lakes, higher biomass concentrations are possible than in waterbodies with 
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deeper mixing because deep mixing entrains cells into darker  layers. Using 
the concentration of chlorophyll-a as a measure of  phytoplankton biomass, 
Figure 4.4 illustrates this with a selection of lakes: the deep lakes in the 
lower panel scarcely touch the curve for the 1:1 relationship of chloro-
phyll-a to TP, whereas some of the shallow ones summer mean values even 
occasionally exceed this curve. Moreover, at higher phosphorus concen-
trations, the curves for Lake Constance (Bodensee), Lake Tegeler See and 
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the 1:1 relationship of chlorophyll-a with TP. See online version for colour code 
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Lake Schlachtensee level off asymptotically at 20–50 μg/L TP rather than 
showing further increase. Balaton and Neusiedler See show lower means 
for  chlorophyll-a because of the strong impact that suspended sediment can 
have in the large, wind-exposed shallow lakes: in these lakes, suspended 
sediment particles shade the phytoplankton, which therefore cannot 
develop as high a biomass per unit phosphorus as it can in other, smaller 
and less wind-exposed lakes (Fastner et al., 2016). Downing et al. (2001) 
show curves for 99 lakes that level off at 100 μg/L TP and 1000 μg/L TN. 
For mostly shallow lakes in northern Germany, Dolman et al. (2012) 
assume that nutrient limitation of the carrying capacity can fairly reliably 
be excluded only at nutrient concentrations exceeding 300 μg/L of TP and 
4000 μg/L of TN.

Moreover, because of losses (e.g., grazing, phage and parasite infection), 
phytoplankton biomass rarely fully reaches the levels that carrying capac-
ity in terms of N, P and light would allow. This is manifestly observed 
particularly during a seasonal clear-water phase in many lakes when loss 
through zooplankton grazing exceeds phytoplankton growth to a degree 
that results in a population collapse and a steep increase in water trans-
parency (Lampert et al., 1986). Cyanobacteria, however, tend to be more 
resistant to grazing (see section 4.2.4) than many other phytoplankton taxa 
and thus are more likely to attain the maximum possible biomass level 
given by the carrying capacity.

N or P limitation and N:P ratios: The occurrence of cyanobacterial 
blooms has often been linked to the relative availability of N in relation 
to P, proposing cyanobacteria in general to become dominant when the 
N:P ratio drops below 29 to 1, even for non N2 fixers like Microcystis 
(discussed in Downing et al., 2001). Indeed, some published field and 
experimental data show correlations between the dominance of cyanobac-
teria and low N:P ratios (Smith, 1983; Bulgakov & Levich, 1999; Elser & 
Urabe, 1999; Harris et al., 2014). However, other studies do not confirm 
this: for example, the analysis of 99 of the most studied lakes in the tem-
perate zone by Downing et al. (2001) showed N:P ratios to be the weakest 
predictor of cyanobacterial dominance as compared to the concentration 
of N or P individually. Also, in an extensive analysis of 210 Danish lakes, 
Jensen et al. (1994) found no relationship between amounts of N-fixing 
cyanobacteria and low ratios of total nitrogen (TN) to TP, nor did their 
biomass correlate with low concentrations of inorganic N. What causes 
these contradicting findings?

Reynolds (1999a) explains them by emphasising the importance of “abso-
lute quantities” rather than ratios for driving the outcome of competition 
between species and emphasises that the N:P ratio becomes meaningless when 
concentrations of either N or P or both are too high to be limiting phyto-
plankton growth (Reynolds, 1999b). Limitation is highly unlikely if concen-
trations of TP and TN support a high capacity for phytoplankton biomass 
(see above in this section), and in many waterbodies, particularly in deep 
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ones, thresholds for the limitation of biomass by TP and TN will be lower. 
Moreover, if dissolved nutrients are present in concentrations above 5–10 
μg/L P or 100 μg/L N, this indicates that these are not limiting the phyto-
plankton’s uptake rates, that is, that phytoplankton cells are saturated (note 
that in practice for dissolved P, the limit of quantification for most analyti-
cal methods corresponds to the threshold for limitation, i.e., 10 μg/L; see 
Chapter 13). Unfortunately, N:P ratios have been used widely and erro-
neously without excluding data from such clearly nonlimiting situations. 
Whether P or N is limiting phytoplankton growth and at which time dur-
ing the season can be of relevance for water managers who need to prevent 
further increase in cyanobacterial blooms or find the locally most effective 
measures to reduce cyanobacterial abundance in a specific waterbody (see 
section 7.1 and Box 4.5). However, even where N is the limiting resource at 
times, sufficiently reducing P will turn P into the limiting resource and last-
ingly limit phytoplankton biomass.

4.3.3  Light availability

Light is exponentially attenuated with increasing depth (following the 
Lambert–Beer equation), and how steeply it diminishes over depth depends 
on the water̀ s constituents. There may be complete darkness already at a 
few metres depth (Kirk, 1994). The zone in which photosynthesis can occur 
is termed the “euphotic zone” (Zeu). By definition, the euphotic zone extends 
from the surface to the depth at which the light intensity amounts to 1% 
of that at the surface. It is frequently estimated by measuring transparency 
with a Secchi disc (see Chapter 13) and multiplying the Secchi depth read-
ing by a factor of 2.3–2.5.

Phytoplankton species – including cyanobacteria – differ in the depen-
dency of their growth rate on light. Light availability therefore is an impor-
tant factor determining the outcome of competition between species and 
thus whether the phytoplankton biomass consists chiefly of certain microal-
gae or certain species of cyanobacteria. At low light intensity, some cyano-
bacterial species (e.g., Planktothrix agardhii and P. rubescens) can maintain 
a higher growth rates than other phytoplankton organisms. This is why 
P. rubescens can thrive in the metalimnion of thermally stratified lakes and 
reservoirs. Also, in waters with high turbidity, P. agardhii can outcompete 
other species, reaching very high biomass, which in turn decreases trans-
parency, thus improving growth conditions for itself in the sense of a posi-
tive feedback loop (Mantzouki et al., 2016).

Other cyanobacterial taxa need higher light intensities than Planktothrix 
in order to develop substantial populations, for example, many taxa of 
the order Nostocales. For R. raciborskii in lakes of northern Germany, 
Wiedner et al. (2007) demonstrated that light intensity is the most impor-
tant factor determining population growth. Dolichospermum species are  
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also known to occur more frequently in fairly clear water, for example, early 
in the growing season before turbidity increases due to increased phyto-
plankton density, or in less eutrophic lakes.

Using field data from Lake Victoria, Loiselle et al. (2007) show how the 
availability of solar irradiation, strongly influenced by mixing depth, deter-
mines the carrying capacity in waterbodies with excessive nutrient concen-
trations and how maximum phytoplankton biomass levels can be estimated 
from light availability.

4.3.4  Temperature, thermal stratification 
and mixing

Temperature is a further strong determinant of species composition, act-
ing in two ways: (i) temperature in relation to the depth of a waterbody 
determines whether it develops thermal stratification or whether the water 
is mixed down to the sediment and (ii) all species grow faster at higher tem-
peratures, up to a limit, but species differ in the temperature dependency of 
their growth rate, and for some cyanobacteria, the increase in growth rates 
as a function of temperature is steeper than for most of their eukaryotic 
competitors (Visser et al., 2016b).

In continental-scale surveys, cyanobacteria have been shown to dominate 
at locations with higher temperatures (Kosten et al., 2009; Kosten et al., 
2012), and links between blooms and heatwaves (Jöhnk et al., 2008; Huber 
et al., 2012) have been established, albeit not always in a straightforward 
manner and partly only based on theoretical considerations (see below). 
Field data on species occurrence in relation to temperature scarcely allow 
a distinction between the indirect impact of temperature (i.e., determining 
the extent of mixing vs. stratification) and its direct effect on growth rates, 
and temperature alone is not a good predictor of blooms.

Often the indirect impacts of temperature are more important than the 
direct effects (Carey et al., 2012). In temperate climates, many waterbod-
ies develop thermal stratification in spring, as energy input into the surface 
layer increases with increasing solar insolation and temperature (Box 4.2). 
Together with irradiation, wind and convection, thermal energy input 
determines whether waterbodies are well mixed or develop thermal strati-
fication. As discussed above, thermal stratification is of paramount impor-
tance for growth and proliferation of all phytoplankton – cyanobacteria as 
well as microalgae. The strength of stratification, for example, of a deep 
alpine lake like Lake Zurich (Switzerland) has increased by more than 20% 
over the last few decades (Livingstone, 2003), compared to a less than 1 °C 
warming of the surface water of the lake over the same period, thus illus-
trating the relevance of indirect versus direct effects of climate warming. 
Wagner & Adrian (2009) propose more stable stratification to promote 
cyanobacterial blooms in eutrophic waterbodies.
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Thermal stratification determines

• to which depth an average phytoplankton cell is entrained in the mixed 
upper layer and thus how much light it is exposed to while being moved 
across the underwater light gradient;

• the temperature and nutrient gradients that cells and colonies experi-
ence while entrained in mixing;

• whether cyanobacterial surface blooms and scums can accumulate at 
the surface of a waterbody or mixing energy is sufficient to maintain 
cyanobacteria in suspension;

• whether phytoplankton cells are likely to sink to the bottom through 
sedimentation (thus getting – at least temporarily – lost from the 
growing population when light does not penetrate to the sediment), or 
whether they remain entrained in the mixed layer;

• whether nutrients liberated from decaying biomass are redistributed 
in the water or whether they accumulate near the sediment or in the 
hypolimnion.

Huisman et al. (2004) modelled competition between buoyant cyanobac-
teria and other nonbuoyant phytoplankton as a function of access to light 
and turbulent mixing, and showed that under weak turbulence buoyant 
cyanobacteria on average may be positioned closer to the surface than their 
competitors. Hence, access to light, in particular for bloom-forming cya-
nobacteria, must always be considered in relation to the mixing processes 
in the lake. Under sustained, full mixing, Microcystis blooms are unlikely 
to form, an observation strengthened by successful control of these species 
through artificial lake mixing (Visser et al., 2016a).

Many cyanobacteria have higher temperature optima than many micro-
algae, in particular Microcystis spp. (Reynolds, 1997); thus, despite their 
relatively slow growth at lower temperatures, Microcystis may catch up 
with competitors in warmer water. Furthermore, elevated temperatures at 
the sediment surface may promote the recruitment of cyanobacteria from 
the sediments, as proposed for Microcystis (Shapiro, 1997) and R. racibor-
skii (Padisák, 1997; Wiedner et al., 2007). The filamentous cyanobacte-
rium R. raciborskii thrives in waters with high temperature and moderately 
high nutrient levels, particularly in phases of elevated transparency, and 
was originally considered to be a typical tropical and subtropical species 
(Dyble et al., 2002). Although some discussions have assigned its spread to 
temperate climate zones to global warming, an alternative explanation is 
that the genotypes found on different continents (see above) may also differ 
in their growth rates in relation to temperature (Gugger et al., 2005b). True 
extremophiles can be found in hot spring microbial mat communities.

Elevated temperature also speeds up the degradation of organic matter, 
releasing nutrients for growth.



248 Toxic Cyanobacteria in Water

Most of the studies on cyanobacterial occurrence in relation to temperature 
focus primarily on population growth while temperature-dependent losses 
are studied to a lesser extent. Yet, losses may also correlate positively with 
temperature and outbalance increased growth rates at higher tempera-
tures. For example, Rohrlack (2018) found that Planktothrix can prolif-
erate in a low temperature niche that minimises losses through microbial 
antagonists to a degree that allows bloom formation despite relatively low 
growth rates.

4.3.5  Hydrodynamics and waterbody morphometry

Waterbody size, depth, shape, wind exposure and water exchange rate are 
critical conditions determining how water stratifies (layering of water due 
to density differences caused by heating of surface water or salinity) or 
moves and how it entrains plankton. In large, shallow lakes, turbulence is 
often pronounced, particularly if they are exposed to wind, and even highly 
buoyant cyanobacteria will have little chance for vertical positioning and 
are mixed throughout the water column. These conditions favour species 
like P. agardhii which do not show pronounced buoyancy regulation but 
are good competitors for light. Deep lakes generally are thermally strati-
fied with turbulence restricted to the epilimnion. If these lakes are small 
and wind-sheltered, turbulence may be minimal (with mixing only slight, 
due to convection as the lake cools nocturnally). However, large stratified 
lakes and reservoirs may develop internal seiches – with the metalimnion 
oscillating at regular intervals in consequence of wind moving the surface 
layer towards one end of the waterbody (Cuypers et al., 2011). This may 
move species that form distinct layers at the metalimnion, particularly 
Planktothrix rubescens, up and down in the regular rhythm of the seiches, 
by up to several metres.

The shape of a waterbody (i.e., its morphometry) is an important factor 
to consider, in particular for planning sites for drinking-water offtake or 
bathing beaches, and respective monitoring (see Chapter 11). Lake mor-
phometry can be fairly regular, and thus, water quality (including plankton 
composition) may be fairly homogeneous. Other waterbodies, particularly 
reservoirs, have highly irregular, fractal shorelines with incised bays where 
tributaries enter or with more or less separated basins in which water qual-
ity varies distinctly between individual sites. In such situations, cyanobacte-
rial blooms can develop or accumulate in one section, not in others.

A further important hydrological characteristic of a waterbody is the 
water residence time, that is, the theoretical average time a volume of 
water remains in the waterbody. It is calculated from the in- and outflow 
discharge, and the lake volume. Water residence times may vary between 
seasons and years depending on precipitation and other events in the 
catchment – and for reservoirs also on the abstraction regime. Low water 
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residence times – that is, in the range of days – may dilute cyanobacteria 
faster than they can multiply. Also, depending on the variability of the qual-
ity of inflowing water, low residence times may alter other growth condi-
tions like nutrient concentrations, with short timescales (Romo et al., 2013). 
Reynolds et al. (2012) show that diluting a lake by 10% per day would cause 
an exponential loss rate of −0.16 per day, and most phytoplankton species 
can scarcely reach faster net growth rates.

Both morphological and hydrological conditions also influence nutrient 
concentrations (Carpenter et al., 1999). Long water residence times – that 
is, in the range of years – may be an obstacle for reducing lake P concentra-
tions because even at substantial external load reduction, P can be recycled 
within the waterbody and P concentrations in the sediment will decrease 
only slowly. For example, Jeppesen et al. (1991) showed that among 27 
shallow lakes under restoration in Denmark, cyanobacterial dominance 
disappeared substantially faster in those with a water retention time of less 
than half a year.

Stable thermal stratification in deeper lakes can prevent most of the phos-
phorus released from the sediment from reaching the euphotic zone dur-
ing the stratified period, whereas in shallow, turbulent lakes, sediment can 
be resuspended and mixed throughout the water column on windy days, 
severely reducing water transparency and reducing phytoplankton access 
to light. For nitrogen, in contrast, mixing down to the sediment particu-
larly in shallow lakes and reservoirs can cause it to become limiting for 
phytoplankton biomass because higher temperatures at the water–sediment 
interface enhance the decay of organic substances and in consequence also 
denitrification rates and hence loss of nitrogen (N2) to the atmosphere (see 
section 4.3.2).

4.3.6  pH: acidity and alkalinity

Cyanobacterial blooms are often associated with alkaline conditions. 
However, this is usually a consequence rather than a cause of these blooms: 
the uptake of hydrogen carbonate through intense photosynthesis shifts the 
equilibrium between carbonate and hydrogen carbonate to render the water 
alkaline (Wetzel, 2001; Lampert & Sommer, 2007). While this can be due 
to a high biomass of any phytoplankton with a high rate of photosynthesis, 
it is typically cyanobacterial blooms that reach particularly high biomass 
concentrations and thus are the cause of high pH. Vice versa, cyanobacte-
rial blooms may be expected in waterbodies with pH ranges above 7. Under 
acidic conditions (pH <6), cyanobacteria are rarely found in sufficiently 
high cell density to cause detectable levels of cyanotoxins (Chorus & Niesel, 
2011). However, given the array of carbon uptake systems available to cya-
nobacteria, they can be found to dominate at both low and high dissolved 
CO2 concentrations (Huisman et al., 2018).
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4.4  CAN CYANOBACTERIAL BLOOMS 

BE PREDICTED BY MODELS?

Two different types of approaches may serve to estimate the likelihood of 
high cyanobacterial biomass from data on conditions in the waterbody: 
functional approaches that strive to model the true interactions within the 
ecosystem and statistical approaches that investigate correlations between 
cyanobacterial biomass and waterbody conditions. While the advantage of 
functional modelling is that it depicts causalities, in practice it is limited by 
the complexity of ecosystem interactions which are challenging to depict in 
any model. In contrast, while some of the statistical approaches tend to be 
comparatively simple and straightforward, they only depict correlations, 
not causalities. Taking correlation for causality is, however, widespread, 
and when using regressions, it is important to keep in mind that if two fac-
tors correlate, it remains unknown whether this is because one is a cause 
for the other or whether there is a third, perhaps unknown factor causing 
both factors to increase or decrease in parallel. Correlations are indeed use-
ful to derive hypotheses on the factors determining cyanobacterial biomass; 
however, before basing management decisions on their results, it is impor-
tant to investigate and understand the mechanism(s) likely to be causing the 
correlation. Furthermore, statistical models capture the outcome of all pro-
cesses determining species dominance and biomass without disentangling 
their relative importance. Thus, they can be useful for the waterbodies for 
which they were derived or for those which are similar to the ones used in 
the model (e.g., within the same ecoregion and similar hydrophysical char-
acteristics), but their predictions are uncertain when applying them to other 
types of waterbodies.

Functional models strive to overcome this limitation and to be more gen-
erally valid by capturing key processes and relationships, including, for 
example, the dependency of phytoplankton growth rates on environmen-
tal conditions, loss processes and competition between some keystone spe-
cies or phytoplankton groups. A range of such models has been developed 
that include conditions favouring cyanobacteria. Mooij et al. (2010) give an 
overview of models developed for the real-time prediction of cyanobacte-
rial scums and blooms from current or recent waterbody and meteorologi-
cal data, for example, CAEDYM, BLOOM and for shallow, nonstratifying 
lakes PCLake, PROTECH and SALMO. However, these may fail if pro-
cesses other than those depicted in the model are important. Predicting 
cyanobacterial dominance and biomass using generic functional models is 
not only challenging because of the complexity of waterbody conditions 
determining the outcome of competition between species, but also because 
excessively complex models do not necessarily perform better. Reynolds & 
Maberly (2002) propose a simple model to estimate the maximum possible 
biomass yield (carrying capacity) in terms of concentrations of chlorophyll-
a from the concentrations of nitrogen and phosphorus as well as the photon 
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flux density. While this neither includes loss processes nor a differentiation 
between cyanobacteria and other phytoplankton, it is useful as approach to 
estimating the maximum conceivable biomass to be expected (and if this is 
high, rendering the water turbid, a high share of cyanobacteria is likely; see 
section 4.3). Carvalho et al. (2013) emphasise the value of using nutrient 
data – particularly those for total phosphorus (TP) – to estimate the likeli-
hood of cyanobacterial blooms because these are much more widely avail-
able than phytoplankton data.

In particular, Phillips et al. (2008) differentiated between lake types and 
geographic regions within Europe. While results show no influence of region, 
the most pronounced result is that the lowest biomass (in terms of chlorophyll-a) 
per unit nutrient is found in deep lakes and the highest biomass in shallow 
lakes (which were also those with high alkalinity). This is to be expected 
because, as discussed above, deeper mixing causes more pronounced limita-
tion by light, particularly when a high density of phytoplankton cells causes 
high turbidity. Also reflecting increasing light limitation at high phytoplank-
ton density, the correlation of chlorophyll-a with TP levelled off at concen-
trations of 100 μg/L TP and 1000 μg/L TN with yet higher levels of both 
chlorophyll-a and nutrient concentrations, found only in very shallow water-
bodies. For using such a regression model to estimate target levels for nutri-
ents, Phillips et al. (2008) emphasise that “managers should use an equation 
that is derived using data from a lake type that matches as closely as possible 
the lake they are concerned with”.

For tropical climates, Huszar et al. (2006) evaluated data from 192 
tropical lakes and found the relationship between chlorophyll-a and TP 
concentrations to correlate less tightly than for the data from temperate 
climates, and chlorophyll-a concentrations in relation to TP to be slightly 

Among the statistical approaches, a number of studies addressed the rela-
tionship between phytoplankton biomass (often quantified as chlorophyll-a) 
and the concentration of TP, sometimes including total nitrogen (TN). 
Most of these studies were conducted in temperate climates, and one of the 
first to be widely used in management is Vollenweider (1976). Since then, 
a number of studies have been published giving regressions from a vary-
ing number of waterbodies relating chlorophyll-a to both P and N (see an 
overview in Yuan & Jones (2020). Phillips et al. (2008) give an overview of 
15 earlier studies and show the slopes of a total of 15 regressions to vary 
between 0.8 and 1.5 for log TP (16 lakes) and 1.0 to 1.4 for log TN (7 
lakes); in consequence, the concentration of chlorophyll-a that these regres-
sions predict for 35 µg/L of TP (at 875 µg/L TN) varies by almost a factor 
of 4, that is, between 5.4 and 19.5 µg/L. Moreover, these authors give new 
regression equations that they developed from evaluating a data set from 
>1000 European lakes. These show less scatter of the data for chlorophyll-a 
versus TP as compared to chlorophyll-a versus TN, reflecting the limita-
tion of biomass chiefly by TP in the larger fraction of the lakes included in 
the regressions.
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Figure 4.5 ( a): annual logarithmic means of chlorophyll versus total phosphorus (TP) 
from 192 tropical and subtropical lakes from Africa, Asia and America with defini-
tions for “low P” being TN:TP by weight >17 and for “low N” <17. (b): comparison 
of this relationship with regressions published for temperate lakes. (Reprinted with 
permission from Springer Nature, in: Nitrogen Cycling in the Americas: Natural and 
Anthropogenic Influences and Controls. Nutrient-chlorophyll relationships in tropical-
subtropical lakes: do temperate models fit? Huszar V, Caraco N, Roland F, Cole J. 
Copyright 2006 Springer Nature. www.springernature.com/gp.)

lower (Figure 4.5). As explanation for these phenomena, Jeppesen et al. 
(2005) propose a stronger impact of further factors such as light limita-
tion in waterbodies with elevated turbidity and more complex food web 
interactions. In particular, loss processes may lead to phytoplankton 

http://www.springernature.com/gp
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biomass considerably lower than that expected from nutrient concentra-
tions. Mamun & An (2017) show the influence of seasonal Asian monsoon 
on regressions of chlorophyll-a and TP with data from 182 agricultural 
reservoirs and demonstrate a much stronger correlation of chlorophyll-a to 
TP as compared to TN for these waterbodies.

For practical purposes of predicting biomass levels, it is important to 
realise that the data points for the individual waterbodies behind these 
regressions scatter considerably: in the statistical evaluation of Huszar 
et al. (2006), log(TP) explains only 42% of the variance of log chloro-
phyll (and a multiple regression approach, including TN, resulted in only 
moderate improvement to 47% explanatory power). In consequence of 
this scatter, in any given waterbody observed annual mean chlorophyll 
concentrations can be several-fold higher or lower than those predicted 
from total phosphorus (TP)concentrations and the regressions shown in 
Figure 4.5.

However, this uncertainty in the range of a factor of 3–5 relates to data 
spanning three orders of magnitude, and thus, the published regressions 
remain useful for two purposes: (i) for first estimates of the TP target 
concentrations that are likely to control biomass and (ii) for investigating 
causes for particularly high or low mean chlorophyll concentrations in rela-
tion to those of TP.

Predicting specifically cyanobacterial biomass requires an understanding 
of the conditions in the waterbody which favour their dominance. Trophic 
state and the concentrations of TP are key: where nutrient concentrations 
enable high levels of total phytoplankton biomass, this has a high likelihood 
to consist chiefly of cyanobacteria – in temperate climates particularly dur-
ing summer and early autumn: Downing et al. (2001) evaluated data from 
99 lakes of the temperate zone and found that the risk of cyanobacterial 
dominance was related to the TP concentration as follows: 0–30 μg/L TP: 
0–10% risk of cyanobacterial dominance; 30–70 μg/L TP: ~40% risk; 100 
μg/L TP: ~80% risk. The authors further highlight that turbidity – caused 
by high phytoplankton cell density – increases the risk of cyanobacterial 
dominance (at concentrations of chlorophyll-a above 10 μg/L, transparency 
tends to decline to less than 1 m).

Data from shallow lakes in north-eastern Germany dominated by filamen-
tous cyanobacteria confirm the pattern described by Downing et al. (2001): 
total phytoplankton biomass proved to be a good predictor of cyanobacte-
rial biomass, particularly at high total phytoplankton biomass (Figure 4.6). 
Once biovolumes were higher than 13 mm³/L, cyanobacteria almost always 
constituted at least half of this biomass, often more. The causal explana-
tion for this is that these lakes are dominated by filamentous cyanobacteria, 
chiefly P. agardhii, which can outcompete other phytoplankton particularly 
under the conditions of low light availability (see section 4.2.2). A similar 
result is reported by Ptacnik et al. (2008) for lakes in northern Europe: at 
chlorophyll-a concentrations above 10 μg/L, cyanobacteria often dominated 
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Figure 4.6  Cyanobacterial biovolume in relation to total phytoplankton biovolume 
for four lakes (Langer See [Lan], Melangsee [Mel], Petersdorfer See [Pet], 
Scharmützelsee [Sch]) in the same catchment. Upper panel: absolute values 
of biovolumes; lower panel: relative fraction of cyanobacteria in total biovol-
ume. (Data kindly provided by Brigitte Nixdorf, Brandenburgische Technische 
Universität Cottbus.)

in samples taken in late summer, and as discussed above, Carvalho et al. 
(2013) evaluated a data set from more than 800 lakes of medium or high 
alkalinity in Europe and show a sharp increase in cyanobacterial biomass 
relative to TP beginning at 10 μg/L, increasing sharply in the range of 20–100 
μg/L and levelling off at 100 μg/L.

A further confirmation of the significantly enhanced likelihood of cyano-
bacteria to be the organisms causing high phytoplankton biomass is given 
by Chorus et al. (2011) who evaluated a large database with almost 2000 
samples from 210 lakes covering six European countries and three ecore-
gions (Central Plains, Central Highlands and Sicily) for the likelihood of 
the six most common cyanobacterial taxa to occur, depending on envi-
ronmental conditions, that is, nutrient concentrations, seasonality, mixing 
and waterbody depth, turbidity, pH and temperature (Table 4.2). For five 
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Figure 4.7  Frequency of occurrence of the six most common cyanobacterial taxa in 1928 
samples from 210 waterbodies in two biomass categories (biovolumes up to 
0.5 mm³/L and >0.5 mm³/L) and in five categories of total phosphorus (TP). 
Number of samples per category from lowest to highest TP concentrations: 
501, 623, 302, 246 and 256. (Modified from Chorus & Niesel, 2011.)

categories of TP concentrations, the frequency of individual taxa (relative to 
all samples in the database) in samples is shown in Figure 4.7. While these 
taxa were found in some of the samples even at low TP concentrations, that 
is, <10 μg/L, with the exception of Aphanizomenon, this was only in less 
than 10% of the samples, and some taxa (Microcystis spp. and Limnothrix 
spp.) proved more likely to occur at higher TP concentrations. Importantly, 
however, cyanobacterial biovolumes above 0.5 mm³/L occurred almost only 
at TP concentrations above 25–50 μg/L TP and almost exclusively in water-
bodies classified as “eutrophic” or “hypertrophic” by the data providers. 
These cyanobacteria also occurred significantly more frequently at >16 °C 
in late summer, probably due to the time it takes for them to build up larger 
populations as the season progresses.

Recknagel et al. (2017) demonstrate that lake-specific models developed 
from historic data and cyanobacterial cell counts can – using only in situ 
physical–chemical sensor monitoring data – predict blooms quite accu-
rately. Their models (based on hybrid evolutionary algorithms) for Lake 
Wivenhoe in Australia and the Vaal Reservoir in South Africa forecast 
blooms exceeding 1 μg/L total MCs 10–30 days ahead of their occurrence. 
This demonstrates the value of multiseasonal time series to refine more gen-
eral models for a particular waterbody, as these can improve forecasts for 
parameters of high relevance for water management.
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Table 4.2  Occurrence of cyanobacteria in relation to conditions determining their 
growth in 201 European waterbodies

TP concentration 
[μg/L] with Further conditions 

Cyanobacterial occurrence of the Frequency ratioa at coinciding with elevated 
taxon taxon significantly elevated biovolumeb frequency of occurrence

Max. ratio Min. ratio 
More Less at TP at TP 

frequent frequent >90 μg/L <10 g/L

Microcystis spp. > 50 < 25 3.8 0.2 Mixed, late summer, 
>16 °C, 

Secchi <3 m, pH >7

Aphanizomenon > 90 < 25 4.6 0 Mixed, late summer, 
spp. >16 °C, 

Secchi <2 m, pH >6

P. agardhii > 90 < 25 4.8 0 Late summer, >16 °C, 
Secchi <2 m, pH >6–7

Limnothrix spp. > 50 < 25 4.0 0 Mixed, spring, 
Secchi >3 m

Dolichospermum > 50 < 25 4.2 0.1 Mixed, late summer, 
spp. >16 °C, 

Secchi <3 m, pH >7–8

Source: Adapted from Chorus & Niesel (2011).

a “Frequency ratio” is the number of samples with the taxon to the total number of samples in the 
database (see Figure 4.7 for details); note that these data apply only to this specific database.

b “Elevated biovolume” is defined in relation to cell size of the taxon and ranges from >0.1 to >1 
mm³/L biovolume.

4.4.1  Models to predict surface blooms and scums

As discussed in section 4.1.1, the mechanisms of cell accumulation differ 
between the cyanobacterial genera that form surface blooms (particularly 
Microcystis, Anabaena, Aphanizomenon) and those that form dense popu-
lations in the metalimnion, particularly Planktothrix rubescens, but some-
times also Aphanizomenon, Dolichospermum and Raphidiopsis. While 
the horizontal drift of scums can be roughly inferred from prevalent wind 
directions (Hutchinson & Webster, 1994; Welker et al., 2003), predicting 
when cells will rise to the surface is more challenging. In many settings with 
regularly recurring seasonal populations of surface bloom-forming cyano-
bacterial species, experience provides good indication of the time of year 
and type of weather rendering scum formation to be likely.

Beyond experience valid for individual waterbodies, models to predict 
scum formation from waterbody characteristics and weather forecasts can 
be useful. These are being developed as vertical migration velocities and 
buoyancy regulation mechanisms are increasingly becoming understood 
for frequently occurring cyanobacterial species and genera. For Microcystis 
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colonies, models describe the vertical migration of cyanobacteria (e.g., 
Kromkamp & Walsby, 1990; Visser et al., 1997; Wallace & Hamilton, 2000). 
The fuzzy-logic-based early warning model developed by Ibelings et al. 
(2003; see Box 4.8) includes weather forecast (wind speed and direction), 
cyanobacterial biomass, buoyancy state of the cells and stratification sta-
bility to predict the timing and location of cyanobacterial scums several 
days in advance, giving water managers time to act. A crucial problem with 
all predictions of scum formation is the trade-off between false negatives 
(missing blooms in the prediction) and false positives (predicting blooms 
that then do not occur). Whereas the first may lead to public health risks, 
the second may lead to economic damage for lake-based operations such as 
restaurants, campsites and beaches when lakes are closed for recreational 
purposes. For P. rubescens, Walsby (2005) developed a conceptual model 
to explain the occurrence of surface blooms near shallow, leeward shores 
arising from populations floating up in the metalimnion.

BOX 4.8: EARLY WARNING FOR THE 

FORMATION OF MICROCYSTIS SCUMS

In the Netherlands, water managers use a scheme in which scums are clas-

sified as 1 (light scums/surface blooms) to 4 (severe scums) on the basis of 

an information sheet showing pictures and descriptions of these categories. 

For a number of Dutch lakes, observers took notes on the occurrence of 

scums on a daily basis and used these data to validate an early warning model 

(Ibelings et al., 2003) that predicts scum formation (time and location) from 

several factors, including the mid-term weather forecast. 

This model estimates cyanobacterial biomass increase using a traditional 

water quality model, combining this with a fuzzy-logic model to estimate the 

buoyancy of the cells and to relate this to waterbody mixing or stability of strat-

ification. Fuzzy-logic model allowed qualitative data (expert knowledge) about 

scum formation to be made available in a quantitative way. The model was first 

developed for the open water of the large Lake IJsselmeer and then expanded 

to be applicable to smaller lakes, taking also sheltered areas (harbours, etc.) 

into account, that is, places where scums are more persistent than in the open 

water of lakes. It provides lake managers with a weekly bulletin in which the risk 

of scum formation for the coming week is indicated. The model is continuously 

being updated and improved (work by Deltares; https://www.deltares.nl).

All models are intended to (i) identify physical conditions of the waterbody 
that allow for surface bloom formation in a specific lake and (ii) predict the 
occurrence of surface blooms and scums. Generally, they work satisfactorily 

https://www.deltares.nl
https://www.deltares.nl
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for the waterbodies for which they were developed. For the application of 
scum-forecasting models to a specific waterbody, it is important to consult 
an expert for limnological modelling.

4.5  WILL CLIMATE CHANGE AFFECT 

CYANOBACTERIAL BLOOMS?

Evidence for an increase in cyanobacterial blooms in the wake of climate 
change is increasingly published (e.g., Mooij et al., 2005; Paerl & Huisman, 
2009), and there is widespread concern that cyanobacterial blooms will 
increase in warming waterbodies where these are sufficiently eutrophic to 
sustain blooms. However, the impact of climate change on growth condi-
tions for cyanobacteria is not straightforward (De Senerpont Domis et al., 
2013), and it is important not to confuse the effects of local – and possibly 
unusual – weather on plankton dynamics in a given lake with climate effects.

Climate change affects water temperatures directly, but also indirectly 
waterbodies through changes in the strength and duration of thermal strati-
fication (see section 4.3.4), including the impact of (possibly more frequent) 
storm events, and warming can lead to earlier appearance of zooplankton, 
changing grazing pressure on phytoplankton (Winder & Sommer, 2012). 
Elevated atmospheric CO2 concentrations may stimulate access to CO2 for 
surface blooms, which may be limited by inorganic carbon (see Huisman 
et al., 2018) – but elevated water temperatures simultaneously reduce the 
solubility of CO2 in water and thus lead to lower concentrations. Climate 
change may also impact on the patterns of rainfall and snowmelt and thus 
on inflow, turbidity and nutrient loading, and it may increase water resi-
dence times where periods of drought increase – or reduce water residence 
time where precipitation increases. Thus, the probable effects of a climate 
change include mechanisms that may be favourable for cyanobacterial 
growth as well as mechanisms which are not, and the balance between 
them will vary strongly between waterbodies and have different effects on 
different bloom-forming species.

For Microcystis, a direct mechanism proposed to cause an increase in 
its abundance is the more pronounced dependency of growth rates on 
elevated temperature as compared to most of their competitors among 
other phytoplankton, which would increase the chances of Microcystis 
to dominate in warmer water. Additionally, increased stability of thermal 
stratification resulting from enhanced energy input into the surface layer 
of waterbodies could provide a competitive advantage for species with a 
mode of active vertical positioning, like buoyant cyanobacteria. In con-
trast, however, increases in cloud cover and wind speed (as, e.g., predicted 
for North West Europe) or more frequent storms would weaken thermal 
stratification of waterbodies and thus reduce this competitive advantage. 
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Analysis of surface blooms in IJsselmeer showed that scums are absent at 
wind speeds greater than 2–3 m/s (Ibelings et al., 2003), and in this lake, 
they may therefore become less frequent in the predicted slightly more 
windy future (Cheng et al., 2002).

P. agardhii may also be affected by a warmer climate, especially in those 
hypertrophic lakes where this species forms more or less permanent (year-
round) blooms. In Lake Veluwe, the Netherlands, a 15-year bloom of 
Planktothrix was broken by a combination of reduced P loading and flush-
ing, but a series of cold winters with extended ice-cover was also impor-
tant in reducing the overwintering biomass of this species and giving other 
species, particularly of planktonic algae, a chance to dominate in spring 
(Reeders et al., 1998). Jeppesen et al. (2003) suggest that climate warming 
may increase the probability of lakes to become locked in a turbid state. 
Heatwave summers have been shown to reduce, rather than expand, the 
proliferation of Planktothrix rubescens in deep lakes. Here, milder win-
ters rather than warm summers promoted cyanobacterial development, an 
example of ecological memory carrying over environmental effects from 
one season to the next (Anneville et al., 2015).

The spreading of R. raciborskii – previously regarded as subtropical – into 
temperate regions has been tentatively linked to climate change. Wiedner et al. 
(2007) showed that this is also not attributable to overall higher summer 
temperatures but rather to the timing of higher temperatures: resting stages 
(akinetes) of R. raciborskii germinate at 15 °C, and in northern Germany, lake 
sediments reach this temperature earlier by 2 weeks, when less spring phyto-
plankton has developed and water is still clearer. The earlier R. raciborskii 
hatches from its resting stages, the more light is available for its rapid growth 
and the establishment of a large population.

A further aspect is that higher temperatures and higher stratification sta-
bility can trigger an increased release of phosphorus from sediments, thus 
fertilising cyanobacterial blooms. Vice versa, however, increased stratifica-
tion stability can reduce the transport of released phosphorus into the eupho-
tic zone, thus reducing its availability to cyanobacteria possibly resulting in 
a “climate warming-induced oligotrophication” (Salmaso et al., 2018). The 
specific conditions in a waterbody determine which of these two contrary 
processes determines phosphorus concentrations in the euphotic zone.

The concept of “carrying capacity” (section 4.3.5 and Figure 4.3) is helpful 
for assessing the impact of climate change versus the impact of trophic state: 
where there is not enough phosphorus and nitrogen to support substantial lev-
els of phytoplankton biomass, warming is not likely to increase cyanobacterial 
proliferation. A number of modelling studies (reviewed by Elliott (2012)) 
show agreement that while cyanobacterial biomass is likely to increase in 
a warmer climate, the magnitude of this response will strongly depend 
on nutrient concentrations: where these are limiting, the annual amount 
of biomass is not likely to increase although the timing and proportional 
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dominance of cyanobacteria may change. On the basis of data analysed 
from more than 1000 lakes, Rigosi et al. (2014) emphasise that the impacts 
of nutrients and climate are not synergistic; rather, “nutrients predomi-
nantly controlled cyanobacterial biovolume” and, although very eutrophic 
lakes are more sensitive to increased temperature, “ultimately nutrients are 
the more important predictor of cyanobacterial biovolume”. Others, how-
ever, are convinced that a synergy between eutrophication and increased 
temperatures will produce even larger blooms in future (Moss et al., 2011; 
Havens & Jeppesen, 2018).

A further concern in climate change scenarios for some situations is the 
possible reduction in available water in lakes and reservoirs due to reduced 
rainfall. Water scarcity combined with increasing cyanobacterial blooms 
would create challenges for waterbody management in general and spe-
cifically for providing safe drinking-water. Yet, also for this aspect, direct 
human impact, for example, through large-scale depletion of groundwater 
for irrigation, could outweigh the possible long-term impact of changes in 
precipitation patterns in the course of climate change.

In conclusion, it is highly probable that a significant change in climatic 
conditions will affect the ecology of waterbodies. In some waterbodies, this 
could cause an increase in the frequency and the scale of cyanobacterial 
blooms, while not in others. Preparing today for possible effects of climate 
change on cyanobacterial blooms in the future should not divert the focus 
from measures to reduce cyanobacterial blooms that can be taken today: 
reducing eutrophication to levels unlikely to support blooms is an effective 
component of preparing for climate change.

4.6  WHICH FACTORS DETERMINE 

CYANOTOXIN CONCENTRATIONS?

In natural waters, complete absence of cyanobacteria is unlikely given the 
capability of cyanobacteria to thrive in the most extreme environments, and 
therefore, cyanotoxins are likely found in most waterbodies – yet often at 
very low concentrations and detectable only with highly sensitive analytical 
methods. Therefore, the qualitative detection of cyanobacterial toxins, for 
example, in samples concentrated with a plankton net, is only of limited 
relevance for public health management.

For health risk assessment, not mere occurrence but rather the con-
centration of cyanotoxins in waterbodies is important, and the con-
centration is tightly linked to the biomass of potentially toxigenic 
taxa. The most important ones include Microcystis, Planktothrix, 
Dolichospermum, Raphidiopsis and Aphanizomenon in the plankton 
of lakes and  reservoirs, benthic taxa like Phormidium or Microcoleus in 
streams, ( tychoplanktonic) Tychonema in lakes, and Lyngbya or Nodularia 
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in brackish and coastal  waters. Other taxa that have been reported to 
form blooms, such as Limnothrix or Gomphosphaeria, have not been 
unambiguously reported to produce known toxins, while, on the other 
hand, some toxigenic taxa such as Hapalosiphon or Umezakia have not 
been reported to form blooms.

As discussed in Chapters 2 and 3, the current understanding of cyano-
toxin occurrence is incomplete, as the identification of further taxa produc-
ing specific cyanotoxins (and potentially yet unknown ones) is ongoing, and 
for most types of cyanotoxins, new producing taxa may be found in future. 
In particular, while it is well recognised that cyanobacterial populations 
consist of a mixture of clones, some of which produce toxins and others 
which do not, differentiation between toxic and nontoxic clones cannot 
be done reliably by microscopic examination. It became possible only with 
the advent of molecular methods (Kurmayer et al., 2004; section 13.4) or 
highly sensitive analytical methods that allow the detection of toxins in sin-
gle colonies or filaments (Akçaalan et al., 2006; Welker & Erhard, 2007). 
Such methodology can characterise the clonal diversity of cyanobacterial 
communities, showing that a distinction between toxic and nontoxic clones 
is only a very rough classification (Janse et al., 2004). Rather, a multitude of 
genetically and metabolically distinct clones can be distinguished, with the 
production of cyanotoxins being one characteristic among others (Fastner 
et al., 2001a; Janse et al., 2003; Welker et al., 2004a).

Geographic variation in the genetic diversity of toxin-producing cya-
nobacteria is just beginning to be explored, and new insights into bio-
geographic patterns of toxin production are likely. Further surveys at a 
global scale will be particularly relevant for regions that have so far been 
poorly investigated.

4.6.1  Composition of blooms and cyanotoxin types

MCs appear to be the most widespread type of cyanotoxins occurring in 
health-relevant concentrations (Svirčev et al., 2019), and they are very likely 
to occur when species of Microcystis or Planktothrix are present. Field 
populations of these genera usually contain both clones with and without 
the genes for MC production (see below), yet it is very rare to find field 
populations of Microcystis without any MC-producing clones. In Europe, 
field populations of Planktothrix agardhii as well as of P. rubescens have 
never been observed without MC production (Kurmayer & Gumpenberger, 
2006), although within these, some nonproducing clones occur frequently 
(Welker et al., 2004b). A number of studies have highlighted patterns of 
occurrence of particular MC congeners with particular taxa (e.g., Fastner 
et al., 1999). While for Microcystis blooms MC-LR, MC-RR and MC-YR 
typically are the most abundant congeners, in P. agardhii dominated 
blooms demethylated [Asp3] congeners dominate and in P. rubescens the 
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[Asp3, Dhb7] congeners are typical. For risk assessment, specific toxico-
logical data for congeners other than MC-LR are sparse or lacking, so as 
default or conservative estimate, these are regarded as being similarly toxic 
as MC-LR (see sections 2.1, 5.1 and 5.2).

Occurrence of cylindrospermopsin was first only expected when R. raci-
borskii was present in the plankton, but the number of taxa reported to 
produce CYNs is  increasing (currently including species of Aphanizomenon 
and Dolichospermum). Further, among strains of R. raciborskii, only those 
originating from Australia or South East Asia were found to produce CYNs 
(Li et al., 2001b; Neilan et al., 2003; Piccini et al., 2011). Most CYN-
producing species known so far belong to the order Nostocales (sensu 
Anagnostidis & Komárek (1985)) but evidence for CYN production in 
Stigonematales and Oscillatoriales indicates that the ability to produce 
CYN could be more widespread. However, CYN production appears to be 
more variable than MC production: while for MCs, occurrence can be reli-
ably predicted when specific taxa are present with sufficiently high biomass 
(Microcystis, Planktothrix), no taxa have been reported which are almost 
always found together with CYNs. Thus, compared to MCs, for CYNs the 
frequency of nonproducing clones appears to be relatively high. This obser-
vation could, however, be biased to some degree by the poorly resolved 
taxonomy for some cyanobacteria (Chapter 3).

The same appears to apply to the cyanobacterial neurotoxins, although 
less data are available on their occurrence and producing strains. For neu-
rotoxins, relationships between toxigenicity and taxonomy are less clear, 
as information on genes encoding their biosynthesis has become available 
later (see sections 2.3–2.5 and 13.4), but molecular methods are needed to 
unambiguously verify the potential to produce neurotoxins in large numbers 
of samples and strains (Wang et al., 2015). Like with MCs and CYNs, 
the ability to produce neurotoxins is not confined to a particular order of 
cyanobacteria, and within genera or even species, toxic and nontoxic clones 
exist (Beltran & Neilan, 2000). There are also possible biogeographic differ-
ences in neurotoxin production: for example, while for Raphidiopsis exclu-
sively Brazilian strains seem to produce saxitoxins (Haande et al., 2008), for 
D. circinale only Australian strains have been shown to produce saxitoxins 
(Fergusson & Saint, 2000; Al-Tebrineh et al., 2010).

4.6.2  Toxin content in biomass

The term “concentration”, according to IUPAC definitions, refers to an 
amount of toxin (generally expressed as mass or weight) per volume of water. 
This is best distinguished from toxin “content” referring to an amount of 
toxin per unit of cyanobacterial biomass, with the latter expressed as weight 
or as biovolume (Box 4.9). This distinction is not always made clear in the 
literature, rendering the comparison of data sometimes difficult.
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BOX 4.9: UNITS TO REPORT CYANOTOXINS

The occurrence of cyanobacterial toxins is reported in a variety of units that 

are not always easily transformed from one to another. The most commonly 

used units are given in this box together with exemplary values that can serve 

as reference data to judge the plausibility of measured values.

Cell quota: amount of toxin per cell, expressed either in gravimetric or 

in molar units; this is femtogram (fg) per cell or femto- or attomol (fmol 

or amol, respectively) per cell. Cell quota are used primarily in laboratory 

experiments on MC production but also sometimes in field studies and gen-

erally for unicellular taxa like Microcystis. In individual toxigenic Microcystis 

strains, cell quota have been found to vary by a factor of about three, and 

the maximum values reported are 165 fg/cell (Orr & Jones, 1998; Long et al., 

2001; Wiedner et al., 2003). From field samples, cell quota ranging from 1 to 

144 fg/cell have been calculated (Okello et al., 2010). For CYNs, cell quota 

of 60 fg/cell (Orr et al., 2010) and 191 fg/cell (Vasas et al., 2013) have been 

reported for R. raciborskii and Chrysosporum ovalisporum, respectively. For 

saxitoxin, cell quota of 1.3 picogram (pg) per cell in a Scytonema strain have 

been reported together with a toxin content of 119 μg/g DW (Smith et al., 

2011). Cells of Scytonema have a volume about fifty times that of a Microcystis 

cell. Any numbers considerably beyond these ranges may be the result of a 

conversion error or inaccuracies in the quantification of the cell number or 

the toxin concentration (see Box 4.10).

Toxin content: amount of toxin per mass of cells, expressed in μg or mg per 

gram dry weight (dw) in the older literature. A large number of values have 

been published for different cyanotoxins: in individual strains maximally 8 mg 

MC/g DW and 4.6 mg CYN/g dw (Sivonen, 1990; Long et al., 2001) and in field 

samples from below detection limit to a few mg/g dw. Toxin content may 

also be expressed as μg per mm3 biovolume. As 1 mm3 equals ~1 mg of fresh 

weight or about ~0.25 mg DW, and 1 μg toxin/mm3 corresponds to about 

4 μg toxin/mg dw. A third common unit for toxin content is μg toxin per μg 

chlorophyll-a, rarely exceeding a 1:1 ratio.

Toxin concentration: amount of toxin per volume of water, often expressed 

in μg/L or if concentrations are very low, in ng/L (= 0.001 μg/L). Two frac-

tions need to be discriminated, particulate and dissolved. The particulate 

fraction comprises toxins contained in cells and adsorbed to particles or, 

from a practical point of view, the toxins that can be collected on a fil-

ter. Accordingly, the dissolved fraction is in the particle-free sample that 

passed the filter. Toxin concentration is the most important parameter for 

risk assessment.
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Dry weight: A wealth of (published) data exists on toxin contents of 
bloom samples or isolated strains on a weight-to-weight basis (e.g., μg MC 
per g dry weight). Analytical methods can detect most toxins in the ppb 
range, that is, a few tens of nanograms per gram dry weight (for units 
and scales, see Box 4.10). The highest reported toxin contents for cultured 
strains are around 1.5% of dry weight for MCs and CYNs, corresponding 
to 15 μg toxin per mg dry weight (Chapter 2). The maximally achievable 
toxin contents of plankton net samples are thus reasonably expected in the 
same range. It follows that any reported toxin content exceeding 2% of dry 
weight is remarkably high and needs to be critically verified.

BOX 4.10: SCALES AND MAGNITUDES 

OF MASS AND VOLUME 

“For thousands more years, the mighty ships tore across the empty wastes of 

space and finally dived screaming on the first planet they came across – which 

happened to be the earth – where due to a terrible miscalculation of scale the 

entire battle fleet was accidentally swallowed by a small dog” 

Douglas Adams, The Hitchhiker’s Guide to the Galaxy

What reads as funny side-kick in a novel conveys some deeper meaning: when 

dealing with masses and volumes in extremely low ranges, anyone who is not 

familiar with the units has to be very careful to avoid conversion errors that 

could lead to the reporting of false numbers.

For units of mass (often also termed “weight”), the relevant units for cya-

notoxin research are gram (g), milligram (mg), microgram (μg), nanogram (ng), 

picogram (pg) and femtogram (fg). The conversion factor from one unit to the 

next is 1000; this means, for example, 1 μg equals 1,000,000,000 fg = 109 fg.

For units of volumes, in the context of toxic cyanobacteria, the units litre 

(L), millilitre (mL), cubic millimetre (mm³; to report phytoplankton population 

biovolume) and cubic micrometre (μm³; to report individual cells’ volumes) 

are relevant. While conversion of L to mL to μL is done with respective fac-

tors of 1000, the conversion of mm³ to μm³ with a factor of 1 000 000 000 

(109) requires particular attention. Conversion factors are summarised in the 

following table:

volume dm³ cm³ mm³ μm³

dm³ = L 1 1.0E + 03 1.0E + 06 1.0E + 15

cm³ = mL 1.0E − 03 1 1.0E + 03 1.0E + 12

mm³ = μL 1.0E − 06 1.0E − 03 1 1.0E + 09

μm³ = fL 1.0E − 15 1.0E − 12 1.0E − 09 1
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Assuming a specific density of ρ = 1 g/mL for fresh cyanobacterial cells – the 

density of water – biovolume converts to fresh weight (fw) as follows: 1 mm³ 

→ 1 mg and 1 μm³ → 1 pg. For the conversion of fw to dry weight (dw), a fac-

tor of 0.25 is considered. Based on this and the assumptions of an MC content 

of 1% of dw, the amount of toxin per cell can be computed like in the following 

table (with three exemplary size classes of Microcystis): 

For Microcystis, the computed cell quota are in the range of reported cell 

quota estimated from direct cell counts and MC analyses; hence, the  estimates 

are consistent with reported values. In turn, any cell quota  substantially 

exceeding these values have to be critically evaluated. For example, cell quota 

reported for Microcystis of 1 pg/cell correspond to an improbable MC content 

of some 10% of dw, 5 pg/cell to very unrealistic 50%, and any value exceed-

ing 10 pg/cell is close to the cells’ dry weight or actually exceeds it – which is 

physically impossible.

It is thus highly advisable to perform basic plausibility tests based on 

known cell dimension, biovolumes, cell numbers, etc. to verify that calcu-

lated ratios are physically possible and in accordance with available data. Any 

value that is substantially beyond the values reported so far has to be care-

fully checked for possible errors in measurements and conversions – once 

erroneous data have been published, they can develop a life of their own 

through continuing citation.

Since most cyanobacterial blooms do not consist of a single clone with an 
extremely high toxin content, but comprise mixtures of clones with varying 
toxin contents, including nontoxigenic ones, field samples generally show 
toxin contents that are much lower than 1% of dry weight. A number of 
exemplary values for toxin contents of cultured strains are given in Chapter 2. 
However, dry weight is not practical for estimating toxin concentrations 

Dolichospermum Microcystis Microcystis Microcystis

Cell diameter 10 μm 4 μm 4.5 μm 5 μm

Cell volume 
(V == π/6 × d3)

523 μm³ 34 μm³ 48 μm³ 65 μm³

Cell mass (wet 
weight)

523 pg 34 pg 48 pg 65 pg

Cell dry weight 
(25%)

131 pg 8.5 pg 12 pg 16 pg

Calculated cell 1300 fg/cell 85 fg/cell 120 fg/cell 160 fg/cell
quota
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from biomass because it requires collecting a sufficiently large amount of 
biomass from a defined volume of water with a plankton net for drying and 
weighing. Water volumes are poorly defined if the sample is collected by 
hauling the net through the water column. With more sensitive analytical 
methods, small sample sizes suffice for accurate toxin analysis. The more 
practical approach therefore is to relate toxin content to biovolume (see 
Chapter 13 for the determination of biovolume by microscopy.)

Biovolumes: Data from field samples and laboratory experiments suggest 
that, for example, for MCs, a ratio of 3 μg MC per mm³ biovolume is rarely 
exceeded in the mixture of clones or genotypes occurring in waterbodies 
(Fastner et al., 2001b; Hesse & Kohl, 2001; Znachor et al., 2006) even 
though outliers of up to 13.8 μg/mm³ and 20.6 μg/mm³ have been found 
in cultured strains of Microcystis and Planktothrix, respectively (see Table 
2.3). This small number of higher ratios reported in the literature should 
not be given too much weight unless the values have been verified with 
further values in the same range. One reason for outliers may partly be 
attributed to (unavoidable) inaccuracies in biovolume determination and 
analytical errors when the concentrations are close to the limit of quanti-
fication: any computing of ratios is sensitive to relative errors and errors in 
both values may potentiate the ratio’s error (Chapter 13). For example, an 
underestimation of biovolume by setting the average cell diameter to 4 μm 
while the true value is 4.5 μm results in a biovolume with an error of 30%. 
Together with an overestimation of toxin concentration as 1 μg/L instead 
of truly 0.7 μg/L (error of 30%) already results in an overestimation of the 
toxin-to-biovolume ratio by a factor 2. Therefore, based on the bulk of the 
reported data, a value of 3 μg/mm³ of biovolume serves as a conservative 
assumption.

Cell quota: Not very many data are available on toxin contents per cell 
(generally expressed in femtogram (fg) per cell). Exemplary values are com-
piled in Box 4.9 and for cultured strains in Chapter 2; these suggest, for 
example, for MCs, a content of 200 fg per cell for Microcystis sp. is a 
conservative assumption. Again, outliers have to be critically verified before 
taken into consideration, for example, by rough estimates whether the cell 
quota are consistent with toxin contents per dry weight reported for spe-
cific toxins and taxa (Box 4.10). Based on assumed cell quota of 200 fg 
per cell of Microcystis, one million (106) cells in a bloom can account for 
maximally 0.2 μg MC but expectedly, in typically multiclonal populations, 
average cell quota are lower and hence the amount of toxin, too. Therefore, 
for an in situ MC concentration of 1 μg/L, Microcystis cell densities of at 
least 107 cells/L are expected. For other toxins and taxa, only few values 
are available (Chapter 2), and unfortunately erroneous toxin contents (even 
exceeding the cell’s dry weight) have been published. Box 4.10 gives factors 
and an example for converting weights, biovolumes and cell quota to sup-
port checking for plausibility of values for toxin contents.
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4.6.3  Toxin concentrations in water

The dynamic fluctuations in cyanobacterial occurrence discussed above 
impact on cyanotoxin concentrations. Studies of seasonal dynamics of cya-
notoxin concentrations in relation to trophic and geographic gradients have 
mainly focused on MCs and cover a number of different types of water-
bodies. A number of publications report significant correlations between 
MC concentrations and environmental variables – particularly total phos-
phorus (TP) (Kotak et al., 2000; Graham et al., 2006), N:P ratio (Kotak 
et al., 2000; Welker et al., 2003), dissolved inorganic and total nitrogen 
(TN) (Giani et al., 2005) or temperature (Albay et al., 2005). However, 
all of these conditions typically directly affect cyanobacterial proliferation 
and dominance (section 4.4), and the chief biological mechanism behind 
these correlations is the wax and wane of cyanobacterial populations rather 
than effects on toxin production by individual clones in these popula-
tions. Generally, the results show correlations of cyanotoxin concentration 
to a measure of phytoplankton biomass such as chlorophyll-a or – more 
 specifically – biovolumes of potentially toxigenic cyanobacterial taxa 
(Znachor et al., 2006; Sitoki et al., 2012; Salmaso et al., 2014). The data in 
all of these studies show upper boundaries and below these a broad residual 
scatter, indicating that further variables, other than biomass, also influ-
ence cyanotoxin concentrations.

A key explanation for highly variable ratios of cyanotoxin to cyanobac-
terial biomass (e.g., expressed as biovolume) is shifts in clonal composition, 
that is, between clones of different toxin content (including nonproduc-
ers) which would influence the average cyanotoxin content of the cyano-
bacterial population and hence of the entire phytoplankton community 
(Kardinaal et al., 2007; Welker et al., 2007; Yepremian et al., 2007; Agha 
et al., 2014; Haruštiaková & Welker, 2017; Otten et al., 2017). Figure 4.8 
illustrates this schematically: in (the improbable) scenario 1, all clones, 
each of which with a different toxin content, show homogenous dynam-
ics and the relative clonal composition is stable. This would result in an 
equally stable average toxin content and a toxin concentration tightly fol-
lowing the total cell number. In scenario 2, individual clones show diverg-
ing dynamics. As a consequence, the average toxin content varies strongly, 
and the toxin concentration is partly uncoupled from the total cell num-
ber. In natural waters, dynamics of cyanobacterial populations are likely 
closer to scenario 2 than to scenario 1, although the number of respective 
studies is still limited. Coexisting toxigenic clones can also vary consider-
ably in their toxin composition (i.e., in individual congeners produced) and 
in their (average) toxin content or toxin cell quota (Chapter 2 and Box 4.9) 
that may span ranges exceeding two orders of magnitude (Wilson et al., 
2006b; Yepremian et al., 2007). The fact that cyanobacterial blooms and 
populations are generally composed of mixtures of toxin-producing and 
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nonproducing clones has also been demonstrated for CYN and for neu-
rotoxins (Carmichael & Gorham, 1981; Fastner et al., 2001a; Wood & 
Puddick, 2017).

In some waterbodies, Planktothrix- and Microcystis-dominated cyano-
bacterial communities show seasonal patterns with the MC content of 
cyanobacterial biomass declining from a maximum at the onset of the 
bloom to lower values later in the season, coinciding with shifts in relative 
abundance of MC-producing clones (Kardinaal & Visser, 2005; Kardinaal 
et al., 2007; Welker et al., 2007; Davis et al., 2009), while in other water-
bodies a reverse pattern was observed (see Chapter 5, Figure 5.1). In other 
waterbodies, the proportion of toxigenic cells in relation to total cell num-
bers proved rather stable for extended periods of time (Kurmayer et al., 
2003; Salmaso et al., 2014). Also, MC concentrations may reach their 
maximum even at times when toxin content per cell or unit biovolume is 
relatively low if the total abundance of potentially toxigenic cyanobacte-
ria is high.

In contrast to the decisive role of cyanobacterial biomass and clonal 
composition for toxin concentrations, laboratory studies showed that for a 
given clone, ratios of toxin per cell rarely change by more than a factor of 
2–4. Moreover, the striking differences between laboratory studies address-
ing the impact of environmental conditions on toxin production are likely 
partially due to differences in study design (see Box 4.11). Compared to 
shifts in cyanobacterial biomass and/or clone composition, such shifts in 
toxin cell quota in individual clones have a relatively minor impact on toxin 
contents of field populations (Chapter 2).
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Figure 4.8  Schematic illustration of dynamics of Microcystis spp. clones with varying 
microcystin (MC) content (or cell quota) and the resulting MC concentration. 
In (unlikely) scenario 1, the temporal dynamic of all clones is homogeneous: 
that is, clone composition does not change over time, and the MC concentra-
tion follows Microcystis total biovolume. In scenario 2, the individual clones 
show variable dynamics resulting partly in a decoupling of Microcystis biovol-
ume and MC concentration. For further explanations, see text.
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BOX 4.11: PITFALLS WHEN DETERMINING CELLULAR 

CYANOTOXIN CONTENTS IN THE LABORATORY

Gary Jones

The literature is replete with laboratory studies attempting to correlate cellular 

cyanotoxin content with growth-limiting resources such as nitrogen, phospho-

rus, iron, light or temperature. Some of their apparently contradictory results 

may be due to inadequate experimental controls over the limiting resource 

and of how it regulates cyanobacterial growth rate and yield, if unequivocal 

single-resource limitation was not given. This is especially the case for batch 

cultures, where in vitro conditions (e.g., pH, light, nutrient concentration) and 

growth rate change continuously as the cells multiply (especially towards the 

end of exponential phase). Some of these batch cultures problems can be over-

come through very carefully controlled design and sampling or, better still, by 

using continuous culture systems. An important consideration, often not fully 

accounted for, is that both batch and continuous culture experiments can be 

designed (intentionally or unintentionally!) so that the limiting resource reduces 

either one or both of (i) exponential growth rate and (ii) the cell concentra-

tion achieved in the plateau phase of a batch culture or the steady state of 

a continuous culture. Also often overlooked is the need for culture media 

which are chemically well defined, especially in the case of nutrients that have 

complex aqueous chemistry and speciation like phosphorus or iron. 

Planning of experiments and interpretation of data requires proper training 

in microalgal culturing techniques, as well as a full understanding of the key 

theories behind resource limitation and growth (most notably the Monod and 

Droop equations), as well as the basic aqueous chemistry of common nutrient 

ions. Indeed, many of these considerations apply equally to the interpretation 

of field data as well. 

Some excellent reference books to begin with are, for example, Stein et al. 

(1980) and Andersen (2005) on culture techniques and theory and Stumm & 

Morgan (1996) on water chemistry.

In conclusion, the average cyanotoxin concentration in a waterbody 
depends on

 1. the combined biomass of potentially toxic cyanobacteria;
 2. the clonal composition of populations and, in particular, on clone-

specific toxin contents;
 3. the physiological regulation of toxin biosynthesis in toxigenic clones.
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While the clonal composition is crucial for the toxin concentration in the 
water, a distinction between only two types – toxigenic and nontoxigenic – is 
an undue simplification that may lead to invalid conclusions because both 
types likely are represented by multiple individual clones (Meyer et al., 2017). 
Other metabolites and physiological traits of individual clones may be deci-
sive for the outcome of selection between clones. However, the driving forces 
regulating clonal composition of cyanobacterial populations are still poorly 
understood. For example, N limitation may play a role in selecting clones 
of Microcystis or Planktothrix that do not produce MCs (or other peptides) 
(Gobler et al., 2016), or parasite and phage infection may cause clone-specific 
mortality in cyanobacterial populations (Honjo et al., 2006; Rohrlack et al., 
2013; Van Wichelen et al., 2016; Stough et al., 2017; Box 4.3).

Therefore, accurate predictions of cyanotoxin concentrations from cya-
nobacterial biomass are limited, even in an intensively studied waterbody. 
As an approximative approach, upper boundaries of possible toxin concen-
trations, based on conservative assumptions for toxin-to-biomass ratios, 
are used in the Alert Levels Frameworks in sections 5.1 and 5.2. As dis-
cussed in section 4.5, modelling is still struggling to predict cyanobacte-
rial abundance as such, and forecasting cyanotoxin concentration adds 
a further dimension of complexity. However, some examples show that 
statistical models based on empirical data can predict cyanotoxin concen-
trations for a given waterbody with reasonable accuracy with respect to 
their timing as well as the magnitude of toxin occurrence (Jacoby et al., 
2015; Recknagel et al., 2017). Although models cannot replace monitor-
ing for the purpose of assessing cyanotoxin risks to human health, they 
can be used to streamline and focus monitoring, for example, by adjust-
ing sampling frequency to expected bloom and toxin dynamics (Chapter 
11). By using a default assumption for a ratio of toxin to cyanobacterial 
biomass, models to estimate cyanobacterial biomass can be expanded for a 
first, conservative estimate of toxin concentration. Such an approach likely 
results in an overestimation of the actual toxin concentration (Chapter 5 
and section 4.6.5).

4.6.4  Spatial heterogeneity of toxin concentrations

As cyanobacterial biomass can show pronounced spatial variability, so do 
cyanotoxins: detectable cyanotoxin concentrations, reported as average con-
centrations from depth-integrated samples, generally range from just above 
detection limit to a few tens of μg/L. However, in individual samples taken 
in the same waterbodies on the same date, the toxin concentration can vary 
by several orders of magnitude, depending on where and how the sample is 
taken: surface layer versus hypolimnion or a central site versus the shoreline 
(see Figure 4.1, Figure 4.2, Box 4.8). In scums of Microcystis, for example, 
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concentrations of MCs can reach several tens of mg/L (see section 2.1). In 
several multilake surveys, MC concentrations exceeding 50 μg/L were only 
found in scums where concentrations regularly reached the mg/L range, but 
not in integrated, averaged samples when cyanobacterial populations are 
suspended more or less homogeneously in the water column (Cook et al., 
2004; Loftin et al., 2016). As concentrations of cyanotoxins can show pro-
nounced horizontal gradients, data from a water sample taken at one site are 
unlikely to represent a lake-wide average (Welker et al., 2003; Ozawa et al., 
2005; Dyble et al., 2008). It is thus of utmost importance to clearly define 
the objective and corresponding sampling strategy when designing monitor-
ing programmes (Chapter 11).

Horizontal variability is mainly caused by two factors. One is differences 
in growth conditions that may occur between different parts of a lake, partic-
ularly in large lakes or reservoirs with complex morphology (e.g., Michalak 
et al., 2013; Chung et al., 2014). The other – often more important one – is 
the combination of surface bloom formation and horizontal dislocation by 
which cyanobacterial cells are generally concentrated at nearshore, down-
wind sites of a waterbody (section 4.5). However, the short-term fluctuations 
are not restricted to near-shore sites. Cyanotoxin concentrations in samples 
taken at high frequency at a fixed station showed fluctuations of several μg/L 
over the 6-h sampling interval (Miller et al., 2019).

Vertical variability in toxin concentration occurs mainly due to buoy-
ancy regulation of the toxic cyanobacteria (section 4.2). Higher concentra-
tions of cyanotoxins occur either in the topmost water layers, especially 
when buoyant taxa like Microcystis are dominant (Naselli-Flores et al., 
2007), or in a metalimnetic layer in the case of Planktothrix rubescens 
(Ernst et al., 2009).

Since vertical and horizontal distributions depend to a large degree on 
current weather conditions such as wind direction and speed, dense cya-
nobacterial accumulations can occur within hours at one site of a lake and 
a few hours later at others. For approaches to early warning for surface 
bloom and scum occurrence, it is therefore effective to include the use of 
satellite images or continuous measurement of fluorescence, combined with 
numerical modelling (Ibelings et al., 2003; Chapter 11).

Two consequences are equally important for assessing the risk of cyano-
toxin occurrence:

 1. A cyanotoxin concentration of a few microgram per litre (that might be 
considered a low risk) at a central site in a waterbody can lead to cyano-
toxin concentrations several orders of magnitude higher at downwind 
“hot spot” sites.

 2. The timescales in which toxin concentrations can dramatically change 
at a particular (near-shore) site can be only a few hours.



272 Toxic Cyanobacteria in Water

4.6.5  Estimating cyanotoxin concentration 
from other limnological parameters

Where toxin data are not (or not readily) available for assessing and man-
aging the health risks caused by cyanobacteria, measurements of cyano-
bacterial biomass are a useful point of departure for conservative estimates 
of potential maximum cyanotoxin concentrations in a waterbody. For 
practical purposes, such as the Alert Level Frameworks in sections 5.1 and 
5.2, estimates therefore best use the maximum expectable concentrations. 
These will show where toxin analyses for the specific site are important 
in order to obtain more precise information to appropriately guide man-
agement responses, with significantly lower toxin concentrations being 
a likely outcome.

The limnological parameters allowing an estimation of cyanotoxin concen-
trations are primarily (cyanobacterial) biovolumes, cell counts, chlorophyll-a 
concentrations, water transparency (i.e., Secchi depth) and nutrient concen-
trations, in particular total phosphorus (TP). The uncertainty of cyanotoxin 
estimates increases in the same order. It is important to understand that 
estimates of maximum cyanotoxin concentrations based on these para-
meters will not be accurate; they merely serve as indicators to support deci-
sions on where to focus efforts for monitoring and for further analyses, for 
example, of cyanotoxins (Chapters 13 and 14). In particular, it is impor-
tant to realise that these indicators give conservative estimates gleaned 
from maximum likely ratios of toxin to the respective indicator. Due to 
their variability over time and between waterbodies, using any of them as 
an estimate for cyanotoxin concentration implies that follow-up by toxin 
analysis is most likely to result in a considerably lower rather than a higher 
human health risk.

While the ratios of toxin to indicator proposed here are primarily derived 
from data published for MCs, for other cyanotoxins, content per unit biomass 
does not appear higher than these maxima known for MCs (see Chapter 2); 
thus, the ratios of toxin to the concentration of the indicators discussed here 
may also be assumed as proxy for risk assessment. However – in contrast to 
MCs which largely occur cell-bound – applying this to CYNs may miss the 
higher dissolved fraction of this toxin.

Biovolumes can give a fairly accurate estimate of the maximum expect-
able cell-bound cyanotoxin concentrations, but yet bear uncertainty span-
ning more than an order of magnitude due to the variability of the toxin 
content of different clones of potentially toxigenic taxa, even within an 
individual waterbody and a single season. A key advantage of using biovol-
umes identified by microscopy as point of departure for risk assessment is 
that they include information on taxonomic composition, which provides a 
basis for understanding the potential further development of a bloom and 
thus of toxin occurrence. As discussed above in section 4.6.2, a ratio of 3 μg 
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toxin per mm³ biovolume serves as conservative estimate that is not likely to 
be exceeded in field samples.

Cell counts of potentially toxigenic cyanobacteria may likewise be used 
in combination with reported toxin cell quota of these taxa to estimate 
toxin concentrations. However, since reliable values for taxon and toxin-
specific cell quota are scarce, this approach is limited to taxa for which cell 
quota estimates are available (see section 4.6.2). Furthermore, estimates 
based on cell counts and toxin cell quota are subject to the same limitations 
as estimates from biovolume.

Chlorophyll-a concentrations as a measure of biomass also include phy-
toplankton organisms other than cyanobacteria. Using them as indicator 
therefore requires a brief qualitative assessment by microscopy of whether or 
not the phytoplankton consists chiefly of cyanobacteria. While fluorescence 
methods, which include the cyanobacteria-specific pigment  phycocyanin, 
can overcome this, they introduce a further dimension of variability (see 
section 13.5). Furthermore, the chlorophyll-a content of phytoplankton 
may vary in response to light and nutrient availability by a factor of up to 
10 (Kruskopf & Flynn, 2006; Kasprzak et al., 2008). Also, if photometric 
analysis of chlorophyll-a includes a correction for phaeophytin, this may 
result in an underestimation of the concentration of chlorophyll-a, particu-
larly in the low concentration range (Chapter 13.5), and thus in an overes-
timation of the toxin-to-chlorophyll-a ratio.

A number of reports on cyanotoxin concentrations (mainly MCs) suggest 
that the cell-bound toxin concentration (in μg/L) only very rarely exceeds 
the concentration of chlorophyll-a (also in μg/L) and if so, not by more than 
a factor of three (e.g., Fastner et al., 2001b; Carrasco et al., 2006; Sinang 
et al., 2013; Loftin et al., 2016; Mantzouki et al., 2018). For example, in 
Figure 4.9, the MC/chl-a ratio exceeded 1 only in a small share of samples, 
while the ratio for the majority of samples ranges between 0.1 and 0.5. An 
assumption of a maximum ratio of 1 μg MC per μg chl-a is hence a conser-
vative approach, and in most cases, measured MC concentrations will be 
considerably lower than thus estimated.

Secchi depth is a parameter for water transparency which is easily mea-
sured on site. In many waterbodies, it correlates directly and inversely with 
phytoplankton abundance and chlorophyll-a concentration. However, 
respective correlations generally show considerable scatter because other 
water constituents (inorganic sediments suspended in the water, humic sub-
stances) and differences in optical properties of phytoplankton species affect 
water transparency. Nonetheless, waterbodies with consistently high Secchi 
depths are rarely dominated by cyanobacteria, and thus, high transpar-
ency indicates that potentially health-relevant cyanotoxin concentrations 
are unlikely. The transparency threshold value indicating cyanobacterial 
blooms is best established individually for a given waterbody or a region 
with a number of similar waterbodies, based on seasonal data for Secchi 
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depths and cyanobacterial biovolumes (or chlorophyll-a together with a 
semiquantitative check via microscopy as to whether cyanobacteria domi-
nate). For small lakes of less than 50–100 ha, it may well be in the range of 
2–3 m, while for larger waterbodies (due to the possibility of surface bloom 
recruitment from a large water volume; Figure 4.2), it may be higher, and 
scums may yet accumulate in a bay, while the Secchi disc reading taken at 
a central site may show several metres. Furthermore, Secchi disc readings 
cannot serve for assessing risks from benthic or tychoplanktonic cyanobac-
teria. Also, high Secchi depth readings will not indicate a cyanotoxin risk 
from Planktothrix rubescens in the metalimnion: these will not diminish 
transparency in the epilimnion (and may yet cause elevated toxin concen-
trations at drinking-water offtake depths).

In summary, while Secchi depth readings may be a very useful indicator 
of cyanotoxin risks, as for many other parameters their reliability depends 
on a sound understanding of the given waterbody.

Nutrient concentrations – primarily TP and total nitrogen (TN) – determine 
carrying capacity and hence the maximally achievable phytoplankton bio-
mass (measured as biovolumes or chlorophyll-a concentrations) and hence 
the maximally achievable (average) cyanotoxin concentration (Dolman 
et al., 2012). Nutrient concentrations are useful as longer-term predic-
tors whether blooms of cyanobacteria – and hence cyanotoxin concentra-
tions at critical levels – are to be expected (Beaver et al., 2014; section 4.4 
and Chapter 8).
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INTRODUCTION AND GENERAL CONSIDERATIONS

People may be exposed to cyanotoxins through oral, respiratory and  dermal 
routes. Ingestion may occur through drinking-water (see section 5.1) or 
 accidental uptake during water sports, recreational or occupational activ-
ity (see section 5.2). In some settings, contaminated food can be a source 
of dietary exposure, possibly significant (see section 5.3). This includes 
fish, shellfish and crustaceans collected from bloom-ridden waterbodies 
as well as leafy vegetable crops spray-irrigated with water containing cya-
nobacteria. A particularly high risk for specific subpopulations may be 
caused by exposure through haemodialysis (section 5.4): if dialysis centres 
do not take appropriate precautions and dialysate is contaminated with 
cyanotoxins, this can injure patients undergoing renal dialysis, because 
toxins from a large volume of water (>100 L per treatment) may gain direct 
access to the bloodstream via the intravenous route several times per week. 
Cyanobacterial dietary supplements may further be a potentially relevant 
route of oral intake for a small subpopulation using such products (see 
section 5.5).

While symptoms from cutaneous exposure to freshwater cyanobacteria 
have been quite widely reported (see section 5.2), these are usually mild 
and self-limiting. In contrast, marine cyanobacteria can cause severe skin 
lesions, for which, however, there is still a lack of dose–response informa-
tion as a basis for estimating tolerable exposure levels (see section 2.6). 
Some people may experience allergic reactions to cyanobacteria, whereas 
others may be unaffected, and by the time of the publication of this book, 
it remains unclear which constituents of cyanobacterial cells – or associated 
microorganisms and compounds – actually cause allergic reactions.

The following sections 5.1 – 5.5 outline the specific exposure pathways 
and health risks through drinking-water, recreation and occupational use 
of water containing cyanobacteria and/or their toxins dissolved in water, 
food, renal dialysis and dietary supplements. They summarise available epi-
demiological knowledge as well as other indications of human exposure 
and relate these to the information on toxicity as discussed in Chapter 2 for 
the individual groups of cyanotoxins.

A caveat to keep in mind when assessing reports concerning human expo-
sure to toxic cyanobacteria is that their estimates of exposure are almost 
always retrospective (it would not be ethically possible to conduct a pro-
spective human study of a toxin at concentrations expected to show effects). 
That is, they provide information on human symptoms occurring at or just 
before the time of the study and try to explain these by looking into the 
past to make an “educated guess” as to what may have caused the observed 
symptoms. Even cyanotoxins detected in the tissues of people or animals 
do not solve this problem: while they provide absolute evidence of expo-
sure, they do not necessarily demonstrate cyanotoxins to have been the sole 
cause of symptoms or elevated serum enzyme levels. Many of the reported 
symptoms in historical reports are quite general and cannot be considered 
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in isolation as diagnostic of cyanotoxin poisoning. It is also not possible 
to know whether all potential causes and their interactions have been con-
sidered, nor whether the estimates of exposures are accurate. Thus, this 
type of study cannot prove that a cause–effect relationship exists, nor can 
it provide a quantitative dose–response estimate. This is why the guideline 
values (GVs) for all cyanotoxins except saxitoxins (STX) are based on ani-
mal studies, despite these also having many limitations. Saxitoxins are an 
exception due to the rapid onset of highly specific diagnostic symptoms fol-
lowing the consumption of contaminated seafood.

In spite of these limitations, however, it is highly useful to report 
incidents of suspected human and/or animal exposure, particularly for 
enabling direct interventions to prevent further exposure but also, in 
the longer term, to collate indicative evidence, particularly if reporting 
includes toxin concentrations observed in the field at the time of exposure 
or in the serum of those exposed, or cyanobacterial cells observed in stool 
samples.

Using concentrations of cyanobacterial biomass to trigger cyanotoxin 
alerts
Sections 5.1 and 5.2 propose Alert Level Frameworks (ALFs) to guide short-
term interventions if cyanotoxins or cyanobacterial biomass are present in 
a waterbody in concentrations that may become or may already be relevant 
to human health. For triggering alerts, the ALFs offer different points of 
entry, ranging from visual assessment over microscopy and quantification 
of cyanobacterial biomass to toxin analysis. This allows the selection of 
parameters depending on national or local considerations, including the 
accessibility of analytical methods. Importantly, these ALFs are intended 
for national or even local adaptation: other parameters may also be used 
if these are more accessible or appropriate, provided their ratio to toxin 
concentrations can be determined periodically (see below), for example, cell 
numbers or turbidity readings in raw water entering a treatment plant. An 
advantage of defining the Alert Levels with a measure of cyanobacterial 
biomass (either biovolume or pigment concentrations; see Chapter 13) is 
that they are thus also protective against further unspecific health effects of 
blooms not attributable to the cyanotoxins.

The Alert Levels triggering interventions are based on concentrations 
of cyanobacterial biomass that correspond to the WHO health-based val-
ues for cyanotoxins (Table 5.1) – that is, depending on the Alert Level, 
those for drinking-water (lifetime, short-term or acute) or recreational 
exposure. Therefore, it is also possible to use the GVs in Table 5.1 directly 
to trigger alerts. Biomass is measured either as biovolume or as concentra-
tion of chlorophyll-a (the latter after a brief qualitative check by micros-
copy of whether chlorophyll-a is largely from cyanobacteria), and the 
Alert Levels for biovolume and chlorophyll-a proposed (Table 5.2) are 
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Table 5.1  Guideline values and health-based reference values for selected cyanotoxins 
and exposure scenarios (WHO, 2020)

Toxin Exposurea Value (μg/L) Value type b

Microcystin-LR Drinking-water, 
lifetime

1 Provisional guideline value

Microcystin-LR Drinking-water, 
short term

12 Provisional guideline value

Microcystin-LR Recreational 24 Provisional guideline value

Cylindrospermopsin Drinking-water, 
lifetime

0.7 Provisional guideline value

Cylindrospermopsin Drinking-water, 
short term

3 Provisional guideline value

Cylindrospermopsin Recreational 6 Provisional guideline value

Anatoxin-a Drinking-water, 
acute 

30 Health-based reference value

Anatoxin-a Recreational 60 Health-based reference value

Saxitoxin Drinking-water, 
acute

3 Guideline value

Saxitoxin Recreational 30 Guideline value

For details on derivation of individual values see sections 2.1–2.4.

a Note that short-term exposure refers to periods of about two weeks until enhanced 
drinking-water treatment or other measures can be implemented to achieve  concentrations 
below the lifetime guideline value.

b Due to the overall quality of the database for their derivation and since the respective guideline 
values only cover specific congeners, the guideline values for microcystin-LR and for cylindrosper-
mopsin are considered provisional.

In the absence of oral toxicity data for other congeners, itis recommended that the GVs be 
applied to total MCs, total CYNs and total STXs as gravimetric or molar equivalents, based on the 
worst-case assumption of the congeners having similar toxicity. For STX toxicity equivalents, see 
WHO 2020.

Furthermore, for ATX, the available toxicological information is not sufficient for deriving a for-
mal guideline value (provisional or otherwise) for lifetime exposure, but it does show that health 
hazards are unlikely at levels above these health-based reference values (see sections 2.1–2.4 for 
details).

derived on the basis of conservative assumptions on ratios of microcys-
tins (MCs) to either biovolume or chlorophyll-a found in publications 
covering a variety of waterbodies (reviewed in section 2.1 and discussed 
in section 4.6.2). Thus, if these Alert Levels are not exceeded, the con-
centrations of MCs are highly unlikely to exceed the respective GVs sum-
marised in Table 5.1.

For the other cyanotoxins, less data are available to determine such 
ratios. The data available (see sections 2.2–2.4) show that their concen-
trations in the biomass of the producing cyanobacteria can attain the 
maximum levels similar to those attained by MCs, although this appears 
to occur less frequently. Thus, in many cases, the toxin/biomass ratios 
derived for MCs can be assumed as a conservative approach for these 
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Table 5.2  Conservative values for parameters of cyanobacterial biomass indicative of 
possible occurrence of cyanotoxin concentrations reaching guideline values

Biovolume Chlorophyll-a

Alert Level 
MC/BV ≤ 3/1 
[μg/mm³]

MC/
Chl.a ≤ 1:1 

[μg/μg]
Basis for conservative estimatea 

of toxin/biomass 

Alert Level 1 in  
drinking-water ALF

0.3 mm³/L 1 μg/L GVchronic for MCs in  
drinking-water: 1 μg/L

Alert Level 2 in  
drinking-water ALF

4 mm³/L 12 μg/L GVshort-term for MCs in 
drinking-water: 12 μg/L

Alert Level 2 in 
recreational ALF

8 mm³/L 24 μg/L GVrecreational for MCs: 24 μg/L

For discussion of the biomass parameters and references, see text above as well as sections 2.1–2.4 
and 4.6.2; for specifics of CYN, see Box 5.1.

Examples: 

  1. Observing 0.3 mm³/L biovolume or 1 μg/L chlorophyll-a (with dominance of cyanobacteria 
seen by brief visual assessment with microscopy) indicates that microcystin or cylindrosper-
mopsin may occur at concentrations reaching the lifetime GV; 

  2. Observing > 4 mm³/L biovolume or > 12 μg/L chlorophyll-a (as above, with dominance of cya-
nobacteria) indicates that microcystins, cylindrospermopsins or saxitoxins may exceed the 
short-term GVs for these toxins.

a Note that in many cases, the ratio of toxin to either biomass parameter is likely to be substantially 
lower, often by up to a factor of 10. Periodically (i.e., 2–3 times during a cyanobacterial growing 
season) “calibrating” them with toxin analysis is likely to enable higher Alert Levels.

toxins as well. This is supported by the concentrations found in water for 
cylindrospermopsins (CYNs), saxitoxins (STXs) and anatoxins (ATXs), 
which are typically substantially lower than those of the MCs. For 
 anatoxins, the biomass thresholds proposed in the ALFs are sufficiently 
protective because their health-based reference values are substantially 
higher than the GVs for MCs. For lifetime exposure to CYNs, the GV 
is in the same range as the corresponding GV for MCs, and therefore, if 
CYNs are monitored as described in Box 5.1, the biomass threshold for 
Alert Level 1 is considered sufficiently protective. However, for CYNs 
and STXs, there are some uncertainties about whether the Alert Level 2 
biomass thresholds are sufficiently conservative to ensure that toxin levels 
are below the acute GV for STXs and the short-term GV for CYNs, as 
these values are fourfold lower than the corresponding value for MCs. 
For STXs, this applies particularly to Dolichospermum spp., for which 
high STX/biomass ratios have been reported (see Tables 2.6 and 2.7 in 
Chapter 2). Therefore, toxin concentrations should be determined for 
blooms when STX- or CYN-producing species are dominant, and there is 
evidence that Alert Level 1 may be exceeded.
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BOX 5.1: CONSIDERATIONS FOR USING 

CYANOBACTERIAL BIOMASS AS INDICATOR 

OF CYLINDROSPERMOPSIN CONCENTRATIONS

As discussed in section 2.2, maximum CYN contents per unit biomass of the 

producing cells are in the same range as for MCs, and thus, the same  biomass 

Alert Levels can be used. However, while MCs largely occur cell-bound, 

high proportions of CYNs can occur dissolved in water in concentrations 

exceeding the concentration of cell-bound CYNs and persist even after the 

 producing cyanobacterial cells are no longer present. In consequence, levels 

of biovolume or chlorophyll-a at the time of sampling do not necessarily reli-

ably indicate levels of the total concentration of CYNs. 

Integrated samples taken in 2009 in Großer Plessower See illustrate this: 

Concentrations of cell-bound CYNs (combined cylindrospermopsin and 

deoxy-cylindrospermopsin) correlate to the biovolume of potentially CYN-

producing species, summarized as Nostocales (Rhaphidiopsis (Cylindrospermopsis), 

Aphanizomenon, Dolicospermum, Chrysosporum). In contrast, dissolved CYNs 

reached its maximum concentration only once biovolumes of Nostocales and 

other cyanobacteria started to decline in September and remained on levels 

>1 μg/L until December (unpublished data, kindly provided by Karina Preussel, 

Robert-Koch-Institut, Berlin, and Jutta Fastner, Umweltbundesamt, Berlin). 

However, if monitoring on a regular, weekly or at least fortnightly basis 

has not identified any CYN-producing taxa (i.e., of the genera Raphidiopsis 

(Cylindrospermopsis), Aphanizomenon, or Chrysosporum) during the previous 
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4–6 weeks, the presence of CYNs is unlikely, in particular at concentrations 

above GVs. 

If cyanobacteria of these genera have been found during previous weeks, 

but not at biovolume or chlorophyll-a levels exceeding the Alert Levels, the 

presence of CYNs exceeding the Alert Levels is also unlikely. 

If, however, cyanobacteria of any of these genera have reached biomass 

levels corresponding to the Alert Levels during the 4–6 previous weeks, 

monitoring concentrations of dissolved and cell-bound CYNs is advised until 

concentrations of the sum of cell-bound and dissolved CYNs have declined 

below the guideline values (GVs).

It is generally useful to adapt the Alert Levels proposed in Table 5.1 to the 
toxin content of the locally prevalent cyanobacteria by occasional analyses 
of cyanotoxins together with the parameter used to trigger Alert Levels: 
periodically “calibrating” the trigger for alerts with cyanotoxin analyses 
will improve predictive power. As discussed in section 4.6, for any of the 
cyanotoxins, the ratio of toxin to biovolume or chlorophyll-a in a given 
waterbody may be substantially lower than the generally conservative 
assumption used in the Alert Level Frameworks, by an order of magnitude 
or more, and using a locally appropriate toxin/biomass ratio may serve to 
avoid undue restrictions of waterbody use or to lift restrictions previously 
implemented.

Moreover, periodic reassessment of the ratio of toxin to the parameter 
chosen for triggering alerts is recommended because the ratio may vary 
between seasons and within a season as a bloom develops, as illustrated by 
the examples in Figure 5.1: the ratio of MCs to cyanobacterial biovolume 
was fairly constant in the Microcystis-dominated waterbodies Müggelsee 
and Radeburg Reservoirs, Germany, varying only by a factor of three and 
without seasonal trend, but in contrast in the Weida Reservoir, the ratio of 
MC to biovolume varied nearly seven fold, with an increasing trend as the 
season progressed. Yet, in Müggelsee in other years, the MC/biomass ratio 
declined continuously as the summer progressed (data not shown). These 
examples illustrate the variability of toxin/biomass ratios not only between 
waterbodies but also between years for one-and-the-same waterbody. Thus, 
where resources allow, it is worthwhile to check the toxin/biomass ratio 
2–3 times per season until a good understanding of its variability has been 
established in order to base management actions on the most appropriate 
information. Where access to capacity for cyanotoxin analysis is not readily 
possible, an option may be to send samples to regional laboratories or to 
seek support of research institutions.

For adapting the Alert Level Frameworks (ALFs) to national or local cir-
cumstances, the following further considerations are relevant:
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Figure 5.1 R atios of microcystin (sum of all variants) to cyanobacterial biovolume over 
time in different lakes and reservoirs in Germany. Diamonds denote domi-
nance of Planktothrix rubescens (Weida Reservoir and Luzin Lakes); the other 
waterbodies were dominated by Microcystis spp. (Jutta Fastner and Ingrid 
Chorus, unpublished data.)

 1. If chlorophyll-a concentrations, Secchi depth readings or turbidity are 
used as triggers for alerts, a brief qualitative check by microscopy is 
important in order to assess whether chlorophyll-a or turbidity are 
largely due to cyanobacteria (and thus serve as effective indicators) or 
whether other phytoplankton, that is, eukaryotic algae (or in the case 
of turbidity, other particles), are causing elevated levels.

 2. A reason to choose toxin concentrations rather than biomass indi-
cators as parameters to define Alert Levels may be that the target 
is primarily to protect from cyanotoxins rather than from cyano-
bacterial cells as such; this may be appropriate particularly where  
drinking-water treatment reliably removes cells.

 3. If cell counts are used to define Alert Levels, it is important to “cali-
brate” them against occasional toxin analyses because the cell quota 
data (i.e., toxin per cell) are available in the literature only for some 
taxa. However, cell sizes vary substantially, and as shown in section 
4.6.2, cell size has a substantial impact on toxin quotas: if very small-
sized cyanobacteria dominate, cell counts may be high and thus far 
too conservative, even if the water is very clear and toxin concentra-
tions are negligible. “Calibration” of cell counts with toxin concentra-
tions requires a significantly smaller number of samples over time as 
compared to regular monitoring.
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 4. Further parameters may also be used for defining Alert Levels, if 
locally or nationally more accessible or practical, for example, values 
for molecular parameters, fluorescence, turbidity readings or signals 
from remote sensing, provided these also are periodically “calibrated” 
regarding their ratio to toxin concentrations caused by the ambient 
cyanobacteria.

 5. The GVs for short-term occurrence in drinking-water as well as 
those for recreational exposure were derived with an allocation fac-
tor of one, that is, assuming each of these exposure pathways to be 
the dominant source of exposure during the short duration of such 
exposure. The lifetime drinking-water guideline values (GVs) were 
derived assuming an allocation factor of 0.8, that is, that 80% of 
the tolerable daily intake (TDI) to be through drinking-water since  
drinking-water is usually the most likely long-term source of exposure. 
This implies that other sources such as food and recreational water 
are less significant (contributing to 20% of the TDI). In practice, the 
relative importance of each potential exposure route may be different, 
with food potentially being a particularly high-exposure source in 
some situations. When adapting an ALF to local circumstances, it is 
therefore important to assess the likelihood of simultaneous multiple 
routes of exposure – such as a population using bloom-ridden surface 
water with insufficient treatment for drinking and irrigation, perhaps 
also with freshwater fish as staple food. In such situations, it may 
be appropriate to consider reducing the allocation factors used in the 
derivation of the GVs. However, it is important to balance this with 
potential other negative consequences for the population’s health and/
or livelihoods that might result from severe restrictions of water use.

When using the information in this chapter as basis for developing locally 
appropriate guidance, it is further important to assess the patterns of bloom 
occurrence over time in the waterbodies of interest (see Chapter 8) and 
thus the likely duration of potential human exposure. This differs substan-
tially between climates, regions and individual waterbodies: in temperate 
climates, some waterbodies dominated by surface scum-forming taxa such 
as Microcystis may have a bloom season of 3–5 months, and exposure then 
is typically seasonal. Other taxa, such as Planktothrix agardhii, may show 
perennial blooms even in cooler temperate climates, although generally 
with lower abundance during winter. In warmer climates, such as in some 
regions of Australia, South America, Asia and Africa, cyanobacteria may 
bloom for 6–10 months, and in relatively stable warm tropical climates, 
high numbers of cyanobacteria may occur year-round, potentially causing 
ongoing exposure. Importantly, however, in the same climates, other water-
bodies may have no blooms at all or blooms occurring only sporadically 
and for only a few days or weeks.
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5.1  DRINKING-WATER

Andrew Humpage and David Cunliffe

As outlined in the preceding chapters, toxigenic cyanobacteria are encoun-
tered in many waterbodies worldwide, including those from which water 
is abstracted for the production of drinking-water. The concentration of 
cyanotoxins in lakes and reservoirs can exceed the (provisional) GVs for 
lifetime daily exposure, as well as for short-term exposure, occasionally by 
orders of magnitude. To effectively remove cyanotoxins, drinking-water 
treatment needs to be optimised and validated for this target. Therefore, 
even when treatment is implemented, the possible breakthrough of cya-
notoxins from raw water to the consumed drinking-water needs to be 
considered as a potential health risk and measures need to be validated to 
ensure that this risk is effectively controlled, or further measures be put 
in place to avert it.

A number of studies have concluded that cyanotoxins in drinking-water 
were the possible cause of documented cases of human illness. Further, 
even before the toxins were characterised in detail, there was compelling 
evidence of cyanobacterial toxicity from the deaths of animals following 
the consumption of water containing cyanobacteria. As discussed in section 
5.0, historical literature about human illness after exposure to cyanotox-
ins must be treated with caution, however, because prior to their chemical 
characterisation neither the quantification of toxins nor the estimation of 
doses was possible. Further, other potential causes of the observed illnesses, 
such as viruses and protozoan pathogens, were not recognised, or could not 
be tested for, at the time. This does not, however, imply that the cases dis-
cussed in the next section are irrelevant with respect to the cyanotoxin risk.

Section 5.1.1 summarises evidence for the occurrence of toxigenic cya-
nobacteria in drinking-water sources and cyanotoxins in drinking-water 
distributed to consumers. It also provides data on human drinking-water-
related poisoning events that have been documented adequately enough to 
provide reasonable indication that cyanotoxins were the causative agent 
of the poisonings. For further overview, readers are referred to the follow-
ing publications: Harding and Paxton (2001); Chorus (2005); Codd et al. 
(2005); Falconer (2005); Falconer and Humpage (2005); Funari and Testai 
(2008); Hudnell (2008); Buratti et al. (2017). Section 5.1.2 gives guid-
ance on assessing the risk of exposure to cyanobacteria or their toxins in 
drinking-water.

The cases discussed in the following sections demonstrate, firstly, that 
cyanotoxins in drinking-water sources and/or finished drinking-water are 
a worldwide phenomenon. Secondly, they also highlight that, depending on 
the level of contamination and the treatment processes employed, the tox-
ins can contaminate treated drinking-water. Thirdly, they show that where 
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treatment is insufficient or overwhelmed by a massive bloom, toxin concen-
trations can significantly exceed guideline values (GVs) in drinking-water.

5.1.1  Evidence of illness from exposure 
to cyanobacteria in drinking-water

All reports to date reporting symptoms have only been associated with the 
toxins MC or CYN. However, some of the human effects ascribed to the 
presence of cyanotoxins in drinking-water, such as gastrointestinal illness 
and pneumonia, may well be due to other, less well-described, cyanobacte-
rial metabolites (see section 2.10) as well as bloom-associated pathogens 
or their metabolites. Furthermore, where blooms were treated with copper 
sulphate, high copper concentrations may be an explanation for symptoms 
such as diarrhoea, vomiting, stomach cramps and nausea; however, this 
would require concentrations above the range of 1–2mg/L at which it is 
used as an algicide (see WHO (2017) for a discussion of copper toxicity).

As discussed above, where cyanobacterial blooms in the source water 
and illnesses are observed at the same time, the obviousness of the bloom 
or scums makes it suggestive to presume cyanobacteria as the aetiologic 
agent. However, substantiating this with data is challenging as it requires 
analysing water samples taken when patients were exposed, and in the pub-
lished case studies, this has very rarely been accomplished. Also, even if 
the cyanobacteria and their metabolites themselves are not the direct cause 
of the illness, the true aetiology may be closely linked to the bloom, for 
example, pathogens associated with the bloom (see, e.g., Berg et al., 2009). 
For effectively targeting measures to ensure or improve water quality, it is 
important to understand cause–effect relationships, particularly whether 
or not drinking-water was the actual cause. Illness suspected to be due to 
drinking-water requires a detailed investigation so that steps can be ratio-
nally applied to prevent such occurrences in future. While such follow-up 
investigations may fail to clearly identify a causative agent for observed 
illness, they will serve to identify water quality deficits and risks of events 
causing contamination hazardous to health.

5.1.1.1  Examples of potentially hazardous cyanotoxin 

concentrations in finished drinking-water

Local knowledge about the hazardous nature of cyanobacterial scums 
appears to have existed in some regions with eutrophic, bloom-ridden 
waterbodies for a long time, as discussed in Chapter 1. Scientific screening 
of occurrence began in the wake of emerging awareness of cyanobacterial 
toxicity in the 1980s. At this time, screening often followed deaths of farm 
animals and relied only on mouse bioassays to evaluate toxicity because 
methods for the chemical analysis of known toxins only became available 
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from the later 1980s onwards. Since then, surveys have been conducted 
in many parts of the world, including in drinking-water. A summary of 
findings from a range of relatively detailed studies is provided below. Less 
extensive reports on cyanotoxin occurrence have come from Brazil, Europe, 
New Zealand, China, Thailand and Africa (Chorus, 2005; Codd et al., 
2005). For exemplary data on cyanotoxin occurrence in a variety of water-
bodies, see Chapter 2.

• One of the first surveys specifically targeting drinking-water sources 
was conducted in 1991 in the Murray–Darling Basin, Australia, which 
is a major agricultural region that relies on its rivers for irrigation 
and drinking-water supply (Baker & Humpage, 1994): Mouse bioas-
says were performed on 231 cyanobacterial grab samples from sites 
across the Basin. Approximately 60% of samples were from potential 
drinking-water sources (rivers, lakes, reservoirs). Mouse bioassays 
showed that 24% of samples were neurotoxic and a further 18% were 
hepatotoxic, thus demonstrating a need to ensure sufficiently effective 
drinking-water treatment.

• Low concentrations of MCs were detected in 15 finished  
drinking-water samples collected during the fall of 1992 from two 
Canadian water treatment plants (0.09–0.18 μg/L MC-LR equivalent 
in a protein phosphatase inhibition assay (Lambert et al., 1994).

• A survey of MCs in drinking-water utilities across the USA and Canada 
(June 1996 to January 1998; Carmichael, 2001) included over 24 util-
ities, and 677 samples were screened for MCs by ELISA. The samples 
were taken from blooms, plant intakes, plant influents (after preoxi-
dation) and finished water. Although 80% of samples contained MC 
levels above the detection limit of 0.02 μg/L, only two finished water 
samples showed MC concentrations above 1 μg/L. These occurred 
in two of the three treatment plants that were facing significant MC 
challenges at the time of sampling in July 1997: at plant CM-1, MC 
concentrations at the intake were >1000 μg/L and 8 μg/L in the fin-
ished water, respectively. At plant IXC-3, the intake contained just 
over 2 μg/L MCs and the finished water contained about 1.3 μg/L. 
Plant CM-1 utilised prechlorination and granular activated carbon, 
whereas plant IXC-3 only added ammonium and chlorine to other-
wise untreated source water (Carmichael, 2001).

• Cyanotoxin surveys in Florida in 1999 and 2000 (Burns, 2008) of sur-
face water sources and finished waters collected 167 samples, of which 
88 contained cyanotoxins (MCs, ATX, CYN). MCs were the most 
commonly found toxins, occurring in both pretreatment and posttreat-
ment waters. Concentrations in the latter ranged from below detec-
tion to 12.5 μg/L. Three finished water samples contained ATX up 
to 8.46 μg/L, whereas nine finished water samples contained CYN at 
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concentrations of 8.1–97 μg/L. A survey of 52 source and finished water 
samples from two drinking-water treatment plants in Queensland, 
Australia, found that only two samples of finished water contained 
traces (<0.05 μg/L) of STX when the source waters contained up to 17 
μg/L STX. The authors concluded that conventional drinking-water 
 treatment (flocculation, sedimentation, PAC during high toxin load, 
sand filtration and chlorination) removed 99.9% of total STX (free and 
cell-bound) from water containing a toxic Anabaena circinalis bloom 
(Hoeger et al., 2004).

• During the summer of 2003, MCs were detected at low levels (0.15–0.36 
μg/L) in 30 of 77 finished water samples from 33 US drinking-water 
treatment plants in Northeastern and Midwestern USA. However, 
only relatively low concentrations (0.15–5.6 μg/L) were detected in 87 
of 206 raw water samples from the same plants (Haddix et al., 2007).

• CYN was detected (1.3 and 8.6 μg/L) during March 2007 in finished 
waters of two conventional treatment plants, as well as throughout the 
combined distribution system, on Kinmen Island, Taiwan (15 tap sam-
ples ranging from 0.7 to 2.2 μg/L), when the plants were challenged by 
high CYN levels in the raw water (0.7 and 36 μg/L; Yen et al., 2011).

• In another Canadian plant Zamyadi et al. (2012) detected up to 10 
μg/L MCs in clarifier supernatants and up to 2.5 μg/L in the fin-
ished chlorinated drinking-water during the bloom seasons (June to 
October) of 2008, 2009 and 2010.

• MCs have also been detected in conventionally treated drinking-water  
(with flocculation, sedimentation, sand filtration, chlorination) in 
Saudi Arabia (range 0.33–1.6 μg/L over 8 monthly samples during 
May to December 2007; Mohamed & Al Shehri, 2009) and Egypt in 
May 2013 (up to 3.8 μg/L; Mohamed et al., 2015; Mohamed, 2016), 
and also in Algeria (up to 6.3 μg/L during a bloom in 2013, treatment 
process not reported; Saoudi et al., 2017).

• In Australia, during the summer of 2013–2014, a bloom of Raphidiopsis 
(Cylindrospermopsis) raciborskii occurred in the water supply of Mount 
Isa, Queensland. The water supply was treated by passage through a 
reed bed filtration lagoon before chlorination. R. raciborskii blooms 
were common in the supply reservoirs (Lake Moondara and Lake Julius), 
but this was the first time a bloom had occurred in the filtration lagoon. 
R. raciborskii numbers peaked at 425 000 cells/mL in the lagoon and 
42 000 cells/mL in the finished water storage reservoir. The maximum 
toxin levels detected in treated water were 2 μg/L CYN in the storage 
reservoir and 0.5 μg/L CYN in the town reticulation. Chlorination was 
increased to maintain a residual and later a mobile ultrafiltration unit 
was installed. Cell counts and toxins in the treated water returned to 
safe levels after the ultrafiltration unit was installed (Janet Cumming, 
Queensland Department of Health, pers. comm., January 2017).
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• In August 2014, the city of Toledo, Ohio, total MCs occurred in the 
city’s finished drinking-water at levels up to 2.5 μg/L. A “do not drink 
or boil advisory” was issued to nearly 500 000 consumers. A cya-
nobacterial bloom near Toledo’s drinking-water intake located on 
Lake Erie was the source of the MCs. The advisory was lifted 2 days 
later after optimisation of permanganate and PAC treatments led to 
the reduction of the MC concentrations to levels below 1 μg/L in all 
 samples (US EPA, 2015).

Options for control of cyanobacterial occurrence and cyanotoxin removal 
through effective treatment are described in Chapters 7–10.

5.1.1.2  Case reports giving evidence of short-term health 

risks from acute exposure through drinking-water

Some case studies provide evidence that exposure to cyanobacterial toxins 
in drinking-water can lead to illness and even death. Due to the inabil-
ity to identify the toxins at the time, the earliest reported cases offer only 
circumstantial evidence of a link between exposure to cyanotoxins and 
human illness.

• Gastroenteritis associated with cyanobacteria was observed in the 
population of a series of towns along the Ohio River in 1931. Low 
rainfall had allowed the water of a side branch of the river to develop 
a cyanobacterial bloom which was then washed into the main river. 
As this water moved downstream, a series of outbreaks of illness were 
reported (Tisdale, 1931).

• In Harare, Zimbabwe, children living in an area of the city supplied 
from a particular water reservoir developed gastroenteritis each year 
at the time when a natural bloom of Microcystis was decaying in the 
reservoir. Other children in the city with different water supplies were 
not affected (Zilberg, 1966).

• In an incident in Sewickley, Pennsylvania, 62% of the population 
connected to a filtered, chlorinated drinking-water supply developed 
symptoms of gastroenteritis within a period of five days. The water, 
sourced from groundwater contaminated by an intrusion from the 
Ohio River, was treated and then held in open holding reservoirs 
prior to distribution. One reservoir had over 100  000 cells/mL of 
Schizothrix calcola, Plectonema, Phormidium and Lyngbya in the 
open water. The reservoir had just been treated with copper sulphate 
when the poisoning event occurred (Lippy & Erb, 1976). Although 
not known to be toxic at the time, Schizothrix, Phormidium and 
Lyngbya have all since been shown to be toxin producers elsewhere 
(Falconer, 2005).
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While these reports note that the health effects could not be attributed to 
infectious agents, a caveat on this conclusion is that many of the aetiologic 
agents leading to the described symptoms were unknown at the time (e.g., 
viruses) or not detectable with sufficient sensitivity by a standard laboratory 
(Giardia, Cryptosporidium). The following later study addressed many of 
these issues.

• An outbreak, with a high death rate attributed to cyanobacterial 
toxins in drinking-water, occurred in the Paulo Alfonso region of 
Bahia State in Brazil following the flooding of the newly constructed 
Itaparica Dam reservoir in 1988. Some 2000 gastroenteritis cases 
were reported over a 42-day period, and 88 deaths, mostly children, 
occurred (Teixera et al., 1993). Blood and faecal specimens from gas-
troenteritis patients were subjected to bacteriological, virological and 
toxicological testing, and drinking-water samples were examined for 
microorganisms and heavy metals. No infectious agent was identified, 
and cases occurred in patients who had been drinking only boiled 
water. The cases were restricted to areas supplied with drinking-water 
from the dam. Clinical data and water sample tests were reviewed, 
and it was concluded that the source of the outbreak was water from 
the dam and that a toxin produced by cyanobacteria (Anabaena and 
Microcystis in high densities) was the most likely responsible agent, 
although the toxin could not be identified.

A closer association between human illness and exposure to cyanotoxins is 
demonstrated when the cyanobacteria were shown to be toxin producers, as 
illustrated in the following examples:

• In Armidale, Australia, the water supply reservoir had been moni-
tored for blooms of toxic Microcystis for several years, and MC-YM 
had been identified in these blooms. When a particularly dense bloom 
occurred, the water supply authority treated the reservoir with 1 mg/L 
of copper sulphate, which lysed the bloom, possibly causing a pulse 
of toxin release from the cells. An epidemiological study of the local 
population indicated subclinical liver damage occurring simultane-
ously with this treatment of the bloom (see Box 5.2).

• A more severe outbreak of cyanobacterial toxicity in a human popula-
tion occurred on Palm Island, off the north-eastern coast of Australia 
in 1979. Complaints of bad taste and odour in the water supply were 
attributed to a cyanobacterial bloom, and the authorities therefore 
treated the reservoir with copper sulphate. Within a week, numerous 
children developed severe hepatoenteritis, and a total of 140 children 
and 10 adults required hospital treatment (Byth, 1980). A CYN-
producing strain of Raphidiopsis raciborskii was later identified as 
the agent most likely to be responsible for this episode (see Box 5.3).
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BOX 5.2: TOXIC MICROCYSTIS IN THE ARMIDALE 

WATER SUPPLY RESERVOIR AND PUBLIC HEALTH

At the time of this study, the city of Armidale, New South Wales, Australia, 

had a drinking-water supply from a eutrophic reservoir which had been expe-

riencing repeated blooms of cyanobacteria since the early 1970s. 

In 1981, a particularly extensive toxic bloom of Microcystis aeruginosa was 

monitored during its development. During the bloom, complaints of bad taste 

and odour in the drinking-water were received, leading to copper sulphate 

treatment of the reservoir. The toxicity of the bloom was monitored by mouse 

bioassay. A toxin had previously been isolated from Malpas Dam and partially 

described, which was later characterised as MC-YM (Botes et al., 1985). This 

event was used as the basis for a retrospective epidemiological study of liver 

function in the population consuming the water, compared with a population 

in the same region supplied from other reservoirs. The data for the activity 

of plasma enzymes reflecting liver function were obtained for patients hav-

ing blood samples examined at the Regional Pathology Laboratory for the 

5 weeks prior to the bloom, the 5 weeks of peak bloom and its termination 

and for 5 weeks after that. The data were then separated into those from 

patients having used the Malpas drinking-water supply and those using other 

supplies. 

Serum enzymes reflecting liver function in patients consuming drinking-water  

from Malpas Dam or from other supplies included GGT = γ-glutamyl trans-

ferase; ALT = alanine aminotransferase; AST = aspartate aminotransferase 

and AP = alkaline phosphatase (Falconer et al., 1983). As shown in the figure 

above (redrawn from Falconer et al., 1983), γ-glutamyl transferase in the 
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blood of the group using the Malpas Dam water supply during the peak of the 

bloom and its lysis with copper sulphate was significantly higher than that in 

the same population before and after the bloom, and higher than that in the 

other population served by different water supplies. The clinical record gave 

no evidence of an infectious hepatitis outbreak or disproportionate alcohol-

ism (Falconer et al., 1983). While the mean increase in γ-glutamyl transferase 

activity was indicative of minor liver toxicity, some individuals within the 

population studied showed highly elevated enzyme activity, indicating sub-

stantial liver damage. This enzyme has also been shown to be elevated as a 

result of Microcystis toxicity in experimental studies with pigs and rodents, 

where it is used as an effective marker for liver injury (Fawell et al., 1993; 

Falconer et al., 1994).

BOX 5.3: PALM ISLAND MYSTERY DISEASE

In 1979, there was a major outbreak of hepatoenteritis among the chil-

dren of an Aboriginal community living on a tropical island off the coast 

of Queensland, Australia. Altogether 140 children and 10 adults required 

treatment, which was provided by the local hospital for less severe cases and 

by the regional hospital on the mainland for severe cases possibly requiring 

intensive care. Diagnostic information included a detailed clinical examina-

tion showing malaise, anorexia, vomiting, headache, painful liver enlarge-

ment, initial constipation followed by bloody diarrhoea and varying levels of 

severity of dehydration. Urine analysis showed electrolyte loss together with 

glucose, ketones, protein and blood in the urine, demonstrating extensive 

kidney damage. This was the major life-threatening element of the poison-

ing. Blood analysis showed elevated serum liver enzymes in some children, 

indicating liver damage. Sixty-nine percent of patients required intravenous 

electrolyte therapy and, in the more severe cases, the individuals went into 

hypovolaemic/acidotic shock. After appropriate treatment, all the patients 

recovered (Byth, 1980). 

Examination of faecal samples and foods eliminated a range of infec-

tious organisms and toxins as possible causes for the outbreak and failed 

to identify the cause, hence the name “Palm Island Mystery Disease”. The 

affected population, however, all received their drinking-water supply from 

one source, Solomon Dam. Families on alternative water supplies on the 

island were not affected by the disease. Prior to the outbreak of the ill-

ness, a bloom of cyanobacteria occurred in Solomon Dam. The bloom 
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discoloured the water and gave it a disagreeable odour and taste. When 

the bloom became dense, the dam reservoir was treated with 1 ppm of 

copper sulphate (Bourke et al., 1983). Clinical injury among consumers 

on that water supply was reported the following week. In subsequent 

investigations, the organisms from the dam were cultured and adminis-

tered to mice. Mice treated with Raphidiopsis (Cylindrospermopsis) racibor-

skii culture slowly developed (over several days) widespread tissue injury 

involving the gastrointestinal tract, the kidney and the liver (Hawkins et al., 

1985). The widespread tissue damage and delayed effects are quite differ-

ent to those following Microcystis aeruginosa administration (Falconer et al., 

1981). Subsequent monitoring of the blooms in the dam – well after the 

 outbreak – identified R. raciborskii as the cause of the blooms, with sea-

sonal cell concentrations of up to 300 000 cells/mL of water. This organism 

did not form scums and has the highest cell concentrations well below 

the water surface. In order to reduce bloom formation, the responsible 

authorities later introduced destratification of the reservoir (Hawkins & 

Griffiths, 1993). Subsequent research on toxins produced by R. raciborskii 

has identified the cytotoxic alkaloid cylindrospermopsin.

5.1.1.3  Epidemiological studies addressing health risks from 

chronic, low-dose exposure through drinking-water

While a number of epidemiological studies of the possible association of 
MC exposure with cancer incidence are available, all of them have used 
retrospective estimates of MC exposure. However, as discussed at the 
beginning of this chapter, such retrospective approaches face pronounced 
uncertainty regarding both the concentrations of cyanotoxins and those 
of any other pollutants to which the population was exposed during the 
formative stages of their cancer. In fact, the occurrence of other pollutants 
in surface waterbodies with heavy cyanobacterial blooms is quite likely, as 
blooms are caused by heavy nutrient loads and these are often associated 
with substantial loads of pesticides and/or other contaminants from agri-
culture and/or poorly treated wastewater. In addition, demographic infor-
mation was usually not provided so it is not clear whether dietary, genetic 
and/or lifestyle factors associated with cancer were adequately controlled 
in the analyses. It is therefore important that where an observed health 
impairment is connected to cyanobacterial blooms (as the most prominent 
and visible phenomenon), health authorities also look for other potential 
causative agents. In consequence, it is currently not possible to show cau-
sation or to derive concentration–response data from the epidemiological 
studies available to date. While for this reason they cannot serve as basis for 
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deriving guideline values (GVs) (see above and Chapter 2), they are of some 
indicative value and are therefore summarised as follows:

• The possible link between chronic exposure to cyanotoxins and the 
incidence of human cancer has been studied in China and the USA. The 
incidence of hepatocellular carcinoma (HCC) in China has historically 
been one of the highest in the world, at least in part due to two proven 
risk factors: infection with hepatitis B virus (HBV), which increases 
the risk almost 10-fold (Yu et al., 2002), and intake of aflatoxin B1 
from foods infected with moulds, which increases the risk in HBV-
positive individuals by a further threefold (Lian et al., 2006). However, 
the uneven geographic distribution of HCC incidence in China could 
not be entirely explained by these factors and so other environmental 
factors were investigated (Yu, 1989; Yu, 1995; Yu et al., 2001). The 
source of a person’s drinking-water was also found to be a signifi-
cant risk factor with people drinking pond or ditch water having about 
10-fold higher incidence of HCC when compared to those drinking 
deep well water. MCs were found to occur seasonally in water sources 
of Haimen city, China, with a summer survey detecting MCs in 17% 
of pond/ditch water samples, 32% of river water samples, 4% of shal-
low well and 0% of deep well water samples, with averages of 0.10, 
0.16 and 0.07 μg/L for the first three, respectively (Ueno et al., 1996). 
Similar concentrations were found in a parallel study using different 
analytical methods (Harada et al., 1996). These concentrations seem 
quite low for untreated raw waters and are more similar to concentra-
tions observed elsewhere in the world in finished waters (see examples 
given above). Nevertheless, based on the average MC contents of river 
and pond/ditch samples, Ueno et al. (1996) provide limited data that 
would lead to an estimated average daily exposure in the range of 0.2 
μg/person during the summer months (note that the authors report 
0.2 pg/person, but this is clearly a typographical error). Later studies 
from China have associated slightly higher exposure rates from food 
and water combined (0.36 to 2.03 μg/person per day) with detectable 
concentrations of serum MCs and increased levels of liver enzymes in 
the serum (Chen et al., 2009; Li et al., 2011), see below.

• A later case control study in Haimen city, China, did not find an asso-
ciation with drinking-water sources (Yu et al., 2002). However, this 
study did not analyse for the prevalence of aflatoxin-B1 antigens in 
the study population. There is evidence from animal studies that MC 
acts synergistically with aflatoxin tumour initiation to increase rates 
of liver cancer (Sekijima et al., 1999; Lian et al., 2006), whereas this 
may not be the case for HBV-related HCC (Lian et al., 2006).

• An increase in serum markers for hepatotoxicity (AST, ALP, ALT 
and lactate dehydrogenase, LDH) was observed in a cohort study of 
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Chinese fishermen exposed to MC-RR, MC-YR and MC-LR in Lake 
Chaohu through the consumption of contaminated water and food 
(Chen et al., 2009). The fishermen had a median serum MC concen-
tration of about 0.2 ng/mL and an estimated daily intake of MC of 
2.2–3.9 μg MC-LR equivalents (Chen et al., 2009). The relative pro-
portion of the three variants in the fishermen’s blood were similar to 
those in the carp and duck tissues used as typical food.

• Li et al. (2011) conducted a cross-sectional study assessing the rela-
tionship between liver damage in children (n > 1000) and MC levels in 
drinking-water and aquatic food (carp and duck) in China. MC lev-
els measured in three local sources of drinking-water were classified in 
three groups, as negative controls, low and high exposure, with chil-
dren in the low-exposure group consuming an estimated 0.36 μg/day 
and high-exposure children consuming 2.03 μg/day. Mean serum levels 
of MC-LR equivalents in the groups were below the detection limit in 
the negative control, 0.4 in the low-exposure and 1.3 μg/L in the high-
exposure groups, with mean detection rates of 1.9%, 84.2% and 91.9%, 
respectively (1.9% in the control group caused by 1 MC-positive among 
54 serum samples). MC was associated with increases in aspartate ami-
notransferase (AST) and alkaline phosphatase (ALP), but not ALT or 
γ-glutamyl transferase (GGT). The odds ratio (OR) for liver damage 
associated with MC was 1.72 (95% CI: 1.05–2.76), after adjustment 
for HBV infection and use of hepatotoxic medicines as confounding 
factors. HBV infection was a greater risk for liver damage in children.

Although these findings suggest a potential role of MCs in the high 
HCC incidences, they cannot be used, as was proposed by Ueno et al. 
(1996), to derive a guideline for MCs in drinking-water because (i) 
although the authors demonstrated an association between the type 
of water consumed by people living in high HCC areas and the pres-
ence of MCs in that water, they derive no quantitative relationship 
between MC exposure and cancer incidence; (ii) MC concentrations 
in similar waters in low HCC areas were not determined, so the asso-
ciation remains only suggestive; and (iii) as noted above, the high 
incidence of HCC in certain regions of China has also been linked 
to high hepatitis B infection rates and exposures to aflatoxin B1, so 
it would not be correct to extrapolate data from this population to 
other populations not exposed to these additional risk factors. These 
results about the possible, although not proven, higher HCC inci-
dence are consistent with the activity of MC-LR as a tumour pro-
moter, increasing the potency of known tumour initiators such as 
aflatoxin B1 (see section 2.1 and below).

• Another Chinese study has looked at the association between the inci-
dence of colorectal cancer and drinking-water source (Zhou et al., 2002). 
In this case, 408 cases of colon or rectal cancer were retrospectively 
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categorised by the source of drinking-water consumed by the patients 
(well, tap, river, pond). The relative risk of developing colorectal can-
cer was almost fourfold higher in consumers of pond or river water. 
Average and maximal concentrations of MCs were reported as follows: 
river waters (average 0.141 μg/L, maximum 1.083 μg/L, n = 69), pond 
waters (0.106, 1.937 and 35), well waters (0.004, 0.009 and 12) and tap 
waters (0.005, 0.011 and 17). A positive association was found between 
MC concentration and colorectal cancer incidence, although as with 
the other studies, this association remains only suggestive.

• Svirčev et al. (2009; 2013) report an observational study that found 
an elevated incidence of primary liver cancer in regions served by 
drinking-water reservoirs that are subject to frequent summer blooms 
of cyanobacteria. However, no information on cyanotoxin exposures 
was presented.

• In the USA, the incidences of primary hepatocellular carcinoma 
(HCC) and colorectal cancer have been evaluated in relation to the 
study population’s likely water source – surface water or ground water 
(Fleming et al., 2002). Only weak (HCC) or no (colorectal cancer) 
associations were found in these pilot studies.

As discussed above, such studies cannot be used for the derivation of GVs 
for safe levels in drinking-water. Because of the limitations of the human 
epidemiology studies, the best available animal studies have been used to 
derive the lowest, most protective GVs that are scientifically supported by 
robust quantitative evidence (see Chapter 2).

5.1.2  Assessing the risk of exposure  
to cyanotoxins through drinking-water 
and short-term responses to occurrence

A modern water treatment plant equipped with an effective filtration sys-
tem for physical removal of cells as well as the removal of dissolved toxins 
should remove cyanotoxins to below hazardous levels, provided it is oper-
ated with attention to avoid disruption of cyanobacterial cells and release 
of dissolved toxin (see Chapter 10). However, this requires it to be validated 
for meeting this target. Also, many of the world’s drinking-water supply 
systems and treatment plants are more rudimentary, and large populations 
may depend upon such vulnerable water supplies or on untreated surface 
waters for drinking and preparing food.

For exposure assessment, particularly for MCs and CYNs, it is impor-
tant to differentiate between daily exposure for significant parts of a life-
time and short-term episodic exposure. If concentrations exceed the values 
intended for lifetime daily consumption of drinking-water, but are below the 
short-term guideline values (GVs) given in Table 5.1 (or nationally derived 
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standards; Table 5.3), use of the water supply for drinking may continue, 
and action may first focus on assessing which measures are locally most 
appropriate to ensure better control of the cyanotoxin concentrations. These 
might include addressing the cause for waterbody conditions leading to 

Table 5.3  Standards, guideline values, maximum acceptable concentrations or maximum 
values set by a number of countries for cyanotoxins in drinking-water

Cyanotoxin Type of value Numerical value Country 

Microcystins Guideline value

Standard

Maximum acceptable 
concentration

Standard

Standard

Provisional maximum 
value

Restrictions on water 
use

Ban on water use

Standard

Standard

Standard

Standard

Guideline value

Provisional maximum 
value

1.3 μg/L MC-LR 
toxicity equivalents

1 μg/L MCs

1.5 μg/L MC-LR

1 μg/L MC-LR

1 μg/L sum of MCs

1.3 μg/L MC-LR 
equiv.

>1.0 μg/L sum of 
MCs

>10.0 μg/L sum of 
MCs

1 μg/L MC-LR

1 μg/L sum of MCs

1 μg/L MC-LR

1 μg/L sum of MCs

1 μg/L MC-LR

1 μg/L

Australia

Brazil

Canada

Czech Republic

France

New Zealand

Finland

Finland

Singapore

Spain

Uruguay

Turkey

South Africa

New Zealand

Nodularin

Cylindrospermopsin

Health Alert Level

Guideline value

Provisional maximum 
value

Health Alert Level

1 μg/L

1 μg/L

1 μg/L

3 μg/L

Australia

Brazil

New Zealand

Australia

Saxitoxins
(as saxitoxin toxicity 
equivalents)

Guideline value

Provisional maximum 
value

Provisional maximum 
acceptable 
concentration

3 μg/L

3 μg/L 

3.7 μg/L

Brazil

New Zealand

Canada

Anatoxin-a Provisional maximum 
value (valid also for 
homoanatoxin-a)

Provisional maximum 
value

1 μg/L

1 μg/L

New Zealand

New Zealand

Source: Data from Ibelings et al. (2014).
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blooms (which may or may not be feasible in the short term; see Chapters 7 
and 8), shifting the raw water offtake to avoid blooms (Chapter 9) or imple-
menting additional treatment steps (Chapter 10). Allowing such flexibility 
for the locally most effective response if a GV intended for lifetime daily 
exposure is exceeded is particularly pertinent to short-lived bloom situa-
tions if past experience shows that they are likely to disperse within a few 
days, thus no longer causing elevated cyanotoxin concentrations. The short-
term GVs are intended for periods of about 2 weeks and are not intended 
to endorse repeated seasonal exceedances of the lifetime GV. Where water 
with concentrations ranging up to these values is distributed, it is important 
to inform the population about this situation so that specifically vulnerable 
groups may take specific measures, such as using bottled water. This may 
be relevant, for example, for hepatitis patients in the case of hepatotoxins 
and is particularly important for those responsible for bottle-fed infants 
because the short-term drinking-water GV is based on exposure of adults. 
Since infants and children can ingest a significantly larger volume of water 
per body weight (e.g., up to 5 times more drinking-water/kg bw for bottle-
fed infants compared to an adult), as a precautionary measure WHO recom-
mends that alternative water sources such as bottled water are provided for 
bottle-fed infants and small children when MC concentrations are greater 
than 3 μg/L for short periods (WHO, 2020).

5.1.2.1  Defining national or regional cyanotoxin 

levels requiring action

As discussed at the beginning of this chapter, when setting national stan-
dards or defining threshold concentrations that should trigger specific 
action, it is important to consider whether the WHO GVs given in Table 
5.1 and used in the Alert Levels Framework (ALF) below are locally or 
nationally appropriate, or whether they would better be adapted to local 
or national circumstances. Besides differences in the ratios between toxin 
concentration and the indicators used to trigger the alert, such circum-
stances may include the amount of drinking-water consumed and the frac-
tion of cyanotoxin allocated to uptake through drinking-water in relation 
to other exposure pathways (see sections 5.2–5.5). Further considerations 
include the extent and duration of cyanotoxin exposure in relation to other 
hazards: where public health impacts from exposure to other hazards (in 
particular pathogens) are substantial and toxic cyanobacterial blooms are 
short-lived events, a decision might be to tolerate somewhat higher concen-
trations (possibly only as an interim solution) in order to focus available 
capacity and resources on controlling exposure first to those hazards which 
are causing the highest risks for health. Such considerations are particu-
larly important when setting national or local water quality regulations, 
because where other quality issues are likely to have a higher public health 
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impact, enforcing a low cyanotoxin standard may distract funding from 
investments needed to remediate the more pressing public health problems.

A number of countries have implemented concentrations triggering action 
for a range of cyanotoxins (see examples in Table 5.3). Particularly for cya-
notoxins other than MCs, they have typically not been set as standards in 
the legal sense of values that all water suppliers in the country need to meet 
in order to be in compliance with regulations but rather guideline values 
(GVs) or “Health Alert Levels” that are used to trigger a notification to the 
health authority, further assessment of the situation and/or other manage-
ment responses.

5.1.2.2  Alert Levels for short-term responses to toxic 

cyanobacteria in drinking-water supplies

An Alert Levels Framework (ALF) is a monitoring and management action 
sequence, presented as a “decision tree” in Figure 5.2, which water treat-
ment plant operators and managers can use to provide an immediate, grad-
uated response to the onset and progress of a cyanobacterial bloom. An 
ALF was first developed in Australia in the 1990s and then introduced in 
the first edition of “Toxic Cyanobacteria in Water” in 1999 (Chorus & 
Bartram, 1999). Since then, this approach has been widely used, typically 
with some adaptation to local or national conditions (Ibelings et al., 2014). 
Circumstances and operational alternatives may vary depending upon the 
source of the water supply, as well as the analytical and water treatment 
facilities available. The ALF presented here is therefore intended as a gen-
eral framework, recognising that it may be appropriate to adapt specific 
Alert Levels and actions to suit local conditions. This includes the choice 
of parameters used to trigger alerts: as discussed at the beginning of this 
chapter and in more detail below, other parameters such as cell numbers or 
turbidity readings may be used if they are periodically “calibrated” against 
toxin concentrations.

One important aspect of an ALF for potentially toxic cyanobacteria is 
that this specific hazard often occurs with some predictability. In many 
surface waters, cyanobacterial blooms (and phytoplankton blooms in gen-
eral) follow a seasonal pattern, or they occur following distinct events such 
as drought or heavy rainfall (highly dependent on local circumstances). It 
is therefore important to keep any records that are taken when following 
the ALF. These data can serve to significantly refine the ALF for individual 
water supplies (see also Chapter 10). This applies equally to patterns of 
spatial heterogeneity (see Chapter 3) of cyanobacterial blooms in individual 
waterbodies. The formation and location of surface scum can potentially be 
anticipated, although with some uncertainty, for a given waterbody. Since 
accumulations of cyanobacteria next to sensitive sites, such as raw water 
offtakes, are highly relevant, these sites need to be included in the ALF.
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The ALF decision tree uses three “threshold” levels to guide the  assessment 
of a potentially toxic cyanobacterial bloom, with appropriate actions and 
responses. The sequence of response levels is based upon the initial detec-
tion of cyanobacteria at the Vigilance Level, progressing to moderate to 
high cyanobacterial biovolumes and possible detection of toxins above life-
time GV concentrations at Alert Level 1. Alert Level 1 conditions require 
decisions to be made about the suitability of treated drinking-water, based 
on the efficacy of water treatment and – if access to toxin analysis is avail-
able – the concentrations of toxins detected.

