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Foreword

Wind power is a rapidly growing source of renewable energy in many parts
of the globe. Building wind farms and maintaining turbine assets also pro-
vide numerous job opportunities. As a result, the wind energy sector plays
an increasingly important role in the new economy. While being scaled up,
efficiency and reliability become the key to making wind energy competitive.
With the arrival of the data science and machine learning era, a lot of discus-
sions are being made in the related research community and wind industry,
contemplating strategies to take full advantage of the potentials and oppor-
tunities unleashed by the large amount of data to address the efficiency and
reliability challenges.

Data Science for Wind Energy arrives at the right time, becoming one
of the first dedicated volumes to bridge the gap, and provides expositions of
relevant data science methods and abundant case studies, tailored to address
research and practical challenges in wind energy applications.

This book of eleven technical chapters is divided into three parts, unified
by a general data science formulation presented in Chapter 1. The overar-
ching formulation entails the modeling and solution of a set of probability
density functions, conditional or otherwise, not only to account for the mean
estimation or prediction, but also to allow for uncertainty quantification. The
first part of the book embodies the modeling of a spatio-temporal random
wind field and uses that as a springboard for better forecasting. Chapter 2
recaps the existing methods for modeling data in a univariate time series,
and Chapters 3 and 4 bring to the readers many new data science concepts
and methods. The asymmetry quantification and asymmetric spatio-temporal
modeling introduced in Chapter 3 and the regime-switching methods discussed
in Chapter 4 are particularly interesting. The second part of the book con-
centrates on the system-level, power production-oriented turbine performance
assessment. This part starts off with a power curve analysis (Chapter 5), fol-
lowed by adding physically informed constraints to power curve modeling for
devising productive efficiency metrics (Chapter 6). Chapters 7 and 8 further
discuss, respectively, the circumstances when a turbine’s performance can be
enhanced by a purposeful action or diminished due to the wake effect. The
third part of the book focuses on reliability management and load analysis
for wind turbines, nested within an integrative framework combining models,
simulations and data (Chapter 9). The load analysis for reliability assessment
involves heavily statistical sampling techniques, as detailed in Chapters 10 and

xv



xvi � Foreword

11, and those methods are useful to general reliability engineering purposes—
my own research on electrical power system reliability has been benefited by
these data science methodologies. I am pleased to see the anomaly detection
and fault diagnosis methods presented in Chapter 12, borrowing experiences
and successes from other industries for the benefit of wind energy practice.

One of the reasons I am fond of this book is the author’s diligence and
generosity in collecting, arranging, and releasing ten important wind farm
datasets, more than 150 megabytes in volume, plus another 440 megabytes
of simulated data used in reliability verification. On top of that, the author
provides computer codes for all eleven technical chapters, most of them in R

while some are in MATLAB R©, either for reproducing figures and tables in the
book or implementing some major algorithm. I am sure that those data and
codes will immensely help both academic researchers and practitioners.

To appreciate a book, it is helpful to understand the author. I had the good
fortune to get to know Dr. Yu Ding shortly after he joined Texas A&M faculty
in 2001. There was a university-wide event celebrating the 125th anniversary
of Texas A&M University. Yu and I happened to sit next to each other at the
same table, and at that moment, I had been with the university for 23 years,
while Yu had been for about 25 days. In the ensuing years, Yu’s path and mine
have crossed often. We served on the committees of each other’s students, co-
authored papers and co-directed research projects, and because of these, I am
reasonably familiar with most of the materials presented in this book. I have
witnessed Yu’s quick ascent to a leading and authoritative researcher on the
intersection of data science and wind energy. Yu’s unique multidisciplinary
training and penetrating insights allow him and his research team to produce
many influential works, contributing to methodology development and ben-
efiting practices. Yu’s work on turbine performance assessment in particular
leads to large-scale fleet-wide implementations, rendering multi-million-dollar
extra revenues. Not surprisingly, Yu was recognized with a Research Impact
Award by Texas A&M College of Engineering in May 2018 “for innovations
in data and quality science impacting the wind energy industry.”

It is thus a great pleasure for me to introduce this unique and timely book
and a dear colleague to the academia and practitioners who want to know
more about data science for wind energy.

Chanan Singh
Regents Professor and Irma Runyon Chair Professor
Electrical & Computer Engineering Department
Texas A&M University, College Station, Texas

June 2019



Preface

All models are wrong but some are useful.

— George E. P. Box

My introduction to the field of wind energy started from a phone call taking
place sometime in 2004. Dr. Jiong Tang of the University of Connecticut called
and asked if I would be interested in tackling some wind turbine reliability
problems.

I got to know Jiong when we were both mechanical engineering gradu-
ate students at the Pennsylvania State University. I later left Penn State for
my doctoral study at the University of Michigan. My doctoral research was
oriented towards a specialty area of data science—the quality science, which
employs and develops statistical models and methods for quality improvement
purpose. Prior to that phone call, my quality science applications were exclu-
sively in manufacturing. I reminded Jiong that I knew almost nothing about
wind turbines and wondered how I could be of any help. Jiong believed that
data available from turbine operations had not been taken full advantage of
and thought my data science expertise could be valuable. I was intrigued by
the research challenges and decided to jump at the opportunity.

The first several years of my wind energy research, however, involved lit-
tle data. Although the industry had gathered a large amount of operational
data through the supervisory control and data acquisition systems of turbines,
we had a hard time persuading any turbine manufacturer or owner/opera-
tor to share their data. Our luck turned around a few years later, after we
aligned ourselves with national labs and several wind companies. Through
the academia-government-industry partnership, my research group was able
to collect over 100 gigabytes wind turbine testing data and wind farm oper-
ational data. Working with the vast amount of real-world data enabled me
to build a rewarding career that developed data science methods to address
wind energy challenges and it is still going strong.

While working in the wind energy area, I benefited from having a mechan-
ical engineering background. The majority of wind energy research is carried
out, for understandable reasons, by domain experts in aerospace, mechanical,
civil, or electrical engineering. My engineering training allows me to commu-
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nicate with domain experts with ease. Maybe this is why Jiong thought of
involving me in his wind turbine project in the first place.

As I got involved more and more in the field of wind energy, I observed a
disconnection between this typical engineering field and the emerging field of
data science. Wind engineers or wind engineering researchers routinely handle
data, but most of the domain experts are not exposed to systematic data
science training while in schools because the engineering curricula, until very
recently, offered only basic engineering statistics. This did not keep pace with
the fast development of new ideas and methods introduced by data science
in the past twenty years. On the other hand, wind engineering, like most
other substantial engineering fields, finds a relatively small number of trained
data scientists from computer science or statistics disciplines working in the
area, probably because the entry barrier associated with mastering domain
knowledge appears intimidating. This may explain that while there are plenty
of generic data science and machine learning books, books that can bridge the
two distinctive fields and offer specific and sophisticated data science solutions
to wind energy problems are, in fact, scarce.

I had been thinking of writing a book filling precisely this void. I came
to realize in early 2017 that I may have enough materials when I was leading
a research team and preparing a National Science Foundation proposal to
its BIG DATA program. In fact, the structure of this book closely mirrors
the structure of that proposal, as it embodies three main parts discussing,
respectively, wind field analysis, wind turbine performance analysis, and wind
turbine load and reliability management. The 2017 NSF proposal was funded
at the end of the summer, and, I decided to submit the book proposal to
Chapman & Hall/CRC Press later in 2017.

I am grateful for the opportunities and privilege to work with many tal-
ented individuals on a problem of national importance. A few of those indi-
viduals played pivotal roles in my wind energy research career. The first is
obviously Dr. Jiong Tang—without him, I wouldn’t be writing this preface.
Then, there is Dr. Eunshin Byon, a former Ph.D. student of mine and now
a faculty member at the University of Michigan. Eunshin was the first stu-
dent who worked with me on wind energy research. She came to my group
during that aforementioned “data-light” period. Understandably, it was a dif-
ficult time for those of us who work with data. Eunshin was instrumental in
sustaining our research at that time, finding data through public sources and
testing innovative ideas that lay the foundation for the subsequent collabo-
rations with several industry members. I am delighted to see that Eunshin
becomes a recognized expert herself in the intersecting area of data science
and wind energy.

I appreciate immensely Mr. Brian Hayes, Executive Vice President of EDP
Renewables, North America, for his vision in starting the Texas A&M-EDP
Renewables partnership and his generous support in funding our research
and sharing their wind farm operational data. I am deeply grateful to Dr.
Shuangwen (Shawn) Sheng at the National Renewable Energy Laboratory
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for engaging my research team at the national or international level and for
countless hours of stimulating discussions that drive my research to new levels.
Of course, I am indebted to my Ph.D. advisor, Dr. Jianjun Shi, then at the
University of Michigan and now with the Georgia Institute of Technology,
for bringing me to the data science world and for teaching me how to be an
independent researcher.

Last but not least, I would like to thank my wife, Ying Li, and our daugh-
ter, Alexandra, for their love and support.

Yu Ding
Texas A&M University
College Station, Texas

June 2019
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C H A P T E R 1

Introduction

W
ind energy has been used as far back as Roman Egypt [51] (or even ear-
lier [194]). The well-preserved windmills that dotted the Dutch coast-

line or along the Rhine River have become symbols of usage before the modern
age. Although outdated, those windmills are top tourist attractions nowadays.
As widespread as those windmills were, wind energy played a rather minor role
in commercial electricity generation until the end of the last century. In 2000,
the wind power generation in the United States was 5.59 billion kilowatt-hours
(kWh), accounting for about 0.15% of the total electricity generated by the
US in that year [219]. In the past decade, however, wind energy witnessed
a rapid development and deployment. By the end of 2016, the annual wind
power production increased 40-fold relative to the amount of wind power in
2000, to nearly 227 billion kWh, and accounted for 5.6% of the total electricity
generation in that year [220]. The US Department of Energy even contem-
plates scenarios in which wind may generate 10% of the nation’s electricity
by 2020, 20% by 2030, and 35% by 2050 [217].

Remarkable progress has been made in wind turbine technology, which en-
ables the design and installation of larger turbines and allows wind farms to
be built at locations where wind is more intermittent and maintenance equip-
ment is less accessible. All these brought new challenges to operational relia-
bility. In an effort to maintain high reliability, with the help of advancement
in micro-electronics, modern wind farms are equipped with a large number
and variety of sensors, including, at the turbine level, anemometers, tachome-
ters, accelerometers, thermometers, strain sensors, and power meters, and at
the farm level, anemometers, vanes, sonars, thermometers, humidity meters,
pressure meters, among others. These sensors churn out a lot of data at a
fast pace, presenting unprecedented opportunities for data science to play a
crucial role in addressing technical challenges in wind energy.

Like solar energy, wind energy faces an intermittent nature of its source.
People commonly refer to wind and solar energy as variable renewable energy
sources. The intermittency makes wind and solar power different from most
other types of energy, even hydropower, as reservoirs built for hydropower

1
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plants smooth out the impact of irregularity and variability in precipitation
on hydropower production.

The intermittency in wind presents a number of challenges to wind energy
operations. The non-steady mechanical load yields excessive wear in a tur-
bine’s drive train, especially the gearbox and bearings, and makes the wind
turbines prone to fatigue failures—wind turbines operate just like a car be-
ing driven in a busy city with plenty of traffic lights and rarely any freeway.
Meanwhile, the randomness in wind power output makes it difficult to accom-
modate a substantial level of wind power in the power grid. All these lead to
an increased cost and a decreased market competitiveness for wind energy. No
wonder that as of 2016, the federal production tax credit (PTC) for wind was
still valued at 23 cents per kWh, roughly 30% of the levelized cost of energy
for onshore wind. Undoubtedly, this tax credit considerably boosts the mar-
ketability of wind energy, but without it, the competitiveness of wind energy
will be called into question.

As data continues to be accumulated, data science innovations, providing
profound understanding of wind stochasticity and enabling the design of coun-
termeasures, have the potential of generating ground-breaking advancements
in the wind industry. The commercial competitiveness of wind energy can
benefit a great deal from a good understanding of its production reliability,
which is affected by the unpredictability of wind and the productivity of wind
turbines. The latter, furthermore, depends on a turbine’s ability to convert
wind into power during its operation and the availability or reliability of wind
turbines. Data science solutions are needed in all of these aspects.

1.1 WIND ENERGY BACKGROUND
The focus of this book is data analytics at the wind turbine and wind farm
level. A thorough coverage of such a scope entails a wide variety of data and a
broad array of research issues. While data analytics at the power grid level is
also an important part of wind energy research, the author’s research has yet
to be extended to that area. Hence, the scope of this book does not include
data analytics at the power grid level. Nevertheless, a great deal of the turbine-
level and farm-level data analytics is related to grid-level data analytics. For
example, power predictions have a significant impact on grid integration.

The wind turbines considered here are the utility-scale, horizontal axis
turbines. As illustrated in Fig. 1.1, a turbine, comprising thousands of parts,
has three main, visible components: the blades, the nacelle, and the tower.
The drive train and control system, including the gearbox and the generator,
are inside the nacelle. While the vast majority of horizontal axis wind turbines
use a gearbox to speed up the rotor speed inside the generator, there are also
direct drive wind turbines in which the gearbox is absent and the rotor directly
drives the generator. An anemometer or a pair of them can be found sitting
on top of the nacelle, towards its rear end, to measure wind speed, whereas
a vane is for the measurement of wind direction. Responding to changes in
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wind direction, yaw control is to rotate and point the nacelle to where the
wind comes from. Responding to changes in wind speed, pitch control turns
the blades in relation to the direction of the incoming air flow, adjusting
the capability of the turbine to absorb the kinetic energy in the wind or the
turbine’s efficiency in doing so.
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FIGURE 1.1 Schematic of major parts in a wind turbine.

A commercial wind farm can house several hundred wind turbines. For
instance, the Roscoe Wind Farm, the largest wind farm in Texas as of this
writing, houses 627 wind turbines. Other than turbines, meteorological masts
are installed on a wind farm, known as the met towers or met masts. A number
of instruments and sensors are installed on the met towers, measuring addi-
tional environmental conditions, such as temperature, air pressure, humidity,
precipitation, among others. Anemometers and vanes are usually installed at
multiple heights of a met tower. The multi-height measurements allow the cal-
culation of vertical wind shear, which characterizes the change in wind speed
with height, as well as the calculation of vertical wind veer, which character-
izes the change in wind direction with height. The wind speed and direction
measured at the nacelle during a commercial operation are typically only at
the hub height.

Throughout the book, denote by x the input vector whose elements are the
environmental variables, which obviously include wind speed, V , in the unit
of meters per second (m/s), and wind direction, D, in degrees (◦). The zero
degree corresponds to due north. Sometimes analysts combine the speed and
direction information of wind and express them in two wind velocities along
the longitudinal and latitudinal directions, respectively. Other environmental
variables include air density, ρ, humidity, H, turbulence intensity, I, and wind
shear, S. Not all of these environmental variables are directly measured. Some
of them are computed, such as,
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• Turbulence intensity, I: first compute the standard deviation of the wind
speeds in a short duration and denote it as σ̂. Then, I = σ̂/V̄ , where
V̄ is the average wind speed of the same duration. It is worth noting
that the concept of turbulence intensity in air dynamics is similar to the
coefficient of variation concept in statistics [58].

• Wind shear, S: wind speeds, V1 and V2, are measured at heights h1 and
h2, respectively. Then, the vertical wind shear between the two heights
is S = ln(V2/V1)/ln(h2/h1) [175]. When anemometers are installed at
locations both above and below the rotor hub, then two wind shears,
the above-hub wind shear, Sa, and the below-hub wind shear, Sb, can
be calculated.

• Air density, ρ, in the unit of kilograms per cubic meter (kg/m3): given
air temperature, T , expressed in Kelvin and air pressure, P , expressed
in Newtons per square meter (N/m2), ρ = P/(% · T ), where % = 287
Joule/(kg·Kelvin) is the gas constant [216].

Using the above notation, the input vector to a turbine can be expressed
as x = (V,D, ρ,H, I, Sa, Sb)

T . But the input vector is not limited to the afore-
mentioned variables. The hours in a day when a measurement is recorded, the
power output of a nearby turbine, wind directional variation and wind veer if
either or both are available, could also be included in the input vector, x. On
the other hand, while the wind speed, wind direction, and temperature mea-
surements are commonly available on commercial wind farms, the availability
of other measurements may not be.

Two types of output of a wind turbine are used in this book: one is the
active power measured at a turbine, denoted by y and in the unit of kilo-
watts (kW) or megawatts (MW), and the other one is the bending moment,
a type of mechanical load, measured at critical structural spots, denoted by z
and in the unit of kiloNewtons-meter (kN-m) or million Newtons-meter (MN-
m). The power output measures a turbine’s power production capability, while
the bending moment measurements are pertinent to a turbine’s reliability and
failure management. The power measurement is available for each and every
turbine. Analysts may also aggregate the power outputs of all turbines in an
entire wind farm when the whole farm is treated as a single power production
unit. The bending moment measurements are currently not available on com-
mercially operated turbines. They are more commonly collected on testing
turbines and used for design purposes.

The input and output data can be paired into a data record. For the power
response, it is the pair of (x, y), whereas for the mechanical load response, it
is (x, z).

Turbine manufacturers provide a wind speed versus power functional
curve, referred to as the power curve. Fig. 1.2 presents such a power curve. As
shown in the power curve, a turbine starts to produce power after the wind
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reaches the cut-in speed, Vci. A nonlinear relation between y and V then en-
sues, until the wind reaches the rated wind speed, Vr. When the wind speed
is beyond Vr, the turbine’s power output will be capped at the rated power
output, yr, also known as the nominal power capacity of the turbine, using
control mechanisms such as pitch control and rotor speed regulation. The tur-
bine will be halted when the wind reaches the cut-out speed, Vco, because high
wind is deemed harmful to the safety of a turbine. The power curve shown
here is an ideal power curve, also known as the nominal power curve. When
the actual measurements of wind speed and power output are used, the V -
versus-y plot will not appear as slim and smooth as the nominal power curve;
rather, it will be a data scattering plot, showing considerable amount of noise
and variability.

In order to protect the confidentiality of the data providers, the wind power
data used in this book are normalized by the rated power, yr, and expressed
as a standardized value between 0 and 1.
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FIGURE 1.2 Nominal power curve of a wind turbine. (Reprinted with

permission from Lee et al. [132].)

The raw data on wind turbines are recorded in a relatively fast frequency,
in the range of a couple of data points per second to a data point per a
couple of seconds. The raw data are stored in a database, referred to as the
data historian. When the data are used in the turbine’s supervisory control
and data acquisition (SCADA) system, the current convention in the wind
industry is to average the measurements over 10-minute time blocks because
wind speed is assumed stationary over this 10-min duration and other envi-
ronmental variables are assumed nearly constant. These assumptions are, of
course, not always true. In this book, however, we choose to follow this indus-
trial standard practice. With 10-min blocks, a year’s worth of data has about
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52,560 data pairs if there is no missing data at all. In reality, even with auto-
mated measurement devices, missing data is common, almost always making
the actual data amount fewer than 50,000 for a year.

Even though the wind speed used is mostly a 10-min average, we decide
to drop the overline while representing this average, for the sake of notational
simplicity. That is to say, we use V , instead of V̄ , to denote the average wind
speed in a 10-min block. When V̄ is used, it refers to the average of 10-min
averaged wind speeds.

Fig. 1.3 shows the arrangement of the multi-turbine, multi-year data for a
wind farm. In the top panel, the whole dataset is shown as a cube, in which
each cross section represents the spatial layout of turbines on a farm and the
horizontal axis represents the time. The longitudinal data are the time-series
of a turbine’s power output, y, and environmental measurements, x. The
cross-sectional data, or the snapshot data, are of multiple turbines but are for
a particular point in time. A cross section could be a short time period, for
instance, a couple of days or weeks, during which the turbine’s innate condition
can be assumed unchanged. The power curve of a turbine is visualized as the
light-colored (yellow) curve in the bottom panel (see also Color eBook), with
the actual measurements in the background. As mentioned earlier, the actual
measurements are noisy, and the nominal power curve averages out the noise.

1.2 ORGANIZATION OF THIS BOOK
We organize this book based on a fundamental data science formulation for
wind power production:

ft(y) =

∫
x

ft(y|x)ft(x)dx, (1.1)

where f(·) denotes a probability density function and the subscript t, the time
indicator, signifies the dynamic, time-varying aspect of the function.

This formulation implies that in order to understand ft(y), namely the
stochasticity of power output y, it is necessary to understand the distribution
of wind and other environmental variables, ft(x), as well as the turbine’s power
production conditioned on a given wind and environmental condition x. We
use a conditional density function, ft(y|x), to characterize the conditional
distribution.

When the power output, y, is replaced by the mechanical load response
(namely the bending moment), z, the above formulation is still meaningful,
with f(z|x) representing the conditional load response for a given environ-
mental condition.

The use of conditional density functions is a natural result of wind inter-
mittency. When the driving force to a turbine changes constantly, the turbine’s
response, regardless of being the power or the load, ought to be characterized
under a given wind and environmental condition.

This book aims to address three aspects related to the aforementioned
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general formulation of wind power production. Thus, we divide the rest of
this book into three parts:

1. The first part consists of three chapters. It is about the modeling of
ft(x), which begets an analysis of the wind field. Based on the modeling
and analysis of the wind field, a wind forecast can be made. If a whole
wind farm is simplified as a single location, or the forecast at a single
turbine is of concern, the need for a temporal analysis arises. If multiple
turbines at different sites are to be studied, or multiple wind farms at dif-
ferent geographic locations are involved, the modeling of ft(x) becomes
a spatio-temporal analysis. Both temporal and spatio-temporal methods
will be described but the focus is on the spatio-temporal analysis.

2. The second part consists of four chapters. It discusses power response
modeling and shows how the power response model can be used for per-
formance evaluation of wind turbines. The general expression, f(y|x),
depicts a multivariate, probabilistic power response surface. The power
curve is in fact the conditional expectation, E(y|x), when x is reduced
to a univariate input, the wind speed, V . The modeling of f(y|x) or
E(y|x) falls into the area of density regression or nonparametric regres-
sion analysis.

3. The third part consists of four chapters. It provides a reliability and
load analysis of wind turbines. Using Eq. 1.1 to assess power produc-
tion assumes, implicitly, an up-running wind turbine, namely a non-zero
ft(y|x). But wind turbines, under non-steady wind forces, are prone
to failures and downtime. To factor in a turbine’s reliability impact,
it is important to assess a turbine’s load response under various wind
conditions. The statistical learning underlying the analysis in this part
is related to sampling techniques, including importance sampling and
Markov chain Monte Carlo sampling.

1.2.1 Who Should Use This Book
The book is intended to be a research monograph, but it can be used for teach-
ing purposes as well. We expect our readers to have basic statistics and proba-
bility knowledge, and preferably a bachelor’s degree in STEM (Science, Tech-
nology, Engineering, and Math). This book provides an in-depth discussion of
how data science methods can improve decision making in several aspects of
wind energy applications, from near-ground wind field analysis and wind fore-
cast, turbine power curve fitting and performance analysis, turbine reliability
assessment, to maintenance optimization for wind turbines and wind farms. A
broad set of data science methods are covered, including time series models,
spatio-temporal analysis, kernel regression, decision trees, splines, Bayesian
inference, and random sampling. The data science methods are described in
the context of wind energy applications with examples and case studies. Real
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data and case studies from wind energy research and industrial practices are
used in this book. Readers who may benefit from reading this book include
practitioners in the wind industry who look for data science solutions and
faculty members and students who may be interested in the research of data
science for wind energy in departments such as industrial and systems engi-
neering, statistics, and power engineering.

There are a few books on renewable energy forecasting [117], which overlap,
to a certain degree, with the content of Part I. A topic related to wind energy
but left out in the book is about grid integration, for which interested readers
can refer to the book by Morales et al. [148].

1.2.2 Note for Instructors
This book can be used as the textbook for a stand-alone course, with the
course title the same as or similar to the title of this book. It can also be used
to as a reference book that provides supplementary materials for certain seg-
ments of either a data science course (supplementing wind energy application
examples) or a power engineering course (supplementing data science meth-
ods). These courses can come from the offerings of a broad set of departments,
including Industrial Engineering, Electrical Engineering, Statistics, Aerospace
Engineering, or Computer Science.

We recommend that the first chapter be read before later chapters are
covered. The three parts after the first chapter are more or less independent
of each other. It does not matter in which sequence the three parts are read
or taught. Within each part, however, we recommend following the order of
the chapters. It will take two semesters to teach the whole book. One can,
nevertheless, sample one or two chapters from each part to form the basis for
a one-semester course.

Most of the examples are solved using the R programming language, while
some are solved using the MATLAB R© programming language. At the end of
a chapter, acronyms and abbreviations used in that chapter are summarized
and explained in the Glossary section.

1.2.3 Datasets Used in the Book
In this book, the following datasets are used:

1. Wind Time Series Dataset. This dataset comes from a single turbine
on an inland wind farm. The dataset covers the duration of one year, but
data at some of the time instances are missing. Two time resolutions are
included in the dataset: the 10-min data and the hourly data; the latter
is the further average of the former. For each temporal resolution, the
data is arranged in three columns. The first column is the time stamp,
the second column is the wind speed, and the third column is the wind
power.
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2. Wind Spatial Dataset. This dataset comes from ten turbines in an
offshore wind farm. Only the hourly wind speed data are included. The
duration of the data covers two months. The longitudinal and latitudinal
coordinates of each turbine are given, but those coordinates are shifted
by an arbitrary constant, so that the actual locations of these turbines
are protected. The relative positions of the turbines, however, remain
truthful to the physical layout. The data is arranged in the following
fashion. Under the header row, the next two rows are the coordinates
of each turbine. The third row under the header is purposely left blank.
From the fourth row onwards are the wind speed data. The first column
is the time stamp. Columns 2-11 are the wind speed values measured in
meters per second.

3. Wind Spatio-Temporal Dataset1. This dataset comprises the average
and standard deviation of wind speed, collected from 120 turbines in
an inland wind farm, for the years of 2009 and 2010. Missing data in
the original dataset are imputed by using the iterative singular value
decomposition [139]. Two data files are associated with each year—one
contains the hourly average wind speed, used in Eq. 3.18, and the other
contains the hourly standard deviation of wind speed, used in Eq. 3.25.
The naming convention makes it clear which year a file is associated with
and whether it is for the average speed (Ave) or for the standard devia-
tion (Stdev). The data arrangement in these four files is as follows—the
columns are the 120 turbines and the rows are times, starting from 12
a.m. on January 1 of a respective year as the first data row, followed by
the subsequent hours in that year. The fifth file in this dataset contains
the coordinates of the 120 turbines. To protect the wind farm’s identity,
the coordinates have been transformed by an undisclosed mapping, so
that their absolute values are no longer meaningful but the turbine-to-
turbine relative distances are maintained.

4. Wind Spatio-Temporal Dataset2. The data used in this study consists
of one year of spatio-temporal measurements at 200 randomly selected
turbines on a flat terrain inland wind farm, between 2010 and 2011. The
data consists of turbine-specific hourly wind speeds measured by the
anenometers mounted on each turbine. In addition, one year of hourly
wind speed and direction measurements are available at three met masts
on the same wind farm. Columns B through OK are the wind speed
and wind power associated with each turbine, followed by Columns OL

through OQ, which are for wind speed and wind direction associated
with each mast. The coordinates of the turbines and masts are listed in
the top rows, preceding the wind speed, direction, and power data. The
coordinates are shifted by a constant, so that while the relative positions
of the turbines and the met masts remain faithful to the actual layout,
their true geographic information is kept confidential. This anemometer
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network provides a coverage of a spatial resolution of one mile and a
temporal resolution of one hour.

5. Inland Wind Farm Dataset1 and Offshore Wind Farm Dataset1.
Data included in these two datasets are generated from six wind turbines
and three met masts and are arranged in six files, each of which is asso-
ciated with a turbine. The six turbines are named WT1 through WT6,
respectively. The layout of the turbines and the met masts is shown in
Fig. 5.6. On the offshore wind farm, all seven environmental variables
as mentioned above are available, namely x = (V,D, ρ,H, I, Sa, Sb),
whereas on the inland wind farm, the humidity measurements are
not available, nor is the above-hub wind shear, meaning that x =
(V,D, ρ, I, Sb). Variables in x were measured by sensors on the met
mast, whereas y was measured at the wind turbines. Each met mast has
two wind turbines associated with it, meaning that the x’s measured
at a met mast are paired with the y’s of two associated turbines. For
WT1 and WT2, the data were collected from July 30, 2010 through July
31, 2011 and for WT3 and WT4, the data were collected from April 29,
2010 through April 30, 2011. For WT5 and WT6, the data were collected
from January 1, 2009 through December 31, 2009.

6. Inland Wind Farm Dataset2 and Offshore Wind Farm Dataset2. The
wind turbine data in these two datasets include observations during the
first four years of the turbines’ operations. The inland turbine data are
from 2008 to 2011, whereas the offshore data are from 2007 to 2010.
The measurements for the inland wind farm include the same x’s as in
the Inland Wind Farm Dataset1 and those for the offshore wind farm
include the same x’s as in the Offshore Wind Farm Dataset1. Most of
the environmental measurements x are taken from the met mast closest
to the turbine, with the exception of wind speed and turbulence inten-
sity which are measured on the wind turbine. The mast measurements
are used either because some variables are only measured at the mast
(such as air pressure and ambient temperature, which are used to calcu-
late air density) or because the mast measurements are considered more
reliable (such as wind direction).

7. Turbine Upgrade Dataset. This dataset includes two sets, correspond-
ing, respectively, to an actual vortex generator installation and an arti-
ficial pitch angle adjustment. Two pairs of wind turbines from the same
inland wind farm, as used in Chapter 5, are chosen to provide the data,
each pair consisting of two wind turbines, together with a nearby met
mast. The turbine that undergoes an upgrade in a pair is referred to
as the experimental turbine, the reference turbine, or the test turbine,
whereas the one that does not have the upgrade is referred to as the
control turbine. In both pairs, the test turbine and the control turbine
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are practically identical and were put into service at the same time. This
wind farm is on a reasonably flat terrain.

The power output, y, is measured on individual turbines, whereas
the environmental variables in x (i.e., the weather covariates) are mea-
sured by sensors at the nearby mast. For this dataset, there are five
variables in x and they are the same as those in the Inland Wind

Farm Dataset1. For the vortex generator installation pair, there are
14 months’ worth of data in the period before the upgrade and around
eight weeks of data after the upgrade. For the pitch angle adjustment
pair, there are about eight months of data before the upgrade and eight
and a half weeks after the upgrade.