An important issue regarding the parameters triggering immediate 
responses is confidence in the reliability of the data, particularly for toxin 
analyses. This is supported by quality assurance of the laboratories pro-
viding the data, for example, through accreditation or certification (see 
Chapters 11–14). At very high cyanobacterial biomass levels in raw water, 
the potential health risks associated with treatment system failure, or the 
inability to implement effective treatment systems at all, are significantly 
increased. This justifies progression to a situation of elevated risk, denoted 
by Alert Level 2 conditions. The framework has been developed largely 
from the perspective of the drinking-water supply operator, but is also 
important for the manager of the raw water supply. The actions accompa-
nying each level cover different types of responses, such as additional sam-
pling and testing, operational options, consultation with health authorities 
and informing the public through media releases. An important part of 
the framework at various stages is consultation with other agencies, par-
ticularly health authorities that generally have responsibility to oversee the 
safety of drinking-water.

The Vigilance Level encompasses the possible early stages of bloom devel-
opment, when cyanobacteria are first detected in samples of the waterbody 
or raw water intake. Thresholds that may be used to trigger the Vigilance 
Level include elevated turbidity (e.g., Secchi depth readings of less than 2 m), 
detection of cyanobacteria by microscopy, particularly of potentially toxic 
species and, in some cases, musty tastes and odours. If the Vigilance Level is 
exceeded, it is appropriate to increase the sampling frequency of the raw water 
to at least once a week, so that potentially rapid changes in cyanobacterial 
biomass can be detected. In contrast, visible scums, particularly if associated 
with health complaints or animal deaths, immediately trigger Alert Level 1.

Elevated turbidity, with Secchi depth readings below 2 m due to greenish 
discoloration, or a correspondingly high online turbidity reading (e.g., at 
the raw water intake), serves as a first indication of bloom development, 
provided microscopic examination confirms this to be – at least partially 
– caused by cyanobacteria. Reduced water transparency can be seasonally 
caused by other phytoplankton, such as diatoms, green algae or eugleno-
phytes. Therefore, for efficient management, microscopy skills and some 
taxonomic expertise (sufficient to recognise cyanobacteria on the genus 
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level; see Chapter 13) are highly valuable. The detection of more than 10 
colonies, or more than 50 filaments, of a cyanobacterium per 1 mL water 
sample is suggested as the trigger value for the Vigilance Level, although 
this threshold may be adapted according to local knowledge and prior his-
tory of occurrence. Taste and odour may become noticeable in the supply 
as the cyanobacterial population develops above the Vigilance Level and 
thus serve as a warning signal if they do occur, but their absence does not 
indicate the absence of toxic cyanobacteria (see section 2.8).

Alert Level 1 thresholds are defined in terms of cyanobacterial biomass, 
estimated as a biovolume of 0.3 mm³/L or alternatively as a concentration of 
chlorophyll-a in the range of 1.0 μg/L, provided this chlorophyll is largely from 
cyanobacteria (for details see below). This can be ascertained by using probes 
which also detect phycocyanin – a pigment only found in  cyanobacteria – or 
by qualitatively checking with microscopy. Qualitative microscopy is recom-
mended in either case for obtaining visual information about the phytoplank-
ton composition and the genera of cyanobacteria present.

These biomass indicators correspond to cyanotoxin concentrations pos-
sibly above the lifetime GVs but most likely well below the short-term GVs 
(i.e., for ATX the health-based reference value and for STX the acute GV). 
Biomass levels up to those corresponding to these short-term values may be 
tolerated in drinking-water for up to 2 weeks, provided the situation assess-
ment and remediation steps taken show that the situation will not last longer, 
the public is informed and remediation measures are initiated. As discussed 
above, this approach provides important leeway for effective management: 
provided cyanotoxin concentrations stay below the Alert Level 2 thresholds, 
funds available may thus be focused on establishing remediation measures 
that avoid blooms or on bringing concentrations in finished waters back to 
below the lifetime guideline value (GV), rather than investing into short-
term measures such as the provision of bottled water for the general popula-
tion or expensive temporary technical remediation measures. Note that, as 
mentioned above, information to sensitive groups and those taking care of 
bottle-fed infants is important under Alert Level 1 conditions.

For CYN concentrations, cyanobacterial biomass can be a poor  indicator, 
as (in contrast to MCs, ATXs and STXs) a large fraction of this toxin often 
occurs extracellularly and (in contrast to, e.g., ATXs) degradation in water 
may be slow, particularly at low temperatures (Chapter 2). Therefore, if CYN 
producers (e.g., Raphidiopsis raciborskii in the Americas and Australia and 
Aphanizomenon spp. in Europe) are, or have been, present, analysis of CYNs 
is recommended (see Box 5.1). Regular phytoplankton monitoring (visual, 
via qualitative microscopy) is important for identifying such situations.

Actions to take under Alert Level 1 include an assessment as to whether 
water treatment plant intakes can be adjusted or other physical actions can 
be implemented to reduce the cyanobacterial challenge; whether the water 
treatment system(s) available are effective in reducing toxin concentrations 
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to acceptable levels (see Chapter 10) and whether waterbody conditions 
render a prolonged bloom likely or it is rather expected to be an occasional, 
short-lived event (Chapters 7 and 8). Cyanotoxin analysis of the raw and 
treated water (see Chapter 14) will allow a better assessment of the situ-
ation, potentially including adapting the biomass indicator values to the 
toxin content of the local bloom (see below). Alert Level 1 should further 
trigger an assessment of longer-term options to reduce the concentration of 
potentially toxic cyanobacteria in the raw water supply by measures in the 
catchment (see Chapter 7), in the waterbody (see Chapter 8) or in offtake 
management (Chapter 9).

Alert Level 1 conditions further require consultation with health authori-
ties for ongoing assessment of the status of the bloom and of the suitability 
of treated water for human consumption. This consultation is best initiated 
early and should continue after the results of toxin analysis on drinking-
water become available. Clearly, as the biomass of potentially toxic cya-
nobacteria increases in the raw water, so does the risk of adverse human 
health effects, particularly if water treatment systems are insufficient or 
other physical measures such as water treatment plant intake adjustments 
are not available or sufficiently effective. Therefore, ongoing monitoring 
for cyanobacterial biomass and, where possible, of toxin concentrations is 
important. It may also be appropriate to extend the monitoring programme, 
which should be at least weekly in frequency (in hot climates possibly more). 
Monitoring should be designed to establish the spatial variability of the cya-
nobacterial population and of toxin concentration (see Chapters 4 and 11).

An Alert Level 1 situation requires extensive public communication, par-
ticularly about the rationale for transiently tolerating levels above the life-
time GVs. Easing possible concerns of the public may be very important 
during phases with cyanobacterial biomass or toxin concentrations between 
the lifetime and short-term GVs. Media releases and even direct contact 
with consumers via letterbox delivery of leaflets with appropriate advice 
to householders may be appropriate (see Chapter 15 for further guidance). 
It may also be important to explicitly inform government departments, 
authorities and stakeholders with possible interests or legal responsibilities 
(beyond informing the health authority directly responsible for the surveil-
lance of the water supply). Stakeholders may range from farmers needing 
information about possible impacts on livestock potentially exposed to 
blooms to organisations or facilities that treat or care for special “at-risk” 
members of the public (such as kidney dialysis patients, see section 5.4 or 
paediatricians and other health organisations advising parents of bottle-fed 
infants). Chapter 15 gives guidance on public communication.

If Alert Level 1 conditions continue, but toxins or toxicity are not detected 
in cyanobacterial or raw water samples, regular monitoring should none-
theless continue to ensure that toxic strains or species do not develop over 
ensuing weeks or months.
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Alert Level 2 thresholds are defined as cyanobacterial biomass levels at ≥ 4 
mm³/L biovolume, or ≥ 12 μg/L chlorophyll-a (preferably with the presence 
of toxins confirmed by toxin analysis), and describe an established toxic 
bloom with rather high biomass and an elevated probability of scums. For 
CYNs, the caveat is – as for the Alert Level 1 threshold – the persistence of 
dissolved toxin, and regular microscopy is important to ensure that occur-
rence of possible producer organisms is detected on time to trigger chemi-
cal analysis of CYNs (see Box 5.1); alternatively, CYNs may be regularly 
included in the sampling programme.

In the Alert Level 2 situation, the sampling programme will have indi-
cated that the bloom is widespread. Conditions in Alert level 2 correspond 
to cyanotoxin concentrations that may exceed even the short-term guid-
ance values given in Table 5.1 and thus indicate an increased risk of adverse 
human health effects. Once the Alert Level 2 threshold is exceeded, an alter-
native water supply or effective water treatment system becomes urgent, as 
does ongoing monitoring of the performance of the system in place to con-
trol toxin concentrations.

Filtration systems (possibly combined with flocculation–coagulation) may 
remove cell-bound toxins, whereas dissolved toxin is likely to break through 
and require advanced treatment (see Chapter 10). If advanced treatment is 
not available or not sufficiently effective, Alert Level 2 conditions should 
result in the activation of a contingency water supply plan which is appropri-
ate for the operator and the users or community. This may involve switch-
ing to an alternative supply for human consumption, the implementation of 
contingent treatment systems or, in some circumstances, the delivery of safe 
drinking-water to consumers by tanker or in bottles. While hydrophysical 
measures to reduce cyanobacterial growth or intake into the drinking-water 
system may still be attempted in this phase, application of algicides runs the 
risk of exacerbating the problem by causing high concentrations of dissolved 
toxins as a consequence of cell lysis (see Chapter 8).

Where advice is provided to the public not to drink water because of 
a cyanobacterial hazard to human health, it will usually emphasise that 
the water is still suitable for purposes such as washing, laundry and toilet 
flushing. Complete withdrawal of a piped drinking-water supply because of 
a cyanobacterial toxin hazard is not an option because the adverse health 
effects resulting from the disruption of supply (e.g., lack of water for toilet 
flushing, personal and household hygiene and in some situations also for 
firefighting) are likely to substantially outweigh the likely impact of the 
cyanobacterial toxin risk itself.

Monitoring of the bloom should continue in order to determine when the 
bloom starts to decline and normal supply can be resumed. The sequence at 
Alert Level 2 may follow through to deactivation of Alert Level conditions 
with media releases as well as advice to government departments and health 
authorities to confirm this. The collapse of a bloom, or a management 
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action such as the flushing or mixing of a reservoir (Chapter 8), may lead to 
a rapid decline from Alert Level 2 back to Alert Level 1 or below.

Likewise, the sequence might escalate rapidly, bypassing Alert Level 1 to 
Alert Level 2, particularly if adequate monitoring and early warning infor-
mation are not available. Cyanobacterial populations in natural waterbod-
ies may increase by two- to threefold within 2 days (growth rate, μ = 0.3/d; 
see Figure 5.3), especially in hot climates. Monitoring frequency needs to 
take such potentially rapid population growth rates into account.

The basis for deactivating Alert Level 2 and reverting back to Alert Level 
1 or the Vigilance Level will depend on how it was triggered. If it was trig-
gered by biovolumes or chlorophyll-a without cyanotoxin analyses, then 
deactivation can be based on biovolumes or chlorophyll-a. If cyanotoxin 
concentrations have been determined, these take precedence and Alert 
Level 2 should only be deactivated once the cyanotoxin concentrations have 
declined below the short-term guideline values (GVs).

5.1.2.3  Considerations for choosing parameters 

to trigger Alert Levels when adapting 

the Framework to local circumstances

The Alert Level Framework (ALF) proposed here focuses on indicators for 
which analytical methods are likely to be more readily accessible than for 
toxin analyses, that is, visual inspection (Secchi depth reading; scums) and 
cyanobacterial biomass. Their choice can be adapted as is nationally or 
locally practical: for example, measuring turbidity in the raw water entering 
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Figure 5.3 P redicted development of cyanobacterial population from initial concentra-
tion of 100 (dotted dashed lines) or 1000 (solid lines) cells per mL at exponen-
tial growth rates (μ) of 0.1 (dark lines) and 0.3 (light lines) per day. (Modified 
from Jones, 1997.)
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a drinking-water treatment system (e.g., online) can replace measuring trans-
parency in the waterbody with a Secchi disc. Cyanobacterial biomass is best 
determined as biovolume or, alternatively, as chlorophyll-a (in the latter case 
combined with qualitative microscopy); analysing both is not necessary and 
which of the two to choose will depend on locally available expertise and 
instrumentation. Also, techniques such as fluorescence probes (online or hand-
held), remote sensing (via satellite images, airplanes or drones), cell counts or 
molecular analyses for toxin-production genes may be used in a local adapta-
tion of the ALF, provided the signals are “calibrated” with data from local 
sampling programmes and they depict local cyanobacterial biomass suffi-
ciently well to be used as triggers in an ALF (see Chapter 13 for methods).

Alternatively, it is possible to analyse cyanotoxins directly if methods are 
accessible (see Chapter 14 for methods). However, including a biomass param-
eter to trigger action in the ALF offers the further advantage of encompassing 
any hazard caused by a cyanobacterial bloom: as discussed in section 2.10, 
while cyanotoxin concentrations below the trigger values given in the ALF 
imply a low health risk from exposure to cyanotoxins, blooms may contain 
further, yet unknown substances and/or organisms that may be hazardous. It 
is therefore prudent to avoid exposure to high concentrations of cyanobacte-
rial biomass even if concentrations of the known cyanotoxins are low.

However, for any parameter used to trigger Alert Levels – including 
cyanotoxins – other than cyanobacterial biovolume, it is strongly recom-
mended to include qualitative or semiquantitative microscopy in order to 
collect information on the dominant cyanobacterial genera in the water-
body. This is particularly important for timely recognition of possible CYN 
occurrence, as concentrations of dissolved CYNs do not relate to biovol-
ume or chlorophyll-a (as measures of biomass) as immediately as do other 
cyanotoxins (see Box 5.1), but observing substantial amounts of potential 
CYN producers should trigger targeted analysis of CYNs. While  identifying 
cyanobacterial species is often described as intimidating, as discussed in 
Chapter 12, identification on the genus level already provides highly valu-
able information, often quite sufficient for assessing the situation, and this 
is readily learnt by staff with some experience in microscopy. An under-
standing of the dominant cyanobacterial genera is also important for esti-
mating their distribution in the waterbody as well as their likely responses 
to measures for control and remediation discussed in Chapters 7–9.

5.1.2.4  Considerations for setting the ALF thresholds 

and adjusting them to local circumstances

The value for chlorophyll-a at Alert Level 2 given in Figure 5.2 is now sub-
stantially lower than the values given for Alert Level 2 in the 1999  edition 
of this book. This is because the GVs for short-term exposure (Table 5.1) 
are now available (WHO, 2020), and Alert Level 2 should reflect the risk 
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of exceeding these: at biomass concentrations up to Alert Level 2, that is, 
4 mm³/L biovolume or 12 μg/L chlorophyll-a, it is highly unlikely that 
concentrations of MCs can significantly exceed the provisional short-term 
guideline value (GV). Nor is it likely that concentrations of STXs can exceed 
the acute GV for STXs, or concentrations of ATXs exceed the health-based 
reference value for ATXs (see Chapter 2 for an explanation of these values). 
The same applies to the Alert Level 1 values of 0.3 mm³/L biovolume or 1 
μg/L chlorophyll-a: these are sufficiently conservative to maintain concen-
trations of MCs below the provisional lifetime GV, and the same applies to 
CYNs if monitored as described in Box 5.1.

For STXs and ATXs, the rationale for Alert Level 1 is different as no GVs 
for lifetime exposure are available. The Alert Level 1 value of 0.3 μg/L STX 
is merely 10-fold lower than the acute GV with the function of serving as a 
trigger for increased vigilance to avoid reaching the acute GV. This applies 
equally to the value of 3 μg/L proposed for ATX as a trigger in Alert Level 
1: this is also not a toxicologically derived lifetime GV but merely a value 
set to be 10-fold lower than the proposed Health-based Reference Value as 
a trigger for increased vigilance (Table 5.1).

This is relevant because a further rationale for the thresholds proposed 
for Alert Level 1 is the potential for rapid exponential increase once cyano-
bacteria have been detected at this threshold level: even if the toxin content 
of the cells is substantially lower, concentrations in the water can increase 
exponentially as cells divide exponentially and thus reach levels exceeding 
Alert Level 1 within a few days: Figure 5.2 gives an indication of the rate of 
change of an exponentially dividing population at two growth rates typi-
cally observed in field studies of cyanobacteria (in the field, growth rates 
rarely exceed 0.3 per day).

Furthermore, as discussed at the beginning of this chapter, the Alert 
Levels proposed for biovolume and concentrations of chlorophyll-a are 
based on the upper range of cyanotoxin content typically found in cya-
nobacterial cells in the field (discussed in section 4.6.2), that is, on worst-
case assumptions for the ratio of toxins to biovolume or chlorophyll-a. In 
many field situations, cyanotoxin concentrations will be lower, possibly by 
a factor of 10. It is therefore useful to support the assessment by analysing 
for the presence of cyanotoxins, and if their concentrations prove lower 
than the Alert Level values, this may revert the situation back to a lower 
level. Also, if the toxin content of the local cyanobacterial population is 
well understood, other, often higher Alert Levels may be set for biovol-
ume or chlorophyll-a. In that case, checking the cyanotoxin content of the 
cyanobacterial population would remain necessary at larger intervals, for 
example, 2–3 times per season or monthly; however, for the more frequent 
monitoring between those occasions (e.g., weekly, daily or – with probes – 
continuously) biovolume or chlorophyll-a is likely to be sufficient.
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5.2  RECREATION AND OCCUPATIONAL ACTIVITIES

Ingrid Chorus and Emanuela Testai

Recreational activities may be a significant route of exposure to cyano-
toxins. Throughout the world, the range and scope of recreational water 
activities vary as widely as does access to recreational waterbodies and their 
propensity to be impacted by cyanobacteria blooms. Where cyanobacterial 
blooms are pronounced and water sports are nonetheless popular, recre-
ational activities are likely to be a major route of exposure to cyanotoxins. 
Occupational activities using cyanobacteria-affected waters may lead to 
similar patterns of cutaneous and inhalational exposures to cyanotoxins, 
though opportunities are available to reduce exposure through the use of 
personal protective equipment and other occupational management strate-
gies. Understanding the usage patterns of untreated surface water is there-
fore fundamental for assessing exposure.

Scums of cyanobacteria in lakes and rivers used for recreational purposes 
have been well recognised as a public nuisance. Moreover, deaths of livestock, 
wild animals or pets have been observed after exposure to cyanobacteria. 
Such incidents raise the question whether affected waterbodies are safe for 
recreational use. Sometimes blooms are associated with unpleasant odours 
and a degraded appearance of lake shores, especially when scums aggregate 
and decay. Swimmers and other water users may avoid areas with extensive 
cyanobacterial scums or accumulated detached mats because of the obviously 
unpleasant environment, particularly when associated with related fish-kills.

However, sensory responses and reactions to cyanobacteria blooms 
vary. The smell of some blooms is not necessarily unpleasant, but more 
like freshly-mown grass, and some observers have described waters viv-
idly coloured by blue-green cyanobacterial blooms as looking beautiful. 
Multiple anecdotal observations of children and adults playing with scum 
material have been reported (Figure 5.4). Where alternative recreational 
sites without cyanobacterial blooms are lacking and the demand for rec-
reational water access is high, visual and olfactory amenity tend to be of 
lower priority, and people may tolerate water quality conditions that might 
otherwise discourage them from using the site. This has been observed in 
numerous countries, for example, in many parts of inland Australia that 
are subject to water scarcity, in arid regions of Hungary where few water-
bodies are available for recreation, and in north-western Germany where 
for decades the majority of waterbodies were heavily eutrophic. In some 
regions in which cyanobacterial blooms have become a widespread phe-
nomenon for more than a generation, site visitors have come to accept the 
degraded water quality as “natural” or “normal” for the region. In tem-
perate climates, cyanobacterial dominance is most pronounced during the 
summer months, when the demand for recreational water is highest.
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Figure 5.4 Pl aying children are particularly at risk to be exposed to critical quantities of 
cyanotoxins. (Kindly provided by Yora Tolman.)

Various enterprises may use untreated water from cyanobacteria-affected 
surface waters for a wide range of processes that can result in occupational 
exposure to cyanotoxins: for example, cooling in production processes, dust 
suppression by spraying, spray irrigation, workers exposed to raw water 
spray in waterworks or cooling of enclosed or semienclosed workspaces. Cell 
lysis and, in consequence, liberation of cell-bound toxins may be caused by 
pressure and shear stress during pumping. Occupational exposure may also 
occur through work directly in or on waterbodies affected by scums. Marine 
blooms of filamentous Moorea species (previously known as Lyngbya majus-
cula) can dry on fishing nets, and contact with fresh and dried material has 
caused severe skin reactions as well as breathing difficulties for workers in the 
fishing industry (Grauer & Arnold, 1961; Osborne et al., 2001).

Potential routes of occupational exposure to cyanotoxins include direct 
contact via exposed parts of the body and cell material trapped under cloth-
ing, accidental swallowing of contaminated water and inhalation. While 
some exposure pathways at workplaces are similar to those experienced dur-
ing recreation, a difference may be longer and more frequently repeated expo-
sure periods in occupational settings. Uncharacterised water supplies may 
contain further hazardous agents, and skin abrasion by protective clothing, 
potentially augmented in heat and by moist skin, may increase exposure.

Occupational settings may also involve a risk of exposure via  
drinking-water through cross-contamination of the potable water sup-
ply if this is not effectively separated from the process water or subject to 
poor labelling of pipework and fittings or poor process design and control. 
Where temperatures are high (e.g., >35 °C in some agricultural situations 
or in open-cast mines), poor access to potable water in sufficient quantity 
and proximity to the workplace may increase the risk of untreated water – 
potentially containing not only cyanotoxins but also pathogens and other 
hazards – being used for drinking.
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Recreational and occupational exposure may be to whole cyanobacterial 
cells, lysates, dried cells or mixtures of these forms. Where blooms are of 
concern, water containing them may well contain further hazards, particu-
larly microbial pathogens.

5.2.1  Evidence of health effects associated 
with exposure to cyanobacteria in water 
used for recreation or at workplaces

While reported concentrations of cyanotoxins in drinking-water are rarely 
found above the low microgram per litre range (see section 5.1), contact 
with scums through recreational activities more frequently results in expo-
sure to cyanotoxin concentrations in a range of up to milligrams per litre 
(see Chapter 2), and acutely hazardous exposure is a realistic scenario if site 
users ingest scum. Evidence of health effects from recreational exposure has 
been published mainly as anecdotal reports, case studies and from epide-
miological studies.

5.2.1.1  Case reports of short-term health 

effects from acute exposure

A number of published case reports of illness after exposure to cyanobacte-
ria during recreation have been widely quoted to illustrate the relevance of 
this pathway. As discussed at the beginning of this chapter, in most of the 
published cases, the presence of infectious pathogens cannot be unambigu-
ously excluded, and it is typically unclear whether the symptoms reported 
were caused by the known cyanotoxins or by other components of the 
bloom, including the possibility of yet unknown cyanobacterial metabolites. 
For example, enteritic viral or parasite pathogens may well have been pres-
ent even where bacterial indicators were reported to have been absent. The 
case in Box 5.4 shows that later availability of new analytical methods can 
support or exclude cyanotoxins as cause if sample material is still available.

BOX 5.4: HUMAN MORTALITY FROM 

ACCIDENTAL INGESTION OF TOXIC 

CYANOBACTERIA – A CASE RE-EXAMINED

Wayne W. Carmichael

In July 2002, a 17 year-old male was taken to a local hospital emergency 

department in full cardiopulmonary arrest following an episode of vomit-

ing and diarrhoea followed by seizure at his home. The patient, an athletic 

otherwise healthy individual, had no previous history of seizures, syncope 
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or diarrhoeal illness. Extensive resuscitation efforts failed and the patient 

expired in the emergency department. An autopsy was performed the fol-

lowing day to determine the cause of death. After ruling out several possible 

aetiologies for death, including toxic chemicals and pathogenic microbes, the 

possible role of cyanotoxins was pursued since the youth was reported to 

have accidentally ingested water while swimming in a local golf course pond, 

about 2 h prior to symptoms, that was described as “dirty and scummy”. 

Unfortunately, because cyanotoxins were considered as possible cause only 

late in the course of the investigation, no samples were taken from the 

pond. Samples of the youth’s blood, liver and vitreous fluid were tested for 

MCs, STX, ATX and CYN. In addition, stool collected from autopsy was 

examined for the presence of cyanobacterial cells. ELISA was negative for 

microcystins and LC/MS analyses was negative for STX and CYN. ESI LC/

MS did reveal a strong peak with m/z 166 with a retention time of 9.08 min, 

“similar”’ to that of anatoxin-a, 8.51 min. This evidence allowed an initial list-

ing of this cyanotoxin as a possible cause of death. Further analyses showed, 

however, that this peak with m/z 166 is not anatoxin-a but the ubiquitous 

amino acid phenylalanine. 

In consequence, this example of a false-positive investigation of mortality 

from anatoxin-a should now be considered one of unknown cause.

A number of reports contain substantial evidence of the uptake of cyano-
bacteria and a likely connection to the symptoms observed:

• Dillenberg and Dehnel (1960) reported a case series of illness in 
13 persons after swimming at various bloom-affected Canadian 
lakes (despite warnings posted following animal deaths); symptoms 
included headache, nausea, vomiting, painful diarrhoea, arthralgia 
and myalgia (i.e., pain in joints and muscles). Stool samples from two 
of the more severely affected individuals, one of whom was hospital-
ised overnight, were sent to the Saskatchewan public health laborato-
ries, where Microcystis cells were identified in the specimens.

• Turner et al. (1990) reported that 10 out of 18 army recruits fell ill 
after training exercises involving canoeing – including practicing 
Eskimo rolls – in a waterbody affected by a Microcystis bloom, with 
two soldiers needing hospitalisation for a week because of severe 
atypical pneumonia and generalised illnesses. The authors suggested 
that inhalational exposure to cyanotoxins, especially to microcystin, 
may have been the probable cause, although that assertion has been 
challenged by others. This was the incident that first triggered wider 
attention to cyanobacterial toxicity in humans.
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• In Argentina, a teenage jet-ski rider was hospitalised for several 
weeks, including an 8-day period in an intensive care unit during 
which time he required artificial ventilation. Acute respiratory symp-
toms were followed by hepatic insufficiency, which was essentially 
self-limiting. The presumed aetiologic agent was a microcystin-pro-
ducing bloom of Microcystis, which was present as heavy scum in 
the dam at the time the young man spent several hours on and in the 
water (Giannuzzi et al., 2011).

• In Uruguay, a 20-month-old child suffered acute liver failure after 
repeated recreational activity at a beach of the Rio de La Plata River 
(Vidal et al., 2017) in January 2015. During this month, the river had 
a pronounced bloom of Microcystis sp. and microcystin concentra-
tions up to 25 700 μg/L were reported in scum material. The child 
and her family first showed gastrointestinal symptoms a few hours 
after the final exposure, but she also developed jaundice and increased 
serum levels of liver enzymes as well as a need for mechanical respi-
ratory support. A liver transplant was performed after 20 days, and 
microcystins were detected in the removed liver in concentrations up 
to 78 ng/g of tissue, which is in the range of the concentrations found 
in livers of the Caruaru victims (discussed in section 5.4). While the 
authors explicitly do not exclude other factors, for example, autoim-
mune hepatitis type II as cause (possibly triggered by the exposure 
to microcystins), they identify a high plausibility of direct damage 
through the repeated exposure to an estimated total of at least 1.78 L 
of microcystin containing water over a few days.

• In a review of CDC’s Waterborne Disease and Outbreak Surveillance 
System in the USA in 2009–2010, 11 outbreaks were associated 
with cyanobacteria. In 70% of cases, health effects were associated 
with the major exposure route: rash, irritation, swelling or sores 
were reported in those outbreaks where exposure occurred mainly 
through dermal contact while gastrointestinal symptoms were 
reported after water ingestion. The outbreak with the more severe 
gastrointestinal and neurologic symptoms (one of the two hospitali-
sation cases) was characterised by the highest levels of MCs (>2000 
μg MC-LR eq/L) and 9, 15 and 0.09 μg/L of CYN, ATX and STX. 
In the three cases in which ATX and STX were present, neurologic 
symptoms or confusion/visual disturbance were reported in addition 
to fever, headache and eye irritation. However, in all three cases, 
microcystins were also detected at often substantially higher concen-
trations (0.3–>2000 μg/L), and in one of them, CYN and STX were 
also present (Hilborn et al., 2014).

For assessing cases such as these, it is important that mere co-occurrence 
of cyanotoxins and unspecific symptoms (skin irritation, gastrointestinal, 
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etc., see above) is not indicative of the known cyanotoxins having caused 
the symptoms; more likely the cyanobacterial biomass contains both toxins 
and other, yet unknown agents causing such general symptoms. In con-
trast, cause–effect relationships are likely if symptoms or analytical results 
are toxin-specific (e.g., for hepatotoxins elevated serum enzyme levels such 
as gamma glutamyl transferase; for neurotoxins respiratory difficulties, 
 tingling of extremities, confusion or visual disturbance). While finding 
 cyanotoxins in body fluids of patients and/or cyanobacterial cells in their 
stool confirms exposure, even this does not allow the conclusion that these 
were the cause of symptoms, as it is currently unknown how concentrations 
in serum relate to damage in the liver, for example.

Regarding occupational exposure, two studies have been undertaken by 
the mining industry in Australia. The Australian Coal Association Research 
Programme projects (Fabbro et al., 2008; Fabbro et al., 2010) investigated 
cyanobacteria and their toxicity in various waterbodies available to indus-
try in Central Queensland, Australia, a semiarid region with a history of 
cyanobacterial blooms. Of the 180 samples tested for toxin, 17% contained 
CYN and 3% contained microcystin. Total CYN concentrations (CYN 
plus deoxycylindrospermopsin) ranged from 0.2 to 22.1 μg/L. Microcystin 
concentrations ranged from 1.7 to 3200 μg/L. Concentrations of toxin-
producing cyanobacteria (Dolichospermum circinale) as high as 500 000 
cells/mL were recorded from pit water (Fabbro et al., 2008). Workers can 
potentially have direct contact with pit water when installing pump facili-
ties or when it is used for dust suppression, cooling or wash down. This 
research also provided the initial identification of novel toxicity associated 
with Limnothrix/Geitlerinema (Fabbro et al., 2010; Bernard et al., 2011; 
Humpage et al., 2012).

Other anecdotal and case reports of varying reliability describe acute 
gastrointestinal and respiratory illnesses associated with activities such as 
waterskiing (likely forming aerosols and spray) in recreational waters con-
taminated by cyanobacteria (reviewed in Stewart et al., 2006d), including 
a report of a windsurfer in the UK with hepatic dysfunction diagnosed by 
liver function tests and liver biopsy (Probert et al., 1995). In only a small 
proportion of such anecdotal reports documented in the biomedical litera-
ture were the subjects examined by medical practitioners. Anecdotal reports 
of illness are occasionally reported in local broadcast or print media, and 
some descriptions of the number and type of complaints received by public 
health authorities can be found in overview publications (see, e.g., Backer 
et al., 2015). A report from the US State of Nebraska recorded more than 
50 complaints of skin eruptions, vomiting, diarrhoea and headache after 
swimming or waterskiing at a cyanobacteria-affected lake over a single 
summer weekend (Walker et al., 2008).

Severe skin reactions have been reported from contact with marine cya-
nobacteria, particularly with Lyngbya majuscula (now termed Moorea 
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producens), which causes deep blistering particularly when trapped under 
bathing suits and where blooms have contained the toxins lyngbyatoxin A 
and debromoaplysiatoxin (see section 2.6). Severe dermatitis, resembling 
skin burns, has been reported from marine bathing in the presence of cya-
nobacteria dislodged from rocks, particularly after storms in tropical seas 
(Hashimoto et al., 1976; Moore et al., 1993). Lyngbya/Moorea has been 
recorded in many marine ecosystems worldwide, but is most common in 
tropical/subtropical locations. Intoxication events have been reported pri-
marily in midsummer when both numbers of people engaged in recreational 
activities and the potential for bloom formation are high. Reports are chiefly 
from economically more developed countries, potentially due to a recording 
bias, and often include multiple morbidities.

Complaints of acute skin reactions have been associated with exposure to 
freshwater cyanobacteria as well as with eukaryotic microalgae; however, 
cyanobacteria are the focus of the majority of these reports (Stewart et al., 
2006c) with clinical investigations suggesting allergic responses (Cohen & 
Reif, 1953; Stewart et al., 2006a; Stewart et al., 2006b; Geh et al., 2016). 
Two reports focus on the pigment phycocyanin as a suspect allergen 
(Cohen & Reif, 1953), and indeed a case investigation of anaphylaxis fol-
lowing consumption of Spirulina in tablet form (Petrus et al., 2009) and 
clinical laboratory allergy studies identified phycocyanin as an allergen (Geh 
et al., 2015; Lang-Yona et al., 2018). However, this requires further clarifica-
tion as it would contradict other reports assigning antiallergic, anti-inflam-
matory and antioxidant properties to phycocyanins (Strasky et al., 2013; 
Liu et al., 2015; Wu et al., 2016). Investigators conducting epidemiological 
fieldwork at cyanobacteria-affected waters have received a small number 
of anecdotal reports from individuals with a history of allergy, though the 
association between anticipated symptom occurrence and cyanobacteria in 
such cases remains speculative. The possibility of serious anaphylactic reac-
tions has been raised for some benthic cyanobacteria (Stewart et al., 2011). 
Thus, while allergic responses to some cyanobacteria are discussed in the 
literature, their relevance remains unclear.

A widespread problem that case studies, such as those discussed above, 
face is that in the course of steps taken to elucidate the possible cause 
of the observed symptoms, cyanobacteria are typically considered only 
rather late. If many days pass between symptom observation and sam-
pling the water to which patients were exposed, a bloom may already have 
disappeared and the chance for establishing a causal connection is missed. 
This is true in particular for surface blooms or scums which can dis-
perse within a few hours, for example, due to increased wind. Informing 
the medical community about toxic cyanobacteria may help to reduce 
the time between exposure and water sampling as well as to document the 
situation at the time of possible exposure, for example, with images taken 
with mobile phones.
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5.2.1.2  Epidemiological studies of acute health risks 

from short-term recreational exposure

Several epidemiological studies investigating acute illness following recre-
ational exposure to freshwater cyanobacteria have been conducted between 
1990 and 2011. These studies utilised various retrospective and prospec-
tive designs capable of detecting relative differences in commonly reported 
symptoms between exposed and unexposed groups; however, levels of 
exposure were usually poorly characterised, and hence, these studies are 
inadequate for risk assessment purposes. Symptoms assessed included both 
cutaneous and systemic reactions – the statistical analyses of the studies do 
not differentiate between both.

• Philipp and coworkers conducted the first three formal epidemio-
logical investigations into recreational exposure to cyanobacteria: 
These comprised a series of cross-sectional studies conducted in 
1990 at inland waters in the UK, affected some weeks earlier by 
cyanobacteria blooms. They found only minor illnesses, with no 
statistically significant differences between symptoms reported by 
exposed and unexposed groups (Philipp, 1992; Philipp & Bates, 
1992; Philipp et al., 1992).

• A retrospective study conducted in Australia in response to an exten-
sive bloom of Anabaena circinalis in the River Murray in South 
Australia also did not detect any statistically significant increase in 
symptoms between those exposed to river water during recreational 
activities and nonexposed controls (El Saadi et al., 1995).

• Pilotto et al. (1997) conducted a prospective cohort study in 1995 
at recreational waters in southern and south-east Australia and 
reported a statistically increased likelihood of symptom reporting 
compared to unexposed controls after 7 days (but not after 2 days) 
following exposure to low levels of cyanobacteria (5000 cells/mL) 
for more than 1 h. The cohort size for the statistically significant 
finding was small, comprising 93 exposed and 43 unexposed 
subjects.

• Stewart et al. (2006c) conducted a larger prospective cohort study in 
Australia and the USA and detected a statistically significant increase 
in symptom reporting, particularly respiratory symptoms, three days 
following exposure. These authors used multivariable analysis after 
adjusting for confounding variables such as age, smoking, geographic 
region and a prior history of allergic disease. Increased symptom 
reporting rates were seen only at higher cyanobacterial densities, using 
a biomass estimate of exposure, and symptom severity was rated as 
mild by most study subjects. These associations were linked to cyano-
bacterial cell densities higher than 100 000 cells/mL
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• Two prospective cohort studies conducted in the USA by Backer et al. 
(2008; 2010) found no relationship to symptom reporting and expo-
sure to microcystins, as measured by ELISA and LC-MS in lake water, 
 aerosols and blood.

• Lévesque et al. (2014) conducted a prospective cohort study of resi-
dents living near three lakes in Quebec, Canada, which had a his-
tory of being impacted by cyanobacteria, one of which is also used 
as source for drinking-water. Exposure to cyanobacteria included a 
range of recreational water activities, drinking-water (for residents 
living near the lake with drinking-water abstraction from the lake) 
and consumption of fish from study lakes. Recreational exposure to 
cyanobacteria was associated with increased reporting of gastrointes-
tinal symptoms; 466 individuals were enrolled in the study, although 
the number of subjects that engaged in recreational activities was not 
reported. The authors reported a strong statistically significant rela-
tionship between gastrointestinal illness and exposure to cyanobacte-
rial cells above 100 000 cells/mL.

Most of the symptoms reported in these studies are mild and self- limiting. 
In contrast, the toxicological considerations discussed in section 5.2.3 
show that serious morbidity or death through oral uptake of toxin is 
a realistic scenario in recreational water settings, if larger amounts of 
a highly toxic bloom are ingested. While the case study from Uruguay 
(Vidal et al., 2017) provides supporting evidence that they may occur, 
such events are, however, probably rare, and with the possible exception 
of the case–control design adopted by El Saadi et al. (1995), the pro-
spective and retrospective epidemiological studies discussed above were 
not designed to detect the impact of massive oral exposure to high toxin 
concentrations.

The “gold standard” epidemiological design, a randomised controlled 
trial, could in theory be employed to investigate exposures and outcomes 
from oral consumption of cyanotoxin-contaminated recreational water, 
but this could not be done in practice on ethical grounds and would be 
logistically challenging. Future epidemiological investigations that seek to 
document events of severe acute illness following oral ingestion of cyano-
toxin-contaminated waters would probably need to employ a case–control 
design. An advantage of these studies is that outcome data is ascertained by 
medical practitioners; however, disadvantages include exposure recall bias 
and recruitment of appropriate control groups (Stewart et al., 2006c). El 
Saadi et al. (1995) also alluded to difficulties in gaining cooperation of diag-
nosing practitioners.

In contrast to the limitations of field epidemiology, clinical studies 
overcome the reliance on self-reporting of symptom occurrence, severity 
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and duration. The diagnosis and history of acute intoxication or  allergic 
response to cyanobacteria and/or cyanotoxins is likely to be more reli-
able when conducted by expert clinicians, particularly when clinical 
histories and examinations can be supported by confirmatory or comple-
mentary diagnostic tests. Early clinical investigations, and in some cases 
 desensitisation treatments, were concerned with allergic reactions to 
cyanobacteria in recreational waters (reviewed in Stewart et al., 2006c), 
and more recent clinical studies have addressed the topic of cutaneous 
and respiratory reactivity to cyanobacteria (Pilotto et al., 2004; Stewart 
et al., 2006a; Bernstein et al., 2011). The results of these clinical inves-
tigations  confirm the case study reports discussed above that certain 
freshwater cyanobacteria can elicit hypersensitivity reactions in some 
individuals.

5.2.1.3  Responses to presumed cyanotoxin-related 

acute illness following exposure

With increasing public information and awareness of cyanotoxin occur-
rence, it is possible that more individuals will consult medical services if 
they develop symptoms after exposure – symptoms which not  necessarily 
are caused by cyanobacteria and their toxins. However, particularly where 
symptoms set in rapidly, that is, within only a few hours after exposure, 
intoxication should be a diagnostic consideration. Medical consultation 
will primarily serve to clarify and treat symptoms. Although very few 
cases are known to date, patients may present with concerns of intoxica-
tion after exposure to scums or high concentrations of suspended cyano-
bacterial cells. For neurotoxins, these would be associated with symptoms 
of respiratory distress, and urgent respiratory support, including supple-
mentary oxygen therapy, would be the appropriate response. Concerns 
about possible liver damage from microcystins or cylindrospermopsin 
after exposure can be met by surveillance of serum parameters reflect-
ing liver function, particularly markers of acute injury such as hepatic 
transaminases.

Beyond this primary function, however, reporting such cases to public 
health authorities is helpful for promoting the understanding of the pub-
lic health impact of recreational exposure to (toxic) cyanobacteria. As 
discussed above, analysis of water samples for cyanobacteria and cyano-
toxins very soon after exposure would be most useful, and to make this 
happen, it is important that medical services or public health authori-
ties trigger such action. Specific biomarkers of exposure to cyanotox-
ins are not routinely available, but a range of diagnostic criteria may 
be applied to support the identification of possible cyanobacterial intoxi-
cation (Box 5.5).
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BOX 5.5: DIAGNOSTIC CRITERIA 

TO SUPPORT THE IDENTIFICATION 

OF POSSIBLE CYANOBACTERIAL INTOXICATION

• Routine diagnostic tests used by clinicians in fields such as clinical 

microbiology and clinical biochemistry, to investigate whether other 

causes may explain presenting signs and symptoms; 

• a recent history of engaging in recreational water activity, with inges-

tion of water at a site contaminated by a planktonic bloom, scum mate-

rial or detached benthic mats of cyanobacteria;

• the confirmation of cyanotoxins and/or cyanotoxin-producing cyano-

bacteria in water samples or benthic mats collected at or close to the 

time and location of exposure; 

• signs and symptoms of acute hepatic toxicity, supported by findings 

of hepatic impairment at clinical examination and abnormal liver func-

tion tests; 

• signs and symptoms of motor nerve deficit, which may or may not 

manifest in acute respiratory insufficiency, seen at clinical exami-

nation where the clinical history indicates recent exposure to 

cyanobacteria;

• cyanobacterial cells and trichomes in vomitus and stool samples iden-

tified by microscopy; although this procedure is a simple, low-tech 

method for identifying a biomarker of exposure to cyanobacteria, 

it seems to have been scarcely reported in human case investiga-

tions since the 1960s (Dillenberg & Dehnel, 1960; Schwimmer & 

Schwimmer, 1964).

When allocating symptoms to cyanotoxins, it is important to 
realise that mere co-occurrence is insufficient for establishing a causal 
con nection: even if cyanotoxins are found in patients’ serum, it remains 
possible that other components of the bloom caused the symptoms, par-
ticularly if  symptoms are unspecific. If, however, they relate to the mode 
of action and exposure to high toxin concentrations, this is indicative of 
the respective toxin to be a likely cause. To support diagnosis, awareness 
and  networking of laboratories involved in microbiological and chemical 
analyses is important so that they too can trigger a timely sampling cam-
paign at the site where patients were exposed – within a short reaction 
time to capture the situation in situ as close to the potential exposure 
event as possible.
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5.2.2  Pathways for exposure through recreational 
or occupational water activities

With the exception of the toxins from marine cyanobacteria (see below), the 
water-soluble cyanotoxins known to date are highly unlikely to be able to 
disrupt the normal protective barrier function of the skin. Thus, cutaneous 
exposure will not cause access to the bloodstream in concentrations suf-
ficient to cause generalised organ system dysfunction. Activities involving 
full immersion (e.g., jumping from diving boards, sailboarding, canoe cap-
sizing, competitive swimming) or potential exposure to spray and aerosols 
(e.g., jet skiing, spray irrigation, cooling of mining drills) may facilitate the 
entry of cyanotoxins into the systemic circulation, both through ingestion 
and through inhalation (these are sometimes termed “primary exposure”). 
Powered watercraft activities such as tube skiing and wakeboarding are 
likely to cause more frequent and forceful immersions than, for example, 
sailing or fishing from a dinghy. Other recreational or occupational activi-
ties present low risks of ingesting cyanotoxin-contaminated water, for 
example, shoreline or jetty fishing, wading, low-speed boating, operating 
irrigation channels. Exposure to cyanotoxins is potentially through the fol-
lowing routes:

• unintentional ingestion of water through reflex swallowing, or in the 
case of infants “intentionally” during playing;

• water entering the nasopharynx which is subsequently swallowed;
• inhalation when respirable aerosol or spray is formed and droplets/

particles enter the nasopharynx and are subsequently swallowed or 
when dried scums present on the shore are raised as respirable dust;

• for marine cyanotoxins skin and mucous membrane contact.

Of these exposure routes, the one understood best from numerous ani-
mal studies is ingestion (see Chapter 2), and dose–effect relationships will 
follow the patterns assumed for other oral exposure routes, for example, 
through drinking-water or food. Moreover, toxin concentrations in water 
can be measured and amounts ingested be estimated from this.

In contrast, while inhalation has frequently been flagged as a concern, 
quantitative information on exposure is scant: while the formation of spray 
through fast power boats, jet skis and water skiing appears likely and 
exposure may well be enhanced by wind, the dynamics of spray forma-
tion are poorly understood and the amount of water to which a person is 
thus exposed is difficult to quantify. Data on toxin concentrations in spray 
are limited to microcystins for which concentrations were mostly in the 
low pg/m³ range but occasionally up to a few 2.89 ng/m3 when the toxin 
concentration in water was high (Backer et al., 2010; Wood & Dietrich, 
2011; Gambaro et al., 2012). The particle size of the contaminated aero-
sols or spray droplets will determine their ability to reach the alveoli, but 
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information on cyanotoxin uptake through the respiratory tract is limited. 
The following information is available:

• Benson et al. (2005) exposed male BALB/c mice with the nose-only 
modality to purified MC-LR and described slight to moderate mul-
tifocal degeneration and necrosis in the respiratory epithelium and 
atrophy of the olfactory epithelium at doses up to 265 μg/m³ after 
7 days of daily exposure up to 180 min/d. The authors identified a no 
observed adverse effect level (NOAEL) for nasal lesions after inhala-
tion of 3 μg/kg bw or 20 ng/cm² of nasal epithelium.

• Fitzgeorge et al. (1994) performed an acute study with MC-LR admin-
istered via intratracheal instillation to guinea pigs and determined an 
LD50 of 250 μg/kg (similar to the i.p. lethal dose), with necrosis start-
ing in the high airways, progressing to alveoli and resulting in liver 
damage, but this route of exposure with purified toxin is poorly rep-
resentative of human exposure via inhalation (Buratti et al., 2017).

• Backer et al. (2008; 2010) detected microcystins in environmental 
air samples (0.052–2.89 ng MC/m³ in aerosol with MC-LA as the 
dominant variant in water at 15–350 μg/L) and at lower levels in 
nasal swabs (from below the limit of detection to 5 ng) of 81 indi-
viduals practising recreational activities in lakes during cyanobacte-
rial blooms. However, MCs were undetectable (<1 μg/L) in the blood 
of those exposed. This can suggest that the aerosol had a limited 
systemic bioavailability after inhalation, but no conclusion can be 
drawn due to the small size of control group (n = 7), the variability 
of aerosol particle size and some analytical problems with the detec-
tion of microcystins (matrix effects with ELISA detection in blood; 
Buratti et al. (2017)).

• Wood and Dietrich (2011) give theoretical considerations for protec-
tion from systemic effects of microcystins in spray: from the  tolerable 
daily intake (TDI) of 0.04 μg/kg bw per day and considering an aver-
age ventilation volume of 30.3 L/min, typical of sustained activity, and 
a high bioavailability of inhaled toxin (similar to that after i.p. admin-
istration, based on the similar lethal dose as proposed by Fitzgeorge 
et al., 1994), they estimate that people should not be exposed to more 
than 4.58 ng/m³ of air. This is higher than the levels so far detected 
in air or in spray.

In consequence, available data are not sufficient to derive cell densities spe-
cifically associated with local or systemic symptoms due to inhalation of 
contaminated water (Funari et al., 2017). A further possible effect is local 
irritation of the upper airway mucosa through other substances in cyano-
bacteria. Also, in many recreational activities, multiple exposure scenarios 
will occur simultaneously, rendering discrimination between them difficult.
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With respect to cutaneous, ocular and respiratory tract symptoms, as 
discussed above, there is strong evidence, both experimentally and from 
field observations, of marine toxic Moorea species (Lyngbya majuscula) 
containing lyngbyatoxins and/or debromoaplysiatoxin causing such symp-
toms in a high proportion of exposed individuals. However, no comparable 
body of evidence exists to support a similar clinical profile and symptom-
atology for exposure to freshwater planktonic cyanobacteria. Cutaneous 
exposure may be aggravated by bathing and diving suits, as these may 
trap and accumulate cyanobacterial cells, enhance their disruption and 
hence the liberation of cell contents onto the wearer’s skin. Disruption by 
 bathing costumes of L. majuscula filaments has been reported (Osborne 
et al., 2001).

5.2.3  Assessing the risk of exposure 
to planktonic cyanotoxins through 
recreational or occupational activities 
and short-term responses to occurrence

In contrast to dogs or to livestock lacking access to scum-free water, humans 
will rarely swallow a cupful of thick scum intentionally, but bolus-type 
exposure can occur, for example, in the context of accidents such as capsiz-
ing boats or sailboards. Exposure scenario estimates from scum concentra-
tions of cyanotoxins in the range of mg/L show that an acutely hazardous 
cyanotoxin dose is rarely likely, but cannot be dismissed as a possibility 
if fairly large water volumes containing highly toxic scum are ingested. If 
a toddler of 10 kg body weight swallows 100–200 ml of scum containing 
25 mg/L, it would reach an exposure of 2.5–5 mg for microcystin-LR, suf-
ficient to cause liver damage, and the case report from Uruguay mentioned 
above (Vidal et al., 2017) highlights that such scenarios may be realistic. 
Thus, even a life-threatening dose cannot be totally excluded, particularly 
for sensitive individuals, if scums are thick and highly toxic. A possibly 
more relevant concern, however, is injury through frequently repeated 
exposure to a subacute dose, most likely for microcystins in face of their 
high concentrations in surface scums.

The extent to which public authorities are able to conduct surveillance and 
to respond to blooms with temporary warnings or bans may be limited by 
the number of sites to monitor in relation to their institutional capacity. For 
example, north-western Germany faces the challenge of a high number of 
eutrophic, frequently cyanobacteria-ridden lakes used with varying intensity 
for recreation by the local population, regardless as to whether or not sites 
are officially designated as recreational sites and are accordingly monitored. 
Another common scenario is that of densely populated lowland regions with 
slowly flowing, nutrient-rich and bloom-affected rivers which are nonethe-
less intensively used for sailboarding, swimming and other water sports even 
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though sites are not explicitly designated for  recreational use and are moni-
tored accordingly. In Australia, blooms may affect over 1000 km of continu-
ous stretches of inland river systems (Al-Tebrineh et al., 2012). Unless regular 
monitoring is in place for other reasons such as drinking-water abstraction, 
such situations may pose considerable challenges for the monitoring of recre-
ational water and for interventions to protect public health.

Where people use waterbodies for recreation or irrigation, technical bar-
riers against exposure to water potentially containing toxic  cyanobacteria 
are typically lacking. They may also be lacking for other occupational uses 
of surface water, even where, in principle, some treatment would be  possible, 
for example, for water used to cool drills in mining. Control options to avoid 
exposure to cyanobacteria and cyanotoxins include  catchment and water-
body management geared towards reducing the potential for blooms, as dis-
cussed in Chapters 7 and 8. They also include the considerations discussed 
in section 9.1 for the assessment and choice of drinking-water offtake sites 
to avoid scums: where the shoreline geography of a given waterbody and/
or other already established usages allow a choice, similar considerations 
may serve to optimise the choice of sites for recreational use. Where none 
of these management approaches are successful, the option that remains is 
to guide and influence the behaviour of site users. Options for this range 
from informing users, that is, creating awareness and enabling individual 
responses to bloom situations, to temporarily banning waterbody use for 
the duration of the bloom.

Site users differ in their risk perception, in how receptive they are to infor-
mation and how willing they are to adapt their behaviour in order to avoid 
contact. As discussed above, areas with extensive cyanobacterial scums or 
accumulated detached mats on bathing beaches may be avoided by swim-
mers and other water users, but as cyanobacterial dominance is typically 
most pronounced in climates and seasons in which the demand for recre-
ational water is high, scums may also be ignored. Differences in usage pat-
terns, user perception and willingness to engage are depicted in Table 5.4. 
It is valuable to consider likely behaviour of site users when deciding how 
intensive monitoring should be at a specific site and whether temporary 
usage bans are necessary or whether information and warning are sufficient.

Understanding the potential for blooms in a waterbody is a further 
important basis for prioritising monitoring. It depends on a few key condi-
tions, in particular the concentration of total phosphorus, turbidity, water 
exchange rate and for lakes or reservoirs also on thermal stratification. For 
example, if total phosphorus concentrations in a waterbody do not exceed 
20 μg/L and the water is clear, with Secchi depths above 2–3 m, blooms are 
very unlikely. Waterbody conditions that render blooms likely are discussed 
in detail in Chapters 7 and 8, which also give checklists for assessing the 
risk of bloom occurrence. The advantage of understanding the potential 
for blooms is that usually this potential does not change quickly in a given 
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waterbody, and after once having assessed such baseline data throughout 
one to three bloom seasons and their patterns over time, such analyses may 
not need to be repeated frequently; occasional checking whether the situa-
tion has substantially changed may be sufficient.

Longer-term data on cyanobacteria and toxin concentrations help to 
understand their variability in the given waterbody and are therefore 
highly valuable for prioritising waterbodies of concern: for example, if 
data covering 2–3 years or seasons of cyanobacterial dominance regularly 
showed high amounts of toxic cyanobacteria occurrence, this would indi-
cate a high priority for the monitoring of cyanobacteria at recreational 
sites or in water used at a workplace. By contrast, if data with sufficient 
resolution over time (i.e., at least monthly, preferably fortnightly sampling) 
show that over a period of 2–3 years, cyanobacteria were never dominant 
or exceeding the biovolumes given in the Alert Levels Framework (ALF; 
see Figure 5.5), monitoring of such a waterbody could be a lower priority 
(see also Chapter 11).

Table 5.4  Usage patterns of waterbodies prone to blooms as criteria for monitoring and 
intervention

Appropriate intensity of 
monitoring and intervention Waterbody usage pattern

Almost daily exposure 
during the bloom 
season, for example, at 
lakeside holiday homes 
and campsites or at a 
workplace

Recreational sites used by a high 
number of people 

Occupational exposure to 
aerosol likely for a high number 
of workers and/or regularly 
over several weeks

Water sports with high probability of immersion of the head 
and/or oral uptake of bloom material; lakeshore bathing 
sites with diving boards or rafts, water slides or other 
attractions likely to increase the probability of incidental 
oral uptake

Sites used only by a small number of people and only 
occasionally, discontinuously

Occupational exposure only occasionally, intermittedly and/
or to a small number of workers

Site users/workers 
receptive to information 
on blooms, how to 
recognise them and 
how to respond to 
them

Site users/workers willing to 
engage in initiatives to assist 
surveillance, for example, by 
scum scouting and checking 
turbidity, reporting 
observations to the responsible 
authority and thus triggering 
targeted surveillance
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Checklist 5.1 summarises aspects to consider when designing the overall 
approach to assessing exposure risks through direct contact to cyanobacte-
ria in recreational or occupational settings.

5.2.3.1 � Defining national cyanotoxin 
levels that trigger action

The edition of “Toxic Cyanobacteria in Water” published in 1999 proposed 
two points of entry for assessing the “guidance level or situation” – either 
the concentration of chlorophyll-a (with dominance of cyanobacteria) as 
measure for biomass, or cell numbers, with Table 5.2 and Figure 6.5 in that 
edition differentiating three “Guidance levels” for recreational exposure.

A number of countries have since used this guidance as basis for imple-
menting guidelines or action levels for assessing health risks from cyanobac-
teria through recreational usage of waterbodies (see Chorus, 2012; Ibelings 
et al., 2014; Funari et al., 2017 for overviews). While the actions taken in 
these countries at each of the three levels are similar (ranging from informa-
tion and the issuing of warnings to temporary site closure), they vary con-
siderably in the cell count levels triggering them and in their assessments of 

CHECKLIST 5.1  FOR ASSESSING THE 
LIKELIHOOD OF EXPOSURE TO CYANOTOXINS 

THROUGH RECREATIONAL AND 
OCCUPATIONAL USE OF A WATERBODY

•	 Is information available to indicate the likelihood of bloom occurrence, 
that is, from catchment characteristics and land use governing nutri-
ent loads (see checklists in Chapter 7) or from direct observations 
of cyanobacteria and/or waterbody characteristics (see checklists in 
Chapter 8)?

•	 If scums occur, are there bays and shorelines where they chiefly tend to 
accumulate (see section 4.1.2, Figure 8.1 and the checklist in section 9.1.5), 
and if so, how does the location of the site used (e.g., for a beach or for 
the offtake of water for production purposes) relate to these?

•	 How intensively is the site used (see Table 5.4)? Is individual use 
occasional, or are the same people exposed frequently, for example, 
almost daily?

•	 Are the majority of users receptive to information and likely to adapt 
their behaviour accordingly?

•	 Are site operators or users potentially willing to engage in initiatives 
to assist surveillance, for example, by scum scouting and/or checking 
turbidity and reporting observations?
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the health risk arising from exposure: the distinction between risks catego-
rised as “low” and those categorised as “moderate” varies 20-fold includ-
ing one extreme case even 200-fold, that is, from 500 cells/mL in New 
Zealand to 100  000 cells/mL in Canada (with intermediate values such 
as 5000 cells/mL in Australia and 20 000 cells/mL in the Czech Republic, 
Italy and France).

In contrast, where countries base their Alert Levels on cyanobacterial bio-
volumes, differences between levels triggering alerts are less pronounced, 
varying only by a factor of less than 10 and ranging from 1.8 mm³/L in New 
Zealand to 15 mm³/L in the Netherlands, and almost all countries place 
the presence of scums in the high-risk category. The range of variation is 
similar where countries include microcystins in their risk assessment: levels 
considered as high risk range from 10 to 20 μg/L.

Such variation reflects differences not only in the assessment of the uncer-
tainty of the toxicological data used but also in the estimates of exposure, 
particularly regarding the water volumes assumed for oral uptake and the 
duration of exposure. The background of local experience with the rec-
reational use of waterbodies affected by blooms is also relevant: in coun-
tries with a long history of recreational use, despite waterbodies frequently 
suffering visible discoloration, high turbidity and blooms (such as the 
Netherlands and Germany), authorities tend to set triggers for warning and 
for closure at higher levels. For example, in two provinces of the Netherlands 
warnings, discouraging of bathing and even prohibition occurred in numer-
ous waterbodies even though the thresholds triggering these actions are set 
quite high, and Ibelings et al. (2014) analyse the situation as follows:

“Setting the alert levels in the Netherlands is the outcome of 
intensive discussions between scientists, lake managers and pol-
icy makers, in a country known for the highly eutrophic state of 
its lakes (despite successful restoration efforts …), where stricter 
alert levels might result in extended closure of many lakes. Safety 
clearly must come first, but the protocol used in the Netherlands –  
in addition to health risks – takes into account the promotion 
of outdoor activities, feasibility, complexity and costs of moni-
toring or risk control of cyanobacteria, as well as the ease of 
communication to the public. Given the large uncertainty in 
the derivation of TDI for cyanotoxins it is not possible to say 
whether the higher alert levels in the Netherlands truly result in 
decreased protection. We merely know it is uncertain.” (p. 68)

The WHO guidance level of 100 000 cells/mL potentially triggering restric-
tions of site use, published in 1999, was based on the potential for health 
impacts of cyanotoxins through ingestion and systemic intoxication inferred 
from toxicological considerations, using the provisional WHO TDI for 
microcystin-LR. The lower guidance level of 20  000 cell/mL triggering 
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information to site users was also based on the complementary criterion of 
a potential for irritant and/or allergic reactions, inferred as outcomes of the 
epidemiological study on health effects from recreational exposure to cyano-
bacteria conducted by Pilotto et al. (1997). The subsequent studies by Stewart 
et al. and Backer et al. discussed above did not find increased symptoms at the 
low levels of cyanobacteria that Pilotto et al. (1997) concluded to be associ-
ated with illness, thus casting doubt about the validity of this complementary 
criterion. In addition, Pilotto et al. (2004) in a subsequent study found no 
direct dose–response to a wide range of cell densities during a study with 
skin patches to assess skin effects after exposure to cyano bacteria. These new 
results question the basis for the criterion of 20 000 cells/mL.

Meanwhile, WHO has derived guideline values (GVs) for recreational 
exposure to microcystins, cylindrospemopsin and saxitoxins as well as a 
health-based reference value for anatoxin-a (Table 5.1). This has opened a 
new rationale for setting guidance or Alert Levels for recreational exposure. 
The values for the Alert Levels are now based on the minimum amount of 
biomass that is likely to contain the toxin concentrations amounting to 
the recreational GVs. Also, an Alert Levels Framework (ALF) for recre-
ational exposure (Figure 5.5) now replaces the guidance levels described in 
1999, while maintaining the differentiation of three levels. A further change 
reflects experience with cell numbers leading to undue restrictions of recre-
ational use if the dominant cyanobacteria are species with very small cells: 
as toxin concentrations relate to biomass rather than numbers, even at high 
cell numbers of very small cells water is clear and toxin concentrations are 
negligible (see discussion in section 4.6). Therefore, while the ALF con-
tinues the use of concentrations of chlorophyll-a as indicator for possible 
cyanotoxin occurrence, it now uses biovolumes instead of cell numbers as a 
further parameter for defining Alert Levels.

Importantly, as for the drinking-water ALF described in section 5.1.2.2, 
this ALF for recreational water use is intended as template for adaptation 
to national circumstances or even to local conditions: where appropriate, 
regulators can modify both the choice of parameters as indicators of pos-
sible cyanotoxin concentrations and the levels at which alerts are set. The 
Alert Levels on the basis of biomass are defined from experience regarding 
the maximum ratio between microcystins and cyanobacterial biovolume 
or chlorophyll-a typically found in the field, based on the assumption that 
maximum ratios of toxin to biomass will not be higher for the other cyano-
toxins (see section 4.6). Note that for CYNs, due to the high share of this 
toxin potentially dissolved in water, the biomass at the time of sampling 
does not necessarily indicate occurrence of dissolved CYNs; this needs 
to be inferred from the biomass of CYN producers observed in the 4–6 
 preceding weeks (see Box 5.1 for details).

As discussed at the beginning of this chapter, the ratio used is in the 
upper range of ratios from field data reported in the literature and thus 
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is highly conservative: if these Alert Levels are met, it is highly likely that 
the WHO GVs for recreational exposure to cyanotoxins summarised in 
Table 5.1 are not exceeded. However, the cyanobacteria in a given water-
body may well contain far less toxin per unit biovolume or chlorophyll-a, 
and determining such ratios specifically for the waterbody may well lead 
to setting different Alert Levels, that is, tolerating higher amounts of cya-
nobacteria before moving on to the next Alert Level. Monitoring can then 
continue based on cyanobacteria; however, during the course of a bloom 
or if its composition changes, it may be important to repeat toxin analysis 
to check whether the toxin/biomass ratio is still appropriate, as this may 
change as a bloom develops.

If other parameters that serve as indicators of toxin concentrations are 
chosen to define the Alert Levels (e.g., cell numbers, pigment concentration 
measured by hand-held probes, remote sensing signals or molecular tools), 
it is important to periodically “calibrate” these locally against toxin con-
centrations in order to ensure that they adequately reflect these. When using 
such parameters or when using data from toxin analyses to define Alert 
Levels, qualitative microscopy is recommended in order to assess which 
cyanobacterial genera dominate, as this information is important both for 
understanding scum behaviour and for waterbody management. An advan-
tage of using cyanobacterial biomass for defining Alert Levels is that this 
encompasses any further hazards potentially associated with cyanobacteria, 
including those from yet unknown substances they may contain (section 
2.10) or pathogenic organisms associated with their mucilage. Although 
health risks from such poorly understood agents cannot be quantified and 
thus no health-based limits for cyanobacteria can be derived, meeting the 
biomass-based Alert Levels is likely to provide level of protection from such 
agents as well.

Furthermore, water-use patterns may determine the ALF thresholds 
used locally. The WHO recreational guideline values (GVs) are calculated 
on the basis of a 15 kg child ingesting 250 mL of water, and an adult swim-
mer, sailboard rider or water skier would need to ingest 1 L to reach the 
WHO GV.

5.2.3.2  Alert Levels for short-term responses to toxic 

cyanobacteria in waterbodies used for recreation

As for drinking-water in section 5.1, Figure 5.5 provides an Alert Levels 
Framework (ALF), that is, monitoring and management action decision 
tree as for planning immediate short-term responses to cyanobacterial 
occurrence in waterbodies used for recreation (for longer-term measures 
addressing the causes of cyanobacterial proliferation, see Chapters 6–9). 
Depending on local circumstances, this ALF may be adapted for water used 
at workplaces as well.
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As for drinking-water, the basis for this ALF is an assessment of the 
 likelihood for the waterbody to harbour health-relevant amounts of cya-
nobacteria. While for drinking-water supplies such an assessment may be 
driven by the water supplier for the specific waterbody used as raw water, 
for recreational sites, in some cases, a private operator may be responsible 
for a site, but often it is a public authority. Sometimes these carry the respon-
sibility for assessing the safety of a larger number of sites. Prescreening 
waterbodies to set priorities for the surveillance of bathing sites may then be 
important, and criteria include data from previous monitoring (if available) 
as discussed above in section 5.2.3 as well as the

• likelihood of cyanotoxin risks to occur, to be assessed from charac-
teristics of the waterbody and/or previous observations of their occur-
rence as described in Chapter 6;

• the potential public health impact which is influenced by the intensity 
of site use, as depicted in Table 5.4.

Furthermore, in many settings, waterbodies for recreational use are not 
monitored as intensively as drinking-water, and in consequence, monitor-
ing is less likely to follow the onset and progress of a cyanobacterial bloom. 
Inspection conducted only occasionally may well find a pronounced bloom, 
and the outcome will then lead straight to Alert Level 1 or 2.

Differently from the ALF for drinking-water (Figure 5.1), the next step 
after prescreening in this ALF offers two points of entry, of which the sim-
pler approach of visual inspection may well be used alone. The supplemen-
tary point of entry is analyses of cyanobacterial biomass – depending on 
the equipment and expertise available either by microscopy as biovolume or 
by chemical analysis as the concentration of chlorophyll-a (combined with 
qualitative microscopy to assess whether or not the biomass primarily con-
sists of cyanobacteria or other phytoplankton). This adds a more objective 
trigger for action which may be important particularly where warnings or 
temporary site closure is likely to lead to concern or opposition, for example, 
because of substantial restrictions of site use and economic consequences for 
operators. Biomass should, however, be used in addition to – and not instead 
of – the visual assessment described on the left-hand side of Figure 5.5.

As discussed at the beginning of this chapter (and more specifically for 
drinking-water in section 5.1.2.2), for MCs, STXs and ATXs the toxin/bio-
mass ratios proposed for triggering Alert Levels are quite conservative and 
thus highly protective of cyanotoxin occurrence, while for CYNs, with its 
low GV, they are somewhat more uncertain. Also note for CYNs that dis-
solved CYNs can persist well after CYN-producing taxa (i.e.,  particularly 
species of Aphanizomenon; in Australia and the Americas also Raphidiopsis 
raciborskii) are no longer conspicuously present in a sample, and where 
these have been observed, sampling should follow the guidance given in 
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Box 5.1, and/or CYN concentrations should be determined. In contrast, the 
WHO recreational GV for STXs and the health-based reference value for 
anatoxin-a are substantially higher, and it is unlikely that the Alert Levels 
for biovolume and chlorophyll-a will not be sufficiently protective to ensure 
that meeting these also ensures not exceeding the 30 μg/L for STX or 60 
μg/L for ATX.

The Alert Levels Framework (ALF) given in Figure 5.5 does not address 
the concerns of individuals with an allergic predisposition, for example, 
atopy, who may experience acute cutaneous or respiratory allergies at quite 
low concentrations of cyanobacteria, whereas those without such predispo-
sition will likely be unaffected. Also, the aggravation of cutaneous reactions 
due to accumulation of cyanobacterial material and enhanced disruption of 
cells under bathing suits and wet suits discussed above may occur even at 
densities below the Alert Level values used in the ALF.

The Vigilance Level addresses a situation with dominance of cyanobacte-
ria in the phytoplankton, but at biomass levels too low to contain hazardous 
toxin levels and thus with fairly clear water that might show slight turbidity 
with greenish discoloration; transparency determined with a Secchi disc 
will usually be in the range of 1–2 m. However, because of the potential for 
rapid increase or even scum formation, it is appropriate to intensify surveil-
lance and inform site users about their potential to increase to higher levels. 
In this range, that is, at a maximum of 4 mm³/L cyanobacterial biovolume 
or 12 μg/L of chlorophyll-a, microcystins can reach concentrations in the 
range of 12 μg/L provided that the cyanobacteria present have a high con-
tent of this toxin. However, generally concentrations of toxin will be lower 
than this (see section 4.6).

Because of the potential for rapid increase of cyanobacterial biomass and 
thus toxin levels between monitoring occasions, dominance of cyanobacte-
ria even at low levels should not be a cause for complacency, particularly if 
recreational site monitoring occurs only at intervals longer than once per 
week. Concentrations in this range are a cause for alertness and locally 
appropriate responses with a focus on improving the understanding of the 
specific situation.

Vigilance is particularly relevant for waterbodies with total phospho-
rus concentrations well above 20 μg/L (provided N is not reliably limit-
ing) because cyanobacteria, once dominant, may reach a higher biomass 
within a few days. It is also particularly relevant for very large waterbodies 
because they have a potential for scum formation even at these rather low 
biomass levels, as scums can accumulate from very large water volumes. 
However, lakes and reservoirs with low phytoplankton density rarely show 
prolonged dominance of cyanobacteria, and such scums tend to be short-
lived minor events.

Alert Level 1 addresses a situation in which cyanobacteria are clearly 
visible when inspecting the site, particularly as greenish turbidity or 
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discoloration and possibly also as minor green streaks or specs floating 
on parts of the water surface, but not as scum covering major parts of 
the surface area, with Secchi depth in the range of 0.5 – 1 m or even less 
(Figure  5.6). In such a situation, cyanotoxin concentrations can reach 
potentially hazardous levels even without scums, but typically they do 
not, and recreational use may be continued without exposure to cyano-
toxins exceeding the recreational guideline values (GVs). This is particu-
larly the case for scum-forming microcystin producers such as Microcystis 
or Dolichospermum which may be visible as slight streaks or small specs 
between which water is fairly clear.

Determining biomass and possibly toxin concentrations provides more 
precise information and is important in waterbodies with a history of 
supporting the growth of non-scum-forming species of cyanobacteria: 
for example, Planktothrix agardhii can reach very high densities, par-
ticularly in shallow waterbodies, up to 70 mm³/L biovolume or 200 μg/L 
of chlorophyll-a. Secchi depth in such situations will be less than 0.5 m. 
P. agardhii may contain particularly high cell contents of microcystins 
(up to or exceeding 1 μg toxin per  μg chlorophyll-a; see section 2.1). 

Figure 5.6 S treaks, specs and Secchi disc reading depicting Alert Level 1 conditions.
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Though such extreme situations are rarely observed, in such situations, 
it is possible that microcystin concentrations range up to several hundred 
μg/L or more, without scum formation.

Informing site users to avoid exposure to high densities of such evenly 
dispersed cyanobacteria is less straightforward than informing them to 
avoid scums because the situation is harder to describe. Figure 5.7 shows 
one option for visualising a criterion for self-assessment of the situation.

Where data from visual inspection and quantifying cyanobacterial bio-
mass can be supported by cyanotoxin analyses, this can serve to avoid 
undue restrictions of recreational site use in situations where cyanobacterial 
biomass is high but toxin content is low, rendering toxin concentrations in 
the water below Alert Level 1.

At Alert Level 1, the cyanobacteria present may well increase to a heavy 
bloom within a few days if conducive conditions prevail in the waterbody. 
Watching out for scums is therefore recommended, and increasing surveil-
lance may therefore be appropriate, particularly for heavily used recreational 
sites, in order to rapidly detect if the situation escalates to Alert Level 2.

Alert Level 2 describes a situation with scums or very high cell density 
leading to substantial turbidity (Figure 5.8). While scums can be thick in 
parts of the waterbody, other parts may still show a Secchi depth ranging 
up to about 1 m. Whilst in such a situation the recreational GVs for cyano-
toxins are not necessarily exceeded, this is quite likely. Cyanotoxin analysis 
can be used to confirm or downgrade the Alert Level status. As discussed 
above, if scum material is both very thick and highly toxic, the ingestion of 
100–200 mL by a toddler can contain an acutely hazardous dose. The pres-
ence of cyanobacterial scums is a readily observable indicator of a high risk 
of adverse health effects.

Alert Level 2 situations call for immediate action to avoid scum con-
tact and, in particular, oral uptake. Temporary banning of use may be 

Vigilance/Alert levels for non-scum forming cyanobacteria 

Check for yourself: Carefully wade into the water up to your knees, 
without stirring up mud or sediment.

•     Can you still see your toes?
•   If not, or only barely, swim elsewhere!

Vigilance level Alert level 1

Figure 5.7  Simple and efficient guidance for recreational site users for  checking whether 
non-scum-forming cyanobacteria are present at potentially unhealthy 
concentrations.
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appropriate, and intensified monitoring may be important to either  confirm 
or downgrade the Alert Level status in order to not unnecessarily restrict 
use. Providing information to the site users is important to achieve an 
understanding of the hazard and thus compliance. Measures to reduce 
exposure that can be implemented quickly may include the installation of 
floating physical barriers to prevent the scum from being driven into the 
swimming area, provided that surface scums are the key issue (rather than 
dispersed suspended cells or colonies). If scums typically accumulate at cer-
tain sites while others largely remain unaffected, directing recreational use 
to another site may be an option. Removing drying scum accumulated on 
beaches may be necessary to avoid the development of dust (using personal 
protecting equipment if scum is already dry).

Misconceptions of what constitutes a scum are common for large, deep 
and usually clear lakes with low nutrient concentrations: in such lakes, 
cyanobacteria may become transiently dominant in the phytoplankton but 
only at low concentrations. Cells from the large water volume may rise 
to the surface and be swept into a downwind bay where they may form a 
surface film, typically thin and with cyanotoxin concentrations well below 

Figure 5.8  Examples of Microcystis scums depicting Alert Level 2 conditions.
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hazardous levels. Site users not accustomed to any visible phytoplankton 
on the surface may interpret even a very thin and locally limited film as 
“scum” and be unduly concerned, and advisories may need to explain what 
amounts to a sufficiently pronounced scum to cause concern. Local infor-
mation may be appropriate to dispel such concerns.

Rescinding warnings after a bloom, when recreational use is safe again, 
is important in order to avoid undue discouragement of healthy outdoor 
recreational activity as well as “warning fatigue”: if warning signs remain 
posted even though the water is clear, it is likely that site users will tend to 
ignore them in the future. This is discussed in more detail in Chapter 15.

5.2.4  Assessing risks from recreational exposure to 
cyanobacteria on benthic and other surfaces

Death of dogs and livestock has been observed even where the water was clear 
and toxins from cyanobacteria growing attached to submerged aquatic plants 
(“periphyton”; including species of Microcoleus (Phormidium), Tychonema 
and possibly of other genera) or the sediment (“benthic cyanobacteria”) have 
been identified as the cause (e.g., Puschner et al., 2010; Wood et al., 2017; 
Fastner et al., 2018; see also section 4.2.2). Some countries, for example 
New Zealand, report widespread occurrence of benthic mats of Phormidium 
found under a wide range of water qualities and proliferating during stable 
stream flow (Wood & Williamson, 2012). Microcoleus (Phormidium) is 
known to  produce anatoxins. Benthic mats have become a concern because 
of the frequency of dog deaths, attributed to anatoxin-a, homoanatoxin-a 
and saxitoxins and in one case also to microcystins (Wood & Williamson, 
2012). Likewise, ATX-producing Tychonema species may colonise  submerged 
 macrophytes such as Fontinalis (Fastner et al., 2018).

Such mats of Microcoleus or lumps of macrophytes with attached 
Tychonema may cause a lethal dose for animals ingesting substantial amounts. 
While dogs sometimes appear to be attracted to decaying material and to 
ingest  substantial amounts, this behaviour is unlikely for humans, including 
small children. However, swimmers may also be in direct contact with such 
material after a storm breaks off clumps of material or it naturally detaches 
from the sediment and is accumulated in shallow water or on the shore.

Implications for managers deciding on whether to restrict recreational 
use of such waterbodies are challenging: while dead animals are a cause for 
concern, negligibly low cyanotoxin concentrations in the water would not 
be. Where water is very clear, that is, with Secchi depths of 2 m or more, 
concentrations of concern are unlikely, as dissolved toxin leaching from 
detached mats or macrophytes will dilute and/or degrade quickly. Such situ-
ations require a rapid assessment of the risk and its communication to site 
users – for example, assurance that concentrations in the water are indeed 
low. Confirmation through cyanotoxin analysis is the most convincing way 
forward for hazard analysis in such situations. Box 5.6 gives a case example.
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BOX 5.6: DOG DEATHS ATTRIBUTED TO TYCHONEMA 

GROWING ON FONTINALIS IN A CLEAR LAKE

Lake Tegel is an important suburban resource for the city of Berlin, Germany, 

both for abstracting drinking-water via bank filtration and for intensive 

recreational use. Lake Tegel went through a history of eutrophication in 

the 1980s followed by restoration efforts resulting in the re-estabishment 

of mesotrophic conditions. Since the begin of the millenium, the lake has 

become clear, with Secchi depths rarely less than several metres, and heavy 

cyanobacterial blooms no longer occur. Stands of submerged macrophytes 

now cover large areas of the lake bottom, and as these bind nutrients that 

thus are no longer available for phytoplankton, they contribute to keeping 

the water clear. 

Against the background of this success story, in May 2017, the acute neuro-

toxicosis of 12 dogs, several of which died, after playing and swimming in Lake 

Tegel caused considerable concern. Intensive investigation detected high bio-

mass of anatoxin-a-producing Tychonema spp. in detached and floating water 

moss (Fontinalis), which led to concentrations of anatoxin-a of up to 8700 μg/L 

detected in dog stomach content (Fastner et al., 2018). Interestingly, while 

the aqueous fraction of some samples of floating Fontinalis with Tychonema 

contained up to 1870 μg/L of anatoxin-a, concentrations in other Fontinalis 

samples were low, that is, in the range of 10–20 μg/L. Moreover, water sam-

ples – even those taken only a few metres away from the floating Fontinalis/

Tychonema clumps – contained 1 μg/L or less of anatoxin-a. The available data 

indicated the occurrence of Tychonema on Fontinalis to be highly variable and 

the extremely high concentrations detected in May 2017 appear to be an 

isolated event.

This situation demonstrates a typical challenge for risk assessment: 

should recreational use of a lake in such a situation be discouraged or 

is it safe to continue activities? In this specific case, the public authority 

responsible for site surveillance initiated a monitoring campaign focusing 

on Tychonema and anatoxin-a for Lake Tegel and later also for other Berlin 

lakes, the removal of macrophyte clumps on the shoreline and information 

of the public advising against contact with the clumps. Based on the low 

toxin concentrations found outside the areas with dislodged macrophyte 

clumps, the lake’s importance for recreation and its otherwise high water 

quality (as compared to the other, more eutrophic and bloom-ridden 

waterbodies available in and around the city), the authority did not dis-

courage or ban recreational use.
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New Zealand has introduced a three-tiered Alert Level Framework for 
benthic cyanobacteria which is similar to the guidelines for planktonic cya-
nobacteria, but based on the percent coverage of the waterbody’s sediment 
as well as on detached material from benthic mats accumulating along the 
shore (Wood & Williamson, 2012).

5.2.5  Assessing risks from recreational exposure 
to marine dermatotoxic cyanobacterial

As discussed above, some marine beaches have been reported to cause 
 widespread health problems due to the benthic marine cyanobacterium, 
Moorea sp., growing on rocks and in shallow embayments in tropical and 
subtropical seas. Moorea producens and possibly other species of Moorea 
can cause severe blistering when people swimming in affected coastal 
waters come into contact with strands of these filamentous cyanobacteria, 
 particularly if trapped and macerated under bathing suits (section 2.6). This 
response may be due to acute toxicity, as Moorea can produce irritant tox-
ins. The dermatotoxic alkaloids produced by Moorea are not considered 
in Table 5.4 because exposure patterns to them are different – that is, not 
unintentional ingestion of planktonic cells or colonies, but cutaneous con-
tact with clusters of filaments (each 10–30 cm in length). Measures to protect 
site users include providing information about  avoiding skin contact, remov-
ing bathing suits and showering after immersion to ensure removal of any 
Moorea from the skin (Osborne et al., 2007).

For example, the Moreton Bay Regional Council, Queensland, Australia, 
has established a three-level approach. Where Moorea deposits on beach 
and adjacent waters are small to moderate and away from built-up areas, 
they monitor and install warning signs for the public (level 1). Where large 
quantities of Moorea are washing ashore or beginning to form rafts adja-
cent to built-up areas, they advocate removal from beaches with tractors 
and excavators (level 2) and notify relevant stakeholders including other 
government authorities and media. Where very large quantities are washing 
ashore, in addition to the level 2 procedures, the beach will be closed to the 
public to safeguard against associated risk of wading or swimming (level 3) 
(Moreton Bay Regional Council, 2018).

5.2.6  Research to improve our understanding 
of recreational exposure

As discussed above, symptoms clearly caused by microcystins, cylindro-
spermopsins, anatoxins or saxitoxins following recreational exposure are 
not very likely; however, as compared to exposure through drinking-water 
uptake, recreational activities are more likely to lead to exposure to higher 
concentrations, possibly causing detectable symptoms. A larger body of thor-
oughly investigated cases is therefore valuable to improve our understanding 
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of the hazards that cyanotoxin exposure imply for human health. A key 
issue for this aim is the quantification of exposure. While rapid (preferably 
within hours) site inspection and bloom sampling mentioned above would 
be the best approach, this is often hampered by limited institutional capacity 
and communication between the institutions responsible for public health 
versus environmental monitoring. Continuous online monitoring of cyano-
bacterial biomass development with in situ fluorescence probes can greatly 
improve the understanding of the wax and wane of blooms, as can remote 
sensing if data can be obtained with sufficient frequency.

Biomarkers are a further helpful tool to assess exposure. Notable advances 
have occurred in the analytical detection and quantification of cyanotox-
ins in physiological fluids such as serum, blood, vomitus and urine from 
exposed groups using chemical and antibody-based methods, although for 
human blood these findings so far have only been reported for microcystins 
(Hilborn et al., 2007; Chen et al., 2009; Li et al., 2011). However, for other 
cyanotoxins such as anatoxin-a, similar advances have been reported from 
veterinary researchers investigating dog poisonings. While such investiga-
tions are usually conducted on necropsied tissues, particularly liver in the 
case of microcystins or nodularin, analytical chemists have confirmed the 
presence of anatoxin-a in dog urine (Puschner et al., 2010) and stomach 
contents (Hoff et al., 2007; Fastner et al., 2018). Such methods are useful in 
order to support or exclude diagnoses of cyanotoxin exposure and possible 
intoxication. Many laboratories can also identify cyanobacterial cells and 
trichomes in vomitus and stool samples or at least have the capacity to cap-
ture photomicrographs of stool or vomitus, which can be referred to expert 
phycologists for confirmation or exclusion of cyanobacterial cells.

The “ideal” case investigation would be triggered by one or several indi-
viduals exposed to significant levels of cyanobacteria in recreational waters 
presenting soon after symptom onset for medical assessment, providing sam-
ples of blood, stool, urine and potentially vomitus, a good estimate of the 
amount of water ingested and the time and location of exposure, from where 
water samples would be immediately collected for cyanobacterial and cya-
notoxin analysis. The putative case would then be rapidly assessed by either 
an expert hepatologist for a comprehensive assessment of liver function, or, 
in the case of exposure to a cyanobacterial neurotoxin, for nerve conduction 
studies and detailed assessment of neuromuscular function. Likewise, the 
ideal assessment for those presenting with anaphylaxis or other allergic reac-
tion, possibly due to cyanobacterial exposure, would be rapid referral (after 
recovery) to a clinical immunologist, asthma specialist or dermatologist for 
confirmatory challenge testing. Furthermore, ideal patients would be willing 
to consent to publication of their case history, and the attending clinicians 
will be keen to publish. Substantial public health benefits would arise from 
a better scientific understanding gleaned from a series of studies employing 
various subsets of the aforementioned “ideal” case criteria.
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5.3  FOOD

Bastiaan W. Ibelings, Amanda Foss and Ingrid Chorus

Four chief sources of exposure to cyanotoxins through food for which 
data have been published include: (i) animals grown in aquaculture or 
harvested as food in brackish or freshwater containing cyanobacteria (for 
examples, see Table 5.5), (ii) so-called blue-green algal food supplements 
(BGAS, see section 5.5), (iii) food prepared using water contaminated 
with cyanotoxins (ineffectively treated or untreated) and (iv) crops irri-
gated with water from waterbodies with toxic blooms. Key mechanisms 
include toxin adsorption to the surface of plants or translocated to leaves 
and fruits after root uptake and trophic transfer to animals along food 
chains. Further sources for cyanotoxins and conceivable pathways into 
food for which, however, published data are largely lacking, include soil 
amended with sediment dredged from waterbodies with blooms and the 
use of algae, including cyanobacteria, as a cheap source of food for poul-
try or other farm animals.

5.3.1  General considerations on risk assessment 
and risk management

For assessing and managing health risks from food, the Codex Alimentarius 
provides the HACCP concept – Hazard Analysis Critical Control Points – 
which is very similar to the Water Safety Plan (WSP; see Chapter  6) 
approach. The WSP approach draws on many of the principles and con-
cepts from other risk management approaches, including HACCP. Both 
approaches emphasise that monitoring the end product alone will not ensure 
safety. Rather, they focus on controlling the processes that are crucial for 
the safety of food or drinking-water. Both call on the managers and techni-
cal operators of a given facility to conduct a comprehensive analysis of the 
hazards that could occur in their system, to assess the human health risks 
they cause, to identify the key measures that are critical for safety (“Control 
Measures” in WSP terminology or “Critical Control Points”, that is, CCPs 
in HACCP terminology), and to develop management plans to ensure that 
these measures are in place and properly functioning at all times. 

Where the production of drinking-water and food draw on the same 
waterbody, the WSP for drinking-water and the HACCP plan for food may 
interface with respect to assessing and managing the waterbody and its 
catchment. Naturally, a close collaboration between the teams developing 
respective plans is desirable. This is important for risk assessment since 
exposure to cyanotoxins in water and food would add up. HACPP is being 
implemented in marine fisheries and shellfish harvesting, and it is inter-
esting to note that even here, in the marine environment, one argument 
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for implementing HACPP is the risk of microcystins present in mussels 
(Tzouros & Arvanitoyannis, 2000). HACPP in the seafood industry, as else-
where, is based upon seven principles: (i) hazard analysis, (ii) identification 
of the critical points in the process, (iii) establishment of critical limits, (iv) 
requirements for CCP monitoring, (v) corrective actions, (vi) record keeping 
procedures and (vii) verification. Implementation of HCAPP based upon 
these principles in freshwater fisheries and harvesting greatly enhances the 
protection of the consumers.

5.3.2  Sources of exposure

Both plants and animals have shown highly variable accumulation of cya-
notoxins. Table 5.5 shows results of concentrations measured in organisms 
collected in the field, or exposed experimentally in the laboratory, focus-
ing on experiments using concentrations in a realistic range. To enable an 
estimate of the health implications of these concentrations, in face of the 
lack of guideline values (GVs) for concentrations in foods, Table 5.5 relates 
the exposure from a serving of 0.1 kg of these foods to the tolerable intake 
(calculated from the no observed adverse effect level (NOAEL), UF and 
bodyweight of 60 kg as given in Chapter 2) for short-term (MCs, CYNs) 
or acute (STXs) exposure. The data in Table 5.5 show that while in many 
cases concentrations in foods are low, some field observations and labora-
tory experiments found concentrations that would lead to a dose in the 
range of – or above – that which would be acceptable for up to 2 weeks for 
an adult consuming 2 L of drinking-water per day, using the short-term 
WHO GVs for drinking-water. Trends that can be discerned are that con-
suming molluscs and crustaceans collected from environments with blooms 
might cause higher risks, particularly because they are eaten with the vis-
cera which can contain large amounts of toxic cyanobacteria. In contrast, 
the edible portions of higher trophic-level organisms (e.g., muscle tissue of 
fish), excluding viscera, have less chance of containing a large amount of 
free toxin. Livestock reports are, however, based on very few animals, ren-
dering results uncertain.

A key problem in using published literature is the uncertainty of many 
results: The extensive literature survey on cyanobacterial toxins in food by 
Testai et al. (2016) concluded that the majority of publications had signifi-
cant flaws in toxin extraction, sample cleanup and/or the analytical meth-
ods which undermine the confidence in the data on toxin levels in food. 
These impair the quality of the analytical data, due to inefficient extraction, 
poor quality controls and downstream matrix effects resulting in a loss 
of sensitivity and inaccurate quantification, as well as missing reporting 
of how quantification was achieved (Testai et al., 2016). For accumula-
tion in plants, information on how toxins were applied, that is, via the soil 
(enabling only root uptake) or irrigated also on leaves (thus possibly adher-
ing to leaf surfaces), is important but often not clearly described. A further 
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challenge is accounting for metabolised or protein-bound toxins, as it is yet 
unclear whether they represent a potential reservoir of toxin that may be 
released in the gut. Strategies to account for metabolised or protein bound 
toxins, such as Lemieux oxidation or protein deconjugation techniques, 
require careful calibration and intimate knowledge of analyte chemistry to 
avoid producing data that may lead to overestimating the hazard. Dionisio 
Pires et al. (2004) used Lemieux oxidation to extract microcystins from 
mussels and found that the bound fraction was always smaller than free 
microcystin. They contrast this with earlier mussel studies which reported 
a 10 000-fold in the bound fraction compared to the free fraction. Also, 
beyond experimental data, more data on levels of cyanotoxins found in 
food items in markets are needed in order to assess actual rather than per-
ceived risk, with testing geared towards capturing the “total” cyanotoxin 
pool in order to remain conservative.

5.3.2.1  Microcystins

Information on microcystins detected in crops is limited, with a few studies 
conducted in the laboratory showing accumulation via uptake through roots 
and/or leaves (Table 5.5). None of these data indicate a dose substantially 
above that which can be tolerated from drinking-water for up to 2 weeks 
unless a serving size significantly above 100 g is assumed. Interestingly, one 
study did not result in detectable microcystin in spinach and lettuce even 
though it confirmed cylindrospermopsin uptake (Llana-Ruiz-Cabello et al., 
2019) and another resulted in detections in lettuce leaves but not in aru-
gula (Cordeiro-Araújo et al., 2017). These results indicate that other factors 
(e.g., plant variety, physiology, morphology) influence accumulation and 
require consideration when monitoring. Only one field study was identified 
confirming microcystins in crop irrigated with water (Dianchi Lake, China; 
Li et al. (2014). None of these studies addressed bound microcystin (e.g., 
conjugated) content in crops.

Among the studies with mussels or crustaceans assessed by Testai et al. 
(2016) as having been performed with reliable methods, sufficiently com-
prehensively reported, maximum concentrations in wet weight ranged up to 
3400 (±1000) μg/kg for Mytilus edulis and up to 329 ± 95 μg/kg for crayfish, 
while other authors found only low concentrations of MCs (Table 5.5). For 
fish muscle, the review by Testai et al. (2016) includes a study that found up 
to 2860 μg/kg in silver carp from China and one with up to 340 μg/kg for 
Odontesthes bonariensis from Argentina. However, most analyses target-
ing specific microcystin congeners via LC-MS/MS have rarely found MCs 
in fish muscle, even though they reported microcystins in the source water 
and other organs (e.g., liver; Kohoutek et al., 2010; Hardy et al., 2015), and 
if MCs were found, in most cases, concentrations were low. This is likely 
due to rapid microcystin elimination as well as the remaining fractions in 
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muscle tissue being unextractable (bound to proteins) or, to a lesser degree, 
extractable but inactivated by metabolism (e.g., conjugated with thiols; 
Williams et al., 1997a; Williams et al., 1997b). While extractable conjugated 
microcystins are detectable with ELISA and MMPB ((2S, 3R)-2-methyl-3-
methoxy-4-phenylbutanoic acid), which is also able to detect protein bound 
fractions), many other methods are too specific to detect these fractions. 
This partially explains why methods targeting free microcystins (i.e., not 
bound or degraded) such as LC-MS/MS tend to report lower values than 
ELISA and MMPB (Li et al., 2014; Foss et al., 2017; Greer et al., 2017).

Studies reporting high microcystin levels in fish muscle (>12 μg/kg wet 
weight) frequently employed ELISA (Freitas de Magalhães et al., 2001; 
Berry et al., 2011; Poste et al., 2011). Not only do some of these assays 
react with microcystin conjugates, but they are also prone to nonspecific 
binding resulting in overestimation (Hardy et al., 2015; Foss et al., 2017). 
This could be considered a welcome conservative approach for the case 
that protein-bound microcystins become released (Smith et al., 2010) and/
or metabolised MCs become deconjugated (Miles et al., 2016), regaining 
some toxicity. However, little is known about these processes, and undue 
restrictions of food use may also impair health (see section 5.3.4). Research 
addressing these potential reservoirs, geared to resolving the disparity 
between fractions of total MC burden (bound, free and conjugated), is 
therefore important, particularly for molluscs and crustaceans which are a 
relevant protein source in some regions.

Testai et al. (2016) assess the few results available for livestock as insuffi-
cient because they rely on a very limited number of animals and insufficient 
analytical method that does not include bound MCs; thus, the possible 
transfer of MCs to the milk or meat cannot be assessed. Chen et al. (2009b) 
found low levels of MC-RR, MC-YR, MC-LR in muscle tissue of the com-
mon duck (Anus platyrhynchos) and Chinese softshell turtle (Pelodiscus 
sinensis), that is, 3 and 0.6 μg/kg ww, respectively.

In spite of the analytical limitations of many studies, a general trend in 
literature indicates higher microcystin content in liver and viscera than in 
muscle. Further, the available evidence supports microcystins to be biodi-
luted rather than biomagnified in the aquatic foodweb (Ibelings et al., 2005; 
Ibelings & Havens, 2008), indicating that properly cleaning meat in higher 
trophic level animals reduces the risk of exposure to microcystins.

5.3.2.2  Cylindrospermopsin

As for microcystins, plant studies have addressed the uptake of cylindro-
spermopsin into leafy vegetables such as lettuce, arugula and mustard, 
sometimes at higher levels than microcystins (Table 5.5), with one study 
finding CYN in spinach at levels higher than other leafy greens, possibly 
resulting in exposure at levels relevant to health. Llana-Ruiz-Cabello et al. 
(2019) found high concentrations in spinach and lettuce, but only when 
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applying CYN in concentrations of 25 μg/L together with 25 μg/L of MCs; 
applying 25 μg/L CYN alone resulted in fourfold lower concentrations in 
the plant material. However, such levels have not been reported from field 
studies or market acquired vegetables. In animals, CYN has been studied 
less than MCs, with accumulation reported from bivalves and crustaceans, 
in one case at levels potentially relevant to health (Table 5.5). For fish, 
 studies with sufficiently selective methods (e.g., LC-MS/MS) are largely 
lacking; the review by Testai et al. (2016) includes three studies that found 
no or only very low concentrations in fish.

5.3.2.3  Saxitoxins

Saxitoxins (STXs) in food products are well documented in the marine 
environment, including numerous cases of human illness and death. To 
date, there have not been any reports of paralytic shellfish poisoning caused 
by freshwater cyanobacteria even though STX accumulation in freshwa-
ter mussels has been demonstrated (Negri & Jones, 1995). Freshwater fish, 
Oreochromis niloticus and Geophagus brasiliensis, were found to accu-
mulate STXs from the environment, but not in concentrations that would 
lead to exposure in a health-relevant range (Table 5.5; Galvão et al., 2009). 
Testai et al. (2016) include one study finding up to 30.6 ± 14.5 μg/kg of 
PSP toxins in Cichlidae. Interestingly, intraperitoneal dosing of the tropical 
freshwater fish Hoplias malabaricus four times with STX at 800 μg/kg did 
not result in accumulation in muscle tissue (da Silva et al., 2011).

5.3.2.4  Anatoxins

Very little is known regarding the accumulation of anatoxin-a and/or 
homoanatoxin-a, with studies lacking on crops or invertebrates. One study 
has shown anatoxin-a to bioaccumulate in fish (Osswald et al., 2011), but 
others have shown it to rapidly eliminate from fish and mussels (Osswald 
et al., 2008; Colas et al., 2020).

5.3.2.5 Conclusions on exposure via food

In summary, as preliminary assessment considerering all types of cyanobac-
terial toxins, the data available by 2019 do not point to a high level of short-
term exposure to cyanotoxins in crops or muscle tissue of fish and crayfish, 
whereas exposure may be more significant if viscera are eaten, as is the case 
for small fish, crustaceans and mussels. If for instance crops are sprayed or 
irrigated with lake water containing scums or high levels of cyanotoxins 
and in particular if foods are not sufficiently washed or prepared, risks may 
be higher. However, data obtained with reliable methods are insufficient for 
drawing clear conclusions.
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Where crop irrigation with scum material is widespread (as described, 
e.g., in Li et al., 2014) or fish, mussels and crayfish from bloom-ridden 
waterbodies constitute staple foods, screening cyanotoxin concentrations in 
such foods is recommended, with attention to the methodological require-
ments described in section 5.3.4.

Hazard analysis for any of the above settings may indicate that when 
cyanotoxins in foods cannot be excluded because of – substantial – cyano-
bacterial blooms in the waterbody used for the production of the food, a 
more detailed analysis becomes important. Checklist 5.2 provides guidance 
for conducting such an analysis.

CHECKLIST 5.2  FOR ASSESSING THE RISK OF 
CYANOTOXIN EXPOSURE THROUGH FOOD

	 1.	Are blooms of potentially toxic cyanobacteria present in the waterbodies 
used for collecting, producing or preparing food (see Chapters 4 and 8)?

	 1.1.	Inspect these waterbodies to collect information on the presence of 
surface blooms or scums, strong greenish discoloration and turbidity.

	 1.2.	Collect samples for species identification and quantification, particularly 
if these observations indicate cyanobacteria could be present.

	 1.3.	Particularly if potentially toxic cyanobacteria are found and if feasible, 
have toxin content of the cells and bloom analysed (see point 2.3).

	 1.4.	If cyanotoxins are present currently or were present during the 
previous month, further risk analysis in food becomes relevant. 
Clarify the time pattern of toxin occurrence – is it sporadic for a 
few days, or continuous for many weeks or months?

	 2.	Are organisms (e.g., fish, shellfish, snails, bivalves) harvested for food 
from the impacted waterbodies? If so,

	 2.1.	Find out whether these species are likely to filter-feed particles, 
including cyanobacteria, and whether they have been reported to 
contain cyanotoxins.

	 2.2.	Find out whether viscera and gonads are removed prior to 
consumption or whether the organisms are consumed whole.

	 2.3.	Check whether analyses of their cyanotoxin content are feasible, and 
if so, together with experts derive a plan for sampling and analyses.

	 3.	Are crops irrigated with water containing high amounts of cyanobacteria?
	 3.1.	If so, check whether the use of alternative water sources, free of 

blooms, is feasible or run a programme of sampling and analyses to 
assess whether the practices used lead to cyanotoxins in the crop.

	 3.2.	Investigate whether substantial amounts of cells cling to the surface 
of fruits or vegetables which are potentially consumed without suf-
ficient treatment to remove them.
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	 4.	Are soils augmented with sediment dredged from systems containing 
high amounts of cyanobacteria? If so, check dredged material for cyano-
toxins and – depending on the results – also the crop.

	 5.	 Find out whether other exposure pathways to these cyanotoxins are 
likely (drinking-water or recreation)? If so, estimate the dose from 
these and determine the proportion from food which is most appropri-
ate for your setting.

	 6.	 Estimate the contribution of the affected foods to the local diet and the 
time spans of their contamination with cyanotoxins.

	 6.1.	Is it consumed seasonally or year-round? On a daily basis, or occa-
sionally? Are exposure patterns likely to be short term and occa-
sional (justifying assessing exposure in relation to a short-term 
tolerable daily intake, TDI) or more likely to be continuous for 
many weeks on end and several times a week (necessitating applica-
tion of a TDI for chronic lifetime exposure)?

	 6.2.	Estimate the amounts consumed and the impact of local traditions 
for collecting and preparing these foods on exposure pathways.

	 7.	 Clarify the tolerable cyanotoxin dose from food in the local setting 
together with toxicologists, taking points 5 and 6 into account. Note that 
in deriving the WHO guideline values for chronic exposure via drinking-
water, WHO apportioned 20% of intake to other sources, including food, 
while the short-term values are based on exposure only to drinking-water. 
As discussed above (see point 5 of this checklist), this apportionment may 
need to be adjusted locally, depending on other exposure routes and the 
contribution of foods containing cyanotoxins to the local diet.

	 7.1.	From the results of local analyses and/or published data on the 
potential toxin content of these foods (see Table 5.5 and section 
5.3.2) and the dose found tolerable for food in your setting, esti-
mate how likely the cyanotoxin contents in the edible parts of these 
organisms are to exceed that tolerable dose and by how much.

	 7.2.	If restricting access to fish, mussels and shellfish is considered, what 
are the consequences for overall local diet? Are suitable alterna-
tives available, accessible and accepted?

	 7.3.	If restricting access to fish, mussels and shellfish is considered and 
access to alternative protein food sources is poor or in question, 
how high is the uncertainty of the information base on cyanotoxin 
content in these foods? Does the information show a sufficiently 
substantial risk to justify the loss of this food source?

	 8.	Are measures in place to control cyanotoxin contamination of food or 
exposure to potentially contaminated food (see Table 5.5)? Are they 
sufficient, or are further measures needed?
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5.3.3  Assessing and managing exposure via food

Cyanobacterial metabolites may also cause a musty or earthy taste of fish 
(“tainting”; see section 2.9). While this is a mere quality issue with no 
direct health relevance, it does indicate that cyanobacteria – and thus cya-
notoxins – may be present. This may serve as a warning signal, but it is not 
a reliable one: cyanotoxins may well occur without the presence of taste-
and-odour compounds, and other organisms such as Actinomycetes may 
also cause tainting. Therefore, the absence of a musty taste is not a reliable 
indicator of the safety from cyanotoxins.

The use of waterbodies for aquaculture or fisheries usually is not the pri-
mary cause of excessive nutrient concentrations leading to cyanobacterial 
blooms and cyanotoxin occurrence. However, these activities may augment 
nutrient loading to the waterbody they use, particularly where  aquaculture 
or fisheries are intensive (Rickert et al., 2016). Flow-through aquacul-
ture systems may drain into the waterbody which they also tap to feed 
their basins or ponds, thus contributing to the waterbody’s nutrient load. 
Fisheries may involve fertilising ponds and lakes (including with manure, 
organic wastes or agricultural byproducts) in order to augment fish produc-
tion. Feeding may significantly contribute to the nutrient load to the water-
body, thus enhancing cyanobacterial blooms. Cage culture (“net-pen”) 
systems rear animals in cages or nets floating within the waterbody, thus 
adding feed directly into the waterbody.

For commercial food production, control measures can be taken in plan-
ning, design and during operation (Table 5.6). In planning, they may involve 
land-use and waterbody management to avoid cyanobacterial proliferation 
(see Chapters 7 and 8), or, where this is not sufficiently successful, (re)locat-
ing aquaculture to sites where cyanotoxin levels are low. Where fisheries 
or aquaculture are a major cause of eutrophication, permits limiting size 
of stock and amounts of feeding may be appropriate in order to control 
eutrophication of the waterbody. Fish rearing systems may be designed to 
recirculate the used water back to the fish rearing unit through a treatment 
system which removes nutrients (and other harmful substances such as anti-
biotics). Control measures for the operation of fish rearing systems include 
regular removal of sludge from basins, ponds and water treatment units in 
order to remove nutrients which otherwise would supply cyanobacterial 
growth (see also Rickert et al., 2016).

Where food production is continued even though cyanobacteria occur, 
further control measures may be required in order to keep toxin concen-
trations in food below hazardous levels. Typically, they involve public 
information and creating awareness, particularly for subsistence fisheries. 
Keeping the live animals in clear water for a depuration period of a few days 
may be a Critical Control Point in a producer’s HACCP plan. Depuration 
of microcystins in various marine and freshwater mussels has been shown 
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to occur within days to a few weeks – although small amounts may remain 
for periods longer than this (Dionisio Pires et al., 2004). Thus, possibly a 
couple of weeks after blooms have disappeared, eating shellfish may be safe 
again, but the fragmented knowledge about depuration does not allow this 
to be generally assumed, and it is therefore important to verify that concen-
trations are safe with appropriate analytical techniques.

Another control measure may be to remove the body parts of the ani-
mals which contain high cyanotoxin concentrations, that is, viscera and 
liver of fish or the guts and hepatopancreas of crayfish and mussels, before 
they are sold on the market, or to inform consumers of the need to do 
so. This control measure, however, cannot always be applied, so that 
some animals will be eaten whole (e.g., bivalves, snails, small fish such 
as smelt). In such cases, where cyanobacteria occur seasonally, harvesting 
animals can be restricted to seasons with low cyanobacterial occurrence, 
and operational monitoring will check that they are not marketed during 
these seasons. Where seasonal patterns are less reliable, harvesting may be 
restricted when simple indicators show that levels of cyanobacteria – or 
cyanotoxins – have exceeded a predefined limit. Monitoring of cyanotoxin 
concentrations in the animals harvested may also be an option to control 
exposure, as is the case in Victoria, Australia, where authorities advise to 
refrain from consumption when concentrations exceed Alert Levels (Van 
Buynder et al., 2001; Saker et al., 2004).

Not many countries have regulated cyanotoxins in food from freshwa-
ters and between those that do, values vary considerably: For MCs, five 
authorities give values ranging from 5.6 μg/kg for fish (France) to 51 μg/kg 
for molluscs; for CYN, three authorities give values from 18 μg/kg (two 
states in Australia) to 70 μg/kg (California, USA); for STX in fish, prawns 
and shellfish, the value of 800 μg/kg is the same in these two Australian 
states and in Canada and for ATX, only California, USA, gives a value set 
at 5000 μg/kg for fish (see Table 3.1.3.3 in Testai et al., 2016). Choices of 
control measures can be optimised depending on the conditions in the spe-
cific aquatic setting that lead to blooms, the local patterns of consumption 
potentially leading to exposure and the available institutional capacity for 
operational monitoring.

Table 5.6 shows some examples of measures to control cyanotoxin levels 
in food collected or farmed in waterbodies. It is important to emphasise 
that cooking (e.g., boiling, frying, microwave) offers no reliable protec-
tion against cyanobacterial toxins in food. Contrasting results published 
for MC vary from a decrease to no effect or even an increase after cook-
ing (Testai et al., 2016). Table 5.6 also gives options for monitoring to 
ensure that the intended control measures are being implemented and that 
they are functioning during day-to-day operations, as required both for 
HACCP and Water Safety Plan (WSP). Further information can be found 
in Rees et al. (2010).
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Table 5.6  Examples of control measures for the commercial production of fish, 
crayfish and mussels and of options for monitoring their implementation 
and functioning

Process step
Examples of control measures 

for food
Options for their operational 

monitoring and/or verification 3.4

Planning For measures to control cyanobacteria through catchment 
management, land-use planning and waterbody management, see 
Chapters 7–9 

Designate sites with low levels of 
cyanobacteria for harvesting 
and/or farming aquatic 
organisms as well as for 
abstracting water for irrigation

Require permits for location, 
design and operation of aquatic 
farming operations (e.g., 
net-pens) and fish stocking 

Plan intensive land-based 
aquaculture systems with 
treatment of the outflow (e.g., 
in a wetland) to avoid 
eutrophication 

Plan irrigation schemes to avoid 
direct contact between water 
containing cyanobacteria and 
the crop to be consumed 

Conduct periodic site 
inspections during the 
cyanobacterial growing 
season 

Review (application for) 
permit with respect to 
adequacy of choice of site, 
planning and operation

Inspect outflow and check 
for illicit direct flow to the 
waterbody 

Review plans

Design, 
Construction 
and 
Maintenance

Design aquaculture as closed 
recirculation system with 
treatment, aeration, sustainable 
stocking rates and controlled 
feeding rates

Avoid discharge of untreated 
effluent – treat it or use it as 
liquid fertiliser on crops

Construct and maintain particle 
traps in tanks (with separate 
sludge outlet) and collect waste 
from cages

Design irrigation systems as drip 
or ditch systems without direct 
crop contact; abstract water for 
irrigation outside of scum areas 
and depths as discussed in 
Chapter 9

Conduct visual site 
inspection; review 
management plan for 
stocking and feeding rates 
(require development, if 
nonexistent)

Monitor effluent flow; review 
information about its 
designation

Inspect structures; require 
records of waste collection 
and review them regularly

Inspect abstraction points for 
irrigation water

(Continued )
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Table 5.6 (Continued)  Examples of control measures for the commercial production 
of fish, crayfish and mussels and of options for monitoring their 
implementation and functioning

Process step
Examples of control measures 

for food
Options for their operational 

monitoring and/or verification 3.4

Operation For cultures of aquatic organisms 
(e.g., net-pens), limit stock 
density and feeding to levels not 
likely to enhance eutrophication 
and thus cyanobacterial 
development

Use low-polluting feed, high 
levels of lipid, lowered protein 
content, typically with high 
digestibility value, low in 
phosphorus

If manure, fertilisers or 
wastewater are applied, base 
amounts on nutrient budget and 
optimise application times in 
relation to animal demand 

Remove viscera, liver or guts 
from organisms before 
marketing

Allow for depuration times of 
animals after exposure to 
toxin-containing cyanobacteria

Restrict food collection during 
specific seasons for which 
cyanotoxin contamination is 
known and/or when Alert 
Levels (for cyanobacteria or for 
cyanotoxins) are exceeded

Inspect sites and enterprises 
for compliance with permits, 
for example, farm records 
for fish stock and food 
application

Inspect feed used; discuss 
criteria for its choice with 
operators

Inspect materials applied; 
discuss practices with 
operator; if available, inspect 
records of application 

Inspect products marketed

Inspect enterprises for 
availability and functioning of 
facilities for depuration in 
clear water and for records 
of their use

Monitor compliance with 
seasonal marketing 
restrictions or an indicator 
of cyanobacterial biomass or 
cyanotoxins in the water

Source: Modified from Rickert et al. (2016).

Which of these control measures – or others – are to be implemented in 
a given setting needs to be determined locally, depending on the specific 
natural and socioeconomic conditions. Implementation is most effective 
if the stakeholders involved collaboratively develop their specific man-
agement plans (e.g., WSP or HACCP Plans or a combination of both) in 
which they define the control measures and how their performance is to be 
monitored, as well as responsibilities, lines of communication and docu-
mentation requirements. For situations in which operational monitoring 
shows that a control measure is not operating adequately (i.e., within its 
predefined limits), management plans should include a description of the 
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corrective action to take. Note that the options for monitoring suggested 
in Table 5.6 focus on the functioning of the control measures rather than 
on cyanotoxin levels in food.

5.3.4  Verification monitoring of cyanotoxin 
levels in food from aquatic systems 
versus operational monitoring

As mentioned above, monitoring cyanotoxin levels in food from aquatic sys-
tems is most useful for risk assessment, that is, to inform planning and to 
adapt management strategies in the medium to longer term. It is also valu-
able for verifying whether the whole set of control measures implemented in 
a given situation is meeting its target. As discussed above, some countries 
have regulated cyanotoxin concentrations in food (Testai et al., 2016) which 
trigger immediate action: for example, food exceeding them may be banned 
from further marketing. Such consequences of violating limits may be useful 
to enforce improved control measures. However, the basis for day-to-day 
management is operational monitoring that checks the functioning of the 
control measures by methods such as regular inspection, where HACCP 
is implemented, in the context of HACCP management plans. This allows 
quick responses if it shows a measure not to be functioning within its bound-
aries, and many operational monitoring approaches are possible at low costs.

As discussed above, monitoring food products for cyanotoxin levels is 
more challenging than water, with most analytical techniques compromised 
by matrix (see Testai et al. (2016) for an extensive literature survey describ-
ing the chemico-analytical and biological methods available for sample 
preparation and detection in detail). Although readily available and easy 
to use, the ELISA format is inadequate for food testing without, at mini-
mum, proper cleanup, quality controls (e.g., spiking) and confirmatory test-
ing, particularly for commercially available ELISAs specifically intended 
to be used for water testing. ELISA should be considered a screening tool, 
requiring confirmation of identity, and quantity, with strategies employed to 
address extraction efficiency and bound analytes. Spiking subsets of mate-
rial prior to extraction allows for an assessment of extraction efficiency. 
Adding analyte to aliquots immediately prior to testing (after extraction) 
will help determine if the extract matrix causes inhibition or nonspecific 
binding. If sample cleanup using solid-phase extraction and/or liquid–liquid 
extraction does not prevent matrix effects, a dilution series can be employed 
to assess such effects (although dilution can compromise the detection limit). 
When using ELISAs, the following need to be addressed, at minimum:

• inhibition resulting in underestimation and false negatives;
• nonspecific binding of matrix components to antibodies or antigen 

resulting in overestimations and false positives;
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• varying reactivity to nontarget (but related) analytes, such as degrada-
tion products and metabolites resulting in overestimation;

• varying reactivity to target analytes of similar structure (e.g., micro-
cystin congeners) resulting in overestimation or underestimation.

Other methods for the analysis of cyanotoxins (discussed in more detail in 
Chapter 14) include liquid chromatography (HPLC, LC, UPLC) coupled 
with various detectors, such as photodiode array/ultraviolet (PDA; UV), 
mass spectrometer (MS) or fluorescence detector (FL). LC-UV has been 
employed for microcystin (223–238 nm), cylindrospermopsin (262 nm) 
and anatoxin-a (227 nm), but detection limits may be insufficient, and if 
identification is based solely on peak retention time (without another in-
line detector such as MS), this increases the chance of misidentification 
in complex matrices such as food. Higher interferences from matrix also 
hinder quantification, making LC-UV techniques inadequate for monitor-
ing most food items. Even the use of single-quadrupole mass spectrometry 
(LC-MS) is prone to over-reporting microcystin in matrices such as fish 
tissues (Kohoutek et al., 2010). Highly specific LC-MS/MS methods are 
useful for the analysis of complicated matrices, which, with proper cali-
brations, are recommended or anatoxin-a/homoanatoxin-a and cylindro-
spermopsin. It is more difficult to fully account for all saxitoxins (STXs) 
(>57 analogues) using a targeted LC-MS/MS approach, with the sum of 
toxins detected possibly underrepresenting totals, although improvements 
to this analysis have been made (Turner et al., 2019). Therefore, until 
methods have been adequately developed to address STXs in freshwater-
related food contamination, it is recommended that accepted methods for 
monitoring PSP in shellfish be used (e.g., Lawrence et al., 2005; AOAC, 
2011a; b). Similar to STX, as discussed in Chapter 14, targeting microcys-
tin congeners with MS is limited by the availability of standard reference 
material, unless the water source has been thoroughly characterised and 
the microcystin congeners are known. In order to assess fractions bound 
to either proteins or thiols, thiol-deconjugation (Miles et al., 2016) or the 
MMPB technique (see above) can be used. However, careful calibration for 
the MMPB method requires preoxidation spiking with intact microcystin 
to properly account for oxidation efficiency and recovery, increasing the 
time needed for preparation and analysis.

In summary, while monitoring cyanotoxins with relatively few struc-
tures (e.g., cylindrospermopsin) can be easily achieved, monitoring the 
microcystins and saxitoxins is significantly more complicated. A useful 
approach is to screen for food items with, for example, ELISA (which are 
available for most cyanotoxins) and if this indicates levels of concern in 
food items and quality assurance controls indicate the test is performing 
properly, to confirm the data with a further test. These can be related 
to toxicity (e.g., receptor-binding assay or protein phosphatase inhibition 
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assay; see Chapter 14) or more targeted analyses of cyanotoxins (e.g., 
LC-MS/MS). Appropriate calibration standards (including internal stan-
dards) should be utilised, with certified reference materials used where 
available.

5.3.5  Balancing cyanotoxin risks against 
the risk of malnutrition

A critically important public health aspect when deciding which control 
measures to implement is their possible impact on the nutritional status 
of the population which may depend on fisheries and/or aquaculture as 
key protein source. This needs to be balanced against the health risks 
through cyanotoxins possibly contained in these foods. Restriction may 
well prove scarcely feasible where intensive aquafarming or angling is 
needed as basis for the population’s protein supply. On the other hand, the 
published information on cyanotoxin concentrations in food (Table 5.5) 
indicates a fair likelihood that these may well be below concentrations of 
potential  concern, although in exceptional cases like fishermen on Lake 
Chaohu exposure clearly is likely to be elevated (Chen et al., 2009a). In 
consequence, before taking measures with a potentially major impact on 
peoples’ livelihoods and nutritional status, it may be worthwhile to assess 
the relevance of such foods as staple protein source for a population and 
to invest in a survey to sample and analyse cyanotoxin concentrations in 
the local produce from fisheries and aquaculture in order to avoid undue 
restrictions causing more harm than good. A critical issue to consider here 
is that cyanotoxin concentrations in food produce varies greatly between 
points in time. A further point to consider, albeit challenging, is the risk of 
exposure to multiple toxins as well as to multiple sources, that is, exposure 
via food augmented by toxins in drinking-water and/or recreational use of 
waterbodies with blooms.

5.3.6  Public awareness and information

For small-scale commercial and particularly for recreational, noncommer-
cial angling and harvesting of invertebrates from aquatic systems, effec-
tive controls are difficult to implement, and creating public awareness of 
potential risks may be a more effective or the only feasible approach. In 
contrast to cyanotoxins in freshwater, for the marine environment, public 
awareness of “algal toxins” is well developed in many regions: for example, 
native Americans already warned early settlers in the USA not to eat shell-
fish in the summer months. Today, among tourists or other non-natives, 
marine bivalves cause disproportionately high numbers of cases of paralytic 
shellfish poisoning, and this is attributed to tourists’ disregard for either 
official quarantines or traditions of safe consumption, both of which tend 
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to protect the local population (see Ibelings & Chorus, 2007). Many of 
the states in the USA and Australia and countries in Europe host hotlines 
with information for shellfish collectors. South Australia classifies collect-
ing sites for shellfish in four categories: approved, conditionally approved, 
restricted and fully restricted. This approach is familiar from other con-
taminants: for example, banning fishing in certain waterbodies to avoid 
consumption of pathogen-contaminated or of mercury-contaminated fish. 
A further option is issuing quantitative advisories on the amount that may 
be safely consumed or the frequencies at which fish may be eaten (e.g., US 
EPA, 2017).

Public awareness approaches that have been successful for seafood from 
marine environments can be similarly applied to cyanotoxin risks from 
freshwater environments, from collecting shellfish and snails or catching fish 
where water is visibly greenish or covered by scums. Information campaigns 
successful elsewhere are best adapted locally or regionally, since the type of 
food varies greatly between different geographic regions. Information par-
ticularly needs to reach specifically sensitive subpopulations, for example, 
in the case of cyanobacterial hepatotoxins persons with chronic hepatitis or 
other liver disorders. Also, information campaigns about using food from 
waterbodies with cyanobacteria may be effectively combined with infor-
mation on their recreational use. See Chapter 15 for more information on 
public communication and participation targeting toxic cyanobacteria.
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5.4 RENAL DIALYSIS

Sandra M. F. O. Azevedo

Renal dialysis patients are a group of the population with a specific and 
increased risk of cyanotoxin poisoning. The exposure pathway through 
haemodialysis is intravenous and to a large water volume – approximately 
120 L are used in each treatment, three times per week. Hence, this group 
can be affected even by cyanotoxin concentrations far below the lifetime 
guideline values (GVs) for drinking-water.

According to Couser et al. (2011), approximately two million people are 
receiving haemodialysis worldwide, of which 90% live in North America, 
Japan and Europe. Dialysis is not regularly available in low-income coun-
tries, mainly due to a limited access to medical assistance.

In a disastrous incident early in 1996 in Caruaru, Brazil, 131 dialysis 
patients were exposed to cyanotoxin-contaminated water. Of these, 116 
people experienced symptoms, including visual disturbances, nausea and 
vomiting, 110 developed acute liver failure, and 60 deaths were attributed 
to acute intoxication by cyanotoxins (microcystins and cylindrospermop-
sin) from water used for haemodialysis treatment (Jochimsen et al., 1998; 
Carmichael et al., 2001; Azevedo et al., 2002).

In a second episode of human microcystin exposure by the intravenous 
route documented among patients undergoing dialysis (Soares et al., 2006), 
a complete water treatment system including reverse osmosis, operating 
according specific procedures for dialysis use, proved insufficiently safe to 
prevent microcystin exposure. Notably, in this case, the microcystin con-
centration in drinking-water distribution system of the city was below the 
provisional WHO drinking-water guideline value (GV) of 1 μg/L.

In face of the 100-fold higher water volume to which dialysis patients 
are exposed, tolerable concentrations in dialysis water would correspond-
ingly need to be at least 100-fold lower. Additionally, however, with oral 
exposure, only a fraction of the cyanotoxins is efficiently absorbed by the 
gastrointestinal tract through an active transport involving organic anion 
transporting polypeptides (OATP; Shitara et al., 2013). This process is 
saturable and affected by the presence of other chemicals and dependent 
on the relative affinity of individual compounds (Fischer et al., 2005; 
Fischer et al., 2010). In contrast, if exposure is intravenous, the systemic 
bioavailability is close to 100%. Therefore, in face of the present sparse 
quantitative understanding of the kinetics of sublethal doses of cyano-
toxins in humans, especially for renal disease patients, it is not possible 
to establish threshold values for the induced adverse effects, and thus, no 
GVs for cyanotoxins in water used for dialysis can be derived. Certainly, 
however, the GVs for cyanotoxins in drinking-water are not sufficiently 
protective.
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Hazard analysis for cyanotoxins in water used for hemodialysis  therefore 
needs to assess the source of the raw water. Surface water potentially 
 containing even traces of cyanotoxins needs to be avoided whenever 
possible.

5.4.1  Assessing and controlling the risk 
of cyanotoxin exposure

The WHO guidelines for Drinking-Water Quality (WHO, 2017) do not 
consider the especially high quality of water needed for dialysis treatment, 
intravenous therapy or other clinical uses. The treatment processes used at 
conventional surface water treatment plants (such as coagulation, clarifica-
tion and sand filtration) are effective in removing cyanobacterial cells, but 
may not be sufficiently effective in removing or destroying dissolved cya-
notoxin concentrations to below GVs, especially from water supplies with 
a high organic content and cyanobacterial dominance (see Chapter 10). 
Consequently, clinics and hospitals with special water needs, such as for 
dialysis treatment or for transfusions (intravenous administration), often 
apply additional water treatment, for example, for the removal of cyano-
toxins. Such treatment ranges from granular activated carbon filtration, 
followed by reverse osmosis, to more elaborate treatment, including mem-
brane filtration. The extent of treatment necessary depends on the quality 
of the municipal water supply.

Continuous monitoring of performance and equipment is essential to 
ensure adequate quality of the water. On-site water treatment systems 
in clinics and hospitals require rigorous monitoring and regular mainte-
nance, including back-flushing of filters and recharge of activated carbon, 
according to manufacturer’s specifications. It is important that manufac-
turer specifications should be assessed under local conditions for their ade-
quacy in maintaining performance. Activated carbon, for example, may 
be exhausted for its ability to remove cyanotoxins long before it reaches 
saturation for the removal of other organic compounds, and some manu-
facturers may be unaware of this.

As emphasised above, the present knowledge about toxicity of differ-
ent cyanotoxins does not allow establishment of any safe concentration 
for intravenous exposure. Therefore, a monitoring programme for water 
quality used for dialysis procedure needs to be performed with methods of 
utmost sensitivity (see Chapter 14).

Contingency plans and actions for prevention or management of health 
hazards from cyanotoxins for this specifically susceptible subpopulation 
are usually developed and managed at local or regional level. Additionally, 
national authorities may have important roles in organising, supporting 
and facilitating plan formulation, particularly after an event of suspected or 
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proven intoxication. Some key actions for preventive management of these 
special water uses include the following:

• Establishment of a multiagency and multidisciplinary regional commit-
tee with participation of public health authorities, water supply manag-
ers, hospital and dialysis clinic technically responsible for elaborating 
an effective plan of communication about incidents of cyanobacteria 
blooms in water supplies and cyanotoxins levels in drinking-water sys-
tem used to supply health units. This communication plan needs to 
guarantee information about cyanotoxins concentration in drinking-
water distributed to hospital and dialysis clinics within less than 24 h.

• A compilation of information about reservoirs or rivers used as water 
supplies to each community and a comprehensive map of the water 
distribution system, including location of hospitals and dialysis clinics 
needs to be available to health authorities to support any contingency 
plan when it is needed. The data of basic limnological parameters 
monitored in water supplies, including phytoplankton density (with 
special emphasis on cyanobacterial biovolume or cell numbers 
per litre) should be up to date. Interagency cooperation, especially 
between the drinking-water supplier and the health authority, is cru-
cial to prevent an incident.

• If cyanotoxins are detected in drinking-water used to directly prepare 
water for dialysis or infusions, even in concentration well below life-
time GVs, a contingency plan to supply alternative safe water to health 
units needs to be implemented immediately. It should be previously 
developed and established, including specific actions and responsibili-
ties of different actors. It needs to include previous identification of 
potential alternative water supplies, preferably from uncontaminated 
groundwater; plans for transporting safe water from other areas or 
deploying portable water treatment systems.

• In case an alternative safe water supply is not available, the dialysis 
service should be interrupted and patients should be transferred to 
other health units with no risk of exposure from the dialysis water. 
In this situation, the dialysis unit potentially exposing patients to 
cyanotoxins needs to be thoroughly cleaned, including exchange 
of activated carbon and the cleanup of all filters and membrane 
systems used.

• A regular monitoring programme for cyanotoxin analysis in the in-
house water treatment systems of a dialysis unit should be imple-
mented in regions where cyanobacterial blooms occurrence in water 
supplies cannot be excluded because no source water without poten-
tial contamination is available, particularly if blooms were detected 
during the past 12 months. This analysis needs to include sampling of 



392 Toxic Cyanobacteria in Water

water before and after the treatment steps in order to assess treatment 
performance. It requires a highly sensitive methodology which can 
detect cyanotoxins in the nanogram per litre range.

• Preparing a standardised press release (previously agreed between the 
authorities which need to be involved) and an agreement on the trig-
gers for its publication can help inform patients early in an incident, 
if one occurs.

Guidelines for quality assurance of dialysis equipment and fluids generally 
are more focused on (heterotrophic) microbial and chemical contamina-
tions (e.g., Kawanishi et al. (2009); Penne et al. (2009)). However, best 
practice standards for the production of pure or ultrapure water for renal 
dialysis do apply to all chemicals (Ledebo, 2007).With respect to cyanobac-
terial toxins, dialysis units need to inquire from the water supplier whether 
there is a risk of cyanotoxin contamination in drinking-water, either sea-
sonally or for extended periods. In this case, periodic use of an alternative 
water source may be a way forward if the water source cannot permanently 
be altered.

More information on quality control for dialysis, including fluid qual-
ity, is available on the websites of the US National Kidney Foundation 
(https://www.kidney.org) or the European Renal Association – European 
Dialysis and Transplant Association (https://www.era-edta.org). Guidelines 
of the latter can be found in a supplement issue of “Nephrology Dialysis 
Transplantation” (ERA-EDTA, 2002). Further information and guidelines 
are given in ISO 11663 (ISO, 2009) and the standards cited therein.
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5.5 CYANOBACTERIA AS DIETARY SUPPLEMENTS

Daniel Dietrich

Cyanobacteria, specifically Arthrospira sp. (previously classified as Spirulina 
sp.; see Chapter 3), were used as a food staple by indigenous people in Central 
America and in the Rift Valley of Africa. Large-scale production of cya-
nobacteria and microalgae for marketing in western society started about 
50 years ago. Much of the early research work dealt with the basic photo-
synthetic properties of microalgae, their possible therapeutic, antibiotic and 
toxic properties and their potential as an agricultural commodity for human 
consumption. The microalgae biomass industry now provides biomass for 
pigments and speciality chemicals used primarily in the food industry and, 
more recently, as food supplements, also termed health foods, nutraceuticals, 
esoteric foods or simply blue-green algal supplement (BGAS). These mostly 
originate from three filamentous genera of cyanobacteria: Arthrospira 
(Spirulina), including A. platensis and A. maxima (Belay & Ota, 1994), 
Nostoc (N. commune and N. flagelliforme) and Aphanizomenon flosaquae.

While Arthrospira is grown in cultures, often in outdoor ponds, mainly 
in the USA (southern California and Hawaii), Chad, France, Mexico, 
Myanmar, Thailand, Taiwan and Japan, Nostoc (N. commune) is either 
grown by indigenous people as food staples, also known as llullucha 
(Johnson et al., 2008) or as dietary food supplements in South-East Asia 
(Saker et al., 2007) and China (Gao, 1998) while Aphanizomenon is pri-
marily harvested from a dammed natural lake (Klamath Lake, Oregon, 
USA; Carmichael et al., 2000). Production of food-grade “Spirulina” 
largely depends on the production region, for example, the UN estimates 
approximately 250 tons/year to be produced in Chad for sale on local mar-
kets, while Henrikson (2011) estimated the internationally oriented com-
mercial enterprises to produce more than 500 tons/year. The production 
volumes of Nostoc are presently unknown and cannot be extrapolated from 
sales or consumption data, as these are missing as well.

Aphanizomenon production is also substantial; however, data on produc-
tion volumes have not been possible to obtain. The only indication of the 
amounts of Aphanizomenon flosaquae-based dietary supplements is their 
annual sales, which range in the tens of millions US dollars (ODA, 2017).

5.5.1  Cyanotoxins potentially present 
in cyanobacterial food supplements

Cyanobacteria used as dietary supplements can be a source of cyanotoxins 
even when the main ingredient is considered nontoxic, such as Arthrospira 
maxima. Nonetheless, some studies suggest a potential for “Spirulina” prod-
ucts to contain cyanotoxins, possibly via contamination of cultures with 
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other, toxigenic cyanobacteria: the anatoxin-a analogs  epoxyanatoxin-a 
and dihydrohomoanatoxin-a have been identified at concentrations rang-
ing from nondetectable to 19 μg/g dry weight in “Spirulina”-based dietary 
supplements (Salazar et al., 1996; Salazar et al., 1998; Draisci et al., 2001). 
A market analysis demonstrated concentrations of anatoxin-a ranging 
between 2.50 and 33 μg/g, whereby these included products intended for 
human and animal consumption (Rellán et al., 2009). In alkaline crater 
lakes in Kenya, Arthrospira fusiformis was found to produce small amounts 
of both microcystins and anatoxin-a (Ballot et al., 2004; Ballot et al., 2005), 
and ELISA results were positive for microcystins in “Spirulina” food sup-
plements, suggesting a contamination with a microcystin producer (Gilroy 
et al., 2000). There are no proven cases of human injury as a result of ingest-
ing “Spirulina”-based food supplements, although these were proposed 
as the cause of liver injury of a 52-year-old Japanese (Iwasa et al., 2002). 
However, consumption of “Spirulina” as well as other cyanobacteria-based 
food supplements are frequently accompanied by massive diarrhoea, nausea, 
abdominal pain and skin rash (Rzymski & Jaśkiewicz, 2017).

Nostoc commune produced by indigenous people of Peru were found to 
contain β-methyl-amino-alanine (BMAA; Johnson et al., 2008). However, 
the analytical method used is now known to substantially overestimate 
BMAA concentrations, and the toxic potential of BMAA is debated highly 
controversially. The conclusion of section 2.7 of the present volume is that, 
at present, the weight of evidence suggests that BMAA is present in insuf-
ficiently high concentrations to cause neurogenerative diseases.

Aph. flosaquae can contain cylindrospermopsins, anatoxin-a and saxi-
toxins as well as toxicity not attributable to any of the known cyanotoxins 
(see Heussner et al., 2012, and Chapter 2). Although microcystin produc-
tion has not been observed for Aphanizomenon sp., in natural blooms, 
Aphanizomenon sp. is often found associated with other cyanobacteria 
which are known to be toxigenic.

Common cyanobacteria associated with blooms of Aphanizomenon sp. 
are Microcystis sp. and Dolichospermum sp., that is, species that poten-
tially produce microcystins (Ekman-Ekebom et al., 1992; Teubner et al., 
1999; Wood et al., 2011; Shams et al., 2015; Chapter 4). Analysis of Aph. 
flosaquae samples taken from Lake Klamath for dietary supplement pro-
duction demonstrated that approximately 80% of the samples taken 
between 1994 and 1998 contained >1 μg MC-LR equivalents per gram dry 
weight, which is the maximum acceptable content established by the state 
of Oregon in the USA (Gilroy et al., 2000). Further studies showed higher 
as well as lower microcystin contents (Table 5.7), which is partly attributed 
to shifts in taxonomic composition within the blooms in Lake Klamath 
dominated by Aph. flosaquae, in particular, the variable share of toxigenic 
Microcystis sp. in bulk phytoplankton biomass. The studies summarised in 
Table 5.7 show a trend to lower maximum microcystin contents over time.
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Table 5.7  Microcystin concentration in Aphanizomenon sp. dietary supplements from 
the market

Number 
of Samples

% samples 
exceeding

1.0 μg/g DW

Microcystin 
content

μg/g DW
Detection  
method Reference

87 72 2.2–10.9 ELISA Gilroy et al. (2000)

52 50 0–35.7
0–49.0

ELISA
cPPA

Lawrence et al. (2001)

0–35.7 LC-MS/MS

6 100 11–24.7 ELISA, cPPA
HPLC

Schaeffer et al. (1999)

18 80 0.3–8.3
0.5–5.9

Adda-ELISA
cPPA

Hoeger & Dietrich 
(2004)

12 33 0.1–4.7 ELISA Saker et al. (2005)
Saker et al. (2007)

26 35 <LoD–5.2 LC-MS/MS Vichi et al. (2012)

10 60
50

<LoD–6.1
<LoD–

Adda-ELISA
cPPA

Heussner et al. (2012)

40 11.0 LC-MS/MS
<LoD–5.8

60 6
7

0–3.0
<0.25–2.8

LC-MS/MS
PPA

Marsan et al. (2018)

DW: dry weight; LoD: limit of detection; ELISA: enzyme-linked immunosorbent assay; cPPA: colo-
rimetric protein phosphatase inhibition assay, HPLC: high-pressure liquid chromatography; 
LC-MS/MS: liquid chromatography–mass spectrometry; Adda-ELISA: enzyme-linked immu-
nosorbent assay with a recognition antibody specifically directed against the Adda-moiety of 
microcystins.

5.5.2  Assessing and managing the risk of cyanotoxin 
exposure through food supplements

In the studies summarised in Table 5.7, maximum contents of microcystin 
per gram dry weight range between 3.0 and 49 μg/g, and therefore, a risk 
of exposure to cyanotoxins cannot be ignored. A detailed assessment, how-
ever, is difficult, firstly, because the manufacturer’s recommendations for 
daily consumption vary widely from 0.5 to 15 g/day with some products 
indicating no maximum limit (Marsan et al., 2018) and, secondly, because 
individual consumption also varies and may largely exceed recommenda-
tions. However, based on reported possible toxin contents and a consump-
tion of a few grams per day, exposure may well be at levels exceeding the 
provisional tolerable daily intake (TDI) of 0.04 μg/kg (see section 2.1) for 
adults and especially for children. Further, in deriving its drinking-water 
guideline values (GVs) for lifetime exposure, 20% of intake are allocated 
to sources other than drinking-water, which may not be appropriate for 
persons consuming cyanobacterial products on a regular basis (see sec-
tions 2.1 and 2.2). Dietrich and Hoeger (2005) discuss these aspects for 
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varying levels of microcystin contamination of food supplements and pro-
pose corresponding maximum amounts that can be safely consumed by 
infants, children and adults.

As with other health risks, animal poisoning indicate potential adverse 
health effects in humans (Hilborn & Beasley, 2015). The case of an 
11-year-old female spayed pug dog, weighing 8.95 kg and presenting with 
abnormally high alanine aminotransferase (ALT), alkaline phosphatase 
(ALP) and aspartate aminotransferase (AST) activities and serious liver 
dysfunction, indicates uptake of a hepatotoxin. This dog was fed single to 
multiple daily rations of 1 gram of 100% certified organic Aph. flosaquae 
for approximately three and a half weeks. The analysis of the powder via 
LC-MS/MS revealed 0.166 μg/g of MC-LR and 0.962 μg/g of MC-LA, while 
no other MCs were reported (Bautista et al., 2015). Thus, the MC content 
would approximate the Oregon provisional guidance value of 1 μg/g dw 
(Gilroy et al., 2000). However, with an analytical method including more 
microcystin variants, as suggested in section 14.3, a higher actual total MC 
content may have been found. Further, neither the number of daily rations 
nor any further potential source of the dog’s exposure – such as cyanobac-
terial blooms in a waterbody – are known, making it difficult to estimate 
retrospectively whether the undoubted exposure to microcystins through 
dietary supplements was enough to explain the observed symptoms in this 
single study on one animal.

A further issue in this context is the as of yet very incomplete understand-
ing of the bioactivity of cyanobacterial metabolites beyond the known toxins. 
Underdal et al. (1999) found protracted toxic response in test animals exposed 
to extracts of Aph. flosaquae but could not identify any toxins. Similarly, 
Heussner et al. (2012) found cytotoxicity in Aph. flosaquae product extracts 
that were not associated with any of the known cyanobacterial toxins. Indeed, 
particularly Aphanizomenon species are known for inducing effects not yet 
explained by any identified cyanobacterial metabolite, for example, malfor-
mation of fish embryos (Oberemm et al., 1997; Berry et al., 2009). While such 
effects cannot be quantitatively used for a human health risk assessment, they 
do indicate potential presence of further hazards to clarify.

Further, field collections of cyanobacteria and, possibly to a lesser extent, 
cyanobacteria harvested from open tanks contain a high diversity of hetero-
trophic bacteria, including human pathogens (Berg et al., 2009) that may 
cause further health hazards.

5.5.3  Approaches to assessing and controlling 
the potential cyanotoxin hazards

The regulation of dietary supplements is generally less strict compared to 
regulations for food, pharmaceutical or drinking-water, and only few regu-
latory schemes are in place. For example, since 1994, dietary supplements 
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have been regulated in the USA under the Dietary Supplement Health and 
Education Act (DSHEA; FDA, 2017). Because cyanobacteria are capable 
of producing toxins and their presence has been confirmed in some dietary 
supplements, it is appropriate to regulate and monitor these toxins in dietary 
supplements, including the provision of adequate information to consum-
ers. Considerations include the following:

Testing for cyanotoxin content: Biomass collected from natural blooms 
or open tank incubators should be tested, lot by lot as recommended by the 
regulatory authority, for possible contamination with potentially toxigenic 
cyanobacteria, for example, Microcystis sp. in blooms dominated by Aph. 
flosaquae. Production lots should be managed by unique identifying num-
bers and production dates. For potential subsequent reanalysis by regulatory 
authorities, producers should be mandated to retain representative samples 
of each charge produced and to make these available upon official request.

Testing for other contaminants: Dietary supplement products should be 
tested for other potential contaminants, including indicators for pathogenic 
bacteria and protozoa, where and when contamination is expected. This is 
best based on an assessment of contamination risks from the catchment or 
the culture conditions. Examples of contamination sources include excreta 
of migrating birds or surface runoff following rainfall.

Claims on possible effects: The proposed beneficial effects of the con-
sumption of cyanobacterial food supplements have not been demonstrated 
in scientifically sound studies; only subjective and anecdotal evidence is pro-
posed by the vendors. Therefore, product information should not suggest 
that consumption of larger amounts would produce more positive effects.

Consumer information: Producers should clearly inform the consumers 
which quality control procedures are in place and give access to the test 
results. Further they should give a clear maximum daily doses, specified for 
infants, children and adults. None of these measures, however, can serve 
to protect from negative effects of known and yet unknown bioactive sub-
stances in cyanobacteria, as discussed in section 2.10.
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INTRODUCTION

Cyanotoxin occurrence in water to which people may be exposed depends 
on the extent to which conditions in the respective waterbody favour the 
proliferation of cyanobacteria. Where barriers (or “control measures”) are 
in place (e.g., natural, as well as technical treatment or engineered barriers), 
as well as managerial and planning measures, human exposure will depend 
on how effectively these measures are working to limit cyanobacterial 
growth and/or to prevent exposure. Assessing a given system’s efficacy in 
controlling this risk requires understanding the entire water-use systems – 
from the catchment or source right through to the point of contact with the 
end user (e.g., consumers of drinking-water or fish/shellfish, or end users 
such as those involved in recreation or occupational exposures). Assessing 
the efficacy of the barriers in place is an essential basis for identifying, 
planning and implementing priority measures to control the conditions that 
may cause cyanobacterial blooms, thus limiting human exposure. Further 
elements essential for planning include time spans expected for control 
measures to take effect as well as expertise, investments and regulatory 
frameworks necessary for their implementation.

This chapter presents a proactive risk assessment and management 
framework that can be applied to identify and manage threats to public 
health from water-use systems, including cyanotoxins, namely, water safety 
planning. Water safety planning is advocated for by the World Health 
Organization (WHO) as the most effective means of ensuring the safety of 
drinking-water supplies (Rickert et al., 2016). In the context of toxic cyano-
bacteria, this chapter provides guidance not only on how the Water Safety 
Plan (WSP) approach can be used to manage the risk of cyanotoxin occur-
rence in drinking-water, but also on how the framework can be adapted and 
expanded to consider cyanotoxin exposure from other routes relevant for a 
given context (e.g., exposure from recreational or occupational contact or 
food consumption). The approach is illustrated with worked examples from 
three different scenarios, ranging from larger water-use systems to smaller 
private supplies.

6.1  LEVELS FOR EXERTING CONTROL OVER 

CYANOTOXIN OCCURRENCE AND EXPOSURE

As depicted in Figure 6.1, the most fundamental control level is catchment 
management to prevent or reduce nutrient loads to the waterbody, particu-
larly those of phosphorus (Chapter 7), and control measures at this level can 
be supported by measures at the level of waterbody management (Chapter 
8). If control measures on these levels are not in place or fail to meet their 
targets and toxic cyanobacteria proliferate, the remaining management 
option is to control human exposure. In some situations, this is possible by 
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shifting sites for drinking-water offtake or recreation to where cyanobacte-
ria do not accumulate. A further option may be to implement management 
measures such as mechanical mixing within the waterbody to reduce cya-
nobacterial biomass (Chapters 8 and 9). For drinking-water, the removal of 
cyanobacterial cells and/or toxins dissolved in water in the drinking-water 
treatment plant is an additional important control measure (Chapter 10). 
For other water uses (e.g., swimming and other recreational contact), the 
consumption of fish and shellfish or spray irrigation – temporarily limiting 
or banning use as an emergency response (as discussed in sections 5.2–5.5) – 
may be the only option if cyanotoxin levels are in a range causing exposure 
to inacceptable concentrations.

A cornerstone of the WSP philosophy is the promotion of a “multiple-ba rrier 
approach”. This approach advocates for the use of more than one type of bar-
rier or control measure (Figure 6.1) throughout the water-use system (i.e., 
from the source to the point of use/contact) to minimise risks from cyanotoxin 
exposure. Through this approach, in the event that an upstream control mea-
sure fails (e.g., in the case of a drinking-water supply system, failure of a mul-
tilevel raw water offtake), the presence of downstream barriers may still limit 
the risk from cyanotoxin exposure (e.g., drinking-water treatment optimised 
to remove cyanotoxins). Exceptions may include settings where risks from 
cyanotoxin occurrence are considered to be very low, such as pristine and 
protected catchments that are under the direct control of a single management 
entity (e.g., water supplier or a catchment management authority).

Targets can be set at each of these levels to achieve the target set for 
cyanotoxins: a target for cyanobacterial biomass may be based on ratios of 
toxin to biomass either expected from the literature (section 4.2.6) or deter-
mined locally from data for the specific waterbody. A target for limiting 
the concentration of a key nutrient may be set, for example, in the range of 
10–50 μg/L of total phosphorus, depending on the specific characteristics 
of the waterbody and on how stringently cyanobacterial biomass is to be 
limited (Chapter 7). The corresponding target for the nutrient load from the 
catchment to the waterbody depends on further waterbody characteristics, 
and models are available to determine which load is likely to achieve which 
concentration in a given waterbody (Chapter 7).
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Figure 6.1  Levels and scales of measures for controlling cyanotoxin occurrence 
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The challenge for management is to set targets based on an assessment 
of the specific situation to determine which control options are realisti-
cally achievable. Depending on the local conditions, this may focus on the 
activities in the catchment that cause nutrient loads from different effluents 
and surfaces. Additionally or alternatively, it may involve setting targets 
for the performance of drinking-water treatment in cyanotoxin removal 
(Chapter 10), or for public outreach campaigns to inform recreational site 
users of potential cyanotoxin risks and of prudent behaviour for avoiding 
exposure (Chapter 15). Thus, decisions on setting targets for a given setting 
at each of these control levels will depend on the control options available, 
and setting them effectively requires an understanding of the specific system.

Such an in-depth understanding of the specific setting is most effectively 
achieved by following the steps of developing a WSP as described in the WHO 
Guidelines for Drinking-water Quality (WHO, 2017), in the WHO/IWA 
Water Safety Plan Manual (Bartram et al., 2009; Figure 6.2) or the guidelines 
for safe recreational environments (WHO, 2003), and extending the approach 
by considering exposure routes in addition to drinking-water and recreation if 
these are relevant for the specific system. Further, WHO also provides guid-
ance tailored specifically for water safety planning in small systems (e.g., rural 
communities; WHO, 2012).

In contexts where a full WSP is not developed, many of the steps and 
elements of this approach are highly useful for assessing and managing cya-
notoxin risks.

6.2  WATER SAFETY PLANNING AS A 

FRAMEWORK FOR ASSESSING AND 

MANAGING CYANOBACTERIAL RISKS

A comprehensive Water Safety Plan (WSP) should consider the potential 
risks from all of the threats or “hazards” (i.e., typically microbial, chemical 
or physical agents that can impact public health or disrupt system operations 
and service delivery) within the entire water supply system (i.e., at catch-
ment/source, treatment, storage, distribution and consumer levels), as well 
as the hazardous events that may introduce them. As such, a WSP should not 
only address cyanobacterial risks, but rather comprehensively assess and pri-
oritise all of the risks from the range of hazards identified for a given supply 
system. Depending on the local context, cyanotoxins may well not emerge 
as top priority, depending on the system characteristics and vulnerabilities.

An important outcome of developing a WSP is the prioritisation of mea-
sures to be taken to effectively control the most significant risks. Assessing 
the risks will include the measures that are in place to control them. In 
the case of cyanobacteria, control measures include natural conditions that 
may reduce the nutrient loads from the catchment (e.g., riparian vegeta-
tion buffer strips) as well as engineered control measures (e.g., mechanical 
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Figure 6.2 S elected steps of developing a Water Safety Plan (WSP) for a specific water-
use system, and corresponding subsections within this chapter. Following 
these steps is effective for managing cyanotoxin control also when no full 
WSP is developed.

waterbody mixing) to limit stratification. An important principle of water 
safety planning is the ongoing routine monitoring of control measures 
(referred to as “operational monitoring”), which shows that control mea-
sures are working within acceptable operational limits, showing that the 
hazard continues to be managed effectively on an ongoing basis. For control 
measures to be effective in the longer term (e.g., existing control measures 
or new, additional control measures implemented in consequence of the risk 
assessment process), it is prudent to include considerations of how climate 
change may impact on the given water-use system.
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In addition to upgrading the system to effectively control cyanotoxin 
hazards, an important element of water safety planning is to include trig-
gers for initiating the short-term management actions (e.g., management 
of incidents through emergency response plans) to avoid human exposure. 
A good way to do this is to integrate Alert Levels Frameworks based on the 
suggestions given in section 5.1 for drinking-water and in section 5.2 for 
recreational water use. These frameworks outline which exceedances may 
trigger which responses. An incident response plan, as discussed in Chapter 
15, is a further integral part of a WSP.

Although originally developed to ensure the safety of drinking-water 
 supplies, WSPs are not limited to this application – the WSP framework can 
equally be adapted and applied for the assessment and management of risks 
from other potential exposure routes, in particular through recreational water 
contact. For fish and shellfish, the HACCP (Hazard Analysis Critical Control 
Points) concept widely required for food production includes very similar steps 
(as the WSP concept was developed for drinking-water from the widely used 
HACCP concept for food production) and can readily be linked to the WSP 
elements which may better address the catchment and waterbody aspects. So 
can sanitation safety plans (SSPs) – an application of the same concept to sys-
tematically identify and manage health risks along the sanitation chain. This 
approach may also be applied to limit nutrient inputs into water-use systems.

A strong feature of WSP development is documentation, not only of the 
WSP itself as an outcome of the process, but also of the rationale behind the 
decisions taken and of the uncertainties as well as the information gaps iden-
tified. This chapter therefore illustrates the type of questions to address and 
considerations to document with worked examples for three situations differ-
ing in size, catchment, technology and access to monitoring.

Developing a Water Safety Plan (WSP) is a process typically conducted by 
a team using the steps described in the following sections. As emphasised 
above, even where a full WSP is not developed, these steps represent a useful 
systematic framework for assessing and managing cyanotoxin risks.

6.2.1  Getting ready for assessment and 
planning: forming the team

The first step is to establish an experienced, multidisciplinary team whose 
role is to develop and drive the day-to-day implementation of the plan. 
Assessing and controlling the risk of cyanotoxin occurrence tends to require 
a broad range of expertise: for example, setting targets in terms of concen-
trations and loads of phosphorus requires an in-depth understanding of 
the specific waterbody’s hydrological conditions, the land uses and nutri-
ent dynamics. In contrast, setting performance targets in water treatment 
requires engineering and operational knowledge. Such expertise is spread 
across different institutions and stakeholders. Moreover, the stakeholders 



6 Assessing and managing risks 407

to involve for effective cyanotoxin control tend to span quite a range of 
responsibilities and areas of influence, that is, for activities and hydrologi-
cal management in the catchment, for managing the waterbody as well as 
for drinking-water abstraction and treatment. They may also include those 
using a waterbody for recreation, irrigation or other workplace exposure 
to spray, as well as fisheries. A drinking-water supplier alone cannot make 
decisions on measures in the catchment or waterbody (unless the supplier 
owns the catchment). Rather, the implementation of measures beyond the 
water supply depends on good cooperation with the other stakeholders. 
For example, for the catchment aspects of a WSP, an authority responsible 
for catchment management may already have a leading role in this area. 
Collaboration in system assessment is also essential in order to gain access 
to the information needed from the different stakeholders. Furthermore, 
including stakeholders – particularly for land use in the catchment – early 
on in the process can develop a sense of ownership and involvement that 
will facilitate the subsequent implementation of management measures.

This is why developing a WSP typically begins with forming a team of 
experts. Whether a full WSP is developed or only an approach to controlling 
cyanotoxin occurrence is sought, such a team is an excellent platform for 
bringing together stakeholders and information for interdisciplinary and 
intersectoral collaboration. The team needs the participation of technical 
operators as well as that of senior managers. The full support of the leading 
management is essential for allocating staff time and resources. This is par-
ticularly relevant when developing a WSP but also applies when the scope of 
planning is limited to controlling only cyanotoxins. It is also important for 
later acceptance of control measures and subsequent day-to-day practices, 
including the implementation and monitoring of system improvements.

Such a team is most effective if it includes people with the competence 
needed to analyse the factors leading to cyanotoxin risks and the efficacy of 
the measures in place to control these risks, as well as staff with the author-
ity to implement any further measures decided upon. However, it is useful to 
limit the core team to those needed throughout the process of developing the 
WSP, particularly to ensure that all key stakeholders identify themselves with 
the process and its outcome. In contrast, those needed for the clarification of 
specific aspects are best included on an ad hoc basis, that is, only when these 
aspects are discussed. Such specific expertise may include the fields of:

• phytoplankton ecology to understand the likelihood of bloom 
occurrence;

• nutrient dynamics to set adequate targets for nutrient concentrations 
and nutrient loading and to propose measures to achieve these targets;

• drinking-water treatment to set performance targets that ensure cya-
notoxin removal and – if necessary – to propose further measures to 
better achieve these targets;
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• analytical skills, ranging from cyanobacterial identification and quan-
tification to cyanotoxin analysis, depending on programmes to be 
implemented;

• public health and/or water quality who can advise on the health 
impacts of cyanotoxins and support risk assessment;

• integrated water resource management;
• emergency response planning;
• recreational water management;
• food safety management;
• occupational health and safety management;
• integration of climate change considerations (e.g., climatologist, 

hydrologist, strategic planners, climate change and public health risk 
specialist).

Representatives from the relevant end-user groups should also be involved 
in the process at key stages (e.g., drinking-water users associations, com-
munity groups, recreational groups). This can provide important user 
perspectives from “on the ground”, particularly in relation to catchment 
activities. Such involvement also serves to ensure that the relevant end users 
are informed and support the process – and thus the longer-term effective-
ness and sustainability of its outcomes.

A team leader should be designated who drives the process of Water 
Safety Plan (WSP) development. If the most important or most sensitive use 
of a waterbody is the provision of drinking-water, it is usually most effec-
tive for the team to be led by the water supplier, while including relevant 
experts and decision-makers from the catchment and waterbody. However, 
in certain contexts, and depending on the most sensitive use of water, the 
WSP may be driven by the authority responsible for public health or for 
management and protection of surface water. Table 6.1 shows three exam-
ples of how teams may vary in size and expertise, depending on the require-
ments and available options in the respective setting.

It is further useful to define and record the roles and responsibilities of 
the team members, potentially differentiating between core team members 
(i.e., those who are responsible for the more day-to-day aspects of WSP 
implementation) and those who support specific parts of the WSP devel-
opment. Challenges include finding stakeholders in the catchment who are 
willing to be involved, potentially with the consequence of changing their 
way of doing things in order to reduce nutrient loads to the waterbody, 
holding regular meetings with team members from different organisations 
over a longer period of time, and finding and involving individuals with 
sufficient expertise. Chapters 7–10 therefore include guidance on the sci-
entific and technical expertise that may be required. Generic aspects of 
team formation are discussed – with examples of challenges and benefits – 
in the Water Safety Plan Manual (Bartram et al., 2009) and Water Safety 
Planning for Small Community Water Supplies (WHO, 2012).
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6.2.2  Describing the water-use system and its users

A thorough understanding of the system – from the catchment to user, that 
is, the point of exposure – is the basis for identifying and assessing hazards/
hazardous events, existing control measures and risks. To facilitate this, an 
accurate and up-to-date system description should be prepared, which can 
contribute to system understanding and support the identification of system 
vulnerabilities and informs the subsequent hazard analysis and risk assess-
ment (Table 6.2). A flow diagram is a helpful tool for visualisation, which can 
help support the identification of system vulnerabilities in subsequent steps.

A comprehensive description of the water-use system should begin with an 
inventory of conditions in the catchment that determine water flow, that is, the 

Table 6.1  Three example settings: team composition for assessing and managing the 
risk of cyanotoxin occurrence

Examples of settings Team composition for each of the three settings

1: Slow-flowing large 
river serving as raw 
water source for 
drinking-water for a 
town of 500 000 
inhabitants

Core team: the water supply’s technical manager (team leader); 
two operators responsible for abstraction and treatment; an 
officer from the local public health authority; a senior officer 
from the water board; a representative from the catchment 
land-use association.

Expertise consulted on an ad hoc basis: a limnologist, a 
hydrogeologist with experience in modelling nutrient loads, a 
microbiologist, a climate expert.

Initial management decision: thorough system assessment to 
be undertaken; full support to be provided by staff with dedicated 
allocation of staff working time for this purpose; regular 
presentation of interim results at staff meetings to be undertaken.

2: Reservoir serving 
about 7000 people 
(three villages and a 
number of farms)

Core team: one engineer (leader), an officer from the local 
public health authority, an officer from the environmental 
authority and a representative from the local boating club.

No funding is available for external support, but a cooperation 
with the hydrobiological faculty of a nearby university will be 
undertaken for scientific support; there will be participation in 
some relevant scientific and management meetings for 
knowledge transfer.

3: Farm dugout 
serving as  
drinking-water 
source for 20–50 
people

The health authority has identified that farm dugouts pose a risk 
to human health, both because incidents of diarrhoea are 
attributed to Cryptosporidium and because cyanobacterial blooms 
are generally frequent in the region. It has therefore invited farm 
owners in the region to a series of workshops for assessing the 
situation and finding appropriate management solutions, and the 
owner of this farm is developing a WSP for her water supply on 
the basis of this support. 

Core team: the farmer has formed a three-person team for her 
farm with herself as the designated team leader, with support 
from an officer from the health authority and the farm manager. 

An engineer has been contracted for consultation to join 
relevant team meetings.
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water budget, as well as an estimate of potential pathways for nutrient loading 
through erosion, seepage, inflows and tributaries. The target is to document 
geographical and hydrogeological conditions as well as land use that may 
affect nutrient loads, for example, agriculture, direct discharge of wastewater 
(including information on wastewater treatment efficacy for removing phos-
phorus and nitrogen), indirect discharge of wastewater (e.g., seepage/overflow 
of on-site sanitation systems such as septic tanks or latrines) or manure, drain-
age from roofs and roads. (For further information and examples of catch-
ment inventories, refer to “Protecting Surface Waters for Health”; Rickert  
et al., 2016.) The description further includes the morphological, hydrophysi-
cal, chemical and biological characteristics of the waterbody. If drinking-water 
is abstracted, the description covers offtake site(s) and patterns as well as the 
steps of the treatment train. Where recreational use may lead to cyanotoxin 

Table 6.2  Examples of basic system descriptions as a basis for assessing the risk of 
cyanotoxin occurrence

Example 1: Slow-flowing large river serving as raw water source for drinking-water for a 
town of 500 000 inhabitants – summary system description. 

90% of the (mostly cross-border) catchment is used for agriculture. 
Sewage from smaller settlements is discharged up to 50 km upstream (this is treated, 
but without nutrient removal [i.e., phosphorous or nitrogen]). 

Larger cities are located further upstream.
Heavy cyanobacterial blooms occur every summer with lower biomass persisting in 
winter; no cyanotoxin data available; climate projections indicate that warmer water 
temperatures might exacerbate seasonal blooms during the summer.

Drinking-water treatment is in place (system is >30 years old) with pre-oxidation, 
coagulation/ flocculation, filtration and disinfection; powdered activated carbon is 
stored but rarely used (operators consider the black dust too messy to handle).

Water is distributed via three intermittent storage tanks and piped to households.

(Continued )
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Table 6.2 (Continued)  Examples of basic system descriptions as a basis for assessing the 
risk of cyanotoxin occurrence

Example 2: Reservoir serving about 7000 people, that is, three villages and a number of 
farms – summary system description

Reservoir is located uphill from the villages and farms in a middle-range mountain area 
(see diagram for hydrological details); 70% of the catchment is used for forestry and 
some hunting; 20% is rocky and not used; meadow area (≈5%) is used for extensive 
sheep farming.

Ecotourism has developed over the past 10–15 years, including a small hotel 
(“Ecolodge”) with 60 beds, a restaurant, boating club and up to 500 week-end 
restaurant visitors; the drinking-water supply is from its own spring; wastewater 
effluent discharges into a septic system (no documentation on the system or effluent 
volumes discharged is available).

The meadow ends in a small beach with a steep rock which is very popular for diving 
(no official bathing site, not monitored).

No data on phytoplankton or cyanobacteria, but locals and tourists occasionally report 
either reddish discoloration (particularly in autumn and winter) or thin bright-green 
scums in the bay used for swimming. 

Drinking-water treatment for the villages and connected farms is limited to flocculation, 
filtration and disinfection, which may be insufficient during blooms. Piped distribution 
system is on-premises. Recreational use is banned (to avoid human pathogens in the 
reservoir) but enforcement is poor.

(Continued )
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Table 6.2 (Continued)  Examples of basic system descriptions as a basis for assessing the 
risk of cyanotoxin occurrence

Example 3: Farm dugout serving as water source for 20–50 people – summary of system 
description

Farm dugout is located at the foot of a hill that is used for cattle grazing; summer 
cyanobacterial blooms are common.

The extent of groundwater versus surface run-off is unclear but slope and the traces of 
erosion suggest a fair amount of direct run-off; vegetation cover is only grass and 
appears ineffective in intercepting run-off carrying phosphorus or nitrogen (or 
pathogens like Cryptosporidium) from cattle manure; future climate projections indicate 
more intense rainfall to be expected.

The fence around the dugout is intact and effective in keeping cattle out. 
No alternative drinking-water source is available within reasonable distance.
Drilling a deeper well is not an option in this rocky area; funding for expensive 
interventions is not feasible.

Water for household use is piped directly at 1–1.5 m depth; filtration device of unclear 
design is in place for food preparation.

Site inspection showed a small self-made diving board, with about 15 children in the 
water (sailboard, swimming, diving, playing in moderate scum).

Impact on local farm produce marketed (e.g., meat, milk and grains) is unlikely; impact 
on vegetables grown for own use is a possibility, the risk of which is to be included in 
the assessment.

Note: Typically, system flow diagrams would include more detailed information to support subsequent 
hazard identification and risk assessment, including quantitative or relative relevance informa-
tion for specific loads and pathways, detailed flow diagrams for water treatment plants.
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exposure, information on bathing sites and other water sport activities rela-
tive to prevailing wind directions is important, including time patterns of such 
activities in order to assess critical periods for exposure. This also applies 
to other direct water uses potentially causing human exposure, like spray 
irrigation. Where exposure through food (irrigated vegetables, recreational 
angling, professional fisheries, aquaculture and mussel harvesting) may be 
quantitatively relevant, information on the affected crops, fish or mussel spe-
cies, amounts typically consumed and time patterns of consumption may be 
important to estimate a potential cyanotoxin dose via food.

Visual inspection of the waterbody and its catchment is a highly valu-
able basis both for collecting information on the aspects listed above and 
for validating information gleaned from documents and interviews. This 
process of “walking the system” can help identify potential threats to the 
waterbody which cannot be identified through desk-based assessment alone 
(e.g., activities that are not permitted, but are occurring nevertheless). Such 
an inspection is best prepared by collating documented information, for 
example, from authorities managing the waterbody and its tributaries, 
authorities responsible for issuing permits for discharges into water courses 
or activities in the catchment, operators of enterprises and activities in the 
catchment as well as from site users. The latter may include profession-
als as well as the public, for example, people observing scums and green-
ish turbidity. Including any available (semi)quantitative information about 
loads of phosphorus or nitrogen to the waterbody, expected and/or mea-
sured concentrations within the waterbody, cyanobacterial biomass or cya-
notoxin concentrations is highly useful for the steps of identifying hazards 
and conducting a risk assessment. Examples of key information to support 
the description of the water-use system include the following:

• for the catchment: Activities and conditions likely to lead to erosion 
and nutrient input, particularly during storm events;

• for the waterbody and the catchment: Where available, impacts antic-
ipated in the wake of developments such as land use or climate change, 
both those currently known and those anticipated for the future;

• for the waterbody: Water quality data as available, in particular 
nutrient concentrations, Secchi depth readings, phytoplankton data 
(biomass and extent of cyanobacterial dominance); potentially also 
data on organisms at higher trophic levels as these may impact on 
phytoplankton biomass and species composition; any climate change 
scenario projections available;

• where available, data on cyanobacterial and cyanotoxin occurrence 
and any indication of human or animal illness suspected to have been 
caused by these bacteria;

• if the waterbody is used as a drinking-water resource: A description of 
– the drinking-water treatment train (e.g., offstream storage res-

ervoirs before or after treatment, pretreatment [e.g., addition of 
powdered activated carbon, oxidation], coagulation/flocculation, 
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sedimentation, dissolved air floatation, filtration, ozonation, 
granulated activated carbon (GAC) filtration, slow sand or river-
bank filtration, disinfection [e.g., chlorination, UV irradiation]); 

– the amount of water produced and the households it serves (poten-
tially as map); 

– a map of the mains, including reservoirs in the distribution system 
and their condition, whether these are covered or open (relevant also 
for other hazards potentially introduced during distribution) and 
retention time (relevant for cyanotoxin degradation in the mains);

• information on the water users (including any sensitive population 
groups) and for which purposes it is being used (e.g., drinking, other 
nondrinking household uses [such as washing, bathing], or sensitive 
applications [like dialysis]; see below).

Chapters 7–10 give detailed checklists on information to collect and evaluate 
about the catchment, the waterbody, the location of abstraction points for 
drinking-water and for bathing sites, and drinking-water treatment. These 
checklists are intended to support both the description of the system and 
subsequent risk assessment. Table 6.2 introduces the three examples used 
in this chapter with a short summary of system descriptions that highlight 
the potential variability in coverage and amount of information available. 
Table 6.2 includes basic flow diagrams that provide an illustrative example 
of how these tools can support the identification of system vulnerabilities.

The typical situation is indeed that not all of the desirable information will 
be available. The Water Safety Plan (WSP) concept promotes “incremental 
improvement”, that is, encouraging to get started in the first instance, and 
improve the WSP stepwise over time as capacity and system knowledge 
build and resources become available. As such, a first iteration of assessing 
the system and the risk of cyanotoxin occurrence should begin even in the 
absence of all of the necessary information, to find out which information 
gaps are the most crucial for the decisions that need to be made. If these 
gaps prove relevant for the assessment, they will be the first ones to address 
with targeted programmes. It is important to validate the description of the 
system through site inspection, particularly from the perspective of identi-
fying any illegal/unauthorised activities in the catchment, and to accurately 
document the system description.

6.2.2.1  Identifying water users and uses 

(including sensitive subpopulations)

Assessing who uses the water and for which purposes helps evaluate the 
public health risk arising from the exposure of the respective population. 
Information about any groups of the population with specific exposure 
risks or particularly susceptibility to specific hazards provides a basis for 
specifically targeted information and warning. In the case of toxic cyano-
bacterial blooms, such groups might include the following:
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• those preparing dialysis water as well as dialysis users, as dialysis directly 
exposes people intravenously to large amounts of water (approximately 
120 L per treatment), thus increasing toxicity by at least an order of 
magnitude (section 5.4). Early information if cyanobacteria build up in 
the waterbody and cyanotoxins may occur is important, as even trace 
amounts are of concern for dialysis;

• users of private drinking-water supplies using surface water or shal-
low wells strongly influenced by a waterbody with blooms (e.g., sup-
plies for holiday houses);

• people potentially exposed via aerosol and small water droplets from 
the waterbody, for example, through spray irrigation, decorative 
fountains, or water use for cooling;

• recreational user groups, particularly where exposure is frequently 
repeated (e.g., sports clubs, lakeside campsites) or where direct 
contact with bloom material (e.g., water skiing, wind surfing) is 
likely;

• operators of fisheries and consumers of fish/shellfish.

Using the three examples in this chapter, Table 6.3 highlights how such 
information may be documented, including existing information gaps to 
close with high priority.

6.2.3  Assessing the risk of cyanotoxin occurrence 
and the system’s efficacy in controlling it

The next step aims to identify:

• Conditions (in particular eutrophication) potentially causing cyano-
toxin occurrence.

• Events augmenting this occurrence (e.g., extended spells of warm 
weather).

• The efficacy of the existing control measures in place (if present) to 
control the occurrence of cyanobacteria.

• The likelihood of occurrence and severity of the consequences (or 
impact), resulting in assessment and prioritisation of the risks.

This assessment requires an understanding of potential nutrient sources in 
the catchment causing eutrophication, conditions causing them to reach 
the water source, how these pathways are best controlled, whether these 
existing controls are effective, and if controls at this level fail, how effec-
tive downstream control measures are at minimising exposure (e.g., where 
present, how effectively can downstream drinking-water treatment remove 
cyanotoxins).

The key steps of risk assessment in the context of Water Safety Plan 
(WSP) development are summarised briefly here – for detailed information 
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on the theory and practical application of risk assessment through the WSP 
process, refer to the Water Safety Plan Manual (Bartram et al., 2009) or 
Water Safety Planning for Small Community Water Supplies (WHO, 2012).

For assessing the risk of cyanotoxins to occur, it is important to firstly 
identify hazardous events from the source through to the point of contact 
with the end user that may result in cyanotoxin occurrence and exposure. 
Such hazardous events may range from stormwater run-off and tributaries 
introducing nutrients resulting in bloom occurrence to failure of a water 
treatment plant component to remove toxins.

To assess the likelihood of cyanotoxin occurrence, any observations on 
the patterns of cyanobacterial occurrence in the waterbody are valuable, and 
people living near the waterbody or regularly visiting it may provide impor-
tant information. Checklist 8.1 in Chapter 8 shows the type of questions to 
ask regarding direct indication of the occurrence of potentially toxic cyano-
bacteria. However, blooms can be short-lived periodic events and may well 
be missed unless observations are quite frequent (e.g., twice a month or even 
weekly during seasons in which blooms are most likely). Therefore, and to 
address the potential causes of blooms, it is important to understand which 
activities in the catchment (in particular intensive farming and wastewater 

Table 6.3  Three example settings: water users/uses documented in the system 
description for assessing cyanotoxin exposure risk

Examples of settings Overview of water uses/users in each of the three settings

1: Slow-flowing large 
river serving as raw 
water source for 
drinking-water for 
a town of 500 000 
inhabitants

• Drinking-water for the population of the town, used also for 
standard household activities (washing, bathing, food 
preparation, etc.).

• A hospital with a dialysis unit (information gap: find out 
whether it buys water specifically designated for dialysis or 
uses tap water and conducts its own treatment).

• Water for irrigation pumped from the river, but currently not 
for vegetable or fruit crop with direct water contact. 

• Private angling – unclear how widespread.

2: Reservoir serving 
about 7000 people 
(three villages and 
a number of farms)

• Drinking-water for the villages and farms, used also for 
standard household activities.

• Some recreational uses at the beach at the bay near the 
ecolodge, boating.

3: Farm dugout 
serving as water 
source for 20–50 
people

• For standard household activities, including food preparation 
for the 20 persons living on the farm and for up to 30 
workers commuting daily; inhabitants and workers emphasise 
that they drink bottled water. 

• Intensively for swimming by the children of the family, the 
farm workers and their friends (information gap: clarify 
awareness of the need to avoid ingesting water or inhaling 
aerosol and spay).

• Irrigation of the farm’s vegetable garden for own use; 
no produce sold. 
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inflow) might lead to nutrient loads causing eutrophication and whether condi-
tions within the waterbody are conducive to bloom formation. To support this 
assessment, Chapter 7 discusses key causes of nutrient loads to the waterbody 
and provides checklists for assessing conditions and activities in the catch-
ment that are likely to contribute them, and Chapter 8 discusses the conditions 
within it that determine phytoplankton biomass and species dominance.

The severity of the impact of cyanotoxin occurrence may be determined 
from the toxin concentrations in relation to the guideline values discussed 
in Chapter 2 and summarised in Table 5.1, from the size of the popula-
tion affected, and the duration of the exposure (as depicted for recreational 
exposure in Table 5.4 in section 5.2).

When determining the likelihood and severity of the consequences of a 
particular hazard or hazardous event, it is important that the risk assess-
ment include the identification and assessment (or “validation”) of the exist-
ing control measures that are already in place within the water-use system 
to determine

• whether the control measures in place are fundamentally capable of 
effectively controlling the hazard/hazardous event;

• any information gaps and uncertainties of this assessment.

Risk assessment matrices relating the likelihood of hazards/hazardous 
events to occur against the severity of their impact are frequently used to 
help understand and make transparent the underlying assumptions lead-
ing the assessment. Note that such an assessment can not only be made 
for a drinking-water system, as is typically done when developing a Water 
Safety Plan (WSP), but can also be adapted for the whole of the relevant 
exposure pathways to water containing cyanobacteria, as is the case in the 
three examples in Tables 6.1–6.7. While such assessments are inevitably 
somewhat subjective and their value does not lie in finding “absolute truth”, 
they prove valuable for stepwise, systematic and consistent identification, 
assessment and prioritisation of risks, particularly if the team agrees on 
definitions for likelihood and severity prior to the assessment. Their value 
particularly lies in making transparent the (otherwise merely implicit) 
assumptions that drive decisions on implementing control measures. This 
transparency makes the assumptions accessible to debate and the decisions 
accessible to potential improvement.

If the risk assessment identifies that the risk is not adequately managed 
(e.g., there are no control measures in place, or the existing control measures 
in place are insufficient to effectively manage the risk), the next step is to sug-
gest upgrading the control measures or to propose new ones for implementa-
tion (typically documented in an “improvement plan”; see section 6.2.4).

If the outcome of the risk assessment is that the risk is adequately con-
trolled, typically no further improvement actions (or additional control 
measures) are required. This would be a very important outcome of the risk 
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assessment: if it shows, for example, that nutrient loads to the waterbody are 
low and not likely to lead to concentrations supporting a substantial biomass 
of cyanobacteria or that conditions within the waterbody are not conducive to 
cyanobacterial blooms, it is worthwhile to understand which conditions and 
control measures are currently maintaining the good situation. An important 
outcome of the assessment then is that these beneficial conditions should be 
maintained. For example, if the assessment shows land in the catchment to 
be chiefly covered by pristine vegetation and in parts used for forestry, a deci-
sion may be to maintain this for sustainable future use of the water resource 
rather than to re-designate it for farming or urban development. It is also 
important to ensure proper documentation of the assessment as basis for any 
future planning of land use and permits for new activities in the catchment.

For the three case examples used in this chapter, Table 6.4 shows how 
the respective teams assessed the health risks due to cyanotoxin occurrence.

Table 6.4  Three example settings: outcomes from assessments of the risk of 
cyanotoxins to occur in health-relevant concentrations and the reasoning 
leading to the assessments

Example 1: Slow-flowing large river serving as raw water source for drinking-water for 
a town of 500 000 inhabitants

Severity of public health impact

Minor impact Moderate impact Major impact

en
ce

Li
ke

lih
oo

d 
of

 o
cc

ur
r

Often Exposure to 
cyanotoxins in  
drinking-water (chiefly 
microcystins) due to 
ineffective water 
treatment

Occasional

Rarely Exposure to 
cyanotoxins due to 
recreational contact 
(bathing)a

Exposure to 
cyanotoxins due to 
the consumption of 
contaminated foodsa

Dark grey = high risk; Medium grey = medium risk; Light grey = low risk

Rationale:
Blooms, particularly of Microcystis and Planktothrix agardhii, documented by the water 
board and the drinking-water supplier, last up to 3 months during summer; they were 
extreme during unusually extended periods of drought 1 and 3 years ago.

Phosphorus concentrations of 60 to >250 μg/L sustain blooms; very slow river flow 
promotes their persistence; sources are primarily from two other upstream countries

(Continued )
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Severity of public health impact

Minor impact Moderate impact Major impact

en
ce

Li
ke

lih
oo

d 
of

 o
cc

ur
r

Often

Occasional Exposure to 
cyanotoxins 
(including potentially 
neurotoxic ones) 
due to recreational 
contact (bathing)a

Exposure to 
microcystins (chiefly 
from P. rubescens) in 
drinking-water due to 
ineffective water 
treatment, probably at 
low concentrations 
based on likely low cell 
densities (<10 μg/L) 

Rarely

Dark grey = high risk; Medium grey = medium risk; Light grey = low risk

Rationale: 
High levels of turbidity at the thermocline but rarely in raw water; visual reports of 
sometimes wine-red and sometimes bright-green thin surface films covering a small 
part of the shoreline water; this indicates Planktothrix rubescens (red) and 
Dolichospermum sp. (green) likely at low cell density. 

Assessment is uncertain; improvement would be through data on phytoplankton 
species, toxins and nutrient concentrations, but nutrients are likely low because of the 
catchment conditions.

Resulting exposure risks are as follows: 

• drinking-water risk from microcystins most likely low, but classified as medium as 
default assumption until data available;

• low for recreational exposure: even if the occasional scums consist of neurotoxic 
Dolichospermum, scum is too limited to cause substantial exposure;

• not given for food as no exposure pathways were identified. 

Population potentially affected is small; financial resources are very limited; data gaps to 
be reduced where cooperation with the university allows, but not as high priority of 
the public surveillance authority.

(Continued )

and reduction only possible through agreements established in the international river 
basin commission, possible only in the longer term.

Shifting the site for the drinking-water offtake is not an option, as cyanobacterial 
biomass is evenly distributed across the river profile. 

Drinking-water treatment will currently remove only cell-bound cyanotoxins and 
reliability of operations for this is not certain. 

Resulting exposure risks are as follows: 

• high for drinking-water, as current treatment system is inadequate for the removal 
of dissolved cyanotoxins;

• low for recreation; this use is banned because of heavy ship traffic;
• low for food – no professional fishery, almost no private angling; crops directly 

irrigated from the river are limited to grain and fruit trees (none that are eaten 
directly such as lettuce or strawberries).

Example 2: Reservoir serving about 7000 people – three villages and a number of farms
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Example 3: Farm dugout serving as water source for 20–50 people

Severity of public health impact

Minor impact Moderate impact Major impact

en
ce

Li
ke

lih
oo

d 
of

 o
cc

ur
r

Often

Occasional Exposure to 
cyanotoxins due to 
the consumption of 
contaminated foods 
(i.e., cyanotoxins on 
irrigated vegetables 
and fruit)a

Possible exposure to 
cyanotoxins in 
drinking-water due to 
uncertain reliability of 
household-level 
treatment

Exposure (including 
young children) to 
cyanotoxins due to 
recreational contact 
(bathing)a

Rarely

Dark grey = high risk; Medium grey = medium risk; Light grey = low risk

Rationale:
Local residents describe observations on bloom intensity (including some photographs) 
and duration typically lasting for about one week, sometimes more. 

Results of three summer sampling campaigns: total phosphorus 40 – 55 μg/L, high 
turbidity (possibly due in part to suspended clay particles), and Microcystis biovolume 
up to 10 mm³/L, slight scum, microcystins 0.3 – 1.7 μg/L (determined by ELISA).

Phosphorus loads are uncertain; site inspection suggests primary source is run-off from 
pasture (mostly cattle) around the dugout. 

Awareness of residents and workers is well developed: all individuals addressed during 
site inspection emphasised bad taste from the dugout water and drinking only bottled 
water (although the reliability of this appears uncertain for children).

Tap water appears to be filtered for preparing tea and coffee (a filter is installed under 
the kitchen sink); efficacy of the filter is unclear; it is also unclear to which extent this 
is used for preparing food.

Exposure of children due to recreational activities is evident. 
Resulting exposure risks are as follows: 

• likely low for drinking-water but provisionally documented as medium given that 
the uncertainty of the assessment is substantial;

• moderate for recreational use: exposure of children, including small ones, is 
repeated at almost daily intervals for many successive weeks on end, but often 
without the presence of blooms;

• low for food, while not totally to be excluded if lettuce and strawberries (grown 
for own use) are irrigated with scum (thorough washing should be recommended).

Note: The above tables include a number of risks (denoted by a) that are not typically considered under 
a conventional WSP for drinking-water, but would be assessed in a risk assessment/management 
plan for recreational water safety, or for food under the similar principles of HACCP.

6.2.3.1  Coping with uncertainty

Collating in-depth information for risk assessment can be an extensively 
time-consuming exercise, and often information will not be readily available. 
Estimating nutrient loads from the catchment, understanding the ecological 
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interactions within the waterbody and collecting information on socio-
economic aspects of water-use patterns may be particularly challenging. 
Therefore, it is necessary to consider the detail of information required for 
making decisions – possibly only preliminary ones, documenting uncer-
tainties and information gaps along with the information. Risk assess-
ment will then show which information gaps and uncertainties most 
urgently need to be closed, that is, those for which uncertainty precludes 
decision-making.

For example, reducing uncertainties in estimating a nutrient load may 
be critically important in a setting where controlling nutrient loading is 
the key measure to avoid cyanobacterial proliferation and thus cyanotoxin 
occurrence (e.g., an upstream reservoir in a fairly pristine catchment). In 
contrast, in a setting where nutrient loads and concentrations in the water-
body are already excessively high and not readily amenable to local con-
trol (e.g., a downstream river reach with complex transnational nutrient 
sources), identifying key nutrient sources and taking action to reduce loads 
remain important in face of long-term benefits, but in the shorter term, 
other control measures may need to take priority.

Therefore, risk assessment is an iterative rather than a linear process: 
it should incorporate the WSP principle of “incremental improvement” as 
described above, with an emphasis on the importance of getting started and 
improving over time as information becomes available.

For the three case examples used in this chapter, Table 6.5 shows how 
the respective teams described the uncertainties of their risk assessments.

Documenting uncertainties and making them transparent, including 
information gaps to close, are important. This will inform decisions on 
which measures to take first – whether these should be interventions to 
reduce exposure or rather programmes to collect data and information 
before decisions on any investments into measures are to be made.

6.2.3.2  Cyanotoxin risks in relation to other public 

health risks from exposure to water

A key purpose of risk assessment in water safety planning is to determine 
priorities for maintaining, upgrading or implementing measures to control 
public health impacts from the hazards identified. For the overall target 
of protecting public health, it is important to assess the public health risk 
from cyanotoxins in relation to that from other hazards/hazardous events 
potentially occurring in the water. This is also useful because some of the 
events causing other hazards will also cause cyanobacteria – for example, 
sewage loads carry both nutrients that support blooms and pathogens. A 
comprehensive risk assessment would be developed in the context of devel-
oping a full WSP, but it is also valuable to contextualise the potential cya-
notoxin risk even without developing a complete WSP. Generally, public 
health risks from pathogens in the water are likely to be of higher priority 



422 Toxic Cyanobacteria in Water

due to the potential for severe acute illness, even death, and also because 
even a small number of people infected through exposure to water contain-
ing pathogens can communicate the infection to a potentially exponen-
tially increasing number of others.

For the three case examples used in this chapter, Table 6.6 shows how the 
respective teams related the health risks due to cyanotoxins to other health 
risks in the respective setting.

Table 6.5  Three example settings: uncertainties arising during the assessments of the 
risk of cyanotoxins to occur in health-relevant concentrations

Examples of settings
Uncertainties of the risk assessment for each of the three 

settings introduced in Table 6.1

1: Slow-flowing large river 
serving as raw water 
source for drinking-water 
for a town of 500 000 
inhabitants

Uncertainty due to the lack of cyanotoxin data, but the 
dominant cyanobacterial taxa almost certainly contain 
microcystins, and steps available in the drinking-water 
treatment system – while probably removing cells 
containing toxin – cannot remove dissolved toxins and 
may well lead to the lysis of some cells, thus releasing 
further toxins. Therefore, even without toxin data, 
exposure to microcystin concentrations in the range of a 
few μg/L is likely, particularly as occurrence is ongoing for 
periods of several months on end. 

While uncertainty regarding the extent of private angling 
is high, it is clear that this lead to relevant exposure only 
for a small population, possibly for some people with 
low income frequently relying on fish from the river as a 
relevant source of protein.

2: Reservoir serving about 
7000 people (three 
villages and a number of 
farms)

Uncertainty is considerable: although the visual reports 
suggest cyanobacteria to be the cause, it is unclear 
whether they indeed cause the discoloration. While 
catchment conditions do not indicate sufficiently high 
nutrient loads to support substantial biomass, this cannot 
be totally excluded, particularly in face of increasing 
tourism.

3: Farm dugout serving as 
water source for 20–50 
people

Uncertainty regarding concentrations of phosphorus as 
well as cyanobacterial taxa and their concentrations is 
relevant, as the data from the three sampling occasions 
suggest them to be only slightly above thresholds for 
interventions to prevent human exposure, thus indicating 
that interventions to reduce phosphorus loads from 
erosion may be effective. 

As finances for a more intensive monitoring programme 
are lacking, uncertainty will be addressed by intensified 
visual inspection for blooms.

Uncertainty also exists with regard to the efficacy of the 
point of use filters and whether filtered water is reliably 
used for food preparation or not.
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Table 6.6  Three example settings: health risk assessments due to cyanotoxins in 
relation to risks from other hazards

Example 1: Slow-flowing large river serving as raw water source for a town of 500 000 
inhabitants

Severity of public health impact

Minor impact Moderate impact Major impact

Often Contamination of 
drinking-water with 
musty taste and 
odour (of unclear 
origin) possibly due 
to ineffective water 

Exposure to 
cyanotoxins in 
drinking-water 
(chiefly microcystins) 
due to insufficiently 
effective water 

Microbial 
contamination 
of the drinking-
water due to 
failure of 
filtration in 

treatment treatment water treatment

Occasional Microbial 

e
en

c
ur

r
oc

c
el

ih
oo

d 
of

 
Li

k

contamination 
(i.e., Legionella) 
in household 
installations due 
to inappropriate 
management of 
internal 
plumbing 
systems

Rarely Exposure to 
cyanotoxins due to 
recreational contact 
(bathing)a

Exposure to 
cyanotoxins due to 
the consumption of 
contaminated foodsa

Chemical 
contamination of 
source water due to 
spills of hazardous 
chemicals

Drowning, 
injuries due to 
illegal swimming 
in boating 
channels *

Dark grey = high risk; Medium grey = medium risk; Light grey = low risk

Rationale: high risk from cyanotoxins (see Table 6.4); high risk of pathogen 
breakthrough, particularly of Cryptosporidium (which are resistant to disinfection). 
Legionella are known to have caused numerous cases of serious pneumonia and two 
deaths in two hotels and one senior citizens’ residence. Public concern is high for 
spills of hazardous chemicals but actual risks are low, due to the lack of industry in 
nearer catchment (if they occur, concentrations would be low). Slight risk from musty 
taste and odour with increased risk if people use other less safe water sources. Two 
known incidents of teenagers severely injured by boats when swimming in spite of 
warning notices.

(Continued )
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Example 2: Reservoir serving about 7000 people – three villages and a number of farms

Severity of public health impact

Minor impact Moderate impact Major impact

en
ce

Li
ke

lih
oo

d 
of

 o
cc

ur
r

Often Sunburn due to 
excessive exposure 
to sun as a result of 
underestimating the 
impact at 1000 m 
altitudea

Occasional Exposure to 
cyanotoxins 
(including 
potentially 
neurotoxic ones) 
due to recreational 
contact (bathing)a

Exposure to 
microcystins (chiefly 
from P. rubescens) in 
drinking-water due to 
ineffective water 
treatment, probably 
at low concentrations 
based on likely low 
cell densities (<10 
μg/L)

Cranial and spinal 
injury due to 
unsafe divinga

Rarely Microbial 
contamination of 
drinking-water due 
to the presence of 
inadequately 
treated human 
effluent from the 
bathing area

Dark grey = high risk; Medium grey = medium risk; Light grey = low risk

Rationale: risks from cyanotoxins provisionally moderate for drinking-water and low for 
recreation (see Table 6.4). Diving injuries reported more than once a year; sunburn 
frequently. Pathogens from sewage seeping through rock fissures and from people 
using the beach are not likely to reach the waterworks (inactivation by long travel 
times in the reservoir).

(Continued )
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Example 3: Farm dugout serving as water source for 20–50 people

Severity of public health impact

Minor impact Moderate impact Major impact

en
ce

Li
ke

lih
oo

d 
of

 o
cc

ur
r

Often Microbial 
contamination 
of farm 
reservoir used 
for  
drinking-water 
due to 
defecation and 
run-off from 
livestock

Occasional Exposure to 
cyanotoxins due to 
the consumption of 
contaminated foods 
(i.e., cyanotoxins on 
irrigated vegetables 
and fruit)a

Possible exposure to 
cyanotoxins in 
drinking-water due 
to uncertain 
reliability of 
household-level 
treatment

Exposure (including 
young children) to 
cyanotoxins due to 
recreational contact 
(bathing)a

Rarely

Dark grey = high risk; Medium grey = medium risk; Light grey = low risk

Rationale: moderate risks exists from exposure to cyanotoxins through recreational 
contact, low for foods (see Table 6.4). Cryptosporidium likely, due to cattle uphill of the 
dugout, which may cause severe illness, so risk is high.

Note: The above tables include a number of risks (denoted by a) that are not typically considered 
under a conventional WSP for drinking-water, but would be assessed in a risk assessment/
management plan for recreational water safety or for food under the similar principles of 
HACCP.

6.2.4  Improvement planning: choosing 
additional cyanotoxin control measures 
for system improvement

If the outcome of the risk assessment identifies that high-priority risks are 
not adequately managed, then upgrade of exiting controls and/or additional 
control measures are needed. These actions are typically documented in an 
“improvement plan”, which should capture which improvement is needed, 
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who is responsible for doing it, by when should it be done (i.e., reflecting its 
priority) and how the improvement will be funded.

Measures to control the risk of human exposure to cyanobacterial blooms 
range from simple physical interventions like vegetation buffer strips around 
a waterbody, or behavioural ones like banning recreational use of a water-
body, to more complex technical interventions like the implementation and 
use of appropriate drinking-water treatment trains. Examples of additional 
control measures to consider at the different stages of the water-use sys-
tem are provided in Chapters 7–10, and for the three scenarios, they are 
presented in Table 6.7.

6.2.5  Monitoring the functioning of control 
measures for cyanotoxin management 
and developing a management plan

Validation determines that a control measure is fundamentally capable of 
controlling a hazard/hazardous event (see section 6.2.3). However, to deter-
mine that the control measure actually does continue to function effectively 
over time, routine monitoring is required (referred to as “operational moni-
toring”). This will show whether the control measure is reliably managed/
operated such that it continues to provide effective protection. Ideally, oper-
ational monitoring should use quick and simple monitoring parameters (see 
below) that provide a rapid result so the performance of a control measure can 
be continuously determined, and if necessary, corrective action can be taken 
in an efficient and timely manner.

Operational monitoring also requires setting performance criteria for the 
respective control measure and critical limits which indicate if the measure is 
working within the established acceptable performance criteria. Furthermore, 
it is useful to define corrective action(s) to be taken if the monitoring shows 
that the control measure is no longer working within the critical limits. For 
example, for filtration to remove cyanobacterial cells in drinking-water treat-
ment, turbidity, measured continuously at the outflow of each individual 
filter, is a simple operational monitoring parameter that indicates whether 
filtration is working optimally. Critical turbidity limits can be set, and if 
they are exceeded, this would indicate that the filtration processes are not 
operating optimally, triggering, for example, filter backwashing as the cor-
rective action to restore optimal operation of the control measure.

This approach can be similarly applied to control measures in catch-
ment or offtake management; for example, vegetation cover to prevent ero-
sion from catchment areas identified as critical for the nutrient load to the 
waterbody can be defined as control measure, compliance to which can 
be monitored either by remote sensing or by periodic site inspection. If 
such monitoring detects violation, corrective action would be an immedi-
ate enforcement of revegetation and compliance to the dedicated land use. 
Likewise, adjusting the drinking-water offtake depth to avoid cyanobacte-
rial intake can be defined as a control measure with online monitoring of 
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Table 6.7  Three example settings: additional measures to control cyanotoxin risks and 
their operational monitoring identified through WSP development

Examples of settings
Additional control measures and their operational 
monitoring identified for each of the three settings

1: Slow-flowing large river 
serving as raw water source 
for a town of 500 000 
inhabitants

Implement Alert Levels Framework; install an online 
fluorescence analyser to indicate when cyanobacterial 
levels are >1 μg/L at raw water intake to trigger 
microscopy for cyanobacteria; incident response plans 
to be developed as part of an emergency response.

Upgrade the drinking-water filtration system in the 
treatment train (see technical specification for 
details) to ensure an effective cell removal avoiding 
rupture and lysis (note: this will also reduce risks of 
breakthrough of disinfection-resistant pathogens). 

For operational monitoring: install online turbidity 
analyser (with corresponding “auto dial” alarming for 
operator notification) at the outlet of each filter.

2: Reservoir serving about 
7000 people (three villages 
and a number of farms)

Any investment into treatment targeting cyanotoxin 
removal may well prove futile; as a first step, gain the 
necessary data via the university collaboration 
described in Table 6.1; decide on appropriate control 
measures only after the data are available. 

3: Farm dugout serving as 
water source for 20–50 
people

Plant a vegetation buffer strip of 10 m between the 
uphill pasture and the dugout (this likely represents a 
sufficient intervention to reduce loads from erosion; 
note: this will also intercept particles like pathogens, 
reducing infection risks).

Encourage farm inhabitants and farm workers to 
continue to drink bottled water, to ensure children 
understand this, and to use packaged water for food 
preparation.

Replace the filtration device in the kitchen by one with 
a carbon cartridge with regular renewal following the 
manufacturer’s instructions.

Ensure children understand the need to avoid 
swallowing water when using the dugout for 
recreation and to keep out of scum. 

Advise to water the vegetable garden via the soil 
rather than causing direct water contact with 
produce. 

Operational monitoring of the vegetation buffer strip 
through visual inspection – annually by the public 
authority responsible for oversight, by the farmer 
herself at monthly intervals as well as during and 
after stormwater events to look for traces of erosion 
and for immediate repair of any damage. 

Operational monitoring of behaviour by spontaneous 
random household surveys of people on the premises 
during inspections to check their awareness. 
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a characteristic cyanobacterial pigment, phycocyanin, with a specific fluo-
rescence probe as a means of operational monitoring. Critical fluorescence 
limits can be set, and if they are exceeded, this would inform managers that 
they need to take corrective action by switching the offtake to a different 
depth or site, or temporarily ceasing raw water harvesting.

Operational monitoring aims to ensure that the water-use system is “pro-
actively” managed to avoid human exposure to unsafe water (e.g., contain-
ing cyanotoxin concentrations exceeding the guideline values or prevailing 
national standards). Proactive management can thus be far more effective 
(and less costly) than reacting to water quality issues after they have arisen. 
Additionally, operational monitoring is more practical and cost-effective 
than relying primarily on cyanotoxin monitoring. Evidently, by the time 
violation of a land-use plan has led to cyanobacterial blooms that show up 
in cyanotoxin monitoring data, “fixing the problem” has become far more 
difficult. Similarly, by the time cyanotoxin monitoring data show that the 
water quality target for finished drinking-water is exceeded, the water has 
already reached the consumer, whereas routine process monitoring would 
indicate the development of the problem (e.g., declining filter performance) 
with time to fix it before it leads to high levels of toxin concentrations. 
Chapters 7–10 therefore include text and tables suggesting the selected 
examples of control measures that can be implemented for the respective 
targets as well as operational monitoring parameters that indicate whether 
the measure is working as it should.

Beyond their use for day-to-day operation, the data documented from 
operational monitoring of control measures can be highly valuable for sys-
tem and risk assessment, as they may also indicate/validate how effectively 
a control measure is working. Documentation also supports the identifica-
tion of trends over time and of conditions that may impact the efficacy of 
control measures (such as patterns of precipitation or drought).

Furthermore, a management plan should be developed which defines 
how the performance of key control measures is monitored and which cor-
rective action should be taken if monitoring indicates poor performance, or 
if incidents occur (typically referred to as “operational monitoring plans”, 
which may be part of standard operating procedures, SOPs). Operational 
monitoring plans for key control measures are important to ascertain their 
reliable performance at all times. These specify:

• Operational monitoring parameters for key control measures. An 
important criterion for the choice of the monitoring parameter is that 
it gives a result with sufficient time for taking corrective action before 
failure leads to cyanobacterial proliferation or cyanotoxin break-
through and exposure.

• Documentation of data from operational monitoring: For each opera-
tional monitoring parameter, it is important to keep records of the 
monitoring data collected in order (i) to be able to trace what went 
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wrong and why in cases of incidents or to validate that the system 
was working well even when excessively challenged, for example, by 
a bloom, (ii) to allow the recognition of trends in the data which may 
indicate a decline in the performance of the control measure (e.g., 
gradual reduction in filter runtimes at a water treatment plant over 
time may indicate that the filter media needs replacing) and (iii) to 
demonstrate due diligence in managing the system.

• Critical limits for each of the monitoring parameters that show opera-
tors when the system is “out of bounds” and corrective action needs 
to be taken on time.

• Corrective action(s) to take immediately in case monitoring shows a 
process to be outside of the critical limits, that is, performance criteria 
are not being met, including lines of responsibility and communication.

6.2.6  Verifying that exposure is sufficiently avoided 
and water quality targets are achieved

Verification in Water Safety Plan (WSP) terms refers to obtaining evidence 
that the WSP is working as whole to deliver safe drinking-water. In the 
 context of toxic cyanobacteria, verification may involve:

• Compliance monitoring, that is, water quality testing to ensure that 
water quality objectives (e.g., national standards) are being achieved; 
this may be concentrations of the toxins themselves (e.g., against 
the guideline values given in Chapter 2 and Table 5.1 or prevailing 
national standards) or of cyanobacteria in the waterbody: if suffi-
ciently frequent monitoring of cyanobacteria (or measures indicating 
their levels of biomass such as the concentration of chlorophyll-a or 
even turbidity) shows that cyanobacteria are absent or only present 
at low concentrations, verification does not require monitoring toxin 
concentrations.

• WSP audits to ensure the WSP is up-to-date, is complete, is being 
implemented and is effective; depending on the local context, this may 
be carried out by internal or external bodies and may be a supportive 
assessment or more formal audit (which may or may not include pen-
alties for noncompliance).

• Surveying user satisfaction may yield important information on, for 
example, taste/odour issues for drinking-water quality, observation of 
discoloration or odour/scum issues for recreational water use.

6.2.7  Documenting the planning 
process and outcomes

For an assessment as described above (whether or not it is conducted in the 
context of developing a WSP), it is important to document the considerations 
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involved. This begins with a description of a water-use system. Maps of the 
catchment as well as water flow diagrams are useful not only for documenta-
tion, but also for understanding land-use patterns and how critical they are 
for the water budget and for nutrient loading. Flow diagrams can help concep-
tualise and visualise the points at which control can be exerted upon factors 
that affect cyanobacterial proliferation, toxin removal and water-use patterns. 
For each control measure, documentation should include the reasons for its 
choice and the targets it should achieve as well as how its adequacy for achiev-
ing the targets was validated. For control measures to be upgraded or newly 
implemented, documenting the rationale for such investments is important 
and provides reasoning for mobilising the necessary investments.

Documentation of the risk assessment and the criteria that led to its 
results is a necessary basis for successively further developing this assess-
ment and for improving it. Therefore, this documentation should explicitly 
include information gaps and an assessment of how critical they are for 
making management decisions.

The target of documentation is a comprehensive overview rather than an 
extensive document. Where more in-depth information is needed, the over-
view best refers to further in-depth documents, like records of operational 
monitoring data.

6.2.7.1  Documenting management procedures

Management procedures should include the documentation of how to per-
form key operational activities (including operation of control measures) 
for normal operating conditions and incidents, as well as for emergency 
situations. For normal operating conditions and incidents, particularly for 
key control measures, typically this may take the form of SOPs (standard 
operating procedures), for example, day-to-day operation and monitoring 
of a water treatment filter, and what to do in an incident situation when 
this control measure fails. For these control measures, the level of detail 
useful in documentation will vary between settings. In general, such 
documents should be concise and readily available (including to techni-
cal staff). General experience is that after initial reluctance to document 
SOPs, they are found to be highly useful, particularly for maintaining 
“institutional memory”, for keeping information accessible and for train-
ing new staff.

For emergency situations, emergency response plans should be devel-
oped (see also Chapter 15). They typically include the following example 
information:

• triggers for activating emergency response (e.g., detection of cyano-
toxin levels above guideline values or prevailing national standards, 
or threshold values as given in the Alert Levels Frameworks in sec-
tions 5.1 and 5.2);
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• steps to protect water quality/public health (e.g., initiate pretreatment 
step; issue “do not drink” advisory and provision of alternative water 
supplies; issue “do not swim/fish” advisory);

• general roles and responsibilities (both within the water supply or 
waterbody management entity as well as external stakeholders);

• communication protocols (internal to the management entity and 
external, for example, to stakeholders such as users, regulators, health 
authorities, environmental agencies, recreational groups, community 
groups);

• in the case of drinking-water, alternative/emergency drinking-water 
supplies (e.g., emergency provision of bottled water, water tankers and 
public collection points).

6.2.8  Developing supporting programmes

Supporting programmes are actions that contribute to drinking-water safety 
but do not directly affect water quality. Such programmes can develop capac-
ity (e.g., water treatment plant operator training), can strengthen relationships 
(outreach and awareness raising for recreational user groups), and can create 
enthusiasm and buy-in to the process from key stakeholders. Figure 6.3 shows 
examples of supporting programmes relevant to cyanobacterial management.

6.2.9  Periodic review and revision

Land uses and population densities in catchments undergo change, resulting 
in changes in the nutrient load to the waterbody. The climate is changing, 
resulting in changes in hydrodynamics, precipitation and seasonal patterns 

Figure 6.3  Examples of programmes to support the management of cyanotoxins in 
water-use systems.
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of thermal stratification. Such changes may significantly shift phytoplank-
ton species occurrence and lead to increases or decreases in cyanobacte-
rial blooms. Also, conditions in drinking-water treatment plants undergo 
changes. Therefore, periodic revision is necessary to ensure that the assess-
ments and measures are still appropriate. It is additionally important to 
incrementally improve the WSP, incorporating experience gained as well as 
further expertise, capacities and resources. Revision is also recommended 
after incidents/near-misses to document key lessons learned which may 
inform the review and strengthen key aspects of the plan: for example, a 
heavy cyanobacterial bloom is a useful opportunity to study whether the 
control measures in place have proven valid even in an extreme event, or 
whether an upgrade is advisable, or if the emergency response plans imple-
mented were effective in protecting human exposure.
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INTRODUCTION AND GENERAL CONSIDERATIONS

As discussed in Chapter 5, cyanobacterial blooms in surface waters are 
most effectively and sustainably controlled by limiting nutrient concentra-
tions in the waterbody, and this requires sufficiently limiting the nutrient 
loads that it receives from its catchment (for terminology, see Box 7.1). 
These loads enter a waterbody from point sources such as discharges and 
sewage outfalls and from nonpoint sources (also termed “diffuse sources”) 
such as surface run-off or drainage from fields. In some cases, inflow 
of groundwater may also carry significant nutrient loads. Furthermore, 
sediments may release nutrients, particularly phosphorus (P), into the 
waterbody. These releases are termed “internal loads”, and they delay the 
decline of concentrations in the water after the external load has been 
reduced. However, already Vollenweider and Kerekes (1980) showed that 
in many cases, sediments are – on an annual scale – a sink rather than a 
source for phosphorus; thus, if the external load reduction is effective and 
water exchange rates are sufficiently high, the sediments will become a 
sink again, typically several years after load reduction. While such time 
spans may be of concern, particularly if a rapid remediation is necessary 
or water exchange rates are low, the first step for the target of reducing 
nutrient concentrations in the waterbody is to reduce the external load; 
otherwise, measures to reduce the internal load have little chance of being 
sustainably effective. Assessing the role of sediment nutrient release and 
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BOX 7.1: TERMINOLOGY

A catchment is the entire land area from which rain, snowmelt or 

g roundwater drain into a waterbody, typically delineated by the crests of the 

hills or mountains that form water divides. Synonyms include “watershed”, 

“river basin” and “drainage area”. Catchments span a very wide range from 

fairly small, for example, for the close surroundings of hydrologically isolated 

ponds, to a continental scale for large rivers.

Point sources release nutrients to a waterbody at a single localised point 

of discharge, such as a sewage outfall. 

Diffuse sources, also termed “nonpoint sources”, are many smaller or 

scattered sources from which nutrients may be released to a waterbody, for 

example, from the land surface through rainwater runoff, through groundwa-

ter or from scattered rural dwellings. The combined impact of diffuse sources 

on the waterbody may be significant.

Riverine loads are the mass of a contaminant transported per unit of 

time, typically expressed as kg or tons per year. The nutrient load in the river 

reflects the sum of inputs upstream of the monitoring point at which these 

loads are calculated minus the possible retention in the river sediment. As 

such, these loads provide a first check: the sum of inputs from individual and 

separate sources should broadly equate to the total riverine load if retention 

is neglected for very rough estimation. More detailed investigations include 

retention.

Riparian buffer strips are the areas around a waterbody of about 

10–30 m width or more, covered with dense vegetation which can effectively 

intercept surface run-off carrying phosphorus-rich soil eroded from arable 

land and pastures.

Tile drainage is a term used for draining land that would otherwise be 

too saturated with water for crops to grow. The term derives from installing 

drainage in a grid pattern covering the otherwise too moist field.

options for controlling it are discussed in section 8.6. This chapter focuses 
on assessing and managing external nutrient loads to a waterbody.

As outlined in Figure 7.1, the first step for this purpose is to estimate the 
maximum nutrient concentration in the waterbody that can be tolerated 
to effectively control (toxic) cyanobacterial blooms (section 7.1) and the 
corresponding load to the waterbody that may be tolerated to avoid exceed-
ance of this target concentration (section 7.2). The next steps are to identify 
the main pathways and sources of nutrients (section 7.3) and to estimate 
the  respective loads they contribute (section 7.4). The approach to esti-
mating these loads may range from qualitative expert judgement (includ-
ing that of local stakeholders) to quantitative load modelling (see tiers in 
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Determine the target nutrient concentration in the
waterbody to effectively control cyanobacteria → 7.1 

Estimate the critical nutrient load to reach this target 
load → 7.2 

Identify potential pathways and sources of nutrients
→ 7.3 

Assess the respective loads they contribute to the 
total load reaching the water-body → 7.4 

Identify and implement measures to control nutrient 
loads, including climate change scenarios → 7.5 & 7.6

Figure 7.1  Steps in the selection of measures for controlling nutrient loads from the 
catchment. 

section 7.4), depending on the available information. Once the loads from 
key pathways and sources are clear, the next step is to identify the most 
promising and most cost-effective measures to control them, to implement 
these measures, and to ensure they are operating effectively (section 7.5). 
After the implementation of measures, it is important to monitor whether 
they are taking effect as planned. This involves going back to assessing the 
nutrient load in order to validate that it has been sufficiently reduced, and it 
involves monitoring the nutrient concentration in the waterbody.

Implementing effective measures to control nutrient loads takes time, 
often several years, and particularly for P, it takes further time for con-
centrations in the waterbody to decline and for biota to respond to lower 
concentrations: Jeppesen et al. (2005) reviewed data on the responses to a 
nutrient load reduction of 35 lakes and found that at least 3 retention times 
(i.e., exchanges of the lake’s volume) were necessary to dilute 95% of the 
excess P out of the waterbody and <10–15 years for total phosphorus (TP) 
to reach a new equilibrium between water and sediment; deep lakes tend 
to take longer. Although time scales of years or even decades may seem 
prohibitive, in the longer term controlling cyanobacterial blooms through 
keeping the nutrient load sufficiently low is the most sustainable approach, 
often rendering further (usually costly and continuously necessary) mea-
sures within the waterbody (discussed in Chapter 8) unnecessary.
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The guidance given in this chapter for assessing and controlling nutrient 
loads from catchments to waterbodies is valid independently of the size 
of the catchment. Estimating nutrient loads from large catchments with 
a range of possible nutrient sources can be particularly challenging. For 
rivers crossing municipal, state or national borders, planning and man-
agement require collaboration across jurisdictions, and for transnational 
basins, international commissions have proven useful. For example, the 
Water Framework Directive of the European Union requires transboundary 
river basin management plans. Nutrient loads are more readily assessed and 
controlled for smaller, more readily controllable catchments, for example, 
those of reservoirs in middle-range mountains.

For further information and guidance on managing waterbodies and 
their catchments, readers are referred to the WHO guidebook Protecting 
Surface Water for Health (Rickert et al., 2016).

7.1  DETERMINING TARGETS FOR NUTRIENT 

CONCENTRATIONS IN THE WATERBODY

Which nutrient to address – P or both N and P – is a key question for plan-
ning measures to reduce the maximum possible amount of phytoplankton 
biomass – and thus of cyanobacteria – in a given waterbody. As discussed 
in Chapter 4, while in theory any nutrient could be limiting, in practice the 
macronutrients phosphorus (P) and in some cases nitrogen (N) are decisive 
for the amount of biomass that can occur. Moreover, if the concentration 
of one nutrient is sufficiently low, reducing those of others will not contrib-
ute to controlling cyanobacteria (see section 4.3.2 and Box 4.5). Reducing 
P loads to waterbodies has been widely successful, provided the mea-
sures taken achieved sufficiently low concentrations within the waterbody 
(Jeppesen et al., 2005; Phillips et al., 2008; Evans et al., 2011; Carvalho 
et al., 2013; Søndergaard et al., 2017), while there is very little experience 
with exerting control by reducing N. However, in many eutrophic shal-
low waterbodies, N limits phytoplankton biomass during the later summer 
months (Søndergaard et al., 2017). Shatwell and Köhler (2019) show the 
example of a shallow lake in which phosphorus cycled between water and 
sediment during summer perpetuated high concentrations of P even after 
substantial load reduction, and reduced N loads were therefore decisive 
for controlling summer phytoplankton biomass. Such situations may be 
particularly relevant for waterbodies with low rates of water exchange in 
which the gradual dilution of P takes many years (Conley et al., 2009).

In contrast to P, which is removed from a waterbody only by dilution and 
adsorption to particles with which it is deposited in the sediment, N is lost 
to the atmosphere through the bacteria-driven process of denitrification. 
At elevated summertime temperatures, this process can significantly reduce 
the concentrations of N within days, and in face of this quick response 
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time, N load reduction may quickly render concentrations in the waterbody 
 sufficiently limiting to control blooms during their peak season. As P release 
from sediments may also be particularly pronounced during later summer, 
Shatwell and Köhler (2019) propose to assess whether activities causing N 
loads (fertilisation, spreading of manure) can be timed to avoid loads spe-
cifically during the critical summer weeks in which keeping N limiting can 
control cyanobacterial blooms. In consequence, in situations in which the 
target concentration for TP cannot readily be reached, it may be effective to 
also control N loading. This may also serve to protect the macrophyte cover 
that would otherwise support the improvement of water quality `

N may also be relevant in the wider context of environmental targets for 
aquatic ecosystem protection. Conley et al. (2009) discuss the negative eco-
logical impacts of reducing only P on some coastal waters and estuaries, 
such as parts of the Baltic Sea, Wadden Sea, and Gulf of Mexico. In such 
situations, excessive N may also lead to coastal harmful algal (including cya-
nobacterial) blooms exposing people during recreational use. Furthermore, 
N emissions into aquatic environments may be directly relevant to human 
health where they not only reach surface waterbodies but also reach ground-
water, causing elevated nitrate concentrations in drinking-water (WHO, 
2017b). As much of the N and P that reach waterbodies originate from the 
same sources, that is, human and animal excreta and/or fertiliser, some mea-
sures for controlling P loads can be readily designed to also reduce N loads, 
in particular reducing excessive application of fertilisers or manure on land. 
However, techniques for their removal in sewage treatment tend to be more 
expensive for N than for P. Also, as discussed below, the transport pathways 
of N and P to waterbodies are different, and intercepting also those of N 
may therefore require additional measures to those for intercepting P. Where 
prioritising investments is necessary, focusing on P is likely to be more effec-
tive for the target of controlling cyanobacteria.

The following considerations may serve to assess whether to focus mea-
sures on controlling P loads or to also address those of N:

 1. Is the waterbody shallow and mixed (with thermal stratification at 
most lasting for a few days)?

 2. Is P clearly too high to be limiting for extended periods during the 
cyanobacterial growth season, that is, total phosphorus (TP) > 25–50 
μg/L (depending on the waterbody) or even soluble P “left over” by 
the phytoplankton, that is, in concentrations > 5–10 μg/L? Do con-
centrations of P increase during summer, indicating release from the 
sediment?

 3. How do concentrations of N relate to those that can realistically be 
achieved by load reduction measures – that is, is a target of 200–500 
μg/L of total nitrogen (TN) and < 100 μg/L for dissolved N achievable?
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Importantly, because of the possibility of N limitation shifting  phytoplankton 
to N-fixing cyanobacteria, controlling N is not an alternative to measures 
reducing P loads, but rather an additional approach, focusing on specific 
summer situations.

Setting target nutrient concentrations: How low must the concentration 
of phosphorus or nitrogen be to effectively limit cyanobacterial biomass? 
Sections 4.3 and 4.4 summarise information and references showing that 
TP scarcely limits the biomass of phytoplankton – including that of cya-
nobacteria – if concentrations are above 100 μg/L. It can limit biomass to 
some extent in the concentration range of 50–100 μg/L and more effectively 
below 20–50 μg/L, while at less than 10 μg/L TP cyanobacteria scarcely 
occur and if so, health-relevant levels are unlikely in most situations. For 
nitrogen, section 4.3 shows that the limitation of biomass occurs at 7- to 
10-fold higher concentrations as compared to those of TP.

Within this range, the target to set for a specific waterbody depends 
on both its intended use and specific conditions in it, particularly on its 
hydrological and morphological features. For example, in some shallow 
lakes with extensive macrophyte cover, cyanobacteria have only rarely 
developed blooms even at TP concentrations in the range of 100 μg/L 
(Jeppesen et al., 2007), and for the purpose of recreational use, this level 
may be sufficient as target nutrient concentration. At the other extreme, 
in a large deep lake or reservoir, cyanobacteria may develop and accumu-
late to scums on leeward shores at 20 μg/L TP, or Planktothrix rubescens 
may form metalimnetic maxima in the depths of the drinking-water off-
take, and controlling these cyanobacteria may necessitate a TP target of 
10 μg/L or even slightly lower.

For setting a target TP concentration, a general orientation can be gleaned 
from the experience with lake and reservoir restoration discussed in section 
4.4: that is, lower TP concentrations in the range of 20–30 μg/L are typi-
cally necessary for thermally stratified waterbodies, yet lower ones closer to 
10 μg/L may be needed to control P. rubescens in deep reservoirs, whereas 
shallow lakes with dense macrophyte stands may remain clear at TP concen-
trations even in the range of 100 μg/L. While much less experience exists for 
target N concentrations, multiplying these values for P by 7 may serve for 
a rough estimate. Beyond these rules of thumb, setting nutrient targets for 
a specific waterbody requires a good understanding of its ecology and the 
conditions that favour cyanobacterial blooms, and this is best done in col-
laboration with experts in limnology. It is further important to collaborate 
with authorities and stakeholders in waterbody and catchment management 
to identify overlap between targets for human health protection and aquatic 
ecosystem protection in order to efficiently coordinate measures within this 
larger context. Models outlined in section 4.4 can support setting target 
nutrient concentrations.
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The following guidance focuses on assessing and controlling phosphorus 
loads as the nutrient, which is most frequently decisive for controlling cya-
nobacterial blooms. However, many aspects can likewise be used for devel-
oping measures to control nitrogen loads.

7.2  DETERMINING CRITICAL NUTRIENT LOADS 

TO THE WATERBODY

Once the target for the nutrient concentration is clear, it is possible to esti-
mate the maximum nutrient load that must not be exceeded in order to 
meet this target. This is termed “critical load”. Determining the critical 
load does not yet differentiate by nutrient sources and pathways but merely 
focuses on the total amount that should not be exceeded.

The critical load Lcrit is given in mass per time (e.g., in tons per year). If 
there were no loss processes removing the nutrient, its critical load could 
be calculated from the target nutrient concentration (given in mg/m³, which 
is equal to μg/L) multiplied by the amount of water flowing through the 
system. The latter is given in water volume per unit time: for rivers, this 
is discharge, Qriver, (given in m³/s); for lakes and reservoirs, it is the water 
exchange rate or flushing rate ρ, given as the number of times the total 
waterbody volume is exchanged per year. For a river, the critical load of 
total phosphorus (TP) can be estimated as

L Q= ×TP crit target river

• Example for a river: If TPtarget is set to 25 mg/m³ (=25 μg/L) and the 
average Qriver is 2 m³/s, this gives a critical load Lcrit of 50 mg/s, which 
is 1 576 800 000 mg/yr = 1.58 t/yr.

As Qriver varies over time, Qriver can be defined as mean flow or low flow of 
the river, with low flow providing the higher level of protection, particu-
larly as cyanobacteria tend to develop during periods of low flow. A more 
detailed level of emission modelling would include instream retention, as it 
is presented in section 7.3 as tier 3 approach.

For a lake or reservoir, the critical load of TP would be estimated as

L z= ×TP   ρ × crit target mean 

which is conceptually the same as the approach for rivers, but it is an estab-
lished practice to use a different dimension for discharge, that is, the  flushing 
rate ρ multiplied by the waterbody’s mean depth (zmean) which together 
describe the volume of water exchanged under one m² of waterbody surface.
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• Example for a lake or reservoir: If TPtarget is 25 mg/m³, the flushing 
rate is twice per year and the mean depth is 15 m (and thus the water 
volume under 1 m² of surface is 15 m³), this gives a critical load Lcrit 
of 10 × 2 × 15 = 300 mg/m² per year.

Multiplying this critical load by the total lake area then gives the 
critical load for the entire waterbody – that is, if the lake area were 
1 km², Lcrit would amount to 300 kg/km² or 0.3 t/yr.

However, for lakes and reservoirs, the role of P exchange with the sedi-
ments is usually far more significant than for rivers, particularly if the flush-
ing rate is low, that is, less than 2–3 times per year. Sediment influence 
therefore needs to be included in the calculation of the critical load. For this 
purpose, Vollenweider (1976) (modified by Cooke et al., 2005) empirically 
developed a term relating (ρ0.5) the interaction of TP with the sediment to 
the flushing rate. Adding this term to the equation gives

L = ×TP 0.5

 Crit target ( )ρ ρ+ × zmean  

• Example for a lake or reservoir: If TPtarget is 25 mg/m³, the flushing 
rate is twice per year and the mean depth is 15 m (and thus the water 
volume under 1 m² of surface is 15 m³), this gives a critical load Lcrit 
of 10 × (2 + 1.41) × 15 = 512 mg/m² per year.

Multiplying this critical load by the total lake area then gives the 
critical load for the entire waterbody – that is, if the lake area were 
1 km², Lcrit would amount to 512 kg/km² or 0.5 t/yr.

The difference between both approaches highlights that the role of sedi-
ments as sink for phosphorus strongly depends on flushing rates: recalcu-
lating these two examples with 10-fold higher flushing rates results in a 
much lower difference between the approach including the term for inter-
action with the sediment and the approach without ithat term – that is, 
3671 mg/m² as compared to 3000 mg/m². The higher the flushing rate, the 
lower the role of losses of phosphorus via sedimentation.

However, the addition of ρ0.5 to ρ introduced by Vollenweider (1976) was 
empirically derived from the OECD data set and thus is a rough approxi-
mation across a range of different waterbodies. A range of factors other 
than the flushing rate will influence P sedimentation or release, including 
lake morphometry and patterns of thermal stratification. In particular, if 
load reduction is pronounced, during the first years after load reduction 
the sediments are likely to release phosphorus through mineralisation or 
through desorption of redox sensitively bound P, depending on tempera-
ture and redox conditions (see section 8.6). For such situations, the equa-
tion will overestimate the acceptable external load or underestimate the 
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time it takes to reach the target TP concentration. For further models that 
incorporate P release from sediments, including lake-specific approaches, 
see the discussion in Cooke et al. (2005) or literature therein, for example, 
Nürnberg (1998). Further complexity results from a substantial variation 
of loads in time, multiple inflows and/or heterogeneous distribution of the 
inflow within the waterbody.

The advantage of the loading equation above is its simplicity and reliance 
on only two terms which tend to be known for reservoirs, that is, flushing 
rate and mean depth. While it may serve for preliminary orientation, lim-
nological expertise is important when setting a target for the TP load. This 
includes assessing the quality of the available data for flushing (ρ) and mean 
depth (zmean) and the applicability of this simple approach to the specific 
waterbody.

The basic hydrological information needed for determining critical loads 
with the equation above may be available from authorities responsible for the 
management of the waterbody and its catchment. If not, mean depth (zmean) 
and water volume can be determined if topographic maps are available and 
these maps include bathymetric contour lines showing depths. The rate of 
flushing (ρ) or its inverse, the water residence time (also termed “retention 
time”), can be derived from a water budget, which is calculated from flows 
and water volume – that is, from the balance between inflows (tributaries 
and in some cases also groundwater), run-off from surfaces and rainfall 
versus outflow, and – if relevant – amounts lost to seepage and evaporation. 
Besides outflow (which is often easiest to measure, particularly for reser-
voirs), further water losses relevant for the budget can include recharge to 
groundwater as well as evaporation. Measuring inflows requires determin-
ing stream flow of tributaries, which can be done by measuring the water 
level of the tributaries at river gauges (for instance continuously by pressure 
sensors) and transforming it by a rating curve to flow values. Rating curves 
quantify the relationship between water level and flow, and they need to be 
regularly controlled and adapted to changing conditions at the river gauge.

Once a water budget is available, it is further useful to estimate a nutrient 
budget, that is, the waterbody’s total nutrient content (usually given in tons) 
compared to the total amounts that flow in and out of it. With sufficient 
resolution in time and space, a nutrient budget provides a valuable indication 
of nutrient sources as well as sinks: where it shows imbalances, this implies 
that there are further sources or sinks, for example, surface run-off not suf-
ficiently well quantified, P losses through sedimentation or gains from sedi-
ment release. The nutrient budget can be derived from the water budget, the 
respective nutrient concentrations of the waterbody and the relevant in- and 
outflows. The nutrient budget may also vary considerably over time.

For determining the nutrient content of a thermally stratified water-
body, sampling should include depth profiles because concentrations may 
show pronounced depth gradients. Nutrient concentrations may also show 
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 pronounced seasonal patterns, and therefore, sampling and analysis monthly 
or even twice per month may be necessary for a sufficiently accurate assess-
ment of the waterbody’s nutrient content. Where this is not feasible, in some 
situations a good first estimate may be possible from one sample obtained 
during spring overturn, that is, when the waterbody is well mixed, rendering 
one sample quite representative for the whole lake or reservoir and the grow-
ing season (Reynolds & Maberly, 2002). However, this is only meaning-
ful for waterbodies with fairly low water exchange rate and only moderate 
variation in stream flow of its tributaries, conditions more commonly found 
in temperate than in tropical climates. For example, tributaries often carry 
the greatest phosphorus loads during rain-event inflows when tributary 
streams and rivers are swollen (Zessner et al., 2005; Zoboli et al., 2015). 
Further challenges to establishing water and nutrient budgets include mul-
tiple inflows, for example, with small tributaries that run water only after 
major precipitation events or snowmelt, or significant groundwater flows 
which typically are difficult to measure. A comprehensive introduction to 
approaches to assessing nutrient budgets and critical phosphorus loads is 
given by Cooke et al. (2005).

7.3  IDENTIFYING KEY NUTRIENT 

SOURCES AND PATHWAYS CAUSING LOADS

Once the critical load has been determined, this needs to be compared to 
the current load to the waterbody in order to assess by how much the load 
needs to be reduced in order to remain below the critical load. The cur-
rent load then needs to be differentiated according to the locally relevant 
sources and pathways in order to identify measures for reducing or control-
ling loads from these sources. This is also useful in situations in which the 
critical load is not exceeded: this serves to identify situations and measures 
worth maintaining in order to ensure that a currently good situation does 
not deteriorate.

7.3.1  Background information

Figure 7.2 shows principal sources, pathways and internal processes of nutri-
ent loads to a waterbody. In this conceptual framework, all processes and 
activities that are likely to contribute to the input of nutrients are defined 
as sources. The most important point sources for nutrients are settlements 
which dispose wastewaters to surface waters via sewage without or after 
treatment and, depending on processes, also industrial facilities (the latter 
being typical point sources also for specific other pollutants). Relevant dif-
fuse or nonpoint sources most frequently originate from agriculture, but 
they may include other fertilising activities, some urban emissions (including 
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Figure 7.2  Sources and pathways of nutrients and different levels (tiers) of their quan-
titative assessment in the context of emission inventories (Adapted from 
European Commission (EC), 2012.)

into air and then precipitating on the water surface, contribution to water 
pollution via atmospheric deposition), and wastewater from rural dwellings 
not connected to central sewage treatment. Typically, diffuse sources are 
more variable in space and time than point sources, and quantifying them 
may be more challenging.

Pathways are the means or routes by which nutrients can migrate or are 
transported from their various sources to the waterbody. Following release, 
they may be directly emitted to a waterbody or reach it after being transferred 
to and stored within environmental media, including soil and impermeable 
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surfaces. Typical pathways of wastewater from industrial or urban sources to 
a waterbody are sewer systems and wastewater treatment plant effluents or 
groundwater in unsewered areas. Pathways transporting nutrients from agri-
cultural areas and other surfaces follow the hydrological pathways as surface 
run-off, interflow (a subsurface run-off component that does not reach the 
groundwater), tile drainage (artificial pipe installations that drain agricul-
tural areas to avoid soil being too wet) and groundwater. While nitrogen in 
form of nitrate is very soluble and readily reaches waterbodies via drainage, 
phosphorus supplied to soil in higher amount than needed by the crop is usu-
ally adsorbed to a high extent to soil particles. Erosion transports such par-
ticles over the land surface to  waterbodies. Aerial emission is an important 
pathway for nitrogen and can result in subsequent direct deposition on the 
surface of a waterbody or indirect entry via soil or a sewer system.

The differentiation between sources and pathways is useful because mea-
sures to reduce nutrient emissions may either directly address the sources of 
nutrients (e.g., reduced fertilisation or livestock, improvement of industrial 
production processes, P-free detergents) or intercept the pathways of nutri-
ents to the waterbody (as, for instance, erosion abatement by riparian buffer 
strips), and because, as discussed above, some pathways differ for N and P.

Besides external loads, processes within surface waters determine the 
nutrient concentrations in the water. These processes include a wide range, 
for example, sorption onto suspended particles, plant uptake, desorption 
or – for nitrate and ammonium – denitrification. Retention is a broad term 
used to describe the outcome if loads entering surface water remain there, 
without, for example, being discharged to coastal waters or – in case of 
nitrogen be lost to the atmosphere through denitrification (see section 4.3.2), 
a process relevant particularly in shallow lakes at elevated temperatures. The 
fractions that are retained by sedimentation in the river, along riverbanks or 
in sediments of lakes and reservoirs, can potentially be mobilised in future; 
however, this is not always the case. The extent of their retention depends 
on the nutrient (N or P) as well as hydromorphological conditions of the 
waterbody (Behrendt & Opitz, 1999; EC, 2012).

While nitrogen largely reaches waterbodies as dissolved inorganic N, 
for phosphorus, loads can occur in different binding forms. As discussed 
in Chapter 4, for limiting cyanobacterial biomass in the waterbody, it is 
important to assess not only the concentration of soluble reactive phospho-
rus (SRP) but rather that of total phosphorus (TP). P binding forms are also 
relevant for assessing P transport: some of the pathways discussed below 
transport a high share of P as SRP (groundwater, treated wastewater). Via 
other pathways, P is transported primarily in particulate forms, that is, P 
adsorbed to soil particles from erosion or P in organic material from raw 
wastewater. Whether particulate P may become available for the growth 
of cyanobacteria and algae depends on P forms in the particulate mat-
ter and the physiochemical conditions in the respective waterbody, which 
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determine the fate of the respective P forms: for instance, P in apatite (as 
part of soil material) will rapidly settle to the sediment and not become 
available even over long periods of time, while P bound in organic matter 
will become available as organic matter decomposes, and P bound to iron 
salts may dissolve in anaerobic zones of the sediment (Psenner et al., 1988). 
On the other hand, if potential binding partners for phosphorus, such as 
iron- and aluminium oxides and hydroxides as well as certain clay minerals, 
are available in a waterbody or reach it together with the P load, dissolved 
phosphorus may adsorb to these binding partners, and if these complexes 
settle to the sediments, they will contribute to removing phosphorus from 
the productive water layers. Consequently, either they may be buried under 
younger sediment layers and thus be permanently removed from the system, 
or they may be mobilised again later on by desorption, particularly during 
events of sediment resuspension, increasing the concentration of dissolved 
P forms in the water system. Therefore, availability of P is not only a ques-
tion of its emission pathway but also a question of complex biological and 
chemical processes of the P cycle within the waterbodies.

Similar processes of interaction between nutrients and soil also apply 
on land. If agricultural soils with increased P concentrations erode, P is 
transported together with soil particles and eventually emitted to surface 
waters. Depending on soil properties and soil saturation with P, P might be 
transported in soluble form and reach surface waters with surface run-off, 
tile drainages (i.e., drainage from fields and meadows), interflow or ground-
water. In most settings, transport with erosion dominates. Losses of P from 
agricultural soil are impacted by many factors. Fox et al. (2016) give a 
review of these processes, including a discussion of “legacy P” accumulated 
in soils on land with literature indicating that this may be released for years 
or even centuries after it has been deposited.

7.3.2  Identifying nutrient sources and pathways

A good way to get started is to establish a qualitative overview of potential 
nutrient sources to the waterbody, that is, to compile an inventory of activi-
ties in the catchment, to collect the information available on their potential 
nutrient discharge and to map where in the catchment they are occurring in 
relation to the hydrophysical conditions that determine their pathway to the 
waterbody (for relevant activities, see Figure 7.2). Geographical Information 
Systems (GIS; see Box 7.2) are highly useful up–to–date tools for organising 
such spatial data. Such an inventory best begins with a detailed topographi-
cal map and with available, documented data, particularly data that can be 
obtained from public authorities, for example, from permits issued for dis-
charges or for land use. Such data may be spread across a number of authori-
ties, depending on responsibilities for the respective activity in the catchment. 
Some data may also be available from research institutes in the region.
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BOX 7.2: USING GEOGRAPHICAL 

INFORMATION SYSTEMS (GIS)

GIS is a system designed to capture, store, manipulate, analyse, manage and 

present spatial or geographic data. GIS applications are tools that allow users 

to create interactive queries (user-created searches), analyse spatial infor-

mation, edit data in maps and present the results of all these operations. 

An example for a typical application is the creation of maps that show the 

distribution of land–use types in relation to water courses. A more advanced 

application would be the implementation of the universal soil loss equation 

(Wischmeier & Smith, 1960) on a regional scale: spatial data on slope (from 

digital elevation model), slope length, rainfall intensity, soil erosivity and cul-

tivation of crop types are merged to derive data in order to calculate the 

spatial distribution of erosive soil loss in a catchment. Practically, all advanced 

methods for modelling emissions rely on more or less comprehensive GIS 

applications. 

For example, in the Action Plan for the Santa Lucia River Basin (see Box 7.4), 

GIS tools were used at the step of assessing the loads discharged from non-

point sources and to develop an environmental information platform of open 

access (“Observatorio Ambiental Nacional”) that centralises and organises 

the environmental information generated in various areas of the state. This 

includes a geo-integrator that provides access to georeferenced information 

and interactive maps, allows territorial analysis of information and makes files 

available for downloading.

It is useful to include an inventory of control measures that are already 
in place as well as information on how well they are currently man-
aged (see section 7.5). The WHO guidebook “Protecting Surface Water 
for Health” (Rickert et al., 2016) gives an introduction into identifying 
sources and pathways for hazardous contaminants in general, including 
pathogens, harmful chemicals and also nutrients causing eutrophication 
and cyanobacterial blooms. This guidebook includes guidance on develop-
ing an inventory of activities potentially releasing contaminants hazard-
ous for health and on conducting a catchment inspection, with checklists 
addressing loads from, for example, wastewater, agriculture, aquaculture 
and fisheries that can be downloaded and adapted to one’s specific situa-
tion and needs.

Who should conduct the assessment?
Typically, compiling information on nutrient sources and pathways to 
the waterbody is a multisectoral exercise for which no one single public 
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authority has the competence and possibility to enforce cooperation or 
compliance. Success chances therefore increase substantially if good will 
and motivation can be established among the stakeholders in the catch-
ment. A Water Safety Plan team (see Chapter 6) can be an effective platform 
for bringing together staff from the public authorities involved; stakehold-
ers from activities in the catchment of the waterbody (e.g., from agricultural 
or wastewater sector); and technical experts in the fields of, for example, 
hydrology, catchment management, geography, soil science and wastewater 
treatment. Together, they can compile information on potential nutrient 
sources and pathways, and develop proposals for the most effective way 
of controlling these sources and pathways. The lead for developing the 
catchment management aspects of a Water Safety Plan may best be taken 
by those responsible for water or environmental management. However, 
either the water supplier or the health authority responsible for the quality 
of drinking-water and/or the safety of recreational water use can take an 
active role in initiating the assessment and bringing together the key actors.

The relevance of catchment inspection
Regardless of the sources of information thus collated, validating it on 
site is important as conditions often change without proper notification 
to authorities. Also, a number of discharges as well as activities relevant 
to nutrient loading are often not notified, known and documented. Thus, 
while data available in documents provide a good point of departure for 
assessing nutrient loads from the catchment, they may not provide a suf-
ficiently comprehensive picture, and visual inspection will reveal which 
activities relevant to nutrient loading are going on and which pathways 
for nutrients are evident. In smaller watersheds, catchment inspection is 
an applicable and valuable tool for the validation of information. In larger 
ones, inspection may only be partially possible, and it may be necessary to 
organise a review of the data available through intersectoral collaboration 
between a range of stakeholders and authorities.

Catchment inspection can be a time-intensive undertaking even in 
smaller catchments. Good preparation the therefore important, that is, to 
collect and evaluate as much information as possible prior to the inspec-
tion in order to focus on things to look for, which questions to clarify, 
which experts to ask to participate. Catchment inspection also provides 
an opportunity to identify owners and operators who may need to be 
interviewed afterwards (e.g., about discharge amounts, fertiliser applica-
tion or records of manure application), and contact with them may be 
established directly during the inspection. It is generally useful to seek 
contact with locals during catchment inspection, as their information and 
observations can provide a valuable indication of factors otherwise over-
looked. Catchment inspection usually provides a considerable amount of 
information to follow up afterwards, and this in turn improves and facili-
tates the next inspection. It is an iterative process, to be well documented 
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and to be repeated at intervals. Rickert et al. (2016) give more guidance 
on catchment inspection, including checklists for this purpose to down-
load and adapt to local circumstances.

The role of monitoring nutrient loads
Information on the relative contribution of different sources to the total load 
of a nutrient to the waterbody evidently is valuable for planning measures 
to control it. Sampling and analysing concentrations of nutrient concentra-
tions may be fairly inexpensive, particularly if a water-quality monitoring 
programme is in place anyhow. However, capturing events causing peak 
loads may be more challenging, possibly requiring automated sampling 
triggered by some signal reflecting changes in discharge or precipitation.

Monitoring nutrient concentrations is valuable to assess the impact of 
implementing a new control measure if it is done before and after the inter-
vention. For point sources along a water course, this may be quite straight-
forward. For the overall response of a waterbody to reduced loading, it 
may take a resolution in space and time (e.g., depth profiles if the water-
body stratifies and monthly or even weekly sampling intervals) for a year 
before and a few years after implementation and then at larger intervals 
in the scale of several years. While a cause–effect relationship may well be 
clouded by other changes in the catchment, such a “try and see” approach 
may be effective particularly where major loads to control are quite evident. 
Waterbody data are important for load modelling: they provide the empiri-
cal basis to test whether the model correctly depicts developments.

Nutrients and cyanobacteria in the broader context of health hazards
In many cases, it will be effective to assess loads and pathways of nutri-
ents in the broader context of preventing water pollution causing health 
risks, as one aspect of developing a Water Safety Plan (see Chapter 6). The 
WHO guidebook “Protecting Surface Water for Health” (Rickert et al., 
2016) gives guidance on estimating the health risks caused by the whole 
range of different hazards from the catchment, based on estimates of their 
likelihood to occur and their significance for human health. This broader 
context is important when assessing risks from potentially toxic cyano-
bacteria, as some sources of nutrients as well as pathways to the water-
body may be identical – for example, pathogens from human excreta – and 
therefore, one-and-the-same control measure may be significant for both. 
Recognising and highlighting such combinations may facilitate mobilising 
funding for implementing control measures.

Events causing loading
The control of chemical pollution is commonly based on monitoring at 
regular, predefined intervals. This approach to control risks missing major 
emissions causing peak loads and concentrations that occur  during  specific 
events, such as heavy precipitation bypassing wastewater treatment and 
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thus causing sewer overflow directly into the waterbody, spreading of 
manure on frozen ground, stormwater run-off shortly after the application 
of fertiliser or manure, or illegal discharges conducted after the sampling 
team has left the premises. When planning the assessment of loads, it is 
therefore important to consider which events – from regular continuous 
emissions to sporadic intermittent extreme ones – are likely to cause rel-
evant emissions and how such loads can be captured in the assessment.

Information to compile about the catchment
Checklist 7.1 (in part adapted from Rickert et al., 2016) outlines the 
broader information needed as a basis for characterising conditions and 
activities in the catchment area of the waterbody with respect to their rel-
evance for nutrient loading. More detailed checklists for assessing nutri-
ent loads from individual activities are given in the following sections 
of this chapter. Important expertise for this initial assessment includes 
geography, hydrology, local l–nd-use planning as well as wastewater man-
agement and agriculture. For later quantification of loads, it is useful to 
include expertise in catchment modelling when planning the assessment 
and inspecting the catchment.

CHECKLIST 7.1: ASSESSING WHICH 

ACTIVITIES IN THE CATCHMENT ARE LIKELY 

TO CONTRIBUTE MAJOR FRACTIONS OF THE 

NUTRIENT LOAD TO THE WATERBODY

Which basic information is available for assessing the relevance of different 

sources?

• Is a detailed topographical (digital) map available? When was it last 

updated? What topographical data are available on drainage areas, 

slopes and lengths?

• Which natural conditions in the catchment enhance nutrient path-

ways from the land to the waterbody, that is, topography (slopes), 

precipitation patterns, frost and snowmelt, soil types, erosion poten-

tial and drainage? Can areas in the catchment be identified which are 

most vulnerable to nutrient losses from the land to the waterbody?

• Are data available for discharge volumes of key point sources? Which 

fraction of the total discharge is from such inflows? Are data available 

for the nutrient loads these carry?

What activities are going on in the catchment of the waterbody and where 

are they located in relation to it? (See the template for site inspection in 

Rickert et al. (2016).) 
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Which areas in the catchment are covered by

• agriculture?

• aquaculture?

• suburban settlements?

• urban housing?

• informal settlements?

• industry?

• paved areas or otherwise impermeable surfaces draining to the 

waterbody?

• wilderness?

• forest, including use for logging?

• areas for recreational activities?

• other uses which potentially release nutrients to the waterbody 

or its tributaries?

Based on documentation available, what are the locations, spatial distribution 

and scale of the activities identified (generate map if possible)?

Are there trends or changes in land use, including population forecast studies?

What is the linear and hydrological distance (i.e., travel time of the run-off or 

seepage) to the waterbody from these activity points?

How are activities that potentially release nutrients managed, controlled 

and regulated?

• What national, regional, local or catchment-specific legislation, rules, 

recommendations, voluntary cooperation agreements or common 

codes of good practice are in place? How effectively are they enforced?

• Are there regulations for drinking-water protection zones or riparian 

buffer strips?

• Is land use subject to planning and permission? If so, do criteria for 

issuing permits include an assessment of the potential nutrient loads 

to the waterbody? How effectively are land-use regulations being 

enforced?

• Who are the main stakeholders to involve in the assessment?

7.3.3  Nutrient loads from wastewater, 
stormwater and commercial wastewater

Wastewater and stormwater inflows chiefly reach waterbodies as point 
sources and can cause significant nutrient loads. As point sources are more 
readily identified than diffuse sources a range of approaches is available 
to control them (see section 7.5.1). A fairly complete inventory of them is 
therefore an important basis for assessing and managing loads.
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7.3.3.1  Sources

In municipal wastewater, human excreta are the dominating source of P. 
The average person-specific amount of P in excreta depends to some extent 
on the populations’ nutrition but varies only within relative small boundar-
ies of 1.3 – 1.7 g P per person and day (Zessner & Lindtner, 2005) with the 
lower end of this range reflecting the emissions of populations with a low 
consumption of meat (Thaler et al., 2015). Where detergents containing P 
are used, the daily P load discharged to wastewater may vary between 2.0 
and 3.0 g per person. Thus, the density of the population living in the catch-
ment of a sewage system determines the P load of municipal wastewater and 
its potential impact on waterbodies. Other significant point sources may 
be P from commercial and industrial wastewater, particularly from food 
processing enterprises or fertiliser industry.

While conventional wastewater treatment with biological organic carbon 
removes 30–40% of the P load, this is relatively easily improved by simul-
taneous precipitation techniques and/or biological P removal as “tertiary 
treatment”, which typically achieve 80–90% P removal, leading to effluent 
concentrations in the range of 500–1000 μg/L. With an additional post-treat-
ment step (e.g., post-precipitation and filtration), effluent P concentrations 
may even be reduced to < 200 μg/L. Where sewage effluent constitutes a major 
fraction of river flow, even concentrations in the range of 200 μg/L may cause 
too high a load of phosphorus to prevent cyanobacterial blooms, and specific 
filtration steps may be necessary to reduce effluent concentrations yet further. 
Also, attention to the storage of sewage sludge from the treatment process is 
important: if it is stored or disposed of inadequately close to the waterbody, 
run-off or seepage from this may be a further source of nutrient loading.

For assessing nutrient loads from industrial discharges, it is important to 
check whether the production line involves phosphorus (or nitrogen) com-
pounds which are discharged and if so, whether data on the amounts are 
available or can be estimated from their content in substances purchased by 
the company for its production line. Enterprises that do not use phosphorus 
for their production may be adding it to their wastewater treatment system 
because the bacteria biodegrading organic substances in wastewater treatment 
require a minimum amount of P to work effectively. If the industry’s wastewa-
ter does not contain enough P for an efficient biodegradation of organic sub-
stance, it may be dosing this to the biological treatment step. Dosing needs to 
be precise to avoid excessive P in the effluent, and when identifying P sources, 
including such enterprises in the assessment may be relevant.

A further nutrient source is rainwater run-off (“stormwater”) from imper-
vious areas, that is, roofs, roads, sidewalks and parking lots. It can contain 
significant nutrient loads particularly after extended periods of “dry deposi-
tion” from the air, garbage and excreta (from livestock, pets and where open 
defecation is practised, also from humans), particularly in the first flush after 
extended periods of dry weather. Where stormwater is collected by sewers 
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that discharge directly into the waterbody, this will be an intermittent point 
source in the event of rainfall or snowmelt. While this source is generally less 
relevant than sewered wastewater, no generic concentration ranges can be 
given, as amounts depend entirely on local conditions.

7.3.3.2  Pathways

Outfalls of sewers carrying untreated wastewater directly to the waterbody 
and those of wastewater treatment plants are obvious point discharges in 
which nutrient concentrations can be directly analysed and/or loads be esti-
mated from the size of the populations served and/or the type of enter-
prise emitting the wastewater (see section 7.4). Sewer systems carrying both 
domestic wastewater and stormwater from surfaces, that is, so-called com-
bined sewers systems, can protect waterbodies during precipitation events 
that do not exceed the sewer capacity: these systems treat stormwater 
together with the domestic wastewater, and if treatment includes nutrient 
removal, this will reduce loads from run-off that would otherwise reach the 
receiving waterbody. However, they can be significant intermittent point 
discharges during heavy rainfall causing stormwater volumes beyond the 
capacity of sewerage and/or the sewage treatment system, and then sewage 
overflows allow this mixture of untreated domestic wastewater and storm-
water to flow directly into the waterbodies, bypassing the treatment facility. 
Even where capacities of stormwater retention basins are large, they can 
rarely be built large enough to totally avoid such overflow events.

Diffuse pathways originate where wastewater from households and/or 
commercial activities is not sewered or where many small sewers discharge 
untreated wastewater directly to the waterbody. While in such situations 
diffuse loads from agriculture (see below) may be the major nutrient source 
for surface waterbodies, diffuse wastewater loads can also be significant if, 
for example,

• A number of dwellings or enterprises located sufficiently close to a 
waterbody lead wastewater pipes directly into it (possibly undocu-
mented and informal) – a situation commonly causing diffuse loading 
from dispersed settlements along river courses or lakeshores.

• Open defecation is widely practised close to a waterbody and/or 
latrines close to the waterbody are poorly managed so that rain can 
wash excreta directly into a waterbody.

• The underground is very porous and soil filtration is poor so that 
seepage from latrines and septic system can reach the waterbody.

Otherwise, for phosphorus, even short distances of filtration through soil will 
achieve quite effective retention. Nitrogen may be less well retained if ammo-
nium or nitrate from unsewered wastewater reaches shallow groundwater that 
drains into a surface waterbody (for an overview, see MacDonald et al., 2011).
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7.3.3.3  What to look for when compiling 

an inventory of loads from sewage,  

stormwater and commercial wastewater sources

For assessing loads from wastewater and stormwater, Checklist 7.2 sug-
gests a range of questions to address, depending on which appear locally 
relevant. These questions can support developing a checklist for catchment 
inspection. The data thus collected can be the basis for calculating not only 
the current loads from different sources but also the expected impacts of 
measures to reduce them (see section 7.5). Checklist 6 in “Protecting Surface 
Water for Health” suggests further questions that may be useful particu-
larly if the purpose of inventory is to address not only nutrient loads, but 
also health hazards in general, including pathogens (Rickert et al., 2016).

Not all of these questions will be important in all situations, and infor-
mation for answering all of them may not be available. Nonetheless, it is 
important to make a beginning with the information available while iden-
tifying the gaps and estimating how important it is to fill them in order to 
plan catchment management measures which are effective for meeting the 
nutrient load targeted.

Important specific expertise for assessing nutrient loads from sewage and 
stormwater includes environmental engineering with a focus on wastewater 
management.

CHECKLIST 7.2: COMPILING AN INVENTORY OF 

NUTRIENT LOADS FROM SEWAGE, STORMWATER 

AND COMMERCIAL WASTEWATER

GENERAL:

• Is the catchment primarily urban or rural, or a combination of 
both?

• Is there a relevant use of detergents containing P in the catch-
ment? If so, could the use of P-free detergents be implemented? 
Would the P load from wastewater nonetheless remain in a range 
requiring removal in sewage treatment?

• Are there any enterprises which process food or nutrient-rich 
materials (fertilisers) in the region? Or any which are adding P to 
their wastewater treatment system to enhance its performance?

• Are enterprises operating at up-to-date technologies, for exam-
ple, according to BAT (best available technique) requirements? 
Are improvements conceivable?
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WASTEWATER SEWERAGE AND TREATMENT:

• Is the population density moderate or high and is a high share of 
people connected to public sewer systems? Is this share known?

• Is sewage treated? If so, with which steps? Are data on nutrient 
concentrations in treatment plant effluents as well as discharge 
rates available?

• Are there treatment plants with the removal of organic carbon 
loads in operation which could be upgraded with simultaneous 
P precipitation? With the removal of N?

• Are new treatment plants planned? Will they include nutrient 
removal applying P precipitation and/or biological P removal? If 
not, are there options to implement such a treatment step?

• Are effluents of treatment plants with P removal nonetheless a 
significant source of P for the catchment? Can a post-treatment 
step for additional P removal be implemented?

•  Are industrial wastewater discharges significantly contributing 
to the nutrient load from the catchment? Can their effluent qual-
ity be improved by enhanced treatment (or where P-dosage is 
practised, by better control of the dose)?

• Is there any regulation in place that requires nutrient removal at 
treatment plants? Is this regulation considering the target concen-
tration in the waterbody necessary to avoid cyanobacteria blooms?

UNSEWERED AREAS:

• How many households are not connected to sewer systems? 
Which type of disposal do they have? Are there direct discharges 
into the surface water? Does rainfall rinse the content of poorly 
managed latrines, open defecation or septic systems directly into 
surface water?

• If answers to question 12 indicate potential for a significant 
nutrient load to the waterbody, which options are available to 
prevent this (e.g., implementing improved on-site sanitation sys-
tems, including collecting and transporting the content of septic 
tanks to wastewater treatment plants or safe use in agriculture)?

• Can safe dry systems for collecting and treating human excreta 
be promoted as alternative to developing sewerage?

• Is a sewer development planned, and should this approach be 
further pursued? If so, go back to points 4–11.



456 Toxic Cyanobacteria in Water

SEWER SYSTEMS:

• Are there separate sewer systems in place? Are stormwater sew-
ers draining areas with heavy nutrient pollution (e.g., farmyards, 
excreta from pets)? If so, could emissions be reduced by installing 
infiltration ponds?

• Are there connections between stormwater and wastewater sew-
ers, discharging untreated wastewater continuously?

• Are combined sewer systems in place? If so, how frequently and 
at what type of rain events to the overflow, bypassing treatment?

• Are combined sewer systems equipped with retention tanks or 
basins? If yes, to which extent? Are regulations in place and if 
so, how stringently are they implemented?

SEWAGE SLUDGE:

• Is sludge used as fertiliser? (If yes, see Checklist 7.3 for agricul-
tural activities in section 7.3.4.)

• If sludge is disposed, is the site and method adequate to avoid 
nutrients reaching the waterbody?

For estimating how these nutrient loads relate to loads targeted for the 
waterbody as discussed in section 7.1, see section 7.4.

7.3.4  Nutrient loads from agriculture and other 
fertilised areas

While in some regions of the world, agricultural productivity is low due to 
a lack of fertiliser, in other regions, fertilisation is excessive and the primary 
cause of diffuse nutrient loads to waterbodies where they cause eutrophica-
tion and cyanobacterial blooms. For phosphorus, MacDonald et al. (2011) 
give an overview of this global imbalance, and Withers et al. (2014) describe 
agriculture as prominent and persistent cause of diffuse nutrient loads in 
many parts of the world. However, the latter authors also emphasise the 
importance of farming and food production, in consequence of which mea-
sures potentially imposing restrictions must be reasonable and effective. 
This requires a sound identification of nutrient loads and an assessment of 
their relevance for eutrophication of the specific waterbody.

7.3.4.1  Sources

Sources of nutrient loads from agricultural activities are fertilisers and 
manure or slurry spread on fields as well as excreta from free-range animal 
herds on pastures. Animal husbandry is typically relevant where feedlots, 
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large stables or manure piles are located close to a waterbody. Nutrient 
loads from fertiliser and manure/slurry can range from almost negligible to 
extremely high, depending on how much is applied in excess of that which 
the crop can take up and convert to biomass. The excessive application of 
fertilisers and manure in many of the world’s more affluent agricultural com-
munities has been based on policies actively encouraging and subsidising 
intensive fertilisation (Withers et al., 2014) and on the widespread concept of 
soils serving as storage for P, adsorbing it and releasing it when needed by the 
crop. Where this has led to amounts applied to soils that exceed their bind-
ing capacity, soluble P will leach to the waterbody (Behrendt et al., 2000). 
Also, as discussed in section 7.3.1, soil particles to which P is adsorbed can 
release it once erosion carries them to the waterbody (Novotny, 2003). Fox 
et al. (2016) show that streambank soils can contain from nondetectable to 
more than 1000 mg P per kg soil. From their evaluation of the modest num-
ber of studies available from Europe and North America, these authors con-
clude that where catchments are impacted by excessive nutrient application, 
soils are likely to contain more than 250 mg/kg. The fraction of this which 
becomes available for algae and bacteria when erosion carries such soils into 
a waterbody strongly depends on the physical and chemical conditions in the 
waterbody. Where the “legacy phosphorus” from excessive fertilisation in 
agricultural soils is high and/or the time span for which it is likely to cause 
loads to a waterbody is difficult to assess, it is particularly important to 
assess the erosion pathways to the waterbody (Sharpley et al., 2015).

While excessive fertilisation also increases nitrogen (N) loads, these are 
often due to the large size of intensive animal husbandry operations: where 
these produce amounts of manure and slurry that cannot be spread on 
nearby fields and pasture without exceeding the uptake capacity of crops 
and meadows, this causes loads of both N and P – possibly significant or 
the predominant source of eutrophication and cyanobacterial blooms (addi-
tionally, excessive manure and slurry spread on land can cause elevated 
nitrate concentrations in groundwater used as source of drinking-water; see 
Schmoll et al., 2006).

In some situations, substantial fertilisation of other land, such as golf 
courses or lakeside lawns, may also be a relevant source of loads to a 
waterbody.

7.3.4.2  Pathways

Where erosion occurs, soil particles will be carried towards the waterbody, 
thus transporting the P adsorbed to them. There is consensus that streambank 
erosion is a highly relevant pathway for phosphorus loading: Fox et al. (2016) 
review case studies of P loads from streambanks and conclude that 7–92% 
of the total P loads could be accounted for by streambank and gully erosion. 
Peacher et al. (2018) also review streambank erosion as a major source of 
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nutrient loads transported with sediment and report own results for P loss 
rates with soil eroded from riverbanks in the range of 38–49 g/m and year for 
the riverbanks of two streams in Missouri; these loads amounted to 67% of 
the P transported in these creeks. Although there are examples of situations in 
which plant root growth contributes to riverbank erosion, in general an intact 
cover of vegetation (“riparian buffer strip”) stabilises the riverbank and can 
serve to intercept soil in surface run-off (see discussion in Fox et al., 2016).

In tributaries and drainage ditches, P thus transported will interact with 
the channel bed sediments, leading either to a reduction (through adsorption 
and sedimentation) or to an increase of P (through resuspension and desorp-
tion) transported in the stream – or to periodic alternation of both processes, 
depending on river flow and stormwater events. Often only a fraction of 
such a P load will become relevant for eutrophication of the downstream 
waterbodies, and the size of this fraction depends on a range of chemical and 
physical variables. Quantifying these variables is still challenging, and Fox 
et al. (2016) review publications on methods and models for this purpose.

In contrast to pathways for P, excessive nitrogen (N) from fertiliser or ani-
mal excreta scarcely binds to soil. Animals release N as urea which rapidly 
degrades to ammonium, some of which is lost to the atmosphere by volatilisa-
tion (where in the form of N2O, it acts as greenhouse gas, enhancing climate 
warming) and some of which is oxidised to nitrate by bacteria in the soil (nitri-
fication). Nitrate is also the form in which fertilisers contain N. As nitrate is 
very well soluble, excessive N readily leaches from soils and reaches waterbod-
ies not only by surface run-off, but also via tile drainage (Novotny, 2003).

Nutrient loads not only depend on the amounts of fertilisers and manure 
applied, but also depend on timing of the application as well as on conditions 
determining pathways to the waterbody. These include natural geographi-
cal conditions such as the slope of the land as well as agricultural practices: 
untimely application of manure (e.g., on frozen ground or before strong 
rainfall) may cause major nutrient loading. This not only pollutes water, 
but also loses potentially valuable fertiliser from the farmland. Methods 
of ploughing have a strong impact on the extent of erosion, and so does 
leaving fields barren, without vegetation cover. Access of cattle and other 
farm animals to a waterbody or its tributaries can cause loading through 
a direct input of faecal material when animals wallow in the water or def-
ecate near it. In particular, cattle can cause massive erosion of shorelines 
saturated with the animals’ faeces: the trampling of larger herds can destroy 
the vegetation cover and also create pathways for erosion farther into the 
catchment, as reviewed by Wilson and Everard (2018).

Pathways for both nutrients are also created by clear-cutting of forests 
and woodland by logging on steep slopes or burning of woodland to con-
vert it into farmland. Without vegetation cover or through trampling by 
herds of livestock, steep slopes become unstable and susceptible to heavy 
erosion. Particularly in climates with heavy rainfall, such practices may 
massively promote erosion and thus nutrient loads.
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7.3.4.3  What to look for when compiling an inventory 

of loads from agricultural activities

As pathways for nutrients from land to water depend so strongly on the general 
geophysical characteristics of the land, for assessing nutrient loads collecting 
information about these characteristics is as important as developing the inven-
tory of the activities that potentially release nutrients. Checklist 2 in “Protecting 
Surface Water for Health” (Rickert et al., 2016) supports this with questions on 
local climatic and hydrological characteristics, tributaries and their discharges, 
topographical data and soil types, signs of erosion and flooding.

The following checklist 7.3 is intended as point of departure when plan-
ning the assessment of nutrient loads from agriculture. As for the checklist 
above for loads from wastewater and stormwater, aspects of this may feed 
into developing a checklist for inspecting a specific catchment, and the infor-
mation thus serves to estimate both current loads and the impact of measures 
to control the loads. Checklist 4 in Rickert et al. (2016) adds further aspects.

CHECKLIST 7.3: COMPILING AN INVENTORY OF 

NUTRIENT LOAD FROM AGRICULTURAL ACTIVITIES, 

GOLF COURSES, LAWNS AND OTHER FERTILISED AREAS

LAND USE AND REGULATIONS:

• What types of land use are being conducted that could cause nutrient 

emission, for example, arable land, pasture, irrigated or drained agri-

culture, horticulture, market gardening, golf courses, lawns and parks 

reaching all the way to the shoreline? Which types are being conducted 

on land with steep slopes (more than 8% grade)?

• Which regulatory frameworks (specific legislation, regulations, rec-

ommendations, voluntary cooperation agreements, codes of good 

practices, restrictions, bans) exist, particularly for the application of 

fertiliser and manure? How well are they known to the farmers? Could 

their implementation being enforced?

• Are drinking-water protection zones established around the reservoir 

and/or its tributaries? If so, is a map of their delineation available? Which 

limitations do they involve, and how stringently are these implemented? 

If not, could they be established?

• Are policy instruments in place such as financial incentives (e.g., sub-

sidies, low-interest loans or compensation for lost income during 

transition to more environmentally friendly practices) or financial dis-

incentives (e.g., penalties for nutrient loads caused by poor agricultural 

practice) that can be used to initiate agricultural practices with low 

nutrient emissions? Are any future incentives reasonable and realistic?
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• Are agricultural advisory services in place, and what practices do they 

recommend to farmers, particularly regarding fertilisation, stock size 

and practices of animal husbandry? What have they recommended in 

the past, possibly having led to legacy P in soils?

APPLICATION OF NUTRIENTS:

• Is manure or sewage sludge being applied to fields or lawns? If so, are 

amounts and dates of application documented? What information 

is available about the storage conditions and handling practices for 

manure or sewage sludge? Are application rates on farms mostly based 

on farm nutrient budgets (see Box 7.3) and crop uptake rates, or are 

they roughly estimated, or are they based on the need of getting rid of 

manure or sewage sludge, for example, in areas with high livestock den-

sities, or in proximity to a wastewater treatment facility? Are incentives 

operating (e.g., expert consultations) to improve practice and achieve a 

balanced soil nutrient budget?

• Is application timed in relation to hydrological events and seasonal aspects, 

for example, presence/absence of vegetation cover, frozen ground? How 

adequate are spreading methods and timing in relation to weather condi-

tions? Are there any incentives to improve current practice?

• If fertilisers are applied, which types and products with which composi-

tion (e.g., nitrogen and phosphorus contents) and in which amounts? Is 

information available on amounts applied? On concentrations in soils? 

Are application rates based on plant needs and up-to-date information? 

Are there any guidelines to support the calculation of appropriate fer-

tilisation? If not, can they be provided?

• Are arrangements in place that limit the amounts to be applied? For 

example, agreements between farmers and drinking-water suppliers or 

managers of waterbodies used for recreation?

NUTRIENT LOSSES DUE TO AGRICULTURAL PRACTICES:

• What main crops are cultivated currently and during the past seasons? 

What trends or changes are anticipated? Which of the main crops have 

a low vegetation cover especially during rainy seasons? Are they culti-

vated on steep slopes? Can this be avoided?

• What ploughing practices are being applied? To which extent does 

ploughing promote soil erosion? Are any guidelines on best practice in 

place? Is any consultancy to farmers in place?
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• Are winter cropping, mulch seed or any other practices to avoid 

soil loss from steep fields in place? Are there financial incentives 

on regional, national or catchment scale in place to support these 

practices?