Note that the pitch angle adjustment is not physically carried out,
but rather simulated on the respective test turbine. The following data
modification is done to the test turbine data. The actual test turbine
data, including both power production data and environmental mea-
surements, are taken from the actual turbine pair operation. Then, the
power production from the designated test turbine on the range of wind
speed over 9 m/s is increased by 5%, namely multiplied by a factor of
1.05, while all other variables are kept the same. No data modification
of any kind is done to the data affiliated with the control turbine in the
pitch angle adjustment pair.

The third column of a respective dataset is the upgrade status

variable, of which a zero means the test turbine is not modified yet, while
a one means that the test turbine is modified. The upgrade status

has no impact on the control turbine, as the control turbine remains
unmodified throughout. The vortex generator installation takes effect
on June 20, 2011, and the pitch angle adjustment takes effect on April
25, 2011.

8. Wake Effect Dataset. This dataset includes data from six pairs of wind
turbines (or, 12 wind turbines in total) and three met masts. The turbine
pairs are chosen such that no other turbines except the pair are located
within 10 times the turbine’s rotor diameter. Such arrangement is to
find a pair of turbines that are free of other turbines’ wake, so that the
wake analysis result can be reasonably attributed to the wake of its pair
turbine. The operational data for the six pairs of turbines are taken
during roughly a yearlong period between 2010 and 2011. The datasets
include wind power output, wind speed, wind direction, air pressure,
and temperature, of which air pressure and temperature data are used
to calculate air density. The wind power outputs and wind speeds are
measured on the turbine, and all other variables are measured at the met
masts. The data from Mast 1 are associated with the data for Turbine
Pairs 1 and 2, Mast 2 with Pairs 3 and 4, and Mast 3 with Pairs 5 and
6. Fig. 8.6 shows the relative locations of the six pairs of turbines and
three met masts.
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9. Turbine Bending Moment Dataset. This dataset includes two parts.
The first part is three sets of physically measured blade-root flapwise
bending moments on three respective turbines, courtesy of Risø-DTU
(Technical University of Denmark) [180]. The basic characteristics of the
three turbines can be found in Table 10.1. These datasets include three
columns. The first column is the 10-min average wind speed, the second
column is the standard deviation of wind speed within a 10-min block,
and the third column is the maximum bending moment, in the unit of
MN-m, recorded in a 10-min block. The second part of the dataset is the
simulated load data used in Section 10.6.5. This part has two sets. The
first set is the training data that has 1,000 observations and is used to fit
an extreme load model. The second set is the test data that consists of
100 subsets, each of which has 100,000 observations. In other words, the
second dataset for testing has a total of 10,000,000 observations, which
are used to verify the extreme load extrapolation made by a respective
model. Both simulated datasets have two columns: the first is the 10-min
average wind speed and the second is the maximum bending moment
in the corresponding 10-min block. While all other datasets are saved
in CSV file format, this simulated test dataset is saved in a text file
format, due to its large size. The data simulation procedure is explained
in Section 10.6.5.

10. Simulated Bending Moment Dataset. This dataset includes two sets.
One set has 600 data records, corresponding to the training set referred
to in Section 11.4.1, whereas the other set has 10,000 data records, which
are used to produce Fig. 11.1. Each set has three columns of data (other
than the serial number). The first column is the wind speed, simulated
using a Rayleigh distribution, and the second and third columns are, re-
spectively, the simulated flapwise and edgewise bending moments, in the
unit of kN-m. The flapwise and edgewise bending moments are simulated
from TurbSim [112] and FAST [113], following the procedure discussed
in [149]. TurbSim and FAST are simulators developed at the National
Renewable Energy Laboratory (NREL) of the United States.

GLOSSARY
CSV: Comma-separated values Excel file format

DTU: Technical University of Denmark

NREL: National Renewable Energy Laboratory

PTC: Production tax credit

SCADA: Supervisory control and data acquisition

STEM: Science, technology, engineering, and mathematics

US: United States of America
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C H A P T E R 2

A Single Time Series
Model

P
art I of this book is to model ft(x). The focus is on wind speed, V ,
because wind speed is much more volatile and difficult to predict than

other environmental variables such as air density or humidity. In light of this
thought, ft(x) is simplified to ft(V ).

A principal purpose of modeling ft(V ) is to forecast wind speed or wind
power. Because it is impossible to control wind, forecasting becomes an essen-
tial tool in turbine control and wind power production planning. Modeling the
time-varying probability density function ft(V ) directly, however, is difficult.
In practice, what is typically done is to make a point forecast first and then
assess the forecasting uncertainty, which is to attach a confidence interval to
the point forecast. The point forecast is a single value used to represent the
likely wind speed or power at a future time, corresponding, ideally but not
necessarily, to the mean, median, or mode of the probability distribution of
wind speed or power at that future time.

The forecasting can be performed either on wind speed or on wind power.
Wind power forecasting can be done by forecasting wind speed first and then
converting a speed forecast to a power forecast through the use of a simple
power curve, as explained in Chapter 1, or the use of a more advanced power
curve model, to be explained in Chapter 5. Wind power forecasting can also
be done based purely on the historical observations of power output, without
necessarily accounting for wind speed information. In the latter approach, the
methods developed to forecast wind speed can be used, almost without any
changes, to forecast wind power, so long as the wind speed data are replaced
with the wind power data. For this reason, while our discussion in this chapter
mainly refers to wind speed, please bear in mind its direct applicability to wind
power forecast.

In Chapter 2, we consider models that ignore the spatial information and

17
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are purely based on the time series data. In Chapters 3 and 4, we discuss
various types of spatial or spatio-temporal models.

2.1 TIME SCALE IN SHORT-TERM FORECASTING
One essential question in forecasting is concerning the time-scale requirements
of forecast horizons. Turbine control typically requires an instantaneous re-
sponse in seconds or sub-seconds. Production planning for grid integration
and market response is in a longer time scale. Two energy markets, the real-
time market and the day-ahead market, demand different response times. The
real-time market updates every five minutes, requiring a response in the level
of minutes, whereas the day-ahead market is for trading on the next day, re-
quiring forecasting up to 24 hours ahead. Between these two time scales, there
are other planning actions that may request a forecast from a few minutes to
a few hours ahead. For instance, when the wind power supply is insufficient
to meet the demand, the system operators would bring up reserve powers.
The spinning reserve, which has been synchronized to the grid system, can
be ready for dispatch within 10 minutes, whereas the delivery of contingency
reserves may encounter a delay, up to an hour or more, thereby needing a
longer lead time for notification. For various planning and scheduling pur-
poses, a common practice for wind owners/operators is to create forecasts, for
every hour looking ahead up to 24 hours, and then update that hourly ahead
forecast at the next hour for the subsequent 24 hours, using the new set of
data collected in between.

When it comes to wind forecasting, there are two major schools of thought.
One is the physical model-based approach, collectively known as the Numerical
Weather Prediction (NWP) [138], which is the same scientific method used
behind our daily weather forecast, and the second is the data-driven, statistical
modeling-based approach. By calling the second approach “data-driven,” we
do not want to leave readers with the impression that NWP is data free; both
approaches use weather measurement data. The difference between the two
approaches is that NWP involves physical atmospheric models, while the pure
data-driven models do not.

Because NWP is based on physical models, it has, on the one hand, the
capability to forecast into a relatively longer time horizon, from a few hours
ahead to several days ahead. On the other hand, the intensive computation
required to solve the complicated weather models limits the temporal and
spatial resolutions for NWP, making analysts tend to believe that for a short-
term forecast on a local wind field, the data-driven models are advantageous.
There is, however, no precise definition of how short is a “short term.” Giebel
et al. [71] deem six hours as the partition, shorter than which, the data-
driven models perform better, while longer than that, NWP ought to be used.
Analysts do sometimes push the boundary of data-driven models and make
forecasting over a longer horizon, but still, the horizon is generally shorter
than 12 hours.
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In this book, our interest is to make short-term forecasting on local wind
fields. We follow the same limits for short-term as established in the literature,
which is usually a few hours ahead and no more than 12 hours ahead.

2.2 SIMPLE FORECASTING MODELS
We first consider the situation that the historical wind data is arranged in a
single time series, from time 1 to time t, denoted by Vi, i = 1, . . . , t. The single
time series is appropriate to describe the following application scenarios:

• The wind speed or power data measured on a single turbine is used to
forecast future wind speed or power on the same turbine.

• The wind speed on a single met tower is used to forecast wind speed,
and used as the representation of wind speed for a wind farm.

• The aggregated wind power of a wind farm, namely the summation of
wind power output of all individual turbines on the farm, is used to
forecast the future aggregated power output of the wind farm.

• Although wind speed is measured at multiple locations, the average wind
speed over the locations is used to forecast the future average wind speed.

2.2.1 Forecasting Based on Persistence Model
The simplest point forecasting is based on the persistence (PER) model, which
says the wind speed or power at any future time, t + h, h > 0, is simply the
same as what is observed at the current time, t, namely,

V̂t+h = Vt, h > 0, (2.1)

where the hat notation (̂ ) is used to indicate a forecast (or an estimate). The
persistence forecast should, and can easily, be updated when a new observation
of V arrives at the next time point.

When the persistence model is used, there is no uncertainty quantifica-
tion procedure directly associated with it. In order to associate a confidence
interval, one needs to establish a probability distribution for wind speed.

2.2.2 Weibull Distribution
Wind speeds are nonnegative and their distribution is right skewed. They do
not strictly follow a normal distribution. Understandably, probability densi-
ties that are right skewed with nonnegative domain, such as Weibull, trun-
cated normal, or Rayleigh distributions, are common choices for modeling
wind speed; for a comprehensive list of distributions, please refer to a survey
paper on this topic [32].

There is no consensus on which distribution best describes the data of
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wind speed, although Weibull distribution is arguably the most popular one.
Analysts can try a few of the widely used distributions and test which one fits
the data the best. This practice entails addressing two statistical problems—
one is to estimate the parameters in the chosen distribution and the other is
to assess the goodness-of-fit of the chosen distribution and see if the chosen
distribution provides a satisfactory fit to the data.

Consider the Weibull distribution as an example. Its probability density
function (pdf) is expressed as

f(x) =

{(
β
η

)(
x
η

)β−1
exp

{
−
(
x
η

)β}
x ≥ 0,

0 x < 0,
(2.2)

where β > 0 is the shape parameter, affecting the skewness of the distribution,
and η > 0 is the scale parameter, affecting the concentration of the distribu-
tion. When β ≤ 1, the Weibull density is a decaying function, monotonically
going downwards from the origin. When β > 1, the Weibull density first rises
up, passes a peak and then goes down. For commercial wind farms, it makes
no practical sense to expect its wind speed to follow a Weibull distribution
of β ≤ 1, as what it suggests is that most frequent winds are all low-speed
winds. If a wind farm planner does a reasonable job in selecting the farm’s
location, it is expected to see β > 1.

The probability density function in Eq. 2.2 is known as the two-parameter
Weibull distribution, whose density curve starts at the origin on the x-axis. A
more general version, the three-parameter Weibull distribution, is to replace
x by x− ν in Eq. 2.2, where ν is the location parameter, deciding the starting
point of the density function on the x-axis. When ν = 0, the three-parameter
Weibull density simplifies to the two-parameter Weibull density. The two-
parameter Weibull is the default choice, unless one finds that there is an
empty gap in the low wind speed measurements close to the origin.

2.2.3 Estimation of Parameters in Weibull Distribution
To estimate the parameters in the Weibull distribution, a popular method
is the maximum likelihood estimation (MLE). Given a set of n wind speed
measurements, Vi, i = 1, . . . , n, the log-likelihood function, L(β, η|V ), can be
expressed as:

L(β, η|V ) = n lnβ − βn ln η + (β − 1)

n∑
i=1

lnVi −
n∑
i=1

(
Vi
η

)β
. (2.3)

Maximizing the log-likelihood function can be done by using an optimization
solver in a commercial software, such as nlm in R. Because nlm is for min-
imization, one should multiply a (−1) to the returned values of the above
log-likelihood function while using nlm or a similar minimization routine in
other software packages. With the availability of the MASS package in R, fitting
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FIGURE 2.1 Fit a Weibell distribution to the wind speed data in the

Wind Time Series Dataset. The left panel is the fit to the hourly

data. The estimated parameters are: η̂ = 7.60, β̂ = 3.40, mean = 6.84,

median = 6.69, mode = 6.5, and the standard deviation = 2.09. The

right panel is the fit to the 10-min data. The estimated parameters

are: η̂ = 7.61, β̂ = 3.41, mean = 6.86, median = 6.67, mode = 6.5, and

the standard deviation = 2.06. The values of mean, median, mode and

standard deviation are estimated directly from the data, rather than

calculated using η̂ and β̂.

a Weibull distribution can be done more directly by using the fitdistr func-
tion. Suppose that the wind speed data is stored in the vector named wsdata.
The following R command can be used for fitting a Weibull distribution,

fitdistr(wsdata, "weibull").

Fig. 2.1 presents an example of using a Weibull distribution to fit the
wind speed data in the Wind Time Series Dataset. The Weibull distribution
parameters are estimated by using the MLE. Fig. 2.1 presents the Weibull fit to
the wind speed data of two time resolutions: the 10-min data and the hourly
data. The estimates of the shape and scale parameters are rather similar
despite the difference in time resolution.

2.2.4 Goodness of Fit
Once a Weibull distribution is fit to a set of data, how can we tell whether or
not it is a good fit? This question is answered through a goodness-of-fit test,
such as the χ2 test. The idea of the χ2 test is simple. It first bins the observed
data, like in a histogram. For the j-th bin, one can count the number of actual
observations falling into that bin; denote this as Oj . Should the data follow a
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specific type of distribution, the expected amount of data points in the same
bin can be computed from the cumulative distribution function (cdf) of that
distribution; denote this quantity as Ej . Suppose that we have a total of B
bins. Then, the test statistic, defined below, follows a χ2 distribution with a
degree of freedom of B − p− 1, i.e.,

χ2 :=

B∑
j=1

(Oj − Ej)2

Ej
∼ χ2

B−p−1, (2.4)

where p is the number of parameters associated with the distribution.
The Weibull distribution has a closed form cdf. The fitted Weibull distri-

bution function, by plugging in the estimated parameters, β̂ and η̂, is

Fβ̂,η̂(x) = 1− exp

{
−
(
x

η̂

)β̂}
. (2.5)

Of the j-th wind speed bin, the left boundary wind speed value is Vj−1 and
the right boundary value is Vj , so Ej can be calculated by

Ej = n[Fβ̂,η̂(Vj)− Fβ̂,η̂(Vj−1)]. (2.6)

Once the χ2 test statistic is calculated, one can compute the p-value of the test
by using, for example, the R command, 1−pchisq(χ2, B − p− 1). The null
hypothesis says that the distribution under test provides a good fit. When
the p-value is small enough, say, smaller than 0.05, analysts say that the
null hypothesis is rejected at the significance level of 95%, implying that the
theoretical distribution is less likely a good fit to the data. When the p-value
is not small enough and the null hypothesis cannot be rejected, then the test
implies a good fit.

We can apply the χ2 test to one month of data of the Wind Time Series

Dataset and the respective fitted Weibull distributions. The number of pa-
rameters in the two-parameter Weibull distribution is p = 2. While binning
the wind speed data, one needs to be careful about some of the tail bins in
which the expected data amount could be too few. The general guideline is
that Ej should be no fewer than five; otherwise, several bins should be grouped
into a single bin.

The test statistic and the corresponding p-values are shown in Table 2.1.
As shown in the table, it looks like using the Weibull distribution to fit the
wind speed data does not pass the goodness-of-fit test. This is particularly
true when the data amount increases, as in the case of using the 10-min data.
Nonetheless, the Weibull distribution still stays as one of the most popular
distributions for modeling wind speed data. The visual inspection of Fig. 2.1
leaves analysts with the feeling of a reasonable fit. Passing the formal statisti-
cal test in the presence of abundant data appears tough. Analysts interested
in a distribution alternative can refer to [32] for more choices.
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TABLE 2.1 Goodness-of-fit test statistics and
p-values.

Hourly data 10-min data

Month selected February November
Data amount, n 455 3,192
Bin size 0.2 m/s 0.1 m/s
Number of bins, B 66 100
Test statistic 62.7 329.8
p-value 0.012 almost 0

2.2.5 Forecasting Based on Weibull Distribution
Assuming that the distribution of wind speed stays the same for the next
time period, i.e., the underlying process is assumed stationary, analysts can
use the mean as a point forecast, and then use the distribution to assess the
uncertainty of the point forecast. We want to note that such approach is, in
spirit, also a persistence forecasting, but it is conducted in the sense of an
unchanging probability distribution.

The mean and the standard deviation of a Weibull distribution, if using
the estimated distribution parameters, areµ̂ = η̂Γ(1 + 1

β̂
),

σ̂ = η̂
√

Γ(1 + 2
β̂

)− (Γ(1 + 1
β̂

))2,
(2.7)

where Γ(·) is the gamma function, defined such as Γ(x) =
∫∞

0
tx−1e−tdt.

While the mean µ̂ is used as the point forecast, one can employ a normal
approximation to obtain the 100(1 − α)% confidence interval of the point
forecast, as

[µ̂− zα/2 · σ̂, µ̂+ zα/2 · σ̂], (2.8)

where zα is the α-quantile point of a standard normal distribution. When
α = 0.05, z0.05/2 = 1.96.

Sometimes analysts think that using the mean may not make a good fore-
cast, due to the skewness in the Weibull distribution. Alternatively, median
and mode can be used. Their formulas, still using the estimated parameters,
are median = η̂(ln 2)1/β̂ ,

mode = η̂
(

1− 1
β̂

)1/β̂

for β̂ > 1.
(2.9)

The mode of a Weibull distribution when β ≤ 1 is zero. As mentioned earlier,
the circumstances under which β ≤ 1 are of little practical relevance in wind
speed modeling at commercial wind farms.

Analysts may worry that using the normal approximation to obtain the
confidence interval may not be accurate enough. If one has a sufficiently large



24 � Data Science for Wind Energy

TABLE 2.2 Estimate of mean and 95% confidence interval of wind speed
data. The total data amount is 7,265 for the hourly data and 39,195 for the
10-min data.

Based on Eq. 2.8 Directly from sample statistics

Mean C.I. Mean C.I.

Hourly data 6.83 [2.48, 11.47] 6.84 [3.54, 11.33]
10-min data 6.84 [2.50, 11.18] 6.86 [3.62, 11.49]

amount of wind speed data, say more than 1,000 data points, a simple way
is to estimate the mean and its confidence interval directly from the data,
following the two steps below.

1. Compute the sample average wind speed, V̄ ,

V̄ =
1

n

n∑
i=1

Vi,

and use it as the point forecast.

2. Order the wind speed data from the smallest to the largest. Denote the
ordered sequence as V(1), V(2), . . . , V(n). Then, the 100(1−α)% confidence
interval is estimated to be [V[nα/2], V[n(1−α/2)]], where [·] returns the
nearest integer number.

Table 2.2 presents the estimates of mean and confidence interval, either based
on the Weibull distribution or directly from the data. One observes that the
point forecasts are rather close, but the lower confidence intervals are notice-
ably different.

2.3 DATA TRANSFORMATION AND STANDARDIZATION
Before the wind speed data is fed into time series models, many of which
assume Gaussianity, data preprocessing may be needed. Two common pre-
processing tasks are: (1) normalizing the wind data, so that the transformed
data behaves closer to a normal distribution, and (2) removing the diurnal
nonstationarity or other seasonalities from the data.

A general power transformation is used [23] for the purpose of normaliza-
tion, such as

V ′t = V mt ,∀i, (2.10)

where V ′t is the transformed wind speed, and m is the power coefficient, with
the convention that m = 0 refers to the logarithm transformation. Apparently,
m = 1 means no transformation.

Suppose that the wind data indeed follow a Weibull distribution. A nice
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property of Weibull distribution is that a Weibull random variable remains
Weibull when it is raised to a power m 6= 0, with its parameters becoming β/m
and ηm, respectively. Dubey [52] points out that when the shape parameter is
close to 3.6, a Weibull distribution is closer in shape to a normal distribution.
The general advice is to estimate the shape parameter from the original wind
data and then solve for m in the power transformation in Eq. 2.10 as

m =
β̂

3.6
. (2.11)

Alternatively, Hinkley [93] suggests checking the following measure of sym-
metry, based on sample statistics,

sym =
sample mean− sample median

sample scale
, (2.12)

where the sample scale can be the sample standard deviation or the sample
inter-quartile range; Hinkley himself prefers the latter. Given this symmetry
measure, one could first choose a candidate set of m values (including m = 0)
and apply the respective transformation on the wind data. Then, calculate
the corresponding symmetry measure. To approximate the symmetric normal
distribution, the symmetry value is desired to be zero. Whichever m produces
a zero sym value is thus chosen as the power in the transformation. If no m
in the candidate set produces a sym close to zero, then one can interpolate
the computed (m, sym) points and find the m leading to a zero sym. One
convenience allowed by Eq. 2.12 is that the logarithm transformation can be
tested, together with other power transformations, whereas in using Eq. 2.11,
m = 0 is not allowed.

Torres et al. [214] show that using Eq. 2.11 on wind data from multiple
sites for every month in a whole year, the resulting m values are in the range
of [0.39, 0.70], but many of them are close to 0.5. Brown et al. [23] apply
both aforementioned approaches on one set of wind data—Eq. 2.11 produces
an m = 0.45, while the sym measure in Eq. 2.12 selects m = 1/2, implying
a square-root transformation. It seems that the resulting m values are often
not too far from 1/2. But this may not always be the case. When applying
Eq. 2.11 to the data of each month in the Wind Time Series Dataset (see
Table 2.3 for the corresponding m values), we find that most m’s are around
one. This is not surprising. The shape of the density curves in Fig. 2.1 looks
rather normal-like, and the corresponding β̂’s are close to 3.6. For the sake of
convenience, analysts still use m = 1/2 as the default setting. This square-
root transformation is in fact one of the popular normalizing transformations
and applying it reduces the right skewness to make the resulting data closer
to a normal distribution. When applied to wind data, the square-root trans-
formation can take any wind speed values, since wind speed is supposedly
non-negative. In contrast, if one applies the logarithm transformation, the
zero wind speed values need to be removed first.
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TABLE 2.3 Monthly values of m using Eq. 2.11.

Jan Feb Mar Apr May Jun

Hourly data 0.74 1.00 1.00 1.04 1.10 1.02
10-min data 0.74 0.94 1.02 1.05 1.10 0.98

Jul Aug Sep Oct Nov Dec

Hourly data 1.01 1.14 1.06 0.98 1.02 0.99
10-min data 1.01 1.13 1.06 0.99 1.03 1.00

Wind exhibits diurnal and seasonal nonstationarity. The seasonality is typ-
ically handled by carefully choosing the training period, making sure that the
seasonal pattern of the training period is consistent with that in the forecast-
ing period. This can be done by using the wind data in a short period of
time immediately prior to the forecasting period, say, a few days or a couple
of weeks, but usually no more than one month. To remove the diurnal non-
stationarity, a simple treatment is to standardize the wind data by using its
hourly average and standard deviation.

We show how this is done using the transformed wind data, V ′t , but obvi-
ously the same procedure can be applied to the original wind data. We first
arrange the data such that the time index t is in an hourly increment. If the
raw data is in the 10-min format, then, one can get the hourly data by av-
eraging the six 10-min wind data points within the same hourly block. For
notational convenience, let us deem that t = 0 coincides with 12 a.m. (mid-
night) of the first day, t = 1 with one a.m., and so on. The time repeats itself
as the same time on a different day in an increment of 24. We compute 24
hourly averages and standard deviations by pooling the data from the same
time on different days in the training period. Suppose that there are a total
of d days. Then, we can compute them as{

V̄ ′` = 1
d

∑d−1
j=0 V

′
24j+`,

s` =
√

1
d−1

∑d−1
j=0(V ′24j+` − V̄ ′` )2.

` = 0, . . . , 23. (2.13)

The standardization of wind speed data is then carried out by

V ′′t =
V ′t − V̄ ′(t mod 24)

s(t mod 24)
, (2.14)

where mod means a modulo operation, so that (t mod 24) returns the remainder
when t is divided by 24.

Fig. 2.2 presents the original hourly wind speed data and the standard-
ized hourly data. Although the standardization is conducted for the whole
year hourly data in the Wind Time Series Dataset, Fig. 2.2 plots only three
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FIGURE 2.2 Left panel: original hourly wind speed data. Right panel:

standardized hourly wind speed data. The data amount of the three

months is n = 1, 811. Eq. 2.10, with m = 1/2, and Eq. 2.14 are used

for standardization.

months (October to December) for a good visualization effect. The difference
between the two subplots is not very striking, because the original data, as
we explained above, is already close to a normal distribution.

Gneiting et al. [75] introduce a trigonometric function to model the diurnal
pattern, as in the following,

∆t = c0+c1 sin

(
2πt

24

)
+c2 cos

(
2πt

24

)
+c3 sin

(
4πt

24

)
+c4 cos

(
4πt

24

)
, (2.15)

where c0, c1, . . . , c4 are the coefficients to be estimated from the data. The es-
timation is to assume V ′t = ∆t+εt, and then, use a least squares estimation to
estimate the coefficients from the wind data. Subtracting the diurnal pattern
from the original wind data produces the standardized wind speed,

V ′′t = V ′t −∆t. (2.16)

2.4 AUTOREGRESSIVE MOVING AVERAGE MODELS
In this section, we apply a time series model like the autoregressive moving
average (ARMA) model to the normalized and standardized wind data. For
notational simplicity, we return to the original notation of wind speed, Vt,
without the primes.

An autoregressive (AR) model of order p is to regress the wind variable
on its own past values, up to p steps in the history, such as

Vt = a0 + a1Vt−1 + . . .+ apVt−p + εt, (2.17)
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where ai, i = 1, . . . , p, are the AR coefficients and εt is the residual error,
assumed to be a zero mean, identically, independently distributed (i.i.d) noise.
Specifically, εt ∼ N (0, σ2

ε).
The autoregressive mechanism makes intuitive sense, as the inertia in air

movement suggests that the wind speed at the present time is related to
its immediate past. The actual relationship, however, may not necessarily
be linear. The linear structure assumed in the AR model is for the sake of
simplicity, making the model readily solvable.

A general ARMA model is to add a moving average (MA) part to the
AR model, which is to model the residual as a linear combination of the i.i.d
noises, going back in history for up to q steps. Including the MA part, the
ARMA model reads

Vt = a0 + a1Vt−1 + . . .+ apVt−p + εt + b1εt−1 + . . .+ bqεt−q

= a0 +

p∑
i=1

aiVt−i + εt +

q∑
j=1

bjεt−j ,
(2.18)

where bj , j = 1, . . . , q, are the MA coefficients. The overall model in Eq. 2.18
is referred to as ARMA(p, q), where p is the AR order and q is the MA order.

2.4.1 Parameter Estimation
For the model in Eq. 2.17, the AR parameters can be estimated through a
least squares estimation, expressed in a closed form. Suppose that we have the
historical data going back n steps. For each step in the past, one can write
down an AR model. The following are the n equations,

Vt = a0 + a1Vt−1 + . . .+ apVt−p + εt,

Vt−1 = a0 + a1Vt−2 + . . .+ apVt−1−p + εt−1,

. . . . . . . . . . . .

Vt−n = a0 + a1Vt−n−1 + . . .+ apVt−n−p + εt−n.

(2.19)

Express V = (Vt, Vt−1, . . . , Vt−n)Tn×1, a = (a0, a1, . . . , ap)
T
(p+1)×1, ε =

(εt, . . . , εt−n)Tn×1, and

W =


1 Vt−1 · · · Vt−p
1 Vt−2 · · · Vt−1−p
...

...
. . .

...
1 Vt−n · · · Vt−n−p


n×(p+1)

.

Then, Eq. 2.19 can be written in a matrix form, such as

V = W · a + ε. (2.20)

As such, the least squares estimate of the parameter vector, a, is

â = (WTW)−1WTV.
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The fitted wind speed value, V̂, is therefore V̂ = Wâ. The variance of the
residual error term can be estimated by

σ̂2
ε =

(V − V̂)T (V − V̂)

n− p− 1
=

(V −Wâ)T (V −Wâ)

n− p− 1
. (2.21)

With the MA part included in a general ARMA(p, q) model, the least
squares estimation of both AR and MA coefficients does not have a closed form
expression anymore. The estimation problem needs to be solved iteratively
through a numerical procedure. Analysts use the maximum likelihood estima-
tion method to estimate the parameters. Denote by b = (b1, b2, . . . , bq)

T
q×1.

The log-likelihood function of an ARMA model, denoted as L(a,b, σ2
ε |V), is a

bit involved. We choose not to write down its expression here. In practice, it is
advised to use the arima function in R’s stats package to carry out the esti-
mation task. The arima function is named after the autoregressive integrated
moving average model, considered as a generalization of the ARMA model and
expressed as ARIMA(p, k, q), which has one extra parameter than an ARMA
model has. To handle an ARMA(p, q) model using the three-parameter arima
function, one can simply set k = 0. By default, the arima uses the maximum
likelihood method for parameter estimation.

To use the arima function, one needs to specify p and q. For instance, the
command,

fit<-arima(wsdata, order = c(3,0,1)),

fits an ARMA(3,1) model. Typing fit in the R program displays the values of

â0, â1, â2, â3, b̂1, the standard deviations of the respective estimates, as well
as σ̂2

ε . It also displays a few other things, such as the log-likelihood value and
AIC, which we explain next.

2.4.2 Decide Model Order
When using the arima function, the model orders p and q need to be specified.
In the forecast package, there is an auto.arima function, which can decide
the model order on its own. If one is curious about how auto.arima selects
its model order or wants to have more control on model selection by oneself,
this section explains the thought process.

Popular model selection criteria used for time series models include the
Akaike Information Criterion (AIC) [7] and Bayesian Information Criterion
(BIC) [197]. Both criteria follow the same philosophy, which is to trade off
between a model’s training error and its complexity, in order to select a simple
enough model that in the meanwhile fits well enough to the training data. The
difference between AIC and BIC is in the specific weighting used to trade off
the two objectives, which is going to be clear below.

The AIC is defined as

AIC = 2× number of parameters− 2L̂, (2.22)
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where L̂ is the log-likelihood value of the ARMA model, evaluated at the
estimated parameters. The log-likelihood value is one of the outputs from
the arima function. The number of parameters in an ARMA(p, q) model is
p+ q + 1. Hence, AIC = 2(p+ q + 1)− 2L̂ for an ARMA(p, q) model.