• Is there indication of gullying, soil scouring and land slipping in steep 

areas in the catchment (including changes over time)? If so, what are 

possible causes (trampling of herds, ploughing practices, barren fields)? 

Is there an awareness of possible causes?

• Is the land drained, and do drainage ditches or pipes carry dissolved 

nutrients to the waterbody?

• Is there any other indication of fertiliser, manure or nutrient-rich soils 

being lost from land to the waterbody, such as periodic heavy loads of 

suspended solids in the tributaries?

LIVESTOCK AS NUTRIENT SOURCE AND CAUSE 

OF PATHWAYS TO THE WATERBODY:

• What are the livestock densities, animal species and amount of manures 

produced? Are they exceeding the nutrient needs on farm level? Can 

they be better utilised by better distribution?

• Are stables and/or feedlots close to the waterbody or its tributaries? If 

so, are there run-off pathways (gullies) to the waterbody? If yes, could 

manure collection and storage be improved?

• Is there sufficient storage volume for manure and slurry? Is the storage 

time long enough for seasons where applications are not favourable 

(e.g., winter)?

• Are pastures fenced, or can livestock access the waterbody or its tribu-

taries? Are fences intact and regularly inspected?

• If there is an indication of direct impact of livestock excreta on the 

waterbody or its tributaries, how many heads of stock are there in the 

area? How much nutrient input can their excreta cause at maximum? Is 

this relevant in respect to P loading to the waterbody?

• Is there an indication of erosion damage from livestock?

INTERCEPTING TRANSPORT OF SOIL 

NUTRIENTS FROM LAND TO WATER:

• Can specific areas or practices be identified as likely main causes of 

nutrient loading, particularly of phosphorus? Can areas be identi-

fied which could be used as buffers to interrupt the transport of soil 
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particles into surface waters or to allow denitrification to take place 

before the inflow of drainage to the waterbody?

• Are vegetation-covered buffer strips in place between fields or pas-

tures and the waterbody or its tributaries? If so, are they properly 

located in respect to erosion transport? How wide are they, and are 

they intact or are they frequently interrupted? Are they managed and/

or well maintained?

As for Checklist 7.2 on nutrient loads from point sources, neither will all 
of these questions be equally important in all situations, nor is information 
for answering all of them likely to be available, and identifying the gaps 
relevant for planning catchment management measures is an important ele-
ment of an initial assessment of diffuse nutrient loads.

BOX 7.3: AGRICULTURAL NUTRIENT BUDGETS

A nutrient budget estimates the nutrient surplus as the difference between 

nutrient inputs and nutrient outputs for a certain boundary, for example, the 

amount of nutrient that enters a farm with fertilisers and feedstuff for animals 

minus the amount that leaves the farm with the produce. Nutrient budgets 

for agriculture can be distinguished by the definition of the boundary (farm, 

soil or land) they refer to. 

A soil nutrient budget estimates nutrient surplus from nutrient inputs to 

the soil (e.g., fertilisers) and nutrient outputs from the soil (e.g., harvest). 

Nutrients accumulate in soils as nutrient stock, changes of which are dif-

ficult to quantify. Therefore, they are frequently accounted in the surplus. 

Nutrient budgets provide a valuable information about the link between 

agricultural activities and environmental impacts of nutrient use and manage-

ment in agriculture. Nutrient budgets can be used to determine areas at risk 

of releasing nutrients to waterbodies (when estimated at low regional levels), 

to identify driving factors behind nutrient pollution resulting from agriculture 

and to follow trends over time. For further information, see Eurostat (2013).

Important specific expertise for assessing nutrient loads from agriculture 
particularly includes agricultural practitioners (preferably from the region 
and thus familiar with local practices, habits and attitudes), soil scientists, 
hydrologists and – if modelling loads is intended – also catchment modellers.
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For estimating how these nutrient loads relate to loads targeted for the 
waterbody as discussed in section 7.1, see section 7.4.

7.3.5  Nutrient loads from aquaculture and fisheries

Aquaculture and fishponds in a catchment may be a major point source 
where their effluent reaches a waterbody. They are not typically the main 
source of nutrient loading, but in many regions, aquaculture and fish pro-
duction are increasing. In particular, cage cultures (“net pens”) within 
waterbodies may also introduce substantial nutrient loads directly into 
waterbodies. So may fisheries involving feeding or even fertilisation of 
the waterbody to enhance its productivity. Fisheries management within 
the waterbody can further impact water quality through its internal 
effects on the food chain and/or through bottom-dwelling fish which 
resuspend sediment, as discussed in Chapter 8 in the context of water-
body management.

The maximum amount of nutrients introduced can be calculated from 
the amount in the applied feed minus the amount in the fish biomass har-
vested from the system. While this approach disregards potential losses 
through sedimentation occurring in the tributary between the fishpond 
and the waterbody of concern, it provides a useful worst-case estimate for 
assessing the relative importance of loads from aquaculture and fisheries. 
An estimate is also possible from the biomass of fish produced, using fac-
tors that describe the amount of feed necessary for this growth and the 
efficiency of the conversion of fish food into fish biomass.

Nutrient concentrations in a fishpond effluent can vary widely over time, 
depending on current operations such as the cleaning of tanks, backwash-
ing filters or emptying ponds. Alabaster (1982) showed that a 30-min 
cleaning operation discharged 75% of the total phosphorus and 10% of 
the total nitrogen (TN) from a fishpond, highlighting that such events may 
be important when estimating nutrient loads. Such short-lived nutrient 
pulses in the receiving waterbody may be rapidly utilised for the growth 
of cyanobacterial and/or algal biomass, causing sudden increases and trig-
gering blooms.

7.3.5.1  What to look for when including aquaculture 

and fisheries in the inventory of activities 

causing nutrient loads

Checklist 7.4 suggests questions to address when assessing the contribution 
of aquaculture and fisheries to the nutrient load of a waterbody as well as 
for assessing the expected impacts of measures to reduce these loads. When 
using this for catchment inspection, adaptation to the questions which 
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appear locally relevant is recommended. Including specific expertise from 
aquaculture and fisheries is valuable for estimating the nutrient loads (e.g., 
from feeding rates) as well as for assessing the efficacy of control measures 
in place or to be implemented. See also Checklist no. 5 in Rickert et al. 
(2016) for further information, particularly if the assessment is to include 
the wider context of health hazards from aquaculture and fisheries in water.

CHECKLIST 7.4: IDENTIFYING SOURCES 

FROM AQUACULTURE AND FISHERIES

• If aquaculture is practised in the catchment or waterbody, where are 

which operations located, and how much fish do they produce per year 

or season?

• If cage culture (“net pens”) or fisheries are practised within the water-

body, where are they located, and how much fish do they produce per 

year or season?

• Are data on feeding and the source, amount and type of feed applied 

available, and on its phosphorus and nitrogen contents? If not, can 

nutrient loads be estimated from fish production rates and conversion 

factors?

• Are fertilisers applied? If so, what amounts, types, products and com-

position of fertilisers are used?

• Are manures applied? If so, what are the source, amount, composition 

and application patterns for the manure?

• Is wastewater or sewage sludge applied? If so, what information is avail-

able on the wastewater (e.g., amount; is it raw or has it undergone 

some treatment or ageing; is it pure domestic wastewater or might it 

contain commercial effluents?)

• Do regulations (specific legislation, recommendations, voluntary coop-

eration agreements, codes of good practices, restrictions, bans) for 

these activities exist, and if so, how well are they being enforced?

• Are flow-through or recirculating systems being used?

• Is effluent discharged directly to the waterbody, or is it treated? If it is 

treated, how? Are data available on nutrient concentrations in the efflu-

ent and on the water volume of the effluent?

• Are data on nutrient concentrations in the effluent available from the 

aquaculture operator? Can nutrient loads from their discharge be esti-

mated, for example, from fish food consumption and the amount of fish 

produced?
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• What time patterns of these operations (e.g., emptying and cleaning of 

tanks) might be relevant to nutrient loading? Which nutrient sources 

may be relevant that are not readily detected through inspection of the 

operations (e.g., in sludge and sediment at the bottom of the tanks)?

For estimating how these nutrient loads relate to loads targeted for the 
waterbody as discussed in section 7.1, see section 7.4.

7.4  APPROACHES TO QUANTIFYING THE 

RELEVANCE OF SOURCES AND PATHWAYS

Obviously quantifying the loads introduced to the waterbody from the 
major sources via major pathways will provide the best basis for identifying 
the most effective measures to control nutrient loads. However, key param-
eters necessary for quantitative models are often unknown and not readily 
measured. Qualitative assessments then are a valuable beginning. Rickert 
et al. (2016) describe a qualitative approach to assessing loads, roughly cat-
egorising their relevance from negligible to extreme and highlighting uncer-
tainties necessitating more in-depth assessment.

In some settings, a qualitative assessment of potential sources of nutrient 
loading can provide a sufficiently clear basis for planning control measures 
even without quantifying the relative relevance of different sources and path-
ways of loads. This is possible if conditions are quite clear. For example, in 
a densely settled, largely urbanised catchment, much of the nutrient load 
will originate from sewerage, and focusing on measures that reduce sewage 
nutrient emission loads will directly impact concentrations in the waterbody. 
For such a setting, it will be clear that without control of such substantial 
point sources, further load reduction measures cannot achieve sufficiently 
low loads to the waterbody to reach target nutrient concentrations. Similarly, 
for a largely agricultural catchment, identifying the steepest slopes for imple-
mentation of the most stringent management of fertilisation and tillage may 
be a sufficiently effective basis for achieving a substantial load reduction, 
even if the reduction achieved can hardly be quantitatively predicted and 
only assessed by subsequent monitoring of the change in concentrations in 
the waterbody. A merely qualitative approach – based on “getting the job 
done” for obvious measures – can provide substantial load reductions, par-
ticularly in situations in which resources for more elaborate approaches are 
lacking. Qualitative or semiquantitative approaches may suffice for estimat-
ing loads that are either self-evidently major or likely to be low.
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Quantification becomes important where the load that a source contrib-
utes may be relevant but uncertainties are too significant to make decisions 
on investments or regulations to reduce it. Approaches to quantification 
cover a wide range, requiring different levels of information, staff capac-
ity and resources. The European Union summarises some in its Guidance 
Document No. 28 (EC, 2012) in the context of its Common Implementation 
Strategy for the EU Water Framework Directive. This document has the 
advantage not only of being harmonised as outcome of discussions between 
a number of countries, but also of giving guidance at 4–5 different levels 
of complexity and data requirements. Thus, the technical guidance on the 
development of an inventory of emissions, discharges and losses of sub-
stances described in this document can be used for a range of situations 
with different resources. While this document focuses on priority hazard-
ous substances, it outlines general principles which can be applied for nutri-
ents as well. It therefore uses some key considerations from the Guidance 
Document No. 28 (EC, 2012), giving specific attention to situations where 
data availability is lower than can be expected in EU countries.

In face of the complexity of systems and the challenges associated with 
data collection, three broad quantitative approaches in the establishment 
of inventories can be distinguished, which are shown in Figure 7.2 with 
their scope indicated by the dashed boxes in diagram and their complexity 
increasing from right to left:

• the riverine load-oriented approach, which estimates the observed 
total load that a river carries into a lake or reservoir. This infor-
mation can be used together with a quantification of point source 
inputs to calculate an estimate of the diffuse inputs (green dashed line 
in Figure 7.2);

• the pathway-oriented approach (POA), also called “regionalised path-
way analysis” (RPA), which models the different transport phenomena 
for the final input routes to the river system starting from the “inter-
face media” as soil, groundwater or wastewater treatment plants. 
This approach calculates regionalised emissions for small catchments 
(termed “analytical units”), which can be subsequently aggregated to 
river basins or subunits (yellow dashed line in Figure 7.2);

• the source-oriented approach, which addresses the whole system start-
ing from the principal sources of substance release. Such an approach 
includes substance flow analysis (SFA; red dashed line in Figure 7.2).

As situations differ strongly in the range of information and data sources 
available, the following introduces a tiered (or level) approach whereby 
the complexity increases with each progressive tier, beginning with purely 
qualitative (tier 0) or semiquantitative (tier 1) assessment. Quantitative 
tiers (2–4) require further data as well as more in-depth understanding 
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of sources and pathways, resolution and detail. On this basis, they allow 
a  better discrimination of the relevance of sources, for example, the rela-
tive contribution of those emitting nutrients to sewers and wastewater 
treatment plants rather than the (lower tier) lumped treated effluent dis-
charge which does not allow for discrimination of the original source. 
Thus, the different tiers support a progressively improved understanding 
of the emission situation and, therefore, the ability to effectively allocate 
financial resources and evaluate (cost-)effective measures for emission 
reduction.

The approach to select for a given catchment will depend on its size, 
the availability of data and resources as well as the relevance of the prob-
lem. Five levels or “tiers” (one qualitative, one semiquantitative and the 
three quantitative approaches outlined in Figure 7.2) of emission estimation 
methods are summarised in Table 7.1 and explained in the following.

Table 7.1  Five tiers for the elaboration of emission inventories in catchments – overview

Tier Required information Expected output
Results from the 

inventory

0. Qualitative 
assessment

• Catchment 
inspection and/
or qualitative 
description of 
main activities in 
the catchment

• Overview over 
catchment 
characteristics

• Identification 
of potentially 
relevant sources 
and pathways

1. Emission factors 
(semiquantitative)

• Data on 
population, land 
use and 
wastewater 
disposal

• Population and 
area-specific 
emissions 

• Availability of 
data

• Assessment of 
the quality of data

• Identification of 
information gaps

• First rough 
estimate of point 
source emissions 
in relation  
to diffuse 
emissions

• List of identified 
data gaps

2. Riverine load 
approach

In addition to tier 1:
• Data on point 

discharge 
• River 

concentration
• Data on river 

discharge
• In-stream 

processes

• Riverine load
• Trend information
• Proportion of 

diffuse and point 
sources

• Identification of 
information gaps

• Rough  
estimation of 
total lumped 
diffuse  
emissions

• Verification  
data for emission 
estimates and  
for results  
from tier  
3 and 4

• Listing of 
identified  
data gaps

(Continued )
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Table 7.1 (Continued)  Five tiers for the elaboration of emission inventories 
in catchments – overview

Tier Required information Expected output
Results from the 

inventory

3. Pathway-
orientated 
approach

In addition to tier 2:
• Agricultural 

statistics 
(fertiliser, 
crops…)

• Soil data
• Data on 

hydrology
• Others 

depending on 
the applied 
model

• Quantification 
and proportion of 
pathways

• Identification of 
hotspots

• Information on 
adequacy of 
pathway-oriented 
protection 
measures 
(scenario 
calculations)

• Pathway-specific 
emissions

• Additional spatial 
information on 
emissions

4. Source-
orientated 
approach

In addition to tier 3
• Production and 

use data 
(nutrition 
statistics)

• Substance flow 
analyses

• Others 
depending on 
the applied 
model

• Quantification of 
primary sources

• Complete 
overview about 
substance cycle

• Information on 
adequacy of 
source protection 
measures

• Source-specific 
emissions

• Total emissions 
to environment 
and proportion 
to surface waters

Source: Adapted from European Commission (EC) (2012).

7.4.1  Tier 1: Assessment using emission factors

In more heterogeneous and larger catchments or in situations with enhanced 
wastewater disposal, the main sources of nutrients in a catchment might 
not be obvious, nor may be the pathways by which they enter the river sys-
tem. In such a setting, the tier 1 approach based on emission factors (also 
called “export coefficient method”) is helpful to obtain a first semiquantita-
tive overview of the contribution of main sources of nutrient emissions to 
a waterbody – namely, municipalities (including households and industries) 
and agriculture.

7.4.1.1  Municipalities

As discussed in section 7.3.3, phosphorous is an essential nutrient in human 
nutrition and human excreta, which therefore are the dominating source 
of P in municipal wastewater, and other significant sources may be P from 
detergents or commercial and industrial wastewater, particularly from food 
processing enterprises or fertiliser industry. An estimation of P emissions 
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from municipalities (which includes wastewater from households, commerce 
and industries) is possible on the basis of the following information:

• the number of people in the catchment, with 1.3–1.7 g P emitted per 
person and day (Zessner & Lindtner, 2005);

• whether or not detergents used locally are P free (i.e., which type is 
typically sold on local markets), with emissions per person amounting 
to 2–3 g if detergents contain P;

• the share of the population connected to sewer systems;
• the estimated amount of commerce and industry likely to emit P;
• the level of wastewater treatment (no treatment, biological treatment 

with removal only of organic substance [“C removal”], or treatment 
with P removal/P precipitation).

In municipalities without any significant commercial and industrial activ-
ity, P in wastewater predominantly originates form households. In case 
of high commercial and industrial activities, experience shows that those 
activities may increase P loads in wastewater by up to 1.5 g per person and 
day (Zessner & Lindtner, 2005), and this may serve as first rough estimate. 
Any large-scale fertiliser or food processing industries are not included in 
this number and would have to be accounted separately.

The impact of populations not connected to sewer systems on P emis-
sions is highly dependent on their sanitation system. Where this is through 
subsurface or soil treatment, the impact will usually be small and can be 
neglected for a first estimate. Where household wastewater is directly dis-
charged into a river or its tributary, the total load from the population 
would have to be accounted as emission into the surface waters.

Wastewater collected in sewers is usually discharged to surface waters, 
with P emissions depending on the level of treatment. Emissions are:

• 100% of P in raw wastewater in case of no treatment;
• 60–70% of the P concentration in raw wastewater in case of biologi-

cal treatment without P removal;
• 10–20% of the P concentration in raw wastewater in case of bio-

logical treatment with P precipitation or biological P removal (with 
further reduction by a factor of up to 10 if a combination of post-
precipitation and filtration step is added after conventional treat-
ment) (Heinzmann & Chorus, 1994).

Example:  There are four municipalities in a catchment. The first is a town 
and has 50  000 inhabitants (inh), all connected to the public 
sewer system, an average amount of commercial and industrial 
activity and a wastewater treatment plant, including biological 
C removal without P removal. The markets in town sell P-free 
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detergents for washing laundry and dishes. The other three 
municipalities are small settlements with all together 1500 
inhabitants not connected to sewer systems and buying in the 
markets of the town.

  P emissions from the town to surface waters = (1.5 g P/(inh × d) 
[from households] + 0.75 g P/(inh × d) [from commercial activ-
ity]) × 50  000 inh × 0.65 (P in effluent after treatment) = 73 kg 
P/d = 2.7 t P/yr.

  P in wastewater from settlements = 1.5 g P/(inh × d) × 1500 
inh = 2.3 kg P/d = 0.8 t P/yr. The fate of this P load is not known. 
Catchment inspection would serve to collect evidence whether 
wastewater disposal from these settlements could directly seep 
into surface waters of the catchment.

7.4.1.2  Agriculture

The main external pathway by which nutrients reach a farm is the input of 
external (mineral) fertiliser and the input of feedstuff for livestock. Farm 
animals process their feed, excreting faeces and urine which is then spread 
as manure and slurry on fields. Nutrient exports from the farm as loads to a 
waterbody can ideally be avoided if feed and manure are kept in an internal 
on-farm cycle, with the phosphorus content of the agricultural products (as 
output of P from the agricultural production process) approximately balanc-
ing the P input through externally imported fertiliser and feedstuff. While 
this situation appears idealistic, agricultural nutrient budgets (see Box 7.3) 
have indeed proven to be a highly effective approach to controlling nutrient 
loads (see section 7.5.2).

Soil is the essential medium in this production process as it provides the 
nutrients to the plants for their growth. As discussed above, during the pro-
duction process, nutrients not taken up by the plants may be transported 
from agricultural areas to the waterbody, and while nitrogen in form of 
nitrate is very soluble, P is usually adsorbed to a high extent to soil par-
ticles, if supplied to soil in higher amount as needed by the plants. This may 
lead to increased concentrations of P in agricultural soils, and if erosion 
occurs, this can transport P together with soil particles to surface waters. 
Depending on soil properties and soil saturation with P, it might also be 
transported in soluble form and reach surface waters with surface run-off, 
tile drainages, interflow or groundwater, but in most settings, particulate 
transport with erosion dominates. Losses of P from agricultural soil are 
impacted by many factors, and the load emitted into surface waters is deter-
mined by the concentrations of P in soils and the amount of soil mobilised 
from the field that reaches the waterbody. Because of the high numbers of 
factors that determine this process, even rough estimates of P emissions 
from agricultural soils to waterbodies are less straightforward than for 
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wastewater from municipalities. Nonetheless, a first rough tier 1 estimate 
based on emission factors is possible for this source as well. Where more 
precise quantification is needed, more elaborated quantifications (tier  3) 
are recommended in cooperation with modelling specialists. For this tier 1 
approach, the following information needs to be known:

• arable area in the catchment;
• basic information on slopes of land used for agriculture;
• connectivity of arable land to the waterbody or its tributaries (ranging 

from “well connected” to “poorly connected”, e.g., due to the inter-
ception of erosion through natural vegetation or buffer strips);

• plant cover of crops during rainy seasons (missing to high);
• soil properties (clay, silt, loam, sand);
• density of livestock, particularly cattle, and fertilisation level (high to 

none);
• erosion abatement in place (high to none).

Inputs of P from the catchment to the waterbody range from about 
0.1–0.2 kg P/(ha × yr) from areas with dense perennial vegetation cover up 
to 5.0 kg P/(ha × yr) from arable land (Franke et al., 2013). The highest val-
ues can be expected if high P concentrations in soils occur in situations with 
pronounced soil erosion and the eroded soil is easily transported to the sur-
face waters. High P concentrations can be expected if agricultural manage-
ment is characterised by high livestock densities and/or fertilisation levels 
exceeding plant requirements resulting in high P surpluses. P surpluses in 
soils can be estimated via soil nutrient budgets from the amount of nutrient 
in fertiliser, manure and slurry spread on the fields and pastures in relation 
to the amount in the harvests leaving the farm (for further information 
and data, see EUROSTAT (2019) and FAOSTAT (2019)). With clay/silty 
soils, the concentrations in eroded soil material may be further enriched as 
fine particles usually have the highest concentrations and are predominately 
transported.

Several local factors determine the levels of soil erosion. Firstly, soil ero-
sion is impacted by the energy with which raindrops mobilise soil particles 
when they reach the surface. This is especially high if the crops grown have 
a low plant cover during rainy season (which is often the case for, e.g., 
maize, soya bean) and in regions with high rainfall intensity (volume per 
area and time). Secondly, the slope of a field and its length determine the 
transport capacity of water during surface run-off. Therefore, soil erosion 
increases at fields with steep and long slopes. Clayey/silty soils are especially 
vulnerable against soil erosion as small particles are more readily mobilised 
and transported as larger particles from sandy soils. Further, high organic 
(humus) content of the soil and improved soil structure reduce erodibil-
ity. If specific erosion abatement measures are in place, erosion is reduced. 
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Winter crops and mulch seed, for instance, increase the coverage of soils 
and thus hinder rain to mobilise and transport soil particles. High trans-
port to surface waters of eroded material can be expected if the fields where 
erosion takes place are well connected to surface waters (high connectivity): 
run-off from such fields may directly enter surface water because there are 
no other types of land uses (e.g., buffer stripes) between them and the river 
is not able to hinder the transport of soil particles.

Example:  A catchment of 50 km2 has a share of 30% arable land. The 
amount of fertiliser applied is in a medium range; the region is 
hilly with a significant share of steep slopes and pronounced con-
nections between arable land and creeks of the catchment. Silty 
soils prevail; no specific erosion abatement measures are in place.

  About 35 km2 in the catchment is covered with natural vegeta-
tion or grassland. Input into surface waters can be assumed to 
be at the low end of the range given above, that is, 0.1–0.2 kg 
P/(ha × yr) from these areas as soil loss from these areas and 
P content of soil material are usually low:

• P emissions form naturally covered land and grassland =  
0.1–0.2 kg P/(ha × yr) × 3500 ha = 0.35–0.70 t P/yr.

  About 15 km2 are covered with arable land. We assume relatively 
high levels of P emissions due to unfavourable conditions with 
respect to erosion (high soil loss) but only average fertilisation lev-
els (moderate P concentrations in soils) of 1.5–3.0 kg P/(ha × yr):

• P emissions form arable land = 1.5–3.0 kg P/(ha × yr) × 1500 ha =  
2.25–4.50 t P/yr.

Franke et al. (2013) present a more elaborate tier 1 approach for nutrient 
emissions from agricultural fields in the context of grey water footprint 
calculations. This can be applied if fertilisation levels are known. If require-
ments for the quantitative assessment of nutrient emissions are higher, the 
higher-level tiers discussed below should be applied. These tiers require 
including experts in the field of nutrient monitoring and nutrient emission 
modelling in the planning team.

7.4.2  Tier 2: Assessment using the Riverine  
Load Approach

The riverine load approach (RLA) as presented in EC (2012) is based on data 
measured on site, that is, for the water, the suspended solids, river discharge 
as well as monitoring data from relevant point sources, and it calculates the 
basic processes of transport, storage or temporary storage and degradation 
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of substances. The resulting riverine load provides quantitative information 
about the recent status of loading and, provided long-term information is 
available, also about trends over time (see Figure 7.3). In particular, it allows 
the allocation of observed river loads to point and diffuse sources (i.e., a 
basic source apportionment). If a reservoir or a lake is fed by different rivers, 
RLA needs to be implemented for each one significantly contributing to the 
nutrient inputs into the reservoir or lake. High nutrient concentrations, an 
increasing trend, or a high relevance of diffuse sources indicate a need for a 
more detailed analysis using the approaches in tiers 3 and 4.

The nutrient load transported by a river is estimated by taking the product 
of the mean flow-weighted concentration and the total river flow, expressed 
by the following formula (OSPAR, 2004a):

Figure 7.3  Utilisation of riverine data: Trends of total phosphorus concentration 
(flow adjusted in μg TP/L × year) in surface waters in Upper Austria for the 
periods: (a) 1990–2000 and (b) 2001–2004. (From Zessner et al., 2016.)
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 LY = annual load (t/yr)
 Qd = arithmetic mean of daily flow (m3/s)
QMeas =  arithmetic mean of all daily flow data with concentration mea-
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 Ci = concentration (mg/L)
 Qi = measurement of daily flow (m3/s)
 Uf =  correction factor for the different locations of flow and water 

quality monitoring station
 n =  number of data with measured concentrations within the investi-

gation period.

Periods of high river flow typically carry a disproportionately large amount 
of the annual load of a contaminant (Zessner et al., 2005). To avoid under-
estimation of annual loads, it is therefore important that water quality sam-
pling strategies are designed to capture periods of high river flow (Zoboli 
et al., 2015). Sites selected for sampling should be in a region of unidirec-
tional flow in an area where the water is well mixed and of uniform quality. 
Both the particulate and soluble load of a contaminant should be quantified.

7.4.2.1  Flow normalisation to avoid misinterpretation 

of causalities

Riverine nutrient loads and, in particular, certain diffuse source components 
vary strongly with rainfall and hence river flow; typically, the wetter the 
year, the higher the load. Without the application of flow normalisation pro-
cedures, natural interannual variations in flow can mask or lead to misinter-
pretation of trends in nutrient loads. Genuine reductions in nutrient inputs 
attributable to the implementation of measures, for example, can be masked 
by the occurrence of higher annual river flow during more recent monitor-
ing. Conversely, an apparently declining trend can be incorrectly attributed 
to the success of measures, but in reality reflects a drier year or years. Flow 
normalisation addresses this issue and can be undertaken via a variety of 
methods. Harmonised flow normalisation procedures are given by OSPAR 
(2004a). An example of a trend analysis of P concentrations in a river under 
consideration of flow normalisation is given by Zessner et al. (2016).

7.4.2.2  Estimation of diffuse loads

As discussed above, riverine loads can be used to calculate diffuse and 
unknown inputs of nutrients providing point source information is 
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available. In the most basic approach, the diffuse load can be estimated as 
the difference between the total load (measured from river discharge mul-
tiplied by concentrations; see above) and the load discharged from point 
sources, as follows:

L L= − D Diff yr P  

where, for a given contaminant, LDiff is the anthropogenic diffuse load, Lyr 
is the total annual riverine load, and DP is the total point source discharge. 
Such an approach ignores any potential in-river processes such as sedimen-
tation and remobilisation, but provides a useful approximate estimate of 
the diffuse load of a given substance.

A more detailed formulation will be necessary where processes in the 
river or stream and natural background loads are thought to be signifi-
cant. The following formula is based on an approach established by OSPAR 
(2004b) for the calculation of diffuse nutrient loads; in-river nutrient pro-
cessing is typically significant:

L L Diff = −Y PD − LB P+ N  

where, for a given contaminant, LB is the natural background load of the 
contaminant, and NP is the net outcome of in-river processes upstream 
of the monitoring point. There are several methods to estimate NP on a 
catchment scale. For example, Vollenweider and Kerekes (1982) derived a 
formula which described the relationship between the nutrient concentra-
tion at the inflow of a lake or reservoir and the concentration within it 
based on the water residence time. This formula can be used to calculate 
the retention of nutrients by in-lake processes (NP for lakes). Behrendt and 
Opitz (1999) proposed something similar for rivers at a catchment-scale 
level. They derived a relationship between area-specific run-off (river flow 
subdivided by the area of the catchment) and nutrient retention induced 
by processes within the stream or river as well as a relationship between 
hydraulic load of a river (river flow subdivided by the surface of the water-
bodies in the catchment) and retention. If the flow of a river, the nutrient 
load, the catchment area and/or the surface of waterbodies in the catch-
ment are known, this approach can be used to estimate NP for rivers on a 
catchment scale (OSPAR, 2004c).

The riverine load approach (RLA) provides a useful means of estimat-
ing diffuse inputs and/or validating modelled predictions. However, diffuse 
inputs from different sources are merged into a single value and are not, for 
example, distinguished between inputs arising from agriculture and those 
arising from urban run-off.
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7.4.3  Tier 3: Pathway-Oriented Approach

The pathway-oriented approach (POA) (see EC (2012) for more detail) 
uses more specific information about the land use, hydrology and basic 
transport processes involved. It adds an estimate of the impact of key 
processes of transformation, removal and temporary storage taking 
place between the source of emission and the receiving waterbody to the 
assessment. Therefore, data requirements are higher than for the lower 
tiers, but so is the level of information available for the inventory and for 
deciding on priorities for load control because this approach quantifies 
specific emissions (e.g., area-specific loads, stormwater run-off loads). It 
thus allows the identification of the main nutrient pathways and regional 
emission hotspots as well as providing a holistic overview of the emis-
sion status. POAs are well established and applied, for example, in many 
European River Basin Districts (RBDs) for the quantification of nutrients 
and heavy metal inputs.

As defined above, inputs can be caused by point and diffuse sources. 
Accordingly, point source pathways are defined by being discrete, having 
distinct locations and in many cases a quasi-continuous discharge, for exam-
ple, the discharge of municipal wastewater treatment plants and industrial 
plants. Diffuse source inputs use different pathways and are discharged via 
different run-off components into surface waters, often driven or augmented 
by extreme events. A differentiation of the run-off components is necessary 
as substance concentrations as well as the underlying processes may differ 
significantly for the considered substances and localities. Actually 12 poten-
tial pathways for inputs into surface waters are identified for nutrients. This 
is summarised in the general working scheme (Figure 7.2). The pathways can 
be classified into three blocks:

 1. pathways transporting nutrients from point sources;
 2. pathways transporting nutrients from diffuse nonurban sources;
 3. pathways transporting nutrients from diffuse urban sources.

The calculation of emissions from point sources can be straightforward if 
data on effluent concentration and the amount of water are available, or can 
be derived from statistical data with the required accuracy.

The inputs caused by diffuse sources are the result of more or less com-
plex interactions with different interfaces, including temporary storage, 
transformation and losses. These processes have to be adequately integrated 
into the approaches.

As outlined above, pathways from agricultural diffuse sources include 
erosion, surface run-off, interflow, tile drainage and groundwater as well 
as direct discharges and wind drifting (e.g., of slurry sprayed on fields). 
The principles of POAs are best illustrated using the example of erosion, 
particularly as P can readily attach to soil and eroded sediment (Figure 7.4).
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Figure 7.4  Input data to quantify the emissions from erosion. (Adapted from Fuchs et al., 
2010.)

As discussed above, erosion begins with the mobilisation of top soil caused 
by heavy rainfall. At a river basin scale, the soil loss from arable land is com-
monly calculated using an adapted version of the universal soil loss equa-
tion (Wischmeier & Smith, 1960), which considers the slope, rainfall (energy 
input), soil characteristics, land cover and cultivation as well as erosion pro-
tection measures in place. The proportion of eroded soil entering the surface 
water is called “sediment delivery ratio”. Different approaches can be applied 
for its calculation. As an example, individual areas within a catchment can 
be identified where eroded soil reaches a waterbody based on a Geographical 
Information System (GIS)-supported submodel, giving a relationship between 
sediment delivery and catchment characteristics (Behrendt et al., 2000).

During the erosion process, fine particles accumulate in the transported 
sediment. Phosphorus is predominantly bound to finer grains which accu-
mulate during the transport process. The enrichment of a substance in the 
erosion material is described by the enrichment ratio (EnR), which is the 
ratio between the substance concentration in the topsoil and that in the sedi-
ment reaching the waterbody. Beyond the initial substance concentration, 
the grain size distribution of the topsoil and the intensity of the classification 
process are the most important factors influencing sediment concentrations.

As discussed above, in urbanised parts of a river basin, the important 
diffuse pathways for nutrients are overflows from stormwater sewers (i.e., 
those carrying rainwater run-off from paved or otherwise sealed surfaces) 
and in particular overflows from sewers carrying both stormwater and raw 
sewage. Their relevance is highly variable as overflows are caused by heavy 
precipitation when run-off volumes exceed the storage capacity of the sewer 
system, depending very much on local conditions. In general, a more com-
plex situation can be assumed in combined sewer systems where a certain 
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portion of stormwater is routed to a central wastewater  treatment plant with 
the advantage of this being treated, but when overflows occur, untreated 
sewage reaches the waterbody. For combined sewer systems, the overflow 
rate and the proportion of discharged wastewater that is mixed with the 
stormwater should be estimated. The overflow rate is strictly dependent 
on the storage volume in the catchment and the hydraulic capacity of the 
wastewater treatment plant.

Many models using the pathway oriented approaches (POAs) focusing on 
diffuse nonurban sources have been developed (Kroes & van Dam, 2003; 
Groenendijk et al., 2005; Siderius et al., 2008; Gebel et al., 2009; Smit 
et al., 2009; Lindström et al., 2010; Venohr et al., 2011; see Table 7.2 for 
a compilation of models). As models are generally developed under spe-
cific conditions, they vary in strengths and weaknesses, which limits their 
applicability, depending on specific regional requirements. Schoumans et al. 

Table 7.2  Examples of models for watershed-scale distributed simulation of nutrient 
transport in river basins (in alphabetical order)

Model
Temporal 

scale Description Reference

AnnAGNPS Day or less Annual-scale agricultural nonpoint-
source pollution model, annualised 
version of AGNPS for continuous 
simulation of hydrology, erosion, 
transport of nutrients, sediment 
and pesticides

Young et al. (1995)
Bingner & Theurer 
(2001)

ANSWERS-
continuous

Day or less Areal Nonpoint Source Watershed 
Environment Response Simulation, 
expanded with elements from other 
models (GLEAMS, EPIC) for nutrient 
transport and inputs

Bouraoui et al. 
(2002)

Hydrological 
Simulation 
program –  
Fortran

Hour Continuous watershed simulation 
of water quantity and quality at 
any point in a watershed, developed 
for US Environmental Protection 
Agency (EPA).

US EPA (2011)
Skahill (2004)

IBIS-HYDRA Variable, 
1 day to 
1 year

Land surface and terrestrial 
ecosystem model IBIS with 
hydrology model HYDRA, used 
for modelling dissolved inorganic 
nitrogen fluxes and removal

Donner et al. (2002)
Donner et al. (2004)

IMAGE 
DGNM

Month Same as above, but with mechanistic 
instream model for C, Si, N and P, 
including sediment–water exchange

Vilmin et al. (2018)

IMAGE-GNM Year Detailed description of delivery of 
nutrients, at annual scale globally 
and by river basin; includes aquifer 
transport and processing

Liu et al. (2018)

(Continued )



7 Managing nutrient loads 479

Table 7.2 (Continued)  Examples of models for watershed-scale distributed simulation of 
nutrient transport in river basins (in alphabetical order)

Model
Temporal 

scale Description Reference

INCA Day Integrated flow and nitrogen model 
for multiple-source assessment 
in catchments

Wade et al. (2002)
Whitehead et al. 
(1998b)

Whitehead et al. 
(1998a)

MIKE-SHE Variable, 
depending 
on 
numerical 
stability

Comprehensive, distributed, 
physically based model to simulate 
sediment and water quality 
parameters in two-dimensional 
overland grids, one-dimensional 
channels, and one-dimensional 
unsaturated and three-dimensional 
saturated flow layers, with both 
continuous and single-event 
simulation capabilities

Refsgaard & Storm 
(1995)

MONERIS Month 
or year 

Empirically derived nutrient emission 
model, considering all relevant input 
pathways and instream retention 
processes on subcatchment level 
with a size of > 100 km2. 

Venohr et al. (2011)

NLCAT A combination of the models ANIMO/
SWAP/SWQN/SWQL. Based on the 
representation of system processes, 
nutrient concentrations can be 
calculated (inorganic and organic 
components). Furthermore, water 
flow and overland particulate and 
nutrient flow are modelled (run-off, 
erosion, subsurface run-off/leaching) 
in order to assess the total nutrient 
load to surface waters.

Groenendijk et al. 
(2005)

Kroes & van Dam 
(2003)

Smit et al. (2009)
Siderius et al. (2008)

Riverstrahler Reach, 
decade

Riverstrahler allows for analysing, 
apart from other disturbances, the 
impact of changing nutrient load 
and changing nutrient ratios, 
and potential saturation of retention 
processes such as denitrification 
and P retention by sediment. While 
in-stream processes are modelled 
with a mechanistic model, the 
delivery processes are described 
with coefficients, lumping soils, 
aquifers and riparian zones

Garnier et al. (1995)
Billen & Garnier 
(2000)

SWAT Day Soil Water Assessment Tool to predict 
the impact of management on water, 
sediment and agricultural chemical 
losses in large ungauged river basins

Arnold & Fohrer 
(2005)
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(2009) give an overview of some of the emission models and their specific 
applicability, and Moriasi et al. (2007) give guidelines for the estimation of 
accuracy in catchment models.

Monitoring → Modelling → Management are the key steps in a success-
ful strategy for the development of sound policies for nutrient load control. 
Well-developed and appropriate emission modelling is central for this tar-
get. In addition to being necessary for assessing the relevance of different 
emission pathways, modelling helps to extrapolate information to loca-
tions or situations where monitoring has not been done or is not possible. 
Therefore, models use process relations or empirically derived relations 
expressed in quantitative formulas. Technically sound model applications, 
validated against measurements, implemented in a river basin or a water-
shed provide many potential applications, beginning with improving sys-
tem understanding, increasing insights into cause–effect relationships and 
helping to identify emission hotspots.

For locations in a basin where monitoring is missing, modelling can pro-
vide an assessment of the risk to exceed water quality targets, and this 
can support the development of future monitoring schemes. Models are 
particularly useful to calculate scenarios in order to estimate the impact of 
a measure under consideration or – if the model structure allows – other 
potential future developments such as trends in population, land use or cli-
mate (Schönhart et al., 2018). The ability of calculating scenarios depends 
on the specific model structure and to which extent it depicts the complex-
ity of the system. Whether models are able to assess scenarios quantitatively 
can be checked by running them with older data to see how well they are 
able to depict developments of the past.

The information derived from these investigations further provides a 
basis for cost-effectiveness or cost–benefit analyses. However, even techni-
cally sound models, the plausibility of which is validated by data from mon-
itoring, will never provide an exact information. Therefore, uncertainty 
considerations are an important element of good practice in modelling.

7.4.4  Tier 4: The Source-Oriented Approach

This tier is based on substance-specific information on production, sales 
and consumption. It provides a comprehensive picture of the life cycle of 
a substance, for example, a nutrient. The benefit of this approach is that 
the information gained on the relative contribution of a source to the total 
nutrient load is far more precise than that gleaned from tiers 0 to 3, and 
thus, this provides a better basis for prioritising control measures addressing 
the primary sources of the nutrients. This level of precision may be relevant 
when advocating for control measures that require substantial investments 
(e.g., larger storage volume for stormwater to avoid overflow) or substantial 
changes of practice that may impact on people’s livelihoods. (e.g., reduc-
ing fertiliser use or stock density) or require more elaborate  management 
 practices (e.g., introducing farm nutrient budgets; see Box 7.3).
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Substance Flow Analysis (SFA), a source-oriented approach, is a method of 
analysing the flows of a substance in a well-defined system, including through 
industries producing and using it, households, wastewater treatment plants 
and all connected media such as soil, air and water. All the applications 
and uses of a substance are collated, enabling the development of strategies 
to reduce the impact of the substance. Such measures can also encompass 
source controls such as changes in consumption patterns (e.g., nutrition). SFA 
is applied in connection with the early recognition of potentially harmful or 
beneficial accumulations and depletions in stocks, as well as the prediction of 
future environmental loads. SFA methods, as we know them today, were first 
applied by Wolman (1965) in the wake of introducing metabolism studies for 
cities. Later, Baccini and Brunner (2012) developed a more specific method 
for the evaluation of the metabolism of the anthroposphere.

For nutrients, many SFAs have been performed on a supranational, national 
or district scale. Examples are the P balances of EU countries by Ott and 
Rechberger (2012) or the N and P balance of Busia District, Uganda, which 
was performed to identify the potential of improved waste uses for agricul-
tural balances and productivity (Lederer et al., 2015). Zoboli et al. (2016a; 
2016b) developed a time series in phosphorus flow analysis for the Austrian 
P-budget from 1990 to 2011 to assess drivers for changes in the national P 
metabolism and analysed the potential of different strategies for optimising 
the national P budget (Figure 7.5). This work goes far beyond just addressing 
P releases into waterbodies and possibilities for their  reduction, but addition-
ally includes measures addressing resource-efficient management strategies 
such as recycling technologies and changes in nutrition behaviour of people, 
which in turn affects agricultural practices.

One drawback to SFA is that applicable data tend to be limited to specific 
spatial or temporary solutions. Data sets are often only available on a country 
level. If the perspective is limited to a river basin, proxies may have to be used 
to illustrate the regional situation. And even though national data may be of 
high quality because they were compiled accurately, downsizing to the regional 
level can incorporate errors. On the other hand, it is also possible to combine a 
source-oriented approach of tier 4 with a pathway-oriented tier 3 approach by 
subdividing a country or region into subcatchments which form the basis for 
pathway-oriented emission modelling and integrate the aggregated subcatch-
ment results for agricultural nutrient turnover and emissions into river systems 
into a regional or national SFA. This would consider the overall nutrient turn-
over, including imports, exports, production and consumption. Thaler et al. 
(2013; 2015), for instance, implemented such an approach, showing that in 
Austria P imports and emissions into the environment on country level could 
be reduced by about 20% if the population would change from its actual 
(meat-rich) diet to a healthy balanced diet (reduction of meat consumption 
by 50%) as recommended from nutritional experts. A further example is the 
reduction of P loads to a country’s waterbodies merely by banning P from 
laundry detergents: this has reduced loads by about 50%, as has been shown 
for the Upper Danube in Germany and Austria by Zessner (1999).
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BOX 7.4: REDUCING EUTROPHICATION OF THE 

SANTA LUCIA RIVER BASIN IN URUGUAY

Juan Pablo Peregalli, Carolina Michelena and Giannina Pinotti

The Santa Lucia River Basin (SLRB) is the drinking-water source for 60% of 

Uruguay’s population. Although it is not the biggest catchment in the coun-

try, it concentrates a major portion of Uruguay’s industrial and agricultural 

Figure 7.5  Phosphorus fluxes in the agricultural system of Austria differentiated by pro-
duction for animal products, production for plant products and production 
for industrial raw materials (Thaler et al., 2013).

7.5  MANAGING NUTRIENT LOADS

The next step after identifying the relevant nutrient sources is to develop a 
management plan to mitigate them to the level targeted in order to reach the 
concentration targeted for the waterbody. Even if quantification of loads is 
only rudimentary or can only be roughly estimated, major source may be 
evident, and it will be important to get started with the implementation of 
measures to control them. The case study of the Santa Lucia River Basin 
(SLRB) in Box 7.4 shows that addressing major sources can lead to a sub-
stantial load reduction within a few years.
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activities. From 2004 to 2011, studies for assessing the water quality in the 

basin were conducted by the municipalities. The national authority respon-

sible for the environment, in cooperation with external support, is imple-

menting a water quality monitoring plan that includes 25 monitoring stations 

in different waterbodies of the basin. Most of the results show eutrophic to 

hyper-eutrophic conditions, and during March 2013, taste and odour events 

in supplied drinking-water were related to cyanobacterial blooms in the Santa 

Lucia River. 

The initial assessment of the catchment showed that an average of 80% 

of the organic matter and nutrient load (N and P) received by the water-

bodies originated from diffuse sources, including soil erosion and agricultural 

activities such as forage areas, fruit and vegetable plantations, dairy farms and 

feedlots. Point source contamination accounts for 20% of the total load and 

is mainly from nonsewered or insufficiently sewered settlements and from 

industrial facilities, mainly slaughterhouses, dairy, tannery and solid waste 

processing plants. 

NUTRIENT LOADS MANAGEMENT STRATEGY

Based on these monitoring results, in 2013, the National Authority of 

Environment launched the “Action Plan for the protection of environmental 

quality and drinking - water sources in the SLRB”. This plan included a series 

of measures to “control, stop and reverse the deterioration of the water 

quality and ensure the quantity and quality of water resources for a sustain-

able use of water in the river basin” (Table 1).

Table 1  Control measures in the Action Plan for the protection of the SLRB

MEASURE 1 • Reduce the impact of effluents dicharge from industrial activities 

MEASURE 2 • Reduce the impact of municipal wastewater discharge 

MEASURE  3 • Control the excessive use of fertilizers

MEASURE  4 • Control the load discharge from feedlots

MEASURE  5 • Control the load discharge from dairy farms

MEASURE  6 • Management of sludge from the drinking-water treatment plant.

MEASURE  7 • Limit the access of animals  to water in the waterbodies of the catchment. 

MEASURE 8 • Establishments of riparian buffer zones

MEASURE 9 • Require licences for surface water  and groundwater extraction. 

MEASURE 10 • Declare the catchment of Casupá stream as drinking-water reservoir. 

MEASURE 11 • Involve  the different actors in the management of the basin.
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PRELIMINARY RESULTS AFTER 6 YEARS 

OF WORK IN PROGRESS

Industries were already under governmental surveillance, and the quality of 

the wastewater discharge was regulated by the Decree 253 from 1979, which 

includes targets for total phosphorus (TP) and ammonium. However, most 

of the wastewater treatment plants focus on organic matter removal, mainly 

stabilisation ponds, and did not achieve the levels targeted for nutrient emis-

sions (5 mg/L for total phosphorous and ammonium). Measure 1 therefore 

focused on 24 industries that were responsible for 90% of the organic matter 

and 95% of nutrients discharged to the river basin from the industrial sector. 

For the emissions of those industries, additional standards were set and they 

were urged to build wastewater treatment systems with nutrient removal pro-

cesses. As a result, discharge loads were reduced by 18% for biological oxygen 

demand (BOD5), by 52% for TN and 30% for TP, from 2014 to 2018 (Figure 1a). 

Regarding municipal wastewater, measure 2 focused mainly on settlements 

of more than 2000 inhabitants. The existing wastewater treatment plants 

were urged to include nutrient removal, two new plants were built, the 

wastewater of two major settlements was transferred to the Rio de la Plata 

Basin (a much larger and less vulnerable catchment), and two plants were 

relocated from flooding areas. Because of the construction works that these 

measures require, most of these changes are still in progress; however, some 

results are already visible in the discharge data (Figure 1b). 

1.a Discharges from “first priority industries” 1.b Municipal wastewater discharge loads from 

settlements > 2000 inhabi tants 

151

27.1

72

37.6

9 2.7
0

20
40
60
80

100
120
140
160

2014 2018

kg
/d

387

240

567

431

45 45

0

100

200

300

400

500

600

2016 2018

kg
/d

Figure 1  Results of measures 1 and 2 to control point source loads. (a) Discharges 
from “first-priority industries”. (b) Municipal wastewater discharge loads 
from settlements > 2000 inhabitants.
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Measure 4 banned the installation of new feedlots on most of the catch-

ment and also the extension of existing ones. Also, in 2014, Decree 162/014 

regulated environmental aspects of feedlots. Since then, national authori-

ties regulating environment and livestock production and the association of 

feedlot owners are collaborating to establish the application of good envi-

ronmental practices. In particular, this includes recommending the use of 

wastewater from feedlots and farms for irrigation instead of discharging it 

directly to waterbodies. For nine of the 20 feedlots in the catchment, that is, 

those with more than 500 animals, wastewater management systems were 

implemented. This has considerably reduced the loads of organic matter, N 

and P that otherwise would potentially be discharged to the basin (Figure 1a).

SLRB concentrates a major portion of the dairy farms in the country with 

a total of 1200 establishments, 92% of which are small (<300 animals), 5% 

are medium (300–500 animals) and 3% are big farms with more than 500 

animals. Control measures first focused on the large farms, with a similar 

approach to the one used for feedlots. An interagency activity was launched 

to train farmers about sustainable wastewater management and to encour-

age its use for controlled irrigation. Additionally, a project was launched to 

provide economical support to more than 50% of the small farms to build 

wastewater management systems (drainage, accumulation ponds and irriga-

tion systems). The rest of the small farms and medium-sized establishments 

still needs to be addressed but so far, about 50% of the organic matter and 

nutrients load discharged from dairy farms is being managed by the afore-

mentioned initiatives (Figure 2).

2.a Gross load and managed load in feedlots 2.b Gross load and managed load in dairy farms
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Figure 2 Re sults of measures 4 and 5 to control feedlots and dairy farms. (a) Gross 
load and managed load in feedlots. (b) Gross load and managed load in 
dairy farms.
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In order to mitigate nutrient loads from soil erosion and run-off that 

reach the waterbodies of the catchment, measure 8 defined buffer strips on 

which agriculture and agrochemicals are banned to preserve and restore the 

riparian vegetation. Their width was set as 100 m for water reservoirs, 40 m 

for main rivers and 20 m for main tributaries. Analyses of satellite images 

show that most of the areas were already in compliance with the restriction 

(>98%), without considering urban areas that cover 14% of the buffer zones. 

Additionally, work with the local community to re-grow native riparian veg-

etation around the Paso Severino Reservoir is ongoing. 

FUTURE STEPS

The action plan is still in progress, and it will take time to see the effects of 

the control measures on the water quality of the catchment. In December 

2018, an update of the plan, based on the experience gained until then, imple-

mented the so-called second-generation measures which are structured in 

four strategic lines: to ensure water quality, to reduce discharge loads, to 

protect and restore the ecosystems and to improve the understanding of the 

river system’s dynamics. 

7.5.1  Measures to control nutrient loads from sewage, 
stormwater and commercial wastewater

Wastewater is a key point source of nutrient emission, and it is usually easier 
to control and monitor than diffuse sources because loads are more readily 
measured. Effective treatment technology is available to remove nutrients from 
effluents, and success can be readily demonstrated by comparing upstream 
and downstream nutrient concentrations in the receiving waterbody. In con-
sequence, as highlighted by a country example in Figure 7.6, the reduction of 
phosphorus loads from sewage has been far more successful than their load 
reduction from most other sources. For controlling nutrient loads from waste-
water and stormwater, Table 7.3 gives examples of measures in the areas of 
planning, design and construction as well as operation and maintenance.

The necessary degree of nutrient removal in wastewater treatment 
depends on its contribution to the total nutrient load, and the assessment 
discussed above will show whether simultaneous precipitation or biologi-
cal elimination removes P sufficiently in a given situation, or whether more 
advanced treatment (e.g., filtration) is necessary. This may be the case where 
treated sewage contributes a large fraction of a river’s discharge, as is the 
case for, for example, River Spree in Berlin with 20–50% of the discharge 
being treated sewage (Fritz et al., 2004) but also for numerous other densely 
populated lowland river basins.
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Figure 7.6  Loads of nitrogen and phosphorus from variable sources to surface waterbod-
ies in Germany in kilotons per year (kt/yr). (Modified from UBA, 2017.)

A pronounced contribution to source abatement of P from municipal 
sewage, which affects all related emission pathways, is using P-free deter-
gents. P  loads and concentrations have been substantially and immedi-
ately reduced in countries introducing them. However, where wastewater 
causes substantial P loads, this may not suffice to achieve the target 
concentration for P in the waterbody, and the remaining P load from 
excreta nonetheless renders measures to reduce the P load from waste-
water necessary.

Where loads from sewer systems carrying stormwater need to be 
reduced, an effective measure can be to intercept this on its pathway to 
the waterbody by constructing sufficiently large storages for flushes of 
rainwater: in such retention basins, a fraction of the suspended solids will 
settle to the sediment (which, however, needs to be removed periodically). 
From these storages, stormwater can also be gradually fed to a wastewater 
treatment, as capacity allows. A further option to retain stormwater is to 
create wetlands or to construct depressions for on-the-spot infiltration 
into the underground during storm events (e.g., areas in parks, covered 
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Table 7.3  Examples for control measures in the management of sewage, stormwater 
and commercial wastewater with options for monitoring their functioning

Process Step
Example of control measures in 

catchment management
Options for monitoring their 

functioning

Planning Plan sufficient collection and 
treatment capacity to avoid 
overflow of untreated sewage

Plan sufficient capacity for 
stormwater retention 

Plan the target for nutrient 
concentrations in effluents in 
relation to the critical nutrient 
load determined for the 
waterbody, taking other loads 
into account 

Review the existing systems and/or 
plans and permit applications for new 
ones in relation to demand, including 
peak loads (e.g., at tourist season or 
during rainy seasons)

Review the existing systems and/or 
plans and permit applications for new 
ones in relation to the critical load 
(do they reduce the load sufficiently?) 
and with respect to their validity (can 
technologies proposed reach the 
effluent concentration targeted?) 

Design, 
construction 

Design and construct sewer 
and stormwater systems to 
avoid clogging and overflow, 
that is, with the necessary 
integrity and durability

Design and construct 
treatment plants to ensure 
that they can achieve the 
effluent quality targets 
defined in their planning

Design and construct 
stormwater retention and 
infiltration systems to meet 
integrity and durability criteria 

Inspect during construction; monitor 
selected parameters (indicator 
organisms and/or substances typically 
occurring in the sewage), which 
would indicate leakage

Inspect plants during construction and 
operation

Inspect during construction and 
integrity during operation and when 
emptied for maintenance

Operation and 
maintenance

Clean sewers and drains at 
intervals necessary to avoid 
clogging

Keep wastewater treatment 
plants operating effectively

Remove sludge from 
stormwater retention basins 
at appropriate intervals

Minimise nutrient accumulation 
on surfaces flushed by 
stormwater 

Inspect conditions; review records of 
cleaning and maintenance

Monitor process parameters (see 
above) indicating process functioning; 
monitor nutrient concentrations in 
the discharge; monitor nutrient 
concentrations in effluent at regular 
intervals and during events (e.g., 
drought, heavy rainfall) 

Inspect condition of retention basins; 
monitor basin effluent suspended 
solids levels; monitor sludge levels in 
basin periodically; review records of 
sludge removal and maintenance

Inspect street-sweeping and garbage-
collection operations and records 
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with scenic vegetation). Figure 7.6 shows an example on the nation-wide 
level demonstrating the potential efficacy of the reduction of loads from 
combined sewer overflows and separate sewer systems (= urban systems 
in the figure).

For controlling diffuse nutrient loads from wastewater emitted by dis-
persed settlements along a river course or lakeshore, there are several 
options. One is the introduction of sewerage. Communities often con-
struct sewers for the undisputable benefits of reducing infections spread 
through inappropriate disposal of excreta, and if this is not accompanied 
by sufficient treatment, it may dramatically increase phosphorus loads 
as compared to – for example – latrines from which a lesser fraction of 
these loads will reach surface waters. To prevent cyanobacterial blooms, 
it is therefore essential to introduce sewerage together with introducing 
appropriate wastewater treatment, including sufficient nutrient removal, 
to avoid exceeding critical loads to the receiving waterbody. An effective 
measure to ensure that no insufficiently treated sewage reaches the water-
body is to intercept its pathway by sewage diversion, for example, through 
installing a sewage channel between the settlements and the shore, that 
is, a channel or pipe which collects all of the wastewater and carries it to 
a treatment plant.

An alternative to sewerage is to implement sufficiently effective on-site 
treatment. A further option in dispersed settlements is to avoid sewer-
age and rather install dry sanitation systems, which, however, need to 
be safely designed and managed in order to avoid the contamination of 
groundwater or surface water (particularly with pathogens) and to achieve 
acceptance by users. In rural areas, when safely operated, such systems 
can have the benefit of providing fertiliser to use in agriculture (for safe 
use of wastewater, excreta and greywater, see WHO (2006); specifically 
for groundwater, see Howard et al. (2006); and for surface water, see 
Rickert et al. (2016)).

7.5.1.1  Operational monitoring for control 

measures in wastewater management

As discussed in Chapter 6, complementary to water quality monitoring, the 
purpose of operational monitoring is to continuously check whether or not 
a control measure is working as it should. For technical controls in waste-
water treatment, effective parameters indicating treatment performance 
include, for example, flow rates and detention times in the treatment plant, 
suspended solids, dissolved oxygen, pH and chemical oxygen demand. 
These parameters can be measured with continuous, online recording by 
operators of the wastewater facilities. However, as Table 7.4 shows, many 
control measures which are important to ensure that nutrients from these 
point sources do not reach the waterbody are best monitored by inspection 
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and reviewing of records. Time patterns for such operational monitoring 
can be at larger, irregular intervals, and it may be important to monitor 
when events occur that affect the process, or when operations change.

7.5.1.2  Validation of control measures in sewage 

and stormwater management

Where advanced wastewater treatment technology is implemented, the 
validation of whether or not these measures are actually achieving the tar-
geted effluent nutrient concentration is quite straightforward: it requires 
a regular monitoring of effluent discharge and nutrient concentrations in 
it, that is, of the nutrient load leaving the plant. This applies equally to 
most alternative treatment technologies such as artificial wetlands: it is 
often feasible to run a focused programme to validate whether the loads 
discharged are within the targeted limits. Even where such monitoring pro-
grammes appear expensive, their costs need to be viewed in relation to the 
investment and operation costs, and such considerations typically show 
that it is worthwhile to validate whether or not a measure is sufficiently 
effective before taking decisions, for example, on continuing its operation 
or even upgrading it.

In contrast, it is challenging to validate whether the load management from 
overflows of mixed sewage systems and from stormwater in separate systems 
meets its targets: estimating nutrient loads during stormwater run-off requires 
sampling effluents and measuring their flows under conditions of heavy pre-
cipitation, and these samples are needed with a tight resolution over time 
(both water volumes and nutrient concentrations may change within min-
utes, and possibly also in space if numerous (usually dry) overflows come into 
operation more or less simultaneously). This can be achieved with  automated 
sampling and/or a sufficiently large team of highly motivated staff.

Waterbody data on nutrient concentrations may support validation if 
they have a high resolution in time and space so that sudden concentration 
peaks can reflect loading patterns.

7.5.2  Measures to control nutrient loads 
from agriculture and other fertilised areas

Agriculture is a key diffuse source of nutrients, and in many cases, reduc-
ing the loads it causes has been less successful than reducing the point 
sources from wastewater discussed above. Improving practices of fertilisa-
tion to optimise the balance between crop yield and nutrient load control 
requires not only engagement of farmers and managers for the target of 
protecting the water source, but also expertise and training. Furthermore, 
the overall socioeconomic context strongly influences the locally realistic 
options for agricultural practice. Agriculture needs to remain productive 
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Table 7.4  Examples for control measures in agriculture and fertilised land use with 
options for monitoring their functioning

Process Step
Example of control measures in 

catchment management
Options for monitoring 

their functioning

Planning Define criteria for exclusion or 
restriction of activities (e.g., stock 
density, type of crop) in vulnerable 
catchments (e.g., implement protection 
zones or riparian buffer strips)

Require permits for the location, design 
and operation of feedlots in vulnerable 
drinking-water catchments

Set financial incentives (subsidies, credit, 
low-interest loans to fund changes, 
compensation for lost income during 
transition periods to new practices) 
and/or disincentives such as penalties 
for nutrient loading caused by poor 
management practice

Regulate operations (e.g., types of crop; 
stock density on fields and in stables; 
use of fertiliser and/or manure) in 
vulnerable catchments

Monitor land use in 
vulnerable areas/protection 
zones and ensure that 
restrictions are 
implemented (site 
inspection)

Review plans and applications 
for permits for agricultural 
activities in relation to the 
nutrient load expected from 
the area

Check compliance with 
practices negotiated before 
granting financial incentives 
or applying penalties; check 
compliance to restrictions 
set in regulations

Review considerations as to 
whether they can achieve 
the target load estimated 
to be tolerable for the 
waterbody 

Design and 
construction

Apply best management practices for 
treating wastewater from feeding 
operations

Construct fencing to protect 
waterbodies from livestock

Check compliance of 
treatment structures with 
best management practices

Inspect integrity regularly

Operation and 
maintenance

Implement regulations for operations 
(e.g., types of crop; stock density on 
fields and in stables; use of fertiliser 
and/or manure) in vulnerable 
catchments

Require soil tillage methods that 
minimise erosion

Grow winter crop cover to reduce 
erosion

Match irrigation and fertilisation 
(mineral fertiliser and/or manure) to 
the needs of crops or lawns; implement 
farm nutrient management plans 
budgeting fertiliser purchased against 
nutrient content of crop leaving the 
farm

Inspect records of crops 
grown, fertiliser and 
manure application; count 
heads of stock

Visual site inspection

Visual site inspection

Inspect drainage and 
monitor its nutrient 
concentrations; inspect 
farm records for nutrient 
budgets, amounts and 
timing of fertiliser/manure 
application

Source: Adapted from Rickert et al. (2016).
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and economically viable, and measures to control eutrophication need to 
be sustainable also in this respect. Thus, aspects to consider when planning 
measures may therefore include a wide range, for example, prices achiev-
able for produce, habits and demands of consumers, education status of 
farmers, messages conveyed by agricultural advisory services, access to sites 
for watering animals and costs of fertiliser or material for fences to keep 
stock away from water courses.

A range of measures to control nutrient emissions from fertilised land 
to surface waters is available. They can be summarised in three groups: (i) 
to avoid to high nutrient surpluses and enrichment in soils by crop choices 
and fertilisation limited to actual plant needs and uptake; (ii) to avoid 
nutrient (soil) loss from land by, for example, maintaining a vegetation 
cover on fields or other erosion abatement measures; and (iii) to intercept 
the transport of nutrients (soil) from agricultural land into surface water 
(e.g., with densely vegetated riparian buffer strips). They cover the areas of 
planning, design and construction as well as operation and maintenance 
(Table 7.4).

Good agricultural practice as implemented in some larger enterprises 
with accordingly trained staff involves balancing a farm’s nutrient budget 
to where the farm does not import more N and P than the amount that 
leaves the farm with the produce (see Box 7.3). Regulations may require a 
farm operator to keep records of the amounts of fertiliser purchased and 
spread on the fields, or financial support from the water supplier or a gov-
ernment authority can be made dependent on demonstrating that the farm 
maintains this balance. Where large-scale intensive animal husbandry can 
lead to an imbalance between farm fertiliser needs and manure production, 
measures to avoid excessive spreading of manure on land are important.

Implementing farm advisory systems (or strengthening the existing 
ones) and providing information on appropriate or innovative approaches 
are important to optimise practices. Information campaigns can commu-
nicate best management practices such as fertilisation on demand. Such 
campaigns are most effective if combined with the analysis of soil nutri-
ent content at the end of the growing season as a sound basis for assess-
ing the seasonal fertiliser application needs for next year’s crop. Successful 
multiple-stakeholder approaches have shown that funding soil analyses 
and information campaigns, for example, by state authorities or even the 
water supplier are cost-effective: the money invested for better raw water 
quality saves investment in treatment technology and is a more sustainable 
approach. Stock density and fertiliser application rates may also be limited 
by law, for example, by banning manure application during specific seasons 
with heavy rainfalls or snow and ice-cover or limiting stock density. Where 
large-scale animal husbandry operations cause amounts of manure and 
slurry significantly exceeding the nutrient demand of fields and pastures, 
loads may be controlled by organising manure export to other farms and 
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regions with a need for nutrients (MacDonald et al., 2011). Further con-
trol measures may include requiring sufficiently large storage volumes for 
manure and slurry and banning manure application during specific seasons 
with heavy rainfalls or snow and ice-cover. Nutrient loads from agricul-
tural activities, golf courses, lawns or other land uses involving fertilisation 
can be avoided if these loads are sited sufficiently far from the waterbody 
in order to avoid a direct input of fertiliser or manure during application or 
from grazing animals.

For mitigating phosphorus loads transported via erosion, it is generally 
important to establish and manage water retention measures that minimise 
the concentrated run-off. Such measures include avoiding devegetated land 
where slopes will allow erosion by heavy rainfall. On sloping land, it is 
particularly important to control run-off (e.g., by water retention measures 
such as retention ponds, vegetated buffer strips) and to avoid practices 
that enhance erosion, that is, planting of specific crops with low vegeta-
tion cover (e.g., maize), deep ploughing, ploughing groves perpendicular to 
the slope, intensive grazing or slash-and-burn agriculture. Winter cropping 
and mulch seed increase vegetation cover of arable land and therefore may 
significantly reduce erosion if professionally implemented. Maintaining 
the soil organic content and soil structure reduces soil erodability. Other 
measures for erosion abatement are contour ploughing, conservational till-
age (see examples and discussion in Tiessen et al. (2010)), avoiding till-
age altogether or creating terraces (Novotny, 2003). Intensive grazing and 
animal access to watering points near rivers can cause severe erosion of 
riverbanks, and such destruction of riparian vegetation as well as faecal 
loads should be avoided. Peacher et al. (2018) give an overview of publi-
cations discussing the benefits of fencing to exclude cattle from streams, 
thus preventing riverbank erosion; they also review publications on the 
relevance of vegetation cover directly on the areas on top of riverbanks to 
prevent erosion.

Riparian buffer strips covered with dense vegetation can effectively inter-
cept surface run-off carrying phosphorus-rich soil eroded from arable land 
and pastures. If they are applied at sufficient width (i.e., up to 30 m) and at 
the right locations (where they effectively interfere to relevant P transport – 
this can be along the riverbank but also somewhere else in the catchment), 
they may effectively reduce particle-bound P transported by soil erosion. 
Nevertheless, in contrast to erosion abatement measures mentioned above, 
buffer strips may retain soil particles by being a sink and avoid their input 
into surface waters but they do not avoid soil and nutrient losses from pro-
ductive agricultural areas. Furthermore, to maintain their longer-term effi-
ciency, proper management of buffer strips is important. Other potential 
nutrient transport control measures include grassed waterways, grass fil-
ters, constructed ponds, reservoirs and wetlands as well as connected or 
reconnected floodplains.
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7.5.2.1  Operational monitoring of control measures 

in agriculture and land use involving fertilisation

In contrast to monitoring effects on water quality, monitoring whether or 
not a measure is operating as intended can be simple and be performed by 
those managing the agricultural activities. Operational monitoring should 
provide a timely signal if the specified control measure is not operating 
within the acceptable limits, so that operators can take corrective action 
before nutrients are washed from the land to the waterbody. Monitoring 
the operation of many measures that can control nutrient losses from agri-
cultural land or from fertilised lawns to water needs to be done by farmers 
or gardeners themselves, and motivation for such measures can effectively 
be developed by involving these stakeholders in planning the protection of 
the waterbody, as highlighted in Table 7.4. Time intervals for the monitor-
ing of control measures in agriculture can often be much larger than for 
operational monitoring of technical control measures (such as wastewa-
ter treatment, which may even involve continuous reading and recording 
of parameters). For many measures, operational monitoring can simply be 
visual, that is, through inspection, for example, of the integrity of erosion 
control structures, fences or riparian buffer strips. It may also include desk 
work to assess whether reports required by regulations (e.g., on stock den-
sity or farm nutrient budgets) have been submitted and the information 
reported complies with the requirements. This is most effective if sporadi-
cally checked personally on site, for example, in the context of catchment 
inspection. Satellite data can support visual inspection. Some continuous, 
online recording is feasible for some agricultural control measures as well, 
for example, using the interruption of an electrical current as a monitoring 
parameter for the integrity of an electrical fence.

While enforcing compliance particularly in agriculture and of home 
owners has been experienced as notoriously difficult in many countries, 
experience is also that it tends to improve as the education level of farm-
ers (and home or golf course owners) increases. It is also likely to improve 
where these stakeholders are successfully involved in the planning process 
or obtain support in implementing measures, for example, in the context of 
co-operation agreements with water suppliers.

7.5.2.2  Validation of control measures in agriculture 

and for land use involving fertilisation

In contrast to the rather straightforward options for validating the efficacy 
of measures to control nutrient loads from effluents discussed in section 
7.5.2, validating whether or not the measures taken actually achieve the 
target of retaining nutrients on the land rather than losing them to the 
waterbody is more challenging: it requires quantitative approaches to esti-
mating diffuse loads as discussed in section 7.4. Validation of measures 
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controlling diffuse loads is typically a discontinuous activity to be repeated 
at intervals, particularly after changes in the system, with time scales for 
changes in nutrient losses from land to water usually being in the range of 
seasons or years.

Where improvement is substantial and visibly evident – for example, the 
reduction of soil erosion – validation may be possible by inspection. Another 
approach to validation is trend analysis of the development of agricultural 
practices which impact the nutrient emissions to surface waters, that is, of 
livestock densities, fertiliser applications, farm nutrient balances, cultivated 
crops and tillage practices.

7.5.3  Measures to control nutrient loads 
from aquaculture and fisheries

Where cage cultures and fisheries within a waterbody cause nutrient loads 
in excess of the load which is acceptable in order to meet the phosphorus 
concentration target for the waterbody, the only option available to control 
nutrient loads from feeding is to restrict or totally ban these activities from 
the waterbody. In practice, clear water with no or only low cyanobacterial 
biomass and productive fisheries are conflicting, scarcely compatible targets 
that require a decision on priorities.

In contrast, for aquaculture operations in the catchment, effluent treat-
ment can be an option to reduce nutrient loads. Treatment can include tech-
nical methods as well as treatment through a wetland or even – provided 
concentrations of other contaminants such as medication are not too high – 
application of effluent on farmland, combining irrigation with fertilisation. 
However, the latter requires a tight control in order to avoid application in 
excess of demand, as it may risk “getting rid of the waste” driving the efflu-
ent amounts applied, which can in turn cause run-off to the waterbody. It 
further requires assessing whether such effluent causes inacceptable loads 
with treatment chemicals and pharmaceuticals (Table 7.5).

7.5.3.1  Operational monitoring of control 

measures in aquaculture and fisheries

Operational monitoring of control measures in aquaculture and fisheries may 
be difficult to implement particularly in small-scale operations that typically 
have poor recording and documentation. Specific motivation and training of 
operators can be important, and this may be facilitated by involving them 
or their representatives in planning (e.g., in the team for developing a Water 
Safety Plan). Where the target of clear water without cyanobacterial blooms 
is in conflict with fisheries and cage cultures as the basis for people’s liveli-
hoods, resolving this may require substantial discussion, potentially result-
ing either in an alternative drinking-water source or in alternative sources of 
income and potentially also of the local population’s protein.
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Table 7.5  Examples for control measures in the management of aquaculture and 
fisheries with options for monitoring their functioning

Process Step
Example of control measures in 

catchment management
Options for monitoring their 

functioning

Planning Plan operations within a 
waterbody (such as cage 
cultures or feeding of fish) in 
relation to targets for the 
maximum acceptable nutrient 
load (see section 7.2)

Where targets are in conflict, 
that is, between a TP 
concentration in the 
waterbody and aquaculture 
or fisheries, decide on the 
water-use priority

Plan aquaculture operations in 
the catchment with respect to 
the nutrient load acceptable 
for the waterbody, potentially 
introducing effluent 
treatment (settling ponds, 
wetlands)

Review the existing systems and/or 
plans and permits for the nutrient 
load; the operations are likely to 
introduce in relation to the 
nutrient load acceptable for the 
waterbody

If the decision is against 
aquaculture or fish stocking, 
inspect the waterbody or 
catchment to check for 
compliance

Review the removal efficiency 
treatment that can potentially 
achieve the resulting load in 
relation to the nutrient load 
acceptable for the waterbody

Design, 
construction 

Line or reline fishponds from 
which water may seep to a 
waterbody with impervious 
material; protect from storm 
and flood damage, for 
example, through stormwater 
bypasses

Use closed re-circulation 
system with treatment, 
aeration, sustainable stocking 
rates and controlled feeding 
rates

Avoid discharge of untreated 
effluent – treat it or use it as 
liquid fertiliser on land areas 
that are not susceptible to 
run-off and leaching

Construct and maintain 
particle traps in tanks (with 
separate sludge outlet) 

Use removed sludge as 
fertiliser on land areas that 
are not susceptible to run-off 
and leaching

Inspect structures as to suitability 
of design for the purpose and 
their integrity. 

Monitor water balance in ponds to 
determine if seepage is occurring

Inspect design and construction; 
review the management plan for 
stocking and feeding rates 

Review information about its 
designation

Inspect structures

Inspect storage and application 
sites; review records of sludge 
application 

(Continued )
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7.6  INCLUDING CLIMATE CHANGE SCENARIOS 

WHEN PLANNING MEASURES

Climate change is expected to increase the frequency of extreme events 
such as rainfall patterns, floods or drought, and such events will impact 
on nutrient loads to rivers, lakes and reservoirs (WHO, 2017a). The extent 
to which such events are likely to change nutrient loads to a given water-
body, however, strongly depends on local conditions. For example, a heavy 
rainfall event may enhance erosion and thus increase the phosphorus load. 
In contrast, depending on the soils eroded, this may be accompanied by 
increased loads of silt that binds phosphorus with which it settles to the 
sediment. Also, if previous drought has rendered the soil surface hard and 
almost impermeable, such an event may dilute the concentration in the 
waterbody rather than increasing it. For example, Schindler (2006) found 

Table 7.5 (Continued)  Examples for control measures in the management of aquaculture 
and fisheries with options for monitoring their functioning

Process Step
Example of control measures in 

catchment management
Options for monitoring their 

functioning

Operation and 
maintenance

Match amount of feed to 
intake by the fish, using 
feeding methods and patterns 
adapted to satiation time, 
transit rate and subsequent 
return of appetite

Use low-polluting feed, high 
levels of lipid, lowered protein 
content, typically with high 
digestibility value, low in 
phosphorus

Collect waste from tanks and 
cages

When emptying and cleaning 
basins, ponds and tanks,  
avoid discharge of untreated 
water 

Keep fish stock density below 
a threshold defined as 
acceptable in relation to the 
nutrient loading target for the 
waterbody

Inspect feed used; discuss 
practices (e.g., timing and 
amounts) with operator; if 
available, inspect records of feed 
purchasing and application

Estimate fish stock density;  
discuss practices and use of 
specific diets with operators and 
feed supplier

…

Inspect records of waste collection 
and cleaning activities, with waste 
volume estimated and disposal 
practice (sites) noted

Discuss attention to this point with 
operators

Inspect records of fish stock 
density
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that for lakes in the Canadian Experimental Lakes Area, dry periods with 
less inflow actually reduced the phosphorus load, and this effect more than 
compensated that of a reduced flushing rate, actually reducing P concentra-
tions in the lakes.

Generalised predictions of the impact of climate change on nutrient 
loading on a specific waterbody are therefore not possible; rather, site-
specific scenario considerations are a prerequisite for including poten-
tial climate change impacts when planning measures to control nutrient 
loads. Past observations during extreme events are useful for such con-
siderations. Where models can be constructed to depict nutrient loads 
relative to weather events, these are a highly useful tool to test climate 
change scenarios. Schönhart et al. (2018), for instance, include climate 
scenarios to assess climate-driven impacts on land use and nutrient emis-
sion in an integrated impact modelling framework (IIMF) for the whole 
Austrian territory. To address the uncertainty of predictions for precipi-
tation, these authors tested two scenarios, one with increasing precipita-
tion in future and another with decreasing precipitation. Results show 
that drier conditions could increase the pressure on freely flowing river 
stretches because reduced dilution of permanent emissions would cause 
higher concentrations, while increasing precipitation would, in contrast, 
increase the pressure on stagnant waterbodies because of increasing 
transport of loads from diffuse sources.

As discussed in the World Health Organization’s guide on “manag-
ing health risks associated with climate variability and change” (WHO, 
2017a), developing a Water Safety Plan provides a good platform to 
include the experts and specialists “to understand potential climate 
change impacts in the context of their water supply” and thus integrate 
aspects of climate resilience into planning improved management of a 
catchment.
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INTRODUCTION

While site inspection is highly valuable for assessing the risk of cyanobacte-
rial proliferation or blooms, taken alone this may not be sufficient to assess 
this risk because of the inherent variability of cyanobacterial occurrence. 
As explained in Chapter 4, certain waterbody conditions – particularly high 
levels of phosphorus and high turbidity – are particularly favourable for 
cyanobacterial growth and enable them to outcompete many planktonic 
microalgae. An understanding of the growth conditions in the respective 
waterbody therefore helps to predict whether blooms are likely. It is also 
a basis for planning measures to control them. Among these measures, 
the reduction of phosphorus loads from the catchment (Chapter 7) is the 
method of choice to address the root of the problem, but in some situations, 
load reduction is not possible to an extent which is sufficiently effective 
within the required time frame. For such situations, waterbody management 
options are available to shift growth conditions, making them less favour-
able for cyanobacterial proliferation. These are termed “internal measures” 
(in contrast to the management of external nutrient loads to a waterbody). 
The feasibility of internal measures depends on waterbody characteristics. 
While Chapter 4 discusses growth conditions from the cyanobacterial per-
spective, this chapter takes the complementary perspective, focusing on 
using the assessment of waterbody conditions to estimate the likelihood 
of cyanobacterial mass development. This includes guidance on estimating 
whether or not internal measures are both necessary and feasible.

If internal waterbody management measures are to be planned, imple-
mented or validated, a comprehensive knowledge and understanding of the 
hydrophysical and hydrochemical characteristics of the waterbody as well 
as of its biota and their interaction (with a focus on phytoplankton ecology) 
is important as basis for choosing measures that are likely to be success-
ful. This requires involvement of limnological expertise. Where a Water 
Safety Plan (WSP; see Chapter 6) is developed, it is effective to invite corre-
sponding experts to advise and support the WSP team. Further, particularly 
where cyanotoxin risks are assessed for the first time, it is valuable to check 
with waterboards, health inspection and environmental authorities as well 
as with research institutions in the region whether data from monitoring or 
research are available, for example, from specific programmes addressing 
levels of eutrophication, phytoplankton (and specifically cyanobacterial) 
biomass or cyanotoxin concentrations. Historical data and results from 
longer-term monitoring, if available, are particularly useful for understand-
ing the cyanobacterial development of a waterbody.
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This chapter intends to support a preliminary assessment of the water-
body situation, to give an overview of measures that may be taken within 
a waterbody to control cyanobacterial growth and bloom formation, and 
to give guidance on the questions to address when considering the imple-
mentation of internal measures. Sections 8.2–8.11 address different inter-
nal control measures that can be implemented alone or in combination, 
depending on the conditions in the respective waterbody. They provide 
checklists for assessing the situation and the possible benefits from control 
measures considered. For each control measure, they also propose options 
for its operational monitoring, that is, of parameters that indicate failure 
long before blooms re-appear, and they propose an approach to validating 
whether the measure is likely to be sufficiently effective.

8.1  DIRECT INDICATION OF THE OCCURRENCE 

OF (POTENTIALLY TOXIC) CYANOBACTERIA

For the purpose of hazard assessment, regular monitoring of the occurrence 
of cyanobacteria or cyanotoxins is most effective if it is focused on water-
bodies in which cyanobacteria are likely to occur in quantities potentially 
relevant to health through the exposure pathways caused by the way these 
waterbodies are used.

Site inspection is extremely valuable: in contrast to many other chemical 
and biotic hazards, cyanobacteria are often readily visible if they occur in 
potentially hazardous concentrations. Site inspection provides information 
on the overall situation of the waterbody and its surroundings beyond that 
which can be gleaned from data and documents, including activities and 
conditions in the vicinity of the waterbody. Site inspection may miss bloom 
situations, particularly if it occurs at long time intervals (i.e., greater than 
weekly), but such observations may be available from authorities (water-
boards, health inspection, environmental authorities), from members of the 
local community (“citizen scientists”; see Chapters 11 and 15), operators of 
campsites, boat rental operators, restaurants and from scientific organisa-
tions conducting research on the waterbody. Asking these stakeholders to 
report the occurrence of surface streaks, scums, pronounced greenish or 
reddish discoloration or greenish turbidity may help to identify circum-
stances for further investigation.

A range of instruments and sensors, in particular fluorescence probes, 
allow real-time monitoring of cyanobacteria and algae for management 
purposes, as does remote sensing (see Chapter 13). Water utilities increas-
ingly employ water quality monitoring systems with probes that measure 
temperature, conductivity, dissolved oxygen profiles, etc., together with flu-
orescence of chlorophyll and that of accessory pigments to monitor phyto-
plankton distribution and/or concentrations at raw water intakes. However, 
along with the opportunities given through these in situ fluorometers, it is 
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important to be aware of uncertainties and technical limitations of this 
potentially complex technology (see Chapter 13, Zamyadi et al., 2016, and 
Bertone et al., 2018).

Checklist 8.1 is intended as a template for questions to address in prepa-
ration of site inspection and to ask residents of the area and local stakehold-
ers during site inspection.

CHECKLIST 8.1: ASSESSING DIRECT 

INDICATION OF THE OCCURRENCE OF 

(POTENTIALLY TOXIC) CYANOBACTERIA

• Have scums been observed? (Note: sometimes duckweed is 
taken for cyanobacterial scum, so ask whether individual tiny 
plants of a few mm diameter were recognisable – this is likely to 
be duckweed, i.e., Lemna minor.)

• Has conspicuous colour (greenish or wine-red) been observed 
with low transparency (i.e., <1 m)?

• Has the water been investigated for the occurrence of cyano-
bacteria? If so, were any quantitative data obtained? If so, do 
they include biovolumes > 0.3–1 mm³/L or concentrations of 
 chlorophyll-a (during dominance of cyanobacteria) > 1 μg/L?

• Have cyanotoxins ever been detected? If so, at what 
concentrations?

• Are there any reports of animal or even human illness associ-
ated with exposure to blooms? (Note: while a clear association 
of human symptoms with cyanobacteria is not very likely, such 
concern may well have been voiced.)

8.2  ASSESSING A WATERBODY’S POTENTIAL 

FOR CYANOBACTERIAL BLOOMS

The key prerequisite for a high biomass density of any phytoplankton, 
including cyanobacteria, is elevated concentration of nutrients. In most 
cases, the concentration of total phosphorus (TP) can be used to estimate the 
potential of bloom development in a waterbody (i.e., the “carrying capac-
ity”): in general, high concentrations of phytoplankton biomass – typically 
dominated by cyanobacterial blooms – occur at TP concentrations above 
20–50 μg/L, depending on hydrophysical conditions of the waterbody, par-
ticularly mixing depth (see section 4.3).

Exceptions to this widespread pattern include some very large deep lakes 
and reservoirs which develop thin and transient surface scums even at TP 
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concentrations in the range of 10–20 μg/L, and while these can support 
only a low cyanobacterial cell density and biomass, scums are neverthe-
less possible because they can be recruited out of a large volume of water. 
Figure 4.6 in Chapter 4 illustrates how this can concentrate toxins by sev-
eral orders of magnitude. Also, metalimnetic populations of Planktothrix 
rubescens, typical for deep, stably stratified mesotrophic waterbodies, 
may be relevant for human exposure if drinking-water is abstracted from 
that level. They typically stay at depth until autumn or winter when mix-
ing entrains them throughout the waterbody and up to the surface where 
they then can form significant and spectacular surface blooms which may 
pose a potential toxin hazard (see Boscaini et al. (2017) for an example). 
Benthic cyanobacteria are a further exception as these typically occur in 
very clear, shallow water with low nutrient concentrations (section 4.2.2); 
however, while they result in high toxin concentrations in detached mats 
or agglomerations of macrophyte material, they are not known to cause 
high concentrations in the water.

If the concentration of TP in a given waterbody can be sufficiently con-
trolled in order to suppress cyanobacterial dominance and biomass, exces-
sive nitrogen concentrations will not be relevant for cyanotoxin occurrence. 
However, where reaching this target is not feasible, for certain periods of 
the seasonal cycle or year-round, assessing whether nitrogen is limiting 
may be relevant. This is most likely in mesotrophic and eutrophic shal-
low lakes which can be N-limited during summer if organic substance on 
the sediment surface and high temperatures promote denitrification. While 
low N concentrations have been proposed to risk shifting cyanobacterial 
species composition to those that can fix atmospheric nitrogen, field data 
show this to rarely be the case because nitrogen fixation requires high 
amounts of light energy which are usually not available in turbid eutrophic 
waterbodies. Nitrogen limitation can be assumed at concentrations of dis-
solved inorganic N below 100 μg/L (see section 4.2.1 and Kolzau et al., 
2014.). While there are methods to reduce phosphorus cycling within a 
waterbody discussed below, for nitrogen the only options for reduction are 
natural denitrification and to control nitrogen loading to the waterbody 
(see Chapter 7; for a broader discussion of the role of N see Chorus and 
Spijkerman, 2020).

While a high concentration of total phosphorus (TP) and TN (total 
nitrogen) is a prerequisite for high cyanobacterial biovolumes, this is not 
the only one.

A low water exchange rate is usually a further condition for bloom for-
mation. Given that cyanobacteria grow rather slowly, they need sufficient 
residence time in the waterbody to establish large populations – often in 
the range of weeks. High river flows will dilute and wash out cyanobacteria 
faster than they can grow, and blooms are unlikely in lakes and reservoirs 
with water retention times of less than one month. For temperate climate 
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settings, a further consequence of low growth rates is that it often takes 
till late summer for cyanobacteria to outcompete the more rapidly growing 
springtime algal phytoplankton and become dominant; that is, the typical 
“cyanobacterial season” is from mid-summer to (late) autumn. Exceptions 
include the non-scum-forming Limnothrix spp., often associated with other 
fine filamentous cyanobacteria and or Planktothrix agardhii; these may 
occur with high biomass in summer, particularly if they survive in winter 
and dominate already in spring.

Low water transparency is often a further condition linked to the domi-
nance of a range of cyanobacterial species, not because it is a precondi-
tion for their growth, but because it is a consequence of bloom occurrence. 
Also, for some cyanobacterial species, this may function as positive feed-
back loop: for those that grow well at rather low light intensity (better than 
many phytoplanktonic algae), the likelihood of their dominance is higher 
in turbid water (Table 8.1).

Table 8.1  Conditions affecting or indicating the likelihood of high cyanobacterial 
biomass (see section 5.3 for references)

Total 
phosphorus Mixing conditions Transparency pH

>50 μg/L Stagnant, depth 
>5–10 m, with 
stable thermal 
gradients: 

Favours 
scum-forming 
taxa, i.e., 
Microcystis, 
Dolichospermum, 
Aphanizomenon

Stagnant, 
shallow and 
well mixed: 

Favours 
non-scum 
forming 
taxa, i.e., 
Planktothrix 
agardhii and 
other fine 
filamentous 
forms, e.g., 
Limnothrix

Low; 
Secchi depth 
often <1 m

pH >7 
(often >8 or 
possibly >9 
due to high 
rates of 
photo synthesis 
associated 
with high 
biomass)

20–50 
μg/L

Stagnant, deeper than 10 m, 
stratified: potential for mass 
development of Planktothrix 
rubescens which accumulates 
at the metalimnion

Moderate; 
Secchi depth
~1–3 m

pH ≥7

10–20 
μg/L 

Fast flowing river Lake or 
reservoir 
with water 
residence 
time <1 
month

High;
Secchi depth
~3–7 m

Very High 
– Clear 
water; 
Secchi depth 
often >7 m

pH 6–7

<10 μg/L Mountain stream 
or brook 

pH<6

Exception: mats of cyanobacteria attached to surfaces
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Waterbody mixing is well tolerated by many cyanobacteria because of 
their tolerance of low light availability, as mixing entrains cells into deeper, 
low-light layers. Cyanobacterial taxa with tolerance of low light intensity 
are widespread in relatively shallow, well-mixed waterbodies. Deep mixing 
of a waterbody can, however, suppress the proliferation of scum-forming 
cyanobacteria such as Microcystis spp. and Dolichospermum spp.: these 
cyanobacteria are less effective competitors for light, and they compensate 
for this by regulating their buoyancy and thus their vertical position in the 
waterbody (see section 4.3). If they are entrained by deep and sufficiently 
strong mixing, they lose this competitive advantage.

High temperature is often assumed to enhance cyanobacterial growth. 
As discussed in section 4.4.2, this may chiefly act indirectly through the 
stabilisation of thermal stratification. Thus, high temperature may be an 
indicator for the increased likelihood of cyanobacterial blooms.

A further indicator is high pH. It is well established that cyanobacteria 
are rarely found at levels that represent a health hazard if pH is <6–7 (note 
that high pH is not a cause, but rather a consequence of high phytoplankton 
biomass, often due to cyanobacterial blooms (section 4.3.6 and Tables 8.1 
and 4.2); nonetheless, high pH indicates that blooms may be occurring).

In summary, cyanobacteria are likely to occur at concentrations that rep-
resent a health hazard for periods longer than a few days if the waterbody 
meets most of the conditions in Checklist 8.2.

CHECKLIST 8.2: ASSESSING WHETHER WATERBODY 

CONDITIONS FAVOUR CYANOBACTERIAL 

GROWTH AND PROLIFERATION, LEADING 

TO THE OCCURRENCE OF BLOOMS

• Is the waterbody eutrophic, that is, are concentrations of TP > 20–50 

μg/L and those of TN about 10-fold higher?

• If yes, are concentrations of dissolved inorganic phosphorus detectable 

(that is, above 5–10 μg/L) and those of inorganic nitrogen above 100 μg/L?

• Is the water retention time > one month?

• If transparency is low, is this due to phytoplankton (and not to sus-

pended minerals), that is, are Secchi disc readings < 1–2 m (during the 

bloom season)?

• Is the waterbody either shallow and well mixed or deep with stable 

thermal stratification?

• Is the water alkaline rather than acidic, that is, pH > 7?

• For temperate climates, is the season late summer and early autumn?

• For rivers, are there tributaries that import blooms (e.g., from impound-

ments in which they may develop)?
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If a waterbody meets all of these conditions, this does not mean that 

cyanobacterial blooms will necessarily occur – it merely indicates an elevated 

likelihood of their occurrence. Vice versa, if it does not meet these condi-

tions, cyanotoxin concentrations exceeding the guideline levels discussed in 

Chapter 2 are not likely but they cannot be totally excluded – for example, 

from metalimnetic maxima entering a drinking-water offtake (Chapter 9) or 

from detached benthic cyanobacteria.

8.3  ESTIMATING THE IMPACT OF CLIMATE 

CHANGE ON CYANOBACTERIAL 

PROLIFERATION AND BLOOMS

As discussed in section 4.5, understanding how climate warming will affect 
cyanobacteria is far more complex than the direct impact of higher water 
temperature (by, e.g., 2–3 degrees Celsius) on their growth rate: rather, it 
requires an understanding of the shifts in the aquatic ecosystem’s function-
ing that may occur and how such shifts affect the dominance of cyanobac-
teria relative to that of other species. This includes changes in duration of 
thermal stratification, ice cover and patterns of drought versus heavy rain-
fall, all of which in turn can have significant impacts on waterbody mixing 
patterns, water levels, oxygen concentrations, nutrient loads and concentra-
tions, and fish and zooplankton populations (section 4.5 and overviews by 
Moss et al., 2011; Winder & Sommer, 2012, and Hamilton et al., 2016).

Whether climate change will enhance cyanobacterial proliferation in a 
specific waterbody depends on which way the impacts of warming and the 
associated changes in the aquatic ecosystem will interact – resulting in a 
potential increase or decrease in the dominance and biomass of cyanobac-
teria. For example, while warmer weather and the resulting increased sta-
bility of thermal stratification may favour cyanobacteria blooms, reduced 
mixing may also reduce the nutrient supply from deeper layers to upper 
layers where cyanobacteria can grow (Salmaso et al., 2018). Less runoff 
in dry warm periods may also work both ways, decreasing or increasing 
phosphorus input with the corresponding impact on the biomass of cyano-
bacteria that may develop.

Predicting the potential impacts of climate change on cyanobacteria in 
a given waterbody requires assessing locally how climate changes are most 
likely to impact on the conditions listed in Table 8.2. While this list incor-
porates our conventional understanding of cyanobacterial ecology and the 
drivers for cyanobacterial growth, using these categories for predicting 
whether blooms will increase or decrease involves considerable uncertainty, 
particularly for the hydrological drivers of bloom development. Uncertainty 



8 Managing waterbody conditions 513

Table 8.2  Possible effects of global warming that can increase or 
decrease cyanobacteria

Impacts of global warming that can

Increase cyanobacteria Decrease cyanobacteria

In waterbodies with higher trophic state, 
higher temperature may increase 
nutrient release from sediments, fertilising 
growth, particularly in nonstratifying 
waterbodies where these nutrients reach 
the upper water layers

More frequent storms can reduce 
thermal stratification, thus transporting 
nutrient-rich water from deeper layers 
into upper layers where it fertilises growth

Stronger and/or more frequent 
storms can increase flow and thus 
nutrient loads

Longer periods of drought reduce 
water exchange rates; thus there is less 
dilution of nutrient discharges to the 
waterbody, increasing concentrations and 
fertilising cyanobacteria

Longer periods of drought reduce 
water exchange rates, allowing blooms to 
last longer

Longer periods of drought can reduce 
water levels in stratified reservoirs to 
where no “clean” layer without blooms is 
available to abstract drinking-water

Longer periods of drought can reduce 
water levels in stratified reservoirs and 
lead to warmer water over the sediment. 
As a result, more phosphorus is released 
from the sediment

Longer periods of stable thermal 
stratification can give cyanobacterial 
dominance more time to form and to last, 
thus increasing the duration of the season 
with toxic cyanobacteria

In lakes with higher trophic state, anoxia 
above the sediments and redox-sensitively 
bound phosphorus, longer periods of 
stable thermal stratification can 
enhance the consumption of oxygen in 
the deep water, leading to more release of 
phosphorus from the sediment

Higher temperature may lead to more 
stable thermal stratification, thus 
reducing nutrient transport from deep 
water layers into upper layers where 
they would fertilise growth (relevant in 
waterbodies in which biomass in the 
surface layers is nutrient limited)

More frequent storms can disrupt 
cyanobacterial blooms, giving other taxa 
a chance to outcompete them after the 
storm

Stronger and/or more frequent 
storms can increase flow and thus 
water exchange rates, potentially 
carrying cyanobacteria out of the system

Longer periods of drought reduce 
inflow and thus nutrient loads from 
erosion and other diffuse sources in the 
catchment, potentially limiting 
cyanobacterial biomass
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is lower regarding the impact of nutrient concentrations because these set 
clear limits: if concentrations are too low to support a substantial planktonic 
biomass, it cannot develop even as water gets warmer or stratification more 
stable (see discussion in section 4.5).

Prediction for a given waterbody therefore requires a comprehensive 
understanding of local conditions as well as expertise in hydrology, limnol-
ogy and possibly in modelling phytoplankton occurrence (see section 4.4.1).

8.4  INTERNAL MEASURES AGAINST 

CYANOBACTERIA: WHAT, WHY AND WHEN?

The experience across the globe of several decades of lake and reservoir 
restoration – that is, reversing eutrophication – shows that the benefit of 
internal measures mostly lies in speeding up the ecosystem response once 
external nutrient loads have been significantly reduced. Internal measures 
are rarely successful if external loads of nutrients, particularly phosphorus, 
remain high. There are, however, settings in which cyanobacteria are a prob-
lem requiring a rapid solution while sufficient reduction of external loads is 
unlikely to be rapidly feasible or sufficiently effective to solve the problem. 
Lowland stretches of trans-boundary rivers are a typical example: some are 
naturally eutrophic. Also, typically many stakeholders in the catchment may 
need to engage in nutrient control. It takes time to establish an effective 
policy in catchment management to reduce river phosphorus concentrations 
to sufficiently low levels along the entire river reach. Some internal measures 
can work in such situations, but they need to be continuously or repeatedly 
applied until the external load will have been sufficiently reduced.

In other situations, external load reduction may be effective, but internal 
phosphorus loads, released from sediments, are high and will sustain cya-
nobacterial biomass above target levels for quite some time. Particularly in 
lakes with very low flushing rates, the phosphorus supply in the lake may 
remain high for many years, even after substantial load reduction. In such 
settings, internal measures may give the ecosystem a kick to interrupt the 
prevalent ecosystem feedback mechanisms that stabilise the eutrophic or 
hypertrophic situation. Such measures can target a transition in sediment 
chemistry to reduce phosphorus release rates from the sediment (section 
8.7) or they can target other conditions to make them less favourable for 
cyanobacteria, for example,

 i. by suppressing the dominance of cyanobacteria in favour of other 
(nontoxic, non–scum-forming) phytoplankton species and – in lakes 
with substantial shallow areas – of aquatic macrophytes;

 ii. by increasing loss rates of the cyanobacterial populations.
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Table 8.3 gives an overview of internal measures.
Monitoring the system’s response to an internal measure is important 

to assess whether the measure needs to be repeated or whether the system 
self-stabilises with a less eutrophic biotic community structure in which 
cyanobacteria only play a minor role.

The most important first step in planning is to make sure that internal 
measures are necessary. Two reasons can stand against this: (i) it may be 
more sustainable and effective to invest in reduction of external nutrient 
loads, and this needs to have been sufficiently explored before deciding to 
invest in internal measures, and (ii) external load reductions may already be 
leading to a decline in internal phosphorus concentrations, and it is worth-
while monitoring this decline to see if it will be sufficient to reach target 
phosphorus concentrations within the necessary time span.

Time lags between the reduction of external nutrient loads and the 
desired results achieved in the waterbody may be substantial, that is, 
in the range of a decade, and response times strongly depend on water 
exchange rates. Resilience effects are not uncommon, even after sub-
stantial reduction of inputs below thresholds calculated to be effective. 
Sas (1989) discusses two (partially connected) resilience mechanisms 

Table 8.3  Overview of measures to suppress cyanobacterial growth by influencing 
internal waterbody processes

Intervention target Intervention type Technique

Suppress dominance of 
cyanobacteria, potentially 
in favour of other 
phytoplankton

Hydrophysical 
control of growth 
conditions

Mixing – artificial destratification

Decreasing water retention time

Maintaining sufficient flow and thus 
a rapid change of hydrophysical 
conditions, that is, avoiding or 
removing impoundments

Suppress internal 
phosphorus (P) load 
released from the sediment

Note: this is only likely to be 
successful if sediments are 
a major P source relative 
to the external P load

Internal phosphorus 
control

Sediment removal

Sediment treatment with P-binding 
agents, for example, lime, alum, 
modified clay, zeolite

Suppressing redox-sensitive P 
release by oxidising the sediment 
surface (through hypolimnetic 
aeration or oxygenation)

Enhance loss rates of 
phytoplankton, including 
cyanobacteria, or support 
their competitors

Biological control Biomanipulation

Barley straw

Viruses, bacteria

Induce rapid lysis of 
cyanobacterial cells or 
inhibition of their growth

Chemical control Algicides, algistats
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for phosphorus concentrations: (i) a delayed response of in-lake total 
phosphorus (TP) concentrations to a reduction of input, due to the time 
required for flushing phosphorus out of the waterbody, and (ii) phospho-
rus release from the sediments (“internal loading”) until a new sediment–
water equilibrium is established.

Additionally, as mentioned above, the community structure of the organ-
isms in a waterbody may show resilience to change – through several mech-
anisms. For many shallow mesotrophic to slightly eutrophic lakes, two 
alternate states are possible at the same external nutrient load: either clear 
water due to dominance of macrophytes (i.e., submersed aquatic plants and 
reed belts) or turbid water due to dominance of phytoplankton, often cya-
nobacteria (Scheffer et al., 1993; Scheffer et al., 1997). Once phytoplankton 
dominates at high density, this causes turbidity which shades the macro-
phytes to the extent where they are unable to grow, and thus, phytoplank-
ton dominance self-stabilises. Such a lake can be returned to the clear water 
macrophyte-dominated state if nutrient concentrations can be reduced to 
the point where phytoplankton are nutrient–limited and thus less dense; 
the water therefore becomes clearer and the previously light–limited macro-
phytes are then able to ecolonize.

Also, phytoplankton species composition may resist change: once high 
cell densities of cyanobacteria are established in a waterbody, some of 
these will survive, for example, on the sediment surface even when con-
ditions become less favourable (e.g., during winter), and these cells are 
available as inoculum to seed the population in the next growing season. 
Furthermore, fish populations affect zooplankton populations, which in 
turn feed on phytoplankton, thus affecting its species-specific loss rates, 
and such food-chain mechanisms can cause resilience to change or be 
manipulated to enhance change (e.g., through fish stock management; 
see below). Nature may overcome such biological resilience phenomena 
by itself with time, but change can be accelerated by the interventions 
described below.

Waterbody ecosystem processes are highly complex and quite specific 
to an individual waterbody (Chapter 4). Consequently, predictions of their 
response to interventions have a higher uncertainty than predictions of 
responses to measures in most technical systems (e.g., drinking-water 
treatment). A prerequisite for success of internal measures is that they are 
planned on the basis of comprehensive understanding of the waterbody eco-
system – of its hydrological regime, its biota and its sediment chemistry (see 
Checklist 8.3). Involving limnology experts in planning and designing such 
measures is therefore fundamental for success. Additionally, expert review 
of the plans as well as later validation of the measures taken (preferably by 
experts independent of those contracted for planning and implementing the 
measure) is important to understand factors leading to success or failure, 
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CHECKLIST 8.3: ASSESSING THE POTENTIAL 

BENEFITS AND THE PROSPECT OF SUCCESS OF 

IMPLEMENTING AN INTERNAL MEASURE

• Before planning any specific internal measure, answering the following 

questions will help to clarify whether or not to take an internal mea-

sure at all, and if so, to decide on which option(s) would be best for the 

given waterbody:

• Is an internal measure necessary because

– the external phosphorus (P) load cannot be sufficiently (quickly) 

reduced?

– the waterbody ecosystem is responding slower than necessary to 

the external load reduction?

– no alternative water sources are available for an important use of 

the waterbody, making rapid improvement necessary?

– the fraction of internal phosphorus loading from the sediments is 

high in relation to external loads and will likely stay high for many 

years or even decades?

• What exactly should the internal measure target – a suppression of 

cyanobacterial dominance within the phytoplankton, a shift from phy-

toplankton to macrophytes (in shallow lakes), a reduction of internal 

phosphorus loading or an increase of overall phytoplankton loss rates 

and thus a decrease of biomass – including that of the cyanobacteria?

• Is the internal measure needed once (maybe with one repeat) to help 

to overcome ecosystem resilience and trigger the waterbody’s shift to a 

lower trophic state, or will it be needed continuously because external 

P loads remain too high?

• Are investment and operation costs adequate in relation to the water-

body’s priority for human use and/or environmental targets?

• Is the necessary expertise available for this decision, that is, for planning 

the measure in more detail and for monitoring success?

• Is the necessary data and information on P sources and trends available 

to make a decision on the most effective approach, and is capacity avail-

able to monitor the response of the waterbody?

and if necessary, to readjust measures. Neglecting the need to understand 
the individual waterbody for planning, validating and adjusting internal 
measures risks failed investments. The data to collect should cover at least 
one growing season.
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8.5  HYDROPHYSICAL CONTROL OF 

GROWTH CONDITIONS

Thermal stratification of a waterbody influences the depth at which cya-
nobacteria occur and the amount of light they receive. It may also affect 
the nutrient concentrations available in the upper layers in which there is 
enough light for growth (section 4.3.3). Water exchange rates determine 
whether cyanobacterial populations are diluted faster than they can grow. 
Changing hydrophysical conditions, for example, through impoundment, 
may suddenly turn a waterbody previously scarcely affected by cyanobac-
teria into one with heavy blooms. Vice versa, some hydrophysical measures 
may specifically reduce cyanobacterial growth, allowing other phytoplank-
ton species (planktonic microalgae) to become dominant. Given that fresh-
water phytoplankton species other than cyanobacteria are not known to be 
toxic, they may be less of a problem, particularly for nonpotable water use.

A caveat with all hydrophysical control approaches is that if nutrient levels 
remain high enough to support substantial amounts of phytoplankton bio-
mass (i.e., >20–50 μg/L total phosphorus (TP) and >100–150 μg/L dissolved 
nitrogen; see section 4.3), their success in suppressing cyanobacterial biomass 
can be somewhat uncertain. Also, other phytoplankton, that is, eukaryotic 
algae, may continue to reach substantial levels of biomass which can cause 
problems, for example, challenge drinking-water treatment with organic mat-
ter. Thus, depending on the specific circumstances, hydrophysical measures 
may not be sufficient to achieve water quality targets if overall phytoplankton 
biomass remains high even if they succeed in suppressing cyanobacteria.

Because of the inherent uncertainty involved in the manipulation of com-
plex biological interactions, for hydrophysical interventions validation is 
particularly important, that is, checking whether the measure chosen proves 
effective for suppressing cyanobacterial blooms. As discussed above, this will 
require observing whether cyanobacterial blooms still occur – preferably for 
several growing seasons (see Chapters 11–13).

8.5.1  Artificial destratification

While artificial mixing or circulation is one of the most commonly rec-
ommended and employed management interventions to attempt to reduce 
the growth of cyanobacteria in lakes and reservoirs, it requires continuous 
operation, involving costs for energy and maintenance. Chances of success 
depend very much on a thorough prior baseline assessment of the condi-
tions in the specific waterbody: it will not work in every case.

Its application is based upon the aim to eliminate the stratification in the 
system and affect the balance of growth between different species of phy-
toplankton, including cyanobacteria, by changing the physical conditions 
in the waterbody and thereby leading to a change in the phytoplankton 
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composition and/or biomass. This is specifically based on the fact that the 
composition of the phytoplankton community in hypertrophic and eutro-
phic systems is often strongly driven by competition for light, and light 
availability is impacted by waterbody mixing and the vertical distribution 
of phytoplankton cells (Huisman et al., 2004). A comprehensive review of 
artificial mixing explains this: Visser et al. (2016) examined the mechanism 
of action of mixing upon the phytoplankton community. Artificial mix-
ing works through increasing mixing depth, which affects the competition 
between cyanobacteria and eukaryotic algae in two ways. Firstly, mixing 
reduces the sedimentation losses of phytoplanktonic algae which are not 
buoyant (e.g., green algae and diatoms), and hence, their net growth rates 
tend to increase. Secondly, the buoyant cyanobacteria with a tendency to 
float are entrained into the deep, artificially induced turbulence and experi-
ence a lower light dose and stronger light fluctuations, and hence, their net 
growth rate tends to decrease. Based upon these principles, artificial mixing 
has been applied with the aim to disrupt the suitability of stable growth 
conditions favourable for cyanobacteria and prevent buoyant cyanobacteria 
from forming scums.

Visser et al. (2016) also reviewed the evidence from an extensive num-
ber of studies of mixing as to their success or failure to draw conclusions 
about possible reasons for this. They concluded that artificial mixing was 
not  successful if the system was: (i) not sufficiently well mixed vertically, 
(ii) too shallow or (iii) if the horizontal distribution and position of mix-
ing devices was not adequate to cover the entire lake to induce turbulent 
flow fully across the lake. If the mixing rate is not high enough to entrain 
the  cyanobacteria and decrease their light exposure, buoyant colony-form-
ing cyanobacteria can “escape” from the turbulent flow due to their high 
flotation velocity. In addition, artificial mixing will generally only be effec-
tive in relatively deep lakes. Their review of studies resulted in a minimum 
depth of >15 m at which mixing was successful to control Microcystis, 
which has a high  flotation velocity; however, mixing depth could be less 
and mixing could work in shallower lakes for other cyanobacteria such 
as filamentous types which have a much lower flotation velocity (e.g., 
Planktothrix spp.).

Other studies have shown that artificial destratification has been suc-
cessful in a number of cases with less critical examination of the principles 
(Reynolds et al., 1983; Hawkins & Griffiths, 1993; Heo & Kim, 2004; 
Lewis, 2004; Becker et al., 2006), or less successful at controlling cyano-
bacteria while effectively controlling other problems such as the release of 
iron, manganese and nutrients from sediments by maintaining oxidising 
conditions (McAuliffe & Rosich, 1989). The reasons for lack of success are 
typically not well documented; however, it most likely relates to insufficient 
mixing to counteract the effect of surface heating causing the formation 
of a warm surface layer which favours cyanobacteria. It is important to 
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recognise that artificial mixing and destratification may not be practical 
and feasible in very large and very deep lakes.

A number of techniques have been proposed to directly disrupt the ther-
mal stratification of a waterbody, including aeration systems, mechanical 
devices (like pumps) and solar-powered water mixers (Visser et al., 2016). 
Hydrodynamic modelling by Antenucci et al. (2003) suggests that for aera-
tion systems, a combination of a deep diffuser to disturb the seasonal ther-
mocline and a shallow diffuser to enhance vertical mixing of the epilimnion 
could be more effective. Surface-mounted mechanical mixers proved effec-
tive at promoting circulation and improving dissolved oxygen concentra-
tions but not more successful than bubble plume aerators, and they have 
higher maintenance costs (Lewis, 2004). For solar-powered upflow, water 
circulators Upadhyay et al. (2013) found that these mixers tend to circulate 
only the epilimnetic water and stratification is maintained; thus, these mix-
ers have a limited zone of influence and are unable to adequately mix entire 
lakes to effectively control cyanobacteria.

The most common and effective destratification devices are bubble plume 
aerators. They require a compressor to pump air to a diffuser line in the 
reservoir. They work by releasing a series of fine air bubbles from a pipe or 
line near the bottom of the lake. As the bubbles rise, they entrain water 
from different depths into a plume. When the plume reaches the surface, 
the air dissipates and the plume plunges to a depth of equivalent density and 
moves through the reservoir as an intrusion. Return currents flow on each 
side of the intrusion and generate basin-scale circulation (Schladow, 1993; 
Whittington et al., 2000).

Often, some stratification will still be evident outside of the immediate 
influence of the aerator (Sherman et al., 2000), and while this stratification 
is weaker than without mixing, cyanobacterial cells near the surface may 
not be entrained (Visser et al., 1996). This means there is still a habitat 
for buoyant cyanobacteria to exploit (Sherman et al., 2000). In warm cli-
mates and where night-time temperatures are high, cyanobacterial growth 
may still be observed in artificially destratified reservoirs, for example, in 
Chaffey Dam, Tamworth Australia (Sherman et al., 2000), and in North 
Pine Dam, Queensland Australia (Burford & O’Donohue, 2006).

Many mixing and circulating systems are available commercially and are 
actively marketed. Engineering expertise is sufficiently developed to design 
systems that can meet the specific local mixing requirements. Care must be 
taken, however, to engage competent companies and to plan the management 
and ecological targets set in combating cyanobacterial blooms. Particularly 
in tropical and subtropical countries with high and prolonged insolation, 
the energy costs of systems to maintain mixing can be significant. Poorly 
designed aerators may transport nutrients from sediment-near layers to the 
epilimnion without reducing stratification sufficiently to meet the targets, 
and this will favour the growth of cyanobacteria (Tsujimura, 2004). Given 
the initial capital expenditure and the ongoing energy and maintenance 
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costs, it is important to properly size the aerator. Hydrodynamic modelling 
is recommended to predict the likely changes in the stability of stratifica-
tion, potentially refining the aerator design in response to the results. A 
design methodology for the design of aerators for destratification of lakes is 
given by Schladow (1993).

Four notes of warning need to be considered when considering and plan-
ning destratification:

 1. In some (primarily shallower and naturally weakly stratified) lakes, 
artificial destratification may promote the growth of cyanobacteria 
that are favoured by mixed conditions such as Planktothrix agardhii, 
Planktothrix rubescens or Raphidiopsis (Cylindrospermopsis) raci-
borskii (see section 4.2.1).

 2. Artificial destratification may not only increase P concentrations in 
the epilimnion as discussed above. It will also increase temperatures 
above the sediment and thus biodegradation rates of organic matter, 
which further increases P release (see section 8.3.4). If phosphorus is 
the limiting nutrient, this could increase overall phytoplankton bio-
mass, particularly that of cyanobacteria.

 3. Mixing of mesotrophic and otherwise stably stratified lakes can 
induce growth and entrainment of Planktothrix rubescens during 
autumn or winter and in spring (Nürnberg et al., 2003).

 4. Drinking-water is preferably extracted from deeper, cooler water lay-
ers (to reduce microbial growth in the distribution network), and arti-
ficial mixing of deep waterbodies causes warming of that water layer.

Aerators can have additional benefits or primary uses other than controlling 
cyanobacteria. They have also been proposed as mechanisms to control cold 
water pollution to downstream fisheries (Sherman et al., 2000), iron and man-
ganese dissolution (Raman & Arbuckle, 1989; Ismail et al., 2002), hydrogen 
sulphide release (Cowell et al., 1987) and oxygenation of the hypolimnion to 
expand fish habitats. Checklist 8.4 suggests questions to clarify before decid-
ing on introducing artificial destratification or selecting a specific scheme.

CHECKLIST 8.4: ASSESSING THE PROSPECT OF 

SUCCESS OF ARTIFICIAL DESTRATIFICATION

• How strongly is the waterbody stratified, and during which months of 

the year?

• Are the dominant cyanobacterial taxa potentially scum-forming?

• Can mixing be designed to entrain cyanobacteria into deep, dark layers 

for long enough to substantially reduce their growth rate and to coun-

teract their buoyancy?
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• Is the mixing design proposed technically adequate to meet the target?

• Is mixing (of shallower, weakly stratified waterbodies) likely to induce a 

shift to non-scum-forming filamentous cyanobacteria (e.g., Planktothrix 

agardhii) or (for mesotrophic stably stratified waterbodies) a shift to 

Planktothrix rubescens or Raphidiopsis raciborskii?

• Is there a risk that artificial mixing will substantially increase tempera-

tures at the sediment surface, thus enhancing phosphorus release from 

the biodegradation of organic matter?

• For which part of the year must aerators be operated to effectively 

suppress cyanobacterial dominance?

• Is the required infrastructure and funding (reliable power supply, main-

tenance, monitoring) available for continuous operation?

Operational monitoring for artificial destratification

Options for parameters that indicate failure of devices installed for destrati-
fication are straightforward, including the electrical power consumption 
of devices installed for this purpose. For aerator designs causing a bubble 
plume, daily visual checks of the size of bubble plumes seen at the surface 
are a further option for operational monitoring.

Validation of artificial destratification designs

Whether or not the destratification system that is installed actually achieves 
the mixing target can readily be validated by measurements of temperature 
at different depths and locations, and in different weather situations or even 
seasons (in reservoirs, e.g., the simplest option can be at the surface and in 
the bottom outlet). One option is to collect data continuously or at short 
intervals using thermistor chains that relay these data back to the operator 
(these can also be used as online monitoring systems for operational moni-
toring of aerator function). Alternatively, temperature depth profiles can be 
monitored at specific occasions, focusing on weather conditions when ther-
mal stratification has the best chances to develop in spite of the mixing, for 
example, during extended periods of sunny, warm and nonwindy weather. 
Such monitoring would demonstrate that the destratification scheme is suf-
ficient to ensure mixing and is therefore fit for purpose.

If the outcome shows that further fine-tuning is necessary, improving the 
design may require more information on the response of the waterbody’s 
thermal stratification as well as the phytoplankton populations. Data on 
wind, solar irradiation, temperature and precipitation from meteorological 
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stations near to the waterbody are valuable for hydrodynamic modelling. 
Together with phytoplankton cell counts and nutrient data, information 
on reservoir or lake hydrodynamics is very useful in determining and con-
firming the conditions that promoted cyanobacterial growth. This serves to 
validate the mixing concept and enables predictive capacity for forecasting 
future cyanobacterial growth – and for risk assessment.

Such in-depth validation typically requires experts in limnology with a 
focus on phytoplankton ecology.

8.5.2  Managing river flow regimes to 
suppress cyanobacterial growth

Planktonic cyanobacteria generally do not develop blooms in rapidly flow-
ing rivers. Possible reason for this may be increased turbidity due to high 
loads of inorganic particles and hence limited light availability, losses due 
to benthic grazing or highly fluctuating conditions lowering growth rates 
(Dokulil, 1994; Reynolds et al., 1994; Welker & Walz, 1998; Caraco et al., 
2006) – or combinations of these and other factors that prevent cyanobacte-
rial (and other phytoplankton) blooms from developing within the limited 
time water flows towards the sea, in most cases within days or weeks.

In rivers with long stretches of slow flow, like the lowland Murray–
Darling River in Australia, this is different: hydrophysical conditions remain 
fairly constant over long stretches of such rivers. If nutrient concentrations 
are also high, the cyanobacteria which are typically found in well-mixed 
shallow waterbodies – for example, Planktothrix agardhii and other fine 
filamentous species – may become dominant and reach high population 
densities. To break their dominance, hydrophysical interventions would 
need to introduce pronounced changes to flow or mixing conditions at time 
intervals in the range of 1–2 doubling times of the cyanobacteria, that is, 
within several days or one to two weeks.

Impoundments or constructed barriers markedly reduce both turbulent 
kinetic energy and river flow and increase residence times. For example, 
where, without impoundment, the water would take one week to travel 
from the foothills to the river’s mouth (i.e., 1–2 doubling times of the cya-
nobacteria) impoundments can reduce this travelling time to many weeks. 
This gives cyanobacterial populations sufficient time for many cell divi-
sions and thus for the formation of blooms. Where impoundments are being 
planned, this potential impact on water quality should be assessed. Where 
impoundments already exist and have been identified as one cause of cyano-
bacterial proliferation, managing them differently or even restoring natural 
flow regimes may be an option, depending on other management targets.

Low flow conditions in lowland rivers can even lead to stratification. 
The correlation observed between buoyant species of Dolichospermum 
and low flow in some large rivers suggests that the manipulation of flow 
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may be used to control cyanobacteria (Baker et al., 2000; Maier et al., 
2004). In regulated rivers, the magnitude and timing of discharge can be 
manipulated to disrupt stratification every few days, thereby controlling 
cyanobacterial growth. Bormans and Webster (1997) developed a mixing 
criterion for turbid rivers that can be used to determine the flow required 
to disrupt stratification.

River management strategies to generate higher flow and reduce the risk 
of cyanobacterial blooms depend upon the availability, cost and ability to 
deliver enough water to provide that flow. It is also important to weigh the 
likelihood of success and cost–benefit of such interventions against further 
socioeconomic criteria (i.e., the need for an impoundment to store water or 
enable shipping; loss of provision of water for irrigation) and ecological cri-
teria (i.e., the implications of flow regime changes on the riverine ecosystem 
that is adapted to the slow flow or impoundment regime).

Checklist 8.5 suggests questions to address when considering changes in 
river flow management with respect to their impact on cyanobacterial growth.

CHECKLIST 8.5: ASSESSING RIVER FLOW REGIMES 

AND OPTIONS FOR THEIR MANAGEMENT

• Are data on flow rates available? If not, can they be collected?

• What is the goal for the flow management or manipulation regime: to 

reduce residence time and dilute cyanobacteria? To disrupt stratifica-

tion and reduce growth through altering mixing and light availability?

• What changes in flow regime are required to reach this goal?

• Is enough water available stored upstream in the catchment for the 

flow rate targeted?

• Which other sectors need to be involved in developing a flow manage-

ment strategy?

Operational monitoring for flow 
regime management

Operational monitoring will record whether river flows are as planned, that 
is, through measuring flow rates. For major rivers, data on river flow are 
often available from water resource authorities who generate them for other 
purposes.

Validation of flow regime management

Validation of the flow regime management involves monitoring whether the 
intended flow rates are achieved (for measuring them, see section 7.2).
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8.5.3  Managing water retention time in lakes and 
reservoirs to suppress cyanobacterial growth

Management interventions reducing water retention times in a waterbody 
may successfully reduce cyanobacterial biomass, if dilution rates can be 
achieved that are higher than their growth rates – that is, retention times 
of one a month or less. Retention time is the quotient of the basin volume 
divided by the inflow. For many waterbodies, particularly lakes, retention 
times are not well known, and they may be difficult to measure directly 
particularly if there is more than one inflow or if a lake is strongly con-
nected to groundwater flows (see Chapter 7). Water budgets may be cal-
culated from concentration changes of a conservative tracer substance 
like chloride analysed in the inflow(s), in the lake and in the outflow. As 
for managing river flow, a caveat may be the lack of water availability to 
increase the water exchange rate, particularly during seasons with little 
precipitation in the catchment.

CHECKLIST 8.6: ASSESSING WATER RETENTION 

TIMES AND OPTIONS FOR THEIR MANAGEMENT

• Are data on water retention times available? If not, can inflow and out-

flow rates be established or inferred from concentration differences of 

a tracer substance (like chloride)?

• Can a water retention time target of approximately one month or less 

be achieved in the lake or reservoir during the growing season?

• Are sufficient water volumes of suitable quality available in the catch-

ment for this target?

• Are there conflicting interests for the use of this additional water 

or for environmental targets affected by diverting water to increase 

exchange rates?

Operational monitoring of water 
retention time management

Operational monitoring will serve to ensure that inflows to the water-
body remain in the predefined range, and thus, it will require monitor-
ing inflow or outflow to determine whether the intended retention time 
is actually achieved. For reservoirs, data on outflow from the dam are 
usually available, and data on drinking-water abstraction may need to be 
included in the budget, if this volume amounts to more than a few percent 
of the river flow.
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Validation of water retention time management

Validation of the water retention time will focus on checking whether it is 
indeed short enough in all parts of the waterbody to achieve its target of 
reducing cyanobacterial biomass. Particularly for waterbodies with many 
bays, as is typical for reservoirs, retention time may not be homogenous and 
inflows may find a preferential flow path through them, with much lower 
water exchange rates in the bays. Monitoring cyanobacterial occurrence 
also at such locations is particularly important so that further measures can 
be taken if the management of retention time proves insufficient.

8.6  ASSESSING AND CONTROLLING INTERNAL 

PHOSPHORUS RELEASE FROM THE SEDIMENTS

The amounts of phosphorus (P) released from sediments vary from neg-
ligible to being a substantial load for many years after external inputs 
have been reduced (Orihel et al., 2017). However, once a waterbody has 
reached a new equilibrium, the sediments may well become a sink rather 
than a source for phosphorus. Whether and when sediments are a source 
or a sink for phosphorus is governed by a range of conditions, in particu-
lar by

• water exchange rates across the sediment water interface;
• chemical and physical processes of precipitation and resolution as well 

as adsorption and desorption, which depend on the availability of bind-
ing partners for phosphorus in the sediment (e.g., silt from river inflow);

• biotic processes, that is, mineralisation of organic matter as well as 
bioturbation through fish and invertebrates which resuspend sediment;

• redox conditions and pH influencing the binding potential for 
phosphorus;

• temperature, with higher temperatures enhancing release through 
biodegradation of organic matter.

Chemical conditions in the upper sediment layers, temperature and water-
body mixing affect these processes. Iron-bound phosphorus is highly sensi-
tive to oxygen concentrations and redox conditions: when such sediment 
surfaces become anoxic during summer stratification, phosphorus concen-
trations in the water above the sediment may increase significantly, and if 
some of this water is mixed into upper layers during the optimum growing 
season of cyanobacteria, it may provide nutrients for their further growth. 
In some situations, this may act as feedback loop, with more cyanobacte-
rial growth increasing pH and the amount of organic material which con-
sumes oxygen when it degrades, thus triggering more phosphorus release. 
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Such processes can have a significant impact on the seasonal or interannual 
changes of phosphorus concentrations (Xie & Xie, 2002).

Aerobic phosphorus—release mechanisms may also be significant, that 
is, through microbial degradation of organic material, enhanced through 
bioturbation by feeding fish and invertebrates (Gardner et al., 1981; 
Søndergaard et al., 2003; Hölker et al., 2015).

Phosphorus budgets can be estimated by balancing phosphorus loads to 
the waterbody against losses from the waterbody. This requires data on water 
inflow and outflow (preferably from continuous recording) and on phospho-
rus concentrations in this water (at least from monthly sampling, ideally sup-
plemented by flow-based monitoring and sampling to capture events likely to 
change the load, i.e., pronounced changes in flow). Determining P concentra-
tions requires capacity for sampling and laboratory analysis. Determining all 
relevant inflows and outflows can be challenging, particularly where there 
are many small and variable streams and/or influence from groundwater (see 
section 7.2). For thermally stratified lakes and reservoirs, it is relevant to mea-
sure depth profiles of P and temperature in order to differentiate between the 
P content of the epilimnion and the hypolimnion and to assess the stabil-
ity of stratification: this allows an understanding of the potential for P-rich 
water from deep layers to reach the surface layer. One possible outcome of 
a P budget may be that sediments act as a sink for P on an annual basis and 
nonetheless as a P source during part of the summer, thus making P available 
for phytoplankton growth.

While such P budgets help clarify the role of P from the sediments for the 
overall P concentration in the waterbody, they scarcely contribute infor-
mation for differentiating between the two most important processes of P 
release: desorption of iron-bound P and mineralisation of organically bound 
P. If measures are to be taken to reduce P release from the sediment, this dif-
ferentiation is important for choosing an effective method. The potential for 
the release of redox-sensitively iron-bound P and organic-bound P may be 
estimated from chemical analyses of sediment cores following Psenner et al. 
(1984), and this requires access to expertise and capacity in sediment chem-
istry. Further indication may be derived from the analysis of time patterns 
of phosphorus peaks in the water above the sediment in relation to tempera-
ture (which strongly governs mineralisation) and redox conditions (indi-
cated, e.g., by the concentrations of oxygen or nitrate, or measured directly 
with a probe; an example is given by Chorus & Schauser, 2011). Although 
such analyses require time and expertise, measures to reduce internal phos-
phorus loads require investment, and this information is important to esti-
mate their chance of success and thus avoid failed investment.

If a thorough analysis reveals P release from the sediment to be a major 
source of P in the waterbody, and if demands for water use do not allow 
waiting for years until measures to control the external load have taken 
effect and sediments turn into a sink rather than a source for P, it may 
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be necessary to reduce the in-lake phosphorus pool. This can particularly 
be the case if water exchange rates are low. Sometimes this situation also 
applies to lakes that are naturally eutrophic, like lakes in western Canada 
situated on phosphorus-rich glacial till (Prepas et al., 1997). A comprehen-
sive review by Bormans et al. (2016) of opportunities and methods for con-
trolling internal phosphorus loading gives many examples and case studies 
of techniques and an analysis of their success. These examples include 
dredging (see section 8.6.2), hypolimnetic aeration or oxygenation (see sec-
tion 8.6.3) and hypolimnetic withdrawal (see section 8.6.4).

Checklist 8.7 serves for a first assessment of whether or not internal phos-
phorus control measures should be considered.

CHECKLIST 8.7: ASSESSING POTENTIAL BENEFITS 

AND THE PROSPECT OF SUCCESS OF INTERNAL 

PHOSPHORUS CONTROL MEASURES

• Have external inputs been sufficiently reduced so that these loads do 

not override the effect of the internal measure?

• Has a comprehensive phosphorus budget been calculated and an analy-

sis of phosphorus release from the sediments been conducted, as out-

lined above, to clarify the relevance of the sediments as phosphorus 

source to the waterbody?

• Is the control of internal phosphorus loading necessary because exter-

nal measures are not likely to reduce phosphorus concentrations in the 

waterbody sufficiently within the targeted time frame?

Several options for internal phosphorus control are introduced in the fol-
lowing sections. Their best choice depends on hydrological conditions and 
in particular on sediment chemistry. Investing in sediment analysis to deter-
mine phosphorus-binding forms and binding partners before investing in 
sediment treatment is strongly recommended.

8.6.1  P reduction by in-lake phosphorus 
precipitation and capping

The phosphorus-binding capacity of sediments depends upon the sediment 
type, primarily on the sediment’s adsorption capacity. If the sediment has 
received phosphorus-rich waters for a considerable period of time, then 
the adsorption capacity may be saturated. Adsorbents naturally reach 
waterbodies with the load of silt, mineral and clay particles eroding from 
the catchment. If measures to reduce phosphorus loading in the catchment 
shift the balance between P and adsorbents reaching the waterbody, the new 
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sediment forming in the waterbody may attain a sufficient binding capacity 
without further measures. Adding P-adsorbing substances (flocculants) to the 
waterbody can accelerate this process.

Conversely, waterbodies with naturally high concentrations of iron or 
calcium compounds in the inflow and thus sufficient adsorption capacity 
to induce natural phosphorus precipitation may lose this ability through 
measures in the catchment area or changes in inflow regime.

Precipitation of phosphorus from the waterbody to the sediment, and 
sediment “capping”, can be successful if phosphorus then remains perma-
nently bound in the sediment. This is either done by binding P to insoluble 
iron compounds (which, however, remain insoluble only under oxidative 
conditions), aluminium sulphate (alum) or by adsorption onto calcium car-
bonate or clay particles modified to enhance adsorption. Experience with 
both failures and successes has shown that effective treatment requires a 
careful design on the basis of comprehensive understanding of the sediment 
chemistry and hydrology of the individual waterbody (Cooke et al., 2005).