The BIC is defined as

BIC = ln(n)× number of parameters− 2L̂
= ln(n) · (p+ q + 1)− 2L̂.

(2.23)

Using AIC or BIC, one would select the model that minimizes either of the
criteria.

The log-likelihood value indicates how well an ARMA model fits the train-
ing data—the greater, the better. Because the data are noisy, a model that fits
too well to the training data could have read too much into the noise part, a
problem known as overfitting [86]. An overfit model loses its predictive ability
and has actually a worse forecasting accuracy. Analysts come to realize that
an effective way to avoid overfitting is to select a simpler model. The number
of parameters in an ARMA model measures its model complexity—the fewer
the parameters, the simpler a model is.

AIC deems that one unit increase in the model complexity, namely one
more parameter included in the model, is equivalent to one unit decrease in the
log-likelihood. In using AIC, this trade-off is independent of the data amount,
n. BIC, instead, considers the weighting coefficient to be dependent on the
data amount. Specifically, it uses ln(n) to quantify the model complexity.
When n = 7.4, meaning the training data points are seven or eight, ln(n) =
2, making AIC and BIC equivalent. When n ≥ 8, BIC tends to choose a
simpler model than AIC. In practical situations, n is much greater than eight,
suggesting that BIC yields a simpler ARMA model that tends to forecast more
accurately on future data.

Aware of the shortcoming of the original AIC, analysts propose a corrected
AIC [34], referred to as AICc and defined in the context of ARMA(p, q) as

AICc = AIC + 2× (p+ q + 1)2 + (p+ q + 1)

n− p− q
. (2.24)

AICc is virtually AIC with an extra penalty term for model complexity. When
n is far greater than the square of the number of parameters in a model, AIC
and AICc behave almost the same.

The arima function returns the values of AIC. One can use the BIC function
to compute the BIC value, and use the formula in Eq. 2.24 to calculate AICc.
When using auto.arima, one can set its argument ic to be either aicc, aic,
or bic, so that the respective information criterion is used in selecting p and
q in the model. For instance,

fit<-auto.arima(wsdata, ic=c(‘bic’))

uses the BIC for model selection. The default setting in auto.arima is AICc.
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TABLE 2.4 The log-likelihood, BIC, AIC, and AICc values
of 18 candidate models, up to ARMA(6, 3), based on the
hourly data of April in the Wind Time Series Dataset,
where n = 433. Boldface values are either the largest
log-likelihood or the smallest values of a respective
information criterion.

Model Log-likelihood BIC AIC AICc

ARMA ( 1 , 1 ) −293.7 605.5 593.3 593.4
ARMA ( 1 , 2 ) −293.0 610.4 594.1 594.2
ARMA ( 1 , 3 ) −292.9 616.1 595.8 595.9
ARMA ( 2 , 1 ) −293.3 610.9 594.7 594.7
ARMA ( 2 , 2 ) −292.7 615.8 595.4 595.6
ARMA ( 2 , 3 ) −292.8 622.0 597.6 597.8
ARMA ( 3 , 1 ) −292.7 615.8 595.4 595.6
ARMA ( 3 , 2 ) −290.5 617.3 593.0 593.2
ARMA ( 3 , 3 ) −289.7 622.0 593.5 593.8
ARMA ( 4 , 1 ) −293.0 622.3 597.9 598.1
ARMA ( 4 , 2 ) −289.8 622.0 593.5 593.8
ARMA ( 4 , 3 ) −289.7 628.0 595.5 595.8
ARMA ( 5 , 1 ) −293.0 628.4 599.9 600.2
ARMA ( 5 , 2 ) −289.7 627.9 595.4 595.7
ARMA ( 5 , 3 ) −289.1 632.9 596.2 596.7
ARMA ( 6 , 1 ) −290.7 630.1 597.5 597.8
ARMA ( 6 , 2 ) −289.0 632.7 596.1 596.5
ARMA ( 6 , 3 ) −288.6 638.0 597.3 597.8

We want to note that certain software packages, like these in R, count the vari-
ance estimate, σ̂2

ε , as a parameter estimated. Hence, the number of parameters
in an ARMA(p, q) model becomes p + q + 2. Using this parameter number
does change the AIC and BIC values but they do not change the model selec-
tion outcome, as all AIC’s or BIC’s are basically offset by a constant. When
this new number of parameters is used with AICc, however, it could end up
choosing a different model.

When applying to one month (April) of hourly data in the Wind Time

Series Dataset, the BIC produces the simplest ARMA model, which is
ARMA(1,1), namely p = q = 1. Had AIC or AICc been used on the same set
of data, ARMA(3,2) would have been chosen, which is more complicated than
ARMA(1,1). For the detailed information, please refer to Table 2.4. The esti-
mated parameters for this ARMA(1,1) model are: â0 = 0.0727, â1 = 0.8496,

b̂1 = 0.0871, and σ̂2
ε = 0.2265.

2.4.3 Model Diagnostics
In addition to using the information criteria, described above, to choose an
appropriate time series model, analysts are encouraged to use graphical plots
to check the model’s fitting quality—this is referred to as model diagnostics or
diagnostic checking. For ARMA models, the two most commonly used plots
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are the autocorrelation function (ACF) plot and the partial autocorrelation
function (PACF) plot.

The model diagnostics is performed on the residuals after a model is fitted.
The purpose is to check whether the model assumptions regarding the error
term hold. The plots are supposed to show that the residuals, after the model
part is removed from the data, appear random and contain no systematic
patterns; otherwise, it suggests the model fitting is not properly done. Some
diagnostics also tests if the residual follows a normal distribution.

Based on Eq. 2.18, we can compute the residuals recursively, using the
estimated parameters, such as

ε̂t =Vt − â0 −
p∑
i=1

âiVt−i −
q∑
j=1

b̂j ε̂t−j , t = 1, . . . , n,

V` = 0, ε̂` = 0, ∀` ≤ 0.

(2.25)

The autocorrelation function of εt is just the correlation function of the
random variable with its own past. Denote by Cov(X,Y ) the covariance of
two random variables, X and Y . Then, the autocovariance function between
two time points, t and t − h, in the stochastic process of εt, is denoted as
Cov(εt, εt−h). When h = 0, Cov(εt, εt) = σ2

ε is the variance of the underlying
process. Define by ρ(X,Y ) the correlation between two random variables, X
and Y . Then, the autocorrelation function of εt is

ρ(εt, εt−h) =
Cov(εt, εt−h)

Cov(εt, εt)
=
Cov(εt, εt−h)

σ2
ε

.

Considering that the residuals should be stationary (after all these modeling
steps), then the autocorrelation function does not depend on the starting point
in time but only on the time lag h. As such, its notation can be simplified as
ρh. With the residuals computed in Eq. 2.25, the sample autocorrelation can
be computed through

ρ̂h =

∑n
t=h+1(ε̂t − ¯̂ε)(ε̂t−h − ¯̂ε)∑n

t=1(ε̂t − ¯̂ε)2
≈
∑n
t=h+1 ε̂tε̂t−h∑n

t=1 ε̂
2
t

, (2.26)

where ¯̂ε is the sample mean of the residuals, which is supposed to be zero (or
near zero), so that they can be omitted from the equation. Applying Bartlett’s
formula [20, Eq. 6.2.2], the standard error (se) for testing the significance of
ρ̂h is approximated by

seρ =

√
1 + 2

∑h−1
i=1 ρ̂

2
i

n
.

The 95% confidence interval for ρ̂h is approximated by ±1.96 · seρ. Under the
null hypothesis that the residuals are uncorrelated, meaning ρ̂h = 0,∀h > 0,
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the standard error is then simplified to seρ =
√

1/n, and correspondingly, the
95% confidence interval becomes simply ±1.96/

√
n.

One could plot ρ̂h against a series of time lags, h, and observe how much,
if any at all, the residuals are still correlated with their own past. This can be
done by using the R function acf in the forecast package. The default setting
in acf draws an autocorrelation plot, on which there are two dashed lines (blue
in color print). These lines correspond to the 95% confidence interval under
the null hypothesis, which are at the values of ±1.96/

√
n, as explained above.

With an autocorrelation plot, analysts can quickly inspect if there is any ρ̂h
exceeding the line of ±1.96/

√
n, and if yes, that suggests still strong enough

autocorrelation.
The autocorrelation between εt and εt−2 presumably comes from two

sources—one is a lag-1 propagation via the correlation between εt and εt−1

and then the correlation between εt−1 and εt−2, while the other is the corre-
lation directly between εt and εt−2. The autocorrelation, ρ2, as defined and
computed above, is the summation of the two sources. When one sees a large
ρ2, one may wonder if its large value is caused by a large lag-1 autocorrelation
and its propagation or if it is caused by the direct correlation. The concept of
partial autocorrelation is therefore introduced to quantify this direct correla-
tion, which is the amount of correlation between a variable and a lag of itself
that is not explained by correlations at all lower-order lags.

Consider the AR model of order p in Eq. 2.17. Applying the correlation
operation with Vt−1 on each term in both sides gives us the following equation,
where we replace the coefficient, ai, in Eq. 2.17 by φpi, such as

ρ1 = φp1 + φp2ρ1 + . . .+ φppρp−1. (2.27)

In the above equation, we replace ρ0 by its value, which is one. Here we use a
double index subscript on φ to signify that this set of coefficients is obtained
when we use an AR model of order p. Do the correlation operation with Vt−j ,
for j = 1, . . . , p. We end up with the set of Yule-Walker equations [20] as,

ρ1

ρ2

...
ρp


︸ ︷︷ ︸
ρ

=


1 ρ1 · · · ρp−1

ρ1 1 · · · ρp−2

...
...

. . .
...

ρp−1 ρp−2 · · · 1


︸ ︷︷ ︸

R


φp1
φp2

...
φpp


︸ ︷︷ ︸

φ

, (2.28)

or in the matrix format,
ρ = Rφ.

Because R is a full-rank and symmetric matrix, we can solve for φ as

φ̂ = R−1ρ.

The partial autocorrelation function is estimated by the sequence of
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φ̂11, φ̂22, . . ., which can be obtained by solving the Yule-Walker equations for
p = 1, 2, . . .. Here it becomes apparent why we replace the single index co-
efficient, ai, in the AR model with the double index coefficient, φpi, in the
Yule-Walker equations; it is otherwise difficult to express the partial autocor-
relation function.

The Yule-Walker equations can be solved recursively using the Levinson-
Durbin formula [54],

φ̂pp =
ρ̂p −

∑p−1
j=1 φ̂(p−1)j ρ̂p−j

1−
∑p−1
j=1 φ̂(p−1)j ρ̂j

, p = 2, 3, . . .

φ̂pj = φ̂(p−1)j − φ̂ppφ̂(p−1)(p−j),

φ̂11 = ρ̂1.

(2.29)

Using the above equations, we figure out that the partial autocorrelation of
lag 2, φ̂22, is

φ̂22 =
ρ̂2 − ρ̂2

1

1− ρ̂2
1

. (2.30)

Recall the example mentioned earlier about the autocorrelation between εt
and εt−2. The two-step sequential propagation of the lag-1 autocorrelation is
ρ̂2

1, whereas ρ̂2 is the full lag-2 autocorrelation. If ρ̂2 = ρ̂2
1, the correlation

between εt and εt−2 that is not explained by correlations at the lower lag-1
order is zero. As such, it is reflected in the partial autocorrelation function as
φ̂22 = 0, according to Eq. 2.30. If ρ̂2 6= ρ̂2

1, their difference, scaled by 1− ρ̂2
1, is

the partial autocorrelation of lag 2, or the direct correlation between εt and
εt−2.

The partial autocorrelation function is useful in identifying the model order
of an autoregressive process. If the original process is autoregressive of order
k, then for p > k, we should have φpp = 0. This can again be done in a partial
autocorrelation function plot by inspecting, up to which order, PACF becomes
zero or near zero. By setting type=c(‘partial’) in one of its arguments, the
acf function computes PACF values and draws a PACF plot. Alternatively,
the pacf function in the tseries package can do the same. The dashed line
on a PACF plot bears the same value as the same line on an ACF plot.

Fig. 2.3 presents the ACF and PACF plots using the April data in the
Wind Time Series Dataset. The ARMA(1,1) model is fit to the set of data,
and the model residuals are thus computed. The ACF and PACF plots of the
residuals are presented in Fig. 2.3 as well.

2.4.4 Forecasting Based on ARMA Model
Suppose that our final model selected is an ARMA(p, q) and their parame-
ters are estimated using the training data. Then, for the h-step ahead point
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FIGURE 2.3 Top panel: ACF and PACF plots of the original hourly wind

data; bottom panel: ACF and PACF plots of the residuals after an

ARMA(1,1) model is fit.
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forecasting, which is to obtain V̂t+h, we use the following formula,

V̂t+h := E(Vt+h|V1, V2, . . . , Vn)

= â0 +

p∑
i=1

âiV̂t−i+h +

q∑
j=1

b̂j ε̂t−j+h.
(2.31)

In the above equation, when the time index on a V̂ is prior to t, meaning that
the wind data has been observed, then V̂ is replaced by its observed value at
that time and ε̂ is estimated in Eq. 2.25, whereas when the time index on a
V̂ is posterior to t, then V̂ is the forecasted value at that time and E(ε̂) = 0.

To assess the uncertainty of the forecast, we need to calculate the variance
of the forecasting error. For that, we use the Wold decomposition [8]. The
Wold decomposition says that the ARMA model in Eq. 2.18 can be expressed
as an infinite summation of all the error terms, such as

Vt+h = a0 + εt+h +ψ1εt+h−1 + . . . ψh−1εt+1 +ψhεt +ψh+1εt−1 + . . . , (2.32)

where ψi’s can be decided from ai’s and bj ’s in Eq. 2.18. We here omit the
detailed expression for ψi’s.

With the expression in Eq. 2.32, the h-step ahead forecast is

V̂t+h := E(Vt+h|V1, V2, . . . , Vn) = â0 + ψhε̂t + ψh+1ε̂t−1 + . . . . (2.33)

Therefore, the h-step ahead forecast error at time t, denoted by et(h), can be
expressed as

et(h) = Vt+h − V̂t+h = εt+h + ψ1εt+h−1 + . . .+ ψh−1εt+1. (2.34)

The expectation of et(h) is zero, namely E(et(h)) = 0, and its variance is
expressed as

V ar(et(h)) = V ar

(
h−1∑
`=0

ψ`εt+h−`

)
= σ2

ε

h−1∑
`=0

ψ2
` , (2.35)

where we define ψ0 = 1. Combining the point forecast and the variance, the
100(1− α)% prediction interval for the h-step ahead forecasting is

V̂t+h ± zα/2 ·
√
V ar(et(h)) = V̂t+h ± zα/2 · σε ·

√√√√h−1∑
`=0

ψ2
` . (2.36)

From the above formula, it is apparent that farther in the future the forecast
is, the greater the forecasting variance becomes.

In R, one can use the function forecast in the forecast package to make
forecasting. The basic syntax is forecast(wsdata, h, model = fit), which
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FIGURE 2.4 Wind speed forecasting based on the ARMA(1,1) model.

h = 1, 2, . . . , 6.

makes an h-step ahead forecasting using the fitted ARMA model whose pa-
rameters are stored in fit. The forecast function plots both the point fore-
cast and the confidence intervals. By default, the forecast function draws
two confidence intervals, which are the 80% and 95% confidence intervals.
The confidence levels can be adjusted by setting the input argument level

to other values. For example, level = c(95, 99) sets the two confidence
intervals at 95% and 99%, respectively.

Fig. 2.4 presents the forecasting outcome based on the ARMA(1,1) model
estimated in the previous subsections and using the hourly data of April. The
solid line is the h-hour ahead forecast, assuming that the data is available
only up to time t. The solid dots represent a one-hour ahead rolling forward
forecasting by using the new wind speed observation, at t+ 1, t+ 2, . . ., t+ 5,
respectively. For the rolling forward forecasting, the ARMA(1,1) model is refit
every time. It is understandable that the two forecasts are the same at t + 1
but they differ starting from t + 2 when the one-hour ahead rolling forward
forecasting uses the actual wind speed observations Vt+h at h > 0, while the
h-hour ahead forecasting uses the forecasted wind speed V̂t+h at h > 0.
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2.5 OTHER METHODS
Several other methods, some of machine learning flavor, have been developed
for short-term forecasting. In this section, we discuss the use of the Kalman fil-
ter (KF), support vector machine (SVM) and artificial neural network (ANN).
We defer discussion on regime switching techniques [6, 75] to Chapter 4.

2.5.1 Kalman Filter
The Kalman filter [116] was initially developed for linear dynamic systems de-
scribed by a state space model. Using the notations introduced in this chapter,
the state space model for wind speed forecasting can be expressed as,

state equation at = Φat−1 + ωt−1,

observation equation Vt = hTt at + εt,
(2.37)

where Φ is known as the state matrix, at = (a1,t, . . . , ap,t)
T is the state vector,

ht = (Vt−1, . . . , Vt−p)
T is the observation vector, and, εt and ωt are random

noises. The first equation is referred to as the state equation, whereas the
second equation is referred to as the observation equation. The observation
equation is essentially an AR model, which is to predict the future wind speed
(or power) as a linear combination of its past observations. Unlike the AR
model, the Kalman filter model treats the coefficients, at, as variables rather
than constants, and updates them as new observations arrive, so as to catch
up with the dynamics in the wind data. The two noise terms are often assumed
to be normal variables, namely εt ∼ N (0, (σ2

ε)t) and ωt ∼ N (0,Qt), where
(σ2
ε)t is the time-varying variance of εt and Qt is the time-varying covariance

matrix of ωt. The state vector, at, is a random vector. It also has a covariance
matrix, which we define by Pt.

In the wind application, the observation vector, as expressed in Eq. 2.37, is
the past n observations of wind speed, immediately before the current time t.
But some analysts use the output from an NWP [44, 136] as their observation
vector, and in this way, the Kalman filter serves to enhance the predictive
resolution and accuracy of the heavy-computing, slow-running NWP.

The state matrix, Φ, is often assumed an identity matrix, namely Φ = I,
unless the underlying process dictates a different evolution dynamics of the
state vector, at. A further simplification is to assume that Qt is a diagonal
matrix—random variables in ωt are uncorrelated—and has an equal variance.
As such, we can express Qt = (σ2

ω)t ·I, where (σ2
ω)t is known as the variance of

the system noise, whereas the (σ2
ε)t is known as the variance of the observation

noise.
Before introducing the Kalman filter prediction and updating mechanism,

we need to articulate the meaning of time instance t here. When we say “at
time t,” we mean that we have observed the wind data at that time. The
Kalman filter has an update step between two time instances, t− 1 and t, or
more specifically, after the wind data at t − 1 has been observed but before
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the observation at t. To denote this update step, analysts use the notation,
t|t− 1. For example, at|t−1 is the predicted value of the state vector after the
observations up to t− 1 but before the observation at t.

The Kalman filter runs through two major steps in iteration—prediction
and update. Suppose that we stand between t−1 and t, and have the historical
observations in ht as well as previous estimations, ât−1 and Pt−1. At this
moment, before we observe Vt, we can predict

ât|t−1 = Φât−1, (2.38)

Pt|t−1 = ΦPt−1Φ
T + (σ2

ω)t−1 · I, (2.39)

V̂t|t−1 = hTt ât|t−1, (2.40)

(σ̂2
V )t|t−1 = hTt Pt|t−1ht + (σ2

ε)t. (2.41)

The last two equations are used to make a one-step ahead forecasting. The
100(1− α)% predictive confidence interval for Vt, before Vt is observed, is

[V̂t|t−1 − zα/2 · (σ̂2
V )t|t−1, V̂t|t−1 + zα/2 · (σ̂2

V )t|t−1].

If the desire is to make multiple-hour ahead forecasting, then the state space
model should be built on a coarse temporal granularity. The default temporal
resolution is an hour, meaning that one hour passes from t − 1 to t. If we
increase the temporal granularity to two hours, meaning that two hours pass
from t − 1 to t, then, the above one-step ahead forecasting makes a 2-hour
ahead forecast. The downside is that the historical data is thinned and the
data point between the two chosen time instances for the Kalman filter are
ignored—this apparently is a drawback.

At time t, after Vt is observed, ât and Pt get an update through the
following steps,

Kt =
1

(σ̂2
V )t|t−1

Pt|t−1ht, (2.42)

ât = ât|t−1 + Kt(Vt − V̂t|t−1), (2.43)

Pt = (I−Kth
T
t )Pt|t−1, (2.44)

where Kt is known as the Kalman gain. To start the process, analysts can set
the initial values for ât and Pt as

a0 = (1, 0, . . . , 0)T and P0 =

(
1 0
0 1

)
.

The above a0 means that at the beginning, the prediction uses only the im-
mediate past observation. Another parameter to be decided in the Kalman
filter is p, the size of the state vector. This p can be decided by fitting an AR
model and choosing the best p based on BIC.

To run the above Kalman filter, the variances of the observation noise and
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system noise are also needed. Crochet [44] suggests using the Smith algorithm
and Jazwinski algorithm to dynamically estimate (σ2

ε)t and (σ2
ω)t, respectively.

The basic idea for estimating the observation noise, (σ2
ε)t, is to treat it as the

product of a nominal value, (σ2
ε)0, and a coefficient, ζt, where ζt is further

assumed to follow an inverse gamma distribution with a shape parameter κt.
Then, the Smith algorithm [199] updates the observation noise variance by

(σ2
ε)t = ζt−1 · (σ2

ε)0,

ζt =
ζt−1

κt−1 + 1

(
κt−1 +

(Vt − V̂t|t−1)2

(σ2
V )t|t−1

)
,

κt = κt−1 + 1.

(2.45)

The variance of the system noise, (σ2
ω)t, can be estimated through the Jazwin-

ski algorithm [107] as

(σ2
ω)t =

(
(Vt − V̂t|t−1)2 − hTt ΦPt−1Φ

Tht − (σ2
ε)t

hTt ht

)
+

, (2.46)

where (·)+ returns the value in the parenthesis if it is positive, or zero oth-
erwise. The initial values used in Eq. 2.45 are set as (σ2

ε)0 = 1, ζ0 = 1, and
κ0 = 0. The initial value, (σ2

ω)0, is also set to zero.
Fig. 2.5 presents an illustrative example, which compares the Kalman fil-

ter forecast with AR(1) model forecast, when both are applied to the hourly
data of April. The order of the AR model is chosen based on BIC. The best
order, corresponding to the smallest BIC, is p = 1. Because the Kalman filter
updates its one-hour ahead forecast with the new observation, to make a fair
comparison, we use the AR(1) model to conduct a one-hour ahead forecast on
a rolling forward basis from t+1 to t+6, the same as what is done for the solid
dots in Fig. 2.4. The difference is that the model used then is ARMA(1,1),
whereas the model used here is AR(1). The actual difference is, however, negli-

gible, because b̂1 = 0.0871 in the ARMA(1,1) model, and as such, ARMA(1,1)
behaves nearly identically to AR(1) with the same autoregressive coefficient.
The point forecast of both methods are similar here, but the confidence inter-
val of the Kalman filter is narrowing as more data are accumulated, while the
confidence interval of the AR(1) one-hour ahead forecast stays much flatter.

2.5.2 Support Vector Machine
Support vector machine is one of the machine learning methods that are em-
ployed in wind speed forecasting. Support vector machine was initially de-
veloped for the purpose of classification, following and extending the work of
optimal separating hyperplane. Its development is largely credited to Vladimir
Vapnik [221].

Two important ideas are employed in a support vector machine. The first
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FIGURE 2.5 One-hour ahead forecasting plots from t+1 to t+6: Kalman

filter (left panel) and AR(1) model (right panel).

is to use a small subset of the training data, rather than the whole set, in the
task of learning. This subset of data points was called the support vector by its
original developers, namely Vapnik and his co-authors. This is where the name
Support Vector Machine comes from. In the case of a two-class classification,
the data points constituting the support vector are those close to the boundary
separating the two competing classes. The data points that are more interior
to a data class and farther away from the separating boundary do not affect
the classification outcome.

The second idea is to transform the data from its original data space to
a potentially high-dimensional space for a better modeling ability. This type
of transformation is nonlinear, so that a complicated response surface or a
complex feature in the original space may become simpler and easier to model
in the transformed space. The theoretical foundation for such transformation
lies in the theory of reproducing kernel Hilbert space (RKHS) [86].

The use of the first idea helps the use of the second idea. One key reason
for SVM to do well in a higher dimensional space without imposing too much
computational burden is because the actual number of data points involved
in its learning task, which is the size of the support vector, is relatively small.

The application of SVM to wind speed data is to solve a regression prob-
lem, in which the response is a real value, albeit nonnegative, instead of a
categorical value. SVM is applicable to regression problems but a different
loss function ought to be used. We will discuss those next.

Support vector machine falls into the class of supervised machine learning
methods, in which a set of data pairs, {xi, yi}ni=1, is collected and used to
train a model (model training is the same as to decide the model order and
estimate the model parameters). In the data pairs, xi is the input and yi
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is the corresponding output. In the context of wind speed forecasting, what
analysts use to forecast a future value is the historical observations. At time
t, the input vector comprises the wind speed data p-step back in the history,
and the response y is the h-step ahead to be forecasted. In other words, xt
and yt can be expressed as

xt = (Vt, . . . , Vt−p+1)T and yt = Vt+h.

This xt is essentially the same as the observation coefficient vector, ht+1, in
the Kalman filter. We group the data in the collection of historical observations
running from time 1 to time n+ h and label them as x’s and y’s accordingly.
Wind speed V` for ` ≤ 0 is set to zero. Like in the Kalman filter, p can be
chosen by fitting an AR model to the wind data.

SVM finds the relationship between x and y, so that a forecast can be
made for h-step ahead whenever a new set of wind speed observations are
available. Unlike in AR models and the Kalman filter, the y-to-x relationship
found by SVM is not necessarily linear. In fact, it is generally nonlinear.
Analysts believe that a nonlinear functional relationship is more flexible and
capable, and could hence lead to an enhanced forecasting capability. When
using SVM, for a different h, a different SVM predictive model needs to be
built, or needs to be trained. This aspect appears different from the recursive
updating nature of the Kalman filter or the ARMA model.

The general learning problem of SVM can be formulated as

α̂ = arg min
{
L(y,Kα) +

γ

2
αTKα

}
, (2.47)

where L(·, ·) is a loss function that can take different forms, depending
on whether this is a regression problem or a classification problem, y =
(y1, . . . , yn)T is the output vector, K is the Gram matrix (or the kernel ma-
trix), to be explained below, α is the model parameters to be learned in the
training period, using the training dataset, {xi, yi}ni=1, and γ is the penalty
constant to regulate the complexity of the learned functional relationship. A
large γ forces a simpler, smooth function, while a small γ allows a complicated,
more wiggly function. Recall the overfitting issue discussed in Section 2.4.2.
An overly complicated function leads to overfitting, which in turn harms a
model’s predictive capability. The inclusion of γ is to help select a simple
enough model that has good predictive performances.

The above formulation appears to be different from many of the SVM
formulations presented in the literature. This is because the above SVM for-
mulation is expressed under the reproducing kernel Hilbert space framework.
The RKHS theory is too involved to be included here—after all, the main
purpose of this book is not machine learning fundamentals. The benefit to
invoke this RKHS framework is that doing so allows the SVM formulation
to be presented in a clean and unified way and also be connected easily with
other learning methods, such as Gaussian process regression [173] or smooth-
ing splines [86].
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In the kernel space formulation, one key element is the Gram matrix K,
which is created by a kernel function K(·, ·), such that the (i, j)-th element
of K is (K)i,j = K(xi,xj). This is how the input vector information x’s get
incorporated in the learning equation of Eq. 2.47; otherwise, it may appear
strange that SVM learns α by using y only, as on the surface, x does not
appear in Eq. 2.47.

There are several commonly used kernel functions in SVM. A popular one
is the radial basis function kernel, defined as

K(xi,xj) = exp
{
−φ‖xi − xj‖22

}
, (2.48)

where ‖·‖2 defines a 2-norm; for more discussions on norm, please refer to
Section 12.3.1. The radial basis kernel is also known as the Gaussian kernel,
as its function form resembles the density function of a Gaussian (normal)
distribution. Using the radial basis kernel, it introduces one extra parameter,
φ, which will be decided in a similar fashion as how γ in Eq. 2.47 is decided.
This is to be discussed later.

Once the parameters in α are learned, analysts can use the resulting
SVM to make forecasting. For instance, we train an SVM using data from
1 to n. Then, with a new observation, Vn+1, we would like to make a
forecast of Vn+h+1. We first form a new input vector, denoted by xnew =
(Vn+1, Vn, . . . , Vn−p+2)T . Then, the forecasting model is

V̂n+h+1(xnew) =
n∑
i=1

α̂iK(xnew,xi). (2.49)

For a general h-step ahead forecasting where h > 1, it is important to make
sure that xnew properly includes the new observations that matter to the
forecasting. Then, the same formula can be used to obtain a general h-step
ahead forecast V̂t+h.

SVM for classification and SVM for regression use different loss functions.
First, let us define a general prediction function for SVM as g(x). Similar to
the prediction expressed in Eq. 2.49, the general prediction function takes the
form of

g(x) =

n∑
i=1

αiK(x,xi). (2.50)

The loss function can be denoted by L(y, g(x)). For classification, a hinge loss
function,

L(y, g(x)) =
n∑
i=1

(1− yig(xi))+ , (2.51)

is used. As illustrated in Fig. 2.6, left panel, this loss function, expressed in yg,
looks like a hinge comprising two straight lines. For regression, an ε-sensitive
error loss function,

L(y, g(x)) =
n∑
i=1

(|yi − g(xi)| − ε)+ , (2.52)
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FIGURE 2.6 The loss functions used by support vector machine in clas-

sification (left panel) and in regression (right panel).

is used, which is illustrated in Fig. 2.6, right panel.
SVM regression can be made equivalent to Gaussian process regression,

if (a) the loss function uses a squared error loss function, (b) γ/2 is set to
σ2
ε , which is the variance of the i.i.d noise term, (c) when the kernel function,
K(·, ·), is set to be a covariance function. This connection becomes clearer
after we discuss the Gaussian process regression in Section 3.1.3 (see also
Exercise 3.2).

To run an SVM regression, the needed input is the training dataset
{xi, yi}ni=1 and three exogenous parameters, γ in Eq. 2.47, φ in Eq. 2.48,
and ε in Eq. 2.52 (not to confuse this ε with the i.i.d noise term ε). These
exogenous parameters can be decided by using a cross-validation strategy [86].
A five-fold cross validation is carried out through the steps in Algorithm 2.1.

In R’s e1071 package, a number of functions can help execute the SVM re-
gression and make forecast. The svm function performs both classification and
regression. It performs a regression, if it detects real values in y. By default,
the svm uses a radial basis function and sets γ = 1, φ = 1/p, and ε = 0.1.
Please note that γ in our formulation is the reciprocal of the cost argument
used in the standard SVM package in R, and the radial kernel coefficient, φ,
is called gamma in the SVM package.

The following command can be used to perform a model training,

svm.model <- svm(Y~ X, data = trainset).

To apply the SVM to the test dataset,

svm.pred <- predict(svm.model, testset).

To select the exogenous parameters, analysts can use the tune function to
run a grid search. Suppose that we have fixed φ = 1 but want to see which
combination of γ and ε produces a better model, we may use

outcome<-tune(svm, Y~ X, data = trainset, ranges =

list(epsilon = seq(0,1,0.1), cost = 10^ (-4:4)).
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Algorithm 2.1 A five-fold cross-validation procedure.

1. Choose a value for γ, φ, and ε, respectively.

2. Split the whole training dataset into five subsets of nearly equal data
amount.

3. Use four subsets of the data to train an SVM regression model.

4. Use the remaining unused data subset to evaluate the performance of
the model, using one of the performance metrics that are to be discussed
in Section 2.6.

5. Repeat Steps 3 and 4 five times. Each time, always use four subsets to
train a model and use the unused fifth subset to evaluate the model’s
forecasting performance.

6. Use the average of the performance metric values as the final model
performance.

7. Repeat from Step 1 by trying other combinations of γ, φ, and ε. Select
whichever combination produces the best forecasting model.

Because the tune function runs an exhaustive search, it could take a long time,
especially if all three parameters are to be optimized. To speed up, analysts
can optimize one factor at a time or employ a meta-heuristic optimization
routine such as the genetic algorithm.

Using the same April wind data as used in the previous subsections, we
explore which parameter combination produces the best SVM. Here, a radial
basis kernel is used, p = 1 as in the Kalman filter example, and φ = 1. To ease
the computation, we use a greedy search strategy, which is to fix the value of
ε = 0.1, vary cost in a broad range. It turns out that cost = 1 is preferred.
Then, fix cost = 1 and vary ε from 0 to 1. This process chooses ε = 0.2.

2.5.3 Artificial Neural Network
Artificial neural network is another machine learning method that is widely
employed in wind speed forecasting. ANN can be used for both classification
and regression, too. Like in the case of SVM, the application of ANN to wind
speed forecasting is a regression problem. The problem setting is similar to
that described in the SVM section:

• A set of training data points, {xi, yi}ni=1, is collected, where xi and yi
are defined likewise as in SVM.

• ANN aims to find the relationship between x and y, and the resulting
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relationship is nonlinear, as in the case of SVM and unlike the linear
relationship assumed in AR models and the Kalman filter.

• To make a forecast at t + h, one chooses Vt+h as the corresponding yi.
ANN can train a model with multiple outputs, meaning that the outputs
of an ANN can make forecasts, all at once, at a number of h-step ahead
times with different h’s. This is, at least conceptually, a convenience
provided by ANN. On the flip side, training a multi-output model takes
more care than training a single-output model.

Neural networks consist of an input layer and an output layer, which are
connected through one or many hidden layers in between. Fig. 2.7, left panel,
presents a multiple-input and single-output neural network, which has only
one hidden layer. Each layer comprises a number of nodes. The nodes on the
input layer are basically the input variables, whereas the nodes on the output
layer are the response variables, namely the forecast to be made in the wind
applications. By letting y = Vt+h, the neural net in Fig. 2.7 is to make an h-
step ahead forecast for the given h. As mentioned above, it is straightforward
for an ANN to have multiple outputs, so as to make simultaneous forecasts at
multiple future time instances.

The information flow in an ANN goes as follows. The input layer takes
in the input data. The connection between the input nodes and a node on
the hidden layer feeds a linear combination of the inputs to the hidden node
and outputs a value after a nonlinear transformation. The final output of the
network is a linear combination of the values of the hidden nodes. Denote by
Z the node on the hidden layer and assume that there are M hidden nodes,
i.e., Z1, . . . , ZM . As such, a neural net is described mathematically as,

Zm(x) = σ(α0m +αTmx),m = 1, . . . ,M, (2.53)

ŷ = g(x) = β0 +
M∑
m=1

βmZm(x), (2.54)

where α0m, αm, and βi, i = 0, 1, . . . ,M are the model parameters to be learned
from the training data, and σ(·) is the sigmoid function, taking the form
σ(x) = 1/(1 + e−x). For an illustration, please take a look at Fig. 2.6, right
panel. This sigmoid function is the nonlinear transformation, referred to a
short while ago, that takes place at the hidden nodes. Because of this nonlinear
transformation, the resulting ANN model is inherently nonlinear. This sigmoid
function is called an activation function, as what it does is to tame an input
if its value is negative, but let the input pass if its value is positive. This
function is adopted to mimic the activation of a biological neuron responding
to a stimulus—this analogy earns the method its name. In Eq. 2.53, analysts
sometimes use the radial basis function as the σ(·) function, instead of a
sigmoid function. If so, the resulting ANN is referred to as a radial basis
function neural net.

If we choose an identity function as σ(·), namely σ(x) = x, then the ANN
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FIGURE 2.7 Left panel: a single hidden layer, a single-output neural net-

work. Right panel: a sigmoid function.

model simplifies to a linear model. In this way, an ANN can be thought of
as a two-stage, nonlinear generalization of the linear model. A general ANN
also has multiple layers. It has been long believed that having multiple lay-
ers increases the data modeling capability of the resulting neural net, but
the difficulty surrounding the optimization for parameter estimation made a
multiple-layer neural net initially less practical. This optimization problem
was addressed about a decade ago, and consequently, the many-layered neu-
ral nets become popular nowadays. The many-layered neural nets are referred
to as deep neural nets, or commonly, deep learning models. The single layer
one, by contrast, is called a shallow neural net.

An ANN is parameterized by α0m, αm, and βi, i = 0, 1, . . . ,M , known
as the weights in the language of neural nets, as they can be viewed as the
weights associated with the links between an input node and a hidden node, or
between a hidden node and an output node. For regression, the loss function
used in an ANN training is the squared error loss, i.e.,

∑n
i=1(yi − g(xi))

2.
For a single-layer, single-output ANN, the number of inputs and that of

the hidden nodes need to be decided before the training stage. Concerning
the number of inputs, we recommend using the same number of inputs as in
the Kalman filter or the support vector machine, for which the choice of p
can be hinted by fitting an AR model. Please be aware that the inputs to
an ANN can be easily expanded. Analysts have included wind power, time
in a day, temperature, among other things, as inputs. Due to the flexibility
of an ANN, the training is supposed to take care of the y-to-x relationship,
depending much less on the nature of the inputs. Concerning the number of
hidden nodes, Hastie et al. [86] recommend the range of 5 to 100 and using
more hidden nodes if there are more input nodes, and offer the following rule of
thumb—“Generally speaking it is better to have too many hidden units [nodes]
than too few.”

When training a neural net, the starting values of the parameters are
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typically chosen to be random values near zero [86]. When inputs of different
physical units are used, it is advised to standardize the inputs to have a zero
mean and a standard deviation of one.

The R package neuralnet can facilitate the process of building a neural
net. Suppose that we choose to have 10 hidden nodes on a single hidden layer.
The following R command can be used,

nn <- neuralnet(Y~ X,data=trainset, hidden=10, linear.output=T),

where linear.output=T means that this is a regression problem. By default,
the neuralnet function uses the resilient back-propagation with weight back-
tracking algorithm [178] to solve the optimization problem and estimate the
parameters. If one chooses a multi-layer neural net, then the hidden ar-
gument needs to be set accordingly. For instance, setting hidden = c(5,

4, 3) means that the resulting ANN has three hidden layers, having 5, 4,
and 3 nodes, respectively. To visualize the resulting neural net, one can use
plot(nn). To test the resulting ANN on a set of test data, one can use

test.nn <- compute(nn, testset).

Using the April wind data and p = 1, we test a single hidden layer ANN
with four different choices for the number of the hidden nodes, which are 5,
10, 15, and 30. A ten-fold cross validation settles at five hidden nodes.

2.6 PERFORMANCE METRICS
In order to assess the forecasting quality, a number of performance metrics
are used. Consider the case that we have a set of ntest test data points, Vi,
i = 1, . . . , ntest, the corresponding forecast of each of which is V̂i. The most
popular two metrics are the root mean squared error (RMSE) and the mean
absolute error (MAE), defined, respectively, as

RMSE =

√√√√ 1

ntest

ntest∑
i=1

(V̂i − Vi)2, and (2.55)

MAE =
1

ntest

ntest∑
i=1

|V̂i − Vi|. (2.56)

Both metrics evaluate the performance of a point forecast. RMSE is based on
the squared error loss function, and thus sensitive to the existence of outliers,
whereas MAE is based on the absolute error loss, and thus less sensitive to
outliers.

Both RMSE and MAE count the absolute amount of forecasting error,
regardless of the base value to be predicted. Some may argue that an error of
1 m/s, when predicting at the base wind speed of 3 m/s versus predicting at 15



A Single Time Series Model � 49

m/s, has different impacts. To measure the relative error, the mean absolute
percentage error (MAPE) is used. MAPE is defined as

MAPE =
100

ntest

ntest∑
i=1

∣∣∣∣∣ V̂i − ViVi

∣∣∣∣∣ . (2.57)

Note that MAPE is given as a percentage quantity but its value can exceed
100%.

We want to point out that in some literature, for instance, in [75], MAE is
called the mean absolute prediction error, the acronym of which is also MAPE.
This confusion can be cleared in the context by looking at the spelled-out
version of the acronym or the definition.

Hering and Genton [91] favor measuring the impact on the final power
response affected by wind speed forecast. This is because the impact of a
forecast error in wind speed on wind power is not uniform. Recall the power
curve in Fig. 1.2. For a wind speed smaller than the cut-in wind speed or
larger than the rated wind speed, an error in wind speed forecast has a smaller
impact on wind power than the same amount of forecasting error has when
the wind speed is between the cut-in speed and the rated speed, where the
power curve has a steeper slope. To factor in the impact on a turbine’s power
response, Hering and Genton [91] propose the following power curve error
(PCE), defined as

PCEi =

ξ
(
g(Vi)− g(V̂i)

)
if V̂i ≤ V,

(1− ξ)
(
g(V̂i)− g(Vi)

)
if V̂i > V,

(2.58)

PCE =
1

ntest

ntest∑
i=1

PCEi, (2.59)

where g(·) is the power curve function and ξ ∈ (0, 1) is introduced to penalize
underestimation and overestimation differently. In practice, underestimating
incurs more cost than overestimating. Therefore, for practical purposes ξ >
0.5. Hering and Genton [91] recommend setting ξ = 0.73. Generally speaking,
using the PCE ensures that the optimal forecast is a ξ-quantile [73]. If ξ = 0.5,
PCE is the same as MAE.

The above metrics all measure the quality of a point forecast. If the fore-
casting is a probability density, to measure the quality of a density esti-
mation or prediction, we use the mean continuous ranked probability score
(CRPS) [76]. CRPS compares the estimated cumulative distribution function
with the observations, and it is computed as

CRPS =
1

ntest

ntest∑
i=1

∫ (
F̂ (V )− 1(V > Vi)

)2

dV, (2.60)

where F̂ (V ) is the estimated cdf and 1(·) is an indicator function, such that
1(logic) = 1 if logic is true and zero otherwise. When the cdf, F (·), is
replaced by a point forecast, CRPS reduces to MAE [75].
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TABLE 2.5 Model parameters of SVM and ANN
selected by cross validation. The φ parameter in SVM
is set to be the reciprocal of p.

SVM ANN

h p cost ε p # of hidden nodes

1 1 100 0.3 1 10
2 1 10 0.4 1 5
3 4 1 0.5 1 5
4 4 1 0.6 1 10
5 3 1 0.3 1 5
6 3 1 0.5 1 5

2.7 COMPARING WIND FORECASTING METHODS
In this section, we conduct a comparison study using the yearlong hourly data
in the Wind Time Series Dataset and see how individual forecasting models
work.

For each month, we split the wind speed data into two portions as follows.
We reserve the last six hours of data points as one of the test sets and take the
remaining data in that month as one of the training datasets. We then group
all 12 monthly training sets into an aggregated training set for the whole year.

Five different forecasting methods are considered—the persistence model,
forecasting based on Weibull distribution (WEB), ARMA model, SVM, and
ANN. For ARMA, BIC is used to decide the best model order. When training
SVM and ANN, the cross-validation strategy is used to decide the exogenous
parameters. For the first four models, the training data in the yearlong dataset
are used to find the best model order, if applicable, and estimate the respective
model parameters. For ANN, the convergence of the R package while using the
yearlong dataset is very slow. We instead use only one month of data (April)
in a cross validation to decide the number of hidden nodes for a single-layer
neural net. Once that is decided, the remaining parameters in the ANN model
are estimated still based on the yearlong training data.

For WEB, the mean of the estimated distribution is used as the forecast
for all six h-hour ahead forecasts. For ARMA, an ARMA(2,2) model is chosen
for making h-hour ahead forecasts at h = 1, 2, . . . , 6. For SVM and ANN, six
different models of each kind are trained to cover all six h values. For instance,
when h = 1, we train an SVM and an ANN for one-hour ahead forecasting;
when h = 2, we will train another SVM or ANN model for two-hour ahead
forecasting; and so forth. Recall that this is a feature of the machine learning
methods mentioned on page 42. The parameters of the selected SVM and
ANN models are presented in Table 2.5.

The trained models are used to make forecasts at each month’s test data.
For each h, there are 12 test data points, i.e., ntest = 12, one per month. The
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TABLE 2.6 RMSE (m/s) of five different forecasting methods.

Method h = 1 h = 2 h = 3 h = 4 h = 5 h = 6

PER 0.826 1.597 2.055 2.336 2.659 3.005
WEB 3.237 3.439 3.177 3.474 2.703 2.322
ARMA(2,2) 0.984 1.541 1.777 2.394 2.348 2.488
SVM 1.065 1.504 2.661 2.487 2.154 2.905
ANN 1.074 1.727 1.857 2.666 2.595 2.429

TABLE 2.7 MAE (m/s) of five different forecasting methods.

Method h = 1 h = 2 h = 3 h = 4 h = 5 h = 6

PER 0.631 1.194 1.626 1.744 2.227 2.442
WEB 2.405 2.452 2.457 2.839 2.099 1.813
ARMA(2,2) 0.769 1.163 1.303 1.962 2.055 2.024
SVM 0.864 1.258 2.007 1.959 1.780 2.235
ANN 0.856 1.452 1.441 2.125 2.148 2.010

12 test data points are used to compute three performance metrics—RMSE,
MAE, and MAPE—for each forecasting method.

Tables 2.6–2.8 present the three metrics for the five methods. We observe
the following:

1. For very short terms, like h = 1 or h = 2, the persistence model and
ARMA model are clear winners. The method based on Weibull distri-
bution is the worst by a noticeable margin.

2. Despite the bad performance for very near-term forecasting, WEB holds
steady its performance as the forecasting horizon projects into the fu-
ture, while the performances of all other methods deteriorate quickly.
Eventually, WEB becomes the best forecasting at h = 6. PER suffers
the greatest performance degradation when h increases from one hour
to six hours.

3. The two machine learning methods, SVM and a single-layer ANN in this
comparison, perform rather similarly. It is difficult to conclude which
method is better. A many-layered ANN, or a deep neural net might,
however, win over SVM. That remains to be studied.

4. If this study is used as a guide, then analysts are advised to use PER
for one-hour or two-hour ahead forecasting, WEB for six-hour ahead or
longer forecasting (before switching to NWP), and use ARMA models
or machine learning methods for forecasting in between.
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TABLE 2.8 MAPE (percentage) of five different forecasting
methods.

Method h = 1 h = 2 h = 3 h = 4 h = 5 h = 6

PER 8.2 16.0 21.4 19.4 27.9 30.3
WEB 26.6 27.0 29.8 29.4 24.6 21.7
ARMA(2,2) 9.3 16.2 18.1 20.9 25.6 27.0
SVM 9.8 16.5 23.7 20.7 23.0 26.8
ANN 9.6 18.1 19.1 21.9 26.0 26.6

GLOSSARY
ACF: Autocorrelation function

AIC: Akaike information criterion

AICc: Akaike information criterion corrected

ANN: Artificial neural network

AR: Autoregressive

ARMA: Autoregressive moving average

BIC: Bayesian information criterion

cdf: Cumulative distribution function

CRPS: Continuous ranked probability score

i.i.d: Identically, independently distributed

KF: Kalman filter

MA: Moving average

MAE: Mean absolute error

MAPE: Mean absolute percentage error

MLE: Maximum likelihood estimation

NWP: Numeric weather prediction

PACF: Partial autocorrelation function

PCE: Power curve error

pdf: Probability density function

PER: Persistence model or forecasting

RKHS: Reproducing kernel Hilbert space
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RMSE: Root mean squared error

SVM: Support vector machine

WEB: Weibull distribution-based forecasting

EXERCISES
2.1 Find the probability density function for a three-parameter Weibull dis-

tribution.

a. Derive the corresponding log-likelihood function.

b. Use the three-parameter Weibull distribution to fit the hourly data
in the Wind Time Series Dataset and report the estimated param-
eters.

c. Suppose the turbine cut-in speed is 4 m/s. Remove the wind speed
data below the cut-in speed and fit both the two-parameter Weibull
distribution and the three-parameter distribution. Please discuss the
differences in your estimation outcomes.

2.2 Evaluate what impact different bin widths may have on the χ2 goodness-
of-fit test.

a. Use one month of the hourly data in the Wind Time Series Dataset

and try the following bin widths: 0.2, 0.5, 1, 2 m/s.

b. Switch to one week of the 10-min data and try the same set of bin
widths.

2.3 Use Hinkley’s method to select the power transformation coefficient, m.

a. Try this on the hourly data in the Wind Time Series Dataset and
try the following m values: 0, 0.5, 1, 2. Which m produces a sym = 0?
Interpolation may be needed.

b. Switch to the 10-min data and try the same set of m values.

2.4 Remove the diurnal trend in the hourly data in the Wind Time Series

Dataset by using Gneiting’s trigonometric function in Eq. 2.15. Plot
the original time series and the standardized time series. Compare them
with the standardization using Eq. 2.14 and note any difference that
you may have observed.

2.5 For the linear model in Eq. 2.20, the objective function leading to a
least-squares estimation is

min
{

(V − V̂)T (V − V̂) = (V −Wâ)T (V −Wâ)
}
.
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The least-squares estimation can be attained by taking the first deriva-
tive of this objective function, with respect to â, and setting it to zero.
Please derive the least-squares estimation formula.

2.6 Use the hourly data in the Wind Time Series Dataset and conduct an
ARMA modeling exercise. First, select the data from one of its months,
and use this specific month data and do the following.

a. Fit a series of AR models, with p = 1, 2, . . . , 6, respectively. When
applying the three information criteria, do they select the same model
order? Which criterion selects the simplest model?

b. Use the simplest AR model order selected in (a) and denote it as p0.
Compare the model AR(p0) with ARMA(p0, q) for q = 1, 2, 3, and
select the model order q in a similar fashion as in (a) that selects p0.
Denote the resulting MA model order as q0.

c. Conduct some model diagnostics of this ARMA(p0, q0) model by
plotting its ACF and PACF. Do the ACF and PACF plots confirm
a good model fit?

2.7 Derive Eq. 2.27 and Eq. 2.28 from Eq. 2.17.

2.8 When the loss function is a squared error loss function in Eq. 2.47, find
the closed-form expression for the optimal α̂.

2.9 Take the January hourly data from the Wind Time Series Dataset

and use that as the historical training data. In the presence of miss-
ing data, please simply skip time stamps where data are missing and
continue with the next available data.

a. Fit a series of AR models, with p = 1, 2, . . . , 6, respectively. Use BIC
to select the best model order p.

b. Use the resulting AR model to do an h-hour ahead forecast, for
h = 1, 2, . . . , 100. One hundred hours is a little bit over four days.
Call this forecast 1.

c. Use the resulting AR model in (a) to do a one-hour ahead forecast.
Shift the data sequence in (a) by one hour, namely that adding one
new observation and dropping the oldest observation. Repeat, for
the next 100 time instances, both the model fitting (including the
determination of p) and the forecasting. Call this forecast 2.

d. Use a Kalman filter to do the one-hour forecasting but continue run-
ning the Kalman filter for the next 100 time instances. Set the p in
the Kalman filter as that found in (a). Call this forecast 3.



A Single Time Series Model � 55

e. For each forecasting, record both the forecasting result and the cor-
responding wind speed observation at every time instance. Compute
RMSE and MAE for each forecast. Compare the performance metrics
for all three forecasts and discuss pros and cons of each approach.

2.10 For the hourly data in the Wind Time Series Dataset, take wind
power data, instead of wind speed data, and repeat the comparison
study conducted in Section 2.7. Compute the three performance met-
rics for five different methods for each h = 1, 2, . . . , 6.
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C H A P T E R 3

Spatio-temporal Models

W
hen building predictive models for short-term wind forecast, spatial
information is less frequently used than temporal information. Chap-

ter 2 uses data obtained from a single turbine on a wind farm, which can
also be applied to a single time-series data aggregating wind power outputs
from the whole farm. Analysts have noticed that valuable information may be
elicited by considering spatial measurements in a local region, as wind char-
acteristics at a site may resemble those at neighboring sites. This gives rise
to the idea of developing spatio-temporal methods to model the random wind
field evolving through space and time.

Recall that we denote the wind speed data in Chapter 2 by Vt, which has
only the time index. To model a spatio-temporal process, we expand the input
variable set to include both the location variable, denoted by s ∈ R2, and the
time variable, denoted still by t ∈ R, so that the spatio-temporal random wind
field is represented by V (s, t). In this chapter, unless otherwise noted, N is
used to denote the number of sites, whereas n is used to denote the number
of time instances in the training set.

One of the key aspects in spatio-temporal modeling is to model the covari-
ance structure of V through a positive-definite parametric covariance function,
Cov[V (s, t), V (s′, t′)].

3.1 COVARIANCE FUNCTIONS AND KRIGING
In this section, we focus on spatial covariance. For the time being, V (s, t)
is simplified to be V (s). Recall that the temporal covariance, also known as
autocovariance, is discussed in Section 2.4.3.

We use C(s, s′; t, t′) to represent a covariance function, namely

C(s, s′; t, t′) := Cov[V (s, t), V (s′, t′)].

When the time is held still and only the spatial covariance is concerned, the co-
variance function C(s, s′; t, t′) can be simplified to C(s, s′) := Cov[V (s), V (s′)],
after dropping the time index.

57
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Given a set of N locations, s1, . . . , sN , we can compute the corresponding
covariance matrix C, whose (i, j)-th entry is Cij = C(si, sj). The covariance
matrix is positive definite if all its eigenvalues are strictly positive, or positive
semidefinite if some of its eigenvalues are zeros while the rest are positive. It
is not difficult to notice that the covariance function is related to the kernel
function mentioned in Section 2.5.2 and the covariance matrix is related to
the Gram matrix (or the kernel matrix). A covariance function is referred to
as a covariance kernel in a general machine learning context, and it can be
shown that a positive definite kernel can be obtained as a covariance kernel
in which the distribution has a particular form [94].

3.1.1 Properties of Covariance Functions
We start with the discussion of some general properties of the covariance
functions.

Stationarity. A covariance function can be used to characterize both
stationary and nonstationary stochastic processes. We primarily consider the
stationary covariance function in this book, which has the property

C(s, s′) = g(s− s′), (3.1)

where g(·) is a function to be specified. The stationarity means that the co-
variance does not depend on the start location of a stochastic process but only
depends on the distance and orientation between two points in that process.
The variance of a stationary stochastic process can be expressed as

V ar[V (s)] = g(0) = σ2
V . (3.2)

For a stationary function, σ2
V is a constant, so that the stationary covariance

matrix can be further factorized as

C = σ2
V ·R, (3.3)

where R is a correlation matrix whose (i, j)-th entry is ρij = Cij/σ
2
V .

The concept of stationarity extends to the spatio-temporal covariance func-
tions. By assuming stationarity, the covariance function only depends on the
spatial lag, u = s − s′, and the time lag, h = t − t′, such that the general
function form C(s, s′; t, t′) can be expressed as C(u;h).

Isotropy: A stationary covariance function is isotropic, provided that

C(s, s′) = g(‖s− s′‖2), (3.4)

where ‖s − s′‖2 is the Euclidean distance between the two locations s and
s′. When it does not cause any ambiguity, the subscript “2” is dropped here-
inafter. Isotropy is to require invariance under rotation. This is to say, every
pair of data points at s and s′, respectively, having a common interpoint
distance, must have the same covariance regardless of their orientation. Ap-
parently, isotropy is a stronger condition than stationarity.
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Smoothness: Smoothness (continuity and differentiability) is a property
associated with sample functions, which are the realization of the stochastic
process under a specified covariance function. The smoothness requirement
is an important consideration in choosing a covariance function. The general
relationship between the smoothness of sample functions and the covariance
function is not straightforward. It is easier to talk about smoothness of sample
functions when a specific covariance function is considered.

3.1.2 Power Exponential Covariance Function
A popular family of covariance functions is the power exponential function,

C(s, s′) = σ2
V exp

−1

2

d∑
j=1

∣∣∣∣sj − s′jθj

∣∣∣∣pj
 , (3.5)

where d is the dimension of s, 0 < pj ≤ 2 is the shape parameter, and θj is
the scale parameter. Usually d = 2 in spatial statistics.

A special form of the power exponential covariance function is the isotropic
squared exponential (SE) covariance function (the phrase “isotropic” is often
omitted), whose parameters are θ1 = · · · = θd = θ, and p1 = · · · = pd = p = 2,
so that

CSE(u) = σ2
V exp

{
− u2

2θ2

}
, (3.6)

where u = ‖u‖ = ‖s − s′‖ =
√∑d

j=1(sj − s′j)2. This function is also called

the Gaussian covariance function. Recall the radial basis kernel in Eq. 2.48.
The CSE(·) is the same as K(·, ·) if φ = 1/2θ2 and σ2

V = 1.
An anisotropic form of the squared exponential covariance function is

where the scale parameters are different along different input directions while
its shape parameter is fixed at 2, namely p1 = · · · = pd = p = 2. This
anisotropic form is also known as the automatic relevance determination
(ARD). The corresponding covariance function reads as,

CSE-ARD(s, s′) = σ2
V exp

−1

2

d∑
j=1

∣∣∣∣sj − s′jθj

∣∣∣∣2
 . (3.7)

The impact of the three types of parameters in the power exponential
covariance function can be understood as follows, and Fig. 3.1 presents a few
examples of the sample function under different parameter combinations.

• The variance term, σ2
V , is referred to as the amplitude, because it is

related to the amplitude of a sample function.

• The shape parameter, p, determines the smoothness of the sample func-
tions. In the above two special cases of the power exponential function,
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p = 2. Analysts like this choice because the corresponding sample func-
tions are infinitely differentiable, meaning that the sample paths are
smooth. For the power exponential family, p = 2 is the only shape
parameter choice under which the sample functions are differentiable.
When p = 1, the corresponding covariance function is known as the
exponential covariance function. This choice is less popular because its
sample functions are not smooth.

• The scale parameter, θ, referred to as the length scale, determines how
quickly the correlation decays as the between-point distance increases.
When θ decreases, the correlation between a pair of points of a fixed
distance decreases, and thus, the sample functions have an increasing
number of local optima. As a result, the sample function exhibits fast
changing patterns and a short wavelength, where as θ increases, the cor-
relation between a fixed pair of points increases, and the sample function
hence exhibits slow changing patterns and a long wavelength.

Another popular family of the covariance function is the Matérn covariance
function, which has a smoothness parameter, υ, that can control the smooth-
ness of sample functions more precisely. Specifically, the sample functions are
almost surely continuously differentiable of order dυe − 1, where d·e rounds
up to the next integer. We choose to omit the presentation of the Matérn
covariance function because we do not use it in this book. Interested readers
can refer to [173] for more information.

3.1.3 Kriging
Kriging is the method commonly used to make spatial predictions. The
method is named after the South African mining engineer, D. G. Krige. In
spatial statistics and machine learning, kriging is generally referred to as the
Gaussian process regression [41, 173]. The problem setting is as follows. Con-
sider sites, s1, . . . , sN , and the wind speeds at these locations, denoted by
V (s1), . . . , V (sN ).The N sites can be the turbine sites in a wind farm, and
the wind speeds at {s1, . . . , sN} can be the wind speed measurements obtained
by the respective nacelle anemometers. Analysts express the sites and respec-
tive measurements as data pairs, such as {si, V (si)}Ni=1. The objective is to
make a prediction at a site, say, s0, where no measurements are taken.

Two popular versions of kriging are the ordinary kriging and universal
kriging. The ordinary kriging uses the following model,

V (si) = β0 + δ(si) + εi, i = 1, ..., N, (3.8)

where β0 is an unknown constant, δ(·) is the term modeling the underlying
random field via the spatial correlation among sites, and ε is the zero mean,
i.i.d Gaussian noise, such that εi ∼ N (0, σ2

ε). The i.i.d Gaussian noise, ε, is
also known as the nugget effect.
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FIGURE 3.1 Three sample functions using a squared exponential covari-

ance function with different parameter choices.
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The random field term δ(·) is assumed to be a zero-mean Gaussian process
whose covariance structure is characterized, for instance, by a power expo-
nential covariance function (other covariance functions can be used, too, but
the power exponential family is a popular choice). Suppose that the squared
exponential covariance function in Eq. 3.6 is used. It means that

C(δ(s), δ(s′)) = σ2
δ exp

{
−‖s− s′‖2

2θ2

}
, (3.9)

where σ2
δ is the variance term associated with the random field function δ(·).

As such, the variance of wind speed is the summation of the variance as-
sociated with the random field and that of the i.i.d random noise, namely
σ2
V = σ2

δ + σ2
ε .