Prerequisites for lasting success include low external P loading; a suffi-
cient oxygen supply of the deep water if capping is done with redox-sensitive 
compounds; sufficient depth to prevent sediment resuspension; and appro-
priate choice of P-adsorptive materials used as flocculants such as ferric 
salts (chlorides, sulphates), ferric aluminium sulphate, zeolites, lantha-
num-modified clay, clay particles and lime (as Ca(OH)2 and as CaCO3); 
and by-products of mining, mineral processing or industries (Akhurst 
et al., 2004; Douglas et al., 2016). Douglas et al. (2016) describe the mode 
of action of P adsorbents and report that those with substantial uptake 
capacity are generally enriched in Ca, Fe and/or Al; they may also incor-
porate the rare earth element lanthanum (La). These compounds may all 
have some degree of undesirable side-effects, from toxicity to disrupting 
food resource supply to zooplankton; therefore, care needs to be taken 
with their application.

Ferric salts are effective in precipitating phosphorus, but difficult to han-
dle because of their aggressive acidity. In particular, the iron–phosphorus 
complex is stable only under oxic conditions. Therefore, the application of 
ferric salts usually requires oxic conditions to be ensured down to the sedi-
ment, for example, through continuous aeration (which may remain neces-
sary for many years, until P concentrations and plankton biomass are so 
low that the waterbody remains oxic down to the sediments including dur-
ing summer). In practice, oxic conditions are unlikely to be reached quickly 
in waterbodies that have experienced years or decades of hypertrophic con-
ditions accumulating a thick anoxic sediment rich in P and biodegradable 
organic matter. This will continue to degrade, consuming oxygen and thus 
reducing the iron–phosphorus complex, releasing the bound phosphorus.

In addition, Prepas et al. (1997) pointed out that iron may be a limit-
ing micronutrient in some systems, and in such situations, treatment with 
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ferric salts may actually stimulate growth of cyanobacteria and algae. This 
stimulation cannot occur if sufficiently stringent phosphorus limitation can 
be achieved.

Aluminium sulphate treatment does not require oxic conditions as it is 
poorly soluble, provided pH conditions remain neutral or high pH. However, 
it may decrease pH in waters with low buffering capacity, and this leads to 
solubilisation and problems of alum toxicity.

Although lime (both Ca(OH)2 and CaCO3) has been used primarily to 
coagulate and precipitate phytoplankton cells (see also section 8.4.9), it has 
also been successfully applied to precipitate phosphorus from the water, for 
example, in farm dugouts (dams) in Alberta, Canada (Murphy & Prepas, 
1990; Zhang & Prepas, 1996) and in other natural waters and wastewaters 
(Douglas et al., 2016). Hart et al. (2003) assessed the effectiveness of three 
forms of CaCO3 (crushed limestone and two forms of precipitate calcite) 
on phosphorus binding in lake sediments. Limestone was found to be inef-
fective, but the precipitated calcite products reduced phosphorus release 
by up to 100 times under anoxic conditions. It appears that Ca(OH)2 is 
more effective than CaCO3 in precipitating phosphorus (Murphy & Prepas, 
1990), and it is possible that the technique may be more effective in these 
conditions than in soft water.

Another approach is to bind P in sediments with lanthanum-modified clay 
(Douglas et al., 2016). Robb et al. (2003) reported that modified clay suc-
cessfully bound phosphorus in the rivers of Canning and Vasse in Australia. 
Akhurst et al. (2004) investigated the ability of modified clay to reduce the lev-
els of phosphorus released from the sediments of Lake Ainsworth, Australia. 
They found the bentonite clay highly effective at reducing P under both anoxic 
and oxic conditions. However, levels of dissolved Fe were enhanced with its 
use, and this may result in a water quality issue (see above). Ross and Cloete 
(2006) showed a significant reduction in filterable reactive phosphorus (FRP) 
and a drop in the amounts of phytoplankton after the addition of modified 
clay to Hartbeespoort Dam, South Africa.

A natural phenomenon potentially useful in specific circumstances is the 
effect of desiccation/oxidation of sediments on P adsorption as this can 
significantly reduce the release of phosphorus from lake sediments upon 
rewetting attributable to a number of interrelated factors (Baldwin, 1996; 
Mitchell & Baldwin, 1998; Baldwin et al., 2000). While it is not known 
how long the effects of desiccation will last, drying the lake sediments 
may be a suitable strategy to reduce P release in some shallow lakes or 
reservoirs, if, for example, natural seasonal wetting and drying cycles can 
be (re)introduced.

As already mentioned above, some precipitation and/or capping agents 
have an impact (adverse or toxic effect) upon lake biota. Douglas et al. (2016) 
describe the need to establish the ecotoxicological profile of P-adsorptive 
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material applied to natural waters; these authors also provide references to 
available ecotoxicological test that can be employed for this purpose.

CHECKLIST 8.8: ASSESSING THE PROSPECT OF 

SUCCESSOF P REDUCTION BY IN-LAKE PHOSPHORUS 

PRECIPITATION OR SEDIMENT CAPPING

• Has the P-binding capacity of the sediments been assessed?

• How large is the “inventory” of phosphorus likely to be released from 

the sediments?

• Have the phosphorus loads (inputs) been assessed?

• Has the oxygen consumption of the sediment during thermal stratifica-

tion been assessed?

• What substances are to be precipitated for sediment capping?

• Do the compounds have appropriate local regulatory approval for 

application to waterbodies?

• Do they have side-effects? If so, what are they and to which extent?

• Do further stakeholders need to be involved to decide on their 

acceptability?

Operational Monitoring for in-Lake 
Phosphorus Precipitation and Capping

For these techniques, it is important to monitor the application with 
respect to sufficient amounts and even distribution of the substance applied 
throughout the waterbody during application. After the measure, inspect-
ing the sediment surface from time to time may be important to ensure that 
the capping cover is still sufficiently thick.

Validation of in-Lake Phosphorus 
Precipitation and Capping

As for P removal by flushing, validation of precipitation and capping mea-
sures requires a monitoring programme of the P content of the waterbody, 
that is, concentrations in different depths. For lakes and reservoirs with a 
very heterogeneous shape, possibly this needs to include bays and subsys-
tems. P concentration monitoring may need to be repeated at intervals (e.g., 
annually or in each season) to ensure that the measure was sufficient and 
further interventions are not necessary. If concentrations decline to the level 
targeted, this is sufficient, and the P-response monitoring programme can 
be reduced to periodic reviews (e.g., once per year in spring). If not, this 
indicates either insufficient capping or external phosphorus sources that 
require reduction before capping can be successful.



532 Toxic Cyanobacteria in Water

8.6.2  P reduction by sediment dredging

Dredging to remove P-saturated sediments intuitively appears to be an 
attractive solution. However, it is costly and will reduce release rates only if

 1. (as for all internal measures to reduce P release), the internal phospho-
rus load from the sediment is significant in relation to the external load;

 2. it is carried out all the way down to sediment layers with a lower or 
less mobile phosphorus content;

 3. phosphorus-rich interstitial water from the sediments dredged is han-
dled in such a fashion that it does not reach the waterbody and cause 
additional inputs during the dredging operation;

 4. dredged sludge can be deposited where it does not create a new exter-
nal load through runoff into the waterbody.

In some urban and industrial regions, dredging is not possible or compli-
cated by high concentrations of heavy metals and organic contaminants 
in the sediments which would then require disposal as hazardous waste. 
Dredging may be a good solution for smaller waterbodies, the trophic 
state of which can additionally be improved by increasing their depths, or 
which also need to be cleared of dumped rubbish. A review of dredging case 
studies by Bormans et al. (2016) found both successful and unsuccessful 
examples and that dredging is costly. The authors concluded that where it 
has been unsuccessful, in most cases the reason for this was that external 
loading was not sufficiently controlled, and that it is more successful when 
combined with other restoration techniques.

CHECKLIST 8.9: ASSESSING THE PROSPECT OF 

SUCCESS OF P REDUCTION BY DREDGING

• Is the input of phosphorus from the catchment area low enough to 

ensure that sediment removal will have a lasting effect?

• Will dredging remove P-saturated sediments down to layers that are 

not likely to cause a continuing internal P load?

• Is a suitable site available for depositing the sludge, so that P-rich sludge 

water can be kept away from the waterbody?

Operational monitoring for removal of 
in-lake phosphorus by dredging

Operational monitoring of dredging involves checking, for example, by 
visual monitoring of the amounts dredged and the sites at which dredg-
ing is performed, that the amount of sediment intended for dredging is 
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actually removed from the sediment surface areas at the depths designated 
for removal. Visual inspection can serve to monitor that dredged sludge is 
not deposited so close to the waterbody that will reintroduce part of the 
phosphorus load through seepage, erosion and stormwater runoff.

Validation of removal of in-lake 
phosphorus by dredging

Dredging may easily miss the target of removing all of the sediment layers 
which release phosphorus, and as for other P removal methods, validation 
requires monitoring whether the P content of the waterbody responds suffi-
ciently to the measure, that is, whether concentrations decrease to the target 
level. If concentrations decline to the target level, this is sufficient, and the 
P-response monitoring programme can be reduced to periodic reviews (e.g., 
once each year in spring). If not, this indicates either insufficient dredging 
or external phosphorus loads that require reduction before dredging can be 
successful.

8.6.3  Binding phosphorus through 
hypolimnetic aeration

Hypolimnetic aeration or oxygenation (with pure oxygen) aims at provid-
ing oxygen to the hypolimnion without disrupting thermal stratification 
to enhance the binding of phosphorus to iron (Bormans et al., 2016). The 
prerequisite for this technique is that the waterbody is thermally stratified 
during relevant parts of the year and that the sediment contains enough 
redox-sensitive P-binding material, that is, iron. If the ratio between iron 
and phosphorus is low, oxidising the sediment will not help. Schauser et al. 
(2006) and Schauser and Chorus (2007) highlight this with a case study 
of Lake Tegel, Germany: budget calculations demonstrated that P accu-
mulating in the hypolimnion did not primarily result from anoxic release 
of iron-bound P, but largely originated from the mineralisation of recently 
sedimented biomass, and later investigations showed that indeed the sedi-
ment’s iron concentrations were rather low in relation to P concentrations. 
In this case, the increase of sediment temperatures caused by poorly man-
aged aeration actually enhanced this biodegradation-driven P release and 
scarcely served to bind P.

Other researchers discuss further examples of marginal or lack of success 
of hypolimnetic aeration where the chief target of aeration was reducing 
phosphorus release from sediments (Gächter & Wehrli, 1998; Gächter & 
Müller, 2003; Hupfer & Lewandowski, 2008; Bormans et al., 2016). These 
examples show that planning hypolimnetic aeration requires a particularly 
good understanding of the sediment chemistry for success of this interven-
tion, and it is therefore not recommended without this knowledge.
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While hypolimnetic aeration may use aerators like those used for artifi-
cial destratification (section 8.2.1), these aerators must be designed and oper-
ated in a way that minimises the disruption of thermal stratification for two 
 reasons: (i) to avoid accelerating P release from the sediment by from biodeg-
radation and (ii) because stable stratification resists deep mixing and entrain-
ment of nutrients from the hypolimnion into epilimnion where they can be 
used for phytoplankton growth. Designs to avoid destratification have been 
used for fisheries management where warm surface waters and cool bottom 
water are both required for fish habitat (Moore et al., 2014), but it also has the 
advantage that nutrients can remain limiting in the surface water layers. The 
challenge is to inject oxygen into the hypolimnion in such a way that it does 
not form rising air bubbles that can form a plume and disrupt stratification.

Hypolimnetic oxygenation can be achieved with a number of methods, 
including airlift pumps, side-stream oxygenation and direct injection of air 
or oxygen using a bubble contact chamber like a Speece cone (Beutel & 
Horne, 1999; Cooke et al., 2005; Singleton & Little, 2006). These tech-
niques vary in cost, but they are all relatively expensive. The technique is 
also used and well understood for controlling soluble iron and manganese 
release in drinking-water reservoirs (Gantzer et al., 2009).

Hypolimnetic aeration can easily be a waste of money if selecting this man-
agement option is not carefully designed and operated and not based on a good 
understanding of the waterbody’s hydrodynamics, sediment oxygen demand, 
iron concentration and nutrient release rates as well as the relative contribu-
tion of internal versus external nutrient load (see Singleton & Little, 2006).

CHECKLIST 8.10: ASSESSING THE 

PROSPECT OF SUCCESS OF BINDING P 

THROUGH HYPOLIMNETIC AERATION

• Does the sediment contain enough redox-sensitive binding sites (i.e., 

iron) for a success chance of this strategy?

• Is the system designed to keep destabilisation of thermal stratification 

minor?

• As aeration will continue to be necessary for a prolonged time period, is 

funding for maintenance and operation secure for several years to come?

Operational monitoring for binding P 
through hypolimnetic aeration

Operational monitoring of hypolimnetic aerators can be performed in a 
similar way to that for artificial mixing described above, that is, by record-
ing electrical power consumption of the pumps, the oxygen concentration 
in the water or some other indicator for their continuous operation.
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Validation of binding P through 
hypolimnetic aeration

As for artificial mixing, recording temperature and dissolved oxygen pro-
files over depth is also important for validation, in this case to demonstrate 
that the function of the aerators is actually limited to the hypolimnion, 
without significant impact on the layers above. This can either be done 
continuously using a thermistor chain, or at regular intervals (e.g., weekly), 
or under selected sensitive conditions where stratification is less stable than 
normal, for example, in spring when it begins developing, after storms or 
in late summer when it begins eroding. Validation should also check for 
(unintentional) entrainment of dissolved substances (particularly phospho-
rus) from the hypolimnion into the surface water, particularly if tempera-
ture profiles indicate that aeration does cause some intensification of water 
exchange between the hypolimnion and surface-near water layers.

In particular, the further primary parameter to monitor is the oxygen con-
centration in the hypolimnion in order to validate that the measure actually 
achieves the targeted oxygen concentration. This can be done periodically, 
for example, every two weeks during thermal stratification or continuously 
if sensors are installed. The second important level of validation is to show 
that this target oxygen concentration – if it is met – is actually successful 
in suppressing phosphorus release. As for the other internal measures for 
reducing P in a waterbody, this requires monitoring phosphorus concentra-
tions. If concentrations decline to the target level, this is sufficient, and the 
P-response monitoring programme can be reduced to periodic reviews (e.g., 
once per year in spring)

Possibly, if target levels are not met, either the sediment is less of a P 
source than assumed (indicating the presence of further sources) or P release 
from the sediments is not as redox-sensitive as assumed and rather driven 
by mineralisation, which is more effective if oxygen is present and therefore 
may even be enhanced by aeration, particularly if this measure increases the 
water temperature at the sediment surface.

8.6.4  Withdrawal of P with the bottom 
water (hypolimnetic withdrawal)

In thermally stratified eutrophic lakes, phosphorus accumulates in the hypo-
limnion during conditions of stable stratification during summer. While 
during summer this layer is largely separated from the epilimnion in which 
phytoplankton grows, autumn and winter mixing will redistribute this phos-
phorus throughout the waterbody, making it available for phytoplankton for 
spring growth. Although most natural outflows drain surface water, it may 
also be possible to abstract hypolimnetic water instead, by installing a pipe 
that reaches down into the hypolimnion and has an outlet positioned lower 
into the outlet (like an “upside-down U”; Olszewski, 1961). For reservoirs 
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with multiple outlets, it is often possible to use a lower outlet of the dam to 
withdraw hypolimnetic water.

Where P concentrations in the hypolimnion are high and the hypo-
limnion depth and volume are considerable, this method can reduce in-
lake concentrations significantly. For example, in the Swiss Mauensee, 
the biomass of Planktothrix rubescens was reduced from 152 to 42 g m³ 
(corresponding to biovolume of 152 and 42 mm³/L) using this approach 
(Gächter, 1976). With data from numerous case studies, Nürnberg (1997; 
2007) compiled the advantages of hypolimnetic withdrawal during sum-
mer stratification as a method based on the selective outflow of P-rich 
water. Further case studies are given by Bormans et al. (2016). Advantages 
of the method are as follows:

• It addresses the cause of eutrophication.
• It does not introduce chemicals.
• It can be used without changing the water budget.
• It can break the cycle of enhanced sediment accumulation of total 

phosphorus (TP).
• If hydrological regimes allow, it can flush more phosphorus out of the 

system than the sediments accumulate and/or release each year.
• Costs are relatively low, and where operation is by gravity, it does not 

require energy.

Hypolimnetic withdrawal is effective only if enough water flows into the 
lake to balance consumptive needs, that is, amounts abstracted for use (e.g., 
drinking-water supply, irrigation). It is possible only if the depth and vol-
ume of the hypolimnion are sufficiently large to have an overall impact 
on the phosphorus budget of the waterbody without removing the entire 
hypolimnion: if drawdown is too pronounced, this may destabilise ther-
mal stratification, causing entrainment of P-rich hypolimnion to surface 
layers and increasing temperatures at the sediment surface, which in turn 
enhances the release of P through mineralisation of organic matter.

In addition, impairment of water quality downstream may require 
attention if oxygen demand and phosphorus concentrations of the water 
removed are high in relation to the total flow of the receiving waterbody. 
Downstream phosphorus pollution may be avoided by treatment of the 
hypolimnion outlet with chemical phosphorus precipitation. In addition, 
the low temperatures of the hypolimnetic water may have an impact upon 
downstream biological processes, like fish breeding. Use of this phosphate-
rich water for agricultural purposes may be an option, depending upon 
local needs for irrigation in addition to considering the implications of 
other contaminants which can be dissolved in water with a low oxygen 
concentration (e.g., iron and manganese).
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CHECKLIST 8.11: ASSESSING THE PROSPECT 

OF SUCCESS OF P REDUCTION THROUGH 

HYPOLIMNETIC WITHDRAWAL

• Are the depth and volume of the hypolimnion sufficient to allow major 

removal without destabilising thermal stratification?

• Does enough water flow into the waterbody to balance the hypolim-

nion offtake, or is some drawdown of the water level acceptable?

• Have downstream effects been assessed and stakeholders possibly 

affected been involved?

Operational monitoring for removing P 
through hypolimnetic withdrawal

Operational monitoring of hypolimnetic withdrawal should include moni-
toring of both the reservoir water and the outlet (e.g., temperature or con-
ductivity) to ensure the desired target layer is being removed.

Validation of P removal through 
hypolimnetic withdrawal

As for artificial mixing, measuring temperature profiles is also important 
for validation. This can either be done continuously using a thermistor 
chain, or at regular intervals (e.g., weekly) or under selected sensitive condi-
tions where stratification is less stable than normal, for example, in spring 
when it begins developing, after storms or in late summer when it begins 
eroding.

In particular, the additional parameter to monitor is the oxygen concen-
tration in the hypolimnion in order to validate that low oxygen or anoxic 
water is being removed as an additional surrogate for phosphorus content.

8.6.5  Reducing the P content of the 
waterbody by flushing

Flushing with water of low phosphorus concentrations can substantially 
accelerate recovery from internal loading by removing in-lake phospho-
rus that would otherwise be recycled for several seasons. If suitable water 
is available in sufficient quantity, flushing can be a very effective tool for 
reduction of cyanobacterial proliferation. Successful examples include 
Veluwemeer in the Netherlands (Reeders et al., 1998), Moses Lake in the 
USA (Welch et al., 1972) and two lakes in Germany (Figure 8.1). The lat-
ter show that if P concentrations in the inflow are sufficiently low (in these 
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cases < 10–20 μg/L TP), exchanging the lake’s water volume 2–4 times per 
year can reduce TP concentrations from several hundred μg/L to 20–50 μg/L 
within less than 10 years despite a continued internal load from the sediments 
and some remaining external load. These examples show that while dilut-
ing cyanobacteria out of a waterbody as discussed in section 8.5.3 requires 
extremely high flushing rates – that is, in the range of an exchange of the 
water volume once a month – diluting out phosphorus can be successfully 
done more slowly. The time it takes to achieve the target phosphorus con-
centration depends chiefly upon the initial P content (i.e., the waterbody’s 
volume multiplied with its mean concentration of total P) and the P load of 
the inflow(s) (i.e., concentration multiplied with the water volume entering 
the waterbody) plus the internal P load (i.e., the amount released from the 
sediments, which can be estimated by budget calculations as outlined above 
and described in Schauser and Chorus (2009)).

A flushing option for reservoirs is to use heavy rainfall events to fill the 
reservoir with water of lower P concentration while releasing water with 
higher concentration downstream. For thermally stratified waterbodies, 
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Figure 8.1 T heoretical dilution of concentration of total phosphorus (TP) in two Berlin 
lakes after flushing with water of low TP concentrations began (curves) com-
pared to concentrations actually measured (bars): for Schlachtensee (a; flush-
ing rate of 2 times per year with water containing ~8 μg/L TP), the impact of 
other TP sources was much lower than in Tegel (see b; flushing rate of 2–3 
times per year with water containing ~20 μg/L TP) where the marked sea-
sonal peaks of the concentrations measured in the lake indicate substantial 
further TP sources. (Data from Chorus & Schauser, 2011.)
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this can be particularly effective if water can be released from P-rich bot-
tom layers, as described above. However, this measure causes a relocation 
of the phosphorus to a downstream waterbody, and this requires impact 
assessment with the stakeholders responsible for that waterbody. If the 
amount released and its P load is small in relation to the river flow into 
which it is released, this may not cause a substantial change of P concentra-
tions in that river.

CHECKLIST 8.12: ASSESSING THE PROSPECT OF 

SUCCESS OF P REDUCTION BY FLUSHING

• Has a P budget been established, and have water volumes needed 

for flushing been estimated? Which P concentration can be achieved 

by flushing?

• Is sufficient water of suitable quality available in the catchment with sig-

nificantly lower P concentration to achieve targets for the waterbody 

by flushing?

• What are the oxygen and phosphorus concentrations in the water to 

be released, and what potential impact will that have downstream of 

the release?

Operational monitoring for P reduction by flushing

Similar to operational monitoring for managing river flow or water reten-
tion times, operational monitoring for P reduction by flushing should also 
record whether flows are occurring as planned, that is, through measuring 
flow rates or other indicators of water exchange rates, for example, concen-
trations of tracers such as chloride. Where a specific selected water layer is 
to be drained from a thermally stratified waterbody, it is advisable to moni-
tor the water temperature both in the waterbody and in the released flow 
to ensure that the layer actually being drained is indeed the one targeted.

Validation of P reduction by flushing

Validation of the flow regime management to flush P out of the systems 
requires monitoring the P content of the waterbody, that is, concentrations 
in different depths and for lakes and reservoirs with very heterogeneous 
shape, possibly also in different bays and subsystems. If concentrations 
decline to the target level, this is sufficient, and the P-response monitor-
ing programme can be reduced to periodic reviews (e.g., once a year in 
spring). If not, more detailed sampling and analyses of P concentrations 
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in tributaries and at the outflow may be needed in order to improve the P 
budget calculation as a basis for identifying the remaining P sources (e.g., 
surface runoff, minor tributaries or sediment release).

8.7  BIOLOGICAL CONTROL OF CYANOBACTERIA

The term “biomanipulation” describes a range of techniques that influence 
phytoplankton community composition and growth by influencing parts 
of the food web of a lake. One approach aims to stimulate the growth 
of zooplankton that graze phytoplankton and is termed the “top-down” 
approach for phytoplankton control, as opposed to “bottom-up control” 
by nutrient reduction. The other approach aims at stimulating the growth 
of submerged aquatic plants (“macrophytes”) or reeds that can serve two 
functions: they compete with phytoplankton for nutrients, and they provide 
refuges for zooplankton (thus supporting the top-down approach). Both 
approaches do not specifically address cyanobacteria, but phytoplankton 
in general. If these measures successfully decreased phytoplankton biomass 
and thus turbidity, this tends to favour species other than cyanobacteria, 
thus shifting species dominance away from cyanobacteria.

Biomanipulation as a management tool to reduce algal or cyanobacterial 
growth is most likely to be successful in situations of moderate nutrient 
concentrations (i.e., total phosphorus (TP) <50 μg/L) and in many situations 
also requires the reduction of nutrient loads. Experience shows that as long 
nutrient concentrations remain high, the risk that the ecosystem switches 
back into its original state is also higher. Also, stimulating zooplankton 
grazing without reducing concentrations of nutrients may stimulate domi-
nance of grazing-resistant phytoplankton species, such as colony-forming 
(Microcystis, Aphanizomenon) or filamentous cyanobacteria (Planktothrix 
agardhii) (see section 4.1.5). For scientific reviews on biomanipulation, see 
Triest et al. (2016), DeMelo et al. (1992), Kitchell (1992), Carpenter & 
Kitchell (1996), Moss et al. (1994) and Jeppesen et al. (2007a).

A striking example of how biomanipulation can complement and 
enhance nutrient control measures to return lakes back to a clear state is 
documented by Ibelings et al. (2007) for the shallow lake Veluwemeer in the 
Netherlands: as nutrient concentrations in the lake increased in the 1960s, 
biota shifted from a macrophyte-dominated state to a turbid phytoplankton-
dominated state. Even though nutrient inputs and in-lake concentrations 
were significantly reduced and overall phytoplankton biomass declined, 
this state was resistant to change and macrophytes did not reappear; that 
is, the lake remained in a stable turbid state (Scheffer & Carpenter, 2003). 
This state was maintained by resuspension of sediments both through wind 
and through benthivorous fish. A significant reduction in the bream popula-
tion allowed zebra mussels to recolonise and clear the water with their high 
filtration capacity. The clearing of the water then enabled macrophytes to 
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recolonise, and these macrophytes in turn support and contribute to keep-
ing the water clear by binding nutrients in their biomass.

These examples demonstrate the complexity of aquatic ecosystems and 
highlight the potential for different management options that may need 
to be tested in practice to find the approach which is most effective in the 
specific waterbody. Regardless of whether biological controls are being con-
sidered via fish stock management or through the introduction of macro-
phytes – or both – the following checklist helps assess the success chances 
of a biological approach.

CHECKLIST 8.13: ASSESSING THE PROSPECT OF 

SUCCESS OF BIOLOGICAL CONTROL MEASURES

• Is the waterbody only slightly eutrophic, thus rendering the food web 

susceptible to a “switch” in species composition away from cyanobacte-

rial dominance, or are total phosphorus concentrations high (>50 μg/L), 

with stable dominance of filamentous or colony-forming cyanobacteria, 

which are poorly edible by zooplankton and likely to cause too much 

turbidity for macrophyte growth?

• Has the ecosystem of the waterbody been intensively studied for at 

least 1–2 years, thus providing an in-depth understanding of trophic 

interactions as a basis for planning biomanipulation measures?

• Is funding available to continue these studies in order to monitor the 

ecosystem response, to possibly fine-tune the management of the mea-

sures taken and/or to repeat them if necessary?

The following two sections provide an introduction into the two biologi-
cal approaches – that is, supporting zooplankton grazing by managing fish 
which would otherwise decimate the zooplankton and supporting recoloni-
sation of shallow areas of a waterbody with macrophytes.

8.7.1  Suppressing cyanobacteria through increasing 
grazing pressure by fish stock management

Interventions into established hypertrophic ecosystem structures by fish 
stock management techniques have been successful, particularly in small 
ponds and lakes over shorter periods of time (Hrbáček et al., 1978). The 
target to increase zooplankton grazing pressure on phytoplankton can be 
achieved by reducing the populations of fish that feed on zooplankton – 
either by regularly removing such planktivorous fish manually, that is 
through net hauls, or by introducing predatory fish that feed on the plank-
tivorous fish. Numerous examples and potential challenges of this strategy 
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are discussed extensively by Triest et al. (2016). These authors include 
examples of insufficient removal or suppression of planktivorous fish, insuf-
ficient macrophyte coverage to provide refuges for zooplankton as well as 
for the fry of predatory fish (which are intended to reduce the planktivorous 
fish) as well as unintentional promotion of the dominance of poorly edible 
cyanobacterial species. These potential pitfalls highlight the need for com-
prehensive previous studies of ecosystem as well as for ongoing monitoring 
after measures have been undertaken (see also Reynolds, 1997).

A successful contrasting example from a hypereutrophic subtropical lake 
in China suggests that cyanobacteria could be controlled directly by fish 
grazing upon them (Xie & Liu, 2001). This is a different approach from 
traditional biomanipulation through enhancing zooplanktonic grazers, and 
it is reported to have been effective for over 30 years.

The monitoring of fish populations is time-intensive and requires sub-
stantial expertise, and consequently, this is often a major cost factor for 
such biomanipulation schemes, while the fish stock itself may be com-
paratively cheap. Biomanipulation requires continued monitoring of the 
development of the plankton as well as regular stocking with predatory 
fish. Where fishing or angling occur to the extent that it impacts the fish 
population, it is important to involve anglers and fishermen in planning 
and operating the measure. They need to be encouraged not to decimate 
the predatory fish but to remove planktivorous fish (which tend to be unat-
tractive commercially or as trophy), as removing these may support the 
desired outcome. Biomanipulation through fish stock management may 
not continue to work naturally and unaided unless nutrient concentrations 
are also sufficiently reduced.

CHECKLIST 8.14: ASSESSING THE PROSPECT 

OF SUCCESS OF BIOLOGICAL CONTROL OF 

CYANOBACTERIA THROUGH INCREASING GRAZING 

PRESSURE BY FISH STOCK MANAGEMENT

• Is the biotic structure of the waterbody ecosystem described and 

understood – that is, are data available on fish stock, zooplankton pop-

ulation sizes and biomass of phytoplankton taxa?

• Do these results suggest that biological control will be successful? 

• Does the trophic state also imply that success of biological control of 

cyanobacteria can be successful? 

• Can stocking measures of predatory fish or removal of planktivorous 

fish be repeated, for example, annually?

• Can anglers be prevented from removing the predatory fish introduced 

for biomanipulation? 
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Operational monitoring of grazing pressure 
management by fish stock management

Fish stock management interventions tend to be discontinuous, and accord-
ingly so is operational monitoring. It addresses whether planktivorous fish 
have been removed as intended and/or predatory fish fry have been stocked 
as intended. This can be through, for example, surveillance of the docu-
mentation of the hatcheries and operators involved in stocking operations 
as well as through monitoring compliance of angling activities to permits.

Validation of grazing pressure management 
by fish stock management

It is challenging to validate fish stock management as to whether or not it is 
effectively changing the food web of a waterbody. This validation requires 
monitoring the population changes of fish, zooplankton and phytoplank-
ton, including cyanobacteria, and interpreting whether changes observed 
are likely to be responses to the interventions, or whether they are due to 
normal fluctuations or other changes in the ecosystem. While assessing 
changes in cyanobacterial density alone will indicate success or failure, it 
misses providing an in-depth understanding of the mechanisms leading to 
any observed changes, and therefore, zooplankton data are also impor-
tant. Willmitzer (2010) showed a simple approach to validating whether 
planktivorous fish have been sufficiently reduced to allow zooplankton to 
reduce phytoplankton via biofiltration, that is, through monitoring the 
presence of large zooplankton, particularly Daphnia (“water fleas”) which 
have high filtration rates. For this, the proportion of large and small zoo-
plankton is a useful indicator (CSI = Cladocera Size Index), and for this 
purpose, sampling with simple plankton net hauls with large and small 
mesh sizes is sufficient. Evaluation of the zooplankton does not need to 
be taxonomically rigorous, as the data needed are size distribution rather 
than species. However, this does not necessarily indicate whether or not 
the large Daphnia are able to exert sufficient grazing pressure upon the 
cyanobacterial species responsible for the bloom, because many bloom 
species are indeed poorly edible.

Validating the success of fish stock management is therefore most effec-
tive through a comprehensive limnological assessment of the aquatic 
ecosystem on the basis of quantifying both cyanobacteria and zooplank-
ton conducted sufficiently often. While fish stock studies are needed at 
intervals of several years, plankton usually needs to be monitored at least 
monthly. Misinterpretations include that where the necessary limnologi-
cal expertise and/or data on the prior condition of the waterbody were 
lacking, seasonal fluctuations like spring clearwater phases (typical for 
many temperate lakes and reservoirs) have been misinterpreted as success 
of measures.
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8.7.2  Enhancing competition of macrophytes 
against cyanobacteria 

The introduction of macrophytes (totally or partially submerged aquatic 
plants) has the greatest chance of success in waterbodies with a relatively 
large shallow littoral area of lakes. Macrophytes are mostly unable to col-
onise reservoirs with pronounced fluctuations of water level. Submerged 
macrophytes also require relatively high light penetration, and therefore, 
introducing them works best at moderate concentrations of total phos-
phorus (TP), that is, less than 50 μg/L. This is because under field condi-
tions, 1 μg of TP can support about 1 μg of chlorophyll-a (see sections 
4.3.2 and 4.4), and if the spring phytoplankton reaches a biomass con-
taining 50–100 μg/L of chlorophyll, this renders the water very turbid, 
thus suppressing the growth of submerged macrophytes. In contrast, if it 
is nutrient-limited and therefore clearer, macrophytes have an increased 
chance to begin to grow. If further nutrient loads during summer are not 
too high, they can then incorporate enough of the available phosphorus 
with their growth to achieve substantial phosphorus limitation of phyto-
plankton biomass for the remaining growing season. Thus, measures to 
support macrophytes may switch a slightly eutrophic aquatic ecosystem – 
particularly a shallow one with large areas covered by macrophytes – into 
a different, potentially more stable aquatic community, resulting in clear 
water and low cyanobacterial biomass. This effect can be enhanced by 
also managing fish stock, as discussed above.

Excessive nutrient concentrations tend to be detrimental to aquatic mac-
rophytes: for example, a comprehensive study based upon 97 shallow lakes 
on the Yangtze Plain, China, found that macrophytes begin to collapse and 
degrade when the TP concentration increased to more than 60–80 μg/L, 
and the authors suggest that the collapse of particular macrophyte species 
can serve as an early warning signal for the regime shifts from clear to tur-
bid state with increasing phosphorus levels (Su et al., 2019). While Jeppesen 
et al. (2007b) suggested the growth of submerged aquatic plants to dimin-
ish if nitrogen concentrations were above 1000–2000 μg/L, Søndergard 
et al. (2015) showed this to be relevant only if TP concentrations are also 
high (>100 μg/L) and that for numerous lakes in Denmark, reducing TP 
has been more effective in promoting re-colonisation with macrophytes 
than reducing only N (see discussion in Chorus and Spijkerman, 2020).

Where boat traffic damages reed belts both, directly and through wave 
action, protecting the reed belt may be a further measure to foster mac-
rophytes as competitors against cyanobacteria. This can be achieved by 
constructing structures (e.g., wooden palisades) in the water at a depth of 
about 2 m in front of the remnants of reed stands or newly planted ones. 
Such structures should reach about 50 cm above the water surface in order 
to effectively intercept even larger waves. They can be occasionally inter-
rupted by small gaps to allow water birds to move between the lake and the 
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quiescent protected water behind the structures. Where recreational use 
pressure on a lake shore is high, protecting the reed belt with a fence on its 
landward side may also be important to prevent erosion and mechanical 
damage and to allow recovery.

CHECKLIST 8.15: ASSESSING THE PROSPECT 

OF SUCCESS FOR BIOLOGICAL CONTROL OF 

CYANOBACTERIA THROUGH INTRODUCING 

OR SUPPORTING MACROPHYTES

• Have existing macrophyte stands been assessed, particularly in spring?

• Does the waterbody have large shallow areas that could potentially 

harbour major macrophyte stands?

• Are concentrations of total phosphorus (TP) usually below 50–100 

μg/L, so that there is a chance of sufficient P reduction by P binding in 

macrophyte stands?

• Are reasons for poor macrophyte development understood or at least 

working hypotheses available that merit testing?

• Would macrophytes freshly introduced into the waterbody have a fair 

chance of developing, or is the water too turbid or recreational pres-

sure on shorelines too high?

• Are shorelines protected from wave erosion and plant shoots likely to 

be sufficiently protected from bird grazing?

Operational monitoring of enhancing 
competition against cyanobacteria by 
introducing or supporting macrophytes

Operational monitoring of macrophyte management measures can be 
relatively straightforward by regular reviews of measures for introducing 
macrophytes, by observing macrophyte growth and/or by inspecting the 
integrity of structures to protect, for example, reed belts.

Validation of enhancing competition 
against cyanobacteria by introducing 
or supporting macrophytes

Whether macrophytes successfully compete against cyanobacteria can be 
readily validated by observation and recording the sediment area covered 
by macrophytes as well as visual indicators of cyanobacterial blooms, that 
is, a decrease in turbidity and scum occurrence. Additionally, a limnologi-
cal monitoring programme involving reductions in concentrations of TP 
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and cyanobacterial biomass as well as an increase in water transparency is 
useful to obtain a better in-depth understanding of the mechanisms deter-
mining success or failure.

Surveying the increase of macrophyte stands can be conducted on an 
annual basis and thus requires low frequency monitoring. In contrast, as 
for validating biomanipulation through managing the fish stock (section 
8.7.1), monitoring of transparency, cyanobacterial biomass and concentra-
tions of total phosphorus needs to be conducted sufficiently often to be able 
to distinguish between success of the measure and natural fluctuations or 
those due to other changes in the system – that is, at intervals of weekly to 
monthly. In both cases, several years of observation will be necessary to 
assess success or failure.

8.8  INTRODUCING BARLEY STRAW

The effect of rotting or decomposing barley straw in reducing the growth of 
algae was first demonstrated by Welch et al. (1990) who showed the reduc-
tion of the growth of green filamentous algae, Cladophora glomerata, in a 
canal. Since then, the use of decomposing barley straw for the control of 
algae and cyanobacteria has been the subject of considerable interest and 
investigation, with numerous publications showing some effect. Numerous 
other studies have not supported barley straw’s algicidal activity. It has been 
even suggested that anaerobic decomposition of straw produces chemicals 
which actually stimulate the growth of algae, because the algae can use 
them as a source of carbon (Martin & Ridge, 1999; Terlizzi et al., 2002).

Mechanisms postulated include the production of antibiotics by fungal 
flora or the release of phenolic compounds such as ferulic acid and p-cou-
maric acid from the decomposition of straw cell walls (Newman & Barrett, 
1993); the possibility that the straw acts as a carbon source for carbon lim-
ited microbial growth which then uses available phosphorus preventing its 
use by cyanobacteria (Anhorn, 2005); compounds that chelate with essen-
tial metals, thus making them unavailable (Geiger et al., 2005); or antialgal 
activity of fungi present in the straw (Pillinger et al., 1992). Other studies 
have indicated a large number and range of compounds, including pheno-
lic, quinone compounds and flavolignans, extracted from straw to have a 
significant cyanocidal toxicity (Murray et al., 2010; Xiao et al., 2014). One 
of the first theories proposed for cyanocidal action of barley straw was 
the generation of hydrogen peroxide during photooxidation of constituents 
in the straw (Everall & Lees, 1997). Iredale et al. (2012) confirmed that 
hydrogen peroxide does form during decomposition, but many variables 
may determine its cyanocidal effects, including the cyanobacterial strains 
treated, the amount of UV-supplemented visible light, the temperature and 
the form of straw used and its state of decomposition. The activity of barley 
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straw is usually described as being algaestatic (prevents new growth of 
algae) rather than algicidal (kills already existing algae).

The contradictory findings, the inconclusive understanding of the mecha-
nisms where effects have been observed and the unknown identity of the 
potentially phytotoxic compound(s) in rotting barley straw indicate that this 
technique is still too poorly understood to recommend it for widespread use 
as a measure to control cyanobacteria, particularly for potable water supply.

8.9  CHEMICAL CONTROL OF CYANOBACTERIA

Algicides have been used rather widely in some regions to rapidly eliminate 
cyanobacterial bloom outbreaks, to avoid cyanotoxins as well as off-fla-
vour problems caused by cyanobacteria. Algicide treatment has been pro-
posed as being more cost-effective than toxin and/or off-flavour removal 
in drinking-water treatment, because an extended period of persistent 
blooms greatly enhances the need for additional treatment for removal 
of dissolved organic carbon, off-flavours and toxins. Environmental con-
cerns have been raised, also because the most commonly used algicide, 
copper sulphate, has broad ecological impact and the copper may accu-
mulate in the lake sediments (Prepas & Murphy, 1988). Copper and other 
heavy metals differ from some other toxic contaminants in that they are 
not biodegradable, and once they have entered the environment, their 
potential toxicity is controlled largely by their speciation or physicochem-
ical form (Florence, 1982; Mastin & Rodgers, 2000).

These concerns tend to limit algicide treatment to special circumstances 
for reservoirs relevant for water supply, as an emergency measure applied at 
one point in time, particularly where alternative drinking-water sources are 
not available and preventive measures are not feasible or not yet effective. 
As a long-term solution, algicide treatment is unsatisfactory, and wherever 
possible, control measures which address the factors that promote cyano-
bacteria are preferable. In many countries, national or local environmental 
regulations prohibit or limit the use of algicides because of their adverse 
environmental impact. Legal requirements therefore need to be clarified 
prior to considering the use of algicides.

A major limitation of any agent which disrupts cyanobacterial cells is 
the release of toxins and of taste and odour compounds from the cells to 
which they are normally confined (Lahti et al., 1996). Toxin release upon 
treatment can be quite rapid, and different studies have shown it to occur 
within 3–24 h (Kenefick et al., 1993; Jones & Orr, 1994). These dissolved 
toxins will then disperse and be diluted throughout the waterbody, and 
they may not be removed by conventional flocculation and filtration proce-
dures in drinking-water treatment. Installation of additional treatment for 
removing dissolved cyanotoxins may be costly. The risk of treating dense 
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blooms with algicides was demonstrated in an incident which occurred on 
tropical Palm Island, Australia, where members of the community became 
ill with hepato-enteritis following treatment of a bloom in the water supply 
reservoir with copper sulphate (Bourke et al., 1983) (see Box 5.3). If  algicide 
treatment is used, this is therefore better done early at the beginning of 
bloom development to prevent further cyanobacterial growth (Cameron, 
1989), thus limiting the amount of toxin that can be released.

Algicides, like all management techniques, must be applied correctly to 
work effectively. Application at the early stages of bloom development when 
cell densities are low not only reduces the potential for liberation of intracel-
lular toxin but also will enhance the effectiveness of treatment because cyano-
bacterial cells can form a major part of the copper demand along with other 
organic matter in natural water.

If algicides are used to control toxic cyanobacteria, the reservoir should 
be isolated from the drinking-water supply for a sufficiently long time period 
to allow the toxins and odours to degrade. Unfortunately, very little data 
exist on the withholding period in relation to toxin loss specifically after 
algicide treatment. However, as discussed in general for biodegradation of 
microcystins in section 2.1, these cyanotoxins are likely to be degraded 
within a few days if conditions are favourable. However, this needs to be 
checked on site, as an early study of Jones et al. (1994) showed degradation 
after algicide treatment took more than 14 days. Furthermore, cylindro-
spermopsin appears to be particularly poorly biodegradable (section 2.2).

In some cases, algicide treatment may be unsuccessful or only partially 
successful. This can be due to inadequate dispersal and contact with the 
target organisms, variable sensitivity of cyanobacteria, and reduced efficacy 
due to complexation of the copper (Burch et al., 1998). The form of copper 
compound which is most bioavailable and toxic to aquatic organisms is 
influenced by pH, organic carbon, alkalinity, ionic strength or conductivity 
(McKnight et al., 1983; Mastin & Rodgers, 2000).

8.9.1  Copper sulphate

Records of the use of copper sulphate date from 1890 in Europe (Sawyer & 
Hazzard, 1962), from 1904 in the USA (Moore & Kellerman, 1905) and 
at least back to the mid-1940s in Australia (Burch et al., 1998). Copper 
sulphate has been regarded as the algicide of choice because it is economic, 
effective, relatively safe and easy to apply. It is also considered to be of 
limited significance to human health at the doses commonly used (WHO, 
2017) and has been considered not to cause extensive environmental dam-
age (Elder & Horne, 1978; McKnight et al., 1983). The latter point has 
been an issue of debate for some time (see Mackenthun & Cooley, 1952) 
because of the abovementioned tendency of copper to accumulate in lake 
sediments (Hanson & Stefan, 1984). In some cases, it appears not to be 
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remobilised and is bound permanently to the sediments (Elder & Horne, 
1978). However, in a study of 10 drinking-water dugouts (small reservoirs) 
in Canada, sediment copper (previously accumulated from copper sulphate 
treatments) was released back into the open water under conditions of low 
dissolved oxygen in the hypolimnion in summer (Prepas & Murphy, 1988). 
It has also been suggested that sediment-bound copper could have an 
impact on the benthic macroinvertebrate community (Hanson & Stefan, 
1984).

The effect of copper as an algicide is generally short-lived due to rapid loss via 
precipitation as insoluble salts and hydroxylates, depending upon the chemical 
conditions in the receiving water (Cooke et al., 1993; Fan et al., 2013). Copper 
sulphate treatment has been shown to cause short-term changes in phyto-
plankton abundance and species succession (Effler et al., 1980; McKnight, 
1981). An additional consideration is that the chronic application of copper 
algicides may encourage cyanobacteria to become resistant to it, and it thus 
may cause shifts in the composition of the phytoplankton community with 
prevalence of copper-resistant green algae (Qian et al., 2010; Rouco et al., 
2014). Fish kill has also been reported following copper sulphate treatment, 
although it is not clear whether this was a result of copper toxicity or oxygen 
depletion caused by the decaying bloom (Hanson & Stefan, 1984).

8.9.2  Copper chelates

Chelated copper algicides were developed to overcome the problems of the 
complexation and precipitation loss of toxic copper and thus reduced effec-
tiveness of copper sulphate treatment in hard alkaline water. The different 
copper formulations include copper oxychloride, organocopper complexes 
like copper ethanolamine complex or copper citrate used in commercial prep-
arations (Murray-Gulde et al., 2002; Calomeni et al., 2014). The effective-
ness of these formulations depends upon a range of factors, including both 
the target organism and the effect of chemical conditions in the water on bio-
availability and toxicity (Mastin & Rodgers, 2000; Calomeni et al., 2014).

8.9.3  Hydrogen Peroxide

A range of both stabilised compounds and liquid hydrogen peroxide (H2O2) 
have been developed and used more recently in a desire to overcome the envi-
ronmental issues associated with copper algicides (Matthijs et al., 2016). 
Hydrogen peroxide is a strong candidate due to its apparently selective tox-
icity to cyanobacteria combined with the rapid degradation of the chemical 
to water and oxygen with no residual. Matthijs et al. (2016) describe it as 
potentially a more specific and sustainable “cyanocide” compared to copper 
chemicals, herbicides, natural compounds from plant extracts (e.g., barley 
straw) and other organic chemicals compared for cyanobacterial control.
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The effects of hydrogen peroxide on photosynthesis are reported to be 
relatively rapid – that is, within 3–5 h (Matthijs et al., 2016), and loss of 
membrane integrity with some evidence of release of cyanotoxins follows 
over several days after treatment (Matthijs et al., 2012; Lürling et al., 2014). 
Cyanobacteria appear to be more sensitive to hydrogen peroxide than 
eukaryotic algae as they do not possess the defensive enzyme and substrate 
mechanisms of green algae to convert reactive oxygen species and to neu-
tralise their toxic effects upon photosynthesis and subsequent growth of 
cells (Drábková et al., 2007a; Drábková et al., 2007b). This mechanism 
and mode of action as a specific cyanocide has been tested successfully in 
both the laboratory (Drábková et al., 2007a; Weenink et al., 2015) and in 
the field with natural phytoplankton populations (Matthijs et al., 2012). 
Hydrogen peroxide has been applied in a range of lakes, and the effective 
dose rates for control of cyanobacteria vary widely from <5 mg/L up to 100 
mg/L. They depend upon the target strain type and its density and also 
on the presence of eukaryotic algae. While in the Netherlands the dose is 
restricted to <5 mg/L to avoid killing non-target species, concentrations in 
the higher end of the range may be required for colony-forming taxa such 
as Microcystis aeruginosa, where mucilage may protect cells against the 
oxidising effects of H2O2 (Lürling & Tolman, 2014b). At the time of pub-
lication of this document, adverse and potentially toxic effects of hydrogen 
peroxide on nontarget organisms in natural treatment situations have not 
been widely reported. Nonetheless, monitoring the impacts on non-target 
organisms is advised on a case-by-case basis, particularly when utilising 
dose rates approaching up to 100 mg/L.

Addressing the questions in Checklist 8.16 will help decide whether to 
apply algicide treatment. If this is intended, choosing the best method for 
the respective waterbody will require expertise particularly in aquatic ecol-
ogy and limnology and a good understanding of the waterbody’s chemical 
condition and biota.

CHECKLIST 8.16: ASSESSING THE BENEFITS AND 

THE PROSPECT OF SUCCESS OF CONTROL OF 

CYANOBACTERIA THROUGH ALGICIDE TREATMENT

• Have other options been sufficiently assessed, and is algicide treatment 

the only feasible short-term option?

• Which cyanotoxins are expected to be the predominant problem – 

cell-bound microcystins and neurotoxins or rather cylindrospermopsin 

with a potentially high extracellular fraction?

• How likely is a low cyanobacterial population to grow into a major 

bloom? Are data available from the waterbody for previous years – is 

this a typical pattern for the waterbody? Are nutrient concentrations 
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available to infer the carrying capacity for biomass (see section 4.3.2), 

and is this potentially limiting, so that major blooms are unlikely?

• Will the impact on cyanobacteria and on released toxins be sufficiently 

monitored to prevent exposure to higher concentrations of dissolved 

cyanotoxins? How will the cyanobacterial response be monitored?

• If the waterbody is used as drinking-water supply, can it be isolated 

from the supply until the lysed algal biomass, toxins and possibly occur-

ring off-flavour substances have degraded? How long is this expected 

to take and what criterion will be used as basis for the decision to take 

the waterbody back into the drinking-water supply (e.g., concentra-

tions of dissolved organic carbon (DOC) or cyanotoxin)?

• If the waterbody remains online for drinking-water supply, is treatment 

available to remove dissolved toxins, and how will it respond to the 

challenge of the DOC pulse expected from algicide treatment?

• Which algicide will be used (see below), what dose is necessary, how 

will it be applied and at which time interval is repeated treatment likely 

to be necessary?

• Is the chosen algicide likely to be sufficiently effective in the specific 

water (e.g., copper may be less effective in waters with high dissolved 

carbonate or at alkaline pH) at the dosing regime planned?

• Is algicide treatment compliant with local regulations?

• Do further stakeholders need to be involved (e.g., environmental and 

health authorities, water boards)?

Operational monitoring of chemical 
control of cyanobacteria

Operational monitoring will check whether chemicals are dosed as planned, 
whether they reach the target concentration in the waterbody and whether 
measures to protect humans (like isolating the reservoir from a drinking-
water supply until dissolved toxins have been degraded) are in place.
Validation of chemical control of cyanobacteria
Validation of plans for chemical control best begins with reviewing whether 
these measures are necessary or whether other options are available that 
should be tested first. It will then review whether the intended chemical 
cyanobacterial control measure is likely to be effective and feasible for the 
specific waterbody and its specific blooms, whether potentially detrimental 
impacts on other biota can be accepted and whether human exposure to 
dissolved toxins can effectively be prevented. This typically needs expertise 
in phytoplankton ecology and waterbody management, but also an under-
standing of water chemistry. Post-treatment monitoring should include the 
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development of the biota to both ensure the efficacy of treatment and better 
understand the ecological effects. In addition, analyses of dissolved cyano-
toxins should be included where drinking-water is being abstracted.

In the interest of long-term sustainability, it is advisable to initiate the 
implementation of other controls which are more sustainable than algicide 
treatment, even if these measures are effective only in the longer term – that 
is, the reduction of nutrient loads and/or internal measures as discussed 
above.

8.10  ULTRASONICATION FOR CONTROL 

OF CYANOBACTERIA

The use of ultrasound for the control of cyanobacteria in both freshwater and 
wastewater storages has long been proposed as a non-chemical technique 
and thus as an attractive prospect. It has also become popular across a range 
of countries since about the turn of the millennium, due to the availabil-
ity and promotion of relatively low-cost commercial ultrasound systems for 
cyanobacterial control. Ultrasound is sound energy with frequencies that are 
higher than can be detected by the human ear (i.e., approximately > 20 kHz). 
It has been reported to reduce cyanobacterial growth through a range of 
mechanisms that affect the structural integrity of cells (membrane damage 
or gas vesicle collapse and destruction) or impact cell physiology (photo-
synthetic activity and growth reduction; Wu et al., 2011; Rajasekhar et al., 
2012; Park et al., 2017).

A reduction in cyanobacterial growth through the application of sound 
energy to cells and colonies is likely to be due to a combination of many 
effects and will depend upon the target organism, the power or energy 
applied, the frequency and the design of application of ultrasound. Key 
operational parameters in the application of ultrasound for algal control 
are frequency, intensity (or power) and duration of exposure (Park et al., 
2017), and the more successful ones among the studies available have been 
able to explore and optimise these parameters.

Although research results to support the effectiveness and mechanism of 
action of ultrasound in aquatic systems have been accumulating, objective 
assessments and comparisons of findings are not straightforward. The stud-
ies and reviews of the mechanisms and effectiveness of ultrasound for cya-
nobacterial control describe a wide range of test conditions applied in the 
laboratory or field, both with cultures and with natural material (Pavagadhi 
et al., 2013; Lürling & Tolman, 2014a; Lürling et al., 2016; Park et al., 2017). 
Published studies have mostly used custom-made or experimental equip-
ment with a range of frequencies and power intensity which are different 
to commercially available units. Most of the studies that have shown clear 
effects upon cyanobacteria have used high-power purpose-built experimental 
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devices while the commercial devices sold for algal control are relatively low 
power (Lürling et al., 2016). The low-energy ultrasound devices are all very 
similar in design and application; however, they use a range of different ultra-
sound frequencies in the lower range and various configurations of pumps to 
circulate water past ultrasonic transducers. The range of conflicting reports 
from the literature on the effectiveness of ultrasound in natural waterbodies 
with cyanobacterial contamination is most likely due to difference in both 
design and configuration of the sonication equipment in relation to the size 
of the waterbodies. In addition, designing studies to account for confounding 
ecological effects that influence growth is challenging.

Several examples from the published studies highlight the conflicting 
results: field trials with ultrasound devices conducted in the Netherlands in 
2007 concluded that ultrasound was not effective in reducing cyanobacteria 
(Kardinaal et al., 2008). Similarly, in the UK, Purcell et al. (2013) tested 
two models of commercial ultrasound devices with inconsistent results. By 
contrast, an evaluation of four commercial ultrasound devices in a pair 
of reservoirs in New Jersey (USA) found positive results (Schneider et al., 
2015). A further comprehensive study in the Netherlands based upon both 
experiments and a critical literature review concluded that the commer-
cially available ultrasound transducers tested would not control cyanobac-
teria in situ (Lürling et al., 2014).

In conclusion, the application of ultrasound for cyanobacterial control 
remains under question because of the limited number of both validated 
field and pilot tests and the lack of information on the feasibility of both 
commercial and experimental devices for use in larger waterbodies. In par-
ticular, a set of criteria for successful application appears to be lacking.

8.11  MEASURES TO CONTROL THE PROLIFERATION 

OF BENTHIC CYANOBACTERIA

Mitigation strategies to remove or reduce toxic benthic cyanobacteria are 
very limited because for the large majority of situations, there is little knowl-
edge about the environmental variables that regulate their proliferation. 
There are very few reports on the management of benthic cyanobacteria, 
and anecdotally, they are regarded as more difficult to control or remove 
(Liu et al., 2019). As discussed in section 4.2.2, benthic cyanobacteria 
may grow at low nutrient concentrations and be less sensitive to nutri-
ent reduction than phytoplankton (Bonilla et al., 2005), so that nutrient 
management is less likely to limit their growth. Where nutrients and fine 
sediment have been implicated as a cause (e.g., McAllister et al., 2016), 
actions such as planting riparian margins, regulation of fertiliser applica-
tion in the catchment and preventing stock access to river/streams edges 
may ultimately reduce proliferation, but this has not been demonstrated. 
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In flow-regulated rivers and streams, flushing flows have been used to 
remove other nuisance periphyton growth, but this is not known to have 
been successfully applied to cyanobacteria, probably because toxic benthic 
cyanobacteria have not been reported from rivers or streams where this 
would be feasible, particularly where they occur naturally even in pristine 
streams and oligotrophic lakes (see section 4.2.2). Techniques that are rec-
ommended for the management of odour-producing benthic cyanobacteria 
are discussed by Liu et al. (2019), including the application of algicides, 
physical removal by disturbance treatments and reducing water levels to 
dry out or desiccate the benthic cyanobacteria. These techniques all have 
limitations, and the more destructive techniques (algicides and physical 
removal) may have potential adverse impacts such as lysing cells or dis-
lodging mats which may then release toxins.

Mitigation of the growth of toxic benthic cyanobacteria may neither be 
practical nor necessary for the target of protecting human health, as they 
are not known to cause health-relevant toxin concentrations in the sur-
rounding water. Therefore, the most feasible management option may be to 
provide information on avoiding direct contact with dislodged and floating 
mats (including preventing pets from coming into contact; see Section 5.2 
and Chapter 15).
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INTRODUCTION

The characteristics of cyanobacteria to form surface scums or subsurface 
accumulation in deeper layers (see Chapter 4) mean there can be patchy 
and variable vertical and horizontal distribution of cells. This is important 
to consider for abstracting drinking-water from surface waterbodies. The 
intake of cyanobacterial biomass and cyanotoxins in the raw water can 
potentially be greatly reduced – sometimes by orders of magnitude – if site 
and depth of drinking-water abstraction are chosen to avoid these accu-
mulations. The water offtake is one of the few control points available to 
managers to improve the quality of abstracted water and thereby ensure 
product water quality following treatment. Where control of abstraction is 
possible, the challenge to drinking-water treatment from high levels of bio-
mass, DOC, TOC (dissolved and total organic carbon) and cyanotoxins can 
be managed in order to reduce the reliance and pressure on water treatment 
options (see Chapter 10).

Where surface water can be filtered through sediment, that is, by 
abstraction through bank filtration or artificial groundwater recharge, or 
if slow sand filtration can be installed, if operated with sufficiently low 
and long filtration rates, this can also be highly effective in removing both 
cyanobacterial cells (as well as other particles, including pathogens) and 
dissolved toxins.

9.1  OPTIMISING THE LOCATION 

AND DEPTH FOR THE OFFTAKE

9.1.1  Vertical variability of cyanobacterial occurrence

Spatial and vertical variability in the concentration of contaminants 
in lakes and reservoirs, as described in section 4.6.4, is common. This 
applies not only to cyanobacteria but also to pathogens, iron, manganese 
and other contaminants. Thermal stratification of the waterbody leads 
to warmer water layered above cooler, denser water. This provides suit-
able conditions for cyanobacterial growth as the common bloom-forming 
types are buoyant and can avoid sedimentation losses during the periods 
of stratification. Under some conditions, the cyanobacteria can accumu-
late to scums at the surface, and in mesotrophic waterbodies, the maxi-
mum concentration can occur as a band in a deeper layer, as discussed in 
section 4.2.1.
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Many modern reservoir offtake structures (often towers but also some 
dams) have multiple offtake depths as part of good design. If multiple off-
takes are not available, in small systems it may be possible to siphon water 
from a specific depth using large pipes as a temporary management measure. 
The depth at which cyanobacterial cell densities are greatest – at the surface 
or at specific depths – may show diurnal and seasonal patterns, and the 
range of passive diurnal sinking and rising of cells is due to light- and pho-
tosynthetic-driven changes in cell buoyancy (section 4.1.2). While the high 
variability in surface concentrations can be a relevant risk in all waterbodies, 
the formation of pronounced layers or maxima at deeper and often vari-
able depths may only be relevant in thermally stratified (see section 4.3.4) 
mesotrophic reservoirs. The best-known example of this occurs in temper-
ate regions with the formation of distinctive deep metalimnetic maxima of 
low-light-adapted Planktothrix rubescens. In subtropical and tropical sys-
tems, Raphidiopsis (Cylindrospermopsis) raciborskii can also reach high 
numbers deeper in the epilimnion, but these rarely form surface scums.

Figure 9.1 provides a good example of spatial variability and vertical 
patterns for buoyant cyanobacteria in a medium-sized reservoir. These 

Figure 9.1  Vertical profiles and horizontal variability of a population of Dolichospermum 
circinale in a horizontal transect across a reservoir in South Australia mea-
sured by phycocyanin fluorescence, converted to cells per mL. 
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cyanobacteria, predominantly Dolichospermum circinale, develop surface 
and subsurface maxima at several depths at the deepest site (Site 1), while 
more mixing occurs at shallower locations in the reservoir (Sites 6–8). This 
accumulation of buoyant cyanobacteria is associated with temperature sta-
bility in the growing season and shows how strong surface maxima can 
develop near the reservoir surface while very low numbers occur in deeper 
water. This drinking-water reservoir has the option for water offtake at the 
surface, 5, 15 and 25 m at Site 1. The operational practice at this reservoir is 
to draw water from a depth of 25 or 15 m when cyanobacteria are present, 
which leads to much lower intake of both cells and potentially toxin and 
odour metabolites into the water treatment plant. A further case study is 
given by Fastner et al. (2001) for the Deesbach Reservoir, where at that time 
surface concentrations ranged up to 570 μg/L, while at the offtake depth of 
17 m, they were in the range of less than 1 μg/L.

In conclusion, it is important for operators to obtain information about 
the range of vertical movement of local cyanobacterial populations and also 
to be aware of the potential for the formation of metalimnetic (deep-depth) 
maxima in order to avoid drawing high cell densities into the raw water 
intake. This requires multiple depth sampling or probe measurements to 
determine vertical profiles of cyanobacterial cell density (see Chapters 11 
and 12 for methods).

9.1.1.1  Balancing cyanobacterial risk 

against other contaminants

Selecting the optimal abstraction depth to minimise the cyanotoxin 
risk requires awareness of the depth distribution of other water contami-
nants – that is, pathogens, dissolved organic carbon, iron and manganese. 
The greatest challenges from cyanobacteria, iron and manganese gener-
ally occur during stable, stratified conditions. The greatest challenges from 
pathogens and dissolved organic carbon occur through transport of these 
contaminants from the catchment during heavy rain event-driven inflows. 
For an early detection of a potential for cyanobacterial proliferation, an 
understanding of the impact of the local weather and hydrological condi-
tions is of great value (see Chapter 4).

River water enters a lake or reservoir as an intrusion and will flow 
through the reservoir at a depth determined by its density (in turn depen-
dent on temperature and conductivity) relative to the density of the reser-
voir water (Figure 9.2). If the river inflow is cold and dense relative to the 
reservoir water, the river water will move into the reservoir as an underflow. 
The river inflow or “intrusion” may also travel at mid-depths or towards 
the surface, depending upon temperature and density. It is possible to deter-
mine the depth of the riverine intrusion using a simple online tool which 
considers temperature detailed in section 9.1.4.
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Figure 9.2 F ormation of river water intrusions during inflow events. The darker the 
shading, the colder and denser the water. The depth of formation of the riv-
erine intrusion will correspond to the depth in the reservoir at which water 
has equivalent density.

9.1.1.2  Releasing poor-quality water downstream

The water abstraction depth can also be utilised to release water of poorer 
quality downstream and optimise the quality of water remaining in the res-
ervoir. Riverine intrusions into a reservoir often have a higher concentration 
of phosphorus and nitrogen, so releasing this water downstream can result 
in lower reservoir nutrient concentrations in the reservoir, thus reducing 
the maximum achievable cyanobacterial biomass. This method is generally 
only suitable in areas without water shortage, while in arid regions, water 
harvesting is often maximised, therefore avoiding downstream release. 
Also, the quality impact of the water released to the downstream river reach 
may be an issue to clarify with stakeholders and authorities responsible for 
the river water quality (often, this impact is minor and only relevant for a 
very short downstream part of the river).

9.1.2  Horizontal variability of cyanobacterial  
occurrence

The horizontal variation in the distribution of cyanobacterial populations 
can also be considerable. Figure 9.1 shows the horizontal and vertical het-
erogeneity of cyanobacterial distribution. Observing seasonal patterns 
of cyanobacterial scum location and/or predicting them from the main 
wind direction may be useful for planning a drinking-water offtake or the 
l ocation of a recreational site or beach (see below).

Substantial contamination of raw water can be avoided by locating off-
takes away from sheltered bays where scums may accumulate (usually down-
wind of the prevailing winds during the critical summer growth period). If 
this is not practical, it may be possible to employ temporary extensions to 
pipe intake points.
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Where the offtake or recreational site already exists and relocation is 
not an option, physical barriers may serve to exclude the most pronounced 
blooms. They prevent surface scums accumulating near the offtake site. 
Surface booms or curtains, similar to oil-spill containment booms, have 
been used successfully in Australia, the UK and North America to keep 
surface scums away from offtake structures. These physical barriers usually 
extend to a depth of 0.5–1.0 m and thus do not affect bulk horizontal flow 
significantly. This technique is a worthwhile practical emergency measure 
for transient blooms, and its use will depend upon the technical require-
ments of installation.

9.1.3  Data collection for optimising offtake sites

Collecting information as well as building knowledge and understand-
ing of the local ecology and conditions can greatly increase flexibility in 
responses to blooms. When collecting data to optimise offtake depth, it is 
important to include relevant hazards or indicators for their occurrence. 
Vertical profiles of temperature provide a basis for assessing thermal strati-
fication, and profiles of oxygen concentration and redox potential indicate 
the likelihood of higher iron and manganese concentrations. Data from 
turbidity profiles may also be useful to indicate the location of a bloom. 
Many water quality probes that measure temperature, conductivity, dis-
solved oxygen, etc can also be equipped with a fluorometer, which measures 
chlorophyll, including the specific or other pigment fluorescence – a useful 
surrogate for phytoplankton biomass. Fluorometers can specifically differ-
entiate between cyanobacteria and other phytoplankton if they measure 
phycocyanin fluorescence, an accessory pigment only of the cyanobacteria. 
While the ratio between cyanobacterial biomass and the fluorescence signal 
may vary to some extent, fluorescence signals have proven highly useful as a 
relative measure of the distribution of blooms, both vertically and horizon-
tally. These probes may be installed online at offtakes as part of Alert Level 
Frameworks (see section 5.1.2) to adjust water treatment responses. The flu-
orometry signal can be calibrated by comparing phycocyanin fluorescence 
with the monitored cell counts (section 13.6.1). However, it is important 
to be aware of the issues and technical limitations of in situ fluorometers 
for monitoring of cyanobacteria (see, e.g., Zamyadi et al., 2016 or Bertone 
et al., 2018).

The following checklist outlines information needed to assess cyanotoxin 
intake from raw water offtake systems. It is neither complete nor designed 
as a template for direct use, and should be adapted to specific local condi-
tions. Support from lake experts or limnologists with hydrodynamic exper-
tise is highly valuable for this assessment. For measures to minimise the 
occurrence of cyanobacteria through reducing nutrient loading or water-
body management, see Chapters 7 and 8.
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CHECKLIST 9.1: COLLECTING INFORMATION ON THE 

RISK OF INTAKE OF CYANOBACTERIA OR DISSOLVED 

CYANOTOXINS WITH THE DRINKING-WATER OFFTAKE

What meteorological, hydromorphological and hydrodynamics characteris-

tics of the waterbody could affect cyanobacterial distribution?

• Compile information on depth, volume, bathymetry and thermal 

stratification;

• Collect information on the prevailing wind speed and direction;

• Determine the location of raw water offtake.

What information is available on cyanobacterial or cyanotoxin occurrence, 

and where they tend to accumulate in relation to the drinking-water intake?

• Collate historical information on the occurrence of cyanobacteria 

and consider initiating a new programme or adapting an ongoing pro-

gramme to survey cyanobacterial occurrence and to determine differ-

ences in their distribution.

• Evaluate the local cyanobacterial species with regard to their buoyancy 

characteristics and their potential vertical distribution.

What data are available and/or necessary to inform selection of an off-

take site?

• Determine the scale of monitoring and expertise necessary and avail-

able to effectively manage the offtake.

• Assess whether continuous online monitoring of temperature profiles 

could be installed to better understand both thermal stratification and flow 

regime, and whether the information gained is likely to justify the costs.

• Evaluate whether sensors could be installed to effectively monitor the 

offtake for the indication of cyanobacterial biomass, for example, phy-

cocyanin fluorescence, chlorophyll fluorescence and turbidity.

Are hazardous events likely to cause cyanobacteria to concentrate near the 

offtake?

• How heavy are cyanobacterial blooms? How long do they persist, and 

what seasonal patterns do they show? Which toxins do they contain? 

Are substantial extracellular amounts of toxin likely?
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• Assess whether scum-forming cyanobacteria are likely to accumulate at 

the surface and to concentrate on leeward shores due to wind action.

• Assess whether storm event inflows will transport high concentrations 

of cells to the offtake from upstream of the waterbody.

Where blooms occur at the offtake, are cells likely to die and lyse through 

pumping the water from the offtake site to the waterworks?

What management options are available for the drinking-water offtake?

• For thermally stratifying lakes and reservoirs, is a multilevel offtake 

available? If so, can it be readily operated based upon current monitor-

ing information? If not, can effective options for monitoring indicators 

for cyanobacterial biomass be installed?

• For thermally stratifying lakes and reservoirs with heavy cyanobacterial 

blooms, is artificial mixing an option? That is, can aeration sufficiently sup-

press their development (e.g., through intermittent operation) or shift cell 

distribution to reduce concentrations at the intake (see also Chapter 8)?

• For near-surface intakes (particularly from shallow waterbodies), 

determine whether their sites are optimal in relation to chief areas of 

bloom accumulation and if not, whether relocation (e.g., through pipe 

extension) is possible.

• For bloom-affected near-surface intakes which cannot be relocated, 

consider installing physical barriers as discussed above to reduce 

bloom intake.

What other water quality hazards should be considered when changing an 

offtake for cyanobacterial management?

• Check whether avoiding the intake of pathogens is an important target 

for reservoir offtake management.

• Assess whether intake needs to periodically avoid depth layers 

which have low dissolved oxygen or with high iron or manganese 

concentrations.

• Develop a strategy for balancing cyanobacterial hazards against other 

hazards associated with low dissolved oxygen, iron and manganese, or 

pathogens in inflows.

What regulatory framework exists for abstracting drinking-water?

• Are there surface water abstraction regulations that need to be con-

sidered when planning offtake sites and amounts?
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Document and visualise the information on the abstraction scheme and 

regime:

• Compile a summary report and consolidate information from your 

checklist.

• Map the spatial distribution of existing or potential sites for raw water 

intake.

Outcome of system assessment:

• Estimate the risk of cyanotoxin intake: What maximum levels do you 

expect to find, and for what time periods?

• Estimate the uncertainty of this assessment: Is the information base suf-

ficient to make management decisions? If not, which information gaps 

should be closed and with which priority?

9.1.4  Operational monitoring of control 
measures in raw water abstraction

The most effective way to ensure that control measures are operating as 
intended is to monitor readily observable indicators that show whether 
structures are intact and processes operating as intended – that is, opera-
tional monitoring (Chapter 6). For the measures proposed above to control 
cyanotoxin concentrations in raw water intakes, operational monitoring 
will largely address the integrity of structures and whether flexible choice of 
offtake is operated adequately in relation to bloom occurrence. Surveillance 
will check the records of this monitoring as well as the adequacy of plan-
ning and design.

9.1.5  Validation of control 
measures for raw water offtake

Validation to ensure that the drinking-water offtake is appropriately sited 
and performing optimally is best achieved by a cyanobacterial monitoring 
programme during a bloom period (Table 9.1). The validation programme 
would ideally include several different bloom events, consider how wind 
direction influences the accumulation of scums and consider different 
types of cyanobacteria with different properties that may occur (e.g., 
scum-forming Microcystis versus dispersed filamentous Planktothrix 
agardhii). Several parameters for cyanobacterial biomass measurement 
may be used for these investigations, including biovolume, pigment 
analysis either by in situ measurement of fluorescence by fluoroprobe 



572 Toxic Cyanobacteria in Water

Table 9.1  Examples for control measures in drinking-water offtake with options for 
monitoring their functioning

Process step
Examples of control measures for intake 

of contaminants
Options for monitoring their 

functioning

Planning Appropriate selection of offtake site 
and depth in relation to 
cyanobacterial and cyanotoxin 
accumulation, including the 
occurrence of other detrimental or 
hazardous contaminants (e.g., iron, 
manganese, pathogens)

Downstream release of nutrient-rich 
water, artificial mixing or physical 
barriers against surface scums

Review plans/applications 
for permits in relation 
to information on bloom 
accumulation and occurrence 
of other contaminants

Review plans and applications 
for permits 

Design, 
construction, 
maintenance

Ensure that offtake structures (e.g., 
extension pipes, depth-variable 
offtakes) are constructed according 
to good practice and that they are 
withdrawing water at the location 
intended

If measures such as downstream 
release of nutrient-rich water, 
artificial mixing or physical barriers 
against surface scums are 
implemented, ensure proper design, 
construction, maintenance

Adapt variable offtake depth to 
stratification of cyanobacterial 
accumulation, taking other 
contaminants (iron, manganese) into 
account

If artificial destratification is used, 
adapt the mixing intensity to stability 
of thermal stratification

If artificial mixing is intermittent, adapt 
periodicity to phytoplankton 
development

If physical barriers to deflect blooms 
are in place, monitor their integrity 
and proper positioning

Inspect structures during 
construction and at intervals 
during operation; monitor 
their integrity 

Inspect structures during 
construction and at intervals 
during operation; inspect 
records of maintenance

As above, but for deep-layer 
offtakes include redox 
measurement or oxygen 
concentration to detect high 
levels of iron/manganese

Monitor temperature profiles 
over depth in reservoir or 
lake

Monitor phytoplankton 
development, for example, 
by fluorescence (differentiating 
between cyanobacteria and 
algae); verify qualitatively by 
microscopy

Visual inspection, possibly 
supported by on-site 
probing of fluorescence or 
turbidity
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(preferably distinguishing between chlorophyll-a and phycocyanin spe-
cific for cyanobacteria) or chlorophyll extraction and photometric deter-
mination (in conjunction with qualitative microscopy to determine the 
proportion of chlorophyll that is likely to originate from cyanobacteria). 
Other parameters indicating the amount of cyanobacterial biomass may 
be used as well, including cell counts, molecular information, remote 
sensing data or turbidity measurements (as with chlorophyll-a, in con-
junction with qualitative microscopy to check whether a major fraction 
of the turbidity is likely to originate from cyanobacteria). While these 
are less precise, they can be very suitable surrogate monitoring param-
eters particularly if locally “calibrated” against periodic toxin analyses 
as described in Chapter 5.

Validation would also include other contaminants to determine differ-
ences in spatial distribution compared to that of the cyanobacteria, for 
example, iron and manganese or pathogens potentially accumulating in 
the hypolimnion. This is to ensure that optimising for cyanotoxin con-
trol does conflict with optimising for the control of other contaminants. 
Validation should be repeated from time to time, particularly if bloom pat-
terns show conspicuous changes or if the hydrodynamics of the waterbody 
have changed.

9.2  SEDIMENT PASSAGE: MANAGED 

AQUIFER RECHARGE VIA SOIL AQUIFER 

TREATMENT OR POND INFILTRATION, SLOW 

(SAND) FILTRATION AND BANK FILTRATION

In many settings, managed aquifer recharge (MAR; Tufenkji et al., 
2002; Maeng et al., 2010; Romero et al., 2014) or slow sand filtra-
tion (Ellis & Wood, 1985; Haig et al., 2011) has proven to be highly 
 effective and  low-cost options for the removal of cyanobacteria and dis-
solved  cyanotoxins (Grützmacher et al., 2002). A prerequisite for MAR 
is the suitability of the given sediment (which is not always given, e.g., 
in rocky mountainous or karstic regions) or the availability of space for 
 constructing and operating slow sand filters (which may be a constraint 
where large volumes of water need to be treated). For many scenarios of 
cyanotoxin occurrence and conditions for MAR or slow sand filtration, 
substantial toxin removal is very likely. It is thus a very valuable option 
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worth considering when assessing a given drinking-water supply at risk of 
cyanotoxin contamination.

Managed aquifer recharge utilizes subsurface passage through porous 
media (mostly gravel or sandy material) to achieve purification of surface 
water for drinking water production. Types of MAR are e.g., bank filtration 
(Figure 9.3), pond infiltration or aquifer recharge via trenches or injection 
wells (an overview of techniques applied in Europe is given in Sprenger et al. 
(2017). Slow sand filtration (Figure 9.4) uses the same principle, though on 
a smaller scale, i.e., through a less thick layer of porous medium. All these 
methods are applied in a wide variety of cases with different results and can 
therefore be seen as abstraction methods, pre-treatment or treatment steps.

Managed aquifer recharge comprises both systems saturated with water 
(i.e., riverbank filtration, groundwater and (slow) sand filtration) and 
 unsaturated systems such as soils, in which not all pores are filled with 
water, leading to different transport dynamics, especially to higher  temporal 
variability. Therefore, some of the processes eliminating  cyanotoxins differ 
between both, and hence, results from saturated systems cannot always be 
transferred to unsaturated systems. The following sections give an  overview 
on the removal of different cyanotoxins in various managed  aquifer 
recharge systems, as well as information on different aspects of managing 
these systems.

9.2.1  Background information to assess the 
subsurface conditions relevant for performance 
in retaining cells and dissolved cyanotoxins

Soil aquifer treatment is one type of managed aquifer recharge, in which 
irrigation water that may contain toxins is applied onto soil. The soil is 
meant to act as a filter to retain toxins and to prevent them from further 
transport to groundwater.

Bank filtration is characterised by drinking-water wells in the vicinity 
of a lake or river that are fed mainly by water infiltrating from the surface 
water supply (Figure 9.3). For other types of MAR, surface water is first 
conveyed into infiltration ponds, trenches or wells from which it infiltrates 
into the subsurface aquifer and is reclaimed in nearby wells. Due to differ-
ent hydrogeological settings, residence times may vary between a few days 
to several months. The decisive parameters for the residence time are the 
hydraulic conductivity of the aquifer (governed by the grain size distribu-
tion as well as the existence of a clogging layer) and the distance between 
point of infiltration and well. Usually, infiltrated surface water blends in the 
well with ambient groundwater, diluting possible contaminants originating 
from the surface water (and vice versa; however, groundwater contami-
nants may also be diluted by uncontaminated surface water).

An important mechanism of sediment passage is the reduction of peak 
contaminant concentrations by dispersion (i.e., mixing of water with 
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different residence times due to varying flow paths). This may help avoid 
hazardous concentrations, though it does not serve to reduce the total load 
of the contaminant (this is also true for the decrease in concentration by 
mixing with groundwater). The main purification processes during infiltra-
tion and subsurface passage are straining of particles as well as adsorption 
onto aquifer material and biological or chemical degradation of dissolved 
substances.

For predominantly cell-bound cyanotoxins, the main elimination process 
is the straining of cells on the sediment surface. Phytoplankton removal 
through sand filtration is very efficient and may eliminate up to 97% (Pereira 
et al., 2012). Efficacy may be limited if the grain size distribution of the 

surface water 
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bank filtrate ambient
groundwater

groundwater
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Figure 9.3 B ank filtration scheme. (Adapted by permission from Springer Nature, Hydro-
geology Journal, Future management of aquifer recharge. Dillon P. Copyright 
Springer Nature 2005. www.springernature.com/gp.)
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Figure 9.4 S low sand filtration scheme. Raw water passes the sand filter through gravity. 
The hydrostatic pressure is controlled by a flow control.
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sediment is coarse (e.g., gravel) and if there is no clogging layer (the clogging 
layer is defined as the uppermost part of a sediment or filter in which hydrau-
lic conductivity is reduced due to the accumulation of organic and inorganic 
debris as well as biofilms resulting from high biological activity). An addi-
tional parameter that may limit cell removal is the morphotype of the cyano-
bacterial species (see review by Romero et al., 2014): removal of filamentous 
cyanobacteria may be more effective than that of single cells or small colo-
nies. Where cell removal is effective, cyanotoxin transport is limited to the 
migration of dissolved (extracellular) toxins through the subsurface.

As cell lysis may release high amounts of toxin (see Chapter 4), the accu-
mulation of cells on the sediment surface or filter is best avoided. Therefore, 
in controlled MAR systems or slow sand filtration, it may be necessary to 
reduce flow rates of feeding water, and to remove upper layers of the filter 
sand more frequently during periods of cyanobacterial blooms.

Depending on the sediment characteristics (clay/silt content, fraction of 
organic matter) and the type of cyanotoxins, reversible sorption as well as 
biological degradation may reduce concentrations of extracellular toxin dur-
ing subsurface passage. Reversible sorption will only lead to retardation and 
not to the removal of dissolved toxins, but with the benefit of expanding the 
residence time during which the cyanotoxins are available for biodegrada-
tion. Biodegradation is the only sustainable process leading to a complete 
cyanotoxin removal. The efficacy of biodegradation depends on redox con-
ditions, temperature and previous cyanotoxin contact of the sediment, which 
enhances the establishment of effectively degrading microbial consortia.

The residence time in the sediment necessary to achieve the removal  target 
depends on these conditions as well as on the sediment structure and mate-
rial: a sufficiently large fraction of fine particles is necessary to provide sur-
face area not only for sorption, but also for the establishment of biofilms that 
harbour the toxin-degrading microorganisms. A fraction of >1% fines (i.e., 
particle size <63 μm, consisting of clay and silt) has proven effective, though 
this might significantly reduce permeability. Sediment structure also deter-
mines residence time: if it consists of coarse gravel, throughflow will be rapid.

However, in soil aquifer treatment, toxins merely adsorbed to soils, with-
out being subject to biodegradation, may be desorbed and subsequently 
leached to groundwater. Studies on the leaching of cyanobacterial toxins 
from soils to groundwater are scarce (Machado et al., 2017). Batch studies 
show that MC-LR sorbs well to clay and organic matter (Miller et al., 2001) 
and several soil bacteria were reported to break down MC-LR (Machado 
et al., 2017). However, Corbel et al. (2014) showed only a small amount of 
applied MC-LR to silty sand to be degraded, whereas the largest fraction of 
the applied toxin remained sorbed in extractible soil fractions. This toxin 
thus has the potential to be remobilized, for instance during precipitation 
or irrigation events. The authors assess this toxin’s leaching potential from 
soil to groundwater to be high. So far, there are no studies which investi-
gated the leaching potential of CYN in soils, but due to its low sorption 



9 Managing drinking-water offtake 577

potential (Klitzke et al., 2011b) its mobility, i.e. leaching potential, is likely 
to be high.

The leaching potential of cyanobacterial toxins strongly depends on site 
conditions such as soil texture, irrigation frequency with polluted water 
and toxin concentrations in the water as well as time elapsed after toxin 
application. Due to the lack of data, general management recommencations 
cannot be derived, and site-specific validation is necessary. Because of the 
potential risk of leaching, where water with high toxin concentrations is 
applied in soil aquifer treatment, validation of removal efficacy is particu-
larly important.

Knowledge on sediment passage elimination varies between types of cya-
notoxins, with a large share of publications reporting on microcystin and 
relatively few on cylindrospermopsin, saxitoxin and anatoxin.

9.2.2  Degradation of microcystin during 
bank filtration

Biodegradation as opposed to sorption was found to be the dominating 
process for microcystin elimination in sandy porous material (Grützmacher 
et al., 2010). While sorption on sandy aquifer material was very low 
(Grützmacher et al., 2010), clay (Wu et al., 2011) and silt were found to 
contribute to microcystin adsorption (Miller et al., 2005). Organic carbon 
did not enhance microcystin adsorption. Miller et al. (2005) and Wu et al. 
(2011) even observed a decrease in microcystin sorption at low organic 
carbon contents (i.e., <8%). The authors explain this decrease by sorption 
competition between dissolved organic substances and microcystin.

Grützmacher et al. (2002) demonstrated an efficient removal of micro-
cystins by slow sand filtration, simulating the first few decimetres of sub-
surface passage also for sandy bank filtration and aquifer recharge sites. 
Under optimal conditions (aerobic, moderate to high temperatures and pre-
vious microcystin contact), degradation is rapid, with rates of around 1/d 
(assuming exponential first-order decay). The residence time in the sedi-
ment needed for sufficient toxin removal (<1 μg/L) under optimal condi-
tions even for very high microcystin concentrations amounts to 10 days. At 
less-than-optimal conditions, microcystins will also be degraded, though at 
a slower rate (Grützmacher et al., 2007).

Each of the critical conditions described in the following increases the 
probability that the minimum residence times necessary for sufficient toxin 
removal will be achieved or exceeded.

Anaerobic/anoxic degradation of microcystins: It may be much slower 
than degradation under aerobic conditions. Lag phases may occur but 
rarely last more than 1–2 days (Grützmacher et al., 2010). Redox conditions 
in the subsurface may be monitored by regular sampling of observation 
wells in the flow path, analysis of redox-sensitive parameters (e.g., iron and 
ammonium) and measurement of oxygen content.
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Lack of previous contact of the system with microcystins: Previous 
microcystin contact will be given for most settings as water reservoirs and 
rivers with toxic cyanobacterial mass occurrences tend to show these regu-
larly. Even for surface waters without a history of cyanobacterial blooms, the 
time usually needed for a mass occurrence to develop (i.e., a few weeks) is 
likely to be sufficient for adaptation of bacteria in the subsurface. This may, 
however, be a crucial point for managed aquifer recharge (MAR) sites and 
slow filtration if sand/sediment has been exchanged just before or during a 
massive cyanobacterial bloom. Checking records for sediment exchange may 
therefore be important when increasing amounts of cyanobacteria or blooms 
are observed.

Low temperature: Temperature generally determines microbial degrada-
tion rates. For microcystins, this is also generally true, but there is some 
experimental evidence that microbial communities may adapt to low tem-
peratures and yield high degradation rates even at 5 °C: whereas laboratory 
experiments at less than 15 °C and 25 °C did not show different degradation 
rates, an experiment at 5 °C yielded the relevant microcystin breakthrough, 
though eventually degradation rates reached those obtained under higher 
temperatures (Chorus & Bartel, 2006). Hence, temperature monitoring in 
the well and in the surface water is useful in order to obtain an understand-
ing of the prevailing temperature in the sediment flow path.

In summary, optimal conditions for biodegradation of microcystins are 
aerobic, with moderate to high temperatures (>10–15 °C) and an established 
microbial consortium (particularly in the clogging layer) capable of micro-
cystin degradation. For degradation in the water phase, refer to Chapter 2.1.

9.2.3  Degradation of cylindrospermopsin during 
bank filtration

Removal of cylindrospermopsin (CYN) through subsurface passage or slow 
sand filtration schemes differs from that of microcystins in several ways:

 1. A much higher fraction of CYN frequently occurs dissolved in water.
 2. Dissolved CYN may persist in the waterbody for many weeks (Wörmer 

et al., 2008) after the producer bloom has subsided, particularly at 
low temperatures.

 3. In temperate climates, CYN may occur about as frequently as 
 microcystins, but concentrations rarely reach similarly high levels 
(maxima published from field samples are below 20 μg/L (Rücker 
et al., 1997; Bogialli et al., 2006; Rücker et al., 2007; Brient et al., 
2009; see also section 2.2).

While points 1 and 2 increase the challenge for removal through sediment 
passage, point 3 may be a de-warning if high concentrations can be reliably 
excluded.
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Under some conditions, CYN elimination in the subsurface or slow 
sand filter tends to be less effective than for microcystins: experiments by 
Klitzke et al. (2011b) showed that sorption of CYN to various sediments 
was very poor, and there was virtually no CYN retention on purely sandy 
sediments (Klitzke et al., 2010). Also, the presence of clay did not enhance 
CYN sorption (Klitzke et al., 2011b). The role of sediment organic carbon 
is still unclear, because at present, results on the role of organic carbon in 
CYN sorption are inconsistent, showing very high sorption on organic mud 
(Klitzke et al., 2011b) but no sorption on a “schmutzdecke” (Klitzke et al., 
2011a). This uncertainty emphasises the importance of conditions condu-
cive to biodegradation to ensure an efficient CYN removal – for CYN, these 
conditions are more crucial than for microcystins.

Redox conditions have been shown to be particularly crucial for CYN 
elimination: under anaerobic conditions, lag phases can last weeks, and 
even after the lag phase, degradation may remain incomplete even if resi-
dence times amount to many weeks (Klitzke & Fastner, 2012).

Preconditioning of sediments and flow rate also have a major impact: lag 
phases may last up to 3 weeks until a sufficiently large microbial commu-
nity has developed and CYN breakdown commences (Klitzke et al., 2010). 
This implies that sediments need to have previous contact to CYN for at 
least 3 weeks before CYN is removed effectively. In practice, where CYN 
concentrations in the feed water build up over time, this may not prove to 
be a problem. However, additionally, contact times are sufficient for effec-
tive biodegradation only if the flow rate is sufficiently low (i.e., approxi-
mately 0.2 m/d); at higher flow rates (i.e., 0.7 m/d and 1.2 m/d), the shorter 
residence times in the sediment will not allow for CYN degradation, and 
hence, CYN breakthrough is likely (Klitzke et al., 2011a).

Low temperature (i.e., 10 °C or less) retarded CYN degradation by a fac-
tor of 10 in comparison with 20 °C (Klitzke & Fastner, 2012).

9.2.4  Degradation of other cyanotoxins 
during bank filtration

For the elimination of the other cyanotoxins by sediment passage, few 
experimental results have been published. For Anatoxin-a (ATX), rapid 
degradation already in the waterbody is well known (Rapala et al., 1994; 
see also section 2.3), and the half-life of ATX elimination in natural surface 
water studied in a batch system amounted to 4 weeks (Klitzke et al., 2011a).

In the sediment, ATX is eliminated through both sorption and degradation 
(Klitzke et al., 2011a): while on sandy sediments, ATX adsorbed very weakly, 
sorption was enhanced in sediments containing clay or organic carbon 
(Klitzke et al., 2011b). Column experiments with a filter velocity of approxi-
mately 1.4 m/d showed ATX retardation on sandy sediments due to sorption. 
However, sorption was reversible and only attenuated peak concentrations of 
ATX, but not the overall ATX breakthrough. Degradation took place only 
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in the presence of DOC and hence resulted in ATX elimination of approxi-
mately 35% of the initial concentration (Klitzke et al., unpublished data).

So far, published results of systematic studies on ATX degradation in 
sediments are only available from laboratory batch studies (Klitzke et al., 
2011a). With an initial concentration of 10–15 μg/L ATX (under oxic con-
ditions and at room temperature of approximately 20 °C), it took 7 days for 
concentrations to drop below 1 μg/L following sediment contact. At 10 °C, 
elimination slowed down by approximately a factor of 2. Under anoxic 
conditions, ATX elimination in sediments was decelerated also by about a 
factor of 2. Degradation in sediments under all conditions investigated took 
place without a lag phase; that is, it commenced without any delay, suggest-
ing that preconditioning is not required.

Burns et al. (2009) report an efficient sorption of saxitoxins (STX) on a 
sandy-silty sediment, parts of which had very high amounts of clay and silt 
(up to 89.6% silt) for an initial concentration of 5 μg/L. Besides, SXT sorbed 
on clay minerals with sorption increasing with increasing cation-exchange 
capacity. Romero et al. (2014) reported much lower sorption for SXT and 
neo-SXT (between 40% and 80%) on a sediment retrieved from a bank 
filtration site with only 4% fines (<0.063 mm). Saxitoxin removal in sand 
filters of both a water treatment plant and a wastewater treatment plant 
proved very inefficient (Kayal et al., 2008; Ho et al., 2012). In the wastewa-
ter treatment plant filter, SXT toxicity was even increased after filter passage 
(Ho et al., 2012). These findings suggest SXTs to be very persistent. The 
studies mentioned were conducted at filter velocities of 7.2 and 14.4 m/d, 
respectively.

As degradation processes are strongly influenced by residence times 
(Klitzke et al., 2011a), it remains unclear whether SXT breakdown would 
increase at lower flow rates (i.e., <1 m/d) as they may be encountered in 
riverbank filtration scenarios.

9.2.5  Planning, design and construction of 
sediment passage for cyanotoxin control

The general features of a managed aquifer recharge (MAR) site are deter-
mined by (i) subsurface characteristics, (ii) the design and operation of 
the drinking-water production wells (including distance from the bank/ 
infiltration pond, filter depth and pumping rate) and (iii) hydrochemical and 
biological conditions. Similarly, performance of slow sand filters depends 
on the choice of sediment, size and depth of the filter as well as on the flow 
rate.

For bank filtration, the subsurface characteristics are given by the litho-
logical parameters of the aquifer, and the only way to influence them is to 
choose the most suitable well locations along the banks of a river or lake. 
While coarse material (coarse sand and gravel) is often  preferred for well 
construction in order to achieve highest productivity, finer material like 
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middle- to fine-grained sand is more effective for the removal of particles 
and substances, with the challenge of combining a high straining effect 
with sufficient hydraulic conductivity. The same is true for other MAR 
techniques and slow sand filters, though cell removal may be achieved by fil-
tration of the inlet water prior to infiltration so that grain size distribution 
will not be as important as during bank filtration. The basis for planning 
therefore will include a detailed hydrogeological site investigation prior to 
well construction.

Besides well position, screen depth also needs to be planned carefully, as 
the point of abstraction is crucial for residence times and these characteris-
tics again are crucial for toxin removal rates – as well as for the fraction of 
groundwater relative to filtered surface water (leading to cyanotoxin dilu-
tion; see Figure 9.3). Basic information for the positioning of the wells and 
determining filter depth is derived from hydrogeological site investigations, 
including the total depth of the aquifer, the position of confining layers and 
a first assessment of the hydraulic conductivities (usually from grain size 
analysis). Hydraulic computer models (simple models obtainable as share-
ware, e.g., the “Bank Filtration Simulator”; Rustler et al., 2009) can then 
be used to simulate different well settings in order to find an optimum con-
cerning productivity, residence time and share of ambient groundwater.

9.2.6  Critical aspects of operation, maintenance 
and monitoring

The residence time of surface water in the subsurface is crucial for an effective 
cyanotoxin degradation, and residence time depends on the flow rate in the 
subsurface as well as on the distance between the surface waterbody and the 
well. Well operation can vary with respect to the pumping rates and regimes – 
that is, continuously at a constant level or in an interval mode. It is therefore 
important to determine residence times for the range of potential operating 
conditions. Simple hydraulic models may provide a first assessment (Rustler 
et al., 2009). Tracer measurements, however, will reduce the uncertainty 
of this approach. Suitable tracers are characterised by their ability to be 
transported in the aquifer without sorption, degradation or any other reac-
tion that may change the total load of this substance in the aqueous phase. 
A simple way of determining residence times is to monitor substances or 
parameters in the surface waterbody that show temporal variations (e.g., 
temperature), and to measure the offset of these variations over time in 
observation wells close to the waterbody (taking into account possible 
retardation coefficients).

If cyanotoxins break through the subsurface, their concentrations in the 
well water will depend on the proportion of bank filtrate relative to that 
of groundwater. Mixing ratios between surface water and groundwater 
can be assessed from the concentration of substances that show distinctive 
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differences in concentration between groundwater and surface water (e.g., 
salinity or organic trace substances).

Flow rates as well as removal efficacy for many substances are affected 
by the gradual build-up of a clogging layer (“schmutzdecke”). Increasing 
build-up of a clogging layer will lead to reduced flow rates and eventu-
ally to the formation of anoxic zones. For this reason, the clogging layer is 
removed from slow sand filters at intervals which depend upon the infiltra-
tion rate loss. Some managed aquifer recharge (MAR) sites are also subject 
to regular cleaning of the uppermost layer, , that is, removing the clog-
ging layer. In bank filtration settings, the degree of clogging may vary in 
time, due to variations in sedimentation and biological activity, but the 
existence of a clogging layer is likely in nearly all cases. A complete lack 
of a clogging layer is conceivable in rivers with high flow rates and erosion 
as predominant process, but in such situations cyanobacterial blooms are 
unlikely. Changes in clogging can be monitored by measuring the head loss 
(i.e., the difference in water level) between the surface water supply and the 
groundwater.

For many substances, clogging layers contribute significantly to both 
sorption and degradation processes: they provide fine particles with a 
high capacity for contaminant sorption and harbour a high share of the 
degrading microorganisms. This was also assumed for cyanotoxins; how-
ever, relevance of this mechanism was neither confirmed for the removal 
of microcystins nor for that of cylindrospermopsin: experimental results 
showed no effect of the presence or absence of a clogging layer on a slow 
sand filter on their removal (Grützmacher et al., 2007; Klitzke et al., 
2011a) – possibly because the sorption of these toxins is poor or null and 
thus the time spent in the clogging layer was too short for biodegradation to 
be effective. Data on the role of the clogging layer for the removal of other 
cyanotoxins are lacking, but due to its higher sorption potential, a clog-
ging layer may be relevant, for example, for the degradation of Anatoxin-a. 
Also, for coarse-grained material, the clogging layer may have an impact 
not through sorption, but by improving filter action as strainer to remove 
cells and thus cell-bound toxins.

A more crucial parameter for slow sand filters is the exchange of the 
entire sediment body, as biodegradation takes place throughout the filter 
body and is most effective if the filter is preconditioned, that is, colonised 
by microorganisms capable of degrading cyanotoxins.

Even if clogging layer removal is less relevant for the removal of the most 
frequently occurring cyanotoxins than generally assumed,  documentation 
of removal is important to enable the assessment of filter flow rates. For 
slow sand filters, documentation is important for sediment exchange. 
Furthermore, timing of sediment exchange is preferably well before cyano-
bacterial blooms are expected in order to allow time for preconditioning of 
the filter.
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9.2.7  Assessing the risk of cyanotoxin breakthrough 
where drinking-water is abstracted by magaged 
aquifer recharge and/or slow sand filtration

The following checklist outlines information needed to assess cyanotoxin 
removal through subsurface passage. It is neither complete nor designed as 
a template for direct use, but rather needs to be specifically adapted to local 
conditions. Support from hydrogeological expertise is highly valuable for 
this assessment.

CHECKLIST 9.2: COLLECTING INFORMATION 

ON THE RISK OF CYANOTOXIN BREAKTHROUGH 

WHERE DRINKING WATER IS ABSTRACTED 

BY MANAGED AQUIFER RECHARGE (MAR) 

AND/OR SLOW SAND FILTRATION

What are the hydrogeological characteristics in the area envisaged/used for 

infiltration?

• Determine the likely flow path from the surface waterbody to the 

well(s), including the screen depth of the production well(s).

• Determine the clay/silt content and fraction of organic matter of the 

soil or sediment through which water is likely to flow.

• Determine homogeneity of the soil or sediment.

• Determine likely redox and temperature conditions during subsurface 

passage.

• Estimate travel times of water between surface waterbody and drink-

ing-water well (e.g., by using a conservative tracer or groundwater 

flow models).

• Estimate the share of ambient groundwater in the drinking-water well 

in relation to the share of bank filtrate (e.g., by using a conservative 

tracer or groundwater flow models).

• Assess whether previous contact of the sediments to cyanotoxins is likely.

How are managed aquifer recharge (MAR)/slow sand filtration operated?

• Are wells operated continuously or at intervals?

• How strongly does the clogging layer fluctuate (is it periodically 

removed)?

• For pond/trench/well infiltration/slow sand filtration: does an  additional 

filtration step remove cells/particles prior to infiltration?
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Which hazardous events are likely to affect raw water offtake?

• How heavy are cyanobacterial blooms? How long do they persist, and 

what seasonal patterns do they show? Which toxins do they contain? 

(See Chapter 2 and section 4.6.1)

• Are wellheads likely to be flooded?

• Are erosive events possible that could affect the clogging layer or filterbed 

structure (e.g., during snowmelt, repeated freezing and thawing cycles)?

What regulatory framework exists for abstracting drinking-water?

• Are there groundwater abstraction regulations that need to be consid-

ered when planning bank filtration and/or artificial recharge?

Documentation and visualisation of information on the abstraction scheme 

and regime:

• Compile a summarising report and consolidate information from your 

checklist.

• Map spatial distribution of existing or potential sites for wells abstract-

ing bank filtrate, if available together with maps of hydrogeological 

conditions.

Outcome of system assessment:

• Estimate the risk of cyanotoxin breakthrough in underground filtration: What 

maximum levels do you expect to find, and for which time periods?

• Estimate the uncertainty of this assessment: Is the information base suf-

ficient to make management decisions? If not, which information gaps 

should be closed with which priority?

9.2.8  Operational monitoring of sediment passage 
as control measure against cyanotoxins

As discussed in Chapter 6, the most effective way to ensure that control 
measures are operating as intended is to monitor easily observable indica-
tors that show whether structures are intact and processes operating as 
they should – that is, operational monitoring. For controlling cyanotoxin 
concentrations by sediment passage, operational monitoring of managed 
aquifer recharge (MAR) and slow filters can use parameters indicating 
flow and redox conditions in order to ensure sufficient residence times 
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in the subsurface. Surveillance will check the records of this monitoring 
as well as the adequacy of planning and design. Table 9.2 summarises 
selected examples of the measures proposed above to control cyanotoxin 
concentrations in raw water intake and suggests approaches to their 
monitoring and surveillance to check whether controls are operating as 
intended.

Table 9.2  Examples for control measures in sediment passage with options for 
monitoring their functioning

Process step
Examples of control measures 

for sediment passage 
Options for monitoring  

their functioning

Planning Choose site with optimum 
hydrogeological and technical 
prerequisites (fine- to 
medium-grained sand, land 
availability for pond/well 
construction)

For bank filtration: optimise 
choice of locations and depths 
for production wells to ensure 
sufficient residence times in 
the subsurface

For other MAR techniques: assess 
soil characteristics, potential 
for rapid clogging during 
blooms and site of recharge 
in relation to production wells 
to ensure sufficient residence 
time in the subsurface

For slow filtration, to ensure 
sufficient residence time 
in the filter, consider  
area and depth needed in 
relation to water volume 
and filtration time

Review plans and applications for 
permits in relation to 
hydrogeological information; 
inspect sites

Review plans and applications 
for permits 

Design, 
construction,  
maintenance

Ensure that wells are 
constructed according to 
best practice, avoiding short 
circuits

Ascertain that minimum 
residence times are achieved

Assign experts, carry out maximum-
capacity pumping test, TV 
inspection and borehole 
geophysical examination; inspect 
sites and records of maintenance

Use tracer investigations for 
validation, daily temperature 
measurements in surface water 
and bank filtrate (observation 
wells), water-level monitoring in 
surface and groundwater

(Continued )
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In addition to the operational monitoring of the functioning of control 
measures, occasional cyanotoxin monitoring in the offtake is important to 
verify comprehensively that initial cyanotoxin concentrations do not exceed 
the concentration for which the system is designed.

9.2.9  Validation of control measures 
in sediment passage

Whether or not sediment passage is sufficiently effective in eliminat-
ing cyanotoxins can best be validated by following bloom events with 
samples from a drinking-water production well and analysing them for 
the cyanotoxins which occur in the waterbody. For this purpose, indica-
tors such as cell counts or pigment analysis are not applicable, as their 

Table 9.2 (Continued)  Examples for control measures in sediment passage with options 
for monitoring their functioning

Process step
Examples of control measures 

for sediment passage Options for monitoring their functioning

Modify well locations/filter 
depth, if material proves 
coarser than expected

Remove clogging layer from 
infiltration pond/basin or river 
bank by dredging, in case 
infiltration rates decrease and 
anoxic conditions are 
established

For artificial recharge and slow 
sand filters: avoid clogging by a 
regular removal of clogging 
layer (preferably before 
blooms are expected) 

Avoid anoxic or anaerobic 
conditions by timely removal 
of clogging layer 

After sediment exchange, 
consider extending residence 
times by reducing pumping 
rates/hydraulic head

For bank filtration, operational 
control options are limited to the 
pumping regime: If possible, 
during cyanobacterial blooms 
switch to production wells 
with a higher share of 
groundwater and reduce 
pumping rates at critical wells

Grain size analysis of aquifer 
material prior to well lining to 
validate assumptions

Water-level monitoring in surface 
and groundwater, redox 
measurements in bank filtrate 
observation well

Monitor well production rates

Monitor oxygen content in bank 
filtrate, possibly also DOC in 
surface water, as indicators of 
oxygen consumption

Inspect documentation of pumping 
rates/groundwater tables and 
records of sediment exchange

Inspect records of well operation 
and pumping rates; measure tracer 
for the proportion of bank filtrate 
in production well regularly

Operation
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elimination rates will differ from those of the dissolved cyanotoxins. If 
observation wells are available or can be installed between the drink-
ing-water production well and the waterbody, they provide an excellent 
opportunity to follow the concentration decline. Timing of sampling in 
relation to the travel time of the water in the subsurface is important in 
order not to miss the concentration peak as it moves through the subsur-
face. It is also useful to include tracer measurements to characterise travel 
times in the subsurface.

The handicap of validation by following bloom events is that this is dif-
ficult to plan for waterbodies in which blooms do not occur regularly, or if 
capacities for sampling and analysis are not available. In such cases, a first 
approach to validation is to characterise the sediment as well as residence 
times in the subsurface, redox conditions and temperature as discussed 
above in order to estimate the likelihood of effective cyanotoxin elimina-
tion. Thus, conditions likely to be safe may be identified and investigations 
can focus on the more critical situations.
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INTRODUCTION

Drinking-water treatment is the last line of defence to ensure the pro-
vision of safe, clean water to consumers. The multibarrier approach – 
where control points within the overall treatment process are identified 
and optimised, and their efficiency is monitored and verified – is now 
globally accepted as best practice for this purpose. Water suppliers using 
raw water with cyanobacteria at levels causing a cyanotoxin risk need to 
identify the points in the plant where either removal or release of toxins 
can occur, optimise the controls and minimise the risks of toxin break-
through. This chapter describes the current state of knowledge about the 
treatment measures that are available for the removal of cyanobacteria 
and the toxins they produce, the monitoring regimes that can be under-
taken to ensure the optimum performance of those measures, as well as 
validation programmes that can be run to ensure optimum choice and 
design of measures.

10.1  TREATMENT OPTIONS FOR CYANOBACTERIA 

AND CELL-BOUND CYANOTOXINS

In many situations, most of the cyanotoxins will be cell-bound, while for 
cylindrospermopsin, a high fraction can occur in the dissolved state (see 
Chapter 2 and Box 5.1). Thus, any physical particle separation process 
that removes cyanobacterial cells without damage will offer an effective 
barrier to cyanotoxins, particularly microcystins. Section 10.1 describes 
the processes that can be applied to remove cells, while maintaining cell 
integrity. However, often pre-oxidation is applied for other treatment 
goals such as manganese removal or the improvement of coagulation, so 
it is also important for water suppliers to be aware of the potential risks 
of cell rupture and cyanotoxin release associated with the application of 
pre-oxidation.

10.1.1  Pre-oxidation

Chemical oxidation can have a range of effects on cyanobacteria cells, 
from minor cell wall damage to cell death and lysis (Pietsch et al., 2002). 
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Although improvement of the coagulation of algal cells through oxidation 
at the inlet of the treatment plant through a number of mechanisms has 
been reported (Petrusevski et al., 1996), this involves a high risk of damag-
ing the cells and releasing metabolites into the dissolved state. For example, 
potassium permanganate, commonly used as a pre-oxidant to control man-
ganese, can potentially damage cyanobacteria and release toxins without 
oxidising the released cyanotoxins (Dugan et al., 2018). Other common 
pre-oxidants include chlorine and ozone.

If pre-oxidation must be applied in the presence of cyanobacteria cells, 
the levels of oxidant should be sufficient to result in the residual required 
for the destruction of dissolved toxins (see section 10.2). If it is insuf-
ficient, this causes a risk of high levels of dissolved toxin and organic 
carbon adversely influencing subsequent removal processes and finished 
water quality.

Table 10.1 presents a summary of some of the literature on the oxidation 
of cyanobacteria and toxin release and destruction. Kinetic studies indicate 
clearly that the rate of cell membrane damage and toxin release is greater 
than the rate of toxin degradation. These results suggest that the oxidant 
doses required will vary depending on water quality parameters such as 
pH, dissolved organic carbon (DOC) concentration and characteristics, 
the abundance of cyanobacteria, the size of the cyanobacterial filaments or 
colonies and the amount of intracellular and extracellular organic materials 
(IOM and EOM) associated with the cyanobacteria. Natural cyanobacte-
rial samples contain more EOM, and cells are more likely to occur in larger 
colonies or filaments than in the cultured samples used in many studies. 
Therefore, if pre-oxidation must be practiced in the presence of potentially 
toxic cyanobacteria, a regular laboratory testing is important to ensure that 
the oxidant demand is met and the released toxins are destroyed. If this is 
not possible, it is best to cease pre-oxidation for periods during which cya-
nobacteria are abundant in the raw water.

10.1.2  Physical separation processes

Ideally, the number of cyanobacterial cells in the raw water is minimised 
by appropriate measures in the waterbody (Chapter 8) and its catch-
ment (Chapter 7). Pretreatment using bank filtration is also very effective 
(Chapter 9). However, even where these measures reduce the concentration 
of cyanobacteria entering the treatment plant, where they still occur, mul-
tiple barriers are important, and this requires optimising removal of cells 
and toxins through treatment.

Two main processes can be utilised for the physical removal of cyanobac-
teria from raw water: conventional processes (e.g., coagulation/clarification 
and sand filtration) and membrane filtration (e.g., microfiltration [MF] and 
ultrafiltration [UF]).
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10.1.2.1  Conventional processes

Background

Conventional treatment generally comprises coagulation and flocculation, 
followed by clarification and rapid media filtration. Coagulation and floc-
culation are processes that aggregate suspended particles through the addi-
tion of a chemical coagulant. Common coagulants used in water treatment 
include various aluminium and ferric salts, synthetic organic polymers or a 
combination of inorganic and organic coagulants. In the clarification step, 
the coagulated particles, or flocs, are separated from the water by processes 
such as sedimentation, dissolved air flotation (DAF) or upflow clarifica-
tion processes. Two common alternatives to the full conventional process 
are direct filtration, where there is no clarification step, and contact filtra-
tion, where the flocculation and clarification steps are eliminated. While 
the coagulation process is ineffective for the removal of extracellular (dis-
solved) cyanotoxins, it is very effective in removing cell-bound cyanotoxins 
through the removal of the whole cyanobacterial cell (Drikas et al., 2001; 
Henderson et al., 2008; Newcombe et al., 2015).

Effect of the cyanobacteria’s specif ic morphology 

and characteristics of the specif ic coagulant

The morphological characteristics of cells, in particular their size, shape 
and surface characteristics, may influence the efficiency of the coagulants 
used for the removal of cyanobacteria. One study showed that larger cells 
were more effectively removed, and within a size group, spherical cells 
were removed more effectively than elongated cells (Ma et al., 2007). 
Consequently, microscopy of cyanobacteria – even without identification to 
the species level – may be useful for optimising or predicting the effective-
ness of the coagulation and flocculation process. Henderson et al. (2008) 
suggested that another indicator of the coagulant dose could be the surface 
area of the cells: smaller cells would require a higher dose than larger cells 
at an equivalent biovolume.

Some coagulants may be more effective than others for the removal of 
cyanobacteria, and the addition of polymers may, or may not, aid in the 
removal (Teixeira & Rosa, 2006a; Teixeira & Rosa, 2007; De Julio et al., 
2010; Newcombe et al., 2015). In addition, it has been reported that pro-
teins and other extracellular organic material (EOM) produced by some 
cyanobacteria may either inhibit (WHO, 2015) or enhance (Yap et al., 
2012) the coagulation process. Cell removal efficiencies vary between spe-
cies and even between strains of the same species, and depend on param-
eters such as the physiological stage of the cells, conditions of culturing (if 
grown in the laboratory), and characteristics of intracellular organic mate-
rial (IOM) and EOM.



10 Managing drinking-water treatment 597

The inconsistent findings in the literature indicate that coagulation 
 efficiencies strongly depend on cyanobacteria species and water quality 
conditions, and choices should be made on a case-by-case basis according 
to the raw water quality, available processes and the achievement of other 
water quality goals (e.g., dissolved organic carbon [DOC] removal).

Operational guidance for the coagulation step

Through a comprehensive study of the application of conventional treat-
ment for the removal of cyanobacteria, Newcombe et al. (2015) developed 
some practical guidelines using conventional jar testing, which is usually 
implemented on a routine basis for the optimisation of treatment pro-
cesses. This research involved several cyanobacterial taxa (Microcystis spp., 
Raphidiopsis (Cylindrospermopsis) raciborskii, Dolichospermum circinale, 
Pseudanabaena sp. and Oscillatoria sp.) at a range of cell numbers, a range 
of waters and three coagulants (aluminium sulphate – alum; ferric chloride 
and aluminium chlorohydrate – ACH). The authors demonstrated that cell 
removal of Raphidiopsis raciborskii (filamentous) was lower (<90%) than 
that of the other species; however, for all cyanobacteria, the authors found 
that optimisation of the coagulation process for the common water quality 
parameters (DOC, or total organic carbon – TOC and/or turbidity) resulted 
in the optimum removal of cyanobacteria. This finding is in agreement with 
further studies which demonstrated that the conditions for optimum turbid-
ity removal corresponded with optimum cyanobacteria removal (De Julio 
et al., 2010; Şengül et al., 2016), although Newcombe et al. (2015) found 
that turbidity was a good indicator of the removal of cyanobacteria only 
in raw water with a turbidity of 10 NTU (nephelometric turbidity units) 
or above. While such literature is a useful starting point for planning the 
optimisation of coagulation, the most effective way forward for optimising 
coagulation will be to test efficacy under the respective local conditions dur-
ing phases in which treatment is particularly challenged by blooms.

It should be noted that while the process of coagulation itself does not 
cause damage to cells, some cell damage and toxin release can occur if the 
pH of solution decreases to below 6 (Qian et al., 2014). Thus, in the pres-
ence of cyanobacteria, the pH of the coagulation step should be maintained 
above 6, even when a lower pH may be optimal for the removal of DOC or 
colour (e.g., when ferric salts are used as the coagulant).

Treatment steps following coagulation

After coagulation, the flocs must be removed by downstream processes. 
Mouchet and Bonnelye (1998) provided a summary of the types of clari-
fiers used by water suppliers. They determined that sludge blanket clarifiers 
(which keep the overflow rate such that it is less than the settling rate of the 



598 Toxic Cyanobacteria in Water

sludge, allowing the “blanket” of sludge to form) were more effective for 
cyanobacterial cell removal than static settlers, where the sludge is allowed 
to settle to the bottom of the clarifier and the clarified water is removed 
from the top through weirs. It is important to realise that this only applies 
if the sludge blanket clarifier is operated under optimal conditions to mini-
mise clarified water turbidity. Dissolved air flotation (DAF), where small air 
bubbles are released from the bottom of the flotation tank and the coagu-
lated/flocculated particles, or flocs, are captured by the bubbles and float 
to the surface, is particularly effective for the removal of cyanobacteria as 
many species contain gas vacuoles that provide buoyancy, leading to more 
efficient clarification by flotation than by sedimentation (Teixeira & Rosa, 
2006a; Teixeira & Rosa, 2007; Aparecida Pera do Amaral et al., 2013). 
However, not all water sources impacted by cyanobacteria are suitable for 
DAF as, in general, only waters of high colour and low turbidity are ame-
nable to flotation processes.

It is important to be aware that while optimisation of coagulation and 
clarification will maximise the removal of cyanobacteria under given con-
ditions, 100% removal has seldom been reported in the literature. Even in 
the best-case scenario, where optimised removals may be in the range of 
95–99% of cells, the presence of high cell numbers in the source water could 
result in significant cell concentrations remaining after clarification. For 
example, if only 50 000 cells/mL of toxic Microcystis aeruginosa entered 
an optimised treatment plant which achieves 98% removal through alum 
coagulation and sedimentation, the concentration of cells at the end of the 
clarification step could still be of the order of 1000 cells/mL, which (at a cell 
radius of 5 μm) would correspond to a biovolume of 0.5 mm³/L. Although 
the barrier was optimised, this concentration of uncoagulated cells is above 
Alert Level 1 as described in section 5.1.2 for raw water risk. Due to the free-
floating nature of cyanobacteria, this can lead to an accumulation within the 
treatment train, for example, in the clarifier, and a rapid increase in the cell 
number and toxin concentration, as has been described by Zamyadi et al. 
(2012b) and Zamyadi et al. (2013a).

Many plants carry out intermediate chlorination, prior to the filters, for 
manganese removal, or to reduce particle counts in filtered water. In the 
event of cell breakthrough, as described above, this practice should be either 
terminated or optimised to ensure the oxidation of cells and released toxins.

Filtration is usually employed immediately after the coagulation and 
clarification process. A variety of granular media are used in these filters, 
including sand, anthracite, coal and activated carbon. Although filtra-
tion is effective in the removal of cyanobacteria associated with flocs, 
individual cells and/or filaments are not always removed, resulting in 
breakthrough of cells into the filtered water. Different genera of cyano-
bacteria may also respond differently to granular filtration: Zamyadi et al. 
(2013b) reported poor coagulation and a significant breakthrough of 
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Aphanizomenon cells after filtration, while the removal was effective for 
Microcystis, Anabaena and Pseudanabaena in the same plant. Dugan and 
Williams (2006) evaluated the efficiency of downflow in-line filtration 
(coagulation followed by direct filtration) in the removal of cyanobacteria 
cells after abrupt increases in hydraulic loading rates. They observed a 
consistent impact of cell morphology on cyanobacteria cell breakthrough 
in all experimental trials, where effluent concentrations of M. aerugi-
nosa (spherical shape) were consistently higher than for Aphanizomenon 
 flosaquae (filamentous).

Sludge management after coagulation

While coagulation and clarification effectively separate the cyanobacteria 
from the treated water, up to 98% of the cell-bound cyanotoxins are con-
sequently concentrated in the sludge, or float in the case of DAF; there-
fore, appropriate handling and disposal of the treatment plant residuals 
can become a challenge. Over a period of time, cell damage and lysis can 
occur in sludge produced by coagulation, releasing cyanotoxins (Drikas 
et al., 2001; Ho et al., 2012a; Zamyadi et al., 2018). This is an issue at long 
sludge detention times in treatment plant clarifiers where milligram concen-
trations of microcystins have been reported (Zamyadi et al., 2012b). When 
cell damage and toxin release from the accumulated sludge occurs during 
the clarification step, this may pose a significant risk if the treatment plant 
has no further barriers for dissolved toxin removal. To control this risk, it is 
therefore important to remove sludge frequently from within the treatment 
train during a toxic cyanobacterial challenge.

Also, more frequent backwashing of filters may be required, particularly 
in direct filtration plants, to prevent floc build-up and subsequent cyano-
toxin release (Ho et al., 2012a), as cyanobacteria contained in flocs within 
the filter medium may lyse and release cell-bound toxins into the filter 
effluent. In particular, backwashing of filters prior to temporary filter shut-
down could reduce the possibility of cyanotoxin release. The authors also 
demonstrated that cyanobacteria appear to be protected within the flocs 
and were not significantly damaged by rigorous backwashing procedures.

Once the sludge and backwash water are removed from the plant, care 
needs to be taken to manage the toxic waste appropriately. This issue has 
been the focus of a number of publications in the international literature 
due to the growing concern about conserving resources and reusing both 
treatment plant solids and supernatant water from the sludge treatment 
facilities (Ho et al., 2012b; Sun et al., 2013; Li et al., 2015; Dreyfus et al., 
2016; Pestana et al., 2016).

The management of cyanobacteria-laden sludge is a complex chal-
lenge potentially multiple biological, chemical and physical processes 
taking place simultaneously in the sludge treatment facility. Some of the 



600 Toxic Cyanobacteria in Water

processes that may occur in sludge lagoons or sludge thickeners include 
(Pestana et al., 2016):

• reduced cell viability, with consequent lysis and metabolite release;
• cell multiplication in the sludge or supernatant;
• possible increase in metabolite production due to stress;
• biological degradation of metabolites;
• physical and chemical processes resulting in a decrease in metabolite 

concentrations.

All of these processes will be dependent on

• type of cyanobacteria and toxin;
• rate of biological and chemical degradation;
• rate of physical loss through adsorption;
• rate of production and release;
• water quality (nutrient levels, pH, DOC etc.);
• temperature.

Dreyfus et al. (2016) and Pestana et al. (2016) reported an unexpected 
additional risk associated with the storage and treatment of cyanobacteria-
impacted sludge: these authors conducted a series of experiments, using 
cultured and environmental cyanobacteria, designed to simulate a sludge 
treatment lagoon. Within the closed systems containing cyanobacteria-
laden sludge and supernatant, they reported an up to 2.8-fold increase 
of total metabolite concentration (MIB [2-methylisoborneol], geosmin 
and cyanotoxin concentration) over a period of 2–7 days. They attributed 
the increase to cell multiplication in the sludge or supernatant, increased 
metabolite production due to stress or a combination of both factors.

The findings of this research and previous literature show that, in a static 
(batch) system

• Cyanobacteria, once captured in the sludge, will generally begin to 
lyse within 0–2 days.

• Some cells will remain viable in the sludge, and the maximum release 
of toxins (indicative of total cell death and lysis) may take up to sev-
eral weeks.

• The toxins released may represent up to 2.8 times the initial mass in 
the closed system.

• The time taken for the biodegradation of the toxins to half the 
observed maximum concentration may be a week or longer, depend-
ing on the toxin and the environmental conditions.

As a result, it is not possible to assess the risk posed by the reuse of sludge 
and sludge supernatant, and the assumption should be that the toxin 
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concentration in the supernatant water may remain high for time spans of 
several weeks rather than days.

10.1.2.2  Membrane filtration

Most cyanobacterial cells and/or filaments or colonies are 2 μm in size or 
larger; therefore, membranes with a pore size smaller than this – such as 
microfiltration (MF) and ultrafiltration (UF) membranes – will remove the 
cells. However, a prior coagulation step is generally used in the application of 
membranes for water treatment, and the presence of cyanobacteria is likely to 
result in a rapid increase in transmembrane pressure (Dixon et al., 2012). The 
risk associated with any filtration process is damage to the cells and release of 
cell-bound toxin, which would not be removed by these membranes. In prac-
tice, some removal of dissolved toxins has been noted by MF and UF; however, 
this is most likely due to the adsorption of the cyanotoxins onto the membrane 
surface, which would decrease significantly with time as the adsorption sites 
are occupied by the toxin molecules (Chow et al., 1997; Dixon et al., 2012).

The extent of any damage to the cells will depend on operating param-
eters such as the flux through the membranes, pressure and the time period 
between backwashes. While some laboratory studies have shown that the 
cells are not damaged during filtration (Chow et al., 1997; Gijsbertsen-
Abrahamse et al., 2006), full-scale data from a submerged UF membrane 
plant in South Australia suggest that the accumulation of floc in the mem-
brane tank leads to metabolite release over time (unpublished data).

10.1.2.3  Assessing the risk of toxin release 

and breakthrough of cyanobacteria 

and cell-bound toxins

Checklist 10.1 outlines information needed to assess how effectively 
 cyanobacterial cells can be removed intact without toxin release by optimis-
ing treatment; the higher the number of affirmative answers, the greater the 
likelihood of successful cyanobacteria removal. Adaptation of processes to 
specific local conditions is useful. Treatment plant operators will typically 
have the expertise and information needed for this assessment.

CHECKLIST 10.1:  COLLECTING INFORMATION 

ON THE EFFICACY OF REMOVAL OF 

CYANOBACTERIA AND CELL-BOUND TOXINS

• Is data from cyanobacteria monitoring in the source water available at 

sufficiently regular time intervals to adapt treatment (e.g., fortnightly or 

weekly during seasons with likely occurrence)?
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• Can pre-oxidation processes be suspended during a cyanobacterial 

bloom until the danger of release of dissolved toxins has passed?

• Are physical barriers optimised (such as coagulation/flocculation or 

membrane filtration) to achieve optimum particle and dissolved organic 

carbon (DOC) removal?

• Are treatment residuals removed rapidly from the system (e.g., is 

sludge removed from clarifiers, are filters backwashed frequently)?

• Are cyanobacterial concentrates isolated from the system (i.e., is 

sludge supernatant return and/or membrane backwash water return 

suspended during blooms)?

• Has the system been validated through measuring cyanotoxin concen-

trations after each of the steps in the treatment train during phases in 

which it is challenged with bloom material?

10.2  TREATMENT OPTIONS 

FOR DISSOLVED CYANOTOXINS

Despite the measures described above, a breakthrough of cyanobacterial 
toxins from the initial treatment steps cannot be avoided in all cases, and a 
treatment for the removal of dissolved cyanotoxins needs to be considered 
when planning operations.

Dissolved cyanotoxins can be removed using a range of treatment pro-
cesses. As the effectiveness of each process depends on the raw water quality 
and the concentration and type of the cyanotoxins, a multibarrier approach 
is important for reliable removal.

Three main categories of treatment can be applied for the removal of dis-
solved cyanotoxins: physical, chemical and biological processes. Physical pro-
cesses include adsorption and membrane filtration; chemical processes include 
oxidation by chlorine, ozone or other oxidants; and biological processes 
employ microorganisms fixed in biofilms, particularly on sand or other media 
used for filtration (rapid or slow), on granular activated carbon (GAC), or on 
sediment particles in slow sand filtration or bank filtration (see Chapter 8).

10.2.1  Physical processes

10.2.1.1  Adsorption

Powdered activated carbon

Powdered activated carbon (PAC) is a fine carbonaceous adsorbent with 
a high surface area (typically 800–1200 m2/g) that can effectively remove 
a range of organic contaminants from water. As a treatment for dissolved 
cyanotoxins, it has the advantage that it can be dosed only when required, 
and at a range of concentrations. The most effective point for the addition 
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of PAC is prior to coagulation to allow a contact time where the adsorbent 
is well dispersed and mixed before it is removed during the coagulation 
 process. If this is not possible, PAC may be added with, or after, the coagu-
lant and it will still achieve some removal.

There are many PACs commercially available; they vary in their prop-
erties according to the raw material from which they are produced (e.g., 
coal/anthracite, coconut shell or wood) and their mode and extent of 
activation. They will also vary in terms of effectiveness and cost. Other 
important things to note are that individual toxin variants will adsorb to 
different extents; for example, for MCs, the order of removal efficiency 
is MC-RR>MC-YR>MC-LR>MC-LA (Newcombe et al., 2003; He et al., 
2017), and the efficiency of a particular carbon for a particular toxin will 
depend on the number and size of the adsorption sites, or pores, in the PAC. 
In addition, other DOC components compete for adsorption sites and will 
reduce the removal of cyanotoxins (Figure 10.1).
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Figure 10.1  Examples of the effect of different factors in the application of PAC on cya-
notoxin removal effectiveness. Coal – coal-based PAC; wood – wood-based 
PAC; water 1 – DOC = 10 mg/L; water 2 – DOC=5 mg/L. (a) Effect of toxin, 
PAC, DOC and dose; (b) Effect of DOC, PAC and dose; (c) Effect of PAC 
and MC variant; (d) Effect of MC variant, DOC and contact time. (Adapted 
from Newcombe & Nicholson, 2004; Cook & Newcombe, 2008; and Ho et 
al., 2008; Ho et al., 2011; with unpublished data.)
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In summary, the major factors controlling the removal efficiency of cya-
notoxins by PAC are as follows:

• type of cyanotoxin;
• type of PAC (raw material, manufacturing method, particle size);
• PAC dose;
• point of application;
• contact times;
• DOC concentration and characteristics.

Figure 10.1a–d demonstrates the significant differences in removals that are 
observed as a result of these factors – removal can range between 10% and 
close to 100% between cyanotoxins and the type of PAC that is used.

Table 10.2 presents a summary of some of the literature related to the 
application of PAC for the removal of cyanotoxins. Only very limited data 
are available for anatoxin-a (Vlad et al., 2014). As there is such a variety 
of factors influencing the effective application of PAC and the factors men-
tioned above will vary between water supplies, the information given in 
Figure 10.1 and Table 10.2 can only serve as a starting point for assessing 
which type of powdered activated carbon (PAC) to use in a given water sup-
ply system challenged by toxic cyanobacterial blooms.

Therefore, it is important to undertake testing to identify the most effec-
tive PAC for each treatment plant. Some simple processes for PAC testing 
are described by Newcombe et al. (2010). Another valuable resource to 
facilitate the appropriate choice of PAC and estimation of dose require-
ments at a particular site is the American Water Works Association’s 
(AWWA) “PAC Calculator for Cyanotoxin Removal and Cyanotoxin Jar 
Testing Protocols”. This tool can be downloaded from the AWWA web-
site (http://www.awwa.org/resources-tools/water-knowledge/cyanotoxins.
aspx; a login and password are required).

Granular activated carbon (GAC)

GAC has a larger particle size than powdered activated carbon (PAC) and is 
employed either as a filter medium, in place of conventional rapid filtration 
media, or, more commonly, as a final polishing step.

New (virgin) GAC is extremely effective for the removal of microcys-
tins, saxitoxins and anatoxin-a (UKWIR, 1996; Newcombe et al., 2003; 
Ho & Newcombe, 2007; Capelo-Neto & Buarque, 2016); however, 
continuous adsorption of DOC (DOC preloading) reduces the adsorp-
tion capacity of a GAC filter for cyanotoxins and consequently reduces 
its operational lifetime. For example, virgin GAC removes cyanotoxins 
to below the detection limit in most cases, while after several months 
of operation, significant breakthrough usually occurs (Craig & Bailey, 

http://www.awwa.org
http://www.awwa.org
http://www.awwa.org/resources-tools/water-knowledge/cyanotoxins.aspx
http://www.awwa.org/resources-tools/water-knowledge/cyanotoxins.aspx
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1995; Ho & Newcombe, 2007). Where no breakthrough is observed 
after 6 months’ operation, the removal has been attributed to a combi-
nation of adsorption and biodegradation by biofilms established on the 
filter (UKWIR, 1996; Wang et al., 2007). There is an abundance of lit-
erature describing methods that may be used for the prediction of the 
lifetime of GAC filters for the removal of organic contaminants (e.g., 
Capelo-Neto & Buarque, 2016; Kennedy et al., 2017). In practice, it is 
very difficult to predict when the GAC filter may no longer provide a suf-
ficient barrier for dissolved cyanotoxins. Therefore, it is recommended 
that if GAC is a major barrier within the plant, it is tested on a regular 
basis to demonstrate that it will be effective in the event of a toxin chal-
lenge. This can be accomplished by

 1. full-scale investigative sampling through the plant during a cyano-
toxin challenge (see section 9.7) and/or by

 2. laboratory testing, accomplished through small-scale column trials 
with plant water spiked with the cyanotoxin(s) of interest (Sawade 
et al., 2012).