What the ordinary kriging model implies is that the wind speed over a
spatial field is centered around a grand average, β0. The random fluctuation
consists of two portions—the first depends on specific sites and is characterized
by the spatial correlation between site s0 and the sites where observations are
made or measurements are taken, and the second is the pure random noise,
resulting from, for instance, the measurement errors.

Re-write Eq. 3.8 into a matrix form, i.e.,
V (s1)
V (s2)

...
V (sN )


︸ ︷︷ ︸

V

= β0 · 1N +


δ(s1)
δ(s2)

...
δ(sN )


︸ ︷︷ ︸

δ

+


ε1

ε2

...
εN


︸ ︷︷ ︸

ε

, (3.10)

where 1N is an N × 1 vector of all ones. Denote the covariance matrix of
δ by CNN = (Cij)N×N , where the subscript “NN” means that this is a
covariance matrix for the N sites. Recall that δ and ε are two normal random
variables having different covariance structures. This suggests that V follows
a multivariate normal distribution, such as,

f(V) = N (β0 · 1N ,CNN + σ2
εI). (3.11)

For the new site s0, the wind speed to be measured there, whose notation is
simplified to V0, has covariances with the existing N sites. The covariances can
be characterized using the same covariance function, such as C0j = C(s0, sj),
for j = 1, . . . , N . Introduce a new 1×N row vector,

c0N := (C01, . . . , C0N ).

Then, the multivariate joint distribution of (V0,V
T )T is

f

([
V0

V

])
= N

(
β0 · 1N+1,

[
σ2
δ + σ2

ε c0N

cT0N CNN + σ2
εI

])
, (3.12)
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where σ2
δ + σ2

ε is the variance of V0, namely σ2
V , which is also known as

the prior variance at the unseen site s0 before the prediction. Invoke the
conditional Gaussian distribution formula, which says that if x and y are
jointly Gaussian, i.e.,(

x
y

)
∼ N

([
µx
µy

]
,

[
A D

DT B

])
,

then, the condition distribution f(x|y) is

f(x|y) = N (µx + DB−1(y − µy),A−DB−1DT ). (3.13)

By using this conditional Gaussian distribution formula, we can express

f(V0|V) = N (β0 + c0N (σ2
εI + CNN )−1(V − β0 · 1),

σ2
V − c0N (σ2

εI + CNN )−1cT0N ).
(3.14)

This conditional distribution leads to the predictive distribution of V0, once the
observations on the existing N sites are obtained. We can write the predictive
mean and predictive variance, respectively, as

V̂0 := µ̂0 = β̂0 + c0N (σ̂2
εI + CNN )−1(V − β̂0 · 1),

V ar(V̂0) := σ̂2
0 = σ2

V − c0N (σ̂2
εI + CNN )−1cT0N .

(3.15)

The first equation is the kriging predictor, which is a linear combination of
the observed wind speeds in V. The linear coefficients (the weights) depend
on the correlation between the unseen site, s0, and the N training sites as
well as the variance in the training data. The coefficients are bigger, namely
the weights are greater, if the correlation is strong and the training data have
small variances. The predictive variance is reduced from the prior variance
σ2
V at the unseen site. The reduced amount depends also on the correlation

between the unseen site and the training sites as well as the variance in the
training data. The 100(1 − α)% confidence interval for the prediction at s0

can be obtained as

[V̂0 − zα/2σ̂0, V̂0 + zα/2σ̂0].

In the ordinary kriging model, Eq. 3.8, where an SE covariance function is
used, there are four parameters, {β0, σ

2
δ , θ, σ

2
ε}. These parameters can be esti-

mated by maximizing a log-likelihood function, which is the density function
in Eq. 3.11. Specifically, the log-likelihood function reads

L(V|β0, σ
2
δ , θ, σ

2
ε) = −1

2
(V − β0 · 1)T

(
σ2
εI + CNN

)−1
(V − β0 · 1)

− 1

2
log
∣∣σ2
εI + CNN

∣∣− N

2
log(2π).

(3.16)
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Alternatively, one can first estimate β0 by using the average of {Vi}Ni=1 and
then center the raw wind speed data by subtracting its average. After that, one
can use the centered wind speed data and the maximum likelihood estimation
to estimate the remaining three parameters (replace β0 by V̄ in Eq. 3.16).

Conceptually, the universal kriging is not much different from the ordinary
kriging. The main extension is to make the mean component in Eq. 3.8 and
Eq. 3.11 more flexible. In the ordinary kriging, the mean component is assumed
a constant, β0. In the universal kriging, the mean component is assumed as
a polynomial model, β0 + gT (s)β, so that the universal kriging model can be
expressed as

V (si) = β0 + gT (si)β + δ(si) + εi, i = 1, ..., N, (3.17)

where g(·) = (g1(·), . . . , gq(·))T is a set of basis functions, β = (β1, . . . , βq)
T is

the coefficient vector, and q is the number of terms in the polynomial model
in addition to the grand average, β0. There are many different choices for the
basis function g(·) but it can be simply that g1(s) = s1 and g2(s) = s2 (in
this case, q = d = 2). By expanding the mean component, the parameters in a
universal kriging are {β0, β1, . . . , βq, σ

2
δ , θ, σ

2
ε}, and the number of parameters

is q + 4, which is q more than that in the ordinary kriging. Nonetheless, the
maximum likelihood estimation can still be used to estimate all the parameters
after adjusting the log-likelihood function properly.

Kriging can be assisted by using the geoR package in R. Using the likfit

function to estimate the parameters, such as

para <- likfit(spatialdata, ini.cov.pars = c(1,1), nugget =

0.5).

Here, spatialdata is the wind spatial data object holding the {si, Vi}Ni=1

data pairs, ini.cov.pars provides the initial value for σ2
δ and θ, respectively,

nugget provides the initial value for σ2
ε . By default, the likfit uses the SE

covariance function and estimates the parameters by the maximum likelihood
estimation in an ordinary kriging. To make a prediction at s0, one can use

V0 <- krige.conv(spatialdata, locations = s0, krige =

krige.control(obj.model = para)),

where obj.model = para in the krige.control function passes the param-
eters just estimated to the prediction function. The default setting is an ordi-
nary kriging.

Fig. 3.2 presents an example of applying the ordinary kriging predictor
to the wind speed data from ten turbines in the Wind Spatial Dataset. An
ordinary kriging model is established based on the wind speed data collected
in July at ten turbine sites. Then the kriging model is used to predict the wind
speed at site #6 using the observed wind speed at the other nine sites for the
month of August. Fig. 3.2, right panel, shows that the spatially predicted wind
speed at site #6 closely matches the observed wind speed at the same site.
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FIGURE 3.2 Left panel: the layout of the ten turbines. Right panel: the

predicted and observed wind speeds of the first ten days in August at

site #6.

3.2 SPATIO-TEMPORAL AUTOREGRESSIVE MODELS
The previous section considers purely the spatial correlation. This section
presents a method that combines the spatial model feature and time series
model feature in a method known as the Gaussian spatio-temporal autore-
gressive model (GSTAR) [166].

3.2.1 Gaussian Spatio-temporal Autoregressive Model
The wind speed in GSTAR model is assumed to follow a truncated normal
distribution, a distribution choice as popular as Weibull used for modeling
wind speed [75]. For notational simplicity, the site notation, si, is shortened
as site i, and consequently, V (si; t) is simplified to Vi(t). To handle the wind
speed nonstationarity over time, the time in a day is split into a number of
epochs, during which the wind speed is assumed stationary [88]. For instance,
6 a.m. to 12 p.m. in a day can be treated as one epoch. With these notations,
Pourhabib et al. [166] express Vi(t) ∼ N+(µi(et), σ

2
i (et)), where i = 1, . . . , N ,

and et denotes the “epoch” at time t.
The GSTAR model assumes that the mean of wind speed at site i is a

function of the past wind speeds at not only the target site but also other
sites in its neighborhood, such that

µi(et) = β0 +

p∑
`=1

∑
j∈Ji

aij`Vj(t− `), for i = 1, 2, . . . , N, (3.18)

where β0 is an unknown constant, p is the autoregressive model order, Ji ⊂
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{1, 2, . . . , N} denotes the set of neighborhood sites whose wind speeds have a
strong enough correlation with the wind speed at the target site i, and aij`
are the coefficients that quantify the spatio-temporal dependency. Note that
Eq. 3.18 is a model for the expectation, so that the zero-mean, i.i.d noise term,
ε, disappears.

GSTAR relies on one important assumption, which is to assume the spatio-
temporal parameters, aij`, can be factorized into the respective spatial and
temporal parts, such that

aij` = asija
t
i` for i = 1, 2, . . . , N, j ∈ Ji, ` = 1, 2, . . . , p, (3.19)

and GSTAR models the spatial part, asij , and the temporal part, ati`, indi-
vidually. GSTAR models its spatial dependency coefficient, asij , through a
Gaussian kernel,

asij = exp
{
− (si − sj)

T
Λi (si − sj)

}
, i = 1, 2, . . . , N, j ∈ Ji, (3.20)

where Λi = diag{λi1, λi2}, and λi1 and λi2 characterize the spatial decay in
the longitudinal and latitudinal directions, respectively. Differing from that in
Eq. 2.48, the Gaussian kernel in Eq. 3.20 has different scale parameters along
the two spatial directions, whereas Eq. 2.48 has a single scale parameter φ
for all directions. In this sense, this Gaussian kernel is the counterpart of the
CSE-ARD covariance function in Eq. 3.7, whereas Eq. 2.48 is the counterpart
of the CSE covariance function in Eq. 3.6.

GSTAR models its temporal dependency, ati`, through an exponential de-
cay in terms of time distance, such as

ati` = exp {−λi3`} , i = 1, 2, . . . , N, ` = 1, . . . , p (3.21)

where λi3 characterizes the temporal decay. Using Eq. 3.19–3.21, the otherwise
large number of spatio-temporal parameters for site i is reduced to the three
parameters, λi1, λi2, and λi3.

Let Ai denote an N × p matrix of spatial dependency for site i, of which
the (j, `)-th entry, (Ai)j`, is asij . Because asij does not have the ` index, all
the entries are the same for the j-th row. For instance, the elements in the
first row are all asi1. If j /∈ Ji, the corresponding row of Ai is entirely zero. Let
Di denote a p × p diagonal matrix whose (`, `)-th entry is ati`. Let Vi(t) =
(Vi(t− 1), . . . , Vi(t− p))T be the time series data vector at site i, and V(t) be
the N × p time series data matrix for all sites, namely

V(t) =


VT

1 (t)
VT

2 (t)
...

VT
N (t)


N×p

. (3.22)

With the above notations, Eq. 3.18 can be expressed in a matrix form as,

µi(et) = β0 + tr
(
AiDiVT (t)

)
, i = 1, 2, . . . , N. (3.23)
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This model is referred to as the GSTAR of order p, or, simply GSTAR(p).
To estimate the parameters in Eq. 3.23, GSTAR uses a regularized least-

squares estimation procedure as,

min
λi1,λi2,λi3

n∑
`=1

{
L
[
Vi(`+ h)− V̄i, tr

(
AiDiVT (`)

)]
+ γPen (Ai)

}
, (3.24)

where h is the look-ahead time at which the GSTAR model is trained for
making a forecast, n is the number of time stamps in the training set,
V̄i = 1

n

∑n
`=1 Vi(`), L[·, ·] is a loss function (see Section 2.6 for various choices),

γ is the penalty coefficient, and Pen (Ai) is the penalty term that controls the
size of the neighborhood, to be discussed in the next section. This optimiza-
tion problem is solved using the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
algorithm [64], which belongs to the class of quasi-Newton methods.

Following the approach in [75], GSTAR models the standard deviation of
wind speed as a linear combination of volatility, which measures the magnitude
of recent changes in wind speed, such as,

σ̂i(et) = b0 + b1ν̂i(t), i = 1, 2, . . . , N, (3.25)

where

ν̂i(t) =

 1

2|Ji|
∑
j∈Ji

1∑
`=0

{
(Vj(t− `)− Vj(t− `− 1))

2
} 1

2

, (3.26)

and |Ji| is the number of elements in Ji. In the above equation, only the
immediately past two moving range values, i.e., the difference between wind
speed at t and at t − 1 and that between wind speed at t − 1 and at t − 2,
are used to estimate the volatility, ν̂. The two coefficients, b0 and b1, can be
estimated by regressing the sample standard deviation in the left-hand side of
Eq. 3.25 on ν̂i(t).

GSTAR makes an h-step ahead forecast at site i based on the α-quantile
of the truncated normal distribution, such as

V̂i(t+ h) = µ̂i(t+ h) + σ̂i(t+ h) ·Φ−1

[
α+ (1− α)Φ

(
− µ̂i(t+ h)

σ̂i(t+ h)

)]
, (3.27)

where Φ(·) is the cdf of the standard normal distribution, µ̂i(·) is the estimated
mean found through Eq. 3.23, in which t+ h denotes a forecasting time that
falls in the epoch et, and σ̂i(·) is the estimated standard deviation, decided
through Eq. 3.25. The value of α should be decided based on the choice of the
loss function. Using MAE or RMSE, α = 0.5. Using PCE, α should be chosen
consistently with ξ in Eq. 2.58.
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3.2.2 Informative Neighborhood
GSTAR only uses the sites within a neighborhood to make forecasts at the
target site. This neighborhood of site i, denoted by Ji, is much smaller than
the whole wind farm. The rationale of this treatment is that not every single
site on the farm has strong enough correlation with the target site to provide
meaningful information and hence facilitate forecasting. The use of the Gaus-
sian kernel essentially means that when the distance grows to a certain extent,
the turbine sites lying beyond would have very little impact. For this reason,
this neighborhood is referred to as an informative neighborhood for the pur-
pose of forecasting. An obvious benefit of using an informative neighborhood
is the reduced computational burden in the solution procedure.

Unlike the traditional wisdom that uses a time-invariant distance-based
criterion [88, 128], leading to a disc-like neighborhood with a fixed radius,
GSTAR uses the correlation among the rate of change in wind speed to de-
termine the spatial dependency. Pourhabib et al. [166] discover through their
analysis that two locations are informative to each other if the two sites have
similar rates of change in wind speed for a given period, which explains why
a pure distance-based criterion alone could be ineffective. Employing this cri-
terion to find the informative neighborhood is done by designing a special
penalty term in Eq. 3.24.

Denote by Zi(t) = dV ′i (t)/dt ≈ V ′i (t) − V ′i (t − 1) the first derivative
of wind speed (the change rate), where V ′i = Vi/max{Vi(t)} is the wind
speed normalized by the maximum wind speed for the whole farm during
the training period. Then, compute the N ×N sample covariance matrix for
Z(`) = [Z1(`), Z2(`), . . . , ZN (`)]T as,

CZ =
1

n

n∑
`=1

(
Z(`)− Z̄

) (
Z(`)− Z̄

)T
, (3.28)

where Z̄ =
∑n
`=1 Z(`)/n. To create the penalty term, Pen (Ai), it goes through

three steps of action:

(a) Set an entry in CZ to zero if its value is smaller than a prescribed
threshold κ ∈ [0, 1];

(b) Create a new matrix whose entries are the element-wise inverse of the
entries of the matrix obtained in step (a) (with the convention that the
inverse of zero is ∞); and

(c) Calculate the Frobenius norm of the product between the matrix ob-
tained after step (b) and Ai in Eq. 3.24, with the convention that
0×∞ = 0.

The specific mathematical steps are as follows. Let Cκ
Z denote the matrix after

CZ is truncated using κ, i.e.,

CκZ,jk = CZ,jk if CZ,jk ≥ κ, otherwise CκZ,jk = 0, (3.29)
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where CκZ,jk and CZ,jk are the (j, k)-th entry of Cκ
Z and CZ , respectively.

Then, let (Cκ
Z)− denote the entry-wise inverse of Cκ

Z . As such, the penalty
term is defined as,

Pen (Ai) = ‖AT
i (Cκ

Z)−‖F , (3.30)

where ‖·‖F represents the Frobenius norm and, inside Pen (Ai), one uses the
notational convention that 0×∞ = 0.

What this penalty term does is to associate each spatial dependency term,
asij , with the inverse of a CκZ,jk, in a fashion that can be loosely expressed as
asij/C

κ
Z,jk. To reduce the cost resulting from the penalty term, one apparently

wants to keep asij/C
κ
Z,jk as small as possible. If CκZ,jk = 0, meaning that the

sample covariance of the first derivative of wind speed is smaller than the
threshold, κ, then the corresponding asij is forced to zero. If CκZ,jk is not zero
but small, indicating a weak correlation between the two first derivatives, then
the corresponding asij is penalized more, whereas if CκZ,jk is large, indicating
a strong correlation, then asij is penalized less. The informative neighborhood
Ji = {j : CκZ,ij 6= 0} is then selected through this penalizing scheme.

Fig. 3.3 presents an example of the informative neighborhoods selected for
three different target sites. Note that informative neighborhoods are irregu-
larly shaped, rather than disc-like, and they are different when the target site
is at a different location. The shape and size of the informative neighborhoods
are time varying, and they will be updated through the learning process as the
new wind data arrives. This informative neighborhood concept and method is
more flexible and versatile in terms of capturing the spatial relevance.

Concerning the choice for the threshold, κ, the general understanding is
that a smaller κ leads to a larger neighborhood, because it causes Cκ

Z to have
fewer zero entries, whereas a large κ creates a smaller informative neighbor-
hood, because the resulting Cκ

Z has more zero entries. Here GSTAR sets the κ
value at 0.85 for all forecast horizons. Analysts can certainly conduct fine-scale
adjustments by, say, setting a lower and an upper threshold for the size of an
informative neighborhood. If the number of turbines in the neighborhood is
below the lower threshold, the κ value is to be reduced, which in turn makes
the neighborhood bigger to accommodate more turbines. If the number of
turbines is above the upper threshold, then the κ is to be increased, to make
the neighborhood smaller. In the numerical analysis in Section 3.2.3, the lower
and upper bounds are set as 2 and 15, respectively.

3.2.3 Forecasting and Comparison
This section applies the GSTAR method to the Wind Spatial-Temporal

Dataset1. In this application, GSTAR defines four epochs for each day in
a calendar month: (1) 12:00 am to 6:00 am, (2) 6:00 am to 12:00 pm, (3) 12:00
pm to 6:00 pm, and (4) 6:00 pm to 12:00 am. Consequently, an individual
GSTAR model for each epoch is fit, which is used to make forecasts for the
horizon belonging to the same epoch. Each GSTAR model is trained using one
month of data and then makes h-hour ahead forecasts for h = 2, 3, 4, and 5.
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Turbines Informative Neighborhood Target Sites

FIGURE 3.3 Neighborhoods selected by GSTAR based on one month of

data in the Wind Spatio-Temporal Dataset1. Top-left: three turbine

sites and the surrounding turbines; top-right, bottom-left and bottom-

right: informative neighborhood selected for each site.
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Pourhabib et al. [166] choose the PCE loss function as L[·, ·] in Eq. 3.24.
When using PCE, a power curve function is needed as g(·) in Eq. 2.58. Using a
nonlinear power curve function complicates the optimization in Eq. 3.24. Be-
cause of that, Pourhabib et al. simplify the power curve function to a piecewise
linear function, such that

g(V ) =


0, V ≤ 3.5;

0.1053(V − 3.5), 3.5 < V ≤ 13;

1, 13 < V.

This piecewise linear power curve function does not differ that much from the
nonlinear power curve function. The ξ parameter used in PCE is set to 0.73.
To ease the computational burden to go through the sizeable combinations of
turbines, months, and epochs, each of the N = 120 turbine cases is randomly
assigned to evaluate one of the epochs for a given month. The forecast error
for a given month, averaged over roughly 30 evaluation cases, is then reported.

The competing models used in this comparison are ARMA(p, q),
ARMA∗(p, q), and the persistence model. ARMA∗(p, q) is the same as
ARMA(p, q), except that the analysis is performed on the residuals after
removing a diurnal trend using Eq. 2.15. As seen in Chapter 2, a small time
lag usually suffices to capture the temporal dependency. For the datasets used
in this section, the partial autocorrelation of lag 1 is dominant, suggesting
p = 1. Using BIC would select p = 1 and q = 2 for most of the cases. So the
model order in the ARMA model is set as p = 1 and q = 2. When evaluating
the ARMA models, another random sampling is applied to the 30 evaluation
cases mentioned above, further reducing the number of runs to about 25% of
what is used for GSTAR.

Table 3.1 presents the forecasting results of GSTAR and the comparison
with the two versions of ARMA models and the persistence model. GSTAR,
on average, outperforms the other three methods, indicating the benefit of
incorporating the spatial dependency information. Interestingly, in this com-
parison, the persistence model wins over the ARMA models.

Table 3.2 shows some results using CRPS to give a sense of the quality
of predictive distribution. Forty turbines are randomly chosen, to which the
GSTAR and ARMA(1,2) are applied. Please note that here CRPS is computed
for power response, meaning that the integration is conducted over y; please
refer to Eq. 5.23.

In practice, the optimal value of ξ used in PCE may change over time
and a variation of ξ around 0.73 can be expected. A sensitivity analysis is
conducted, which is to change ξ between 0.6 and 0.8, and then average the
PCE over this range. One hundred turbines are randomly chosen and the 2009
data are used in this analysis. Table 3.3 shows that the performance of the
GSTAR model is reasonably robust when ξ is around 0.73.
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TABLE 3.1 Forecasting results for 2009 and 2010 using PCE. The values in
parentheses are the standard deviations of the corresponding forecasting. The row
of “Imp. over PER” shows the improvement of GSTAR over PER in percentage.

2-hour 3-hour 4-hour 5-hour

2009

PER 0.0614(0.0159) 0.0741(0.0184) 0.0857(0.0215) 0.0943(0.0212)
ARMA(1,2) 0.0663(0.0375) 0.0826(0.0386) 0.0844(0.0473) 0.0991(0.0463)
ARMA∗(1,2) 0.0752(0.0366) 0.0917(0.0421) 0.1002(0.0485) 0.1038(0.0486)
GSTAR(1) 0.0608(0.0297) 0.0716(0.0318) 0.0816(0.0327) 0.0884(0.0321)
Imp. over PER 1.1% 3.3% 4.8% 6.3%

2010

PER 0.0484(0.0137) 0.0572(0.0160) 0.0644(0.0185) 0.0698(0.0208)
ARMA(1,2) 0.0650(0.0398) 0.0779(0.0437) 0.0783(0.0394) 0.0794(0.0400)
ARMA∗(1,2) 0.0690(0.0386) 0.0823(0.0418) 0.0838(0.0460) 0.0857(0.0380)
GSTAR(1) 0.0477(0.0212) 0.0569(0.0231) 0.0630(0.0260) 0.0692(0.0277)
Imp. over PER 1.5% 0.5% 2.1% 0.8%

TABLE 3.2 CRPS values using forty randomly selected
turbines and 2009 data.

2-hour 3-hour 4-hour 5-hour

ARMA(1,2) 0.1538 0.1452 0.1496 0.1559
GSTAR 0.1243 0.1299 0.1378 0.1467

TABLE 3.3 Average PCE while ξ varying in [0.6, 0.8] for 100 turbines using the
data of 2009. The values in parentheses are the standard deviations.

2-hour 3-hour 4-hour 5-hour

PER 0.0616(0.0122) 0.0731(0.0220) 0.0855(0.0327) 0.0937(0.0286)
GSTAR 0.0628(0.0235) 0.0723(0.0332) 0.0835(0.0364) 0.0900(0.0357)
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3.3 SPATIO-TEMPORAL ASYMMETRY AND SEPARABILITY
3.3.1 Definition and Quantification
One of the key assumptions made in the GSTAR model is that the spatio-
temporal dependency structure, aij`, can be expressed as the product of a
spatial part and a temporal part; please refer to Eq. 3.19. Generally, a co-
variance structure is said to be separable if its covariance function can be
factored into the product of purely spatial and purely temporal components
such that C(u, h) = Cs(u) · Ct(h). This assumption of spatio-temporal sep-
arability is in fact rather common in spatio-temporal analysis [43] because
separable spatio-temporal models are easier to be dealt with mathematically.

Assuming separability suggests the lack of interaction between the spatial
and temporal components and implies full symmetry in the spatio-temporal
covariance structure, which brings up the concept of spatio-temporal symme-
try. A covariance structure is symmetric if

C(s1, s2; t1, t2) = C(s1, s2; t2, t1). (3.31)

This is to say that the correlation between sites s1 and s2 at times t1 and t2
is the same as that between s1 and s2 at times t2 and t1. For a stationary
covariance function, this can be written as C(u, h) = C(−u, h) = C(u,−h) =
C(−u,−h) [72]. Separability is a stronger condition. It can be shown that
a separable spatio-temporal covariance structure must have symmetry but
the converse is not necessarily true, meaning that a symmetric covariance
structure may or may not be separable [74].

To quantify asymmetry, Stein [204] proposes a metric in terms of spatio-
temporal semi-variograms. The spatio-temporal empirical semi-variogram of
Vi(t) between site s1 and site s2 at time lag h is defined as,

$(s1, s2;h) =
1

2(n− h− 1)

n−h−1∑
j=1

[V1(tj + h)− V2(tj)]
2. (3.32)

Then, introduce two semi-variograms between s1 and s2: $(s1, s2, h) and
$(s2, s1, h). Both of them represent the dissimilarity between the two spa-
tial sites, but $(s1, s2, h) means that measurements taken at s2 are h time
lag behind that at s1, whereas $(s2, s1, h) means that measurements at s1 are
behind those at s2. A quantitative asymmetry metric can be thus defined as
the difference between the two semi-variograms, namely

asym(s1, s2, h) := $(s1, s2, h)−$(s2, s1, h). (3.33)

When the two semi-variograms are the same, the wind field is said to be
symmetric. But when there is a dominant wind blowing from s1 towards s2,
the propagation of wind from s1 towards s2 would generate a significantly
positive value for asym, indicating a lack of symmetry. To signify the dominant
wind direction, denoted by ϑ, the asymmetric metric is also expressed as
asym(s1, s2, h, ϑ).
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3.3.2 Asymmetry of Local Wind Field
The space-time symmetry assumption is not universally valid, and it is espe-
cially not true in many geophysical processes, such as wind fields, in which the
prevailing air flow, if existing, causes the correlation in space and time stronger
in one direction than other directions, thus invalidating the symmetry assump-
tion. To see this, let us look at Fig. 3.4, left panel. Consider two sites and a
wind flow primarily from s1 to s2. Let t1 = t and t2 = t+k, k > 0. Were the as-
sumption of symmetry true, it meant that C(s1, s2; t, t+k) = C(s1, s2; t+k, t).
The left-hand side covariance, C(s1, s2; t, t + k), dictates how much informa-
tion at s1 and t is there to help make predictions at a down-wind site s2 and
a future time t+ k. A significant C(s1, s2; t, t+ k) suggests that the upstream
wind measurements at t help with the downstream wind prediction at t + k.
This makes perfect sense, considering that wind goes from s1 to s2. The as-
sumption of symmetry, were it true, says that the right-hand side covariance,
C(s1, s2; t + k, t), is equally significant, meaning that the downstream wind
measurements at t could help with the upstream prediction at t+ k, as much
as the upstream helps the downstream. This no longer makes sense.

Site 𝐬1 Site 𝐬2

Prevailing 
wind direction

𝑡 𝑡 + 𝑘

𝑡 + 𝑘 𝑡

Time lag (hours)
0 3 6 9 12 15 18 21 24
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FIGURE 3.4 Under a dominant air flow, the covariance structure of the

underlying wind field may become asymmetric. (Right panel reprinted

with permission from Ezzat et al. [59].)

While studying large-scale atmospheric processes, analysts have in fact
noted that when there exists a dominant air or water flow in the processes,
the resulting random field does not have a symmetric covariance structure [42,
72, 114, 204, 225]. The question is—does this lack of symmetry phenomenon
also take place on a small-scale wind field as compact as a wind farm?

Ezzat et al. [59] set out to investigate this question for the wind field on
a farm. In their analysis, the diurnal trend for wind speed is first fitted us-
ing Eq. 2.15 to remove nonstationarity in the wind data. The fitted trend is
then subtracted from the actual wind speed data and the residuals are sub-
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sequently used for quantifying asymmetry. Using the Wind Spatio-Temporal

Dataset2, the yearly average wind direction is estimated as ϑ̄ = 264.24◦ (due
west is 270◦). Because of this, for every pair of turbines i and j such that si is
west of sj , Ezzat et al. compute $(si, sj , h)−$(sj , si, h) using the residuals in
place of V in Eq. 3.32. This computation is repeated for every pair of turbines
and for different time lags ranging from 0 to 24 hours. All of the computed
quantities are then transformed into the correlation scale. For the `-th pair of
turbines, the resulting quantity at each temporal lag h is the spatio-temporal
asymmetry, asym`(si, sj , h, ϑ̄).

Denote the collection of asymmetry values at each temporal lag by
A(s, h) = {asym`(si, sj , h, ϑ̄)}L`=1, where L is the total number of turbine
pairs. Represent by Ā(s, h) the 50-th percentile of this collection. Fig. 3.4,
right panel, presents the 25-th, 50-th and 75-th percentiles of A(s, h) for
h ∈ {0, . . . , 24} with a three-hour increment. On the one hand, all median
asymmetry values in Fig. 3.4, right panel, are slightly positive, indicating a
potential tendency towards spatio-temporal asymmetry. On the other hand,
the largest median occurs at h∗ = 12 and is approximately 0.024 on the cor-
relation scale. To put this value in perspective, please note that Gneiting [72]
reports a value of 0.12 for asymmetric large-scale wind flow over Ireland. The
values of asymmetry reported in [74] range between 0.04 and 0.14, and are
averaged at 0.11. Relative to those levels, an asymmetry of 0.024 appears to be
rather weak to justify the existence of asymmetry in the local wind field. An-
alysts would understandably trade such weak asymmetry for computational
efficiency and model simplicity gained by making the symmetry assumption.
This may explain why separable, symmetric models are dominant in the wind
application literature.

On the surface, the above analysis appears to indicate that there does not
exist significant asymmetry in a local wind field within an area as compact
as a wind farm. Ezzat et al. [59] believe that the weak asymmetry is due to
the non-optimal handling of wind farm data, especially in terms of its tem-
poral handling. When producing the right panel of Fig 3.4, the wind data is
grouped for the whole year. Ezzat et al. test different temporal resolutions
like monthly or weekly. Under the finer temporal resolutions, the asymmet-
ric level indeed increases but still not much. Ezzat et al. hypothesize that a
special spatio-temporal “lens” is needed to observe the wind data in order to
detect strong degrees of asymmetry in a local wind field. This makes intuitive
sense. In a large-scale atmospheric process, a dominant wind can persist for
a sustained period of time and travel a substantial distance. These patterns
can be pre-identified through climatological expertise over a region of interest,
and as such, regular calendar decompositions, like weekly, monthly, seasonal,
or yearly, appear to be reasonable choices. For a local wind field, however,
observational data suggest that alternations in local winds occur at a rela-
tively high rate, resulting in several distinct wind characteristics at each wind
alternation. In such settings, regular calendar periods rarely contain a single
dominant wind scenario. Rather, they contain various dominant winds that
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create multiple asymmetries having distinct directions and magnitudes. Con-
sequently, aggregating the heterogeneous, and perhaps opposite, asymmetries
leads to an underestimation of the true asymmetry level.

3.3.3 Asymmetry Quantification
The physical differences between local wind fields and large-scale atmospheric
processes require special adjustments to the spatio-temporal resolution used
to analyze wind measurements, in order to reveal the underlying asymmetry
pattern. Ezzat et al. [59] devise a special lens consisting of two components—a
temporal adjustment and a spatial adjustment.

The main reason that temporal aggregations based purely on calendar
periods are not going to be effective is because such decomposition intervals are
created arbitrarily. Hence, one key step for a successful temporal adjustment
is to isolate the time intervals in which a unique dominant wind persists—
such intervals are referred to as the prevailing periods, and detecting them is
basically solving a change-point detection problem.

A binary segmentation version of the circular change-point detection [106]
is used to detect the change points in wind direction. The R package circular
is used to facilitate the task. The change-point detection method is applied
to the wind direction data measured at one of the masts. Fig. 3.5 presents
the detected change points for two weeks of the wind direction data, for the
sake of illustration. For the whole year, a dominant wind direction lasts, on
average, for 3.04 days with a standard deviation of 2.46 days. For 50% of the
prevailing periods, the wind direction alternates in less than 2.27 days. The
maximum interval of time in which a dominant wind direction is found to be
persistent is 15.5 days, while the shortest length of a prevailing period is found
to be 6 hours. These statistics indicate a fast dynamics and unpredictable
nature in wind direction change, explaining why a typical calendar period-
based approach is ineffective. A total of 119 change points are detected in
the yearlong wind direction data, leading to 120 prevailing periods identified
over the year. For the `-th prevailing period, the dominant wind direction is
denoted by ϑ`.

On the spatial level, the relative position of the turbines on a wind farm
is another factor that affects the asymmetry level at a given time. Physi-
cally, asymmetry exists when wind propagates from an upstream turbine to a
downstream one, implying that the latter is in the along-wind direction with
respect to the former. Therefore, the spatial adjustment is to select only the
along-wind turbines for asymmetry quantification.

A spatial bandwidth, denoted by b`, is to be selected for the `-th prevailing
period. The specific procedure is executed as follows: vary the bandwidth
in the range [2.5◦, 45◦] in increments of 2.5◦ and then select the bandwidth
that maximizes the median asymmetry and denote that choice as the optimal
bandwidth b∗` . With the spatial adjustment, the asymmetry metric, asym(·),
is now denoted as asym(s1, s2, h`, ϑ`, b`). Finally, an optimal time lag h∗` is
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FIGURE 3.5 Change points detected in the first two weeks of wind di-

rection data. The vertical dashed lines indicate the change points.

(Reprinted with permission from Ezzat et al. [59].)

chosen to maximize the median asymmetry level in each prevailing period
when spatial and temporal parameters are set at b∗` and ϑ`, respectively.

Under the parameter setting, h∗` , ϑ`, b
∗
` , the asymmetric metric asym(·) is

computed using the Wind Spatio-Temporal Dataset2. Fig. 3.6 presents the
25-th, 50-th and 75-th percentiles of the asymmetry level versus the sepa-
rating distance subgroups for the different scenarios thus considered: yearly,
seasonal, monthly, weekly, temporal-only lens scenario, and spatio-temporal
lens scenario. It is apparent that applying the spatio-temporal lens detects
much higher asymmetry levels. For instance, at separating distances greater
than 20 km, all of the turbine pairs exhibit positive asymmetry and 50% of
them exhibit an asymmetry level higher than 0.2 on the correlation scale, a
level considered significant in the past study [72] and nearly an order of mag-
nitude greater than the median asymmetry of 0.024 detected earlier on the
yearly data.

Table 3.4 classifies the median asymmetry values of all distance subgroups,
where 93% of the prevailing periods exhibit positive median asymmetry, nearly
a quarter of them exhibit a greater than 0.2 median asymmetry, and more
than 41% of them exhibit a median asymmetry larger than 0.1, the level of
asymmetry previously reported in [72, 74] for signaling the existence of ap-



78 � Data Science for Wind Energy

0 10 Km 10 20 Km 20 30 Km
Distance (Km)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

A
sy

m
m

et
ry

 in
 c

or
re

la
tio

n

Yearly
Seasonal
Monthly
Weekly
T lens
ST lens
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“T-lens” means temporal adjustment only, whereas “ST-lens” means

spatio-temporal adjustments. (Reprinted with permission from Ezzat

et al. [59].)

preciable asymmetric behavior in the large-scale atmospheric processes. The
findings suggest that not only does strong asymmetry exist in local wind fields,
but also the discovered asymmetry appears to fluctuate spatially and tempo-
rally in both magnitude and direction. Each prevailing period appears to have
a unique asymmetry pattern, creating a temporal fluctuation of asymmetry
throughout the year.

3.3.4 Asymmetry and Wake Effect
The implication of capturing the asymmetry in a local wind field can enrich
the understanding of complex physical phenomena on a wind farm such as the
wake effect. The spatio-temporal dynamics within a wind farm are affected
by the wake effect because the rotating turbine blades cause changes in the
speed, direction and turbulence intensity of the propagating wind [40]. For
each prevailing period, Ezzat et al. [59] divide the whole farm, based on the
wind direction, into two regions having approximately the same number of
turbines. The first region is the set of wake-free wind turbines that receive
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TABLE 3.4 Classification of prevailing periods according to
the median asymmetry level.

Group Range Percentage

1. Ā(s1, s2, h
∗
` , ϑ`, b

∗
` ) ≤ 0 7%

2. 0 < Ā(s1, s2, h
∗
` , ϑ`, b

∗
` ) < 0.05 27%

3. 0.05 ≤ Ā(s1, s2, h
∗
` , ϑ`, b

∗
` ) < 0.1 25%

4. 0.1 ≤ Ā(s1, s2, h
∗
` , ϑ`, b

∗
` ) < 0.2 20%

5. 0.2 ≤ Ā(s1, s2, h
∗
` , ϑ`, b

∗
` ) 21%

Source: Ezzat et al. [59]. With permission.

less turbulent wind, whereas the second region is the set of wind turbines
which are in the wake of other turbines and receive the disturbed, turbulent
wind. Fig. 3.7 plots the medians of the asymmetry for each region. The wake-
free region appears to exhibit stronger asymmetry, which is consistent with
the physical understanding since the less-turbulent wind is the driving force
creating the asymmetry. This analysis indicates that the asymmetry level
spatially varies on a wind farm due to the wake effect. Incorporating such
patterns in a spatio-temporal model could benefit modeling and prediction,
as well as aid research in wake characterization.

3.4 ASYMMETRIC SPATIO-TEMPORAL MODELS
3.4.1 Asymmetric Non-separable Spatio-temporal Model
Consider a simple spatio-temporal model, the counterpart of the ordinary
kriging in Eq. 3.8, such as

Vi(`) = β0 + δi(`), i = 1, . . . , N, and ` = t, t− 1, . . . , t− n, (3.34)

where β0 is the unknown constant, like in Eq. 3.8. Unlike Eq. 3.8, which has
two random terms, the i.i.d noise term ε is absorbed into the spatio-temporal
random field term δi(`) here.

The key in spatio-temporal modeling, as mentioned at the beginning of this
chapter, is to specify the covariance function for the spatio-temporal random
field term, δi(`). The specific asymmetric non-separable spatio-temporal model
presented here is a modified version of that proposed in [74], in which the
asymmetric, non-separable covariance function is expressed as follows,

CASYM(u, h) = σ2
ST

{
(1− ϕ)ρNS(u, h) + ϕρA(u, h)

}
+ η1{‖u‖=|h|=0}, (3.35)

where ρA is an asymmetric correlation function to be given below and ρNS is
a non-separable symmetric correlation function such that

ρNS(u, h) =
1− τ

1 + ζ|h|2

(
exp

[
− φ‖u‖

(1 + ζ|h|2)
β
2

]
+

τ

1− τ
1{‖u‖=0}

)
. (3.36)
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FIGURE 3.7 Wake effect and its implication on spatio-temporal asymme-

try. (Reprinted with permission from Ezzat et al. [59].)

In Eq. 3.35 and Eq. 3.36,

• ζ and φ are, respectively, the temporal and spatial scale parameters,

• τ and η are, respectively, the spatial and spatio-temporal nugget effects
(i.e., i.i.d random noise),

• σ2
ST is the spatio-temporal variance,

• β is the non-separability parameter, characterizing the strength of the
spatio-temporal interaction, and

• ϕ is the asymmetry parameter, characterizing the lack of symmetry.

• The valid ranges of these parameters are: τ ∈ [0, 1), β ∈ [0, 1], ϕ ∈ [0, 1],
σ2

ST > 0, and φ, ζ and η are all non-negative.

The ρA(·, ·) defined in [74] is a Lagrangian compactly supported function,

ρA(u, h) =

(
1− 1

2‖U‖
‖u−Uh‖

)
+

, (3.37)

where U = (U1, U2)T is the two-dimensional velocity vector having a longi-
tudinal component and a latitudinal component and to be defined based on
the knowledge of the weather system. For example, if the dominant wind is
known to be strictly westerly, then U is chosen to be (U1, 0)T , namely a non-
zero longitudinal wind velocity reflecting the traveling of the wind along the
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longitudinal axis. A generalized version of ρA is proposed by Schlater in [195].
Instead of using a constant vector, Schlater defines U as a random variable
that follows a multivariate normal distribution, i.e., U ∼ N (µµµ, D2 ). As such,
ρA is defined as,

ρA(u, h) =
1√

|12×2 + h2D|
exp

{
−(u−µµµh)T (12×2+h2D)−1(u−µµµh)

}
, (3.38)

where | · | denotes the matrix determinant.
The asymmetric non-separable model used by Ezzat et al. [59] consists of

the modeling components in Eq. 3.35, Eq. 3.36, and Eq. 3.38, and it is referred
to hereinafter as ASYM.

3.4.2 Separable Spatio-temporal Models
By setting β = ϕ = 0 in ASYM, the asymmetric, non-separable model is re-
duced to a symmetric, separable model. Analysts could entertain two variants
of the symmetric, separable model. The first variant is to take the parameters
of ASYM after all of them are estimated but simply reset β = ϕ = 0. The
second variant is to first set β = ϕ = 0 before parameter estimation and then
freely estimate the remaining parameters from the data. Understandably, the
second variant generally works better and is what is used in Section 3.5. This
symmetric, separable model is referred to as SEP.

3.4.3 Forecasting Using Spatio-temporal Model
The short-term wind forecasting may benefit from using an asymmetric, sep-
arable spatio-temporal covariance structure. Once the covariance function is
specified, the forecasting is conducted similarly as in the kriging method of
Section 3.1.3.

Let us arrange the spatio-temporal wind speed, Vi(t), into anNn×1 vector,
such as

V = (V1(t), · · · , VN (t), V1(t−1), · · · , VN (t−1), · · · , V1(t−n), · · · , VN (t−n))T .

The objective is to make a forecast at site s0 and time t + h, denoted by
V0(t+ h), which is an h-hour ahead forecast at s0.

A covariance matrix corresponding to V can be constructed by using the
covariance function CASYM and is hence denoted by CASYM. A covariance
row vector, c0, can be constructed by treating its i-th element (c0)i as the
covariance between V0(t+ h) with the i-th element in V. The notation of c0

bears the same meaning as the notation of c0N used earlier in Section 3.1.3.
Here we drop the subscript “N” because the size of V for this spatio-temporal
process is no longer N × 1 but Nn × 1. Denote by σ2

0 := CASYM(0, 0) the
prior variance of the underlying spatio-temporal process. Similar to the kriging
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forecasting in Eq. 3.15, the forecast of V0(t+ h) can be obtained as

V̂0(t+ h) = β̂0 + c0C
−1
ASYM(V − β̂0 · 1),

V ar(V̂0(t+ h)) = σ2
0 − c0C

−1
ASYMcT0 .

(3.39)

The flowchart in Fig. 3.8 presents the steps of the forecasting procedure.
To perform an h-hour ahead forecast, only the data in the preceding pre-
vailing period that share similar wind asymmetry characteristics are used for
model training. This implies that a small subset of data relevant to the current
prevailing period is used in the model training stage. The benefit of such an
approach is two-fold. First, it eliminates the computational burden in fitting
a complicated asymmetric, non-separable spatio-temporal model, because the
data in the preceding prevailing period are usually limited to from a few hours
to a few tens of hours, rather than weeks or months. Second, this approach
makes use of a local informative spatio-temporal neighborhood that is most
relevant to the short-term forecasting horizon. In this sense, it bears the simi-
larity with the spatial informative neighborhood discussed in Section 3.2.2 or
the temporal neighborhood used in [231].

Circular change-point 
detection for wind direction 

Model training

Short-term 
forecasting

End

Start

Data preprocessing and 
missing data imputation

Extract speed and direction data of the 
most recent prevailing period

Compute average 
wind direction  

Non-separable asymmetric model fitting 
using Maximum Likelihood Estimation

Spatio-temporal 
speed and 

direction data

Speed data

FIGURE 3.8 A flowchart that outlines the short-term forecasting based

on a spatio-temporal model. (Reprinted with permission from Ezzat et

al. [59].)
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3.4.4 Hybrid of Asymmetric Model and SVM
A spatio-temporal model can be used together with some machine learning
models to improve further the forecasting capability. Here, an ASYM is fit to
the spatio-temporal wind training data, and then an SVM model is fit to the
residuals obtained by ASYM, in order to capture any nonlinearities that are
not covered by the base ASYM model. The final hybrid model has an additive
form as

Vi(t) = V ASYM
i (t) + ESVM

i (t) + ε̃i(t), (3.40)

where V ASYM
i (t) is the ASYM model fit, ESVM

i (t) represents the SVM model
fit to the spatio-temporal residuals after the ASYM model fit, and ε̃i(t) is the
final residual term. This hybrid forecasting model is referred to as HYB.

3.5 CASE STUDY
In contrast to the situations where wind measurements come from a small
number of locations spread over large areas, as in [75, 91, 208], the within-
farm local wind field is much denser. Recall that the spatial and temporal
resolutions of wind data in the Wind Spatio-Temporal Dataset2 are one
mile and one hour, respectively. The purpose of this case study is to demon-
strate the existence of an asymmetric wind pattern in certain time periods
and the benefit that a non-separable model may render in terms of short-term
wind forecasting on such a compact wind field.

Four periods are chosen from different times in the Wind Spatio-Temporal

Dataset2. For each of the four periods, six hours of data are used for model
training. The choice for this short training period is motivated by observ-
ing that the shortest prevailing period length, as shown in Section 3.3.3, is
about six hours. As such, a training period of six hours ensures temporal ho-
mogeneity and stationarity in the training data, allowing for reliable model
estimation. Furthermore, for short-term wind forecasting, using a longer his-
tory of wind measurements is not necessarily helpful, as evident by the low
time lag order used in the time series models in Chapter 2 or in the GSTAR
model in Section 3.2.3.

In this study, forecasting is made for up to four hours ahead, i.e., h=
1, 2, 3, or 4. A variety of forecasting models are studied and compared, in-
cluding ASYM, SEP, the persistence model, a time-series model chosen as
ARMA(1,1), an SVM model using a radial basis kernel function and the wind
speeds measured at t− 1, as well as an HYB that combines ASYM and SVM.

Although we by and large follow the numerical analysis conducted in Ezzat
et al. [59], there are a couple of differences in treatment here leading to dif-
ferent numerical outcomes. But the main messages stay consistent with those
advocated in Ezzat et al. [59].

This section employs a missing data imputation procedure, and as a result,
the Wind Spatio-Temporal Dataset2 does not have any missing data for
wind speed. The power curve used here is a turbine-specific power curve,
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TABLE 3.5 Log-likelihoods of asymmetric versus
separable spatio-temporal models.

Period ASYM SEP

1. −2090.900 −2091.294
2. −2033.135 −2033.140
3. −1800.352 −1800.702
4. −2181.999 −2185.815

rather than a single power curve averaged for all the turbines. To specify µµµ
and D in ASYM, the most recent period is used as the training dataset. The
speed and direction time-series data, recorded at one of the masts, is used
to compute a time-series vector of wind velocities, along the longitudinal and
latitudinal directions, respectively. The estimate of µµµ is the sample average of
the wind velocity vector, whereas the estimate of 2×2 matrix D is the sample
covariance matrix of the horizontal and vertical velocities. This estimate of D
is different from that in Ezzat et al. [59] but is the same as what is used in
Chapter 4. This new estimate of D is used so that the ASYM model and its
parameter estimation are consistent between Chapter 3 and Chapter 4.

The rest of the parameters in ASYM are estimated through a maximum
likelihood estimation, implemented in R using the routine nlm. To appreciate
the space-time coupling and asymmetry, take the prevailing period in Jan-
uary 2011 as an example. The non-separability parameter, β̂ = 0.840, and the
asymmetry parameter, ϕ̂ = 0.102. These estimated values suggest that the
underlying spatio-temporal process has space and time coupling and is asym-
metric. When fitting the asymmetric model and its separable counterpart, i.e.,
ASYM and SEP, analysts can compare the respective log-likelihood values and
observe which modeling option provides a better fit. Table 3.5 presents the
log-likelihood values for ASYM and SEP model fits for all four periods. The
numerical results show that ASYM has a higher log-likelihood value, albeit
sometimes marginally so, than that of SEP.

In this study, two performance metrics are used—RMSE and MAE; for
their definitions, please refer to Section 2.6. Tables 3.6 and 3.7 present the
RMSE and MAE values for up to a 4-hour ahead forecast using the aforemen-
tioned temporal or spatio-temporal models. The aggregate measure reported
is the average over all 4-hour ahead forecasts.

The results presented in Tables 3.6 and 3.7 show that the forecasts based
on the asymmetric non-separable model outperform the competing methods
considered in the study. The improvement of ASYM over the separable models
is due to ASYM’s capturing of the strong asymmetries, whereas its improve-
ment over ARMA and SVM is mostly due to the characterization of spatial
correlations as well as asymmetry, both of which the ARMA and SVM models
fail to capture. Hybridizing ASYM with SVM (the HYB model) appears to
achieve a further enhancement in forecasting accuracy over the ASYM only



Spatio-temporal Models � 85

TABLE 3.6 RMSE of wind speed forecasting. The percentage improvements
are the error inflation rate relative to HYB.

Period Method h = 1 h = 2 h = 3 h = 4 Average % Imp.

1 ASYM 0.993 1.441 2.853 3.122 2.289 3%
SEP 1.070 1.727 3.242 3.469 2.582 14%
PER 1.287 1.719 2.984 3.161 2.424 8%
ARMA(1,1) 1.627 2.056 3.480 3.622 2.833 22%
SVM 1.611 1.912 3.335 3.437 2.701 18%
HYB 1.019 1.441 2.784 2.981 2.222

2 ASYM 1.618 2.747 2.573 2.093 2.300 5%
SEP 1.616 2.743 2.569 2.090 2.297 5%
PER 1.832 2.877 2.569 2.075 2.374 8%
ARMA(1,1) 1.986 3.054 2.781 2.222 2.547 14%
SVM 2.543 3.777 3.531 2.977 3.243 33%
HYB 1.585 2.667 2.438 1.874 2.184

3 ASYM 0.897 0.946 1.078 1.390 1.095 0.2%
SEP 0.900 1.184 1.269 1.654 1.281 15%
PER 1.007 1.067 1.358 1.510 1.253 13%
ARMA(1,1) 1.114 1.316 1.303 1.648 1.359 20%
SVM 1.035 1.155 1.340 1.683 1.326 18%
HYB 0.894 0.944 1.077 1.388 1.093

4 ASYM 1.319 1.521 1.934 3.745 2.336 6%
SEP 1.415 1.630 2.028 3.681 2.362 7%
PER 1.880 2.096 2.526 5.281 3.248 33%
ARMA(1,1) 2.070 1.769 2.144 3.809 2.575 15%
SVM 1.806 1.859 2.392 4.375 2.810 22%
HYB 1.239 1.422 1.942 3.446 2.191

approach, demonstrating the additional benefit brought by the machine learn-
ing method. The improvements of HYB over ASYM for wind speed forecast
range from 0.2% to 6%, and on average, 3.6%. Combining the strength of the
asymmetrical modeling and machine learning, in terms of wind speed fore-
cast, HYB improves, based on the average of the four periods, 10% in RMSE
(12% in MAE, same below) over SEP, 16% (14%) over PER, 18% (20%) over
ARMA(1,1), and 23% (24%) over SVM.

Measuring the performance metrics in terms of wind power, analysts can
first make a wind speed forecast and then convert the wind speed to wind
power, using the power curve as explained in Fig. 1.2. The nominal power
curve is usually provided by the turbine manufacturer. To get more accurate
representation of the actual power curve, the site-specific wind speed and wind
power data can be used to estimate the turbine-specific power curve. The topic
of estimating a power curve is the focus of Chapter 5. The specific procedure
used here for power curve estimation is the binning method, the standard
nonparametric method used in the wind industry [102]; for more details about
the binning method, please refer to Chapter 5. Using the estimated power
curves of individual turbines, analysts can predict the wind power generated
at each turbine given the wind speed forecasts.
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TABLE 3.7 MAE of wind speed forecasting. The percentage improvements
are the error inflation rate relative to HYB.

Period Method h = 1 h = 2 h = 3 h = 4 Average % Imp.

1 ASYM 0.846 1.248 2.636 2.912 1.911 4%
SEP 0.919 1.540 3.046 3.273 2.194 16%
PER 1.048 1.491 2.803 2.901 2.061 11%
ARMA(1,1) 1.379 1.833 3.292 3.395 2.475 26%
SVM 1.404 1.694 3.142 3.175 2.354 22%
HYB 0.879 1.236 2.533 2.712 1.840

2 ASYM 1.268 2.526 2.379 1.813 1.997 6%
SEP 1.266 2.522 2.375 1.810 1.993 6%
PER 1.489 2.552 2.265 1.749 2.013 7%
ARMA(1,1) 1.615 2.806 2.520 1.894 2.209 15%
SVM 2.308 3.485 3.211 2.610 2.904 35%
HYB 1.232 2.442 2.240 1.599 1.878

3 ASYM 0.729 0.773 0.906 1.224 0.908 0.4%
SEP 0.736 1.017 1.110 1.476 1.085 17%
PER 0.807 0.840 1.054 1.203 0.976 7%
ARMA(1,1) 0.930 1.151 1.136 1.429 1.161 22%
SVM 0.835 0.937 1.065 1.403 1.060 15%
HYB 0.722 0.771 0.904 1.222 0.905

4 ASYM 1.049 1.267 1.578 3.538 1.858 7%
SEP 1.129 1.361 1.671 3.470 1.908 9%
PER 1.488 1.711 2.060 4.782 2.510 31%
ARMA(1,1) 1.668 1.437 1.757 3.503 2.091 17%
SVM 1.469 1.525 1.934 3.968 2.224 22%
HYB 0.968 1.180 1.566 3.226 1.735
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TABLE 3.8 RMSE of wind power forecasting. The percentage improvements
are the error inflation rate relative to HYB.

Period Method h = 1 h = 2 h = 3 h = 4 Average % Imp.

1 ASYM 0.090 0.140 0.326 0.383 0.265 3%
SEP 0.092 0.171 0.372 0.415 0.295 13%
PER 0.111 0.161 0.333 0.370 0.267 4%
ARMA(1,1) 0.138 0.201 0.396 0.430 0.317 19%
SVM 0.133 0.186 0.376 0.405 0.299 14%
HYB 0.090 0.142 0.321 0.363 0.256

2 ASYM 0.221 0.354 0.356 0.312 0.315 6%
SEP 0.221 0.353 0.355 0.310 0.314 6%
PER 0.252 0.368 0.346 0.293 0.318 7%
ARMA(1,1) 0.282 0.404 0.387 0.325 0.353 16%
SVM 0.389 0.525 0.509 0.450 0.471 37%
HYB 0.216 0.341 0.332 0.276 0.295

3 ASYM 0.116 0.094 0.105 0.146 0.117 1%
SEP 0.102 0.116 0.124 0.177 0.133 13%
PER 0.137 0.122 0.155 0.172 0.148 21%
ARMA(1,1) 0.126 0.127 0.130 0.170 0.140 17%
SVM 0.111 0.115 0.135 0.176 0.137 15%
HYB 0.114 0.092 0.105 0.146 0.116

4 ASYM 0.168 0.171 0.212 0.442 0.255 −0.3%
SEP 0.170 0.175 0.226 0.431 0.256 0%
PER 0.255 0.279 0.331 0.660 0.389 34%
ARMA(1,1) 0.251 0.205 0.248 0.482 0.299 14%
SVM 0.225 0.239 0.298 0.568 0.339 24%
HYB 0.193 0.175 0.216 0.425 0.256

Table 3.8 compares the competing models in terms of the RMSE of wind
power prediction. Similar degrees of improvement of using the asymmetric,
nonseparable model are observed in wind power prediction as in wind speed
forecast. Specifically, the improvement of HYB over ASYM is up to 6%, and
on average, 2.4%. Compared to other methods, HYB on average improves,
in terms of reduction in RMSE, 8% over SEP, 17% over PER, 17% over
ARMA(1,1), and 23% over SVM. These results are aligned with the findings
made in Section 3.3 that local wind fields can be strongly asymmetric at the
fine-scale spatio-temporal resolutions. Spatio-temporal models that capture
such physical phenomena are expected to enhance short-term forecasting.

GLOSSARY
ARD: Automatic relevance determination

ARMA: Autoregressive moving average

ASYM: Asymmetric, non-separable spatio-temporal model

BFGS: Broyden-Fletcher-Goldfarb-Shanno optimization algorithm

cdf: Cumulative distribution function
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CRPS: Continuous ranked probability score

GSTAR: Gaussian spatio-temporal autoregressive model

HYB: Hybrid model combining ASYM and support vector machine

i.i.d: Identically, independently distributed

MAE: Mean absolute error

PCE: Power curve error

PER: Persistence forecasting

RMSE: Root mean squared error

SE: Squared exponential covariance function

SEP: Separable spatio-temporal model

SVM: Support vector machine

EXERCISES
3.1 In the machine learning literature, if a prediction mechanism can be

expressed as V̂ = SV, it is called a linear smoother, where S is the
smoother matrix. It is also established that the effective number of pa-
rameters in a linear smoother is tr(S). In the following, to make things
simpler, assume β0 = 0. Consider a total of N data pairs in the training
set:

a. Show that the kriging predictor in Eq. 3.15 is a linear smoother.

b. Show that the effective number of parameters in a kriging predictor
is

N∑
i=1

λi
λi + σ̂2

ε

,

where λi’s, i = 1, . . . , N , are the eigenvalues of CNN .

c. Show that for a kriging predictor without the nugget effect, its effec-
tive number of parameters is N , the same as that of the data points
in the training set. What does this tell you about the difference be-
tween a linear regression predictor and a kriging predictor (i.e., a
Gaussian process regression)?

3.2 When we discuss the support vector machine formulation (2.47), we
state (page 44) that “SVM regression can be made equivalent to Gaus-
sian process regression, if (a) the loss function uses a squared error loss
function, (b) γ/2 is set to σ2

ε , which is the variance of the i.i.d noise term,
(c) when the kernel function, K(·, ·), is set to be a covariance function.”
Please show that this is true.
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3.3 When the kriging model in Eq. 3.8 has no nugget effect term, then it
is said that the process has noise-free observations. Under that circum-
stance, the kriging predictor has an interpolation property, which means
V̂ (si) = V (si), if si is in the training set.

a. Prove the interpolation property.

b. Suppose that an underlying true function is g(x) = e−1.4x cos(7πx/2),
and seven training data pairs {x, y} are taken from the curve, which
are, respectively,

{0.069, 0.659}, {0.212,−0.512}, {0.355,−0.440}, {0.498, 0.344},
{0.641, 0.294}, {0.783,−0.229}, {0.926,−0.199}.

Please use this set of data and the ordinary kriging model without
the nugget effect to construct the predictive function ĝ(x). Plot both
g(x) and ĝ(x) with the seven data points marked. Observe whether
the kriging predictor interpolates the training data points.

3.4 Take one month of 10-min wind speed data and wind power data from
the Wind Time Series Dataset. Treat the wind speed data as x and
the wind power data as y. Fit an ordinary kriging model. Use the squared
exponential covariance function. Please generate a plot with the original
data points, the mean prediction line, and the two standard deviation
lines.

3.5 Please generate one-dimensional sample functions using a power expo-
nential function for the following parameter combinations:

a. θ = 5, σ2
V = 1, p = 2.

b. θ = 1, σ2
V = 0.1, p = 2.

c. θ = 5, σ2
V = 1, p = 1.

d. θ = 1, σ2
V = 0.1, p = 1.

e. θ = 5, σ2
V = 1, p = 1.5.

f. θ = 1, σ2
V = 0.1, p = 1.5.

3.6 Complete the following:

a. Derive Eq. 3.12.

b. Derive Eq. 3.14.

c. Derive the log-likelihood function in Eq. 3.16.

d. Given the universal kriging model in Eq. 3.17, find its log-likelihood
function.
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3.7 Use the 2009 data in the Wind Spatio-Temporal Dataset1 and com-
pute the pairwise sample correlation between any two turbines. Then
plot the correlation against the distance between the two turbines, in
which the horizontal axis is the between-turbine distance and the verti-
cal axis is the correlation in its absolute value in [0, 1].

3.8 Derive Eq. 3.23.

3.9 Use the data of January 2009 from the Wind Spatio-Temporal

Dataset1 and select a target site. Try different values of κ and see
how it affects the resulting informative neighborhood.

3.10 Derive the α-quantile of the truncated normal distribution in Eq. 3.27.

3.11 Use the Wind Spatio-Temporal Dataset2 and group the data for a
month. Compute the asymmetry level for any pair of turbines for that
month under its specific average wind direction. Repeat this for each
month in the yearlong dataset and group the asymmetry values based
on their corresponding time lags. Create a plot similar to the right panel
of Fig. 3.4.