Laboratory testing also helps to determine whether any of the removal is 
due to biological degradation on the GAC. This can inform the operation 
of the filter; for example, if the majority of the removal is due to biological 
activity, the filter should be maintained as a biofilter (no disinfectant in the 
backwash water or influent to the filter) and the replacement of the GAC 
can be postponed.

The removal of cyanotoxins is also affected by the flow rate through 
the filter, in particular the empty bed contact time (EBCT, the length of 
time it takes for the volume of water equivalent to the filter volume to pass 
through). The longer the contact time, the more effective the removal, with 
an EBCT of 10–15 min considered to be optimal.

The major influences on the effectiveness of GAC for the removal of 
 toxins are as follows:

• type of GAC;
• length of time since commissioning (dissolved organic carbon [DOC] 

loading time);
• EBCT;
• biological activity resulting in biodegradation.

Ozone can be used as a pretreatment step to granular activated carbon 
(GAC). The combined process is extremely effective as cyanotoxins are sus-
ceptible to ozonation (see following sections) and the GAC can remove any 
oxidation by-products that are formed.
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Other adsorbents

While activated carbon is the most common adsorbent in use for the removal 
of cyanotoxins, the potential of novel adsorbents to remove cyanotoxins – 
in particular for the removal of microcystins – is the focus of a significant 
body of research. Table 10.3 summarises some of the findings for a range of 
studies on the adsorption of MC-LR onto these materials.

10.2.1.2  Membrane filtration

Membranes such as microfiltration (MF) and ultrafiltration (UF) have a pore 
range larger than the size of cyanotoxin molecules in solution so they are not 
an effective measure for the removal of dissolved cyanotoxins. Pore sizes of 
nanofiltration (NF) and reverse osmosis (RO) membranes do span the size of 
the cyanotoxin molecules; however, the rejection of the various toxins by these 
membranes is dependent on the molecular weight cut-off (MWCO) and the 
surface chemistry of the membrane as well as the relationship between these 
factors and the size and chemical characteristics (such as polarity, charge and 
hydrophilicity) of the toxins. That is, some NF or RO membranes will be 
effective, but others may be only partially effective for particular cyanotoxins 
(Gijsbertsen-Abrahamse et al., 2006; Teixeira & Rosa, 2006b; Dixon et al., 
2012). In summary, it is expected that dissolved toxins would be rejected by 
RO membranes and NF membranes with a pore size distribution in the lower 
range in most cases. However, some membranes may allow smaller toxin 
molecules, like anatoxin-a, to permeate the membrane.

Table 10.3  Adsorption capacities of novel adsorbents for the adsorption of MC-LR

Adsorbent Capacity (mg/g) Reference

Activated carbon fibres 17.0 Pyo & Moon (2005)

Iron oxide nanoparticles 0.7 Lee & Walker (2011)

Magnetic macroporous silica 3.3 × 10−3 Liu et al. (2010)

Fe3O4@CSNT 0.5 Chen et al. (2009)

Magnetic core mesoporous shell 20.0 Deng et al. (2008)

Microgel-Fe(III) 164.5 Dai et al. (2012)

HP20 resin 3.3 Zhao et al. (2013)

Peat 0.3 Sathishkumar et al. (2010)

Fe3O4@Al-B 161.3 Lian et al. (2014)

Graphene oxide 1.7 Pavagadhi et al. (2013)

Magnetophoretic polypyrrole nanoparticles 160 Hena et al. (2016)

KOH-activated semicoke 8430 Chen et al. (2015)

HNO3-activated semicoke 4276

PAM/SA-MMT a 32.7 Wang et al. (2015)

Source: Adapted from Lian et al. (2014).

a Polyacrylamide/sodium alginate montmorillonite.
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10.2.2  Chemical processes

10.2.2.1  Chlorine

Chlorine has been demonstrated to be an effective oxidant for the destruc-
tion of microcystins, saxitoxins and cylindrospermopsin (e.g., Senogles 
et al., 2000; Acero et al., 2005; Merel et al., 2010), but not for anatoxin-a 
(Carlile, 1994; Rodriguez et al., 2007b).

The doses required for oxidation of the toxins to below the treatment 
goal, or the relevant guideline or regulatory value, depend on the conditions 
at the point of chlorination, which are as follows:

• DOC concentration and characteristics;
• the concentration of any other contaminant that may exert a chlorine 

demand such as ammonium, iron and manganese;
• reaction time and residual chlorine concentration;
• temperature;
• pH.

The most important criterion for the successful chlorination of toxins is the 
application of the dose required to overcome the chlorine demand and have 
sufficient residual chlorine to allow effective oxidation to occur. As this will 
vary depending on the chemical water characteristics, it is useful to use the 
concept of chlorine exposure, or CT, the chlorine concentration integrated 
over the reaction time, given in units of (mg × min)/L.

The pH has a significant effect on the reaction of chlorine with cyanotox-
ins as hypochlorous acid (HOCl) is a stronger oxidant than the hypochlorite 
ion (ClO−), which is the major species of chlorine present at pH values above 
7.5. In addition, pH can affect the degree of protonation of cyanotoxins, 
which may in turn affect their reactivity (Ho et al., 2006). The effect of pH 
on the chlorination of toxins is most likely a combination of both factors.

Table 10.4 summarises some of the literature relating to the chlorina-
tion of cyanotoxins under specific conditions. Anatoxin-a is not included 
as chlorination would not be recommended as a barrier for this cyanotoxin 
(Carlile, 1994; Rodríguez et al., 2007).

In summary, the susceptibility of individual microcystin congeners to 
chlorination was found to be (Ho et al., 2006):

MC-YR > MC-RR > MC-LR > MC-LA

and that of the most common cyanotoxins (Rodríguez et al., 2007):

CYN > MC-LR ≫ ATX.

It is important to note that the CT values and toxin oxidation values given in 
Table 10.4 are based on laboratory experiments only. It is recommended that 
caution be applied when considering chlorine as a major barrier, as the limited 
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Table 10.4  Contact time (CT) values for chlorination of cyanotoxins (mg min/L) (d)-Cl2 
dose mg/L

pH pH pH 
6–6.9 7–7.9 8–8.9

Toxin, water quality
CT values for 95–100% oxidation Reference

MC-LR Reagent water 10 °C 47 68 187 Acero et al. (2005)

MC-LR Reagent water 20 °C 35 51 140

MC-LR Reagent water 10 °C 46 220 Xagoraraki et al. (2006)

CYN DOC = 0 30 Senogles et al. (2000)

CYN, DOC = 3.0/4.1 2,2 Ho et al. (2008)

CYN, DOC = 5 1.5 (d) a Rodriguez et al. (2007c)

SXTeq DOC=2.7 20 20 Ho et al. (2009)

CT values for 90-95% oxidation

MC-LR Reagent water 10 °C 27 40 110 Acero et al. (2005)

MC-LR Reagent water 20 °C 21 30 82

MC-LR, DOC = 2.9 20 Ho et al. (2006)

MC-YR, DOC = 2.9 <1

MC-YR, DOC = 5.0 1

MC-RR, DOC = 2.9 7

MC-RR, DOC = 5.0 3

CYN, DOC = 3.6 1(d) b Rodríguez et al. (2007)

CT values for 75–90% oxidation

MC-LR, coagulated water, 12 °C 65 Xagoraraki et al. (2006)

SXTeq DOC = 5.1 20 20 Ho et al. (2009)

CT values for 50–75% oxidation

MC-LR, DOC = 5.0 4 Ho et al. (2006)

MC-YR, DOC = 5.0 <1

MC-LA, DOC = 2.9 15

MC-LA, DOC = 5.0 4

MC-LR, DOC = 3.6 2(d) Rodríguez et al. (2007)

CYN, DOC = 3.6 0.8(d) b

MC-LR Reagent water 11 °C 11 51 Xagoraraki et al. (2006)

a Cl2 demand met.
b Cl2 demand not met.

literature describing full-scale chlorination of cyanotoxins suggests that these 
CT values may not be sufficient to achieve the desired results in the presence 
of a natural bloom (Zamyadi et al., 2012b; Mohamed et al., 2015; Mohamed, 
2016). A potential issue with applying laboratory-based chlorination results to 
the full scale was outlined by Acero et al. (2005). These authors reported CT 
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values for the oxidation of microcystins in batch experiments representing an 
ideal plug-flow reactor (PFR). Chlorination at the full scale does not take place 
under ideal flow conditions, and the authors suggested it would be better rep-
resented by a hybrid PFR and completely stirred tank reactor (CSTR) model. 
They described the two types of reactors as the most and least effective, respec-
tively, and as a result, the laboratory-based experiments may underestimate the 
actual required CT by up to an order of magnitude (Acero et al., 2005).

Based on guidelines presented by the US EPA (US EPA, 2010), Stanford et al. 
(2016) also discussed the effect of nonideal conditions that may influence the 
application of oxidation data obtained from an ideal configuration and calcu-
lated the effect on percent oxidation of MC-LR by chlorine. They determined 
that the effective CT in the nonideal situation could be about one-third of that 
in an ideal reactor, and the removal of MC-LR could be approximately half 
the expected value. Therefore, it is recommended that CT values substantially 
higher than those suggested by laboratory data be applied at the full scale.

It is also important to note that the efficiency of chlorination is depen-
dent on the chemical characteristics of the water at the chlorination point; 
for example, turbidity in filtered water > 0.3 nephelometric turbidity units 
(NTU) could not only be an indicator of reduced filtration efficiency but 
also may reduce the effective chlorine CT for both toxin oxidation and 
disinfection (WHO, 2017).

10.2.2.2  Ozone

Ozone has been found to be a very effective oxidant for the destruction of 
dissolved cyanotoxins provided a residual is present (Rositano et al., 2001; 
Shawwa & Smith, 2001). Rodríguez et al. (2007) showed ozone to be effec-
tive for the elimination of a range of cyanotoxins and determined that the 
order of ease of oxidation followed the trend: MC-LR > CYN > ATX, while 
Rositano et al. (2001) reported a trend of MC-LR and MC-LA > ATX >STX.

As with chlorine, the doses required for ozonation of the toxins to below 
the treatment target, guideline value or regulation depend on the conditions 
at the point of ozonation, which are as follows:

• dissolved organic carbon (DOC) concentration and characteristics;
• reaction time and ozone concentration;
• temperature;
• pH.

In the case of ozone, other water quality parameters like alkalinity may 
also play a role as the carbonate ion can act as an inhibitor of the reaction 
by scavenging the hydroxyl radical, the major reactant for the oxidation of 
organic micropollutants by ozone (Ho et al., 2004).

Table 10.5 summarises some of the literature relating to the ozonation of 
cyanotoxins under specific conditions.
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10.2.2.3  Other oxidants

Chloramine and chlorine dioxide have been shown to be ineffective oxi-
dants for cyanotoxins at CT values normally used in water treatment opera-
tions (Rodríguez et al., 2007; Ho et al., 2010).

Potassium permanganate has been reported to oxidise microcystins, ana-
toxin-a and cylindrospermopsin (Carlile, 1994; Rodriguez et al., 2007a; 
Rodríguez et al., 2007; Rodriguez et al., 2007b) showed slightly higher per-
manganate reactivity with MC-RR and MC-YR compared to MC-LR. This 
is in agreement with the order of oxidation of the microcystins by chlo-
rine (MC-YR > MC-RR > MC-LR > MC-LA) reported by Ho et al. (2006). 
Although the dose required will be dependent on water chemistry, most 
studies found a dose of 1–2 mg/L to be very effective.

Table 10.5 summarises some of the literature relating to the use of the 
more common alternative oxidants for the oxidation of cyanotoxins under 
specific conditions.

Stanford et al. (2016) describe a tool designed to aid in the application of 
chlorine, monochlorine, ozone, chlorine dioxide and potassium permanga-
nate for the oxidation of dissolved cyanotoxins (Hazen–Adams Cyanotoxin 
Tool for Oxidation Kinetics, CyanoTOX). This tool can be downloaded from 
the website of the American Water Works Association (AWWA, 2019). This 
tool is based on user-defined oxidant decay curves and desired final toxin 
concentrations, and nonideal plug flow is taken into account by the use of 
the baffling factor suggested by the US EPA for disinfection (US EPA, 2010).

In general, UV irradiation, as applied for disinfection of drinking-water, can-
not be regarded as a practical method for an effective toxin removal. However, 
the combination of UV irradiation and catalysts such as hydrogen peroxide and 
titanium dioxide can be very effective for the destruction of dissolved toxins. 
These processes, and others that rely on the formation of hydroxyl radicals for 
the oxidation of chemical contaminants, are referred to as advanced oxidation 
processes (AOPs). A range of AOPs has been the focus of more recent research. 
In most cases, oxidation is very effective, but each process depends on the type 
and concentration of the catalyst, the chemical characteristics of the water and 
the type of toxin. The application of these processes is therefore very site and 
process specific. Table 10.6 presents some of the advanced oxidation techniques 
that have been studied for the destruction of cyanotoxins.

Although advanced oxidation techniques have been shown to be 
extremely effective at the laboratory scale, their use is very limited at the 
full scale; therefore, validation as an effective barrier to cyanotoxins is not 
possible at the time of the publication of this book. One example of AOP 
application at the full scale is the dosing of hydrogen peroxide or chlorine 
prior to UV disinfection. As UV irradiation is becoming more common in 
drinking-water treatment plants as an effective barrier against pathogens, 
a cost-effective option for some water utilities could be to provide an AOP 
barrier for organic micropollutants. As technology and cost-effectiveness 
improves, these processes may become more widespread.
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10.2.2.4  By-product formation

Chemical oxidation of organic compounds may form a range of by-prod-
ucts. In practice, when the oxidation of cyanotoxins takes place, a com-
plex mixture of other organic compounds, such as DOC or natural organic 
matter (NOM), is also present (particularly in bloom situations) and will 
be oxidised simultaneously. As a consequence, many different types of by-
products will be formed, some of which may be potentially harmful at high 
concentrations. In fact, many by-products of oxidation of NOM are cur-
rently unknown, so identifying the individual by-products of cyanotoxin 

Table 10.6  Advanced oxidation processes that have been studied for the destruction  
of cyanotoxins

Toxin Advanced Oxidation Process (AOP) Reference

MC-LR UV/TiO2 Feitz et al. (1999)

MC-LR TiO2/H2O2 Cornish et al. (2000)

CYN UV/TiO2 Senogles et al. (2001)

MC-LR UV/TiO2 Shephard et al. 
(2002)

MC-LR UV/TiO2, UV/TiO2/ H2O2, UV/H2O2 Liu et al. (2002)

MC-LR UV/TiO2 Liu et al. (2003)

MC-LR O3/H2O2, O3 /Fe(II), and Fenton oxidation Al Momani et al. 
(2008)

MC-LR 2−UV/S2O8 Antoniou et al. 
(2010)

MC-LR UV/O3 Liu et al. (2010)

CYN UV/O3 Song et al. (2012)

CYN UV/H2O2 He et al. (2014)

MC-LR, CYN Solar irradiation/TiO2 nanoparticles Pinho et al. (2015)

MCs −UV/H2O2, UV/S2O8
2− and UV/HSO5 He et al. (2015)

MCs Simulated sunlight/H2O2 Huo et al. (2015)

MCs Photoelectrooxidation – electrical current/UV Garcia et al. (2015)

MCs UV/microbubble O3 Zhu et al. (2015)

MC-LR Chlorine/UV Zhang et al. (2016)

MC-LR, CYN Visible-UV/carbon-doped TiO2 Fotiou et al. (2016)

MCs, NOD UV/TiO2-coated glass spheres Pestana et al. (2015)

CYN Ozone/TiO2 Wu et al. (2015)

CYN Anatase–brookite heterojunction  
TiO2/visible-UV

El-Sheikh et al. 
(2017)

MC-LR TiO2-coated carbon electrodes Lobón et al. (2017)

MC-LR Sulphur (S), nitrogen (N), and carbon 
(C)-codoped TiO2 nanoparticles

Zhang et al. (2014)

MC-LR Copper oxide-coated activated carbon Karthikeyan et al. 
(2016)

MCs Cold plasma and UV with TiO2 coating Jiang et al. (2017)
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oxidation separately from those produced from the oxidation of NOM is a 
difficult exercise. It is particularly problematic as other forms of DOC will 
be present at concentrations two or more orders of magnitude higher than 
the cyanotoxins. Table 10.7 presents some of the common disinfection by-
products (DBPs) that have been identified after the oxidation of cyanotoxins 
and/or cyanobacteria.

Table 10.7  Overview of studies on the generation of disinfection by-products (DBPs) 
and changes in toxicity after oxidation of cyanobacterial cells and specific 
cyanotoxins

Presence Reduced 

Toxin/cyanobacteria Oxidant
of NOM 
(Y/N)

“Standard” 
DBPs

toxicity 
(Y/N) Reference

MC-LR, MC-LA, 
NOD

Cl2 Y (AOM) na Y Nicholson  
et al. (1994)

MC-LR, MC-LA O3 Y na Y Brooke  
et al. (2006)

CYN Cl2 Y THMs n.a. Rodriguez  
et al. (2007b)

MC-LR, MC-RR MnO4
-, Cl2 N,Y na Y Rodriguez  

et al. (2008)

AOM from Dol. 
circinale 

Cl2 Y THMs, 
HAAs 
NDMA

n.a. Zamyadi  
et al. (2010)

Diverse taxa Cl2 Y THMs, 
HAAs 
NDMA

n.a. Zamyadi  
et al. (2012a)

Microcystis sp. Cl2 N THMs n.a. Zamyadi  
et al. (2013a)

CYN O3 N na Y Yan  
et al. (2016)

Diverse taxa O3 Y (AOM) THMs, 
HAAs

n.a. Zamyadi  
et al. (2015)

AOM from Aph. 
flosaquae, Ana. 
flosaquae, M. 
aeruginosa

Cl2 Y (AOM) TCM, 
HAAs, 
DCAN, 
TCNM

n.a. Goslan  
et al. (2017)

MC-LR Cl2/UV N na Y Zhang  
et al. (2016)

Microcystis sp. Cl2 Y (AOM) TCM, 
TCNM, 
DCAN, 
1,1,1, TCP, 
1,1 DCP

n.a. Liao  
et al. (2015)

MC-LR, MC-RR Cl2 Y na Y Zong  
et al. (2015)

(Continued )



10 Managing drinking-water treatment 617

Table 10.7 (Continued)  Overview of studies on the generation of disinfection 
by-products (DBPs) and changes in toxicity after oxidation of 
cyanobacterial cells and specific cyanotoxins

Toxin/cyanobacteria Oxidant

Presence 
of NOM 
(Y/N)

“Standard” 
DBPs

Reduced 
toxicity 
(Y/N) Reference

MC-LR H2O2/UV N na Y Zong  
et al. (2015)

CYN Cl2 N na Y Merel  
et al. (2010)

n.a.: not analysed; THM: trihalomethane; HAA: haloacetic acid; NDMA: nitrosodimethylamine; 
TCM: trichloromethane; DCAN: dichloroacetonitrile; TCNM: trichloronitromethane; DCP: 
dichloropropanone; AOM: intracellular (algal) organic material.

An important aspect of oxidation is whether or not it reduces the overall 
toxicity of a bloom. Table 10.7 also summarises some studies addressing 
this issue. Methods of toxicity testing have included mouse bioassay, protein 
phosphatase inhibition, human hepatoma cell line (HepG2), and mitochon-
drial and lysosomal activities measured on Caco-2 cells (see section 14.3.2). 
In all studies, the decrease in the concentration of the toxin due to oxidation 
has resulted in a decrease of toxicity, although these studies did not address 
genotoxicity or carcinogenicity which are also of a concern with DBPs.

Pre-oxidation during a cyanobacterial bloom may increase dissolved 
organic carbon (DOC) due to the release of intracellular organic material 
(IOMs), including cyanotoxins, which may result in increased concentra-
tions of DBPs in the finished water. However, as discussed above, if pre-
oxidation is avoided and cell removal through coagulation and/or filtration 
is optimised, the presence of cyanobacteria in the raw water should not 
result in a substantial increase in DBP formation.

10.2.3  Biological filtration

Biological filtration in drinking-water treatment occurs when a biofilm 
forms on granular filtration media particles such as sand, anthracite, filter 
coal or granular activated carbon (GAC). In the absence of a strong disin-
fectant residual in the inlet to the filters or the backwash water, all filter 
media surfaces will develop a biofilm within weeks to months, depend-
ing on the water quality. Reports in the literature describe very effective 
removal of cyanotoxin by biological filtration.

Microbial degradation during slow sand filtration has been reported to 
be very effective for the removal of microcystins (Grützmacher et al., 2002) 
and cylindrospermopsin (Smith et al., 2008), as has more rapid sand filtra-
tion (Wang et al., 2007; Somdee et al., 2014).

As discussed above in section 10.1, biological degradation of microcys-
tins and anatoxin-a has also been reported in GAC filters (Carlile, 1994; 
Newcombe et al., 2003; Wang et al., 2007). GAC filters offer the advantage 
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of two removal mechanisms, adsorption and biodegradation, and thus are 
an attractive treatment option for an effective cyanotoxin removal.

Biological filtration is not effective for the removal of the saxitoxins, and 
in one study, biological activity on an anthracite filter was shown to convert 
the less toxic variants to more toxic compounds, thus increasing the overall 
toxicity of the filtered water (Kayal et al., 2008).

Although biological filtration can be a very effective barrier, not all bio-
logical filters will remove cyanotoxins. For the removal of cyanotoxins to 
occur on biofilters, the following conditions are essential but not necessar-
ily sufficient for an effective removal:

• Degrading microorganisms are present in the source water.
• They reach the filters.
• They adhere to the biofilm.
• They remain attached in the biofilm in sufficient numbers to accom-

plish an effective biological removal.

The type and abundance of bacteria, water chemistry, upstream treatment 
processes, filter media, filter contact time and hydraulic loading all have a 
major impact on biological filtration processes.

Perhaps the most challenging aspect of biological treatment processes is 
the delay for biodegradation to commence. This is often referred to as the 
lag period or lag phase and has been attributed to the degrading microor-
ganisms “acclimating” or “acclimatising” to the conditions, or the numbers 
of degrading bacteria reaching a critical number after which degradation 
can be detected (see also Chapter 2). A more recent hypothesis is that bac-
teria may share genetic information associated with degradation, and the 
extent of the lag phase may depend on the copies of the genes responsible 
rather than the numbers of degrading bacteria (Ho et al., 2012a). Lag peri-
ods, ranging from days to more than a year, have been reported for some 
cyanotoxin biodegradation (Wang et al., 2007; Smith et al., 2008; Ho et al., 
2012b; Somdee et al., 2014). The lag phase needs to be taken into account 
when planning control measures, as it may be a major hindrance for the 
application of biological filtration processes, particularly for the removal 
of contaminants that occur periodically like cyanotoxins.

In some cases, lag phases can be reduced or eliminated upon re-addition 
of the toxin in the filter influent, as has been shown for cylindrospermopsin 
(Smith et al., 2008) or MC-LR (Rapala et al., 1994; Christoffersen et al., 
2002; Newcombe et al., 2003). As shown for slow sand filters in section 9.2, 
a filter that experiences regular toxin challenges may be more likely to display 
reliable removals with a reduced, or no, lag phase (Ho et al., 2012a).

If biological removal of cyanotoxins through filters within the treatment 
plant cannot be assured at all times, biological filtration may not be a reli-
able treatment barrier for the intermittent presence of cyanotoxins, and 
on-site validation is therefore critically important.
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10.2.3.1  Assessing efficacy of treatment steps in 

eliminating dissolved cyanotoxins

The checklist below outlines the information needed to assess how effectively 
dissolved cyanotoxins can be removed by available treatment processes and 
how these can be optimised. The higher the number of affirmative answers, 
the greater the likelihood of successful cyanotoxin removal. It may be useful 
to adapt this checklist to specific local conditions. More than one of the treat-
ment options addressed is likely to be available at many treatment plants, 
and the more the barriers that are present, the lower the risk of cyanotoxins 
reaching the consumer in critical concentrations. Treatment plant operators 
will typically have the expertise and information needed for this assessment:

CHECKLIST 10.2: COLLECTING INFORMATION ON 

THE EFFICACY DISSOLVED CYANOTOXIN REMOVAL

• Are powdered activated carbon (PAC) dosing facilities in place with

– high-quality PAC, tested for the removal of cyanotoxins?

– process control to achieve a contact time of 30 min, prior to chemi-

cal dosing? Or, if contact time is not available prior to coagulation, 

sufficiently higher PAC doses?

• Are granular activated filters in place with

– good-quality GAC?

– AC that has been tested regularly for an effective toxin removal 

and replaced when required?

– empty bed contact time (EBCT) ≥ 10 min?

• Is ozone applied at a dose sufficient to maintain a residual concentra-

tion of at least 0.3 mg/L of ozone for 10 min?

• Is chlorine applied at a dose sufficient to allow a CT appropriate for the 

raw water quality?

10.3  SUMMARY OF TREATMENT MEASURES 

FOR THE REMOVAL OF CYANOBACTERIA 

AND ASSOCIATED CYANOTOXINS

In summary of the discussion above, the most common, cost-effective and 
reliable treatment processes for removing intra- and extracellular cyanotox-
ins are as follows:

• physical removal of cells, intact and without damage by coagulation 
or membrane filtration processes;

• adsorption of dissolved cyanotoxins onto activated carbon;
• oxidation, in particular using ozone and/or chlorine.
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Table 10.8 presents a summary and an assessment of the main treatment 
measures that can be used for the removal of cyanobacteria and cyanotox-
ins in a water treatment plant.

10.4  AFTER THE WATER TREATMENT PLANT – RISKS 

ASSOCIATED WITH TREATED WATER STORAGE

After an effective treatment, it is important to ensure drinking-water 
remains safe and free of cyanobacterial regrowth. This can be accomplished 
by avoiding open channels and storages where cyanobacteria may prolifer-
ate, and by maintaining sufficient chlorine residual throughout the distribu-
tion system. Box 10.1 describes an incident of cyanobacterial growth in a 
small storage reservoir within a regional drinking-water distribution system.

BOX 10.1: CYANOBACTERIAL BLOOM, 

YORKE PENINSULA DRINKING-WATER 

SUPPLY (SOUTH AUSTRALIA)

In April 2000, a cyanobacterial bloom in a treated water storage within 

the distribution system on the Yorke Peninsula of South Australia led to 

 drinking-water supplied to 15 000 people in 15 towns being declared unsafe 

for 8 days. In addition to permanent residents, the Yorke Peninsula is a 

 popular vacation area for thousands of South Australian residents during 

holiday periods. The incident occurred over the Easter long weekend. 

The incident began on 13–14 April when complaints from residents about 

musty tastes and odours led to the detection of the benthic cyanobacterium 

Phormidium aff. formosum in the Upper Paskeville Reservoir. The reservoir was 

an unroofed shallow 185 mL storage of filtered chloraminated drinking-water. 

The odours were caused by the nontoxic cyanobacterial metabolite 2-methyl 

isoborneol (MIB). The reservoir was taken out of service on 14 April and, 

although Phormidium was regarded as being nontoxic, precautionary testing of 

cell extracts using a mouse bioassay was initiated due to the unique nature of 

the detection. Positive bioassay results were reported on Tuesday 18 April. 

The State Health Department and the water utility (SA Water) immediately 

advised the public not to use the water for drinking and cooking. Free bottled 

water was supplied for all residents and visitors, and bulk water supplies were 

carted to major consumers of water, including local food manufacturers.

A mains flushing programme was commenced and further testing of cell 

extracts was initiated. The testing showed that the toxin was inactivated by 

boiling and chlorination, but not by chloramination. As a result, mains flush-

ing with chloraminated water was replaced with chlorinated water, and the 

public was advised that the water could be used for drinking and cooking after 
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being boiled. The public was given daily updates on the progress of flushing 

through joint media conferences convened by the health department and the 

water utility. Sections of the distribution system were gradually cleared from 

21 April, and the whole system was declared safe on 25 April. 

There was no evidence of any human health impacts caused by the inci-

dent, and a survey of the affected community and local businesses showed 

that actions undertaken by the health department and the water utility were 

supported and effective. Visitor numbers over the Easter long weekend were 

not reduced compared to previous years. Provision of alternative sources of 

drinking-water and the issuing of daily updates were seen as key factors in 

minimising concerns and impacts of the incident. 

Subsequent investigations showed that the toxin was strongly associated with 

cellular material, was barely soluble and was not one of the established cyano-

toxins (microcystin, cylindrospermopsin, anatoxin) or lipopolysaccharide (Baker 

et al., 2001). Oral dosing of mice did not produce evidence of toxicity. A roof 

was installed on the reservoir, and there has been no recurrence of the incident.

10.5  ASSESSING AND REDUCING THE RISK 

OF CYANOTOXIN BREAKTHROUGH IN 

DRINKING-WATER TREATMENT IN THE 

CONTEXT OF A WATER SAFETY PLAN

While optimising processes in the water treatment plant is an important 
measure for minimising the risk of cyanotoxins entering the drinking-water 
system, it is best integrated into the overall Water Safety Plan (WSP) for 
the supply, as introduced in Chapter 6. This includes an assessment of risks 
from cyanotoxins together with those from other hazards potentially chal-
lenging a water supply as well as identifying the critical points/processes 
within the supply chain that prevent occurrence, remove hazards through 
treatment and prevent regrowth in the distribution network. For cyanobac-
teria, this includes preventing toxin release from cells. A further essential 
part of the WSP concept is routine operational monitoring of the critical 
control measures and processes identified during the risk assessment to 
ensure their optimum operation, both in the presence and in the absence 
of a cyanobacteria challenge. Table 10.9 presents examples of some control 
measures that may be implemented in drinking-water treatment and some 
options for routine monitoring of their reliable operation.

A further important element of a WSP is validation of the efficacy of the 
control measures. Box 10.2 shows an example of how this was done for a 
specific water treatment plant. For cyanobacteria and their toxins, this is 
best achieved through investigative sampling when a bloom challenges the 
treatment. The most effective way to verify that the system of control mea-
sures is effective for cyanobacteria and cyanotoxin removal is systematic 
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Table 10.9  Examples of control measures for drinking-water treatment with options 
for monitoring their functioning

Examples of control measures for drinking-water 
treatment Options for monitoring their functioning 

Terminate pre-oxidation measures during 
cyanobacteria bloom

On-line measurement of cyanobacterial 
cell density at intake 
(e.g., fluorometry) 

Inspection of operating records 
to monitor timely termination  
of pre-oxidation

Regular visual inspection of waterbody 
at the raw water intake

Ensure a sufficient supply of the most 
effective PAC available for immediate use 
if required

Check PAC batches delivered for 
compliance to specification 

Check sufficient PAC available on site 
at the beginning of the cyanobacteria 
high-risk period 

Determine approximate PAC dose based on 
toxin concentrations or maximum expected 
toxin concentrations estimated from 3 μg 
toxin per mm³ biovolume or 1 μg toxin per 
μg chlorophyll-a (see Chapter 5)

Monitor intake cell numbers
Record plant flow; inspect records 
of PAC dosing

Optimise coagulation for the removal of colour 
and turbidity

Record turbidity on-line and define 
corrective action if threshold level 
is exceeded

Maintain GAC contact time at ≥ 10 min
Replace GAC when required to ensure 
cyanotoxin removal

Monitor GAC filter loading rates and 
verify that they result in a sufficient 
contact time for cyanotoxin removal

Periodically test GAC for toxin 
removal a

Maintain ozone dose to produce a residual 
of ≥ 0.3 mg/L for a contact time ≥ 5 min

Record ozone concentration online 
at the outlet of this treatment step

Increase chlorine dose to produce a CT 
of ≥ 100 mg min/L 

Record chlorine concentration on-line 
at the outlet of this treatment step

a Laboratory column testing of GAC can be used as an indication of the removals to be expected 
in the full scale. If this includes comparison with a sterilised sample, additional removal due to bio-
logical activity can be identified.

investigative sampling through the treatment plant during a bloom. The list 
below presents some examples of important measures to ensure the results 
are representative of the actual treatment process efficiencies. Note that this 
list is not comprehensive and needs to be adapted to the specific steps of the 
given treatment train:

• Develop a sampling procedure that identifies sampling points and 
describes sampling and sample handling practices.

• Have sampling packs (sampling procedure, sample bottles, filters, a 
template to record sample names and numbers, dates and times) ready 
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and several staff members trained so the response to a challenge can 
be immediate.

• Measure both total and dissolved toxins at the inlet to the plant to 
investigate the removal efficiency for each fraction.

• To quantify the efficacy of each step in the treatment train, realise that 
concentrations in the raw water can vary rapidly; therefore, prepare a 
list or table of the time each slug of water resides in a unit of the treat-
ment process, and take each subsequent sample to quantify removals 
(or release) after the appropriate time lapse, equivalent to the deten-
tion time in the respective unit of the process, to ensure the results 
represent, as close as possible, the same slug of water.

• When powdered activated carbon (PAC) is used, take sample to deter-
mine the effectiveness for the removal of dissolved metabolites. As 
PAC is effective only while in suspension, samples should be taken 
prior to the sedimentation step.

• Samples taken after PAC dosing should be immediately filtered as the 
PAC may continue to adsorb metabolites over time and will thus give 
an inaccurate indication of plant performance.

BOX 10.2: CASE STUDY: A SYSTEM RISK 

ASSESSMENT FOR CYANOTOXIN CONTROL 

When a water utility began to experience customer complaints due to 

earthy/musty tastes and odours caused by a cyanobacterial bloom in the 

raw water supply, water quality managers and plant operators realised 

there was also a potential risk of breakthrough of cyanotoxins into the 

drinking-water. While waiting for results of toxin analysis, they under-

took an assessment of the barriers in place in the treatment plant for the 

removal of cyanobacterial cells and their metabolites as well as actions to 

minimise the risks of cyanotoxin breakthrough. The process took place in 

three steps:

• Identify: Identification of all of the points of potential control and risk;

• Assess: Assessment of the critical points of control and risk;

• Optimise: Optimisation of the control measures and minimisation of 

the risks.

After these steps had been completed, a verification process was undertaken 

to ensure the control measures were functioning as expected.
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STEP1: IDENTIFICATION OF POINTS OF 

POTENTIAL CONTROL AND RISK

A schematic of the plant (see figure) was drafted to aid in the identification of 

points within the plant that might be either helping to control, or contributing 

to, the problem of toxin (or more general, metabolite) breakthrough into the 

distribution system.

The following points of potential control and risk were identified:

A – Cell breakup in pumps could cause the release of dissolved metabo-

lites. Return of sludge supernatant could be contributing to the metab-

olite load within the plant.

B – Cell breakup in mixing chambers/flocculation bays could cause the 

release of dissolved metabolites.
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C – PAC, the only barrier to dissolved metabolites, was added shortly 

after the coagulant, alum, resulting in an immediate capture in the floc. 

The effectiveness of the PAC had not been verified and was unknown 

at this stage.

D – Coagulation of cells should result in a significant removal of the 

metabolites bound within intact cells. However, coagulation resulted in 

a rapid pH change (7.5–8 to 6.5), and the question as to whether this 

rapid change in pH could damage cells was identified as an uncertainty 

to resolve.

E – The sedimentation tanks were large, with a sludge detention time of up 

to several days. A risk of toxin release was identified if the cyanobacte-

ria captured in the sludge lysed. There was also a risk of an accumula-

tion of any un-coagulated cyanobacteria in these basins.

F – Cell carry-over to the chlorination point prior to filters: if a removal 

of approximately 95% of cyanobacteria is expected, this could result 

in considerable cell carry-over (in absolute numbers) to the post-sedi-

mentation chlorination point, with the subsequent release of metabo-

lites prior to filtration.

G – Metabolite release may occur if some cells or flocs are retained in the 

filters.

H – Monochloramine was not a barrier for cyanotoxins. The current disin-

fection regime did not achieve an adequate free chlorine CT.

STEP 2: ASSESSMENT OF THE CRITICAL 

POINTS OF CONTROL AND RISK

Controls: This plant had three potential barriers to cyanotoxins:

• PAC application;

• coagulation;

• chlorination. 

Risks: Using operator knowledge and previous monitoring, the three major 

risks were identified as follows:

• recycled sludge supernatant entering the plant inlet;

• cell lysis in the sedimentation tanks;

• accumulation of toxic cyanobacteria on the surface of the sedimenta-

tion tanks.
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STEP 3: OPTIMISATION OF THE CONTROL 

MEASURES AND MINIMISATION OF THE RISKS

Controls: 

• Coagulation at the plant was well managed, and the regular on-line 

monitoring of turbidity to optimise the coagulation process was con-

sidered to be sufficient for the optimisation of cell removal. pH was 

monitored closely to ensure it remained above 6.5.

• PAC was an expensive control method, and little was known regarding 

its effectiveness within the plant. As an interim measure, the dose was 

increased to the highest practicable within the plant until toxin analysis 

results were received. 

• The disinfection process was modified temporarily to ensure a chlo-

rine CT. The chlorine dose prior to the filters was increased, and the 

final chlorine dose was reduced. Although the CT remained below 20 

mg × min/L due to engineering constraints, it was considered a more 

effective barrier than the previous process of chloramination.

Risks: 

• Supernatant recycling was terminated until the risk could be quantified 

by toxin analysis.

• Sludge removal from the sedimentation basin was increased in fre-

quency to ensure a sludge detention time of < 1 day.

• Visual monitoring of the surface of the sedimentation tanks was under-

taken by the operator twice daily to allow the rapid identification of any 

accumulation of cyanobacteria on the surface. A portable pump that 

could be used to remove any cyanobacterial accumulation to waste was 

on stand-by if required.

Longer-term investigations and operational changes were undertaken to 

reduce future cyanotoxin risk using the findings of the system risk assessment.

LABORATORY STUDIES

Powdered activated carbon (PAC) testing was undertaken to determine

• the most effective PAC available on the market;

• expected metabolite removals under plant conditions;

• optimum dosing location and concentration of PAC.



628 Toxic Cyanobacteria in Water

Chlorination testing was undertaken to determine

• necessary CT values for the elimination of a range of toxins that could 

potentially challenge the water treatment plant;

• the appropriate configuration of the disinfection process to ensure a 

sufficient CT as well as an effective monochloramine production.

INFRASTRUCTURE MODIFICATION

• A PAC precoagulation contact tank was installed to ensure the opti-

mum value from the adsorbent.

• A change in the disinfection regime was implemented to ensure a chlo-

rine CT of at least 100 mg × min/L prior to ammonium addition. 

PROCESS AND SYSTEM MODIFICATION

• A cyanotoxin response plan was developed by operators and water 

quality managers, and implemented at the plant.

Investigative sampling was undertaken on a regular basis to verify control 

measures were optimised.

IN-PLANT VERIFICATION OF THE EFFICIENCY 

OF THE CONTROL MEASURES

After the measures described above were put in place, the operators under-

took a systematic investigative sampling through the plant to verify that each 

treatment step and control point was functioning to minimise the risk of cya-

notoxin breakthrough into the distribution system. Duplicate samples were 

taken at each of the points A–H identified (see figure) for both total and dis-

solved metabolites to determine the removal of cells and cyanotoxins. 

The results provided some useful insights into the efficiency of the control 

measures in place at the plant:

• Toxic Microcystis was present in the raw water. Microcystin-LR concen-

tration was 3–5 μg/L, of which 75% was intracellular.

• PAC reduced the dissolved toxin by approximately 20%.

• Coagulation reduced the intracellular toxins to below detection.

• No increase in dissolved toxin was detected in the sedimentation basin.

• The available free chlorine CT reduced the dissolved toxin to the below 

detection limit.

No toxin was detected in the sludge treatment supernatant so recycling was 

reintroduced.
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Note that taste and odour episodes caused by methylisoborneol (MIB) 
and/or geosmin do not necessarily indicate the presence of cyanotoxins; 
however, they may be more common than toxic blooms in the raw water 
source (see also section 2.9). Levels of MIB or geosmin can be measured 
through the plant using the procedure described above. These compounds 
will respond differently to the activated carbon and oxidation steps. 
However, for assessing the efficacy of some treatment steps, they can be 
used as a surrogate, for example, as an indicator of removals through coag-
ulation, damage to cyanobacteria and release of metabolites.

A Water Safety Plan (WSP) supports day-to-day operations under nor-
mal circumstances, which may include “normal” amounts of cyanobacte-
ria in the raw water. Heavy blooms may require additional control, and 
it is important to develop an emergency response plan that is integrated 
within the WSP framework for timely and effective responses, as discussed 
in Chapter 15. It is important that the staff of a treatment plant is familiar 
with both the WSP and the integrated emergency response plan. Audits are 
useful for this purpose and should include interviews with staff to check 
their familiarity with these plans and, for example, whether training exer-
cises of responses to bloom events are periodically conducted.

10.6  ACHIEVEMENT OF CYANOTOXIN 

GUIDELINE VALUES

Clearly, the ultimate objective of the application of treatment measures 
for the control of cyanobacteria and cyanotoxins is the provision of safe 
 drinking-water. For the cyanotoxins, this means achieving the provisional 
WHO guideline values of 1 μg/L for MC-LR and 0.7 μg/L for CYN – or for 
transient short episodes, at least the short-term guideline values for these 
toxins or the health-based reference value for ATX and the acute value for 
STX given in Table 5.1 (Note that while the provisional guideline values for 
MCs are given for MC-LR, the recommendation is to apply them to the sum 
of all MCs). As emphasised throughout this chapter, the removal achieved, 
and therefore the ability to achieve the guideline values, is strongly affected 
by site-specific conditions and therefore requires laboratory testing, moni-
toring of treatment processes and validation of treatment steps.

Once the effectiveness of treatment process is determined, it is possible to 
calculate the maximum tolerable concentrations (MTCs) of cyanobacteria 
and cyanotoxins in the raw water that can be controlled by the existing 
treatment measures to ensure the production of safe drinking-water. The 
calculation proposed by Schmidt et al. (2002) is:

GV
MTC =

 1− η  
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where GV is the guideline value and η is the achievable fraction removal for 
dissolved or cell-bound cyanotoxins.

For example, for CYN with GV = 0.7 μg/L, for a plant with powdered 
activated carbon (PAC) achieving 70% CYN removal, the MTC of dis-
solved CYN in the raw water would be 0.7/0.3 = 2.3 μg/L (in face of the 
barriers in place in this given plant).

The application of the concept of MTC to cell-bound toxins requires a 
measure for the toxin content per cell, or cell quota. This can be determined 
locally by cell counts via microscopy (see section 13.3) and analysing cell-
bound microcystin concentrations (see Chapter 14). In Chapter 2, Table 2.3 
presents some literature values for MC content per cell ranging from 5 to 
553 fg/cell with an average of 115 fg/cell (= 115 × 10−9 μg/cell). This range of 
variation is wide, and furthermore, published cell quota are largely limited 
to Microcystis. Operators of a treatment plant therefore best periodically 
determine the cell quota of the cyanobacteria currently present during a 
bloom. Using a cell quota of 115 fg/cell for intracellular MC, the guideline 
value is reached by a cell concentration (cell equivalent) of:

μg
1

L cells cells
Cell equivalent = = =8695652 8696μ

115 × 10−9 g L mL
 cell

If we estimate the cell removal by coagulation, η, at 90%, a conservative 
estimate of the MTC in cells/mL is given by

cells
8696

mL cells
MTC = = 86957

 0.10 mL  

A similar calculation for the minimum and maximum values for cell quo-
tas given above amounts to MTCs of 20 000/0.1 = 200 000 cells/mL and 
1808/0.1 = 18 080 cells/mL, respectively. Therefore, these calculations indi-
cate that a treatment plant achieving 90% removal of cell-bound toxin 
through coagulation can achieve the guideline value of MC-LR through 
this one treatment step when challenged by concentrations between 18 080 
cells/mL (minimum MTC) and 200 000 cells/mL (maximum MTC), pro-
vided the cell quota for microcystins is in the range given above.

In practice, both dissolved and cell-bound toxins will be present in raw 
water, and most treatment plants will have multiple barriers in place. A 
simple spreadsheet calculator as described by Zamyadi et al. (2018) sup-
ports these calculations. Cumulative removals of both dissolved and cell-
bound toxins can then be taken into account when calculating the MTCs 
for individual treatment plants.
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As these estimates indicate, guideline values should be achievable in 
an optimised treatment plant with multiple barriers in place where toxin 
removals are cumulative, under moderate conditions of cyanobacterial 
challenge. Calculations are best undertaken on a site-by-site basis as an 
important element of a cyanotoxin management plan (best developed as 
part of a Water Safety Plan [WSP]; see above). Furthermore, while esti-
mates like those given by these calculations serve as point of departure, 
where mitigating cyanobacterial occurrence in the raw water is not success-
ful or insufficient, the most effective way to ensure that guideline values 
are achieved is through periodic validation of the treatment process (most 
effectively when challenged by blooms) combined with monitoring of cya-
notoxin concentrations in treated water during periods of cyanobacterial 
occurrence in the raw water.
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and cyanotoxins
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INTRODUCTION AND GENERAL CONSIDERATIONS

As outlined in Chapters 3 and 4, cyanobacteria are likely to be present in 
any waterbody and hence so are cyanobacterial toxins. The critical issue 
for the protection of public health is whether concentrations are likely to 
exceed hazardous levels at points of human exposure.
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For this overall objective, five different types of monitoring serve  different 
specific purposes:

 1. Monitoring for risk assessment: Monitoring of waterbodies for the 
purpose of assessing the risk of cyanobacteria to occur in amounts that 
may lead to hazardous concentrations does not only target cyanobac-
teria and cyanotoxins, but also target parameters describing the condi-
tions leading to their proliferation and scum formation (e.g., nutrient 
concentrations, changes in waterbody stratification or water residence 
time). Time scales for monitoring in the context of risk assessment are 
typically once intensively, with periodic checking later on.

 2. Monitoring to trigger immediate responses: For example, in the 
context of an Alert Levels Framework (ALF; see sections 5.1.2 and 
5.2.3), it serves to recognise when levels triggering vigilance or alerts 
are exceeded and corresponding action needs to be taken. This is typi-
cally regular (e.g., monthly or weekly), focused on bloom seasons or 
triggered by exceedance of levels for vigilance or alerts.

 3. Monitoring for validation of the control measures in place: It serves 
to assess whether they are adequate either to prevent cyanobacteria 
from proliferating to hazardous blooms or to prevent breakthrough 
of cells and dissolved toxins to the point of water use. For valida-
tion, monitoring is intensively done once, when establishing the con-
trol system or developing a Water Safety Plan (WSP; see Chapter 6) 
and is then periodically repeated when the system or WSP is revised. 
Validation is important for control measures from catchment to con-
sumer, and aspects specific to the catchment, waterbody, site of use 
and treatment are discussed in the respective Chapters 7–10. While 
most monitoring for the validation of measures to control concen-
trations of cyanobacteria and/or cyanotoxins will address their 
adequacy, it may also include parameters they target, such as visual 
assessment of erosion in a catchment, nutrient concentrations or tem-
perature profiles.

 4. Event-driven monitoring: Monitoring may be triggered by events 
such as (unexpected) blooms as well as animal deaths or human ill-
ness suspected to have been caused by toxic cyanobacteria. The pur-
pose of such event-driven monitoring is usually to identify the cause 
of the event. Specifically for drinking-water treatment, it may also be 
to validate efficiency of removal, which can best be done during the 
event of a heavy bloom. In face of the rapid variability of blooms, 
particularly of scum situations, sampling as soon as possible during or 
after the event is key to meaningful data collection: chances for cap-
turing the agents that caused the effects dwindle as time progresses 
from hours to days. This is most likely to be possible and to provide 
robust results if sampling is prepared and preplanned, as discussed in 
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general in Chapter 15 and specifically for drinking-water treatment in 
Chapter 10.

 5. Monitoring for verification: Confirming that the guideline values are 
met at the point of exposure involves regular sampling and analysis 
either of cyanotoxins or of parameters, indicating that cyanobacteria 
are unlikely to have been present. This is done regularly, possibly lim-
ited to the seasons in which they are known to occur.

Note that operational monitoring of control measures is fundamentally 
different from these five purposes: it serves to ensure that control mea-
sures are functioning as intended and that, should one fail, it is possible 
to respond quickly enough with corrective action to prevent human expo-
sure. Operational monitoring is essential to ensure that systems provide 
safe water. It typically does not address individual hazards but rather uses 
a practical, easy-to-measure parameter that shows whether or not a control 
is functioning. Such parameters range from online recording of turbidity 
at the outlet of a filter in water treatment to weekly visual inspection of 
a fence to keep livestock out of a water course. Options for operational 
monitoring are proposed together with the respective control measures in 
Chapters 7–10 and are not discussed in the following.

While this chapter focuses on cyanobacteria, cyanotoxins and parameters 
describing growth conditions favourable for cyanobacteria, it also contains 
a section on satellite remote sensing. This technology has advanced signifi-
cantly in the last few decades and is becoming more and more accessible. 
While remote sensing cannot replace traditional in situ cyanobacteria moni-
toring and subsequent laboratory analyses, it can be very a useful tool that 
complements field monitoring in supporting site selection and indicating the 
frequency of occurrence of blooms of cyanobacteria (or eukaryotic algae).

Water-use systems to be monitored for cyanobacteria and cyanotox-
ins vary widely, from small ponds to large lakes, from tropical to boreal 
regions, from small streams to big rivers. No monitoring scheme can be 
globally applicable to all types of waterbodies, and local conditions have to 
be taken into account, not least because available resources for a monitor-
ing programme differ substantially (Strobl & Robillard, 2008; Srivastava 
et al., 2013). For this reason, this chapter does not propose detailed guide-
lines, but rather focuses on considerations for designing an appropriate 
monitoring programme for specific – and often unique – water-use systems.

Bertani et al. (2017) showed that monitoring strategies considerably affect 
the outcome of cyanobacterial monitoring. Even with expert planning, any 
monitoring programme inevitably renders data with inherent imprecision. 
For this reason, one important aspect for long-term monitoring is the con-
tinuity of sampling together with detailed documentation. This is crucial 
for the meaningful interpretation of the data later on – sometimes decades 
later (e.g., for assessing which changes in the catchment may have changed 
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bloom occurrence). Documentation should include not only the sampling 
procedure and analytical methods, but also the considerations behind any 
deviation from commonly applied schemes. Further, meaningful data stor-
age in an accessible database is the prerequisite for reliable evaluation of 
long-term trends.

A basic understanding of limnology is a prerequisite for planning an 
appropriate monitoring programme for cyanobacterial occurrence in 
waterbodies; therefore, persons trained in limnology should be consulted 
in the planning phase, preferably with knowledge of the local waterbodies. 
Likewise, planning monitoring of schemes for bank filtration or artificial 
groundwater recharge should involve soil scientists, and planning moni-
toring schemes for drinking-water treatment needs expertise in treatment 
technology.

11.1  DESIGNING A MONITORING PROGRAMME

Resources for monitoring can be focused on waterbodies at risk of blooms 
and, within these waterbodies, on time spans during which they are likely, 
if the purpose of monitoring is clearly defined. Where potentially toxic cya-
nobacteria are first recognised as potential risk, it is often possible to use 
data from past monitoring programmes for a first assessment. It may also be 
possible to integrate a targeted monitoring into other ongoing programmes.

11.1.1  Collecting and analysing existing knowledge

A first step is to explore which data are already available and whether they 
allow any estimate of the likelihood of potentially toxigenic cyanobacteria 
and hence cyanotoxins to occur in the waterbody of interest. In principle, 
all data on a particular waterbody can be relevant for this purpose, that is, 
from environmental monitoring programmes and public reports, scientific 
publications or satellite images (see section 11.4). This may include data on, 
for example:

• delineation of the catchment, land use and human activities therein 
(e.g., agricultural practices, waste-water treatment facilities capacity 
and functioning);

• waterbody morphology, in particular surface area, mean and maxi-
mum depth, stratification, water residence time or – for rivers – flow 
rate;

• types of water use such as drinking-water production, recreational, 
aquaculture and irrigation;

• location and depth of raw water intake sites (and of alternative 
locations);
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• location of bathing sites and frequency of seasonal use;
• prevailing wind direction, especially when surface bloom-forming 

cyanobacteria are abundant (see Chapter 3);
• seasonal dynamics of phytoplankton occurrence and taxonomic 

composition;
• seasonality and timing of visible cyanobacterial blooms (surface blooms 

and scums);
• indication of suspected or proven water-related illnesses (human and 

animal);
• satellite images quantifying total phytoplankton (chlorophyll-a) and 

cyanobacterial (phycocyanin) biomass, as well as spatial distribution 
over time and space;

• nutrient concentrations, especially of total phosphorus (TP) and total 
nitrogen (TN), and their seasonal variation;

• potential major nutrient inputs and possible input fluctuations, for 
example, seasonality of surface run-off, and possible long-term changes.

Even if the information readily available is only fragmentary, this will sup-
port planning and may even allow a first assessment of the likelihood of 
blooms: specific phytoplankton communities are typical for particular types 
of waterbodies and seasons (see Chapters 3 and 4). Hence, occurrence of 
toxic cyanobacterial blooms and related health risks can be foreseen fairly 
well from basic limnological parameters, even where quantitative phyto-
plankton data may be lacking or are only rudimentary.

Cyanotoxins are commonly only one among several potential health haz-
ards related to safe water use, and monitoring schemes addressing their 
occurrence will typically be part of more comprehensive programmes. 
Their relevance in relation to other hazards in such a programme is best pri-
oritised in the context of overall risk assessment, as discussed in Chapter 6.

If no background data exist, a general limnological screening programme 
is recommended which may well serve as pilot for a monitoring programme 
to be subsequently implemented. This would consist of seasonal sampling 
for basic limnological parameters (e.g., TP, TN, Chl-a, temperature pro-
files, phytoplankton composition and whether cyanobacteria occur, basic 
cyanotoxin analysis, e.g., with ELISA) as well as site inspection for general 
observations (e.g., scum formation, fish and wildlife deaths, water-level 
fluctuations). The results serve as a starting point to fill some fundamen-
tal gaps in data and information, to estimate potential health hazards and 
potentially to design a full monitoring programme.

If the existing information or the outcomes of such a preliminary screen-
ing programme show that for a specific waterbody, a health hazard from 
cyanotoxins is unlikely (because cyanobacteria hardly occur) or of lower 
priority relative to other hazards (e.g., pathogens, pesticides or a spill of 
a hazardous chemical), cyanobacterial monitoring might be reduced to 
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observation at low frequency (e.g., once annually during the season in 
which they are most likely to occur). This would serve to detect changes 
in the catchment or waterbody that might increase risk, for example, new 
upstream nutrient loads causing eutrophication or new impoundments 
changing the mixing regime (see Chapter 4).

11.1.2  Defining the objective of monitoring

The objective of monitoring, as outlined in points 1–4 in the introduction 
to this chapter, determines the information needed and time spans and 
intervals for which it will be necessary (discussed below in section 11.5). 
The objective also determines where and when samples will be taken in a 
specific waterbody or along the drinking-water production process as well 
as chemical and biological analyses to be performed (see Chapters 13 and 
14) and the accuracy and sensitivity required. It is therefore very important 
to clarify the objective(s) early on when planning a programme, both to 
avoid dispensable efforts (e.g., detection of trace concentrations of cyano-
toxins with expensive analytical methods in raw water) and to avoid miss-
ing essential information.

11.2  PLANNING FIELDWORK

Fieldwork, including site inspection, sample collection and, in most pro-
grammes, some on-site analyses, largely determines the quality of infor-
mation obtained from the subsequent laboratory analyses. Fieldwork 
also causes a significant proportion of the total cost of a cyanobacterial 
or  cyanotoxin monitoring programme. Well-planned and performed sam-
pling is the prerequisite for meaningful results, and most shortcomings in 
the sampling design cannot be compensated later on: the most accurate 
and sensitive analytical procedures provide uncertain results if sampling 
was flawed. A well-designed and implemented fieldwork programme also 
improves cost-efficiency, that is, for the overall costs of personnel, transport 
and analytical procedures, by focusing on critical sites and critical periods, 
as there is little value in spending large amounts of effort on very small 
risks. This is especially important where the cyanotoxin risk is only one 
among other health risks from water.

While fieldwork to validate control measures in the catchment or water-
body typically requires a sampling strategy that observes the dynamic 
changes at a fixed sampling site over time, validating control measures 
along a drinking-water production process requires a sampling strat-
egy that allows observing changes in a “slug” or “parcel” of water as it 
passes through the process (see Chapter 10 for details), with a focus on 
treatment steps that are expected to affect the cyanotoxin concentration. 
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For an efficient sampling programme, both sampling schemes need to be 
 coordinated. Validation is most effective if sampling and analyses along the 
production line are conducted when the raw water at the site of abstrac-
tion contains a high concentration of cyanobacteria (possibly including 
extracellular toxins). Such a situation can be determined using an indicator 
parameter such as turbidity or fluorimetry (Chapter 5). It is important that 
sampling and analyses along the production line are launched immediately 
once a high amount of cyanobacteria is detected in the raw water, in order 
to have the best chance of determining elimination efficiencies of the indi-
vidual steps of the treatment train.

The schemes in Figure 11.1 illustrate this, representing two lakes or reser-
voirs with differing phytoplankton communities (see Chapter 3): the lower 
scheme shows a lake with a perennial population of cyanobacteria, for 
example, Planktothrix sp., with a higher base frequency of sampling along 
the timeline. The upper scheme represents a lake with a strong seasonality of 
cyanobacteria and cyanotoxin occurrence, for example, the phytoplankton 
dynamics with a spring bloom of diatoms and dominance of Microcystis sp. 
in summer. Outside of the cyanobacterial season, the sampling intervals are 
extended to monthly, while they are reduced to weekly during the bloom-
ing season. If the drinking-water production line is to be validated, sam-
pling along the production line is launched once blooms reach a threshold 
value at the raw water abstraction site, and the production process is then 
followed through the different steps of the treatment train to the finished  
drinking-water. If the outcome demonstrates that the treatment train 

Lake/Reservoir Y

chlorinated water

finished drinking water

biovolume of poten�ally
toxigenic cyanobacteria

biovolume other
phytoplankton

Lake/Reservoir X

bank filtra�on water

finished drinking water

filtered raw water

summer autumnspringwin ter

Figure 11.1 S chematic illustration of sampling strategies and frequencies in two water-
bodies used for drinking- water production. Dots: sampling in the waterbody; 
diamonds: validation sampling along the treatment train ; open symbols: situ-
ation above Vigilance Level and below Alert Level 1; filled symbols: situation 
exceeding Alert Level 1; open squares: verification monitoring during Alert 
Level 1. Shaded area: occurrence of potentially toxigenic cyanobacteria in 
relation to other phytoplankton (light area). For details see text.
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effectively controls cyanobacterial cells and toxins, sampling may then be 
limited to raw and finished water for the rest of the cyanobacterial sea-
son until concentrations are below the Vigilance Level of the Alert Levels 
Framework (ALF) (section 5.1.2). Monitoring may then be suspended until 
cyanobacteria reappear (possibly not until the following year) in the range 
of the Vigilance Level. Validation of the drinking-water production line will 
not be repeated every year if operational monitoring shows control measures 
to be working effectively and verification monitoring of finished drinking-
water regularly shows concentrations well below the guideline values (see 
above and Chapter 6). However, as long as concentrations of cyanobacteria 
and/or cyanotoxins exceed the Vigilance Level or Alert Level 1 in the raw 
water, it is recommended to include cyanotoxins in a drinking-water utility’s 
routine verification monitoring of finished drinking-water.

11.3  TYPES OF SAMPLES

For waterbodies, two principally different types of samples may be distin-
guished: a grab (or spot) sample and an integrated sample. A grab sample is 
a discrete volume of water taken at a selected location, depth and time. The 
simplest way to take a grab sample is to scoop water with a wide-mouthed 
vessel from or near the surface. Subsurface sampling is done with special 
sampling devices that are also used for integrated sampling. Whereas grab 
samples are suitable for analysing situations at specific sites (e.g., maximum 
density of cyanobacteria or cyanotoxins at a bathing site or raw water intake), 
integrated samples are preferable for assessing the waterbody’s average con-
centrations of substances (e.g., nutrients) or populations of an organism (e.g., 
the size of a cyanobacterial population).

Integrated samples combine several subsamples from different parts of 
the waterbody to a combined sample representative for a whole waterbody. 
These samples are particularly important if the variables to be assessed 
are unevenly distributed – which is best assumed for most cyanobacterial 
populations unless a waterbody is well mixed. Integrated sampling may 
be horizontal, combining samples from different locations, as well as ver-
tical, combining subsamples from multiple depths (for more details, see 
Chapter 12). The combination of subsamples prior to analysis is often more 
cost-effective. However, if knowledge of the distribution of parameters is 
required, each sample can be processed individually.

11.4  WHERE TO SAMPLE

Ideally, a sample from a waterbody is representative of the water compart-
ment for which information is desired. The water compartment of interest can 
range from the whole waterbody volume to a mouthful of water swallowed 
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by a child. Obviously, this needs to be considered when a  monitoring pro-
gramme is established.

Different waterbody compartments, sampled for different target infor-
mation and requiring different sampling approaches, include:

• the entire waterbody;
• offtake sites of raw water for drinking-water production;
• sites of recreational activity.

For information to understand bloom development, samples representative 
of the entire waterbody are necessary. Respective data allow the estimation 
of, for example, carrying capacity for cyanobacterial biomass, average cya-
nobacterial abundance, cyanobacterial taxa present and average cyanotoxin 
concentrations. As outlined above, validating the effects of catchment man-
agement or waterbody restoration measures requires integrated sampling 
(see below and Chapter 12) at moderate frequency (monthly or bimonthly), 
but for several blooming seasons. Integrated sampling requires more effort 
than grab sampling because a boat, a water sampler (see Chapter 12), sub-
mersible oxygen and temperature probes, and other equipment are needed. 
Data from integrated samples cannot be used directly for assessing expo-
sure risks at sensitive sites such as drinking-water intakes or bathing sites, 
where cyanotoxin concentrations can be orders of magnitude higher. The 
heterogeneous distribution of cyanobacteria in most waterbodies can lead 
to variability in abundance differing substantially even on narrow spatial 
scales, horizontally as well as vertically (see Chapters 4 and 9).

Sampling a drinking-water intake can be either in the waterbody at the 
point immediately before the water enters the drinking-water production 
system or directly from the raw water pipeline, that is, where it enters 
the waterworks. However, operators may wish to establish a wider under-
standing of the occurrence of the specific cyanobacterial population in the 
waterbody by taking samples representative of the water layer in which 
they primarily occur, for example, for Planktothrix rubescens in the 
metalimnion (see Chapter 3), or of a specific bay from which the utility 
abstracts raw water.

Sampling bathing sites includes shallow waters up to the shoreline and 
sometimes beyond when cyanobacterial scums have been washed ashore. 
Cyanobacterial abundance – and hence cyanotoxin concentrations – can 
fluctuate particularly at near-shore sites by orders of magnitude within 
days or even hours (see Chapter 4). It is therefore particularly important to 
clearly define the objective of sampling at respective sites; this determines 
the number of samples to be taken and the extent to which sampling can 
simulate the mouthful of water possibly ingested. This could, for example, 
be the determination of average concentrations for the bathing site up to 
a certain depth or the estimation of maximally expectable concentrations 



650 Toxic Cyanobacteria in Water

where scums accumulate. Sampling for compliance to the Vigilance Level, 
as proposed in the Alert Levels Framework (section 5.2.3), may, however, 
be more effective if it targets representing the entire water volume, as this 
reflects the overall size of the cyanobacterial population and thus the poten-
tial for scum accumulation.

In conclusion, improper sampling may lead to analytically accurate but 
nonetheless “false” results, which can trigger inappropriate actions or impede 
necessary steps because the data do not adequately reflect the health hazard.

Samples that cannot be preserved are preferably analysed as soon as pos-
sible (i.e., within hours) both for a timely and adequate reaction if results 
show Vigilance or Alert Levels to be exceeded and for avoiding changes 
(degradation) in the concentrations of parameters to be analysed.

Good documentation of monitoring is important, and it is valuable to 
include visual observation (photographs), comments on smells and reports 
from site users, etc. Where monitoring results of cyanotoxin concentrations 
or cyanobacterial biomass indicators exceed Alert Level 2 and this leads to 
restrictions in site use, this can have an immediate economic impact, lead-
ing to a high potential for conflicts of interest. Documentation of the ratio-
nale for such a decision can then become important. It is also a basis for 
clear communication between all stakeholders, which is essential for effi-
cient health protection while keeping economic losses low (see Chapter 15).

11.5  FREQUENCY OF SITE INSPECTION 

AND SAMPLING

The frequency of site inspection and sampling also needs to be adapted to 
the objective of the programme. Table 11.1 summarises examples of sam-
pling strategies for these monitoring objectives.

As indicated at the beginning of this chapter, monitoring for risk assess-
ment is an intensive but short-lived exercise that can focus on a small num-
ber of sampling campaigns during situations in which blooms are expected 
to be most likely. It should be repeated at intervals of several years in the 
context of periodic revision of the management system or the Water Safety 
Plan, after unexpected blooms or any incident that suggests controls to 
be insufficient, or if changes in the catchment or other components of the 
system may have consequences for the adequacy of the control measures in 
place. A lower number of samples than in the initial campaign may well be 
sufficient for such repeats.

In contrast, where cyanobacteria are known to occur at potentially haz-
ardous levels, monitoring needs to capture situations in which indicators 
for toxic cyanobacterial occurrence may exceed predefined thresholds, that 
is, the Vigilance Levels described in the Alert Levels Frameworks proposed 
in section 5.1.2 for drinking-water and in section 5.2.3 for recreational 
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water use. In waterbodies with a pronounced seasonality of cyanobacterial 
occurrence, this may require an increased frequency of site inspection and 
sampling during the development of cyanobacterial peak populations, the 
time of which can be fairly well estimated based on previous data and/
or experiences in other, similar waterbodies in the same climatic region. 
During peak blooming, information on observations like scum formation 
at bathing sites is very important (see Chapter 4). If perennial persistence 
of cyanobacteria cannot be ruled out, drinking-water supply reservoirs may 
need to be monitored regularly throughout the year for compliance to the 
Vigilance Level. Persistent cyanobacterial populations can be expected in 
warm climates and in temperate zones in waterbodies populated by certain 
taxa like Planktothrix spp. Where monitoring may need to cover the entire 
year, frequency can be reduced in some season if growth rates are known to 
then be lower, for example, during the cold season.

Monitoring for compliance to the Vigilance Level is most effective if 
the time intervals are adapted to bloom occurrence on the basis of a good 
understanding of the waterbody: if cyanobacteria are known to appear at 
a certain time or in a certain season, this may initiate monitoring for com-
pliance to Vigilance Levels. For situations exceeding the Vigilance Levels, 
both Alert Levels Frameworks (ALFs) give guidance for appropriate fre-
quencies of further monitoring. However, once the necessary experience 
has been developed (typically on the basis of several years of data), it is 
useful to adapt the frequencies given in the ALFs in sections 5.1 and 5.2 to 
the bloom development in the given waterbody.

Time scales for monitoring for the purpose of validating the efficacy of 
control measures may vary widely, depending on the time span for differ-
ent measures to take effect: for measures in catchment management, it may 
take years or even decades until reduced nutrient loads lead to reduced cya-
nobacterial biomass. This is because natural processes in ecosystems can 
limit or strongly delay responses to newly implemented control measures 
(Chapters 7 and 8). During this time span, monitoring may be sufficient at 
low frequency. In contrast, validation of technical measures may be much 
quicker, that is, in the range of a few days at two to three bloom occa-
sions, for example, for validating whether the variation of raw water intake 
depth is optimal or the removal efficiency of drinking-water treatment train 
challenged by a heavy bloom is sufficiently effective (Chapters 7–10). As 
discussed above, monitoring for validation is conducted once intensively 
and repeated occasionally (usually after several years) in the context of the 
revision of the management system or Water Safety Plan. Repeats may also 
be triggered by changes in the system or incidents questioning whether the 
measures in place are sufficiently effective.

Monitoring for verification that guideline values for cyanotoxins are met 
at the points of human exposure is usually well established at regular inter-
vals for microbial indicator organisms and selected chemicals (WHO, 2017). 
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While verification monitoring for toxic cyanobacteria should also occur 
 regularly, sampling and analyses may be reduced to seasons in which they 
are known to occur (see above) or human exposure is likely (e.g., the bathing 
season). Particularly for the monitoring of bathing sites at which cyanobac-
teria are known or likely to occur, a high frequency of sampling (i.e., daily 
or weekly) may be necessary for relatively short periods during the peak 
bathing season.

11.6  PERSONNEL AND TRAINING

Properly trained field staff is the backbone of effective sampling and moni-
toring programmes. Training should include the handling of sampling and 
measuring devices as well as recognition of visible aspects of cyanobacte-
rial blooms. For smooth and reliable sampling, continuity in staff is highly 
advantageous. Like with biomass estimation (see Chapter 13), the judge-
ment of a person that knows a system can be very efficient for streamlining 
the monitoring programme. Experienced field staff should also be encour-
aged to take additional samples or to make records in case they have the 
impression that something unusual has occurred. This could be, for exam-
ple, surface blooms of different colour, dead fish or blooms washed ashore.

Inclusion of the public as active participants in monitoring programmes 
is gaining acceptance and can contribute significantly to the quantity and 
quality of information obtained from a monitoring programme. Special 
interest groups (such as nongovernmental organisations and user associa-
tions) as well as concerned local populations in sensitive or affected areas 
can provide useful information. This is particularly valuable for monitoring 
sites of recreational activity (see Box 11.1).

BOX 11.1: CITIZEN SCIENTISTS AND 

COMMUNITY PARTICIPATION

The inclusion of volunteers in the collection of data can significantly sup-

port the assessment of the status of diverse environments (for a recent 

review, see Schröter et al., 2017). In lakes and rivers, it can significantly sup-

port the assessment of water quality conditions and cyanobacterial risks. 

Collected data can range from comparatively simple, such as Secchi depth 

readings to more complex data like taxonomic composition of phytoplank-

ton communities.

The Secchi Dip-In programme (http://www.secchidipin.org/, sponsored by 

the North American Lake Management Society [NALMS]) hosts a website 

with instructions for Secchi depth readings and the option to upload data. The 

http://www.secchidipin.org
http://www.secchidipin.org/
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data can in turn be accessed for individual lakes. Originally the  programme 

started in the USA but has been adopted in several other countries. 

Three coordinated monitoring projects to locate and understand harm-

ful cyanobacteria are conducted by Cyanobacteria Monitoring Collaborative 

(https://cyanos.org/). The most simple approach is followed by bloomWatch 

(https://cyanos.org/bloomwatch/) that consists of a free smartphone app and 

a platform to which digital pictures can be uploaded. The aim of the pro-

gramme is to track the occurrence of cyanobacterial blooms in waterbodies 

that are not included in regular, institutional monitoring programmes. The 

project cyanoScope (https://cyanos.org/cyanoscope/) includes the micro-

scopic observation of plankton samples. A nearly full limnological assessment 

is the subject of the project cyanoMonitoring (https://cyanos.org/cyanomoni-

toring/), which requires a more intensive training for interested citizens.

The Centre for Ecology & Hydrology (UK) provides a similar smartphone 

app (“Bloomin’ Algae”) enabling citizens to report algal (surface) blooms 

(https://www.ceh.ac.uk/algal-blooms/bloomin-algae). A local project primarily 

targeting public communication, CYANOBs in Potrero de Garay, Argentina, 

is described in Box 15.2.

Although for all programmes and initiatives the data for individual lakes are 

highly inconsistent – that is, for some lakes only a few datapoints are avail-

able while for others longer time series have been collected – encouraging 

citizens to collect data could help water managers to extend their knowledge 

on waterbodies in the region. In spite of reservations voiced about quality 

control, collected data can, for example, reveal pronounced trends over time 

(Lottig et al., 2014) or spatial patterns (Bigham-Stephens et al., 2015) in lake 

transparency.

Further information concerning planning and performing fieldwork can 
be found, for example, in Bartram and Ballance (1996), a volume pub-
lished on behalf of United Nations Environment Programme and the World 
Health Organization or in United States Geological Survey Guidelines 
(Graham et al., 2008).

11.7  PREPARATIVE STEPS AND PILOT PHASE

A period of pilot testing before routine field visits begin helps to ensure 
that time requirements for inspection and sampling are understood and 
that activities are planned to make the best use of staff time and other 
necessary resources (e.g., vehicles). Realistic estimation of travelling time 

https://cyanos.org
https://cyanos.org
https://cyanos.org
https://cyanos.org
https://cyanos.org
https://www.ceh.ac.uk
https://cyanos.org/
https://cyanos.org/bloomwatch/
https://cyanos.org/cyanoscope/
https://cyanos.org/cyanomoni-toring/
https://cyanos.org/cyanomoni-toring/
https://www.ceh.ac.uk/algal-blooms/bloomin-algae
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between laboratories and sampling sites is important to avoid exceeding 
tolerable sample storage times prior to analysis. Pilot testing should lead to 
the development of a detailed inventory and description of sampling sites. 
If changes in water quality with time are to be interpreted with confidence, 
samples must be taken consistently from the same locations and/or from 
other, precisely identified locations. Pilot testing also provides an opportu-
nity for training personnel and familiarisation with the routine.

Coordination with the laboratory responsible for the analyses is an 
important aspect of preparation. In some cases, the laboratory will be 
responsible for the preparation of sample containers and chemical addi-
tives for sample preservation, and it may also be responsible for the provi-
sion and maintenance of equipment for on-site testing (see Chapter 12). 
Sampling tours also need to be coordinated with downstream analyses to 
ensure timely sample processing.

11.8  CONSIDERATIONS FOR DOWNSTREAM 

ANALYTICAL PROCEDURES

Balancing the costs of the procedures against the depth of information gained 
is important for an efficient hazard analysis and risk management. The meth-
ods for the detection and quantification of nutrients, cyanobacteria and their 
toxins reviewed in Chapters 13 and 14 range from simple manipulations that 
can be performed on site to complex techniques that require costly equipment 
and well-trained experts. The multitude of available methods for cyanotoxin 
analysis reflects the multitude of situations that demand respective methods. 
No analytical procedure is superior to others per se – rather, it is the context 
and purpose that renders an individual method appropriate – or inappropri-
ate. Section 14.2 gives guidance on the scope of the methods for cyanotoxin 
analyses, and experts in the analytical laboratories will be familiar with most 
of the advantages and disadvantages discussed there. They should therefore 
be included when planning a sampling programme.

Laboratory capacity is a further important issue to be addressed in pro-
gramme design and in pilot testing. It is essential that the workload gener-
ated by a sampling expedition is properly managed within the laboratory. 
Analysts need to know how many samples will be arriving, the approximate 
time of arrival and the analyses that are to be carried out. Excessive delays 
before sample processing and analysis may render the sample results invalid 
(and thereby useless) for the purposes for which they have been collected. 
Therefore, the timing of sample delivery to the laboratory and the workload 
management within the laboratory should be coordinated prior to fieldwork.

When planning monitoring programmes (or adjusting them, if neces-
sary), it is important that all participating institutions, companies and labo-
ratories agree on the type and number of samples that eventually are to be 
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analysed. This should avoid that samples are taken that are not appropriate 
for downstream analyses. The following (nonexhaustive) list gives a num-
ber of key questions to consider:

• Have the analytical methods to be used been critically evaluated and 
agreed upon?

• Are the sample types and volumes appropriate for the desired labora-
tory analyses?

• Is the delay between taking samples and their arrival in the laboratory 
prone to cause analytical artefacts (e.g., lysis of cells, breakdown of 
toxins)?

• Could these effects be minimised by (more) appropriate sample han-
dling (see also Chapter 12)?

• Will the samples arrive in the laboratory at a time that allows immedi-
ate and appropriate analysis or storage, respectively?

• Have the laboratories been well instructed on sample handling and 
which analyses are to be performed?

11.9  AD HOC SAMPLING FOLLOWING 

POISONING EVENTS

Unexpected events of poisoning particularly of domestic animals continue 
to be encountered, and comprehensive investigation of such cases can be 
important to prevent further exposure. It is also relevant to better under-
stand exposure, toxic mechanisms, toxigenic taxa, yet unidentified toxic 
metabolites and more. For this aim, it is important that laboratories deal-
ing with the analysis of cyanobacteria and their toxins be prepared for ad 
hoc sampling in case events such as animal deaths or human illness are 
suspected to be caused by cyanotoxins. The few published reports on such 
events (e.g., Gugger et al., 2005 and Wood et al., 2017) highlight the impor-
tance of having procedures in place to collect samples and information in 
time, as situations of severe cyanotoxin risks may be only short-lived and an 
extended delay prior to sampling may make the entire effort futile.

The following list suggests information and items that may help to react 
adequately to a request of event-triggered sampling:

• Where and when did the poisoning occur?
• Have cyanobacteria/algal mats, scums, pronounced turbidity or smells 

been observed at the site of poisoning?
• What symptoms have been observed in the casualty?
• Who proposed the diagnosis of cyanobacterial poisoning?
• Where is the casualty now? Is a detailed medical examination planned? 

Has the examinator been contacted?
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A number of materials should be available ready to use for unexpected poi-
soning events, preferably in a dedicated “emergency kit”:

• sample containers adequate for water, algal mats, macrophytes, phy-
toplankton microscopy etc;

• sample containers for animal tissue samples, stomach contents;
• contact details of physicians and veterinarians that may be involved 

or consulted;
• storage space in freezers and fridges, a cooling box for transport.

Chapter 15 gives further guidance for responding to events and emergencies.

11.10  SATELLITE REMOTE SENSING ANALYSES

Remote sensing can serve as a starting point to plan a monitoring pro-
gramme, for example, by identifying the season of cyanobacterial blooms 
or locating sites of biomass accumulation. Once a monitoring programme 
is in place, remote sensing can serve to verify the validity of sampling 
points with respect to their representativeness of the monitored waterbody. 
Previous satellite data can provide historical assessments. As shown by the 
example in Box 11.2, remote sensing further provides a rather low-cost 
opportunity to intensify monitoring in time and space, particularly in areas 
for which a large number of sampling points and/or frequent visits for sam-
pling would be necessary.

BOX 11.2: REMOTE SENSING OF CYANOBACTERIA: 

THE CASE STUDY OF SALTO GRANDE RESERVOIR

Andrea A. Drozd

Salto Grande reservoir, constructed in 1979, impounds the Uruguay River 

which divides Argentina and Uruguay. It is visited by thousands of tourists 

during summer in spite of recurrent and often heavy cyanobacterial blooms 

(O’Farrell et al., 2012; Bordet et al., 2017) with cyanobacterial cell density and 

microcystin concentrations frequently surpassing the recreational guideline 

levels given by WHO, and one case of severe liver damage was described 

after a young jet skier had spent many hours in the bloom (see section 5.2 

and Giannuzzi et al., 2011). The reservoir’s large area of 750 km2 and its den-

dritic morphology with lateral arms renders sufficiently frequent and com-

prehensive sampling impossible. Since 2011, monitoring cyanobacteria blooms 
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and water quality is being complemented with a remote sensing monitoring 
programme developed by the “Comisión Administradora del Río Uruguay” 
(CARU, 2016; 2017). It targets quantifying chlorophyll-a concentrations by 
satellite data at a scale of 1:50 000. 

From 2012 to 2016, 10 field campaigns provided a basis for this by char-
acterising spectral signatures of dam water under different conditions using 
samples from multiple sites for laboratory analyses (by Comisión Mixta de 
Salto Grande) of chlorophyll-a concentration, phytoplankton composition 
and abundance as well as turbidity, together with in situ hyperspectral signa-
tures obtained by a hyperspectral radiometer (ASD Field Spec provided by 
the Comisión Nacional de Actividades Espaciales) in order to describe how 
suspended matter, chlorophyll-a concentration, phytoplankton composition 
and cyanobacteria cell density influence the spectral patterns. These spectral 
signatures were then used to build band algorithms for sensors of different 
satellites, that is, Landsat 7-8 and Sentinel 2, SPOT HRVIR, relating spectral 
pattern characteristics to concentrations of chlorophyll-a and cyanobacterial 
cell density (Drozd et al., 2020). 

A first result was the spectral discrimination of phytoplankton commu-
nities. With Landsat and Sentinel 2, dominance of dinoflagellates showed 
a dark-blue colour (Figure 1, Panel A), and the absorption of the green 
spectral range increased with their cell density; in contrast, cyanobacte-
ria showed an inverse response: the greater their biomass, the lower the 
absorption in the green spectral range, leading to a bright green colour 
when cyanobacteria dominated (Figure 1, Panel B). A second result was 
the relationship between chlorophyll-a concentration and a band index 
algorithm (R2 > 0.77), allowing the monitoring of phytoplankton intensity 
and distribution as the basis for deciding on priority sites for field sampling, 
indicating the hotspots where blooms originated as well as beaches with 
potential health risks (Figure 1, Panel C). 

As the next step, for situations with dominance of cyanobacteria, a cell 
density algorithm was developed, allowing estimation by satellite data. 
CARU has established Alert Levels for recreational use of waterbodies using 
observed colour patterns of the water which coincide with cyanobacteria 
cell density and toxin concentrations. This cyanobacterial algorithm is able 
to detect average densities of 200 cells/mL and hence to map CARU’s Alert 
Levels (Figure 1, Panel D).

Since 2012, chlorophyll-a and cyanobacterial remote sensing proved 
a helpful tool for a synoptic understanding of spatiotemporal dynamics of 
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blooms in Salto Grande and for providing an estimate of cell densities. In 

summertime, when rain is scarce, satellite data can be obtained at intervals 

of 3–5 days, enabling low-cost monitoring of phytoplankton communities, 

short-term reports and warnings as well as more effectively targeted sam-

pling programmes. For more information, see www.caru.org.uy and www.

saltogrande.org 

Figure 1  Salto Grande Reservoir, Gualeguaycito arm. Images obtained with 
Sentinel 2. Panel A: 05 December 2018 with dominance of dinoflagellates; 
Panel B: 9 April 2019 with cyanobacterial blooms. Panel C: Chlorophyll-a 
range estimation by Sentinel 2 on 9 April 2019. Panel D: Cyanobacterial 
cell density ranges estimated by Sentinel 2 on 9 April 2019, reflecting 
CARU cyanobacterial Alert Levels.

Available remote sensing systems are generally based on satellite images 
and may also be available from platforms such as drones and airplanes. 
The focus here will be satellites for monitoring water quality, instruments 
that orbit Earth in space. In contrast to drones and airplanes, data from 
many government operational satellite sensors are available free of charge. 

http://www.caru.org.uy
http://www.saltogrande.org
http://www.saltogrande.org
http://www.caru.org.uy
http://www.saltogrande.org
http://www.saltogrande.org
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Satellites can contain multiple sensors that provide a birds-eye view of 
the Earth’s surface. Satellite sensors designed for water quality measures 
are typically passive sensors, which means they detect changes in sun-
light reflected off the water surface. When light interacts with the water 
environment, it can either be absorbed or scattered in the water column 
(Figure 11.2). Dissolved and particulate matter in the water column absorb 
and scatter light differently across the wavelengths of the visible light spec-
trum. Changes in the visible light spectrum by materials present in the 
water column, like pigments in phytoplankton and cyanobacteria, can be 
quantified by these satellite sensors. Firstly, the sensor detects the spectral 
changes and then validated mathematical algorithms quantify concentra-
tions of these water column materials. Algorithms are successful at quan-
tifying both phytoplankton (chlorophyll-a) and cyanobacteria biomass 
concentrations (Figure 11.3). Satellite sensor technologies typically follow 
a transition pathway starting with research and development of theoretical 

Figure 11.2 C onceptual diagram of how a typical satellite sensor detects water quality 
changes from sunlight reflected off the water surface. Light can either be 
absorbed or be scattered through interaction with water, phytoplankton, 
cyanobacteria, organic matter and suspended material across wavelengths 
of the visible spectrum. Changes in the visible light spectrum from scattering 
and absorption can be quantified with algorithms to derive measures of, for 
 example, cyanobacteria biomass.
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and engineering proof-of-concept sensors, and progress towards method 
development, like water quality algorithms. Eventually, satellite technol-
ogy and developed methods transition towards operational satellites for 
the incorporation of data by users, like water quality management. A thor-
ough review of satellite technology and considerations for water quality 
management is provided in the International Ocean Colour Coordinating 
Group, Earth Observations in Support of Global Water Quality Monitoring 
Report (IOCCG, 2018).

11.10.1  Required skills

Typically, new users of satellite data will require computer hardware and 
expertise to enable adequate data processing and interpretation. Using satel-
lite technology for water quality monitoring and assessment would likely 
require some new staff training, new software applications and at least a 

June 24-30June 17-23

June 3-9 June 10-16

Figure 11.3 E xemplary time series of the Sentinel-3 OLCI satellite images of Lake 
Okeechobee, Florida, that can quantify the temporal and spatial changes 
of cyanobacteria biomass within a waterbody. Brown pixels are land masks; 
black and dark-grey pixels indicate no data (i.e., cloud cover) and below the 
algorithm detection limit, respectively. Coloured pixels indicate biomass of 
cyanobacteria from high (red) to low (purple).
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basic understanding of the fundamentals behind remote sensing technol-
ogy (Schaeffer et al., 2013). Training should include understanding opera-
tional satellite platforms, data acquisition, data extraction, quality control 
and limitations of the applied methods such as algorithm accuracy, uncer-
tainties, interferences and data quality. New software may include free 
and open source programs such as the National Aeronautics and Space 
Administration’s (NASA) Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) 
Data Analysis System (SeaDAS), European Space Agency’s (ESA) Sentinel 
Application Platform (SNAP) or R computer language. Other software may 
include Geographic Information System (GIS) packages, web-based portals 
and various for purchase software options. Basic information from picture 
formats (JPEG, TIFF, etc.), without georeference, may also be informative.

As shown by the example in Box 11.2, it is important to validate the sat-
ellite-derived results with field measurements. It is also important to report 
accuracy or error estimates for the specific waterbodies.

11.10.2  Operational satellites

Current and future operational satellite sensors all have some limited ability 
to resolve the required geophysical variables but with significant trade-offs 
among spectral, spatial or temporal resolution (Mouw et al., 2015; Palmer 
et al., 2015). Here we only mention open-access operational satellites with 
the highest potential to inform management decisions for inland waters 
which exist at the time of the publication of this book. These operational 
satellites generally fall into two categories: (1) medium-resolution ocean 
colour sensors and (2) higher-resolution land imagers. The medium-reso-
lution ocean colour sensors may include ESA’s Ocean and Land Colour 
Instrument (OLCI) on the Sentinel-3 (3A launched 2016 and 3B launched 
in 2018) satellites. Historical data could be retrieved from the MEdium 
Resolution Imaging Spectrometer (MERIS) on the Envisat satellite from 
2002 to 2012. The OLCI and MERIS sensors provide adequate spectral 
bands for inland water derivation of water quality parameters, with a typi-
cal revisit time of 2–3 days, but have spatial resolution (300 m pixel size) 
limits. Thus, they are useful for providing observations in larger lakes and 
reservoirs. The higher-resolution land imagers include the Multi-Spectral 
Instrument (MSI) on the Sentinel-2 (2A launched 2015, 2B launched in 
2017) satellites and Landsat series satellites provide the best spatial resolu-
tion for inland waters but are at a disadvantage when it comes to spectral 
resolution, signal-to-noise ratio, and, to some extent, temporal coverage. 
Only by combining the observations from Landsat missions or Sentinel-2 
missions would a temporal revisit of every 8 days and 5 days be possible, 
respectively. The satellite revisit time is defined as the time between mea-
surements of the same location on the surface of the Earth.
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11.10.3  Limitations

Satellite data may be used to infer surface bloom locations throughout the 
waterbody, albeit with some technological limits. For example, mixed land 
and water pixels, and bottom interference may confound the derivation of 
remote sensing results along the lakeshore. All satellite algorithms detect 
only near-surface concentrations, and the red and near-infrared part of the 
spectrum provide information from only the upper few metres of the water 
column. Atmospheric interference, cloud cover and ice formation limit the 
usability of satellite images at different rates, depending on the climate of 
the location. Overall waterbody size and optical complexity impact the 
application of satellites based on the native pixel resolution of the sensor 
and processing steps, respectively. There is no optical signal that can be 
detected by satellites to directly measure cyanotoxin concentrations.

11.10.4  Frequency of sampling

Satellite remote sensing presents a cost and time-effective approach compli-
mentary to field-based cyanobacterial monitoring efforts for a more com-
prehensive assessment of inland waters. Remote sensing can provide water 
quality data with frequent revisit times for many lakes. These operational 
satellites provide daily, 2–3 day, weekly, monthly and seasonal assessments 
of water quality data. The near-real-time availability of water quality data 
from current satellites makes it possible to integrate such data into early 
warning systems to protect human health and ecosystems.

11.10.5  Applications for monitoring programmes

Historical satellite records may be used to contextualise background moni-
toring to identify the potential for cyanobacteria occurrence problems in 
waterbodies and the typical timing, location and extent of the bloom at 
local and regional scales. Near-real-time satellite records may be used for 
cyanobacteria monitoring to quantify abundance in recreational and drink-
ing waterbodies.

11.10.6  Retrospective assessments

Satellite remote sensing may be used to quantify the spatial extent of the sur-
face area covered by a cyanobacterial bloom (Urquhart et al., 2017). Relevant 
statistical tests and time-series analyses may be used to identify trends in satel-
lite-derived extent of surface area covered by cyanobacteria. Trend analysis for 
surface area extent may be subdivided into categorical thresholds desired by 
the user, based on cyanobacteria concentration or chlorophyll-a, to help water 
managers effectively distribute resources to monitor and manage waters. 
Scalable assessments may permit the development of management objectives 
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over different temporal periods and spatial scales. Improved  multiscale assess-
ment capability is desirable so that comparisons of condition may occur across 
local, regional and national scales to more adequately evaluate regional water 
quality, biological integrity and response to management actions.

The frequency of observed cyanobacteria (Figure 11.4) may be calcu-
lated as the fraction of total observations for which cyanobacteria bio-
mass exceeded a specified threshold, for example, a Vigilance or Alert 
Level (sections 5.1.2 and 5.2.3; Clark et al., 2017). Values are summed 
for each pixel and divided by the total number of valid observations (i.e., 
those not flagged for clouds, land, mixed land water and lack of data). 
Finally, the magnitude of cyanobacteria biomass may be calculated based 
on the spatiotemporal mean of the biomass for a particular period of time 
such as a season or year. The spatial extent, temporal frequency and mag-
nitude can all be used to rank waters in order of importance to prioritise 
management resources (Mishra et al, 2019).

Figure 11.4 A d emonstration of how ESA’s Sentinel-3 OLCI satellite data can be used 
for a quantitative retrospective assessment across lakes near Dallas, Texas, 
USA. Here, the frequency of detected cyanobacteria biomass is calculated 
as the fraction of total observations throughout 2017. A value of 1 indicates 
cyanobacteria had a 100% frequency of occurrence in valid observations 
through 2017, and a value of 0 indicates cyanobacteria were not detected. 
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11.10.7  Near-real-time monitoring

Satellites provide a constant birds-eye view of the Earth’s surface and can be 
used to identify changes in the environment across geopolitical boundaries 
by providing updated images the same day the data is acquired. This infor-
mation may be used to identify events and locations during days of data 
acquisition, or at weekly, monthly and seasonal intervals. Management 
decisions such as updating recreational beach notices or modifying drink-
ing-water treatment methods may benefit from access to near-real-time 
satellite-derived occurrence information.

11.10.8  Satellite support of monitoring programmes

The presence of cyanobacteria or chlorophyll-a biomass estimated from 
satellites may be used as a first-line indicator of potential ecological and 
human health risk that can be used to prioritise waterbodies requiring fur-
ther evaluation for parameters such as visual inspection, laboratory assess-
ment of cyanobacteria taxon composition and biomass, and assessment of 
cyanotoxin concentrations. Satellites have the potential to support moni-
toring efforts across broad geographic extents and provide improved tem-
poral and spatial coverage at larger scales. When coupled with field-based 
observations, satellite data provide a more comprehensive tool to monitor, 
assess and detect changes in the environment. The science required for a 
more precise interpretation of satellite remote sensing of water quality such 
as in-water algorithms, atmospheric corrections and land adjacency effects 
will continue to mature over the coming decades. Significant progress has 
already been demonstrated in deriving cyanobacteria and chlorophyll-a 
data from inland and estuarine waters using satellite sensors.

More information on satellite remote sensing, including training webi-
nars, and access to a community of practice are available from the Group on 
Earth Observations AquaWatch website (https://www.geoaquawatch.org/).

11.11  DATA COLLECTION AND SECURE 

DATA STORAGE

Consistent time series are very valuable to observe long-term changes in 
a waterbody’s condition. To make use of time series, the data need to be 
collected in a repository that allows reliable access, preferably in a cen-
tralised database. A database is best curated by a single person or a few 
responsible persons/institutions, and any data entered in a database should 
be as uniform as possible. In particular, units for individual values have 
to be standardised – confusion may arise from different units when they 
are not clearly disclosed, that is, concentrations in μg/L or ng/L or ng/mL. 
This is especially important when data are compiled from several individual 

https://www.geoaquawatch.org
https://www.geoaquawatch.org/
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institutions and laboratories. Although this is in theory self-evident, the 
lack of uniformity of data is a constant source of hassle, particularly for 
supra-regional or supra-national data analysis and interpretation.

Monitoring programmes tend to require an adaption to changing circum-
stances as time progresses. This could be changes in sampling frequency, 
sampling point locations or analytical methods, for example. Any modifica-
tion needs to be well documented to ensure traceability of the data. So do 
the analytical methods used. In addition to the laboratory quality assurance 
system implemented for sampling and analyses, a plausibility check of data 
prior to their final storage helps identify trivial errors that creep in, for 
example, due to misplacements of decimals. Again trivial, but often missed 
is that a timely check allows for questions back to those performing sam-
pling and analyses in case data do not appear plausible, and this may well 
lead to further information explaining unusual data which is important to 
include in the documentation.
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INTRODUCTION

This chapter is primarily intended for readers that are not running a routine 
monitoring programme but need to organise fieldwork and sampling from 
scratch. Local, national and regional guidelines may also exist and should be 
followed, when appropriate. This is especially important if the results of sam-
pling are intended to inform any type of public advisory postings. If guidelines 
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are not available for a specific region, it may be nonetheless helpful to con-
sult the existing guidelines from neighbouring regions or regions with simi-
lar conditions. Under local conditions, however, it may be difficult to fully 
comply with the existing guidelines for various reasons, for example, lack of 
material or deviating seasonal patterns of phytoplankton dynamics. It is then 
preferable to organise fieldwork with the locally available means rather than 
to suspend fieldwork completely due to the lack of specific material requested 
in guidelines. This could be, for example, sample containers such as wide-
mouthed amber glass bottles that are not available or unaffordable and have 
to be replaced by ubiquitous plastic bottles. This chapter is therefore more of a 
blueprint to develop locally adopted guidelines than a guideline itself.

The following is largely focused on the sampling of plankton and the 
measurement of hydrophysical parameters in the pelagic of waterbodies. 
The sampling of sediment and benthic cyanobacteria is briefly discussed.

A number of practical issues need to be considered when sampling for cya-
nobacteria and cyanotoxins and good preparation greatly facilitates on-site 
work. Sampling campaigns can be considerably impeded by weather condi-
tions that make manoeuvers that appear very simple from behind a desk 
more challenging in the field. For this reason, sampling campaigns should 
be prepared in a way that reduces on-site handling steps to a minimum.

In addition, samplers should be prepared to address questions and concerns 
from the general public when sampling recreational sites (see Chapter 15).

12.1  PREPARATIVE STEPS

Before fieldwork is conducted, the monitoring programme should be con-
sulted and for each task verified that it can be conducted as planned (see 
Chapter 11). Staff responsible for collecting samples needs to be trained on 
the entire process, including completing sampling protocols, handling of 
sampling devices and storage of samples during transport. Further, basic 
knowledge of cyanobacterial biology is favourable to decide on deviations 
from the sampling scheme or to collect additional samples when the actual 
conditions indicate this to be appropriate, for example, scum formation at 
an unexpected shore site due to unusual wind directions.

Preparative steps include:

• preparation of checklists for materials required for the on-site sam-
pling (sampling devices, storage containers, vehicles, etc.);

• preparation of easy-to-fill-in protocol forms that can be completed 
under adverse conditions in the field (may include field data collection 
sheets, sample submission forms and chain of custody forms);

• consistent use of unique sampling location names for all sampling 
sites. This will greatly simplify data management and avoid confusion;

• establishing a sample labelling scheme that allows the unambiguous 
back-tracking of samples. This is especially important when samples 
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are diverted later, that is, to be sent to different laboratories/analysts. 
When multiple institutions and laboratories are involved, the consistent 
use of a labelling scheme must be asserted;

• verification that the sampling can be practically fulfilled as intended, 
with sufficient time buffer to compensate possibly occurring delays;

• planning and organisation of transport to and from sampling loca-
tions, including access permissions for restricted areas;

• planning of transport of samples to other laboratories when not ana-
lysed in-house, including measures to preserve samples appropriately;

• contact information for laboratories conducting analysis (in case 
questions arise during sampling, or sample transport will be delayed), 
sampling site owners or managers, and emergency contacts.

Good logistical preparation prior to fieldwork requires that equipment is 
checked to ensure that it is functioning properly, for example, regular test-
ing and calibration of electrodes; testing and changing of batteries; and 
keeping operation, maintenance and calibration records, respectively. It is 
essential to prepare a sampling checklist that includes maps of sampling 
site locations, a list of required equipment, a detailed explanation of the 
methods for sample collection, lists of the types and numbers of samples 
to be taken at each site, as well as of the required volumes of samples. The 
labelling of sample containers (with water-proof markers) should follow 
a consistent system to make every sample traceable at any later time. As a 
minimum, sample container labels should include a unique and consistent 
sample site code (e.g., a code for the waterbody and a code for the sam-
pling point) and the type of sample or the intended analysis, respectively. 
In combination with the collection date and time on the sample protocol, a 
unique sample identifier is created. It is imperative that unique and specific 
site names be established and consistently used by all sample collectors. 
Developing an electronic master site list linked to geographic information 
and other pertinent metadata (laboratory methods used, reporting lim-
its, sample collector name, etc.) is encouraged. This will greatly simplify 
data storage, retrieval and future data analysis. Whenever possible, extra 
sample containers and labelling tools should be included in the material 
taken to collection sites. The extra containers can be used if additional 
samples are deemed necessary while on site (detection of scums or shifting 
bloom location) or if containers become broken or contaminated during 
transit or while on site.

12.2  DETERMINATION OF KEY 

HYDROPHYSICAL CONDITIONS

Among the hydrophysical conditions affecting cyanobacterial occurrence, 
the most important ones are turbidity, temperature profiles (stratification), 
pH, oxygen concentration and – for rivers or streams – flow rate (Chapter 3).
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12.2.1  Turbidity

Turbidity is easily assessed with a Secchi disc. It is slowly submerged into the 
water at a line to the point where it is just still visible (or no longer visible) 
and this depth is termed “Secchi depth” (Figure 12.1). The depth down to 
which photosynthesis is possible in aquatic ecosystems, the euphotic depth, is 
1.5–2.5 fold the Secchi depth (Preisendorfer, 1986), and in freshwater stud-
ies, the factor 2.3 is widely used (Chapter 4). More precise determinations 
of the euphotic depth are possible by photon flux measurements requiring a 
submersible quantum sensor (for photosynthetically active radiation; PAR). 
However, for the assessment of conditions favouring cyanobacterial prolifer-
ation, the much cheaper and simpler determination of Secchi depths is usually 
sufficient and allows reproducible measurements also by untrained persons 
after a brief introduction to the method (for an example, see Box 11.1).

12.2.1.1  Equipment

Secchi discs can be self-made, but convenient ones are available from com-
panies that provide field-sampling equipment. They should be 25 cm in 
diameter, made of sufficiently heavy material to be readily submersible, may 
include holes to ensure easy horizontal sinking and be attached to a chain 
or cord of sufficient length with depth marks (Figure 12.1).
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Figure 12.1  (a) Secchi depth measurement: the Secchi disc is lowered at the graduated 
rope to the depth where it is no longer visible. At this point, the disc is 
repeatedly lifted and lowered to determine accurately the depth at which 
the disc becomes visible, and this depth is read from the markings on the 
rope; the reading can be improved by using an underwater viewer to avoid 
reflection from the water surface (bathyscope, b). (c) Discontinuous depth-
integrated sampling: with a water sampler, samples are taken at predefined 
(exemplary) depths and then combined.
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12.2.1.2  Procedure

• Lower the disc into the water in the shade of a boat (or a pier) as 
reflections from the surface may distort the reading.

• Lower it to the depth at which it is just still visible; move it up and 
down several times to confirm that depth.

• If the water surface is very turbulent (e.g., through strong wind), it 
may help to create a quiet surface with a box without a bottom.

• Blooms may be very patchy, and immersing the disc will move them 
away from that spot. In such cases, wait a few seconds until they have 
redistributed.

• Do not wear sunglasses during the procedure as that may distort (i.e., 
reduce) the reading.

• Comparing readings between fieldworkers is an easy, but important 
exercise to reduce uncertainty, and it generally leads to remarkably 
similar results once the procedure has been discussed, understood 
and agreed.

For measuring transparency in shallow depth such as bathing sites, a Secchi 
disc with a smaller diameter can be mounted on a graduated rod instead 
of a rope. This allows rapid and precise measurements while wading in the 
water up to depth of about one meter.

For greater depths or under poor light conditions, the reading can be 
improved by using an underwater viewer or bathyscope (Figure 12.1) made 
of a wide box or tube with a transparent bottom on one side.

12.2.2  Temperature, oxygen and pH profiles

Whether a lake or reservoir is thermally stratified or totally or partially 
mixed can be determined from temperature, oxygen and pH depth profiles, 
usually measured at a central location. Modern fieldwork equipment includes 
multiprobes on long cables that can be lowered stepwise, taking readings at 
defined depths. A simplified approach is the measurement of temperatures 
in water samples taken at the defined depth, either directly after hauling the 
water sampler to the surface or with a thermometer mounted on the water 
sampler. For the latter approach, sufficient time needs to be allowed for an 
accurate reading and the haul to the surface has to be rapid enough to avoid 
errors through changes in the water’s temperature when moved from deep 
layers to the surface.

More precise and continuous data are obtained by installing thermis-
tor chains permanently in the water column. This may be of interest when 
raw water offtake sites are located at a depth close to the thermocline 
(see Chapter 8).

From such depth profiles, thermal and chemical stratification can be 
determined as described in Chapter 4 and Box 4.3.
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12.2.3  Additional parameters measured on site

The availability of field-portable sensors enables quick data collection for a 
suite of informative water quality parameters. This includes  multiparameter 
datasondes that are capable of simultaneously measuring chlorophyll-a, phy-
cocyanin and turbidity along with the other parameters mentioned above. 
More sensitive multispectral sondes may also be able to discern between 
different types of phytoplankton and estimate their relative abundance 
through fluorescence measurements (see section 13.6). These tools can be 
used to help verify the presence of cyanobacteria while on site (through 
detecting phycocyanin/phycoerythrin) and can help direct sampling to loca-
tions of cyanobacteria maxima. For example, a datasonde profile can be 
collected throughout the water column or along a horizontal gradient, and 
samples can be collected at discrete depth or locations with elevated phyco-
cyanin or chlorophyll-a concentrations.

12.2.4  Flow rate and discharge

In running waters such as rivers and streams, the determination of flow 
velocity and discharge is of interest for aspects such as estimates of nutri-
ent input to a lake or reservoir, or turbulent mixing (see Chapter 7). Flow 
velocity is measured with a current meter. Current meters commonly can 
be mechanical with a propeller or based on Doppler acoustics. Since most 
running water show turbulent flow and pronounced gradients within the 
transversal section, a measurement of average flow velocity can be only 
achieved by measurements at multiple points in the profile. For some pur-
poses, the temporal and seasonal variation at defined measurement points is 
more important than an exact determination of average flow velocity or dis-
charge, and a measurement of flow velocity at a single, well-defined point in 
the middle of the stream or river may be sufficient for cyanobacterial moni-
toring and management purposes because in longer time series (frequent) 
data on relative changes in flow velocity are more meaningful than (a few) 
accurate measurements of absolute discharge. Correlating measured flow 
velocities with precipitation in the catchment may be helpful.

Discharge, the volume of water that flows through a transect per unit of 
time, usually in m³/sec, is estimated from measurements at multiple points 
in the profile. This may require additional expertise or training. Discharge 
data may be available from regional water authorities.

12.3  ON-SITE INSPECTION AND DATA COLLECTION

A protocol for on-site inspection and data collection should be established, 
allowing a rapid and easy entry of data that are not logged electronically. 
Data to be registered include date and time, air and water temperature, 
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wind and general weather conditions, observations such as surface blooms, 
smell, dead fish, reports from the local population or the like. For recurrent 
questions, multiple choice-type questionnaires are recommended as these 
allow a rapid entry, even under adverse conditions, and have the benefit 
of a consistent and comparable recording of key data, in particular when 
multiple institutions exchange data.

Sites used for drinking-water abstraction or recreation should be sub-
ject to inspection by trained staff, and preferably in conjunction with 
sampling expeditions. Careful inspection and reporting can assist in the 
interpretation of results from laboratory analysis. Moreover, the develop-
ment of personal expertise in relation to specific waterbodies can provide 
the best form of early warning system, and hence, staff continuity has 
a high value.

When scums appear on the water surface, cyanobacteria may be present 
in densities hazardous to human health, and thus, appropriate responses 
should be initiated quickly (see Chapters 5 and 6), and samples for fur-
ther analysis should be taken considering safety aspects (see section 12.10). 
Sampling of scums outside designated or habitual bathing sites is also of 
great value for determining and predicting hazards, for example, in case of 
a change in wind direction.

A well-prepared sampling protocol greatly facilitates on-site work. It 
should be easy to fill in under field conditions, that is, by using check-
boxes or multiple-choice options. Information to be collected on site is 
as follows:

• General information: date, time, waterbody, sampling site, staff;
• Weather conditions: air temperature, precipitation, wind direction 

and speed;
• Water conditions: water temperature, water transparency, water 

colour, pH, conductivity, oxygen concentration;
• Samples: volume of specific samples, split samples;
• General observations: visibility of cyanobacterial (surface) blooms, 

odour, reports from local stakeholders;
• Delivery of samples: handover protocol to cooperating laboratories.

12.4  TAKING WATER SAMPLES

A variety of commercially available water sampling devices have been devel-
oped for specific purposes (Figure 12.2). Before purchasing a water sampler 
(or building one in-house), a limnologist should be consulted to select an 
adequate type. For practical reasons, the dimensions of a sampler should 
also be considered as the manual lifting of a filled sampler can be challeng-
ing, in particular when working from a small boat.
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Figure 12.2 W ater sampling devices. (a) Limnos-type sampler: the sampler is mounted 
on a frame (F); for sampling, the upper (U) and bottom (B) lids are held by a 
release mechanism (M). When the sampler is lowered to the desired depth, 
a weight (W) is let loose and slides down the rope (R) and hits the release 
mechanism, thereby unlocking the lids and closing the sampler. After bring-
ing it to the surface, it is emptied. (b) (simplified) Ruttner- or Kemmerer-
type water sampler: the bottom lid (B) is lowered to the desired depth, and 
the tube and the upper lid (U) are released and slide down along the rope to 
close the sampler. (c) Hosepipe sampler: the weighted end of the hosepipe 
(W) is lowered to the desired depth at a rope (R); the upper end is closed 
with a stopper (S) before the lower end is brought to the surface and the 
hosepipe is emptied. (d) Van Dorn-type sampler: the lids (L) are held open 
by a release mechanism (M) against the tension of an elastic strap (E); at the 
desired depth, the lids are released by the weight (W) and close the sampler.

The total volume of the water sample to be taken is determined by the 
sum of volumes of all subsamples for individual analyses (see below). The 
calculated total volume needed for all individual analyses is best exceeded 
about twice to ensure a sufficient sample volume even in case of accidental 
loss during sample processing.

Two principle types of samples are distinguished, grab samples and inte-
grated samples. Grab samples, either from the surface or from a defined 
depth, provide information restricted to a specific spot in the waterbody, 
for example, for a site used for recreation or for drinking-water offtake, 
whereas for assessing conditions in the whole waterbody, integrated sam-
ples are more appropriate.
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12.4.1  Grab samples

For surface samples, the easiest way is to submerse the sample container 
or another vessel. In the presence of surface blooms or scums, preferably 
multiple samples are taken to account for spatial heterogeneity that can be 
substantial within distances of a few metres. It is often helpful to collect 
grab samples at discrete depths, using either Van Dorn- or Kemmerer-type 
samplers. This is especially useful for determining source water conditions 
for drinking-water systems, which often draw water from deeper intake 
locations. For offtake systems with the flexibility to draw water from mul-
tiple intake depths, sampling each discrete intake depth can help inform 
water system operators of the region with the best water quality.

It is important to note exactly where and how the samples have been 
taken. When surface blooms or scums are present, highest concentrations 
are expectedly found in the uppermost centimetres, but once disturbed, for 
example, by wading in the water, the scum may be redispersed in the water 
column, thus lowering concentrations. It has therefore to be specified what 
individual samples should represent: maximum concentration or averaged 
for a water volume resembling the situation of a frequented bathing site.

12.4.2  Integrated samples

Thermal stratification usually results in inhomogeneous distributions of 
oxygen, nutrients and populations of algae, cyanobacteria and other organ-
isms. For this reason, depth-integrated samples are generally more adequate 
than (surface) grab samples for the assessment of the size of a cyanobacte-
rial population and nutrient concentrations. However, even when tempera-
ture profile is uniform throughout depth, stratification of organisms may 
develop on calm days. Depth gradients of oxygen concentration and pH are 
good indicators of this.

Depth-integrated samples are taken by either continuously sampling the 
entire water column from the surface to a defined depth or by taking several 
individual samples from defined depths and combining them into a larger 
volume. A vessel of sufficient volume needs to be available, such as a poly-
ethylene barrel or canister.

Continuous depth-integrated samples are often adequate for shallow and 
waterbodies of moderate depths. A simple depth-integrating pipe or tube 
sampler for shallow water columns (up to 5 m depth) or for the surface lay-
ers of deeper waterbodies is shown in Figure 12.2. This sampler is made of a 
piece of flexible tubing of several centimetres in diameter and sufficient length, 
one end of which bears a weight and is open at both ends. Preferably, the tube 
is transparent to allow easy recognition of any contamination that may attach 
to the inner wall. The weighted end is lowered slowly into the water on an 
attached cord. When the tube has been lowered to the desired depth, it con-
tains an integrated volume of the water column. Before hauling in the lower 



678 Toxic Cyanobacteria in Water

end with the attached line, the upper end is closed to avoid the loss of water 
once the lower end emerges from the surface. Hoses need to be thoroughly 
cleaned after use and stored preferably dry between sampling trips to avoid 
cross-contamination, for example, by microbial growth. In case multiple sites 
or waterbodies are sampled during a sampling trip, the hosepipe needs to 
be conditioned at each sampling site by repeatedly lowering it on one side 
of the sampling vessel or dock before the sample eventually is taken at the 
opposite side to avoid cross-contamination. Alternatively, continuous depth-
integrated samples can be obtained using a submersible water pump attached 
to a hose that is operated at a steady pumping rate while the water inlet is 
drawn upwards between the desired depths at a uniform speed.

In deeper lakes or reservoirs with thermal stratification, depth-integrated 
samples can be obtained by taking multiple grab samples at defined depths, 
for example, at 1, 3, 5 and 7 m below the surface and combined to an inte-
grated sample. If background information on the typical stratification charac-
teristics of a given lake is available (e.g., from long-term monitoring), sample 
numbers can be reduced by selecting adequate depths to represent specific 
strata. If depth intervals are unequal and samples are to be integrated, the 
volume of each subsample must be chosen to represent the actual fraction of 
the vertical stratum it represents.

In the case of surface bloom-forming cyanobacteria, wind-driven inhomo-
geneity can be considerable with a variation in concentrations of cells and 
toxins by orders of magnitude across the lake’s surface. Before a single sam-
pling location is chosen as representative for a given waterbody – generally a 
central location is chosen – this should be confirmed by sampling at different 
locations and by visual inspection. When available, remote sensing data of 
the waterbody can give indications on heterogeneous horizontal distribution 
of phytoplankton or chlorophyll-a, respectively (see Chapter 11).

12.4.3  Sampling bulk material

For a number of purposes, the sampling of bulk cyanobacterial material 
is of interest, for example, in-depth chemical analysis of toxins and other 
metabolites, isolation of cyanobacterial strains or toxicological studies.

Sampling scums is carried out most easily with a wide-necked plastic or 
glass container submerged only to a depth corresponding to the thickness 
of the scum.

Cyanobacteria distributed in the water column can be concentrated with 
a plankton net. The plankton net is lowered to the desired depth and slowly 
hauled to the surface. The depth at which the plankton net is deployed 
depends on the taxa of algae and/or cyanobacteria present. Floating cells 
(e.g., Microcystis, Dolichospermum, Aphanizomenon) are harvested within 
the upper metres of the water column, while the sampling of well-mixed or 
stratified waterbodies with distinct depth distributions of cyanobacteria (e.g., 
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Planktothrix) may include deeper water layers. The mesh size of the net needs 
to be appropriate for the taxa present, and for most cyanobacteria of inter-
est, 20 μm will suffice. A plankton net sample is not fully representative for 
the sampled waterbody, especially not in quantitative terms because the effi-
ciency with which the net can retain organisms depends on their size: it will 
be less effective for filaments with a small diameter (e.g., Limnothrix sp.) 
or picoplanktonic organisms (e.g., Synechococcus sp.), and this reduced effi-
ciency cannot be quantified. Further, mucilaginous species (e.g., Microcystis 
sp.) may rapidly clog the mesh, thus reducing further passage of water.

12.5  SAMPLING IN THE DRINKING-WATER 

TREATMENT TRAIN

If cyanotoxins are detected at the raw water intake at concentrations of 
concern, treatment train samples are relevant for validating the efficiency 
of cyanotoxin removal at each treatment step (see also section 5.1, Chapters 
10 and 11). Of critical importance for treatment optimisation is whether 
cyanotoxins are predominantly extracellular or intracellular and therefore 
at the raw water should be analysed for both intracellular and extracellular 
cyanotoxins. As cells may lyse and release toxins during treatment, analys-
ing both fractions in every treatment train sample may be relevant.

Preferably, sampling is timed with the flow through the plant, so the effect 
of processes on the same parcel of water can be determined. This is most 
important for systems that experience large fluctuations in intake water 
quality. Most water plant operators understand flow rates and hydraulic 
residence time through their plant, and sampling times can be adjusted 
accordingly. If the entire treatment train cannot be sampled, at least the 
major processing steps that are anticipated to provide the bulk cyanotoxin 
removal should be sampled, for example, prior and after flocculation and 
filtration, and after oxidation, prior to distribution (see also Chapter 10).

Any sample collected after oxidant addition should be immediately 
quenched during sample collection. The quenching agent used will depend 
in part on the method selected to analyse the sample and must be cho-
sen in contact with the laboratory. For example, sodium thiosulphate is a 
commonly used quenching agent when analysing a sample using an ELISA-
based method, but ascorbic acid is more typically used when analysing a 
sample via an LC-based method (see Chapter 14).

Treatment train sampling may require some specialised sampling equip-
ment. Swing samplers on telescoping poles are especially useful for sampling 
the top of deep sedimentation basins or filter beds if a dedicated sampling 
line is not available. A simple bucket attached to a rope can also work 
in many situations. Whichever sampling equipment is used, it should be 
cleaned and conditioned between sampling sites (at minimum, triple rinse).
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Sampling programmes may include further water quality parameters, 
including those that serve as potential surrogates for, estimating cyano-
bacterial cell and cyanotoxin removal throughout the treatment plant: 
Operators have used portable multiparameter datasondes to collect real-
time phycocyanin and chlorophyll-a measurements throughout the treat-
ment train. Such real-time data can be useful for quickly estimating the 
presence of cyanobacterial cells and their removal throughout the plant – 
although not for dissolved toxins. If a datasonde is not available, grab sam-
ples can also be collected from the intake and throughout the treatment 
train, and analysed in a laboratory with a spectrophotometer. Turbidity 
reduction is associated with particle removal, including cyanobacterial 
cells, and is generally a valuable operational monitoring parameter for the 
efficacy of filtration methods. Critical turbidity limits are therefore fre-
quently used in treatment plants.

12.6  SAMPLE CONTAINERS

It needs to be decided in advance whether it is more practical to subdivide a 
water sample into subsamples for each subsequent analysis (plankton, tox-
ins, nutrients, etc.) prior to transportation, or whether a single larger sample 
is to be divided upon receipt in the laboratory (Figure 12.3). In both cases, 
for subdividing a larger sample, it needs to be ensured that the sample is well 
mixed. Especially, buoyant cyanobacteria (Microcystis, Dolichospermum, 
etc.) can float up within minutes and hence bias subsampling.

Bottles – or containers in general – used for the storage and transport of 
samples are ideally chosen by the laboratory that will conduct the analy-
ses to avoid later problems due to inappropriate materials or insufficient 
volumes, respectively (see Chapter 14.1). Accordingly, the cleaning and 
preparation of the containers is most efficiently defined by the analysing 
laboratory because the staff can best estimate the risks of carryover effects 
due to inappropriately cleaned sample containers. This is particularly 
important for highly sensitive analytical procedures that can detect trace 
amounts (e.g., for soluble reactive phosphate).

Preferably, containers are prelabelled and well arranged in a suitable rack 
or box to allow rapid and easy handling under field conditions. To avoid 
cross-contamination, it is advisable to always use the same bottle for an 
individual site and individual parameter. For most samples, glass bottles 
are most appropriate due to the chemical inertness of glass. However, for 
safety reasons, plastic containers may be more adequate and can be used for 
most sampling purposes, for example, wide-mouthed polyethylene or poly-
carbonate bottles. Sample containers have to be checked for their appro-
priateness, including their volume, ease of cleaning and testing for possible 
adsorption of analytes (toxins, nutrients, etc.) to the material.
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Figure 12.3  Scheme for the splitting of a water sample into multiple subsamples for par-
ticular analyses. The list of subsamples is not exhaustive; further parameters 
could be pigments, iron, dissolved organic carbon, etc. Filter types to collect 
cells must be chosen to be compatible with the particular downstream anal-
yses. Subsamples can be kept at 4 °C; for later analyses, storage at −20 °C is 
adequate for most chemical analyses, while for molecular analyses (in par-
ticular, RNA), storage at −80 °C may be required. 

All samples taken in the field should be stored cool and dark until return-
ing to the laboratory. Sunlight and heat inevitably leads to changes of the 
samples and eventually to biased data. Insulating boxes such as camping 
boxes are widely used.

The following containers are recommended for the transport of samples 
taken for particular analyses. Before filling the individual containers with 
the samples for analysis, they need to be rinsed with the sample at least 
twice to minimise cross-contamination from previous samples.

Total phosphorus analysis (for various fractions, see Chapter 13): 100-mL 
glass bottles prewashed with and stored until usage containing a residual 
of sulphuric acid (4.5 M) or hydrochloric acid. Since the determination of 
dissolved phosphorus is done at low μg/L concentrations, care must be 
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taken to avoid cross-contamination of samples. Contamination may arise 
from phosphate-containing detergents or from previous storage of samples 
with very high phosphorus concentrations. Phosphates are easily adsorbed 
to glass surfaces, and the residual sulphuric or hydrochloric acid serves to 
minimise this effect.

Total nitrogen analysis: 100-mL glass or polyethylene bottles. Transfor-
mations between nitrate and ammonium may occur if samples are not 
properly stored (cooled).

Samples used to quantify dissolved nutrients have to be filtered as soon as 
possible. On-site filtration can be achieved with cellulose acetate syringe 
filter (ca. 0.2 μm pore size) or (manually operated) vacuum pumps and 
adequate filtration devices. Ammonium (NH +

4 ), nitrate and nitrite con-
centrations have to be analysed rapidly (within 24 h of sampling) using a 
spectrophotometric method. Whether or not on-site filtration is required 
depends on the time delay between sampling, temperature control and 
the arrival in the laboratory; it is often necessary to find a compromise 
between the amount of sampling to be achieved on a given field trip and 
possible sample degradation on the way to the laboratory. Preferably, 
possible effects of delayed filtration are evaluated by parallel processing 
of a few samples.

While it may be possible to use filtrates for several different analyses (e.g., 
of dissolved nutrients and toxins; Figure 12.3), it may, however, be neces-
sary to use specific types of filters (e.g., different pore size or filter material) 
for specific analyses.

Cyanobacteria (phytoplankton) identification by microscopy: 100-mL 
wide-mouthed polyethylene bottles for fresh grab or net sample (see below). 
Samples can be stored with ethanol at a final concentration of 30% v/v or 
neutral-buffered formalin at a final concentration of 4% v/v.

Cyanobacteria (phytoplankton) quantification by microscopy: 100-
mL clear glass bottles prefilled with 1 mL of Lugol’s iodine solution (see 
below) or neutral-buffered formaldehyde solution (final concentration 4% 
v/v), respectively (in this case, of course, rinsing with samples is not done). 
Alternatively, the preservative is added immediately after filling the bottles 
with the sample. Bottles have to be stored in the dark to avoid photodegra-
dation of iodine. Brown glass bottles are more protective but render later 
control of stored samples for sufficient iodine residue more difficult (see 
Chapter 13; also Catherine et al., 2017).

• Preparation of Lugol’s iodine solution: Dissolve 20 g of potassium 
iodide (KI) in 200 mL of distilled water; add 10 g of sublimated iodine 
and 20 mL of glacial acetic acid. Test the solution by diluting 1 mL 
with 100 mL water. The diluted solution must be clear and have the 
colour of whisky. Samples fixed with Lugol’s iodine and stored need to 
be checked regularly for decoloration (see Chapter 13).
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Cyanotoxins: 1.0-L (minimum for some chemical analysis; depending on 
methods used in the laboratory) wide-mouthed glass or polyethylene bot-
tles are preferred. For the detection of cyanotoxins by ELISA, smaller sam-
ple volumes are sufficient (100 mL). Cyanotoxins may bind to other types 
of plastic containers, which could reduce the measured concentrations. If 
only plastic containers are available, before filling the container, rinse it at 
least twice with the sample. This procedure will encourage binding during 
the rinsing steps and minimise potential for under-reporting cyanotoxin 
concentrations in the sample. Containers must be cleaned thoroughly 
with nonphosphate detergent and rinsed with distilled/deionised water to 
prevent contamination, especially from dried cells attached to internal 
surfaces, between sampling events. Generally, the denser a phytoplankton 
sample, the less volume is needed for a chemical analysis of cell-bound 
cyanotoxins. If dissolved cyanotoxin analysis was envisaged, a subsample 
can be filtered in the laboratory, possibly requiring a larger sample vol-
ume. To represent source water conditions, filtration should occur as soon 
as possible, preferably within 24 h of sample collection and prior to freez-
ing the sample which could lyse cells and release cell-bound cyanotoxins. 
Filtration can also be done on site, but since this is a time-intensive step, 
it may not be feasible.

Chlorophyll-a analysis: 1.0-L (minimum) wide-mouthed bottles are pre-
ferred. Samples must be stored dark and cool to minimise chlorophyll deg-
radation during transport.

Bulk cell material for toxin content, structural analysis of toxins or tox-
icity assays: Wide-mouthed bottles with volume according to the desired 
amount of sample material. For smaller volumes, containers for urine sam-
ples are particularly cheap and suitable. If samples are to be freeze-dried 
later on, the sample is preferably frozen in layers not thicker than 2 cm to 
reduce drying time. To produce frozen plaques, robust household plastic 
bags can be used when stored in watertight cooling boxes and immediately 
transferred to a freezer in the laboratory.

12.7  SEDIMENT SAMPLING

Sediment sampling may be helpful if there is a likelihood of high internal 
nutrient loads to the waterbody of interest (see Chapters 4 and 8). Waterbody 
management strategies that aim to limit internal nutrient loading often 
require baseline sediment nutrient data if they are to be successful. A limnolo-
gist should be involved in the selection of appropriate sample sites. In general, 
one to three sediment samples should be collected in small waterbodies, and 
more locations may be needed to collect representative data for larger water-
bodies. Within larger waterbodies, both deep and shallow sites should be 
selected, representing inlets and some shallower bays. Ideally, sediment cores 
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(at least 30 cm depth) should be collected and each 2 cm segment analysed for 
phosphorus (P) fractions, total aluminium, total iron and percent solids to 
help determine potential for sediment nutrient flux.

Sediment cores can also be analysed for cyanotoxins and may be able to 
provide a record of historic cyanotoxin occurrence within the waterbody 
(Waters, 2016; Zastepa et al., 2017).

Sediment corers, usually simple sampling devices, can be made in-house 
or purchased in a variety of materials. They are preferred compared to 
samples collected using a dredge sampler, because corers can maintain a 
representative vertical profile of the sediment stratigraphy, create less dis-
turbance by shock waves and can collect more highly consolidated depos-
its. Sediment corers are slowly lowered to the substrate (gravity corers are 
released at the water surface and allowed to fall freely); they then penetrate 
the sediment under the sampler’s own weight or are pushed or vibrated into 
the sediments. Commercial corers often contain core catcher inserts and 
one-way valves that allow the sample  to enter the tube, but not exit and 
to hold it in place. Inserts should not be reused between sample locations 
unless properly cleaned. Inserts made of plastic should not be used when 
collecting samples for organic analysis. Upon retrieval, the corer can be dis-
assembled (e.g., split spoons, some core tips unscrew) and the sample laid in 
a container or a prepared surface for further processing. Cores from simple 
tubes and most other corers often drop out or can be pushed out with a 
clean rod. Plastic or thin-walled metal corers (or core liners) can be cut, 
the ends capped and secured with tape, and the entire segment sent to the 
laboratory. This process and the split spoon sampler reduce contamination 
from one segment to another in vertically stratified samples (OEPA, 2018).

12.8  SAMPLING OF BENTHIC CYANOBACTERIA

Benthic cyanobacteria can be a source of cyanotoxins (as well as taste and 
odour compounds) and are typically more difficult to monitor than planktonic 
cyanobacteria. In shallow waters, such as wadable streams, a visual inspection 
to identify patches of possible benthic cyanobacterial growth is advised prior 
to the actual sampling. Wood et al. (2009) outline the estimation of cyanobac-
terial coverage of streambeds with the aid of an underwater viewer.

Limited established guidance is available on benthic sampling, but 
a variety of techniques have been used to varying degrees of success. 
Distribution of benthic cyanobacteria can be very heterogeneous, typically 
occurring in spatially limited patches with high density next to bare areas. 
Therefore, collecting samples from numerous sites and compositing may be 
appropriate for determining average conditions or assessing whether ben-
thic cyanobacteria may be a concern. One method of collecting epilithic 
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cyanobacteria (i.e., those growing attached to hard substrate) from streams 
or littoral zones is scraping a predefined area of representative rocks or 
substrate. Since variability in epilithic cyanobacteria can be high, multiple 
rock scrapes from a sampling site can be composited into a single represen-
tative sample (Bouma-Gregson et al., 2018). Samples can be collected by 
hand in wadable areas and by SCUBA divers in greater depths. Epiphytic 
cyanobacteria are collected together with the macrophytes to which they 
are attached (see Chapter 4).

Benthic cyanobacteria can also be sampled using a dredge sampler (for 
larger areas) or sediment corer (for fine-grained sediments). Discrete depth 
samplers can also be lowered to the bottom of a waterbody to collect sam-
ples near the benthic zone. Unfortunately, the dredge, corer and discrete 
depth sampling methods can displace benthic cyanobacteria during the 
sampling process and may result in underestimating benthic cyanobacteria 
occurrence. Since distribution of benthic populations is generally highly 
variable, these methods may also miss significant benthic mats that are not 
visible from the surface.

Analytical results of benthic cyanotoxins generally relate them to sedi-
ment area, for example, μg/cm², to (cyanobacterial) biomass, for example, 
μg/g fresh or dry weight. A transformation to volumetric units, this is, true 
concentrations, can only be tentative.

12.9  SAMPLES FOR MOLECULAR ANALYSES

DNA and RNA sample collection may require specific on-site sample prep-
aration and handling protocols due to the potentially rapid degradation 
of DNA and, especially, RNA. Ideally, samples collected for molecular 
analyses should be filtered on-site and the filters placed on ice (or as cold 
as possible). In some cases, DNA sampling protocols may call for in-lab-
oratory filtration, as long as samples are received and filtered by the labo-
ratory within a narrow time frame (preferably within 24 h). RNA sample 
collection is typically more rigorous, requiring immediate filtration after 
sample collection, placement of samples onto dry ice to quickly flash freeze 
filtered material, and holding on dry ice until sample can be transferred to 
a laboratory or low-temperature freezer prior to extraction and analysis. 
Due to the extremely high sensitivity of molecular methods, care must also 
be taken to ensure all sampling equipment is thoroughly cleaned and ster-
ilised. Preferably, sterile, disposable sampling supplies (syringes, cartridge 
filters, etc.) are used to avoid cross-contamination. In all cases, the validity 
of sampling protocols should be verified by the laboratory conducting the 
analyses (see Chapter 14).
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12.10  SAFETY CONSIDERATIONS

Caution and attention are appropriate while working with cyanobacteria, 
particularly when they are highly concentrated in scums. It is wise to treat 
all blooms as potentially toxic. Contact with water should be minimised 
during sampling, and gloves and rubber boots should be worn because cya-
nobacteria (and organisms associated with them) might also have a high 
allergenic potential.