3.12 In Eq. 3.5, when p = 1, we say that the resulting covariance function is
an exponential covariance function, which reads, if assuming isotropy,

CExp(u) = σ2
V exp

{
−‖u‖1

2θ

}
= σ2

V exp

{
−|u1|+ · · ·+ |ud|

2θ

}
,

where u is assumed to have d elements. But there is another definition
of the exponential covariance function, which uses a 2-norm inside the
exponential to measure distances, namely

CExp(u) = σ2
V exp

{
−‖u‖2

2θ

}
= σ2

V exp

{
−
√
u2

1 + · · ·+ u2
d

2θ

}
.

a. Explain under what condition the covariance function, CASYM(u, h),
is the same as CExp(u) with the 2-norm distance.

b. Consider a separable spatio-temporal covariance function, C(u, h),
that is constructed by the product of exponential covariance func-
tions for both the spatial and temporal components, i.e.,

C(u, h) = CExp(u) · CExp(h).

How is this separable covariance function, C(u, h), different from
CASYM(u, h) when β, ϕ, and τ are set to zero?

3.13 Use the Wind Spatio-Temporal Dataset2 to conduct the following
studies.
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a. Use the circular package to conduct a change-point detection on
the yearlong wind direction measured on one of the met masts, and
see how many change points you detect. Suppose that k change points
are detected, then it leads to k + 1 prevailing periods.

b. Calculate the asymmetry level for each one of the prevailing periods
and tabulate the results in a fashion similar to Table 3.4.

c. Select a period in which the asymmetry is weak (smaller than 0.05)
and make sure that its overall duration is longer than ten hours.
Then, fit an ASYM model and an SEP model using the first six
hours of data. Compare the common model parameters and the log-
likelihood of the two models.

d. Use the next four hours of data to conduct an h-hour ahead forecast-
ing for h = 1, 2, 3, 4. Compare ASYM and SEP using both RMSE
and MAE.
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C H A P T E R 4

Regime-switching
Methods for Forecasting

O
ne particular class of wind forecasting methods worth special attention
is the regime-switching approach. We hence dedicate this chapter to the

discussion of regime-switching methods.
The motivation behind the regime-switching approach is to deal with non-

stationarity in wind dynamics—in wind speed, in wind direction, or in spatial
correlation. Recall that the spatio-temporal covariance structures introduced
in Chapter 3 are all stationary in nature. While nonstationary covariance
structures do exist, using them is not easy. Analysts find that a simpler ap-
proach is to compartmentalize the nonstationary variables into a finite number
of disjoint intervals, each of which is referred to as a regime. Within a regime,
the underlying wind process is assumed stationary. To account for the overall
nonstationarity, a mechanism is needed for the forecasting model to transition
from one regime to another, as the underlying wind process is progressing. The
resulting approach is called regime-switching. In essence, a regime-switching
method is a collection of distinct, and most often linear, models.

The regime-switching mechanism can be used with a temporal only pro-
cess, considering only nonstationarity in time, or with a spatio-temporal pro-
cess, considering nonstationarity in both space and time.

4.1 REGIME-SWITCHING AUTOREGRESSIVE MODEL
Suppose that analysts pre-define a number of regimes, indexed from 1 to R,
and denote the wind regime at time t by r(t) ∈ {1, ..., R}, which is known as
the regime variable. The regime-switching autoregressive (RSAR) model [234]
is a collection of R autoregressive models, each of which is associated with
a wind regime and thus uses a set of parameters peculiar to that regime to
produce regime-dependent forecasts.

In an RSAR, the wind speed, V (t), at time t and in regime r(t) is modeled

93



94 � Data Science for Wind Energy

as an AR model of order pr(t) using a set of regime-dependent parameters

{ar(t)0 , a
r(t)
1 , . . . , a

r(t)
j , . . . }, such as

V (t) = a
r(t)
0 +

pr(t)∑
j=1

a
r(t)
j V (t− j) + ε(t), (4.1)

where ε(t) is a zero-mean, normally distributed, i.i.d random noise whose
variance can be regime-dependent. In this section, the value of regime variable,
r(t), is determined based on the observed values of wind speed. Be aware
that r(t) can be decided using other explanatory variables, including, but not
limited to, wind direction or temperature [75, 176].

Estimating the parameters for a regime-switching autoregressive model is
usually conducted for each individual AR model separately. The procedure,
model selection criteria, and model diagnostics, as explained in Section 2.4,
can be used here without much modification. Zwiers and von Storch [234]
note a number of differences in handling a bunch of AR models, as opposed
to handling a single AR model, summarized below.

• One word of caution is on ensuring that each regime should have a
sufficient amount of data for parameter estimation. This aspect is less
problematic nowadays with much advanced data collection capability
in commercial wind operations. Data appear to be more than enough
even after being divided into a number of regimes. The data amount
sufficiency could have been an issue 30 years ago.

• An analyst can choose to use an aggregated AIC to decide the overall
model order for the regime-switching method. This practice becomes less
popular, as analysts nowadays rely more on computational procedures
that split the data into training and test sets, like in cross validation,
to test on a model’s forecasting performance and to adjust respective
modeling decisions.

• As mentioned above, ε(t) could have different variances in different
regimes. An implication is that analysts should pay attention to the
heteroscedasticity issue (i.e., different variances) when devising a statis-
tical test. For more discussion, please refer to page 1351 in [234].

The use of an RSAR for forecasting is fairly straightforward. Analysts
first identify either the current wind regime, per definition given below, or
the regime anticipated in the forecasting horizon, select the AR model corre-
sponding to the target regime, and then make forecasts using the selected AR
model, as one would have while using a single AR model.

4.1.1 Physically Motivated Regime Definition
In a regime-switching method, here as well as in the methods introduced in
the sequel, one crucial question is how to decide the number of wind regimes
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FIGURE 4.1 Normalized wind power versus wind speed. Vci: cut-in speed,

Vin: inflection point, Vr: rated speed and Vco: cut-out speed. On the

top and right sides are the histograms of wind speed and power, respec-

tively. The circle dots are raw wind data. (Reprinted with permission

from Ezzat et al. [60].)

and the boundaries dividing these regimes. Consider R disjoint wind speed
regimes, denoted by {r1, r2, . . . , rR}, such that V (t) belongs to one and only
one of the R wind regimes. Each regime, rk, is defined by an interval [uk, vk),
such that uk and vk are the boundary values for rk, with u1 = 0 and uk+1 = vk.

One approach is to pre-define the wind regimes based on physical under-
standing. We guide the selection of wind speed regimes in light of the regions
associated with a wind power curve. Fig. 4.1 plots the wind speed against the
normalized wind power recorded at one of the turbines for one year’s worth
of data in the Wind Spatio-Temporal Dataset2. The power curve is esti-
mated by using the binning method [102] as mentioned in Chapter 3 and to
be detailed in Chapter 5. The binning estimates are shown in Fig. 4.1 as the
triangles.

Four physically meaningful values of wind speed are critical to defining
a wind power curve, which are—the cut-in speed, Vci, the inflection point,
Vin, the rated speed, Vr, and the cut-out speed, Vco. We have explained in
Section 1.1 the meanings of the cut-in speed, the rated speed, and the cut-out
speed. A turbine manufacturer provides the values of Vci, Vr, and Vco for a
specific turbine. Their typical values are, respectively, 3.5, 13.5, and 25 m/s,
although some turbines have their cut-out speed at 20 m/s. Between Vci and
Vr, the power curve follows a nonlinear relationship, with an inflection point
separating the convex and concave regions. This inflection point, denoted by
Vin, marks the start when the turbine control mechanism is used to regulate
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the power production. Hwangbo et al. [96] estimate Vin for modern wind
turbines to be around 9.5 m/s. These physically meaningful values induced
by the power curve motivate analysts to define a total of R = 4 regimes, with
the regime boundaries set at Vci, Vin, Vr, and Vco. We advocate using these
values as a starting point and make necessary adjustment when needed.

For the Wind Spatio-Temporal Dataset2 specifically, only around 3% of
wind speed data are higher than Vr. It makes sense to merge the last two wind
speed regimes by eliminating the threshold at Vr. Moreover, Vco is in fact 20
m/s for the Wind Spatio-Temporal Dataset2, and adjusting the end point
of the wind speed spectrum from 25 m/s to 20 m/s does not affect the above
wind speed regime definition.

Wind regimes can also be defined by using wind direction, to be seen in
Section 4.2, or by using the combination of wind speed regimes and wind
direction regimes, to be seen in Section 4.4, where we define three wind speed
regimes and two wind direction regimes, the combination of which produces
a total of six wind regimes.

4.1.2 Data-driven Regime Determination
Another approach to identify the number of wind regimes is data-driven. Ka-
zor and Hering [119] present a regime determination approach based on the
Gaussian mixture model (GMM). The idea is to use a GMM to model the wind
variable from the R regimes, each of which is treated as a stationary random
process. Kazor and Hering use the 2× 1 wind velocity vector, v = (V1, V2)T ,
where V1 and V2 are, respectively, the wind velocity along the longitudinal and
latitudinal directions. Each regime is modeled as a bivariate normal density,
i.e., v ∼ N (µµµk,ΣΣΣk), k = 1, . . . , R. Denote by τk the proportion of observations
available under the k-th regime. Then, the Gaussian mixture density function
of the R regimes is expressed as

f(v|Θ) =
R∑
k=1

τkN (v|µµµk,ΣΣΣk), (4.2)

where Θ := {τ1, . . . , τR;µµµ1, . . . ,µµµR;ΣΣΣ1, . . . ,ΣΣΣR} is the set of parameters in
this GMM. Kazor and Hering further simplify the covariance matrices by as-
suming their off-diagonal elements all zeros, leaving only two variance terms
per covariance matrix to be estimated for this bivariate distribution. This
assumption implies that the two wind velocity variables are uncorrelated. Un-
der this assumption, there are five parameters per regime—one τ , two mean
terms, and two variance terms—or a total of 5R parameters for R regimes.
The parameters can be estimated by using a maximum likelihood estimation.

To determine the number of regimes, R, Kazor and Hering suggest com-
puting the BIC for the GMM for a range of regime numbers. They specifically
recommend computing the BIC for models with between one and five regimes.
Recall the definition of BIC in Eq. 2.23, it can be expressed for this GMM
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model as
BIC(R) = ln(n) · (5R)− 2 ln(f̂(v|Θ̂)),

where n is the amount of data used to estimate the parameters, 5R is the
number of parameters with the presence of R regimes, and ln(f̂(v|Θ̂)) is the
log-likelihood evaluated at the estimated parameters. For selecting the num-
ber of regimes, one can plot the BIC values against the number of regimes
and then choose the elbow point and its corresponding number of regimes,
similar to how analysts select the significant principal components using a
scree plot [111].

This GMM approach does not need to define the boundaries of the regimes
explicitly. Each regime is represented by its mean and variance parameters,
which are in turn estimated from the data. Upon a new wind observation,
vnew, analysts can compute the likelihood of each individual regime, which is
τ̂kN (vnew|µ̂µµk, Σ̂ΣΣk), for k = 1, . . . , R, and then select the regime corresponding
to the largest likelihood. This treatment is called hard thresholding, implying
that one regime is chosen while all other regimes are discarded. By contrast,
the soft thresholding treatment is to compute the normalized weighting to be
given to each regime model as

wk =
τ̂kN (vnew|µ̂µµk, Σ̂ΣΣk)∑R
i=1 τ̂iN (vnew|µ̂µµi, Σ̂ΣΣi)

, k = 1, . . . , R, (4.3)

and then the forecasting is made by using all R models and by associating
each model with the corresponding weight wk.

4.1.3 Smooth Transition between Regimes
Analysts recognize that abrupt changes between regimes may not be desirable.
The concept of smooth transition between regimes is therefore introduced.
The soft-thresholding GMM is a type of smooth transition approach, as there
are no rigid boundaries between regimes, and for each forecast, all regime-
dependent models are used with their respective weights.

Pinson et al. [164] introduce another smooth transition autoregressive
model (STAR, not to be confused with GSTAR in Section 3.2). The model
takes the form of

V (t) =
R−1∑
i=1

(ari0 +

pri∑
j=1

arij Vt−j

 G̃i(V̂ r(t))
+

ari+1

0 +

pri+1∑
j=1

a
ri+1

j Vt−j

Gi(V̂ r(t)))+ ε(t),

(4.4)

where G̃i(·) = 1−Gi(·) is the smooth transition function that assigns weights
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to the AR models associated with the i-th and (i + 1)-th regimes, and V̂ r(t)

is the estimated wind speed corresponding to the regime at time t. Pinson et
al. suggest using the d-step lagged wind speed, V (t − d), as V̂ r(t), and then,
using a logistic function to create a soft-thresholding transition, such as

Gk(V (t− d)) =
1

1 + exp{−ϕk(V (t− d)− ck)}
, k = 1, . . . , R, (4.5)

where ϕk > 0 and ck are the parameters in the transition function. The set of
parameters in the smooth transition model includes those of the AR models as
well as these for the transition functions. Typically, the AR model parameters
can be estimated separately for each regime, following the approach outlined
for ARMA models in Section 2.4. Then, the parameters for the transition
functions, {ϕk, ck}, are decided by using a cross-validation approach.

4.1.4 Markov Switching between Regimes
A Markov-switching autoregressive (MSAR) model [6, 164, 201] uses a group
of AR models, similar to those expressed in Eq. 4.1, but MSAR assumes
that the switch between the regimes is triggered by a Markov chain and thus
employs a transition probability matrix to govern regime changes.

The one-step ahead transition probability matrix, ΠΠΠR×R, is expressed as

ΠΠΠR×R =


π11 π12 · · · π1R

π21 π22 · · · π2R

...
...

. . .
...

πR1 πR2 · · · πRR

 , (4.6)

where the (i, j)-th element, πij , is defined as

πij = P [r(t+ 1) = rj |r(t) = ri].

In the above definition, the Markovian property is invoked, which says that the
probability of a regime at time t+ 1 only depends on the regime status at the
previous time, t, rather than on the entire history of regimes. Mathematically,
what this means is

P [r(t+ 1)|r(t), r(t− 1), . . . , r(1)] = P [r(t+ 1)|r(t)]. (4.7)

The transition matrix provides the probabilistic information for switch-
ing between regimes for one step ahead. The i-th row in ΠΠΠ represents the
probabilities for the i-th regime to switch to other regimes, including itself
(unchanged). The summation of all the probabilities per row should be one,

i.e.,
∑R
j=1 πij = 1,∀i. The transition matrix can be estimated by using the

data in a training period, namely that each π is estimated by the empirical
probability based on the training data.

Once the one-step ahead transition matrix is estimated, its use mirrors that
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in the GMM-based approach described in Section 4.1.2. Individual AR models
are fit using the data peculiar to specific regimes. The forecast at time t+ 1 is
the weighted average of the forecasts made by individual AR models. Suppose
that the forecast at t + 1 made by the AR model in regime rk is denoted by
V̂ (rk)(t+1). The weights to be used with V̂ (rk)(t+1) come from the transition
matrix. Here, again, analysts can use either the hard thresholding approach
or the soft thresholding approach. Assuming the current regime is rk, the final
forecast while using the soft thresholding is

V̂ (t+ 1) =
R∑
j=1

π̂kj V̂
(rj)(t+ 1). (4.8)

For the hard thresholding, one identifies the largest π̂kj for j = 1, . . . , R, and
suppose it is π̂kj∗ . Then the final forecast is simply to use the AR model

corresponding to regime j∗, namely V̂ (t+ 1) = V̂ (rj∗ )(t+ 1).
For h-step ahead forecasts, h > 1, a formula similar to Eq. 4.8 can be

used, but one needs to replace π̂kj with an h-step ahead transition probability

and replace V̂ (rj)(t + 1) with the raw forecast at t + h, V̂ (rk)(t + h), which
can be made by the regime-specific AR model for h steps ahead. The h-step
transition probability is denoted as

π
(h)
ij = P [r(t+ h) = rj |r(t) = ri],

which can be recursively computed using the one-step ahead transition matrix,

ΠΠΠ, once per step. Apparently, π
(1)
ij = πij . Using the soft thresholding approach,

the h-step ahead can be made by

V̂ (t+ h) =
R∑
j=1

π̂
(h)
kj V̂

(rj)(t+ h).

The hard thresholding forecast can be attained similarly.

4.2 REGIME-SWITCHING SPACE-TIME MODEL
The previous section discusses how the regime-switching mechanism works
with time series data or temporal only models. This section discusses the
regime-switching space-time models, primarily based on the work reported
in [75].

For a spatio-temporal wind process, the wind speed is denoted by Vi(t), fol-
lowing the same notational convention used in Chapter 3, where the subscript
i is the site index and t is the time index. Recall that we use n to indicate the
data amount along the time axis and N to represent the number of sites. A
generic spatio-temporal regime-dependent model [163] can be expressed as

V∗(t) = a
r(t)
0 +

N∑
i=1

pr(t)∑
`=1

a
r(t)
i` Vi(t− `) + ε∗(t), (4.9)
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FIGURE 4.2 Geographic layout of the three sites in the border area of
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approximated.

where a
r(t)
i` is the spatio-temporal coefficient peculiar to the regime represented

by r(t) and ‘∗’ indicates the target site.
Gneiting et al. [75] consider a specific regime-switching spatio-temporal

model. The setting in their study includes three geographical locations in
the border area of the states of Washington and Oregon—see Fig. 4.2 for an
illustration. The three sites are more or less on the same latitude but spread
along a west-east line. The westernmost site is about 146 km from the middle
site, which is in turn 39 km west of the easternmost site. The easternmost site
is in the vicinity of the Stateline wind energy center, which is the target site for
wind forecasting. The three sites are labeled as #1, #2, and #3, respectively,
from the westernmost to the easternmost.

The regime is determined by the observed wind direction. The prevailing
wind in that area, due to the pressure difference between the Pacific Ocean
and the continental interior, is largely west-eastward. Gneiting et al. [75] pre-
define their space-time regimes based on this physical understanding. They
define two regimes—the westerly regime when the wind blows from the west
and the easterly regime when the wind blows from the east, and then fit a
space-time model for each regime.

The model used in [75] assumes a truncated normal predictive distribution
at time t + h and the target site, i.e., N+(µ3(t + h), σ2

3(t + h)), where the
subscript “3” indicates site #3, the target site for forecasting. This treatment
resembles what is used in the GSTAR model in Section 3.2. In fact, the GSTAR
model borrows this approach from [75], as [75] was published earlier, but their
presentation order in this book may have left the readers with the opposite
impression.

Gneiting et al. [75] propose a space-time model specific for each of the two
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regimes. For the westerly regime, the mean forecasting model is

µ3(t+ h) = aW
0 + aW

1 V3(t) + aW
2 V3(t− 1)

+ aW
3 V2(t) + aW

4 V2(t− 1) + aW
5 V1(t),

(4.10)

where aW
i , i = 0, 1, . . . , 5, are the model coefficients to be estimated by using

the data in the westerly regime. Note that in the above model, a low temporal
order is used, only going back in history for two steps, i.e., t and t − 1. For
the westernmost site (site #1), Gneiting et al. find that it is only beneficial
enough to include the time history at t, not even that at t− 1.

For the easterly regime, the mean forecasting model is

µ3(t+ h) = aE
0 + aE

1 V3(t) + aE
2 V2(t). (4.11)

Here, Gneiting et al. [75] find that it is not beneficial to use the wind speed
measurements at site #1 (westernmost) to make forecasts at site #3 (eastern-
most), because while the westerly wind creates a much stronger correlation
between the two sites, the correlation is multi-fold weaker under the east-
erly wind. Another difference of the model in the easterly regime is that its
temporal order is one lower than that used in the westerly regime.

The predictive standard deviation at t+ h, σ3(t+ h), is modeled similarly
to that in Eq. 3.25, i.e.,

σ3(t+ h) = b0 + b1ν3(t), (4.12)

where in this specific case,

ν3(t) =

√√√√1

6

3∑
i=1

1∑
`=0

(Vi(t− `)− Vi(t− `− 1))2,

and b0, b1 take different values in the two different regimes, although we drop
the regime-indicating superscript for a clean presentation.

Gneiting et al. [75] further suggest removing the diurnal pattern from
the data using Eq. 2.15 and then fitting the above space-time model to the
residuals, corresponding to V ′′ in Eq. 2.16. But Gneiting et al. only recommend
doing so for the westerly regime while leaving the easterly regime to use the
original data. The dominant westerly wind, from the ocean to land, creates a
special pattern causing all these differences in the above treatments.

The aforementioned models are supposed to be established for the re-
spective regimes using the data collected in the corresponding regime. When
making forecasts, the wind direction measured at site #1 is used to invoke
one of the regimes and hence the corresponding AR model. In [75], Gneiting
et al. are only concerned with making a forecast at h = 2, i.e., a two-hour
ahead forecast, but the model above can be used for other h’s in its current
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form. If the mean of the predictive distribution is used as the point forecast
at h = 2 and site #3, then

V̂3(t+ 2) = µ̂3(t+ 2) + σ̂3(t+ 2)
φ
(
µ̂3(t+2)
σ̂3(t+2)

)
Φ
(
µ̂3(t+2)
σ̂3(t+2)

) ,
where φ(·) is the pdf of the standard normal distribution. If the median, or
more generally, the α-quantile of the predictive distribution is used as the
point forecast, then Eq. 3.27 is to be used; for median, i.e., the 0.5-quantile,
set α = 0.5.

For parameter estimation, Gneiting et al. [75] use the CRPS criterion, to be
consistent with their probabilistic modeling approach. For a truncated normal
distribution with its distribution parameter estimated as µ̂ and σ̂, Gneiting
et al. show that the CRPS can be expressed as

CRPSTN =
1

n

n∑
t=1

σ̂·Φ
(
µ̂

σ̂

)−2
{
V3(t)− µ̂

σ̂
Φ

(
µ̂

σ̂

)
×
[
2Φ

(
V3(t)− µ̂

σ̂

)
+ Φ

(
µ̂

σ̂

)
− 2

]
+ 2φ

(
V3(t)− µ̂

σ̂

)
Φ

(
µ̂

σ̂

)
− 1√

π
Φ

(√
2
µ̂

σ̂

)}
,

(4.13)

where π is the circumference constant, not to be confused with the transition
probability variable used in Eq. 4.6. The smaller the CRPS, the better. Min-
imizing the CRPS may run into numerical issues, especially as µ̂/σ̂ → −∞.
Gneiting et al. recommend setting the CRPS to a large positive number when
µ̂/σ̂ ≤ −4 to resolve this issue.

Gneiting et al. [75] admit that the characteristics of this geographical area
make the choice of regimes easier. Under other circumstances, the identifi-
cation of forecast regimes may not be so obvious. Motivated to extend the
regime-switching space-time model to a general setting, Hering and Gen-
ton [91] propose to include the wind direction as a circular variable in the
model formulation to relax the model’s dependence on arbitrary regime selec-
tions. Denote ϑi(t) as the wind direction measured at site i and time t, and
the model in Eq. 4.10 now becomes

µ3(t+ h) = a0 + a1V3(t) + a2V3(t− 1) + a3V2(t) + a4V2(t− 1) + a5V1(t)

+ a6 sin(ϑ3(t)) + a7 cos(ϑ3(t)) + a8 sin(ϑ2(t)) + a9 cos(ϑ2(t))

+ a10 sin(ϑ1(t)) + a11 cos(ϑ1(t)).

(4.14)

Hering and Genton [91] recommend fitting the model in Eq. 4.14 to the residu-
als after removing the diurnal pattern using Eq. 2.15 and refer to the resulting
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TABLE 4.1 RMSE for 2-hour ahead point forecasts for wind
speed at site #3 in May to November 2003. Boldface values
indicate the best performance.

May Jun Jul Aug Sep Oct Nov

PER 2.14 1.97 2.37 2.27 2.17 2.38 2.11
AR-N 2.04 1.92 2.19 2.13 2.10 2.31 2.08
AR-D 2.01 1.85 2.00 2.03 2.03 2.30 2.08
RST-N 1.76 1.58 1.78 1.83 1.81 2.08 1.87
RST-D 1.73 1.56 1.69 1.78 1.77 2.07 1.87

Source: Gneiting et al. [75]. With permission.

TABLE 4.2 CRPS for probabilistic 2-hour ahead forecasts for
wind speed at site #3 in May to November 2003. Boldface
values indicate the best performance.

May Jun Jul Aug Sep Oct Nov

AR-N 1.12 1.04 1.19 1.16 1.13 1.22 1.10
AR-D 1.11 1.01 1.10 1.11 1.10 1.22 1.10
RST-N 0.97 0.86 0.99 0.99 0.99 1.08 1.00
RST-D 0.95 0.85 0.94 0.95 0.96 1.08 1.00

Source: Gneiting et al. [75]. With permission.

method the trigonometric direction diurnal (TDD) model. For TDD, analysts
do not need to estimate the model coefficients, a0, . . . , a11, separately for the
respective pre-defined regimes. The wind direction variable, ϑ, is supposed to
adjust the model automatically based on the prevailing wind direction ob-
served at the relevant sites. Pourhabib et al. [166] combine this regime switch-
ing idea with their GSTAR model and create a regime-switching version of the
GSTAR model, which is called RSGSTAR. But the numerical results in [166]
show that RSGSTAR produces only a marginal benefit as compared to the
plain version of GSTAR.

Table 4.1 presents the comparison between the regime-switching space-
time model with the AR model and the persistence model in terms of RMSE,
whereas Table 4.2 presents the comparison in terms of CRPS. The persistence
model is not included in Table 4.2 because it only provides point forecasts
and no probabilistic forecasts. Here the regime-switching space-time model
uses the pre-defined two regimes, i.e., the models in Eq. 4.10 and Eq. 4.11.

In the tables, the autoregressive model uses the acronym AR and the
regime-switching space-time model uses the acronym RST. The suffix ‘-N’
means that the respective model is fit to the original data, where the suffix
‘-D’ means that the model is fit to the residual data after removing the diurnal
pattern.
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FIGURE 4.3 Wind speed at one of the turbines for a 36-hour duration.

Two regime changes are identified: one in-sample and the other out-of-

sample.

4.3 CALIBRATION IN REGIME-SWITCHING METHOD
The regime-switching autoregressive model and the regime-switching space-
time method can be perceived as a “reactive” approach. Plainly speaking,
a reactive model observes a regime change or a manifestation of it, and then
adapts itself accordingly to accommodate it. In other words, the regime switch-
ing reacts to the regime observed and uses the forecasting model peculiar to the
current wind regime to produce regime-dependent forecasts. The GMM-based
approach, the smooth transition, and the Markov switching add flexibility to
account for multiple possible wind regimes in the upcoming forecast period.

Ezzat et al. [60] argue that one key shortcoming of the reactive regime-
switching approaches is their lack of anticipation of the upcoming regime
changes in the forecast horizon. Fig. 4.3 plots the wind speeds recorded at
one of the turbines in the Wind Spatio-Temporal Dataset2 for a 36-hour
duration. In practice, forecasting is often carried out in a rolling forward fash-
ion. One could run into a situation where the goal is to obtain predictions
for the next 12 hours, based on the past 24-hour data. Assume the num-
ber of regimes and regime boundaries have been pre-specified as shown in
Fig. 4.3. Two regime changes are identified in the 36-hour duration, one of
which takes place in the unobserved forecasting horizon. Reactive approaches
may have the ability to deal with the in-sample change, but do not in their
current treatment handle the unobserved, out-of-sample change. Extrapolat-
ing the characteristics learned from the training data, which are obviously not
representative of the near future, could lead to negative learning and poor
predictive performance. Note that the in-sample change in Fig. 4.3 is from
Regime 1 to Regime 2, while the out-of-sample change is the opposite.

In the near ground wind fields like those on a wind farm, wind patterns
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can change rather frequently. Standing at any time point, an out-of-sample
regime change could be imminent. Our analysis using the first 30 days of data
in the Wind Spatio-Temporal Dataset2 shows that the minimum-time-to-
change and the median-time-to-change in wind speed are 5 hours and 15
hours, respectively, while those in wind direction are 11 hours and 33 hours,
respectively. On average, a change in wind speed or wind direction takes place
every 10 hours. Ignoring the occurrence of out-of-sample regime changes can
seriously undermine the extrapolation ability of a regime-switching forecasting
model.

Fig. 4.4 illustrates the change points detected in both wind speed and
wind direction, using the first 30 days of data in the Wind Spatio-Temporal

Dataset2. The wind direction data are from one of the met masts on the
wind farm. The wind speed data are from the turbine anemometers but to
facilitate a univariate detection, the wind speeds at all 200 turbines are spa-
tially averaged to produce a single time series. Given that the hourly data
are used, both wind speed and wind direction data vectors for one month
are of the size 720 × 1. One may have noticed that the first half portion of
the change points in the wind direction plot (bottom panel) is the same as
that in Fig. 3.5. The specific change-point detection methods used are: for
wind speed, a binary segmentation for multiple change detection based on the
package changepoint in R [122], while for wind direction, a binary segmenta-
tion version of the circular change-point detection [106] based on the package
circular. Recall that the circular change-point detection method is also used
in Section 3.3.3 when producing Fig. 3.5.

Prompted by this observation, Ezzat et al. [60] contemplate a more proac-
tive approach for short-term wind forecasting, which involves an action of
wind speed calibration, referred to as the calibrated regime-switching (CRS)
method. The CRS approach distinguishes between the in-sample regime
changes taking place in the observed portion of the data and the out-of-sample
regime changes occurring in the unobserved forecasting horizon. Next we take
a closer look at the two types of changes. Hereinafter in this chapter, un-
less otherwise noted, the time index, t, is used to indicate the present time,
while ` denotes an arbitrary time index. A forecast is to be made at t+ h for
h = 1, 2, . . . ,H, i.e., the forecast horizon could be as far as H hours ahead of
the present time.

4.3.1 Observed Regime Changes
An observed, in-sample regime change takes place in the observed portion of
the data. Formally, an in-sample regime change occurs at time `∗ ∈ (1, t], when
r(`∗ − 1) = rk, while r(`∗) = rk′ , such that k 6= k′ and k, k′ ∈ {1, · · · , R}.
The CRS method signals an observed change in wind regimes by monitoring
the most recent history of wind speed and wind direction. In practice, the
retrospective searching for a regime change usually goes no further back than
one month.
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FIGURE 4.4 Top panel: change points in one month of spatially aggre-

gated wind speed data. Bottom panel: change points in one month of

wind direction data. The span of the x-axis is a month, or 720 hours.