However, during sampling, cyanobacteria actually are often not the most 
important hazard and general safety considerations for water sampling need 
to be implemented. In some areas of the world, other water-based hazards 
(e.g., organisms causing schistosomiasis or bilharziosis) may also be present. 
In such circumstances, water contact should be minimised, and following 
contact, the skin should be immediately rinsed with clear water and dried.

Although glass is generally the most inert material, avoiding glassware 
for fieldwork enhances safety. For most samples, polyethylene bottles are 
appropriate.

Inhaling spray or getting spray in eyes from boats, wind or irrigation 
water from areas with cyanobacteria blooms has to be avoided. Under con-
ditions that promote spray formation, eye protection and a mask are recom-
mended, especially while sampling cyanobacteria scums.

Last but not the least, sampling preferably is always conducted in a team – 
a basic rule for fieldwork. This has practical reasons when handling water 
samples, sample bottles, conserving agents, field log sheets, etc. Furthermore, 
sampling a waterbody involves the risk of serious injury and drowning, even 
in shallow but turbid waters where dangerous objects may not be visible 
from the surface and especially when working from a boat. Wearing a life 
jacket on a boat is strongly recommended and may be mandatory by local 
safety regulations.

12.11  QUALITY ASSURANCE AND CONTROL

Quality control policies are required for many operators of water supplies, 
laboratories and public authorities conducting surveillance, and they are 
important. A subset of samples can be collected for quality control purposes. 
Duplicate samples can be used to determine laboratory method precision. 
Replicate samples can be used to determine representativeness of sampling. 
Field samples may also be split for interlaboratory comparisons. Field blanks 
consisting of distilled deionised water and preservative, where appropriate, 
should be submitted along with regular samples to establish practicable 
detection limits and to monitor for levels of contaminants to which field 
samples may be exposed. In addition, if sample bottles are being reused, 
after cleaning, a subset of reused sample bottles should be periodically filled 
with distilled or deionised water and analysed for the parameters of interest 
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to verify the adequacy of the cleaning procedure. All field instruments used 
in the measurement of physical, chemical or biological parameters must be 
properly calibrated and maintained, with records kept of observations for 
each instrument. Laboratories should consider a regular participation in 
proficiency testing studies conducted by accredited providers or, more infor-
mally, in cooperation with other laboratories in the same region. Quality 
assurance sampling is especially important if the sample results will be 
used for regulatory purposes, to document human health impacts or where 
decisions based on the data could be disputed in court. The following sec-
tions describe different types of quality control samples and their intended 
purposes (OEPA, 2018).

Field duplicate samples (also known as field splits) are used to assess 
the variance of the total method of sampling and analytical procedures. 
Duplicate samples demonstrate the precision of the sampling system, from 
initial sample collection through analysis. A field duplicate is done by thor-
oughly mixing one sample, dividing it into two separate sets of containers 
and analysing as (blinded) independent samples.

Field replicate samples are used to measure sampling repeatability and nat-
ural variability within the sampled water. A field replicate is done by collecting 
two or more separate samples from the same site and time using the same sam-
pling method (replicates A, B, …) and analysed as independent blinded sam-
ples. The variability of replicates should be compared to duplicate variability. 
Replicate sampling is often used to estimate heterogeneity, for example, in 
sediments. Field duplicate and field replicate sampling may be combined to 
allow a full assessment of the validity of the entire sampling procedure.

Blank samples are used to evaluate the potential for contamination of a 
sample by contaminants from a source not associated with the water being 
tested. Blanks may be used to demonstrate that no contamination occurs 
from equipment, reagent water, preservatives, sample containers, ambient 
air, etc. Field blanks are used to evaluate the potential for contamination of 
a sample by site contaminants from a source not associated with the sample 
collected (i.e., air-borne dust, etc.). Equipment blanks are collected to verify 
that cleaning techniques are sufficient and that cross-contamination does 
not occur between sites, for example, by using the same water sampler. At 
least one equipment blank per equipment type per field season should be 
collected. One equipment blank container should be prepared for each type 
of preservative used. Container blanks are normally tested by the analysing 
laboratory (see Chapter 14).

12.12  PERMISSIONS AND DECLARATIONS

Sampling a waterbody may require permission, either because private prop-
erty has to be accessed or because national regulations generally restrict the 
removal of organisms from the environment. The Nagoya Protocol (UN, 2011), 
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an international agreement on the protection of economic interests possibly 
arising from natural biodiversity, has been implemented in the legislation 
of many countries.
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INTRODUCTION

Identification and quantification of cyanobacteria in water resources is a 
basic component of cyanotoxin monitoring programmes to effectively allow 
early alerts of the type of toxins to expect as well as of bloom development. 
Further, data on concentrations of nutrients, that is, phosphorus and nitro-
gen, are valuable for assessing the potential for cyanobacteria to develop 
blooms (Chapter 4). Information on turbidity, waterbody mixing and flow 
rate supports this assessment. Methods for nutrient analysis have been 
extensively reviewed and internationally harmonised by the International 
Organization for Standardization (ISO). In contrast, approaches to iden-
tify and quantify cyanobacteria are very variable and can be undertaken 
at different levels of sophistication. Rapid and simple methods can be 
employed to analyse the composition of a sample at the taxonomic level 
of cyanobacterial genera rather than species. This is often sufficient for a 
preliminary assessment of potential hazard as well as for initial manage-
ment decisions. Further investigation may be necessary in order to quantify 
cyanobacteria, for example, to determine whether they are present above 
a threshold biomass level. Quantitative counting methods can give useful 
estimates of cell numbers and biovolumes with a counting effort of less than 
one hour per sample and sometimes within minutes. Bulk methods such 
as biomass estimation by chlorophyll-a analysis or fluorimetric methods 
can be very time-effective with only moderate equipment demands. More 
detailed taxonomic resolution and biomass analysis is necessary to predict 
cyanobacterial bloom development. Prediction of toxin production carries 
uncertainties since the dominant species in multispecific cyanobacterial 
blooms are not necessarily the toxin producers. Distinction between these 
approaches is important because management must decide how available 
staff hours are most effectively allocated. In many cases, the priority is 
likely to be the evaluation of a larger number of samples at a lower level of 
precision and taxonomic detail.

The choice of methods further requires informed consideration of sources 
of variability and error at each stage of the monitoring process, particu-
larly for sampling (see Chapter 12). Waterbodies with substantial temporal 
and spatial variation of cyanobacterial cell density may show variability 
of orders of magnitude in cyanobacterial biomass between samples taken 
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within a few hours or within short distances. A highly accurate determi-
nation of biomass from singular weekly samples may not be adequate for 
the assessment of population size, while more useful information can be 
gained by investing the same effort into a less accurate evaluation of a larger 
 number of samples, either multiple samples per date or samples taken at a 
higher frequency. Efficiency can further be optimised by regular interlabo-
ratory calibrations of methods and their quality control as well as through 
testing the emerging new rapid molecular methods against the results of 
those obtained with accurate established methods.

This chapter describes methods for cyanobacterial identification and 
quantification at different levels of accuracy. Further, for determination of 
the key nutrients P and N, which control cyanobacterial biomass and spe-
cies composition, it gives a brief overview of the ISO methods and guidance 
on how to assess key hydrophysical conditions.

13.1  HANDLING AND STORAGE OF WATER SAMPLES

Decisions on the type of analyses required should be made prior to sample 
collection (see Chapter 12). However, this is not always possible, particu-
larly when a routine monitoring programme is not in place. Samples may 
therefore require immediate evaluation on arrival in the laboratory to deter-
mine if pretreatment is needed prior to appropriate sample storage.

Samples that have been taken for microscopic counting should ideally 
be preserved with Lugol’s iodine solution at the time of collection (section 
12.6). These samples will be relatively stable and no special storage condi-
tions are required, other than protection from extreme temperatures and 
light, for example, in a nontransparent box at room temperature, although 
storage at 4–6 °C is preferred. However, samples should be examined and 
counted as soon as possible because some types of phytoplankton are sensi-
tive to storage (Hawkins et al., 2005) and Lugol’s iodine solution is chemi-
cally reduced by organic matter in the sample over extended storage periods 
(usually within months, but faster in very dense samples), visible by fading 
of the brownish colour of the Lugol’s iodine solution. Therefore, a periodi-
cal visual check for loss of colour is recommended and add fresh Lugol’s 
solution if decoloration becomes apparent.

Unpreserved samples for quantitative microscopic analysis require imme-
diate attention in the laboratory either by the addition of preservative (e.g., 
Lugol’s solution) or by following instructions of alternative quantification 
methods which do not use preserved cells. Where unpreserved samples can-
not be analysed immediately, they should be stored in the dark at a tempera-
ture close to ambient field temperatures. Unpreserved samples are preferable 
for species identification because some characteristics cannot be recognised 
in preserved samples. For example, filaments of Aphanizomenon flosaquae 
aggregate to characteristic bundles, but preservatives tend to disintegrate 
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bundles, and the isolated filaments are more difficult to distinguish from 
other species and genera. While samples for quantification must be pre-
served immediately, to samples for identification generally no preservative 
is added and these should be analysed within approximately 24 h because 
quantitative changes are less important.

Samples for chlorophyll-a, dissolved phosphorus, nitrate, ammonium and 
molecular analyses should be filtered as soon as possible. Storage for a few 
hours in the dark in glass bottles is usually acceptable if temperatures do not 
exceed 20 °C. Filtration at the sampling site is recommended, particularly in 
warm climates, or filtration should occur immediately upon arrival in the 
laboratory. Filtered samples for nutrient analysis may be stored at 4–6 °C 
for a few hours prior to analysis, or frozen at −20 °C for several days, or at 
−80 °C for several weeks. If extended storage (weeks to months) of loaded 
filters is intended, the filters are preferably freeze-dried and stored at −20 °C 
to minimise the degradation of chlorophyll-a, for example. Samples col-
lected for RNA analysis or sequencing require immediate filtration and 
placement on dry ice until transferred to low-temperature freezer.

13.2  IDENTIFICATION OF CYANOBACTERIA

Microscopic examination of a bloom sample is very useful even when accu-
rate counting is not being carried out. The information on cyanobacterial 
taxa in a sample can provide an instant alert that cyanotoxins may be pres-
ent. This information can trigger the choice of the method for toxin analysis 
(see Chapter 14). Most cyanobacteria can be readily distinguished from 
other phytoplankton and particles under the microscope at a magnification 
of 100–400 times (see also Chapter 3).

However, organisms identified as belonging to a single species may be 
highly variable with respect to toxin content (see Chapter 4). Environmental 
populations of particular species generally consist of multiple genotypes 
that are not distinguishable based on morphological characteristics but with 
varying toxin contents. For the commonly occurring genera Microcystis, 
Planktothrix, Aphanizomenon, Raphidiopsis (Cylindrospermopsis) and 
Dolichospermum (Anabaena), identification on the genus level is often suf-
ficient to allow a prediction on the presence of particular types of toxins 
(Chapters 2–4). Moreover, microscopic analysis often does not allow the 
differentiation of individual species for several reasons, such as uncertain-
ties in the taxonomic scheme, absence of characteristic and stable morpho-
logical features or lack of experience. Preferably, identification results are 
then given at the genus level, for example, Aphanizomenon spp. (for “spe-
cies pluralis”: multiple species).

For establishing cyanobacterial identification in a laboratory, consul-
tation with experts on cyanobacterial identification is helpful. Training 
courses for beginners should focus on the genera and species relevant in the 
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region to be monitored. Experts can assist in initially deriving a list of these 
taxa and the criteria for their identification, and later by evaluating micro-
graphs of the typical cyanobacteria, provided microscopes equipped with 
a camera are available. In the course of further monitoring, experienced 
experts should be consulted periodically for quality control and for updat-
ing such a list. Last but not the least, continuity of individual staff, that is, 
long-term responsibility for identification and enumeration, is highly valu-
able to facilitate identification and to allow the recognition of shifts in taxo-
nomic composition.

Key morphological characteristics of cyanobacteria are described in 
Chapter 3, and Table 13.1 shows identification keys assisting in the deter-
mination of major cyanobacterial groups, genera and species.

13.3  QUANTIFICATION OF CYANOBACTERIA

Rapid methods for frequent monitoring of large numbers of waterbodies 
or sampling sites have been developed in some countries. These methods 
cannot be readily standardised and evaluated internationally, but can be 
adapted to regional or local conditions. Deciding on the appropriate classi-
fication of units to count depends upon variations such as whether prevalent 
taxa are filamentous, colony-forming or occur as single cells, and whether 
populations are very diverse or largely monospecific.

Cyanobacterial biomass can also be determined using indirect methods, 
the most common being the quantification of chlorophyll-a. The established 

Table 13.1  Compilation of taxonomic keys for various taxa of cyanobacteria

Reference Covered taxa

Anagnostidis & Komárek (1985) Major groups

Komárek & Anagnostidis (1986) “Chroococcales”
Komárek & Anagnostidis (2008)

Anagnostidis & Komárek (1988) “Oscillatoriales”
Komárek & Anagnostidis (2007)

Komárek & Anagnostidis (1989) “Nostocales”

Anagnostidis & Komárek (1990) “Stigonematales”

Komárek (2013) Heterocytous genera

Komárek (1991) Microcystis in Japan

Komárek (1996) Picocyanobacteria

Komárek (2003) Planktonic “Oscillatoreales”

Komárek (2010) Nostocaceae

Komárek & Cronberg (2001) African “Oscillatoreales” 
and “Chroococcales”

Komárek & Zapomělová (2007) Anabaena/Dolichospermum

Kaštovský et al. (2010) Invasive cyanobacteria
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methods (see section 13.5) are rapid and simple but also quantify chlorophyll-a 
from other phytoplankton; hence, it is best used when cyanobacteria are the 
main or dominant organisms present. Alternatively, submersible multiprobes 
measuring in vivo chlorophyll-a (Chl-a) fluorescence together with that of the 
pigment specific for cyanobacteria, that is, phycocyanin (PC), are increas-
ingly used (e.g., Ziegmann et al., 2010; McQuaid et al., 2011; Zamyadi et al., 
2012; Brentrup et al., 2016). Care should be taken to calibrate fluorimeters 
(by determining biovolume in selected samples; see section 13.3.2) since oth-
erwise phycoerythrin-rich species might be missed (Selmeczy et al., 2016).

Approaches to monitoring cyanobacterial blooms are reviewed in 
Srivastava et al. (2013). The procedures and techniques described in the 
following can be considered as classical approaches. Techniques supported 
by digital image analysis and computation are emerging and may facilitate 
the determination of cyanobacterial or, more general, plankton biomass in 
future (Benfield et al., 2007; Saccà, 2016; Zohary et al., 2016). Automated 
methods are not yet widely applied for planktological studies and monitor-
ing due to the complexity of the matter. A certain error in quantitative data 
on plankton biomass has to be accepted with any method (Saccà, 2017), 
although this error can be reduced by intercalibration exercises between 
laboratories and operators (Rott, 1981). Molecular methods can also be 
employed to quantitatively estimate total cyanobacterial biomass and toxi-
genic potential (see section 13.6).

13.3.1  Counting cyanobacterial cells

Microscopic counting of cyanobacterial cells, filaments or colonies has the 
advantage of directly assessing the abundance of potentially toxic taxa. Little 
equipment in addition to a microscope is required. The method may be rather 
time-consuming, ranging from a few minutes to several hours per sample, 
depending upon the accuracy required and the number of species to be differ-
entiated. Further, counting time depends to a large degree on personal expe-
rience, and therefore, staff continuity is highly desired (Vuorio et al., 2007).

The following begins by outlining precise and widely accepted counting 
procedures which are more time-consuming and require a moderate level of 
expertise, but serve as a benchmark to assess the performance of simplified 
methods which can be developed to suit specific requirements of a given 
sampling programme. More details can be found, for example, in Olenina 
et al. (2006) and Karlson et al. (2010).

13.3.1.1  Sample concentration by sedimentation 

or centrifugation

Direct counting of preserved cells is typically carried out by Utermöhl’s 
counting technique using a counting chamber and inverted microscope 
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(Utermöhl, 1958; CEN, 2006). This method is well suited for the assess-
ment of a large variation in cell morphologies and is widely accepted as 
reliable. Counting chambers and sedimentation tubes are commercially 
available or can be built in-house (see Figure 13.1). The most commonly 
used chambers have a diameter of 2.5 cm and a height of 0.5 cm and can 
be fitted on the stage of an inverted microscope. If larger volumes of water 
need to be analysed, as is the case when cell density is low, a sedimentation 
tube can be used to increase the volume. The water volume used for an 
individual counting depends on density of cells, counting technique (fields 
or transects, see below) and microscopic magnification. If cell densities 
were high like in bloom samples, even a few millilitres could contain too 
many cells for accurate counting, and sample dilution is needed. Optimally, 
10–30 items (cells, colonies, filaments) are present in an individual counting 
field. If less, search for cells in the view field consumes time, and if more, the 
investigator may get confused by the density and individual cells obscure 
each other, thus decreasing counting accuracy.

glass bottom

cover

water
sample

sedimentation
tube

sedimentation
(3-4 hours per cm
tube height)

cover glass support

(a)

(b)

(c)

Figure 13.1 P reparation of samples in a sediment chamber for counting plankton with an 
inverted microscope according to Utermöhl (1958). (a) The sedimentation 
cylinder is placed on the microscope slide and filled completely with the 
water sample; a cover is slid on the cylinder. (b) The plankton in the sample 
fixed with Lugol’s solution is allowed to sediment. (c) The sedimentation 
tube is pushed onto a support with a cover glass; the sample is ready for the 
counting procedure.



696 Toxic Cyanobacteria in Water

Equipment
• Inverted microscope with 100-, 400- and preferably 1000-fold 

magnification
• Counting chamber with sedimentation tubes of variable lengths, that 

is, variable volumes
• Cyanobacterial identification keys and images
• Samples preserved in Lugol’s iodine solution (see section 11.3.1)

Procedure
 1. Allow the sample to equilibrate to room temperature. If cold samples 

are placed directly in the counting chamber, gas bubbles develop dis-
turbing sedimentation and interfere with visibility.

 2. Gently invert the bottle containing the sample several times to ensure 
homogenous mixing.

 3. Fill the sample into the sedimentation tube placed on the counting 
chamber.

 4. Place the counting chamber on a stable horizontal surface at dark 
place with stable temperature.

 5. Allow the sample to settle. Sedimentation time varies depending on 
the height of the sedimentation tube. Allow at least 3–4 h/cm height 
of liquid for samples preserved with Lugol’s iodine solution. For sam-
ples preserved with neutralised formalin, double the time allowed for 
sedimentation. Buoyant cells may not settle and require the disruption 
of the gas vacuoles (see below). However, this problem is frequently 
overcome by several days of storage with Lugol’s solution, through 
uptake of iodine into the cells.

 6. Phytoplankton density can now be determined by counting either the 
total number of organisms visible in the chamber or subsections (tran-
sects, fields) as shown in Figure 13.2.

If an inverted microscope is not available and samples with low cyanobacte-
rial density need to be counted, other techniques may be applied in order 
to concentrate samples sufficiently, most simply by sedimentation in a glass 
cylinder and careful removal of the supernatant. However, sedimentation 
in a glass cylinder or centrifugation generally yields less accurate counting 
results compared to the sedimentation/counting chambers described above 
and the latter should be preference whenever available.

Equipment
• Glass measuring cylinder, 100 mL
• Glass pipette with pipette bulb or filler
• Standard laboratory microscope with 10× and 40× objectives
• Sample preserved in Lugol’s iodine solution (section 11.3.1)
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counting chamber area

view field with scaled grid

f

counting
consecutive

grids in
transects or

counting full
view fields
at random

counting
objects within

or touching
the grid

„inclusion border“
of the counting grid

Figure 13.2 Q uantitative enumeration of cyanobacterial and plankton cells with 
Utermöhl technique. Cell counting is done either in multiple consecutive 
counting grids in the view field following the chamber’s transects or in full 
view fields that are randomly selected. In individual counting grids, two bor-
ders are defined as inclusion border. All cells touching these borders are 
included (dark grey), irrespective of the share of the cell lying within the 
grid. The opposite borders are defined as exclusion borders with all cells 
touching these lines to be excluded (light grey). For filaments in which indi-
vidual cells cannot be distinguished (f), only the share of the filament lying 
within the grid is measured and counted (dark grey); individual filaments 
may extend over multiple counting grids or view fields. The grid is moved 
forward to the next position for the grid’s width.

Procedure
 1. Allow the sample to equilibrate to room temperature.
 2. Gently invert the bottle containing the sample several times to ensure 

homogeneous mixing.
 3. Fill 100 mL of the sample into the measuring cylinder.
 4. Allow the sample to settle for an appropriate time (see above).
 5. Using the glass pipette, carefully remove the supernatant, leaving only 

the last 5 mL undisturbed.
 6. The sample has now been concentrated by a factor of 20 and can 

be counted using a counting chamber (e.g., Sedgewick-Rafter or 
haemocytometer).

Alternatively to sedimentation, centrifugation can offer a rapid and conve-
nient method of concentrating a sample (Ballantine, 1953). Fixation with 
Lugol’s iodine solution enhances the sedimentation. However, buoyant cells 
may still be difficult to pellet and may require the disruption of vacuoles 
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prior to centrifugation (see below). Once concentrated, a known volume can 
be quantified using a counting chamber or by counting a defined volume 
using a micropipette to place a drop on a microscope slide. Observation and 
counting can be done with a standard microscope.

Equipment
• Centrifuge
• Centrifuge tube, 10–20 mL
• Syringe or bottle with cork, or plastic bottle with screw cap
• Standard laboratory microscope with 10× and 40× objectives

Reagents
• Aluminium potassium sulphate, 1.0 g AlK(SO4)2·12H2O in 100 mL 

distilled water

Procedure
 1. Place 10–20 mL of sample in a centrifuge tube, seal with cap and cen-

trifuge at a minimum of 500 × g for 15 min.
 2. If pelleting needs to be enhanced, add 0.05 mL of aluminium potas-

sium sulphate solution per 10 mL of sample. Mix and centrifuge as 
described.

 3. If pelleting of buoyant cells wasn’t possible, try one of the following:
 i. Fill sample in a plastic syringe, ensure the end is tightly sealed, 

then apply pressure to the plunger.
 ii. Fill sample in a bottle with a tightly fitting cork, then bang the 

cork suddenly.
 iii. Fill sample in a well-sealed plastic bottle and drop it sharply onto 

a hard surface.
  Once subjected to this pressure shock, the gas vesicles should have 

been disrupted and cells should pellet when centrifuged.
 4. After centrifugation, carefully remove the supernatant and resuspend 

the pellet in a small known volume (e.g., 0.5 mL).
 5. Samples concentrated by centrifugation can be counted using a count-

ing grid or haemocytometer.

13.3.1.2  Quantification of cyanobacteria using 

an inverted microscope

A prerequisite to the counting of cyanobacteria (phytoplankton in general) 
is the definition of the units to be counted, that is, individual cells, filaments 
or colonies. Globally, the accuracy of quantitative determination depends 
on the number of counted objects (Rott et al., 2007), and the relative error 
is approximately indirectly proportional to the square root of the number 
of counted objects (see below for more details).
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The majority of bloom-forming, planktonic cyanobacteria form  filaments 
(e.g., Aphanizomenon spp., Dolichospermum spp., Planktothrix spp.) or 
 colonies (e.g., Microcystis spp., Merismopedia spp.) that consist of large 
 numbers of cells which are often difficult to be counted individually. Both 
filaments and  colonies can differ greatly in the number of cells per filament or 
colony,  respectively. Hence, results given as number of colonies or filaments, 
 respectively, per  volume of sample do not provide a reliable estimate of the den-
sity of  cyanobacterial cells or biomass in the sample (Alcántara et al., 2018).

Therefore, disintegration of colonies and subsequent counting of indi-
vidual cells is preferable to counting colonies and estimating colony size 
(Box,  1981). Disintegration of colonies sometimes occurs spontaneously 
several days after fixation with Lugol’s iodine solution. For more stable 
colonies, it can be achieved by heating at 80–90 °C for 15 min, paralleled 
by intensive mixing, or gentle ultrasonication may also help. These methods 
often separate cells very effectively, and even where colonies are not totally 
broken down into single cells, the colony size may be reduced sufficiently to 
allow individual cells to be counted. If these approaches failed, the volume 
of individual colonies could be determined as an estimate of cell density. If 
colonies were relatively uniform in size, the average number of cells per col-
ony may be determined and used to transform colony numbers to cell num-
bers (Hötzel & Croome, 1999). The use of published values for numbers 
per colony is not recommended because the size of colonies varies greatly.

For filamentous species, a good estimate of cell numbers is calculated 
from the number of filaments multiplied by the average number of cells per 
filament. For the latter, the cells per filament are counted for the first 30 
filaments encountered and then averaged. A caveat is that cell boundaries 
may be poorly visible in the microscope or that the average number of cells 
per filament is very variable, or both. In this case, it may be preferable to 
measure the length of a number of filaments to compute the average fila-
ment length to be used for calculations of biovolume or for estimates of cell 
number by dividing filament length through average cell length. The most 
precise approach is to measure the length of the part of the filament within 
the counting grid or boundaries of the transect (Figure 13.2). Other meth-
ods for the quantification of filamentous algae and (cyano)bacteria have 
been proposed by Burnham et al. (1973) and Ramberg (1988).

Most counting approaches aim at counting only parts of the entire sample 
(i.e., the entire area or parts of the sediment chamber) and then extrapolate 
to the volume of the entire sample (Catherine et al., 2017). The most com-
mon methods are as follows:

• total area counting, that is, the counting of all cells in the sediment 
chamber. For most samples, this is very time-consuming and it is usu-
ally only applied to the counting of large units like colonies at low 
magnification;
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• counting of cells in transects from one edge of the chamber to the 
other, generally one vertical and one horizontal transect, pass-
ing through the centre of the chamber. Some inverted microscopes 
are equipped with special oculars so that the transect width can be 
adjusted as required. Alternatively, the horizontal or vertical sides 
of a simple counting grid can be used to indicate the margin of the 
transect. Extrapolation to the total sample requires measuring of the 
width of the transects and the diameter of the chamber or the counted 
total area, respectively, to calculate the area counted in proportion to 
the total area of the chamber bottom;

• counting of cells in randomly selected view fields. It is recommended 
that moving to consecutive view fields should be done without looking 
through the microscope to prevent a bias through subjective selection 
of fields. The view field area covered by a counting grid is usually 
considered as one field. However, if no counting grid is available, the 
total spherical view field can be considered as a single field. For an 
extrapolation to the total sample, the number of counted view fields, 
the area of a view field and the total area of the chamber are needed:

A
N c= × C

i i
m A × F  

with Ni: number of cells of species i in the sample
ci: counts for species i
AC: total area of the chamber bottom [in mm2]
AF: area of a view field [in mm2]
m: number of counted view fields.
In a final step, the total number of cells is divided through the initial vol-

ume of the sample to yield cell densities in the sample.

C
Di = i

 
V s  

with Di: density of species i in cells per litre
Vs: volume of sample [in L].
The density of different species in a sample can vary considerably for 

orders of magnitude, and there can also be difference in volume of indi-
vidual species spanning orders of magnitude. It is therefore necessary to 
adopt the counting scheme for individual samples.

Total chamber area counting with low magnification (100×) is suitable 
for large cells or multicellular units, whereas transect or field counting with 
higher magnification (200×, 400×) is used for single cells or small units. 
Counting using transects or view fields assumes a homogeneous distribution 
of sedimented cells on the chamber’s bottom. However, due to convection 
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currents in the chamber, cells very rarely settle evenly on the bottom glass 
but often are found in higher densities in the centre and towards the bor-
ders of the chamber (Salmaso et al., 2017). Occasionally, density also varies 
between opposite borders of the chamber. Inhomogeneities can be mini-
mised by stable ambient conditions during the sedimentation procedure, in 
particular by stable temperatures. Fortunately, transect counting of perpen-
dicular diameters minimises the error and is hence the preferred method.

The accuracy of the counting increases with the ratio of counted to total 
area. But instead of counting the total area for each sample, a trade-off 
between time spent on counting and accuracy is to be made. The relation 
of accuracy to counting time is very effective when at least 100 units (cells, 
colonies, filaments) of a target taxon are counted (for simplification, see 
Box 13.1). In this case, the counting error is estimated at 20%, while for 
reducing the error to 10%, 400 units need to be counted (Lund et al., 1958). 
These percentages should be considered when deciding about the number of 
units of target species to be counted.

BOX 13.1: SIMPLIFICATION FOR BIOMASS ESTIMATES

With some experience and a flexible approach, the time needed for counting 

of cells and measuring cell dimensions can be considerably reduced without 

substantial loss of accuracy by applying the following procedures:

• If the difference in counts of dominant species in two perpendicular 

transects is less than 20%, no further transects need to be counted. 

• If the relative standard deviation (standard deviation divided by the 

mean) of cell dimensions measured on 10 cells is less than 20%, no 

further cells need to be measured.

• If a set of samples from the same waterbody and only slightly differing 

sites (e.g., vertical or horizontal profiles, time series) is analysed, count 

all samples, but measure cell dimensions only in one. Visually estimate 

whether the size deviation of cells of the same species in other samples 

is not more than about 30% from the established average. 

Objects often occur on the border of a view field, and it needs to be 
decided whether to count them or not. One simple solution is to ignore 
objects that touch left border while counting those that touch the right 
border or vice versa.

There are different recommendations regarding the number of units per 
species that must be counted to obtain sufficiently accurate data (Edler 
& Elbrächter, 2010; Karlson et al., 2010). As stated above, counting 100 
units per taxon generally gives acceptable data. Yet, in natural plankton 
 communities, several tens of taxa are normally present, of which only a 
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small number makes up a large share of total cells. For these dominant taxa, 
fairly accurate counting can be rapidly achieved, while for subdominant 
or rare taxa, this may not be achieved or is very time-consuming. Unless 
subdominant or rare taxa are considered important for hazard assessment, 
counting of 400–800 units in total has been found to yield globally accept-
able results with a total overall error of some 10%, an error of 10–20% for 
the dominant species and an error of 20–60% for subdominant species, 
respectively (Vuorio et al., 2007). For rare species (e.g., less than 10 counts 
out of 400), reliable cell density data can be derived only by increasing the 
number of counted view fields. In case of larger cells, the entire bottom area 
of the chamber may be counted at a lower magnification. If only cyanobac-
teria are to be counted, and only one or two taxa are present, counting with 
an error below 10% can be achieved within less than one hour by counting 
400 individual units per taxon.

The use of mechanical or electronic counters for recording cell counts 
can shorten counting time considerably, especially if only a few taxa are 
counted. Computer keyboards can also be used together with suitable pro-
grammes for recording cell counts.

The use of an inverted microscope with counting chambers is generally the 
best approach for estimating cyanobacterial numbers. However, a standard 
microscope is sufficient for preconcentrated samples or for naturally dense 
samples from mass developments, provided the volume of the counted sample 
can be precisely defined, for example, by using a micropipette. Other counting 
chambers (e.g., Sedgewick-Rafter or haemocytometer) are available for use 
with a standard microscope. It can also be useful to monitor samples under 
high magnification with oil immersion (1000×) to check the sample for the 
presence of very small cells, which may be overlooked during normal counting.

13.3.1.3  Quantification of cyanobacteria using 

a standard microscope

An alternative counting method which has been found to be useful is syringe 
filtration. This method is considerably less time-consuming because it does 
not depend on lengthy sedimentation times and uses a standard labora-
tory microscope. However, the results generally are less accurate because 
the recognition of cells on the membrane is hampered considerably by the 
opaqueness of the membrane filter.

Equipment
• Syringe, 10 mL
• Membrane filters, 13 mm diameter with 0.45 m pore size
• Membrane filter holder adaptable to syringe (generally, a Luer 

connection)
• Glass microscope slides and cover glass
• Standard laboratory microscope with 100× and 400× magnification



13 Analysing cyanobacteria and water chemistry 703

Reagents
• Immersion oil

Procedure
 1. Gently mix sample by inverting several times.
 2. Take up a defined volume of sample into the syringe. The volume is to 

be adjusted to the estimated cell density in the sample. Ten millilitres 
is a good starting point for most samples.

 3. Connect filter holder with filter to the syringe.
 4. Pass the sample through the filter, but avoid heavy pressure. When the 

filter is clogged, repeat from step 1 with a smaller volume.
 5. Once the complete sample volume has passed through the filter, 

remove the filter from the holder and place it on a glass microscope 
slide with the surface with the captured cells facing upwards.

 6. Allow the filter to dry at room temperature, then carefully add one 
or two drops of immersion oil to the filter. The oil will make the fil-
ter appear transparent and permit observation of the plankton cells 
trapped on its surface.

 7. Finally, cover the filter surface with a cover glass and examine under 
the microscope.

 8. The density of cyanobacteria can be easily calculated from counts of 
cells on the filter (or part of it), the total area of the filter and the vol-
ume of sample filtered.

13.3.2  Estimation of cyanobacterial biomass 
by microscopy

For estimation of toxin concentrations, cell numbers may be only of limited 
value as cell size varies considerably between and within species. Hence, an 
estimate of biomass is a better parameter to assess potential toxicity. Two 
principle approaches are available: estimating biomass from cell counts and 
average cell volumes, or chemical analysis of pigment content.

13.3.1.4  Cyanobacterial counts and cell volumes

Biovolume can be obtained from cell counts by determining the average cell 
volume for each taxon or unit counted and then multiplying this value by 
the cell counts in the sample. While by assuming a specific weight of ca. 1 
mg/mm3 (= 1 g/cm3; wet weight) for planktonic cells, the biovolume can be 
transformed to (fresh) biomass, giving results as biovolume avoids errors 
of this assumption and has become widely accepted. Average cell volumes 
are determined by assuming idealised geometric shapes for individual 
taxa like regular spheres for Microcystis cells and elongated cylinders for 
 filaments of Planktothrix. Measuring the relevant  geometric dimensions of 
10–30 cells (depending upon variability) of each taxon allows computing 
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of the corresponding average volume (Hillebrand et al., 1999; CEN, 2015). 
This is best done with the aid of a spreadsheet in which the computing 
steps have already been defined based on general formulae (Table 13.2). 
Cyanobacteria have fairly simple geometric shapes (in contrast to some 

Table 13.2  Biovolume calculation for common shapes of cyanobacterial cells

Exemplary 
dimensions Biovolume 

Shape Taxon Formula in μm in μm³

Sphere Aphanocapsa V = π/6 × d3 d = 0.8 0.27

Chroococcus d = 2 4.2

Synechococcus d = 3 14

Microcystis d = 4 34

Microcystis d = 5 65

Microcystis d = 6 113

Prolate
Spheroid
(rotational
ellipsoid)

Aphanothece 
(cell)

Radiocystis (cell)

Dolichospermum 
(cell)

V = π/6 × d2 × h d = 1.2, h = 2.5

d = 3, h = 4

d = 4, h = 6

1.9

19

50

Dolichospermum 
(cell)

d = 5, h = 7 92

Dolichospermum 
(filament)

V = π/6 × d2 × h × n d = 3, h = 4, n = 80 942

Dolichospermum 
(filament)

d = 4, h = 6, n = 50 3770

Cylinder Limnothrix (cell) V = π/4 × d2 × h d = 2.5, h = 10 49

Planktothrix 
(cell)

d = 5, h = 5 98

Planktothrix 
(cell)

d = 8, h = 5 251

Moorea (cell) d = 20, h = 3 942

Planktothrix 
(filament)

V = π/4 × d2 × l d = 5, l = 300 5890

Planktothrix 
(filament)

d = 8, l = 450 22 619

Moorea 
(filament)

d = 20, l = 1500 471 238

d

d
h

d

h

For more complex shapes, see Hillebrand et al. (1999) and Napiórkowska-Krzebietke & Kobos (2016). 
The volumes presented here as examples should not be used for biovolume estimates in real samples. 
For samples to be analysed, the cell dimensions of encountered taxa have to be measured for biovol-
ume calculations.

V: volume; d: cell diameter; h: cell height; l: filament length; n: number of cells in filament.
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diatoms, Desmidiaceae or dinoflagellates, the shape of which needs to be 
approximate by combinations of simple shapes such as cylinders, cones and 
ellipsoids (Padisák & Adrian, 1999; Napiórkowska-Krzebietke & Kobos, 
2016)). Table 13.2 gives exemplary shapes, dimensions and biovolumes of 
cyanobacteria. From the numbers in the table, it is evident that cell dimen-
sions need to be determined as accurately as possible to minimise the error 
of biovolume estimates. Linear dimensions such as cell diameter and cell 
volume are related by a cubic function, and therefore, a measurement error 
of cell diameter of 25% (e.g., 5 versus 4 μm cell diameter) results in an 
error of 95% in biovolume. In consequence, while using mean cell volumes 
from literature, compiled from other waterbodies (e.g., as given in Kremer 
et al., 2014), provides more meaningful data than mere cell counts, the 
accurate measurement of cells in samples from the waterbody under study 
is more accurate.

Example 1: By measuring 20 Microcystis cells, an average diameter of 
5 μm was established. Assuming spherical-shaped cells, the average cell 
volume is π/6 × 53 μm3 = 65.4 μm3. Counting resulted in 100 000 cells 
per mL, and thus, the total biovolume is 65 × 105 μm3/mL = 6.5 × 109 
μm3/L = 6.5 mm3/L.

Example 2: Measuring 30 Planktothrix filaments resulted in an average 
length of L = 225 μm and an average diameter of 6 μm. Assuming 
cylindrical filaments, the average filament volume is π/4 × 62 × 225 
μm3 = 6362 μm3. Enumeration resulted in 1000 filaments per mL. 
Thus, the biovolume of Planktothrix was 6362 × 103 μm3/mL = 6.4 × 109 
μm3/L = 6.4 mm3/L.

Thus, although the number of Planktothrix filaments was 100-fold less 
than that of Microcystis cells, biovolumes were similar. Both species often 
contain microcystins, and it is possible to compare the relative toxin con-
tent per biovolume or biomass, whereas there is little point in comparing 
toxin content in relation to the cell or filament counts, respectively.

The pigment chlorophyll-a generally contributes 0.5–1% of fresh weight of 
phytoplankton organisms (Kasprzak et al., 2008). Although the pigment 
content may vary depending on the physiological state of the organisms (see 
section 4.6.5), chlorophyll-a is a widely used and accepted measure of total 
phytoplankton biomass. It is an especially useful measure during cyanobac-
terial blooms, when the phytoplankton mainly consists of cyanobacteria, 
often of only one or a few taxa.

13.4  ESTIMATION OF PHYTOPLANKTON BIOMASS 
USING CHLOROPHYLL-a ANALYSIS
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In modern laboratories, the analysis of chlorophyll and other pigments 
(carotenoids) is often done by HPLC (Bidigare et al., 2005). A number of 
methods have been described, and it is beyond the scope of this book to review 
these. In general, HPLC is the most accurate method for pigment analysis but 
much more expensive than the photometric approach described below. For 
most surveillance and monitoring practices, the latter is accurate and specific 
enough. Nevertheless, occasional parallel analysis of a single sample by HPLC 
and photometry is valuable to estimate the accuracy of the data.

Photometric analysis of chlorophyll-a requires relatively simple laboratory 
equipment, principally a filtration device, a centrifuge and a spectrophotom-
eter. It is considerably less time-consuming than microscopic biomass deter-
mination but less specific. Standard protocols are available (e.g., ISO, 1992), 
but methods vary somewhat between laboratories. The main steps in most 
methods are essentially the same: solvent extraction of chlorophyll-a, deter-
mination of the concentration of the pigment by spectrophotometry and cor-
rection for pheophytin a, a degradation product of chlorophyll-a. The need 
for the latter, however, has been disputed (Stich & Brinker, 2005). Especially 
when chlorophyll-a concentrations are low, the correction for pheophytin a 
may introduce a bias and underestimate chlorophyll-a concentrations (or even 
lead to calculated negative concentrations). In case a correction for pheophytin 
a is not performed, the reported values should be declared as “chlorophyll-a 
not corrected for pheophytin a” or as “chlorophyll-a including pheophytin a”.

A simple method following the ISO procedure involving an extraction step 
with 90% aqueous ethanol (Sartory & Grobbelaar, 1984), for the determina-
tion of chlorophyll-a in a field sample, is outlined here. Notably, extraction 
in 90% acetone instead of 90% ethanol according to Strickland & Parsons 
(1972) is applied in some studies.

Equipment
•	 Spectrophotometer suitable for readings up to 750 nm, or photometer 

with discrete wavelengths at 665 and 750 nm
•	 Glass cuvettes, typically of 1 cm path length, or 5 cm for expected very 

low concentrations
•	 Centrifuge
•	 15-mL centrifuge tubes, graduated and with screw caps
•	 Water bath at 75 °C or other heating device for heating ethanol
•	 Glass fibre filters, ca. 50 mm diameter, fitting to the filtration apparatus
•	 Filtration apparatus and vacuum pump
•	 Tissue homogeniser or ultrasonication device
•	 Pipette or similar for the addition of acid

Reagents
•	 90% aqueous ethanol
•	 1 M hydrochloric acid
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Procedure
Perform the following steps in low intensity of indirect light because light 

induces a rapid degradation of chlorophyll.

 1. Filter a defined volume of water through a glass fibre filter as soon 
as possible and store the filter with the loaded face folded on itself in 
individual, labelled bags or tubes. If extraction cannot be performed 
immediately, filters should be stored −20 °C or better at −80 °C. For 
extended storage, freeze-drying of samples is strongly recommended 
to avoid degradation. Alternatively to freezing, samples can be stored 
in the extraction solvent (see below) for up to 4 days in the refrigerator.

 2. Place the filter in a tissue homogeniser, add 2–3 mL of boiling ethanol 
(working with effective ventilation, preferably using a fume cupboard) 
and homogenise until the filter has been completely disintegrated. 
Samples can also be homogenised by ultrasonication or manual grind-
ing using mortar and pestle. Pour the sample sludge into a centrifuge 
tube, rinse out the grinding tube with another 2 mL ethanol and add 
this to the centrifuge tube. Repeat this step. Make up to a total of 
10 mL in the centrifuge tube with 90% ethanol. Seal the tube, label 
and store in darkness at approximately 20 °C for 24–48 h.

 3. Centrifuge for 15 min at 3000–5000 g to clarify samples. Decant the 
clear supernatant into a clean vessel and record the volume.

 4. Blank spectrophotometer with 90% ethanol over the wavelength range 
of 650–800 nm.

 5. Transfer a volume of clear sample to the cuvette and record absorbance 
at 750 nm and 665 nm [readings A(750a) and A(665a)]. Absorbance 
(A) at 665 nm should range between 0.1 and 0.8. If higher, the sample 
should be diluted with 90% ethanol; if lower, a cuvette with a longer 
optical path should be used.

 6. If correction for pheophytin was desired, add 30 μL of 1 M HCl per 
mL of sample volume in cuvette and agitate gently for 1 min. Record 
absorbance at 750 nm and 665 nm [readings A(750b) and A(665b)].

Calculation
 1. Correct for turbidity: A(665a) – A(750a) = A(665a, corrected) and 

A(665b) – A(750b) = A(665b, corrected)
 2. The concentrations of chlorophyll-a and pheophytin a are calculated:

29.62
=

( )A( )665a, corrected − ×A(665b, corrected) Ve
chlorophyll a μg/L

V l× s

20.73 A( )665b, corrected × Ve
pheophytin a =

( )
μg/L

 Vs × l
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with: Ve = volume of ethanol extract in mL
Vs = volume of water sample in L

l = path length of cuvette in cm.
Simplifications of the procedure may be applied. If no centrifuge for vol-
umes of 10 mL is available, filtration may be used instead. In case neither 
tissue homogeniser nor ultrasonication device nor mortar and pestle are 
available, proceed without the homogenisation step. Underestimations of 
chlorophyll-a concentrations may occur, but for cyanobacteria, these are 
not likely to be substantial. Other solvents – N, N-dimethylformamide, 
dimethyl sulfoxide and acetone – have also been used for extraction 
(Speziale et al., 1984), but ethanol has the advantage of being less toxic and 
compatible with polymeric materials (Ritchie, 2006).

13.5  PHYTOPLANKTON AND CYANOBACTERIA  

QUANTIFICATION BY FLUORESCENCE  

ANALYSIS

As cyanobacterial biomass and community composition is highly incon-
stant in space and time, a quantification approach that is able to follow this 
variability is valuable. Standard method for phytoplankton quantification 
is based on the microscopic analyses of samples processed in the laboratory, 
complemented by chlorophyll-a analysis by spectrophotometer or spectro-
fluorimeter. Such results are based on the discrete sampling of individual 
localities at certain time and horizons. Equipment used in this type of moni-
toring is relatively cheap and has an acceptable sensitivity, but the analytical 
results are available only with a delay of hours or days and, depending on 
the frequency of sampling, by discrete sampling potential threats due to 
high cyanobacterial abundance can be missed such as short-lived surface 
blooms of cyanobacteria or the fast and rapid shifts of water quality due to 
quick hydrological or meteorological changes.

Advanced methods for phytoplankton quantification could be able to 
describe the variability, permanent changes and displacement of phyto-
plankton biomass and the spatial (vertical and horizontal) and temporal 
variability in a waterbody with the sensitivity and information frequency 
sufficient for the water management (raw water takeoff), or ecological 
understanding (developments and dynamic of phytoplankton assemblages).

Advanced methods for phytoplankton quantification include the following:

• remote sensing and satellite imagery based on radiometry (AVHRR – 
Advanced Very High-Resolution Radiometer, hyperspectral landscape 
imaging, etc. (Kahru & Brown, 1997));

• airborne- and satellite-based optical remote sensing including hyper-
spectral phytoplankton imaging, etc. (see section 11.10);
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• optical in situ methods (in situ flow cytometry, analytical flow 
 cytometry etc);

• In situ and online fluorescence quantification of dominant phyto-
plankton pigments including – automatic high-frequency monitoring 
(AHFM) systems.

While radiometry (AVHRR) was used for the water quality monitoring 
already 20 years ago (Kahru & Brown, 1997), the MODIS (Moderate 
Resolution Imaging Spectroradiometer) uses more and more detailed coef-
ficients for correction of variabilities in the satellite phytoplankton quanti-
fication at the present time (Sayers et al., 2016). Airborne (airplane, drone 
etc.) remote sensing is based mostly on optical methods like hyperspec-
tral imaging. This technology has recently been adopted for the advanced 
quantification of phytoplankton, including the correction for reflectance or 
humidity (Wang et al., 2016; Wolanin et al., 2016).

Besides monitoring of phytoplankton, remote sensing can be used to 
assess other properties of water ecosystems (see also section 11.10). For 
example, laser scanning can be used for bathymetry of shallow waters 
(Fernandez-Diaz et al., 2014) or for mapping sediments disposal (Montreuil 
et al., 2014). Hyperspectral data can be used for depth estimation in shal-
low waters (Ma et al., 2014), suspended inorganic particles (Giardino et al., 
2015) or dissolved organic matter (Zhu et al., 2013). All these parameters 
are highly relevant for water quality monitoring; however, the objective 
of this chapter is to demonstrate possibilities of fluorescence and imaging 
spectroscopy to assess phytoplankton and cyanobacterial blooms by mea-
suring concentrations of photosynthetical pigments.

The majority of real-time technologies employed for cyanobacterial 
management are based on fluorescence of pigments (Zamyadi et al., 2016). 
Each of the fluorescent pigments present in cyanobacterial or generally in 
algal cells, respectively, has a specific excitation and emission spectrum 
(see Table 13.3). chlorophyll-a is a photosynthetic pigment present in all 
species of phytoplankton, including eukaryotic (algae) and prokaryotic 
organisms (cyanobacteria), and thus, it is a good and commonly used indi-
rect marker of the total phytoplankton biomass. Standard methods of its 

Table 13.3  Excitation and emission maxima of dominant pigments and their general 
distribution among particular phytoplankton groups

Pigment Group Excitation (nm) Emission (nm)

chlorophyll-a Green algae, 440 685

Chlorophyll-c Cryptophyceae 460 685

Carotenoids Diatoms, Chrysophyceae 500–550 685

Phycoerythrin Cryptophyceae, Cyanobacteria 560–585 590, 620, 685

Phycocyanin Cyanobacteria 610–620 645, 685
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quantification are based on the extraction of the pigment into an organic 
solvent and subsequent determination by spectrophotometry (Richards & 
Thompson, 1952), fluorimetry (Holm-Hansen et al., 1965) or chromatog-
raphy (Jacobsen, 1978; Otsuki & Takamura, 1987). These methods have 
been routinely used for decades, but they are time-consuming and require a 
standard sampling, transport to the laboratory and immediate processing, 
as well as an experienced analyst. Furthermore, all steps of the process from 
water sampling to the final photometric determination of the chlorophyll-a 
content can be a source of variability. Other disadvantage is a compara-
tively large volume of sample needed and thus a limitation with respect to 
the number of samples taken and the possible changes during the sample 
transport and storage, namely, degradation.

One of the key characteristics of chlorophyll-a is its fluorescence. 
Photosystem II (PS II), which is mainly responsible for the chlorophyll 
fluorescence, consists of peripheral and core antenna. The first contains a 
species-dependent pigment absorbing quantum of light, the latter an evo-
lutionary conserved molecule of chlorophyll-a (Beutler et al., 2002). Most 
of the energy transferred from the peripheral antenna to the core is used 
for photochemistry and thermal decay and several percent for fluorescence 
by emitting light at wavelength around 685 nm (red light). Measurement 
of this light serves as a tool for the in vivo determination of chlorophyll-a. 
Fluorescence of chlorophyll-a also enables its determination in the field 
studies, directly in the water column. Connecting the fluorimeter in con-
tinuous or stop flow mode to the pumping system, which brings water to 
the measuring cell of the fluorimeter, is one of the possibilities of the online 
monitoring of chlorophyll-a (Pinto et al., 2001; Odate et al., 2002; Goddard 
et al., 2005). The phytoplankton can be measured directly in the water 
column, and there is evidence from several studies that data are similar to 
those gained by standard microscopic analyses or chlorophyll-a quantifica-
tion after solvent extraction and spectrophotometric analysis (Gregor & 
Maršálek, 2004; Gregor et al., 2005; Izydorczyk et al., 2005; Gregor et al., 
2007). Estimation of cyanobacterial biomass or cell density is possible by 
measuring phycocyanin (PC) fluorescence (Figure 13.3).

Asai et al. (2001) presented a sensor with two fluorescence channels – the 
first one for detecting chlorophyll-a of eukaryotic algae (excitation 440 nm, 
emission 680 nm) and the second one for detecting the cyanobacteria-spe-
cific PC (excitation 620 nm, emission 645 nm). An in situ fluorimeter with 
three excitation bands and detection of emission from 546 to 733 nm was 
also designed (Desiderio et al., 1997). In situ fluorimeters include devices 
measuring each sample individually, with continuous circulation of water 
samples (flow-through) or with submersible probes. Submersible probes for 
detecting only chlorophyll-a, a combination of sensors for the detection 
of chlorophyll and phycocyanin (PC), or more phytoplankton classes are 
commercially available from manufacturers around the globe. They contain 
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diodes emitting light of defined wavelength bands for excitation of pig-
ments and the response is measured as the fluorescence. These instruments 
are usually connected to a computer for operation and data storage. This 
design allows submersion of the probe to a defined depth, limited only by 
the cable length.

Submersible in situ fluorimeters are suited for online and real-time moni-
toring of spatiotemporal dynamics of cyanobacterial populations, for exam-
ple, at raw water offtake sites for drinking-water production. They have 
acceptable sensitivity and are suitable for differentiation between algae and 
cyanobacteria (Zamyadi et al., 2016). When used for real-time management 
purposes, it is crucial that devices are well maintained, especially the regu-
lar cleaning of optical sensors is critical or the control of automatic clean-
ing system, respectively. Further, fluorescence measurements in a particular 
waterbody are preferably calibrated against other parameters of phyto-
plankton or cyanobacterial biomass, for example, cell counts (Figure 13.4).

Submersible fluorimeters are not suitable for species identification or assess-
ment of the physiological status. The most important sources of variability of 
in situ measurements are interferences with weather (wind, sunshine), water 
turbidity, temperature, cyanobacterial morphology (colony, filaments, pico-
cyanobacteria) and sensor types (Hodges et al., 2018). It is known that data 
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produced by these devices in dense cyanobacterial blooms may underestimate 
the real situation and should be corrected (Silva et al., 2016). Another param-
eter which was studied is optical interaction of algae and cyanobacteria in 
phytoplankton. The optimal correction method can be selected for each fluo-
rimeter and cyanobacteria species pairs by validating against data from the 
investigation of green algae as an interference source (Choo et al., 2019).

Some general discrepancies can be found when comparing submersible 
fluoroprobes, spectrophotometric chlorophyll-a quantification and cell 
counts, even when the same or similar species are analysed. The probable 
explanation is a varying level of pigments among species and within species 
at different phases of growth. Other potential sources of variability include 
different sampling strategies (continuous and online measurement versus dis-
crete sampling), sample treatment and mode of transport to the laboratory. 
Another source of the differences between results was observed where pico-
cyanobacteria are present and less experienced and skilled laboratory staff 
overlooks their presence, but fluorescence probes takes them into account.

Submersible devices usually measure in a continuous mode; that is, they 
enable data to be obtained from the whole water column in a much shorter 
time compared to discrete sampling. This is especially useful when phyto-
plankton organisms occur in a narrow horizontal layer like Planktothrix 
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rubescens in the metalimnion (see Chapters 4, 8 and 11) or to monitor the 
development of surface blooms at critical sites. In these cases, conventional 
methods based on discrete samples with the inherent lag time may miss 
ephemeral risks from cyanotoxins.

13.5.1  Recent advances and future direction 
in the phytoplankton and cyanobacteria 
quantification by fluorescence analysis

Cyanobacterial blooms that show a high and dynamic variability in time, 
space and abundance can be efficiently monitored by advanced fluorescence 
probe technology, which has become far more advanced in recent years 
with specific light-emitting diodes (LEDs) and optical filters. However, 
recent widespread application of in situ fluorimetric probes by both sci-
entists and water managers has led to recognition of interferences, sources 
of variability and difficulties in comparison with the results. One common 
problem of in situ and online monitoring by fluorescence and optical sen-
sors is biofouling. That is why the regular and preferably automatic clean-
ing of probes is extremely important.

Automatic high frequency monitoring (AHFM) systems are an impor-
tant recent development which has increased not only the measurement 
frequency, but also the number of variables being monitored in waterbod-
ies. Broad spectrum of sensors can be used on demand according to the 
monitoring purposes, like the ion-selective electrodes, UV absorbance, fluo-
rescence and biochip probes (Marce et al., 2016). While full automation is 
already possible for probes based on optical properties (absorbance and 
fluorescence), this is still difficult for ion-selective electrodes and biochips. 
Main challenges are low limits of detection required for micropollutants 
and sensor maintenance requirements.

We can expect the combination of approaches for phytoplankton quanti-
fication in the near future. An approach useful in practice is to use submers-
ible fluorescence probes for quantification of phytoplankton biomass based 
on AHFM systems in combination with hyperspectral or selective spectral 
cameras operated from airplanes or drones, which can describe the spa-
tial variability of cyanobacterial biomass in waterbodies. As the data from 
AHFM systems are used by a number of institutions, calibration, validation 
and corrective coefficients for data comparison are particularly important 
(Bertani et al. 2017).

Further, new simple models of fluorometers for the quantification of algae 
and cyanobacteria using widely available devices like smart phones have been 
proposed (Friedrichs et al., 2017). Once calibration and variability in fluores-
cence signals are mastered, respective adapters can become effective tools.

New compact multiwavelength fluorimeters with modular design are 
highly versatile and flexible monitoring tools. Detection modules for green 
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algae, cyanobacteria and dinophytes allow the continuous identification 
and quantification of the major relevant algal groups based on their spectral 
characteristics with a detection limit of 10 cells/L (Zieger et al., 2018). The 
sensitivity of most types of submersible fluorescence probes is equivalent to 
1000–2000 cells/mL, which is acceptable for general monitoring. For sen-
sors installed for in situ monitoring, biofouling is one of the most important 
sources of variability requiring a regular and thorough maintenance and 
verification. A disadvantage of several devices is that no correction on the 
turbidity is performed, which may be important in natural conditions.

There is new information highlighting the potential for multiparameter 
monitoring via fluorescence spectroscopy; fluorescence spectra can predict 
both microcystin-LR occurrence and disinfection by-products formation 
potential in the waterbody (Brophy et al., 2018).

An overview of new devices for in situ fluorescence phytoplankton quan-
tification and discrimination, including the limitation and interference fac-
tors, is given by Bertone et al. (2018).

13.6  MONITORING TOXIGENIC CYANOBACTERIA 

BY MOLECULAR METHODS

Molecular methods have significantly increased our understanding on the 
distribution of genes involved in the production of toxins within the phylum 
cyanobacteria (see Sivonen & Börner, 2008 and Dittmann et al., 2013). 
This subchapter introduces the molecular detection of toxigenic cyanobac-
teria not only in surface waters such as lakes, rivers and drinking-water 
reservoirs but also in food supplements. Genetic methods are only able to 
indicate the potential of toxin synthesis and do not provide information 
about actual toxin production and concentrations. Nevertheless, applica-
tions in monitoring include early warning of the toxin-producing potential 
of a developing bloom and allow the identification of the toxin-producing 
taxa in mixed field populations of cyanobacteria. They also allow tracing 
the development of the genotype composition of a taxon, that is, whether 
the fraction of toxin-producing genotypes changes over time. Moreover, 
these methods allow high-throughput sample analysis.

This section provides an overview of the workflow for applying genetic 
methods. For more detailed information, the reader is referred to a hand-
book providing more details on the scientific basis for the use of molecular 
tools, protocols and the interpretation of respective results (Kurmayer et al., 
2017). Section 13.6.8 reviews applications in practice.

A full sequence of a biosynthesis gene cluster of a cyanobacterial toxin 
was first reported for microcystin from Microcystis sp. (Tillett et al., 2000). 
Sequences from other taxa and encoding the synthesis of other toxins 
 rapidly followed, and today, sequences of biosynthesis genes for all major 
types of cyanobacterial toxins are available (see Table 13.4; Figure 13.5) 
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Table 13.4  Overview on complete biosynthesis gene clusters reported for toxin types 
and various taxa of cyanobacteria

Toxin Organisms Strain Genes Reference

Microcystin Microcystis 
aeruginosa

Planktothrix agardhii
Planktothrix 
rubescens

Dolichospermum 
(Anabaena) sp.

Nostoc sp.

Fischerella sp.

PCC 7806

NIVA-CYA 
126-8

NIVA-CYA 
98

90

152

PCC 9339

mcyA-J

mcyA-J,T

mcyA-J

Tillett et al. 
(2000)

Christiansen  
et al. (2003) 

Rounge et al. 
(2009)

Rouhiainen  
et al. (2004)

Fewer et al. 
(2013)

Shih et al. (2013)

Nodularin Nodularia spumigena NSOR10 ndaA-G Moffitt & Neilan 
(2004)

Cylindrospermopsin Raphidiopsis 
(Cylindrospermopsis) 
raciborskii

Oscillatoria sp.

Aphanizomenon sp.

Raphidiopsis curvata

AWT205

PCC 6506

10E6

CHAB1150, 
HB1

cyrA-O Mihali et al. 
(2008)

Mazmouz  
et al. (2010)

Stüken & 
Jakobsen (2010)

Jiang et al. (2014)

Saxitoxin Raphidiopsis 
(Cylindrospermopsis) 
raciborskii

Microseira (Lyngbya) 
wollei

Dolichospermum 
(Anabaena) circinale

Aphanizomenon sp.

Raphidiopsis brookii

T3

Carmichael / 
Alabama

AWQC131C

NH-5

D9

sxtA-X Kellmann  
et al. (2008)

Murray  
et al. (2011)

Murray  
et al. (2011)

Murray  
et al. (2011)

Stucken  
et al. (2010)

Anatoxin-a Oscillatoria sp.

Dolichospermum 
(Anabaena) sp.

Cylindrospermum sp.

Cuspidothrix 
issatschenkoi

PCC 6506

37

PCC 7417

CHAB D3, 
RM-6,  
LBRI48

anaA-H Rantala-Ylinen  
et al. (2011)

Rantala-Ylinen  
et al. (2011)

Calteau et al. 
(2014)

Jiang  
et al. (2015)

Lyngbyatoxin Moorea producens 
(Lyngbya majuscula)

ltxA-D Edwards & 
Gerwick (2004)

The species name and strain identifier are given as reported in the original publication.
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Figure 13.5 O verview of cyanotoxin synthesis gene clusters and PCR approach used for 
the detection of toxigenic genotypes. The PCR-amplified fragments and cor-
responding genes used to indicate potential toxin synthesis are indicated: 
mcyE/ndaF according to Rantala et al. (2004) and Jungblut and Neilan (2006); 
cyrJ (Mihali et al., 2008), sxtA, G, H, I, X (Casero et al., 2014), anaC (Rantala-
Ylinen et al., 2011).

with the exception of anatoxin-a (S), the biosynthesis of which was still 
unknown by the time of publication of this book.

The elucidation of biosynthesis genes significantly increased the under-
standing on inheritance and evolution of cyanotoxin synthesis; that is, phy-
logenetic analyses lead to the conclusion that microcystin synthesis is an 
evolutionarily old feature that has been lost repeatedly during the evolution 
of cyanobacteria (Rantala et al., 2004). The genes involved in the synthesis 
of nodularin were probably derived from the genes encoding microcystin 
synthesis via a gene deletion event (Moffitt & Neilan, 2004; Rantala et al., 
2004). Similar to microcystin synthesis, for saxitoxin synthesis genes, the 
comparison of gene synteny and phylogeny between taxa as well as the 
evidence of strong stabilising selection suggested that saxitoxin synthesis 
genes have been mostly inherited vertically (as opposed to horizontal gene 
transfer) and emerged at least 2 billion years ago (Murray et al., 2011). 
The saxitoxin-producing dinoflagellates are eukaryotic toxic algae contain-
ing a third membrane of endoplasmatic reticulum around the chloroplast 
organelles and evolved from cyanobacteria through secondary or tertiary 
endosymbiosis during the late Paleozoicum (Lee, 2018). Generally, it is 
understood that in dinoflagellates, genes forming the core genes for saxi-
toxin synthesis (i.e., sxtA and sxtG) have been acquired via horizontal gene 
transfer from bacteria and have been lost repeatedly in various lineages 
(Orr et al., 2013; Murray et al., 2015). For the cylindrospermopsin-produc-
ing taxa, phylogenetic congruence between taxonomic marker genes and 
cylindrospermopsin synthesis genes was reported, implying the dominant 
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influence of vertical inheritance in the course of the evolution of the phylum 
of cyanobacteria (Jiang et al., 2014). Finally, for anatoxin-a synthesis, the 
comparison of anatoxin synthesis genes revealed that gene nucleotide vari-
ability was congruent with phylogenetic analysis across cyanobacterial taxa 
(Jiang et al., 2015; Brown et al., 2016). In summary, phylogenetic analyses 
rather support the role of vertical inheritance or the loss of cyanotoxin syn-
thesis genes than the role of frequent lateral gene transfer events.

Although genetic methods are only able to indicate the potential of toxin 
synthesis, they are showing promising results supporting risk assessment. 
If genes for toxin production were absent in a cyanobacterial population, 
this population would not be able to produce a specific toxin. Vice versa, 
this dependence is not as certain, and cyanobacteria carrying the genes may 
or may not produce a particular toxin; only toxin analyses can show that 
they are indeed producing this toxin and to which extent. Thus, based on 
the presence of genes, the molecular tools indicate the occurrence of toxi-
genic genotypes in the environment or in food supplements, but the actual 
toxin content or concentration must be determined using chemical–analyti-
cal techniques (see section 14.1). Currently, all the molecular tools available 
are based on the principle of polymerase chain reaction (PCR). Due to the 
generally high sensitivity of PCR, it is possible to detect toxigenic genotypes 
in minute amounts, that is, long time before a toxic cyanobacterial bloom 
may occur or as minor component in food supplements. Consequently, 
waterbodies bearing a risk of toxic bloom formation could already be iden-
tified early on in the growing season possibly assisting in an economically 
more efficient application of cyanotoxin detection techniques (see Box 13.2). 
Furthermore, early identification of toxigenic genotype occurrence may lead 
to a more detailed recording of environmental factors potentially influenc-
ing the abundance of toxigenic genotypes. Finally, toxigenic genotypes can 
be detected from single cells: single colonies or filaments of cyanobacteria 
(Dolichospermum (Anabaena) sp., Microcystis sp., Planktothrix sp.) can be 
identified according to morphological criteria during counting via micros-
copy and then analysed by PCR for their potential of toxin production.

BOX 13.2: BENEFITS OF MOLECULAR TOOLS 

SUPPORTING THE MONITORING OF CYANOBACTERIA

EARLY WARNING

Molecular tools can support the identification of waterbodies at risk for 

toxic bloom formation early on in the growing season, thus supporting an 

economically efficient selection of situations for cyanotoxin analysis. Using 

quantitative PCR (qPCR)-based methods, it is possible to quantify toxigenic 

cyanobacteria occurring rarely in the plankton community or in food supple-

ments that otherwise might be overlooked by microscopical methods.
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UNDERSTANDING ENVIRONMENTAL DRIVERS

Early identification of toxigenic genotype occurrence may lead to a more 

detailed recording of environmental factors potentially influencing the abun-

dance of toxigenic genotypes.

IDENTIFYING TOXIGENIC CYANOBACTERIA

Toxigenic cyanobacteria can be identified by sequencing of PCR-amplified 

indicative genes. Alternatively, single colonies of cyanobacteria are identified 

and taxonomically assigned by microscopical inspection according to mor-

phological criteria and then analysed for toxigenic genotype occurrence.

In general, the application of molecular tools is possible either using bio-
mass from isolated strains or isolated colonies/filaments grown in cultures 
or using biomass collected from field samples. The latter sample type will 
lead to rapid results on toxigenic cyanobacteria occurrence, however may 
contain a larger number of taxa carrying toxigenic genes which are not nec-
essarily the dominant taxa in the respective sample (Rantala et al., 2006). 
Nevertheless, all sample types require a few mandatory steps, which include:

 i. sampling of biomass or isolation of individual colonies/filaments 
under the microscope;

 ii. extraction of the nucleic acid (DNA);
 iii. amplification of gene fragments indicative of toxin synthesis based on 

conventional or quantitative PCR (qPCR);
 iv. detection of PCR products using agarose gel electrophoresis (conven-

tional PCR) or fluorescent dyes (qPCR or digital droplet PCR, ddPCR).

The sequencing of PCR products is optional and useful to confirm the 
results obtained or to identify the toxin-producing organism. More recent 
technology has enabled the so-called deep sequencing of PCR products 
which has become a widely applied technique to monitor the diversity 
of microorganisms and cyanobacteria in general (Pessi et al., 2016). The 
 following gives an overview on the general workflow of applying molecu-
lar tools.

13.6.1  Sampling and nucleic acid extraction

In general, the basic sampling steps (e.g., stratified versus depth-integrated 
sampling, low vacuum filtration) are identical to the processing of samples 
for cyanotoxin detection and analysis (see Chapter 14). Food supplement 
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samples should be handled as in food safety programmes for microbiological 
analysis (e.g., ISO, 2006).

However, molecular analyses require sampling precautions against cross-
contamination or DNA degradation. For example, as all polymerase chain 
reaction (PCR)-based methods are highly sensitive (allowing to detect gene 
copies from single cells), the possibility of sample cross-contamination 
needs to be reduced as much as possible (e.g., by using new sample ves-
sels or exhaustive rinsing of sample/filtration equipment between sampling 
dates or sites). Drying of biomass at high temperature (e.g., 100 °C) also 
should be avoided, as it leads to fragmentation of DNA. Similarly, nucleases 
released during cell lysis can lead to DNA fragmentation within a short 
time, and therefore, those enzymes need to be inactivated during the DNA 
extraction process. Typically, biomass for DNA extraction and subsequent 
PCR analysis is either used fresh or it has to been stored at −20 °C.

The conventional DNA extraction procedure uses a combination of 
osmotic shock and enzymatic treatment followed by chemical phase sep-
aration (e.g., Franche & Damerval, 1988). This DNA extraction proce-
dure has been refined to obtain both qualitative and quantitative results, 
and today, robust protocols on cyanobacterial DNA extraction are avail-
able (e.g., Kurmayer et al., 2003). In some cases, extensive mucilage pro-
duction as indicated by high viscosity of the DNA extract can inhibit the 
subsequent PCR amplification, and polysaccharides need to be selectively 
removed (Tillett & Neilan, 2000). In general, conventional DNA iso-
lation procedure protocols are more time-consuming but cheaper than 
extraction with easy-to-use commercial DNA isolation kits which are 
widely available. Kit-based techniques typically include anion-exchange 
columns for DNA binding and purification. However, it is important to 
validate the efficiency of such techniques before using them for monitor-
ing (Schober et al., 2007). DNA extraction from food supplements can 
be more difficult as for this purpose, cyanobacteria typically are pro-
cessed by drying, and food supplements may contain additives that can 
affect DNA extraction efficiency, for example, pharmaceutical bulking 
agents with adsorbent properties (Costa et al., 2015). Thus, purification 
of DNA or alternatively the addition of substances reducing the effect 
of PCR inhibitors might be routinely required (Ramos et al., 2017a; b). 
Individual cyanobacterial colonies or filaments can be selected for PCR 
amplification of genes under a stereo microscope using a forceps or a 
micropipette (Kurmayer et al., 2002). Colonies or filaments are picked 
randomly from a subsample containing a few specimen only, washed 
by serial transfers in standard solution and stored in PCR buffer in the 
freezer (−20 °C). The DNA is extracted most efficiently by short sonifica-
tion (Chen et al., 2016), and the obtained DNA quantities are sufficient 
for multiple individual PCR experiments.
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13.6.2  Polymerase chain reaction (PCR) 
methodology

PCR is the technique that allows creating multiple copies of specific gene 
fragments through amplification by DNA polymerases. The most critical 
step for the reliable detection of toxigenic cyanobacteria is the selection of 
appropriate oligonucleotides (primers) which are used as molecular probes. 
Besides standard laboratory equipment, the instrumentation comprises a 
PCR cycling machine, a gel electrophoresis chamber and a gel documenta-
tion device. For detailed information on how to perform PCR, see the widely 
available laboratory manual revised by Sambrook and Russell (2001).

In contrast, quantitative PCR allows the determination of actual gene 
copy numbers (that can be used to approximate cell equivalents) and thus, 
by choosing the right targets for PCRs, the proportion of toxigenic geno-
types present in a sample. In quantitative PCR (qPCR), amplification of 
the target gene is followed in real time via the detection of a fluorescent 
signal generated from DNA strand-intercalating dyes at each PCR cycle 
(e.g., SYBR Green). qPCR is based on the principle that the target DNA 
sequence is doubled in each cycle and that the dynamic increase of the 
recorded amplification reflects the amount of target sequence originally 
present. Theoretically, the more target sequence (or target genotypes) can 
be found in a specific sample, the earlier the amplification curve exceeds 
a predefined fluorescence threshold. The PCR cycle when this threshold is 
crossed is called a threshold cycle, Ct, or quantification cycle, Cq(-value). 
The use of fluorescent dyes makes qPCR most sensitive with calibration 
curves showing a wide dynamic range (up to seven orders of magnitude). 
Detailed information on the application of (q)PCR in the analysis of toxin 
genes has been compiled through the EU-initiative CyanoCOST (Rantala-
Ylinen et al., 2017).

Digital droplet PCR (ddPCR) quantitates a target DNA sequence based 
on PCR of a partitioned DNA sample. The number of PCR-positive and 
PCR-negative partitions is used to determine the absolute number of target 
DNA molecules (Hindson et al., 2013). Reports on the use of ddPCR are 
only emerging, but first comparisons with qPCR revealed a comparable 
result (Te et al., 2015; Nshimyimana et al., 2019; Wood et al., 2019).

13.6.3  Detection of toxigenic cyanobacteria

Cyanotoxins are synthesised by large multifunctional enzyme complexes 
via the thiotemplate mechanism in a stepwise manner, known as nonribo-
somal peptide synthesis (NRPS). These NRPS enzyme complexes belong 
to the largest proteins within the prokaryotic cell (several  thousand 
amino acids) and are often combined with polyketide synthases (PKS) 
(see Chapter 2; Dittmann et al., 2013). Large parts of gene sequences 
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of particular biosynthesis gene clusters have been found to be variable 
and therefore not suitable for designing PCR primers with the desired 
specificity and  sensitivity. For the microcystin (mcy) and nodularin (nda) 
biosynthesis gene cluster, conserved gene regions have been identified in 
the mcyE/ndaF gene encoding the enzymatic step condensing the Adda 
side chain with D-glutamate forming the conserved core of the peptides 
(Rantala et al., 2004; Jungblut & Neilan, 2006). With this region, PCR 
detection of microcystin and nodularin biosynthesis genes is possible in 
all cyanobacterial producers.

In contrast to microcystin synthesis, for the cylindrospermopsin synthe-
sis (cyr) gene cluster, the cyrJ gene encoding a tailoring enzyme such as the 
sulfotransferase catalysing the sulphation of the C-12 atom of the cylin-
drospermopsin molecule was found only in cylindrospermopsin-producing 
strains (Mihali et al., 2008). However, the core genes encoding the synthe-
sis of the cylindrospermopsin molecule itself, that is, cyrA/aoaA encoding 
the amidinotransferase or cyrB/aoaB and cyrC/aoaC encoding NRPS/PKS, 
were also detected in non-cylindrospermopsin-producing strains (Ballot 
et al., 2011; Hoff-Risseti et al., 2013) and thus are not considered reliable 
indicators. Thus, the cyrJ can be considered a gene marker to indicate poten-
tial cylindrospermopsin producers among the genera Dolichospermum, 
Aphanizomenon, Raphidiopsis (Cylindrospermopsis) and Oscillatoria 
(Mankiewicz-Boczek et al., 2012).

For saxitoxin biosynthesis, at the time of publication of this book, no 
gene loci are known that can unambiguously infer the sxt gene cluster from 
a diagnostic polymerase chain reaction (PCR) (Ballot et al., 2010; Casero 
et al., 2014). Indeed, all genes tested have also been detected in a variety 
of cyanobacterial strains not producing saxitoxins. A protocol of several 
genes serves to indicate saxitoxin synthesis potential: sxtA encoding a PKS, 
sxtG encoding an amidinotransferase, sxtH encoding hydroxylation of the 
C-12 atom, sxtI encoding carbamoylation and sxtX encoding hydroxyl-
ation of the N-1 atom, (Casero et al., 2014). The elucidation of the saxitoxin 
biosynthesis genes has been started from identifying a gene encoding an 
O-carbamoyltransferase (Kellmann et al., 2008), now called sxtI, that has 
been proposed as a reliable marker to indicate saxitoxin synthesis (Ballot 
et al., 2016) but requires further confirmation.

For the detection of an anatoxin-a synthesis gene, a conserved region 
of anaC encoding an NRPS module for proline activation (an initiating 
step of anatoxin-a synthesis) has been identified and primers able to detect 
anaC in both Oscillatoria sp. and in Dolichospermum sp. as well as in 
Aphanizomenon sp. have been designed (Rantala-Ylinen et al., 2011). The 
encoded NRPS AnaC has been heterologously expressed and a specific-
ity for proline as a substrate under in vitro conditions has been reported 
(Mejean et al., 2009), which also makes it a reliable marker for PCR-based 
monitoring and early warning.
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Notably PCR approaches can be combined with downstream applica-
tions such as direct sequencing of amplicons, or cloning and subsequent 
sequencing, or restriction fragment length polymorphism (RFLP) analysis. 
This type of post-PCR result analysis can inform about genera or species 
forming a particular toxigenic genotype. For example, Hisbergues et al. 
(2003) used a PCR-based detection technique for microcystin synthesis 
genes using mcyA followed by differentiation of genera by RFLP of the 
obtained PCR product. Similarly, Rantala-Ylinen et al. (2011) used a PCR-
based detection technique for anaC synthesis gene and the differentiation of 
toxigenic genera by RFLP of the obtained PCR product.

13.6.4  Estimates of cyanobacterial biomass 
by molecular approaches

By using reference genes (see above), it is possible to estimate total cyanobacte-
rial biomass or biomass of particular cyanobacterial genera in a water sample. 
In general, qPCR assays have been used either for 16S rDNA gene regions 
specific for cyanobacteria (Rinta-Kanto et al., 2005) or for gene loci specific 
for individual cyanobacterial genera known to produce cyanotoxins such as (i) 
the phycocyanin-intergenic spacer region (PC-IGS) for the genera Microcystis 
(Kurmayer & Kutzenberger, 2003) and Planktothrix (Ostermaier  & 
Kurmayer, 2009; Kurmayer et al., 2011); (ii) the RNA polymerase gene loci 
rpoC for Raphidiopsis sp. (Fergusson & Saint, 2003; Rasmussen et al., 2008) 
and Chrysosporum (Aphanizomenon) ovalisporum (Campo et al., 2013); or 
(iii) the 16S rDNA for Microcystis sp. (Rinta-Kanto et al., 2005).

The molecular approach is an alternative to microscopic cell counting 
but has been primarily used to relate qPCR signals (Cq-values) indicative of 
cyanotoxin synthesis genes to the total cyanobacterial population, in order 
to quantify the proportion of a toxigenic subpopulation. For this purpose, 
it is required to compare Cq-values with microscopic cell counts. Standard 
curves need to be established (i) to quantify the target genotype using either 
cell numbers or gene copies and (ii) to determine the specificity and sensitiv-
ity of a specific quantitative PCR (qPCR) assay with isolates and background 
DNA (e.g., Kurmayer & Kutzenberger 2003). A more detailed protocol on 
calibration of qPCR results is available in Kurmayer et al. (2017).

qPCR assays have also been developed to quantify cyanobacterial taxa 
potentially producing cyanotoxins, such as the genus Dolichospermum 
(Doblin et al., 2007) and the species Dolichospermum planktonicum 
(Rueckert et al., 2007). For all the taxa mentioned above, quantifying cell 
numbers or biovolume using qPCR gave similar results to those obtained 
by cell counts via microscopy. For the genera Microcystis, Planktothrix 
and Raphidiopsis, close correlations have been reported from field samples 
between qPCR estimates and cell counts ranging across several orders of 
magnitude (i.e., 102–106 cells/mL). The limit of detection/quantification 
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generally is in the range of a hundred to a few thousand cells per mL 
(Kurmayer & Kutzenberger, 2003; Rasmussen et al., 2008; Chiu et  al., 
2017). However, for cyanobacterial taxa classified as polyphyletic, for 
example, the genera Aphanizomenon or Dolichospermum (see Chapter 3), 
the qPCR approach is less feasible because it would require to run many 
qPCRs to quantify multiple individual taxa of a genetically diverse genus 
for each individual sample. Further insights in the molecular phylogeny of 
cyanobacteria will provide the basis for developing qPCR assays for their 
quantification.

13.6.5  Set up of PCR assays

In general, the presence of toxin genes is tested in one PCR, while another 
independent reaction is used to confirm the presence of cyanobacteria as 
well as to check for the quality of the DNA (or the presence of potential 
PCR inhibitors). In many studies, 16S ribosomal DNA (Taton et al., 2003) 
or gene loci encoding the synthesis of accessory pigments such as phycocya-
nin (cpcBA; Neilan, 1995) have been amplified, but not exclusively (Moreira 
et al., 2013). As a positive control for PCR, genomic DNA extracted from 
isolated strains should be used. A list of toxic strains containing the respec-
tive target genes, including information on their availability from interna-
tional culture collections, is given in Kurmayer et al. (2017).

For the use of quantitative PCR (qPCR), the same principle has been 
applied to control for uncertainties in quantitative estimates of toxic geno-
types, for example, due to a physiological variation of the gene or genome 
copy number (Kurmayer & Kutzenberger, 2003). Typically, primers speci-
fied to amplify the total population (generally at genus level) as well as those 
genotypes that carry the cyanotoxin synthesis genes have been designed. 
Several qPCR assays have been developed to quantify microcystin/ nodularin 
genes in a given volume of water (for reviews, see Kurmayer & Christiansen 
(2009), Martins & Vasconcelos (2009), Kim et al. (2013), Pacheco et al. 
(2016), and Rantala-Ylinen et al. (2017)). In particular, the Taq nuclease 
assay (TNA) has been used to quantify microcystin genotypes in water 
samples (Kurmayer & Kutzenberger, 2003). This approach is based on 
the quantification of the total population of a specific cyanobacterium by 
a TNA targeted to the intergenic spacer region within the phycocyanin 
operon and another TNA targeted to the subpopulation carrying the mcy 
genes. A calibration curve based on defined cell concentrations or gene copy 
numbers is established by relating the known DNA concentrations to the 
threshold cycle of the diluted DNA extract. Similarly, qPCR assays have 
been developed for cylindrospermopsin synthesis genes (Rasmussen et al., 
2008; Campo et al., 2013) and saxitoxin genes (Al-Tebrineh et al., 2010; 
Savela et al., 2015). For anatoxin synthesis genes, a qPCR approach was 
developed by Wang et al. (2015). For benthic cyanobacteria (Microcoleus 
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(Phormidium) autumnalis), Kelly et al. (2018) developed a specific qPCR 
assay targeting the anaC gene.

Another option is to use multiplex PCR and to run two, three or four 
reactions in the same test tube (Saker et al., 2007; Al-Tebrineh et al., 2010). 
However, it is emphasised that multiplex (q)PCR requires substantial opti-
misation (because of competitive effects of primers and targets) and its use 
is not widespread (see Pacheco et al. (2016) for a review). Multiplex qPCR 
has been used in monitoring of Chrysosporum ovalisporum in Australia 
integrating three methods: (i) microscopical identification and enumera-
tion, (ii) multiplex qPCR for 16S rDNA, mcyE, cyrA and sxtA gene quan-
tification (iii) and toxin analysis by LC-MS (Crawford et al., 2017). Such 
integrated approaches may contribute to more efficient handling of high 
sample numbers from large surveys in future, allowing faster and more pre-
cise monitoring (e.g., Lu et al., 2019) to support risk assessment.

13.6.6  Limits of PCR assays

Microcystin synthesis gene clusters may be inactive due to various muta-
tions, and positive polymerase chain reaction (PCR) results thus overesti-
mate the potential of microcystin production in water (Nishizawa et al., 
1999). Although cyanotoxin production typically is constitutive if individual 
strains are analysed (see Chapter 4), inactivation of microcystin synthesis 
genes occurs regularly under natural conditions (e.g., by transposable ele-
ments or partial deletions; Chen et al. (2016)). Thus, it is not surprising that 
the qPCR-based quantification of mcy/nda genes is not always quantitatively 
related to the analysed microcystin/nodularin concentrations in field sam-
ples (reviewed by Pacheco et al., 2016). By analysing 38 studies published in 
peer-reviewed journals, the authors nevertheless concluded that qPCR can 
be proposed as a predictor for microcystin/nodularin concentrations.

Less data are available for the other cyanotoxins such as cylindrospermop-
sin, for which correlations between cylindrospermopsin concentrations and 
qPCR results have been reported from field samples (Pacheco et al., 2016; 
Lei et al., 2019). Data for saxitoxin are yet more scarce, with correlations 
between qPCR data (e.g., sxtA gene copies) and saxitoxin concentrations 
quite limited (e.g., Savela et al., 2016), in part because the gene loci used 
are not unambiguously indicative of saxitoxin synthesis and also because 
of the variety of saxitoxins (section 2.4). For anatoxin synthesis, Wood and 
Puddick (2017) report gene copy numbers estimated by qPCR with statis-
tically significant positive relationships to anatoxin-a contents of benthic 
cyanobacteria. Since there are multiple reasons for poor correlations and 
these cannot always be differentiated (Ostermaier & Kurmayer, 2010), the 
current pragmatic approach in qPCR application as used by Pacheco et al. 
(2016) is to compare experience between research groups and waterbodies 
around the globe to improve molecular monitoring approaches.
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An inherent limit of the accuracy of quantification in all qPCR-based 
techniques is the semilogarithmic nature of the calibration curves which 
potentially leads to overestimation or underestimation, respectively, by 
up to 70% (Schober et al., 2007) in estimating genotype numbers or 
proportions, because minor deviations on linear scale (Cq-values) are 
translated into larger deviations on logarithmic scale (DNA amount in 
the template). As a rule of thumb, deviations of <0.5 in Cq-value are 
considered due to experimental noise. This unspecific variation must be 
taken into account when translating the results from Cq-values into abso-
lute numbers.

13.6.7  Sequencing of PCR products

Today DNA sequencing facilities offer rapid services at costs ranging at less 
than 2 € per sequence of approximately 800 base pairs as of 2020. Single 
PCR products obtained from isolated strains are sequenced directly using 
the conventional Sanger chain termination method allowing confirmation 
of the specificity of the obtained PCR products and identification of the 
source organism. PCR products obtained from field samples often contain 
mixtures of PCR fragments originating from various genotypes. Separating 
the individual genotypes requires a cloning approach before sequencing 
according to standard techniques (Sambrook & Russell, 2001). So-called 
cloning kits with cloning vectors (plasmids) are commercially available and 
allow for the amplification of individual genotypes. As a last step, vectors 
carrying the inserted sequence of individual genotypes are introduced into 
Escherichia coli, purified and sequenced.

13.6.8  Application of PCR-based 
methods in monitoring

In principle, PCR-based assays have the potential to guide a more effi-
cient application of chemical–analytical tools. For example, toxigenicity 
(microcystin synthesis) has been detected in cyanobacterial food supple-
ments and has been confirmed using ELISA techniques (Saker et al., 2005). 
The sequencing of the obtained PCR products revealed the occurrence of 
Microcystis aeruginosa in minor proportion, while the dominant organ-
ism Aphanizomenon flosaquae was found nontoxic. Similarly, Vichi 
et  al. (2012) used an approach combining PCR-based tools with chemi-
cal–analytical detection to analyse cyanotoxins in food supplements from 
the Italian market and to identify the contaminating organisms. While M. 
aeruginosa was identified in A. flosaquae products, the contamination with 
M. aeruginosa was surprisingly, albeit less frequently, also confirmed from 
products derived from “Spirulina” cultivated at high pH and salt concen-
trations. A further application is the quality control of commonly used open 
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pond mass cultures of eukaryotic microalgae food supplement production 
for  contamination caused by cyanobacteria (Görs et al., 2010).

Analogously for environmental samples, PCR-based methods have been 
applied frequently to identify the various cyanotoxin (microcystin)-produc-
ing organisms. For example, in the temperate climatic zone, microcystin-
producing genera such as Microcystis, Planktothrix and Dolichospermum 
frequently co-occur and diagnostic PCR has been used to differentiate and 
quantify the proportion of respective toxigenic genera (Rantala et al., 2006). 
Similarly, in tropical lakes in East Africa, PCR of mcy genes followed by 
sequencing showed that Microcystis was the dominant microcystin-pro-
ducing genus, while co-occurring Dolichospermum sp. and Planktothrix 
sp. were not found to be toxigenic (Okello et al., 2010). Furthermore, the 
PCR-based analyses can give important clues on the stability or variabil-
ity of the genetic structure of toxigenic subpopulations in aquatic habitats. 
For example, in lakes of the Alps, the changes occurring in toxigenicity 
of Planktothrix populations were observed to happen rather slowly over 
a period of three decades with nontoxic genotypes only showing a slow 
increase in proportion (Ostermaier et al., 2013). In the monitoring of Polish 
waterbodies, PCR methods have been routinely applied and qPCR results 
have been used to explain variable microcystin contents in Microcystis sp. 
biomass (Gągała et al., 2014). In conclusion, despite their limitations in 
absolute quantification, PCR-based methods might well increase the pre-
dictability of toxin concentrations by increasing the information on source 
organisms over time and space.

13.6.9  Identifying toxigenic cyanobacteria 
using high-throughput sequencing

The PCR-based tools described above cannot give comprehensive infor-
mation on the taxonomic composition of cyanobacterial communities 
potentially including toxigenic species. In analogy to microscopy-based 
counting of cells (see section 13.3.1), the more recently developed deep 
amplicon (high-throughput) sequencing is able to sequence a very large 
number of PCR amplicons simultaneously and has been proposed as a 
tool for monitoring cyanobacteria in the environment (Eldridge et al., 
2017). By obtaining at least several thousands of sequences from one 
amplified gene locus per sample (e.g., 16S rRNA), it is possible to moni-
tor the presence of phytoplankton taxa and including bacteria, possibly 
including less abundant potentially toxigenic species. In general, the PCR 
products obtained using universal primers are barcoded via ligation of 
short nucleotides (MIDs, multiplex identifiers), clonally amplified (e.g., 
by the so-called bridge amplification of Illumina) and sequenced in par-
allel on plates. The large amount of sequence reads obtained requires 
bioinformatical processing following established standard algorithms 
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and taxonomic  reference  databases  available through various publically 
available international platforms, that is, the Ribosomal Database Project 
(Cole et al., 2013), or the “Greengenes” application, (DeSantis et  al., 
2006 (McDonald et al., 2012)) or the SILVA database (Glöckner et al., 
2017). Further, several standard sequence-processing pipelines have been 
designed (e.g., (Schloss et al., 2009; Caporaso et al., 2010; Albanese et al., 
2015; Bolyen et al., 2019). In general, the bioinformatics steps include (i) 
the quality trimming of sequences regarding the exact match of the MID 
code and the primer, the minimum length in base pairs, the frequency of 
ambiguous nucleotides in a sequence read, as well as chimera detection; 
(ii) the clustering of sequences by the genetic distance and assigning to 
operational taxonomic units (OTUs). Typically, for rDNA genes, a 3% 
genetic distance threshold is defined and OTUs will then be assigned tax-
onomically using reference databases as cited above; (iii) the calculation 
of rarefaction curves which are used to estimate additional sequencing 
effort as well as to standardise the comparison of diversity and richness 
estimates between samples; (iv) the calculation of diversity indices as well 
as richness estimators from the frequency of the OTUs and (v) the use 
of multivariate statistics to explain the variability in the data sets from 
recorded metadata (Deng et al., 2017).

Deep-sequencing application might be of relevance for monitoring of 
invasive species with toxigenic potential, for example, Raphidiopsis raci-
borskii or Nodularia spumigena (Sukenik et al., 2015). Currently, the ref-
erence taxonomic databases such as RDP have a relatively low resolution 
(Cole et al., 2013) and individual species of cyanobacteria are only rarely 
resolved. The relatively short read length (<400 bp) might be one cause 
of the low percentage of resolved OTUs, as environmental samples may 
contain a high share of OTUs which have not been characterised previ-
ously (Albanese et al., 2015). Further comparing resolved OTUs with the 
adjusted OTU composition in artificial communities can reveal a tech-
nical bias (Pessi et al., 2016). Comparing microscopical data with data 
obtained from deep sequencing also reveals discrepancies which show 
not only the limitation of microscopy (i.e., underestimating the abun-
dance and diversity of picocyanobacteria such as Synechococcus), but 
also the limitation in deep sequencing, for example, because of low or 
uncertain resolution (Eiler et al., 2013; Xiao et al., 2014). In future, it 
will be important to standardise these emerging techniques (Hornung 
et al., 2019) to avoid systematic bias (Boers et al., 2016), for example, 
by using artificial (mock) communities (Pessi et al., 2016) as well as to 
create taxonomic reference databases from sequenced and morphologi-
cally described strains. Alternatively, as a way forward, the information 
obtained from both methodologies, microscopy and deep sequencing is 
combined and integrated into the community analysis of environmental 
samples.
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13.7  DETERMINATION OF NUTRIENT 

CONCENTRATIONS

As discussed in detail in Chapter 4, the capacity for development of a cya-
nobacterial bloom depends on the available concentrations of nutrients, 
primarily of phosphorus and nitrogen. In freshwaters, often phosphorus 
concentrations limit the amount of biomass that can form in a given water-
body, but sometimes nitrogen is limiting. The chief sources of nitrogen are 
nitrate and ammonium, but to some extent, their lack can be compensated 
by some cyanobacteria through fixation of atmospheric nitrogen. Thus, 
even if phosphate is clearly the factor limiting carrying capacity, knowledge 
of nitrogen availability helps to predict whether nitrogen-fixing species are 
likely to dominate.

Cyanobacterial cells can store only some excess nitrogen, but can store 
phosphorus for up to four cell divisions, enabling a single cell to multiply 
into 16 cells without the need to take up further phosphorus. Information 
on dissolved phosphorus concentrations therefore only demonstrates 
that, if it can be detected, the phytoplankton population is not currently 
limited by phosphorus availability. In order to assess the capacity of the 
waterbody to support a cyanobacterial population, total phosphorus 
(TP) is a much better predictor. To assess whether nitrogen may be limit-
ing, analysis of dissolved components (chiefly nitrate and ammonium) is 
sufficient.

In modern laboratories, various fractions of nitrogen and phosphorus 
are today quantified by automated technologies that allow high-through-
put analyses generally based on photometry such as flow injection 
analysis (FIA) or continuous flow analysis (CFA). Respective, standard 
methods are available for nitrite and nitrate (ISO, 1996), ammonium 
(ISO, 2005), and total and ortho-phosphate (ISO, 2003). Since FIA or 
CFA is not available to many laboratories, simpler and largely manual 
methods  for nutrient analysis are still in use. In the following, a brief 
description of such methods is given together with requirements to per-
form analyses.

Before any analysis is to be implemented in a laboratory, the national and 
international regulations concerning laboratory safety and environmental 
protection must be consulted and duly considered. Any laboratory analysis 
requires trained laboratory staff, especially when handling toxic or other-
wise harmful chemicals is part of it.

Among the methods available, the procedure of Hansen and Koroleff 
(2007) for determining TP has proved to be most reliable and is the basis 
of an ISO protocol. For nitrate and ammonium, several methods are avail-
able, and the ISO method with the least demands on equipment is described 
below. For details on ISO methods, see the International Organization for 
Standardization’s website (https://www.iso.org/).

https://www.iso.org
https://www.iso.org/
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13.7.1  Analysis of phosphorus

Phosphorus in various types of waters can be determined spectrometrically 
by the digestion of organic phosphorus compounds to inorganic soluble 
reactive phosphorus (SRP, largely comprising ortho-phosphate) and trans-
forming this to an antimony–phosphomolybdate complex under acidic con-
ditions, which is then reduced to a strongly coloured blue molybdenum 
complex. The internationally harmonised method as described in ISO 
(2004) is applicable to many types of waters (surface-, ground-, sea- and 
wastewater) in a concentration range of 0.005–0.8 mg/L. Differentiation by 
the following fractions is possible through filtration procedures:

• SRP: filtered sample, generally with a pore size of 0.45 μm.
• Dissolved organic phosphorus (DOP): digested filtered sample; dis-

solved organic P is converted into SRP.
• TP: digested unfiltered sample; all organic P is converted to SRP.
• Particulate phosphorus (PP): difference between TP and DOP.

For SRP sample preparation, it is important to note that filters can release 
phosphorus. To avoid a bias, the filters must be washed with the water 
sample (10–25 mL) and this filtrate be discarded.

Digestion or mineralisation of organophosphorus compounds to SRP 
for DOP and TP analysis is performed in tightly sealed screw-cap vessels 
with persulphate, under pressure and heat in an autoclave (or a household 
steamer), or simply by gentle boiling. The following gives an overview of the 
procedure, necessary equipment and chemicals; for details, see ISO (2004).

Equipment
• Photometer measuring absorbance in the visible and near-infrared 

spectrum above 700 nm; sensitivity is optimal at 880 nm; sensitivity is 
increased if optical cells of 50 mm optical pathlength are used

• Filter assembly and membrane filters, 45 mm diameter with 0.45 μm 
pore size

• For the digestion of samples (TP and DOP), an autoclave (or steamer) 
suitable for 115–120 °C

• For the digestion of samples, borosilicate vessels with heat-resistant 
caps that can be tightly sealed

• Bottles for samples as described in Chapter 14
• Precleaned glass bottles for filtered samples

13.7.2  Analysis of nitrate

Several methods for the determination of nitrate have been provided by 
the ISO, the simplest being a spectrometric measurement of the yellow 
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compound formed by the reaction of sulphosalicylic acid with nitrate and 
subsequent treatment with alkali (ISO, 1988). The equipment required is a 
spectrometer operating at a wavelength of 415 nm and cuvettes with an opti-
cal path length of 40–50 mm, evaporating dishes, a water bath capable of 
accepting six or more dishes and a water bath capable of thermostatic regu-
lation to 25 °C. This method is suitable for surface and potable water sam-
ples and has a detection limit of 0.003–0.013 mg/L (depending on optical 
equipment). Interference from a range of substances, particularly chloride, 
orthophosphate, magnesium and manganese (III), is possible. Interference 
problems can be avoided with other spectrometric methods (ISO, 1986b; c).

The equipment is similar to the one required for phosphorus analysis.

13.7.3  Analysis of ammonium

A manual spectrometric method is given in ISO (1984b), which analyses a 
blue compound formed by the reaction of ammonium with salicylate and 
hypochlorite ions in the presence of sodium nitrosopentacyanoferrate (III) at 
a limit of detection of 0.003–0.008 mg/L. An automated procedure is given 
in ISO (1986a). A distillation and titration method is given in ISO (1984a).

The equipment is similar to the one required for phosphorus analysis.

13.7.4  On-site analysis techniques for nutrients

A number of technologies are available for rapid on-site analysis of primar-
ily dissolved nutrients such as SRP, nitrate and ammonium.

Most simple with respect to handling and required equipment are test 
strips that are submerged in (filtered) water and after a short incubation 
time, a colour change allows to estimate the concentration. Expectedly, the 
sensitivity is comparatively low as is the accuracy, but in some occasions, 
a rapid semiquantitative result may be more valuable than more accurate 
results that are available only after a considerable delay.

Selective electrodes are available for nitrate and ammonium (Cuartero & 
Bakker, 2017). Handling and data-logging is similar to that for pH or oxy-
gen electrodes. This technique may be interesting in particular when a high 
variability of concentrations is suspected, for example, in individual inflows 
to a reservoir.

For on-site analyses, also fully functional photometers and ready-to-use 
reagents kits are available. Digestion of samples for analysis of total phos-
phorus is also possible on-site.

On-site analyses are generally less accurate and less sensitive compared 
to laboratory analyses but are, on the other hand, less expensive and faster 
with respect to time to result. This needs to be balanced for individual 
monitoring programmes. Preferably, any method eventually adopted is 
evaluated for accuracy and sensitivity by testing an individual sample with 
different methods.
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INTRODUCTION AND GENERAL CONSIDERATIONS

Cyanobacterial toxins or cyanotoxins are a diverse group of compounds with 
differing chemistries; hence, a single analytical method can rarely be used to 
evaluate all potential compounds. The general steps required to detect, iden-
tify, quantify and monitor the different classes of toxins do follow a common 
approach (Figure 14.1).

Before committing to a major cyanotoxin sampling campaign, it is 
impor t ant to evaluate the information and level of detail required to make 
appropriate management decisions (see also Chapters 11 and 12). Planning 
the work therefore is best done by a group including the different aspects 
involved, for example, field samplers, laboratory support, analysts, as well as 

Cyanobacterial Alert

Transport to laboratory
Immediately if wet, < 8 hrs
Dried filter samples > 8 hrs

LC-MS/MS

Sample Collection
chapter 12

chapters 5.1, 5.2, 11

Screening Assay
ELISAExtraction

HPLC or UPLC

Analytical determination

LC-MS

Figure 14.1 G eneral scheme from cyanobacteria alert (see Chapter 5) to analytical 
determination of cyanotoxin concentrations.
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managers leading the work, possibly in contact with the authority responsible 
for public health. This way a range of perspectives come together to design 
the most suitable and effective approach. An audit by others with expertise 
in the field (in-house or external) serves to ensure that all important areas 
have been considered and nothing essential is overlooked. Some of the key 
questions and topics which should be covered in planning and auditing are 
included in Checklist 14.1, and it is important to take time to make sure 
that all important requirements can be fulfilled.

The available methods for analysing cyanobacterial toxins are very 
diverse. The criteria for selecting the appropriate analytical method for a 
given monitoring programme include the consideration of reproducibility, 
sensitivity and selectivity (see Box 14.1) as well as factors such as the time 
to result, required training, capital investment and laboratory conditions 
needed, and consumable running costs per sample.

BOX 14.1: PARAMETERS OF 

ANALYTICAL PERFORMANCE

Before any analysis is done, it is important to understand the nature of the 

problem to be addressed and the type of data required. A number of terms 

are often used to describe the performance of an analytical method. Of these 

terms, the most important are accuracy, precision, sensitivity, repeatability 

and reproducibility. For any analytical method that is set up to quantify cya-

notoxins, these parameters should be determined and well documented to 

support the validity of the resulting data.

Accuracy defines the closeness of measured amount of a compound in a 

sample to the true amount in the sample. The actual or true value has to be 

determined by a validated method using reference material.

Precision defines the closeness of repeated measurements of a single sam-

ple to each other. To achieve high accuracy of a method, it needs to be highly 

precise but high precision does not guarantee high accuracy because measure-

ments could be biased by a systematic error.

Sensitivity defines the capability of a method to avoid false-negative 

results, that is, to detect a compound in a sample when it is present but to 

not give a result when the compound is absent. In practice, the higher the 

sensitivity, the lower the limit of detection.

Repeatability characterises the consistency of measured values obtained 

from a single sample by one person applying one method on one analytical 

system. To test repeatability generally includes all sample preparation steps, 

and usually a predetermined limit of variability is set in which the measured 

values should lie for the method to be accepted.
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Reproducibility characterises the consistency of measured values obtained 

from a sample by different persons on different analytical systems. Reproducibility 

of a method that is applied in different laboratories is preferably validated with 

interlaboratory comparison tests, where a single sample of known toxin content 

is split and analysed by different laboratories.

Exact definitions of these and further terms related to analytical chemistry 

can be found at http://goldbook.iupac.org/index.html

Trained staff are needed, especially to operate complex analytical sys-
tems, primarily for the establishment of methods for analytes not yet ana-
lysed in the particular laboratory and their initial validation phase. For 
routine analyses, modern analytical systems generally offer some degree of 
automation that can be made use of once a method has been established.

As a rule of thumb, the most sensitive and specific methods tend to be the 
most demanding ones in terms of investment (capital, method optimisation 
and validation), required personnel training and running costs – but often 
with a substantial delay of result delivery of hours to days. On the other 
hand, methods that are less sensitive and selective may deliver results very 
fast. This can be essential in situations where an analytical result is needed 
to trigger immediate management actions to mitigate risks, for example, in 
Alert Level Frameworks (see Chapters 5.1 and 5.2).

CHECKLIST 14.1 CYANOTOXIN DETECTION

• Which toxin classes are to be analysed?

• From what type of samples (e.g., water, cells, tissue, sediments)?

• Does the detection have to be quantitative? If so, what detection limit 

is required?

• Do drinking-water samples need immediate quenching (e.g., sodium 

thiosulphate or ascorbic acid) to eliminate the continued action of 

oxidising agents like chlorine?

• What instrumentation and expertise is available (i) in-house or 

(ii) external?

• What capacity is available, that is, which number of samples can currently 

be analysed (including laboratory space, appropriate sample storage)?

• What training is needed – for sampling, for sample processing, for anal-

ysis and for data interpretation? How are the data going to be used and 

reported?

http://goldbook.iupac.org
http://goldbook.iupac.org/index.html


750 Toxic Cyanobacteria in Water

14.1  SAMPLE HANDLING, STORAGE AND SHIPPING

Following a sampling trip, the samples arriving in the laboratory need to be 
processed further for analysis or storage. Three aspects are important for 
sample handling and storage: safety, sample processing to ensure stability 
and traceability.

14.1.1  Safety

Laboratory staff handling samples potentially containing toxic cyano-
bacteria and cyanobacterial toxins are potentially exposed to health haz-
ards (see also section 5.2), and appropriate protective measures need to be 
implemented. These measures will be based on two aspects: implement-
ing general safety measures for hazardous material defined in national and 
international occupational health and safety guidelines, and an assessment 
of the risk of exposure to toxic cyanobacterial material potentially given 
in the specific procedures to be carried out. Any staff member handling 
potentially toxic cyanobacterial samples has to be accordingly trained and 
equipped with adequate protective equipment. Depending on the work to be 
done, this protective equipment will range from standard laboratory coats, 
gloves and safety glasses to – where there is a risk of inhalation exposure– 
breathing masks (Stewart et al., 2009). For water samples taken in moni-
toring programmes, the quantities of toxins are generally low, that is, in 
the low microgram per litre range, likely posing no risk of intoxication. 
Nonetheless, skin and eye contact, inhalation and ingestion have to be 
avoided by wearing an appropriate safety wear. Risks of exposure tend to 
be higher if larger quantities of bloom material are handled, for example, 
for toxin purification, with toxin quantities potentially in the low milli-
gram range. The highest risk of exposure to toxic material is likely through 
the handling of dried bloom material, that is, exposure to dust, requiring 
the wearing of a breathing mask and/or the handling of sample material 
in an exhaust hood. Powdery freeze-dried bloom material, often statically 
charged, easily escapes containment, and this may cause a risk of exposure 
not only during laboratory work but also for cleaning staff.

14.1.2  Sample processing for storage

Samples that are not analysed immediately upon arrival at the laboratory 
need to be stored properly to avoid degradation of the cyanotoxins to be 
quantified (see Figure 12.3). Generally, cyanobacterial toxins are rather 
stable compounds, and storage at −20 °C largely prevents degradation. As 
guidance, the stability – or breakdown – as described in Chapter 2 may 
serve as a first orientation for conducting stability testing under the actual 
conditions, including all steps in transportation, storage and shipping. Since 
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degradation mostly occurs through microbial activity, lower temperatures 
generally increase stability.

However, simply freezing entire samples may not be appropriate for prac-
tical and analytical reasons. For example, when extracellular and intracel-
lular toxins are to be analysed separately, this requires prior separation 
of both fractions, which can no longer be done once samples have been 
frozen. Therefore, sample processing steps may be required that allow a 
reliable and efficient preservation of samples or portions of samples for 
later analyses.

If the toxin content in the particulate fraction is to be analysed, cyano-
bacterial cells and other particulate material (“seston”) are best collected 
on a filter, thus concentrating the sample for space-efficient storage. One 
criterion for the choice of the type of filter (glass fibre, membranes of dif-
ferent types, cellulose) is the appropriate pore size to retain cyanobacteria. 
As most toxigenic taxa occur in colonies or filaments, pore sizes < 2 μm 
are generally acceptable. Smaller pore sizes may slightly increase reten-
tion efficiency but at the cost of more rapid clogging of the filters – which 
is a factor that determines to a large extent the time needed to process 
samples. Further, it is important that the filter material be compatible with 
the downstream processing, in particular with the extraction procedure 
to avoid the release of any compounds that interfere with the downstream 
analysis during the extraction step in organic solvents; also, it must not 
be dissolved by these solvents. A protocol for the handling of such sam-
ples needs to be validated and tested with negative controls, that is, filters 
through which pure water has been passed.

For the filtration step, the water sample is well mixed immediately before 
measuring a volume to be filtered, for example, with a calibrated cylinder, 
because even within a very short time (i.e., minutes), buoyant cyanobac-
teria can float to the top (and other phytoplankton can settle), potentially 
leading to biased analytical results. Preferably, the total volume to be fil-
tered is portioned into several smaller volumes to avoid increasingly lon-
ger filtration times on a gradually clogged filter. The volume to be filtered 
for an individual sample depends on the density of cells – that can hence 
be highly variable – and on the detection limit of the downstream analyti-
cal procedure. For the latter, the extraction and concentration steps need 
to be considered.

The filter should hold only residual moisture before it is frozen for 
storage or processed further for analysis, respectively, as discussed in the 
following section.

Filtrates are used for the analysis of dissolved (i.e., extracellular) cya-
notoxins. To produce larger volumes of particle-free samples, it may be 
helpful to use a combination of two filters, for example, a glass fibre filter 
to retain larger particles and a second filter with smaller pores to remove 
small particles.
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14.1.3  Sample storage and shipment

If filter samples are to be stored, they are folded loaded-face on loaded-face 
and placed in an appropriate container, for example, chemically inert reac-
tion tubes or enveloped in aluminium foil and labelled correctly. For their 
long-term storage or shipment, it is advantageous to dry the loaded filters; 
otherwise, shipment on dry ice is recommended. Drying can be achieved by 
freeze drying, in a vacuum centrifuge or at moderate temperatures (<80 °C for 
microcystins and cylindrospermopsins) in a drying oven when lyophilisation 
is not available (Welker et al., 2005). For the latter, stability tests are recom-
mended to check whether the drying process (that may last for several hours) 
causes any degradation. It is generally good practice to test the stability of the 
samples under the chosen storage conditions with a series of identical samples 
that are analysed at the different processing steps and after varying storage 
times. Performing the extraction procedure in the storage tube can allow safe 
handling, reduce processing time and minimise the risk of sample confusion.

For the storage of particle-free filtrate or extract, toxin adsorption to 
labware may be relevant. A few studies on this issue show that microcystin 
congeners differ in their tendency to adsorb to materials (Hyenstrand et al., 
2001; Kamp et al., 2016; Altaner et al., 2017). These studies cover only 
some of the possible combinations of materials, solvents and toxins, and it 
is recommended to test the material used in an individual laboratory under 
the actual sample processing procedures to assess suitability. Once labware 
of a particular material and manufacturer has been found appropriate, it 
should not be changed without corresponding verification.

Shipping of samples requires consideration not only of stability but also 
of compliance to legal aspects, in particular declaration rules for transbor-
der shipments (see Metcalf et al. (2006) for an overview).

14.1.4  Traceability

It is critically important to label all field samples arriving in the laboratory 
in a way that allows the results to be tracked back to the sampling site and 
sampling date at a later point in time. Similar considerations also apply 
for individual steps in sample processing, dilution of standards and quality 
control (QC) samples. For certified laboratories, the traceability of samples 
and materials is essential and generally follows guidelines such as ISO 9001 
(ISO, 2015). Although a thorough quality management system according to 
ISO 9001 may not be necessary for non-certified laboratories, some prin-
ciples can be implemented to ensure proper sample management.

As outlined in Chapter 11, a first important point is the labelling of indi-
vidual samples. Sample names need to be unique, not only for a recent set 
of samples but also with respect to all samples that are expected in the 
future in a given laboratory and in cooperating laboratories. A naming sys-
tem is therefore best defined prior to sampling campaigns and followed by 
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the entire staff. Whichever system of sample naming is agreed upon, it is 
important to register all samples received in a laboratory in a central reposi-
tory that is in turn backed up regularly. As barcode labelling and reading 
is becoming affordable, the introduction of these respective systems is now 
an option. Furthermore, labels need to be stable, that is, lastingly attached 
to sample containers under the actual storage conditions. Especially when 
samples are stored in the freezer, adhesive labels or markings need to be 
tested for resilience to repeated freeze–thaw cycles.

14.2  GENERIC METHODOLOGIES USED 

IN CYANOTOXIN ANALYSIS

14.2.1  Sample extraction for analysis

Most cyanotoxins are retained in the cell-bound fraction of samples taken 
from waterbodies (Chapter 2). Only when cyanobacterial populations 
experience cell lysis, for example, in surface scums exposed to high tem-
peratures and light intensities, substantial amounts of toxins are released 
to the  surrounding water. An exception is cylindrospermopsin that can be 
released from viable cell and found in large proportions in the cell-free frac-
tion (section 2.2 Box 5.1 and Chapter 10). Further, extraction and sample 
clean-up is of critical importance for the analysis of cyanotoxins in foods 
to avoid both under- and overestimating concentrations (see section 5.3.4).

To make cell-bound cyanotoxins accessible to chemical analysis, they 
need to be extracted from the cells with an appropriate solvent. The solvent 
needs to be selected to efficiently extract toxins from cells in a few (maxi-
mum of three) extraction cycles and needs to be compatible with down-
stream analytical methods. Extraction procedures for individual classes of 
toxins will be discussed in the respective sections.

There is no single method available that is suitable for extracting all 
classes of cyanotoxins; hence, it may be necessary to collect several samples 
or subdivide samples prior to processing (see Chapter 12).

14.2.1.1  Solid-phase extraction (SPE)

While some immunoassay (ELISA) methods and LC-MS/MS (see below) 
may be sufficiently sensitive for monitoring in compliance with guideline 
values, trace analysis of cyanotoxins in water (i.e., concentrations below 1 
μg/L) typically requires sample concentration using solid-phase extraction 
(SPE). This processing involves passing a known volume (typically 100–
500 mL) of a (particle-free) water sample through a solid-phase cartridge 
to concentrate dissolved cyanotoxins. SPE requires a vacuum manifold sys-
tem, PTFE (polytetrafluorethylen) connectors and tubing (for a minimum 
adsorption of analytes) and a vacuum pump. The equipment for SPE can be 
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used for different classes of cyanotoxin; however, specific cartridges need 
to be used which retain the cyanotoxin of interest. A large selection of 
ready-to-use SPE cartridges is available with different sorbent materials and 
varying sorbent volumes. Sorbent materials primarily differ in the degree of 
hydrophobicity and have to be selected in correspondence with the cyano-
toxin of interest, for example, C18 for microcystins or graphitised carbon 
for highly hydrophilic cylindrospermopsins.

Filtering water prior to SPE is essential to minimise clogging of the car-
tridges. Nonetheless, during times of blooms, the higher load of very small 
particles may significantly increase loading times. In this case, it is advised 
to note the volume of sample that has already passed and discontinue the 
sample loading. Once the water sample has passed through the cartridge, 
a washing step follows before the toxin adsorbed on the cartridge is eluted 
in a small volume (typically 3–5 times the sorbent bed volume) of solvent 
into a collection tube (Figure 14.2). This can be analysed directly or further 
concentrated by drying to enhance the detectability. It is tempting to load as 
large a volume of water sample as possible to allow the detection of low lev-
els of cyanotoxin; however, this is not always appropriate. Larger volumes 
can take many hours to load onto the cartridge and matrix contaminants are 
also being concentrated; hence, larger sample volumes increase matrix inter-
ference. Loading samples onto SPE cartridges can be time-consuming so it is 
wise to determine the most appropriate volume of water. This can be done 
by processing some test samples of spiking water (preferably similar to the 
samples) and determining how long the process takes. Typically, a volume is 
chosen that takes no more than 3 h to pass through the SPE cartridge, allow-
ing time for sample preparation, elution and processing before analysis.

It is useful to validate methods by spiking known amounts of the cyano-
toxin of interest into water samples. Spiking should not be performed with 
high-purity water (e.g., Milli-Q) as this may lead to poor recoveries, and 
as this is in no way representative of the samples being processed. Using 
the typical raw or tap water to be tested is best (if tap water is chlorinated, 
using a chlorine-quenching agent, i.e., sodium thiosulphate or ascorbic 
acid) as this will provide a good indication of expected performance.

14.2.2  Enzyme-Linked Immunosorbent 
Assay (ELISA)

Immunoassays are based on the binding interaction between a highly spe-
cific antibody and the analytes of interest. The most common of these assays 
is the ELISA kit using antibodies raised to specific cyanotoxins. The toxins 
are detected by the modification in the colour reaction with the intensity of 
the colour being inversely related to the amount of toxin.

ELISAs can offer rapid results with a relatively low investment in capital 
equipment. As these assays do not identify specific cyanotoxin variants of 
a toxin class and give an indication of total toxin concentration – total 
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Figure 14.2 S etup for solid-phase extraction (SPE) for concentrating trace amounts of 
cyanotoxins dissolved in water. 1. Filtered water sample in stoppered glass 
bottle; 2. PTFE tubing carrying water under vacuum; 3. PTFE tubing; 4. SPE 
cartridge with sorbent; 5. PTFE stopcocks used to stop and start flow; 6. 
water flowing to waste while cyanotoxins are adsorbed on the cartridge; 7. 
vacuum manifold system with removable rack; 8: reservoir used to intro-
duce solvents for conditioning and eluting the cartridge (syringe); 9. pressure 
gauge with needle valve; 10. concentrated sample eluted into a sample col-
lection tube or vial; 11. vacuum line connection.

microcystins, for example – they are often used as a screening method. It 
is recommended to confirm toxin content and to routinely check for false 
negatives using instrumental methods (HPLC, LC/MS; Gaget et al., 2017). 
Where such methods are not available, periodic shipping of a few selected 
samples to a support laboratory elsewhere may be an option.

ELISA kits are very popular for a rapid, straightforward detection of 
most classes of cyanotoxins, although an individual kit is required for 
each class of cyanotoxin and even different kits may be necessary to cover 
the variants within one class. The kit-based formats provide a straight-
forward guidance on how to perform, calibrate and interpret the results. 
Multiple samples can be evaluated at one time, and results can typically 
be reported in less than a day. As with all biochemical test kits, care has to 
be taken with storage, since ambient or elevated temperature during pro-
longed transportation can reduce their reliability. The 96-well plate for-
mat allows samples to be read and quantified in a plate reader, facilitating 
the analysis of many samples and the calibration in a short space of time. 
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Kits often come with a removable strip format so that not all wells need 
to be used at the time of analysis thus increasing the cost-effectiveness of 
the assay. If only a few samples are to be assayed, it is advisable to confirm 
the format before making a purchase.

ELISA kits with sensitivity in the range of the WHO lifetime cyanotoxin 
guideline values are commercially available for almost all classes of cyano-
toxins (see below). However, it is important to remember that cell-bound 
toxins need to be extracted prior to performing the ELISA. Also, care has 
to be taken to quench oxidants used in water treatment (chlorine or chlorine 
dioxide; see above) and to ensure the pH of the sample is appropriate for 
the specifications of the assay. Filtration or centrifugation may be required 
to remove particulates, and dilution may prove necessary to ensure that the 
quantification is in the approved range given in the instructions. Where the 
cost of these kits is a problem and access to producing antibodies is available, 
an option may be to produce antibodies in-house or to have this provided 
through co-operation with a an external institution (university, company, 
etc.), as demonstrated in the case study described in Box 15.1 in Chapter 15.

14.2.3  High-performance liquid 
chromatography (HPLC)

HPLC has become well established for the routine analysis of environmen-
tal pollutants. These systems consist of a solid-phase chromatography col-
umn through which analytes dissolved in liquid solvents are pumped and 
separated due to differences in the interaction of individual analytes with 
the solid phase. The flow then passes through a detector, for example, UV 
absorbance or fluorescence detectors, with the absorption proportional to 
the amount of analyte, with data collected on a computer. Most systems 
now include an autosampler to allow a set of samples to be loaded and 
automatically analysed. The number of samples that can be analysed in a 
given space of time depends primarily on the duration of a single sample 
run. For example, the run time for microcystins with a conventional HPLC 
is around 1 h per sample. Analyses with fewer target compounds, that is, 
less structural variants such as cylindrospermopsin or anatoxin-a, generally 
require shorter run times and hence allow a higher sample throughput. The 
separation of the analytes can be achieved by isocratic elution; this is when 
the solvent composition remains the same throughout the analysis. Isocratic 
elution is suitable for analyses that target only a few analytes and with a 
limited matrix interference, that is, with relatively low amounts of other, 
nontarget compounds. To allow for better separation of target analytes, 
gradient elution is commonly applied, where the proportions of the solvents 
change over the run time. This allows a wide range of analytes to be sepa-
rated, such as multiple variants of microcystins. To ensure that analytes and 
contaminants are not carried over to the next sample, a washing step with 
100% solvent is often included in the analytical run.
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The most common detector used on HPLC systems is the photodiode 
array (PDA), which will provide an adsorption spectrum (200–600 nm) for 
the compounds being analysed. This is useful for the analysis of cyanotox-
ins as many of them have characteristic UV absorption spectra (Figure 14.4 
and 14.5), thus providing an indication even of cyanotoxins in the sample 
for which no standard reference material is available (see Box 14.2).

BOX 14.2: REFERENCE MATERIAL FOR CALIBRATION

According to IUPAC, reference material is defined as “a substance or mixture 

of substances, the composition of which is known within specified limits [...] 

to be used for the calibration of an apparatus”. For cyanobacterial toxins to 

be used as reference material for establishing a calibration curve for the quan-

tification of these cyanotoxins, two criteria need to be fulfilled:

 1. Purity defines the share of an individual compound of the total material. 

Purity is generally expressed in gravimetric percent that should be at 

least 95% in reference material.

 2. Amount is generally defined in gravimetric units, and ideally with the 

specified limits, that is, a range of amount that should be as narrow 

as possible.

In this sense, not all cyanotoxins that are commercially available are refer-

ence materials. Hence, these compounds cannot be used directly to establish 

calibration curves. In particular, the nominal amount in a vial may deviate con-

siderably from the true amount. In consequence, this means that a calibration 

curve established with such a “standard” would introduce a systematic error 

to all subsequent analytical quantifications.

The true amount hence needs to be determined. This can be done either 

by weighing with a sufficiently precise and sensitive balance or by spec-

trophotometric analysis (ISO, 2005). For the latter, wavelength-specific 

extinction coefficients need to be available, which is the case for some 

but not all cyanotoxin variants. Extinction coefficients are specific for sol-

vents and temperature; that is, a compound dissolved in water cannot be 

quantified by using an extinction coefficient established for the compound 

dissolved in methanol.

For cyanobacterial toxins sold as certified reference material, the purity 

as well as the amount is well defined, and its can be used directly as standard 

for calibration.
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The typical capital investment required for an HPLC is around $30,000 
USD with relatively modest costs for maintenance, including replacement 
UV lamps and columns.

Training of staff and adoption of a standard protocol is easily achievable, 
while interpretation of samples and cyanotoxin identification (especially 
unknowns from their spectra alone) requires more time to develop confi-
dence. This applies equally to UPLC (ultra-performance liquid chromatog-
raphy) discussed below.

14.2.3.1  Ultra-performance liquid chromatography (UPLC)

UPLC offers a considerable advantage over conventional HPLC as it allows 
very rapid separation of analytes (run times of around 10 min) and a greatly 
reduced solvent usage, typically 0.3 mL/min compared to 1 mL/min for 
conventional HPLC systems. For example, these systems can achieve the 
separation of multiple microcystin variants in run times little over 10 min, 
thus providing high throughput of samples, substantial saving and results 
on the same day for samples with short extraction times (e.g., bloom mate-
rial and filter discs with cells). For samples requiring longer extraction (SPE 
of water samples or tissue samples), it can yield results within 24 h.

UPLC systems are highly reliable with the response factor for micro-
cystins in the UV detector changing little over time. The capital invest-
ment should typically be around $50 000 USD for the complete system at 
relatively low levels of maintenance, with the main component that needs 
replacement being the UV lamp (it is useful to have a spare in stock).

14.2.4  Liquid chromatography with mass 
spectrometry (LC-MS)

The addition of a mass detector to chromatography systems makes a very 
powerful tool for the analysis of cyanotoxins. Mass spectra can provide an 
indication of the elemental composition and structure of an analyte along 
with determining the quantity of analytes for which reference materials are 
available with high sensitivity (see Box 14.2). A range of differing systems 
is available, and very careful consideration is required to determine which 
fulfils analytical requirements and is within the budget available. Different 
ion sources are available with positive electrospray ionisation (ESI) most 
commonly used in the analysis of cyanotoxins. The type of mass analyser 
(Caixach et al., 2017) also varies and can have a significant impact on cost 
and the data obtained; hence, it is essential that background evaluation is 
carried out to ensure the system suits the needs defined during planning (see 
section 14.1.1). In general, LC-MS will provide data relating to chromato-
graphic retention times, the parent ion masses and fragmentation patterns 
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for each compound as they are eluted. More complex LC-MS/MS systems 
combine a series of more than one mass detector (e.g., a triple quadrupole 
mass detector). As analyte ions pass through mass analysers, the former 
allow the selection of an analyte based on parent ion mass, while the latter 
allow the selective detection of fragment ions. This makes LC-MS/MS a 
highly specific analytical technique.

Robust protocols are required for LC-MS/MS as the signal from the MS 
can be either enhanced or suppressed by matrix interference (salts, organ-
ics, etc.). Furthermore, the response (i.e., signal strength relative to ana-
lyte amount) can drift over a relatively short time, necessitating a regular 
and frequent calibration. A routine maintenance protocol is advisable with 
the interval for cone cleaning determined for different sample matrixes; 
for example, in studies for the analysis of mussel tissue, cone cleaning was 
required after 40 samples (Waack, 2017). This interval was determined by 
spiking an extracted sample and then carrying out repeated, identical sam-
ple injections and determining after how many samples the reliability of the 
detection and quantification diminished.

While LC-MS provides very powerful sensitivity and detection capabili-
ties, the more advanced systems (LC-MS/MS) require a capital investment 
of around $500  000 USD and an annual running cost of $20–40  000. 
Furthermore, a high level of staff training is required to use, interpret and 
maintain these systems, but once established, they provide unrivalled analyti-
cal capabilities. It is advisable, where possible, to see one or several systems in 
operation and have an opportunity to analyse specific samples from the area 
to be monitored prior to committing to this significant capital investment.

14.2.5  Selecting an analytical system

The lack of suitable analytical equipment is typically a barrier to monitor-
ing cyanotoxins, and a strong case is often made for capital investment. 
The influence of current scientific publications frequently draws attention 
to the significant capabilities of very advanced instrumentation. However, 
while these systems provide impressive capability, a robust evaluation of 
the analytical requirement, running costs and infrastructure should be 
made to inform purchasing decisions. Checklist 14.2 provides some key 
points to discuss both in-house and with those who have recently invested 
in cyanotoxin analysis before making decisions. In particular, it is advan-
tageous to develop a regional network, sharing expertise and resources, 
for example, through a regional centre of competency. This may lead to 
a decision to use simpler techniques such as ELISA while validating the 
results periodically by having a small set of samples analysed with advanced 
techniques elsewhere. Where training is required, it is often more efficient 
to invite an expert to provide an in-house workshop as this ensures analyses 
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are operational and staff develops confidence using the in-house system. 
(Note: small grants are often available for this, e.g., through international 
exchanges and workshop funding.) A further benefit of this approach is 
continued support from experienced international collaborators ensuring 
ongoing development of monitoring programmes. Support provided by the 
system’s vendor generally is charged for. This should be considered in the 
budget for investment and running costs.

CHECKLIST 14.2 EVALUATING INSTRUMENTAL 

ANALYTICAL REQUIREMENTS AND SUITABILITY

• What information is needed? Which class of toxins will be the main focus? 

Is the main target monitoring compliance of cyanotoxin guideline levels?

• Check the cost of consumables, for example, vials, columns, SPE car-

tridges  and solvents in relation to the number of samples expected 

over time. In many countries, solvents and even high-purity water can 

be prohibitively expensive (the benefits of ultra-performance liquid 

chromatography (UPLC) are low flow rates and short runtimes requir-

ing little solvent).

• What are the costs of waste solvent disposal required by environmen-

tal legislation?

• Is the infrastructure appropriate? This includes a stable power supply as 

fluctuating or intermittent power can rapidly destroy equipment. If not, 

what are the costs of installing effective power surge protection such as 

uninterruptible power supply (UPS) systems?

• Can room temperature be kept within the range needed by the instru-

ments and analyses (results can be affected by high or fluctuating tem-

perature, so air conditioning is often required)?

• Do all purchases include installation and initial training, ensuring that 

there are available engineers in the area?

• What is the cost of a service contract, and is it essential?

• For planning to purchase a LC/MS (it requires a nitrogen generator and 

cannot run efficiently on regular laboratory gas cylinders), ensure that 

the contract includes either annual service – that is, the cost of service 

engineers visits – or, if you have technical expertise to carry out the 

service, the purchase of a service kit.

• Talk to users of different instrument manufacturers regarding their 

experience of service and support especially in your location.

• Consider the benefits of partnering with others rather than buying 

own equipment.
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14.3  QUANTIFICATION OF MICROCYSTINS 

AND NODULARINS

Of all the cyanotoxins, most experience exists with the methodology for the 
extraction and detection of microcystins. Furthermore, due to its chemical 
similarity, many of the methods for microcystins will also readily detect 
nodularin (Lawton et al., 1994b); hence, it will be included in this sec-
tion. In general, the term “microcystin” will be taken to refer to both these 
related classes of toxins unless the differentiation is required.

Methods range in complexity and sophistication, spanning the well-
established “tried and tested” approaches through to preliminary research 
findings on novel detection strategies. While many of these novel methods 
offer exciting opportunities for the future, this chapter focuses on a few of 
the most relevant approaches for establishing routine methods suitable for 
the more widely available resources and common requirements.

14.3.1  Extraction methods for 
microcystins and nodularins

14.3.1.1  Cyanobacterial cells

All cell/bloom samples will require extraction as these toxins tend to be 
retained inside healthy cells. Many extraction protocols for microcystins 
have been described (e.g., various solvent combinations, cycles of freeze/
thawing, sonication, freeze drying, including combined methods). Among 
these solvent combinations, aqueous methanol (typically 50–80%; (Barco 
et al., 2005)) has proven to be very effective for extracting microcystins 
in face of their wide range of polarities. This solvent can be used for 
extracting cell pellets once a sample has been centrifuged (and the super-
natant discarded or assayed for extracellular microcystin) as well as for 
extracting cells concentrated on filters. Depending on the volume of cells, 
around 90% recovery of microcystins (Barco et al., 2005) can be achieved 
with the first extraction. Often this is sufficient, as this has to be bal-
anced against the further time required for processing a second extrac-
tion, as this will typically yield less than 10% of the total microcystin; 
also if the two extractions are combined, this reduces the detection limit 
due to the additional volume of solvent used in the second extraction. 
Extraction time of around 1 h is sufficient for good recovery. With the 
increased availability of dispersive extractor systems (automated vortex-
ers that shake samples vigorously at defined speeds and timed duration), 
however, extraction can be achieved in just a few minutes and with high 
reproducibility. Where samples are extracted in centrifuge tubes (typically 
1.5-mL microfuge), these can be spun and the supernatant then directly 
analysed using instrumental methods.
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When designing an extraction protocol, it is good to keep it as simple as 
possible as this will limit error and also potential workplace exposure to 
microcystins: for example, freeze drying is sometimes reported as a step 
during sample preparation if a specific dry weight of cells is to be deter-
mined, but this can produce powders that are difficult to contain and prone 
to static charge. Other methods also reported the use of a sonicator probe 
which may cause cross-contamination, but also produce aerosols.