(Reprinted with permission from Ezzat et al. [60].)

4.3.2 Unobserved Regime Changes
An unobserved, out-of-sample regime change takes place in the forecasting
horizon, [t + 1, t + H]. In other words, a future regime change may occur at
t + h, where r(t + h − 1) = rk, while r(t + h) = rk′ , such that k 6= k′ and
k, k′ ∈ {1, · · · , R}.

Anticipating the out-of-sample regime changes is understandably much
more challenging. It is important to identify certain change indicator variables
that are thought to be able predictors of out-of-sample changes and whose
values can be extracted from the observed data. Ezzat et al. [60] identify two
principal change indicators: the current observed wind regime, i.e., r(t), and
the runlength, denoted by x(t+ h), which is to be explained below.

The current wind regime, r(t), is naturally a useful indicator of upcoming
wind regimes at t + h. For instance, in windy seasons, it is more likely to
transit from low-speed to high-speed regimes, and the converse holds true
for calmer seasons. This, in fact, is the essence of using Markov switching
autoregressive models which translate the current regime information into
transition probabilities for connections with the upcoming regimes.

Given the frequent changes in wind speed and direction as observed in
Fig. 4.4, the current regime information alone is not sufficient to confidently
inform about when and how out-of-sample changes occur. An additional in-
put is required to make a good inference. Ezzat et al. [60] conclude that the
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runlength, which is the time elapsed since the most recent change point in
the response of interest, is a far more potent indicator of upcoming changes
than many other alternatives—other alternatives include the rate of change
in wind speed, or that in wind direction, turbulence intensity and volatility
measures. The use of runlength is first proposed in the online change-point
detection literature [188].

The value of the runlength at any arbitrary time index ` is defined as
x(`) = ` − `∗, where `∗ is the time at which the most recent regime change
is observed such that `∗ < min(`, t). For a time point in the forecast horizon,
i.e., ` = t+ h, Ezzat et al. [60] define the runlength in the forecast horizon as
x(t+ h) = t+ h− `∗.

To appreciate the relevance of the runlength variable more intuitively, let
us run a simple analysis using the change test results on the first 30 days of
wind speed data, as shown in Fig. 4.4. Understandably, the change points in
Fig. 4.4 are not exactly the regime change points, because the regime change
points are defined using a set of prescribed wind speed or wind direction
thresholds, whereas the change points in Fig. 4.4 are identified through a
statistical significance test. Nevertheless, both types of changes serve a similar
purpose, which is to identify a segment of time series data for which either the
wind speed or the wind direction or both can be assumed relatively stationary.
If the runlength is relevant to one, it ought to be relevant to the other.

The change test results in Fig. 4.4 suggest that there exist 43 change points
in wind speed out of the 720 data points. For each of the 720 observations, one
can compute the corresponding runlength, forming a 720 × 1 vector, namely
[x(1), . . . , x(720)]T , where x(1) = 0. For instance, if the first change point
was observed at ` = 16, then x(15) = 15, x(16) = 16, but x(17) = 1, and
so forth. Fig. 4.5, left panel, illustrates the runlength values for the first 100
points, where change points are marked by the crosses. Note how the runlength
grows linearly with time, reaches its peak at change points, and then resets
to one right after the change.

The 720 data points are subsequently grouped into two classes: the time
points deemed as “not a change point,” like at ` = 15 and ` = 17 as mentioned
above, versus the “change points,” like at ` = 16. Fig. 4.5, right panel, presents
the boxplots of the runlength values associated, respectively, with the two
classes. The difference is remarkable: the median runlengths are 8.0 and 16.0
hours for the two classes, respectively. This means that for a given time point,
which could be in the forecasting horizon, say at t+h, the larger its runlength
x(t+h), the more likely a change will occur. On the contrary, a small runlength
makes it more likely that the wind follows the most recently observed pattern.

4.3.3 Framework of Calibrated Regime-switching
The basic idea of the CRS approach is as follows. Assume that a base model,
M, can produce a spatio-temporal forecast, V̂i(t + h), at the i-th site and
time t + h. This base model, M, could be a spatio-temporal model yield-
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FIGURE 4.5 Left panel: runlength as a function of time. Right panel:

boxplots of the runlengths for data points at which no change was

observed versus those for data points at which a change was observed.

ing kriging-based forecasts, as we discuss in Chapter 3. Admittedly, this base
model produces reactive, albeit regime-specific, forecasts. CRS seeks to cal-
ibrate the reactive forecasts to safeguard against upcoming, out-of-sample

regime changes, by adding a regime-dependent term, c
r(t)
i (t + h) ∈ R, to the

raw forecast, V̂i(t+ h). This additional term, c
r(t)
i (t+ h), is referred to as the

regime-dependent forecast calibration, and the quantity V̂i(t+h) + c
r(t)
i (t+h)

as the calibrated forecast. The idea behind CRS is illustrated in Fig. 4.6, where
the goal of the calibration is to adjust the forecast at t+ h in anticipation of
a regime change.

Determining the sign and magnitude of c
r(t)
i (t + h) is arguably the most

critical aspect of the CRS approach. Ezzat et al. [60] assume that the sign and

magnitude of the forecasting calibration, c
r(t)
i (t+ h), can be informed by the

observed data up to time t, denoted by Dt. The dependence on Dt is signified

by the notation, c
r(t)
i (t+h|Dt). For simplicity, c

r(t)
i (t+h|Dt) is assumed to only

vary over time but be fixed across space, that is, c
r(t)
i (t+h|Dt) = cr(t)(t+h|Dt),

for i = 1, · · · , N . A general formulation to infer cr(t)(·) can be expressed as

min
cr(t)∈C

L
[
V̂i(t+ h) + cr(t)(t+ h|Dt), Vi(t+ h)

]
, (4.15)

where C is some class of functions to which cr(t)(·) belongs, and L[·, ·] is a
loss function that defines a discrepancy measure. To solve Eq. 4.15, cr(t)(·|Dt)
ought to be parameterized.

Based on the discussion in Section 4.3.2, the sign and magnitude of a
forecasting calibration is determined through the observed values of the two
change indicators, r(t) and x(t + h). Ezzat et al. [60] further propose to use
a log-normal cdf to characterize cr(t)(·)’s relationship with the two inputs.
The choice of the lognormal cdf as a calibration function is motivated by
its flexibility to model a wide spectrum of regime-switching behavior, ranging
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from abrupt shifts to gradual drifts, depending on the values of its parameters
that are learned from the data.

Given R pre-defined wind regimes, cr(t)(·) is modeled individually in each
of them. The current regime information, r(t), is then implicitly incorpo-
rated by the regime partition, as cr(t)(·) uses the parameters specific to that
particular regime. Consequently, the characterization of cr(t)(·) has only the
runlength variable, x(t + h), as an explicit input. For the k-th regime, let us
denote the regime-dependent parameters by Ψk = {ψk1 , ψk2 , ψk3}, so that the
regime-specific calibration function can be denoted as c(x(t+ h); Ψk|Dt) and
the superscript r(t) is dropped. The log-normal cdf has the form of

c(x(t+ h); Ψk) = ψk1 Φ

(
ln(x(t+ h))− ψk2

ψk3

)
.

CRS aims to learn Ψk for each regime using the historical training data and
continuously update them during the rolling forward forecasting.

The estimation procedure goes as follows. Assume that an analyst has at
hand a sequence of forecasts obtained via a base model, M, and their corre-
sponding true observations. These forecasts are obtained in a rolling forward
fashion, such that for the `-th roll, the data observed up to time t` are used
to obtain forecasts from t` + 1 till t` + H. Then, the window is slid by a
specified interval, say s, so that the “present time” for the next forecasting
roll is t`+1 = t` + s. Suppose that there are L forecasting rolls in the training
set. For the `-th forecasting roll, ` = 1, . . . ,L, the following information is
saved—the observed wind regime at the time of forecasting, r(t), the associ-
ated runlength, x`(t + h), the raw forecast via M, V̂ `i (t + h), and the actual
observation at t + h, V `i (t + h). By employing a squared error loss function,
the optimization problem of Eq. 4.15 can be re-written as,

min
Ψk

1
Lk×N×H

Lk∑̀
=1

N∑
i=1

H∑
h=1

[
V̂ `i (t+ h) + c(x`(t+ h); Ψk)− V `i (t+ h)

]2

(4.16)
where Lk denotes the number of forecasting rolls relevant to regime k. Solving
Eq. 4.16 for each regime individually, i.e., for k = 1, . . . , R, gives the least-
squared estimate of the parameters in {Ψk}Rk=1.

Table 4.3 presents the features of various forecasting models. A checkmark
“X” means the presence of that feature, whereas a cross “X” means absence.
The last column indicates the piece of information on which a method is ac-
tively invoked as a forecasting indicator. Please note that methods like ASYM,
SEP and PER do not explicitly consider a wind regime and they are usually
not included as a regime-switching approach. Nevertheless, they can be con-
sidered as a special case of reactive regime-switching, which has always a single
regime and assume that the same regime continues in the forecast horizon.
For this reason, ASYM, SEP, PER, RSAR, and RST are collectively referred
to as the reactive methods.
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TABLE 4.3 Features of various forecasting models.

Method Temporal Spatial Asym- In Out of Regime

metry sample sample indicators

PER X X X X X X
SEP X X X X X X
ASYM X X X X X X
RSAR X X X X X r(t)
MSAR X X X X X {r(t),ΠΠΠ}
RST X X X X X r(t)
CRS X X X X X {r(t), x(t+ h)}

4.3.4 Implementation Procedure
To run a CRS comprises three sequential phases: (1) Phase I: generating the
raw forecasts (via the base modelM) in the initialization period, (2) Phase II:
learning the forecasting calibration function based on the raw forecasts and the
actual observations solicited in the initialization period, (3) Phase III: making
continuous rolling-forward forecasting and updating. Phases I and II use a
subset of the data, say, the first month of data, to set up the CRS model. In
Phase III, the actual forecasting and testing are carried out on the remaining
months in the dataset. Fig. 4.7 presents a diagram for understanding the
implementation of CRS.

Phases I and II are the training stage. Without loss of generality, the
base spatio-temporal model, M, is assumed to be parameterized by a set of
parameters in Θ and thus denoted as M(Θ).

The rolling mechanism in Phase I goes as follows. The first roll of training
data is the first 12-hour data. Using the 12-hour data, the model parameters
Θ are estimated and the raw forecasts from t + 1 till t + H are made. The
regime information, r(t), and the forecasts, V̂i(t+ h), h = 1, . . . ,H, are saved
for subsequent training. Then, the window is slid by a pre-specified interval
s and all data points within that sliding interval are revealed, so that the
runlength, x(t + h), and the actual wind speed, Vi(t + h), can be recorded
and saved, too. Next, one is ready to make a new forecast, and for that, one
needs to re-estimate Θ using the newly revealed data. One thing to bear in
mind is that if the sliding interval contains any change points, one should use
only the “relevant” data for estimating Θ. The “relevant” data refer to those
from the most recent stationary data segment leading to the present time. For
instance, Ezzat et al. [60] consider temporal lags for up to 4 hours into history.
If the immediate past regime change happens within four time lags from the
present time, Ezzat et al. use data with an even shorter time history, which is
since the immediate past regime change. This rolling mechanism is continued
until all data in the initialization period is exhausted, supposedly resulting in
L rolls.

Once Phase I is finished, the goal of Phase II is to learn the calibration
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FIGURE 4.7 Steps and notations in the execution of the calibrated

regime-switching approach.

function, c(x(t+ h); Ψk), using the Phase I data, where Eq. 4.16 is solved for
each regime individually to estimate the regime-dependent parameters Ψk.

Then, proceed to Phase III, where rolling forecasts are performed. At the
present time t, one should first look back and search for the most recent in-
sample change point. Again, only the “relevant data,” defined the same as
before, are used to estimate the base model parameters in Θ. The base model
is used to make the raw forecasts. The c(x(t + h); Ψk), h = {1, . . . ,H}, is
calculated based on the knowledge of the current wind regime, the runlength,
and Ψk. The resulting c(x(t+ h); Ψk) is used to calibrate the raw forecasts.

The window is then slid by s. At t+ s, first use the last 30 days of data to
update Ψk by re-solving Eq. 4.16 for k = 1, . . . , R, given the newly revealed
observations, then estimate the base model parameters in Θ using the “rele-
vant data,” and finally, make forecasts for t+ s+ h, h = 1, . . . ,H. The cycle
is repeated until the forecasts for all the remaining months are produced.
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4.4 CASE STUDY
This section applies the calibrated regime-switching method, together with
a few alternatives, to the yearlong Wind Spatio-Temporal Dataset2. The
performances of the respective methods are illustrated and compared.

4.4.1 Modeling Choices and Practical Considerations
In this analysis, the forecast horizon is up to H = 12. The sliding interval
is set to s = 6 hours, meaning that after each roll, the first six hours of the
forecast horizon are revealed, and the horizon is shifted by another six hours.
This value appears reasonable considering the frequency at which forecasts
are updated in practice.

The base model used in CRS is the non-separable, asymmetric spatio-
temporal model presented in Section 3.4.1 and the corresponding forecasting
model is the kriging method presented in Section 3.4.3. Same as in Section 3.4,
by setting the asymmetry and separability parameters to zero, a separable
version of the general spatio-temporal model can be obtained.

The base spatio-temporal model used is stationary, but wind fields have
been reported to exhibit signs of nonstationarity [69, 166]. By considering
only the most recent history of wind speed and direction for model training,
it helps overcome the temporal nonstationarity, as the assumption of temporal
stationarity is sufficiently reasonable in the short time window since the latest
change point. Ezzat et al. [60] account for spatial nonstationarity by assuming
local spatial stationarity within a subregion on the wind farm. Three subre-
gions of wind turbines based on their proximity to the three masts are defined,
and a region-specific stationary spatio-temporal model is fit and subsequently
used for forecasting.

The physically motivated regime definition, as explained in Section 4.1.1, is
used here for defining three wind speed regimes. Ezzat et al. [60] also define two
wind direction regimes upon observing a dominant east-westward directional
wind in the dataset. The combination of the wind speed regimes and wind
direction regimes produces a total of R = 6 wind regimes.

A further fine-tuning is conducted to adjust the boundaries of the resulting
regimes for boosting the performance of the CRS approach. Using the first
month of data, the fine-tuning is conducted on 112 different combinations of
regime thresholds, chosen as follows: u1 = 0, vary v1 from Vci to Vci+1.5 with
increments of 0.5 m/s, v2 from Vin−1.5 to Vin with increments of 0.5 m/s, D1

from 180◦ − 45◦ to 180◦ + 45◦ with 15◦ increments, and set D2 = 360◦ −D1,
where D1 and D2 are the wind direction thresholds. The fine-tuning based
on the Wind Spatio-Temporal Dataset2 yields the final regime thresholds
at 4.5 and 9.0 m/s for wind speed and 45◦ and 225◦ for wind direction.

Fig. 4.8 illustrates the learned calibration functions for the six regimes
as functions of the runlength. It appears that the wind speed variable is the
main factor alluding to the upcoming out-of-sample changes. For instance,
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FIGURE 4.8 Learned forecasting calibration functions, c(x(t + h); Ψk),

using Phase I data for the six regimes. (Reprinted with permission

from Ezzat et al. [60].)

the first two regimes (top row), which share the same wind speed profile
(low wind speeds), both transit to higher wind speed regimes. Regimes 3 and
4, both with moderate wind speeds, and regimes 5 and 6, both with high
wind speeds, likewise have a calibration function of the same pattern to their
respective group. The wind direction appears to have a secondary, yet still
important, relationship with the magnitude of the out-of-sample change, as
well as its timing. For instance, it appears that the magnitude of change is
larger in regime 2 (westerly) than in regime 1 (easterly), and larger in regime
4 (westerly) than in regime 3 (easterly). The opposite happens in regimes 5
(easterly) and 6 (westerly). The switching behavior difference between gradual
shifts like in regimes 1, 2, 3, and 6 and abrupt shifts like in regimes 4 and
5 also implies a certain degree of interaction between the two factors. These
functions may change with time and they are continuously re-estimated in
Phase III.

Finally, during the actual testing in Phase III, Ezzat et al. [60] decide to im-
pose maximal and minimal thresholds on the magnitude of forecast calibration
to avoid over-calibrating the forecasts when extrapolating. Some numerical ex-
periments indicate that restricting the magnitude of the calibration quantities
to the range (−3, 3) m/s yields satisfactory performance. Empirical evidence
also suggests that, on average, forecast calibration does not offer much bene-
fit in the very short-term horizon, like less than three hours ahead. For this
reason, CRS only calibrates the forecasting for more than three hours ahead
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(three hours ahead included). This is understandable, since at very short time
horizons, wind conditions are more likely to persist than to change drastically.

4.4.2 Forecasting Results
This subsection presents the numerical results comparing CRS with the fol-
lowing approaches: persistence forecast, the asymmetric model, the sepa-
rable model, the regime-switching autoregressive model, a soft-thresholding
Markov-switching model, and a Markov-switch vector autoregressive model
(MSVAR) [119]. MSVAR generalizes the MSAR model to further account for
the spatial dependence. The temporal order used in RSAR and MSAR (both
versions) is one, i.e., p = 1.

The aforementioned models are compared in terms of both wind speed
and wind power forecasting performances. The forecast accuracy is evaluated
using MAE for each h. Specifically, the MAE used in this comparison study
is expressed as

MAE(h) =
1

L×N

L∑
`=1

N∑
i=1

∣∣V̂ `i (t+ h)− V `i (t+ h)
∣∣, (4.17)

where V `i (t+ h) and V̂ `i (t+ h) are, respectively, the observed and forecasted
responses from a forecasting model, obtained at the i-th site and for h-hour
ahead forecasting during the `-th forecasting roll, ` = 1, ...,L. For each h,
MAE is computed as an average over all turbines and forecasting rolls for the
eleven-month test data. The MAE values are presented in Tables 4.4 and 4.5,
for wind speed and power, respectively. Please note that when computing the
MAE for CRS (as well as the PCE below), V̂i(t + h) is substituted by the
calibrated forecast, i.e., V̂i(t+ h) + c(x(t+ h); Ψk).

The results in Table 4.4 demonstrate that, in terms of wind speed, CRS
outperforms the competing models in most forecasting horizons. For h ≥ 2,
the CRS approach renders the best performance among all competing models.
This improvement is mainly due to the use of regime-specific calibration func-
tions, which help anticipate the out-of-sample regime changes hinted by run-
length. Additional benefits over temporal-only and separable spatio-temporal
models come from the incorporation of comprehensive spatio-temporal cor-
relations and flow-dependent asymmetries. For the very short-term horizon,
h = 1, PER offers the best performance, with CRS slightly behind, but still
enjoying a competitive performance.

Fig. 4.9, upper panel, presents the percentage improvements, in terms of
MAE and wind speed forecast, that the CRS approach has over the compet-
ing models at different forecast horizons. The percentage improvement over
reactive methods such as ASYM, SEP, RSAR and PER is more substantial as
the look-ahead horizon increases. This does not come as a surprise since the
farther the look-ahead horizon is, the more likely a change will occur in that
horizon, and hence, the benefit of using CRS is more pronounced.
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FIGURE 4.9 Percentage improvements in terms of MAE that CRS has

over the competing approaches in wind speed (upper panel) and in

wind power (lower panel). (Reprinted with permission from Ezzat et

al. [60].)
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TABLE 4.4 MAE for wind speed forecasting for h-hour
ahead, h = 1, 2, . . . , 12. Bold-faced values indicate best
performance.

Method 1 2 3 4 5 6

ASYM 1.12 1.45 1.72 1.96 2.15 2.27
SEP 1.15 1.47 1.74 1.97 2.15 2.27
PER 1.11 1.46 1.73 1.97 2.16 2.31
RSAR 1.16 1.53 1.79 2.03 2.21 2.36
MSAR 1.23 1.64 1.92 2.14 2.28 2.38
MSVAR 1.21 1.60 1.87 2.09 2.23 2.33
CRS 1.12 1.45 1.71 1.89 2.06 2.15

7 8 9 10 11 12

ASYM 2.39 2.51 2.68 2.77 2.83 2.87
SEP 2.40 2.52 2.68 2.77 2.84 2.87
PER 2.44 2.57 2.74 2.84 2.92 2.96
RSAR 2.46 2.56 2.73 2.82 2.89 2.93
MSAR 2.45 2.48 2.54 2.59 2.62 2.63
MSVAR 2.40 2.45 2.52 2.57 2.60 2.61
CRS 2.25 2.29 2.37 2.44 2.52 2.56

Source: Ezzat et al. [60]. With permission.

The trend of the improvement of CRS over the Markov-switching ap-
proaches, i.e., MSAR and MSVAR, is different. The Markov-switching ap-
proaches anticipate regime changes in the look-ahead forecast horizon, too,
but use a different mechanism (the transition probabilities). For short-term
horizons, the performance of CRS is remarkably better than the Markov-
switching approaches. As the look-ahead horizon increases, the advantage of
CRS over the Markov-switching models reaches a peak around h = 4 hours,
and after that, the performance of the Markov-switching approaches gradually
catches up with that of CRS. The difference between CRS and the Markov-
switching approaches highlights the merit of using the runlength to anticipate
the out-of-sample changes. The inclusion of runlength and regime informa-
tion in CRS appears to offer higher sensitivity, and thus more proactivity, to
out-of-sample changes than that offered by the transition probabilities in the
Markov-switching approaches.

Similar findings are extended to the power prediction results in Table 4.5,
in which CRS is shown to outperform the competing models for most fore-
casting horizons. Its improvement over the reactive methods is also higher as
the look-ahead horizon increases, whereas its improvement over the Markov-
switching approaches is best in the shorter forecast horizons. The percentage
improvements shown in Fig. 4.9, lower panel, are somewhat different from
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TABLE 4.5 MAE values for wind power forecasting for h-hour
ahead, h = 1, 2, . . . , 12. Bold-faced values indicate best
performance.

Method 1 2 3 4 5 6

ASYM 0.121 0.156 0.184 0.212 0.227 0.236
SEP 0.123 0.158 0.185 0.212 0.227 0.236
PER 0.125 0.161 0.189 0.215 0.230 0.241
RSAR 0.129 0.169 0.199 0.226 0.241 0.253
MSAR 0.132 0.171 0.200 0.220 0.233 0.242
MSVAR 0.131 0.170 0.198 0.217 0.228 0.238
CRS 0.121 0.156 0.186 0.207 0.220 0.229

7 8 9 10 11 12

ASYM 0.247 0.261 0.280 0.291 0.294 0.296
SEP 0.247 0.261 0.280 0.292 0.295 0.296
PER 0.253 0.268 0.286 0.299 0.303 0.304
RSAR 0.264 0.278 0.297 0.309 0.314 0.314
MSAR 0.249 0.258 0.263 0.267 0.268 .269
MSVAR 0.245 0.256 0.262 0.266 0.267 0.267
CRS 0.239 0.244 0.254 0.263 0.268 0.271

Source: Ezzat et al. [60]. With permission.

their counterparts in the upper panel. The difference is mainly due to the
nonlinear speed-power conversion used in computing wind power.

In addition to MAE, Table 4.6 presents the average PCE errors across
all forecasting horizons, for values of ξ ranging between 0.5 and 0.8 with a
0.1 increment, as well as ξ = 0.73, which is the value recommended in [91].
It appears that the improvement of CRS over the competing models is also
realizable in terms of PCE. The CRS approach performs well when under-
estimation is penalized more severely than over-estimation (namely ξ > 0.5),
which describes the more realistic cost trade-off in power systems.

TABLE 4.6 Average PCE for competing models across all
horizons. Bold-faced values indicate best performance.

Method ξ = 0.5 ξ = 0.6 ξ = 0.7 ξ = 0.73∗ ξ = 0.8

ASYM 0.116 0.117 0.114 0.111 0.104
SEP 0.116 0.118 0.114 0.112 0.105
PER 0.118 0.121 0.124 0.125 0.127
RSAR 0.123 0.123 0.120 0.117 0.110
MSAR 0.113 0.123 0.127 0.124 0.126
MSVAR 0.112 0.118 0.122 0.118 0.119
CRS 0.109 0.110 0.107 0.105 0.097

Source: Ezzat et al. [60]. With permission.
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GLOSSARY
AR: Autoregressive model

AR-D: Autoregressive model fit after the diurnal pattern is removed

AR-N: Autoregressive model fit to the original data

ARMA: Autoregressive moving average

BIC: Bayesian information criterion

cdf: Cumulative distribution function

CRPS: Continuous ranked probability score

CRS: Calibrated regime switching

GMM: Gaussian mixture model

GSTAR: Gaussian spatio-temporal autoregressive model

MAE: Mean absolute error

MSAR: Markov-switching autoregressive model

MSVAR: Markov-switching vector autoregressive model

PCE: Power curve error

pdf: Probability density function

PER: Persistence forecasting

RMSE: Root mean squared error

RSAR: Regime-switching autoregressive model

RSGSTAR: Regime-switching Gaussian spatio-temporal autoregressive model

RST: Regime-switching space time model

RST-D: Regime-switching space time model fit after the diurnal pattern is removed

RST-N: Regime-switching space time model fit to the original data

SEP: Separable spatio-temporal model

STAR: Smooth transition autoregressive model

TDD: Trigonometric direction diurnal model
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EXERCISES
4.1 Use the Wind Time Series Dataset and conduct the following exer-

cise.

a. Use the three pre-defined wind speed regimes, [0, 4.5), [4.5, 9.0) and
[9.0, 20), and fit three AR models to the hourly data of April and
May. To select the model order for the AR models, please use BIC.

b. Use the hourly data of April and May to fit a single AR model. Still
use BIC to decide the model order. Compare the AR model in (b)
with the three AR models in (a).

c. Use the AR models in (a) to make one-hour ahead rolling forward
forecasts for the next ten hours. The regime for one hour ahead is
assumed the same as the current regime. Compute the MAE of the
ten one-hour ahead forecasts.

d. Use the AR models in (b) to make one-hour ahead rolling forward
forecasts for the next ten hours. Compute the MAE of the ten one-
hour ahead forecasts. Compare the MAEs obtained in (c) and (d).
What do you observe?

4.2 Use the Wind Time Series Dataset and fit a Gaussian mixture model
to the yearlong hourly data. Here you do not have the wind direc-
tion data. So instead of fitting a bivariate Gaussian distribution, like
in Eq. 4.2, you will fit a univariate Gaussian distribution.

a. Explore the number of regimes between one and five. Use the BIC
to decide the best number of regimes.

b. Using the R decided in (a) and the associated GMM parameters,
compute the weight wk in Eq. 4.3 for wind speed between 0 m/s
and 20 m/s with an increment of 1 m/s. Do this for k = 1, . . . , R and
make a plot of wk to demonstrate how each regime model is weighted
differently as the wind speed changes.

4.3 Use the hourly data in Wind Time Series Dataset and assume three
pre-defined wind speed regimes, [0, 4.5), [4.5, 9.0) and [9.0, 20). Conduct
the following exercise.

a. Go through the first half year’s data, i.e., January through June. At
any data point, label the wind speed’s current regime (namely, at t)
as well as the regime at the next hour (namely, at t+1). For the entire
half year of data, count the regime switching numbers between the
three regimes, including the case of remaining in the same regime.
Note that the regime switching from 1 to 2 and that from 2 to 1
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are counted as different regime switchings. Then, divide each count
by the total number of switchings. The relative frequency provides
the empirical estimate of πij . Please write down the 3× 3 transition
probability matrix ΠΠΠ. Verify if each row sums to one.

b. Do the same for the second half year’s data, i.e., July through De-
cember. Compare the new ΠΠΠ with that obtained in (a). Do you find
any noticeable difference between the two ΠΠΠ’s?

4.4 If F (·) is the predictive cdf and V is the materialized wind speed, the
continuous ranked probability score is defined as

crps(F, V ) =

∫ ∞
−∞

(F (x)− 1(x ≥ V ))
2
dx.

The expression in Eq. 2.60 is the sample average based on ntest obser-
vations, namely

CRPS =
1

ntest

ntest∑
i=1

crps(F̂ , Vi).

Please derive the closed-form expression of crps(F, V ) when F (·) is a
normal distribution.

4.5 The cdf of the truncated normal distribution, N+(µ, σ2), is

F (x) =
Φ(x−µσ )− Φ(−µσ )

1− Φ(−µσ )
(P4.1)

when x ≥ 0, and F (x) = 0 when x < 0. Please drive the closed-form
expression of crps(F, V ) for the truncated normal distribution, which is
the expression inside the summation in Eq. 4.13.

4.6 Use the wind speed data in Wind Spatio-Temporal Dataset2. Select
three turbines from the wind farm, the west-most turbine, the east-most
turbine, and a turbine roughly halfway from the two turbines on the pe-
riphery. If possible, try to select the turbines on a similar latitude. Use
the average of the wind directions measured on the three met masts
to represent the wind direction for the wind farm. Create four wind
regimes—the easterly, southerly, westerly, northerly regimes of which
the wind direction ranges are, respectively, (45◦, 135◦), (135◦, 225◦),
(225◦, 315◦), and (315◦, 45◦). Use the first two months of data asso-
ciated with the three turbines to fit four separate AR models, each of
which has the same structure as in Eq. 4.10. Doing this yields a four-
regime RST method. Use this RST method to make forecasts at the
east-most turbine for h = 2. Shift the data by one month and repeat
the above actions, and then, repeat for the whole year. One gets eleven
2-hour ahead forecasts. Compute the MAE and RMSE for these h = 2
forecasts.
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4.7 Take the first month of wind direction data from a met mast and im-
plement the circular variable detection algorithm to detect the change
points. How many change points are there? Are the minimum-time-to-
change and median-time-to-change different from those values reported
on page 105?

4.8 Use the change-point detection results from the previous problem and
produce boxplots similar to that in Fig. 4.5, right panel. Is there a
noticeable difference between the two resulting boxplots? How do you
feel using the runlength as a change indicator for a wind direction-based
regime-switching method?

4.9 Test the sensitivity of the CRS approach by comparing the following
competing alternatives:

a. No forecasting calibration for h = 1 and h = 2 versus conducting
calibration for h = 1 and h = 2.

b. Cap the magnitude of the calibration quantities to the range [−3, 3]
versus [−2, 2], or [−5, 5], or no restriction at all.

c. Three wind speed regimes, with boundary values at 4.5 and 9.0 m/s,
versus four wind speed regimes, with boundary values at 3.5, 9.5,
and 13.5 m/s.
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