The use of organic solvents (e.g., methanol) is not compatible with bio-
chemical assays such as ELISA and enzyme inhibition tests. Some ELISA 
kit manufacturers provide a cell lysis kit, while other analysts have advo-
cated aqueous extraction or dilution to limit the concentration of solvent: 
for example, a 1 in 10 dilution of a 50% aqueous methanol extract may 
be tolerated but should be checked with controls for the specific kit used. 
Since microcystins demonstrate high temperature stability, a brief exposure 
(5 min) of a small sample (e.g., 1 mL) to about 80 °C in a water bath fol-
lowed by centrifugation (13 000 × g; microfuge) can result in simple solvent-
free extraction (Metcalf & Codd, 2000). Extracts can then be diluted in 
water or buffer as required.

Similarly, high organic solvent content in extracts to be analysed by chro-
matographic systems needs to be tested for compatibility, in particular when 
gradient elution is applied that generally starts with hydrophilic conditions.

14.3.1.2  Water samples

Some very sensitive methods (e.g., LC-MS/MS) may be able to detect micro-
cystins at environmental concentrations. However, even then it may be 
desirable to carry out solid phase extraction (SPE) to limit matrix effects.

The most commonly used SPE material is end-capped C18 cartridges, 
which have demonstrated high recovery and reliability. Some users pre-
fer newer resins (e.g., polymeric phases), which are good where MS is the 
detector of choice; however, the high recovery of polar compounds by these 
cartridges can interfere with the more polar microcystins (e.g., microcystin-
RR) if detection is with photodiode array (PDA). Several published meth-
ods provide a good detail on establishing SPE extraction of microcystins 
(Lawton et al., 1994b; Triantis et al., 2017c).

Some researchers have developed online sample concentration for fully 
automated extraction and analysis of microcystins. This is typically an 
advanced option including LC/MS(MS) and a quite specialised approach; 
however, it may be desirable particularly for laboratories that need a high 
throughput, such as those of public authorities monitoring compliance to 
regulations or of drinking-water suppliers.

Recoveries are best if sample handling is limited, processing time is kept 
to a minimum and samples are analysed immediately or stored at −20 °C 
when this is not possible. There is some evidence that samples may change 
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when stored for longer periods of time even at −20 °C, but further studies 
are required to clarify the extent of this problem. If samples are stored, they 
should be vortexed if a subsample is to be removed after storage.

14.3.1.3  Tissue samples

It is becoming increasingly important to evaluate microcystins in more 
complex matrixes such as animals that have become intoxicated, fish and 
aquaculture products that may be contaminated or even plant materials. 
Much work is still required to fully understand the efficiency of different 
extraction and toxin recovery protocols. This is particularly challenging for 
microcystins and nodularins as they are known to bind to proteins; fur-
thermore, microcystins, in particular, can bind covalently to certain protein 
phosphatases in living cells. Further, the recovery of standards spiked to the 
material to be tested will only represent unbound toxin recovery efficiency.

While a range of processing strategies with varying degrees of complexity 
have been used, all of these strategies need to be tested and tailored to the 
specific requirements of the material to be studied. Simple blending of fresh 
tissue (mussels) followed by a single aqueous methanolic (80% methanol) 
extraction was found to give good recoveries in the range of 61–97% for 
11 microcystins and nodularin (Turner et al., 2018). Very poor recovery 
was observed for hydrophobic microcystins when either the samples were 
acidified or water alone was used. The solvent extracts can be directly ana-
lysed by instrumental systems. In contrast, for biochemical tests (ELISA or 
protein phosphatase inhibition), samples will need to be dried to remove the 
solvent or sufficiently diluted with water or buffer.

Due to the difficulties in detecting bound microcystin, a method was devel-
oped which is designed to cleave part of the microcystin at the first double 
bond of the ADDA moiety liberating 2-methyl-3-methoxy-4-phenylbutyric 
acid (MMPB; see Figure 14.3). The assumption behind this approach is that 
one molecule of MMPB is liberated for each molecule of microcystin, hence 
predicting the total microcystin content. An oxidation step is used to liber-
ate the MMPB fragment from the parent microcystin, which is assumed 
to be simpler than digesting the microcystin bound to protein. While this 
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Figure 14.3 A DDA moiety of microcystins and nodularins with an indication of the site 
of MMPB cleavage. For the full structure, see section 2.1.
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method has been used in a range of studies, it is very difficult to deter-
mine the degree of sample recovery as spiking will only represent free toxin. 
Most reported studies currently use MS detection of MMPB (m/z 208); 
however, this mass is not unique to this oxidation product (ChemSpider 
shows >6300 compound with this or very similar mass). Others have 
augmented the method to search for a product ion at 131, which again may 
not provide confident detection. However, Foss and Aubel (2015) have suc-
cessfully used the MMPB method in comparison with the ADDA-ELISA, 
indicating good agreement.

In summary, the detection of microcystins and nodularins in tissue is 
important for assessing their possible role in animal poisoning or occur-
rence in food (fish, shellfish, vegetables, etc.), and while no current method 
will recover the total amount of microcystins, aqueous methanol extraction 
will give a good indication of whether microcystin is present.

14.3.2  Quantification of microcystins and 
nodularins by biochemical methods

14.3.2.1  Quantification by protein 

phosphatase inhibition assay

Microcystins and nodularins are known to be potent inhibitors of protein 
phosphatases PP1 and PP2A. This activity is central to their toxicity, and 
hence, detection of inhibition also indicates the potential biological activity 
of a sample. The assay can be performed relatively easily where the facilities 
are available for biochemical work. All the reagents and enzymes can be 
purchased for the colorimetric assay, which detects the enzymatic hydro-
lysis of the substrate (p-nitrophenyl phosphate) that liberates the coloured 
product p-nitrophenol (detected at 405 nm). The assay can be performed in 
a microtitre plate with the temperature, mixing and timing controlled by 
the plate reader and relatively straightforward protocol, typically resulting 
in good reproducibility.

Some challenges can arise if the sample inhibits the enzyme (depending 
on pH, solvents or other contaminants) or if it contains background colour; 
however, this rarely occurs as the enzyme assay is highly sensitive, allowing 
a significant dilution of, for example, a cell extract. Detection limits as low 
as 0.0039 μg/L have been reported, which is well below the WHO guideline 
value (Sassolas et al., 2011). This assay is also available as a commercial kit, 
which has a quantification range between 0.25 and 2.5 μg/L and an analysis 
time of only 30 min. The manufacturers also provide a tube format that could 
be used in the field and eliminate the need for investment in a plate reader, 
although users repeatedly analysing multiple samples will benefit from the 
multiwell plate format as this can be automatically analysed and is more 
practical for multiple samples and calibration points.
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14.3.2.2  Immunoassays for microcystin 

and nodularin detection

The ADDA-based ELISA is particularly popular as it has been designed to 
detect the ADDA moiety, which is both very specific to these toxins and 
present in all variants, regardless of other chemical diversity. Sensitivity is 
reported as around 0.1 μg/L with the assay time of 2.5 h. There are a range 
of ELISA kits (usually with antibodies raised to microcystin-LR), and it is 
worthwhile checking which would be most appropriate for use in a specific 
situation. Considerations may be cost, format, location of suppliers and 
experience of other users in the vicinity. ELISA has been used for a range 
of samples demonstrating a good cross-reactivity for a number of variants 
and different sample matrices (Heussner et al., 2014); however, for tissue 
samples, sample processing needs a careful consideration as some studies 
have reported false positives and concentrations which are greatly in excess 
of the levels detected by LC-MS/MS (Brown et al., 2018).

14.3.3  Instrumental analytical methods 
for microcystins and nodularins

While a range of analytical approaches has been explored over the past 
30 years, the central method of choice revolves around liquid chromatogra-
phy (LC). Microcystins and nodularins can be separated very readily on C18 
reverse-phase columns, although some closely eluting variants (e.g., micro-
cystin-LR and desmethyl-microcystin-LR) require a careful column selec-
tion. Different methods of detection have also been evaluated, with a general 
consensus on UV detection and/or mass spectrometry, including MS/MS.

14.3.3.1  Analysis of microcystins and 

nodularins by HPLC-PDA

High-performance liquid chromatography with photodiode array (HPLC-
PDA) provides an accessible, robust method for the detection and quan-
tification of all microcystins by virtue of their distinct UV absorption 
spectra (Lawton et al., 1994b). Even in the absence of standards for every 
microcystin, confident quantification of total microcystins can be achieved. 
Most microcystins have very similar absorption spectra (although the over-
all characteristics between 200 and 300 nm can vary with concentration) 
with a maximum at 238 nm from the conjugated double bond in the ADDA 
moiety (Figure 14.4). The exception to this are microcystins that contain 
the variable amino acid tryptophan (e.g., microcystin-LW), which have 
an absorption maximum at 223 nm, and those that contain the variable 
amino acid tyrosine (e.g., microcystin-YR), which have an absorption max-
imum at 231 nm (Figure 14.4). A simple approach is to use microcystin-LR 
calibration for total microcystin quantification, assuming a similar molar 
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Figure 14.4 H PLC-PDA chromatogram of a bloom sample dominated by Microcystis 
sp. (a) and UV-absorption spectra of selected microcystin peaks (b). The 
individual variants are indicated by the standard two-letter code. rt: chro-
matographic retention time. The dotted line in the spectral plots indicates 
the wavelength λ = 238 nm; all microcystins show an absorption band at this 
wavelength that results in a shoulder in the spectra of variants containing 
tyrosine (Y) and tryptophan (W). A second absorption band at λ = 246 nm 
can be seen as shoulder in spectra of all microcystins. Both absorption bands 
are related to the conjugated double bond of the conserved ADDA moiety. 
For analytical details, see Welker et al. (2003).
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absorption coefficient at 238 nm, that is, a similar response in PDA detec-
tion. An advantage of HPLC-PDA analysis is the fact that microcystin vari-
ants for which no reference material is available can be recognised based on 
a peak’s absorption spectrum. Verification can be achieved by collecting the 
eluting peak and performing an offline analysis, for example, by MALDI-
TOF MS (Welker et al., 2002b). Beyond this, it is preferable to set up the 
method with a range of microcystin variants of differing polarities, span-
ning from early to late retention, to provide confidence that a wide range of 
microcystins can be detected should they occur in samples.

The typical analytical set-up will be a gradient separation using high-
purity water plus trifluoroacetic acid (TFA; 0.05%) and acetonitrile with 
TFA (0.05%). A gradient from 30% to 70% acetonitrile is usually required 
to separate all microcystins, and a rapid wash to 100% will eliminate car-
ryover between runs.

14.3.3.2  Analysis of microcystins and 

nodularins by LC-MS(MS)

Both LC-MS and LC-MS/MS are powerful instruments for the analysis 
of microcystins. For developing a new method for microcystin analysis by 
LC-MS/MS, the Handbook of Cyanobacterial Monitoring and Cyanotoxin 
Analysis (Meriluoto et al., 2017) provides good guidance and a number of 
standard operating procedures (SOPs). Different approaches are possible, 
including the detection only of microcystins for which standards are available, 
using selected reaction monitoring (SRM), which is very sensitive and accurate 
(Turner et al. 2018). The drawback of this approach, however, is that a signifi-
cant proportion of the microcystins in a sample could go unreported – those 
variants for which no calibration has been established based on standards. 
For example, USEPA Method 544 (Shoemaker et al., 2015) is limited to six 
microcystins, while other published methods have extended this to over 10. 
Birbeck et al. (2019) reported 40% of samples had more than 20% of their 
total microcystin variants not detected by the USEPA Method 544 and a num-
ber of these variants were the dominant microcystins. It is therefore advised 
to consider the taxonomic composition of the sample that allows a tentative 
prediction of the structural variants to be present. A way forward for routine 
monitoring is a detailed initial analysis to identify the spectrum of microcys-
tins, and as long as bloom composition stays stable, such SRM can be a robust 
and sensitive approach, provided periodic checks are carried out to confirm 
that the overall microcystin profile is still covered by the standards used.

If microcystin variants are to be quantified for which no purified quan-
titative standards are available, estimates on the basis of their retention 
characteristics, mass and fragmentation pattern can serve for an initial 
assessment. However, as detector response intensities vary substantially 
between individual variants, a quantitation can be at best tentative; for 
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example, MC-RR has a several-fold higher response than MC-LR, prob-
ably due to a higher ionisation efficiency (Krause et al., 1999). A valu-
able approach is to add a PDA detector to the system along with the MS 
detection: this will greatly enhance confident detection and in particular 
quantification of microcystins for which no specific calibration could be 
established. Since the PDA is robust and quantification varies little over 
time, it provides an excellent confirmation and quantification.

14.4  QUANTIFICATION OF CYLINDROSPERMOPSINS

Cylindrospermopsin (CYN), including its small number of variants, is 
highly polar due to its zwitterionic nature, and hence, is readily soluble in 
water. Unlike most of the other cyanotoxins, it is often found in significant 
concentrations outside the cell as well as within the cell (section 2.2). It 
appears to be relatively stable and to some extent resistant to a rapid bio-
degradation. Detection appears to be limited to either ELISA or chromatog-
raphy (with photodiode array (PDA) and/or MS).

14.4.1  Extraction of cylindrospermopsins

14.4.1.1  Cyanobacterial cells

Extrtaction of cylindrospermopsins from dried cells can be simply achieved 
in water (Welker et al., 2002a). A known amount of freeze-dried cells can 
be weighted into a microcentrifuge tube and extracted with 1 mL of water 
added by vortexing intermittently for 1 h or placing in a dispersive extractor 
for 2 min at a full speed. The sample should then be centrifuged (13 000 × g), 
and the supernatant can be directly analysed by either ELISA or chroma-
tography. With fresh cells, a similar protocol can be followed by first cen-
trifuging the fresh sample and retaining the supernatant for analysis. The 
cell pellet can then be extracted in 50% aqueous methanol, although care 
has to be taken either to remove the methanol by drying the sample or to 
dilute it, since the methanol will interfere with both ELISA and peak shape 
in chromatography (Metcalf et al., 2002a).

14.4.1.2  Water samples

Low concentrations of cylindrospermopsins in water will require sample 
concentration by solid phase extraction (SPE; Triantis et al., 2017a). Due 
to the polarity of the molecule, it is poorly retained by C18 and other solid 
media typically used for water analysis. Good recoveries can be achieved 
by the specialised cartridges such as graphitised carbon or polymeric res-
ins. The typical protocol requires the filtration of a water sample (the filter 
should be extracted for cell-bound cylindrospermopsins) and then passing 
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the sample through the preconditioned cartridge. Recovery can be signifi-
cantly affected by the loading speed so this should be carefully controlled 
and optimised for the protocol being used. Cylindrospermopsins are eluted 
from the cartridge with methanol. It is useful to spike some samples of the 
water to be analysed as well as tap water (quenching any oxidant such as 
chlorine) to both become familiarised with the process and to define a stan-
dard operating procedure (SOP) within the laboratory.

14.4.1.3  Tissue and urine samples

Most accounts of studies investigating the localisation of cylindrospermop-
sins in experimental animals have indicated that unaltered cylindrosper-
mopsins can be excreted in the urine (Norris et al., 2001); hence, methods 
to detect it in this matrix can be useful where human exposure is suspected. 
This has been successfully achieved through salt removal and SPE (carbo-
graph or other hydrophobic analyte recovery solid-phase) clean-up and con-
centration (Foss & Aubel, 2013). Similarly, cylindrospermopsin has been 
recovered from serum samples although in these samples the focus is on 
protein precipitation with solvent (methanol) prior to SPE.

Good recovery of cylindrospermopsin from tissue (e.g., fish, mussels and 
vegetables) has been shown in a limited number of studies (Prieto et al., 
2018) using aqueous solvents (typically methanol, aqueous methanol or 
acetic acid), although these methods may require further testing to deter-
mine the optimum protocol. Depending on the matrix and concentrations, 
direct analysis without SPE may give satisfactory results.

14.4.2  Quantification of 
cylindrospermopsins by ELISA

Cylindrospermopsin is a protein synthesis inhibitor, and as such, biologi-
cal assays can be relatively slow and nonspecific. Therefore, the favoured 
assay is the cylindrospermopsin-specific ELISA kit. Several ELISA kits are 
commercially available for cylindrospermopsin with detection limits well 
below 1 μg/L, and these kits can be used directly on water samples. As 
the proportion of extracellular to cell-bound cylindrospermopsin can vary 
significantly, it is important to test for both the cell bound and free toxin. 
Use of kits will require relatively modest investment of a plate reader and 
the expense of the purchase of the kits. Full instructions for performing the 
assay, calibration and validation are provided with each kit. When estab-
lishing the use of ELISA, matching results with HPLC for selected samples 
and matrices will be valuable for determining the level of confidence as false 
positives have been shown with low-positive concentrations (Metcalf et al., 
2017).
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14.4.3  Instrumental analytical methods 
for cylindrospermopsins

As cylindrospermopsin is a very polar analyte, it is poorly retained on 
many C18 columns. Some columns have become available, which are better 
suited to the retention and separation of cylindrospermopsin and its vari-
ants (e.g., polar retention C18, graphitised carbon); therefore, it is advisable 
to select a column that is specifically designed for highly polar compounds 
(de la Cruz et al., 2013).

14.4.3.1  Analysis of cylindrospermopsins by HPLC-PDA

Cylindrospermopsins have a characteristic UV spectrum with an absorption 
maximum at 262 nm (Figure 14.5). This spectrum can be used to distinguish 
cylindrospermopsin from other peaks on the chromatogram in a way similar 
to that for microcystins. Chromatography is either carried out isocratically 
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Figure 14.5  HPLC-PDA chromatogram of a bloom sample dominated by 
Cylindrospermopsis sp. (a) and absorption spectra of the two cylindrosper-
mopsin variants (b), cylindrospermopsin (CYN) and 7-deoxy-cylindro-
spermosin (dCYN), showing an absorption maximum at λ = 262 nm. For 
analytical details, see Welker et al. (2002a).
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(5% organic solvent, methanol or acetonitrile with 95% water) or using a slow 
gradient (e.g., from 0% to 10% methanol) with 100% solvent wash, which 
limits carryover of other contaminant peaks especially from crude extracts 
(e.g., cells, tissue). Extracts can be analysed directly, while water samples will 
require SPE-concentration. Where samples are in a high proportion of metha-
nol, this can affect chromatography. It is therefore advisable to either dry and 
resuspend the extract in water or dilute in water (e.g., 1 in 10, if concentrations 
in relation to the detection limit are sufficiently high). Using a guard column 
can eliminate the negative impact of methanol on the chromatography.

Hydrophilic interaction liquid chromatography (HILIC) columns have 
also been evaluated for the analysis of cylindrospermopsin separation due to 
their suitability for highly polar compounds. These columns tend to be less 
robust and may not separate cylindrospermopsin as well as the high-polar-
ity C18 phases; however, they are continually improving and increasingly 
becoming the column of choice for the polar cyanotoxins (cylindrospermop-
sin, anatoxin-a and saxitoxin), allowing the analysis of these cyanotoxins 
together in one run (Haddad et al., 2019).

14.4.3.2  Analysis of cylindrospermopsins by LC-MS(MS)

Cylindrospermopsin is readily detected by mass spectrometry using chroma-
tography conditions similar to those for HPLC-PDA. Electrospray in positive 
ionisation mode yields the parent ion with m/z 416 and product ions with 
m/z 194, 176, 336 and 274. Selected reaction monitoring (SRM) can pro-
vide highly specific detection (Triantis et al., 2017a). Detection of cylindro-
spermopsin in drinking-water by this method with prior SPE concentration 
gave good recoveries at 0.01 μg/L (67%) and 0.1 μg/L (85%). Since there are 
only few other cylindrospermopsin variants, it is much less likely that MS 
detection will miss structural variants as in the case of microcystins. US EPA 
Method 545 based on LC-MS/MS has a minimum reporting level of 0.06 
μg/L for finished drinking-water (US EPA, 2015); for ambient freshwaters, 
Shoemaker and Dietrich (2017) give a minimum reporting level of 0.23 μg/L. 
The analysis of cylindrospermopsin along with other more polar cyanotoxins 
(deoxycylindrospermopsin, anatoxin-a and saxitoxin) has been successfully 
achieved using HILIC-MS, demonstrating a robust detection of these toxins 
in cultured samples and bloom extracts (Dell’Aversano et al., 2004).

14.5  QUANTIFICATION OF ANATOXINS

Anatoxin-a and its analogues, homoanatoxin-a and dihydro-anatoxin-a, 
can readily be detected by both HPLC and LC-MS/MS, and while GC/MS 
can also be used, this is not commonly done. As with many other cyanotox-
ins, ELISA kits are available for rapid detection (less than 2 h).
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14.5.1  Extraction of anatoxins

Anatoxin-a can often be found in benthic cyanobacteria growing on surfaces 
of, for example rocks, riverbeds and submerged macrophytes. Anatoxins 
produced by these cyanobacteria has been implicated in animal fatalities. 
Addressing the occurrence of benthic cyanobacteria requires different sam-
pling strategies than for pelagic cyanobacteria (Chapter 12).

14.5.1.1  Cyanobacterial cells

Anatoxin-a has been successfully extracted efficiently from cyanobacterial 
cells using acidified solvents, either just water or methanol or a mixture of 
both (e.g., 50% acidified aqueous methanol). This provides good recover-
ies and a relatively clean sample, although if microcystins are also going 
to be analysed from the same extract, it is advisable to omit the acid as it 
will adversely affect the recovery of more hydrophobic microcystins. Where 
samples are used for biological tests that would be sensitive to acid and/or 
organic solvents, extraction by multiple freeze/thawing cycles in water is 
preferable and has been successfully used.

14.5.1.2  Water samples

While anatoxins are largely cell-bound, it has also been observed to occur 
dissolved in water (Wood et al., 2018). Anatoxins are increasingly included in 
drinking-water monitoring during bloom episodes. ELISA kits can be used to 
determine toxin concentration without further extraction, merely after filtering 
the sample for cell removal. For instrumental analytical methods, particularly 
HPLC, concentration by SPE is required, and both C18 and graphitised carbon 
have been successfully used (Triantis et al., 2017b). Where mass spectrometry 
is going to be used for detection, a stable isotope-labelled phenylalanine-d5 
can be used as an internal standard to determine the recovery efficiency.

14.5.1.3  Tissue samples

Very few studies have determined the recovery of anatoxins from tissue 
samples, generally applying methods similar to those applied for analysis 
of anatoxins in cyanobacterial cells. Using acidified aqueous methanol can 
help provide a cleaner extract since both the solvent and acid will precipi-
tate proteins. Further sample clean-up and concentration can be achieved 
by an additional SPE step.

14.5.2  Quantification of anatoxins by ELISA

ELISA kits are commercially available for the detection and quantification of 
anatoxin-a and homoanatoxin-a with quantification reported in the range 
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of 0.15–5.0 μg/L. Typically, the assay takes around 2 h and is suitable for 
extracts of cells and toxins dissolved in water. These kits have been used to 
determine anatoxin-a concentrations in field samples (John et al., 2019) and 
throughout the water treatment train (Almuhtaram et al., 2018). As always, 
when applying such kits to finished drinking-water, care should be taken to 
quench oxidants when sampling.

14.5.3  Instrumental analytical methods for anatoxins

The most commonly used analytical system for the detection, identification 
and quantification of anatoxin-a is HPLC-PDA or LC/MS(MS). The advan-
tage of ultra-performance liquid chromatography (UPLC) columns and sys-
tems is that they allow short retention times, providing a rapid analysis. 
One of the main challenges for the analysis of anatoxin-a is the ubiquitous 
co-occurrence of phenylalanine, which has a very similar retention time 
and mass. It is important to ensure that the selected chromatography col-
umn and elution profile can separate the two compounds (see Box 5.3 for 
an example of this misinterpretation of analytical results).

14.5.3.1  Analysis of anatoxins by HPLC-PDA

Chromatography for anatoxin analysis is the same for HPLC-PDA and 
the LC-MS(MS), for example, a gradient mobile phase consisting of water/
acetonitrile (both acidified with 0.1% formic acid) where the organic phase 
is increased from a low proportion of organic solvent (e.g., 2–5% to around 
35% over 5 min (for UPLC)) at a flow rate between 0.3 and 0.4 mL/min. 
Samples can be separated on a suitable UPLC C18 column typically main-
tained at 40 °C (Colas et al., 2020). For photodiode array (PDA) detection, 
scanning between 200 and 300 nm can be sufficient, with anatoxin-a show-
ing a distinct absorption maximum at 227 nm. Spiking of separate samples 
with both anatoxin-a and phenylalanine helps to ensure that both com-
pounds are well separated and to establish a specific retention. A “similar 
retention time” is not sufficient to assign a peak to anatoxin-a as described 
in Box 5.3. Notably, dihydoanatoxin-a and dihydrohomoanatoxin-a do not 
show a distinct UV absorption spectrum due to the lack of the double-bond 
in the molecule, which makes it difficult to distinguish these variants from 
the background matrix by photometric detection without florescence deri-
vatisation (James et al., 1998). 

14.5.3.2  Analysis of anatoxins by LC-MS(MS)

The same chromatographic conditions are also appropriate for chromato-
graphic separation prior to mass spectral detection via positive ESI. The par-
ent ion [M+H]+ 166.1 is identical for anatoxin-a and phenylalanine, although, 
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as described above, with the suitable column the two compounds can be 
distinctly separated. This has been achieved on both C18 and hydrophilic 
interaction liquid chromatography (HILIC) columns, however, not neces-
sarily on all brands. For anatoxin-a dissolved in water, spiking with stable 
isotope-labelled phenylalanine-d5 allows estimates on recovery during SPE. 
The labelled phenylalanine elutes at the same retention time as phenylalanine 
occurring in the sample, but can be accurately quantified due to its altered 
mass (m/z 171). US EPA drinking and ambient water ATX method based on 
LC-MS/MS has minimum reporting levels below 0.1 μg/L (Shoemaker & 
Dietrich, 2017). Parent ions of homoanatoxin-a and dihydroanatoxin-a are 
[M+H]+ 180.1 and [M+H]+ 168.1, respectively (see section 2.3).

14.6  QUANTIFICATION OF SAXITOXINS

The identification and quantification of saxitoxins is challenging although 
there is a lot to be learned from the analysis of this toxin class in marine 
harmful algal blooms (HABs). In shellfish, monitoring with a mouse bio-
assay developed in the 1930s was still the benchmark until the validation 
of an analytical method in 2005 (Box 14.4). At least 57 saxitoxin variants 
have been reported (Wiese et al., 2010), but not all of these variants have 
been found in cyanobacteria (section 2.4). Furthermore, accurate informa-
tion on the prevalence of different variants has been hampered by the com-
plexity of analysis. It is known that saxitoxins can transform into different 
analogues (Wiese et al., 2010); hence, care has to be taken to ensure the 
stability of samples and standard solutions. In general, acidic solutions (e.g., 
HCl) are considered suitable (Alfonso et al., 1994).

14.6.1  Extraction of saxitoxins

Saxitoxins are highly polar, and extraction protocols tend to use acidic 
conditions. The extraction methods for saxitoxins extensively studied for 
marine shellfish are also suitable for freshwater saxitoxins. A protocol to 
extract STXs from a range of matrices is available from AOAC (AOAC, 
2005b). Solid phase extraction (SPE) using graphitised carbon or HILIC 
resins, for example, can be used to concentrate STXs for achieving lower 
detection limits or for sample clean-up (Humpage et al., 2010; Testai et al., 
2016).

14.6.1.1  Cyanobacterial cells

Saxitoxins typically occur cell bound, but up to 40% of the total amount 
has also been found extracellularly. As for cylindrospermopsin, it is there-
fore important to include both fractions – toxin dissolved in water and cell-
bound toxin – in the determination of total toxin. Separation of fractions 
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can be done either by filtration during sampling or soon afterwards in the 
laboratory by centrifugation or filtration. The cells preferably are extracted 
in acidified solvent, and the supernatant can be directly used for analysis.

14.6.1.2  Water samples

Saxitoxins in water need to be concentrated, which can be achieved by 
SPE (Imhof & Schmidt, 2017) with cartridges suitable for very polar com-
pounds (e.g., porous graphitised carbon). It is recommended to evaluate the 
suitability of the selected cartridges and protocol by determining recovery 
using spiked (dechlorinated) tap water or filtrated lake water.

14.6.1.3  Tissue samples

Extraction of saxitoxins has been well described for marine shellfish sam-
ples. It involves homogenising tissue in a blender with the addition of acidi-
fied solvent, typically 1% acetic acid solution (AOAC, 2005b; 2011; Van 
De Riet et al., 2011). Prior to testing in a biological system, for example, 
ELISA, the pH will need to be adjusted to around 7.

14.6.2  Quantification of saxitoxins by 
biochemical methods

Several biochemical assays have been developed in the past but with the 
exception of ELISA, most have not been widely adopted, mainly because of 
their complexity and specialist expertise required to perform them.

14.6.2.1  Quantification of saxitoxins by ELISA

There are a number of (in 2019 at least six) manufacturers of different ELISA 
kits for saxitoxins. Most have been configured to detect saxitoxin, achieving 
good correlation with analytical results; however, there are challenges with 
cross-reactivity with other saxitoxin variants. This is of particular concern 
for neo-saxitoxin and gonyautoxin (GTX) variants since these variants rep-
resent as high a risk to health as saxitoxin (Papageorgiou et al., 2005). Some 
innovative methods are available which add an additional sample prepara-
tion step (e.g., incubation in the presence of L-cysteine) to transform most 
of the GTX variants to detectable saxitoxin or neo-saxitoxin (McCall et al., 
2019). Some manufacturers produce an ELISA for saxitoxin and another 
kit for neo-saxitoxin. Recently, a multiplex ELISA has been demonstrated 
which detected nine saxitoxins in human plasma (Eangoor et al., 2019).

Careful selection of the most appropriate kit for screening purposes is 
important and should consider regional availability, cross-reactivity and the 
saxitoxin variants prevalent in the area of sampling (Harrison et al., 2016). As 
with all ELISA screening methods for cyanotoxins, it is wise to periodically 
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confirm findings using an established instrumental analytical method. This 
may be achieved through collaboration with a centre of excellence rather than 
own investment in equipment for instrumental analytical methods and the 
corresponding expertise, as this can be considerable (see below).

14.6.3  Instrumental analytical 
methods for saxitoxins

The analysis of saxitoxins has been fraught with many difficulties as saxitox-
ins do not contain a chromophore (do not adsorb light) nor natural fluores-
cence; hence, typical HPLC detectors cannot be used to identify or quantify 
them. Further, they are very polar molecules that are not easily retained 
by reverse-phase chromatography (e.g., using C18 columns). Derivatisation 
to form a fluorescent analyte has proven valuable, with both precolumn 
and postcolumn (i.e., the saxitoxins are first chromatographically separated 
and then mixed with the derivatisation reagents before detection) methods 
developed and the precolumn method becoming an AOAC Official Method 
(AOAC, 2005b; 2011). While this method is validated for the analysis of 
paralytic shellfish poisoning in shellfish, it is also suitable for the analysis of 
saxitoxins from cyanobacteria in cells, water and tissues.

14.6.3.1  Prechromatographic oxidation and liquid 

chromatography with fluorescence detection

To overcome the difficulties of detecting saxitoxins, a preanalysis oxidation 
method was developed by Lawrence et al. (1995) allowing the saxitoxins to 
be analysed using a fluorescence detector (fluorescence excitation 340 nm 
and emission 395 nm). Around the same time, Oshima (1995) proposed a 
postcolumn derivatisation method. The so-called Lawrence method with 
precolumn sample oxidation has now been adopted for regulatory monitor-
ing purposes and is being used in many laboratories as part of routine mon-
itoring programmes for saxitoxins in shellfish. The attention this method 
has received has ensured significant performance testing, including inter-
laboratory studies (Turner et al., 2019). This analysis requires a significant 
commitment to setting up and maintaining the method, including purchas-
ing a wide range of standards. Where intermittent confirmatory analysis of 
ELISA results is required, it is beneficial to approach a laboratory which is 
already well established in this field rather than committing to the onerous 
task of developing this method in-house.

14.6.3.2  Analysis of saxitoxins by LC-MS/MS

Ultra-performance liquid chromatography (UPLC) with MS/MS provides a 
very powerful analytical tool for the detection, identification and quantifi-
cation of saxitoxins at very low limits of quantification in the sub-ng/mL 
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range. Several chromatographic approaches can be used, one being the more 
traditional C18 columns with a high proportion of water in the gradient elu-
tion. Alternatively, by using hydrophilic interaction liquid chromatography 
(HILIC), which is well suited to highly polar analytes, a rapid analysis has 
become possible with fast UPLC columns (e.g., 11 min compared to a previ-
ous 40 min). Furthermore, the solvent-rich mobile phase used in HILIC can 
provide a significant advantage. One recent study demonstrated the separa-
tion, identification and quantification of 14 saxitoxins in less than 10 min 
(Turner et al., 2015).

Another promising approach to the detection of saxitoxins is the use of 
inline SPE coupled with C18 UPLC-MS/MS. This approach effectively com-
bines sample extraction and concentration from a water sample which is then 
directly injected onto the analytical system. The full automation has many 
advantages in reducing staff time, handling errors and sample loss as well as 
giving a low limit of quantification (Imhof & Schmidt, 2017).

14.7  DETECTION AND QUANTIFICATION 

OF ANATOXIN-A(S)

Work on anatoxin-a(S) has been hampered by the limited availability of cul-
tures which produce this cyanotoxin, which subsequently limits the avail-
ability of the purified toxin. This is further restricted by the difficulty in 
detecting anatoxin-a(S) in natural samples. As an organophosphate inhibi-
tor, anatoxin-a(S) can potentially be detected with a biochemical screen-
ing assay using an acetylcholine esterase inhibition assay. However, since 
organophosphate pesticides may be present in environmental samples, con-
firmation is required. Furthermore, in the absence of any authentic puri-
fied anatoxin-a(S) and confirmatory analytical methods, few reports of 
anatoxin-a(S) have been confirmed.

With greater availability and use of HILIC columns along with MS/MS 
(Dörr et al., 2010), it may be expected that gradually anatoxin-a(S) will 
become more widely detected, isolated and investigated. When planning 
sampling campaigns, it may be useful to give consideration to the possible 
presence of anatoxin-a(S), preferably in collaboration with expert groups 
able to screen samples with advanced multitoxin methods.

14.8  METHODS FOR SYNCHRONOUS DETECTION 

OF MULTIPLE TYPES OF CYANOTOXIN

14.8.1  Multiplex antibody systems

Methods are likely to become available which allow the detection and quan-
tification of multiple cyanotoxins in a single system (Eangoor et al., 2019). 
These systems are referred to as bioarray, microarray or multiplex systems. 
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One such system using fluorescence detection of antibody binding signals 
has been found to be very sensitive, allowing the detection of microcystins, 
saxitoxins and cylindrospermopsin along with two of the marine shellfish 
toxins, okadaic acid (OA) and domoic acid (McNamee et al., 2014). Assay 
time was around 15 min per sample, providing results for all five biotoxins 
at once and in the sub-μg/L range. While these systems are yet to become 
widely available, this type of screening is likely to become increasingly 
adopted in the near future with applications in screening of drinking-water 
quality and recreational waterbodies.

14.8.2  Multi-cyanotoxin analytical methods

An increasing number of instrumental methods which can analyse cya-
notoxins in a single analytical chromatography run have been published 
(Dell’Aversano et al., 2004; Greer et al., 2016; Zervou et al., 2017). With 
the use of the optimal UPLC column and MS/MS detection, multitoxin 
methods are convenient where advanced analytical systems are routinely 
employed. Pekar et al. (2016) demonstrated the separation of anatoxin-a, 
cylindrospermopsin and microcystin variants, achieving the analysis of 22 
cyanotoxins in both raw water and drinking-water Haddad et al. (2019) 
have added saxitoxin to the analysis, allowing the separation of four classes 
of cyanotoxin in a single analytical method.

14.9  FUTURE DEVELOPMENTS

With increasing legislation and pressure on water resources causing more 
demand to test for cyanobacterial toxins, rapid simple screening tests are 
increasingly likely to be required. These advances will most likely employ 
immunological, biosensors and related technologies to permit a rapid simple 
assessment of cyanobacterial and water samples after extracting cell-bound 
toxins. Immunological strip detection systems have been commercially 
developed (e.g., Kim et al., 2013; Weller, 2013), and such technologies are 
being adapted to furthering our understanding of cyanobacteria and their 
toxins in the environment.

Increasingly, cyanotoxin analytical methods will be required to analyse a 
wider complexity of novel materials that may require method development 
(e.g., in food; see section 5.3). In the case of cyanotoxins that do not covalently 
bind to proteins, simple extraction and clean-up methods with SPE should per-
mit accurate analysis, although verification will still be required. Combined 
single-step SPE methods for sample preparation of, for example, cylindro-
spermopsins, anatoxin-a and saxitoxins should be developed to extract such 
cyanotoxins in an effort to reduce sample preparation for their subsequent 
measurement with, for example, mass spectrometry (Fayad et al., 2015).
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Although more specialised analytical methods such as mass spectrometry 
will continue to be required to verify cyanotoxins, future needs will be to 
develop methods for not yet identified bioactive compounds produced by 
cyanobacteria and to develop robust multitoxin analytical methods.

Further advances may come with the use of biosensors, such as with 
recombinant PP1α showing an increased sensitivity for microcystin-LR 
(Catanante et al., 2015), 3D-graphene-based biosensors (Zhang et al., 
2017) for the detection of microcystin-LR or DNA-based aptamer systems, 
either for the detection of Microcystis (Tong et al., 2015) or for the detec-
tion of microcystin (Li et al., 2016). Assay systems such as this show good 
promise and may be useful in future to provide quantitative and toxicologi-
cal assessment of cyanobacterial toxins.

14.10  BIOASSAYS AND THEIR USE IN THE 

SURVEY OF TOXIC CYANOBACTERIA

Assessments of potentially toxic environmental samples, including blooms 
of cyanobacteria, most commonly rely on chemical monitoring of individ-
ual chemicals, that is, the targeted analytical or bioanalytical identifica-
tion and quantification of known toxins as outlined above. With respect 
to quality assurance/quality control (QA/QC) criteria and straightforward 
interpretation of the results, chemical monitoring is an approach generally 
applied in all regulatory settings, including water quality and safety. The 
obvious limitation of chemical monitoring is the fact that many analytical 
methods detect only those toxins that they target, which could often be 
only a single or a few structural variants, while others remain undetected, 
thus potentially underestimating the sample’s toxicity.

Several studies showed that field cyanobacterial samples may cause stron-
ger toxicity in comparison with the effects of pure toxins when tested at 
equivalent concentrations, indicating the presence of other toxic compo-
nents (see section 2.10). These may, in addition to diverse cyanobacterial 
metabolites, also be toxic metals or compounds of anthropogenic origin 
such as pesticides, polycyclic aromatic hydrocarbons and other emerg-
ing contaminants present in complex environmental samples. Based on 
chemical analysis alone, it is not possible to evaluate the overall toxicity of 
complex mixtures. To cope with these limitations, some environmental 
monitoring programmes have implemented toxicity testing with bioassay(s), 
for example, whole effluent toxicity testing in USA and Germany (Escher & 
Leusch, 2011) or the EU-supported effect-based monitoring programmes 
(Tousova et al., 2017).

This section firstly introduces some toxicology principles with respect to 
the interpretation of bioassay results; then summarises the existing experi-
ence; and critically discusses current state, limitations and recommendations 
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on the applicability of bioassay for the monitoring of toxic cyanobacterial 
blooms with respect to possible impacts on human health. Other aspects 
such as testing for ecotoxicity with invertebrates or other aquatic biota 
are addressed only briefly because of their limitations for assessing human 
health end-points. This chapter does not cover other applications of bio-
assays such as the toxicological characterisation of individual toxins. The 
focus of this chapter is on bioassays employing cells, tissues or whole ani-
mals; other subcellular bioanalytical tools (ELISA or enzyme inhibitory 
assays such as the protein phosphatase assay) do not fit the “bioassay” cri-
teria and are discussed in section 14.2.

14.10.1  Insights into interpretation of toxicity results

Before discussing examples and the practical applications of bioassays, 
those who plan to implement them in monitoring programmes need a good 
and common understanding of the terminology and how individual terms 
are used. Firstly, there is a central paradigm of toxicology, that is, “All 
things are poison and nothing is without poison. Solely, the dose deter-
mines that a thing is not a poison” (Paracelsus, 1493–1541). Whenever 
“toxicity” or “effect” is considered (e.g., animal death due to anatoxin-a 
neurotoxicity, microcystin-induced liver injury or decreased cell viability 
in vitro through cytotoxicity of cylindrospermopsin), observed effects are 
related to the defined test conditions. Most importantly, whether the effect 
manifests always depends on the dose, duration of exposure and biological 
system (organism). In this sense, toxicity of a compound is widely under-
stood as causing adverse effects upon exposure as expected under nor-
mal conditions. For example, compounds like vitamins can cause adverse 
health effects when applied in high doses (hypervitaminoses) but vitamins 
are generally not considered a toxin, because, under normal conditions, 
an exposure leading to adverse effects is improbable (Hathcock et al., 
1990; Vieth, 2007).

Current toxicology aims to establish links between the adverse health 
outcome (i.e., in vivo manifestation of the toxic effect) with the exposure 
to a toxicant through a chain of causal events formalised as an “adverse 
outcome pathway” (AOP; Patlewicz et al., 2015). Examples of relevant 
adverse health outcomes may be, for example, the death of an animal 
caused by a high dose of anatoxin-a, disruption of neurobehavioral abili-
ties after chronic exposures to lower doses of anatoxin-a or eye irritation 
and skin rash after direct acute exposure to high doses of cyanobacte-
rial biomass. “Toxicity” always starts at the molecular level; propagates 
through cells, tissues and organs; and eventually becomes apparent in vivo 
as systemic toxicity. The ultimate adverse outcome manifests only under 
specific preconditions (the toxin can reach the target, it is present in suf-
ficiently high doses, etc.) and when the chain of events is not repaired by 
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detoxification mechanisms (ADME – absorption, distribution, metabolism 
and excretion). An AOP relevant for cyanobacteria could be, for example, 
“inhibition of protein phosphatases (PPase) leading to hepatic hypertrophy 
and tumour promotion activity”.

The interaction between the toxic chemical and its biological counter-
parts (molecular initiating event, MIE) can be either specific or nonspecific. 
Examples of specific interactions (key–lock principle) include binding of 
MC-LR to PPase, preferentially in liver cells, cylindrospermopsin inter-
ferences with the machinery of protein synthesis with no apparent prefer-
ence to the cell type or binding of anatoxin-a to the nicotinic acetylcholine 
receptor on neuronal cells. Nonspecific interactions, when a chemical does 
not have a “specific target”, are common and include, for example, the 
disruption of cell membrane function after the accumulation of chemicals 
also known as narcotic or basal toxicity, damage to proteins, membrane 
phospholipids or nucleic acids by reactive oxygen species or denaturation of 
proteins by acidic chemicals. One chemical may act through several modes 
of action that may lead to a single or multiple different adverse outcomes. 
For example, cylindrospermopsin may inhibit protein synthesis, react with 
DNA or induce oxidative stress leading to death or various chronic effects 
depending on the concentration, exposure duration, life stage, age or sex of 
the organism (Pichardo et al., 2017).

Toxicity of natural samples of cyanobacteria may thus be a complex 
response to – for example – unfavourable pH, presence of ions and metals, 
saccharides, peptides (including toxins, amino acids, nucleotides, phospho-
lipids), components of other plankton organisms (Palíková et al., 2007a; 
Palíková et al., 2007b) or compounds of anthropogenic origin.

14.10.2  Bioassays in the assessment 
of toxic cyanobacteria

Bioassays have primarily been developed for the testing of chemical sub-
stances based on different regulatory frameworks. Most of these tests went 
through a validation process with standardisation by ISO or OECD assur-
ing good characterisation of the studied chemical and testing conditions. 
Bioassays are mainly based on animal testing but there is an increasing 
demand to reduce animal experiments and use alternative methodolo-
gies such as in silico and in vitro methods often combined into so-called 
integrated testing strategies (ITS) or integrated approaches to testing and 
assessment (IATA). Toxicity bioassays have been adapted to assess the tox-
icity of cyanobacterial samples. However, when testing complex samples 
like cyanobacterial crude extracts, the causative agent(s) inducing the toxic-
ity cannot be easily identified.

Nevertheless, many studies explored the use of bioassays in toxicity 
screenings of natural cyanobacterial samples or explored their potential to 
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serve as early warning tools. Positive bioassay responses could then trigger 
chemical analysis of cyanotoxins for more precise characterisation of the 
hazard. Testing with bioassays is expected to show whether the sample 
contains toxic substances and how toxic these substances may potentially 
be. Researchers can combine multiple bioassays to cover various end-
points ranging from acute cytotoxicity and mortality to complex organ or 
systemic effects such as reproduction toxicity. Specific in vitro assays have 
been used to assess mechanisms of action, potential genotoxicity or endo-
crine disruptive effects. Unfortunately, complex research approaches can 
hardly be implemented for routine monitoring or screenings of potential 
health hazards. However, at least four cases can be listed in which toxicity 
testing remains relevant:

 1. if illness of animals or humans is suspected to have been caused by 
cyanobacteria but symptoms cannot be attributed to known cyano-
toxins found by chemical analyses;

 2. for testing whether specific cyanobacterial strains show toxicity not 
attributable to known cyanotoxins;

 3. to characterise the toxicity and/or mechanism of action of newly iden-
tified toxins or congeners of previously known cyanotoxins (Fischer 
et al., 2010);

 4. to establish the data needed to derive guideline values for the concen-
trations of substances to which humans may be exposed, for example, 
cyanotoxins in drinking-water or in waterbodies used for recreation.

14.10.2.1  Nonmammalian bioassays

Ecotoxicity assays using bacteria, protozoans, invertebrates, plants or aquatic 
vertebrates such as fish or amphibians have been used in many studies for 
detecting cyanotoxins.

Bacterial bioassays have been used to screen complex cyanobacterial 
samples such as the Microtox bioluminescence assay using Aliivibrio (for-
merly Vibrio) fischeri or Photobacterium (Vibrio) phosphoreum (Lawton 
et al., 1994a; Vezie et al., 1996) but with poor correlations between the 
reduction of the measured end-point (emitted light) and the sample’s con-
tent of cyanotoxins. Poor correlations were also revealed in the bioassay 
with Serratia marcescens despite promising original studies with pure saxi-
toxins and microcystins (Lawton et al., 1994a).

Cyanobacterial samples were also tested with protozoan assays such 
as Tetrahymena thermophila (commercially available as Protoxkit-F; 
Protoxkit-F, 1998), T. pyriformis and T. thermophila (Maršálek & Bláha, 
2004) or Spirostrum ambiguum (Tarczyńska et al., 2001). Further, bio-
assays with aquatic or terrestrial plants were explored (Kós et al., 1995; 
Pflugmacher et al., 2001; Vasas et al., 2002).
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Among the bioassays with aquatic invertebrate animals, cladocerans have 
been widely used due to their easy maintenance, small size, wide distribu-
tion and rapid growth rates. These bioassays include standardised 24- and 
48-h immobilisation assays with Daphnia magna (OECD, 2004; 2012) or 
commercially available test kits (Daphtoxkit-F, 1995; Ceriodaphtoxkit-F, 
1995). Complex cyanobacterial samples have been tested with species of 
Daphnia (DeMott et al., 1991; Okumura et al., 2007; Ferrão-Filho et al., 
2009), Ceriodaphnia (Maršálek & Bláha, 2004; Okumura et al., 2007) 
or Moina (Ferrão-Filho et al., 2009). Further model organisms include 
Artemia salina (Kiviranta et al., 1991; Metcalf et al., 2002b; Beattie et al., 
2003; Lindsay et al., 2006) or mosquito adults and larvae (Kiviranta et al., 
1993). Also extensively used was the bioassay with larvae of fairy shrimp 
Thamnocephalus platyurus commercially available as Thamnotoxkit-F 
(MicroBioTests Inc., Mariakerke, Belgium). Box 14.3 provides more infor-
mation and illustrates the difficulties and limitations in the interpretation 
of results for the Thamnocepalus bioassay and, correspondingly, for all 
invertebrate bioassays.

BOX 14.3: THE THAMNOCEPHALUS PLATYURUS BIOASSAY 

The bioassay with larvae of fairy shrimp Thamnocephalus platyurus has been 

discussed in the past as a potential tool for routine screening of bloom toxic-

ity. It has a number of advantages such as allowing for simple and practical 

use even in a format of a commercially available kit called Thamnotoxkit. It 

provides fast 24-h response with a possible reduction of exposure to 1 h 

(Törökné et al., 2007). The assay has been standardised (ISO, 2011), and it 

showed good performance in an interlaboratory test with cyanobacterial 

samples (Törökné et al., 2000a). 

With respect to individual cyanobacterial metabolites, T. platyurus was 

generally reported to be highly sensitive. However, the reported IC50 values 

were surprisingly within a narrow – low micromolar – range for all the stud-

ied and structurally diverse cyanobacterial metabolites and toxins (including 

microcystins, cylindrospermopsin, microginin, aeruginosins, spumigins, cyano-

peptolin, eucyclamides, oscillapeptin J) as well as fluoro-conjugated MCs or 

odour compounds such as sesquiterpenes (Blom et al., 2001; Blom & Jüttner, 

2005; Portmann et al., 2008; Höckelmann et al., 2009; Gademann et al., 2010; 

Kohler et al., 2014; Grundler et al., 2015; Mazur-Marzec et al., 2015; Scherer 

et al., 2016; Bober & Bialczyk, 2017), while the assay was reported to be less 

sensitive to the neurotoxin anatoxin-a (Sieroslawska, 2013). With regard to 

screening of complex bloom samples, the literature provides a conflicting pic-

ture. One study (Tarczyńska et al., 2000) compared seven extracts and found 
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a statistically significant relationship between the observed toxicity and the 

microcystin-LR content. On the other hand, several other studies showed 

high toxicity in T. platyurus irrespective of the content of major cyanotoxins 

(Maršálek et al., 2000; Törökné et al., 2000a; Törökné et al., 2000b; Keil et al., 

2002; Nał cz-Jawecki et al., 2002; Maršálek & Bláha, 2004; Törökné et al., 

2007; Ács et al., 2013; Sieroslawska, 2013).

Despite apparently high sensitivity of the T. platyurus assay, its implementa-

tion into routine monitoring of bloom toxicity would not provide a major 

added value to toxin analyses with chemical or biochemical methods because 

it is generally not able to discriminate between toxic (in the sense of “contain-

ing cyanotoxins”) and nontoxic cyanobacterial samples. Further, its responses 

were not correlated with toxicity observed with other organisms, including 

mouse in vivo assay (Tarczyńska et al., 2000; Tarczyńska et al., 2001).

In addition to invertebrates, fish and frog bioassays have also been 
explored. With respect to ethical concerns associated with the use of adult 
fish (namely, zebrafish Danio rerio, Japanese medaka Oryzias latipes or fat-
head minnow Pimephales promelas), assays with fish embryos have become 
popular (Berry et al., 2009). The zebrafish Danio rerio fish embryo toxicity 
(FET) assay has been standardised (OECD, 2013). The embryo fish tests 
were used in many studies of cyanobacteria (Oberemm et al., 1999; Wang 
et al., 2005; Lecoz et al., 2008), but some concerns related to the uptake 
of toxins through the chorion barrier or limited toxicokinetics in develop-
ing embryos have been raised. With respect to amphibians, frog embryo 
teratogenesis assay Xenopus (FETAX) (ASTM, 2017) using Xenopus laevis 
(African clawed frog) has also been explored but showed rather low cor-
relation with the content of known cyanotoxins (Oberemm et al., 1999; 
Fischer & Dietrich, 2000; Burýšková et al., 2006).

14.10.2.2  Mouse bioassay

For many years, the mouse in vivo bioassay was used to determine toxicity 
of cyanobacterial blooms (Carmichael, 1992; Fastner et al., 2003; Sotero-
Santos et al., 2006) or to detect phycotoxins in shellfish (Box 14.4). In 
testing of toxic cyanobacteria, male Swiss Albino mice were the most com-
monly used animals. Effects are assessed after intraperitoneal injection (i.p.) 
of 0.1–1.0 mL of a lysate of the cyanobacterial sample. Mice are observed 
for 24 h, sacrificed by an approved method and submitted to postmortem 
examination of tissue injury (Falconer, 1993). The observation period could 
be extended when the possibility of protracted symptom manifestation is 
expected, as it may be the case with cylindrospermopsin (see Chapter 2.2). 
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When more than one type of cyanotoxin is present, the more rapid-acting 
toxin may mask the symptoms of the others. Acute toxicity is expressed as 
the dose at which one half of the treated animals has died within the deter-
mined time period, that is, usually 24 h (LD50 in mg extract dry weight/
kg mouse body weight). According to the Globally Harmonized System of 
Classification and Labelling of Chemicals (GHS; UNECE, 2017), five acute 
toxicity categories are recognised based on oral LD50 (mg/kg b). The most 
toxic is Category 1 with oral LD50 <5 mg/kg bw, while for Category 5 acute 
oral LD50 ranges between 2000 and 5000 mg/kg. LD50 higher than 5000 
mg/kg b is considered as absence of acute toxicity.

BOX 14.4: MOUSE BIOASSAY IN TOXICITY 

TESTING OF MARINE BIVALVES

Biotoxins produced by marine (phyto)plankton which may accumulate in sea-

food remain a major public health issue in some parts of the world. Some reg-

ulatory approaches also refer to the use of mouse bioassays, but the bioassay 

is no longer used very often with regard to recent technology developments 

of chemical-specific analytical methods as well as ethical concerns.

For example, okadaic acid (so-called OA toxins, that is, OA and its  analogues), 

the dinophysis toxins (DTX1, DTX2 and DTX3) can be found in tissues of 

molluscs such as oysters, mussels, scallops and clams, and cause diarrhetic 

shellfish poisoning (DSP). The inhibition of serine/threonine phosphoprotein 

phosphatases is their main mode of action, similar to, for example, cyanobac-

terial microcystins. To control for DSP, the mouse and the rat in vivo bioassays 

have been official reference methods in the EU (Commission Regulation (EC) 

No. 2074/20054) using the intraperitoneal (i.p.) injection of mussel tissue 

extract followed by 24-h monitoring of test animals. Despite the advantages 

of the bioassay (whole-organism toxicity response, no need for complex ana-

lytical equipment), an official opinion of the European Food Safety Authority 

(EFSA, 2009) highlighted several disadvantages, that is, a high variability and 

labour demand, needs of specialised animal facilities, false-positive results 

due to interferences with, for example, free fatty acids, not selective for 

solely the OA-group toxins, not quantitative, inappropriate i.p. administra-

tion route and ethical reasons. The EFSA therefore concluded that they are 

inappropriate for assessing compliance to the regulatory limit set for seafood 

by the EU. The same report also concluded that the phosphoprotein phos-

phatase assays and LC-MS/(MS)-based methods have the greatest potential 

to replace the mammalian assays, due to sufficient sensitivity and satisfactory 

validation performance.



786 Toxic Cyanobacteria in Water

A recommendation to replace the mouse bioassay for the assessment of 

broader groups of marine toxins (AZA, BTX, DA, OA, PTX, SXT, YTY) by 

alternative chemico-physical methods such as LC/MS has been prepared by 

German Federal Institute for Risk Assessment (BfR, 2005). The mouse bio-

assay is only envisaged as an additional analytical step when a positive result 

has been obtained and further clarification is needed in the interests of 

consumer protection (suitability of the test results for use in court, etc.). 

The LC/MS method has, for example, been recognised by the New Zealand 

Food Safety Authority (FSA) as an official method and successfully tested in 

an interlaboratory trial.

Nevertheless, for control of marine paralytic shellfish poison (PSP) bio-

toxins, the mouse bioassay remains a standardised method of the European 

Union Reference Laboratory for Marine Biotoxins (EURLMB) at Agencia 

Española de Consumo, Seguridad Alimentaria y Nutrición (AECOSAN, 

2014), which is in line with the Association of Official Analytical Chemists 

Official Method (AOAC, 2005a). The mouse bioassay is mentioned in the 

context of PSP biotoxins in the food of animal origin within the frame of the 

European Regulation (EC) Nº 853/2004, and related methodological regulations 

(Commission Regulation (EC) Nº 2074/2005 amended by EC Nº 1664/2006, 

EC Nº 1244/2007 and EU Nº 15/2011). 

Among the other standardised methods for marine biotoxin detection, 

HPLC method – so-called Lawrence method (Lawrence et al., 2005) – is men-

tioned in the EU regulation and immunochemistry approaches remain to be 

discussed as an alternative for the future, after undergoing validation through 

interlaboratory exercises (Burrell et al., 2016; Dorantes-Aranda et al., 2018; 

Turner et al., 2019).

Using this mammalian model, observations of the target organs can help 
extrapolating to the effects in humans. However, the mouse bioassay is gener-
ally done through intraperitoneal injection, which may not be the most rele-
vant route of exposure for such extrapolation to humans. Also, other aspects 
such as low sensitivity and selectivity, high rates of false positives, variability 
and ethical concerns created a demand for alternative tests. Nevertheless, 
in some countries, the mouse bioassays can still provide some guidance for 
managers, for example, to determine toxicity of marine bivalves considered 
for human consumption or when a bloom occurs in the raw water but chemi-
cal analyses do not reveal any known cyanotoxins.

For deriving WHO guideline values or regulatory standards issued by 
public authorities worldwide, if data on human populations are inadequate 
or insufficient, a preferred basis is chronic exposure studies with rodents, 



14 Cyanotoxin analyses and bioassays 787

with toxin applied orally, that is, via food, drinking-water or gavage, and 
animal health observed during extended periods of time, particularly those 
based on standardised guidelines such as OECD Test No. 408 (Repeated 
Dose 90-Day Oral Toxicity Study in Rodents), Test No. 407 (Repeated 
Dose 28-day Oral Toxicity Study in Rodents). One-generation reproduc-
tion studies (OECD Tests No. 415 or No. 443) are particularly compre-
hensive and thus valuable, but rare because of high costs and demands. In 
practice, toxicological data from such chronic whole-animal studies may 
not be available, and risk assessors need to include other toxicological data, 
including those from acute oral exposure tests (e.g., OECD Tests No. 420, 
423 or 425). These and further guidelines are freely available under https://
www.oecd-ilibrary.org/environment (Book Series).

14.10.3  In vitro assays for determining 
toxicity and genotoxicity

In vitro bioassays using cell cultures have received wide attention for replac-
ing animal tests. However, a single in vitro bioassay alone cannot cover all 
of the biological targets or processes found within an organism. Therefore, 
a hierarchic in vitro test strategy is necessary for characterising the type 
of toxicity induced by the unknown toxicants as proposed in different 
strategic documents and recommendations for water quality assessment 
(enHealth, 2012; Grummt et al., 2013). The following paragraphs provide 
examples as well as a summation of the advantages and disadvantages of 
in vitro bioassays, which could form part of such a hierarchic in vitro test 
strategy specifically for cyanotoxins.

The hepatotoxicity of microcystins triggered the use of hepatocytes 
(liver cells) from different fish or mammalian species (Aune & Berg, 1986). 
Freshly isolated hepatocytes may – for a certain period – retain necessary 
liver characteristics like active bile acid transport or phase I and II metabo-
lising enzymes, and many studies showed high sensitivity to cyanotoxins 
in rat or mouse hepatocytes (Fladmark et al., 1998; Li et al., 2001; Boaru 
et al., 2006). A need for fresh isolation can be overcome by using cryopre-
served hepatocytes, preferably of human origin or a specific cell line such 
as HepaRG (Bazin et al., 2010), which maintains most of the in vivo fea-
tures. A basic prerequisite for microcystin uptake into the cells seems to be 
the presence of certain organic anion-transporting polypeptides (OATP) 
within the cell membrane, as a study with genetically modified OATP-
competent HEK293 cells has shown (Fischer et al., 2010). Many other 
cell lines, such as HepG2, CaCo2, and V79, have been used to study cya-
nobacterial samples (Lawton et al., 1994a; Fastner et al., 2003; Žegura 
et al., 2003; Lankoff et al., 2006; Žegura et al., 2008; Fischer et al., 2010). 
Besides having a tumoral origin in most cases, these cell lines may lack 
certain metabolic enzymes important for activation and in particular for 

https://www.oecd-ilibrary.org
https://www.oecd-ilibrary.org
https://www.oecd-ilibrary.org/environment
https://www.oecd-ilibrary.org/environment
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detoxification; therefore, they are prone to giving misleading results, thus 
limiting their informative value.

For assessing neurotoxicity, the Neuro-2A neuroblastoma cell test has 
been developed and used for monitoring of saxitoxins in freshwater cyano-
bacteria (Gallacher & Birkbeck, 1992; Humpage et al., 2007). Endocrine 
activity can be examined by oestrogen or androgen receptor-specific 
reporter gene assays (OECD, 2016a; b) and steroidogenesis assay in H295R 
cells (OECD, 2011). Within the OECD framework, these in vitro tests are 
part of the first tier and are considered as a screening tool, which is not suf-
ficient to categorise a substance as an endocrine disruptor.

Genotoxicity and mutagenicity are important end-points for human and 
environmental hazard evaluation, and a number of assays, often adopted as 
ISO or OECD guidelines, are used in the assessment of toxic cyanobacte-
ria. Among the bacterial assays, the Ames assay (OECD, 1997) showed the 
mutagenicity of various cyanobacterial extracts (Huang et al., 2007), while 
pure cyanotoxins were mostly negative in the assay (Žegura, 2016). Palus 
et al. (2007) showed genotoxicity of various extracts or cyanobacterial tox-
ins in SOS chromo test with Escherichia coli PQ37 but negative results were 
reported with the SOS/umu-test (ISO, 2000) with Salmonella Typhimurium 
TA1535/pSK1002. However, the caveat of many publications is that cyto-
toxicity (resulting in DNA fragmentation) is not accounted for, which may 
lead to false positives or overestimation of the relevance of genotoxicity.

With regard to eukaryotic cell models, the mammalian cell gene muta-
tion assay (OECD, 2016c) demonstrated that MC-LR preferentially induces 
clastogenic effects on DNA rather than point mutations (Zhan et al., 2004). 
Various cyanobacterial extracts induced micronuclei in the in vitro cyto-
kinesis-block micronucleus assay (micronucleus test) (OECD, 2016d) in 
human lymphocytes (Palus et al., 2007). Cylindrospermopsin was shown to 
have clastogenic and aneugenic activities in human WIL2-NS lymphoblas-
toids (Humpage et al., 2000) and hepatic cells (Bazin et al., 2010; Štraser 
et al., 2011). The comet assay, also known as the single-cell gel electropho-
resis (SCGE) assay – which detects DNA damage (in the form of strand 
breaks, or other lesions that are converted into strand breaks under alkaline 
conditions) and DNA repair activity, and gives an indication of the geno-
toxic insult – has gained broad attention in genetic toxicology of toxic cya-
nobacteria (Ding et al., 1999; Žegura et al., 2003; Humpage et al., 2005; 
Palus et al., 2007). Cyanobacterial extracts (Palus et al., 2007) and several 
pure cyanotoxins, including MC-LR, cylindrospermopsin and nodularin, 
have been shown to induce DNA strand breaks (see Žegura et al., 2011 
for a review). MC-LR induces transiently present DNA strand breaks that 
can be repaired and most probably occur indirectly due to oxidative stress 
(Žegura, 2016), while CYN induces DNA strand breaks in metabolically 
active cells (Humpage et al., 2005; Hercog et al., 2017).
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Since the 2010s, hazard identification shifted towards mechanistic assess-
ment that enables predictions of adverse outcome pathways (AOPs) (Ankley 
et al., 2010; Schroeder et al., 2016). The “omic” biomarker approaches (Li 
et al., 2017) using high-throughput molecular biology and mass spectrom-
etry tools allow us to identify biological targets and pathways affected by 
the toxic compounds, including cyanotoxins (Štraser et al., 2013; Hercog 
et al., 2017). The “omic” biomarkers complement the standard toxicity and 
genotoxicity assays but how to use these complex data in the risk assess-
ment procedure remains to be clarified.

14.10.4  Summary

In summary, toxicity testing of complex samples such as cyanobacterial 
blooms, raw or tap water provides rather minor additional value to cur-
rent risk assessment of cyanobacterial toxicity, particularly where known 
cyanotoxins are present and sensitive instrumental methods for the detec-
tion of multiple toxins, as discussed above, are available (Meriluoto et al., 
2017; Zervou et al., 2017). Alternatively, immunoassays such as ELISA 
or enzyme-inhibitory assays may serve for semiquantitative and suffi-
ciently selective screenings. Toxicity testing has its place in bloom situ-
ations in which targeted analyses do not reveal any known cyanotoxins 
and uncertainty about the safety of the water remains, as, for example, 
in the case of a South Australian water supply with an unidentified toxin 
from Phormidium (Baker et al., 2001). In such a situation, the results of 
bioassays with mammalian cells in vitro or animals in vivo (mouse test) are 
most likely to provide some immediate guidance for managers regarding 
the acute toxicity of water.

Bioassays are important for further exploring the effects of yet unknown 
or not sufficiently characterised substances produced by cyanobacteria. A 
wide range of bioassays is available at many different levels from molecular 
to cell cultures or whole organisms. However, one single test will rarely be 
sufficient to fully characterise the toxicity of a cyanobacterial bloom; this 
usually requires a set of assays. Bioassays can give rapid responses, but a 
thorough validation process is needed for testing their performances, par-
ticularly if they are to be applied in the investigation of complex samples 
such as blooms, raw or treated drinking-water. In vitro bioassays are useful 
for developing an understanding of the biochemical processes underlying 
toxicity, whereas in vivo studies, despite technical and ethical concerns, 
continue to have a key role in supporting risk assessment, including in 
guideline value derivation. For the identification of unknown toxic agents 
from cyanobacterial blooms, effect-based monitoring or effect-directed 
analyses (EDA) (Escher & Leusch, 2011; Tousova et al., 2017) efficiently 
combine both bioassays and chemical analyses.
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INTRODUCTION

The role of public health authorities is to protect, assess and ensure the 
health of people and communities. These agencies also play a role in promot-
ing healthy environments, thus reducing the toll from illness due to exposure 
to pathogens or harmful substances such as cyanotoxins in drinking and 
recreational waters, in food or in water used for dialysis. Legal authority 
and regulations facilitate the control and management of blooms as well as 
public health responses and risk communication when they do occur.

The role of the responsible authority is likely to focus on surveillance, 
including independent verification of water quality and ideally, assessment 
that Water Safety Plans (WSPs) are being implemented effectively, rather than 
the day-to-day on-site management and monitoring. Operators of drinking-
water supplies and managers of recreational sites or occupational water use 
are required for the day-to-day management (and assessment) of risks, includ-
ing those from cyanotoxins. However, the role of authorities may be broader 
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where regulations are sparse, water quality requirements such as limits for 
cyanotoxin concentrations have not been defined, institutional capacity is 
limited or the surveillance of water-use systems is challenging because of their 
high  number, geographic spread or remoteness. Such  situations may require 
an active role of public authorities in management, for example, in the devel-
opment of WSPs (see Chapter 6). This chapter focuses on the role of public 
authorities in surveillance, the development and implementation of Incident 
Response Plans (IRPs) as well as in communicating risks to the public.

The WHO Framework for safe drinking-water outlines the key steps 
in providing safe drinking-water (Figure 15.1; see also the Guidelines for 
Drinking-Water Quality (WHO, 2017), Chapter 1), and these key steps can 
also be applied to safe design, operation and management of recreational 
or occupational water-use sites. Within this framework, public authorities 
have a role particularly at the “front end”, that is, in setting targets, and 
at the “back end”, that is, in surveillance. The authorities responsible for 
both may be different, operating on different levels: while setting targets 
often occurs on the national level by legislation, surveillance is typically 
local, requiring good knowledge of the local conditions and challenges.

Setting cyanotoxin water quality targets or action thresholds can be based 
on the guideline values summarised in Chapter 5 (see also Chapter 2 for 
their derivation), with the guideline values for short-term exposure through 
drinking-water being particularly relevant during bloom events. How the 
guideline values for lifetime exposure “translate” into targets for waterbody 
management is discussed in Chapters 6 and 7. In an event of a cyanotoxins 
incident, it is important to consider the risks from exposure to cyanotoxins 

Figure 15.1 Fr amework for safe drinking-water (from the WHO Guidelines for Drinking-
water Quality; WHO, 2017).
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in relation to health risks from other microorganisms and chemicals (see 
section 5.1 and Chapter 6 for a discussion on target setting).

15.1  ASPECTS OF SURVEILLANCE

The other key role of public authorities, that is, surveillance, is often 
perceived to focus on assessing whether water quality meets the targets 
defined for a given parameter, such as cyanobacterial biomass or cyano-
toxin concentrations. However, for drinking-water supply, surveillance is 
much more effective if it also includes a critical review of the facilities, 
their surroundings and operation, including operational parameters. This 
is best done through inspections of the site, review of records of operational 
parameters and conversations with operating staff. If management plans 
such as WSPs (see Chapter 6) and IRPs (see below) are in place, this greatly 
facilitates surveillance and provides a useful basis for discussions on poten-
tial improvement with operators and managers. This also applies to small 
supplies and situations with limited resources, where WSP development can 
be particularly useful (for more information, see WHO, 2012). As small 
supplies are typically less complex, system description, hazard analysis and 
risk assessment tend to be more straightforward and more readily accom-
plished even with a lower level of expertise, for example, by using a sanitary 
inspection as basis for the WSP. Outcomes may be highly valuable, allow-
ing the water authority to prioritise its activities. For drinking-water sup-
plies as well as for recreational sites or workplaces, surveillance should start 
with site inspections to assess the risk of cyanobacterial blooms, based on 
historical events and environmental conditions that lead to cyanobacterial 
bloom formation. Surveillance therefore requires an understanding of the 
systems – from catchment to the point of use and possible human exposure. 
The guidance given in Chapters 5–10 presents the necessary background, 
both for operators and for authorities performing surveillance, on assessing 
and managing risks of cyanobacterial blooms.

Through surveillance, public authorities gather a wide overview of con-
ditions causing blooms and thus develop a locally and regionally specific 
understanding of the water systems. This enables them to effectively advise 
operators of drinking-water supplies and managers of recreational sites or 
workplaces on measures that have proven effective in similar cases. The 
operator of a drinking-water supply or manager of a recreational site is 
responsible for identifying hazards, assessing risks and identifying as well 
as implementing control measures, including organising collaboration with 
other public authorities and agencies. However, particularly in small-scale 
situations with limited resources, the role of public authorities can also 
involve triggering networking and exchange of experience between opera-
tors as well as organising collaboration.
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Across the globe, different authorities may be responsible for responding 
to cyanotoxin occurrence, and responsibility may also be shared between 
environmental and health authorities. For managing cyanobacteria and 
cyanotoxins, contact and exchange are particularly important between 
health and environmental authorities, but in some cases also with those 
responsible for allocating water to specific uses and managing flow regimes 
(in some countries termed “water boards”). This is a basis for developing 
management strategies that address the problem at its source: that is, the 
causes for cyanobacterial proliferation and bloom formation.

To ensure appropriate responses to cyanobacterial bloom incidents, 
close coordination with all partners, including environmental authori-
ties, is particularly critical so that those with responsibilities for specific 
incidence response actions are prepared to react quickly when contacted 
during the incident, to restore drinking-water service. IRPs help in provid-
ing the tools needed for an effective response and the protection of public 
health during a cyanobacterial bloom. Each cyanotoxin event is different, 
and correspondingly, the characteristics of the area, available resources, 
the interaction with outside partners and the response will be specific to 
the situation.

15.2  INCIDENT RESPONSE PLANS 

FOR CYANOBACTERIAL BLOOMS

The assessment of water-use systems according to Chapters 6–8 will 
show whether conditions are likely to support cyanobacterial dominance 
or blooms and whether they should be expected in surface waters used 
for drinking-water supplies, recreational or occupational use, particularly 
where there is a previous history of blooms. This can occur even when 
management measures to reduce their likelihood have recently been imple-
mented because these measures usually require several years to start having 
an effect. In mildly eutrophic waterbodies, cyanobacterial dominance may 
occur only occasionally and as short-lived events, thus being perceived as 
an unusual incident. In more heavily eutrophic waterbodies, they may be 
a regular phenomenon throughout several months of the year, to which 
regular management actions such as drinking-water treatment or periodic 
warnings regarding recreational use have been adapted. Nonetheless, even 
in such settings, particularly dense blooms may constitute an “incident”. 
Depending on the local conditions, Incident Response Plans (IRPs) will 
describe the actions and responses to be applied within a water-use system 
when events, such as a cyanobacterial bloom is not sufficiently controlled 
by normal operating procedures, occur. IRPs are typically developed by site 
operators or waterbody managers but approved by the public health author-
ity. However, recreationally used waterbodies and beaches may not be for-
mally managed or operated, and the responsibility for their monitoring may 



15 Surveillance, communication, participation 805

lie with the health authority which then also is responsible for coordinating 
the implementation of the IRP.

IRPs include incident criteria, roles and responsibilities, communication 
protocols, contact information of responsible authorities to involve in the 
response, mechanisms for monitoring and controlling the bloom and, 
where appropriate, the communication to the public: both about the risk 
and about actions to take to avoid exposure. It may be useful to prepare 
templates that site operators can adapt depending on the situation and the 
available resources (see Tables 15.1–15.3 for examples). Sections 15.3–15.5 
outline the three important steps for the responsible authority to follow 
in response to cyanotoxin bloom incidents in drinking-water and water to 
which people are exposed during occupational or recreational use. These 
steps include monitoring, management to control the incident and risk 
communication. The Alert Levels Frameworks (ALFs) for drinking-water 
supplies (section 5.1) and for recreational waterbody use (section 5.2) give 
criteria for identifying an incident (i.e., Alert Level 2), provide a structure 
for responses to monitoring results that can be used directly when develop-
ing the IRP or adapted to local circumstances, as needed.

Table 15.1 Incident response and/or risk communication task force contacts 

Principal Authority:

Name Title Incident 
Role

Phone E-mail Address

Office: 
Mobile: 

Office: 
Mobile:

Partner Authority:

Name Title Incident 
Role

Phone E-mail Address

Office: 
Mobile: 

Office: 
Mobile:

Partner Authority: 

Name Title Incident 
Role

Phone E-mail Address

(Cont.)

Authority: e.g., Drinking-Water Supplier, Ministry of Health and its regional or depart-
mental offices, Environmental Protection, Health Departments, Local 
Governments, Emergency Management, Environmental (or) Public Health 
Laboratories, etc. 

Title: Drinking-water supplier, water treatment operator, recreational site manager, 
engineer, water quality officer, etc.
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Table 15.2  Checklist of resources and capabilities for responses to a 
cyanobacterial incident

__  Roles and contact details for key personnel and other related partners are 
clearly stated;

__  Trigger levels for action to take during cyanobacterial biomass (in terms of 
biovolume or of chlorophyll-a) and cyanotoxins, including Alert Levels 
Framework (ALF), are established;

Monitoring

__  Appropriate personnel to perform

                 __ Monitoring/Sampling __ Laboratory analysis

                 is identified and contacts are documented;

__  Appropriate monitoring and sampling procedures have been established;

__  Appropriate public health laboratories to conduct sample analysis are identified; 

__  Appropriate SOPs and QA/QC protocols have been established;

__  Monitoring and sampling records templates have been developed; 

__  Required equipment and materials are available and their storage site is 
described in the incident response plan for

                 __ Monitoring/sampling   __ Laboratory analysis

Management and Control

__  Appropriate personnel to perform the control/mitigation and treatment 
techniques is identified and contacts are documented; 

__  Clear description of the actions required in the event of a cyanotoxins incident in

                 __ Drinking-water   __ Recreational sites

     have been developed and are described in the IRP;

__  Appropriate mitigation/control measures for blooms in surface waters have 
been identified and are available;

__  Appropriate treatment techniques for the removal of cyanotoxins in drinking-
water have been identified and are available; 

__  Plans for alternative water supply including how to obtain, transport and 
distribute the alternate sources are available; 

__  Templates to record the mitigation/control and treatment techniques have been 
developed; 

Risk Communication

__  Appropriate personnel to perform risk communication is identified and 
prepared;

__  A risk communication plan with a list of contacts, communication steps and 
dissemination outlets is available; 

__  Checklists, templates, Q and A, fact sheets and other reference materials 
including technical information (e.g., explanation of ALF) have been prepared and 
are up to date;

__ A post-incident comprehensive assessment is available.
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Table 15.3  Post-cyanobacterial incident-response assessment checklist

Date of Assessment:  Date and Location of Incident: 

Incident-Response Responsible Agency: 

Responsible Point of Contact Information: 

Assessment Committee or Task Force Members: 

For each of the areas below, please check the factors that met the 
requirements of a successful response. In the Comments section, 
identify and describe those that require improvement.

Monitoring

__ Availability and skill level of personnel in charge of __ Monitoring/Sampling  
__ Laboratory analysis 

__ Appropriate monitoring and sampling procedures

__  Timely contact and services with public health laboratories to conduct sample 
analysis 

__ Availability of clear and effective SOPs and QA/QC protocols

__ Availability of clear monitoring and sampling records and templates available 

__ Availability and functionality of required equipment and materials

__ Monitoring/Sampling

__ Laboratory analysis

 

Comments: 

Management and Control

__  Personnel in charge of control/mitigation and treatment techniques were 
available and skilled; 

__ Description of the required steps to follow for incidents for: 

__ Drinking-water   __ Recreational sites     

__  Mitigation/control measures for blooms in surface waters were available and 
effective;

__  Treatment techniques for the removal of cyanotoxins in drinking-water were  
available and effective; 

__  The transportation and distribution of alternative water supply were effective; 

__  Mitigation/control and treatment techniques records forms were appropriate; 

 

Comments: 

(Continued)
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15.3  ROLES AND CAPACITIES OF THE RESPONSIBLE 

AUTHORITY IN INCIDENCE RESPONSES

Convening a multiagency and multidisciplinary committee, or task force, 
is essential for an effective and rapid surveillance and response to a cya-
notoxin bloom. The IRP therefore should clearly define the responsible 
personnel, including roles, responsibilities and legal liabilities (Table 15.1). 
These contacts listed in the IRP are also responsible for coordinating with 
further partners who might be involved during the cyanotoxin incident. 
Stakeholders to consider to include in the IRP for further involvement, with 
clear roles and responsibilities, may include the ministry of health (or public 
health) and its regional or departmental offices, environmental protection 
authorities, health departments, local governments, emergency manage-
ment agencies, medical and veterinary personnel, water suppliers, drink-
ing-water consumers, recreational site operators and users, and the public. 
Other potential response partners include neighbouring environmental and/

Table 15.3 (Continued)  Post-cyanobacterial incident-response assessment checklist

Risk Communication

__  Personnel in charge of the Risk Communication were available and skilled;

__  The risk communication plan (list of contacts, communication steps and 
dissemination) was appropriate;  

__  The checklists, templates, questions and answers, fact sheets and other 
reference materials including technical information (e.g., explanation of ALF) 
were appropriate and up to date;

__  Responses in the media met expectations;

__  New communication problems arose. 

 

Comments: 

Additional Discussion Questions: 

 1. What actions were successful that should be replicated in future incidents? 

 2. What actions did not work as planned? Why? 

 3. List any procedures, templates, checklists or communication materials that 
need revision.

 4. Please list the remediation actions and who will be involved in doing them. 

 5. Who will inform the responsible agency and partner authority/agencies of the 
improvements and changes?

 6. What is the time frame for making the revisions and informing others?

 7. 

 8. 
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or public health laboratories, other drinking-water utilities and the media. 
The roles outlined in the IRP should provide a description of the tasks for 
which each should be prepared and what is expected from the other agen-
cies and supporting partners before, during and after the bloom. Their 
roles should be outlined clearly and regularly updated, together with con-
tact information. The contact information should include the names, titles, 
addresses and all applicable phone numbers, as well as a secondary contact 
in case the primary contact cannot be reached.

The responsible authorities should also identify the resources, infrastruc-
ture and staff (Table 15.2) to effectively respond to the cyanotoxin incident. 
Available resources include necessary tools and equipment (e.g., sampling 
equipment) and laboratories that may be approached if needed. Drinking-
water providers should determine their type of intakes and depths and 
establish if they are able to draw raw water from a different intake and/
or depth, with approval from the drinking-water regulator, as appropriate. 
They also should be aware of treatment adjustments that are beneficial as 
well as those that may exacerbate problems: for example, inducing lysis 
when water with cyanobacterial cells is subjected to certain treatment steps 
(see Chapter 10). For recreational use of eutrophic waterbodies which often 
harbour some cyanobacteria but only sometimes develop blooms reaching 
Alert Level 2 (see section 5.2), it will be important to give renewed infor-
mation to site users, emphasising the use restrictions that now apply under 
Alert Level 2 but were not yet in place under Alert Level 1. Where compre-
hensive monitoring of sites used for recreation is not possible due to their 
very large number or due to limited resources, an option may be to include 
volunteer citizens in observing and reporting blooms (“scum scouting”). 
Monitoring may also include tools already developed by partners such as 
satellite imagery, bulletins, systems for notifying other agencies and moni-
toring programmes (see below) that may be ongoing for other  purposes, 
such as monitoring for parameters other than cyanobacteria.

Incident planning requires not only a list of the communication and pub-
lic outreach mechanisms, such as websites, e-mail alerts and social media 
channels, but also convening a committee or task force with the staff 
responsible for coordinating public communication to ensure that conflict-
ing information is avoided. The responsible authorities should have also 
confirmed that the staff involved in the response have the necessary skills 
to conduct monitoring and are capable of effective risk communication. It is 
further useful for such staff to understand the conditions leading to blooms 
(described in Chapters 4 and 8) in order to better anticipate bloom events 
and tailor intensified surveillance to such periods.

A specific aspect of incidence response is the occurrence of suspected cases 
of illness linked to cyanobacterial occurrence. As discussed in sections 5.1 
and 5.2, the limitation with many of the published cases suspected to have 
been caused by cyanobacteria is the lack of data on cyanotoxin concentra-
tions in the water to which people were exposed to. If samples were taken 
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at all, this usually occurred days later. It is therefore useful for Incidence 
Response Plans to include contacts of medical services and requirements to 
report the incident to them for two reasons: to keep them informed about 
heavy blooms and possible human exposure, and to ensure that they inform 
those who can initiate immediate sampling if cases of illness due to cyano-
bacteria are suspected. Criteria for concluding a likely link between cyano-
toxins and the illness include that the symptoms are typical for the respective 
cyanotoxin and that concentrations were in a range possibly causing them. 
In the United States of America, the Center for Disease Control developed a 
voluntary reporting system called One Health Harmful Algal Bloom System 
(OHHABS) to collect data on individual human and animal cases of illnesses 
from HAB-associated exposures, as well as environmental data, to support 
the understanding and prevention of HABs and HAB-associated illnesses. 
This reporting system is available to public health departments and their 
designated environmental health partners to help them better understand 
and identify the effects of cyanobacteria on humans, animals and the envi-
ronment. Unspecific symptoms may be caused by other aetiological agents 
(including pathogenic microorganisms) that may or may not be associated 
with the bloom, or other unknown substances in cyanobacteria.

15.4  MONITORING

Where the responsible authority is involved in surveillance monitoring, 
it may already be positioned to include cyanobacteria or even cyanotoxins. 
However, many countries do not include cyanobacteria or cyanotoxins 
in regular surveillance, or have limited resources to conduct monitoring. 
In cases with limited resources, collaboration with expert support and/
or creating partnerships at the regional or international level is useful 
for guidance on surveillance alternatives. As discussed in Chapter 11, an 
effective way forward may also be to create regional centres of excel-
lence that can perform periodic cyanotoxin analyses on smaller numbers 
of selected samples that serve for orientation regarding the ratios of tox-
ins to biomass or cell counts that then can be used locally for the bulk 
of samples. This is particularly useful where access to a chemical labora-
tory is missing or limited but microscopy is available for determining cell 
counts and biovolumes. Furthermore, seeking collaboration with research 
institutions can be very effective since they may have valuable expertise 
and analytical capacities. The example given in Box 15.1 illustrates how 
such collaboration can enable a low-cost approach to monitoring beaches. 
It is important that the Incident Response Plan (IRP) include contacts to 
laboratories that can analyse for cyanobacteria/toxins, and that agree-
ments are in place for rapid reaction should a bloom occur that requires 
a rapid assessment.
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BOX 15.1: THE EXPERIENCE OF 

URUGUAY WITH CYANOTOXIN RISK 

COMMUNICATION AND MANAGEMENT

Beatriz Brena

The Rio de la Plata, located between Argentina and Uruguay, is a broad, fun-

nel-shaped estuary that drains the waters of two important rivers (Parana 

and Uruguay) into the Atlantic Ocean. With a basin of 3.2 million km2, the 

second largest in South America after the Amazon, it has about 150 mil-

lion inhabitants (35% of South America) and more than 75 big reservoirs for 

hydroelectric power generation. The main regional economic activities are 

agriculture and livestock production. 

In the past 20 years, intense cyanobacterial blooms became frequent 

especially in the main reservoirs of the basin and reached Montevideo, the 

capital of Uruguay, a city with 1.3 million inhabitants located in the middle 

of the Rio de la Plata in the salinity and turbidity front of the estuary. The 

blooms had a great impact in the quality of life of people, since the estuary 

has a long coast of sandy beaches intensively used for recreation of both 

locals and tourists. Eutrophication could be associated with an intensifica-

tion of agriculture; for example, the use of fertilisers increased more than 

threefold between 2000 and 2010. 

The predominant cyanobacteria being Microcystis, mostly M. aeruginosa, con-

sidering its potential production of toxins, in the year 2000, the City Government 

implemented regular beach and coastal water monitoring. This included visual 

detection of blooms as well as analyses of chlorophyll-a and nutrients. The visual 

monitoring approach, performed at the beach, was based on a simple categori-

sation of samples in three groups: (i) “absence” of blooms when the operator 

does not detect any cyanobacterial colony by visual inspection and there are no 

signs of water discoloration; (ii) “presence of dispersed colonies” when colonies 

are observed from a close distance, for example, when entering into the water; 

and (iii) “scums”, when the accumulation of colonies produces green colour like 

spilled paint, noticeable from several metres from the shore.

At the beginning, there was no public awareness of the risks associated with 

these blooms; they were mostly perceived as an aesthetic problem. The first 

scientific report of the presence of microcystins in the Rio de la Plata was in 

2001, and the analysis was performed in Brazil, since no analytical capacity for 

cyanotoxins was installed in Uruguay. A collaboration with the University of the 

Republic of Uruguay was then established, starting in the summer of 2004, for 

the development and validation of an ELISA for microcystins, which was then 
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included in the regular monitoring of beach water. The results demonstrated 

extremely high microcystin concentrations in the scums (up to 30 000 μg/L) 

and prompted the notification to the public to prevent recreational exposure. 

The data accumulated over the first 6 years of monitoring showed that 

more than 95% of the scums were very toxic (mean 3300 μg/L), while micro-

cystin concentrations in most of the samples in the “presence of dispersed 

colonies” were very low (<0.3 μg/L); however, even in this intermediate cat-

egory 5.6% of the samples contained more than 20 μg/L. Noteworthy, when 

no blooms were detected (category “absence”), microcystin concentrations 

in the samples were below or equal to 0.3 μg/L. 

These data serve to support the risk management approach, based on 

visual observation and a simple and fast method for microcystin determina-

tion. Since the antibodies and specific reagents of the ELISA kit were devel-

oped locally, the cost of analysis was very low and the approach is sustainable.

As Montevideo is in the salinity and turbidity front of the estuary, the inten-

sity and frequency of the blooms is very variable and depends mainly on the 

inflow of water from the major rivers Paraná and Uruguay. An increase in 

the freshwater discharge due to rainfall in the upper basin is associated with 

the upcoming of blooms, originating upstream in the major reservoirs. In the 

summer of 2010, under the effect of “El Niño”, scums in the coastal waters 

of Montevideo were very frequent (blooms occurred about 40% of the time 

along parts of the coast). Improving public communication and emphasising 

the need to prevent exposure was therefore indispensable. Recreational use 

of the beaches is a major activity in summers, but unfortunately, many people 

disregard the warning messages.
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In consequence, a so-called sanitary flag (red flag with a green cross in the 

middle; see photo) was implemented. An intensive campaign in the public 

media explained its meaning and relevance. Furthermore, as the blooms 

can be highly dynamic, particularly in Montevideo where they can appear 

and disappear very rapidly, for example, within 1 h or even less, depending 

on the beach, lifeguards were trained to recognise the presence of blooms. 

Thus, a rapid on-site response was made possible at each beach at any 

moment during the course of a day, if necessary. Even so, in 2015, there was 

a report of a serious intoxication, most likely attributable to ingestion of 

bloom material (see section 5.2), of a 20-month-old girl who required a liver 

transplant. This means that there is still a lot to learn to prevent intoxica-

tion and to promote proper care of children and sensitive populations. At 

present, the National Environmental Direction generalised the use of the 

sanitary flag countrywide, and the information of beaches with a sanitary 

flag is published daily on the web so that the population can decide whether 

it is safe to go to the beach.

A further aspect of preparing for monitoring in the context of inci-
dent response is to clarify which threshold concentrations of cyanobacte-
rial biomass (measured as biovolume, chlorophyll-a or other parameters 
chosen locally; see the Alert Level Frameworks (ALFs) in sections 5.1 
and 5.2) or of cyanotoxins are to trigger which responses. This requires 
identifying whether regulations and/or guidance for cyanobacteria or 
cyanotoxins are in place, particularly for drinking-water, and if so, 
to include the respective statutory and regulatory requirements when 
developing the IRP. Where these are lacking, the drinking-water guid-
ance values as well as the guidance values for recreational exposure, in 
Chapter 2 of this book, serve for orientation. Furthermore, the ALFs 
given for drinking-water in section 5.1 and for recreational or occupa-
tional exposure in section 5.2 highlight the sequence of events to follow 
for monitoring and  management. The Alert Level values are intended 
for managers of water supplies, recreational or occupational sites and 
may be used both for normal day-to-day operations and for situations in 
which blooms escalate to be an incident that requires a quick response. 
When developing the IRP, the ALF templates given here are best adapted 
to the locally specific conditions, including availability of analytical 
capacity for determining concentrations of cyanobacterial biomass and/
or cyanotoxins.

Monitoring may be tailored not only for verification of whether water 
quality targets or action thresholds for cyanobacteria or cyanotoxins are 
met, but also to assess whether the implemented control measures are 
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achieving the desired objectives. Both for surveillance monitoring and for 
the IRP, it is important that operators as well as authorities develop and 
implement sampling procedures, sample analysis processes, and quality 
control and assurance plans (see Chapters 11–14). This involves coordi-
nation with the respective internal and/or external laboratories regarding 
sampling procedures, preservation, shipment and laboratory requirements. 
Documentation from the laboratory conducting the analyses should also 
be kept, including number of samples, a description of analytical methods, 
sampling, sample transport and analytical quality assurance procedures, 
and the results.

It is further worthwhile to consider partnering with others (e.g., citi-
zens’ monitoring programmes) for further support in monitoring. For 
example, swimmers and other users can contact local authorities if they 
see cyanobacterial scums, and householders can report unusual odours in 
their drinking-water supply. In the United States of America, community-
based “Water-Watch” or “Stream-Watch” monitoring programmes under-
taken by high school students and community groups have been initiated 
to monitor and report the presence of cyanobacterial blooms (see US EPA 
Citizen Science Projects for more information; https://www.epa.gov/citizen-
science). In Argentina, a citizen science project “Why are our reservoirs 
green?” (abbreviated CIANOBs) involves school children in reporting 
blooms (see Box 15.3).

Monitoring data should be recorded and maintained. Monitoring proce-
dures should be reviewed regularly and tailored to the current conditions 
of the surface water and/or treatment plant, including consideration of the 
available resources. This can be an effective component of the periodic 
review of a Water Safety Plan (WSP).

If monitoring results indicate the presence of cyanotoxins in the surface 
water, further monitoring may be needed. Monitoring frequency as well as 
communication procedures will vary depending on the ALF and other fac-
tors such as the cost of monitoring and available resources.

15.5  MANAGEMENT AND CONTROL MEASURES

If cyanotoxins or substantial amounts of cyanobacteria are detected, the 
responsible authority should work together with operators of drinking-
water supplies and managers of recreational sites, as appropriate, and 
with health and cyanobacteria specialist or experts as well as public health 
laboratories to determine whether immediate or short-term responses are 
needed and which longer-term measures are appropriate. Many larger-
scale operations, that is, drinking-water supplies, recreational sites or 

https://www.epa.gov
https://www.epa.gov
https://www.epa.gov/citizen-science
https://www.epa.gov/citizen-science
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workplaces, are responsible for day-to-day operations, including monitoring 
and incidence response planning as well as the notification of exceed-
ances and the proposed response to the public surveillance authority. In 
such operations, the role of the public authority is to assess and approve 
the IRP proposed by the operators as well as to facilitate and support 
its implementation. However, in smaller-scale operations, a more active, 
coordinating role of the health authority may be necessary to fulfil these 
responsibilities.

Consultation with key technical (e.g., scientific and engineering) experts 
will help in both assessing the risk based both on the information about the 
waterbody (Chapter 9) and on the available laboratory data as well as in 
determining the locally appropriate control measures. These measures may 
encompass interventions taking immediate effect, particularly in drinking-
water treatment (Chapter 10), shifting water use to sites less prone to scum 
accumulation (Chapter 8) or restricting recreational use (section 5.2 and the 
ALF in Figure 5.4). However, a bloom incident should also trigger planning 
measures for prevention of blooms in future, using the momentum of exper-
tise and experience with the waterbody that has already come together for 
the immediate response. Measures addressing the cause of blooms typically 
take longer to take effect, for example, controlling nutrient loads from the 
catchment (Chapter 7) or managing hydrophysical or food-chain condi-
tions in the waterbody (Chapter 8). Some control measures (e.g., shifting 
recreational sites, applying algaecides or artificial mixing) may be subject 
to specific requirements or regulations, thus requiring consultation with the 
respective regulatory body that may need to issue a permit for conducting 
the measure.

Where immediate or short-term actions cannot be taken, or when short-
term water quality targets or action thresholds for toxins are exceeded (or 
bloom biomass indicates this potential), a temporary switch to an alter-
native drinking-water supply may be appropriate. Where resources are 
lacking for upgrading drinking-water treatment during blooms and bloom 
incidents occur regularly, the incident response plan (IRP) should include 
the identification, if feasible, of potential alternative water supplies. This 
may include plans for transporting clean, treated water from other areas 
or deploying portable water treatment systems, if available. Special pre-
cautions (e.g., portable water treatment systems or transported safe water 
supplies) may be advisable for “at-risk” groups especially susceptible to 
cyanotoxins, such as bottle-fed infants, small children and patients with 
previous acute liver and kidney damage (preferably identified in the course 
of developing a WSP; see Chapter 6). Boil water advisories are not recom-
mended as boiling water will not remove the cyanotoxins. Other options 
are providing water in tanks or bottles to the affected population. This also 
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requires specific planning when preparing an IRP, including pathways for 
providing information on distribution locations for bottled water to the 
affected communities.

When selecting a treatment or other control measure, the responsible 
operators or authority should consider any regulatory restrictions (such as 
mentioned above, e.g., for algicide application), specific characteristics of 
the waterbody, human resources, effectiveness, adverse impacts, short-term 
versus long-term results and costs versus benefits.

Once the situation is under control, sampling and monitoring is best con-
tinued as long as the bloom occurs in the waterbody in order to confirm 
that the measures taken are effective. The results of laboratory analyses 
provide a sound basis upon which the responsible authority can determine 
whether the cyanotoxins are now effectively under control and the water 
system can be returned to normal operations.

15.6  RISK COMMUNICATION

The Incidence Response Plan should include the communication steps 
to follow when cyanobacteria and related toxin incidents occur, includ-
ing the personnel responsible for initiating the communication, the order 
in which the notification should occur and the different communication 
methods to be used. Furthermore, information to the public needs to 
be given in formats that the respective public can read and understand. 
This may include tailoring to specific populations speaking different lan-
guages dialects, as well as knowledge and literacy levels. It may be use-
ful to engage with knowledgeable regional partners to develop and or 
customise appropriate communication messages and materials. It may 
also be important to consider information formats for people with hear-
ing and/or vision impairments as well as for persons with specific medi-
cal needs (such as people who are on dialysis) and for specific stages of 
life that may make people particularly sensitive to cyanotoxins such as 
pregnant and nursing mothers and those taking care of babies and young 
children.

Risk communication materials (see the Additional Tools and Resources 
for the Development of an Incident Response Plan in Box 15.2) with core 
messages can be customised for different countries and groups during dif-
ferent phases of the risk communication steps to ensure that drinking-water 
consumers, those using recreational sites or people potentially exposed at 
their workplace will obtain the information they need to protect themselves 
from cyanobacteria and cyanotoxins.
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An important basis for promoting information that is clear and consistent 
is to convene a multiagency and multidisciplinary committee or task force 
across all responsible parties (as mentioned in section 15.2), that is, includ-
ing drinking-water suppliers or recreational sites managers, communities 
and public health authorities as well as environmental and water quality 
regulators, before, during and after a cyanotoxin incident.

15.6.1 � Communication preparedness 
before blooms occur

The responsible authority for managing the incidence response may vary 
depending on whether drinking-water, recreational water use or water use 
at workplaces is primarily affected. Particularly where multiple routes of 
exposure may be relevant, it is, however, important to clarify which author-
ity will take the lead under which circumstances. Each authority potentially 
involved should determine the designated personnel to be part of the com-
mittee or task force responsible for developing the communication materials 

BOX 15.2:  ADDITIONAL TOOLS AND RESOURCES FOR 
THE DEVELOPMENT OF AN INCIDENT RESPONSE PLAN

Tool or Resource Link (last accessed on 3 February 2020)

Monitoring and Responding to Cyanobacteria and Cyanotoxins, USEPA
https://www.epa.gov/ground-water-and-drinking-water/
cyanotoxin-management-plan-template-and-example-plans-0

Drinking Water Cyanotoxin Risk Communication Toolbox, USEPA
https://www.epa.gov/ground-water-and-drinking-water/
drinking-water-cyanotoxin-risk-communication-toolbox-templates

Recommendations for Public Water Systems to Manage Cyanotoxins in 
Drinking Water, USEPA

https://www.epa.gov/ground-water-and-drinking-water/
recommendations-public-water-systems-manage-cyanotoxins-drinking

Drinking Water Advisory Communication Toolbox, CDC
https://www.cdc.gov/healthywater/emergency/dwa-comm-toolbox/index.html 

Guidelines for Safe Recreational Waters Volume 1 – Coastal and Fresh Waters, 
WHO

https://apps.who.int/iris/handle/10665/42591

International Guidance Manual for the Management of Toxic Cyanobacteria: 
A Guide for Water Utilities, Australia

https://www.waterra.com.au/cyanobacteria-manual/PDF/
GWRCGuidanceManualLevel1.pdf

https://www.epa.gov
https://www.epa.gov
https://www.epa.gov
https://www.epa.gov
https://www.epa.gov
https://www.epa.gov
https://www.cdc.gov
https://apps.who.int
https://www.waterra.com.au
https://www.waterra.com.au
https://www.epa.gov/ground-water-and-drinking-water/cyanotoxin-management-plan-template-and-example-plans-0
https://www.epa.gov/ground-water-and-drinking-water/cyanotoxin-management-plan-template-and-example-plans-0
https://www.epa.gov/ground-water-and-drinking-water/drinking-water-cyanotoxin-risk-communication-toolbox-templates
https://www.epa.gov/ground-water-and-drinking-water/drinking-water-cyanotoxin-risk-communication-toolbox-templates
https://www.epa.gov/ground-water-and-drinking-water/recommendations-public-water-systems-manage-cyanotoxins-drinking
https://www.epa.gov/ground-water-and-drinking-water/recommendations-public-water-systems-manage-cyanotoxins-drinking
https://www.cdc.gov/healthywater/emergency/dwa-comm-toolbox/Guidelines
https://apps.who.int/iris/handle/10665/42591
https://www.waterra.com.au/cyanobacteria-manual/PDF/GWRCGuidanceManualLevel1.pdf
https://www.waterra.com.au/cyanobacteria-manual/PDF/GWRCGuidanceManualLevel1.pdf
https://www.cdc.gov/healthywater/emergency/dwa-comm-toolbox/index.html
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and for issuing the appropriate information. This includes determining the 
responsible person to lead the committee or task force in case the respective 
authority is to take the lead. The person in charge of the communications 
may be the one regularly in charge of the authority’s public communication.

The committee or task force should develop a list of contacts within each 
authority potentially involved as well as the incident-related partners. The 
partners relevant for the bloom incident may include consumers, media, 
visitor centres, recreational parks and veterinarians – that is, representa-
tives of those affected as well as of those to involve in the incident response. 
It is also important to include experts on cyanobacteria and cyanotoxins for 
two reasons: one is to gain their support for understanding potential health 
impacts and exposure routes as well as for determining the most effective 
control measures and appropriate actions. The other, which is sometimes 
challenging, is to integrate them in joint communication to the public in 
order to avoid disparities between the messages given.

If toxins occur at public health concerns levels (i.e., Alert Level 2 in the 
Alert Level Frameworks given in sections 5.1 and 5.2), the committee or 
task force will immediately need to ensure that information reaches critical 
partners such as dialysis and health care centres, childcare and critical care 
facilities, hospital and clinics, nursing homes, schools, food and beverages 
businesses and, if waterbodies affected are used for recreation, managers of 
sites such as lake shore recreational areas, visitor centres and recreational 
parks. This includes both the operators of such facilities and the consum-
ers or people potentially affected, as listed above. Because of the diversity 
of those affected, different methods and pathways of communication will 
be effective for the respective audience. It is therefore effective to develop a 
contact list and/or decision tree similar to Table 15.1 with the responsible 
personnel that will be in charge of the communications, and this should 
include the contact information and the communication steps.

Generic communication materials are best developed prior to any bloom 
incident to guide drinking-water suppliers and managers of recreational sites 
to communicate to the public as appropriate (e.g., use of alternative water 
supply, do not drink advisory, recreational site closure) and kept updated in 
such a way that they can be readily adapted to any specific situation. The 
communication materials to consider developing include templates, news 
releases, beach postings, frequent questions and answers, fact sheets and 
other background materials. Pathways for distribution should also be iden-
tified, considering multiple outlets or media of communication to reach the 
greatest number of people in a timely manner. This could include media 
releases and briefings, e-mail and text message alerts, broadcasting, mass 
distribution through social media via Facebook, Instagram, Twitter, texts, 
others, posting on beaches and on websites, listservs by e-mail, phone mes-
sages, fliers, community meetings and any other locally effective way of 
communication.
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15.6.2  Communication during a cyanotoxin incident

If a cyanobacterial bloom is observed and cyanobacterial toxins are sus-
pected to be present in surface water, the committee or task force should be 
called together for an emergency meeting to first initiate communication with 
a smaller group of those directly involved (e.g., drinking-water operators and/
or managers of recreational sites). Coordination by the responsible public 
authority and the site operator is important to confirm that the resources 
needed for the response are available and that a quick, accurate, effective and 
harmonised response will take place once the exposure risk is confirmed.

If monitoring results then show cyanobacteria and/or toxins to be above 
water quality targets or action thresholds (e.g., WHO guideline values 
(see Table 5.1) or Alert Levels (see Figure 5.2 and 5.4 – or any values derived 
nationally)), even after control measures are applied, the committee or task 
force should verify that communication materials already prepared (see 
above) are appropriate for the specific situation or adjust them as needed, 
making sure that the message is consistent across all partners involved in 
the response. The committee or task force will determine the appropriate 
content, format and frequency of the risk communication. Public notifica-
tion regarding restrictions on water use may be required to minimise the 
potential for exposure. “Do not drink” advisories are recommended only if 
they are necessary to reduce a relevant public health risk, and this decision 
is usually the responsibility of the drinking-water system or public health 
authority. Likewise, “do not swim” advisories should be balanced against 
the health benefits of outdoor water-related activities.

An example of a communication material is given in Figure 5.7 in sec-
tion 5.2. Further information materials with more detail should give spe-
cific information about the current event, including information about the 
extent of occurrence in relation to water quality targets or action thresh-
olds, if available, on the species of cyanobacteria and toxin concentrations 
detected, how humans and animals are affected, when the incident started, 
who is the responsible agency in-charge of the response, date and specific 
location of the incident, name and phone number of a contact person, steps 
taken to respond and mitigate/control the incident, as well as precautionary 
measures such as avoiding contact with contaminated water, rinsing with 
clean water after coming in contact, keeping pets or livestock away from 
the bloom and any other relevant information.

15.6.3  Communication after a cyanotoxin incident

Once the bloom is over or under control, the committee or task force should 
notify the public and other related partners that the incident is resolved and 
that the water is safe from cyanobacteria and their toxins. The committee 
or task force could use the same communication outlets contacting the same 
partners that were notified of the cyanotoxins incident. Communication 
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will be trusted best if it includes information about the final decision, con-
trol measures applied, monitoring results, future follow-up steps, longer-
term prevention approaches and related outreach materials.

15.7  FOLLOW-UP ASSESSMENT OF INCIDENT  

MANAGEMENT

A post-incident comprehensive assessment (Table 15.3) to identify the ade-
quacy of the cyanotoxins incident response and assess the effectiveness of 
the risk communication activities during and after the incident will improve 
the basis for next time. A debrief with all the involved agencies (e.g., drink-
ing-water supplies and managers of recreational sites) after the incident 
helps to identify problems and flaws during the incident and to determine 
areas that need improvement, as well as those actions that contributed to 
a successful response and that should be repeated in future cyanotoxins 
contamination events.

It is also useful for the committee or task force to assess the effective-
ness of the risk communication during the incident, for example – in the 
case of toxins in drinking-water – by conducting a customer survey. This 
can include questions on how well the type of information provided met 
information needs and how they learned about the incident. The results of 
the debrief and customer survey should be used to update or modify the 
incidence response plan (IRP), if appropriate.

15.8  PUBLIC PARTICIPATION

Involving observations of the population using a waterbody in the context 
of site inspection and when developing a monitoring programme or a Water 
Safety Plan (WSP) can be highly useful for obtaining information that oth-
erwise might be missed. This may help with focusing attention to high-risk 
bloom situations as well as practices causing nutrient loads to a waterbody 
(see section 6.2.2). However, there are numerous situations (including set-
tings with a high level of surveillance) in which the capacity of the respon-
sible authority is not sufficient to ensure that the water does not contain 
hazardous concentrations of cyanotoxins. This applies particularly for sur-
veillance of waterbodies for recreational use. Monitoring and surveillance 
at sufficiently tight intervals both in time and in space to ensure capturing 
high-risk situations may not be feasible, for example, in areas with a large 
number of waterbodies used for recreation under the responsibility of one 
public authority. Also, implementing management plans and seeing results 
may take time. For example, it may take years for an ecosystem to respond 
to the point where blooms are effectively prevented, and scum situations are 
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not always captured by monitoring. Particularly in such situations, involv-
ing site users – that is, the general public – in schemes of monitoring and 
reporting can be important to avoid exposure. This requires giving users the 
information they need to develop an understanding of risk situations and to 
be able to make decisions on water use for their own health (see Figure 5.7 
in section 5.2.5).

BOX 15.3: PUBLIC COMMUNICATION THROUGH 

PUBLIC PARTICIPATION IN DATA COLLECTION – 

THE CIANO PROJECT IN POTRERO DE GARAY

Raquel del Valle Bazán

Los Molinos reservoir in the province of Córdoba, Argentina, is used for 

many purposes, that is, generation of hydropower, drinking-water produc-

tion and recreational activities, including extreme sports such as kitesurfing, 

but also hiking, sports fishing, horseback riding and outdoor festivals. It is 

a favourite destination both for tourists and for the local population. The 

largest town on the reservoir shore, Potrero de Garay, has an estimated 

population of 5000 inhabitants, but during summer, tourism triples this. 

The town uses drinking-water directly from the reservoir, without prior 

treatment. 

Since approximately 2010, the reservoir has increasingly been afflicted by 

blooms of Microcystis and Dolichospermum, and citizens of Potrero de Garay 

are concerned about the quality of the water they use. This gave rise to the 

citizen science project “Why are our reservoirs green?” abbreviated CIANO 

project – a collaborate effort between the University of Cordoba and the 

local lifeguard organisation (GERS) and the Alfonsina Storni School. CIANO 

targets a combination of education and collecting data by involving citizens 

in the observation of meteorological conditions, water temperature, Secchi 

disc, type of turbidity (algal or nonalgal), water colour, water odour, appear-

ance of cyanobacterial blooms and the geographic coordinates. Citizens, in 

particular students (11 and 12 years old) and staff of GERS, are introduced to 

the project in workshops and are then invited to report their observations in 

a WhatsApp group (composed of members of the three participating institu-

tions) following a simple form introduced at the workshop (Figure 1). The 

project management processes the data and shares a report on the results 

of the cyanobacterial monitoring as well cyanobacteria alert levels (Table 1). 

This information is communicated both to government authorities and to 

private organisations involved in water treatment for the city of Córdoba.
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One of the tools introduced at the workshops is the “cyanosemaphore” 

poster, provided by the Ministerio de Salud de la Nación (Health Ministry) for 

dissemination and prevention of exposure in coastal areas of reservoirs, lakes 

and rivers. It indicates whether or not specific recreational activities are pos-

sible or should be avoided (Figure 2). It is also disseminated in hospitals and 

Primary Health Care Centres.

Figure 1  Reporting form for the “condition of the water” by colour and turbidity 
(note that “cenizas” means “ashes from forest fires” and “otros” means 
“others” – i.e., macrophytes).

Table 1  Example of data collected through the project app and reported to the 
public and authorities

Secchi Water Air Wind 

Date Site
depth 
(m)

temp. 
(°C)

temp. 
(°C)

speed 
(km/h)

Cyanobacterial 
blooms

22 October 2019 Centro 2.1 17.0 19.7 25.6 Absence

23 October 2019 Los Espinillos 1.5 21.0 18.8 5 Absence

25 October 2019 Centro 4.0 18.0 20.2 9.7 Absence

26 October 2019 Garganta 6.5 18.0 s/d s/d Absence

31 October 2019 Presa 5.0 18.0 20.5 7.2 Absence

3 November 2019 Los Espinillos 2.3 19.0 23.0 11.0 Absence

4 November 2019 Los Espinillos 3.0 19.0 21.6 19.4 Absence
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Figure 2  “Cyanosemaphore” with three levels of water quality and corresponding 
advice for water use. Source: http://www.msal.gob.ar/politicassocioambi-
entales/index.php/ciudadanos/folletos-y-afiches

http://www.msal.gob.ar
http://www.msal.gob.ar
http://www.msal.gob.ar/politicassocioambi-entales/index.php/ciudadanos/folletos-y-afiches
http://www.msal.gob.ar/politicassocioambi-entales/index.php/ciudadanos/folletos-y-afiches
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The students act as multipliers of knowledge in their homes and in the 

community, particularly for communicating bloom alarms. They exhibited 

information at their stand at the annual school fair where they handed out a 

brochure they had developed to explain what cyanobacteria are, how they 

affect health, what precautions to take, as well as the meaning of the differ-

ent alert levels of the “cyanosemaphore” (Figure 3).

(a)

(c)

(b)

(d)

Figure 3  (a) Stand at the annual school fair, (b) brochure by sixth grade students, 
(c and d) explanation and visualisation of the different alert levels of the 
“cyanosemaphore”.

While the input for water quality monitoring is yet to be evaluated, the first 

year of the project already achieved a positive impact on awareness of cyano-

bacterial blooms and their implications for health. Responses and comments 

of sixth grade students include the following: 

Observo como está el agua, si puedo meterme o no. Ahora que lo sabemos 

puedo tomar precauciones y prevenir a otras personas. Antes, nos metíamos 

cuando el agua estaba verde (porque no lo sabíamos), ahora no.

I observe how the water is to see how it is, if I can get in or not. Now 

that we know I can take precautions and prevent others. Before we got in 

when water was green (because we didn’t know better), but not anymore
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Miro el agua, también puedo comunicar a los demás que tengan cuidado para 

que no se enfermen, puedo ver el estado del agua y me fijo primero si me 

puedo meter o no. Además, ahora sé que no puedo tomar directamente el agua 

(aunque no tenga muchas cianobacterias).

I look at the water, and I can also tell others to be careful not to get 

sick, because I can see the condition of the water, and I first look whether 

I can get in or not. Also, now I know that I can’t drink water directly (even 

if it does not have many cyanobacteria).

Dependiendo del color del agua, puedo entrar al agua o no. Si está con una 

coloración verde oscuro no puedo entrar, pero si está claro si puedo hacerlo!
Depending on the color of the water I can get into the water or not. 

If it is dark green I cannot get in, but it is clear I can.

The example in Box 15.3 shows how a research project uses a citizen sci-
ence approach involving school children in observations and informing oth-
ers, while at the same time contributing to the collection of data that will 
describe the bloom situation in the reservoir. Such public participation can 
also serve to generate political initiatives and interest in waterbody manage-
ment towards preventing blooms.

A further aspect of public participation is generating broader support for 
protection of the waterbody and/or its catchment. The example in Box 15.4 
shows how broad involvement of the public served to improve the vegeta-
tion cover of a riparian buffer zone and fencing around the reservoir, thus 
keeping animals out of the water and targeting improved retention of nutri-
ents. Involving citizens develops a sense of ownership and responsibility 
and thus supports the implementation of use restrictions that might other-
wise meet resistance.

BOX 15.4: RESTORING RIPARIAN AREAS 

OF PASO SEVERINO RESERVOIR, URUGUAY, 

WITH CITIZEN’S PARTICIPATION 

Rafael Bernardi, Eduardo Andrés, Elisa 

Dalgalarrondo, Cesar García, Natalia Jara

In 2013, the Government of Uruguay issued an action plan to address water 

quality issues in the Santa Lucía Basin, which provides water to 60% of the 

country’s population (see Box 7.3 in Chapter 7). One of the measures it stipu-

lates is the establishment of riparian buffer zones with no agricultural activity 



826 Toxic Cyanobacteria in Water

around the main waterbodies of the basin, and the National Direction of 

Environment (DINAMA) has accordingly initiated and led a programme to 

manage and restore the buffer zone of Paso Severino, the main reservoir in 

the basin, in partnership with several institutions: the national water com-

pany (OSE), local governments, the ministry of agriculture (MGAP), and the 

Botanical Garden of Montevideo, among others.

The reservoir has a capacity of 70 M m3 and a perimeter of ~110 km. The 

riparian land up to the flood level is owned by OSE, but has been tradition-

ally used by local producers that extended the agricultural and livestock 

use up to the reservoir shore, affecting the water quality. The first measure 

was to fence the reservoir, restricting access to the shore. This resulted 

in an initial conflict with local producers which has gradually been solved, 

although some contentious issues persist. However, the government offers 

assistance to affected producers, including financial support for installing 

drinking-water supply for livestock as alternative to direct access to the 

reservoir.

A key component of the measure was to build a strong participation 

programme, partnering with the volunteer programme of the ministry of 

social development (MIDES) and with local schools and institutions, staff 

associations and local actors. Trees were first provided by national and 

local governmental nurseries and later from nurseries established by the 

community with the support of the Small Grant Programme. In total, more 

than 200 volunteers have participated, many of them attending several 

days, together with children of several schools of the region and staff from 

partnering institutions, totalling approximately 1000 working days over a 

4-year period.

The programme planted approximately 5000 trees and constructed infra-

structure for their protection. It has placed posters with information about 

the measures implemented and to discourage unauthorised use of the area, 

and a lookout platform was built together with the community of the nearby 

town “25 de Mayo”. 

Native saplings and juvenile trees were planted in the perimeter of the 

reservoir, with a choice of species and their spatial distribution according to 

ecological conditions of the sites. Natural regeneration is being monitored. 

Initial estimates show a survival of over 90% of individuals planted, although 

monitoring efforts are still underway, the design of which was developed 

together with the local community. Also, a partnership was established with 

the University of the Republic of Uruguay to assess the effects of different 

natural covers on the retention of nutrient loads to the reservoir. 
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The success of the programme up to the end of 2019 has been twofold: one is 

the active participation and sense of ownership by the local community and vol-

unteers from Montevideo who can now visit their water source and contribute 

to its restoration. The other is that this active management has prevented lands 

from being reclaimed for their previous use. Maintaining these two objectives is 

challenging, but key to ensure the long-term management of this water source.
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Destratification
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of MCs 36
of STXs 103

Bioactivity
of LPS 139
of unknown components 158

Biological control 515, 540–547
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Ceriodaphnia 783
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triggering alerts 303, 323, 
325, 355

vs. TP 251, 252
analysis of 705–708
sampling and containers 683

Chloroplasts 164
Chrysosporum (Anabaena) bergii 57, 
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Diffuse source 435, 443
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615–617
Dissolved toxin 576

achieving GVs 630–631
analysis of 681, 683, 753, 755, 757, 

772–775
ATXs 83–85
benthic cyanobacteria 234, 360
case study 624–629
CYN risk assessment 301, 353, 355
CYNs 63, 301–302
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pre-oxidation 592–593
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547, 551–552
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573–578
risk assessment 316, 327, 390
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225, 565, 566

Dolichospermum crassum 183
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flosaquae 72, 76, 80, 110, 
189, 194, 225

Dolichospermum lemmermannii 76, 
103, 110, 183

Dolichospermum planktonicum 722
Dolichospermum spiroides 110
Dosidicus gigas 103
Dredging 528, 532–533
Drought 513

EFSA 97, 99
Elliptio camoplanatus 104
Emission factors

agriculture 470–472
municipalities 468–470

ELISA (Enzyme-linked immunosorbent 
assay)

for ATXs 772–773
for CYNS 769
description of 754–756
for food 374, 382–384
for MCs 765
multiplex 777–778
for STXs 774

Emission inventories 467–468
Endotoxin 138, 143
Epidemiological 4
Epidemiological evidence

drinking-water 313
recreational exposure 340–342

Epilimnion 217, 220 
artificial mixing of 520–521
nutrients 534  
turbulence of 248

Erosion 476, 477
Escherichia coli 130, 137, 139, 140, 

725, 788
Estuaries 231
Eutrophic 227–229, 511
Eutrophication 239

management of 482–497, 811
Events

introducing nutrient loads 449
triggering monitoring 642, 657

Expertise see Training
External nutrient load 435, 506, 514, 

515, 516, 534
Extracellular toxin see Dissolved toxin
Extraction of toxins for analysis 753

for analysis of ATXs 772
for analysis of CYNs 768–769

for analysis of MCs and NODs 
761–764

for analysis of STXs 774–775
solid phase extraction (SPE) 

753–754
Fascicles 170
Fieldwork planning 646–648, 647
Filament 169
Filamentous 164, 190 ff., 225
Filtration 593, 598–599, 692

biological 617–618
Membrane 601, 608
Sand 598, 602, 617, 618

Fischerella sp. 29, 32, 179
Fish 378–379, 380–381
Fish stock management 541–543
Fisheries 463–465
Flow rate (of rivers) 515, 523–525

measuring it 674
Flow regime management 523–524
Fluorescence 507

analysis of 708–714
Flushing 441, 537–540, 538
Fontinalis 361
Forest 451
Freeze drying 752, 762
Functional groups 227

GAC see Granular activated 
carbon (GAC)

Gas vesicles 166, 219
Geitlerinema 200
Geographical information systems 

(GIS) 447, 477
Geophagus brasiliensis 375
Geosmin 149, 150
GIS see Geographical information 

systems (GIS)
Gomphosphaeria sp. 188, 201
Grab sample 677
Gracilaria coronopifolia 116
Granular activated carbon (GAC) 153, 

602, 604, 607, 617
Grazing 222–223, 233
Guideline values - overview 299

ATXs 73
ATX(S) 110
CYNs 54
MCs 25
STXs 97
triggering toxin alerts 298–304

Gymnodinium 94, 100
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Habitat 227–229
HACCP 368, 381, 406
Haphalosiphon hibernicus 29
Hazard 3, 404
Health food 394–398
Heterocytes 167, 168, 190–195
High-throughput sequencing 

726–727
HILIC see Hydrophilic interaction 

liquid chromatography 
(HILIC)

Hoplias malabaricus 375
Horizontal variability 271, 567–568
Hormogonia 167
Hormoscilla pringsheimii 57
HPLC 756–758

for ATXs 773
for CYNs 770–771
for MCs 765–767

Hydrodynamics 248, 523; see also 
Hydrophysical conditions

Hydrogen peroxyde 549–551
Hydrophilic interaction liquid 

chromatography (HILIC) 771, 
774, 777

Hydrophysical conditions 250, 515, 
671–674

Hyella 151
Hypolimnion 217–218

aeration/oxygenation 528, 
533–535

contaminants 573
CYN occurrence in 61
withdrawal of 535–537

Identification of cyanobacteria 
692–693

Ideonella sp. 63
Illness and incidents 508

communication 819
drinking-water 306–313
recreational exposure 335–339, 

342–344
Impermeable surfaces 451
Incident response plan (IRP) 804–810, 

805–808
Industry 451
Inflow of a river 566
Iningainema pulvinus 30
In situ fluorimeters 710, 711
Integrated sample 677–678
Interlab calibration 691

Internal measures 506, 514–517, 515
International Code of Nomenclature 

(ICN) 173
Intracellular organic material (IOM) 

593, 596, 617
Intravenous exposure 389
Intrusion of water layers in reservoirs 

566, 567
Inverted microscope 698–702
In vitro assays 787–789
IOM see Intracellular organic 

material (IOM)
Iron 570, 572
IRPs see Incident response plans 

(IRPs)

Jet skiing 344

Kamptonema 76
Kamptonema (Oscillatoria) 

formosum 72, 76
Kamptonema (Phormidium) 

formosum 82

Lawrence method 776, 786
LC-MS 758–759

for ATXs 773–774
for CYNs 771
for MCs 767–768
for STXs 776–777

Leaching of toxins to groundwater 
576–577

Legionella spp. 142
Leibleinia (Lyngbya) gracilis 116
Leptolyngbya 151, 174, 233
Light 222, 233, 245–246, 257
Limnospira fusiformis 196
Limnothrix/Geitlerinema 338
Limnothrix redekei 196
Limnothrix sp. 184, 196, 200, 220, 

230, 261, 510
Limulus 139, 141, 143, 144
Limulus amoebocyte lysate (LAL) 

139–143
Liquid chromatography with mass 

spectrometry see LC-MS
LOAEL (Lowest observed adverse 

effect level) 17, 25
Lugol’s iodine solution 682–683, 691
Lyngbya gracilis 114
Lyngbya majuscula 113–119, 118, 178, 

197, 334, 338
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Lyngbya sensu stricto 197
Lyngbya sp. 113, 115, 117, 151, 

157, 184, 196–197, 198, 
260, 339

Lyngbya (Microseira) wollei 94, 
101, 197

Lysis of cells
in MAR and on slow sand 

filters 576
in sludge 600

Macaca fascicularis 125
Macrophytes 544–546
Maganged aquifer recharge (MAR) 

573–587
Manganese 570, 572

MAR see Managed aquifer 
recharge (MAR)

Marine bivalves 785–786
Marine cyanobacteria 15, 297
Marine dermatotoxins 116
Mats 232
Media release 325
Membrane filtration 601, 608
Merismopedia elegans 202
Merismopedia glauca 202
Merismopedia punctata 202
Merismopedia sp. 188, 200, 202
Mesotrophic 227–229
Metalimnion 217

Planktothrix rubescens 199, 231, 
245, 248, 275, 659

position of cyanobacteria 220, 225, 
256–257

sampling of 713
2-Methyl-3-methoxy-4-phenylbutyric 

acid (MMPB) 763, 763
Microcoleus 76, 151, 197, 233, 

260, 360
Microcoleus anatoxicus 198
Microcoleus (Phormidium) autumnalis 

76, 80, 185, 198, 233
Microcoleus lyngbyaceus 113
Microcoleus/Phormidium sp. 185
Microcystis aeruginosa 21, 189, 203, 

224, 311, 313, 550, 598, 
725, 811

Microcystis chtyoblabe 189
Microcystis flosaquae 189
Microcystis ichthyoblabe 203
Microcystis novacekii 189, 203

Microcystis spp. 29, 30–33, 35, 38, 61, 
76, 138, 139, 140, 142, 143, 
153, 157, 168, 174, 189, 200, 
201–203, 214, 215, 219, 222–
225, 230, 247, 256–258, 260, 
261, 263, 265, 266, 268, 302, 
304, 309, 310, 336, 337, 359, 
398, 599, 647, 692, 703, 705, 
714, 722, 726, 779, 811, 821

Microcystis viridis 203
Microcystis wesenbergii 189, 203
Microorganisms (infectious) 1
Microscopy for risk assessment 

322–323, 354
Microseira 196, 233
Microseira (Lyngbya) wollei 57, 58, 

83, 100
Mineralization 526
Mixing 217, 234, 257

artificial 509–511, 510, 515, 572
Models

of blooms 250
of hydraulic/hydrodynamic 

conditions 520, 521, 581
of loads from catchments 479

Moina 783
Molecular analyses 685, 692, 714–728
Molecular tools for risk assessment 354
Monitoring 507

during incidents 810–814
in food 382–384
purposes 642, 646

Moorea 115, 196, 232, 233, 334, 339, 
346, 362

Moorea producens 178, 197, 362
Morphometry 248
Morphometry of waterbody 248–249

Mortality, human 335–336
Mouse bioassay 784–787
Mucilage 167
Mucous sheath 169
Multibarrier approach 403, 592, 602
Multiparameter sondes 674
Municipalities see Settlements
Mytilus edulis 373

Natural organic matter (NOM) 153, 
615–616

Nephelometric turbidity units (NTU) 
597, 611

Nitrate 692
analysis of 729–730
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Nitrogen (N)
analysis of 682
fixation 33, 167, 215
influence on species occurrence 192, 

194, 214–215, 218, 227–230
influence on toxin content 33, 52, 81
limitation 235, 239–240, 244, 251, 

508–511, 728
load to waterbody 410, 445, 

457–460, 487, 509–511
target concentration 437–440

NOAEL (No observed adverse effect 
level) 17, 18, 25–27, 54–56, 
74, 75, 97, 98, 110

Nodularia 29, 32, 33, 231, 260
Nodularia sphaerocarpa 29
Nodularia spumigena 23, 29, 215, 

231, 727
nodularins 29–36, 30

NOM see Natural organic matter 
(NOM)

Non-mammalian bioassays 782–784
Non-point source 443
Nonribosomal peptide synthetases 

(NRPS) 32, 157, 720, 721
Nostoc 29, 32, 151, 170, 232
Nostoc commune 395
NRPS see Nonribosomal peptide 

synthetases (NRPS)
NTU see Nephelometric turbidity units 

(NTU)
Nucleic acid extraction 718–719
Nutrient 233, 234, 239

nutrient budgets 462

OATP see Organic acid transporter 
polypeptides (OATP)

Occupational exposure 334
Occurrence in water

assessing the risk of 415
of ATXs 81, 82
of ATX(S) 110
of cyanobacteria 508
of CYNs 58, 61
of Debromoaplysiatoxin 118
of Geosmin 152
historical information 506–508, 569
of Lyngbyatoxin 118
of MCs 32, 35
of MIB 152
of Neurotoxins (ATXs, STXs,) 79
of STXs 101, 102

of toxins in drinking water 306–309
of toxins in recreational water 335
degradation

of ATXs, chemical and 
biological 85

of cyanotoxins in sediment 
passage 579–580

of CYNS, chemical 62
of CYNs, biological 63
of MCs, biological 38
of MCs, chemical 37
of MCs in sediment passage 

577–579
of STXs 101–102

Octopus abdopus 103
Octopus vulgaris 103
Odontesthes bonariensis 373
Offtake

drinking-water 564–571
horizontal variability 567–568
multilevel 570, 572
regulation 570
vertical variability 564–567

Okeania 113
Oligotrophic 230
Operational monitoring 427, 428, 430, 

488, 489–490, 491, 494, 
495, 496–497, 507, 522, 524, 
525, 531–534, 537, 539, 543, 
545, 551, 571, 572, 584–586, 
585–586, 622, 623

Oral exposure 309–313, 344, 369–371, 
372–385, 389

Oreochromis niloticus 375
Organic acid transporter polypeptides 

(OATP) 24, 787
Oryzias latipes 784
Oscillatoria planktothrix 138, 139
Oscillatoria sp. 57, 58, 60, 73, 76, 80, 

81, 83, 84, 151, 196, 199, 
233, 721

Overwintering 224–225
Oxidants 614–615, 615
Oxygen, analysis of 673
Oxynema sp. 100, 197
Ozone 611–613, 612–613

PAC see Powdered activated 
carbon (PAC)

Palm island mystery disease 312–313
Parameters triggering alerts 326
Pathogens 570, 572
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Pathway-oriented approach (POA) 
476–480, 478–479

Paucibacter toxinivorans 39
Paved areas 451
PCR see Polymerase chain reaction 

(PCR)
PDA see Photodiode array (PDA)
Periodic revision 431, 431–432
Permanganate 620
Permission for sampling 687–688
Personnel 654
pH 249, 256, 511

analysis of 673
Phormidium 29, 73, 76, 80, 82, 83, 

151, 197–198, 200, 233, 260, 
360, 621, 789

Phormidium/Microcoleus 83
Phormidium (Oscillatoria) 

nigroviridis 114
Phormidium terebriformis 83
Phosphorus 235, 238–245, 250, 251, 

255–256, 508–511, 692
analysis of 729
flushing 537–540
precipitation 528–531
reduction 515, 526–540
sampling and containers 682
target concentration 437–440

Photobacterium phosphoreum 782
Photodiode array (PDA) 757, 762, 773
Phycobilins 170
Phycocyanin 170

fluorescence of 710, 711
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